March 17, 2014

Mr. Kevin Gregory Acting Director, Consultant Management Bureau NYS Dept. of Transportation POD # 33 50 Wolf Road Albany, NY 12232

Attention: Mr. Anjan Sen, P.E.

Re: PIN 8806.51.101 Harrison Landfill Area (#360065) Harrison Sub-Residency Westchester County, New York

Dear Mr. Sen:

The following letter report summarizes the field investigative procedures and results of the sampling, conducted by Henningson, Durham & Richardson Architecture and Engineering P.C. (HDR) on behalf of the New York State Department of Transportation (NYSDOT) at the above referenced site (Figure 1). The site, once a seasonal highway maintenance support and salt storage facility operated by the NYSDOT, is now occupied by the Town of Harrison. The site includes approximately 2.6 acres of landfill area (Figure 2) that was closed in December 1998.

The objectives of the post-closure sampling and monitoring program are to 1) evaluate the environmental impacts of the landfill, if any; 2) meet the post-closure monitoring requirements of the New York State Department of Environmental Conservation (NYSDEC) and; 3) provide the NYSDEC with data to evaluate and/or modify the existing sampling and monitoring program. The sampling was conducted in accordance with our October 16, 2013 approved scope, which was developed in accordance with the NYSDOT's *Operation and Maintenance Plan for the Harrison Sub-Residency, Landfill and Petroleum Spill Area, February 2010.* Currently the post-closure sampling and monitoring program is performed every fifth quarter.

Field Investigative Procedures

Groundwater monitoring at the site was performed to meet the monitoring requirements of the New York State Department of Environmental Conservation (NYSDEC) relating to the Harrison Landfill Area (#360065). A discussion of the groundwater data from the groundwater monitoring wells is presented in this report.

On October 23rd and 24th, 2013, HDR sampled the groundwater wells, sediments samples, surface water samples and air quality measurements to monitor the Harrison Landfill Area. HDR obtained samples

from five groundwater monitoring wells (PC-1, PC-2, PC-3, LMW-2, and LMW-4), three surface water locations (SW-1, SW-2, and SW-4), and four sediment samples (SD-1, SD-2, SD-3, and SD-4) for chemical analysis. Additionally, eight air monitoring points (GV-1, GV-2, GV-3, GV-4, NPL, EPL, SPL, and WPL) were inspected using various air quality monitoring techniques. It should be noted that SW-3 was not sampled due to dry conditions. Prior to commencing site activities, HDR conducted a visual inspection of the groundwater monitoring well casings and well heads to note any signs of damage or tampering. Static water level measurements and total depth measurements from all groundwater monitoring wells were also recorded.

Prior to commencement of sampling, a round of static water level measurements and total depth measurements were collected from all monitoring wells and field instrumentation were calibrated according to the respective manufacturer's standards. At the Landfill Area (Figure 2), groundwater, surface water/sediment and gas monitoring were conducted by HDR as part of the sampling event. Sampling information is included on sampling logs in Attachment A. Per the NYSDOT February 2010 O&M Plan, HDR inspected the landfill cap (for signs of vector/vermin) and the perimeter drainage swales. No evidence of vector/vermin was apparent.

Groundwater samples were collected from the following five (5) monitoring wells listed below with regard to their relationship to the landfill and also shown on Figure 3:

On-Site/Site Background	On-Site/Downgradient	Off-Site/Downgradient
LMW-2	LMW-4	PC-3
	PC-1	
	PC-2	

Each well was purged of three well volumes or until dryness using a Whale pump equipped with a Rheostat (for adjustable flow), in-line flow cell, and dedicated tubing, where possible. Monitoring well PC-2 is bent, allowing neither a Whale pump nor a bailer to be used for sampling; therefore, a peristaltic pump with dedicated tubing was used to both purge and sample this well. Field parameters of temperature, turbidity, dissolved oxygen (DO), pH, specific conductivity, and oxidation-reduction potential (Eh) were collected during purging and sampling at each well (Attachment A). The monitoring wells were sampled once they recovered to approximately 75% of their initial volume or within 2 hours, whichever came first. Groundwater samples were collected for contract laboratory analysis from each location using a dedicated bailer. Samples were transferred to clean, pre-preserved (as necessary) laboratory-supplied containers for analysis of target compound list (TCL) volatile organic compounds (VOCs), TCL semivolatile organic compounds (SVOCs), and target analyte list (TAL) metals (filtered only), including cyanide and chloride. Metals samples were filtered and preserved by the laboratory. One (1) groundwater field duplicate was collected from monitoring well PC-1 and one (1) trip blank was submitted. The duplicate sample was collected at the same time and for the same landfill parameters as the parent sample. The duplicate sample was given a "fictitious" sample ID (DMW-5-10232013) as to not indicate to the laboratory that it was a duplicate sample.

Surface water (SW)/Sediment (SD) samples were proposed to be collected from the following four (4) locations listed below with regard to their relationship to the landfill and also shown on Figure 4:

On-Site/Site Background	On-Site/Downgradient	Off-Site/Downgradient
SW/SD-1	SW/SD-2	SW/SD-4
	SW/SD-3	

Locations SW/SD-3 was dry at the time of sampling; therefore, only a sediment sample was collected at this location. Prior to sample collection at the remaining three locations, approximate stream flow and stream depth were recorded. A surface water sample was collected from each respective location first, in order to minimize sample turbidity, using a clean stainless steel ladle. SW-1 was collected from a point located at the eastern section of wetlands B. SW-2 was collected from a point located at the northeastern section of wetlands A. SW-4 was collected from a point located just northeast of the 36-in. reinforced concrete pipe (RCP) culvert that diverts the stream southwest under Route 120 to Rye Lake. Field parameters of temperature, turbidity, DO, pH, and specific conductivity were collected during sampling at each location (Attachment A). Following collection of the surface water sample, a sediment sample was collected from the same general area as the surface water sample using a clean stainless steel trowel. Surface water and sediment samples were transferred to clean, pre-preserved (as necessary) laboratory-supplied containers for contract laboratory analysis of TCL VOCs, TCL SVOCs, and TAL metals (unfiltered only), including cyanide and chloride.

One (1) surface water field duplicate was collected from location SW-4 and one (1) trip blank was submitted. The duplicate sample was collected at the same time and for the same surface water parameters as the parent sample. The duplicate sample was given a "fictitious" sample ID (SW-15-10242013) as to not indicate to the laboratory that it was a duplicate sample. A field blank was collected using laboratory supplied de-ionized (DI) water on a pre-cleaned ladle. The field blank was conducted by pouring the DI water into the ladle then into the sample jars. The field blank was analyzed for the same set of parameters analyzed for the surface water samples.

Gas monitoring was conducted at each of the four (4) gas vents (GV-1 through GV-4) and along the perimeter of the property line, as shown on Figure 5, to verify that any gases, produced as a result of the natural decomposition of waste, do not pose a hazard to health or safety. Prior to collecting measurements at each location, ambient readings were recorded. Each location was monitored for methane and other explosive gases with a combustible gas indicator (CGI). Gas vent readings were obtained by inserting the instrument detector probe into the vent. The CGI was set to sound an alarm if the readings exceeded 10% of the lower explosive limit (LEL) of methane. In addition, alarms were set at 10% of the LEL of hydrogen sulfide, 25 parts per million (ppm) of carbon monoxide and 19.5% and 23.5% of oxygen. A photoionization detector (PID) and a flame ionization detector (FID) were used to monitor for VOCs around the perimeter of the landfill and at each of the four gas vents.

Results

Groundwater samples were analyzed in accordance with the National Environmental Laboratory Accreditation Program (NELAP). The results were compared to the NYSDEC Class GA standards or guidance values (GV) and are summarized on Table 1. Field parameters for temperature, pH, specific conductance, and turbidity are provided on the groundwater well sampling logs included in Attachment A. A copy of the analytical laboratory data is presented in Attachment B. (Note that the Harrison Sub-Residency landfill area was sampled concurrently with the spill site (Spill #94-07349); therefore, one of the data packages includes results from both sample sites.)

There were no detectable concentrations of VOCs with the exception of acetone and carbon disulfide in one sample each. Both acetone and carbon disulfide are known laboratory contaminants and their presence in the groundwater samples is not considered to be indicative of site conditions. Additionally, there were no detectable concentrations of SVOCs with the exception of caprolactam in a few of the samples collected. Caprolactam is used in the production of nylon and may be present due to the use of nylon rope with the bailers to collect the groundwater samples. All concentrations were below their respective standards or GVs, where available.

There were no detectable concentrations of any Resource Conservation and Recovery Act (RCRA) metals in exceedance of the respective groundwater standards or background ranges, where available. Detectable concentrations of three non-RCRA metals (iron, manganese and sodium) exceeded their respective groundwater standards. Iron was detected at the on-site/downgradient wells LMW-4 and PC-2 at concentrations of 64,000 and 21,000 ug/l, respectively, which exceed the Class GA standard of 300 and the natural ambient groundwater range of 10 to 10,000 ppb for iron. Manganese was detected at on-site/downgradient wells LMW-4, PC-1 (and its duplicate sample), and PC-2 at concentrations of 15,000, 740 (duplicate 730) and 10,000 ug/l, respectively, which exceed the Class GA Standard of 300 ug/l. Concentrations of manganese detected at LMW-4 and PC-2 are also greater than the natural ambient groundwater range of <1 to 10,000 ppb for manganese. Sodium was detected at all sampling locations at concentrations ranging from 30,000 ug/l at the on-site/upgradient well LMW-2 to 99,000 ug/l in the duplicate sample collected from PC-1. All concentrations exceeded the Class GA standard of 20,000 ug/l but were within the natural ambient groundwater range of 500 to 120,000 ppb for sodium. The remaining metals sample results were either not detected at the respective analytical reporting limits or were less than available NYSDEC standards or guidance values.

Chloride and cyanide were not detected above their respective Class GA standards in any of the groundwater samples collected.

Surface water samples were collected and analyzed for in accordance with NELAP. As was mentioned above, due to dry conditions, a sample could not be collected from location SW-3. Analytical results are presented in Table 2. Surface water results were compared to both NYSDEC Ambient Water Quality Class GA Groundwater Standards and Guidance Values and NYSDEC Class A Surface Water Standards and Guidance Values, where available, as these water bodies are tributaries to the Kensico

Reservoir, which is a source of drinking water. Class A standards were available for surface water as a source of drinking water H(WS), human consumption of fish H(FC), fish propagation A(C), fish survival A(A), protection of wildlife (W), and aesthetics (E). Select standards rely on sample specific conditions (i.e., hardness concentrations) and therefore were not included. Where appropriate, the most conservative standard or guidance value was used for comparison purposes. Field parameters for temperature, pH, specific conductance, and turbidity are provided on the surface water sampling log included in Attachment A. A copy of the analytical laboratory data is presented in Attachment B.

There were no detectable concentrations of VOCs or SVOCs in any of the samples collected.

There were no detectable concentrations of any RCRA metals in exceedance of available standards or GVs. Detectable concentrations of two non-RCRA metals (iron and manganese) exceeded their respective Class A and/or Class GA standards or GVs. Iron was detected at the on-site/upgradient sample location SW-1 and the off-site/downgradient sample locations SW-3 and SW-4 at concentrations of 1,900, 520, and 300 ug/l, respectively, which exceed the Class GA and Class A standard for fish propagation and fish survival of 300 ug/l but are within the natural ambient groundwater range of 10 to 10,000 ppb. Manganese was detected at the on-site/upgradient sample location SW-1 and the off-site/downgradient sample location SW-2 at concentrations of 1,700 and 340 ug/l, respectively. The concentrations detected at both locations exceeded the Class GA and Class A aesthetic standard of 300 ug/l but SW-2's results were within the natural ambient groundwater range of less than 1 to 1,000 ppb while SW-1's was the same order of magnitude as the upper limit. Results for the remaining metals analyzed were either non-detect at the respective analytical reporting limits, or less than the respective Class GA and/or Class A standards or guidance values.

Chloride was detected in the surface water samples collected from SW-1, SW-2 and SW-4 at concentrations of 6.3, 6.6 and 6.5 mg/l, respectively, which are below the Class GA and Class A standards. Cyanide was not detected in any of the surface water samples.

Sediment samples were collected and analyzed in accordance with NELAP. Samples were collected from all locations SD-1, SD-2, SD-3 and SD-4. Analytical results are presented in Table 3 and were compared to the NYSDEC Technical Guidance for Screening Contaminated Sediments. The criteria for metals are given as Severe Effect Level (SEL) and Lowest Effect Level (LEL). According to this Guidance, a sediment sample is considered contaminated if either criterion is exceeded. If both criteria are exceeded, the sediment sample is considered to be severely impacted. If only the LEL criterion is exceeded, the impact is considered moderate. Sample depths and field observations are provided on the sediment sampling log included in Attachment A. A copy of the analytical laboratory data is presented in Attachment B.

Sediment screening criteria for organic compounds are based upon the amount of organic carbon, or total organic carbon (TOC), in an individual sample. Since the sediment samples collected were not analyzed for TOC, a direct comparison cannot be made and the criteria are therefore used only for relative comparison purposes. For purposes of this report the sediment screening criteria relative to

fresh water and human health were used. There were no detectable concentrations of VOCs in the sediment samples collected. Trace amounts of polycyclic aromatic hydrocarbon (PAH) SVOCs including acenaphthene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, indeno[1,2,3-cd]pyrene and phenanthrene were detected in one or more of the sediment samples collected. A majority of these compounds were detected in the SD-3 sample location.

Metals detected in the samples collected from SD-1, SD-2, SD-3 and SD-4; include cadmium, copper, iron, lead, manganese, nickel, and zinc. Each metal exceeded their respective LEL and/or SEL. The concentration of cadmium detected at SD-3 was 2.5 mg/kg, which exceeded the cadmium LEL of 0.6 mg/kg. The concentration of copper detected at SD-3 was 35 mg/kg, which exceeded the copper LEL of 31 mg/kg. The concentration of iron detected at SD-2 and SD-3 at 20,000 and 23,000 mg/kg, respectively, exceeded the iron LEL of 20,000 mg/kg. The concentration of lead detected at SD-3 was 270 mg/kg, which exceeded the lead LEL of 31 mg/kg and the SEL of 110 mg/kg. The concentration of manganese detected at SD-1, SD-2, SD-3, and SD-4 was 580, 2,500, 700 and 1,500 mg/kg, respectively. These results exceeded the manganese LEL of 460 mg/kg and the SEL of 1,100 mg/kg. The concentration of nickel detected at SD-3 was 120 mg/kg, which exceeded the nickel LEL of 16 mg/kg. The concentration of zinc detected at SD-3 was 190 mg/kg, which exceeded the zinc LEL of 120 mg/kg. The remaining results were either not detected at the respective analytical reporting limits or were less than criteria, where available.

Gas monitoring results revealed no readings that exceeded the percent LEL for methane and preset alarm levels for hydrogen sulfide, carbon monoxide and oxygen. PID and FID readings were generally consistent with background readings with the following exception. FID readings were collected with and without a methane filter. Readings from gas vent GV-2 indicated the presence of some methane. FID readings were also noted in gas vent GV-4; however, the readings were comparable with and without the methane filter.

QAQC sampling was conducted as discussed above. There were no detectable concentrations in the trip blank or field blank samples collected. A duplicate sample was collected from groundwater monitoring well PC-1. The relative percent difference (RPD) was calculated for the sample collected from PC-1 and its duplicate sample (Table 4), DMW-5-10232013, using the following formula:

% RPD =
$$X_{1}-X_{2} + 100\%$$

(X₁+X₂)/2

where, X1 is the original value (PC-1), and X2 is the duplicate value (DMW-5-10232013)

RPD was not calculated for results where both samples were non-detect. For the remaining groundwater analytical results the RPD ranged from 0% to 17.89%, where 0% would indicate the results were the same. With the exception of caprolactum, the results of the RPD calculation indicate the results are within precision standards for both sampling and laboratory protocols.

A duplicate sample was collected from surface water location SW-4. The RPD was calculated for the sample collected from SW-4 and its duplicate sample (Table 5), SW-15-10242013, using the same formula above.

RPD was not calculated for results where both samples were non-detect. For the remaining analytical results the RPD ranged from 0% to 18.18%, where 0% would indicate the results were the same. With the exception of iron, the results of the RPD calculation indicate the results are within precision standards for both sampling and laboratory protocols.

Conclusions and Recommendations

Groundwater analytical results revealed elevated levels, greater than the respective Class GA standards or GVs, of the non-RCRA metals sodium, iron, and manganese in the filtered results obtained at one or more of the downgradient well locations. Elevated sodium concentrations were also detected in the on-site/upgradient well as well as the off-site/downgradient well. Concentrations of iron and manganese in the downgradient/on-site wells are greater than the concentrations detected in the upgradient/site background well, LMW-2, which would indicate some contribution from the landfill. However, iron and manganese concentrations are less in the downgradient/off-site monitoring well (PC-3) and are comparable in concentration to that of the upgradient/site background well, LMW-2, indicating any potential contribution of these metals to off-site groundwater from the landfill is not significant. The remaining groundwater sample results were either non-detect or less than the respective NYSDEC Class GA standards or GVs.

Surface water analytical results were obtained from an upgradient location/site background location (SW-1) and downgradient locations (SW-2 and SW-4); results for one or more of these samples revealed elevated levels of the non-RCRA metals iron and manganese. Concentrations of these metals were higher in the sample results obtained from the upgradient/site background surface water location. This would indicate a contribution from an upgradient/off-site source and not necessarily a release from the landfill. The remaining surface water sample results were either non-detect or less than the respective NYSDEC Class GA and/or Class A standards or guidance values.

Sediment analytical results revealed elevated levels of the metals cadmium, copper, iron, lead, manganese, nickel, and zinc at both the upgradient/site background location and/or one of the downgradient/on-site sediment sample location. Concentrations of many of these metals in the downgradient/on-site locations were detected at levels greater than the concentrations detected in the upgradient/site background location, SD-1, which would indicate some contribution from the landfill. There were no detectable concentrations of VOCs that exceeded the available sediment criteria. However, trace amounts of SVOCs were detected in background sediments, off-site downgradient sediments and in on-site downgradient sediments. The remaining sediment sample results were either non-detect or less than the respective sediment criteria.

PID and FID readings at the gas vents and perimeter of the landfill were generally consistent with background levels with the exception of the FID results for GV-2, which revealed the presence of methane. As mentioned above, methane levels at the time of the monitoring event did not exceed the percent LEL. Therefore the readings are likely a result of the natural decomposition of waste and do not pose a hazard to health or safety.

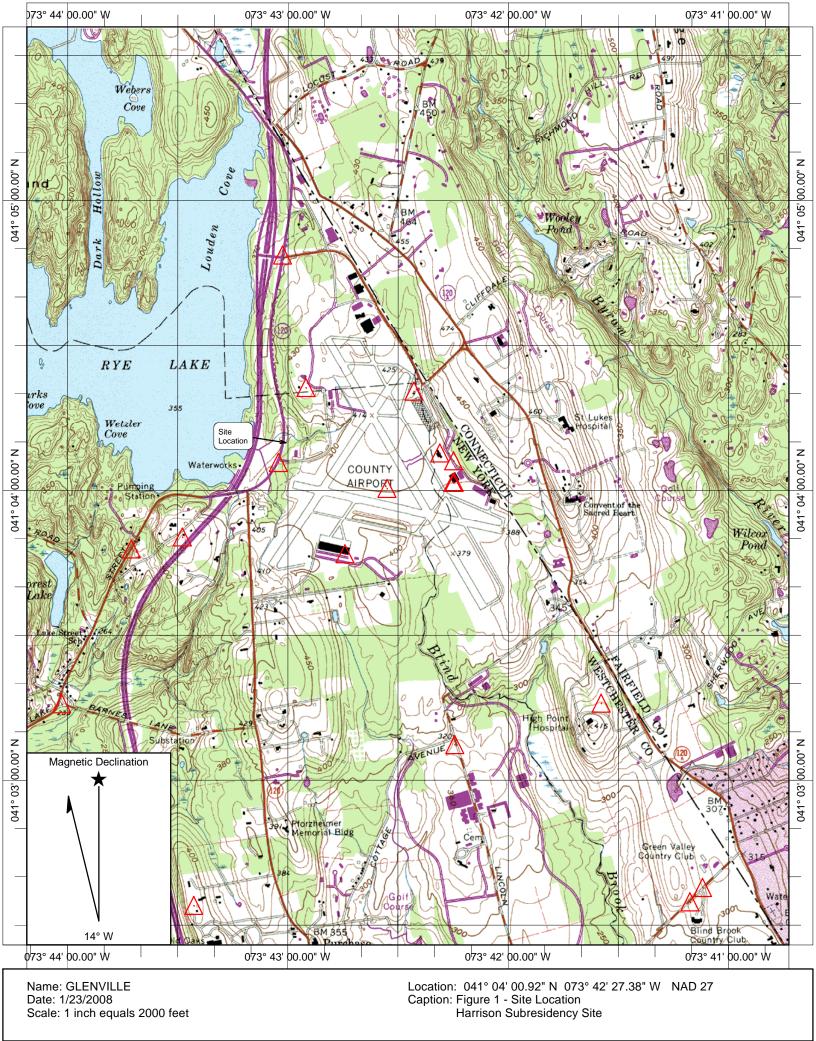
At the request of NYSDOT, HDR compiled databases for each sample media (groundwater, surface water and sediment) and prepared graphs to support evaluation of trends. Findings were presented and discussed with NYSDOT on a conference call held on March 14, 2014. The database and corresponding graphs can be found in Attachment C of this letter report.

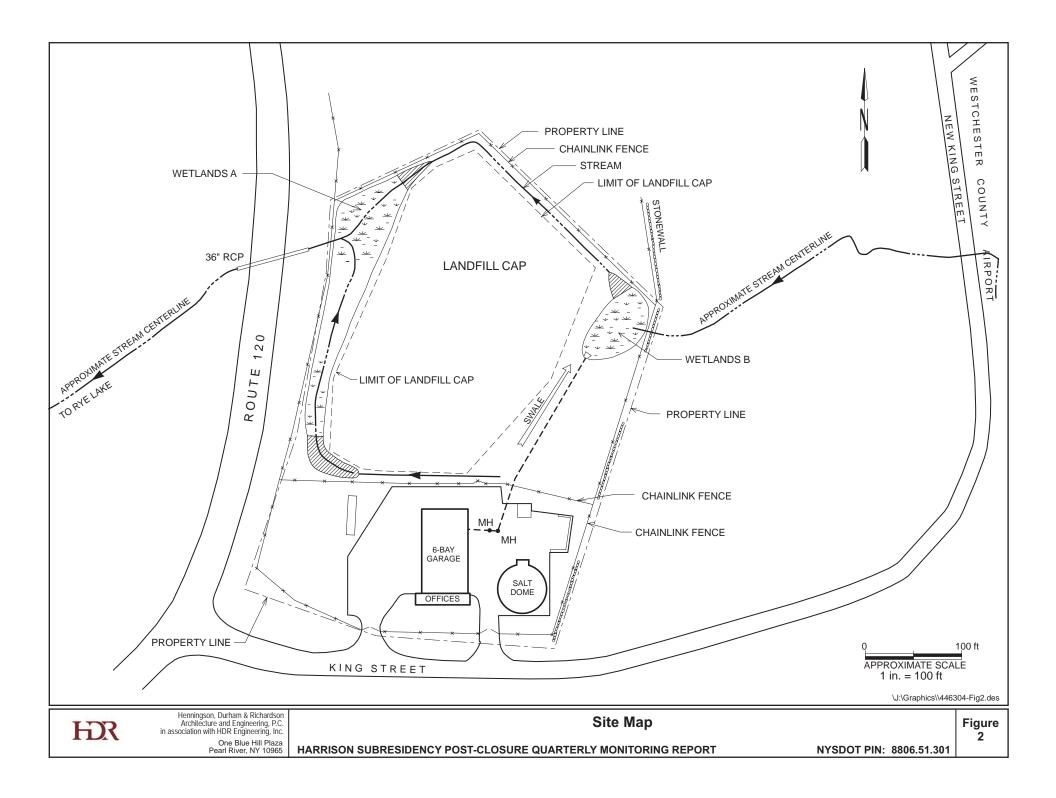
In general, the results received during the October 2013 sampling event are comparable to results that have been seen at the landfill during past sampling events. The results indicate that the landfill may locally contribute or have contributed to elevated levels of contaminants on-site; any potential contribution off-site is not significant. NYSDOT will continue to monitor the Landfill on a fifth-quarterly basis.

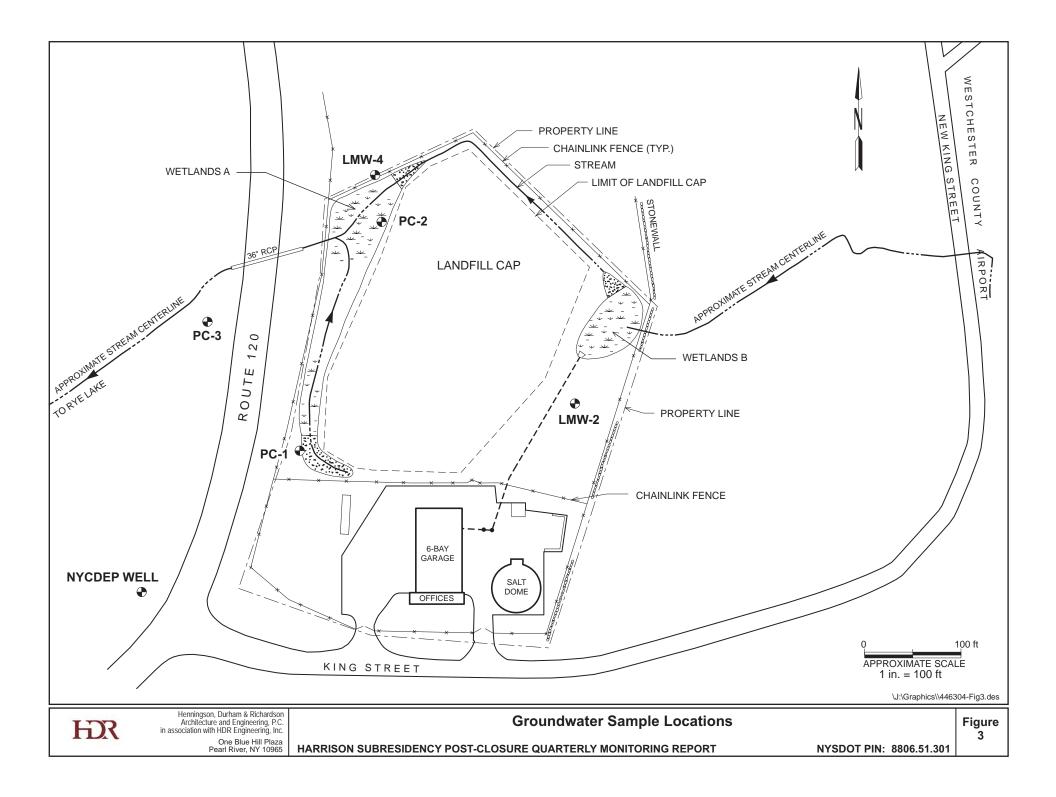
If you have any questions or need additional information, please do not hesitate to contact me.

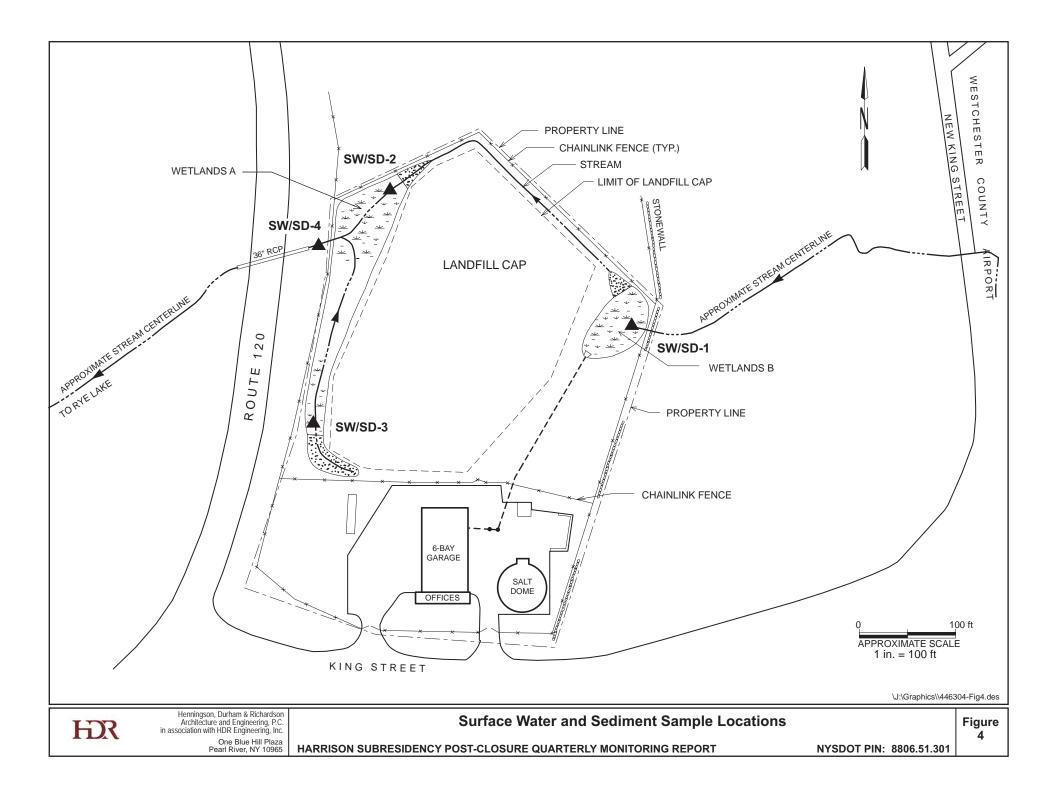
Very truly yours,

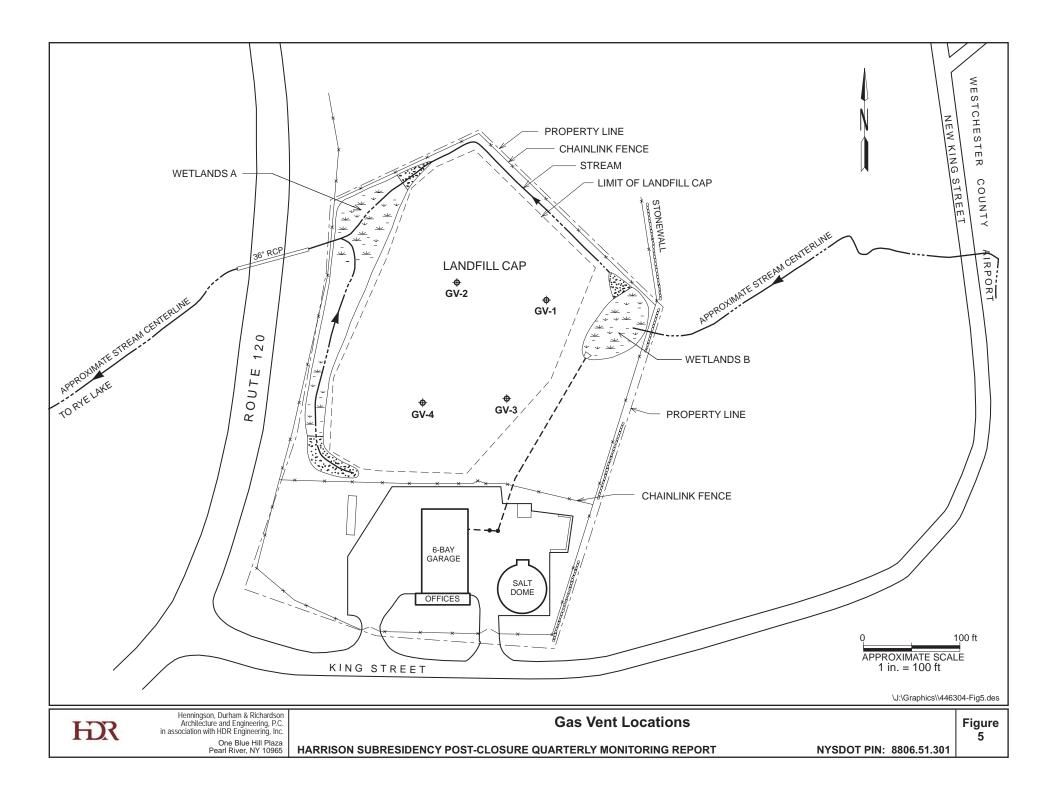
Milapanhie


Melissa E. LaMacchia Associate | Project Manager


cc: G. Fitzgerald, NYSDOT Region 8


Attachments


FIGURES


Henningson, Durham & Richardson Architecture and Engineering, P.C. in association with HDR Engineering, Inc.

TABLES

Henningson, Durham & Richardson Architecture and Engineering, P.C. in association with HDR Engineering, Inc.

TABLE 1 GROUNDWATER DATA SUMMARY Fifth Quarter Sampling - Harrison Subresidency Landfill Area October 2013

	Site					Duplicate				
	Background					PC-1		NATURAL AMBIENT	NYSDEC	
PARAMETER	LMW-2	LMW-4	PC-1	PC-2	PC-3	DMW-5-10232013	Trip Blank	GROUNDWATER	CLASS GA	
	10/23/13	10/23/13	10/23/13	10/23/13	10/23/13	10/23/13	10/23/13	RANGES (n)	STANDARDS (a)	
Metals (ug/L)										
Aluminum	ND	ND	ND	ND	ND	ND	*	<5.0 - 1000	NS	
Antimony	ND	ND	ND	ND	ND	ND	*	NA	3	
Arsenic	ND	1.4	ND	ND	ND	ND	*	<1.0 - 30	25	
Barium	110	190	86	110	150	84	*	10 - 500	1000	
Beryllium	ND	ND	ND	ND	ND	ND	*	<10	3.0 GV	
Cadmium	ND	ND	ND	ND	ND	ND	*	<1.0	5	
Calcium	83000	62000	51000	78000	76000	52000	*	1000 - 150000	NS	
Chromium	ND	ND	ND	ND	ND	ND	*	<1.0 - 5.0	50	
Cobalt	ND	34	ND	ND	ND	ND	*	<10	NS	
Copper	ND	ND	ND	ND	ND	ND	*	<1.0 - 3	200	
Iron	ND	64000	ND	21000	ND	ND	*	10 - 10000	300 (m)	
Lead	ND	ND	ND	ND	ND	ND	*	<15	25	
Magnesium	31000	24000	7900	21000	20000	7900	*	1000 - 50000	35000 GV	
Manganese	210	15000	740	10000	280	730	*	<1.0 - 1000	300 (m)	
Mercury	ND	ND	ND	ND	ND	ND	*	<1.0	0.7	
Nickel	ND	ND	ND	ND	ND	ND	*	<10 - 50	100	
Potassium	4400	5300	4200	4800	6400	4300	*	1000 - 10000	NS	
Selenium	ND	ND	ND	ND	ND	ND	*	<1.0 - 10	10	
Silver	ND	ND	ND	ND	ND	ND	*	<5	50	
Sodium	30000	34000	98000	46000	83000	99000	*	500 - 120000	20000	
Thallium	ND	ND	ND	ND	ND	ND	*	NA	0.5 GV	
Vanadium	ND	ND	ND	ND	ND	ND	*	<1.0 - 10	NS	
Zinc	ND	ND	ND	ND	ND	ND	*	<10 - 2000	2000 GV	
Chloride (mg/l)	14	16	120	25	180	120	*	NA	250	
Cyanide (mg/l)	ND	ND	ND	ND	ND	ND	*	NA	200	
Volatile Organic Comp	ounds (uq/L)									
Acetone	ND	24	ND	ND	ND	ND	ND	NA	50	
Carbon disulfide	ND	ND	ND	ND	ND	1	ND	NA	NA	
Total VOCs#	ND	ND	ND	ND	ND	ND	ND	NA	5	
Semivolatile Organic C	ompounds (ug/L)									
Caprolactam	920	ND	56	ND	31	67	*	NA	NA	
Total SVOCs#	ND	ND	ND	ND	ND	ND	*	NA	50	

(a) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1). June 1998, revised April 20(

GV - Guidance Value

(m) - Sum of Iron and Manganese not to exceed 500 ug/

(n) - Dragun, J., The Soil Chemistry of Hazardous Materials

NA - Not applicable.

ND - Not detected at analytical detection limit.

J- Detected below the detection limit.

NS - No standard.

* - Not analyzed.

TABLE 2 SURFACE WATER DATA SUMMARY Fifth Quarter Sampling - Harrison Subresidency Landfill Area

October 2013

PARAMETER	Site Background SW-1 10/24/13	SW-2 10/24/13	SW-3* 10/24/13	SW-4 10/24/13	Duplicate SW-4 SW-15-10242013 10/24/2013	Field Blank 10/24/2013		NATURAL AMBIENT GROUNDWATER RANGES (n)	NYSDEC CLASS GA STANDARDS (a)	NYSDEC CLASS A STANDARDS (a)
Metals (ug/L)										
Aluminum	ND	ND	*	ND	ND	ND	*	<5.0 - 1000	NS	100 ²
Antimony	ND	ND	*	ND	ND	ND	*	NA	3	3 ¹
Arsenic	ND	ND	*	ND	ND	ND	*	<1.0 - 30	25	50 ¹ , 150 ² , 340 ³
Barium	36	ND	*	ND	ND	ND	*	10 - 500	1000	1,000 ¹
Beryllium	ND	ND	*	ND	ND	ND	*	<10	3.0 GV	3 GV ¹
Cadmium	ND	ND	*	ND	ND	ND	*	<1.0	5	5 ¹
Calcium	45000	43000	*	44000	43000	ND	*	1000 - 150000	NS	NS
Chromium	ND	ND	*	ND	ND	ND	*	<1.0 - 5.0	50	50 ¹
Cobalt	ND	ND	*	ND	ND	ND	*	<10	NS	5 ²
Copper	ND	ND	*	ND	ND	ND	*	<1.0 - 3	200	200 ¹
Iron	1900	520	*	300	250	ND	*	10 - 10000	300 (m)	300 ^{2,4}
Lead	1.1	1.9	*	ND	ND	ND	*	<15	25	50 ¹
Magnesium	14000	14000	*	14000	14000	ND	*	1000 - 50000	35000 GV	35,000 ¹
Manganese	1700	340	*	230	200	ND	*	<1.0 - 1000	300 (m)	300 ⁴
Mercury	ND	ND	*	ND	ND	ND	*	<1.0	0.7	0.7 ¹ , 7e-4 ⁵ , 0.77 ² , 1.4 ³ , 0.0026 ⁶
Nickel	ND	ND	*	ND	ND	ND	*	<10 - 50	100	100 ¹
Potassium	3300	3000	*	2900	2800	ND	*	1000 - 10000	NS	NS
Selenium	ND	ND	*	ND	ND	ND	*	<1.0 - 10	10	10 ¹ , 4.6 ²
Silver	ND	ND	*	ND	ND	ND	*	<5	50	50 ¹
Sodium	9200	9700	*	10000	9500	ND	*	500 - 120000	20000	NS
Thallium	ND	ND	*	ND	ND	ND	*	NA	0.5 GV	0.5 GV ¹ , 8 ²
Vanadium	ND	ND	*	ND	ND	ND	*	<1.0 - 10	NS	14 ²
Zinc	ND	ND	*	ND	ND	ND	*	<10 - 2000	2000 GV	2,000 GV ¹ , 5,000 GV ⁴
Chloride (mg/l)	6.3	6.6	*	6.5	6.5	ND	*	NA	250	250,000 ¹
Cyanide (mg/l) Volatile Organics (ug/L)	ND	ND	*	ND	ND	ND	*	NA	200	200 ¹ , 9,000 ⁵ , 5.2 ² , 22 ³
Total VOCs Semi-Volatile Organics (ug/L)	ND	ND	*	ND	ND	ND	ND	NA	5	NA
Total SVOCs	-J ND	ND	*	ND	ND	ND	*	NA	50	NA

(a) - NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1). June 1998, revised April 200(

(m) - Sum of Iron and Manganese not to exceed 500 ug/L

(n) - Dragun, J., The Soil Chemistry of Hazardous Materials

Class A Standards for Surface Water as a source of Drinking Wate¹ as these are tributaries to Kensico Reservoir.

Other Class A Standards are for Fish Propagation⁶ Fish Survival³ Aesthetic ⁴ Human Consumption of Fish⁵, and Wildlife Protection⁶

GV - Guidance Value.

ND - Not detected at analytical detection limit

* - Not analyzed; Location SW-3 was Dry - no samples collected

NS - No Standard.

NA - Not applicable.

Note - results in **bold** exceed one or more of the standards.

- select Class A standards are specific to sample conditions and require hardness concentrations; therefore, these were not included.

TABLE 3 SEDIMENT DATA SUMMARY Fifth Quarter Sampling - Harrison Subresidency Landfill Area October 2013

	Site							
PARAMETER	Background SD-1 10/24/13	SD-2 10/24/13	SD-3 10/24/13	SD-4 10/24/13	Sedimer LEL ¹	nt Criteria (a) <u>SEL</u> 2		
Metals (mg/kg)								
Aluminum	6,900	5,900	11,000	5,300	NA	NA		
Antimony	0,900 ND	3,900 ND	ND	0,300 ND	2	25		
Arsenic	ND	ND	ND	ND	6	<u>33</u>		
Barium	56	87	66	53	NA	<u>55</u> NA		
Beryllium	ND	ND	0.25	ND	NA	NA		
Cadmium	ND	ND	2.5	ND	0.6	9		
Calcium	1,500	31,000	19,000	15,000	NA	NA		
Chromium	14	7.8	20	10,000	26	110		
Cobalt	6.1	6.2	10	6.1	NA	NA		
Copper	15	13	35	12	16	110		
Iron	15,000	20,000	23,000	16,000	20000	40000		
Lead	ND	12	23,000	20	31	<u>40000</u> <u>110</u>		
Magnesium	3,200	20,000	14,000	9,900	NA	NA		
Manganese	580	<u>2,500</u>	700	1,500	460	<u>1100</u>		
Mercury	ND	ND	ND	ND	0.15	1.3		
Nickel	11	11	22	13	16	<u>50</u>		
Potassium	1,900	990	1,500	910	NA	<u>NA</u>		
Selenium	ND	ND	ND	ND	NA	NA		
Silver	ND	ND	ND	ND	1	2.2		
Sodium	ND	ND	ND	ND	NA	<u>NA</u>		
Thallium	ND	ND	ND	ND	NA	NA		
Vanadium	21	16	28	ND	NA	NA		
Zinc	32	52	190	50	120	270		
Chloride	ND	ND	29	ND	NA	<u>270</u> NA		
Cyanide	ND	ND	ND	ND	NA	NA		
					O a dire a st O site			
Volatile Organic Compour Total VOCs	ND	ND	ND	ND	Sediment Crite	eria (a) Water Qual. NA		
					Human Health Bioaccum.	Benthic Aquatic Life Acute Toxicity	Benthic Aquatic Life Chronic Toxicity	Wildlife Bioaccu
					Sediment Criteria	Sediment Criteria	Sediment Criteria	Sediment Criteri
					mg/gOC	mg/gOC	mg/gOC	mg/gOC
Semivolatile Organic Com							_	
Acenaphthene	ND	ND	0.085	ND	NA	NA	0.240 (E) ³	NA
Anthracene	ND	ND	0.14	ND	NA	0.986	0.107	NA
Benzaldehyde	ND	ND	0.28	ND	NA	NA	NA	NA
Benzo[a]anthracene	ND	ND	0.75	ND	NA	0.094	0.012	NA
Benzo[a]pyrene	ND	ND	0.65	ND	0.0007	NA	NA	NA
Benzo[b]fluoranthene	0.049	ND	1.1	0.13	NA	0.094	0.012	NA
Benzo[g,h,i]perylene	ND	ND	0.49	ND	NA	NA	NA	NA
	ND	ND	0.32	ND	NA	0.094	0.012	NA
Benzo[k]fluoranthene		0.055	0.12	ND	NA	NA	0.2	NA
Benzo[k]fluoranthene bis(2-Ethylhexyl)phthalate	ND	0.000		NID	NA	NA	NA	NA
	ND ND	0.055 ND	0.11	ND	1 17 1			
bis(2-Ethylhexyl)phthalate			0.11 0.8	ND ND	NA	0.094	0.012	NA
bis(2-Ethylhexyl)phthalate Carbazole	ND	ND						
bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo[a,h]anthracene	ND ND	ND ND	0.8	ND	NA	0.094	0.012 NA	NA
bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo[a,h]anthracene Di-n-butylphthalate	ND ND ND ND	ND ND ND 0.023	0.8 0.15 0.046	ND ND ND	NA NA NA	0.094 NA NA	0.012 NA NA	NA NA NA
bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo[a,h]anthracene Di-n-butylphthalate Fluoranthene	ND ND ND ND ND	ND ND ND 0.023 ND	0.8 0.15 0.046 0.13	ND ND ND 0.14	NA NA NA	0.094 NA NA NA	0.012 NA NA 1.34 (E) ⁴	NA NA NA
bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo[a,h]anthracene Di-n-butylphthalate Fluoranthene Indeno[1,2,3-cd]pyrene	ND ND ND ND ND	ND ND 0.023 ND ND	0.8 0.15 0.046 0.13 0.45	ND ND ND 0.14 ND	NA NA NA NA	0.094 NA NA NA 0.094	0.012 NA NA 1.34 (E) ⁴ 0.012	NA NA NA NA
bis(2-Ethylhexyl)phthalate Carbazole Chrysene Dibenzo[a,h]anthracene Di-n-butylphthalate Fluoranthene	ND ND ND ND ND	ND ND ND 0.023 ND	0.8 0.15 0.046 0.13	ND ND ND 0.14	NA NA NA	0.094 NA NA NA	0.012 NA NA 1.34 (E) ⁴	NA NA NA

(a) - NYSDEC Technical Guidance for Screening Contaminated Sediments

1 - Lowest Effect Level

2 - Severe Effect Level ND - Not detected at analytical detection limit

3- EPA proposed sediment quality criterion for the protection of benthic organisms
4- These values also apply to benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene,

indeno(1,2,3-cd)pyrene, and methylbenz(a)anthracene.

B - Detected in laboratory sample

NA - No applicable criterion.

Note - results exceeding the LEL and SEL are shown in**bold** and <u>underlined</u>, respectively.

November 1993, revised January 1999

Table 4 Groundwater Field Duplicate Relative Percent Difference Fifth Quarter Sampling - Harrison Subresidency October 2013

/letals (ug/L)	PC-1	DMW-5-10232013	Relative Percent Difference
netals (ug/L)			
Aluminum	ND	ND	NA
Antimony	ND	ND	NA
Arsenic	ND	ND	NA
Barium	86	84	2.35
Beryllium	ND	ND	NA
Cadmium	ND	ND	NA
Calcium	51000	52000	-1.94
Chromium	ND	ND	NA
Cobalt	ND	ND	NA
Copper	ND	ND	NA
ron	ND	ND	NA
ead	ND	ND	NA
<i>A</i> agnesium	7900	7900	0.00
langanese	740	730	1.36
<i>Mercury</i>	ND	ND	NA
lickel	ND	ND	NA
Potassium	4200	4300	-2.35
Selenium	ND	ND	NA
Silver	ND	ND	NA
Sodium	98000	99000	-1.02
- Thallium	ND	ND	NA
/anadium	ND	ND	NA
Zinc	ND	ND	NA
Chloride (mg/l)	120	120	0.00
Cyanide (mg/l)	ND	ND	NA
/olatile Organic Compounds (ug/L)			
Acetone	ND	ND	NA
Carbon disulfide	ND	1	NA
Fotal VOCs#	ND	ND	NA
Semivolatile Organic Compounds (ug/L)			
Caprolactam	56	67	-17.89
Total SVOCs#	ND	ND	NA

Notes:

1) ND indicates analyte not detected at analytical reporting limit.

2) NA indicates Not Applicable, where one or both results were not detected.

3) Values in bold exceed the normally accepted range of 15%

Table 5 Surface Water Field Duplicate Relative Percent Difference Fifth Quarter Sampling - Harrison Subresidency October 2013

		Duplicate	Relative Percent
Parameters	SW-4	SW-15-10242013	Difference
Metals (ug/L)			
Aluminum	ND	ND	NA
Antimony	ND	ND	NA
Arsenic	ND	ND	NA
Barium	ND	ND	NA
Beryllium	ND	ND	NA
Cadmium	ND	ND	NA
Calcium	44000	43000	2.30
Chromium	ND	ND	NA
Cobalt	ND	ND	NA
Copper	ND	ND	NA
Iron	300	250	18.18
Lead	ND	ND	NA
Magnesium	14000	14000	0.00
Manganese	230	200	13.95
Mercury	ND	ND	NA
Nickel	ND	ND	NA
Potassium	2900	2800	3.51
Selenium	ND	ND	NA
Silver	ND	ND	NA
Sodium	10000	9500	5.13
Thallium	ND	ND	NA
Vanadium	ND	ND	NA
Zinc	ND	ND	NA
Chloride (mg/l)	6.5	6.5	0.00
Cyanide (mg/l)	ND	ND	NA
Volatile Organics (ug/L)			
Total VOCs	ND	ND	NA
Semi-Volatile Organics (ug/L)			
Total SVOCs	ND	ND	NA

Notes:

1) ND indicates analyte not detected at analytical reporting limit.

2) NA indicates Not Applicable, where one or both results were not detected.

3) Values in bold exceed the normally accepted range of 15%

ATTACHMENT A

SAMPLING LOGS

Henningson, Durham & Richardson Architecture and Engineering, P.C. in association with HDR Engineering, Inc.

ЮR		Well ID No.: PC-1									PC-1	
We Screenee Well E Ground Well	sing Type: ell Depth*: d Interval: Elevation*: Elevation: l Conditions:	1 Lock e	-	SW	ell Volume /L During San Sampl	Sampling: pple Time: e Method:	8.51 7.9 n/a 12:50	ЪЕ, SVOC		ID Head S N	Harrison Landfill and Spill 10/23/2013 AW/KH Whale Pump n/a Horiba U-52	
Time	Est. Gallons Purged	Purge Rate (gpm)	Temp. (Co)	рН	ORP (mV)	Cond. (mS/m)	Turbidity (NTU)	D.O. (mg/L)	TDS (g/L)	Salinity (%)	Depth to Water*	Comments
11:42	0		14.38	6.53	-45	0.879	49	5.51	0.547	0.4		
11:44	3		14.95	6.57	-9	853.000	40	4.92	0.611	0.4		
11:47	6		14.79	6.77	-23	0.904	21	4.86	0.580	0.4		
11:52	8		14.96	6.84	-12	0.850	2.0	3.11	0.590	0.5		
	1	1		1	1	1			1	1		
	1	1		1	1	1			1	1		
	1	1		1	1	1			1	1		
Comment	Comments:											

ЮR			Well S	Sampli	ng Log			Well ID No.: PC-2						
Well Cas	sing Type:	2'	' PVC		St	tart SWL:	4.57				Project:	Harrison Landfill and Spill		
We	ll Depth*:	1	0.99		Water Co	lumn Ht.:	6.42		Date: 10/23/2013					
	l Interval:		n/a	W	ell Volume	(gallons):	6		Crew: AW/KH					
	levation*:		n/a		L During	-			Purge Method: Peristaltic Pump					
	Elevation:		n/a	2	-	ple Time:								
	Condition:			00		-	Peristaltic I							
	Conditions:							-	filtered) (ieters esea.			
Time	Est. Gallons Purged	Purge Rate (gpm)	Temp. (Co)	pН	ORP (mV)	Cond. (mS/m)	Turbidity (NTU)	D.O. (mg/L)	TDS (g/L)	Salinity (%)	Depth to Water*	Comments		
10:53	0		13.69	6.70	-98.0	1.000	max	6.90	0.641	0.5				
10:57	2		14.00	6.49	-84.0	0.991	max	1.51	0.634	0.5				
11:02	4		13.97	6.45	-90.0	0.985	493.0	0.87	0.630	0.5				
11:05	6		13.99	6.43	-93.0	0.977	166.0	0.72	0.625	0.5				
Comments	Comments:													

ЮR			Well S	Sampli	ng Log				Well ID No.: PC-3					
We Screened Well E Ground Well	sing Type: ell Depth*: d Interval: Clevation*: Elevation: Conditions:	1 good	' PVC 8.33 n/a n/a n/a st, 50's	Start SWL:10.85Water Column Ht.:7.48Well Volume (gallons):7SWL During Sampling:n/aSample Time:0:00Sample Method:bailerSample Analyses:VOC, SVOC,				OC, Metals (Harrison Landfill and Spill 10/23/2013 AW/KH Whale Pump n/a Horiba U-52, Turbidity Meter				
Time	e Est. Purge Gallons Rate Purged (gpm) Temp. (Co) pH ORP Cond. Turbidity (mV) (mS/m) (NTU)					D.O. (mg/L)	TDS (g/L)	Salinity (%)	Depth to Water*	Comments				
15:31	0		14.33	7.11	-33	1.20	205.0	6.89	0.771	0.6				
15:33	2.5		14.34	7.22	-23	1.19	395.0	0.80	0.760	0.6				
15:35	5		14.17	1.08	-41	1.20	1.0	0.86	0.769	0.6				
15:37	7		14.20	7.00	-39	1.17	0.0	1.40	0.752	0.6				
Comments	Comments:													

HDR		Well Sampling Log Well ID No.: LMW-2										LMW-2		
	sing Type:		' PVC			tart SWL:					-	Harrison Landfill and Spill		
	ll Depth*:		21.03		Water Co	olumn Ht.:			Date: 10/23/2013					
Screened	l Interval:		n/a	W	ell Volume	(gallons):	8.2				Crew:	AW/KH		
Well E	levation*:		n/a	SW	L During	Sampling:	n/a	Purge Method: bailer						
Ground	Elevation:		n/a		San	ple Time:	0:00	-						
Well	Condition:	good				e Method:						Horiba U-52, Turbidity Meter		
	Conditions:	-	st 50's		-		VOC, SVC	C Metals (filtered) (
vv cather v			505		Sumpre	- maryses.	100,510	, 1010talis (interea), c		1	-		
Time	Est. Gallons Purged	Purge Rate (gpm)	Temp. (Co)	pН	ORP (mV)	Cond. (mS/m)	Turbidity (NTU)	D.O. (mg/L)	TDS (g/L)	Salinity (%)	Depth to Water*	Comments		
10:02	0		12.95	6.24	166	0.778	2.2	-	0.496	0.4		Chems taken using open chem cup		
10:15	3		12.74	6.65	-27	0.755	105.0	-	0.483	0.4		DO inaccurate		
10:32	3.75		12.32	6.77	-55	0.768	max	-	0.491	0.4				
				Ļ	Ļ	<u> </u>								
					 									
				 	 	 								
				<u> </u>	 	<u> </u>								
				<u> </u>	 	<u> </u>								
						<u> </u>								
					L	<u> </u>								
					 									
				 	 	 								
				<u> </u>	 	<u> </u>								
				<u> </u>	 	<u> </u>								
Comments			i		L	L								

ЮR			Well S	Sampli	ng Log				Well ID No.: LMW-4					
Well Casing Type:2" PVCWell Depth*:14.54Screened Interval:n/aWell Elevation*:n/aGround Elevation:n/aWell Condition:goodWeather Conditions:overcast, 50's				Water Co ell Volume 'L During S Sam Sample	Sampling: ple Time: e Method:	9.5 8.8 n/a 0:00 bailer	OC, Metals (Project: Harrison Landfill and Spill Date: 10/23/2013 Crew: AW/KH Purge Method: bailer PID Head Space (ppm): n/a Meters Used: Horiba U-52, Turbidity Meter C, Metals (filtered), CN, and Cl						
Time	Est. Gallons Purged	Purge Rate (gpm)	Temp. (Co)	рН	ORP (mV)	Cond. (mS/m)	Turbidity (NTU)	D.O. (mg/L)	TDS (g/L)	Salinity (%)	Depth to Water*	Comments		
10:14	0		13.40	6.40	-87	1.04	1.04	-	0.666	0.5		Chems taken using open chem cup		
10:26	3		13.04	6.56	-79	1.06	1.06	-	0.679	0.5		DO inaccurate		
10:34	4		-	-	-	-	-	-	-	-		Dry at 4 gal.		
	Comments: Notes: NM - No measurement													

HOR Surface Water Sampling Log

Weather Conditions: Overcast, 50

Sample Analyses: VOC, SVOC, TAL Metals, CI, CN Meters Used: Horiba U-52 Project: Harrison Landfill and Spill Date: 10/24/2013 Crew: AW/KH

Station Number	Time	Sample Depth	Total Sample	Temp. (C°)	рН	Cond. (mS/m)	Turbidity (NTU)	D.O. (mg/L)	Flow (CFS)	Comments
SW-1										
	13:00	0.50		10.22	7.34	0.382	1.60	6.93	0.25	Almost Stagnant
SW-2										
	12:00	0.40		9.83	7.25	0.383	6.32	6.32	8.00	
SW-3										
	12:24	NS								Dry-No Sample
SW-4										Conductivity was recorded
	11:00	0.35		10.32	6.39	n/a	0.00	9.44	6.00	inaccurately in fied notes
Comments:										

Notes: NM - No measurement

* - Measurement taken from top of well casing

pH No: Horiba U-52 Turb. Meter: Horiba U-52

HOR Soil/Sediments Sampling Log

Weather Conditions: Overcast, 50

Sample Analyses: VO, SVOC, TAL Metals, CN, Cl Meters Used: Horiba U-52 Project: Harrizon Landfill and Spill Date: 10/24/2013 Crew: AW/KH

Station Number	Time	Sample Depth	Method	Texture	Color	Odor/ Staining	Comments
SD-1	13:10	0-2"	stainless steel spoon	Sandy Silt	Grey- Black	None	
SD-2	12:10	0-2"	stainless steel spoon	Silty Sand	Grey	None	Very rocky area, near rip-rap outwash
SD-3	12:30	0-2"	stainless steel spoon	Sandy Silt	Brown	None	Dry in frag bed, some organics
SD-4	11:10	0-2"	stainless steel spoon	Silty Sand	Grey	None	
Comments:		-		<u> </u>		<u> </u>	

ЮR Air Monitoring Data Log

Weather Conditions: Overcast, 50, West/South West Winds

Project: Harrizon Landfill and Spill Date: 10/24/2013 Crew: AW/KH

Sample Point Time GV-3 0904 GV-1 0852 GV-2 0858	% LEL (CGI) 0.0 0.0	PID 0.0 0.0	with CH₄ filter 0.0	w/out CH₄ filter 0.0	PID 0.0	FID 0.0	
GV-1 0852				0.0	0.0	0.0	$CO \cdot 0.10^{\prime}$ $O \cdot 21.0^{\prime}$ $H S \cdot 0$ DD m $CO \cdot 0$ DD m
	0.0	0.0					CO ₂ : 0.1% O ₂ : 21.0% H ₂ S: 0ppm CO: 0ppm
GV-2 0858			0.0	0.0	0.0	0.0	CO2: 0.1% O2: 20.9% H2S: 0ppm CO: 0ppm
	0.3	0.0	526.2	706.2	0.0	0.0	CO2: 0.3% O2: 20.7% H2S: 0ppm CO: 0ppm
GV-4 0910	0.0	0.0	48.2	40.3	0.0	0.0	CO2: 0.1% O2: 21.0% H2S: 0ppm CO: 0ppm
SPL 0917	0.0	0.0	0.0	0.3	0.0	0.0	CO2: 0.1% O2: 20.9% H2S: 0ppm CO: 2ppm
EPL 0919	0.0	0.0	0.0	0.0	0.0	0.0	CO2: 0.1% O2: 20.9% H2S: 0ppm CO: 4ppm
NPL 0921	0.0	0.0	0.1	0.3	0.0	0.0	CO2: 0.1% O2: 20.9% H2S: 0ppm CO: 0ppm
WPL 0923	0.0	0.0	0.2	0.3	0.0	0.0	CO ₂ : 0.1% O ₂ : 20.8% H ₂ S: 0ppm CO: 0ppm

CGI: Gem 2000+ PID: mini Rae 2000 FID: micro FID I/S

ATTACHMENT B

LABORATORY ANALYTICAL DATA PACKAGES

Henningson, Durham & Richardson Architecture and Engineering, P.C. in association with HDR Engineering, Inc.

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: NYSDOT-Harrison

Client PO: Not Available Report To: HDR One Blue Hill Plaza P.O. Box 1509 Pearl River, NY 10965

Attn: Melissa LaMaccha

Received Date: 10/24/2013

Report Date: 11/21/2013

Deliverables: NYDOH-CatA

Lab ID: AC75324

Lab Project No: 3102406

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

(B)CALLO

Robin Cousineau - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

NJ (07071) PA (68-00463) NY (ELAP11408) KY (90124) CT (PH-0671)

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 122

HCV Case Narrative

Client: HDR Project: NYSDOT-Harrison HCV Project: 3102406

Hampton-Clarke/Veritech (HC·V) received the following samples on October 24, 2013:

<u>Client ID</u> TB-10232013 DMW-5-10232013 U	HCV Sample ID AC75324-001 AC75324-002	<u>Matrix</u> Aqueous Aqueous	<u>Analysis</u> VO (624) VO (624), BNA (625), Chloride (300.0)
DMW-5-10232013 F	AC75324-003	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
PC-1-10232013 U	AC75324-004	Aqueous	VO (624), BNA (625), Chloride, Nitrate, Sulfate (300.0), Alkalinity (SM2320B)
PC-1-10232013 F	AC75324-005	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
LMW-4-10232013 U	AC75324-006	Aqueous	VO (624), BNA (625), Chloride (300.0)
LMW-4-10232013 F	AC75324-007	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
PC-2-10232013 U	AC75324-008	Aqueous	VO (624), BNA (625), Chloride (300.0)
PC-2-10232013 F	AC75324-009	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
LMW-2-10232013 U	AC75324-010	Aqueous	VO (624), BNA (625), Chloride (300.0)
LMW-2-10232013 F	AC75324-011	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
MW-11-10232013 U	AC75324-012	Aqueous	BTEX (624), Nitrate, Sulfate (300.0), Alkalinity (SM2320B)
MW-11-10232013 F	AC75324-013	Aqueous	Metals (200.7)
PC-3-10232013 U	AC75324-014	Aqueous	VO (624), BNA (625), Chloride (300.0)
PC-3-10232013 F	AC75324-015	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)

Volatile Organic Analysis:

The Matrix Spike and Matrix Spike Duplicate for batches 5034 and 31163 recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

Base Neutral/Acid Extractable Analysis:

Sample AC75324-010 was analyzed at a 5X dilution due to high concentration of non-target analytes.

Samples AC75324-004, 006, 008, 010, 014, WMB29082 and MS had surrogate recoveries outside QC limits, but the recoveries are greater than 10%, therefore, no corrective action was necessary.

Metals Analysis:

The serial dilution for batch 27348 is outside QC limits for one or more analytes, suggesting matrix interference.

Samples AC75324-003, 005, 007, 009, 011, 013 and 015 were filtered and preserved in the laboratory per clients request.

Wet Chemistry Analysis:

The Matrix Spike and Matrix Spike Duplicate for batches 5066 and 5067-Chloride recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

The Matrix Spike for batch 5066-Slfate recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Robin Cousineau

Quality Assurance Director

Stanley Gilewicz Laboratory Director

Or

11/22/2013 Date

I work may be delayed. ted for any analysis.	Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	be assessed for storage	MBERED	fee of \$5/	lease r	T.										
e: 10/13/12	∆ Date:	Andrew Wudden	ıme): ∤tv	mpler (print name):	Sampl	11)Sa										
		NJ LSRP Project	oject	NJ LSRP Project	NU											
Cooler Temperatura		Project-Specific Reporting Limits	inc Repo	of-Spec	Proj	T			ł				-		8.	Additional Notes
)	hierais- 301 (ICF-ING 0020 IOF be & Ag) Sheck if applicable:	able:	Check if applicable:	<u> </u>	Note:	1040	<u>k</u> M	10/2		K	M		(7
		Metals (ICP-MS 200.8 or 6020)	MS 200.8	lls (ICP-		+	0150	13	42/01	14	X		444		Maccin	land 4
	Lab tilter M		BN or BNA (8270C SIM) VOC (8260B SIM or 8011)	: (8260F	S B		1400		~ {	sut	fac	11-11	The fait	7		1 months
idards in NJ or PA:	Note: Check if low-level groundwater methods required to meet current standards in NJ or PA	Iwater methods req	vel ground	(if low-le	: Chec	Not	5		10/22/12	.,	Z		1 m / D	HAD		THY THY
ARDS	Comments, Notes, Special Requirements, HAZARDS	nts, Notes, Speci	Commer				Time	ਰ	Date	_		<u>ě</u>	Accepted		ed by:	10) Relinquished by:
							\parallel						0 122 0			
		0					8	8	٨	/	7 ז	İ.	~v		4C- 5-1025 1015	5 10/10
	<u>به</u> ر	<u> </u>			-		:		:	-/			101 - 12.12	1		
	• در	٤	X	*	7	×				,		×	10/23/1 HSS	36	MW - 11 - 1073 2013	
	ن ی	Ś					7	*	x	×	א ה		10/23/13 1340	ŝ	LMW -2 - 70232013	
	3	5				-	×	r.	۲	x	×		10/23/13 1335	5	PC-2 - 10232013	008/009
	3	5					×	7	×	×	× ×		13/22/13 13.00	áv	LMW-4- 10232013	006/007
	نن ا	4		×	×	×	××	~	×	~	×		10/23/13 1250	Gυ	PC-1. 10232010	Southor
	U U	4	-				×	*	×	×	×	1	10/23/13 1230	Gw	DMW-5 - 10232013	002/003
	3										 	\mathbf{i}	0021 21/21/2	βL	TB-10232013	8
) H H	N					-	4	1	╋	╈			Many		Lap Sample #
	aOH CI 2SO4 NO3 ther:_	one IeOH n Core	100	5-16		MT	Chli	^C N	AL	rcl	irab (G	empos		5)		
			l	0 ~				l	٨				2			1-01-0-1
	8) # of Bottles	# 9	BTE)	ыці k+ втер	-	É (D,s,		(64	retals	SVOC	VDL	e (C)	9, Comments)	nder item	spec	ACT5324
			60	N.				£. [·(L		Q,			SL - Sludge	GW - Ground Water SL - Slu	Batch #
			۰۴	, t,				h	دره ف ا	0		lype	A - Air	Soil	-	•
)	-ite		M.)	~)		ਰ	Sample		odes	Matrix Codes	ONLY
	Contingent	<=== Check If Contingent		-							V	ent ==:	Check If Contingent ===>			USE
					lest	s Requ	7) Analysis Reques	7),								FOR LAB
Please Check with Lab.	Expedited TAT Not Always Available. Please	Expedited TAT No														
Other:			Other:					1	licable):	2d) Quote/PO # (If Applicable):	uote/PO	2d) α			to: h	1d) Send Report to:
PDF	Other:		Weeks										Ś	Marchie	to Melissa La	1c) Send Invoice to:
Excel - PA Regulatory	Category A		A Days		NY	4	Harrison	1	ity/State	2c) Project Location (City/State):	oject Lo	2c) Pr		-6300	1: 845 735	1b) Email/Cell/Fax/Ph:
Excel - NY Regulatory	Full / Category B	1 Week (25%; EPH)	1 Week (chis	-Macchie	5	E	ä	2b) Project Mgr.	2b) PI		10965	sol River NY	
Excel - NJ Regulatory)))	4 Days (35%; TPH)	4 Days (W.	r Floor	· I X -	Address:
EQuIS EPA Region 2 or 5	Red - NJ / NY / PA	(50%)	72 Hours (50%)				Harrison	· Har	NYSDOT	NYS	roject:	2a) Project:		K.	HOR Engineering, lac	1 a) Customer:
EQuIS 4-File / EZ / NYS	Waste	(75%)	48 Hours (75%)				ation	Project Information	Projec					B	Customer Information	±0 ►
Hazsite/CSV	Data Summary	(100%)	24 Hours (100%)						90124	<u>1 N7 洗</u>	#PH-067	108 CT	NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124	1 #07071 F	NELAC/NJ	
Electronic Deliv.	Report Type	Turnaround	Ţ		Iterprise	siness Er	Small Bu	antaged,	l, Disadv	A Women-Owned, Disadvantaged, Small Business Enterprise	A Wome	\prod	-6056	x: 856-780	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	
se Circle)	3) Reporting Requirements (Please Circle)	3)Reportin			Ċ		Ž		sτ	HAMPTONCLARKE VERITECH	PTONCLAR B O R A T	L HAM	lersev 08054	urel New	FII: 000-420-3332 373-244-3770 FdX: 373-244-3707 373-433-1430 Service Center: 137-D Gaither Drive. Mount Laurel. New Jersev. 08054	
		9022014		۲ 				СH		Ś	Ċ	-	Jersey 07004	ield, New .	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004) 175 Route
		a -		{ _		i)		2			5					

PROJECT MODIFICATIONS

Client: HDR/LMS Project: NYSDOT-Harrison HCV Project #: 3102406

maureen192.168.1.87 11/22/2013 11:49:25 AM

Deliverables are NYDOH-Cat A per quote. MS 11/22/13

CONDITION UPON RECEIPT

		Batch Number AC75324	Entered By: Date Entered	Ricardo 10/24/2013 11:36:00 AM
1	Yes	Is there a corresponding COC included with the sa	amples?	
2	Yes	Are the samples in a container such as a cooler or	lce chest?	
3	Yes	Are the COC seals intact?		
4	Yes	Please specify the Temperature inside the contain 3.0.2.0	er (in degC)	
5	Yes	Are the samples refrigerated (where required)/hav	e they arrived	on ice?
6	Yes	Are the samples within the holding times for the pa samples:	arameters liste	d on the COC? IF no, list parameters and
7	Yes	Are all of the sample bottles intact? If no, specify s	ample numbe	rs broken/leaking
8	Yes	Are all of the sample labels or numbers legible?	f no specify:	
9	Yes	Do the contents match the COC? If no, specify		
10	Yes	Is there enough sample sent for the analyses liste	d on the COC	? If no, specify:
11	Yes	Are samples preserved correctly?		
12	Yes	Was temperature blank present (Place comment b	below if not)? I	f not was temperature of samples verified?
13	NA	Other comments Specify		

14 NA Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC75324

Entered By: Ricardo Date Entered 10/24/2013 11:36:00 AM

Lab#:	Container Siz	Container Typ	Parameter	Preservative	PH
AC75324-001	40ml	G	VO	HCL	1
AC75324-002	40ml	G	VO	HCL	1
AC75324-003	NA	NA	NA	NA	NA
AC75324-004	40ml	G	VO	HCL	1
AC75324-005	NA	NA	NA	NA	NA
AC75324-006	40ml	G	VO	HCL	1
AC75324-007	NA	NA	NA	NA	NA
AC75324-008	40ml	G	VO	HCL	1
AC75324-009	NA	NA	NA	NA	NA
AC75324-010	40mi	G	VO	HCL	1
AC75324-011	NA	NA	NA	NA	NA
AC75324-012	40ml	G	VO	HCL	1
AC75324-013	NA	NA	NA	NA	NA
AC75324-014	40ml	G	VO	HCL	1
AC75324-015	NA	NA	NA	NA	NA

Internal Chain of Custody

Loc Loc Bot A/ Lab#: DateTime: User Nu M Analys AC75324-001 10/24/13 10:40 RICAR 0 M Recived AC75324-001 10/24/13 18:11 R31 1 A NONE AC75324-001 10/24/13 18:11 R31 2 A NONE AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-002 10/24/13 10:40 RICAR M Login AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002	Lab#: AC7532: AC753	24-006 10/28/13 10:06 24-006 10/28/13 13:51 24-006 10/24/13 18:11 24-007 10/24/13 18:11 24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/29/13 12:12 24-007 10/29/13 12:12 24-007 10/24/13 12:12 24-007 10/24/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 11/05/13 12:12 24-007 11/05/13 12:14 24-007 11/05/13 12:14 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 <td< th=""><th>RICAR RICAR R12 ANTH R12 JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW</th><th>Nu 5 5 6 0 1 1 1 2 2 2 2 2 2 0 0 0 1</th><th>A A M M A A A A A M M A</th><th>Analysis NONE VOA NONE Received Login NONE cn-w NONE FILTER NONE FILTER NONE tdwi-hg NONE</th></td<>	RICAR RICAR R12 ANTH R12 JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW	Nu 5 5 6 0 1 1 1 2 2 2 2 2 2 0 0 0 1	A A M M A A A A A M M A	Analysis NONE VOA NONE Received Login NONE cn-w NONE FILTER NONE FILTER NONE tdwi-hg NONE
Lab#: DateTime: User Nu M Analys AC75324-001 10/24/13 10:40 RICAR 0 M Received AC75324-001 10/24/13 18:11 R31 1 A NONE AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-002 10/24/13 10:11 RICAR M Login AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/24/13 12:12 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:0:1 R31 5 A NONE AC75324-002 10/24/13 16:1 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 5 A	AC7532 AC	24-006 10/28/13 10:06 24-006 10/28/13 13:51 24-006 10/24/13 18:11 24-007 10/24/13 18:11 24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/29/13 12:57 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:126 24-007 11/05/13 12:41 24-007 11/05/13 12:41 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 <t< th=""><th>User R31 SG R31 RICAR RICAR R12 ANTH R12 JU R12 JU R12 JU R12 RICAR R12 JUR12 R12 JUR12 R12 JUR12 R12 JYR12</th><th>Nu 5 5 6 0 1 1 1 2 2 2 2 2 0 0 1 1</th><th>M A A M A A A A A A A A A A</th><th>NONE VOA NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE</th></t<>	User R31 SG R31 RICAR RICAR R12 ANTH R12 JU R12 JU R12 JU R12 RICAR R12 JUR12 R12 JUR12 R12 JUR12 R12 JYR12	Nu 5 5 6 0 1 1 1 2 2 2 2 2 0 0 1 1	M A A M A A A A A A A A A A	NONE VOA NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE
AC75324-001 10/24/13 10:40 RICAR 0 M Received AC75324-001 10/24/13 11:34 RICAR 0 M Login AC75324-001 10/24/13 18:11 R31 1 A NONE AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-002 10/24/13 10:40 RICAR 0 M Received AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/24/13 12:12 R12 2 A NONE AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/24/13 16:15 R12 3 A NONE AC75324-002 10/24/13 16:15 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 5	AC7532 AC	24-006 10/28/13 10:06 24-006 10/28/13 13:51 24-006 10/24/13 18:11 24-007 10/24/13 18:11 24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/29/13 12:57 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:126 24-007 11/05/13 12:41 24-007 11/05/13 12:41 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 <t< th=""><th>R31 SG R31 RICAR R12 ANTH R12 R12 JU R12 JU R12 RICAR R12 DYRJ1 R12 DYRJ1 R12 JW</th><th>5 5 6 0 1 1 1 2 2 2 2 2 0 0 1 1</th><th>A A M M A A A A A M M A</th><th>NONE VOA NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE</th></t<>	R31 SG R31 RICAR R12 ANTH R12 R12 JU R12 JU R12 RICAR R12 DYRJ1 R12 DYRJ1 R12 JW	5 5 6 0 1 1 1 2 2 2 2 2 0 0 1 1	A A M M A A A A A M M A	NONE VOA NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE
AC75324-001 10/24/13 11:34 RICAR 0 M Login AC75324-001 10/24/13 18:11 R31 1 A NONE AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/24/13 12:12 R12 2 A NONE AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 17:38 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 13:51 SG 5 A <td>AC7532/ AC7532</td> <td>24-006 10/28/13 13:51 24-006 10/24/13 18:11 24-007 10/24/13 10:40 24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 <t< td=""><td>SG R31 RICAR RI2 ANTH R12 JU R12 JU R12 RI2 RI2 RICAR RI2 DYRJI R12 DYRJI R12 JW</td><td>5 6 0 1 1 1 2 2 2 2 2 0 0 0 1</td><td>A A M A A A A A M M A</td><td>VOA NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE</td></t<></td>	AC7532/ AC7532	24-006 10/28/13 13:51 24-006 10/24/13 18:11 24-007 10/24/13 10:40 24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 10/25/13 11:17 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 <t< td=""><td>SG R31 RICAR RI2 ANTH R12 JU R12 JU R12 RI2 RI2 RICAR RI2 DYRJI R12 DYRJI R12 JW</td><td>5 6 0 1 1 1 2 2 2 2 2 0 0 0 1</td><td>A A M A A A A A M M A</td><td>VOA NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE</td></t<>	SG R31 RICAR RI2 ANTH R12 JU R12 JU R12 RI2 RI2 RICAR RI2 DYRJI R12 DYRJI R12 JW	5 6 0 1 1 1 2 2 2 2 2 0 0 0 1	A A M A A A A A M M A	VOA NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE
AC75324-001 10/24/13 18:11 R31 1 A NONE AC75324-001 10/25/13 13:59 WP 1 A voa AC75324-001 10/24/13 18:11 R31 2 A NONE AC75324-002 10/24/13 10:40 RICAR 0 M Received AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/30/13 09:31 DYRUI A BNA AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 16:17 JW 3 A IC AC75324-002 10/24/13 16:17 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 5 A	AC7532 AC	24-006 10/24/13 18:11 24-007 10/24/13 10:40 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/29/13 09:12 24-007 10/29/13 12:12 24-007 10/29/13 12:12 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/25/13 11:17 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 <t< td=""><td>R31 RICAR RICAR R12 ANTH R12 JU R12 JU R12 RICAR R12 DYRJII R12 R12 DYRJII R12 JW</td><td>6 0 1 1 2 2 2 2 2 0 0 1</td><td>A M A A A A A A A M A</td><td>NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE</td></t<>	R31 RICAR RICAR R12 ANTH R12 JU R12 JU R12 RICAR R12 DYRJII R12 R12 DYRJII R12 JW	6 0 1 1 2 2 2 2 2 0 0 1	A M A A A A A A A M A	NONE Received Login NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE
AC75324-001 10/25/13 13:59 WP 1 A voa AC75324-001 10/24/13 18:11 R31 2 A NONE AC75324-001 10/24/13 10:40 RICAR M Received AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/24/13 12:12 R12 2 A NONE AC75324-002 10/30/13 09:31 DYR/J A BNA AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 13:12 R12 3 A NONE AC75324-002 10/24/13 13:13 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 4 NONE AC75324-002 10/24/13 18:11 R31 4 NONE AC75324-002 10/24/13 18:11 R31 5 A NONE A	AC7532- AC7532	24-007 10/24/13 10:40 24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/29/13 12:12 24-007 10/29/13 12:12 24-007 10/29/13 12:12 24-007 10/24/13 12:12 24-007 10/24/13 12:12 24-007 10/25/13 11:17 24-007 10/25/13 16:14 24-007 11/05/13 16:14 24-007 11/05/13 12:41 24-007 11/05/13 12:41 24-008 10/24/13 13:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 17:38 <td< td=""><td>RICAR RICAR R12 ANTH R12 JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW</td><td>0 0 1 1 2 2 2 2 0 0 1 1 1 1 2 2 2 2 0 0 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>M A A A A A A A A A M A</td><td>Received Login NONE cn-w NONE FILTER NONE tdwi-hg NONE</td></td<>	RICAR RICAR R12 ANTH R12 JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW	0 0 1 1 2 2 2 2 0 0 1 1 1 1 2 2 2 2 0 0 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	M A A A A A A A A A M A	Received Login NONE cn-w NONE FILTER NONE tdwi-hg NONE
AC75324-001 10/24/13 18:11 R31 2 A NONE AC75324-002 10/24/13 10:40 RICAR 0 M Received AC75324-002 10/24/13 11:34 RICAR 0 M Login AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 16:14 R12 A NONE AC75324-002 10/24/13 11:36:06 WP 5 A <td< td=""><td>AC7532 AC</td><td>24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/29/13 09:12 24-007 10/29/13 09:12 24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/25/13 12:12 24-007 10/25/13 16:14 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 11:24 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17 24-008 10/24/13 13:17</td><td>RICAR R12 ANTH R12 JU R12 JU R12 RICAR RICAR RICAR R12 DYRJI R12 JW</td><td>0 1 1 2 2 2 2 2 0 0 1</td><td>M A A A A A A M M A</td><td>Login NONE cn-w NONE FILTER NONE tdwi-hg NONE</td></td<>	AC7532 AC	24-007 10/24/13 11:34 24-007 10/24/13 12:12 24-007 10/29/13 09:12 24-007 10/29/13 09:12 24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/25/13 12:12 24-007 10/25/13 16:14 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 11:24 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17 24-008 10/24/13 13:17	RICAR R12 ANTH R12 JU R12 JU R12 RICAR RICAR RICAR R12 DYRJI R12 JW	0 1 1 2 2 2 2 2 0 0 1	M A A A A A A M M A	Login NONE cn-w NONE FILTER NONE tdwi-hg NONE
AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-002 10/24/13 10:40 RICAR 0 M Received AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/24/13 15:12 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 4 NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-002 10/24/13 11:3:4 RICAR M NONE	AC75324 AC7532	24-007 10/24/13 12:12 24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/29/13 12:57 24-007 10/24/13 12:12 24-007 10/25/13 12:12 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17 24-008 10/24/13 13:07 24-008 10/24/13 13:17	R12 ANTH R12 R12 JU R12 JU R12 R12 R1CAR R12 DYR/JI R12 R12 DYR/JI R12 JW	1 1 2 2 2 2 2 0 0 1	A A A A A A A M A	Login NONE cn-w NONE FILTER NONE tdwi-hg NONE
AC75324-001 10/24/13 18:11 R31 3 A NONE AC75324-002 10/24/13 10:40 RICAR 0 M Received AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/24/13 15:12 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 4 NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-002 10/24/13 11:3:4 RICAR M NONE	AC75324 AC7532	24-007 10/24/13 12:12 24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/29/13 12:57 24-007 10/24/13 12:12 24-007 10/25/13 12:12 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17 24-008 10/24/13 13:07 24-008 10/24/13 13:17	R12 ANTH R12 R12 JU R12 JU R12 R12 R1CAR R12 DYR/JI R12 R12 DYR/JI R12 JW	1 1 2 2 2 2 2 0 0 1	A A A A A A A M A	NONE cn-w NONE NONE FILTER NONE tdwi-hg NONE
AC75324-002 10/24/13 10:40 RICAR 0 M Received AC75324-002 10/24/13 12:12 RI2 1 A NONE AC75324-002 10/30/13 09:31 DYR/JI A BNA AC75324-002 10/30/13 09:50 RI2 2 A NONE AC75324-002 10/24/13 12:12 RI 3 A NONE AC75324-002 10/24/13 15:12 JW 3 A C AC75324-002 10/24/13 15:27 JW 3 A IC AC75324-002 10/24/13 16:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 16:11 R31 5 A NONE AC75324-002 10/24/13 16:11 R31 5 A NONE AC75324-003 10/24/13 16:11 R31 <td>AC7532- AC7532</td> <td>24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/24/13 12:12 24-007 10/25/13 12:12 24-007 10/25/13 12:12 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07</td> <td>ANTH R12 R12 JU R12 JU R12 R12 R12 R12 DYR/JI R12 R12 R12 JW</td> <td>1 1 2 2 2 2 2 2 0 0 1 1</td> <td>A A A A A A M A</td> <td>cn-w NONE NONE FILTER NONE tdwi-hg NONE</td>	AC7532- AC7532	24-007 10/29/13 09:12 24-007 10/29/13 12:57 24-007 10/24/13 12:12 24-007 10/25/13 12:12 24-007 10/25/13 12:12 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07	ANTH R12 R12 JU R12 JU R12 R12 R12 R12 DYR/JI R12 R12 R12 JW	1 1 2 2 2 2 2 2 0 0 1 1	A A A A A A M A	cn-w NONE NONE FILTER NONE tdwi-hg NONE
AC75324-002 10/24/13 11:34 RICAR 0 M Login AC75324-002 10/30/13 09:31 DYR/JI 1 A BNA AC75324-002 10/30/13 09:31 DYR/JI 1 A BNA AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/24/13 15:7 JW 3 A IC AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:16 WP 5 A NONE AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 12:21 R12 A	AC7532- AC7532	24-007 10/29/13 12:57 24-007 10/24/13 12:12 24-007 10/25/13 11:17 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 12:41 24-008 10/24/13 12:41 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17 24-008 10/24/13 13:07 24-008 10/24/13 13:17	R12 R12 JU R12 JU R12 RICAR R12 DYR/JI R12 R12 JW	1 2 2 2 2 2 0 0 1	A A A A A M M A	NONE NONE FILTER NONE tdwi-hg NONE
AC75324-002 10/24/13 12:12 R12 1 A NONE AC75324-002 10/30/13 09:31 DYR/JI 1 A BNA AC75324-002 10/30/13 09:31 DYR/JI 2 A NONE AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 15:27 JW 3 A IC AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NOA AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:12 R12 A NONE AC75324-003 10/24/13 12:12 R12 </td <td>AC7532/ AC7532</td> <td>24-007 10/24/13 12:12 24-007 10/25/13 11:17 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:44 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11</td> <td>R12 JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW</td> <td>2 2 2 2 2 0 0 1</td> <td>A A A A A M A</td> <td>NONE FILTER NONE tdwi-hg NONE</td>	AC7532/ AC7532	24-007 10/24/13 12:12 24-007 10/25/13 11:17 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:44 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	R12 JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW	2 2 2 2 2 0 0 1	A A A A A M A	NONE FILTER NONE tdwi-hg NONE
AC75324-002 10/30/13 09:31 DYR/JI 1 A BNA AC75324-002 10/24/13 12:12 R12 2 A NONE AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 15:27 JW 3 A IC AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 NONE AC75324-002 10/24/13 18:16 WP 5 A voa AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-002 10/24/13 10:30 RICAR 0 M Login AC75324-003 10/24/13 11:31 RICAR 0 M Login AC75324-003 10/24/13 12:12 R12 A NONE <td< td=""><td>AC7532/ AC7532</td><td>24-007 10/25/13 11:17 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:17 24-008 10/24/13 13:17</td><td>JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW</td><td>2 2 2 0 0 1</td><td>A A A M M A</td><td>FILTER NONE tdwi-hg NONE</td></td<>	AC7532/ AC7532	24-007 10/25/13 11:17 24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:17 24-008 10/24/13 13:17	JU R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW	2 2 2 0 0 1	A A A M M A	FILTER NONE tdwi-hg NONE
AC75324-002 10/24/13 12:12 R12 2 A NONE AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/24/13 15:17 JW 3 A IC AC75324-002 10/24/13 18:11 R31 4 NONE AC75324-002 10/24/13 18:11 R31 4 NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 6 NONE A AC75324-002 10/24/13 10:40 RICAR M Receivec AC75324-003 10/24/13 11:34 RICAR M Login AC75324-003 10/24/13 12:12 R12 A NONE AC75324-003 10/26/13 16:14 R12 A NONE AC75324-003 10/26/13 11:	AC7532/ AC7532	24-007 10/25/13 16:14 24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:14 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:13:07	R12 JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW	2 2 0 0 1	A A M M	NONE tdwi-hg NONE
AC75324-002 10/30/13 09:31 DYR/JI 2 A BNA AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 17:38 R12 3 A NONE AC75324-002 10/24/13 17:38 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/26/13 18:06 R31 5 A NONE AC75324-002 10/24/13 13:51 SG 5 A VOA AC75324-003 10/24/13 10:40 RICAR M Login AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/26/13 11:17 JU 2 A FILTER AC75324-003 10/26/13 11:17 JU 2 A	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532	24-007 11/05/13 11:26 24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 11:34 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/30/13 09:31 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17	JU R12 RICAR RICAR R12 DYR/JI R12 R12 JW	2 2 0 1 1	A A M A	tdwi-hg NONE
AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 10:06 R31 5 A NONE AC75324-002 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 10:40 RICAR M Login AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 11:17 JU 2 A FILTER AC75324-003 10/28/13 11:17 JU 2 A IM	AC7532- AC7532	24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17	R12 RICAR RICAR R12 DYR/JI R12 R12 JW	2 0 1 1	A M A	NONE
AC75324-002 10/30/13 09:50 R12 2 A NONE AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 10:06 R31 5 A NONE AC75324-002 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 11:17 JU 2 A FILTER AC75324-003 10/28/13 11:17 JU 2 A <td>AC7532- AC7532</td> <td>24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17</td> <td>R12 RICAR RICAR R12 DYR/JI R12 R12 JW</td> <td>2 0 1 1</td> <td>A M A</td> <td>NONE</td>	AC7532- AC7532	24-007 11/05/13 12:41 24-008 10/24/13 10:40 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:07 24-008 10/24/13 13:17	R12 RICAR RICAR R12 DYR/JI R12 R12 JW	2 0 1 1	A M A	NONE
AC75324-002 10/24/13 12:12 R12 3 A NONE AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/30/13 15:27 JW 3 A IC AC75324-002 10/30/13 15:27 JW 3 A IC AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 10:06 R31 5 A NONE AC75324-002 10/24/13 10:40 RICAR M Received AC75324-002 10/24/13 10:40 RICAR M Login AC75324-003 10/24/13 10:40 RICAR M Login AC75324-003 10/24/13 10:40 RICAR M Login AC75324-003 10/26/13 11:17 JU 2 A FILTER AC75324-003 10/26/13 11:17 JU 2 A Koinehaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	AC7532/ AC7532	24-008 10/24/13 10:40 24-008 10/24/13 11:34 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	RICAR RICAR R12 DYR/JI R12 R12 JW	0 0 1 1	M M A	
AC75324-002 10/24/13 13:07 JW 3 A IC AC75324-002 10/24/13 17:38 R12 3 A NONE AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/28/13 18:06 WP 5 A voa AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR 0 M Login AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/25/13 11:17 JU 2 A Idwin-hg AC75324-003 10/26/13 12:12 R12 2 NONE </td <td>AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532</td> <td>24-008 10/24/13 11:34 24-008 10/24/13 12:12 24-008 10/30/13 09:31 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11</td> <td>RICAR R12 DYR/JI R12 R12 JW</td> <td>0 1 1</td> <td>M A</td> <td></td>	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532	24-008 10/24/13 11:34 24-008 10/24/13 12:12 24-008 10/30/13 09:31 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	RICAR R12 DYR/JI R12 R12 JW	0 1 1	M A	
AC75324-002 10/24/13 17:38 R12 3 A NONE AC75324-002 10/30/13 15:27 JW 3 A IC AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/24/13 10:40 RICAR M Receivec AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/25/13 16:14 R12 1 A NONE AC75324-003 10/25/13 11:17 JU 2 A Idwing AC75324-003 10/24/13 12:12 R12 A NONE<	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532	24-008 10/24/13 12:12 24-008 10/30/13 09:31 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	R12 DYR/JI R12 R12 JW	1	A	Received
AC75324-002 10/30/13 15:27 JW 3 A IC AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:06 WP 5 A voa AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-002 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 11:17 JU 2 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/26/13 12:12 R12 2 A	AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/	24-008 10/30/13 09:31 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	DYR/JI R12 R12 JW	1		Login
AC75324-002 10/30/13 16:25 R12 3 A NONE AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/25/13 18:06 WP 5 A vça AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/28/13 13:51 SG 5 A VQA AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR M Login AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 11:14 R12 2 A NONE AC75324-003 11/05/13 12:21 R12 A NONE	AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/ AC7532/	24-008 10/24/13 12:12 24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	R12 R12 JW			NONE
AC75324-002 10/24/13 18:11 R31 4 A NONE AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/25/13 18:06 WP 5 A voa AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/24/13 13:51 SG 5 A VOA AC75324-002 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 10:40 RICAR M Login AC75324-003 10/28/13 10:33 ANTH 1 A NONE AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 1 NONE	AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532-	24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	R12 JW	2	Α	BNA
AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/25/13 18:06 WP 5 A voa AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/24/13 13:51 SG 5 A VOA AC75324-003 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A tdwi-hg AC75324-003 11/02/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 A NON	AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532-	24-008 10/24/13 12:12 24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	R12 JW		A	NONE
AC75324-002 10/24/13 18:11 R31 5 A NONE AC75324-002 10/25/13 18:06 WP 5 A voa AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/24/13 13:51 SG 5 A VOA AC75324-003 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A tdwi-hg AC75324-003 11/02/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 A NON	AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532- AC7532-	24-008 10/24/13 13:07 24-008 10/24/13 17:38 24-008 10/24/13 18:11	JW	3	A	NONE
AC75324-002 10/25/13 18:06 WP 5 A vça AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/24/13 13:51 SG 5 A VOA AC75324-003 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR 0 M Received AC75324-003 10/24/13 10:33 ANTH 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A NONE AC75324-003 10/28/13 11:17 JU 2 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A Idwi-hg AC75324-003 11/05/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 3 <td>AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532</td> <td>24-008 10/24/13 17:38 24-008 10/24/13 18:11</td> <td></td> <td>3</td> <td>A</td> <td>IC</td>	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532	24-008 10/24/13 17:38 24-008 10/24/13 18:11		3	A	IC
AC75324-002 10/28/13 10:06 R31 5 A NONE AC75324-002 10/28/13 13:51 SG 5 A VOA AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/26/13 11:17 JU 2 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A Idwin-hg AC75324-003 11/02/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 NO	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532	24-008 10/24/13 18:11	B * *		1	
AC75324-002 10/28/13 13:51 SG 5 A VOA AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR M Received AC75324-003 10/24/13 11:34 RICAR M Login AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/28/13 16:14 R12 2 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/26/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 13:07 JW 3 A I	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532		R12	3	Α	NONE
AC75324-002 10/24/13 18:11 R31 6 A NONE AC75324-003 10/24/13 10:40 RICAR 0 M Received AC75324-003 10/24/13 11:34 RICAR 0 M Login AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 10:14 R12 1 A NONE AC75324-003 10/28/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 11:26 JU 2 A Idwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW <	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532 AC7532	24-008 10/24/13 18:11	R31	4	Α	NONE
AC75324-003 10/24/13 10:40 RICAR 0 M Received AC75324-003 10/24/13 11:34 RICAR 0 M Login AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 11:26 JU 2 A tdwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 13:07 JW	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532		R31	5	A	NONE
AC75324-003 10/24/13 10:40 RICAR 0 M Received AC75324-003 10/24/13 11:34 RICAR 0 M Login AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 11:26 JU 2 A tdwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 13:07 JW	AC7532 AC7532 AC7532 AC7532 AC7532 AC7532	24-008 10/25/13 18:06	WP	5	A	voa
AC75324-003 10/24/13 11:34 RICAR M Login AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A	AC7532 AC7532 AC7532 AC7532	NUT	R31	5	A	NONE
AC75324-003 10/24/13 12:12 R12 1 A NONE AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A Hdwine AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 15:27 JW 3	AC7532/ AC7532/ AC7532/		SG		Â	VOA
AC75324-003 10/28/13 10:33 ANTH 1 A CN-W AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A Idwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 10:40 RICAR M Received AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 15:07 JW 3 A IC AC75324-004 10/24/13 15:07 JW 3 A	AC75324 AC7532			5	1.1	
AC75324-003 10/28/13 16:14 R12 1 A NONE AC75324-003 10/24/13 12:12 R12 2 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 10:40 RICAR M Received AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 17:15 R12 A NO	AC75324		R31	6	Α	NONE
AC75324-003 10/24/13 12:12 R12 2 A NONE AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A tdwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 10:24/1 RICAR 0 M Received AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/24/13 15:20 <td>Proceedings of the second se</td> <td>24-009 10/24/13 10:40</td> <td>RICAR</td> <td>0</td> <td>м</td> <td>Received</td>	Proceedings of the second se	24-009 10/24/13 10:40	RICAR	0	м	Received
AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A Idwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 10:40 RICAR M Received AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/24/13 15:27 JW<		24-009 10/24/13 11:34	RICAR	0	м	Login
AC75324-003 10/25/13 11:17 JU 2 A FILTER AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A tdwi-hg AC75324-004 10/24/13 11:34 R12 2 A NONE AC75324-004 10/24/13 10:40 RICAR M Login AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/24/13 15:27 JW <td>AC7532</td> <td>24-009 10/24/13 12:12</td> <td>R12</td> <td>1</td> <td>Α</td> <td>NONE</td>	AC7532	24-009 10/24/13 12:12	R12	1	Α	NONE
AC75324-003 10/25/13 16:14 R12 2 A NONE AC75324-003 11/05/13 11:26 JU 2 A Idwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 10:40 RICAR 0 M Received AC75324-004 10/24/13 11:34 RICAR 0 M Login AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 15:12 R12 3 A NONE AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 15:20 JW 6 <td>AC75324</td> <td></td> <td></td> <td>1</td> <td>А</td> <td>tdwi-hg</td>	AC75324			1	А	tdwi-hg
AC75324-003 11/05/13 11:26 JU 2 A tdwi-hg AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 10:40 RICAR 0 M Received AC75324-004 10/24/13 11:34 RICAR 0 M Login AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6	AC7532		1	1	A	NONE
AC75324-003 11/05/13 12:41 R12 2 A NONE AC75324-004 10/24/13 10:40 RICAR 0 M Received AC75324-004 10/24/13 11:34 RICAR 0 M Login AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 15:12 R12 3 A NONE AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/29/13 15:27 JW 3 A IC AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 A					1	
AC75324-004 10/24/13 10:40 RICAR 0 M Received AC75324-004 10/24/13 11:34 RICAR 0 M Login AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6 A NONE AC75324-004 10/24/13 18:11 R31 R </td <td>AC7532</td> <td></td> <td></td> <td>2</td> <td>Α</td> <td>NONE</td>	AC7532			2	Α	NONE
AC75324-004 10/24/13 11:34 RICAR 0 M Login AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 4 A NONE AC75324-004 10/24/13 15:20 JW 6 A ALKALIN AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8	AC75324	24-009 10/29/13 09:12	ANTH	2	Α	cn-w
AC75324-004 10/24/13 12:12 R12 1 A NONE AC75324-004 10/24/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 2 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/24/13 16:25 R12 3 A NONE AC75324-004 10/24/13 16:25 R12 3 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/29/13 18:11 R31 7 A NONE AC75324-004 10/28/13 10:06 R31 8	AC7532	24-009 10/29/13 12:57	R12	2	А	NONE
AC75324-004 10/24/13 12:12 R12 2 A NONE AC75324-004 10/30/13 09:31 DYR/JI 2 A BNA AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A	AC75324	24-010 10/24/13 10:40	RICAR	0	м	Received
AC75324-004 10/24/13 12:12 R12 2 A NONE AC75324-004 10/30/13 09:31 DYR/JI 2 A BNA AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A	AC7532		RICAR	0	м	Login
AC75324-004 10/30/13 09:31 DYR/JI 2 A BNA AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/30/13 15:27 JW 3 A IC AC75324-004 10/30/13 15:27 JW 3 A IC AC75324-004 10/24/13 15:27 JW 3 A IC AC75324-004 10/24/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 13:51 SG 8 A	AC7532			1	A	NONE
AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/30/13 15:27 JW 3 A IC AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 4 A NONE AC75324-004 10/24/13 15:20 JW 6 A ALKALIN AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-005 10/24/13 10:40 RICAR M			1			
AC75324-004 10/24/13 13:07 JW 3 A IC AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/30/13 15:27 JW 3 A IC AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR M	AC75324			2	A	NONE
AC75324-004 10/24/13 17:38 R12 3 A NONE AC75324-004 10/30/13 15:27 JW 3 A IC AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 4 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 11:34 RICAR M	AC75324	24-010 10/30/13 09:31	DYR/JI	12	Α	BNA
AC75324-004 10/30/13 15:27 JW 3 A IC AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 3 A NONE AC75324-004 10/29/13 12:12 R12 4 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/25/13 18:06 WP 8 A voa AC75324-004 10/24/13 10:06 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR M Received AC75324-005 10/24/13 10:40 RICAR M Lo	AC75324	24-010 10/24/13 12:12	R12	3	A	NONE
AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 4 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 10:31 SG 8 A VOA AC75324-004 10/28/13 10:40 RICAR M Received AC75324-005 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 12:12 R1CAR M Received AC75324-005 10/24/13 12:12 R1CAR M Login	AC75324	24-010 10/24/13 13:07	JW	3	A	IC
AC75324-004 10/30/13 16:25 R12 3 A NONE AC75324-004 10/24/13 12:12 R12 4 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/28/13 10:40 RICAR M Received AC75324-005 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 12:12 R12 M Received AC75324-005 10/24/13 12:12 R12 A NONE </td <td>AC75324</td> <td>24-010 10/24/13 17:38</td> <td>R12</td> <td>3</td> <td>A</td> <td>NONE</td>	AC75324	24-010 10/24/13 17:38	R12	3	A	NONE
AC75324-004 10/24/13 12:12 R12 4 A NONE AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 10:106 R31 8 A NONE AC75324-004 10/28/13 10:31 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR M Received AC75324-005 10/24/13 11:34 RICAR M Login AC75324-005 10/24/13 12:12 R12 1 A <td< td=""><td>AC75324</td><td></td><td>R31</td><td>4</td><td>A</td><td>NONE</td></td<>	AC75324		R31	4	A	NONE
AC75324-004 10/29/13 15:20 JW 6 A ALKALIN AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 10:106 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR M Received AC75324-005 10/24/13 11:34 RICAR M Login AC75324-005 10/24/13 12:12 R12 1 A <	· Max Marcola 11 10 100 100 100 100		R31	5	A	NONE
AC75324-004 10/29/13 17:15 R12 6 A NONE AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/25/13 18:06 WP 8 A voa AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR M Received AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A	AC75324					
AC75324-004 10/24/13 18:11 R31 7 A NONE AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/25/13 18:06 WP 8 A voa AC75324-004 10/25/13 18:06 WP 8 A voa AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR M Received AC75324-005 10/24/13 11:34 RICAR M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/24/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 10:33 ANTH 1 A CN-W			WP	5	Α	voa
AC75324-004 10/24/13 18:11 R31 8 A NONE AC75324-004 10/25/13 18:06 WP 8 A voa AC75324-004 10/25/13 18:06 R31 8 A NONE AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-004 10/24/13 10:40 RICAR 0 M Received AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 10:33 ANTH 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324	24-010 10/28/13 10:06	R31	5	Α	NONE
AC75324-004 10/25/13 18:06 WP 8 A voa AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR 0 M Received AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/24/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 10:33 ANTH 1 A NONE	AC75324	24-010 10/28/13 13:51	SG	5	Α	VOA
AC75324-004 10/25/13 18:06 WP 8 A voa AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR 0 M Received AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/24/13 10:21 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324	24-010 10/24/13 18:11	R31	6	Α	NONE
AC75324-004 10/28/13 10:06 R31 8 A NONE AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR 0 M Received AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324		RICAR		М	Received
AC75324-004 10/28/13 13:51 SG 8 A VOA AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR 0 M Received AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324		RICAR	1	м	Login
AC75324-004 10/24/13 18:11 R31 9 A NONE AC75324-005 10/24/13 10:40 RICAR 0 M Received AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE			- i			-
AC75324-005 10/24/13 10:40 RICAR 0 M Received AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324			1	A	NONE
AC75324-005 10/24/13 11:34 RICAR 0 M Login AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324			1	Α	FILTER
AC75324-005 10/24/13 12:12 R12 1 A NONE AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324	and the second s		1	Α	NONE
AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324	24-011 11/05/13 11:26	JU	1	Α	tdwi-hg
AC75324-005 10/28/13 10:33 ANTH 1 A CN-W AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324	24-011 11/05/13 12:41	R12	1	A	NONE
AC75324-005 10/28/13 16:14 R12 1 A NONE	AC75324				A	NONE
1 I I I I I I I I I I I I I I I I I I I	AC75324		ANTH			
AC75324-005 10/24/13 12:12 R12 2 A NONE						cn-w
	AC75324			2	A	NONE
AC75324-005 10/24/13 12:12 R12 3 A NONE			RICAR		м	Received
AC75324-005 10/25/13 11:17 JU 3 A FILTER	AC75324	24-012 10/24/13 11:34	RICAR	0	м	Login
AC75324-005 10/25/13 16:14 R12 3 A NONE		24-012 10/24/13 12:12	R12	1	A	NONE
AC75324-005 11/05/13 11:26 JU 3 A tdwi-hg	AC75324			1		IC
AC75324-005 11/05/13 12:41 R12 3 A NONE	AC75324 AC75324 AC75324		1	1		NONE
	AC75324 AC75324 AC75324 AC75324					
AC75324-006 10/24/13 10:40 RICAR 0 M Received	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324			1		IC
AC75324-006 10/24/13 11:34 RICAR 0 M Login	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324			1		NONE
AC75324-006 10/24/13 12:12 R12 1 A NONE	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	24-012 10/30/13 16:25	JW	2	Α	ALKALINITY
AC75324-006 10/24/13 12:12 R12 2 A NONE	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	24-012 10/30/13 16:25	R12	2	Α	NONE
AC75324-006 10/30/13 09:31 DYR/JI 2 A BNA	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	24-012 10/30/13 16:25 24-012 10/29/13 15:20		4	A	NONE
AC75324-006 10/24/13 12:12 R12 3 A NONE	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	24-012 10/30/13 16:25 24-012 10/29/13 15:20 24-012 10/29/13 17:15	R31	5	A	NONE
Contraction of the second	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	24-012 10/30/13 16:25 24-012 10/29/13 15:20 24-012 10/29/13 17:15 24-012 10/24/13 18:11				
AC75324-006 10/24/13 13:07 JW 3 A IC	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	24-012 10/30/13 16:25 24-012 10/29/13 15:20 24-012 10/29/13 17:15 24-012 10/29/13 17:15 24-012 10/24/13 18:11 24-012 10/24/13 18:11	R31	D	A	voa
AC75324-006 10/24/13 17:38 R12 3 A NONE	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	224-012 10/30/13 16:25 224-012 10/29/13 15:20 224-012 10/29/13 17:15 224-012 10/29/13 17:15 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/25/13 18:06	R31 WP		A	NONE
AC75324-006 10/24/13 18:11 R31 4 A NONE	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	224-012 10/30/13 16:25 224-012 10/29/13 15:20 224-012 10/29/13 17:15 224-012 10/29/13 17:15 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/25/13 18:06 224-012 10/28/13 10:06	R31 WP R31	5		
AC75324-006 10/24/13 18:11 R31 5 A NONE	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	224-012 10/30/13 16:25 224-012 10/29/13 15:20 224-012 10/29/13 17:15 224-012 10/29/13 17:15 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/25/13 18:06 224-012 10/28/13 10:06	R31 WP R31	5	A	VOA
AC75324-006 10/25/13 18:06 WP 5 A voa	AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324 AC75324	224-012 10/30/13 16:25 224-012 10/29/13 15:20 224-012 10/29/13 17:15 224-012 10/29/13 17:15 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/24/13 18:11 224-012 10/25/13 18:06 224-012 10/28/13 10:06 224-012 10/28/13 13:51	R31 WP R31 SG	5 5	A	VOA NONE

Internal Chain of Custody

		Loc or	Bot					Loc or	Bot		
Lab#:	DateTime:	User		M	Analysis	Lab#:	DateTime:	User	Nu	M Analysis	
AC75324-013	10/24/13 11:34	RICAR	0	м	Login						
AC75324-013	10/24/13 12:12	R12	1	Α	NONE						
AC75324-013	10/25/13 11:17	JU	1	Α	FILTER						
AC75324-013	10/25/13 16:14	R12	1	Α	NONE						
AC75324-013	11/05/13 11:26	JU	1	Α	tdwi-hg						
AC75324-013	11/05/13 12:41	R12	1	Α	NONE						
AC75324-014	10/24/13 10:40	RICAR	0	м	Received						
AC75324-014	10/24/13 11:34	RICAR	0	м	Login						
AC75324-014	10/24/13 12:12	R12	1	A	NONE						
AC75324-014	10/24/13 12:12	R12	2	A	NONE						
AC75324-014	10/30/13 09:31	DYR/J	2	Α	BNA						
C75324-014	10/24/13 12:12	R12	3	Α	NONE						
AC75324-014	10/24/13 13:07	JW	3	Α	IC						
C75324-014	10/24/13 17:38	R12	3	Α	NONE						
C75324-014	10/30/13 15:27	JW	3	Α	IC						
C75324-014	10/30/13 16:25	R12	3	A	NONE						
C75324-014	10/24/13 18:11	R31	4	Α	NONE						
AC75324-014	10/24/13 18:11	R31	5	A	NONE						
AC75324-014	10/25/13 18:06	WP	5	A	voa						
C75324-014	10/28/13 10:06	R31	5	A	NONE						
C75324-014	10/28/13 13:51	SG	5	A	VOA						
C75324-014	10/24/13 18:11	R31	6	A	NONE						
C75324-015	10/24/13 10:40	RICAR	0	м	Received						
C75324-015	10/24/13 11:34	RICAR	0	м	Login						
C75324-015	10/24/13 12:12	R12	1	Α	NONE						
C75324-015	10/25/13 11:17	JU	1	Α	FILTER						
C75324-015	10/25/13 16:14	R12	1	Α	NONE						
C75324-015	11/05/13 11:26		1	Α	tdwi-hg						
C75324-015	11/05/13 12:41		1	Α	NONE						
AC75324-015	10/24/13 12:12	R12	2	A	NONE						
AC75324-015	10/29/13 09:12	ANTH		A	cn-w						
AC75324-015	10/29/13 12:57		2	A	NONE						

1

Laboratory Chronicle

Client: HDR

Project: NYSDOT-Harrison

Lab#: AC75324-001		Sample ID: TB	-10232013	Sample ID: TB-10232013		
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Volatile Organics + 10 (624)	EPA 624			EPA 624	10/25/13 20:57	WP

```
Lab#: AC75324-002
```

Sample ID: DMW-5-10232013 U

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 20:35	Janee
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/30/13 17:51	AHD/JB
Volatile Organics + 10 (624)	EPA 624	4		EPA 624	10/29/13 00:39	SG

Lab#: AC75324-003

Sample ID: DMW-5-10232013 F

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date By		By Method		Ву	
Cyanide-Water (EPA 335.4)	EPA 335.4	10/28/13	Anthony	EPA 335.4	10/28/13 15:52	af	
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:27	OA	
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 17:56	SRB	
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:02	SRB	
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:28	GK	

```
Lab#: AC75324-004
```

Sample ID: PC-1-10232013 U

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Alkalinity-Bicarbonate (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW	
Alkalinity-Total (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW	
Chloride (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 19:45	Janee	
Nitrate-N (Water) 300.0		10/24/13	Janee	300.0 rev2.1	10/24/13 17:45	Janee	
o-Alkalinity		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW	
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/30/13 18:58	AHD/JB	
Sulfate (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 18:03	Janee	
Volatile Organics + 10 (624)	EPA 624			EPA 624	10/28/13 22:49	SG	

Client: HDR

Project: NYSDOT-Harrison

HCV Project #: 3102406

Lab#: AC75324-005	5	Sample ID: PC-	1-10232013 F			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10/28/13	Anthony	EPA 335.4	10/28/13 15:54	af
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:28	OA
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:00	SRB
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:06	SRB
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:31	GK
		- 				
Lab#: AC75324-006	Ş	Sample ID: LMV	V-4-10232013 U			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0		10/24/13	Janee	300.0 rev2.1	10/24/13 19:52	Janee
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/31/13 16:23	AHD/JB
Volatile Organics $+$ 10 (624)	EPA 624			EPA 624	10/28/13 23:08	SG

Lab#: AC75324-007

Sample ID: LMW-4-10232013 F

	Prep	Prep Date By		Analytical	Analysis	Ву	
Test Code	Method			Method	Date		
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 14:56	af	
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:30	OA	
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:04	SRB	
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:09	SRB	
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:35	GK	

Lab#: AC75324-008

Sample ID: PC-2-10232013 U

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0		10/24/13	Janee	300.0 rev2.1	10/24/13 20:18	Janee
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/30/13 19:42	AHD/JB
Volatile Organics + 10 (624)	EPA 624			EPA 624	10/28/13 23:26	SG

Client: HDR

Project: NYSDOT-Harrison

Lab#: AC75324-009	5	Sample ID: PC-2				
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 14:58	af
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:35	OA
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:09	SRB
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:12	SRB
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:45	GK

Lab#: AC75324-010

Sample ID: LMW-2-10232013 U

Method		Date	By	Method		
				Method	Date	By
		10/24/13	Janee	300.0 rev2.1	10/24/13 20:43	Janee
EPA 625	, i	10/30/13	dуr	EPA 625	10/31/13 20:28	AHD/JB
EPA 624				EPA 624	10/28/13 23:45	SG
			EPA 625 10/30/13	2PA 625 10/30/13 dyr	EPA 625 ¹ 10/30/13 dyr EPA 625	EPA 625 1 10/30/13 dyr EPA 625 10/31/13 20:28

Lab#: AC75324-011

Sample ID: LMW-2-10232013 F

	Prep		Prep		Analytical	Analysis	
Test Code	Method	t.	Date	Ву	Method	Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	1	10/29/13	Anthony	EPA 335.4	10/29/13 15:00	af
Mercury (Water) 245.1	245.1 rev3.0	;	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:36	OA
TAL Metals 200.7	EPA 200.2		11/05/13	Julijana	EPA 200.7	11/6/13 23:14	SRB
TAL Metals 200.7	EPA 200.2		11/05/13	Julijana	EPA 200.7	11/6/13 18:14	SRB
TAL Metals 200.8	EPA 200.2		11/05/13	Julijana	EPA 200.8	11/6/13 17:48	GK

Lab#: AC75324-012

Sample ID: MW-11-10232013 U

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
Alkalinity-Total (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
BTEX (624)	EPA 624			EPA 624	10/29/13 00:03	SG
Nitrate-N (Water) 300.0		10/24/13	Janee	300.0 rev2.1	10/24/13 19:01	Janee
p-Alkalinity		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
Sulfate (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 19:19	Janee

Client: HDR

Project: NYSDOT-Harrison

Lab#: AC75324-013		Sample ID: MW	-11-10232013 F			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Metals Pair 200.7	EPA 200.2	11/05/13	Julijana	200.7	11/6/13 18:18	SRB

Lab#: AC75324-014

Sample ID: PC-3-10232013 U

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 21:01	Janee
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/31/13 16:01	AHD/JB
Volatile Organics + 10 (624)	EPA 624			EPA 624	10/29/13 00:21	SG

Lab#: AC75324-015

Sample ID: PC-3-10232013 F

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 15:02	af
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:38	OA
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:40	SRB
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:31	SRB
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:52	GK

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

*Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- E- Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.

HCV Report Of Analysis

Client: HDR

Project: NYSDOT-Harrison

HCV Project #: 3102406

Sample ID: TB-10232013 Lab#: AC75324-001 Matrix: Aqueous Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/i	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/i	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/i	0.50	ND
Bromochioromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/i	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	· 1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/I	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chioroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/ł	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
reported to Dry Weigh	Project #:	3102406		Page 1 of 28

mple ID: TB-10232013 Lab#: AC75324-001 Matrix: Aqueous				Date: 10/23/2013 Date: 10/24/2013
trans-1,3-Dichloropropene	1	ug/ł	1.0	ND
Trichloroethene	1	ug/i	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/I	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
Volatile Organics + 10 (624) Library Searches				
Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: DMW-5-10232013 U Lab#: AC75324-002 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Chloride (Water) 300.0

	Analyte	DI	F Uni	its RL	Result	
	Chloride	5	mg/l	10	120	
miv	volatile Organics + 25 (625)					
	Analyte	D	F Uni	its RL	Result	
	1,1'-Biphenyl	1	ug/l	2.0	ND	
	1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND	
	2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND	
	2,4,5-Trichlorophenol	1	ug/I	2.0	ND	
	2,4,6-Trichlorophenol	1	ug/l	2.0	ND	
	2,4-Dichlorophenol	1	ug/I	2.0	ND	
	2,4-Dimethylphenol	1	ug/I	0.50	ND	
	2,4-Dinitrophenol	1	ug/l	10	ND	
	2,4-Dinitrotoluene	. 1	ug/l	2.0	ND	
	2,6-Dinitrotoluene	1	ug/l	2.0	ND	
	2-Chloronaphthalene	1	ug/l	2.0	ND	
	2-Chlorophenol	1	ug/l	2.0	ND	
	2-Methylnaphthalene		ug/l	2.0	ND	
	2-Methylphenol	1	ug/t	0.50		
	2-Nitroaniline	1	ug/l	2.0	ND	
	2-Nitrophenol	; 1	ug/l	2.0	ND	
	3&4-Methylphenol	1	ug/l	0.50		
	3,3'-Dichlorobenzidine	• 1	ug/l	2.0	ND	
	3.S-Dicholoberizidine	1	ug/l	2.0	ND	
	4,6-Dinitro-2-methylphenol	· · · · · · · · · · · · · · · · · · ·	ug/l		ND	
		1			ND	
	4-Bromophenyl-phenylether		ug/l	2.0	ND	
	4-Chloro-3-methylphenol	° 1	ug/l			
	4-Chloroaniline	1	ug/l	0.50	ND	
	4-Chlorophenyl-phenylether	1	ug/l			
	4-Nitroaniline	1	ug/l		ND	
	4-Nitrophenol	· 1	ug/l	2.0	ND	
	Acenaphthene	- 1	ug/l	2.0	ND	
	Acenaphthylene	<u>ء</u> 1	ug/i	2.0	ND	
	Acetophenone	1	ug/l	2.0	ND	
	Anthracene	°. 1	ug/l	2.0	ND	
	Atrazine	. 1	ug/ł	2.0	ND	
	Benzaldehyde	1	ug/l	2.0	ND	
	Benzo[a]anthracene	1	ug/I	2.0	ND	
	Benzo[a]pyrene	1	ug/l	2.0	ND	
	Benzo[b]fluoranthene	1	ug/l	2.0	ND	
	Benzo[g,h,i]perylene	1	ug/l	2.0	ND	
	Benzo[k]fluoranthene	1	ug/l	2.0	ND	
	bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND	
	bis(2-Chloroethyl)ether	1	ug/i	0.50	ND	
	bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND	
	bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND	
	Butylbenzylphthalate	1	ug/l	2.0	ND	
	Caprolactam	1	ug/l	2.0	67	
	Carbazole	1	ug/l	2.0	ND	
	Chrysene	1	ug/l	2.0	ND	
	Dibenzo[a,h]anthracene	1	ug/l	2.0	ND	
	Dibenzofuran	1	ug/l	0.50	ND	
	Diethylphthalate	1	ug/l	2.0	ND	
	Dimethylphthalate	1	ug/l	2.0	ND	

Sample ID:	DMW-5-10232013 U
Lab#:	AC75324-002
Matrix:	Aqueous

Aqueous					
Di-n-octylphthalate	1	ug/l	2.0	ND	
Fluoranthene	1	ug/l	2.0	ND	
Fluorene	1	ug/l	2.0	ND	
Hexachlorobenzene	1	ug/l	2.0	ND	
Hexachlorobutadiene	1	ug/l	2.0	ND	
Hexachlorocyclopentadiene	1	ug/l	2.0	ND	
Hexachloroethane	1	ug/l	2.0	ND	
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND	
Isophorone	1	ug/l	2.0	ND	
Naphthalene	1	ug/l	0.50	ND	
Nitrobenzene	1	ug/l	2.0	ND	
N-Nitroso-di-n-propylamine	1	ug/ł	0.50	ND	
N-Nitrosodiphenylamine	1	ug/i	2.0	ND	
Pentachlorophenol	1	ug/l	10	ND	
Phenanthrene	1	ug/l	2.0	ND	
Phenol	1	ug/l	2.0	ND	
Pyrene	1	ug/l	2.0	ND	

Semivolatile Organics + 25 (625) Library Searches

Analyte	DF	Units	RT	Result
N-tert-Butyl-1-[(tert-butylimino)methyl	1	ug/l	11.74	9.6J
Thiazole, 4-ethyl-2-propyl-	1	ug/l	13.7	4.6J
unknown	1	ug/l	14.95	140J
Cholest-5-en-3-ol (3.beta.)-	1	ug/l	15.13	6.3J
unknown	1	ug/l	15.36	4.3J
unknown	: 1	ug/l	15.85	230J
2-Propanol, 1-butoxy-	1	ug/l	5.17	8.5JB
TotalSemiVolatileTic	1	ug/l	NA	400J

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	[,] 1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	[,] 1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	, 1	ug/i	1.0	ND
1,1-Dichloroethene	: 1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/I	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/I	1.0	ND
1,2-Dichloroethane	1	ug/I	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/I	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/I	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/ł	1.0	ND
Carbon disulfide	1	ug/l	1.0	1.0

•	DMW-5-10232013 U AC75324-002				Collection Date: Receipt Date:	
Matrix:	Aqueous				• ·	
	Carbon tetrachioride		1	ug/l	1.0	ND
	Chlorobenzene		1	ug/l	1.0	ND
	Chloroethane		1	ug/l	1.0	ND
	Chloroform		1	ug/i	1.0	ND
	Chloromethane	annan ann ann ann ann an ann an ann ann	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene		1	ug/l	1.0	ND
	cis-1,3-Dichloropropene		1	ug/l	1.0	ND
	Cyclohexane		1	ug/l	1.0	ND
	Dibromochloromethane		1	ug/l	1.0	ND
	Dichlorodifluoromethane		1	ug/l	1.0	ND
	Ethylbenzene		1	ug/l	1.0	ND
	Isopropylbenzene	1	1	ug/l	1.0	ND
	m&p-Xylenes		1	ug/l	1.0	ND
	Methyl Acetate		1	ug/l	1.0	ND
	Methylcyclohexane		1	ug/l	1.0	ND
	Methylene chloride		1	ug/l	1.0	ND
	Methyl-t-butyl ether		1	ug/l	0.50	ND
	o-Xylene		1	ug/l	1.0	ND
	Styrene		1	ug/l	1.0	ND
	Tetrachloroethene		1	ug/l	1.0	ND
	Toluene	,	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene		1	ug/l	1.0	ND
	trans-1,3-Dichloropropene		1	ug/I	1.0	ND
	Trichloroethene		1	ug/l	1.0	ND
	Trichlorofluoromethane	:	1	ug/l	1.0	ND
	Vinyl chloride		1	ug/l	1.0	ND
	Xylenes (Total)		1	ug/l	1.0	ND .

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: DMW-5-10232013 F Lab#: AC75324-003 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Cyanide-Water (EPA 335.4)

Analyte		DF	Units	RL	Result
Cyanide		1	mg/l	0.020	ND
rcury (Water) 245.1					
Analyte	1. I. I	DF	Units	RL	Result
Mercury		1	ug/l	0.20	ND
L Metais 200.7					
Analyte		DF	Units	RL	Result
Aluminum		1	ug/l	100	ND
Barium		1	ug/l	25	84
Calcium	1	1	ug/l	1000	52000
Chromium		1	ug/l	25	ND
Cobalt	:	1	ug/l	10	ND
Copper		1	ug/l	25	ND
Iron		1	ug/l	150	ND
Magnesium		1	ug/l	1000	7900
Manganese		1	ug/ł	25	730
Nickel		· 1	ug/l	10	ND
Potassium		1	ug/l	2500	4300
Selenium		1	ug/l	25	ND
Silver		1	ug/l	10	ND
Sodium		1	ug/l	2500	99000
Vanadium		1	ug/l	25	ND
Zinc		1	ug/I	25	ND
L Metals 200.8					
Analyte	4	DF	Units	RL	Result
Antimony		1	ug/l	2.5	ND
Arsenic		. 1	ug/ł	1.0	ND
Beryllium		1	ug/l	0.75	ND

1.0

0.75

1.5

ug/l

ug/l

ug/i

1

1

1

.

ND

ND

ND

Cadmium

Lead

Thallium

Sample ID: PC-1-10232013 U Lab#: AC75324-004

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Akalinity-Bicarbonate (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg/l	10	190
Alkalinity-Total (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	190
-				
Chloride (Water) 300.0				
Analyte	DF	Units	RL	Result
Chloride	5	mg/l	· 10	120
Nitrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
p-Alkalinity				
	DF	Units	RL	Result
Analyte				
p-Alkalinity	1	mg caco3/l	10	ND
Semivolatile Organics + 25 (625)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	: 1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	. 1	ug/i	2.0	ND
2,4,6-Trichlorophenol	• 1	ug/l	2.0	ND
2,4-Dichlorophenol	· 1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	· 1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	. 1	ug/l	2.0	. ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	. 1	ug/l	0.50	ND
2-Nitroaniline	· 1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/i	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
	1	ug/l	2.0	ND
Acenaphthylene	1		2.0	ND
Acetophenone		ug/l	2.0	ND
Anthracene	1	ug/i		
Atrazine	1	ug/t	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND

Benzo[a]pyrene

Benzo[b]fluoranthene

1

ug/l

ug/l

2.0

2.0

ND

ND

le ID: PC-1-10232013 .ab#: AC75324-004	J					Date: 10/23/2013 Date: 10/24/2013
atrix: Aqueous					Kooolpt	
Benzo[g,h,i]peryler	ie		1	ug/l	2.0	ND
Benzo[k]fluoranthe	ne		1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane		1	ug/l	2.0	ND
bis(2-Chloroethyl)e	ther		1	ug/l	0.50	ND
bis(2-Chloroisopro	pyl)ether		1	ug/l	2.0	ND
bis(2-Ethylhexyl)ph	thalate		1	ug/l	2.0	ND
Butylbenzylphthala	te		1	ug/l	2.0	ND
Caprolactam			1	ug/t	2.0	56
Carbazole	а «Хараналана» — на акто «Уз 4 мул « «Ууч» на однати на		1	ug/i	2.0	ND
Chrysene			1	ug/I	2.0	. ND
Dibenzo[a,h]anthra	icene	ь.	1	ug/l	2.0	ND
Dibenzofuran			1	ug/l	0.50	ND
Diethylphthalate			1	ug/l	2.0	ND
Dimethylphthalate			1	ug/l	2.0	ND
Di-n-butylphthalate	• •		1	ug/l	0.50	ND
Di-n-octylphthalate			1	ug/I	2.0	ND
Fluoranthene			1	ug/l	2.0	ND
Fluorene			1	ug/l	2.0	ND
Hexachlorobenzen	e	к -	1	ug/ł	2.0	ND
Hexachlorobutadie	ne		1	ug/i	2.0	ND
Hexachlorocyclope	entadiene		1	ug/l	2.0	ND .
Hexachloroethane			1	ug/l	2.0	ND
Indeno[1,2,3-cd]py	rene		1	ug/l	2.0	ND
Isophorone			1	ug/l	2.0	ND
Naphthalene			1	ug/l	0.50	ND
Nitrobenzene		1	1	ug/i	2.0	ND
N-Nitroso-di-n-pro	bylamine		1	ug/I	0.50	ND
N-Nitrosodiphenyla	amine		1	ug/l	2.0	ND
Pentachloropheno		· · · ·	1	ug/l	10	ND
Phenanthrene			1	ug/l	2.0	ND
Phenol			1	ug/l	2.0	ND
Pyrene			1	ug/l	2.0	ND
Semivolatile Organi	cs + 25 (625) Library Sea	arches				
Analyte			DF	Units	RT	Result

Analyte	DF	Units	RT	Result	
Glycine, N-[N-[N-(1-oxodecyl)-L-alanyl]	1	ug/l	11.73	9.8J	
2'-pivalonaphthone	1	ug/l	13.7	7.7J	
unknown	1	ug/l	14.41	6.7J	
unknown	1	ug/l	14.95	190J	
Cholest-5-en-3-ol (3.beta.)-	1	ug/l	15.13	18J	
unknown	1	ug/l	15.18	6.7J	
unknown	1	ug/l	15.35	7.4J	
unknown	1	ug/I	15.86	310J	
BIS(TETRAMETHYLENEDITHIOCARBAMATO)COPP E	1	ug/l	16.11	6.0J	
2-Propanol, 1-butoxy-	1	ug/l	5.16	4.8JB	
TotalSemiVolatileTic	1	ug/l	NA	570J	

Sulfate (Water) 300.0

Analyte	DF	Units	RL	Result
Sulfate	1	mg/l	2.0	21

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/I	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/I	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND

_

Matrix:	Aqueous 1,1-Dichloroethane			-	Date: 10/24/2013
	1,1-Dichlordentalle	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND .
	1,3-Dichlorobenzene	1	ug/ł	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/l	1.0	ND
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND .
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	1.0	ND
	Bromoform	. 1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/i	1.0	ND
	Chloroethane	1	ug/l	1.0	ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1		1.0	ND
	Methylene chloride	1	ug/i	1.0	ND
		1	ug/l	0.50	ND
	Methyl-t-butyl ether	1	ug/l		
	o-Xylene		ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
		1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND
	Xylenes (Total)	1	ug/l	1.0	ND
Ve	olatile Organics + 10 (624) Library Searches	DE		DT	Popult
	Analyte	DF	Units	RT	Result
	No Unknown Compounds Detected TotalVolatileTic	1	ug/l	NA NA	

Sample ID: PC-1-10232013 F Lab#: AC75324-005 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Cyanide-Water	(FPA 335 4)
oyannue-water	

Analyte		DF	Units	RL	Result
Cyanide		1	mg/l	0.020	ND
ercury (Water) 245.1					and a post-to-to-to-to-to-to-to-to-to-to-to-to-to
Analyte		DF	Units	RL	Result
Mercury		1	ug/l	0.20	ND
L Metals 200.7					
Analyte		DF	Units	RL	Result
Aluminum		1	ug/l	100	ND
Barium		1	ug/l	25	86
Calcium		1	ug/l	1000	51000
Chromium		1	ug/l	25	ND
Cobalt	· · · · · · · · · · · · · · · · · · ·	1	ug/l	10	ND
Copper		1	ug/l	25	ND
Iron		1	ug/l	150	ND
Magnesium	*	1	ug/l	1000	7900
Manganese		1	ug/ł	25	740
Nickel		1	ug/l	10	ND
Potassium		1	ug/l	2500	4200
Selenium		1	ug/l	25	ND
Silver		1	ug/l	10	ND
Sodium	2	1	ug/i	2500	98000
Vanadium	i	1	ug/l	25	ND
Zinc		1	ug/l	25	ND

TAL Metals 200.8

Analyte		DF	Units	RL	Result	
Antimony		1	· ug/i	2.5	ND	
Arsenic		1	ug/l	1.0	ND	
Beryllium		1.	ug/l	0.75	ND	
Cadmium	ć.	1	ug/l	1.0	ND	
Lead	analasi at at a sa ayan para ata a	1	ug/l	0.75	ND	
Thallium		1	ug/l	1.5	ND	

Sample ID: LMW-4-10232013 U Lab#: AC75324-006 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Chloride (Water) 300.0

	Analyte		DF	Units	RL	Result
	Chloride		1	mg/l	2.0	16
emi	ivolatile Organics + 25 (625)					
	Analyte		DF	Units	RL	Result
	1,1'-Biphenyl		1	ug/I	2.0	ND
	1,2,4,5-Tetrachlorobenzene		1	ug/l	2.0	ND
	2,3,4,6-Tetrachlorophenol		1	ug/I	2.0	ND
	2,4,5-Trichlorophenol		1	ug/l	2.0	ND
	2,4,6-Trichlorophenol	-	1	ug/l	2.0	ND
	2,4-Dichlorophenol		1	ug/l	2.0	ND
	2,4-Dimethylphenol		1	ug/l	0.51	ND
	2,4-Dinitrophenol		1	ug/l	10	ND
	2,4-Dinitrotoluene		1	ug/l	2.0	ND
	2,6-Dinitrotoluene		1	ug/l	2.0	ND
	2-Chloronaphthalene		1	ug/l	2.0	ND
	2-Chlorophenol		1	ug/l	2.0	, ND
	2-Methylnaphthalene		1	ug/l	2.0	ND
	2-Methylphenol		1	ug/l	0.51	ND
	2-Nitroaniline		1	ug/l	2.0	ND
	2-Nitrophenol		1	ug/l	2.0	ND
	3&4-Methylphenol	•	1	ug/i	0.51	ND
	3,3'-Dichlorobenzidine	e	1	ug/i	2.0	ND
	3-Nitroaniline		1	ug/l	2.0	ND
	4,6-Dinitro-2-methylphenol	± 2	1	ug/l	10	ND
	4-Bromophenyl-phenylether	-	1	ug/l	2.0	ND
	4-Chloro-3-methylphenol	5	1	ug/l	2.0	ND
	4-Chloroaniline		1	ug/l	0.51	ND
	4-Chlorophenyl-phenylether	\$	1	ug/I	2.0	ND
	4-Nitroaniline		1	ug/i	2.0	ND
	4-Nitrophenol	-	1	ug/i	2.0	ND
	Acenaphthene	-	1	ug/I	2.0	ND
	Acenaphthylene		1	ug/l	2.0	ND
	Acetophenone		1	ug/l	2.0	ND
	Anthracene	1	1	ug/l	2.0	ND
	Atrazine		1	ug/i	2.0	ND
	Benzaldehyde		1	ug/l	2.0	ND
	Benzo[a]anthracene		1	ug/l	2.0	ND
	Benzo[a]pyrene		1	ug/i	2.0	ND
	Benzo[b]fluoranthene		1	ug/l	2.0	ND
	Benzo[g,h,i]perylene		1	ug/l	2.0	ND
	Benzo[k]fluoranthene		1	ug/l	2.0	ND
	bis(2-Chloroethoxy)methane		1	ug/l	2.0	ND
	bis(2-Chloroethyl)ether		1		0.51	ND
			1	ug/l		ND
	bis(2-Chloroisopropyl)ether		1	ug/l	2.0	ND
	bis(2-Ethylhexyl)phthalate		1	ug/t	2.0	ND
	Butylbenzylphthalate			ug/l	2.0	
	Caprolactam		1	ug/i	2.0	110
	Carbazole		1	ug/l	2.0	ND
	Chrysene		1	ug/l	2.0	ND
	Dibenzo[a,h]anthracene		1	ug/l	2.0	ND
	Dibenzofuran		1	ug/l	0.51	ND
	Diethylphthalate		1	ug/l	2.0	ND
	Dimethylphthalate		1	ug/l	2.0	ND

Sample ID:	LMW-4-10232013 U
Lab#:	AC75324-006

Matrix: Aqueous		1911, 1917 - Million C. Barrow, A. Barrow, S.		•	
Di-n-octylphthalate		1	ug/l	2.0	ND
Fluoranthene		1	ug/l	2.0	ND
Fluorene		1	ug/l	2.0	ND
Hexachlorobenzene		1	ug/l	2.0	ND
Hexachlorobutadiene		1	ug/l	2.0	ND
Hexachlorocyclopentadiene		1	ug/l	2.0	ND
Hexachloroethane		1	ug/ł	2.0	ND
Indeno[1,2,3-cd]pyrene		. 1	ug/I	2.0	ND
Isophorone		1	ug/l	2.0	ND
Naphthalene		1	ug/l	0.51	ND
Nitrobenzene		1	ug/l	2.0	ND
N-Nitroso-di-n-propylamine	-	1	ug/l	0.51	ND
N-Nitrosodiphenylamine	£	1	ug/l	2.0	ND
Pentachlorophenol		1	ug/l	10	ND
Phenanthrene		1	ug/l	2.0	ND
Phenol		1	ug/l	2.0	ND
Pyrene		1	ug/l	2.0	ND

Semivolatile Organics + 25 (625) Library Searches

Analyte	DF	Units	RT	Result	
unknown	1	ug/l	11.73	55J	
unknown	1	ug/l	14.4	13J	
unknown	1	ug/l	14.94	11J	
unknown	1	ug/l	15.84	18J	
2-Propanol, 1-butoxy-	 1	ug/l	5.16	4.6JB	
TotalSemiVolatileTic	1	ug/l	NA	100J	

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/ł	5.0	ND
1,1,2-Trichloroethane	· 1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/t	1.0	ND
1,2,3-Trichlorobenzene	· 1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/I	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/I	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	24
Benzene	1	ug/I	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/I	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND

Lab#:	LMW-4-10232013 U AC75324-006 Aqueous					Date: 10/23/2013 Date: 10/24/2013
	Chloroethane		1	ug/l	1.0	ND
	Chloroform		1	ug/l	1.0	ND
	Chloromethane		1	ug/l	1.0	ND
	cis-1,2-Dichloroethene		1	ug/l	1.0	ND
	cis-1,3-Dichloropropene		1	ug/l	1.0	ND
	Cyclohexane		1	ug/l	1.0	ND
	Dibromochloromethane		1	ug/l	1.0	ND
	Dichlorodifluoromethane		1	ug/l	1.0	ND
	Ethylbenzene		1	ug/l	1.0	ND
	Isopropyibenzene		1	ug/l	1.0	ND
	m&p-Xylenes		1	ug/l	. 1.0	ND
	Methyl Acetate	5	1	ug/l	1.0	ND
	Methylcyclohexane		1	ug/i	1.0	ND
	Methylene chloride		1	ug/I	1.0	ND
*	Methyl-t-butyl ether		1	ug/l	0.50	ND
	o-Xylene		1	ug/l	1.0	ND
	Styrene		1	ug/l	1.0	ND ¹
	Tetrachloroethene		1	ug/l	1.0	ND
	Toluene		1	ug/ł	1.0	ND
	trans-1,2-Dichloroethene		1	ug/i	1.0	ND
	trans-1,3-Dichloropropene	·	1	ug/l	1.0	ND
	Trichloroethene		1	ug/I	1.0	ND
	Trichlorofluoromethane	· ·	1	ug/l	1.0	ND
	Vinyl chloride	•	1	ug/l	1.0	ND
	Xylenes (Total)		1	ug/l	1.0	ND

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	· 1	ug/l	NA	ND

Sample ID: LMW-4-10232013 F Lab#: AC75324-007 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Cvan	ide-V	Nater	(FPA	335.4)	

Analyte		DF	Units	RL	Result
Cyanide		1	mg/l	0.020	ND
ercury (Water) 245.1					
Analyte		DF	Units	RL	Result
Mercury		1	ug/I	0.20	ND
L Metals 200.7					
Analyte		DF	Units	RL	Result
Aluminum		1	ug/l	100	ND
Barium		1	ug/l	25	190
Calcium	2	1	ug/l	1000	62000
Chromium		1	ug/l	25	ND
Cobalt		1	ug/l	10	34
Copper		1	ug/l	25	ND
Iron		1	ug/l	150	64000
Magnesium		1	ug/l	1000	24000
Manganese		1	ug/l	25	15000
Nickel	÷	· 1	ug/I	10	ND
Potassium		1	ug/l	2500	5300
Selenium		1	ug/l	25	ND
Silver		1	ug/l	10	ND
Sodium		1	ug/l	2500	34000
Vanadium	i.	1	ug/l	25	ND
Zinc		1	ug/l	25	ND
L Metals 200.8					
Analyte		DF	Units	RL	Result
Antimony		1	ug/l	2.5	ND

Antimony		1	ug/l	2.5	ND	
Arsenic		1	ug/t	1.0	1.4	
Beryllium	7	1	ug/l	0.75	ND	
Cadmium		1	ug/l	1.0	ND	
Lead		1	ug/l	0.75	ND	
Thallium		1	ug/l	1.5	ND	

Sample ID: PC-2-10232013 U Lab#: AC75324-008 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Chloride nivolatile Organics + 25 (625) Analyte 1,1'-Biphenyl		1	mg/l	2.0	25
Analyte				The second state of the second state of the balance of the second state of the second state of the second state	29
1,1'-Biphenyl		DF	Units	RL	Result
		1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene		1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol		1	ug/l	2.0	ND
2,4,5-Trichlorophenol		· 1	ug/l	2.0	ND
2,4,6-Trichlorophenol		1	ug/l	2.0	ND
2,4-Dichlorophenol	2	1	ug/l	2.0	ND
2,4-Dimethylphenol		1	ug/l	0.50	ND
2,4-Dinitrophenol		1	ug/l	10	ND
2,4-Dinitrotoluene		1	ug/i	2.0	ND
2,6-Dinitrotoluene		1	ug/l	2.0	ND
2-Chloronaphthalene		1	ug/l	2.0	ND
2-Chlorophenol		1	ug/I	2.0	ND
2-Methylnaphthalene	÷.	1	ug/l	2.0	ND
2-Methylphenol		1	ug/l	0.50	. ND
2-Nitroaniline	ŧ	1	ug/l	2.0	ND
2-Nitrophenol		1	ug/l	2.0	ND
3&4-Methylphenol		1	ug/l	0.50	ND
3,3'-Dichlorobenzidine		1	ug/t	2.0	ND
3-Nitroaniline	. ,	1	ug/i	2.0	ND
4,6-Dinitro-2-methylphenol		1	ug/l	10	ND
4-Bromophenyl-phenylether		1	ug/l	2.0	ND
4-Chloro-3-methylphenol		1	ug/l	2.0	ND
4-Chloroaniline		1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	2	1	ug/l	2.0	ND
4-Nitroaniline		1	ug/l	2.0	ND
4-Nitrophenol		1	ug/l	2.0	ND
Acenaphthene		1	ug/l	2.0	ND
Acenaphthylene		1	ug/l	2.0	ND
Acetophenone		1	ug/l	2.0	ND
Anthracene	ŕ	1	ug/l	2.0	ND
Atrazine		1	ug/l	2.0	ND
Benzaldehyde		1	ug/l	2.0	ND
Benzo[a]anthracene		1	ug/l	2.0	ND
Benzo[a]pyrene		1	ug/l	2.0	ND
Benzo[b]fluoranthene		1	ug/l	2.0	ND
Benzo[g,h,i]perylene		1	ug/l	2.0	ND
Benzo[k]fluoranthene		1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane		1	ug/l	2.0	ND
bis(2-Chloroethyl)ether		1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether		1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate		1	ug/i ug/i	2.0	ND ND
Butylbenzylphthalate		1	ug/l	2.0	ND
Caprolactam		1		2.0	ND
Caprolactam		1	ug/l	2.0	ND
Cardazole		1	ug/l	2.0	ND
•		1 1	ug/l	2.0	
Dibenzo[a,h]anthracene			ug/l		ND
Dibenzofuran Diothylphthalata		1	ug/l	0.50	ND
Diethylphthalate Dimethylphthalate		1	ug/l ug/l	2.0	ND

						3103
Lab#: A	C-2-10232013 U C75324-008		-		Collection Date: Receipt Date:	
Matrix: A						
	Di-n-octylphthalate		1	ug/l	2.0	ND
	Fluoranthene		1	ug/i	2.0	ND
	Fluorene		1	ug/l	2.0	ND
	Hexachlorobenzene		1	ug/l	2.0	ND
	Hexachlorobutadiene		1	ug/l	2.0	ND
	Hexachlorocyclopentadiene		1	ug/l	2.0	ND
	Hexachloroethane		1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene		1	ug/l	2.0	ND
	Isophorone	•	1	ug/l	2.0	ND
	Naphthalene		1	ug/ì	0.50	ND
	Nitrobenzene		1	ug/ł	2.0	ND
	N-Nitroso-di-n-propylamine	•	1	ug/I	0.50	ND
	N-Nitrosodiphenylamine		1	ug/l	2.0	ND
	Pentachlorophenol	1	1	ug/l	10	ND
	Phenanthrene	-	1	ug/l	2.0	ND
	Phenol		1	ug/l	2.0	ND
	Pyrene		1	ug/l	2.0	ND
Ser	nivolatile Organics + 25 (625) Librar	y Searches				
	Analyte	. *	DF	Units	RT	Result
	2-Propanol, 1-butoxy-	•	1	ug/1	5.17	5.7JB
Vol	atile Organics + 10 (624) Analyte		DF	Units	RL	Result
	1,1,1-Trichloroethane	¢.	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane		1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane		1	ug/l	5.0	ND
	1,1,2-Trichloroethane		1	ug/l	1.0	ND
	1,1-Dichloroethane		1	ug/l	1.0	ND
	1,1-Dichloroethene		1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene		1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene		1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane		1	ug/l	1.0	ND
	1,2-Dibromoethane		1	ug/l	1.0	ND
	1,2-Dichlorobenzene		1	ug/i	1.0	ND
	1,2-Dichloroethane		1	ug/l		ND
	1,2-Dichloropropane		! 1			
	1,3-Dichlorobenzene		1	ug/l	1.0	ND
				ug/l	1.0	ND
	1,4-Dichlorobenzene		1	ug/l	1.0	ND
	1,4-Dioxane		1	ug/l	50	ND
	2-Butanone		1	ug/l	1.0	ND
	2-Hexanone		1	ug/l	1.0	ND
	4-Methyl-2-pentanone		1	ug/l	1.0	ND
	Acetone		1	ug/l	10	ND
	Benzene		1	ug/l .	0.50	ND
	Bromochloromethane		1	ug/l	1.0	ND
	Bromodichloromethane		1	ug/l	1.0	ND
	Bromoform		1	ug/l	1.0	ND
	D -1					

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

cis-1,2-Dichloroethene

Chloroethane

Chloroform

Carbon tetrachloride

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

ND

Sample ID:	PC-2-10232013 U	
Lab#:	AC75324-008	
Matrix:	Aqueous	
	cis-1,3-Dichloropropene	
	Cyclohexane	
	Dibromochloromethane	

le Organics + 10 (624) Library Searches				
Xylenes (Total)	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	. ND
trans-1,2-Dichloroethene	1	ug/I	1.0	ND
Toluene	ſ	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
o-Xylene	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
Methylene chloride	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methyl Acetate	1	ug/i	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND ·
Dichlorodifluoromethane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	, 1	ug/l	NA	ND
TotalVolatileTic	1	ug/i	NA	ND

Sample ID: PC-2-10232013 F Lab#: AC75324-009

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Vanadium	1	ug/l	25	ND
Sodium	· · · · · · · · · · · · · · · · · · ·	ug/i	2500	46000
Silver	1	ug/l	10	ND
Selenium	1	ug/l	25	ND
Potassium	1	ug/l	2500	4800
Nickel	1	ug/l	10	ND
Manganese	1	ug/l	25	10000
Magnesium	1	ug/l	1000	21000
Iron	1	ug/l	150	21000
Copper	1	ug/I	25	ND
Cobalt	1	ug/l	10	ND
Chromium	1	ug/l	25	ND
Całcium	1	ug/l	1000	78000
Barlum	1	ug/l	25	110
Aluminum	1	ug/l	100	ND
Analyte	DF	Units	RL	Result
AL Metals 200.7				
Mercury	1	ug/l	0.20	ND
Analyte	DF	Units	RL	Result
lercury (Water) 245.1				
			0.020	
Analyte Cyanide	DF 1	Units mg/l	RL 0.020	Result ND

Analyte		DF	Units	RL	Result	
Antimony		1	ug/i	2.5	ND	
Arsenic		1	ug/l	1.0	ND	
Beryllium		1	ug/l	0.75	ND	
Cadmium	h	1	ug/I	1.0	ND	
Lead	······	1	ug/I	0.75	ND	
Thallium		1	ug/l	1.5	ND	

Sample ID: LMW-2-10232013 U Lab#: AC75324-010 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Chloride (Water) 300.0

Analyte		DF	Units	RL	Result
Chloride		1	mg/l	2.0	14
nivolatile Organics + 25 (625)					
Analyte		DF	Units	RL	Result
1,1'-Biphenyl		5	ug/l	10	ND
1,2,4,5-Tetrachlorobenzene		5	ug/l	10	ND
2,3,4,6-Tetrachlorophenol		5	ug/l	10	ND
2,4,5-Trichlorophenol		5	ug/l	10	ND
2,4,6-Trichlorophenol	2	5	ug/l	10	ND
2,4-Dichlorophenol	-	5	ug/l	10	ND
2,4-Dimethylphenol	-	5	ug/l	2.5	ND
2,4-Dinitrophenol		5	ug/ì	50	ND
2,4-Dinitrotoluene		5	ug/l	10	ND
2,6-Dinitrotoluene		5	ug/l	10	ND
2-Chloronaphthalene		5	ug/l	10	ND
2-Chlorophenol		5	ug/i	10	ND
2-Methylnaphthalene		5	ug/l	10	ND
2-Methylphenol	ł	5	ug/l	2.5	ND
2-Nitroaniline		5	ug/l	10	ND
2-Nitrophenol	~	5	ug/i	10	ND
3&4-Methylphenol	· · · ·	5	ug/l	2.5	ND
3,3'-Dichlorobenzidine	:	5	ug/l	10	ND
3-Nitroaniline		5	ug/l	10	ND
4,6-Dinitro-2-methylphenol	2	5	ug/l	50	ND
4-Bromophenyl-phenylether		5	ug/l	10	ND
4-Chloro-3-methylphenol		5	ug/i	10	ND
4-Chloroaniline		5	ug/l	2.5	ND
4-Chlorophenyl-phenylether	5- -	5	ug/l	10	ND
4-Nitroaniline		5	ug/l	10	ND
4-Nitrophenol	ž	5	ug/l	10	ND
Acenaphthene		5	ug/l	10	ND
Acenaphthylene		5	ug/l	10	ND
Acetophenone		5	ug/l	10	ND
Anthracene		5	ug/1	10	ND
Atrazine		5	ug/l	10	ND
Benzaldehyde		5	ug/l	10	ND
Benzo[a]anthracene		5	ug/l	10	ND
Benzo(a)pyrene		5	ug/l	10	ND
Benzo[b]fluoranthene		5	ug/l	10	ND
Benzo[g,h,i]perylene		5	ug/l	10	ND
Benzo[k]fluoranthene		5	ug/l	10	ND
bis(2-Chloroethoxy)methane		5	ug/l	10	ND
bis(2-Chloroethyl)ether		5	ug/l	2.5	ND
bis(2-Chloroisopropyl)ether		5	ug/l	10	ND
bis(2-Ethylhexyl)phthalate		5	ug/l	10	ND
Butylbenzylphthalate		5	ug/l	10	ND
Caprolactam		5	-	10	920
Carbazole		5	ug/i ug/i	10	ND
Carbazole		5		10	ND
		5 5	ug/l	10	ND
Dibenzo[a,h]anthracene		5	ug/l		
Dibenzofuran			ug/l	2.5	ND
Diethylphthalate		55	ug/I ug/I	10	ND

	LMW-2-10232013 U AC75324-010			Collection Date: Receipt Date:	
Matrix:	Aqueous				
	Di-n-octylphthalate	5	ug/I	10	ND
	Fluoranthene	5	ug/l	10	ND
	Fluorene	5	ug/l	10	ND
	Hexachlorobenzene	5	ug/l	10	ND
	Hexachlorobutadiene	5	ug/l	10	ND
	Hexachlorocyclopentadiene	5	ug/l	10	ND
	Hexachloroethane	5	ug/I	10	ND
	Indeno[1,2,3-cd]pyrene	5	ug/l	10	ND
	Isophorone	5	ug/l	10	ND
	Naphthalene	5	ug/l	2.5	ND
	Nitrobenzene	5	ug/l	10	ND
	N-Nitroso-di-n-propylamine	5	ug/l	2.5	ND
	N-Nitrosodiphenylamine	5	ug/l	10	ND
	Pentachlorophenol	5	ug/l	50	ND
	Phenanthrene	, 5	ug/l	10	ND
	Phenol	5	ug/l	10	ND
	Pyrene	5	ug/l	10	ND
		•			
5	Semivolatile Organics + 25 (625) Library Sea				
	Analyte	DF	Units	RT	Result
	unknown	5	ug/l	14.94	37J
	unknown	5	ug/1	15.84	62J
	TotalSemiVolatileTic	5	ug/l	NA	99J
1	/olatile Organics + 10 (624)				· · · · · · · · · · · · · · · · · · ·
-	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	. 1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane		ug/l	1.0	ND
	1,1-Dichloroethene	1		1.0	ND
			ug/l		
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/I	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/I	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND .
	1,2-Dichloroethane	1	ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/i	1.0	ND
	Acetone	1	ug/I	10	ND
	Benzene	1	ug/I	0.50	ND
	Bromochloromethane	1	ug/I	1.0	ND
	Bromodichloromethane	1	ug/l	1.0	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroothana		ug/l	1.0	

Chloroethane

Chloromethane

Chloroform

ug/l

ug/l

ug/l

1.0

1.0

1.0

1

1

1

ND

ND

ND

Lab#:	LMW-2-10232013 U AC75324-010				Collection Date: Receipt Date:	-
Matrix:	Aqueous					
	cis-1,2-Dichloroethene		1	ug/l	1.0	ND
	cis-1,3-Dichloropropene		1	ug/l	1.0	ND
	Cyclohexane		1	ug/l	1.0	ND
	Dibromochloromethane		1	ug/l	1.0	ND
	Dichlorodifluoromethane		1	ug/l	1.0	ND
	Ethylbenzene		1	ug/l	1.0	ND
	lsopropylbenzene		1	ug/l	1.0	ND
	m&p-Xylenes		1	ug/I	1.0	ND
	Methyl Acetate		1	ug/l	1.0	ND
	Methylcyclohexane		1	ug/l	1.0	ND
	Methylene chloride	•	1	ug/l	1.0	ND
	Methyl-t-butyl ether		1	ug/l	0.50	ND
	o-Xylene		1	ug/i	1.0	ND
	Styrene		1	ug/l	1.0	ND
	Tetrachloroethene		1	ug/l	1.0	ND
	Toluene		1	ug/l	1.0	ND
	trans-1,2-Dichloroethene		1	ug/l	1.0	ND
	trans-1,3-Dichloropropene		1	ug/l	1.0	ND
	Trichloroethene		1	ug/l	1.0	ND
	Trichlorofluoromethane	÷	1	ug/l	1.0	ND
	Vinyl chloride		1	ug/l	1.0	ND
	Xylenes (Total)	1	1	ug/l	1.0	ND

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: LMW-2-10232013 F Lab#: AC75324-011 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

.

UIX.	Aqueous							
-	 							

yanide-Water (EPA 335.4) Analyte		DF	Units	RL	Result
				0.020	ND
Cyanide		1	mg/l	0.020	
ercury (Water) 245.1					
Analyte		DF	Units	RL	Result
Mercury		1	ug/l	0.20	ND
AL Metals 200.7					
Analyte		DF	Units	RL	Result
Aluminum	,	1	ug/l	100	ND
Barium	:	1	ug/l	25	110
Calcium		1	ug/i	1000	83000
Chromium		1	ug/I	25	ND
Cobalt		1	ug/l	10	ND
Copper		1	ug/l	25	ND
Iron		1	ug/i	150	ND
Magnesium		1	ug/l	1000	31000
Manganese		1	ug/l	25	210
Nickel		1	ug/l	10	ND
Potassium		1	ug/l	2500	4400
Selenium		1	ug/I	25	ND
Silver		1	ug/l	10	ND .
Sodium		1	ug/l	2500	30000
Vanadium		1	ug/l	25	ND
Zinc		1	ug/l	25	ND
AL Metals 200.8					
Analyte		DF	Units	RL	Result
Antimony		1	ug/t	2.5	ND
Arsenic		1	ug/l	1.0	ND
Beryllium		1	ug/l	0.75	ND

ug/l

ug/l

ug/l

1

1

1

÷ţ

1.0

0.75

1.5

ND

ND

ND

Cadmium

Thallium

Lead

Sample ID: MW-11-10232013 U Lab#: AC75324-012 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Analyte	DF	Units	RL	Result
Alkalinity	1	mg/l	10	290
Alkalinity-Total (SM2320B-97)		and the second sec		
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/l	10	290
BTEX (624)				
Analyte	DF	Units	RL	Result
Benzene	1	ug/l	0.50	2.7
Ethylbenzene	1	ug/l	1.0	24
m&p-Xylenes	. 1	ug/l	1.0	6.2
o-Xylene	1	ug/l	1.0	2.4
Toluene	1	ug/l	1.0	1.2
Xylenes (Total)	1	ug/l	1.0	8.6
Nitrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
p-Alkalinity				
Analyte	DF	Units	RL	Result
p-Alkalinity	1	mg caco3/l	10	ND
Sulfate (Water) 300.0				
Analyte	DF	Units	RL	Result
Sulfate	1	mg/l	2.0	3.8

Sample ID: MW-11-10232013 F Lab#: AC75324-013 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Metals Pair 200.7

Analyte	DF	Units	RL	Result	
Iron	1	ug/l	150	4100	
Manganese	1	ug/l	25	3600	

Sample ID: PC-3-10232013 U Lab#: AC75324-014 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Chloride (Water) 300.0

Analyte	0 0.0 attack	DF	Units	RL	Result
Chloride		10	mg/l	20	180
nivolatile Organics + 25 (625)				and the second	V 4/4 / V94 / III
Analyte		DF	Units	RL	Result
1,1'-Biphenyl		1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene		1	ug/I	2.1	ND
2,3,4,6-Tetrachlorophenoi		1	ug/l	2.1	ND
2,4,5-Trichlorophenol	•	1	ug/l	2.1	ND
2,4,6-Trichlorophenol		1	ug/l	2.1	ND
2,4-Dichlorophenol	1	1	ug/l	2.1	ND
2,4-Dimethylphenol		1	ug/l	0.52	ND
2,4-Dinitrophenol		1	ug/l	10	ND
2,4-Dinitrotoluene		1	ug/l	2.1	ND
2,6-Dinitrotoluene	5	1	ug/l	2.1	ND
2-Chloronaphthalene		1	ug/i	2.1	ND
2-Chlorophenol	3	1	ug/l	2.1	ND
2-Methylnaphthalene		1	ug/l	2.1	ND
		· 1	ug/l	0.52	ND
2-Methylphenol 2-Nitroaniline		1		2.1	ND
			ug/l		
2-Nitrophenol		1	ug/l	2.1	ND
3&4-Methylphenol		1	ug/l	0.52	ND
3,3'-Dichlorobenzidine		1	ug/l	2.1	ND
3-Nitroaniline		1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol		1	ug/l	10	ND
4-Bromophenyl-phenylether		1	ug/l	2.1	ND
4-Chloro-3-methylphenol		. 1	ug/I	2.1	ND
4-Chloroaniline		1	ug/ł	0.52	ND
4-Chlorophenyl-phenylether		1	ug/l	2.1	ND
4-Nitroaniline		1	ug/l	2.1	ND
4-Nitrophenol		1	ug/l	2.1	ND
Acenaphthene		1	ug/I	2.1	ND
Acenaphthylene		1	ug/ł	2.1	ND
Acetophenone		1	ug/l	2.1	ND
Anthracene	÷	1	ug/I	2.1	ND
Atrazine	1	1	ug/i	2.1	ND
Benzaldehyde		1	ug/l	2.1	ND
Benzo[a]anthracene		1	ug/I	2.1	ND
Benzo[a]pyrene		1	ug/l	2.1	ND
Benzo[b]fluoranthene		1	ug/I	2.1	ND
Benzo[g,h,i]perylene		1	ug/l	2.1	ND
Benzo[k]fluoranthene	an announces, i.e. of the Mind State of State Statement	1	ug/i	2.1	ND
bis(2-Chloroethoxy)methane		1	ug/l	2.1	ND
bis(2-Chloroethyl)ether		1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether		1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate		1	ug/l	2.1	ND
Butylbenzylphthalate		1	ug/l	2.1	ND
Caprolactam		1	ug/ł	2.1	31
Carbazole		1	ug/l	2.1	ND
Chrysene		1	ug/l	2.1	ND
Dibenzo[a,h]anthracene		1	ug/I	2.1	ND
Dibenzofuran		1	ug/l	0.52	ND
Diethylphthalate		1	ug/l	2.1	ND
		1		2.1	ND
Dimethylphthalate Di-n-butylphthalate		1	ug/l ug/l	2.1 0.52	ND ND

Sample ID:	PC-3-10232013 U
Lab#:	AC75324-014
Matrix:	Aqueous

lueous						
Di-n-octylphthalate		1	ug/l	2.1	ND	
Fluoranthene		1	ug/l	2.1	ND	
Fluorene		1	ug/l	2.1	ND	
Hexachlorobenzene		1	ug/l	2.1	ND	
Hexachlorobutadiene		1	ug/l	2.1	ND	
Hexachlorocyclopentadiene		1	ug/l	2.1	ND	
Hexachloroethane		1	ug/l	2.1	ND	
Indeno[1,2,3-cd]pyrene		1	ug/l	2.1	ND	
Isophorone		1	ug/I	2.1	ND	
Naphthalene		1	ug/l	0.52	ND	
Nitrobenzene	÷	1	ug/l	2.1	ND	
N-Nitroso-di-n-propylamine		1	ug/l	0.52	ND	
N-Nitrosodiphenylamine		1	ug/l	2.1	ND	
Pentachlorophenol		1	ug/l	10	ND	
Phenanthrene		1	ug/i	2.1	ND	
Phenol		1	ug/I	2.1	ND	
Pyrene		1	ug/l	2.1	ND	

Semivolatile Organics + 25 (625) Library Searches

Analyte	DF	Units	RT	Result	
3-NITRO-4-METHYLPYRAZOLE	1	ug/l	14.95	88J	
unknown	1	ug/l	15.85	150J	
2-Propanol, 1-butoxy-	1	ug/l	5.16	4.5JB	
TotalSemiVolatileTic	1	ug/l	NA	240J	

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	. ND
1,1-Dichloroethene	[*] 1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/I	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	: 1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	-1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/I	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/i	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/I	1.0	ND
Carbon tetrachloride	1	ug/I	1.0	ND
Chlorobenzene	1	ug/I	1.0	ND
Chloroethane	1	ug/ŀ	1.0	ND
Chloroform	1	ug/l	1.0	ND

	PC-3-10232013 U AC75324-014					Date: 10/23/2013 Date: 10/24/2013
Matrix:	Aqueous					
	Chloromethane		1	ug/l	1.0	ND
	cis-1,2-Dichloroethene		1	ug/l	1.0	ND
	cis-1,3-Dichloropropene		1	ug/l	1.0	ND
	Cyclohexane		1	ug/l	1.0	ND
	Dibromochloromethane		1	ug/l	1.0	ND
	Dichlorodifluoromethane		1	ug/l	1.0	ND
	Ethylbenzene		1	ug/l	1.0	ND
	Isopropylbenzene		1	ug/l	1.0	ND
	m&p-Xylenes		1	ug/l	1.0	ND
	Methyl Acetate		1	ug/I	1.0	ND
	Methylcyclohexane	:	1	ug/l	1.0	ND
	Methylene chloride		1	ug/i	1.0	ND
	Methyl-t-butyl ether		1	ug/I	0.50	ND
	o-Xylene		1	ug/l	1.0	ND
	Styrene	,	1	ug/I	1.0	ND
	Tetrachloroethene		1	ug/I	1.0	ND
	Toluene		1	ug/l	1.0	ND
	trans-1,2-Dichloroethene		1	ug/l	1.0	ND
	trans-1,3-Dichloropropene		1	ug/l	1.0	ND
	Trichloroethene		1	ug/l	1.0	ND
	Trichlorofluoromethane		1	ug/i	1.0	ND
	Vinyl chloride		1	ug/l	1.0	ND
	Xylenes (Total)		1	ug/l	1.0	ND

Volatile Organics + 10 (624) Library Searches

Analyte	-	DF	Units	RT	Result	
No Unknown Compounds Detected		1	ug/I	NA	ND	
TotalVolatileTic		1	ug/l	NA	ND	

Sample ID: PC-3-10232013 F Lab#: AC75324-015 Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Analyte		DF	Units	RL	Result
Cyanide		1	mg/l	0.020	ND
Mercury (Water) 245.1					
Analyte		DF	Units	RL	Result
Mercury		1	ug/l	0.20	ND
TAL Metals 200.7					
Analyte		DF	Units	RL	Result
Aluminum	÷	1	ug/l	100	ND
Barium		1	ug/l	25	150
Calcium		1	ug/l	1000	76000
Chromium		1	ug/l	25	ND
Cobalt	· · · · · · · · · · · · · · · · · · ·	1	ug/l	10	ND
Copper	10.01	1	ug/l	25	ND
iron	2 2 2	1	ug/l	150	ND
Magnesium	1	1	ug/l	1000	20000
Manganese		1	ug/i	25	280
Nickel	1	1	ug/l	10	ND
Potassium		1	ug/l	2500	6400
Selenium		1	ug/l	25	ND
Silver	· · · · · · · · · · · · · · · · · · ·	1	ug/l	10	ND
Sodium		1	ug/l	2500	83000
Vanadium		1	ug/l	25	ND
Zinc		1	ug/l	25	ND

Analyte		DF	Units	RL	Result
Antimony	4	1	ug/l	2.5	ND
Arsenic		1	ug/l	1.0	ND
Beryllium		1	ug/l	0.75	ND
Cadmium	4 	1	ug/l	1.0	ND
Lead	······	1	ug/l	0.75	ND
Thallium		1	ug/l	1.5	ND

Form1 ORGANICS VOLATILE REPORT

Method: EPA 624

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Matrix: Aqueous

Sample Number: DAILY BLANK

Client Id:

Data File: 1M08762.D

Analysis Date: 10/25/13 11:30

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Units: ug/L

				·			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	Ŭ
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
			1				

Worksheet #: 283100

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK Client Id: Data File: 1M08762.D Analysis Date: 10/25/13 11:30 Date Rec/Extracted:

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: Method: EPA 624

Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 1	

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

A - Indicates an analytic condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M08806.D

Analysis Date: 10/28/13 08:53

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79 - 20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U

Worksheet #: 283100

Total Target Concentration

1 0 B Batantia 7 ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK
Client Id:
Data File: 1M08806.D
Analysis Date: 10/28/13 08:53
Date Rec/Extracted:

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: Method: EPA 624

Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC75324-001 Client Id: TB-10232013 Data File: 1M08796.D Analysis Date: 10/25/13 20:57 Date Rec/Extracted: 10/24/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59 - 2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
7 8-9 3-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283100

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

lank as well as in the sample. J-Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-001 Client Id: TB-10232013 Data File: 1M08796.D Analysis Date: 10/25/13 20:57 Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: Method: EPA 624

Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	L O	

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC75324-002 Client Id: DMW-5-10232013 U Data File: 1M08862.D Analysis Date: 10/29/13 00:39 Date Rec/Extracted: 10/24/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	[°] U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
7 5-15-0	Carbon Disulfide	1.0	1.0	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283100

Total Target Concentration

1

ColumnID: (^) Indicates results from 2nd column **R** - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-002	Matrix: Aqueo
Client Id: DMW-5-10232013 U	Initial Vol: 5ml
Data File: 1M08862.D	Final Vol: NA
Analysis Date: 10/29/13 00:39	Dilution: 1.00
Date Rec/Extracted: 10/24/13-NA	Solids:

eous Method: EPA 624

Units: ug/L

i galer e イン・ション その意味が、「などをする」です。 現代ですが、「などの」となった。

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	01	

Worksheet #: 283100

1

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC75324-004 Client Id: PC-1-10232013 U Data File: 1M08856.D Analysis Date: 10/28/13 22:49 Date Rec/Extracted: 10/24/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55 - 6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chioroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	Ű	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283100

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

 U - Indicates the compound was analyzed but not detected.
 R

 B - Indicates the analyte was found in the blank as well as in the sample.
 J

 E - Indicates the analyte concentration exceeds the calibration range of the
 st

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-004	Matrix: Aqueous
Client Id: PC-1-10232013 U	Initial Vol: 5ml
Data File: 1M08856.D	Final Vol: NA
Analysis Date: 10/28/13 22:49	Dilution: 1.00
Date Rec/Extracted: 10/24/13-NA	Solids:
	Method: EPA 624

Units: ug/L

Cas #	t Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC75324-006 Client Id: LMW-4-10232013 U Data File: 1M08857.D Analysis Date: 10/28/13 23:08 Date Rec/Extracted: 10/24/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87 - 61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95 -47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67 -64-1	Acetone	10	24	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283100

Total Target Concentration

24

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-006	Matrix: Aqueous
Client Id: LMW-4-10232013 U	Initial Vol: 5ml
Data File: 1M08857.D	Final Vol: NA
Analysis Date: 10/28/13 23:08	Dilution: 1.00
Date Rec/Extracted: 10/24/13-NA	Solids:
	Method: EPA 624

Units: ug/L

an an an taon a Taon an t

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	01	

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC75324-008 Client Id: PC-2-10232013 U Data File: 1M08858.D Analysis Date: 10/28/13 23:26 Date Rec/Extracted: 10/24/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	, U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	e na U isti	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	Ú
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283100

Total Target Concentration

n 0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

U - Indicates the compound was analyzed but not detected.

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-008	Matrix: Aqueous
Client Id: PC-2-10232013 U	Initial Vol: 5ml
Data File: 1M08858.D	Final Vol: NA
Analysis Date: 10/28/13 23:26	Dilution: 1.00
Date Rec/Extracted: 10/24/13-NA	Solids:
	Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc	
. 1	No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

A - Indicates an aluoi condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

Sample Number: AC75324-010 Client Id: LMW-2-10232013 U Data File: 1M08859.D Analysis Date: 10/28/13 23:45 Date Rec/Extracted: 10/24/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Compound	RL	Conc	Cas #	Compound	RL	Conc
1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
1,2-Dichlorobenzene	1.0	Ų	100-41-4	Ethylbenzene	1.0	U
1,2-Dichloroethane	0.50	Ŭ	98-82-8	Isopropylbenzene	1.0	U
1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
1,3-Dichlorobenzene	1.0	U	79 - 20-9	Methyl Acetate	1.0	U
1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
2-Butanone	.1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
Benzene	0.50	U	108-88-3	Toluene	1.0	U
Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
Xylenes (Total)	1.0	U				
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluor 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropa 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-Pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform	1,1,1-Trichloroethane1.01,1,2,2-Tetrachloroethane1.01,1,2-Trichloro-1,2,2-trifluor5.01,1,2-Trichloroethane1.01,1-Dichloroethane1.01,1-Dichloroethane1.01,2,3-Trichlorobenzene1.01,2,4-Trichlorobenzene1.01,2-Dibromo-3-Chloropropa1.01,2-Dibromoethane1.01,2-Dibromoethane1.01,2-Dibromoethane1.01,2-Dibromoethane1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,4-Dichlorobenzene1.01,4-Dichlorobenzene1.02-Butanone1.02-Hexanone1.04-Methyl-2-Pentanone1.0Benzene0.50Bromochloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichloromethane1.0Bromodichlo	1,1,1-Trichloroethane 1.0 U 1,1,2,2-Tetrachloroethane 1.0 U 1,1,2-Trichloro-1,2,2-trifluor 5.0 U 1,1,2-Trichloroethane 1.0 U 1,1,2-Trichloroethane 1.0 U 1,1,2-Trichloroethane 1.0 U 1,1-Dichloroethane 1.0 U 1,2-Trichloroethane 1.0 U 1,2,3-Trichlorobenzene 1.0 U 1,2-Dibromo-3-Chloropropa 1.0 U 1,2-Dibromo-3-Chloropropa 1.0 U 1,2-Dibromoethane 1.0 U 1,2-Dibromoethane 1.0 U 1,2-Dichlorobenzene 1.0 U 1,2-Dichloropenpane 1.0 U 1,2-Dichloropenpane 1.0 U 1,3-Dichlorobenzene 1.0 U 1,4-Dioxane 50 U 2-Butanone 1.0 U 2-Hexanone 1.0 U 4-Methyl-2-Pentanone 1.0 U Benzene 0.50 U Bromochloromethane 1.0	1,1,1-Trichloroethane 1.0 U 56-23-5 1,1,2,2-Tetrachloroethane 1.0 U 108-90-7 1,1,2-Trichloro-1,2,2-trifluor 5.0 U 75-00-3 1,1,2-Trichloroethane 1.0 U 67-66-3 1,1-Dichloroethane 1.0 U 74-87-3 1,1-Dichloroethane 1.0 U 1065-59-2 1,2,3-Trichlorobenzene 1.0 U 10061-01-5 1,2,4-Trichlorobenzene 1.0 U 10061-01-5 1,2,4-Trichlorobenzene 1.0 U 110-82-7 1,2-Dibromo-3-Chloropropa 1.0 U 102-44-8-1 1,2-Dibromo-3-Chloropropa 0 U 100-41-4 1,2-Dichlorobenzene 1.0 U 100-41-4 1,2-Dichlorobenzene 1.0 U 100-41-4 1,2-Dichloropenpane 1.0 U 136777612 1,3-Dichlorobenzene 1.0 U 108-87-2 1,4-Dichlorobenzene 1.0 U 108-87-2 1,4-Dichlorobenzene 1.0 U 103-47-6 4-Methyl-2-Pentanone <td< td=""><td>1,1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1,1,2-Tetrachloroethane 1.0 U 108-90-7 Chlorobenzene 1,1,2-Trichloro-1,2,2-trifluor 5.0 U 75-00-3 Chloroethane 1,1,2-Trichloroethane 1.0 U 67-66-3 Chloromethane 1,1-Dichloroethane 1.0 U 74-87-3 Chloromethane 1,2,3-Trichloroethane 1.0 U 156-59-2 cis-1,2-Dichloroethene 1,2,3-Trichlorobenzene 1.0 U 10061-01-5 cis-1,3-Dichloroethene 1,2,4-Trichlorobenzene 1.0 U 110-82-7 Cyclohexane 1,2-Dibromo-3-Chloropropa 1.0 U 124-48-1 Dibromochloromethane 1,2-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes 1,2-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes 1,2-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes 1,3-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes</td><td>1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1.0 1,1,2,2-Trichloroethane 1.0 U 108-90-7 Chlorobenzene 1.0 1,1,2-Trichloroethane 1.0 U 75-00-3 Chloroethane 1.0 1,1-2-Trichloroethane 1.0 U 67-66-3 Chloromethane 1.0 1,1-Dichloroethane 1.0 U 74-87-3 Chloromethane 1.0 1,1-Dichloroethane 1.0 U 165-59-2 cis-1,2-Dichloroethene 1.0 1,2-Jarrichlorobenzene 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dichlorobenzene 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dichlorobenzene 1.0 U 124-48-1 Dibromochloromethane 1.0 1,2-Dichlorobenzene 1.0 U 100-41-4 Ethylbenzene 1.0 1,2-Dichlorobenzene 1.0 U 100-41-4 Ethylbenzene 1.0 1,2-Dichlorobenzene 1.0 U 136777612<!--</td--></td></td<>	1,1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1,1,2-Tetrachloroethane 1.0 U 108-90-7 Chlorobenzene 1,1,2-Trichloro-1,2,2-trifluor 5.0 U 75-00-3 Chloroethane 1,1,2-Trichloroethane 1.0 U 67-66-3 Chloromethane 1,1-Dichloroethane 1.0 U 74-87-3 Chloromethane 1,2,3-Trichloroethane 1.0 U 156-59-2 cis-1,2-Dichloroethene 1,2,3-Trichlorobenzene 1.0 U 10061-01-5 cis-1,3-Dichloroethene 1,2,4-Trichlorobenzene 1.0 U 110-82-7 Cyclohexane 1,2-Dibromo-3-Chloropropa 1.0 U 124-48-1 Dibromochloromethane 1,2-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes 1,2-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes 1,2-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes 1,3-Dichlorobenzene 1.0 U 13677612 m&p-Xylenes	1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1.0 1,1,2,2-Trichloroethane 1.0 U 108-90-7 Chlorobenzene 1.0 1,1,2-Trichloroethane 1.0 U 75-00-3 Chloroethane 1.0 1,1-2-Trichloroethane 1.0 U 67-66-3 Chloromethane 1.0 1,1-Dichloroethane 1.0 U 74-87-3 Chloromethane 1.0 1,1-Dichloroethane 1.0 U 165-59-2 cis-1,2-Dichloroethene 1.0 1,2-Jarrichlorobenzene 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dichlorobenzene 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dichlorobenzene 1.0 U 124-48-1 Dibromochloromethane 1.0 1,2-Dichlorobenzene 1.0 U 100-41-4 Ethylbenzene 1.0 1,2-Dichlorobenzene 1.0 U 100-41-4 Ethylbenzene 1.0 1,2-Dichlorobenzene 1.0 U 136777612 </td

Worksheet #: 283100

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.
B - Indicates the analyte was found in the blank as well as in the sample.
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

Form1e ORGANICS VOLATILE REPORT

Tentatively Identified Compounds

Sample Number: AC75324-010	Matrix: Aqueous
Client Id: LMW-2-10232013 U	Initial Vol: 5ml
Data File: 1M08859.D	Final Vol: NA
Analysis Date: 10/28/13 23:45	Dilution: 1.00
Date Rec/Extracted: 10/24/13-NA	Solids:
	Method: EPA 624

Units: ug/L

	Cas #	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	0 J

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at <10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

112 8

Sample Number: AC75324-012	Method: EPA 624
Client Id: MW-11-10232013 U	Matrix: Aqueous
Data File: 1M08860.D	Initial Vol: 5ml
Analysis Date: 10/29/13 00:03	Final Vol: NA
Date Rec/Extracted: 10/24/13-NA	Dilution: 1.00
Column:DB-624 25M 0.200mm ID 1.12um film	Solids: 0

			Units: I	ug/L				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	2.7	95-47-6	o-Xylene	1.0	2.4	
100-41-4	Ethylbenzene	1.0	24	108-88-3	Toluene	1.0	1.2	
136777612	m&p-Xylenes	1.0	6.2	1330-20-7	Xylenes (Total)	1.0	8.6	

Worksheet #: 283104

instrument.

U - Indicates the compound was analyzed but not detected.

Total Target Concentration

n 36

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the specified detection limit.

ORGANICS VOLATILE REPORT

Sample Number: AC75324-014 Client Id: PC-3-10232013 U Data File: 1M08861.D Analysis Date: 10/29/13 00:21 Date Rec/Extracted: 10/24/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	υ	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	υ	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	υ				

Worksheet #: 283100

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-014	Matrix: Aqueous
Client Id: PC-3-10232013 U	Initial Vol: 5ml
Data File: 1M08861.D	Final Vol: NA
Analysis Date: 10/29/13 00:21	Dilution: 1.00
Date Rec/Extracted: 10/24/13-NA	Solids:
	Method: EPA 624

Units: ug/L

	Cas #	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	0 J

Worksheet #: 283100

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

	Data File	Sample	D:		Analysis D	ate		
Spike or Dup:	Spike or Dup: 1M08371.D				10/15/2013 12:41:00 P			
Non Spike(If applicable):	1 M 08293.D	AC7504	43-004		10/12/2013	3 2:56:00	AM	
Inst Blank(If applicable):								
Method: 624		Matrix: Aque	ous		QC Type: MS			
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Uppe Limi	
Chloromethane	1	20.085	0	20	100	1	273	
Bromomethane	1	18.4118	0	20	92	1	242	
Vinyl Chloride	1	20.1478	Ō	20	101	1	251	
Chloroethane	1	17.3555	Ō	20	87	14	230	
Trichlorofluoromethane	1	18.3935	Ō	20	92	17	181	
Methylene Chloride	1	19.7563	0	20	99	1	221	
1.1-Dichloroethene	1	21.0637	0	20	105	1	234	
1.1-Dichloroethane	1	21.453	0	20	107	59	155	
trans-1,2-Dichloroethene	1	21.0359	0	20	105	54	156	
Chloroform	1	19.9272	0	20	100	51	138	
1,2-Dichloroethane	1	19.8644	0	20	99	49	155	
1,1,1-Trichloroethane	1	18.2291	0	20	91	52	162	
Carbon Tetrachloride	1	17.2747	0	20	86	70	140	
Bromodichloromethane	1	18.416	0	20	92	35	155	
1,2-Dichloropropane	1	23.7121	0	20	119	1	210	
Trichloroethene	1	20.1457	0	20	101	71	157	
Benzene	1	22.2655	0	20	111	37	151	
Dibromochloromethane	1	15.2435	0	20	76	53	149	
2-Chloroethylvinylether	1	0	0	20	0*	1	305	
cis-1,3-Dichloropropene	1	16.0916	0	20	80	1	227	
trans-1,3-Dichloropropene	1	12.7931	0	20	64	17	183	
1,1,2-Trichloroethane	1	18.1904	0	20	91	52	150	
Tetrachloroethene	1	19.03	0	20	95	64	148	
Toluene	1	19.8544	0	20	99	47	150	
Chlorobenzene	1	18.6303	0	20	93	37	160	
Bromoform	1	12.312	0	20	62	45	169	
Ethylbenzene	1	20.5066	0	20	103	37	162	
1,1,2,2-Tetrachloroethane	1	18.1549	0	20	91	46	157	
1,3-Dichlorobenzene	1	19.4204	O	20	97	59	156	
1,4-Dichlorobenzene	1	17.2459	0	20	86	18	190	
1,2-Dichlorobenzene	1	17.2499	0	20	86	18	190	

Data File Spike or Dup: 1M08372.D		Sample	ID:		Analysis Date			
		AC75043-004(MSD)			10/15/2013 12:57:00 P			
Non Spike(If applicable): 1M08293.D	AC7504	43-004		10/12/201	3 2:56:00	AM	
Inst Blank(If applicable):							
Method: 624	1	Matrix: Aque	ous		QC Type: MSI	C		
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Uppe	
Chloromethane	1	19.1221	0	20	96	1	273	
Bromomethane	1	21.5736	0	20	108	1	242	
Vinyl Chloride	1	19.235	0	20	96	1	251	
Chloroethane	1	17.9457	0	20	90	14	230	
Trichlorofluoromethane	1	17.9666	0	20	90	17	181	
Methylene Chloride	1	18.9108	0	20	95	1	221	
1,1-Dichloroethene	1	19.0046	0	20	95	1	234	
1,1-Dichloroethane	1	19.8658	0	20	99	59	15	
trans-1,2-Dichloroethene	1	19.6229	0	20	98	54	15	
Chloroform	1	19.031	0	20	95	51	13	
1,2-Dichloroethane	1	19.5177	0	20	98	49	15	
1,1,1-Trichloroethane	1	17.1467	0	20	86	52	16	
Carbon Tetrachloride	1	16.9868	0	20	85	70	14	
Bromodichloromethane	1	18.6698	0	20	93	35	15	
1,2-Dichloropropane	1	22.3502	0	20	112	1	21	
Trichloroethene	1	19.9325	0	20	100	71	15	
Benzene	1	21.6932	0	20	108	. 37	15	
Dibromochloromethane	1	15.8308	0	20	79	53	14	
2-Chloroethylvinylether	1	0	0	20	0*	1	30	
cis-1,3-Dichloropropene	1	15.6598	0	20	78	1	22	
trans-1,3-Dichloropropene	1	12.8457	0	20	64	17	18	
1,1,2-Trichloroethane	1	18.4706	0	20	92	52	15	
Tetrachloroethene	1	18.8035	0	20	94	64	14	
Toluene	1	19.9131	0	20	100	47	15	
Chlorobenzene	1	18.8773	0	20	94	37	16	
Bromoform	1	13.3694	0	20	67	45	16	
Ethylbenzene	1	19.5771	0	20	98	37	16	
1,1,2,2-Tetrachloroethane	1	17.5669	0	20	88	46	15	
1.3-Dichlorobenzene	1	18.3161	0	20	92	59	15	
1.4-Dichlorobenzene	1	17.3856	Ō	20	87	18	19	
1,2-Dichlorobenzene	1	16.8979	0	20	84	18	19	

	Data File	Sampl	e ID:		Analysis D	ate		
Spike or Dup	Spike or Dup: 1M08384.D				10/15/2013 4:17:00 PM			
Non Spike(If applicable): 1M08299.D	AC750	34-001		10/12/2013	3 4:37:00	0 AM	
Inst Blank(If applicable	-							
Method: 624		Matrix: Aque	ous		QC Type: MS			
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Uppe Limi	
Chloromethane	1	17.9249	0	20	90	1	273	
Bromomethane	1	17.5216	0	20	88	1	242	
Vinyl Chloride	1	16.2139	0	20	81	1	251	
Chloroethane	1	16.4595	0	20	82	14	230	
Trichlorofluoromethane	1	16.5826	0	20	83	17	181	
Methylene Chloride	1	18.4614	1.0862	20	87	1	221	
1,1-Dichloroethene	. 1	18.8292	0	20	94	1	234	
1,1-Dichloroethane	1	18.765	0	20	94	59	155	
trans-1,2-Dichloroethene	1	19.582	0	20	98	54	156	
Chloroform	1	17.4189	0	20	87	51	138	
1,2-Dichloroethane	1	17.8542	0	20	89	49	155	
1,1,1-Trichloroethane	1	16.0897	0	20	80	52	162	
Carbon Tetrachloride	1	16.7114	0	20	84	70	140	
Bromodichloromethane	1	17.8971	0	20	89	35	155	
1,2-Dichloropropane	1	20.3143	0	20	102	1	210	
Trichloroethene	1	19.3145	0	20	97	71	157	
Benzene	1	20.4816	0	20	102	37	151	
Dibromochloromethane	1	15.0604	0	20	75	53	149	
2-Chloroethylvinylether	1	0	0	20	0*	1	305	
cis-1,3-Dichloropropene	1	13.7806	0	20	69	1	227	
trans-1,3-Dichloropropene	1	10.7744	0	20	54	17	183	
1,1,2-Trichloroethane	1	16.832	0	20	84	52	150	
Tetrachloroethene	1	17.0884	0	20	85	64	148	
Toluene	1	17.5276	ō	20	88	47	150	
Chlorobenzene	1	17.4425	0	20	87	37	160	
Bromoform	1	12.5222	0	20	63	45	169	
Ethylbenzene	1	19.5631	Ō	20	98	37	162	
1,1,2,2-Tetrachloroethane	1	15.6824	0	20	78	46	157	
1,3-Dichlorobenzene	1	17.4481	Ō	20	87	59	156	
1,4-Dichlorobenzene	1	15.6493	õ	20	78	18	190	
1,2-Dichlorobenzene	1	15.7989	õ	20	79	18	190	

3102406	5 0064

Data File
Spike or Dup: 1M08385.D
Non Spike(If applicable): 1M08299.D
Inst Blank(If applicable)

Analyte:

Benzene

Toluene

Ethylbenzene

1,1,2,2-Tetrachloroethane

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Sample ID: AC75034-001(MSD) AC75034-001

Analysis Date 10/15/2013 4:34:00 PM 10/12/2013 4:37:00 AM

inst Blank(if applicable): Method: 624 Matrix: Aqueous QC Type: MSD Spike Sample Expected Lower Upper Col Recovery Conc Conc Ċonc Limit Limit Chloromethane 15.9926 17.0602 Bromomethane Vinyl Chloride 16.9316 Chloroethane 15.6231 Trichlorofluoromethane 16.7195 Methylene Chloride 17.1605 1.0862 1,1-Dichloroethene 17.8311 1,1-Dichloroethane 17.4675 trans-1,2-Dichloroethene 18.6718 Chloroform 17.0568 1,2-Dichloroethane 17.0153 16.0275 1,1,1-Trichloroethane Carbon Tetrachloride 16.1389 Bromodichloromethane 16.7414 19.3993 1,2-Dichloropropane Trichloroethene 18.2473 18.8513 Dibromochloromethane 15.0869 0* 2-Chloroethylvinylether cis-1,3-Dichloropropene 13.4484 10.4905 trans-1,3-Dichloropropene 16.7142 1.1.2-Trichloroethane Tetrachloroethene 17.0053 17.1704 Chlorobenzene 16.7205 Bromoform 12.893

17.6021

16.2266

16.6082

14.9936

15.1316

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB29082

Client Id:

Data File: 10M40846.D

Analysis Date: 10/30/13 17:28

Date Rec/Extracted: NA-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	Ŭ	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U		· · · · ·		

Worksheet #: 283066

Total Target Concentration

n 0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Form1e ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: WMB29082 Client Id: Data File: 10M40846.D Analysis Date: 10/30/13 17:28 Date Rec/Extracted: NA-10/30/13

Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0 Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc	
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	<10%	
2		unknown	5.61	<10%	

Worksheet #: 283066

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-002 Client Id: DMW-5-10232013 U Data File: 10M40847 D

Analysis Date: 10/30/13 17:51

Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 500ml Final Vol: 0.5ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108 - 60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	1 17 - 81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	67
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	. U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621 - 64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U		Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283066

Total Target Concentration

67

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-002	Matrix: Aqueous
Client Id: DMW-5-10232013 U	Initial Vol: 500ml
Data File: 10M40847.D	Final Vol: 0.5ml
Analysis Date: 10/30/13 17:51	Dilution: 1
Date Rec/Extracted: 10/24/13-10/30/13	Solids:
	Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.17	8.5 JB
2	31336-10-4	N-tert-Butyl-1-[(tert-butylimino)methyl]	11.74	9.6 J
3	41981-68-4	Thiazole, 4-ethyl-2-propyl-	13.70	4.6 J
4		unknown	14,95	140 J
5	57-88-5	Cholest-5-en-3-ol (3.beta.)-	15.13	6.3 J
6		unknown	15.36	4.3 J
7		unknown	15.85	230 J

Worksheet #: 283066

Total Tentatively Identified Concentration 400

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-004 Client Id: PC-1-10232013 U

Data File: 10M40850.D

Analysis Date: 10/30/13 18:58

Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	· U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	Ū
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	56
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U S	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87 - 68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32 - 9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30 - 6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283066

Total Target Concentration

n 56

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-004	Matrix: Aqueous
Client Id: PC-1-10232013 U	Initial Vol: 1000ml
Data File: 10M40850.D	Final Vol: 1ml
Analysis Date: 10/30/13 18:58	Dilution: 1
Date Rec/Extracted: 10/24/13-10/30/13	Solids:
	Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	4.8 JB
2	35146-55-5	Glycine, N-[N-[N-(1-oxodecyl)-L-alanyl]g	11.73	9.8 J
3	7270-99-7	2'-pivalonaphthone	13.70	7.7 J
4		unknown	14.41	6.7 J
5		unknown	14.95	190 J
6	57-88-5	Cholest-5-en-3-ol (3.beta.)-	15.13	18 J
7		unknown	15.18	6.7 J
8		unknown	15.35	7.4 J
9		unknown	15.86	310 J
10	23301-60-2	BIS(TETRAMETHYLENEDITHIOCARB	16.11	6.0 J

Worksheet #: 283066

Total Tentatively Identified Concentration 570

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-006 Client Id: LMW-4-10232013 U Data File: 10M40877.D Analysis Date: 10/31/13 16:23 Date Rec/Extracted: 10/24/13-10/30/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 990ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.51	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.51	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	110
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.51	U
95-48-7	2-Methylphenol	0.51	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.51	U U
106-44-5	3&4-Methylphenol	0.51	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.51	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.51	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.51	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283066

Total Target Concentration

110 **R** - Retention Time Out ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the ìnstrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-006	Matrix: Aqueous
Client Id: LMW-4-10232013 U	Initial Vol: 990ml
Data File: 10M40877.D	Final Vol: 1ml
Analysis Date: 10/31/13 16:23	Dilution: 1
Date Rec/Extracted: 10/24/13-10/30/13	Solids:
	Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	4.6 JB
2		unknown	11.73	55 J
3		unknown	14.40	13 J
4		unknown	14.94	11 J
5		unknown	15.84	18 J

n das andres sin de sin de s des des de seus de la seus de sin de

Worksheet #: 283066

Total Tentatively Identified Concentration 100

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-008 Client Id: PC-2-10232013 U Data File: 10M40852.D Analysis Date: 10/30/13 19:42 Date Rec/Extracted: 10/24/13-10/30/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191 - 24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	Ū
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	Ų
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95~48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94- 1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U .
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	Û	1			

Worksheet #: 283066

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-008	Matrix: Aqueous
Client Id: PC-2-10232013 U	Initial Vol: 1000ml
Data File: 10M40852.D	Final Vol: 1ml
Analysis Date: 10/30/13 19:42	Dilution: 1
Date Rec/Extracted: 10/24/13-10/30/13	Solids:
	Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.17	5.7 JB

的复数考虑

ne fan de beskteren súter. De skieger fan de fan de seere

Worksheet #: 283066

Total Tentatively Identified Concentration 5.7

A - Indicates an aldol condensate.

for the first state of the second

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-010(5X) Client Id: LMW-2-10232013 U Data File: 10M40888.D Analysis Date: 10/31/13 20:28 Date Rec/Extracted: 10/24/13-10/30/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 5 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	10	U	205-99-2	Benzo[b]fluoranthene	10	U
95-94-3	1,2,4,5-Tetrachlorobenzene	10	U	191-24-2	Benzo[g,h,i]perylene	10	U
58-90-2	2,3,4,6-Tetrachlorophenol	10	U	207-08-9	Benzo[k]fluoranthene	10	U
95-95-4	2,4,5-Trichlorophenol	10	U	111-91-1	bis(2-Chloroethoxy)methan	10	U
88-06-2	2,4,6-Trichlorophenol	10	U	111-44-4	bis(2-Chloroethyl)ether	2.5	U
120-83-2	2,4-Dichlorophenol	10	U	108-60-1	bis(2-chloroisopropyl)ether	10	U
105-67-9	2,4-Dimethylphenol	2.5	U	117-81-7	bis(2-Ethylhexyl)phthalate	10	U
51-28-5	2,4-Dinitrophenol	50	U	85-68-7	Butylbenzylphthalate	10	U
121-14-2	2,4-Dinitrotoluene	10	U	105-60-2	Caprolactam	10	920
606-20-2	2,6-Dinitrotoluene	10	U	86-74-8	Carbazole	10	U
91-58-7	2-Chloronaphthalene	10	Ų	218-01-9	Chrysene	10	U
95-57-8	2-Chlorophenol	10	U	53-70-3	Dibenzo[a,h]anthracene	10	U
91-57-6	2-Methylnaphthalene	10	U	132-64-9	Dibenzofuran	2.5	U
95-48-7	2-Methylphenol	2.5	* U	84-66-2	Diethylphthalate	10	U
88-74-4	2-Nitroaniline	10	U	131-11-3	Dimethylphthalate	10	U
88-75-5	2-Nitrophenol	10	U	84-74-2	Di-n-butylphthalate	2.5	Ū
106-44-5	3&4-Methylphenol	2.5	U	117-84-0	Di-n-octylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U	206-44-0	Fluoranthene	10	U
99-09-2	3-Nitroaniline	10	· U	86-73-7	Fluorene	10	U
534-52-1	4,6-Dinitro-2-methylphenol	50	U	118-74-1	Hexachlorobenzene	10	U
101-55-3	4-Bromophenyl-phenylether	10	U	87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8	4-Chloroaniline	2.5	U	67-72-1	Hexachloroethane	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ŭ	193-39-5	Indeno[1,2,3-cd]pyrene	10	U
100-01-6	4-Nitroaniline	10	U	78-59-1	Isophorone	10	U
100-02-7	4-Nitrophenol	10	U	91-20-3	Naphthalene	2.5	U
83-32-9	Acenaphthene	10	U	98-95-3	Nitrobenzene	10	U
208-96-8	Acenaphthylene	10	. U	621-64-7	N-Nitroso-di-n-propylamine	2.5	U
98-86-2	Acetophenone	10	U	86-30-6	n-Nitrosodiphenylamine	10	U
120-12-7	Anthracene	10	U	87-86-5	Pentachlorophenol	50	U
1912-24-9	Atrazine	10	U	85-01-8	Phenanthrene	10	U
100-52-7	Benzaldehyde	10	U	108-95-2	Phenol	10	U
56-55-3	Benzo[a]anthracene	10	U	129-00-0	Pyrene	10	U
50-32-8	Benzo[a]pyrene	10	U				

Worksheet #: 283066

Total Target Concentration

920 *R* - *Retention Time Out* ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 ${\it E}$ - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-010(5X)	Matrix: Aqueous
Client Id: LMW-2-10232013 U	Initial Vol: 1000ml
Data File: 10M40888.D	Final Vol: 1ml
Analysis Date: 10/31/13 20:28	Dilution: 5
Date Rec/Extracted: 10/24/13-10/30/13 Solids:	
	Method: EPA 625

Units: ug/L

Cas #	Compound	RT	Conc	
1 .	unknown	14.94	37 J	
2	unknown	15.84	62 J	

Worksheet #: 283066

Total Tentatively Identified Concentration 99

A - Indicates an aldol condensate.

 J - Indicates an estimated value.
 B - Indicates the analyte was found in the blank as well as in the sample.
 Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at <10% of nearest Internal Standard

Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-014 Method Client Id: PC-3-10232013 U Mat Data File: 10M40876.D Initial V Analysis Date: 10/31/13 16:01 Final V Date Rec/Extracted: 10/24/13-10/30/13 Diluti Column: DB-5MS 30M 0.250mm ID 0.25um film Soli

Method: EPA 625 Matrix: Aqueous Initial Vol: 970ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-83-2	2,4-Dichlorophenol	2.1	· U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U U
105-67-9	2,4-Dimethylphenol	0.52	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U
121-14-2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	31
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U
91-58-7	2-Chloronaphthalene	2.1	Ų	218-01-9	Chrysene	2.1	U
95-57-8	2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-57-6	2-Methylnaphthalene	2.1	Ú	132-64-9	Dibenzofur a n	0.52	U
95-48-7	2-Methylphenol	. 0.52	U	84-66-2	Diethylphthalate	2.1	U
88-74-4	2-Nitroaniline	2,1	· U	131-11-3	Dimethylphthalate	2.1	U
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	0.52	U
106-44-5	3&4-Methylphenol	0.52	U	117-84-0	Di-n-octylphthalate	2.1	U
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U U	118-74-1	Hexachlorobenzene	2.1	U
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U
106-47-8	4-Chloroaniline	0.52	U	67-72-1	Hexachloroethane	2.1	U
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-01-6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U
100-02-7	4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.52	. U
83-32-9	Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1	U
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-86-2	Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.1	U	85-01-8	Phenanthrene	2.1	U
100-52-7	Benzaldehyde	2.1	U	108-95-2	Phenol	2.1	U
56-55-3	Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	U
50-32-8	Benzo[a]pyrene	2.1	U				
			1				

Worksheet #: 283066

Total Target Concentration

ion 31 R - Retention Time Out ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-014	Matrix: Aqueous
Client Id: PC-3-10232013 U	Initial Vol: 970ml
Data File: 10M40876.D	Final Vol: 1ml
Analysis Date: 10/31/13 16:01	Dilution: 1
Date Rec/Extracted: 10/24/13-10/30/13	Solids:
	Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc	
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	4.5 JB	_
2	38858-90-1	3-NITRO-4-METHYLPYRAZOLE	14.95	88 J	
3		unknown	15.85	150 J	

Worksheet #: 283066

Total Tentatively Identified Concentration 240

电热 电极力使 计行为分词 法公司 印代码 のべい 長い時には かたたてき

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

FORM2

Surrogate Recovery

Method: EPA 625

					Dilute	Column1	Column1	Column1	Column1	Column1	Column1
				Surr	Out	S1	S2	S3	S4	S5	S6
Dfile	Sample#	Matrix	Date/Time	Dil	Flag	Recov	Recov	Recov	Recov	Recov	Recov
10M40846	6.D WMB29082	Aqueous	10/30/13 17:28	1		38	22*	100	104	105	107
10M40847	7.D AC75324-002	Aqueous	10/30/13 17:51	1		59	40	105	106	113	112
10M40850	0.D AC75324-004	Aqueous	10/30/13 18:58	1		33	19*	103	104	101	111
10M40877	7.D AC75324-006	Aqueous	10/31/13 16:23	1		35	21*	97	96	107	100
10M40852	2.D AC75324-008	Aqueous	10/30/13 19:42	1	1	37	21*	100	101	105	106
10M40888	8.D AC75324-010	Aqueous	10/31/13 20:28	5	SQ.	30	17*	85	93	78	95
10M40876	6.D AC75324-014	Aqueous	10/31/13 16:01	1	- alale) 35	21*	94	99	99	98
10M40844	4.D WMB29082(M	Aqueous	10/30/13 16:44	1	'''u	43	25*	107	104	110	118
10 M 40848	8.D AC75324-002	Aqueous	10/30/13 18:13	1		58	39	100	84	104	111
10M40849	9.D AC75324-002	Aqueous	10/30/13 18:35	1		62	42	104	90	104	116

Flags: SD=Surrogate diluted out *=Surrogate out

Method: EPA 625

Aqueous Limits

	Spike	
Compound	Åmt	Limits
S1=2-Fluorophenol	100	29-113
S2=Phenol-d5	-100	27-115
S3=Nitrobenzene-d5	50	51-13 9
S4=2-Fluorobiphenyl	50	53-129
S5=2,4,6-Tribromophenol	100	54-149
S6=Terphenyl-d14	50	55-146

Sample I Client Matr Lev	ld: DMW-5-102320 ix: AQUEOUS	013 F U	% Solid: 0 - Units: UG/L Date Rec: 10/24/2013		Lab Name: Veritech Lab Code: Contract:			h	Nras No Sdg No Case No		،	
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	19	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	19	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	19	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	19	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	0613DNEW	19	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	19	MS	MS3_7700AQA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Form1 Inorganic Analysis Data Sheet

Sample I Client I Matr Lev	ld: DMW-5-102320 ix: AQUEOUS	013 F	Solid: 0 Units: UG/ a Rec: 10/2	L 24/2013	L	Lab Name: Veritech Lab Code: Contract:			Nras No: Sdg No: Case No:						
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	м	Instr			
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	22	Ρ	PEICP2A			
7440-39-3	Barium	25	84	1	100	50	11/06/13	27348	A15635A2	22	Ρ	PEICP2A			
7440-70-2	Calcium	1000	52000	1	100	50	11/06/13	27348	A15635A2	22	Ρ	PEICP2A			
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7439-89-6	Iron	150	ND	1	100	50	11/06/13	27348	A15635A2	22	Ρ	PEICP2A			
7439-95-4	Magnesium	1000	7900	1	100	50	11/06/13	27348	A15635A2	22	Ρ	PEICP2A			
7439-96-5	Manganese	25	730	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	18	cv	HGCV1A			
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7440-09-7	Potassium	2500	4300	1	100	50	11/06/13	27348	A15635B2	21	Р	PEICPRAD2A			
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7440-23-5	Sodium	2500	99000	1	100	50	11/06/13	27348	A15635B2	21	Ρ	PEICPRAD2A			
7440-62-2	Vanadium	25	ND	. 1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A			

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample Client Matr Lev	d: PC-1-10232013 F Units: UG/L x: AQUEOUS Date Rec: 10/24/2013			Lab Name: Veritech Lab Code: Contract:			h	Nras No Sdg No Case No				
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	20	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	20	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	· 1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	20	MS	MS3_7700AQA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Form1 Inorganic Analysis Data Sheet

Sample Client Mati Lev	ld: PC-1-1023201 rix: AQUEOUS	3 F	Solid: 0 Units: UG/ a Rec: 10/2	L 24/2013	La	b Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	. м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-39-3	Barium	25	86	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-70-2	Calcium	1000	51000	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-95-4	Magnesium	1000	7900	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-96-5	Manganese	25	740	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	19	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-09-7	Potassium	2500	4200	1	100	50	11/06/13	27348	A15635B2	22	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Ρ	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-23-5	Sodium	2500	98000	1	100	50,	11/06/13	27348	A15635B2	22	Ρ	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Ρ	PEICP2A

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Sample Client Matr Lev	ld: LMW-4-10232 rix: AQUEOUS	013 F	% Solid: 0 Units: UG/L Date Rec: 10/24/2013		Lab Name: Veritech Lab Code: Contract:				Nras No Sdg No Case No			
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	21	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	1.4	1	100	125	11/06/13	27348	613DNEW	21	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	0613DNEW	21	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	. 1	100	125	11/06/13	27348	0613DNEW	21	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	21	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	613DNEW	21	MS	MS3_7700AQA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Sample Client Mat Lev	ld: LMW-4-10232 rix: AQUEOUS	013 F	Solid: 0 Units: UG/ e Rec: 10/2	L 24/2013	La	b Name: ab Code: Contract:	:	h	Nras No Sdg No Case No			
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-39-3	Barium	25	190	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-70-2	Calcium	1000	62000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-48-4	Cobalt	10	34	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-89-6	Iron	150	64000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-95-4	Magnesium	1000	24000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-96-5	Manganese	25	15000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	20	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-09-7	Potassium	2500	5300	1	100	50	11/06/13	27348	A15635B2	23	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-23-5	Sodium	2500	34000	1	100	50	11/06/13	27348	A15635B2	23	P	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Ρ	PEICP2A

Comments:

Flag Codes:

 ${\rm U}~{\rm or}~{\rm ND}$ - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

				L	b Name: ab Code: Contract:		ı	Nras No: Sdg No: Case No:					
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М		Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	24	MS	MS3_	7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_	7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	273,48	613DNEW	24	MS	MS3_	7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_	7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_	7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	24	MS	MS3	7700AQA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample I Client Matr Lev	ld: PC-2-10232013 F ix: AQUEOUS		Solid: 0 Units: UG/ a Rec: 10/2	L 4/2013	La	b Name: ab Code: Contract:		1	Nras No Sdg No Case No			
Cas No.	Analyte	RL	Conc	Dil Fact	lnitial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-39-3	Barium	25	110	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-70-2	Calcium	1000	78000	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7439-89-6	Iron	150	21000	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7439-95-4	Magnesium	1000	21000	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7439-96-5	Manganese	25	10000	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	23	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-09-7	Potassium	2500	4800	1	100	50	11/06/13	27348	A15635B2	24	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-23-5	Sodium	2500	46000	1	100	50	11/06/13	27348	A15635B2	24	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	25	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	25	Ρ	PEICP2A

Comments:

Flag Codes:

Sample II Client I Matri Leve	d: LMW-2-10232013 x: AQUEOUS	% Soli 3 F. Unit Date Re	ts: UG/	L 4/2013	La	b Name: ab Code: Contract:		1	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	0613DNEW	25	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	25	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Sample I Client Matr Lev	ld: LMW-2-10232 rix: AQUEOUS	013 F	Solid: 0 Units: UG/ Rec: 10/2	L :4/2013	La	b Name: ab Code: Contract:	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-39-3	Barium	25	110	1	100	50	11/06/13	27348	A15635A2	26	P	PEICP2A
7440-70-2	Calcium	1000	83000	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7439-95-4	Magnesium	1000	31000	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7439-96-5	Manganese	25	210	1	100	50	11/06/13	27348	A15635A2	26	P	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	24	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-09-7	Potassium	2500	4400	1	100	50	11/06/13	27348	A15635B2	25	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-23-5	Sodium	2500	30000	1	100	50	11/06/13	27348	A15635B2	25	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A

Comments:

Flag Codes:

Sample I Client Matr Lev	ld: MW-11-102320 rix: AQUEOUS	013 F	Solid: 0 Units: UG/ e Rec: 10/2	′L 24/2013	L	ib Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	м	Instr
7439-89-6	lron	150	4100	1	100	50	11/06/13	27348	A15635A2	27	Р	PEICP2A
7439-96-5	Manganese	25	3600	1	100	50	11/06/13	27348	A15635A2	27	Ρ	PEICP2A

Comments:

Flag Codes:

Sample II Client I Matri Leve	d: PC-3-10232013 x: AQUEOUS	BF I	Solid: 0 Units: UG/ Rec: 10/2	L 24/2013	Li	ib Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol				File:	Seq Num		Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	26	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	26	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	26	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	26	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	0613DNEW	26	мs	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	26	MS	MS3_7700AQA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit ${\sf P}$ - ICP-AES

CV -ColdVapor

Sample Client Mat Lev	Id: PC-3-1023201 rix: AQUEOUS	3 F	Solid: 0 Units: UG/ Rec: 10/2	L 24/2013	La	b Name: ab Code: Contract:		h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	. 100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-39-3	Barium	25	150	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-70-2	Calcium	1000	76000	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-48-4	Cobalt	. 10	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-89-6	iron	150	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-95-4	Magnesium	1000	20000	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-96-5	Manganese	25	280	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	25	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-09-7	Potassium	2500	6400	1	100	50	11/06/13	27348	A15635B2	30	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-23-5	Sodium	2500	83000	1	100	50	11/06/13	27348	A15635B2	30	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample I Client Matr Lev	Id: MB 27348 fix: AQUEOUS		% Solid: (Units: () JG/L		Lab Nan Lab Coo						
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch		Seq Num	м	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA

Comments:

Flag Codes:

Sample ID:	MB 27348 (0.5)	% Solid:	0	Lab Name	: Veritech	
Client Id:	MB 27348 (0.5)	Units:	UG/L	Lab Code	:	
Matrix:	AQUEOUS					
Level:	LOW					

			1							1 1		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	11/06/13	27348	A15635A2	11	Ρ	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-39-3	Barium	25	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-43-9	Cadmium	2.0	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-70-2	Calcium	1000	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-48-4	Cobalt	10	ND	<u> </u>	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7439-89-6	Iron	150	ND ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7439-95-4	Magnesium	1000	ND ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7439-96-5	Manganese	25	5 ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7439-98-7	Molybdenum	10	ND ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-02-0	Nickel	10	ND ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-09-7	Potassium	2500	ND ND	1	100	50	11/06/13	27348	A15635B2	10	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	- 11	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-23-5	Sodium	2500	ND	1	100	50	11/06/13	27348	A15635B2	10	Р	PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-31-5	Tin	25	ND	1	100	50	11/06/13	27348	A15635A2	11	P	PEICP2A
7440-32-6	Titanium	25	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	11	Р	PEICP2A

Comments:

Flag Codes:

Sample ID:	MB 27348 (1)	% Solid:	0	Lab Name:	Veritech
Client Id:	MB 27348 (1)	Units:	UG/L	Lab Code:	
Matrix:	AQUEOUS				
Level:	LOW				

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	м	Instr
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	11	C۷	HGCV1A

Comments:

Flag Codes:

Date Analyzed: 11/06/13 Data File: A15635A2 Prep Batch: 27348 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: PEICP2A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102406

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

	-					
Analyte	ICB V-174666- 8	CCB-20	CCB-31	CCB-40	CCB-50	MB 27348 (0.5)-11
Aluminum	.2 U	.2 U	.2 U	.2 U	.2 U	.1 U
Antimony	.015 U	.015 U	.015 U	.015 U	.015 U	.0075 U
Arsenic	.04 U	.04 U	.04 U	.04 U	.04 U	.02 U
Barium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Beryllium	.008 U	.008 U	.008 U	.008 U	.008 U	.004 U
Cadmium	.004 U	.004 U	.004 U	.004 U	.004 U	.002 U
Calcium	2 U	2 U	2 U	2 U	2 U	10
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Cobalt	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Iron	.3 U	.3 U	.3 U	.3 U	.3 U	.15 U
Lead	.01 U	.01 U	.01 U	.01 U	.01 U	.005 U
Magnesium	2 U	2 U	2 U	2 U	2 U	10
Manganese	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Molybdenum	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Nickel	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Selenium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Silver	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Thallium	.01 U	.01 U	.01 U	.01 U	.01 U	.005 U
Vanadium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Zinc	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U

Date Analyzed: 11/06/13 Data File: A15635B2 Prep Batch: 27348 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: PEICPRAD2A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102406

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-174666- 7	CCB-19	CCB-29	CCB-40	MB 27348 (0.5)-10	
Potassium	5 U	5 U	5 U	5 U	2.5 U	
Sodium	5 U	5 U	5 U	5 U	2.5 U	

Date Analyzed: 11/07/13		
Data File: A15635C2	Lab Name:	Veritech
	Lab Code:	
Prep Batch: 27348	Contract:	
Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)		
Instrument: PEICPRAD2A	Nras No:	
	Sda No:	
Units: All units in ppm except Hg and icp-ms in ppb		
Project Number: 3102406	Case No:	

Analyte	ICB V-174666- 7	CCB-17	CCB-23			
Sodium	5 U	5 U	5 U			

Date Analyzed: 11/07/13 Data File: H15635A Prep Batch: 27348 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: HGCV1A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102406

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB-10	CCB-22	CCB-34	CCB-41	MB 27348 (1)- 11		e e e e e e e e e e e e e e e e e e e
Mercury	.2 U						

Date Analyzed: 11/06/13 Data File: W110613DNEW Prep Batch: 27348 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: MS3_7700AQA Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102406

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	CCB V-176106- 11	CCB V-176106- 23	CCB V-176106- 35	CCB V-176106- 40	MB 27348-12	
Antimony	2 U	2 U	2 U	2 U	2.5 U	
Arsenic	.8 U	.8 U	.8 U	.8 U	1 U'	
Beryllium	.6 U	.6 U	.6 U	.6 U	.75 U	
Cadmium	.8 U	.8 U	.8 U	.8 U	1 U	
Lead	.6 U	.6 U	.6 U	.6 U	.75 U	
Thallium	1.2 U	1.2 U	1.2 U	1.2 U	1.5 U	

FORM6/FORM9 RPD/%Difference Data PREP BATCH: 27348

Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

TxtQcType: N	NSD	Matrix: AQ	UEOUS San	npleID: AC753	323-002			
Analyte	Batchld	Data Fil Se	eq#: MS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	27348	A15635A2	17 A15635A2	16	5.6176	5.6685	.9	20
Antimony	27348	A15635A2	17 A15635A2	16	0.5551	0.5585	.6	20
Arsenic	27348	A15635A2	17 A15635A2	16	0.5569	0.5691	2.2	20
Barium	27348	A15635A2	17 A15635A2	16	1.0274	1.0459	1.8	20
Beryllium	27348	A15635A2	17 A15635A2	16	0.4758	0.4785	.56	20
Cadmium	27348	A15635A2	17 A15635A2	16	0.5463	0.5521	1	20
Calcium	27348	A15635A2	17 A15635A2	16	349.1310	357.5140	2.4	20
Chromium	27348	A15635A2	17 A15635A2	16	0.4702	0.4758	1.2	20
Cobalt	27348	A15635A2	17 A15635A2	16	0.4681	0.4725	.95	20
Copper	27348	A15635A2	17 A15635A2	16	0.5374	0.5411	.68	20
ron	27348	A15635A2	17 A15635A2	16	65.7411	66.6855	1.4	20
_ead	27348	A15635A2	17 A15635A2	16	0.4632	0.4664	.7	20
Magnesium	27348	A15635A2	17 A15635A2	16	705.5400	722.6100	2.4	20
Manganese	27348	A15635A2	17 A15635A2	16	4.8830	4.9506	1.4	20
Nickel	27348	A15635A2	17 A15635A2	16	0.5491	0.5558	1.2	20
Potassium	27348	A15635B2	16 A15635B2	15	283.1150	289.4110	2.2	20
Selenium	27348	A15635A2	17 A15635A2	16	0.5491	0.5522	.56	20
Silver	27348	A15635A2	17 A15635A2	16	0.5491	0.5522	.56 1.6	20
Sodium	27348	A15635C2	13 A15635C2	10	586.9030	573.9110	2.2	
Thallium	27348	A15635A2	17 A15635A2					20
		A15635A2		16	0.4321	0.4319	.044	20
/anadium	27348		17 A15635A2	16	0.4936	0.4989	1.1	20
linc	27348	A15635A2	17 A15635A2	16	0.4966	0.5005	.77	20
TxtQcType: N	ISD	Matrix: AQU	UEOUS San	npleID: AC753	323-003			
Analyte	BatchId	Data Fil Se	eq#: MS File	Seq#	Result 1	Result 2	RPD	Limit
Mercury	27348	H15635A	17 H15635A	16	10.2202	10.3692	1.4	20
TxtQcType: S	D	Matrix: AQU	UEOUS Sam	npleID: AC753	323-002			
Analyte	Batchid	Data Fil Se	eq#: NS File	Seq# DF	Result 1	Result 2	%Diff	Limit
Analyte	Batchld 27348	Data Fil Se A15635A2	21 A15635A2	Seq# DF 14 5	Result 1 0.1714	Result 2 0.6936	%Diff 24 a	Limit 10
								10
Aluminum Antimony	27348 27348	A15635A2	21 A15635A2 21 A15635A2	14 5 14 5	0.1714 0.0087	0.6936 0.0046	24 a	10 10
Aluminum Antimony Arsenic	27348 27348 27348	A15635A2 A15635A2 A15635A2	21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2	14 5 14 5 14 5	0.1714 0.0087 -0.0011	0.6936 0.0046 0.0096	24 a 	10 10 10
Aluminum Antimony Arsenic Barium	27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2	14 5 14 5 14 5 14 5 14 5	0.1714 0.0087 -0.0011 0.1102	0.6936 0.0046 0.0096 0.5351	24 a 2.9	10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium	27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5 14 5 14 5 14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005	0.6936 0.0046 0.0096 0.5351 0.0003	24 a 2.9 700 c	10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium	27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5 14 5 14 5 14 5 14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027	24 a 2.9 700 c 366 c	10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium	27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880	24 a 2.9 700 c 366 c 6.9	10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010	0.6936 0.0046 0.5351 0.0003 0.0027 298.8880 0.0018	24 a 2.9 700 c 366 c 6.9 193 c	10 10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019	24 a 2.9 700 c 366 c 6.9 193 c 165 c	10 10 10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0006	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040	24 a 2.9 700 c 366 c 6.9 193 c 165 c 	10 10 10 10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Ton	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0006 12.7283	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8	10 10 10 10 10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Fon ead	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 	10 10 10 10 10 10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Fon ead Magnesium	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9	10 10 10 10 10 10 10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper on ead lagnesium langanese	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5	10 10 10 10 10 10 10 10 10 10 10 10 10
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Fon ead Magnesium Manganese lickel	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2 A15635A2	21 A15635A2	14 5 14 5	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909 0.0180	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468 0.0910	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5 0.99	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper on ead Magnesium Manganese lickel otassium	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2	21 A15635A2 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909 0.0180 41.1862	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468 0.0910 221.6880	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5 0.99 7.1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper con ead Magnesium Manganese lickel Potassium Selenium	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2	21 A15635A2 20 A15635B2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909 0.0180 41.1862 -0.0031	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468 0.0910 221.6880 0.0007	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5 0.99 7.1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Calcium Chromium Cobalt Copper Fon ead Magnesium Maganese lickel Potassium ielenium	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2	21 A15635A2 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909 0.0180 41.1862	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468 0.0910 221.6880 0.0007 0.0018	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5 0.99 7.1 375 c	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Calcium Chromium Cobalt Copper Fon ead Magnesium Maganese lickel Potassium ielenium	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2	21 A15635A2 20 A15635B2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21 A15635A2 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909 0.0180 41.1862 -0.0031	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468 0.0910 221.6880 0.0007	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5 0.99 7.1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Calcium Calcium Cobalt Copper con ead Magnesium Maganese lickel Potassium relenium silver codium	27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348 27348	A15635A2 A15635A2	21 A15635A2 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909 0.0180 41.1862 -0.0031 0.0017	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468 0.0910 221.6880 0.0007 0.0018	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5 0.99 7.1 375 c	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	27348 27348	A15635A2 A15635A2	21 A15635A2 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1714 0.0087 -0.0011 0.1102 0.0005 0.0025 63.8874 0.0010 0.0010 0.0006 12.7283 0.0022 136.9560 0.8909 0.0180 41.1862 -0.0031 0.0017 124.5490	0.6936 0.0046 0.0096 0.5351 0.0003 0.0027 298.8880 0.0018 0.0019 0.0040 60.7203 0.0026 658.8130 4.3468 0.0910 221.6880 0.0007 0.0018 573.2770	24 a 2.9 700 c 366 c 6.9 193 c 165 c 4.8 3.9 2.5 0.99 7.1 375 c 8.6	10 10 10 10 10 10 10 10 10 10 10 10 10 1

a-Indicates Rpd Failed the criteria b-Method Rep Out but concentrations < 5*RL c-Serial dilution Out but conc < 10 * IDL

VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC75324-00 Matrix Aqueous Client SampleID: DMW-5-102					Rece	ct Number: 3102 Prived Date: 10/24 Dilect Date: 10/23	/2013
		Dilutian	Deeville	l la !4a .		Dura Data	A
Analysis	TestGroup CHLORIDE-ICW	Dilution:	Result	Units:	RL	Prep Date: 10/30/13	Analysis Date:
Chloride	CHLORIDE-ICVV	5	120	mg/L	10	10/30/13	10/30/13
Lab#: AC75324-00 Matrix Aqueous Client SampleID: DMW-5-102					Rece	ot Number: 3102 eived Date: 10/24 pllect Date: 10/23	/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	10/28/13	10/28/13
Lab#: AC75324-00 Matrix Aqueous Client SampleID: PC-1-10232					Rece	ct Number: 3102 eived Date: 10/24 bilect Date: 10/23	/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Alkalinity	ALKALIN-MUR	1	190	mg CaCO3/I	10	10/29/13	10/29/13
Alkalinity	ALK-BICARB	1	190	mg/L	10	10/29/13	10/29/13
Chloride	CHLORIDE-ICW	5	120	mg/L	10	10/30/13	10/30/13
Nitrate	NO3-ICW	1	ND	mg/L	1.0	10/24/13	10/24/13
o-Alkalinity	P-ALKALINITY	1	ND	mg CaCO3/l	10	10/29/13	10/29/13
Sulfate	SO4-ICW	1	21	mg/L	2.0	10/30/13	10/30/13
Matrix Aqueous Client SampleID: PC-1-10232		<u></u>			Co	eived Date: 10/24 bilect Date: 10/23	3/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	10/28/13	10/28/13
Lab#: AC75324-00 Matrix Aqueous Client SampleID: LMW-4-102					Rece	ct Number: 3102 eived Date: 10/24 bllect Date: 10/23	/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride	CHLORIDE-ICW	1	16	mg/L	2.0	10/24/13	10/24/13
Lab#: AC75324-00 Matrix Aqueous Client SampleID: LMW-4-1023					Rece	ct Number: 31024 eived Date: 10/24 ollect Date: 10/23	/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13
Lab#: AC75324-00	8				Projec	t Number: 31024	, –
Matrix Aqueous	-					eived Date: 10/24	
Client SampleID: PC-2-10232	013 U					ellect Date: 10/23	
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride	CHLORIDE-ICW	1	25	mg/L	2.0	10/24/13	10/24/13
					Draior	t Number 2102	106
Lab#: AC75324-00 Matrix Aqueous Client SampleID: PC-2-102320					Rece	ot Number: 31024 vived Date: 10/24 vilect Date: 10/23	/2013
Lab#: AC75324-00 Matrix Aqueous		Dilution:	Result	Units:	Rece	ived Date: 10/24	/2013

VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC75324-	-010				Projec	t Number: 31024	406
Matrix Aqueous					Rece	ived Date: 10/24	/2013
Client SampleID: LMW-2-10	0232013 U				Co	ollect Date: 10/23	/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride	CHLORIDE-ICW	1	14	mg/L	2.0	10/24/13	10/24/13
Lab#: AC75324-	011				Projec	t Number: 3102	406
Matrix Aqueous					Rece	eived Date: 10/24	/2013
Client SampleID: LMW-2-10	0232013 F				Co	ellect Date: 10/23	/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13
Lab#: AC75324-	-012				Projec	ct Number: 3102	406
Matrix Aqueous					Rece	eived Date: 10/24	/2013
Client SampleID: MW-11-10	0232013 U				Co	pllect Date: 10/23	3/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Alkalinity	ALKALIN-MUR	1	290	mg CaCO3/I	10	10/29/13	10/29/13
Alkalinity	ALK-BICARB	1	290	mg/L	10	10/29/13	10/29/13
Nitrate	NO3-ICW	1	ND	mg/L	1.0	10/24/13	10/24/13
p-Alkalinity	P-ALKALINITY	1	ND	mg CaCO3/I	10	10/29/13	10/29/13
Sulfate	SO4-ICW	1	3.8	mg/L	2.0	10/30/13	10/30/13
Lab#: AC75324-	-014				Projec	ct Number: 3102	406
Matrix Aqueous					Rece	eived Date: 10/24	1/2013
Client SampleID: PC-3-102	32013 U				Co	ollect Date: 10/23	3/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride	CHLORIDE-ICW	10	180	mg/L	20	10/30/13	10/30/13
Lab#: AC75324-	-015				Projec	ct Number: 3102	406
Matrix Aqueous					Rece	eived Date: 10/24	\$/2013
Client SampleID: PC-3-102	32013 F				Co	ollect Date: 10/23	3/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13

Blank Summary

Instrument: IC2

Qc Type: Methe	ou blank Summary	11001	Jale. I	0/24/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131014152	10/24/13 14:54	MBW-5066	141	Chloride	ND	2.0
20131014152	10/24/13 14:54	MBW-5066	141	Nitrate	ND	1.0
20131014152	10/24/13 14:54	MBW-5066	141	Sulfate	ND	2.0
20131029104	10/30/13 13:46	MBW-5067	12	Chloride	ND	2.0
20131029104	10/30/13 13:46	MBW-5067	12	Nitrate	ND	1.0
20131029104	10/30/13 13:46	MBW-5067	12	Sulfate	ND	2.0
Qc Type: ICB S	Summary	Prep I	Date: N	A		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131014152	10/14/13 18:17	ICB	8	Chloride	ND	2.0
20131014152	10/14/13 18:17	ICB	8	Nitrate	ND	1.0
20131014152	10/14/13 18:17	ICB	8	Sulfate	ND	2.0
20131029104	10/29/13 13:39	ICB	8	Chloride	ND	2.0
	40/00/40 40:00	ICB	8	Nitrate	ND	1.0
20131029104	10/29/13 13:39		. •			
20131029104 20131029104	10/29/13 13:39	ICB	8	Sulfate	ND	2.0
20131029104	10/29/13 13:39	ICB		Sulfate		
	10/29/13 13:39	ICB	8 Date: N	Sulfate		
20131029104 Qc Type: CCB	10/29/13 13:39 Summary	ICB Prep	8 Date: N	Sulfate	ND	2.0
20131029104 Qc Type: CCB Run Batch ID	10/29/13 13:39 Summary Analysis Date/Time	ICB Prep I Sample ID	8 Date: N Run#	Sulfate A Analyte	ND Conc	2.0 RL
20131029104 Qc Type: CCB Run Batch ID 20131014152	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28	ICB Prep I Sample ID CCB	8 Date: N Run# 140	Sulfate IA Analyte Chloride	ND Conc ND	2.0 RL 2.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34	ICB Prep I Sample ID CCB CCB	8 Date: N Run# 140 152	Sulfate IA Analyte Chloride Chloride	ND Conc ND ND	2.0 RL 2.0 2.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28	ICB Prep I Sample ID CCB CCB CCB	8 Date: N Run# 140 152 140	Sulfate A Analyte Chloride Chloride Nitrate	ND Conc ND ND ND	2.0 RL 2.0 2.0 1.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 21:34	ICB Prep I Sample ID CCB CCB CCB CCB	8 Date: N Run# 140 152 140 152	Sulfate IA Analyte Chloride Chloride Nitrate Nitrate	ND Conc ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28	ICB Prep I Sample ID CCB CCB CCB CCB CCB	8 Date: N Run# 140 152 140 152 140	Sulfate A Analyte Chloride Chloride Nitrate Nitrate Sulfate	ND Conc ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 21:34	ICB Prep I Sample ID CCB CCB CCB CCB CCB CCB	8 Date: N Run# 140 152 140 152 140 152	Sulfate Analyte Chloride Chloride Nitrate Nitrate Sulfate Sulfate	ND Conc ND ND ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0 2.0 2.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131029104	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 14:28 10/24/13 13:20	ICB Prep Sample ID CCB CCB CCB CCB CCB CCB CCB CCB	8 Date: N Run# 140 152 140 152 140 152 11	Sulfate Analyte Chloride Chloride Nitrate Nitrate Sulfate Sulfate Chloride	ND Conc ND ND ND ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0 2.0 2.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131029104 20131029104	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 13:20 10/30/13 18:54	ICB Prep I Sample ID CCB CCB CCB CCB CCB CCB CCB CCB	8 Date: N Run# 140 152 140 152 140 152 140 152 11 23	Sulfate Analyte Chloride Chloride Nitrate Nitrate Sulfate Sulfate Chloride Chloride	ND Conc ND ND ND ND ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131029104 20131029104 20131029104	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 14:28 10/24/13 13:20 10/30/13 13:20 10/30/13 18:54 10/30/13 21:52	ICB Prep I Sample ID CCB CCB CCB CCB CCB CCB CCB CCB CCB CC	8 Date: N Run# 140 152 140 152 140 152 140 152 11 23 30	Sulfate Analyte Chloride Chloride Nitrate Nitrate Sulfate Sulfate Chloride Chloride Chloride	ND Conc ND ND ND ND ND ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131029104 20131029104 20131029104	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 21:34 10/24/13 21:34 10/24/13 21:34 10/24/13 14:28 10/24/13 13:20 10/30/13 13:20 10/30/13 13:20	ICB Prep I Sample ID CCB CCB CCB CCB CCB CCB CCB CCB CCB CC	8 Date: N Run# 140 152 140 152 140 152 11 23 30 11	Sulfate Analyte Chloride Chloride Nitrate Nitrate Sulfate Sulfate Chloride Chloride Nitrate	ND Conc ND ND ND ND ND ND ND ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 1.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131029104 20131029104 20131029104 20131029104	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 21:34 10/24/13 21:34 10/24/13 14:28 10/24/13 14:28 10/24/13 13:20 10/30/13 13:20 10/30/13 13:20 10/30/13 18:54	ICB Prep I Sample ID CCB CCB CCB CCB CCB CCB CCB CCB CCB CC	8 Run# 140 152 140 152 140 152 11 23 30 11 23	Sulfate Analyte Chloride Chloride Nitrate Nitrate Sulfate Sulfate Chloride Chloride Chloride Nitrate Nitrate	ND Conc ND ND ND ND ND ND ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0
20131029104 Qc Type: CCB Run Batch ID 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131014152 20131029104 20131029104 20131029104 20131029104	10/29/13 13:39 Summary Analysis Date/Time 10/24/13 14:28 10/24/13 21:34 10/24/13 21:34 10/24/13 14:28 10/24/13 21:34 10/24/13 14:28 10/24/13 14:28 10/24/13 14:28 10/24/13 13:20 10/30/13 13:20 10/30/13 13:20 10/30/13 13:54 10/30/13 13:54 10/30/13 13:54	ICB Prep Sample ID CCB CCB CCB CCB CCB CCB CCB CCB CCB CC	8 Date: N Run# 140 152 140 152 140 152 140 152 11 23 30 11 23 30	Sulfate Analyte Chloride Chloride Nitrate Nitrate Sulfate Sulfate Chloride Chloride Nitrate Nitrate Nitrate	ND Conc ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 RL 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0

Ref SampleID: 5 PPM	Ref Standar 3	d RunID	Ref Standard Date 10/14/2013 4:10:00 PM		
Sample ID: CCV	RunID:	11 Ana	lysis Date:	10/15/2013 11:30:00 AM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.44	9.389999	11.41		
Chloride	6.42	6	6.78		
Fluoride	3.8	3.64	3.92		
Nitrate	12.2	10.98	13.36		
Nitrite	8.03	7.4	8.56		
Phosphorus (Ortho)	16.59	15.42	17.64		
Sulfate	18.17	17.07	19.07		
Sample ID: CCV	RunID:	23 Ana	lysis Date:	10/15/2013 4:35:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.49	9.389999	11.41		
Chloride	6.43	6	6.78		
Fluoride	3.8	3.64	3.92		
Nitrate	12.26	10.98	13.36		
Nitrite	8.04	7.4	8.56		
Phosphorus (Ortho)	16.64	15.42	17.64		
Sulfate	18.16	17.07	19.07		
Sample ID: CCV	RunID:	35 Ana	lysis Date:	10/15/2013 9:40:00 PM	
Analyte	RT	LowLimit	Hi Limit	Flag	
Bromide	10.48	9.389999	11.41		
Chloride	6.45	6	6.78		
Fluoride	3.82	3.64	3.92		
Nitrate	12.25	10.98	13.36		
Nitrite	8.06	7.4	8.56		
Phosphorus (Ortho)	16.64	15.42	17.64		
Sulfate	18.22	17.07	19.07		
Sample ID: CCV	RunID:	39 Ana	lysis Date:	10/15/2013 11:22:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.46	9.389999	11.41		
Chloride	6.44	6	6.78		
Fluoride	3.81	3.64	3.92		
Nitrate	12.22	10.98	13.36		
Nitrite	8.04	7.4	8.56		
Phosphorus (Ortho)	16.59	15.42	17.64		
Sulfate	18.15	17.07	19.07		

3102406 0106

Ref SampleID: 5 PPM	Ref Standard 3	d RunID	Ref Standard Date 10/14/2013 4:10:00 PM		
Sample ID: CCV	RunID:	42 Ana	lysis Date:	10/16/2013 10:41:00 AM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.5	9.389999	11.41		
Chloride	6.46	6	6.78		
Fluoride	3.82	3.64	3.92		
Nitrate	12.27	10.98	13.36		
Nitrite	8.07	7.4	8.56		
Phosphorus (Ortho)	16.74	15.42	17.64		
Sulfate	18.3	17.07	19.07		
Sample ID: CCV	RunID:	54 Ana	lysis Date:	10/16/2013 3:46:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.9	9.389999	11.41		
Chloride	6.64	6	6.78		
Fluoride	3.89	3.64	3.92		
Nitrate	12.73	10.98	13.36		
Nitrite	8.32	7.4	8.56		
Phosphorus (Ortho)	17.18	15.42	17.64		
Sulfate	18.5	17.07	19.07		
Sample ID: CCV	RunID:	66 Ana	lysis Date:	10/16/2013 8:51:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.68	9.389999	11.41		
Chloride	6.53	6	6.78		
Fluoride	3.84	3.64	3.92		
Nitrate	12.49	10.98	13.36		
Nitrite	8.17	7.4	8.56		
Phosphorus (Ortho)	16.97	15.42	17.64		
Sulfate	18.34	17.07	19.07		
Sample ID:CCV	RunID:	78 Ana	lysis Date:	10/17/2013 1:56:00 AM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.6	9.389999	11.41		
Chloride	6.49	6	6.78		
Fluoride	3.83	3.64	3.92		
Nitrate	12.4	10.98	13.36		
Nitrite	8.12	7.4	8.56		
Phosphorus (Ortho)	16.86	15.42	17.64		
Sulfate	18.28	17.07	19.07		

Ref SampleID: 5 PPM	Ref Standar 3	d RunID	Ref Standard 10/14/2013 4:		
Sample ID: CCV	RunID:	86 Ana	Ilysis Date:	10/17/2013 5:19:00 AM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	0	9.389999	11.41	•	
Chloride	0	6	6.78	•	
Fluoride	0	3.64	3.92	•	
Nitrate	0	10.98	13.36	•	
Nitrite	0	7.4	8.56	•	
Phosphorus (Ortho)	0	15.42	17.64	*	
Sulfate	18.25	17.07	19.07		
Sample ID:CCV	RunID:	89 Ana	alysis Date:	10/18/2013 10:36:00 AN	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.49	9.389999	11.41		
Chloride	6.45	6	6.78		
Fluoride	3.82	3.64	3.92		
Nitrate	12.25				
Nitrite	8.06	7.4	13.36 8.56		
Phosphorus (Ortho)	16.69	15.42	17.64		
Sulfate	18.31	17.07	19.07		
Sample ID: CCV	RunID:	100 Analysis Date:		10/18/2013 5:10:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.45	9.389999	11.41		
Chloride	6.43	6	6.78		
Fluoride	3.81	3.64	3.92		
Nitrate	12.21	10.98	13.36		
Nitrite	8.04	7.4	8.56		
Phosphorus (Ortho)	16.68	15.42	17.64		
Sulfate	18.28	17.07	19.07		
Sample ID: CCV	RunID:	111 Ana	alysis Date:	10/18/2013 9:49:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.49	9.389999			
Chloride	6.46	6	6.78		
Fluoride	3.83	3.64	3.92		
Nitrate	12.26	10.98	13.36		
Nitrite	8.07	7.4	8.56		
Phosphorus (Ortho)	16.72	15.42	17.64		
Sulfate	18.33	17.07	19.07		

3102406 0108

Ref SampleID: 5 PPM	Ref Standar 3	d RunID	Ref Standard Date 10/14/2013 4:10:00 PM				
Sample ID: CCV	RunID:	113 Anal	ysis Date:	10/23/2013 11:34:00 AM			
Analyte	RT	LowLimit	Hi Llmit	Flag			
Bromide	10.39	9.389999	11.41				
Chloride	6.41	6	6.78				
Fluoride	3.8	3.64	3.92				
Nitrate	12.14	10.98	13.36				
Nitrite	8	7.4	8.56				
Phosphorus (Ortho)	16.53	15.42	17.64				
Sulfate	18.25	17.07	19.07				
Sample ID: CCV	RunID:	125 Anal	ysis Date:	10/23/2013 4:38:00 PN			
Analyte	RT	LowLimit	Hi Llmit	Flag			
Bromide	10.41	9.389999	11.41				
Chloride	6.41	6	6.78				
Fluoride	3.8	3.64	3.92				
Nitrate	12.16	10.98	13.36				
Nitrite	8.01	7.4	8.56				
Phosphorus (Ortho)	16.55	15.42	17.64				
Sulfate	18.23	17.07	19.07				
Sample ID: CCV	RuniD:	135 Anal	ysis Date:	10/23/2013 8:53:00 PM			
Analyte	RT	LowLimit	Hi Llmit	Flag			
Bromide	10.4	9.389999	11.41				
Chloride	6.41	6	6.78				
Fluoride	3.81	3.64	3.92				
Nitrate	12.15	10.98	13.36				
Nitrite	8.01	7.4	8.56				
Phosphorus (Ortho)	16.54	15.42	17.64				
Sulfate	18.25	17.07	19.07				
Sample ID: CCV	RunID:	139 Analy	ysis Date:	10/24/2013 2:03:00 PM			
Analyte	RT	LowLimit	Hi Llmit	Flag			
Bromide	10.67	9.389999	11.41				
Chloride	6.53	6	6.78				
Fluoride	3.85	3.64	3.92				
Nitrate	12.46	10.98	13.36				
Nitrite	8.17	7.4	8.56				
Phosphorus (Ortho)	16.91	15.42	17.64				
Sulfate	18.37	17.07	19.07				

3102406 0109

Ref SampleID: 5 PPM	Ref Standar 3	d RunID	Ref Standard Date 10/14/2013 4:10:00 PM						
Sample ID: CCV	RunID:	151 Ana	lysis Date:	10/24/2013 9:08:00 PM					
Analyte	RT	LowLimit	Hi Llmit	Flag					
Bromide	10.67	9.389999	11.41						
Chloride	6.53	6	6.78						
Fluoride	3.85	3.64	3.92						
Nitrate	12.47	10.98	13.36						
Nitrite	8.18	7.4	8.56						
Phosphorus (Ortho)	16.94	15.42	17.64						
Sulfate	18.41	17.07	19.07						
Sample ID: CCV	RunID:	154 Ana	lysis Date:	10/24/2013 10:25:00 PM					
Analyte	RT	LowLimit	Hi Llmit	Flag					
Bromide	10.65	9.389999	11.41						
Chloride	6.52	6	6.78						
Fluoride	3.85	3.64	3.92						
Nitrate	12.44	10.98	13.36						
Nitrite	8.16	7.4	8.56						
Phosphorus (Ortho)	16.91	15.42	17.64						
Sulfate	18.38	17.07	19.07						

-	BatchRunID/RunID:===> QcBatchID:===> Date/Time:==> Analytical Method:==> Matrix:==>	LCSW-5066 10/24/13 16:29 300.0 rev2.1	201310291041-13 LCSW-5067 10/30/13 14:11 300.0 rev2.1 Aqueous	Soil	Soil	Soil
Analyte	300.0 rev2. Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Chloride	5 90-110	105	101			
Nitrate	5 90-110	98	95			
Sulfate	5 90-110	112 CwLw	100			

LCS Recoveries

MS/MSD/DUP Recovery

		W-5066 300.0 rev2	2.1		\$	Sample ID Matri	: AC753 xAqueo		4						
Qc Type	MS	Limits			MS	Sam				M	S/MSD/	DUP	1	Non Spi	ke
Analyte	Amt	Recov		Dil	Conc	Conc	Recov		Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120		1	156.100	150.065	121		Mw	20131014152	144	10/24/13 18:11	20131014152	143	10/24/13 17:45
Nitrate	5	80-120		1	4.95	0	99			20131014152	144	10/24/13 18:11	20131014152	143	10/24/13 17:45
Sulfate	5	80-120		1	29.406	23.1479	125		Mw	20131014152	144	10/24/13 18:11	20131014152	143	10/24/13 17:45
Qc Type	MSD	Limi	its		MS	Sam					S/MSD/			Non Spi	
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	156.525	150.065	129	0.3	MW	20131014152	145	10/24/13 18:36	20131014152	143	10/24/13 17:45
Nitrate	5	80-120	20	1	5.0461	0	101	1.9		20131014152	145	10/24/13 18:36	20131014152	143	10/24/13 17:45
Sulfate	5	80-120	20	1	29.1564	23.1479	120	0.9		20131014152	145	10/24/13 18:36	20131014152	143	10/24/13 17:45
		W-5067 300.0 rev	2.1		\$	Sample ID Matri): AC753 xAqueo		2						
Qc Type	MS	Limi	its		MS	Sam				MS/MSD/DUP			Non Spike		
Analyte	Amt	Recov		Dil	Conc	Conc	Recov		Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120		1	10.1968	6.5204	74		Mw	20131029104	18	10/30/13 16:47	20131029104	17	10/30/13 15:56
Nitrate	5	80-120		1	4.6307	0	93			20131029104	18	10/30/13 16:47	20131029104	17	10/30/13 15:56
Sulfate	5	80-120		1	13.2875	8.4209	97			20131029104	18	10/30/13 16:47	20131029104	17	10/30/13 15:56
Qc Type	MSD	Lim	its		MS	Sam				M	S/MSD/	DUP		Non Spi	ke

Qc Type:	MSD	Lim	its		MS	Sam				M	S/MSD/	DUP		Non Spil	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	10.2735	6.5204	75	0.7	MW	20131029104	19	10/30/13 17:12	20131029104	17	10/30/13 15:56
Nitrate	5	80-120	20	1	4.6845	0	94	1.2		20131029104	19	10/30/13 17:12	20131029104	17	10/30/13 15:56
Sulfate	5	80-120	20	1	13.5324	8.4209	102	1.8		20131029104	19	10/30/13 17:12	20131029104	17	10/30/13 15:56

Blank Summary

Instrument: DA1

Qc Type: Meth	od Blank Summary	Prep	Date: 1	0/28/13		×
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:55	MBW-836	12	Cyanide	ND	0.020
Qc Type: ICB S	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:53	ССВ	11	Cyanide	ND	0.020
Qc Type: CCB	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 15:18	ССВ	23	Cyanide	ND	0.020
20131028141	10/28/13 15:43	ССВ	35	Cyanide	ND	0.020

Blank Summary

Instrument: DA1

Qc Type: Metho	od Blank Summary	Prep	Date: 1	0/28/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:55	MBW-836	Cyanide	ND	0.020	
Qc Type: ICB S	Summary	Prep				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:53	ССВ	11	Cyanide	ND	0.020
Qc Type: CCB	Summary	Ргер				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 15:18	ССВ	23	Cyanide	ND	0.020
20131028141	10/28/13 15:43	ССВ	35	Cyanide	ND	0.020
20131028141	10/28/13 15:57	ССВ	43	Cyanide	ND	0.020

ł

	BatchRunID/RunID:===> QcBatchID:==>					
	Date/Time:===>					
	Analytical Method:>	EPA 335.4				
	Matrix:>	Aqueous	Soil	Soil	Soil	Soil
Analyte	EPA 335.4 Amt Limits Amt Limits	% Rec Flags				
Cyanide	0.4 90-110	91				

LCS Recoveries

MS/MSD/DUP Recovery

	Batch: V ethod: E	V-836 PA 335.4		5		: AC75247-0 : Aqueous	06						
Qc Type:	DUP	Limits		DUP	Sample			M	S/MSD/	DUP		Non Spi	ke
Analyte		Rpd	Dil	Conc	Conc	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide		20	1	0	0	NA		20131028141 16 1		10/28/13 15:03	20131028141	15	10/28/13 15:01
Qc Type:	MS	Limits		MS	Sample			M	S/MSD/	DUP		Non Spi	ke
Analyte	Amt	_	Dil	Conc	•	% Rec	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	1	0.3556	0	89		20131028141	17	10/28/13 15:05	20131028141	15	10/28/13 15:01
Qc Type:	MSD	Limits		MSD	Sample			M	S/MSD/	DUP		Non Spi	ke
Analyte	Amt	Recov Rpd	Dil	Conc		% Rec Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125 20	1	0.3762	0	94 5.6		20131028141	18	10/28/13 15:07	20131028141	15	10/28/13 15:01

} 1

Blank Summary

Instrument: DA1

Qc Type: Meth	od Blank Summary	Prep	Date: 1	0/29/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:26	MBW-837	11	Cyanide	ND	0.020
Qc Type: ICB S	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:24	ССВ	10	Cyanide	ND	0.020
Qc Type: CCB	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:49	ССВ	22	Cyanide	ND	0.020
20131029140	10/29/13 15:15	CCB	34	Cyanide	ND	0.020
20131029140	10/29/13 15:29	ССВ	42	Cyanide	ND	0.020
				.		
20131029140	10/29/13 15:45	ССВ	44	Cyanide	ND	0.020

3102406 0117

	BatchRunID/RunID:>	201310291405-12				· .
	QcBatchID:>	LCSW-837				
	Date/Time:===>	10/29/13 14:29				
<u>,</u>	Analytical Method:>	EPA 335.4				
	Matrix:===>	Aqueous	Soil	Soil	Soil	Soil
Analyte	EPA 335.4 Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Cyanide	0.4 90-110	90				

LCS Recoveries

MS/MSD/DUP Recovery

	Batch: V ethod: E	V-837 PA 335.4		5	•	AC75362-00 Aqueous)2						
Qc Type:	DUP	Limits		DUP	Sample			M	S/MSD/	DUP	1	lon Spi	ke
Analyte		Rpd	Dil	Conc	Conc	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide		20	1	0	0	NA		20131029140	15	10/29/13 14:35	20131029140	14	10/29/13 14:33
Qc Type:	MS	Limits		MS	Sample			M	S/MSD/	DUP	1	Non Spi	ke
Analyte	Amt	Recov	Dil	Conc	Conc		Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	1	0.3971	0	99		20131029140	16	10/29/13 14:37	20131029140	14	10/29/13 14:33
Qc Type:	MSD	Limits	**********	MSD	Sample			M	S/MSD/	/DUP	1	Non Spi	ke
Analyte	Amt	Recov Rpd	Dil	Conc	Conc	% Rec Rpd	Flag	Batch RunID Analysis Date			Batch	RunID	Analysis Date
Cyanide	0.4	75-125 20	1	0.3742	0	94 5.9		20131029140	17	10/29/13 14:39	20131029140	14	10/29/13 14:33

) 1

ļ

1

651.25L	Sector and descent sector of the	2010 Sectored and a sectored sectored and	Stores and address to Section (25) 5304-540	1-1071-11-10-198-1		Ana	lysis Ty	pe:ALK	(AL-M	and the second		100-176-5762-119-03	3	102	406	01
E	Batch Nu	mber: ALKA	L-M-373									Units:	mg CaCO3/	1	THE PARTY OF	
						50754	ni den militar a traden (n. k.). 2016	NA WIKLIN II WA DADIE DIG	AND THE REPORT OF THE REAL PROPERTY OF	Qc S	umma	rv Res	ults			antes de la companya
C	alibrati	on Curve In	formation			a	с Туре	Qc Nam	e	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flage
					145.000000000000000000000000000000000000	ž I	DUP LCS LCSD	AC75172- LCS LCSD	003	0 100 100	NA 75-125 75-125	20 NA 20	78.240085 99.57829 99.57829	NA 100 100		kanskristationen
,						-										
i						And a second										
						Checking										
						And and a second										
						Concerno de										
						and the second se										
	9 8639914 9,8659 87 659 86 3	na nisolati in si ka kana kuna ananan ana sa ka sa kara ka ka	an an an the state of the state	06641995/abje 380	KARANANAN M	anaras i										
Analytical	Method	s)														
2		-,				अविदेश										
SM2320B-	.97					Cite Street										
						(r.ed.a										
						simentia										
								2427-242 af 18 ⁴ 1 House for Harding Bar	A work (2007 boothing) on what	an a	the second second second second second	17 Mart 10 2 17 10 12 1414	u da musi ante tita, ana terra dan tanàné any amin'ny amin'ny amin'ny amin'ny amin'ny fisiana	All of the second s	Madada and a second second	
					Per	Fu	ll mi	h2so4	Sam				Prep	Prep	Anal	Anal
ım #	Туре	МВ	Result	RL	Sol	Resu	lth2so4	(N)	Vol (ml))			Date	By	Date	Ву
-1-10/29/13	MB	MB-1-10/29/13	ND	10	100	6,0966	0.30	0.020322	2 50	aligne a ser ser se ta nce of	erta llen och i Gälfford av and	66/10 02436-342136-6 88	10/29/1	3 JW	10/29/13	JW
S	LCS	MB-1-10/29/13	100	10	100	99.578	4.90	0.020322					10/29/1		10/29/13	JW
SD	LCSD	MB-1-10/29/13	100	10	100	99.578		0.020322					10/29/1	• • • •	10/29/13	
75172-003	DUP	MB-1-10/29/13	78	10	100	78.24	3.85	0.020322					10/29/13		10/29/13	
75172-002	Sample	MB-1-10/29/13	ND	10	100	8,1288		0.020322					10/29/1		10/29/13	
75172-003	Sample	MB-1-10/29/13	79	10	100	79.256		0.020322					10/29/1		10/29/13	
75172-004	Sample	MB-1-10/29/13	140	10	100	135.14	6.65	0.020322	250				10/29/1	3 JW	10/29/13	JW

3.05

9,35

14.45

61.982

190.01

293.65

0.020322 50

0.020322 50

0.020322 50

Mr, 10/30/13 Tu/30/13

10/29/13 JW

10/29/13 JW

10/29/13 JW

10/29/13 JW

10/29/13 JW

10/29/13 JW

190

290

62

10 100

10

10 100

100

AC75172-005

AC75324-004

AC75324-012

j

Sample

Sample

Sample

MB-1-10/29/13

MB-1-10/29/13

MB-1-10/29/13

Rp - RPD failed specified criteria.

1000	IN A ST. NO. SOMETICAL		Manantan Manantan Manantan Manantan Ang Kang Kang Kang Kang Kang Kang Kang Ka		-	Analysis T	vpe:ALKAL-F	-		NA TANKA INTAK AND A A	3	102	406	0
E	Batch Nu	mber: ALKA	L-P-39		Contractor Contractor					Units:r	ng CaCO3/	1		
Total	n vez men ne konstructura a sastelja (combas	an ann an Colombiae air an San San San San San San San San San	an an an Anglini, ann an Anglini, ann a' Chuine an	1997 (1997) 1997 (1997)	24 29 7 29 20 20 20 20 20 20 20 20 20 20 20 20 20		anne ann an talaichte br>Martaichte ann an talaichte an tal	Qc S	ummar	v Res	ults	9-17-16-879-6-978, (H.S.F		weekster of the second
C	alibratio	on Curve In	formatio	n		Qc Туре	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flage
	CLILLY I CLLIN 1998-1995			820 803/70481319	e 1-kasi dan basa	DUP LCS LCSD	AC75172-003 LCS LCSD	0 100 100	NA 75-125 75-125	20 NA 20	0 92.465555 90.433345	NA 92 90	NA NA 2.2	Nc
ł						and a second								
						n de la compañía de la compañía								
						÷ ;								
Amelia			energen anderstander ander and and and	000 0 000 0 00 000 000	1990) A.D. T. AND I									
Analytical		s)	2010979879634534534594 <u>998</u> 23653534	********	1979) AN 19									
Analytical SM2320B		S)	ennerskinder Stationen ander Station	ana arana ati ai	1990 (1997) 1990 (1997) 1997 (1997)	E Courses								
-		8)	2009/00/00/2012/00/2010/00/2010/00/2010/00/2010/00/2010/00/2010/00/2010/00/2010/2010/2010/2010/2010/2010/2010/	9999 9 000 990 990 990 990	санодов 4 .0, т. он т. ф									
•		анисински колиски коли В }	cantologian Jacobian Societaria	8000 80000 10 000	сало до 412 у т. 4000 г.									
•		8)		ann a conad agus a	*********			Navigari Sa kati sa bagan n Sanat ma				ngula (kostilonna egystanega)		
-		8)			Per	Full mi	h2so4 Sam				Prep			Anal
SM2320B		s) MB	Result	RL	Per Sol	Full mi Result h2so4					Prep Date	Prep By	Anal Date	Anal By
SM2320B	-97 <u>Type</u> MB	MB MB-1-10/29/13	Result	RL 10	Sol 100	Result h2so4						Ву		Ву
SM2320B am # B-1-10/29/13 CS	-97 Type MB LCS	MB MB-1-10/29/13 MB-1-10/29/13	ND 92	RL 10 10	Sol 100 100	Result h2so4 0 0 92.466 4.55	(N) Vol (0.020322 50 0.020322 50			nger a begrenne skala i sama	Date 10/29/13 10/29/13	By JW JW	Date	By JW
SM2320B am # B-1-10/29/13 'S SD	-97 Type MB LCS LCSD	MB- MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13	ND 92 90	RL 10 10 10	Sol 100 100 100	0 0 92.466 4.55 90.433 4.45	(N) Vol (0.020322 50 0.020322 50 0.020322 50			Copyrell Bactory of the Same	Date 10/29/13 10/29/13 10/29/13	By JW JW JW	Date 10/29/13 10/29/13 10/29/13	By JW JW JW
SM2320B am # B-1-10/29/13 SS C75172-003	-97 Type MB LCS LCSD DUP	MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13	ND 92 90 ND	RL 10 10 10 10	Sol 100 100 100 100	0 0 92.466 4.55 90.433 4.45 0 0	(N) Vol (0.020322 50 0.020322 50 0.020322 50 0.020322 50			and and a subscription of the	Date 10/29/13 10/29/13 10/29/13 10/29/13	By JW JW JW JW	Date 10/29/13 10/29/13 10/29/13 10/29/13	By JW JW JW
SM2320B am # B-1-10/29/13 SSD 275172-003 275172-002	-97 Type MB LCS LCSD DUP Sample	MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13	ND 92 90 ND ND	RL 10 10 10 10 10	Sol 100 100 100 100 100	0 0 92.466 4.55 90.433 4.45 0 0	(N) Vol (0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50				Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By 3 JW 3 JW 3 JW 3 JW 3 JW	Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By JW JW JW JW
SM2320B am # B-1-10/29/13 SSD C75172-003 C75172-002 C75172-003	-97 Type MB LCS LCSD DUP Sample Sample	MB MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13	ND 92 90 ND ND ND	RL 10 10 10 10 10 10	Sol 100 100 100 100 100 100	0 0 92.466 4.55 90.433 4.45 0 0 0 0 0 0 0 0 0 0 0 0	(N) Vol (0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50				Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW	Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By JW JW JW JW JW
SM2320B am # B-1-10/29/13 CS CSD C75172-003 C75172-003 C75172-003 C75172-003 C75172-004	-97 Type MB LCS LCSD DUP Sample Sample Sample	MB- MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13	ND 92 90 ND ND ND ND	RL 10 10 10 10 10 10	Sol 100 100 100 100 100 100 100	O O 92.466 4.55 90.433 4.45 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(N) Vol (0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50				Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW	Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By JW JW JW JW JW JW
-	-97 Type MB LCS LCSD DUP Sample Sample	MB MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13 MB-1-10/29/13	ND 92 90 ND ND ND	RL 10 10 10 10 10 10	Sol 100 100 100 100 100 100	0 0 92.466 4.55 90.433 4.45 0 0 0 0 0 0 0 0 0 0 0 0	(N) Vol (0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50 0.020322 50				Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW 3 JW	Date 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13 10/29/13	By JW JW JW JW JW JW JW

10/30/13

í.

3

1

ł

Rp - RPD failed specified criteria. Nc - Not Checked ..either one or both values =ND

JW +0/30/13

. 1

,

ł

į

	Analysis	Carbonate / E	Sicarbonate		Q.C. DATA				
	Batch#	39						Limits	Flags
	Date	10/29/2013			LCS RPD				
	Analyst	JW		·	LCS	99.58	RPD		
				· · · · · · · · · · · · · · · · · · ·	LCSD	99.58	0.0	20	
	· · · · · · · · · · · · · · · · · · ·				Carbonate RPD				
		Titrant Result	Carbonate	Bicarbonate	Sample	0.00	RPD		
		P = 0	0	M	Sample Dup	0.00	NA	20	
		P < (1/2) M	2P	M-2P					
		P = (1/2) M	2P	0					<u> </u>
-		P > (1/2) M	2 (M-P)	0	Bicarbonate RPD				1
		P = M	0	0	Sample	79.26	RPD		
					Sample Dup	78.24	1.29	20	
******	****************************	*****	***************	************************	*****	*********	**********	*******	*******
	Samples #	M-Alkalinity	P-Alkalinity	Carbonate	Bicarbonate	RL		% Recovery	
		(Total)		CO3-2 as mg CaCO3/L	HCO3 as mg CaCO3/L			75-125%	
	MB	6.0966	0.00	0.00	6.0966	10			
	LCS	99.578	92.466	14.22	0.00	10		100	
	LCSD	99.578	90.433	18.29	0.00	10	````	100	1
DUP	AC75172-003	78.24	0.00	0.00	78.24	10			
	AC75172-002	8.1288	0.00	0.00	8.1288	10			
QC Sample	AC75172-003	79.256	0.00	0.00	79.256	10			
	AC75172-004	135.14	0.00	0.00	135,14	10			
	AC75172-005	61.982	0.00	0.00	61.982	10			
	AC75324-004	190.01	0.00	0.00	190.01	10			
						10			

MA 10/20/13

* Recovery is outside specified QC limits

JW 10/30/13

3102406 0122

Last Page of Report

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: NYSDOT-Harrison

Client PO: Not Available Report To: HDR One Blue Hill Plaza P.O. Box 1509 Pearl River, NY 10965

Attn: Melissa LaMaccha

- **Received Date:** 10/25/2013
 - Report Date: 11/22/2013
 - Deliverables: NYDOH-CatA
 - Lab ID: AC75362
- Lab Project No: 3102513

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Lonea

Robin Cousineau - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

NJ (07071) PA (68-00463) NY (ELAP11408) KY (90124) CT (PH-0671)

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 179

HCV Case Narrative

HCV Project: 3102513

Hampton-Clarke/Veritech (HC·V) received the following samples on October 25, 2013:

Client ID	HCV Sample ID	<u>Matrix</u>	Analysis
TB-10242013	AC75362-001	Aqueous	VO (624)
SW-15-10242013	AC75362-002	Aqueous	VO (624), BNA (625), Metals (200.7/8, 245.1), Chloride (300.0),
			Cyanide (EPA 335.4)
SW-4-10242013	AC75362-003	Aqueous	VO (624), BNA (625), Metals (200.7/8, 245.1), Chloride (300.0),
		·	Cyanide (EPA 335.4)
SD-4-10242013	AC75362-004	Sediment	VO (8260C), BNA (8270D), Metals (6010C/6020A/7471B), Chloride
			(9056A), Cyanide (9012B)
SW-2-10242013	AC75362-005	Aqueous	VO (624), BNA (625), Metals (200.7/8, 245.1), Chloride (300.0),
011 2 102 12010		, iqueeue	Cyanide (EPA 335.4)
SD-2-10242013	AC75362-006	Sediment	VO (8260C), BNA (8270D), Metals (6010C/6020A/7471B), Chloride
00-2-10242010	A070302-000	Gediment	(9056A), Cyanide (9012B)
SD-3-10242013	AC75362-007	Sediment	
30-3-10242013	ACT 5502-007	Seument	VO (8260C), BNA (8270D), Metals (6010C/6020A/7471B), Chloride
			(9056A), Cyanide (9012B)
SW-1-10242013	AC75362-008	Aqueous	VO (624), BNA (625), Metals (200.7/8, 245.1), Chloride (300.0),
			Cyanide (EPA 335.4)
SD-1-10242013	AC75362-009	Sediment	VO (8260C), BNA (8270D), Metals (6010C/6020A/7471B), Chloride
			(9056A), Cyanide (9012B)
FB-10242013	AC75362-010	Aqueous	VO (624), BNA (625), Metals (200.7/8, 245.1), Chloride (300.0),
			Cyanide (EPA 335.4)

Volatile Organic Analysis:

Client:

HDR Project: NYSDOT-Harrison

2-Chloroethylvinylether did not recover in the Matrix Spike and Matrix Spike Duplicate in batch 31288 due to acid preservation of sample. 2-Chloroethylvinylether readily decomposes under acidic conditions. The recovery of 2-Chloroethylvinylether is within QC limits in the Laboratory Control Sample (MBS).

Base Neutral/Acid Extractable Analysis:

Samples AC75362-003, 005, 008, 010, WMB29081 and MS had surrogate recoveries outside QC limits, but the recoveries are greater than 10%, therefore, no corrective action was necessary.

The Matrix Spike and/or Matrix Spike/Matrix Spike Duplicate RPD for batches 29081 and 29131 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

Metals Analysis:

The serial dilution for batch 27365 is outside QC limits for one or more analytes, suggesting matrix interference.

The Matrix Spike and Matrix Spike Duplicate for batch 27357 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary. Also, the RPD between the QC sample and the Method Replicate had recoveries outside QC limits. The RPD criteria were met between the LCS/LCS Method Replicate. In addition, the serial dilution is outside QC limits for one or more analytes, suggesting matrix interference.

The Matrix Spike, Matrix Spike Duplicate, and Post Spike for batch 27358 had recoveries outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary. Also, the RPD between the LCS and LCSMR had recoveries outside QC limits. In addition, the serial dilution is outside QC limits for one or more analytes, suggesting matrix interference.

Wet Chemistry Analysis:

The Matrix Spike and Matrix Spike Duplicate for batches 1118 and 5067-Chloride recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Or

Ceusena

Robin Cousineau Quality Assurance Director

Stanley Gilewicz Laboratory Director

11/26/2013

			Additional Notes	2100	Yand A Mirocro Abo	UNW many lawell. Allo		10) Relinquished by: Accepted by:	FB-10247013 BL 10/24/13	001 SD - 1 - 10242013 S [m]m][] [310	Sw - 1 - 10247013 SW	5 51 - 2 - 10 - 5 - QS	S	-005 Sw - 2 - 1024 2013 SW - 1200	-604 SD - H - 10242013 S 10/2011 1110	SM - H - 10242013 SW	SW-15-10247013 500		Lab Sample # 4)Customer Sample ID Matrix Date Time	5) 6) Sample	ACT/362 OT - Other (please specify under item 9, Comments)	Batch # WW - Waste Water OL - Oil	GW - Ground Water SL - Sludge	ONLY Matrix Codes	USE Check If Contingent ===>	FOR LAB		I	1c) Send Invoice to: Melizsa La Ma cchia	735-8	or River,	Address: 1 Blue Hill P	(11a) Customer: HDR Engineering Inc.	Customer In		Service Center: 137-D Galiner Drive, Mount Laurei, New Jersey 00004 Ph (Service Center): 856-780-6057 Fax: 856-780-6056	O Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458	וומווועעווע זמותכ־ עכוונכעון במאטומעווכס אמלואסעובאסן 175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004
				/0/2/ /2/0 Note:	10/25/13 /1 20	1741	· · · · · · · · · · · · · · · · · · ·	ed by: Date Time		×	* * * * * * * * *	× × × ×	* * *	× × × × ×	ж к к к	* K * * *	× × × × ×	*	Gra T T C	ib (G) CL CL AL		00		Sample	1gent ===>	7) Analysis Request		2d) Quote/PO # (If Applicable):		P	2b) Project Mgr: M. La Macchia		2a) Project NYSNOT - Harrison	Project Information	1408 CT #PH-0671 KY #90124	A Women-Owned, Disadvantaged, Small Business Enterprise		HC-Y CHAIN OF CUS
A fee of \$5(sample will be assessed for storage should sample not be activated for any analysis.	mpler (print name): Andrew	High Contaminant Concentrations NJ LSRP Project	Project-Specific Reporting Limits	$\sim -$	VCC (8260B SIM or 8011) Metals (ICP-MS 200.8 or 6020)	BN or BNA (8270C SIM)	Note: Check if low-level groundwater methods required to meet current standards in NJ or PA:	Comments, Notes, Special Requirements, HAZARDS		2 -	11	2 -	2		2			j.3	Nor Met En t NaC HCI H2S	OH Core DH	8) # of Bottles				Check If Contingent	lest	Expedited TAT Not Always Available. Please Check with Lab.	Other:	ZWeeks Other:	NY 10 Days (10%) Category A	1 Week (25%; EPH) Full / Category B	PH)		48 Hours (75%) Waste		Turnarou		TODY 3102513
activated for any analysis.	Date: (a) Jul 13	$\frac{\text{Cooler Temperature}}{2.7}$					standards in NJ or PA:	IAZARDS											5 9)Comments	er:							ease Check with Lab.	Other:	PDF	Excel - PA Regulatory	Exact - NY Regulatory	Excel - NJ Regulatory	EQuIS EPA Region 2 or 5	FOULS 4-File / F7 / NYS		Flectronic Deliv	lease Circle)	Page of

PROJECT MODIFICATIONS

5

2

Client: HDR/LMS Project: NYSDOT-Harrison HCV Project #: 3102513

maureen192.168.1.87 11/22/2013 11:48:29 AM

Deliverables are a NYDOH-Cat A per quote. MS 11/22/13

CONDITION UPON RECEIPT

-

		Batch Number AC75362	Entered By: Date Entered	VINCENT 10/25/2013 12:50:00 PM
1	Yes	Is there a corresponding COC included with the sa	mples?	
2	Yes	Are the samples in a container such as a cooler or	Ice chest?	
3	Yes	Are the COC seals intact?		
4	Yes	Please specify the Temperature inside the contain 2.8,3.1	er (in degC)	
5	Yes	Are the samples refrigerated (where required)/have	e they arrived	on ice?
6	Yes	Are the samples within the holding times for the pa samples:	arameters liste	d on the COC? IF no, list parameters and
7	Yes	Are all of the sample bottles intact? If no, specify s	ample numbe	rs broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If	no specify:	
9	Yes	Do the contents match the COC? If no, specify		
10	Yes	Is there enough sample sent for the analyses listed	d on the COC?	P If no, specify:
11	Yes	Are samples preserved correctly?		
12	Yes	Was temperature blank present (Place comment b	elow if not)? If	not was temperature of samples verified?
13	NA	Other comments Specify		

14 NA Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC75362		Entere Date Ente	d By: VINCENT ered 10/25/2013 12:51:00	PM	
Lab#:	Container Siz	Container Typ	Parameter	Preservative	РН
AC75362-001	40ML	G	VO	HCL	1
AC75362-002	40ML	G	VO	HCL	1
AC75362-002	1L	Р	METALS	HNO3	1
AC75362-002	500ML	G	CN	NAOH	14
AC75362-003	40ML	G	VO	HCL	1 .
AC75362-003	1L	Р	METALS	HNO3	1
AC75362-003	500ML	G	CN	NAOH	14
AC75362-004	NA	NA	NA	NA	NA
AC75362-005	40ML	G	VO	HCL	1
AC75362-005	1L .	Р	METALS	HNO3	1
AC75362-005	500ML	G	CN	NAOH	14
AC75362-006	NA	NA	NA	NA	NA
AC75362-007	NA	NA	NA	NA	NA
AC75362-008	40ML	G	VO	HCL	1
AC75362-008	1L	Р	METALS	HNO3	1
AC75362-008	500ML	G	CN	NAOH	14
AC75362-009	NA	NA	NA	NA	NA
AC75362-010	40ML	G	VO	HCL	1
AC75362-010	1L	Р	METALS	HNO3	1
AC75362-010	500ML	G	CN	NAOH	14

Internal Chain of Custody

		Loc or	Bot	A				Loc or	Bot	Δ/	
Lab#:	DateTime:	User			Analysis	Lab#:	DateTime:	User			Analysis
AC75362-001	10/25/13 12:10	VINCE	,	M	Received	AC75362-006	10/30/13 10:01	AM	2	A	r12
AC75362-001	10/25/13 12:49	VINCE		м	Login	AC75362-006	10/31/13 10:47	AF	2	A	cn s
AC75362-001	10/25/13 19:05	R31	1	A	NONE	AC75362-006	11/04/13 10:42	MSL	2	A	bn
AC75362-001	10/25/13 19:05	R31	2	A	NONE	AC75362-006	11/04/13 14:07	R12	2	A	NONE
AC75362-001	10/29/13 09:39	WP	2	A	voa	AC75362-006	10/25/13 16:07	R31	4	A	NONE
AC75362-001	10/25/13 19:05	R31	3	A	NONE	AC75362-006	10/28/13 11:14	WP	4	м	VOA
AC75362-002	10/25/13 12:10	VINCE	1	м	Received	AC75362-006	10/28/13 16:15	R31	4	A	NONE
AC75362-002	10/25/13 12:49	VINCE	0	м	Login	AC75362-006	10/25/13 16:08	F18	5	A	none
AC75362-002	10/25/13 19:05	R31	1	A	NONE	AC75362-006	10/25/13 16:08	F18	6	A	none
AC75362-002	10/25/13 19:05	R31	2	A	NONE	AC75362-006	10/29/13 16:04	WP	6	A	VOA
AC75362-002	10/29/13 17:07	WP	2	Α	VOA	AC75362-006	10/25/13 16:08	F18	7	A	none
AC75362-002	10/25/13 19:05	R31	3	A	NONE	AC75362-006	10/25/13 16:08	F18	8	A	none
AC75362-002	10/30/13 15:27	JW	4	A	IC	AC75362-007	10/25/13 12:10	VINCE		м	Received
AC75362-002	10/30/13 16:29	R12	4	A	NONE	AC75362-007	10/25/13 12:49	VINCE	0	м	Login
AC75362-002	10/29/13 09:12	ANTH	5	A	cn-w	AC75362-007	10/25/13 22:32	PA	2	A	mixing
AC75362-002	10/29/13 12:57	R12	5	Α	NONE	AC75362-007	10/25/13 22:32	R12	2	A	NONE
AC75362-002	10/31/13 11:05	SRB	6	Α	tdsw-hg	AC75362-007	10/28/13 08:23	вст	2	A	% SOLIDS
AC75362-002	10/31/13 12:15	R12	6	А	NONE	AC75362-007	10/28/13 10:27	JW	2	A	IC
AC75362-002	10/30/13 15:32	JESSI	7	Α	bna	AC75362-007	10/28/13 11:14	R12	2	A	NONE
AC75362-002	10/30/13 18:28	R12	7	Α	NONE	AC75362-007	10/30/13 10:00	AM	2	A	tdsi/hg
AC75362-002	10/30/13 15:32	JESSI	8	Α	bna -	AC75362-007	10/30/13 10:01	AM	2	Α	r12
AC75362-003	10/25/13 12:10	VINCE		м	Received	AC75362-007	10/31/13 10:47	AF	2	Α	cn s
AC75362-003	10/25/13 12:49	VINCE	1	м	Login	AC75362-007	11/04/13 10:42	MSL	2	Α	bn
AC75362-003	10/25/13 19:05	R31	1	A	NONE	AC75362-007	11/04/13 14:07	R12	2	A	NONE
AC75362-003	10/25/13 19:05	R31	2	A	NONE	AC75362-007	10/25/13 16:07	R31	4	A	NONE
AC75362-003	10/29/13 17:07	WP	2	A	VOA	AC75362-007	10/28/13 11:14	WP	4	м	VOA
AC75362-003	10/25/13 19:05	R31	3	A	NONE	AC75362-007	10/28/13 16:15	R31	4	A	NONE
AC75362-003	10/30/13 15:27	JW	4	A	IC	AC75362-007	10/25/13 16:08	F18	5	A	none
AC75362-003	10/30/13 16:29	R12	4	A	NONE	AC75362-007	10/25/13 16:08	F18	6	A	none
AC75362-003	10/29/13 09:12	ANTH	5	A	cn-w	AC75362-007	10/29/13 16:04	WP	6	A	VOA
AC75362-003	10/29/13 12:57	R12	5	A	NONE	AC75362-007	10/25/13 16:08	F18	7	A	none
AC75362-003	10/31/13 11:05	SRB	6	Α	tdsw-hg .	AC75362-007	10/25/13 16:08	F18	8	A	none
AC75362-003	10/31/13 12:15	R12	6	Α	NONE	AC75362-008	10/25/13 12:10	VINCE	0	м	Received
AC75362-003	10/30/13 15:32	JESSI	8	Α	bna	AC75362-008	10/25/13 12:49	VINCE	0	м	Login
AC75362-004	10/25/13 12:10	VINCE	0	М	Received	AC75362-008	10/25/13 19:05	R31	1	Α	NONE
AC75362-004	10/25/13 12:49	VINCE	0	М	Login	AC75362-008	10/25/13 19:05	R31	2	Α	NONE
AC75362-004	10/25/13 22:32	PA	2	Α	mixing	AC75362-008	10/29/13 17:07	WP	2	Α	VOA
AC75362-004	10/25/13 22:32	R12	2	Α	NONE	AC75362-008	10/25/13 19:05	R31	3	Α	NONE
AC75362-004	10/28/13 08:23	BCT	2	Α	% SOLIDS	AC75362-008	10/30/13 15:27	JW	4	A	IC
AC75362-004	10/28/13 10:27	JW	2	A	IC	AC75362-008	10/30/13 16:29	R12	4	Α	NONE
AC75362-004	10/28/13 11:14	R12	2	Α	NONE	AC75362-008	10/29/13 09:12	ANTH	5	Α	cn-w
AC75362-004	10/30/13 10:00	AM	2	Α	tdsi/hg	AC75362-008	10/29/13 12:57	R12	5	A	NONE
AC75362-004	10/30/13 10:01	AM	2	Α	r12	AC75362-008	10/31/13 11:05	SRB	6	Α	tdsw-hg
AC75362-004	10/31/13 10:47	AF	2	Α	cn s	AC75362-008	10/31/13 12:15	R12	6	Α	NONE
AC75362-004	11/04/13 10:42	MSL	2	А	bn	AC75362-008	10/30/13 15:32	JESSI	8	Α	bna
AC75362-004	11/04/13 14:07	R12	2	Α	NONE	AC75362-009	10/25/13 12:10	VINCE	0	м	Received
AC75362-004	10/25/13 16:07	R31	4	Α	NONE	AC75362-009	10/25/13 12:49	VINCE	;	м	Login
AC75362-004	10/28/13 11:14	WP	4	М	VOA	AC75362-009	10/25/13 22:32	PA	2	Α.	mixing
AC75362-004	10/28/13 16:15	R31	4	Α	NONE	AC75362-009	10/25/13 22:32		2	A	NONE
AC75362-004	10/25/13 16:08	F18	5	A	none	AC75362-009	10/28/13 08:23		2	А	% SOLIDS
AC75362-004	10/25/13 16:08	F18	6	Α	none	AC75362-009	10/28/13 10:27	JW	2	A	IC
AC75362-004	10/29/13 16:04	WP	6	Α	VOA	AC75362-009	10/28/13 11:14	R12	2	Α	NONE
AC75362-004	10/25/13 16:08		7	A	none	AC75362-009	10/30/13 10:00	AM	2	A	tdsi/hg
AC75362-004	10/25/13 16:08		8	A	none	AC75362-009	10/30/13 10:01	AM	2	A	r12
AC75362-005	10/25/13 12:10	VINCE		M	Received	AC75362-009	10/31/13 10:47	1	2	A	cn s
AC75362-005	10/25/13 12:49	VINCE	i .	M	Login	AC75362-009	11/04/13 10:42		2	A	bn
AC75362-005	10/25/13 19:05	1	1	A	NONE	AC75362-009	11/04/13 14:07		2	A	NONE
AC75362-005	10/25/13 19:05		2	Α	NONE	AC75362-009	10/25/13 16:07		4	Α	NONE
AC75362-005	10/29/13 17:07	1 1	2	Α	VOA	AC75362-009	10/28/13 11:14		4	м	VOA
AC75362-005	10/25/13 19:05		3	A	NONE	AC75362-009	10/28/13 16:15		4	A	NONE
AC75362-005	10/30/13 15:27	1	4	A		AC75362-009	10/25/13 16:08		5	A	none
AC75362-005	10/30/13 16:29	R12	4	A	NONE	AC75362-009	10/29/13 16:04		5	A	VOA
AC75362-005	10/29/13 09:12	ANTH		A	cn-w	AC75362-009	10/25/13 16:08		6	A	none
AC75362-005	10/29/13 12:57		5	A	NONE	AC75362-009	10/25/13 16:08		7	A	none
AC75362-005	10/31/13 11:05		6	A	tdsw-hg	AC75362-009	10/25/13 16:08	1 1	8	A	none
AC75362-005	10/31/13 12:15		6	A	NONE	AC75362-010	10/25/13 12:10	VINCE		м	Received
AC75362-005	10/30/13 15:32	JESSI		A	bna	AC75362-010	10/25/13 12:49	VINCE		м	Login
AC75362-006	10/25/13 12:10	VINCE		м	Received	AC75362-010	10/25/13 19:05		1	A	NONE
AC75362-006	10/25/13 12:49	VINCE		м	Login	AC75362-010	10/25/13 19:05		2	Α	NONE
C75362-006	10/25/13 22:32		2	A	NONE	AC75362-010	10/29/13 09:39		2	Α	voa
C75362-006	10/25/13 22:32	1 1	2	Α	mixing	AC75362-010	10/25/13 19:05		3	Α	NONE
AC75362-006	10/28/13 08:23	1	2	Α	% SOLIDS	AC75362-010	10/30/13 15:27		4	A	IC
AC75362-006	10/28/13 10:27	1 1	2	A	IC	AC75362-010	10/30/13 16:29		4	A	NONE
AC75362-006	10/28/13 11:14	1	2	A	NONE	AC75362-010	10/29/13 09:12	ANTH			cn-w
C75362-006	10/30/13 10:00	AM	2	A	tdsi/hg	AC75362-010	10/29/13 12:57	R12	5	A	NONE

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Internal Chain of Custody

÷

ŝ

	· · · ·	Loc						Loc	[Τ	
		or	Bot	A/				or	Bot	A/	
Lab#:	DateTime:	User	Nu	М	Analysis	Lab#:	DateTime:	User	Nu	М	Analysis
AC75362-010	10/31/13 11:05	SRB	6	А	tdsw-hg						and any specific specific to the Specific State State State and Specific States and Specific States and Specific States
AC75362-010	10/31/13 12:15	R12	6	A	NONE						
AC75362-010	10/30/13 15:32	JESSI	7	А	bna						

Laboratory Chronicle

Client: HDR

Project: NYSDOT-Harrison

Lab#: AC75362-001		Sample ID: TB	-10242013			
Test Code	Prep Method	Prep Date	Bv	Analytical Method	Analysis Date	Bv
Volatile Organics + 10 (624)	EPA 624			EPA 624	10/29/13 11:00	SG

Lab#: AC75362-002

Sample ID: SW-15-10242013

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Chloride (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 15:56	Janee	
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 14:33	af	
Mercury (Water) 245.1	245.1 rev3.0	10/31/13	sean	245.1 rev3.0	11/2/13 15:14	OA	
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	jessica	EPA 625	10/31/13 09:42	AHD/JB	
TAL Metals 200.7	EPA 200.2	10/31/13	sean	EPA 200.7	11/1/13 11:41	SRB	
TAL Metals 200.7	EPA 200.2	10/31/13	sean	EPA 200.7	11/1/13 17:07	SRB	
TAL Metals 200.8	EPA 200.2	10/31/13	sean	EPA 200.8	11/4/13 13:13	GK	
Volatile Organics + 10 (624)	EPA 624	٥		EPA 624	10/30/13 00:38	SG	

Lab#: AC75362-003

Sample ID: SW-4-10242013

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Chloride (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 14:40	Janee	
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 14:43	af	
Aercury (Water) 245.1	245.1 rev3.0	10/31/13	sean	245.1 rev3.0	11/2/13 15:27	OA	
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	jessica	EPA 625	11/1/13 11:53	AHD/JB	
AL Metals 200.7	EPA 200.2	10/31/13	sean	EPA 200.7	11/1/13 12:27	SRB	
AL Metals 200.7	EPA 200.2	10/31/13	sean	EPA 200.7	11/1/13 17:40	SRB	
AL Metals 200.8	EPA 200.2	10/31/13	sean	EPA 200.8	11/4/13 13:47	GK	
volatile Organics + 10 (624)	EPA 624			EPA 624	10/30/13 00:53	SG	

Client: HDR

Project: NYSDOT-Harrison

HCV Project #: 3102513

Lab#: AC75362-004

Sample ID: SD-4-10242013

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	10/28/13 00:00	hossain
Chloride (Soil) 9056A		10/28/13	Janee	EPA 9056A	10/28/13 13:29	Janee
Cyanide (Soil/Waste) 9012B	EPA 9012B	11/01/13	beena	EPA 9012B	11/3/13 19:55	af
Mercury (Soil/Waste) 7471A	EPA 7471B	10/30/13	aadewusi	EPA 7471B	11/1/13 13:53	OA
Semivolatile Organics + 25 (8270)	3510C/3550C	11/04/13	marie	EPA 8270D	11/5/13 12:56	AHD/JE
TAL Metals 6010	3005&10/3050	10/30/13	aadewusi	EPA 6010C	10/31/13 14:03	OA
TAL Metals 6010	3005&10/3050	10/30/13	aadewusi	EPA 6010C	11/1/13 14:39	OA
TAL Metals 6020	3005&10/3050	10/30/13	aadewusi	EPA 6020A	10/31/13 12:23	PC
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260C	10/29/13 16:36	SG

Lab#: AC75362-005

Sample ID: SW-2-10242013

Prep Prep Analytical Analysis Test Code Method Method Date By Date By Chloride (Water) 300.0 10/30/13 Janee 300.0 rev2.1 10/30/13 15:05 Janee Cyanide-Water (EPA 335.4) EPA 335.4 10/29/13 EPA 335.4 10/29/13 14:45 af Anthony Mercury (Water) 245.1 245.1 rev3.0 10/31/13 245.1 rev3.0 11/2/13 15:29 OA sean AHD/JB EPA 625 10/31/13 15:37 Semivolatile Organics + 25 (625) EPA 625 10/30/13 jessica TAL Metals 200.7 EPA 200.2 10/31/13 sean EPA 200.7 11/1/13 12:31 SRB TAL Metals 200.7 11/1/13 17:43 SRB EPA 200.2 10/31/13 EPA 200.7 sean TAL Metals 200.8 EPA 200.2 10/31/13 EPA 200.8 11/4/13 13:51 GK sean EPA 624 Volatile Organics + 10 (624) EPA 624 10/30/13 01:09 SG

Lab#: AC75362-006

Sample ID: SD-2-10242013

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	10/28/13 00:00	hossain
Chloride (Soil) 9056A		10/28/13	Janee	EPA 9056A	10/28/13 13:51	Janee
Cyanide (Soil/Waste) 9012B	EPA 9012B	11/01/13	beena	EPA 9012B	11/3/13 19:57	af
Mercury (Soil/Waste) 7471A	EPA 7471B	10/30/13	aadewusi	EPA 7471B	11/1/13 13:58	OA
Semivolatile Organics + 25 (8270)	3510C/3550C	11/04/13.	marie	EPA 8270D	11/5/13 12:34	AHD/JB
TAL Metals 6010	3005&10/3050	10/30/13	aadewusi	EPA 6010C	11/1/13 14:42	OA
TAL Metals 6010	3005&10/3050	10/30/13	aadewusi	EPA 6010C	10/31/13 14:07	OA
TAL Metals 6020	3005&10/3050	10/30/13	aadewusi	EPA 6020A	10/31/13 12:29	PC
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260C	10/29/13 16:52	SG

Client: HDR

Project: NYSDOT-Harrison

HCV Project #: 3102513

Lab#: AC75362-007

Sample ID: SD-3-10242013

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
6 Solids SM2540G				SM 2540G	10/28/13 00:00	hossain
Chloride (Soil) 9056A		10/28/13	Janee	EPA 9056A	10/28/13 14:12	Janee
Cyanide (Soil/Waste) 9012B	EPA 9012B	11/01/13	beena	EPA 9012B	11/3/13 19:59	af
Aercury (Soil/Waste) 7471A	EPA 7471B	10/30/13	aadewusi	EPA 7471B	11/1/13 13:59	OA
Semivolatile Organics + 25 (8270)	3510C/3550C	. 11/04/13	marie	EPA 8270D	11/5/13 13:19	AHD/JB
AL Metals 6010	3005&10/3050	. 10/30/13	aadewusi	EPA 6010C	10/31/13 14:10	OA
AL Metals 6010	3005&10/3050	10/30/13	aadewusi	EPA 6010C	11/1/13 14:44	OA
TAL Metals 6020	3005&10/3050	10/30/13	aadewusi	EPA 6020A	10/31/13 12:35	PC
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260C	10/29/13 17:09	SG

Lab#: AC75362-008

Sample ID: SW-1-10242013

	Prep		Prep		Analytical	Analysis	
Test Code	Method	•	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0			10/30/13	Janee	300.0 rev2.1	10/30/13 15:30	Janee
Cyanide-Water (EPA 335.4)	EPA 335.4		10/29/13	Anthony	EPA 335.4	10/29/13 14:52	af
Mercury (Water) 245.1	245.1 rev3.0	;	10/31/13	sean	245.1 rev3.0	11/2/13 15:30	OA
Semivolatile Organics + 25 (625)	EPA 625		10/30/13	jessica	EPA 625	10/31/13 16:00	AHD/JB
AL Metals 200.7	EPA 200.2		10/31/13	sean	EPA 200.7	11/1/13 17:45	SRB
AL Metals 200.7	EPA 200.2	7	10/31/13	sean	EPA 200.7	11/1/13 12:35	SRB
AL Metals 200.8	EPA 200.2	•	10/31/13	sean	EPA 200.8	11/4/13 13:54	GK
Volatile Organics + 10 (624)	EPA 624	4			EPA 624	10/30/13 01:24	SG

Lab#: AC75362-009

Sample ID: SD-1-10242013

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	10/28/13 00:00	hossain
Chloride (Soil) 9056A		10/28/13	Janee	EPA 9056A	10/28/13 14:34	Janee
Cyanide (Soil/Waste) 9012B	EPA 9012B	11/01/13	beena	EPA 9012B	11/3/13 20:01	af
Mercury (Soil/Waste) 7471A	EPA 7471B	10/30/13	aadewusi	EPA 7471B	11/1/13 14:01	OA
Semivolatile Organics + 25 (8270)	3510C/3550C	11/04/13	marie	EPA 8270D	11/5/13 12:11	AHD/JB
TAL Metals 6010	3005&10/3050	10/30/13	aadewusi	EPA 6010C	10/31/13 14:15	OA
TAL Metals 6010	3005&10/3050	10/30/13	aadewusi	EPA 6010C	11/1/13 14:47	OA
TAL Metals 6020	3005&10/3050	10/30/13	aadewusi	EPA 6020A	10/31/13 12:41	PC
Volatile Organics + 10 (8260)	EPA5030/5035			EPA 8260C	10/29/13 17:25	SG

Client: HDR

Project: NYSDOT-Harrison

Lab#: AC75362-010

Sample ID: FB-10242013

	Prep		Prep		Analytical	Analysis	
Test Code	Method		Date	Ву	Method	Date	Ву
Chloride (Water) 300.0			10/30/13	Janee	300.0 rev2.1	10/30/13 17:38	Janee
Cyanide-Water (EPA 335.4)	EPA 335.4		10/29/13	Anthony	EPA 335.4	10/29/13 14:54	af
Mercury (Water) 245.1	245.1 rev3.0	ì	10/31/13	sean	245.1 rev3.0	11/2/13 15:31	OA
Semivolatile Organics + 25 (625)	EPA 625		10/30/13	jessica	EPA 625	10/31/13 16:23	AHD/JB
TAL Metals 200.7	EPA 200.2	:	10/31/13	sean	EPA 200.7	11/1/13 12:57	SRB
TAL Metals 200.7	EPA 200.2	4	10/31/13	sean	EPA 200.7	11/1/13 14:59	SRB
TAL Metals 200.7	EPA 200.2		10/31/13	sean	EPA 200.7	11/1/13 18:01	SRB
TAL Metals 200.8	EPA 200.2		10/31/13	sean	EPA 200.8	11/4/13 13:58	GK
Volatile Organics + 10 (624)	EPA 624	1			EPA 624	10/29/13 10:44	SG
		•					

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

*Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- E- Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.

HCV Report Of Analysis

Client: HDR

Project: NYSDOT-Harrison

HCV Project #: 3102513

Sample ID: TB-10242013 Lab#: AC75362-001 Matrix: Aqueous Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/t	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/i	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	: 1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/I	1.0	ND
1,2,4-Trichlorobenzene	1	ug/I	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/I	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	. 1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	. 1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1 .	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	- 1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	۰ ٦	ug/l	1.0	ND
Bromoform	, 1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/i	1.0	ND
Chloroethane		ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	 1		1.0	NDND
Cyclohexane	1	ug/l	1.0	
Dibromochloromethane	1	ug/l		ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene		ug/l	1.0	ND
sopropylbenzene	1	ug/l	1.0	ND
	1	ug/I	1.0	ND
n&p-Xylenes	1	ug/l	1.0	ND
Anthyl Acetate	1	ug/l	1.0	ND
Aethylcyclohexane	1	ug/l	1.0	ND
Aethylene chloride	1	ug/l	1.0	ND
Aethyl-t-butyl ether	1	ug/I	0.50	ND
-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
etrachloroethene	1	ug/l	1.0	ND
oluene	1	ug/I	1.0	ND
rans-1,2-Dichloroethene	1	ug/l	1.0	ND

3102513 0015

Sample ID: TB-10242013 Lab#: AC75362-001 Matrix: Aqueous				Date: 10/24/2013 Date: 10/25/2013
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/ł	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
Volatile Organics + 10 (624) Library Searches				
Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

• • • •

Sample ID: SW-15-10242013 Lab#: AC75362-002 Matrix: Aqueous Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	6.5
Cyanide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND
fercury (Water) 245.1				
Analyte	DF	Units	RL	Result
Mercury	1		0.20	ND
	2	ug/l	0.20	
emivolatile Organics + 25 (625)			· · · · · · · · · · · · · · · · · · ·	
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	: 1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	. 1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	្លុ 1 ្	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/I	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/I	2.0	ND
2,6-Dinitrotoluene	a 1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	१ 1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	: 1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/I	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	· 1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/I	2.0	ND
Acenaphthylene	1	ug/I	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/I	2.0	ND
Atrazine	1	ug/ł	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/I	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND

Lab#: A	W-15-10242013 C75362-002				Collection Date Receipt Date	
Matrix: A	queous					
	Carbazole		1	ug/l	2.0	ND
	Chrysene		1	ug/l	2.0	ND
	Dibenzo[a,h]anthracene		1	ug/l	2.0	ND
	Dibenzofuran		1	ug/l	0.50	ND
	Diethylphthalate		1	ug/l	2.0	ND
	Dimethylphthalate		1	ug/I	2.0	ND
	Di-n-butylphthalate		1	ug/l	0.50	ND
	Di-n-octylphthalate		1	ug/i	2.0	ND
	Fluoranthene		1	ug/i	2.0	ND
	Fluorene		1	ug/l	2.0	ND
	Hexachlorobenzene	÷ :	1	ug/l	2.0	ND
	Hexachlorobutadiene		1	ug/l	2.0	ND
	Hexachlorocyclopentadiene		1	ug/l	2.0	ND
	Hexachloroethane		1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene		1	ug/l	2.0	ND
	Isophorone		1	ug/l	2.0	ND
	Naphthalene	:	1	ug/l	0.50	ND
	Nitrobenzene	5	1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine		1	ug/l	0.50	ND
	N-Nitrosodiphenylamine		1	ug/l	2.0	ND
	Pentachiorophenol		1	ug/l	10	ND
	Phenanthrene		1	ug/l	2.0	ND
	Phenoi		1	ug/l	2.0	ND
	Pyrene		1	ug/i	2.0	ND
Sen	nivolatile Organics + 25 (625) Lil	hrary Searches				
	Analyte		DF	Units	RT	Result
	Hexatriacontane		1	ug/l	11.22	5.9J
	Eicosane		1	ug/l	13.35	8.3J
	Nonadecane		1	ug/l	15.55	4.1J
	2-Propanol, 1-butoxy-		1	ug/l	5.16	15JB
	TotalSemiVolatileTic		1	ug/l	NA	33J
		(ugn.		
1 AL	. Metals 200.7					
				Units	RL	Result
	Analyte		DF			Result
	Aluminum	3	1	ug/I	100	ND
	Aluminum Barium	3		ug/l	100 25	ND ND
	Aluminum Barium Calcium	3	1		100	ND
	Aluminum Barium Calcium Chromium	\$	1 1	ug/l	100 25	ND ND
	Aluminum Barium Calcium Chromium Cobalt	3	1 1 1	ug/I ug/I	100 25 1000	ND ND 43000
	Aluminum Barium Calcium Chromium	3	1 1 1 1	ug/I ug/I ug/I	100 25 1000 25	ND ND 43000 ND
	Aluminum Barium Calcium Chromium Cobalt	3	1 1 1 1 1	ug/I ug/I ug/I ug/I	100 25 1000 25 10	ND ND 43000 ND ND
	Aluminum Barium Calcium Chromium Cobalt Copper	2	1 1 1 1 1 1	ug/I ug/I ug/I ug/I ug/I	100 25 1000 25 10 25	ND ND 43000 ND ND ND
	Aluminum Barium Calclum Chromium Cobalt Copper Iron		1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150	ND ND 43000 ND ND ND 250
	Aluminum Barium Calclum Chromium Cobalt Copper Iron Magnesium	3	1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000	ND ND 43000 ND ND ND 250 14000
	Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese	3	1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25	ND ND 43000 ND ND ND 250 14000 200
	Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel	5	1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 100 25 10	ND ND 43000 ND ND ND 250 14000 200 ND
	Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium		1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500	ND ND 43000 ND ND 250 14000 200 ND 2800
	Aluminum Barium Calclum Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium		1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500 25	ND ND 43000 ND ND 250 14000 200 ND 2800 ND
	Aluminum Barium Calclum Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium Silver		1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500 25 10	ND ND 43000 ND ND 250 14000 200 ND 2800 ND 2800 ND
	Aluminum Barium Calclum Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium Silver Sodium	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500 25 10 2500	ND ND 43000 ND ND 250 14000 200 ND 2800 ND 2800 ND 9500
TAL	Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium Silver Sodium Vanadium		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500 25 10 2500 25	ND ND 43000 ND ND 250 14000 200 ND 2800 ND 2800 ND ND 9500 ND
TAL	Aluminum Barium Calclum Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium Silver Sodium Vanadium Zinc	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500 25 10 2500 25	ND ND 43000 ND ND 250 14000 200 ND 2800 ND 2800 ND ND 9500 ND
TAL	Aluminum Barium Calclum Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium Selenium Silver Sodium Vanadium Zinc Metals 200.8	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 25500 25 10 25500 25 25	ND ND 43000 ND ND 250 14000 200 ND 2800 ND 2800 ND ND 9500 ND ND
TAL	Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium Silver Sodium Vanadium Zinc Metals 200.8 Analyte	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500 25 10 2500 25 25 25	ND ND 43000 ND ND 250 14000 200 ND 2800 ND 2800 ND ND 9500 ND ND 9500 ND ND
TAL	Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Selenium Selenium Silver Sodium Vanadium Zinc Metals 200.8 Analyte Antimony	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	100 25 1000 25 10 25 150 1000 25 10 2500 25 10 2500 25 25 25 25	ND ND 43000 ND ND 250 14000 200 ND 2800 ND 2800 ND 9500 ND ND 9500 ND ND

3102513	0018
---------	------

Lab#: AC	e ID: SW-15-10242013 ab#: AC75362-002 trix: Aqueous		Collection Date: 10/24/2013 Receipt Date: 10/25/2013		
	Lead	1	ug/I	0.75	ND
	Thallium	1	ug/ł	1.5	ND
Vola	ile Organics + 10 (624)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/i	5.0	ND
	1,1,2-Trichloroethane	1	ug/i	1.0	ND
	1,1-Dichloroethane	; 1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/I	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/I	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/i	1.0	ND
	1,2-Dichlorobenzene	1	ug/l	1.0	ND
	1,2-Dichloroethane	1	ug/l	0.50	ND .
	1,2-Dichloropropane	1	ug/l	1.0	ND
	1,3-Dichlorobenzene	1	ug/I	1.0	ND
	1,4-Dichlorobenzene	1	ug/I	1.0	ND .
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	'.· 1	ug/l	1.0	ND
	2-Hexanone	. 1	ug/i	1.0	ND
	4-Methyl-2-pentanone	1	ug/i	1.0	ND
		1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/l	1.0	ND
	Bromodichloromethane	1	ug/l	- 1.0	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	• 1	ug/i	1.0	ND
	Carbon tetrachloride	1	ug/I	1.0	ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chloroethane	1	ug/l	1.0	ND
	Chloroform	1	ug/l	1.0	ND
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/ł	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/I	1.0	ND
	Methylene chloride	1	ug/i	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/i	1.0	ND
	trans-1,3-Dichloropropene	1	ug/i	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/I	1.0	ND
	Vinyl chloride	1	ug/I	1.0	ND

nple ID: SW-15-10242013			Collection	Date: 10/24/2013
Lab#: AC75362-002			Receipt Date: 10/25/2013	
Matrix: Aqueous	ET MI Åbe a se			
Xylenes (Total)	1	ug/l	1.0	ND
Volatile Organics + 10 (624) Library Search	es	1997 - 19		
Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
			NA	ND

Ť

4 • · · · · ·

Sample ID: SW-4-10242013 Lab#: AC75362-003 Matrix: Aqueous

Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Chloride	(Water)	300.0

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	6.5
yanide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND
ercury (Water) 245.1				
Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND
-				
emivolatile Organics + 25 (625)				BH
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	0.51	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenoi	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.51	ND
2-Nitroaniline	1	ug/ł	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	· 1	ug/l	0.51	ND
3,3'-Dichlorobenzidine	. 1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	، 1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/i	2.0	ND
4-Chloroaniline	1	ug/i	0.51	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Childrophenyi-phenyietter	' ' 1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1		2.0	ND
		ug/l	2.0	ND
Acetophenone		ug/l		
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/I	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.51	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND

		an a success de la concessione de la concessión de la concessión de la concessión de la concessión de la conces	
1	ug/l	2.0	ND
· 1	ug/l	2.0	ND
1	ug/l	2.0	ND
1	ug/l	0.51	ND
1	ug/l	2.0	ND
1	ug/l	2.0	ND
1	ug/l	0.51	ND
1	ug/i	2.0	ND
1	ug/l	2.0	ND
1	ug/l	2.0	ND
1	ug/l	2.0	ND
1	ug/I	2.0	ND
1	ug/l	2.0	ND
1	ug/l	2.0	ND
1	ug/l	2.0	ND
1	ug/l	2.0	ND
1	ug/l	0.51	ND
1	ug/l	2.0	ND
1		0.51	ND
1		2.0	ND
1		10	ND
1		2.0	ND
1		2.0	ND
			ND
DF	Units	RT	Result
1	ug/l	5.16	9.5JB
1	ug/l	NA	9.5J
DF	Units	RL	Result
1	ug/l	100	ND
1	ug/l	25	ND
1	ug/l	1000	44000
1	ug/l	25	ND
1	ug/l	10	ND
1	ug/l	25	ND
1	ug/l	150	300
1	ug/l	1000	14000
1		25	230
1		10	ND .
1			2900
	-		ND
			ND
			10000
			ND
1		25	ND
1		£	
1	ug/i		
		RL	Result
DF	Units	RL	Result
DF 1	Units ug/l	2.5	ND
DF 1 1	Units ug/I ug/I	2.5 1.0	ND ND
DF 1	Units ug/l	2.5	ND
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 ug/l 1 ug/l <td< td=""><td>1 ug/l 2.0 1 ug/l 0.51 1 ug/l 2.0 1 ug/l 1.0 <</td></td<>	1 ug/l 2.0 1 ug/l 0.51 1 ug/l 2.0 1 ug/l 1.0 <

Lead

Thallium

ug/l

ug/i

0.75

1.5

1

1

ND

ND

3102513 0022

Sample ID: SW-4-10242013 Lab#: AC75362-003 Matrix: Aqueous

Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile	Organics +	10	(624)
Viaule	Organica ·	10	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/i	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	4 1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	. 1	ug/l	50	ND
2-Butanone	. 1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	. 1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	. 1	ug/l	1.0	ND
Bromodichloromethane	. 1	ug/l	1.0	ND
Bromoform	, 1	ug/l	1.0	ND
Bromomethane	: 1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chioroform	1	ug/l	1.0	ND
Chloromethane	· 1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene		ug/l	1.0	ND
Cyclohexane	. 1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
n&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1		1.0	ND
Methyl-t-butyl ether	1	ug/l ug/l	0.50	ND
p-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Fetrachloroethene	1	ug/l	1.0	ND
Toluene	1		1.0	ND
Irans-1,2-Dichloroethene	1	ug/l	1.0	ND
	1			ND ND
trans-1,3-Dichloropropene		ug/l	1.0	
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND

3102513 0023

Sample ID: SW-4-10242013 Lab#: AC75362-003 Matrix: Aqueous

Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/I	NA	ND

. .

Sample ID: SD-4-10242013 Lab#: AC75362-004 Matrix: Sediment/Encore Collection Date: 10/24/2013 Receipt Date: 10/25/2013

%	Solid	is SN	12540	G

Analyte	DF	Units	RL	Result
% Solids	1	percent	and the second sec	61
nloride (Soil) 9056A	•			
Analyte	DF	Units	RL	Result
Chloride	1	mg/kg	33	ND
vanide (Soil/Waste) 9012B				
Analyte	DF	Units	RL	Result
Cyanide	. 1	mg/kg	0.39	ND
ercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.14	ND
mivolatile Organics + 25 (8270)	•			
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.11	ND
1,2,4,5-Tetrachlorobenzene	° 1	mg/kg	0.11	ND
2,3,4,6-Tetrachlorophenoł	1	mg/kg	0.11	ND
2,4,5-Trichlorophenol	1	mg/kg	0.11	ND
2,4,6-Trichlorophenol	. 1	mg/kg	0.11	ND
2,4-Dichlorophenol	1	mg/kg	0.027	ND
2,4-Dimethylphenol	1	mg/kg	0.027	ND
2,4-Dinitrophenol	. 1	mg/kg	0.55	ND
2,4-Dinitrotoluene	1	mg/kg	0.11	ND
2,6-Dinitrotoluene	1	mg/kg	0.11	ND
2-Chloronaphthalene	1	mg/kg	0.11	ND
2-Chlorophenol	1	mg/kg	0.11	ND
2-Methylnaphthalene	· 1	mg/kg	0.11	ND
2-Methylphenol	1	mg/kg	0.027	ND
2-Nitroaniline	. 1	mg/kg	0.11	ND
2-Nitrophenol	1	mg/kg	0.11	ND
3&4-Methylphenol	1	mg/kg	0.027	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.11	ND
3-Nitroaniline	1	mg/kg	0.11	ND
4,6-Dinitro-2-methylphenol	: 1	mg/kg	0.55	ND
4-Bromophenyl-phenylether	1	mg/kg	0.11	ND
4-Chloro-3-methylphenol	1	mg/kg	0.11	ND
4-Chloroaniline	1	mg/kg	0.052	ND
4-Chiorophenyl-phenylether	1	mg/kg	0.11	ND
4-Nitroaniline	1	mg/kg	0.11	ND
4-Nitrophenol	1	mg/kg	0.11	ND
Acenaphthene	1	mg/kg	0.11	ND
Acenaphthylene	1	mg/kg	0.11	ND
Acetophenone	1	mg/kg	0.11	ND
Anthracene	1	mg/kg	0.11	ND
Atrazine	1	mg/kg	0.11	ND
Benzaldehyde	1	mg/kg	0.11	ND
Benzo[a]anthracene	1	mg/kg	0.11	ND
Benzo[a]pyrene	1	mg/kg	0.11	ND
Benzo[b]fluoranthene	1	mg/kg	0.11	0.13
Benzo[g,h,i]perylene	1	mg/kg	0.11	ND
Benzo[k]fluoranthene	· 1	mg/kg	0.11	ND
bis(2-Chloroethoxy)methane	1	mg/kg	0.11	ND
bis(2-Chloroethyl)ether	1	mg/kg	0.027	ND

Lab#:	SD-4-10242013 AC75362-004 Sediment/Encore					Date: 10/24/2013 Date: 10/25/2013
	bis(2-Chloroisopropyl)ether		1	mg/kg	0.11	ND
	bis(2-Ethylhexyl)phthalate		1	mg/kg	0.11	ND
	Butylbenzylphthalate		1	mg/kg	0.11	ND
	Caprolactam		1	mg/kg	0.11	ND
	Carbazole		1	mg/kg	0.11	ND
	Chrysene		1	mg/kg	0.11	ND
	Dibenzo[a,h]anthracene		1	mg/kg	0.11	ND
	Dibenzofuran		1	mg/kg	0.027	ND
	Diethylphthalate		1	mg/kg	0.11	ND
	Dimethylphthalate		1	mg/kg	0.11	ND
	Di-n-butylphthalate		1	mg/kg	0.055	ND
	Di-n-octylphthalate	. 9	1	mg/kg	0.11	ND
	Fluoranthene		1	mg/kg	0.11	0.14
	Fluorene		1	mg/kg	0.11	ND
	Hexachlorobenzene	:	1	mg/kg	0.11	ND
	Hexachlorobutadiene	5	1	mg/kg	0.11	ND
	Hexachlorocyclopentadiene		1	mg/kg	0.11	ND
	Hexachloroethane	с. К.	1	mg/kg	0.11	ND
	Indeno[1,2,3-cd]pyrene	L	1	mg/kg	0.11	ND
	Isophorone		1	mg/kg	0.11	ND
	Naphthalene		1	mg/kg	0.027 ·	ND
	Nitrobenzene		1	mg/kg	0.11	ND
	N-Nitroso-di-n-propylamine		1	mg/kg	0.027	ND
	N-Nitrosodiphenylamine		1	mg/kg	0.11	ND
	Pentachlorophenol	÷	1	mg/kg	0.55	ND
	Phenanthrene	a	1	mg/kg	0.11	ND
	Phenol	2	1	mg/kg	0.11	ND
	Pyrene	٥	1	mg/kg	0.11	0.16

Semivolatile Organics + 25 (8270) Library Searches

Analyte	DF	Units	RT	Result
unknown	1	mg/kg	12.67	0.57J
Heptacosane	1	mg/kg	13.05	0.80J
Nonacosane	1	mg/kg	13.79	1.6J
Cyclopentane, undecyl-	1	mg/kg	13.83	0.46J
Octadecanal	. 1	mg/kg	14.31	0.71J
Heptadecane, 2,6,10,15-tetramethyl-	1	mg/kg	14.51	0.59J
Vitamin E	1	mg/kg	14.7	1.1J
Cholest-5-en-3-ol (3.beta.)-	1	mg/kg	14.78	0.47J
Hexadecanal	1	mg/kg	15.13	0.51J
unknown	1	mg/kg	15.36	0.67J
Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	15.67	5.6J
unknown	1	mg/kg	15.75	0.43J
3-Chloro-4'-methoxybiphenyl	1	mg/kg	15.79	1.3J
5.ALPHASTIGMAST-3-ONE	1	mg/kg	15.94	0.90J
.betaAmyrin	1	mg/kg	15.98	2.8J
Eremophilene	1	mg/kg	16.05	1.8J
unknown	1	mg/kg	4.16	1.5JB
2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.4	140JAB
Hexadecanoic acid	1	mg/kg	9.97	0.59J
TotalSemiVolatileTic	1	mg/kg	NA	160J
Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	330	5300
Arsenic	1	mg/kg	6.6	ND

Barium

1

mg/kg

16

53

ple ID: SD-4-10242013 Lab#: AC75362-004			Collection Date: Receipt Date:	
Matrix: Sediment/Encore				
Calcium	1	mg/kg	1600	15000
Chromium	1	mg/kg	8.2	11
Cobalt	1	mg/kg	4.1	6.1
Copper	1	mg/kg	8.2	12
Iron	1	mg/kg	330	16000
Lead	1	mg/kg	8.2	20
Magnesium	1	mg/kg	820	9900
Manganese	1	mg/kg	16	1500
Nickel	1	mg/kg	8.2	13
Potassium	1	mg/kg	820	910
Sodium	1	mg/kg	410	ND
Thallium	، 1	mg/kg	2.5	ND
Vanadium	1	mg/kg	16	ND
Zinc	1	mg/kg	16	50
TAL Metals 6020				
	~~~	11		
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	0.33	ND
Beryllium	1	mg/kg	0.33	ND
Cadmium	1	mg/kg	0.66	ND
Selenium	1	mg/kg	3.3	ND
Silver	1	mg/kg	0.33	ND
Volatile Organics + 10 (8260)				
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1.11	mg/kg	0.0036	ND
1,1,2,2-Tetrachloroethane	1.11	mg/kg	0.0036	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1.11	mg/kg	0.0036	ND
1,1,2-Trichloroethane	1.11	mg/kg	0.0036	ND
1,1-Dichloroethane	1.11	mg/kg	0.0036	ND
1,1-Dichloroethene	, 1.11	mg/kg	0.0036	ND
1,2,3-Trichlorobenzene	· 1.11	mg/kg	0.0036	ND
1,2,4-Trichlorobenzene	1.11	mg/kg	0.0036	ND
1,2-Dibromo-3-chloropropane	1.11	mg/kg	0.0036	ND
1,2-Dibromoethane	1.11	mg/kg	0.0036	ND
1,2-Dichlorobenzene	1.11	mg/kg	0.0036	ND
1,2-Dichloroethane	1.11	mg/kg	0.0018	ND
1,2-Dichloropropane				
	1.11	mg/kg	0.0036	ND
1,3-Dichlorobenzene	1.11	mg/kg	0.0036	ND
1,4-Dichlorobenzene	1.11	mg/kg	0.0036	ND
1,4-Dioxane	1.11	mg/kg	0.18	ND
2-Butanone	1.11	mg/kg	0.0036	ND
2-Hexanone	1.11	mg/kg	0.0036	ND
4-Methyl-2-pentanone	1.11	mg/kg	0.0036	ND
Acetone	1.11	mg/kg	0.018	ND
Benzene	1.11	mg/kg	0.0018	ND
Bromochloromethane	1.11	mg/kg	0.0036	ND
Bromodichloromethane	1.11	mg/kg	0.0036	ND
Bromoform	1.11	mg/kg	0.0036	ND
Bromomethane	1.11	mg/kg	0.0036	ND
Carbon disulfide	1.11	mg/kg	0.0036	ND
Carbon tetrachloride	1.11	mg/kg	0.0036	ND
Chlorobenzene	1.11	mg/kg	0.0036	ND
Chloroethane	1.11	mg/kg	0.0036	ND
Chloroform	1.11	mg/kg	0.0036	ND
Chloromethane	1.11	mg/kg	0.0036	ND

Sample ID: SD-4-10242013 Lab#: AC75362-004 Matrix: Sediment/Encore

iment/Encore					
cis-1,3-Dichloropropene		1.11	mg/kg	0.0036	ND
Cyclohexane		1.11	mg/kg	0.0036	ND
Dibromochloromethane		1.11	mg/kg	0.0036	ND
Dichlorodifluoromethane		1.11	mg/kg	0.0036	ND
Ethylbenzene		1.11	mg/kg	0.0018	ND
Isopropylbenzene		1.11	mg/kg	0.0018	ND
m&p-Xylenes		1.11	mg/kg	0.0018	ND
Methyl Acetate		1.11	mg/kg	0.0036	ND
Methylcyclohexane		1.11	mg/kg	0.0036	ND
Methylene chloride		1.11	mg/kg	0.0036	ND
Methyl-t-butyl ether		1.11	mg/kg	0.0018	ND
o-Xylene		1.11	mg/kg	0.0018	ND
Styrene	τ	1.11	mg/kg	0.0036	ND
Tetrachloroethene		1.11	mg/kg	0.0036	ND
Toluene		1.11	mg/kg	0.0018	ND
trans-1,2-Dichloroethene		1.11	mg/kg	0.0036	ND
trans-1,3-Dichloropropene		1.11	mg/kg	0.0036	ND
Trichloroethene		1.11	mg/kg	0.0036	ND
Trichlorofluoromethane		1.11	mg/kg	0.0036	ND
Vinyl chloride		1.11	mg/kg	0.0036	ND
Xylenes (Total)	*	1.11	mg/kg	0.0018	ND

Volatile Organics + 10 (8260) Library Searches

Analyte	-	DF	Units	RT	Result	
unknown		1.11	mg/kg	7.59	0.021JB	
unknown		1.11	mg/kg	9.28	0.022JB	
unknown		1.11	mg/kg	9.33	0.012JB	
TotalVolatileTic	1	1.11	mg/kg	NA	0.055J	

Sample ID: SW-2-10242013 Lab#: AC75362-005 Matrix: Aqueous

Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Ch	loride	(Water)	300.0

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	6.6
anide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND
ercury (Water) 245.1				
Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND
mivolatile Organics + 25 (625)	ar N			
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/i	2.0	ND
2,3,4,6-Tetrachlorophenol	· 1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1		0.50	ND
	1	ug/ł	10	
2,4-Dinitrophenol		ug/I		ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	. 1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	. 1	ug/l	2.0	ND
2-Methylnaphthalene	· 1	ug/l	2.0	ND
2-Methylphenol	. 1	ug/l	0.50	ND
2-Nitroaniline	· 1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	¹ 1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	, <b>1</b>	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/I	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	÷ 1	ug/i	0.50	ND
4-Chlorophenyl-phenylether	· . 1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/I	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	· · · · · · · · · · · · · · · · · · ·	ug/l	2.0	ND
Benzo[a]pyrene	1			
		ug/i	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/I	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/I	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/i	2.0	ND

	SW-2-10242013 AC75362-005			Collection Date: Receipt Date:	
	Aqueous				
	Carbazole	1	ug/i	2.0	ND
	Chrysene	1	ug/l	2.0	ND
	Dibenzo[a,h]anthracene	1	ug/i	2.0	ND
	Dibenzofuran	1	ug/l	0.50	ND
	Diethylphthalate	1	ug/l	2.0	ND
	Dimethylphthalate	1	ug/l	2.0	ND
	Di-n-butylphthalate	1	ug/l	0.50	ND
	Di-n-octylphthalate	1	ug/l	2.0	ND
	Fluoranthene	1	ug/l	2.0	ND
	Fluorene	1	ug/l	2.0	ND
	Hexachlorobenzene	1	ug/l	2.0	ND
	Hexachlorobutadiene	1	ug/l	2.0	ND
	Hexachlorocyclopentadiene	. 1	ug/l	10	ND
	Hexachloroethane	1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene	1			ND
	Isophorone	1	ug/l	2.0	ND
			ug/ł		
	Naphthalene	1	ug/l	0.50	ND
	Nitrobenzene	• 1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND
	N-Nitrosodiphenylamine	1	ug/l	2.0	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.0	ND
	Phenol	· 1	ug/l	2.0	ND
	Pyrene	: 1	ug/l	2.0	ND
Se	emivolatile Organics + 25 (625) Library S	Searches			
	Analyte	DF	Units	RT	Result
	2-Propanol, 1-butoxy-	1	ug/l	5.14	9.8JB
	TotalSemiVolatileTic	1	ug/l	NA	9.8J
TA	AL Metals 200.7				
_	Analyte	DF	Units	RL	Result
	Aluminum	: 1	ug/l	100	ND
	Barium	1	ug/l	25	ND
	Calcium	1	ug/l	1000	43000
	Chromium	1	ug/l	25	ND
	Cobalt	1	ug/l	10	ND
	Copper	1	ug/l	25	ND
	Iron	1	ug/l	150	520
	Magnesium	1	-	1000	14000
	Maganese		ug/l	25	
		1	ug/l		340
	Nickel	1	ug/l	10	ND
	Potassium	1	ug/l	2500	3000
	Selenium	1	ug/l	25	ND
	Silver	1	ug/l	10	ND
	Sodium	. 1	ug/ł	2500	9700
	Vanadium	1	ug/l	25	ND
	Zinc	1	ug/l	25	ND
TA	AL Metals 200.8				
	Analyte	DF	Units	RL	Result
	Antimony	1	ug/I	2.5	ND
				10	ND
	Arsenic	1	ug/l	1.0	ND
	Arsenic Beryllium	1	ug/l	0.75	ND

Cadmium

Thallium

Lead

ug/l

ug/l

ug/l

1.0

0.75

1.5

1

1

1

ND

1.9

ND

#### Sample ID: SW-2-10242013 Lab#: AC75362-005 Matrix: Aqueous

_

#### Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile	Organics ·	+ 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/I	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	: 1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	, 1	ug/l	0.50	ND
1,2-Dichloropropane	- 1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/i	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	, 1	ug/l	1.0	ND
2-Hexanone	1	ug/i	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	· 1	ug/l	10	ND
Benzene	. 1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane		ug/l	1.0	ND
Carbon disulfide	: 1	ug/i	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	· 1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	. 1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1		1.0	
Cyclohexane		ug/l	1.0	ND ND
Dibromochloromethane	1	ug/l		
	• 1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/1	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/ł	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/i	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/I	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/i	1.0	ND
trans-1,3-Dichloropropene	1	ng/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/I	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND

#### Sample ID: SW-2-10242013 Lab#: AC75362-005 Matrix: Aqueous

#### Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: SD-2-10242013 Lab#: AC75362-006 Matrix: Sediment/Encore Collection Date: 10/24/2013 Receipt Date: 10/25/2013

#### % Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		74
loride (Soil) 9056A				
Analyte	 DF	Units	RL	Result
Chloride	1	mg/kg	27	ND
anide (Soil/Waste) 9012B				A
Analyte	DF	Units	RL	Result
Cyanide	1	mg/kg	0.32	ND
ercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.11	ND

#### Semivolatile Organics + 25 (8270)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	mg/kg	0.045	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.045	ND
2,3,4,6-Tetrachlorophenol	្ម៍ 1	mg/kg	0.045	ND
2,4,5-Trichlorophenol	‡ 1	mg/kg	0.045	ND
2,4,6-Trichlorophenol	1	mg/kg	0.045	ND
2,4-Dichlorophenol	1	mg/kg	0.011	ND
2,4-Dimethylphenol	1	mg/kg	0.011	ND
2,4-Dinitrophenol	1	mg/kg	0.23	ND
2,4-Dinitrotoluene	1	mg/kg	0.045	ND
2,6-Dinitrotoluene	1	mg/kg	0.045	ND
2-Chloronaphthalene	[,] 1	mg/kg	0.045	ND
2-Chlorophenol	. 1	mg/kg	0.045	ND
2-Methylnaphthalene	1	mg/kg	0.045	ND
2-Methylphenol	1	mg/kg	0.011	ND
2-Nitroaniline	1	mg/kg	0.045	ND
2-Nitrophenol	1	mg/kg	0.045	ND
3&4-Methylpheno!	1	mg/kg	0.011	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.045	ND
3-Nitroaniline	1	mg/kg	0.045	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.23	ND
4-Bromophenyl-phenylether	1	mg/kg	0.045	ND
4-Chloro-3-methylphenol	1	mg/kg	0.045	ND
4-Chloroaniline	1	mg/kg	0.021	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.045	ND
4-Nitroaniline	1	mg/kg	0.045	ND
4-Nitrophenol	1	mg/kg	0.045	ND
Acenaphthene	1	mg/kg	0.045	ND
Acenaphthylene	1	mg/kg	0.045	ND
Acetophenone	1	mg/kg	0.045	ND
Anthracene	1	mg/kg	0.045	ND
Atrazine	1	mg/kg	0.045	ND
Benzaldehyde	1	mg/kg	0.045	ND
Benzo[a]anthracene	1	mg/kg	0.045	ND
Benzo[a]pyrene	1	mg/kg	0.045	ND
Benzo[b]fluoranthene	1	mg/kg	0.045	ND
Benzo[g,h,i]perylene	1	mg/kg	0.045	ND
Benzo[k]fluoranthene	1	mg/kg	0.045	ND
bis(2-Chloroethoxy)methane	1	mg/kg	0.045	ND
bis(2-Chloroethyl)ether	1	mg/kg	0.011	ND

Lab#:	SD-2-10242013 AC75362-006 Sediment/Encore					Date: 10/24/2013 Date: 10/25/2013
	bis(2-Chloroisopropyl)ether		1	mg/kg	0.045	ND
	bis(2-Ethylhexyl)phthalate		1	mg/kg	0.045	0.055
	Butylbenzylphthalate		1	mg/kg	0.045	ND
	Caprolactam		1	mg/kg	0.045	ND
	Carbazole		1	mg/kg	0.045	ND
	Chrysene		1	mg/kg	0.045	ND
	Dibenzo[a,h]anthracene		1	mg/kg	0.045	ND
	Dibenzofuran		1	mg/kg	0.011	ND
	Diethylphthalate		1	mg/kg	0.045	ND
	Dimethylphthalate		1	mg/kg	0.045	ND
	Di-n-butylphthalate		1	mg/kg	0.023	0.023
	Di-n-octylphthalate		1	mg/kg	0.045	ND
	Fluoranthene	-	1	mg/kg	0.045	ND
	Fluorene		1	mg/kg	0.045	ND
	Hexachlorobenzene		1	mg/kg	0.045	ND
	Hexachlorobutadiene		1	mg/kg	0.045	ND
	Hexachlorocyclopentadiene		1	mg/kg	0.045	ND
	Hexachloroethane		1	mg/kg	0.045	ND
	Indeno[1,2,3-cd]pyrene	3	1	mg/kg	0.045	ND
	Isophorone	2	1	mg/kg	0.045	ND
	Naphthalene	· · · · · · · · · · · · · · · · · · ·	1	mg/kg	0.011	ND
	Nitrobenzene		1	mg/kg	0.045	ND
	N-Nitroso-di-n-propylamine		1	mg/kg	0.011	ND
	N-Nitrosodiphenylamine		1	mg/kg	0.045	ND
	Pentachlorophenol		1	mg/kg	0.23	ND
	Phenanthrene		1	mg/kg	0.045	ND
	Phenol		1	mg/kg	0.045	ND
	Pyrene		1	mg/kg	0.045	ND

Semivolatile Organics + 25 (8270) Library Searches

Analyte	DF	Units	RT	Result
2-Hexadecen-1-ol, 3,7,11,15-tetramethyl	1	mg/kg	11.09	0.31J
unknown	1	mg/kg	12.71	0.28J
Heptacosane	1	mg/kg	13.05	0.78J
Cyclopentane, 1-pentyl-2-propyl-	1	mg/kg	13.4	0.28J
Octadecanal	1	mg/kg	13.56	0.36J
Nonacosane	1	mg/kg	13.77	0.84J
Octadecanal	1	mg/kg	14.29	0.32J
unknown	1	mg/kg	14.57	0.40J
Vitamin E	1	mg/kg	14.67	0.45J
Cholest-5-en-3-ol (3.beta.)-	1	mg/kg	14.76	0.28J
Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	15.64	1.2J
unknown	1	mg/kg	15.76	0.33J
5.ALPHASTIGMAST-3-ONE	1	mg/kg	15.91	0.25J
Olean-12-ene	1	mg/kg	16.03	0.32J
unknown	1	mg/kg	3.54	0.27J
unknown	1	mg/kg	4.18	1.2JB
2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.43	110JAB
unknown	1	mg/kg	4.92	0.26JB
2-Propanol, 1-butoxy-	1	mg/kg	5.08	0.24JB
1,2,3-Propanetriol, triacetate	1	mg/kg	7.1	0.52J
TotalSemIVolatileTic	1	mg/kg	NA	120J
Netals 6010			The second s	
Analyte	DF	Units	RL	Result
Atuminum	1	mg/kg	270	5900
Arsenic	1	mg/kg	5.4	ND

Sample

mple ID: SD-2-10242013				Date: 10/24/2013
Lab#: AC75362-006 Matrix: Sediment/Encore			Receipt	Date: 10/25/2013
Barlum	1	mg/kg	14	87
Calcium	1	mg/kg	1400	31000
Chromium	1	mg/kg	6.8	7.8
Cobalt	1	mg/kg	3.4	6.2
Copper	1	mg/kg	6.8	13
Iron	1	mg/kg	270	20000
Lead	1	mg/kg	6.8	12
Magnesium	1	mg/kg	680	20000
Manganese	1	mg/kg	14	2500
Nickel	1	mg/kg	6.8	11
Potassium	1	mg/kg	680	990
Sodium	1	mg/kg	340	ND
Thallium	1	mg/kg	2.0	ND
Vanadium	1	mg/kg	14	16
Zinc	1	mg/kg	14	52
TAL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	0.27	ND .
Beryllium	1	mg/kg	0.27	ND
Cadmium	1	mg/kg	0.54	ND
Selenium	1	mg/kg	2.7	ND
Silver	1	mg/kg	0.27	ND
Volatile Organics + 10 (8260)				
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	mg/kg	0.0027	ND
1,1,2,2-Tetrachloroethane	1	mg/kg	0.0027	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	mg/kg	0.0027	ND
1,1,2-Trichloroethane	1	mg/kg	0.0027	ND
1,1-Dichloroethane		mg/kg	0.0027	ND
1,1-Dichloroethene	1	mg/kg	0.0027	ND
1,2,3-Trichlorobenzene	1	mg/kg	0.0027	ND
1,2,4-Trichlorobenzene	1	mg/kg	0.0027	ND
	1		0.0027	ND ND
1,2-Dibromo-3-chloropropane	1	mg/kg	0.0027	ND
1,2-Dibrombernane		mg/kg	0.0027	
	1 1	mg/kg	0.0027	ND
1,2-Dichloroethane		mg/kg		ND
1,2-Dichloropropane	1	mg/kg	0.0027	ND
1,3-Dichlorobenzene	1	mg/kg	0.0027	ND
1,4-Dichlorobenzene	1	mg/kg	0.0027	ND
1,4-Dioxane	1	mg/kg	0.14	ND
2-Butanone	1	mg/kg	0.0027	ND
2-Hexanone	1	mg/kg	0.0027	ND
4-Methyl-2-pentanone	1	mg/kg	0.0027	ND
Acetone	1	mg/kg	0.014	ND
Benzene	1	mg/kg	0.0014	ND
Bromochloromethane	1	mg/kg	0.0027	ND
Bromodichloromethane	1	mg/kg	0.0027	ND
Bromoform	1	mg/kg	0.0027	ND
Bromomethane	1	mg/kg	0.0027	ND
Carbon disulfide	1	mg/kg	0.0027	ND
Carbon tetrachloride	1	mg/kg	0.0027	ND
Chlorobenzene	1	mg/kg	0.0027	ND
Chioroethane	1	mg/kg	0.0027	ND
	4	malka	0.0027	ND
Chloroform	1	mg/kg	0.0027	ND

Lab#:	SD-2-10242013 AC75362-006 Sediment/Encore				Date: 10/24/2013 Date: 10/25/2013
	cis-1,2-Dichloroethene	1	mg/kg	0.0027	ND
	cis-1,3-Dichloropropene	1	mg/kg	0.0027	ND
	Cyclohexane	1	mg/kg	0.0027	ND
	Dibromochloromethane	1	mg/kg	0.0027	ND
	Dichlorodifluoromethane	1	mg/kg	0.0027	ND
	Ethylbenzene	1	mg/kg	0.0014	ND
	Isopropylbenzene	1	mg/kg	0.0014	ND
	m&p-Xylenes	1	mg/kg	0.0014	ND
	Methyl Acetate	1	mg/kg	0.0027	ND
	Methylcyclohexane	· 1	mg/kg	0.0027	ND
	Methylene chloride	1	mg/kg	0.0027	ND
	Methyl-t-butyl ether	1	mg/kg	0.0014	ND
	o-Xylene	1	mg/kg	0.0014	ND
	Styrene	· 1	mg/kg	0.0027	ND
	Tetrachloroethene	1	mg/kg	0.0027	ND
	Toluene	1	mg/kg	0.0014	ND
	trans-1,2-Dichloroethene	1	mg/kg	0.0027	ND
	trans-1,3-Dichloropropene	· 1	mg/kg	0.0027	ND
	Trichloroethene	1	mg/kg	0.0027	ND
	Trichlorofluoromethane	1	mg/kg	0.0027	ND
	Vinyl chloride	1	mg/kg	0.0027	ND
	Xylenes (Total)	1	mg/kg	0.0014	ND

#### Volatile Organics + 10 (8260) Library Searches

Analyte	DF	Units	RT	Result
unknown	1	mg/kg	7.6	0.013JB
unknown	1	mg/kg	9.28	0.014JB
TotalVolatileTic	1	mg/kg	NA	0.027J

Sample ID:	SD-3-10242013
Lab#:	AC75362-007
Matrix:	Sediment/Encore

Collection Date: 10/24/2013 Receipt Date: 10/25/2013

rix:	Sed	iment/Encore	

Analyte		DF	Units	RL	Result
% Solids		1	percent		80
loride (Soil) 9056A					
Analyte		DF	Units	RL	Result
Chloride		1.	mg/kg	25	29
anide (Soil/Waste) 9012B					
Analyte		DF	Units	RL	Result
Cyanide		1	mg/kg	0.30	ND
ercury (Soil/Waste) 7471A					
Analyte	•	DF	Units	RL	Result

#### Semivolatile Organics + 25 (8270)

Analyte		DF	Units	RL	Result
1,1'-Biphenyl		1	mg/kg	0.083	ND
1,2,4,5-Tetrachlorobenzene		1	mg/kg	0.083	ND
2,3,4,6-Tetrachlorophenol	4	1	mg/kg	0.083	ND
2,4,5-Trichlorophenol		1	mg/kg	0.083	ND
2,4,6-Trichlorophenol	· · · · · · · · · · · · · · · · · · ·	1	mg/kg	0.083	ND
2,4-Dichlorophenol		1	mg/kg	0.021	ND
2,4-Dimethylphenol		1	mg/kg	0.021	ND
2,4-Dinitrophenol		1	mg/kg	0.42	ND
2,4-Dinitrotoluene		1	mg/kg	0.083	ND
2,6-Dinitrotoluene		1	mg/kg	0.083	ND
2-Chioronaphthalene		1	mg/kg	0.083	ND
2-Chlorophenol		1	mg/kg	0.083	ND
2-Methylnaphthalene		1	mg/kg	0.083	ND
2-Methylphenol		1	mg/kg	0.021	ND
2-Nitroaniline		1	mg/kg	0.083	ND
2-Nitrophenol		1	mg/kg	0.083	ND
3&4-Methylphenol		1	mg/kg	0.021	ND
3,3'-Dichlorobenzidine	,	1	mg/kg	0.083	ND
3-Nitroaniline		1	mg/kg	0.083	ND
4,6-Dinitro-2-methylphenol		1	mg/kg	0.42	ND
4-Bromophenyl-phenylether		1	mg/kg	0.083	ND
4-Chloro-3-methylphenol		1	mg/kg	0.083	ND
4-Chloroaniline		1	mg/kg	0.040	ND
4-Chlorophenyl-phenylether		1	mg/kg	0.083	ND
4-Nitroaniline		1	mg/kg	0.083	ND
4-Nitrophenol		1	mg/kg	0.083	ND
Acenaphthene		1	mg/kg	0.083	0.085
Acenaphthylene		1	mg/kg	0.083	ND
Acetophenone		1	mg/kg	0.083	ND
Anthracene		1	mg/kg	0.083	0.14
Atrazine		1	mg/kg	0.083	ND
Benzaldehyde		1	mg/kg	0.083	0.28
Benzo[a]anthracene		1	mg/kg	0.083	0.75
Benzo[a]pyrene		1	mg/kg	0.083	0.65
Benzo[b]fluoranthene		1	mg/kg	0.083	1.1
Benzo[g,h,i]perylene		1	mg/kg	0.083	0.49
Benzo[k]fluoranthene		1	mg/kg	0.083	0.32
bis(2-Chloroethoxy)methane		1	mg/kg	0.083	ND
bis(2-Chloroethyl)ether		1	mg/kg	0.021	ND

Lab#:	SD-3-10242013 AC75362-007 Sediment/Encore					Date: 10/24/2013 Date: 10/25/2013
	bis(2-Chloroisopropyl)ether		1	mg/kg	0.083	ND
	bis(2-Ethylhexyl)phthalate		1	mg/kg	0.083	0.12
	Butylbenzylphthalate		1	mg/kg	0.083	ND
	Caprolactam		1	mg/kg	0.083	ND
	Carbazole		1	mg/kg	0.083	0.11
	Chrysene		1	mg/kg	0.083	0.80
	Dibenzo[a,h]anthracene		1	mg/kg	0.083	0.15
	Dibenzofuran		1	mg/kg	0.021	ND
	Diethylphthalate		1	mg/kg	0.083	ND
	Dimethylphthalate		1	mg/kg	0.083	ND
	Di-n-butylphthalate		1	mg/kg	0.042	0.046
	Di-n-octylphthalate	*	1	mg/kg	0.083	ND
	Fluoranthene		1	mg/kg	0.083	1.3
	Fluorene		1	mg/kg	0.083	ND
	Hexachlorobenzene		1	mg/kg	0.083	ND
	Hexachlorobutadiene	-	1	mg/kg	0.083	ND
	Hexachlorocyclopentadiene	t	1	mg/kg	0.083	ND
	Hexachloroethane		1	mg/kg	0.083	ND
	Indeno[1,2,3-cd]pyrene		1	mg/kg	0.083	0.45
	Isophorone		1	mg/kg	0.083	ND
	Naphthalene		1	mg/kg	0.021	ND
	Nitrobenzene		1	mg/kg	0.083	ND
	N-Nitroso-di-n-propylamine		1	mg/kg	0.021	ND
	N-Nitrosodiphenylamine		1	mg/kg	0.083	ND
	Pentachiorophenol		1	mg/kg	0.42	ND
	Phenanthrene	1	1	mg/kg	0.083	0.66
	Phenol	i.	1	mg/kg	0.083	ND
	Pyrene		1	mg/kg	0.083	1.2

#### Semivolatile Organics + 25 (8270) Library Searches

Analyte	DF	Units	RT	Result
unknown	· 1	mg/kg	10.8	0.58J
unknown	. 1	mg/kg	12.71	1.0J
Chrysene, 1-methyl-	. 1	mg/kg	12.84	0.33J
10-DEMETHYLSQUALENE	1	mg/kg	13.48	0.41J
Nonadecane	; 1	mg/kg	13.78	0.68J
Benzo[e]pyrene	1	mg/kg	13.87	0.77J
Octadecane	1	mg/kg	14.49	0.44J
Vitamin E	1	mg/kg	14.68	0.33J
Cholest-5-en-3-ol (3.beta.)-	1	mg/kg	14.76	0.39J
unknown	1	mg/kg	14.94	0.56J
unknown	1	mg/kg	15.35	0.74J
Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	15.65	2.2J
(24S)-5.ALPHAERGOSTAN-3-ONE	1	mg/kg	15.92	0.46J
unknown	1	mg/kg	15.96	0.38J
unknown	1	mg/kg	16.01	0.45J
unknown	1	mg/kg	3.53	0.32J
unknown	1	mg/kg	4.16	1.1JB
2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.4	100JAB
(+-)-15-Hexadecanolide	1	mg/kg	9.89	0.56J
unknown	1	mg/kg	9.93	0.35J
TotalSemiVolatileTic	1	mg/kg	NA	110J
Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	250	11000
Arsenic	1	mg/kg	5.0	ND

nple ID: SD-3-10242013 Lab#: AC75362-007			Collection Date: Receipt Date:	
Matrix: Sediment/Encore			noooipt bato.	10/20/2010
Barium	1	mg/kg	12	66
Calcium	1	mg/kg	1200	19000
Chromium	1	mg/kg	6.2	20
Cobalt	1	mg/kg	3.1	10
Copper	1	mg/kg	6.2	35
kon	1	mg/kg	250	23000
Lead	1	mg/kg	6.2	270
Magnesium	1	mg/kg	620	14000
Manganese	1	mg/kg	12	700
Nicket	1	mg/kg	6.2	22
Potassium	1	mg/kg	620	1500
Sodium	1	mg/kg	310	ND
Thallium	1	mg/kg	1.9	ND
Vanadium	1	mg/kg	12	28
Zinc	1	mg/kg	12	190
TAL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	0.25	ND
Beryllium	1	mg/kg	0.25	0.25
Cadmium	1	mg/kg	0.50	2.5
Selenium	1	mg/kg	2.5	ND
Silver	1	mg/kg	0.25	ND
Volatile Organics + 10 (8260)	,			
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1.01	mg/kg	0.0025	ND
1,1,2,2-Tetrachloroethane	1.01	mg/kg	0.0025	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	. 1.01	mg/kg	0.0025	ND
1,1,2-Trichloroethane	1.01	mg/kg	0.0025	ND
1,1-Dichloroethane	1.01	mg/kg	0.0025	ND
1,1-Dichloroethene	1.01	mg/kg	0.0025	ND
1,2,3-Trichlorobenzene	1.01	mg/kg	0.0025	ND
1,2,4-Trichlorobenzene	1.01	mg/kg	0.0025	ND
1,2-Dibromo-3-chloropropane	1.01	mg/kg	0.0025	ND
1,2-Dibromoethane	1.01	mg/kg	0.0025	ND
1,2-Dichlorobenzene	. 1.01	mg/kg	0.0025	ND
1,2-Dichloroethane	. t 1.01	mg/kg	0.0013	ND
1,2-Dichloropropane	1.01	mg/kg	0.0025	ND
1,3-Dichlorobenzene	1.01	mg/kg	0.0025	ND
1,4-Dichlorobenzene	1.01	mg/kg	0.0025	ND
1,4-Dioxane	1.01	mg/kg	0.13	ND
2-Butanone	1.01	mg/kg	0.0025	ND
2-Hexanone	1.01	mg/kg	0.0025	ND
4-Methyl-2-pentanone	1.01	mg/kg	0.0025	ND
Acetone	1.01	mg/kg	0.013	ND
Benzene	1.01	mg/kg	0.0013	ND
Bromochloromethane	1.01	mg/kg	0.0025	ND
Bromodichloromethane	1.01	mg/kg	0.0025	ND
Bromoform	1.01	mg/kg	0.0025	ND
Bromomethane	1.01	mg/kg	0.0025	ND
Carbon disulfide	1.01	mg/kg	0.0025	ND
Carbon tetrachloride	1.01	mg/kg	0.0025	ND
Chlorobenzene	1.01	mg/kg	0.0025	ND
Chloroethane	1.01	mg/kg	0.0025	ND
Chloroform	1.01	mg/kg	0.0025	ND
			0.0025	ND

Sample ID: SD-3-10242013 Lab#: AC75362-007 Matrix: Sediment/Encore

diment/Encore				
cis-1,2-Dichloroethene	1.01	mg/kg	0.0025	ND
cis-1,3-Dichloropropene	1.01	mg/kg	0.0025	ND
Cyclohexane	1.01	mg/kg	0.0025	ND
Dibromochloromethane	1.01	mg/kg	0.0025	ND
Dichlorodifluoromethane	1.01	mg/kg	0.0025	ND .
Ethylbenzene	1.01	mg/kġ	0.0013	ND
Isopropylbenzene	1.01	mg/kg	0.0013	ND
m&p-Xylenes	1.01	mg/kg	0.0013	ND
Methyl Acetate	1.01	mg/kg	0.0025	ND
Methylcyclohexane	. 1.01	mg/kg	0.0025	ND
Methylene chloride	1.01	mg/kg	0.0025	ND
Methyl-t-butyl ether	1.01	mg/kg	0.0013	ND
o-Xylene	1.01	mg/kg	0.0013	ND
Styrene	1.01	mg/kg	0.0025	ND
Tetrachloroethene	1.01	mg/kg	0.0025	ND
Toluene	1.01	mg/kg	0.0013	ND
trans-1,2-Dichloroethene	1.01	mg/kg	0.0025	ND
trans-1,3-Dichloropropene	1.01	mg/kg	0.0025	ND
Trichloroethene	1.01	mg/kg	0.0025	ND
Trichlorofluoromethane	1.01	mg/kg	0.0025	ND
Vinyl chloride	1.01	mg/kg	0.0025	ND
Xylenes (Total)	1.01	mg/kg	0.0013	ND

#### Volatile Organics + 10 (8260) Library Searches

Analyte		DF	Units	RT	Result
1-Dodecen-3-yne		1.01	mg/kg	6.14	0.013J
unknown		1.01	mg/kg	6.51	0.0075J
THUJENE		1.01	mg/kg	6.6	0.020J
unknown	-	1.01	mg/kg	6.9	0.0089J
2BETAPINENE		1.01	mg/kg	6.95	0.045J
Benzene, 1-methyl-4-(1-methylethyl)-		1.01	mg/kg	7.27	0.031J
unknown		1.01	mg/kg	9.28	0.013JB
TotalVolatileTic		1.01	mg/kg	NA	0.14J

Sample ID: SW-1-10242013 Lab#: AC75362-008 Matrix: Aqueous

Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Result

Result

Result

ND

ND

6.3

Chl	oride (Water) 300.0	
	Analyte	
	Chloride	
-		
Суа	nide-Water (EPA 335.4)	
Cya	Analyte	
Cya		
	Analyte	1

#### Semivolatile Organics + 25 (625)

Mercury

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	° 1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/I	2.0	ND
2,3,4,6-Tetrachlorophenol	· · 1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/I	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	. 1	ug/l	0.50	ND
2,4-Dinitrophenol	i <b>1</b>	ug/l	10	ND
2,4-Dinitrotoluene	· į 1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	. 1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	. 1	ug/l	2.0	ND
3&4-Methylphenol		ug/l	0.50	ND
3,3'-Dichlorobenzidine	, 1	ug/l	2.0	ND
3-Nitroaniline	, 1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	е 1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/I	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/I	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/i	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/I	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND

DF

1

DF

1

DF

1

Units

Units

Units

ug/i

mg/l

mg/l

RL

2.0

RL

0.020

RL

0.20

.ab#:	SW-1-10242013 AC75362-008				Date: 10/24/2013 Date: 10/25/2013
atrix:	Aqueous				
	Carbazole	1	ug/l	2.0	ND
	Chrysene	. 1	ug/l	2.0	ND
	Dibenzo[a,h]anthracene	1	ug/I	2.0	ND
	Dibenzofuran	<b>1</b>	ug/l	0.50	ND
	Diethylphthalate	1	ug/ł	2.0	ND
	Dimethylphthalate	1	ug/l	2.0	ND
	Di-n-butylphthalate	1	ug/l	0.50	ND
	Di-n-octylphthalate	1	ug/l	2.0	ND
	Fluoranthene	. 1	ug/l	2.0	ND
	Fluorene	. 1	ug/l	2.0	ND
	Hexachlorobenzene	1	ug/l	2.0	ND
	Hexachlorobutadiene	: 1	ug/l	2.0	ND
	Hexachlorocyclopentadiene	<b>1</b>	ug/l	10	ND
	Hexachloroethane	: 1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
	Isophorone	; 1	ug/l	2.0	ND
	Naphthalene	÷ 1	ug/l	0.50	ND
	Nitrobenzene	1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND
	N-Nitrosodiphenylamine	1	ug/l	2.0	ND
	Pentachlorophenol	· 1	ug/l	10	ND
	Phenanthrene	1	ug/ł	2.0	ND
	Phenol	1	ug/l ug/l	2.0 2.0	ND ND
•	Semivolatile Organics + 25 (625) Library S				
-	Analyte	DF	Units	RT	Result
-	Analyte 2-Propanol, 1-butoxy-	DF 1	ug/l	5.14	7.4JB
_	Analyte	DF	***		
-	Analyte 2-Propanol, 1-butoxy-	DF 1	ug/l	5.14	7.4JB
	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic	DF 1	ug/l	5.14	7.4JB
1	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7	DF 1 1	ug/i ug/i	5.14 NA	7.4JB 7.4J
-	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte	DF 1 1 DF	ug/l ug/l Units	5.14 NA RL	7.4JB 7.4J Result
	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum	DF 1 1 1 DF 1	ug/I ug/I Units ug/I	5.14 NA <b>RL</b> 100	7.4JB 7.4J Result ND
- -	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic [AL Metals 200.7 Analyte Aluminum Barium	DF 1 1 1 DF 1 1	ug/l ug/l Units ug/l ug/l	5.14 NA RL 100 25	7.4JB 7.4J Result ND 36
-	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium	DF 1 1 1 1 1 1 1	ug/l ug/l Units ug/l ug/l ug/l	5.14 NA RL 100 25 1000	7.4JB 7.4J Result ND 36 45000
1	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium	DF 1 1 1 1 1 1 1 1	ug/l ug/l Units ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25	7.4JB 7.4J Result ND 36 45000 ND
-	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt	DF 1 1 1 1 1 1 1 1 1 1	ug/l ug/ł Units ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10	7.4JB 7.4J Result ND 36 45000 ND ND
-	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Copper	DF 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l Units ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25	7.4JB 7.4J Result ND 36 45000 ND ND ND ND
- - -	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA 100 25 1000 25 10 25 10 25 150	7.4JB 7.4J Result ND 36 45000 ND ND ND ND ND 1900
-	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 10 25 150 1000	7.4JB 7.4J Result ND 36 45000 ND ND ND ND ND 1900 14000
-	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 150 1000 25	7.4JB 7.4J Result ND 36 45000 ND ND ND ND ND 1900 14000 1700
-	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 150 1000 25 10	7.4JB 7.4J Result ND 36 45000 ND ND ND ND 1900 14000 1700 ND
1	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potasslum	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i Units ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 10 25 10 2500	7.4JB 7.4J Result ND 36 45000 ND ND ND ND 1900 14000 1700 ND 3300
1	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potasslum Selenium	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l Units ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 10 25 10 2500 25	7.4JB 7.4J Result ND 36 45000 ND ND ND ND 1900 14000 1700 ND 3300 ND
	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic TAL Metals 200.7 Analyte Aluminum Barium Calcium Chromium Cobalt Cobalt Copper Iron Magnesium Manganese Nickel Potasslum Selenium Silver	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/i ug/i Units ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 10 2500 25 10	7.4JB 7.4J Result ND 36 45000 ND ND ND 1900 14000 1700 ND 3300 ND 3300 ND
3	Analyte         2-Propanol, 1-butoxy-         TotalSemiVolatileTic         7AL Metals 200.7         Analyte         Aluminum         Barium         Calcium         Chromium         Cobalt         Copper         Iron         Magnesium         Magnese         Nickel         Potasslum         Selenium         Silver         Sodium	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 10 2500 25 10 255	7.4JB 7.4J 7.4J Result ND 36 45000 ND ND ND 1900 14000 1700 ND 3300 ND 3300 ND ND 3300 ND
_	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potasslum Selenium Silver Sodium Vanadium Zinc	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 10 2500 25 10 2500 25	7.4.JB 7.4.J 7.4.J Result ND 36 45000 ND ND ND 1900 14000 1700 ND 3300 ND ND 3300 ND ND 9200 ND
_	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potasslum Selenium Selenium Silver Sodium Vanadium Zinc	DF 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 10 25 10 2500 25 10 2500 25 25 25	7.4.JB 7.4.J 7.4.J Result ND 36 45000 ND ND 1900 14000 1700 ND 3300 ND ND 3300 ND ND 9200 ND ND 9200 ND
_	Analyte 2-Propanol, 1-butoxy- TotalSemiVolatileTic  TAL Metals 200.7  Analyte Aluminum Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potasslum Selenium Silver Sodium Vanadium Zinc	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.14 NA RL 100 25 1000 25 10 25 150 1000 25 10 2500 25 10 2500 25	7.4.JB 7.4.J 7.4.J Result ND 36 45000 ND ND ND 1900 14000 1700 ND 3300 ND ND 3300 ND ND 9200 ND

Beryllium

Cadmium

Thallium

Lead

ug/l

ug/l

ug/l

ug/l

1

1

1

1

0.75

1.0

0.75

1.5

ND

ND

1.1

ND

#### Sample ID: SW-1-10242013 Lab#: AC75362-008 Matrix: Aqueous

#### Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile Organics + 10 (624)
Analyte

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/I	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/t	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	· 1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	-		ND
		ug/l	1.0	
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/I	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/I	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
p-Xylene	1	ug/l	· 1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/I	1.0	ND
Toluene	1	ug/l	1.0	ND
rans-1,2-Dichloroethene	1	ug/l	1.0	ND
rans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
		- <del>-</del>		
/inyl chloride	1	ug/l	1.0	ND

#### Sample ID: SW-1-10242013 Lab#: AC75362-008 Matrix: Aqueous

#### Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile Organics + 10 (624) Library Searches

Analyte		DF	Units	RT	Result
No Unknown Compounds	Detected	1	ug/I	NA	ND
TotalVolatileTic		1	ug/l	NA	ND

Sample ID: SD-1-10242013 Lab#: AC75362-009 Matrix: Sediment/Encore

#### Collection Date: 10/24/2013 Receipt Date: 10/25/2013

 % Solids SM2540G

% Solids SM2540G				
Analyte	DF	Units	RL	Result
% Solids	1	percent		74
Chloride (Soil) 9056A				
Analyte	DF	Units	RL	Result
Chloride	1	mg/kg	27	ND
Cyanide (Soil/Waste) 9012B	·			
	DE	Unite		Desult
Analyte	DF	Units	RL	Result
Cyanide	. 1	mg/kg	0.32	ND
lercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Мегсигу	1	mg/kg	0.11	ND
Semivolatile Organics + 25 (8270)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	. 1	mg/kg	0.045	ND
1,2,4,5-Tetrachlorobenzene	1	mg/kg	0.045	ND
2,3,4,6-Tetrachlorophenol	1	mg/kg	0.045	ND
2,4,5-Trichlorophenol	1	mg/kg	0.045	ND
2,4,6-Trichlorophenol	1	mg/kg	0.045	ND
2,4-Dichlorophenol	1	mg/kg	0.011	ND
2,4-Dimethylphenol	1	mg/kg	0.011	ND
2,4-Dinitrophenol	1	mg/kg	0.23	ND
2,4-Dinitrotoluene	. 1	mg/kg	0.045	ND
2,6-Dinitrotoluene	1	mg/kg	0.045	ND
2-Chloronaphthalene	1	mg/kg	0.045	ND
2-Chlorophenol	1	mg/kg	0.045	ND
2-Methylnaphthalene	, 1	mg/kg	0.045	ND
2-Methylphenol	1	mg/kg	0.011	ND
2-Nitroaniline	1	mg/kg	0.045	ND
2-Nitrophenol	ه 1	mg/kg	0.045	ND
3&4-Methylphenol	1	mg/kg	0.011	ND
3,3'-Dichlorobenzidine	1	mg/kg	0.045	ND
3-Nitroaniline	: 1	mg/kg	0.045	ND
4,6-Dinitro-2-methylphenol	1	mg/kg	0.23	ND
4-Bromophenyl-phenylether	1	mg/kg	0.045	ND
4-Chloro-3-methylphenol 4-Chloroaniline	1	mg/kg	0.045	ND
4-Chlorophenyl-phenylether	1	mg/kg	0.021	ND
4-Chiorophenyi-phenyiether 4-Nitroaniline	1	mg/kg	0.045	ND ND
4-Nitrophenol	1	mg/kg mg/kg	0.045	ND
Acenaphthene	1	mg/kg	0.045	ND
Acenaphthylene	1	mg/kg	0.045	ND
Acetophenone	1	mg/kg	0.045	ND
Anthracene	1	mg/kg	0.045	ND
Atrazine	1	mg/kg	0.045	ND
Benzaldehyde	1	mg/kg	0.045	ND
Benzo[a]anthracene	1	mg/kg	0.045	ND
Benzo[a]pyrene	1	mg/kg	0.045	ND
Perrol (b) () user there			0.045	

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

bis(2-Chloroethyl)ether

bis(2-Chloroethoxy)methane

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.045

0.045

0.045

0.045

0.011

1

1

1

1

1

0.049

ND

ND

ND

ND

Lab#:	SD-1-10242013 AC75362-009 Sediment/Encore				Collection Date: Receipt Date:	
	bis(2-Chloroisopropyl)ether		1	mg/kg	0.045	ND
	bis(2-Ethylhexyl)phthalate		1	mg/kg	0.045	ND
	Butylbenzylphthalate		1	mg/kg	0.045	ND
	Caprolactam		1	mg/kg	0.045	ND
	Carbazole		1	mg/kg	0.045	ND
	Chrysene		1	mg/kg	0.045	ND
	Dibenzo[a,h]anthracene		1	mg/kg	0.045	ND
	Dibenzofuran		1	mg/kg	0.011	ND
	Diethylphthalate		1 .	mg/kg	0.045	ND
	Dimethylphthalate		1	mg/kg	0.045	ND
	Di-n-butylphthalate		1	mg/kg	0.023	ND
	Di-n-octylphthalate		1	mg/kg	0.045	ND
	Fluoranthene		1	mg/kg	0.045	ND
	Fluorene	į	1	mg/kg	0.045	ND
	Hexachiorobenzene		1	mg/kg	0.045	ND
	Hexachlorobutadiene		1	mg/kg	0.045	ND
	Hexachlorocyclopentadiene		1	mg/kg	0.045	ND
	Hexachloroethane	<b>5</b> .	, 1	mg/kg	0.045	ND
	Indeno[1,2,3-cd]pyrene		1	mg/kg	0.045	ND
	Isophorone	-2	1	mg/kg	0.045	ND
	Naphthalene	*	1	mg/kg	0.011	ND
	Nitrobenzene		1	mg/kg	0.045	ND
	N-Nitroso-di-n-propylamine		1	mg/kg	0.011	ND
	N-Nitrosodiphenylamine		1	mg/kg	0.045	ND
	Pentachlorophenol		1	mg/kg	0.23	ND
	Phenanthrene		1	mg/kg	0.045	ND
	Phenol		1	mg/kg	0.045	ND
	Pyrene		1	mg/kg	0.045	0.048

#### Semivolatile Organics + 25 (8270) Library Searches

Analyte	DF	Units	RT	Result
unknown	1	mg/kg	10.75	0.36J
Androst-5-en-3.betaol	1	mg/kg	13.02	0.26J
Nonacosane	1	mg/kg	13.79	0.55J
13-Octadecenal	1	mg/kg	14.31	0.28J
Tricosane	1	mg/kg	14.5	0.27J
Vitamin E	1	mg/kg	14.69	0.88J
Ergost-5-en-3-ol, (3.beta.)-	1	mg/kg	15.25	0.42J
Stigmasta-5,22-dien-3-ol, (3.beta.,22E)	1	mg/kg	15.36	0.77J
unknown	1	mg/kg	15.49	0.31J
Stigmast-5-en-3-ol, (3.beta.,24S)-	1	mg/kg	15.67	4.1J
unknown	1	mg/kg	15.75	0.34J
unknown	1	mg/kg	15.89	0.24J
5.ALPHASTIGMAST-3-ONE	1	mg/kg	15.94	0.71J
Aristolone	1	mg/kg	15.99	1.1J
unknown	1	mg/kg	4.19	1.4JB
2-Pentanone, 4-hydroxy-4-methyl-	1	mg/kg	4.43	120JAB
unknown	1	mg/kg	4.92	0.31JB
2-Propanol, 1-butoxy-	1	mg/kg	5.08	0.29JB
Propanoic acid, 2-methyl-, 4-methylphen	1	mg/kg	9.58	0.63J
Hexadecanoic acid	1	mg/kg	9.97	0.24J
TotalSemiVolatileTic	1	mg/kg	NA	130J
Metals 6010			Yanta ada an anna an anna an anna an anna an anna an an	
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	270	6900
Arsenic	1	mg/kg	5.4	ND

mple ID: SD					Date: 10/24/2013
	75362-009			Receipt	Date: 10/25/2013
Matrix: Se	diment/Encore				· · · · · · · · · · · · · · · · · · ·
	Barium	1	mg/kg	14	56
	Calcium	1	mg/kg	1400	1500
	Chromium	1	mg/kg	6.8	14
	Cobalt	1	mg/kg	3.4	6.1
	Copper	1	mg/kg	6.8	15
	Iron	1	mg/kg	270	15000
		4	mg/kg	6.8 680	ND 3200
	Magnesium Manganese		mg/kg mg/kg	14	580
	Nickel	· 1	mg/kg	6.8	11
	Potassium	1	mg/kg	680	1900
	Sodium	. 1	mg/kg	340	ND
	Thallium	1	mg/kg	2.0	ND
	Vanadium	1	mg/kg	14	21
	Zinc	1	mg/kg	14	32
TAI	Metals 6020		· Ø* · · Ø		
		DE	lin!te	DI	Popult
	Analyte	DF	Units	RL	Result
	Antimony	1	mg/kg	0.27	ND
	Beryllium	. 1	mg/kg	0.27	ND
	Cadmium	1	mg/kg	0.54	ND
	Selenium	1	mg/kg	2.7	ND
	Silver	1	mg/kg	0.27	ND
Vola	tile Organics + 10 (8260)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1.07	mg/kg	0.0029	ND
	1,1,2,2-Tetrachloroethane	1.07	mg/kg	0.0029	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1.07	mg/kg	0.0029	ND
	1,1,2-Trichloroethane	1.07	mg/kg	0.0029	ND
	1,1-Dichloroethane	1.07	mg/kg	0.0029	ND
	1,1-Dichloroethene	1.07	mg/kg	0.0029	ND
		1.07	mg/kg	0.0029	ND
	1,2,4-Trichlorobenzene	1.07	mg/kg	0.0029	ND
	1,2-Dibromo-3-chloropropane	1.07	mg/kg	0.0029	ND
	1,2-Dibromoethane	1.07	mg/kg	0.0029	ND
	1,2-Dichlorobenzene	1.07	mg/kg	0.0029	ND
	1,2-Dichloroethane	• 1.07	mg/kg	0.0015	ND
	1,2-Dichloropropane	1.07	mg/kg	0.0029	ND
	1,3-Dichlorobenzene	1.07	mg/kg	0.0029	ND
	1,4-Dichlorobenzene	1.07	mg/kg	0.0029	ND
	1,4-Dioxane	1.07	mg/kg	0.15	ND
	2-Butanone	1.07	mg/kg	0.0029	ND
	2-Hexanone	1.07	mg/kg	0.0029	ND
	4-Methyl-2-pentanone	1.07	mg/kg	0.0029	ND
	Acetone	1.07	mg/kg	0.015	ND
	Benzene	1.07	mg/kg	0.0015	ND
	Bromochloromethane	1.07	mg/kg	0.0029	ND
	Bromodichloromethane	1.07	mg/kg	0.0029	
	Bromonorm	1.07	mg/kg	0.0029	ND ND
	Bromomethane	1.07	mg/kg	0.0029	ND
	Carbon disulfide	1.07	mg/kg	0.0029	ND
	Carbon tetrachloride	1.07	mg/kg	0.0029	ND
	Chlorobenzene	1.07	mg/kg	0.0029	ND
	Chloroethane	1.07	mg/kg	0.0029	ND
	Chloroform	1.07	mg/kg	0.0029	ND

Sample ID:	SD-1-10242013
Lab#:	AC75362-009
Matrix:	Sediment/Encore

ment/Encore				
cis-1,2-Dichloroethene	1.07	mg/kg	0.0029	ND
cis-1,3-Dichloropropene	1.07	mg/kg	0.0029	ND
Cyclohexane	1.07	mg/kg	0.0029	ND
Dibromochloromethane	1.07	mg/kg	0.0029	ND
Dichlorodifluoromethane	1.07	mg/kg	0.0029	ND
Ethylbenzene	1.07	mg/kg	0.0015	ND
isopropylbenzene	1.07	mg/kg	0.0015	ND
m&p-Xylenes	1.07	mg/kg	0.0015	ND
Methyl Acetate	1.07	mg/kg	0.0029	ND
Methylcyclohexane	1.07	mg/kg	0.0029	ND
Methylene chloride	1.07	mg/kg	0.0029	ND
Methyl-t-butyl ether	1.07	mg/kg	0.0015	ND
o-Xylene	1.07	mg/kg	0.0015	ND
Styrene	1.07	mg/kg	0.0029	ND
Tetrachloroethene	1.07	mg/kg	0.0029	ND
Toluene	1.07	mg/kg	0.0015	ND
trans-1,2-Dichloroethene	1.07	mg/kg	0.0029	ND
trans-1,3-Dichloropropene	1.07	mg/kg	0.0029	ND
Trichloroethene	1.07	mg/kg	0.0029	ND
Trichlorofluoromethane	1.07	mg/kg	0.0029	ND
Vinyl chloride	1.07	mg/kg	0.0029	ND
Xylenes (Total)	1.07	mg/kg	0.0015	ND

#### Volati e Organics 10 (8260) Library Searches

Analyte	:	DF	Units	RT	Result	
unknown		1.07	mg/kg	7.6	0.021JB	
unknown	1	1.07	mg/kg	<b>9.2</b> 7	0.020JB	
TotalVolatileTic		1.07	mg/kg	NA	0.041J	

Sample ID: FB-10242013 Lab#: AC75362-010 us

Collection Date: 10/24/2013

Matrix	Aqueo
matrix:	Aqueo

Receipt Date: 10/25/2013

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	ND
Cyanide-Water (EPA 335.4)				
Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND
Mercury (Water) 245.1				
Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND
emivolatile Organics + 25 (625)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.1	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.1	ND
2,3,4,6-Tetrachlorophenol	. 1	ug/l	2.1	ND
2,4,5-Trichlorophenol	1	ug/l	2.1	ND
2,4,6-Trichlorophenol	1	ug/l	2.1	ND
2,4-Dichlorophenol	1	ug/i	2.1	ND
2,4-Dimethylphenol	1	ug/l	0.52	ND
2,4-Dinitrophenol	1	ug/I	10	ND
2,4-Dinitrotoluene	· 1	ug/l	2.1	ND
2,6-Dinitrotoluene	1	ug/l	2.1	ND
2-Chloronaphthalene	· 1	ug/l	2.1	ND
2-Chlorophenol	1	ug/l	2.1	ND
2-Methylnaphthalene	1	ug/l	2.1	ND
2-Methylphenol	1	ug/l	0.52	ND
2-Nitroaniline	1	ug/l	2.1	ND
2-Nitrophenol	. 1	ug/l	2.1	ND
3&4-Methylphenol	1	ug/l	0.52	ND
3,3'-Dichlorobenzidine	· 1	ug/I	2.1	ND
3-Nitroaniline	. 1	ug/t	2.1	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.1	ND
4-Chloro-3-methylphenol	: 1	ug/l	2.1	ND
4-Chloroaniline	; 1	ug/l	0.52	ND
4-Chlorophenyl-phenylether	, 1	ug/I	2.1	ND
4-Nitroaniline	1	ug/l	2.1	ND
4-Nitrophenol	1	ug/l	2.1	ND
Acenaphthene	1	ug/l	2.1	ND
Acenaphthylene	1	ug/l	2.1	ND
Acetophenone	1	ug/l	2.1	ND
Anthracene	1	ug/I	2.1	ND
Atrazine	1	ug/I	2.1	ND
Benzaldehyde	1	ug/l	2.1	ND
Benzo[a]anthracene	1	ug/l	2.1	ND
Benzo[a]pyrene	1	ug/l	2.1	ND
Benzo(b)fluoranthene	1	ug/l	2.1	ND
Benzo[g,h,i]perylene	1	ug/l	2.1	ND
Benzo[k]fluoranthene	1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.1	ND
bis(2-Chloroethyl)ether	1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.1	ND
Butylbenzylphthalate	1	ug/l	2.1	ND
Carcolactam			2.1	ND

Caprolactam

ug/l

2.1

1

ND

	FB-10242013 AC75362-010				Collection Date: Receipt Date:	
rix: /	Aqueous					
	Carbazole	1		ug/l	2.1	ND
	Chrysene	1		ug/l	2.1	ND
	Dibenzo[a,h]anthracene	1		ug/l	2.1	ND
	Dibenzofuran	1		ug/l	0.52	ND
	Diethylphthalate	1		ug/l	2.1	ND
	Dimethylphthalate	1		ug/l	2.1	ND
	Di-n-butylphthalate	1		ug/l	0.52	ND
	Di-n-octylphthalate	1		ug/l	2.1	ND
	Fluoranthene	1		ug/l	2.1	ND
	Fluorene	1		ug/i	2.1	ND
	Hexachlorobenzene	1		ug/l	2.1	ND
	Hexachlorobutadiene	1		ug/l	2.1	ND
	Hexachlorocyclopentadiene	; 1		ug/i	10	ND
	Hexachloroethane	· 1		ug/l	2.1	ND
	Indeno[1,2,3-cd]pyrene	<u>:</u> 1		ug/l	2.1	ND
	Isophorone	. 1		ug/l	2.1	ND
	Naphthalene	1		ug/l	0.52	ND
	Nitrobenzene	1		ug/l	2.1	ND
	N-Nitroso-di-n-propylamine	1		ug/l	0.52	ND
	N-Nitrosodiphenylamine	; 1		ug/l	2.1	ND
	Pentachlorophenol	1		ug/l	10	ND
	Phenanthrene	1		ug/l	2.1	ND
	Phenol	1		ug/l	2.1	ND
	Pyrene	1		ug/l	2.1	ND
Se	emivolatile Organics + 25 (625) Library S	earches				
	Analyte		)F	Units	RT	Result
	2-Propanol, 1-butoxy-	1		ug/l	5.14	9.4JB
	TotalSemiVolatileTic	<b>1</b>		ug/l	NA	9.4J
TÆ	AL Metals 200.7					
	Analyte	, C	DF	Units	RL	Result
	Aluminum	<u>.</u> 1		ug/l	100	ND
	Barium	. 1		ug/l	25	ND
	Calcium	. 1		ug/l	1000	ND
	Chromium	1		ug/l	25	ND
	Cobalt	1	· · · · ·	ug/l	10	ND
	Copper	1		ug/l	25	ND
	Iron	1		ug/l	150	ND
	Magnesium	1		ug/l	1000	ND
	Manganese			ug/l	25	ND
	Nickel	1		ug/l	10	ND
	Potassium	1		ug/l	2500	ND
	Selenium	1		ug/l	25	ND
	Silver	1			10	ND
	Sodium	1		ug/l ug/l	2500	ND
	Sources	1		9.90	2000	
	Vanadium	1		ug/i	25	ND

Analyte	DF	Units	RL	Result
Antimony	1	ug/l	2.5	ND
Arsenic	1	ug/l	1.0	ND
Beryllium	1	ug/l	0.75	ND
Cadmium	1	ug/l	1.0	ND
Lead	1	ug/l	0.75	ND
Thallium	1	ug/l	1.5	ND

#### Sample ID: FB-10242013 Lab#: AC75362-010 Matrix: Aqueous

### Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile	Organics	+ 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	: 1	ug/i	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/i	1.0	ND
1,2-Dibromoethane	. 1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	۰ 1	ug/l	0.50	ND
1,2-Dichloropropane	· 1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/i	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	· · ·	ug/l	1.0	ND
Acetone	· 1	ug/l	10	ND
Benzene	· · · · · · · · · · · · · · · · · · ·	ug/l	0.50	ND
Bromochloromethane	1	ug/i	1.0	ND
Bromodichloromethane	1		1.0	ND
Bromoform	; 1	ug/i ug/i	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	-	1.0	ND
Carbon tetrachloride	1	ug/l		
Chlorobenzene		ug/l	1.0	ND
Chloroethane	· 1	ug/l	1.0	ND
	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	<u>,</u> 1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/I	1.0	ND
Dibromochloromethane	1	ug/I	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/I	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/I	1.0	ND
Methyl Acetate		ug/i	1.0	ND
Methylcyclohexane	1	ug/i	1.0	ND
Methylene chloride	1	ug/I	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/I	1.0	ND
Tetrachloroethene	1	ug/I	1.0	ND
Toluene	1	ug/I	1.0	ND
trans-1,2-Dichloroethene	1	ug/i	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/I	1.0	ND
Vinyl chloride	1	ug/i	1.0	ND

#### Sample ID: FB-10242013 Lab#: AC75362-010 Matrix: Aqueous

#### Collection Date: 10/24/2013 Receipt Date: 10/25/2013

Volatile Organics + 10 (624) Library Searches

÷

?

ŝ

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

#### Form1 ORGANICS VOLATILE REPORT

Sample Number: AC75362-001 Client Id: TB-10242013 Data File: 3M41579.D Analysis Date: 10/29/13 11:00 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	, U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75 <b>-</b> 71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-7 <b>8-</b> 6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283324

**Total Target Concentration** 

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

- J Indicates an estimated value when a compound is detected at less than the
  - specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

U - Indicates the compound was analyzed but not detected.
 B - Indicates the analyte was found in the blank as well as in the sample.
 F - Indicates the analyte concentration exceeds the calibration range of the

 ${\cal E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

#### Form1e

# ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-001	
Client Id: TB-10242013	
Data File: 3M41579.D	
Analysis Date: 10/29/13 11:00	
Date Rec/Extracted: 10/25/13-NA	

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: Method: EPA 624

#### Units: ug/L

Cas	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 283324

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1

ORGANICS VOLATILE REPORT

#### Sample Number: AC75362-002 Client Id: SW-15-10242013 Data File: 3M41631.D Analysis Date: 10/30/13 00:38 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13- <b>1</b>	1,1,2-Trichloro-1,2,2-trifluor	5.0	υ	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71 <b>-</b> 8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	lsopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75 <b>-</b> 09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
7 <b>4</b> -97- <b>5</b>	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02 <b>-</b> 6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79 <b>-</b> 01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283362

Total Target Concentration

on 0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

#### Form1e

# ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-002	Matrix: Aqueous
Client Id: SW-15-10242013	Initial Vol: 5ml
Data File: 3M41631.D	Final Vol: NA
Analysis Date: 10/30/13 00:38	Dilution: 1.00
Date Rec/Extracted: 10/25/13-NA	Solids:
	Method: EPA 624

#### Units: ug/L

	Cas #	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0 J	

Worksheet #: 283362

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1 ORGANICS VOLATILE REPORT

#### Sample Number: AC75362-003 Client Id: SW-4-10242013 Data File: 3M41632.D Analysis Date: 10/30/13 00:53 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	· U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U		·		
			•				

Worksheet #: 283324

**Total Target Concentration** 

0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-003	Matrix: Aqueous
Client Id: SW-4-10242013	Initial Vol: 5ml
Data File: 3M41632.D	Final Vol: NA
Analysis Date: 10/30/13 00:53	Dilution: 1.00
Date Rec/Extracted: 10/25/13-NA	Solids:
	Method: EPA 624

#### Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	٥J

Worksheet #: 283324

**Total Tentatively Identified Concentration** 0

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

## Form1

ORGANICS VOLATILE REPORT

#### Sample Number: AC75362-004 Client Id: SD-4-10242013 Data File: 6M03510.D Analysis Date: 10/29/13 16:36 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Soil Initial Vol: 4.51g Final Vol: NA Dilution: 1.11 Solids: 61

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0036	U	56-23-5	Carbon Tetrachloride	0.0036	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0036	U	108-90-7	Chlorobenzene	0.0036	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0036	U	75-00-3	Chloroethane	0.0036	U
7 <b>9</b> -00-5	1,1,2-Trichloroethane	0.0036	U	67-66-3	Chloroform	0.0036	U
75-34-3	1,1-Dichloroethane	0.0036	U	74-87-3	Chloromethane	0.0036	U
75-35-4	1,1-Dichloroethene	0.0036	U	156-59-2	cis-1,2-Dichloroethene	0.0036	U
87-61-6	1,2,3-Trichlorobenzene	0.0036	U	10061-01-5	cis-1,3-Dichloropropene	0.0036	U
120-82-1	1,2,4-Trichlorobenzene	0.0036	U	110-82-7	Cyclohexane	0.0036	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0036	U	124-48-1	Dibromochloromethane	0.0036	U
106-93-4	1,2-Dibromoethane	0.0036	U	75-71-8	Dichlorodifluoromethane	0.0036	U
95-50-1	1,2-Dichlorobenzene	0.0036	U	100-41-4	Ethylbenzene	0.0018	U
107-06-2	1,2-Dichloroethane	0.0018	U	98-82-8	Isopropylbenzene	0.0018	U
78-87-5	1,2-Dichloropropane	0.0036	U	136777612	m&p-Xylenes	0.0018	U
541-73-1	1,3-Dichlorobenzene	0.0036	U	79-20-9	Methyl Acetate	0.0036	U
106-46-7	1,4-Dichlorobenzene	0.0036	U	108-87-2	Methylcyclohexane	0.0036	U
123-91-1	1,4-Dioxane	0.18	U	75-09-2	Methylene Chloride	0.0036	U
78-93-3	2-Butanone	0.0036	U	1634-04-4	Methyl-t-butyl ether	0.0018	U
591-78-6	2-Hexanone	0.0036	U	95-47-6	o-Xylene	0.0018	U
108-10-1	4-Methyl-2-Pentanone	0.0036	U	100-42-5	Styrene	0.0036	U
67-64-1	Acetone	0.018	U	127-18-4	Tetrachloroethene	0.0036	U
71-43-2	Benzene	0.0018	U	108-88-3	Toluene	0.0018	U
74-97-5	Bromochloromethane	0.0036	U	156-60-5	trans-1,2-Dichloroethene	0.0036	U
75-27-4	Bromodichloromethane	0.0036	U	10061-02-6	trans-1,3-Dichloropropene	0.0036	U
75-25-2	Bromoform	0.0036	U	79-01-6	Trichloroethene	0.0036	U
74-83-9	Bromomethane	0.0036	U	75-69-4	Trichlorofluoromethane	0.0036	U
75-15-0	Carbon Disulfide	0.0036	U	75-01-4	Vinyl Chloride	0.0036	U
1330-20-7	Xylenes (Total)	0.0018	U				

Worksheet #: 283325

**Total Target Concentration** U - Indicates the compound was analyzed but not detected.

0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

### Form1e

ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-004
Client Id: SD-4-10242013
Data File: 6M03510.D
Analysis Date: 10/29/13 16:36
Date Rec/Extracted: 10/25/13-NA

Matrix: Soil Initial Vol: 4.51g Final Vol: NA Dilution: 1.11 Solids: 61 Method: EPA 8260C

#### Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	7.59	0.021 JB
2		unknown	9.28	0.022 JB
3		unknown	9.33	0.012 JB

Worksheet #: 283325

Total Tentatively Identified Concentration 0.055

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# 

ORGANICS VOLATILE REPORT

#### Sample Number: AC75362-005 Client Id: SW-2-10242013 Data File: 3M41633.D Analysis Date: 10/30/13 01:09 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283324

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

*E* - Indicates the analyte was jound in the brank as well as in the sample. *E* - Indicates the analyte concentration exceeds the calibration range of the instrument. J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75362-005 Client Id: SW-2-10242013 Data File: 3M41633.D Analysis Date: 10/30/13 01:09 Date Rec/Extracted: 10/25/13-NA

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: Method: EPA 624

# Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	ΟJ	

Worksheet #: 283324

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li>

# 

ORGANICS VOLATILE REPORT

# Sample Number: AC75362-006 Client Id: SD-2-10242013 Data File: 6M03511.D Analysis Date: 10/29/13 16:52 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Soil Initial Vol: 4.98g Final Vol: NA Dilution: 1.00 Solids: 74

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0027	U	56-23-5	Carbon Tetrachloride	0.0027	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0027	U	108-90-7	Chlorobenzene	0.0027	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0027	U	75-00-3	Chloroethane	0.0027	U
79-00-5	1,1,2-Trichloroethane	0.0027	U	67-66-3	Chloroform	0.0027	U
75-34-3	1,1-Dichloroethane	0.0027	U	74-87-3	Chloromethane	0.0027	U
75-35-4	1,1-Dichloroethene	0.0027	U	156-59-2	cis-1,2-Dichloroethene	0.0027	U
87-61-6	1,2,3-Trichlorobenzene	0.0027	U	10061-01-5	cis-1,3-Dichloropropene	0.0027	U
120-82-1	1,2,4-Trichlorobenzene	0.0027	U	110-82-7	Cyclohexane	0.0027	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0027	U	124-48-1	Dibromochloromethane	0.0027	U
106-93-4	1,2-Dibromoethane	0.0027	U	75-71-8	Dichlorodifluoromethane	0.0027	U
95-50-1	1,2-Dichlorobenzene	0.0027	υ	100-41-4	Ethylbenzene	0.0014	U
107-06-2	1,2-Dichloroethane	0.0014	U	98-82-8	lsopropylbenzene	0.0014	U
78-87-5	1,2-Dichloropropane	0.0027	U	136777612	m&p-Xylenes	0.0014	U
541-73-1	1,3-Dichlorobenzene	0.0027	U	79-20-9	Methyl Acetate	0.0027	U
106-46-7	1,4-Dichlorobenzene	0.0027	U	108-87-2	Methylcyclohexane	0.0027	U
123-91-1	1,4-Dioxane	0.14	U	75-09-2	Methylene Chloride	0.0027	U
78-93-3	2-Butanone	0.0027	U	1634-04-4	Methyl-t-butyl ether	0.0014	U
591-78-6	2-Hexanone	0.0027	U	95-47-6	o-Xylene	0.0014	U
108-10-1	4-Methyl-2-Pentanone	0.0027	U	100-42-5	Styrene	0.0027	U
67-64-1	Acetone	0.014	U	127-18-4	Tetrachloroethene	0.0027	U
71-43-2	Benzene	0.0014	U	108-88-3	Toluene	0.0014	U
74-97-5	Bromochloromethane	0.0027	U	156-60-5	trans-1,2-Dichloroethene	0.0027	U
75-27-4	Bromodichloromethane	0.0027	U	10061-02-6	trans-1,3-Dichloropropene	0.0027	U
75-25-2	Bromoform	0.0027	U	79-01-6	Trichloroethene	0.0027	U
74-83-9	Bromomethane	0.0027	U	75-69-4	Trichlorofluoromethane	0.0027	U
75-15-0	Carbon Disulfide	0.0027	U	75-01-4	Vinyl Chloride	0.0027	U
1330-20-7	Xylenes (Total)	0.0014	U				

Worksheet #: 283325

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

J - Indicates an estimated value when a compound is detected at less than the

# ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-006
Client Id: SD-2-10242013
Data File: 6M03511.D
Analysis Date: 10/29/13 16:52
Date Rec/Extracted: 10/25/13-NA

Matrix: Soil Initial Vol: 4.98g Final Vol: NA Dilution: 1.00 Solids: 74 Method: EPA 8260C

# Units: mg/Kg

Cas	s # Compound	RT	Conc
1	unknown	7.60	0.013 JB
2	unknown	9.28	0.014 JB

Worksheet #: 283325

**Total Tentatively Identified Concentration** 0.027

A - Indicates an aldol condensate.

A - Indicates an autor contact state. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1 ORGANICS VOLATILE REPORT

# Sample Number: AC75362-007 Client Id: SD-3-10242013 Data File: 6M03512.D Analysis Date: 10/29/13 17:09 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Soil Initial Vol: 4.93g Final Vol: NA Dilution: 1.01 Solids: 80

Units: mg/Kg

71-55-6       1,1,1-Trichloroethane       0.0025       U       56-23-5       Carbon Tetrachloride       0.0025         79-34-5       1,1,2,2-Tetrachloroethane       0.0025       U       108-90-7       Chlorobenzene       0.0025         76-13-1       1,1,2-Trichloro-1,2,2-trifiluor       0.0025       U       75-00-3       Chloroethane       0.0025         75-34-3       1,1-Dichloroethane       0.0025       U       74-87-3       Chloromethane       0.0025         75-34-3       1,1-Dichloroethane       0.0025       U       156-59-2       cis-1,2-Dichloroethene       0.0025         87-61-6       1,2,3-Trichloroethane       0.0025       U       10061-01-5       cis-1,3-Dichloroethene       0.0025         96-12-8       1,2-Dibrorobenzene       0.0025       U       110-82-7       Cyclohexane       0.0025         96-12-8       1,2-Dibromo-3-Chloropropa       0.0025       U       110-82-7       Cyclohexane       0.0025         96-12-8       1,2-Dibrlorobenzene       0.0025       U       10041-01-5       cis-1,3-Dichloromethane       0.0025         97-50-1       1,2-Dichlorobenzene       0.0025       U       100-41-4       Ethylbenzene       0.0013         107-06-2       1,2-Dichloroethane	onc	с	Conc	Conc	RĹ	Compound	Cas #	Conc	RL	Compound	Cas #
76-13-1       1,1,2-Trichloro-1,2,2-trifliuor       0.0025       U       75-00-3       Chloroethane       0.0025         79-00-5       1,1,2-Trichloroethane       0.0025       U       67-66-3       Chloroform       0.0025         75-34-3       1,1-Dichloroethane       0.0025       U       74-87-3       Chloromethane       0.0025         75-35-4       1,1-Dichloroethene       0.0025       U       156-59-2       cis-1,3-Dichloroethene       0.0025         87-61-6       1,2,3-Trichlorobenzene       0.0025       U       10061-01-5       cis-1,3-Dichloroptopene       0.0025         96-12-8       1,2-Dibromo-3-Chloropropa       0.0025       U       110-82-7       Cyclohexane       0.0025         96-12-8       1,2-Dichlorobenzene       0.0025       U       124-48-1       Dibromochloromethane       0.0025         96-50-1       1,2-Dichlorobenzene       0.0025       U       100-41-4       Ethylbenzene       0.0013         107-06-2       1,2-Dichloroptane       0.0025       U       136777612       m&p-Xylenes       0.0013         173-1       1,3-Dichlorobenzene       0.0025       U       198-87-2       Methyl-Cyclohexane       0.0025         106-46-7       1,4-Dichorobenzene       0.0025<	U	U	U	25 U	0.0025	Carbon Tetrachloride	56-23-5	U	0.0025	1,1,1-Trichloroethane	71-55-6
79-00-5       1,1,2-Trichloroethane       0.0025       U       67-66-3       Chloroform       0.0025         75-34-3       1,1-Dichloroethane       0.0025       U       74-87-3       Chloromethane       0.0025         75-35-4       1,1-Dichloroethane       0.0025       U       156-59-2       cis-1,2-Dichloroethene       0.0025         87-61-6       1,2,3-Trichlorobenzene       0.0025       U       10061-01-5       cis-1,3-Dichloropropene       0.0025         120-82-1       1,2,4-Trichlorobenzene       0.0025       U       110-82-7       Cyclohexane       0.0025         96-12-8       1,2-Dibromo-3-Chloropropa       0.0025       U       124-48-1       Dibromochloromethane       0.0025         96-93-4       1,2-Dibromoethane       0.0025       U       100-41-4       Ethylbenzene       0.0025         95-50-1       1,2-Dichlorobenzene       0.0025       U       100-41-4       Ethylbenzene       0.0013         107-06-2       1,2-Dichloropthane       0.0013       U       98-82-8       Isopropilbenzene       0.0013         117-761       1,3-Dichlorobenzene       0.0025       U       136777612       m&p-Xylenes       0.0013         124-34-1       1-bichlorobenzene       0.0025	U	U	U	25 U	0.0025	Chlorobenzene	108-90-7	U	0.0025	1,1,2,2-Tetrachloroethane	79-34-5
75-34-3       1,1-Dichloroethane       0.0025       U       74-87-3       Chloromethane       0.0025         75-35-4       1,1-Dichloroethene       0.0025       U       156-59-2       cis-1,2-Dichloroethene       0.0025         87-61-6       1,2,3-Trichlorobenzene       0.0025       U       10061-01-5       cis-1,3-Dichloroptopene       0.0025         120-82-1       1,2,4-Trichlorobenzene       0.0025       U       110-82-7       Cyclohexane       0.0025         96-12-8       1,2-Dibromo-3-Chloropropa       0.0025       U       124-48-1       Dibromochloromethane       0.0025         96-50-1       1,2-Dichlorobenzene       0.0025       U       75-71-8       Dichlorodifluoromethane       0.0025         95-50-1       1,2-Dichlorobenzene       0.0025       U       100-41-4       Ethylbenzene       0.0013         107-06-2       1,2-Dichloroptopane       0.0025       U       136777612       m&p-Xylenes       0.0013         78-87-5       1,2-Dichlorobenzene       0.0025       U       136877-612       M&p-Xylenes       0.0025         106-46-7       1,4-Dichlorobenzene       0.0025       U       198-87-2       Methylchechloride       0.0025         123-91-1       1,4-Dichlorobenzene       <	U	U	U	!5 U	0.0025	Chloroethane	75-00-3	U	0.0025	1,1,2-Trichloro-1,2,2-trifluor	76-13-1
75-35-41,1-Dichlorothene0.0025U156-59-2cis-1,2-Dichlorothene0.002587-61-61,2,3-Trichlorobenzene0.0025U10061-01-5cis-1,3-Dichloropropene0.0025120-82-11,2,4-Trichlorobenzene0.0025U110-82-7Cyclohexane0.002596-12-81,2-Dibromo-3-Chloropropa0.0025U124-48-1Dibromochloromethane0.002596-12-81,2-Dibromo-3-Chloropropa0.0025U75-71-8Dichlorodifluoromethane0.002595-50-11,2-Dichlorobenzene0.0025U100-41-4Ethylbenzene0.0013107-06-21,2-Dichloroptopane0.0025U136777612m&p-Xylenes0.001378-87-51,2-Dichlorobenzene0.0025U136777612m&p-Xylenes0.0025106-46-71,4-Dichlorobenzene0.0025U198-87-2Methyl cetate0.0025106-46-71,4-Dichlorobenzene0.0025U108-87-2Methylcohexane0.0025123-91-11,4-Dichlorobenzene0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U95-47-6o-Xylene0.0013108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane	U	U	U	!5 U	0.0025	Chloroform	67-66-3	U	0.0025	1,1,2-Trichloroethane	79-00-5
87-61-6       1,2,3-Trichlorobenzene       0.0025       U       10061-01-5       cis-1,3-Dichloropropene       0.0025         120-82-1       1,2,4-Trichlorobenzene       0.0025       U       110-82-7       Cyclohexane       0.0025         96-12-8       1,2-Dibromo-3-Chloropropa       0.0025       U       124-48-1       Dibromochloromethane       0.0025         106-93-4       1,2-Dibromoethane       0.0025       U       75-71-8       Dichlorodifluoromethane       0.0025         95-50-1       1,2-Dichlorobenzene       0.0025       U       100-41-4       Ethylbenzene       0.0013         107-06-2       1,2-Dichloroptopane       0.0025       U       136777612       m&p-Xylenes       0.0013         78-87-5       1,2-Dichlorobenzene       0.0025       U       198-82-8       Isopropylbenzene       0.0025         106-46-7       1,4-Dichlorobenzene       0.0025       U       136777612       m&p-Xylenes       0.0025         106-46-7       1,4-Dichlorobenzene       0.0025       U       108-87-2       Methyl Acetate       0.0025         123-91-1       1,4-Dioxane       0.13       U       75-09-2       Methylene Chloride       0.0025         78-93-3       2-Butanone       0.0025       <	U	U	U	!5 U	0.0025	Chloromethane	74-87-3	U	0.0025	1,1-Dichloroethane	75-34-3
120-82-11,2,4-Trichlorobenzene0.0025U110-82-7Cyclohexane0.002596-12-81,2-Dibromo-3-Chloropropa0.0025U124-48-1Dibromochloromethane0.0025106-93-41,2-Dibromoethane0.0025U75-71-8Dichlorodifluoromethane0.002595-50-11,2-Dichlorobenzene0.0025U100-41-4Ethylbenzene0.0013107-06-21,2-Dichloroethane0.0013U98-82-8Isopropylbenzene0.001378-87-51,2-Dichloropropane0.0025U136777612m&p-Xylenes0.0013541-73-11,3-Dichlorobenzene0.0025U79-20-9Methyl Acetate0.0025106-46-71,4-Dichlorobenzene0.0025U108-87-2Methylcyclohexane0.0025123-91-11,4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.002574-97-5Bromochloromethane0.0025U108-88-3Toluene0.002595-47-55Bromochloromethane0.0025U100-42-5Styrene0.002595-47-580.0013U127-18-4Tetr	U	U	U	25 U	0.0025	cis-1,2-Dichloroethene	156-59-2	U	0.0025	1,1-Dichloroethene	75-35-4
96-12-8       1,2-Dibromo-3-Chloropropa       0.0025       U       124-48-1       Dibromochloromethane       0.0025         106-93-4       1,2-Dibromoethane       0.0025       U       75-71-8       Dichlorodifluoromethane       0.0025         95-50-1       1,2-Dichlorobenzene       0.0025       U       100-41-4       Ethylbenzene       0.0013         107-06-2       1,2-Dichloroethane       0.0013       U       98-82-8       Isopropilbenzene       0.0013         78-87-5       1,2-Dichloroptopane       0.0025       U       136777612       m&p-Xylenes       0.0013         541-73-1       1,3-Dichlorobenzene       0.0025       U       108-87-2       Methyl Acetate       0.0025         106-46-7       1,4-Dichlorobenzene       0.0025       U       108-87-2       Methylcyclohexane       0.0025         123-91-1       1,4-Dichlorobenzene       0.13       U       75-09-2       Methylene Chloride       0.0025         78-93-3       2-Butanone       0.0025       U       1634-04-4       Methyl-t-butyl ether       0.0013         591-78-6       2-Hexanone       0.0025       U       95-47-6       o-Xylene       0.0025         67-64-1       Acetone       0.013       U       127-1	U	U	U	25 U	0.0025	cis-1,3-Dichloropropene	10061-01-5	U	0.0025	1,2,3-Trichlorobenzene	87-61-6
106-93-41,2-Dibromoethane0.0025U75-71-8Dichlorodifluoromethane0.002595-50-11,2-Dichlorobenzene0.0025U100-41-4Ethylbenzene0.0013107-06-21,2-Dichloroethane0.0013U98-82-8Isopropylbenzene0.001378-87-51,2-Dichloropropane0.0025U136777612m&p-Xylenes0.0013541-73-11,3-Dichlorobenzene0.0025U79-20-9Methyl Acetate0.0025106-46-71,4-Dichlorobenzene0.0025U108-87-2Methylcyclohexane0.0025123-91-11,4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U100-42-5Styrene0.0025108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002571-43-2Benzene0.0013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	25 U	0.0025	Cyclohexane	110-82-7	U	0.0025	1,2,4-Trichlorobenzene	120-82-1
95-50-11,2-Dichlorobenzene0.0025U100-41-4Ethylbenzene0.0013107-06-21,2-Dichloroethane0.0013U98-82-8Isopropylbenzene0.001378-87-51,2-Dichloropropane0.0025U136777612m&p-Xylenes0.0013541-73-11,3-Dichlorobenzene0.0025U79-20-9Methyl Acetate0.0025106-46-71,4-Dichlorobenzene0.0025U108-87-2Methylcyclohexane0.0025123-91-11,4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U100-42-5Styrene0.0025108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002571-43-2Benzene0.0013U127-18-4Tetrachloroethene0.002574-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	25 U	0.0025	Dibromochloromethane	124-48-1	U	0.0025	1,2-Dibromo-3-Chloropropa	96-12-8
107-06-21,2-Dichloroethane0.0013U98-82-8Isopropylbenzene0.001378-87-51,2-Dichloropropane0.0025U136777612m&p-Xylenes0.0013541-73-11,3-Dichlorobenzene0.0025U79-20-9Methyl Acetate0.0025106-46-71,4-Dichlorobenzene0.0025U108-87-2Methylcyclohexane0.0025123-91-11,4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U95-47-6o-Xylene0.0013108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	25 U	0.0025	Dichlorodifluoromethane	75-71-8	U	0.0025	1,2-Dibromoethane	106-93-4
78-87-51,2-Dichloropropane0.0025U136777612m&p-Xylenes0.0013541-73-11,3-Dichlorobenzene0.0025U79-20-9Methyl Acetate0.0025106-46-71,4-Dichlorobenzene0.0025U108-87-2Methylcyclohexane0.0025123-91-11,4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U95-47-6o-Xylene0.0013108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	3 U	0.0013	Ethylbenzene	100-41-4	U	0.0025	1,2-Dichlorobenzene	95-50-1
541-73-11.3-Dichlorobenzene0.0025U79-20-9Methyl Acetate0.0025106-46-71.4-Dichlorobenzene0.0025U108-87-2Methylcyclohexane0.0025123-91-11.4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U95-47-6o-Xylene0.0013108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	3 U	0.0013	Isopropylbenzene	98-82-8	U	0.0013	1,2-Dichloroethane	107-06-2
106-46-71,4-Dichlorobenzene0.0025U108-87-2Methylcyclohexane0.0025123-91-11,4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U95-47-6o-Xylene0.0013108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	3 U	0.0013	m&p-Xylenes	136777612	U	0.0025	1,2-Dichloropropane	78-87-5
123-91-11.4-Dioxane0.13U75-09-2Methylene Chloride0.002578-93-32-Butanone0.0025U1634-04-4Methyl-t-butyl ether0.0013591-78-62-Hexanone0.0025U95-47-6o-Xylene0.0013108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	25 U	0.0025	Methyl Acetate	79-20-9	U	0.0025	1,3-Dichlorobenzene	541-73-1
78-93-3       2-Butanone       0.0025       U       1634-04-4       Methyl-t-butyl ether       0.0013         591-78-6       2-Hexanone       0.0025       U       95-47-6       o-Xylene       0.0013         108-10-1       4-Methyl-2-Pentanone       0.0025       U       100-42-5       Styrene       0.0025         67-64-1       Acetone       0.013       U       127-18-4       Tetrachloroethene       0.0025         71-43-2       Benzene       0.0013       U       108-88-3       Toluene       0.0013         74-97-5       Bromochloromethane       0.0025       U       156-60-5       trans-1,2-Dichloroethene       0.0025	U	U	U	25 U	0.0025	Methylcyclohexane	108-87-2	U	0.0025	1,4-Dichlorobenzene	106-46-7
591-78-62-Hexanone0.0025U95-47-6o-Xylene0.0013108-10-14-Methyl-2-Pentanone0.0025U100-42-5Styrene0.002567-64-1Acetone0.013U127-18-4Tetrachloroethene0.002571-43-2Benzene0.0013U108-88-3Toluene0.001374-97-5Bromochloromethane0.0025U156-60-5trans-1,2-Dichloroethene0.0025	U	U	U	25 U	0.0025	Methylene Chloride	75-09 <b>-2</b>	U	0.13	1,4-Dioxane	123-91-1
108-10-1       4-Methyl-2-Pentanone       0.0025       U       100-42-5       Styrene       0.0025         67-64-1       Acetone       0.013       U       127-18-4       Tetrachloroethene       0.0025         71-43-2       Benzene       0.0013       U       108-88-3       Toluene       0.0013         74-97-5       Bromochloromethane       0.0025       U       156-60-5       trans-1,2-Dichloroethene       0.0025	U	U	U	3 U	0.0013	Methyl-t-butyl ether	1634-04-4	U	0.0025	2-Butanone	78-93-3
67-64-1         Acetone         0.013         U         127-18-4         Tetrachloroethene         0.0025           71-43-2         Benzene         0.0013         U         108-88-3         Toluene         0.0013           74-97-5         Bromochloromethane         0.0025         U         156-60-5         trans-1,2-Dichloroethene         0.0025	U	U	U	3 U	0.0013	o-Xylene	95-47-6	U	0.0025	2-Hexanone	591-78-6
71-43-2       Benzene       0.0013       U       108-88-3       Toluene       0.0013         74-97-5       Bromochloromethane       0.0025       U       156-60-5       trans-1,2-Dichloroethene       0.0025	U	U	U	25 U	0.0025	Styrene	100-42-5	U	0.0025	4-Methyl-2-Pentanone	108-10-1
74-97-5 Bromochloromethane 0.0025 U 156-60-5 trans-1,2-Dichloroethene 0.0025	U	U	U	25 U	0.0025	Tetrachloroethene	127-18-4	U	0.013	Acetone	67-64-1
	U	U	U	3 U	0.0013	Toluene	108-88-3	U	0.0013	Benzene	71-43-2
	U	U	U	25 U	0.0025	trans-1,2-Dichloroethene	156-60-5	U	0.0025	Bromochloromethane	74 <b>-</b> 97-5
75-27-4 Bromodichloromethane 0.0025 U 10061-02-6 trans-1,3-Dichloropropene 0.0025	U	U	U	25 U	0.0025	trans-1,3-Dichloropropene	10061-02-6	U	0.0025	Bromodichloromethane	75-27-4
75-25-2 Bromoform 0.0025 U 79-01-6 Trichloroethene 0.0025	U	U	U	25 U	0.0025	Trichloroethene	79-01-6	U	0.0025	Bromoform	75-25-2
74-83-9 Bromomethane 0.0025 U 75-69-4 Trichlorofluoromethane 0.0025	U	U	U	:5 U	0.0025	Trichlorofluoromethane	75-69-4	U	0.0025	Bromomethane	74-83-9
75-15-0 Carbon Disulfide 0.0025 U 75-01-4 Vinyl Chloride 0.0025	U	U	U	5 U	0.0025	Vinyl Chloride	75-01-4	U	0.0025	Carbon Disulfide	75-15-0
1330-20-7 Xylenes (Total) 0.0013 U								U	0.0013	Xylenes (Total)	1330-20-7

Worksheet #: 283325

**Total Target Concentration** 

0 **R** - Retention Time Out ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-007	Matrix: Soil
Client Id: SD-3-10242013	Initial Vol: 4.93g
Data File: 6M03512.D	Final Vol: NA
Analysis Date: 10/29/13 17:09	Dilution: 1.01
Date Rec/Extracted: 10/25/13-NA	Solids: 80
	Method: EPA 8260C

# Units: mg/Kg

	Cas #	Compound	RT	Conc	
1	74744-36-8	1-Dodecen-3-yne	6.14	0.013 J	
2		unknown	6.51	0.0075 J	
3	2867-05-2	THUJENE	6.60	0.020 J	
4		unknown	6.90	0.0089 J	
5	127-91-3	2- BETA -PINENE	6.95	0.045 J	
6	99-87-6	Benzene, 1-methyl-4-(1-methylethyl)-	7.27	0.031 J	
7		unknown	9.28	0.013 JB	

Worksheet #: 283325

Total Tentatively Identified Concentration 0.14

A - Indicates an aldol condensate.

J - Indicates an estimated value. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

#### Form1 ORGANICS VOLATILE REPORT

# Sample Number: AC75362-008 Client Id: SW-1-10242013 Data File: 3M41634.D Analysis Date: 10/30/13 01:24 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	· U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283324

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample. J - Indicates an estimated value when a compound is detected at less than the E - Indicates the analyte concentration exceeds the calibration range of the instrument.

specified detection limit.

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-008	Matrix: Aqueous
Client Id: SW-1-10242013	Initial Vol: 5ml
Data File: 3M41634.D	Final Vol: NA
Analysis Date: 10/30/13 01:24	Dilution: 1.00
Date Rec/Extracted: 10/25/13-NA	Solids:
	Method: EPA 624

# Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	OJ

Worksheet #: 283324

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

A - Indicates an autor contensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS VOLATILE REPORT

# Sample Number: AC75362-009 Client Id: SD-1-10242013 Data File: 6M03513.D Analysis Date: 10/29/13 17:25 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Soil Initial Vol: 4.66g Final Vol: NA Dilution: 1.07 Solids: 74

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0029	U	56-23-5	Carbon Tetrachloride	0.0029	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0029	U	108-90-7	Chlorobenzene	0.0029	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0029	U	75-00-3	Chloroethane	0.0029	U
79-00-5	1,1,2-Trichloroethane	0.0029	U	67-66-3	Chloroform	0.0029	U
75-34-3	1,1-Dichloroethane	0.0029	U	74-87-3	Chloromethane	0.0029	U
75-35-4	1,1-Dichloroethene	0.0029	U	156-59-2	cis-1,2-Dichloroethene	0.0029	U
87-61-6	1,2,3-Trichlorobenzene	0.0029	U	10061-01-5	cis-1,3-Dichloropropene	0.0029	U
120-82-1	1,2,4-Trichlorobenzene	0.0029	U	110-82-7	Cyclohexane	0.0029	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0029	U	124-48-1	Dibromochloromethane	0.0029	U
106-93-4	1,2-Dibromoethane	0.0029	U	75-71-8	Dichlorodifluoromethane	0.0029	U
95-50-1	1,2-Dichlorobenzene	0.0029	U	100-41-4	Ethylbenzene	0.0015	U
107-06-2	1,2-Dichloroethane	0.0015	U	98-82-8	lsopropylbenzene	0.0015	U
78-87-5	1,2-Dichloropropane	0.0029	U	136777612	m&p-Xylenes	0.0015	U
541-73-1	1,3-Dichlorobenzene	0.0029	U	79-20-9	Methyl Acetate	0.0029	U
106-46-7	1,4-Dichlorobenzene	0.0029	U	108-87-2	Methylcyclohexane	0.0029	U
123-91-1	1,4-Dioxane	0.15	U	75-09-2	Methylene Chloride	0.0029	U
78-93-3	2-Butanone	0.0029	U	1634-04-4	Methyl-t-butyl ether	0.0015	U
591-78-6	2-Hexanone	0.0029	U	95-47-6	o-Xylene	0.0015	U
108-10-1	4-Methyl-2-Pentanone	0.0029	U	100-42-5	Styrene	0.0029	U
67-64-1	Acetone	0.015	U	127-18-4	Tetrachloroethene	0.0029	U
71-43-2	Benzene	0.0015	U	108-88-3	Toluene	0.0015	U
74-97-5	Bromochloromethane	0.0029	U	156-60-5	trans-1,2-Dichloroethene	0.0029	U
75-27-4	Bromodichloromethane	0.0029	U U	10061-02-6	trans-1,3-Dichloropropene	0.0029	U
75-25-2	Bromoform	0.0029	U	79-01-6	Trichloroethene	0.0029	U
74-83-9	Bromomethane	0.0029	U	75-69-4	Trichlorofluoromethane	0.0029	U
75-15-0	Carbon Disulfide	0.0029	U	75-01-4	Vinyl Chloride	0.0029	U
1330-20-7	Xylenes (Total)	0.0015	U				

Worksheet #: 283325

**Total Target Concentration** 

0 R - Retention Time Out ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.
 B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-009 Client Id: SD-1-10242013 Data File: 6M03513.D Analysis Date: 10/29/13 17:25 Date Rec/Extracted: 10/25/13-NA

Matrix: Soil Initial Vol: 4.66g Final Vol: NA Dilution: 1.07 Solids: 74 Method: EPA 8260C

## Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	7.60	0.021 JB
2		unknown	9.27	0.020 JB

Worksheet #: 283325

Total Tentatively Identified Concentration 0.041

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

ORGANICS VOLATILE REPORT

# Sample Number: AC75362-010 Client Id: FB-10242013 Data File: 3M41578.D Analysis Date: 10/29/13 10:44 Date Rec/Extracted: 10/25/13-NA Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1,0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropyibenzene	1.0	U
78 <b>-8</b> 7-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283324

**Total Target Concentration** 

n 0

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-010 Client Id: FB-10242013 Data File: 3M41578.D Analysis Date: 10/29/13 10:44 Date Rec/Extracted: 10/25/13-NA

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: Method: EPA 624

# Units: ug/L

Cas #	Compound	RT	Conc
1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 283324

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at <10% of nearest Internal Standard

#### Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M41572.D

Analysis Date: 10/29/13 09:04

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

71-55-6       1,1,1-Trichloroethane       1.0       U       56-23-5       Carbon Tetrachloride       1.0       U         79-34-5       1,1,2-Trichloroethane       1.0       U       108-90-7       Chlorobenzene       1.0       U         76-13-1       1,1,2-Trichloro-1,2,2-trifluor       5.0       U       75-00-3       Chloroethane       1.0       U         79-00-5       1,1,2-Trichloroethane       1.0       U       67-66-3       Chloromtane       1.0       U         75-34-3       1,1-Dichloroethane       1.0       U       74-87-3       Chloromtane       1.0       U         75-35-4       1,1-Dichloroethane       1.0       U       106-59-2       cis-1,2-Dichloroethane       1.0       U         76-16       1,2,3-Trichlorobenzene       1.0       U       106-10-5       cis-1,3-Dichloroptene       1.0       U         96-12-8       1,2-Dibromo-3-Chloropropa       1.0       U       104-48-1       Dibromodifuoromethane       1.0       U         96-12-8       1,2-Dibromoethane       1.0       U       106-41-4       Ethylbenzene       1.0       U         96-12-8       1,2-Dichlorobenzene       1.0       U       106-47-1       Ethylbenzene       1.0	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
76-13-1       1,1,2-Trichloro-1,2,2-trifluor       5.0       U       75-00-3       Chloroethane       1.0       U         79-00-5       1,1,2-Trichloro-1,2,2-trifluor       1.0       U       67-66-3       Chloroethane       1.0       U         75-34-3       1,1-Dichloroethane       1.0       U       74-87-3       Chloromthane       1.0       U         75-35-4       1,1-Dichloroethane       1.0       U       166-59-2       cis-1,2-Dichloroethene       1.0       U         87-61-6       1,2,3-Trichlorobenzene       1.0       U       10661-01-5       cis-1,3-Dichloropthene       1.0       U         120-82-1       1,2-L-Trichlorobenzene       1.0       U       10061-01-5       cis-1,3-Dichloropthene       1.0       U         96-12-8       1,2-Dibromo-3-Chloropropa       1.0       U       104-82-7       Cyclohexane       1.0       U         106-93-4       1,2-Dichlorobenzene       1.0       U       104-82-7       Syclohexane       1.0       U         106-93-4       1,2-Dichlorobenzene       1.0       U       100-41-4       Ethylenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       1.0       U       186-872       Methylezene <t< td=""><td>71-55-6</td><td>1,1,1-Trichloroethane</td><td>1.0</td><td>U</td><td>56-23-5</td><td>Carbon Tetrachloride</td><td>1.0</td><td>U</td></t<>	71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-00-5       1,1,2-Trichloroethane       1.0       U       67-66-3       Chloroform       1.0       U         75-34-3       1,1-Dichloroethane       1.0       U       76-66-3       Chloroform       1.0       U         75-35-4       1,1-Dichloroethane       1.0       U       76-66-3       Chloroform       1.0       U         87-61-6       1,2,3-Trichloroethane       1.0       U       106-62-2       cis-1,2-Dichloroethene       1.0       U         120-82-1       1,2.4-Trichlorobenzene       1.0       U       106-61-01-5       cis-1,3-Dichloroptopene       1.0       U         106-93-4       1,2-Dibromo-3-Chloropropa       1.0       U       110-82-7       Cyclohexane       1.0       U         106-93-4       1,2-Dibromo-3-Chloropropa       1.0       U       106-41-4       Ethylenzene       1.0       U         106-93-4       1,2-Dichlorobenzene       1.0       U       100-41-4       Ethylenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       1.0       U       136777612       m&/ylenzene       1.0       U         78-87-5       1,2-Dichlorobenzene       1.0       U       108-87-2       Methyleclohexane       1.0       U </td <td>79-34-5</td> <td>1,1,2,2-Tetrachloroethane</td> <td>1.0</td> <td>U</td> <td>108-90-7</td> <td>Chlorobenzene</td> <td>1.0</td> <td>U</td>	79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
75-34-3       1,1-Dichloroethane       1.0       U       74-87-3       Chloromethane       1.0       U         75-34-3       1,1-Dichloroethane       1.0       U       156-59-2       cis-1,2-Dichloroethane       1.0       U         87-61-6       1,2,3-Trichlorobenzene       1.0       U       10061-01-5       cis-1,3-Dichloroethane       1.0       U         120-82-1       1,2,4-Trichlorobenzene       1.0       U       110-82-7       Cyclohexane       1.0       U         96-12-8       1,2-Dibromo-3-Chloropropa       1.0       U       124-48-1       Dibromochloromethane       1.0       U         96-50-1       1,2-Dichlorobenzene       1.0       U       75-71-8       Dichlorodifluoromethane       1.0       U         107-06-2       1,2-Dichlorobenzene       1.0       U       106-41-4       Ethylbenzene       1.0       U         107-06-2       1,2-Dichloroptopane       1.0       U       136777612       m&p-Xylenes       1.0       U         107-06-2       1,4-Dichlorobenzene       1.0       U       136777612       m&p-Xylenes       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
75-35-4       1,1-Dichloroethene       1.0       U       156-59-2       cis-1,2-Dichloroethene       1.0       U         87-61-6       1,2,3-Trichlorobenzene       1.0       U       10061-01-5       cis-1,3-Dichloroptope       1.0       U         120-82-1       1,2,4-Trichlorobenzene       1.0       U       110-82-7       Cyclohexane       1.0       U         96-12-8       1,2-Dibromo-3-Chloropropa       1.0       U       124-48-1       Dibromochloromethane       1.0       U         106-93-4       1,2-Dichlorobenzene       1.0       U       75-71-8       Dichlorodifluoromethane       1.0       U         95-50-1       1,2-Dichlorobenzene       1.0       U       100-41-4       Ethylbenzene       1.0       U         107-06-2       1,2-Dichloroptopane       1.0       U       136777612       m&p-Xylenes       1.0       U         74-37-1       1,3-Dichlorobenzene       1.0       U       136777612       m&p-Xylenes       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dichlorobenzene       1.0       U       1634-04-4       Methylcyleohexane	79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
87-61-6       1,2,3-Trichlorobenzene       1.0       U       10061-01-5       cis-1,3-Dichloropropene       1.0       U         120-82-1       1,2,4-Trichlorobenzene       1.0       U       110-82-7       Cyclohexane       1.0       U         96-12-8       1,2-Dibromo-3-Chloropropa       1.0       U       124-48-1       Dibromochloromethane       1.0       U         106-93-4       1,2-Dibromo-3-Chloropropa       1.0       U       75-71-8       Dichlorodifluoromethane       1.0       U         106-93-4       1,2-Dichlorobenzene       1.0       U       75-71-8       Dichlorodifluoromethane       1.0       U         95-50-1       1,2-Dichlorobenzene       1.0       U       100-41-4       Ethylbenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       1.0       U       136777612       m&p-Xylenes       1.0       U         107-06-2       1,2-Dichlorobenzene       1.0       U       136777612       m&p-Xylenes       1.0       U         107-64-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methyl Acetate       1.0       U         108-46-7       1,4-Dichlorobenzene       1.0       U       1634-04-4       Methyle-bulyl ether<	75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
120-82-1       1,2,4-Trichlorobenzene       1.0       U       110-82-7       Cyclohexane       1.0       U         96-12-8       1,2-Dibromo-3-Chloropropa       1.0       U       124-48-1       Dibromochloromethane       1.0       U         106-93-4       1,2-Dichlorobenzene       1.0       U       124-48-1       Dibromochloromethane       1.0       U         95-50-1       1,2-Dichlorobenzene       1.0       U       100-41-4       Ethylbenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       1.0       U       100-41-4       Ethylbenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       1.0       U       136777612       m&p-Xylenes       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dioxane       50       U       75-09-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dioxane       1.0       U       1634-04-4       Methyl-t-butyl ether       0.50       U<	75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
96-12-8       1,2-Dibromo-3-Chloropropa       1.0       U       124-48-1       Dibromochloromethane       1.0       U         106-93-4       1,2-Dibromo-3-Chloropropa       1.0       U       75-71-8       Dichlorodifluoromethane       1.0       U         95-50-1       1,2-Dibromoethane       1.0       U       100-41-4       Ethylbenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       0.50       U       98-82-8       Isopropylbenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       0.0       U       136777612       m&p-Xylenes       1.0       U         78-87-5       1,2-Dichlorobenzene       1.0       U       136777612       m&p-Xylenes       1.0       U         541-73-1       1,3-Dichlorobenzene       1.0       U       197-20-9       Methyl Acetate       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dioxane       50       U       75-09-2       Methylcyclohexane       1.0       U         78-93-3       2-Butanone       1.0       U       1634-04-4       Methyl-t-butyl ether       0.50	87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
106-93-4       1,2-Dibromoethane       1.0       U       75-71-8       Dichlorodifluoromethane       1.0       U         95-50-1       1,2-Dichlorobenzene       1.0       U       100-41-4       Ethylbenzene       1.0       U         107-06-2       1,2-Dichlorobenzene       0.50       U       98-82-8       Isopropylbenzene       1.0       U         78-87-5       1,2-Dichloropropane       1.0       U       136777612       m&p-Xylenes       1.0       U         541-73-1       1,3-Dichlorobenzene       1.0       U       79-20-9       Methyl Acetate       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dicknone       50       U       75-09-2       Methylcyclohexane       1.0       U         78-93-3       2-Butanone       1.0       U       1634-04-4       Methyl-t-butyl ether       0.50       U         591-78-6       2-Hexanone       1.0       U       100-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         7	120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
95-50-11,2-Dichlorobenzene1.0U100-41-4Ethylbenzene1.0U107-06-21,2-Dichloroethane0.50U98-82-8Isopropylbenzene1.0U78-87-51,2-Dichloropropane1.0U136777612m&p-Xylenes1.0U541-73-11,3-Dichlorobenzene1.0U79-20-9Methyl Acetate1.0U106-46-71,4-Dichlorobenzene1.0U108-87-2Methylcyclohexane1.0U123-91-11,4-Dioxane50U75-09-2Methylene Chloride1.0U78-93-32-Butanone1.0U1634-04-4Methyl-t-butyl ether0.50U591-78-62-Hexanone1.0U100-42-5Styrene1.0U108-10-14-Methyl-2-Pentanone1.0U100-42-5Styrene1.0U67-64-1Acetone10U127-18-4Tetrachloroethene1.0U71-43-2Benzene0.50U108-88-3Toluene1.0U74-97-5Bromochloromethane1.0U126-60-5trans-1,2-Dichloroethene1.0U75-27-4Bromodichloromethane1.0U10061-02-6trans-1,3-Dichloropropene1.0U	96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
103 001 11,2 Dishlobolitzino1.001.001.01.00107-06-21,2-Dichloroethane0.50U98-82-8Isopropylbenzene1.0U78-87-51,2-Dichloropropane1.0U136777612m&p-Xylenes1.0U541-73-11,3-Dichlorobenzene1.0U79-20-9Methyl Acetate1.0U106-46-71,4-Dichlorobenzene1.0U108-87-2Methylcyclohexane1.0U123-91-11,4-Dioxane50U75-09-2Methylene Chloride1.0U78-93-32-Butanone1.0U1634-04-4Methyl-t-butyl ether0.50U591-78-62-Hexanone1.0U95-47-6o-Xylene1.0U108-10-14-Methyl-2-Pentanone1.0U100-42-5Styrene1.0U108-10-14-Methyl-2-Pentanone1.0U127-18-4Tetrachloroethene1.0U71-43-2Benzene0.50U108-88-3Toluene1.0U74-97-5Bromochloromethane1.0U156-60-5trans-1,2-Dichloroethene1.0U75-27-4Bromodichloromethane1.0U10061-02-6trans-1,3-Dichloropropene1.0U	106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
78-87-5       1,2-Dichloropropane       1.0       U       136777612       m&p-Xylenes       1.0       U         541-73-1       1,3-Dichlorobenzene       1.0       U       79-20-9       Methyl Acetate       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methyl Acetate       1.0       U         123-91-1       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dioxane       50       U       75-09-2       Methylene Chloride       1.0       U         123-91-1       1,4-Dioxane       1.0       U       1634-04-4       Methylene Chloride       1.0       U         123-91-78-6       2-Hexanone       1.0       U       1634-04-4       Methyl-t-butyl ether       0.50       U         591-78-6       2-Hexanone       1.0       U       106-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       102-42-5       Styrene       1.0       U         67-64-1       Acetone       10       U       127-18-4       Tetrachloroethene       1.0       U         74-97-5	95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
541-73-1       1,3-Dichlorobenzene       1.0       U       79-20-9       Methyl Acetate       1.0       U         106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methyl Acetate       1.0       U         123-91-1       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dickne       50       U       75-09-2       Methylene Chloride       1.0       U         78-93-3       2-Butanone       1.0       U       1634-04-4       Methyl-t-butyl ether       0.50       U         591-78-6       2-Hexanone       1.0       U       95-47-6       o-Xylene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       127-18-4       Tetrachloroethene       1.0       U         108-10-1       4-Methyl-2-Pentanone       0.50       U       108-88-3       Toluene       1.0       U         71-43-2       Benzene       0.50       U       108-88-3       Toluene       1.0       U         74-97-5       B	107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
106-46-7       1,4-Dichlorobenzene       1.0       U       108-87-2       Methylcyclohexane       1.0       U         123-91-1       1,4-Dioxane       50       U       75-09-2       Methylcyclohexane       1.0       U         78-93-3       2-Butanone       1.0       U       1634-04-4       Methyl-t-butyl ether       0.50       U         591-78-6       2-Hexanone       1.0       U       95-47-6       o-Xylene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       127-18-4       Tetrachloroethene       1.0       U         107-64-1       Acetone       0.50       U       108-88-3       Toluene       1.0       U         71-43-2       Benzene       0.50       U       156-60-5       trans-1,2-Dichloroethene       1.0       U         74-97-5       Bromodichloromethane       1.0       U       10061-02-6       trans-1,3-Dichloropropene       1.0       U	78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
123-91-1       1,4-Dioxane       50       U       75-09-2       Methylene Chloride       1.0       U         78-93-3       2-Butanone       1.0       U       1634-04-4       Methylene Chloride       1.0       U         591-78-6       2-Hexanone       1.0       U       95-47-6       o-Xylene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       127-18-4       Tetrachloroethene       1.0       U         107-64-1       Acetone       0.50       U       108-88-3       Toluene       1.0       U         71-43-2       Benzene       0.50       U       108-88-3       Toluene       1.0       U         74-97-5       Bromodichloromethane       1.0       U       10061-02-6       trans-1,2-Dichloropropene       1.0       U         75-27-4       Bromodichlorometh	541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
78-93-3       2-Butanone       1.0       U       1634-04-4       Methyl-t-butyl ether       0.50       U         591-78-6       2-Hexanone       1.0       U       95-47-6       o-Xylene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         67-64-1       Acetone       10       U       127-18-4       Tetrachloroethene       1.0       U         71-43-2       Benzene       0.50       U       108-88-3       Toluene       1.0       U         74-97-5       Bromochloromethane       1.0       U       156-60-5       trans-1,2-Dichloroethene       1.0       U         75-27-4       Bromodichloromethane       1.0       U       10061-02-6       trans-1,3-Dichloropropene       1.0       U	106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
591-78-6       2-Hexanone       1.0       U       95-47-6       o-Xylene       1.0       U         108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         67-64-1       Acetone       10       U       127-18-4       Tetrachloroethene       1.0       U         71-43-2       Benzene       0.50       U       108-88-3       Toluene       1.0       U         74-97-5       Bromochloromethane       1.0       U       156-60-5       trans-1,2-Dichloroethene       1.0       U         75-27-4       Bromodichloromethane       1.0       U       10061-02-6       trans-1,3-Dichloropropene       1.0       U	123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
108-10-1       4-Methyl-2-Pentanone       1.0       U       100-42-5       Styrene       1.0       U         67-64-1       Acetone       10       U       127-18-4       Tetrachloroethene       1.0       U         71-43-2       Benzene       0.50       U       108-88-3       Toluene       1.0       U         74-97-5       Bromodichloromethane       1.0       U       156-60-5       trans-1,2-Dichloroethene       1.0       U         75-27-4       Bromodichloromethane       1.0       U       10061-02-6       trans-1,3-Dichloropropene       1.0       U	78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
67-64-1       Acetone       10       U       127-18-4       Tetrachloroethene       1.0       U         71-43-2       Benzene       0.50       U       108-88-3       Toluene       1.0       U         74-97-5       Bromodichloromethane       1.0       U       156-60-5       trans-1,2-Dichloroethene       1.0       U         75-27-4       Bromodichloromethane       1.0       U       10061-02-6       trans-1,3-Dichloropropene       1.0       U	591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
71-43-2       Benzene       0.50       U       108-88-3       Toluene       1.0       U         74-97-5       Bromochloromethane       1.0       U       156-60-5       trans-1,2-Dichloroethene       1.0       U         75-27-4       Bromodichloromethane       1.0       U       10061-02-6       trans-1,3-Dichloropropene       1.0       U	108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
74-97-5Bromochloromethane1.0U156-60-5trans-1,2-Dichloroethene1.0U75-27-4Bromodichloromethane1.0U10061-02-6trans-1,3-Dichloropropene1.0U	67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
75-27-4 Bromodichloromethane 1.0 U 10061-02-6 trans-1,3-Dichloropropene 1.0 U	71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
	74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
	75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2 Bromoform 1.0 U 79-01-6 Trichloroethene 1.0 U	75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9 Bromomethane 1.0 U 75-69-4 Trichlorofluoromethane 1.0 U	74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0 Carbon Disulfide 1.0 U 75-01-4 Vinyl Chloride 1.0 U	75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U

Worksheet #: 283324

Total Target Concentration

0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

# ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: DAILY BLANK
Client Id:
Data File: 3M41572.D
Analysis Date: 10/29/13 09:04
Date Rec/Extracted:

Matrix: Aqueous Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: Method: EPA 624

# Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	LO	

Worksheet #: 283324

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

#### Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 6M03479.D

Analysis Date: 10/29/13 08:14

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Soil Initial Vol: 5g Final Vol: NA Dilution: 1.00 Solids: 100

Units: mg/Kg

Units: mg/kg											
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	0.0020	U	56-23-5	Carbon Tetrachloride	0.0020	U				
79-34-5	1,1,2,2-Tetrachloroethane	0.0020	U	108-90-7	Chlorobenzene	0.0020	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0020	U	75-00-3	Chloroethane	0.0020	U				
79 <b>-00</b> -5	1,1,2-Trichloroethane	0.0020	U	67-66-3	Chloroform	0.0020	U				
75-34-3	1,1-Dichloroethane	0.0020	U	74-87-3	Chloromethane	0.0020	U				
75-35-4	1,1-Dichloroethene	0.0020	U	156-59-2	cis-1,2-Dichloroethene	0.0020	Ų				
87-61-6	1,2,3-Trichlorobenzene	0.0020	U	10061-01-5	cis-1,3-Dichloropropene	0.0020	U				
120-82-1	1,2,4-Trichlorobenzene	0.0020	U	110-82-7	Cyclohexane	0.0020	U				
96-12-8	1,2-Dibromo-3-Chloropropa	0.0020	U	124-48-1	Dibromochloromethane	0.0020	U				
106-93-4	1,2-Dibromoethane	0.0020	U	75-71-8	Dichlorodifluoromethane	0.0020	U				
95-50-1	1,2-Dichlorobenzene	0.0020	U	100-41-4	Ethylbenzene	0.0010	U				
107-06-2	1,2-Dichloroethane	0.0010	U	98-82-8	Isopropylbenzene	0.0010	U				
78-87-5	1,2-Dichloropropane	0.0020	U	136777612	m&p-Xylenes	0.0010	U				
541-73-1	1,3-Dichlorobenzene	0.0020	U	79-20-9	Methyl Acetate	0.0020	U				
106-46-7	1,4-Dichlorobenzene	0.0020	U	108-87-2	Methylcyclohexane	0.0020	U				
123-91-1	1,4-Dioxane	0.10	U	75 <b>-09-2</b>	Methylene Chloride	0.0020	U				
78-93-3	2-Butanone	0.0020	U	1634-04-4	Methyl-t-butyl ether	0.0010	U				
591-78-6	2-Hexanone	0.0020	U	95-47-6	o-Xylene	0.0010	U				
108-10-1	4-Methyl-2-Pentanone	0.0020	U	100-42-5	Styrene	0.0020	U				
67-64-1	Acetone	0.010	U	127-18-4	Tetrachloroethene	0.0020	U				
71-43-2	Benzene	0.0010	U	108-88-3	Toluene	0.0010	U				
7 <b>4-9</b> 7-5	Bromochloromethane	0.0020	U	156-60-5	trans-1,2-Dichloroethene	0.0020	U				
75-27-4	Bromodichloromethane	0.0020	U	10061-02-6	trans-1,3-Dichloropropene	0.0020	U				
75-25-2	Bromoform	0.0020	U	79-01-6	Trichloroethene	0.0020	U				
74-83-9	Bromomethane	0.0020	U	75-69-4	Trichlorofluoromethane	0.0020	U				
75-15-0	Carbon Disulfide	0.0020	U	75-01-4	Vinyl Chloride	0.0020	U				

Worksheet #: 283325

Total Target Concentration

o**n** 0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

*E* - Indicates the analyte was found in the blank as well as in the sample. *E* - Indicates the analyte concentration exceeds the calibration range of the instrument. J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### Form1e ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK	Matrix: Soil
Client Id:	Initial Vol: 5g
Data File: 6M03479.D	Final Vol: NA
Analysis Date: 10/29/13 08:14	Dilution: 1.00
Date Rec/Extracted:	Solids: 100
	Method: EPA 8260C

#### Units: mg/Kg

	Cas #	Compound	RT	Conc	
1		unknown	7.58	0.013 J	
2		unknown	7.64	0.0075 J	
. 3		unknown	9.27	0.0075 J	
4		unknown	9.32	0.0038 J	

Worksheet #: 283325

Total Tentatively Identified Concentration 0.032

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

3102513 0076

# Form3 Recovery Data QC Batch: MBS31288

D	Sample	e ID:	Analysis Date				
Spike or Dup: 3	M41639.D	AC753	62-002(MS)	10/30/2013 2:41:00 AM			
Non Spike(If applicable): 31	M41631.D	AC753	62-002		10/30/2013	3 12:38:0	0 A 0
Inst Blank(If applicable):							
Method: 624	I	Matrix: Aque	ous		QC Type: MS		
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Uppe Limit
Chloromethane	1	20.0167	0	20	100		
						1	273
Bromomethane	1	14.305	0	20	72	1	242
Vinyl Chloride	1	18.9769	0	20	95	1	251
Chloroethane	1	19.5022	0	20	98	14	230
Trichlorofluoromethane	1	18.6272	0	20	93	17	181
Methylene Chloride	1	15.7767	0	20	79	1	221
1,1-Dichloroethene	1	17.254	0	20	86	1	234
1,1-Dichloroethane	1	16.4394	0	20	82	59	155
trans-1,2-Dichloroethene	1	17.7362	0	20	89	54	156
Chioroform	1	16.4052	0	20	82	51	138
1,2-Dichloroethane	1	18.1057	0	20	91	49	155
1,1,1-Trichloroethane	1	16.9457	0	20	85	52	162
Carbon Tetrachloride	1	18.6545	0	20	93	70	140
Bromodichloromethane	1	18.4687	0	20	92	35	155
1,2-Dichloropropane	1	16.704	0	20	84	1	210
Trichloroethene	1	16.6085	0	20	83	71	157
Benzene	1	17.8515	0	20	89	37	151
Dibromochloromethane	1	17.5618	0	20	88	53	149
2-Chloroethylvinylether	1	0	0	20	0*	1	305
cis-1,3-Dichloropropene	1	12.6851	0	20	63	1	227
trans-1,3-Dichloropropene	1	13.2799	0	20	66	17	183
1,1,2-Trichloroethane	1	16.1934	0	20	81	52	150
Tetrachloroethene	1	18.1862	0	20	91	64	148
Toluene	1	16.271	0	20	81	47	150
Chlorobenzene	1	17.1397	0	20	86	37	160
Bromoform	1	15.5361	0	20	78	45	169
Ethylbenzene	1	16.9009	0	20	85	37	162
1,1,2,2-Tetrachloroethane	1	15.4624	0	20	77	46	157
1,3-Dichlorobenzene	1	15.5419	0	20	78	59	156
1,4-Dichlorobenzene	1	15.0769	0	20	75	18	190
1,2-Dichlorobenzene	1	15.0907	Ō	20	75	18	190

Form3 Recovery Data QC Batch: MBS31288

Data File
Spike or Dup: 3M41640.D
Non Spike(If applicable): 3M41631.D
Inst Blank(If applicable):

Sample ID: AC75362-002(MSD) AC75362-002 Analysis Date 10/30/2013 2:57:00 AM 10/30/2013 12:38:00 A

Method: 624	Matrix: Aqueous			QC Type: MSD			
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Uppe Limit
Chloromethane	1	20.9789	0	20	105	1	273
Bromomethane	1	19.7471	0	20	99	1	242
Vinyl Chloride	1	18.504	0	20	93	1	251
Chloroethane	1	23.6165	0	20	118	14	230
Trichlorofluoromethane	1	20.9343	0	20	105	17	181
Methylene Chloride	1	16.9736	0	20	85	1	221
1,1-Dichloroethene	1	18.5738	0	20	93	1	234
1,1-Dichloroethane	1	17.6889	0	20	88	59	155
trans-1,2-Dichloroethene	1	18.4344	0	20	92	54	156
Chloroform	1	18.4808	0	20	92	51	138
1,2-Dichloroethane	1	19.3145	0	20	97	49	155
1.1.1-Trichloroethane	1	18.1549	0	20	91	52	162
Carbon Tetrachloride	1	20.4151	0	20	102	70	140
Bromodichloromethane	1	19.847	0	20	99	35	155
1,2-Dichloropropane	1	18.1403	0	20	91	1	210
Trichloroethene	1	18.5688	0	20	93	71	157
Benzene	1	19,1476	0	20	96	37	151
Dibromochloromethane	1	18.3333	0	20	92	53	149
2-Chloroethylvinylether	1	0	0	20	0*	1	305
cis-1,3-Dichloropropene	1	12,7477	0	20	64	1	227
trans-1,3-Dichloropropene	1	13.749	0	20	69	17	183
1,1,2-Trichloroethane	1	16.2721	0	20	81	52	150
Tetrachloroethene	1	18.6734	0	20	93	64	148
Toluene	1	16.8638	0	20	84	47	150
Chlorobenzene	1	17.7963	Ō	20	89	37	160
Bromoform	1	16.5558	Ō	20	83	45	169
Ethylbenzene	1	17.9254	Ō	20	90	37	162
1,1,2,2-Tetrachloroethane	1	15.8581	Ō	20	79	46	157
1,3-Dichlorobenzene	1	16.5647	0	20	83	59	156
1,4-Dichlorobenzene	1	15.8474	Ō	20	79	18	190
1.2-Dichlorobenzene	1	15.9752	Õ	20	80	18	190

ORGANICS SEMIVOLATILE REPORT

#### Sample Number: AC75362-002

Client Id: SW-15-10242013

#### Data File: 10M40859.D

Analysis Date: 10/31/13 09:42

Date Rec/Extracted: 10/25/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 500ml Final Vol: 0.5ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	Ŭ	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	<b>86-73</b> -7	Fluorene	2.0	U
534-52-1	4.6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621 <b>-</b> 64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283277

**Total Target** Concentration

*on* 0

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75362-002	
Client Id: SW-15-10242013	
Data File: 10M40859.D	
Analysis Date: 10/31/13 09:42	
Date Rec/Extracted: 10/25/13-10/30/13	

Matrix: Aqueous Initial Vol: 500ml Final Vol: 0.5ml Dilution: 1 Solids: Method: EPA 625

#### Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	15 JB
2	630-06-8	Hexatriacontane	11.22	5.9 J
3	112-95 <b>-</b> 8	Eicosane	13.35	8.3 J
4	629-92-5	Nonadecane	15.55	4.1 J

Worksheet #: 283277

**Total Tentatively Identified Concentration** 33

A - Indicates an aldol condensate.

A - Indicates an estimated value. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

ORGANICS SEMIVOLATILE REPORT

# Sample Number: AC75362-003 Client Id: SW-4-10242013 Data File: 10M40896.D Analysis Date: 11/01/13 11:53 Date Rec/Extracted: 10/25/13-10/30/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 990ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.51	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.51	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.51	U
95-48-7	2-Methylphenol	0.51	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.51	U
106-44-5	3&4-Methylphenol	0.51	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.51	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.51	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.51	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86 <b>-</b> 5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283277

Total Target Concentration

ration 0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

*E* - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75362-003	Matrix: Aqueous
Client Id: SW-4-10242013	Initial Vol: 990ml
Data File: 10M40896.D	Final Vol: 1ml
Analysis Date: 11/01/13 11:53	Dilution: 1
Date Rec/Extracted: 10/25/13-10/30/13	Solids
	Method: EPA 625

# Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	9.5 JB

n fan de ferste fer Ferste 
·....

的复数复数 化离子

e mateura di Sula

Worksheet #: 283277

**Total Tentatively Identified Concentration** 9.5

A - Indicates an aldol condensate.

J - Indicates an estimated value.
 B - Indicates the analyte was found in the blank as well as in the sample.
 Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li>

ORGANICS SEMIVOLATILE REPORT

#### Sample Number: AC75362-004

Client Id: SD-4-10242013

#### Data File: 7M60823.D

Analysis Date: 11/05/13 12:56

Date Rec/Extracted: 10/25/13-11/04/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270D Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 61

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.11	U	205-99-2	Benzo[b]fluoranthene	0.11	0.13
95-94-3	1,2,4,5-Tetrachlorobenzene	0.11	U	191-24-2	Benzo[g,h,i]perylene	0.11	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.11	U	207-08-9	Benzo[k]fluoranthene	0.11	U
95-95-4	2,4,5-Trichlorophenol	0.11	U	111-91-1	bis(2-Chloroethoxy)methan	0.11	U
88-06-2	2,4,6-Trichlorophenol	0.11	U	111-44-4	bis(2-Chloroethyl)ether	0.027	U
120-83-2	2,4-Dichlorophenol	0.027	U	108-60-1	bis(2-chloroisopropyl)ether	0.11	U
105-67-9	2,4-Dimethylphenol	0.027	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.11	U
51-28-5	2,4-Dinitrophenol	0.55	U	85-68-7	Butylbenzylphthalate	0.11	U
121-14-2	2,4-Dinitrotoluene	0.11	U	105-60-2	Caprolactam	0.11	U
606-20-2	2,6-Dinitrotoluene	0.11	U	86-74-8	Carbazole	0.11	U
91-58-7	2-Chloronaphthalene	0.11	U	218-01-9	Chrysene	0.11	U
95-57-8	2-Chlorophenol	0.11	Ú	53-70-3	Dibenzo[a,h]anthracene	0.11	U
91-57-6	2-Methylnaphthalene	0.11	U	132-64 <b>-</b> 9	Dibenzofuran	0.027	U
95-48-7	2-Methylphenol	0.027	U	84-66-2	Diethylphthalate	0.11	U
88-74-4	2-Nitroaniline	0.11	U	131-11-3	Dimethylphthalate	0.11	U
88-75-5	2-Nitrophenol	0.11	U	84-74-2	Di-n-butylphthalate	0.055	U
106-44-5	3&4-Methylphenol	0.027	U	117-84-0	Di-n-octylphthalate	0.11	U
91-94-1	3,3'-Dichlorobenzidine	0.11	U	206-44-0	Fluoranthene	0.11	0.14
99-09-2	3-Nitroaniline	0.11	U	86-73-7	Fluorene	0.11	U
534-52-1	4,6-Dinitro-2-methylphenol	0.55	U	118-74-1	Hexachlorobenzene	0,11	U
101-55-3	4-Bromophenyl-phenylether	0.11	U	87-68-3	Hexachlorobutadiene	0.11	U
59-50-7	4-Chloro-3-methylphenol	0.11	U	77-47 <b>-</b> 4	Hexachlorocyclopentadiene	0.11	U
106-47-8	4-Chloroaniline	0.052	U	67-72-1	Hexachloroethane	0.11	U
7005-72-3	4-Chlorophenyl-phenylether	0.11	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.11	Û
100-01-6	4-Nitroaniline	0.11	U	78-59-1	Isophorone	0.11	U
100 <b>-</b> 02-7	4-Nitropheno!	0.11	U	91 <b>-</b> 20-3	Naphthalene	0.027	U
83-32-9	Acenaphthene	0.11	U	98-95-3	Nitrobenzene	0.11	U
208-96-8	Acenaphthylene	0.11	Ü	621-64-7	N-Nitroso-di-n-propylamine	0.027	U
98-86-2	Acetophenone	0.11	U	86-30-6	n-Nitrosodiphenylamine	0.11	U
120-12-7	Anthracene	0.11	U	87-86-5	Pentachlorophenol	0.55	U
1912-24-9	Atrazine	0.11	U	85-01-8	Phenanthrene	0.11	U
100-52-7	Benzaldehyde	0.11	U	108-95-2	Phenol	0.11	U
56-55-3	Benzo[a]anthracene	0.11	U	129-00-0	Pyrene	0.11	0.16
50-32-8	Benzo[a]pyrene	0.11	U				

Worksheet #: 283275

Total Target Concentration

0.43

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

*E* - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75362-004	Matrix: Soil
Client Id: SD-4-10242013	Initial Vol: 30g
Data File: 7M60823.D	Final Vol: 1ml
Analysis Date: 11/05/13 12:56	Dilution: 1
Date Rec/Extracted: 10/25/13-11/04/13	Solids: 61
	Method: EPA 8270D

# Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	4.16	1.5 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.40	140 JAB
3	57-10-3	Hexadecanoic acid	9.97	0.59 J
4		unknown	12.67	0.57 J
5	593-49-7	Heptacosane	13.05	0.80 J
6	630-03-5	Nonacosane	13.79	1.6 J
7	6785-23-5	Cyclopentane, undecyl-	13.83	0.46 J
8	638-66-4	Octadecanal	14.31	0.71 J
9	54833-48-6	Heptadecane, 2,6,10,15-tetramethyl-	14.51	0.59 J
10	59-02-9	Vitamin E	14.70	1.1 J
11	57-88-5	Cholest-5-en-3-ol (3.beta.)-	14.78	0.47 J
12	629-80-1	Hexadecanal	15.13	0.51 J
13		unknown	15.36	0.67 J
14	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	15.67	5.6 J
15		unknown	15.75	0.43 J
16	74447-84-0	3-Chloro-4'-methoxybiphenyl	15.79	1.3 J
17	83-46-5	5.ALPHASTIGMAST-3-ONE	15.94	0.90 J
18	559-70-6	.betaAmyrin	15.98	2.8 J
19	10219-75-7	Eremophilene	16.05	1.8 J

Worksheet #: 283275

Total Tentatively Identified Concentration 160

A - Indicates an aldol condensate.

J - Indicates an estimated value. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

# Sample Number: AC75362-005 Client Id: SW-2-10242013 Data File: 9M53619.D Analysis Date: 10/31/13 15:37 Date Rec/Extracted: 10/25/13-10/30/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g;h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111 <b>-</b> 91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0:50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chioro-3-methyiphenoi	2.0	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	Ų
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	Ú
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30 <b>-</b> 6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	Ų
100-52-7	Benzaldehyde	2.0	U	108-95-2		2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	Ŭ
50-32-8	Benzo[a]pyrene	2.0	U				
					•		

Worksheet #: 283277

**Total Target Concentration** 

n 0 R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ColumnID: (^) Indicates results from 2nd column

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75362-005		Matrix: Aqueous	
Client Id: SW-2-10242013		Initial Vol: 1000ml	
Data File: 9M53619.D	S	Final Vol: 1ml	
Analysis Date: 10/31/13 15:37	<u>.</u> *-	Dilution: 1	
Date Rec/Extracted: 10/25/13-10/30/13		Solids:	
		Method: EPA 625	

#### Units: ug/L

	Cas #	Compound	RT	Conc	
1	5131-66-8	2-Propanol, 1-butoxy-	5.14	9.8 JB	

Worksheet #: 283277

**Total Tentatively Identified Concentration** 9.8

A - Indicates an aldol condensate.

*A* - Indicates an autor condensate. *J* - Indicates an estimated value. *B* - Indicates the analyte was found in the blank as well as in the sample. *Y* - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li> <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

ORGANICS SEMIVOLATILE REPORT

# Sample Number: AC75362-006 Client Id: SD-2-10242013 Data File: 7M60822.D Analysis Date: 11/05/13 12:34 Date Rec/Extracted: 10/25/13-11/04/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270D Matrix: Soil Initial Vol: 30g Final Vol: 0.5ml Dilution: 1 Solids: 74

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.045	U	205-99-2	Benzo[b]fluoranthene	0.045	U
95-94-3	1,2,4,5-Tetrachlorobenzene	0.045	U	191-24-2	Benzo[g,h,i]perylene	0.045	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.045	U	207-08-9	Benzo[k]fluoranthene	0.045	U
95-95-4	2,4,5-Trichlorophenol	0.045	U	111-91-1	bis(2-Chloroethoxy)methan	0.045	U
88-06-2	2,4,6-Trichlorophenol	0.045	U	111-44-4	bis(2-Chloroethyl)ether	0.011	U
120-83-2	2,4-Dichlorophenol	0.011	U	108-60-1	bis(2-chloroisopropyl)ether	0.045	U
105-67-9	2,4-Dimethylphenol	0.011	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.045	0.055
51-28-5	2,4-Dinitrophenol	0.23	U	85-68-7	Butylbenzylphthalate	0.045	U
121-14-2	2,4-Dinitrotoluene	0.045	U	105-60-2	Caprolactam	0.045	U
606-20-2	2,6-Dinitrotoluene	0.045	U	86-74-8	Carbazole	0.045	U
91-58-7	2-Chloronaphthalene	0.045	U,	218-01-9	Chrysene	0.045	U
95-57-8	2-Chlorophenol	0.045	U	53-70-3	Dibenzo[a,h]anthracene	0.045	U
91-57-6	2-Methylnaphthalene	0.045	U	132-64-9	Dibenzofuran	0.011	U
95-48-7	2-Methylphenol	0.011	U	84-66-2	Diethylphthalate	0.045	U
88-74-4	2-Nitroaniline	0.045	U	131-11-3	Dimethylphthalate	0.045	U
88-75-5	2-Nitrophenol	0.045	U	84-74-2	Di-n-butylphthalate	0.023	0.023
106-44-5	3&4-Methylphenol	0.011	U	117-84-0	Di-n-octylphthalate	0.045	U
91-94-1	3,3'-Dichlorobenzidine	0.045	U	206-44-0	Fluoranthene	0.045	U
99-09-2	3-Nitroaniline	0.045	U	86-73-7	Fluorene	0.045	U
534-52-1	4,6-Dinitro-2-methylphenol	0.23	U	118-74-1	Hexachlorobenzene	0.045	U
101-55-3	4-Bromophenyi-phenyiether	0.045	U	87-68-3	Hexachlorobutadiene	0.045	U
59-50-7	4-Chloro-3-methylphenol	0.045	U	77-47-4	Hexachlorocyclopentadiene	0.045	U
106-47-8	4-Chloroaniline	0.021	U	67-72-1	Hexachloroethane	0.045	U
7005-72-3	4-Chlorophenyl-phenylether	0.045	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.045	U
100-01-6	4-Nitroaniline	0.045	U	78-59-1	Isophorone	0,045	Ū
100-02-7	4-Nitrophenol	0.045	U	91-20-3	Naphthalene	0.011	U
83-32-9	Acenaphthene	0.045	U	98-95-3	Nitrobenzene	0.045	U
208-96-8	Acenaphthylene	0.045	U	621-64-7	N-Nitroso-di-n-propylamine	0.011	U
98-86-2	Acetophenone	0.045	U	86-30-6	n-Nitrosodiphenylamine	0.045	U
120-12-7	Anthracene	0.045	U	87-86-5	Pentachlorophenol	0.23	U
1912-24-9	Atrazine	0.045	U	85-01-8	Phenanthrene	0.045	U
100-52-7	Benzaldehyde	0.045	U	108-95-2	Phenol	0.045	Ú
56-55-3	Benzo[a]anthracene	0.045	Ű	129-00-0	Pyrene	0.045	U
50-32-8	Benzo[a]pyrene	0.045	U				

Worksheet #: 283275

Total Target Concentration

0.078

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit

specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

# ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-006	Matrix: Soil
Client Id: SD-2-10242013	Initial Vol: 30g
Data File: 7M60822.D	Final Vol: 0.5ml
Analysis Date: 11/05/13 12:34	Dilution: 1
Date Rec/Extracted: 10/25/13-11/04/13	Solids: 74
	Method: EPA 8270D

# Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.54	0.27 J
2		unknown	4.18	1.2 JB
3	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.43	110 JAB
4		unknown	4.92	0.26 JB
5	5131-66-8	2-Propanol, 1-butoxy-	5.08	0.24 JB
6	102-76-1	1,2,3-Propanetriol, triacetate	7.10	0.52 J
7	150-86-7	2-Hexadecen-1-ol, 3,7,11,15-tetramethyl	11.09	0.31 J
8		unknown	12.71	0.28 J
9	593-49-7	Heptacosane	13.05	0.78 J
10	62199-51-3	Cyclopentane, 1-pentyl-2-propyl-	13.40	0.28 J
11	638-66-4	Octadecanal	13.56	0.36 J
12	630-03-5	Nonacosane	13.77	0.84 J
13	638-66-4	Octadecanal	14.29	0.32 J
14		unknown	. 14.57	0.40 J
15	59-02-9	Vitamin E	14.67	0.45 J
16	57-88-5	Cholest-5-en-3-ol (3.beta.)-	14.76	0.28 J
17	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	15.64	1.2 J
18		unknown	15.76	0.33 J
19	83-46-5	5.ALPHA -STIGMAST-3-ONE	15.91	0.25 J
20	471-68-1	Olean-12-ene	16.03	0.32 J

#### Worksheet #: 283275

Total Tentatively Identified Concentration 120

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

ORGANICS SEMIVOLATILE REPORT

# Sample Number: AC75362-007 Client Id: SD-3-10242013 Data File: 7M60824.D Analysis Date: 11/05/13 13:19 Date Rec/Extracted: 10/25/13-11/04/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270D Matrix: Soil Initial Vol: 30g Final Vol: 1ml Dilution: 1 Solids: 80

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.083	Ų	205-99-2	Benzo[b]fluoranthene	0.083	1.1
95-94-3	1,2,4,5-Tetrachlorobenzene	0.083	Ú	191-24-2	Benzo[g,h,i]perylene	0.083	0.49
58-90-2	2,3,4,6-Tetrachlorophenol	0.083	U	207 <b>-</b> 08-9	Benzo[k]fluoranthene	0.083	0.32
95-95-4	2,4,5-Trichlorophenol	0.083	U	111-91-1	bis(2-Chloroethoxy)methan	0.083	U
88-06-2	2,4,6-Trichlorophenoł	0.083	υ	111-44-4	bis(2-Chloroethyl)ether	0.021	U
120-83-2	2,4-Dichlorophenol	0.021	U	108-60-1	bis(2-chloroisopropyl)ether	0.083	U
105-67-9	2,4-Dimethylphenol	0.021	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.083	0.12
51-28-5	2,4-Dinitrophenol	0.42	υ	85-68-7	Butylbenzylphthalate	0.083	U
121-14-2	2,4-Dinitrotoluene	0.083	U	105-60-2	Caprolactam	0.083	U
606-20-2	2,6-Dinitrotoluene	0.083	U	86-7 <b>4-</b> 8	Carbazole	0.083	0.11
91-58-7	2-Chloronaphthalene	0.083	υ	218-01-9	Chrysene	0.083	0.80
95-57-8	2-Chlorophenol	0.083	Ú	53-70-3	Dibenzo[a,h]anthracene	0.083	0.15
91-57-6	2-Methylnaphthalene	0.083	υ	132-64-9	Dibenzofuran	0.021	U
95-48-7	2-Methylphenol	0.021	U	84-66-2	Diethylphthalate	0.083	U
88-74-4	2-Nitroaniline	0:083	υ	131-11-3	Dimethylphthalate	0.083	U
88-75-5	2-Nitrophenol	0.083	υ	84-74 <b>-</b> 2	Di-n-butylphthalate	0.042	0.046
106-44-5	3&4-Methylphenol	0.021	υ	117-84-0	Di-n-octylphthalate	0.083	U
91-94-1	3,3'-Dichlorobenzidine	0.083	U	206-44-0	Fluoranthene	0.083	1.3
99-09-2	3-Nitroaniline	0.083	U	86-73-7	Fluorene	0.083	U
534-52-1	4,6-Dinitro-2-methylphenol	0.42	U	118-74-1	Hexachlorobenzene	0.083	U
101-55-3	4-Bromophenyl-phenylether	0.083	U	87-68-3	Hexachlorobutadiene	0.083	U
59-50-7	4-Chloro-3-methylphenol	0.083	U	77-47-4	Hexachlorocyclopentadiene	0.083	U
106-47-8	4-Chloroaniline	0.040	υ	67-72-1	Hexachloroethane	0.083	U
7005-72-3	4-Chlorophenyl-phenylether	0.083	υ	193-39-5	Indeno[1,2,3-cd]pyrene	0.083	0.45
100-01-6	4-Nitroaniline	0.083	U	78-59-1	Isophorone	0.083	U
100-02-7	4-Nitrophenol	0.083	U	91-20-3	Naphthalene	0.021	U
83-32-9	Acenaphthene	0.083	0.085	98-95-3	Nitrobenzene	0.083	U
208-96-8	Acenaphthylene	0.083	U	621-64-7	N-Nitroso-di-n-propylamine	0.021	U
98-86-2	Acetophenone	0.083	U	86-30-6	n-Nitrosodiphenylamine	0.083	Ù
120-12-7	Anthracene	0.083	0.14	87-86-5	Pentachlorophenol	0.42	U
1912-24-9	Atrazine	0.083	υ	85-01-8	Phenanthrene	0.083	0.66
100-52-7	Benzaldehyde	0.083	0.28	108-95-2	Phenol	0.083	Ų
56-55-3	Benzo[a]anthracene	0.083	0.75	129-00-0	Pyrene	0.083	1.2
50-32-8	Benzo[a]pyrene	0.083	0.65		•		

Worksheet #: 283275

**Total Target Concentration** 

8.7 *R* - *Retention Time Out*  ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.
 B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-007	Matrix: Soil
Client Id: SD-3-10242013	Initial Vol: 30g
Data File: 7M60824.D	Final Vol: 1ml
Analysis Date: 11/05/13 13:19	Dilution: 1
Date Rec/Extracted: 10/25/13-11/04/13	Solids: 80
	Method: EPA 8270D

#### Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	3.53	0.32 J
2		unknown	4.16	1.1 JB
3	123-42 <b>-</b> 2	2-Pentanone, 4-hydroxy-4-methyl-	4.40	100 JAB
4	95338-36-6	(+-)-15-Hexadecanolide	9.89	0.56 J
5		unknown	9.93	0.35 J
6		unknown	10.80	0.58 J
7		unknown	12.71	1.0 J
8	3351-28-8	Chrysene, 1-methyl-	12.84	0.33 J
9	59681-06-0	10-DEMETHYLSQUALENE	13.48	0.41 J
10	629-92-5	Nonadecane	13.78	0.68 J
11	192-97-2	Benzo[e]pyrene	13.87	0.77 J
12	593-45-3	Octadecane	14.49	0.44 J
13	59-02-9	Vitamin E	14.68	0.33 J
14	57-88-5	Cholest-5-en-3-ol (3.beta.)-	14.76	0.39 J
15		unknown	14.94	0.56 J
16		unknown	15.35	0.74 J
17	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	15.65	2.2 J
18	59461-38-0	(24S)-5.ALPHAERGOSTAN-3-ONE	15.92	0.46 J
19		unknown	15.96	0.38 J
20		unknown	16.01	0.45 J

Worksheet #: 283275

Total Tentatively Identified Concentration 110

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

ORGANICS SEMIVOLATILE REPORT

# Sample Number: AC75362-008 Client Id: SW-1-10242013 Data File: 9M53620.D Analysis Date: 10/31/13 16:00

Date Rec/Extracted: 10/25/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88 <b>-</b> 06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70 <b>-</b> 3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283277

Total Target Concentration

*tion* 0

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

 ${\it E}$  - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

R - Retention Time Out  $\exists$  J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-008	Matrix: Aqueous
Client Id: SW-1-10242013	Initial Vol: 1000ml
Data File: 9M53620.D	Final Vol: 1ml
Analysis Date: 10/31/13 16:00	Dilution: 1
Date Rec/Extracted: 10/25/13-10/30/13	Solids:
	Method: EPA 625

# Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.14	7.4 JB

Worksheet #: 283277

Total Tentatively Identified Concentration 7.4

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

ORGANICS SEMIVOLATILE REPORT

# Sample Number: AC75362-009 Client Id: SD-1-10242013 Data File: 7M60821.D Analysis Date: 11/05/13 12:11 Date Rec/Extracted: 10/25/13-11/04/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270D Matrix: Soil Initial Vol: 30g Final Vol: 0.5ml Dilution: 1 Solids: 74

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.045	U ·	205-99-2	Benzo[b]fluoranthene	0.045	0.049
95-94-3	1,2,4,5-Tetrachlorobenzene	0.045	Ŭ	191-24-2	Benzo[g,h,i]perylene	0.045	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.045	U	207-08-9	Benzo[k]fluoranthene	0.045	U
95-95-4	2,4,5-Trichlorophenol	0.045	U	111-91-1	bis(2-Chloroethoxy)methan	0.045	U
88-06-2	2,4,6-Trichlorophenol	0.045	U	111-4 <b>4</b> -4	bis(2-Chloroethyl)ether	0.011	U
120-83-2	2,4-Dichlorophenol	0:011	U	108-60-1	bis(2-chloroisopropyl)ether	0.045	U
105-67-9	2,4-Dimethylphenol	0.011	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.045	U
51-28-5	2,4-Dinitrophenol	0.23	U	85-68-7	Butylbenzylphthalate	0.045	U
121-14-2	2,4-Dinitrotoluene	0.045	U	105-60-2	Caprolactam	0.045	U
606-20-2	2,6-Dinitrotoluene	0.045	U	86-74-8	Carbazole	0.045	U
91-58-7	2-Chloronaphthalene	0.045	U	218-01-9	Chrysene	0.045	U
95-57-8	2-Chlorophenol	0.045	U	53-70-3	Dibenzo[a,h]anthracene	0.045	U
91-57-6	2-Methylnaphthalene	0.045	Ŭ	132-64-9	Dibenzofuran	0.011	U
95-48-7	2-Methylphenol	0.011	U	84-66-2	Diethylphthalate	0.045	U
88-74-4	2-Nitroaniline	0.045	U	131-11-3	Dimethylphthalate	0.045	U
88-75-5	2-Nitrophenol	0.045	U	84-74-2	Di-n-butylphthalate	0.023	U
106-44-5	3&4-Methylphenol	0.011	U	117-84-0	Di-n-octylphthalate	0.045	U
91-94-1	3,3'-Dichlorobenzidine	0.045	U	206-44-0	Fluoranthene	0.045	U
99-09-2	3-Nitroaniline	0.045	U	86-73-7	Fluorene	0.045	U
534-52-1	4,6-Dinitro-2-methylphenol	0.23	U	118-74-1	Hexachlorobenzene	0.045	U
101-55-3	4-Bromophenyl-phenylether	0.045	U	87-68-3	Hexachlorobutadiene	0.045	U
59-50-7	4-Chloro-3-methylphenol	0.045	U	77-47-4	Hexachlorocyclopentadiene	0.045	U
106-47-8	4-Chloroaniline	0.021	U	67-72-1	Hexachloroethane	0.045	U
7005-72-3	4-Chlorophenyl-phenylether	0.045	U	193-39-5	Indeno[1,2,3-cd]pyrene	0.045	U
100-01-6	4-Nitroaniline	0.045	U	78-59-1	Isophorone	0.045	U
100-02-7	4-Nitrophenol	0.045	U	91-20-3	Naphthalene	0.011	U
83-32-9	Acenaphthene	0.045	U	98-95-3	Nitrobenzene	0.045	U
208-96-8	Acenaphthylene	0.045	U	621-64-7	N-Nitroso-di-n-propylamine	0.011	U
98-86-2	Acetophenone	0.045	U	86-30-6	n-Nitrosodiphenylamine	0.045	U
120-12-7	Anthracene	0.045	U	87-86-5	Pentachlorophenol	0.23	U
1912-24-9	Atrazine	0.045	U	85-01-8	Phenanthrene	0.045	U
100-52-7	Benzaldehyde	0.045	U	108-95-2	Phenol	0.045	U
56-55-3	Benzo[a]anthracene	0.045	U	129-00-0	Pyrene	0.045	0.048
50-32-8	Benzo[a]pyrene	0.045	U				

Worksheet #: 283275

**Total Target Concentration** 

on 0.097

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte was journa in the brank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75362-009	
Client Id: SD-1-10242013	
Data File: 7M60821.D	
Analysis Date: 11/05/13 12:11	
Date Rec/Extracted: 10/25/13-11/04/13	

Matrix: Soil Initial Vol: 30g Final Vol: 0.5ml Dilution: 1 Solids: 74 Method: EPA 8270D

#### Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	· 4.19	1.4 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.43	120 JAB
3		unknown	4.92	0.31 JB
4	5131-66-8	2-Propanol, 1-butoxy-	5.08	0.29 JB
5	103-93-5	Propanoic acid, 2-methyl-, 4-methylphen	9.58	0.63 J
6	57-10-3	Hexadecanoic acid	9.97	0.24 J
7		unknown	10.75	0.36 J
8	63518-72-9	Androst-5-en-3.betaol	13.02	0.26 J
9	630-03-5	Nonacosane	13.79	0.55 J
10	56554-90-6	13-Octadecenal	14.31	0.28 J
11	638-67-5	Tricosane	14.50	0.27 J
12	59-02-9	Vitamin E	14.69	0.88 J
13	4651-51-8	Ergost-5-en-3-ol, (3.beta.)-	15.25	0.42 J
14	83-48-7	Stigmasta-5,22-dien-3-ol, (3.beta.,22E)-	15.36	0.77 J
15		unknown	15.49	0.31 J
16	83-47-6	Stigmast-5-en-3-ol, (3.beta.,24S)-	15.67	4.1 J
17		unknown	15.75	0.34 J
18		unknown	15.89	0.24 J
19	83-46-5	5.ALPHA -STIGMAST-3-ONE	15.94	0.71 J
20	6831-17-0	Aristolone	15.99	1.1 J

Worksheet #: 283275

Total Tentatively Identified Concentration 130

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

ORGANICS SEMIVOLATILE REPORT

# Sample Number: AC75362-010 Client Id: FB-10242013 Data File: 9M53621.D Analysis Date: 10/31/13 16:23 Date Rec/Extracted: 10/25/13-10/30/13 Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 970ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U
95-95-4	2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-06-2	2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-83-2	2,4-Dichlorophenol	2.1	U	108-60-1	bis(2-chloroisopropyl)ether	2.1	U
105-67-9	2,4-Dimethylphenol	0.52	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U
121-14-2	2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	U
606-20-2	2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U
91-58-7	2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U
95-57-8	2-Chlorophenol	2,1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-57-6	2-Methylnaphthalene	2.1	Ú ·	132-64-9	Dibenzofuran	0.52	U
95-48-7	2-Methylphenol	0.52	U	84-66-2	Diethylphthalate	2.1	U
88-74-4	2-Nitroaniline	2.1	U	131-11-3	Dimethylphthalate	2.1	U
88-75-5	2-Nitrophenol	2.1	U	84-74-2	Di-n-butylphthalate	0.52	U
106-44-5	3&4-Methylphenol	0.52	U	117-84-0	Di-n-octylphthalate	2.1	U
91-94-1	3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U
99-09-2	3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.1	U
101-55-3	4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U
59-50-7	4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8	4-Chloroaniline	0.52	U	67-72-1	Hexachloroethane	2.1	U
7005-72-3	4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-01-6	4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U
100-02-7	4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.52	U
83-32-9	Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1	U
208-96-8	Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-86-2	Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U
120-12-7	Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.1	U	85-01-8	Phenanthrene	2.1	U
100-52-7	Benzaldehyde	2.1	U	108-95-2	Phenol	2.1	U
56-55-3	Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	Ŭ
50-32-8	Benzo[a]pyrene	2.1	U				

Worksheet #: 283277

**Total Target Concentration** 

0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

*E* - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75362-010	Matrix: Aqueous
Client Id: FB-10242013	Initial Vol: 970ml
Data File: 9M53621.D	Final Vol: 1ml
Analysis Date: 10/31/13 16:23	Dilution: 1
Date Rec/Extracted: 10/25/13-10/30/13	Solids:
	Method: EPA 625

#### Units: ug/L

Cas # Compound		RT	Conc
5131-66-8	2-Propanol, 1-butoxy-	5.14	9.4 JB

Worksheet #: 283277

1

**Total Tentatively Identified Concentration** 9.4

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

#### Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB29081

Client Id:

Data File: 10M40845.D

Analysis Date: 10/30/13 17:06

Date Rec/Extracted: NA-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90 <b>-</b> 2	2,3,4,6-Tetrachlorophenoi	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	1 <b>1</b> 8-74-1	Hexachiorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72 <b>-</b> 1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	7 <b>8-59-1</b>	Isophorone	2.0	U
100-02-7	4-Nitropheno!	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30 <b>-</b> 6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86 <b>-</b> 5	Pentachlorophenol	10	Û
1912-24-9	Atrazine	2.0	υ	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283277

Total Target Concentration

on 0

ColumnID: (^) Indicates results from 2nd column

**R** - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: WMB29081
Client Id:
Data File: 10M40845 D
Analysis Date: 10/30/13 17:06
Date Rec/Extracted: NA-10/30/13

Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0 Method: EPA 625

#### Units: ug/L

Cas # Compound	RT	Conc	
1 5131-66-8 2-Propanol, 1-butoxy-	5.16	4.6 J	
2 unknown	5.61	<10%	

Worksheet #: 283277

Total Tentatively Identified Concentration 4.6

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample. <10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB29081

Client Id:

Data File: 9M53605.D

Analysis Date: 10/31/13 10:18

Date Rec/Extracted: NA-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	U 1	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	10	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59 <b>-</b> 1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	Ù	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				
					-		

Worksheet #: 283277

**Total Target Concentration** 

ation 0

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

### Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

### Sample Number: WMB29081 Client Id: Data File: 9M53605.D Analysis Date: 10/31/13 10:18 Date Rec/Extracted: NA-10/30/13

#### Matrix: Aqueous Initial Vol: 1000ml Final Vol: 1ml Dilution: 1 Solids: 0 Method: EPA 625

#### Units: ug/L

	Cas #	Compound	RT	Conc
 1	5131-66-8	2-Propanol, 1-butoxy-	5.14	4.0 J
2		unknown	5.59	<10%

Worksheet #: 283277

**Total Tentatively Identified Concentration** 4

A - Indicates an aldol condensate.

J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: SMB29131

Client Id:

Data File: 7M60811.D

Analysis Date: 11/04/13 16:30

Date Rec/Extracted: NA-11/04/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 8270D Matrix: Soil Initial Vol: 30g Final Vol: 0.5ml Dilution: 1 Solids: 100

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	0.033	U	205-99-2	Benzo[b]fluoranthene	0.033	U
95-94-3	1,2,4,5-Tetrachlorobenzene	0.033	U	191-24-2	Benzo[g,h,i]perylene	0.033	U
58-90-2	2,3,4,6-Tetrachlorophenol	0.033	U	207-08-9	Benzo[k]fluoranthene	0.033	U
95-95-4	2,4,5-Trichlorophenol	0.033	U	111-91-1	bis(2-Chloroethoxy)methan	0.033	U
88-06-2	2,4,6-Trichlorophenol	0.033	U	111-44-4	bis(2-Chloroethyl)ether	0.0083	U
120-83-2	2,4-Dichlorophenol	0.0083	U	108-60-1	bis(2-chloroisopropyl)ether	0.033	U
105-67-9	2,4-Dimethylphenol	0.0083	υ	117-81-7	bis(2-Ethylhexyl)phthalate	0.033	U
51-28-5	2,4-Dinitrophenol	0.17	U	85-68-7	Butylbenzylphthalate	0.033	U
121-14-2	2,4-Dinitrotoluene	0.033	U	105-60-2	Caprolactam	0.033	U
606-20-2	2,6-Dinitrotoluene	0.033	υ	86-74-8	Carbazole	0.033	U
91-58-7	2-Chloronaphthalene	0.033	U	218-01-9	Chrysene	0.033	U
95-57-8	2-Chlorophenol	0.033	U	53-70-3 Dibenzo[a,h]anthracene		0.033	U
91-57-6	2-Methylnaphthalene	0.033	U	132-64-9	Dibenzofuran	0.0083	U
95-48-7	2-Methylphenol	0.0083	U	84-66-2	Diethylphthalate	0.033	U
88-74-4	2-Nitroaniline	0.033	υ	131-11-3	Dimethylphthalate	0.033	U
88-75-5	2-Nitrophenol	0.033	U	84-74-2	Di-n-butylphthalate	0.017	U
106-44-5	3&4-Methylphenol	0.0083	U	117-84-0	Di-n-octylphthalate	0.033	U
91-94-1	3,3'-Dichlorobenzidine	0.033	U	206-44-0	Fluoranthene	0.033	U
99-09-2	3-Nitroaniline	0.033	U	86-73-7	Fluorene	0.033	U
534-52-1	4,6-Dinitro-2-methylphenol	0.17	U	118-74-1	Hexachlorobenzene	0.033	U
101-55-3	4-Bromophenyl-phenylether	0.033	U	87-68-3	Hexachlorobutadiene	0.033	U
59-50-7	4-Chloro-3-methylphenol	0.033	U	77-47 <b>-</b> 4	Hexachlorocyclopentadiene	0.033	U
106-47-8	4-Chloroaniline	0.016	U	67-72-1	Hexachloroethane	0.033	U
7005-72-3	4-Chlorophenyl-phenylether	0.033	υ	193-39-5	Indeno[1,2,3-cd]pyrene	0.033	U
100-01-6	4-Nitroaniline	0.033	υ	78-59-1	Isophorone	0.033	Ú
100-02-7	4-Nitrophenol	0.033	U	91-20-3	Naphthalene	0.0083	U
83-32-9	Acenaphthene	0.033	U	98-95-3	Nitrobenzene	0.033	U
208-96-8	Acenaphthylene	0.033	U	621-64-7	N-Nitroso-di-n-propylamine	0.0083	Ŭ
98- <b>8</b> 6-2	Acetophenone	0.033	U	86-30-6	n-Nitrosodiphenylamine	0.033	U
120-12-7	Anthracene	0.033	U	87-86-5	Pentachlorophenol	0.17	U
1912-24-9	Atrazine	0.033	U	85-01-8	Phenanthrene	0.033	U
100-52-7	Benzaldehyde	0.033	U	108-95-2	Phenol	0.033	Ü
56-55-3	Benzo[a]anthracene	0.033	U	129-00-0	Pyrene	0.033	Ų
50-32-8		0.033	U				
					•		

Worksheet #: 283275

**Total Target Concentration** 

0

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte was journa in the brank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

N-Nitrosodiphenylamine decomposes in the GC inlet and is detected as diphenylamine

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: SMB29131 Client Id: Data File: 7M60811.D Analysis Date: 11/04/13 16:30 Date Rec/Extracted: NA-11/04/13

Matrix: Soil Initial Vol: 30g Final Vol: 0.5ml Dilution: 1 Solids: 100 Method: EPA 8270D

#### Units: mg/Kg

	Cas #	Compound	RT	Conc
1		unknown	4.17	0.58 J
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	4.41	52 JA
3		unknown	4.93	0.11 J
4	5131-66-8	2-Propanol, 1-butoxy-	5.09	0.11 J
			11 a.	

Worksheet #: 283275

Total Tentatively Identified Concentration 53

A - Indicates an aldol condensate.

J - Indicates an estimated value. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# FORM2

#### Surrogate Recovery

Method: EPA 625

					Dilute	Column1	Column1	Column1	Column1	Column1	Column1
				Surr	Out	S1	S2	S3	S4	S5	S6
Dfile	Sample#	Matrix	Date/Time	Dil	Flag	Recov	Recov	Recov	Recov	Recov	Recov
10M40845	D WMB29081	Aqueous	10/30/13 17:06	1		42	25*	107	111	114	114
9M53605.[	D WMB29081	Aqueous	10/31/13 10:18	1		38	22*	108	112	110	125
10M40859	D AC75362-002	Aqueous	10/31/13 09:42	1		58	41	114	113	121	98
10M40896	.D AC75362-003	Aqueous	11/01/13 11:53	1		43	26*	119	126	128	127
9M53619.0	D AC75362-005	Aqueous	10/31/13 15:37	1		41	23*	117	122	114	146
9M53620.0	D AC75362-008	Aqueous	10/31/13 16:00	1		37	20*	111	117	103	138
9M53621.[	D AC75362-010	Aqueous	10/31/13 16:23	1		38	21*	107	114	104	133
10M40843	.D WMB29081(N	Aqueous	10/30/13 16:22	1		44	26*	108	102	109	118
10M40860	D AC75362-002	(Aqueous	10/31/13 10:04	1		67	47 🕓	108	103	117	120
10M40861	.D AC75362-002	(Aqueous	10/31/13 10:27	1		68	45	114	105	118	121

Flags: SD=Surrogate diluted out *=Surrogate out

#### Method: EPA 625

#### **Aqueous Limits**

Compound	Spike Amt	Limits
S1=2-Fluorophenol	100	29-113
S2=Phenol-d5	100	27-115
S3=Nitrobenzene-d5	50	51-13 <del>9</del>
S4=2-Fluorobiphenyl	50	53-12 <del>9</del>
S5=2,4,6-Tribromophenol	100	54-14 <del>9</del>
S6=Terphenyl-d14	50	55-146

		Form3 PD DATA			
	QC Ba	atch: WMB29081			
	Data File	Sample ID:	Analy	/sis Date	
Spike or Dup:		AC75362-002(MSD)	-	/2013 10:2	7:00 A
Duplicate(If applicable):		AC75362-002(MS)		1/2013 10:0	
	1010140000.0	AC/5502-002(MS)	10/5	02013 10.0	4.00 A
Inst Blank(If applicable):					
Method: 625	Mat	rix: Aqueous	QC Typ	e:MSD	
Analyte:	Column	Dup/MSD/MBSD Conc	Sample/MS/MBS Conc	RPD	Limit
N-Nitrosodimethylamine	1	90.8939	87.8926	3.4	17
ois(2-Chloroethyl)ether	1	94.8066	92.0056	3	12
Phenol	1	42.007	42.1143	0.26	27
2-Chlorophenol	1	95.9601	89.7856	6.6	21
ois(2-chloroisopropyl)ether	1	81.1588	78.5218	3.3	14
lexachloroethane	1	97.9517	94.9829	3.1	39
N-Nitroso-di-n-propylamine	1	88.7457	86.7269	2.3	14
Nitrobenzene	1	97.677	93.6721	4.2	13
sophorone	1	94.2834	91.7592	2.7	12
2-Nitrophenol	1	105.8522	100.1435	5.5	31
2,4-Dimethylphenol	1	88.0791	83.2647	5.6	18
bis(2-Chloroethoxy)methane	1	101.0392	98.8122	2.2	12
2,4-Dichlorophenol	1	101.8847	97.4824	4.4	21
1,2,4-Trichlorobenzene	1	91.7238	88.2328	3.9	17
Naphthalene	1	94.2294	89.718	4.9	16
Hexachlorobutadiene	1	93.4611	91.7259	1.9 3.5	24 16
4-Chloro-3-methylphenol	1	100.553	97.1386		24
2,4,6-Trichlorophenol	1	108.3919	103.5807	4.5	13
2-Chloronaphthalene	1	94.5899	93.1161	1.6 1.2	13
Acenaphthylene	1	102.3038 97.6713	101.1257 98.5513	0.9	12
Dimethylphthalate	1		101.329	14*	12
2,6-Dinitrotoluene	1	117.0841	94.159	1.6	13
Acenaphthene	1	95.672 92.779	84.8828	8.9	37
2,4-Dinitrophenol	1	98.4725	98.3245	0.15	13
2,4-Dinitrotoluene 4-Nitrophenol	1	56.8248	56.9784	0.13	41
Fluorene	1	93.1549	93.0835	0.08	14
4-Chlorophenyl-phenylether	1	99.2202	97.2728	2	13
Diethylphthalate	1	97.2205	96.2162	1	12
4,6-Dinitro-2-methylphenol	1	108.6626	104.9116	3.5	25
4-Bromophenyl-phenylether	1	100.8909	98.0954	2.8	13
Hexachlorobenzene	1	93.2245	92.8334	0.42	12
Pentachlorophenol	1	123.4118	116.2416	6	31
Phenanthrene	1	96.7296	94.9878	1.8	12
Anthracene	1	100.2196	99.8105	0.41	12
Di-n-butylphthalate	1	104.7303	104.8234	0.09	12
Fluoranthene	1	93.733	93.8189	0.09	13
Pyrene	1	101.8299	101.9331	0.1	13
Butylbenzylphthalate	1	105.3328	106.1395	0.76	12
3,3'-Dichlorobenzidine	1	96.3116	108.7599	12	40
Benzo[a]anthracene	1	94.6785	93.979	0.74	12
Chrysene	1	93.5005	94.1598	0.7	12
bis(2-Ethylhexyl)phthalate	1	105.6211	106.1902	0.54	14
Di-n-octylphthalate	1	112.5797	113.8417	1.1	14
Benzo[b]fluoranthene	1	105.55	103.9935	1.5	15
Benzo[k]fluoranthene	1	101.0424	99.4693	1.6	14
Benzo[a]pyrene	1	108.4322	105.3128	2.9	13
Indeno[1,2,3-cd]pyrene	1	106.2716	107.318	0.98	14
Dibenzo[a,h]anthracene	1	101.2182	101.0936	0.12	14

Form3 Recovery Data QC Batch: SMB29131

Data	a File	Sample	ID:		Analysis D	ate			
Spike or Dup: 9M5	53706.D	AC7534	2-002(MS)	11/5/2013 3:56:00 PM					
Non Spike(If applicable): 9M5	53705.D	AC7534	2-002	11/5/2013 3:33:00 PM					
Inst Blank(If applicable):									
Method: 8270D	I	Aatrix: Soil							
· · · ·		Spike	Sample	Expected	_	Lower	Uppe		
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Lim		
Phenol	1	46.9921	0	100	47	20	130		
2-Chlorophenol	1	53.4842	0	100	53	50	130		
1,4-Dichlorobenzene	1	23.138	0	50	46*	50	130		
2-Methylphenol	· 1	51.6291	0	100	52	50	130		
N-Nitroso-di-n-propylamine	1	23.4166	0	50	47	20	130		
2,4-Dimethylphenol	1	55.4273	0	100	55	50	130		
1,2,4-Trichlorobenzene	1	24.4917	0	50	49*	50	130		
Naphthalene	1	24.4078	0	50	49*	50	130		
4-Chloro-3-methylphenol	1	55.9022	0	100	56	50	130		
Acenaphthene	1	24.8026	0	50	50	50	130		
2,4-Dinitrotoluene	1	25.7996	0	50	52	50	130		
4-Nitrophenol	1	51.8066	0	100	52	20	130		
Fluorene	1	24.1224	Ō	50	48*	50	130		
Pentachlorophenol	1	54.3394	Ō	100	54	40	13		
Pyrene	1	32.4105	Ō	50	65	50	130		
Butylbenzylphthalate	1	30.5886	0	50	61	50	130		
Dat	a File	Sample	D:		Analysis E	Date			
Spike or Dup: 9M		AC7534		:19:00 PM					
		AC7534		,	11/5/2013 3:33:00 PM				
Non Spike(If applicable): 9M Inst Blank(If applicable):	55705.0	AC753	42-002		11/3/2013	3.33.001			
Method: 8270D		Matrix: Soil		QC Type: MSD					
		Calka	0	Evacated		Lower	Upp		
		Spike	Sample	Expected	D		1		
	Col	Conc	Conc	Ċonc	Recovery	Limit			
Phenol	1	Conc 57.9436	Conc 0	Conc 100	58	Limit 20	13		
Phenol	1	Conc 57.9436 65.9072	Conc 0 0	<u> </u>	58 66	Limit 20 50	13 13		
Phenol 2-Chlorophenol	1 1 1	Conc 57.9436 65.9072 28.5131	Conc 0 0 0	<u>Ċonc</u> 100 100 50	58 66 57	Limit 20 50 50	13 13 13		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol	1 1 1	Conc 57.9436 65.9072 28.5131 65.2167	Conc 0 0 0 0	<u>Ċonc</u> 100 100 50 100	58 66 57 65	Limit 20 50 50 50	130 130 130 130		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol	1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167 29.0815	Conc 0 0 0 0 0	<u>Ċonc</u> 100 100 50 100 50	58 66 57 65 58	Limit 20 50 50 50 20	13 13 13 13 13		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine	1 1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167	Conc 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100	58 66 57 65 58 69	Limit 20 50 50 50 20 50	13 13 13 13 13 13		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol	1 1 1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167 29.0815 69.2543 30.3184	Conc 0 0 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100 50	58 66 57 65 58 69 61	Limit 20 50 50 50 20 50 50 50	130 130 130 130 130 130 130		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene	1 1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167 29.0815 69.2543	Conc 0 0 0 0 0 0 0 0 0 0	Conc 100 50 100 50 100 50 50 50	58 66 57 65 58 69 61 60	Limit 20 50 50 50 20 50 50 50 50	130 130 130 130 130 130 130 130		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene Naphthalene	1 1 1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167 29.0815 69.2543 30.3184	Conc 0 0 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100 50	58 66 57 65 58 69 61	Limit 20 50 50 50 20 50 50 50	130 130 130 130 130 130 130 130		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol	1 1 1 1 1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167 29.0815 69.2543 30.3184 29.8536	Conc 0 0 0 0 0 0 0 0 0 0	Conc 100 50 100 50 100 50 50 50	58 66 57 65 58 69 61 60	Limit 20 50 50 50 20 50 50 50 50	130 130 130 130 130 130 130 130 130		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol Acenaphthene	1 1 1 1 1 1 1 1 1 1	Conc 57,9436 65,9072 28,5131 65,2167 29,0815 69,2543 30,3184 29,8536 68,489	Conc 0 0 0 0 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100 50 50 50 100	58 66 57 65 58 69 61 60 68	Limit 20 50 50 50 20 50 50 50 50 50	130 130 130 130 130 130 130 130 130 130		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol Acenaphthene 2,4-Dinitrotoluene	1 1 1 1 1 1 1 1 1 1 1	Conc 57,9436 65,9072 28,5131 65,2167 29,0815 69,2543 30,3184 29,8536 68,489 30,9625	Conc 0 0 0 0 0 0 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100 50 50 100 50 50	58 66 57 65 58 69 61 60 68 62	Limit 20 50 50 20 50 50 50 50 50 50	13/ 13/ 13/ 13/ 13/ 13/ 13/ 13/ 13/ 13/		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol Acenaphthene 2,4-Dinitrotoluene 4-Nitrophenol	1 1 1 1 1 1 1 1 1 1 1 1	Conc 57,9436 65,9072 28,5131 65,2167 29,0815 69,2543 30,3184 29,8536 68,489 30,9625 30,7165	Conc 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100 50 50 100 50 50 50 50	58 66 57 65 58 69 61 60 68 62 61	Limit 20 50 50 50 20 50 50 50 50 50 50 50	130 130 130 130 130 130 130 130 130 130		
2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol Acenaphthene 2,4-Dinitrotoluene 4-Nitrophenol Fluorene	1 1 1 1 1 1 1 1 1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167 29.0815 69.2543 30.3184 29.8536 68.489 30.9625 30.7165 61.682	Conc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100 50 50 100 50 50 100 50 100	58 66 57 65 58 69 61 60 68 62 61 62	Limit 20 50 50 20 50 50 50 50 50 50 50 50 20	130 130 130 130 130 130 130 130 130 130		
Phenol 2-Chlorophenol 1,4-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine 2,4-Dimethylphenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol Acenaphthene 2,4-Dinitrotoluene 4-Nitrophenol	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conc 57.9436 65.9072 28.5131 65.2167 29.0815 69.2543 30.3184 29.8536 68.489 30.9625 30.7165 61.682 29.7942	Conc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conc 100 100 50 100 50 100 50 50 100 50 50 100 50 50 100 50 50 50 50 50 50 50 50 50	58 66 57 65 58 69 61 60 68 62 61 62 61 62 60	Limit 20 50 50 50 20 50 50 50 50 50 50 50 50 50 50 50 50	Lin 130 130 130 130 130 130 130 130		

Form1 Inorganic Analysis Data Sheet

Client Matr	Sample ID:AC75362-002% Solid:0Client Id:SW-15-10242013Units:UG/LMatrix:AQUEOUSDate Rec:10/25/2013Level:LOW		Lab Name: Veritech Lab Code: Contract:			h	Nras No Sdg No Case No					
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	200	100	11/01/13	27365	A15652A2	16	Ρ	PEICP2A
7440-39-3	Barium	25	ND	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7440-70-2	Calcium	1000	43000	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7440-50-8	Copper	25	ND	1	200	100	11/01/13	27365	A15652A2	16	Ρ	PEICP2A
7439-89-6	Iron	150	250	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7439-95-4	Magnesium	1000	14000	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7439-96-5	Manganese	25	200	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/02/13	27365	H15652A	14	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7440-09-7	Potassium	2500	2800	1	200	100	11/01/13	27365	A15652C2	13	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7440-22-4	Silver	10	ND	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A
7440-23-5	Sodium	2500	9500	1	200	100	11/01/13	27365	A15652C2	13	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	200	100	11/01/13	27365	A15652A2	16	Ρ	PEICP2A
7440-66-6	Zinc	25	ND	1	200	100	11/01/13	27365	A15652A2	16	Р	PEICP2A

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

Sample ID: AC75362-002 Client Id: SW-15-10242013 Matrix: AQUEOUS Level: LOW		U	% Solid: 0 Units: UG/L ate Rec: 10/25/2013			Lab Name: Veritech Lab Code: Contract:			ech Nras No: Sdg No: Case No:				
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol			Prep Batch	File:	Seq Num	м	Instr	
7440-36-0	Antimony	2.5	ND	1	200	250	11/04/13	27365	0413CNEW	15	MS	MS3_7700AQA	
7440-38-2	Arsenic	1.0	ND	1	200	250	11/04/13	27365	413CNEW	15	MS	MS3_7700AQA	
7440-41-7	Beryllium	0.75	ND	1	200	250	11/04/13	27365	413CNEW	15	MS	MS3_7700AQA	
7440-43-9	Cadmium	1.0	ND	1	200	250	11/04/13	27365	413CNEW	15	MS	MS3_7700AQA	
7439-92-1	Lead	0.75	ND	1	200	250	11/04/13	27365	413CNEW	15	MS	MS3_7700AQA	
7440-28-0	Thallium	1.5	ND	1	200	250	11/04/13	27365	413CNEW	15	MS	MS3_7700AQA	

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

Form1 Inorganic Analysis Data Sheet

Sample Client Mat Lev	ld: SW-4-10242013 rix: AQUEOUS		Solid: 0 Units: UG/ PRec: 10/2	L 25/2013	La	b Name: ab Code: Contract:	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/01/13	27365	A15652A2	28	Ρ	PEICP2A
7440-39-3	Barium	25	ND	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7440-70-2	Calcium	1000	44000	1	100	50	11/01/13	27365	A15652A2	28	Ρ	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7440-48-4	Cobalt	10	ND	ſ	100	50	11/01/13	27365	A15652A2	28	Ρ	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7439-89-6	Iron	150	300	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7439-95-4	Magnesium	1000	14000	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7439-96-5	Manganese	25	230	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/02/13	27365	H15652A	24	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7440-09-7	Potassium	2500	2900	1	100	50	11/01/13	27365	A15652C2	24	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/01/13	27365	A15652A2	28	Ρ	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/01/13	27365	A15652A2	28	Ρ	PEICP2A
7440-23-5	Sodium	2500	10000	1	100	50	11/01/13	27365	A15652C2	24	Ρ	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/01/13	27365	A15652A2	28	Р	PEICP2A

Flag Codes:

Form1 Inorganic Analysis Data Sheet

Sample ID: Client Id: Matrix: Level:	AC75362-003 SW-4-10242013 AQUEOUS LOW		Solid: 0 Units: UG/ ∌ Rec: 10/2	L 25/2013	L	ib Name: ab Code: Contract:		1	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol			Prep Batch	File:	Seq Num		Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/04/13	27365	0413CNEW	25	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/04/13	27365	413CNEW	25	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/04/13	27365	413CNEW	25	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/04/13	27365	413CNEW	25	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/04/13	27365	413CNEW	25	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND		100	125	11/04/13	07005	0413CNEW	25	MC	MS3_7700AQA

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

MS - ICP-MS

Sample ID: Client Id: Matrix: Level:	AC75362-004 SD-4-10242013 SOIL LOW		olid: 61 nits: MG/ Rec: 10/2	KG 5/2013	La	b Name: ab Code: Contract:			Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	330	5300	1	0.5	50	11/01/13	27357	S15644D3	23	Р	PEICPRAD3A
7440-38-2	Arsenic	6.6	ND	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7440-39-3	Barium	16	53	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7440-70-2	Calcium	1600	15000	1	0.5	50	11/01/13	27357	S15644D3	23	Р	PEICPRAD3A
7440-47-3	Chromium	8.2	11	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7440-48-4	Cobalt	4.1	6.1	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7440-50-8	Copper	8.2	12	1	0.5	50	10/31/13	27357	S15644C3	24	P	PEICP3A
7439-89-6	Iron	330	16000	1	0.5	50	11/01/13	27357	S15644D3	23	P	PEICPRAD3A
7439-92-1	Lead	8.2	20	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7439-95-4	Magnesium	820	9900	1	0.5	50	11/01/13	27357	S15644D3	23	Р	PEICPRAD3A
7439-96-5	Manganese	16	1500	1	0.5	50	11/01/13	27357	S15644D3	23	Р	PEICPRAD3A
7439-97-6	Mercury	0.14	ND	1	0.15	25	11/01/13	27357	H15644S	20	cv	HGCV1A
7440-02-0	Nickel	8.2	13	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7440-09-7	Potassium	820	910	1	0.5	50	11/01/13	27357	S15644D3	23	Ρ	PEICPRAD3A
7440-23-5	Sodium	410	ND	1	0.5	50	11/01/13	27357	S15644D3	23	Р	PEICPRAD3A
7440-28-0	Thallium	2.5	ND	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7440-62-2	Vanadium	16	ND	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A
7440-66-6	Zinc	16	50	1	0.5	50	10/31/13	27357	S15644C3	24	Р	PEICP3A

Comments:

Flag Codes:

Sample ID Client Id Matrix Level	SD-4-10242013 SOIL		Solid: 61 Jnits: MG/ Rec: 10/2	KG 5/2013	La	ib Name ab Code Contract		1	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	0.33	ND	1	0.5	100	10/31/13	27358	S103113B	29	MS	MS2_7500SWA
7440-41-7	Beryllium	0.33	ND	1	0.5	100	10/31/13	27358	S103113B	29	MS	MS2_7500SWA
7440-43-9	Cadmium	0.66	ND	1	0.5	100	10/31/13	27358	S103113B	29	MS	MS2_7500SWA
7782-49-2	Selenium	3.3	ND	1	0.5	100	10/31/13	27358	S103113B	29	MS	MS2_7500SWA
7440-22-4	Silver	0.33	ND	1	0.5	100	10/31/13	27358	S103113B	29	MS	MS2_7500SWA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor MS - ICP-MS

1013 - 101-1013

Form1 Inorganic Analysis Data Sheet

Sample Client Mat Lev	ld: SW-2-102420	13	Solid: 0 Units: UG/ ∋ Rec: 10/2	L 25/2013	La	b Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-39-3	Barium	25	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-70-2	Calcium	1000	43000	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7439-89-6	Iron	150	520	. 1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7439-95-4	Magnesium	1000	14000	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7439-96-5	Manganese	25	340	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/02/13	27365	H15652A	25	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-09-7	Potassium	2500	3000	1	100	50	11/01/13	27365	A15652C2	25	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-23-5	Sodium	2500	9700	1	100	50	11/01/13	27365	A15652C2	25	Р	PEICPRAD2A
7440-62-2	Vanadium	. 25	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/01/13	27365	A15652A2	29	Р	PEICP2A

Flag Codes:

Client I Matri	Sample ID: AC75362-005 Client Id: SW-2-10242013 Matrix: AQUEOUS Level: LOW		Solid: 0 Jnits: UG/ Rec: 10/2	L 25/2013	L	b Name: ab Code: Contract:		h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol			•	File:	Seq Num	M	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/04/13	27365	413CNEW	26	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/04/13	27365	413CNEW	26	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/04/13	27365	413CNEW	26	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/04/13	27365	413CNEW	26	MS	MS3_7700AQA
7439-92-1	Lead	0.75	1.9	1	100	125	11/04/13	27365	413CNEW	26	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/04/13	27365	413CNEW	26	MS	MS3_7700AQA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

Sample ID: Client Id: Matrix: Level:	AC75362-006 SD-2-10242013 SOIL LOW	l	Solid: 74 Jnits: MG/ Rec: 10/2	KG 5/2013	La	b Name ab Code Contract	:	1	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	270	5900	1	0.5	50	11/01/13	27357	S15644D3	24	Р	PEICPRAD3A
7440-38-2	Arsenic	5.4	ND	1	0.5	50	10/31/13	27357	S15644C3	25	Ρ	PEICP3A
7440-39-3	Barium	14	87	1	0.5	50	10/31/13	27357	S15644C3	25	Р	PEICP3A
7440-70-2	Calcium	1400	31000	1	0.5	50	11/01/13	27357	S15644D3	24	Р	PEICPRAD3A
7440-47-3	Chromium	6.8	7.8	1	0.5	50	10/31/13	27357	S15644C3	25	Р	PEICP3A
7440-48-4	Cobalt	3.4	6.2	1	0.5	50	10/31/13	27357	S15644C3	25	Р	PEICP3A
7440-50-8	Copper	6.8	13	1	0.5	50	10/31/13	27357	S15644C3	25	P	PEICP3A
7439-89 <b>-</b> 6	Iron	270	20000	1	0.5	50	11/01/13	27357	S15644D3	24	Р	PEICPRAD3A
7439-92-1	Lead	6.8	12	1	0.5	50	10/31/13	27357	S15644C3	25	Р	PEICP3A
7439-95-4	Magnesium	680	20000	1	0.5	50	11/01/13	27357	S15644D3	24	Р	PEICPRAD3A
7439-96-5	Manganese	14	2500	1	0.5	50	11/01/13	27357	S15644D3	24	Р	PEICPRAD3A
7439-97-6	Mercury	0.11	ND	1	0.15	25	11/01/13	27357	H15644S	23	cv	HGCV1A
7440-02-0	Nickel	6.8	11	1	0.5	50	10/31/13	27357	S15644C3	25	Р	PEICP3A
7440-09-7	Potassium	680	990	1	0.5	50	11/01/13	27357	S15644D3	24	P	PEICPRAD3A
7440-23-5	Sodium	340	ND	1	0.5	50	11/01/13	27357	S15644D3	24	Р	PEICPRAD3A
7440-28-0	Thallium	2.0	ND	1	0.5	50	10/31/13	27357	S15644C3	25	Р	PEICP3A
7440-62-2	Vanadium	14	16	1	0.5	50	10/31/13	27357	S15644C3	25	Р	PEICP3A
7440-66-6	Zinc	14	52	1	0.5	50	10/31/13	27357	S15644C3	25	Ρ	PEICP3A

Comments:

Flag Codes:

Sample I Client Matr Lev	ld: SD-2-1024201: fix: SOIL	3	Solid: 74 Units: MG/ ∌ Rec: 10/2	/KG 25/2013	L	ib Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date		File:	Seq Num	м	Instr
7440-36-0	Antimony	0.27	ND	1	0.5	100	10/31/13	27358	S103113B	30	MS	MS2_7500SWA
7440-41-7	Beryllium	0.27	ND	1	0.5	100	10/31/13	27358	S103113B	30	MS	MS2_7500SWA
7440-43-9	Cadmium	0.54	ND	1	0.5	100	10/31/13	27358	S103113B	30	MS	MS2_7500SWA
7782-49-2	Selenium	2.7	ND	1	0.5	100	10/31/13	27358	S103113B	30	MS	MS2_7500SWA
7440-22-4	Silver	0.27	ND	1	0.5	100	10/31/13	27358	S103113B	30	MS	MS2_7500SWA

Comments:

Flag Codes:

Sample ID Client Id Matrix Level	t: SD-3-10242013 k: SOIL		Solid: 80 Units: MG/ Rec: 10/2	KG 5/2013	La	b Name: ab Code: Contract:		ı	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	250	11000	1	0.5	50	11/01/13	27357	S15644D3	25	Р	PEICPRAD3A
7440-38-2	Arsenic	5.0	ND	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7440-39-3	Barium	12	66	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7440-70-2	Calcium	1200	19000	1	0.5	50	11/01/13	27357	S15644D3	25	Р	PEICPRAD3A
7440-47-3	Chromium	6.2	20	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7440-48-4	Cobalt	3.1	10	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7440-50-8	Copper	6.2	35	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7439-89-6	Iron	250	23000	1	0.5	50	11/01/13	27357	S15644D3	25	Р	PEICPRAD3A
7439-92-1	Lead	6.2	270	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7439-95-4	Magnesium	620	14000	1	0.5	50	11/01/13	27357	S15644D3	25	Р	PEICPRAD3A
7439-96-5	Manganese	12	700	1	0.5	50	11/01/13	27357	S15644D3	25	Р	PEICPRAD3A
7439-97 <b>-</b> 6	Mercury	0.10	ND	1	0.15	25	11/01/13	27357	H15644S	24	CV	HGCV1A
7440-02-0	Nickel	6.2	22	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7440-09-7	Potassium	620	1500	1	0.5	50	11/01/13	27357	S15644D3	25	Р	PEICPRAD3A
7440-23-5	Sodium	310	ND	1	0.5	50	11/01/13	27357	S15644D3	25	Ρ	PEICPRAD3A
7440-28-0	Thallium	1.9	ND	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7440-62-2	Vanadium	12	28	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A
7440-66-6	Zinc	12	190	1	0.5	50	10/31/13	27357	S15644C3	26	Р	PEICP3A

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

Sample ID: Client Id: Matrix: Level:	AC75362-007 SD-3-10242013 SOIL LOW	% So Un Date R	its: MG/	'KG 25/2013	La	b Name: ab Code: Contract:	:	n	Nras No Sdg No Case No	:			
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м		Instr
7440-36-0	Antimony	0.25	ND	1	0.5	100	10/31/13	27358	S103113B	31	MS	VIS2_7	500SWA
7440-4 <b>1-</b> 7	Beryllium	0.25	0.25	1	0.5	100	10/31/13	27358	S103113B	31	MS	MS2_7	500SWA
7440-43-9	Cadmium	0.50	2.5	1	0.5	100	10/31/13	27358	S103113B	31	MS	MS2_7	500SWA
7782-49-2	Selenium	2.5	ND	1	0.5	100	10/31/13	27358	S103113B	31	MS	MS2_7	500SWA
7440-22-4	Silver	0.25	ND	1	0.5	100	10/31/13	27358	S103113B	31	MS	MS2_7	500SWA

Comments:

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

MS - ICP-MS

Form1 Inorganic Analysis Data Sheet

Sample Client Mati Lev	ld: SW-1-1024201 rix: AQUEOUS	3	Solid: 0 Units: UG/ ≱Rec: 10/2	L 25/2013	La	b Name: ab Code: Contract:		ı	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7440-39-3	Barium	25	36	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7440-70-2	Calcium	1000	45000	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7439-89-6	Iron	150	1900	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7439-95-4	Magnesium	1000	14000	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7439-96-5	Manganese	25	1700	1	100	50	11/01/13	27365	A15652A2	30	Ρ	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/02/13	27365	H15652A	26	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/01/13	27365	A15652A2	30	Ρ	PEICP2A
7440-09-7	Potassium	2500	3300	1	100	50	11/01/13	27365	A15652C2	26	Ρ	PEICPRAD2A
7782-49-2	Selenium	25	ND	_1	100	50	11/01/13	27365	A15652A2	30	Ρ	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/01/13	27365	A15652A2	30	Ρ	PEICP2A
7440-23-5	Sodium	2500	9200	1	100	50	11/01/13	27365	A15652C2	26	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/01/13	27365	A15652A2	30	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/01/13	27365	A15652A2	30	Ρ	PEICP2A

Flag Codes:

Form1 Inorganic Analysis Data Sheet

Matr	ample ID: AC75362-008 Client Id: SW-1-10242013 Matrix: AQUEOUS Level: LOW		Solid: 0 Units: UG/ ⊧Rec: 10/2	L 25/2013	L	ib Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/04/13	27365	0413CNEW	27	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/04/13	27365	413CNEW	27	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/04/13	27365	413CNEW	27	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/04/13	27365	413CNEW	27	MS	MS3_7700AQA
7439-92-1	Lead	0.75	1.1	1	100	125	11/04/13	27365	413CNEW	27	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/04/13	27365	0413CNEW	27	MS	MS3_7700AQA

Flag Codes:

7429-90-5         Aluminum         270         6900         1         0.5         50         11/01/13         27357         S15644D3         26         P         PEICPRAI           7440-38-2         Arsenic         5.4         ND         1         0.5         50         10/31/13         27357         S15644C3         27         P         PEICPRAI           7440-39-3         Barium         14         56         1         0.5         50         10/31/13         27357         S15644C3         27         P         PEICPRAI           7440-70-2         Calcium         1400         1500         1         0.5         50         11/01/13         27357         S15644D3         26         P         PEICPRAI	
7440-38-2       Arsenic       5.4       ND       1       0.5       50       10/31/13       27357       S15644C3       27       P       PEIC         7440-39-3       Barium       14       56       1       0.5       50       10/31/13       27357       S15644C3       27       P       PEIC         7440-39-3       Barium       14       56       1       0.5       50       10/31/13       27357       S15644C3       27       P       PEIC         7440-70-2       Calcium       1400       1500       1       0.5       50       11/01/13       27357       S15644D3       26       P       PEICPRAN	nstr
7440-39-3       Barium       14       56       1       0.5       50       10/31/13       27357       S15644C3       27       P       PEIC         7440-70-2       Calcium       1400       1500       1       0.5       50       11/01/13       27357       S15644D3       26       P       PEICPRAN	)3A
7440-70-2         Calcium         1400         1500         1         0.5         50         11/01/13         27357         S15644D3         26         P         PEICPRAN	23A
	>3A
	33A
7440-47-3 Chromium 6.8 14 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	⊃3A
7440-48-4 Cobalt 3.4 6.1 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	23A
7440-50-8 Copper 6.8 15 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	P3A
7439-89-6 Iron 270 15000 1 0.5 50 11/01/13 27357 S15644D3 26 P PEICPRA	D3A
7439-92-1 Lead 6.8 ND 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	РЗА
7439-95-4 Magnesium 680 3200 1 0.5 50 11/01/13 27357 S15644D3 26 P PEICPRA	D3A
7439-96-5 Manganese 14 580 1 0.5 50 11/01/13 27357 S15644D3 26 P PEICPRA	D3A
7439-97-6 Mercury 0.11 ND 1 0.15 25 11/01/13 27357 H15644S 25 CV HGC	V1A
7440-02-0 Nickel 6.8 11 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	P3A
7440-09-7 Potassium 680 1900 1 0.5 50 11/01/13 27357 S15644D3 26 P PEICPRA	D3A
7440-23-5 Sodium 340 ND 1 0.5 50 11/01/13 27357 S15644D3 26 P PEICPRA	D3A
7440-28-0 Thallium 2.0 ND 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	P3A
7440-62-2 Vanadium 14 21 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	P3A
7440-66-6 Zinc 14 32 1 0.5 50 10/31/13 27357 S15644C3 27 P PEIC	P3A

Comments:

Flag Codes:

Sample I Client I Matri Leve	ld: SD-1-10242013 ix: SOIL	% S U Date F	nits: MG/	KG 25/2013	L	b Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	м	Instr
7440-36-0	Antimony	0.27	ND	1	0.5	100	10/31/13	27358	S103113B	32	MS	MS2_7500SWA
7440-41-7	Beryllium	0.27	ND	1	0.5	100	10/31/13	27358	S103113B	32	MS	MS2_7500SWA
7440-43-9	Cadmium	0.54	ND	1	0.5	100	10/31/13	27358	S103113B	32	MS	MS2_7500SWA
7782-49-2	Selenium	2.7	ND	1	0.5	100	10/31/13	27358	S103113B	32	MS	MS2_7500SWA
7440-22-4	Silver	0.27	ND	1	0.5	100	10/31/13	27358	S103113B	32	MS	MS2_7500SWA

Comments:

Flag Codes:

Form1 Inorganic Analysis Data Sheet

Sample II Client I Matri Leve	d: FB-10242013 x: AQUEOUS	l	Solid: 0 Jnits: UG/ Rec: 10/2	L 5/2013	La	b Name ab Code Contract	:	h	Nras No Sdg No Case No	:		
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-39-3	Barium	25	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-70-2	Calcium	1000	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/01/13	27365	A15652A2	35	P	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/01/13	27365	A15652A2	35	P	PEICP2A
7439-95-4	Magnesium	1000	ND	1	100	50	11/01/13	27365	A15652B2	13	Р	PEICP2A
7439-96-5	Manganese	25	ND	1	100	50	11/01/13	27365	A15652A2	35	P	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/02/13	27365	H15652A	27	cv	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/01/13	27365	A15652A2	35	P	PEICP2A
7440-09-7	Potassium	2500	ND	1	100	50	11/01/13	27365	A15652C2	31	P	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-23-5	Sodium	2500	ND	1	100	50	11/01/13	27365	A15652C2	31	P	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/01/13	27365	A15652A2	35	Р	PEICP2A

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

MS - ICP-MS

Form1 Inorganic Analysis Data Sheet

Sample I Client Matr Lev	ld: FB-10242013 rix: AQUEOUS		Solid: 0 Jnits: UG/ Rec: 10/2	L 5/2013	La	b Name: ab Code: Contract:	;	١	Nras No Sdg No Case No	:			
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol			Prep Batch	File:	Seq Num	м		Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/04/13	27365	0413CNEW	28	MS	MS3_	7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/04/13	27365	413CNEW	28	MS	MS3_	7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/04/13	27365	0413CNEW	28	MS	MS3_	7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/04/13	27365	413CNEW	28	MS	MS3_	7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/04/13	27365	413CNEW	28	MS	MS3_	7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/04/13	27365	413CNEW	28	MS	MS3_	7700AQA

Flag Codes:

Sample Client Mati Lev	Id: MB 27365 rix: AQUEOU	5 (0.5)	% Solid: ( Units: U	) JG/L		Lab Nam Lab Coo						
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/01/13	27365	A15652A2	13	P	PEICP2A
7440-36-0	Antimony	7.5	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-38-2	Arsenic	20	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-39-3	Barium	25	ND	1	100	50	11/01/13	27365	A15652A2	13	P	PEICP2A
7440-41-7	Beryllium	4.0	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-43-9	Cadmium	2.0	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-70-2	Calcium	1000	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Ρ	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7439-92-1	Lead	5.0	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7439-95-4	Magnesium	1000	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7439-96-5	Manganese	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7439-98-7	Molybdenum	10	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-02-0	Nickel	10	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-09-7	Potassium	2500	ND	1	100	50	11/01/13	27365	A15652C2	10	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/01/13	27365	A15652A2	13	Ρ	PEICP2A
7440-23-5	Sodium	2500	ND	1	100	50	11/01/13	27365	A15652C2	10	Р	PEICPRAD2A
7440-28-0	Thallium	5.0	ND	1	100	50	11/01/13	27365	A15652A2	13	· P	PEICP2A
7440-31-5	Tin	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-32-6	Titanium	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Р	PEICP2A
7440-62-2	Vanadium	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Ρ	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/01/13	27365	A15652A2	13	Ρ	PEICP2A

Comments:

Flag Codes:

Sample Client Mat Lev	Id: MB 27365 rix: AQUEOU		% Solid: ( Units: U	) JG/L		Lab Nan Lab Coo						
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch		Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/04/13	27365	0413CNEW	12	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/04/13	27365	0413CNEW	12	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/04/13	27365	0413CNEW	12	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/04/13	27365	0413CNEW	12	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/04/13	27365	0413CNEW	12	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	NĎ	1	100	125	11/04/13	27365	0413CNEW	12	MS	MS3_7700AQA

Comments:

Flag Codes:

Sample I Client Matr Lev	ld: MB 27357 ix: SOIL	• /	% Solid: C Units: M	) MG/KG		Lab Nam Lab Coo						
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	ND	1	0.5	50	11/01/13	27357	S15644D3	11	Ρ	PEICPRAD3A
7440-36-0	Antimony	4.0	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A
7440-38-2	Arsenic	4.0	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A
7440-39-3	Barium	10	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A
7440-41-7	Beryllium	1.2	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A
7440-43-9	Cadmium	1.2	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Ρ	PEICP3A
7440-70-2	Calcium	1000	ND	1	0.5	50	11/01/13	27357	S15644D3	11	Р	PEICPRAD3A
7440-47-3	Chromium	5.0	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A
7440-48-4	Cobalt	2.5	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A
7440-50-8	Copper	5.0	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Ρ	PEICP3A
7439-89-6	Iron	200	ND	1	0.5	50	11/01/13	27357	S15644D3	11	Р	PEICPRAD3A
7439-92-1	Lead	5.0	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A
7439-95-4	Magnesium	500	ND	1	0.5	50	11/01/13	27357	S15644D3	11	Р	PEICPRAD3A
7439-96-5	Manganese	10	ND	1	0.5	50	11/01/13	27357	S15644D3	11	Ρ	PEICPRAD3A
7439-98-7	Molybdenum	2.5	ND	1	0.5	50	10/31/13	27357	S15644C3	12	Р	PEICP3A

10/31/13

11/01/13

10/31/13

10/31/13

11/01/13

10/31/13

10/31/13

10/31/13

10/31/13

10/31/13

50

50

50

50

50

50

50

50

50

50

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

1

1

1

1

27357

27357

27357

27357

27357

S15644C3

27357 S15644D3

27357 S15644C3

27357 S15644C3

27357 S15644D3

27357 S15644C3

S15644C3

S15644C3

S15644C3

S15644C3

Р

Ρ

Ρ

Ρ

Ρ

Ρ

Р

Ρ

Ρ

Ρ

12

11

12

12

11

12

12

12

12

12

PEICP3A

PEICP3A

PEICP3A

PEICP3A

PEICP3A

PEICP3A

PEICP3A

PEICP3A

PEICPRAD3A

PEICPRAD3A

Comments:

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-31-5

7440-32-6

7440-62-2

7440-66-6

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Titanium

Vanadium

Tin

Zinc

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

5.0

500

3.0

1.5

250

1.5

20

10

10

10

ND

	MB 27358 SOIL LOW		Units: M	MG/KG		Lab Nam Lab Coo						
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Inst
7440-36-0 A	Antimony	0.20	ND	1	0.5	100	10/31/13	27358	S103113B	16	MS	MS2_7500SWA
7440-41-7 E	Beryllium	0.20	ND	1	0.5	100	10/31/13	27358	S103113B	16	MS	MS2_7500SWA
7440-43-9 C	Cadmium	0.40	ND	1	0.5	100	10/31/13	27358	S103113B	16	MS	MS2_7500SWA
7782-49-2 5	Selenium	2.0	ND	1	0.5	100	10/31/13	27358	S103113B	16	MS	MS2_7500SWA
7440-22-4	Silver	0.20	ND	1	0.5	100	10/31/13	27358	S103113B	16	MS	MS2_7500SWA

Flag Codes:

Form1 Inorganic Analysis Data Sheet

				Lab Coo	le:					
lyte Ri	. Conc	Dil Fact			Analysis Date	Prep Batch	File:	Seq Num	м	Instr
cury 0.20	) ND	1	25	25	11/02/13	27365	H15652A	11	CV	HGCV1A
a	alyte RL	alyte RL Conc	alyte RL Conc Dil Fact	alyte RL Conc Dil Fact Wt/Vol	alyte RL Conc Dil Fact Wt/Vol Wt/Vol	alyte RL Conc Dil Fact Wt/Vol Wt/Vol Analysis Date	alyte RL Conc Dil Fact Wt/Vol Analysis Date Batch	alyte RL Conc Dil Fact Wt/Vol Hindle Analysis Date Batch File:	alyte RL Conc Dil Fact Wt/Vol Wt/Vol Analysis Date Prep Batch File: Num	alyte RL Conc Dil Fact Wt/Vol Wt/Vol Analysis Date Prep Seq Num M

Flag Codes:

Sample ID:	MB 27357 (167)	% Solid:	0	Lab Name:	Veritech
Client Id:	MB 27357 (167)	Units:	MG/KG	Lab Code:	
Matrix:	SOIL				
Level:	LOW				

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch		Seq Num	м	Instr
7439-97-6	Mercury	0.083	ND	1	0.15	25	11/01/13	27357	H15644S	11	CV	HGCV1A

Comments:

Flag Codes:

Date Analyzed: 11/01/13 Data File: A15652A2 Prep Batch: 27365 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: PEICP2A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102513

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-174666- 8	CCB-12	CCB-23	CCB-34	CCB-43	CCB-51	MB 27365 (0.5)-13	
Aluminum	.2 U	.2 U	.2 U	.2 U	.2 U	.2U	.1U	
Barium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U	
Calcium	2 U	2 U	. 2U	2 U	2 U	2 U	1U	
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U	
Cobalt	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U	
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U	
Iron	.3 U	.3 U	.3 U	.3 U	.3 U	.3U	.15U	
Magnesium	2 U	2 U	2 U	2 U	2 U	20	1 U	
Manganese	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U	
Nickel	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U	
Selenium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U	
Silver	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U	
Vanadium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U	
Zinc	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U	

Date Analyzed: 1	1/01/13	Lab Name:	Veritech
Data File: A	15652B2		ventech
Prep Batch: 2	7365	Lab Code:	
Reporting Limits Used: A	QUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)	Contract:	
Instrument: P		Nras No:	
		Sdg No:	
Project Number: 3	II units in ppm except Hg and icp-ms in ppb 102513	Case No:	

Analyte	ICB V-174666- 8	CCB-12	CCB-21	CCB-29	
Magnesium	2 U	2 U	2 U	2 U	

Date Analyzed: 11/01/13 Data File: A15652C2 Prep Batch: 27365 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: PEICPRAD2A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102513

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-174666- 7	CCB-19	CCB-30	CCB-39	CCB-47	MB 27365 (0.5)-10	
Potassium	5 U	5 U	5 U	5 U	5 U	2.5 U	
Sodium	5 U	5 U	5 U	5 U	5 U	2.5 U	

Date Analyzed: 11/04/13 Data File: W110413CNEW Prep Batch: 27365 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: MS3_7700AQA Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102513

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	CCB V-176106- 11	CCB V-176106- 23	CCB V-176106- 35	CCB V-176106- 42	MB 27365-12	
Antimony	2 U	2 U	2 U	2 U	2.5 U	
Arsenic	.8 U	.8 U	.8 U	.8 U	1 U	
Beryllium	.6 U	.6 U	.6 U	.6 U	.75 U	
Cadmium	.8 U	.8 U	.8 U	.8 U	1 U	
Lead	.6 U	.6 U	.6 U	.6 U	.75 U	
Thallium	1.2 U	1.2 U	1.2 U	1.2 U	1.5 U	

Date Analyzed: 10/31/13 Data File: S15644C3 Prep Batch: 27357 Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A Instrument: PEICP3A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102513

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-174666- 9	CCB V-174666- 22	CCB V-174666- 34	CCB V-174666- 45	CCB V-174666- 57	MB 27357 (100)-12
Arsenic	.04 U	.04 U	.04 U	.04 U	.04 U	4 U
Barium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	5 U
Cobalt	.025 U	.025 U	.025 U	.025 U	.025 U	2.5 U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	5 U
Lead	.05 U	.05 U	.05 U	.05 U	.05 U	5 U
Nickel	.05 U	.05 U	.05 U	.05 U	.05 U	5บ
Thallium	.015 U	.015 U	.015 U	.015 U	.015 U	1.5U
Vanadium	.1 U	.1 U	.1 U	.1 U	.1 U	10 U
Zinc	.1 U	.1 U	.1 U	.1 U	.1 U	10 U

Date Analyzed: 11/01/13 Data File: S15644D3 Prep Batch: 27357 Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A Instrument: PEICPRAD3A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102513

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-174666- 8	CCB V-174666- 21	CCB V-174666- 34	CCB V-174666- 46	MB 27357 (100)-11
Aluminum	2 U	2 U	2 U	2 U	200 U
Calcium	10 U	10 U	10 U	10 U	1000 U
Iron	2 U	2 U	2 U	2 U	200 U
Magnesium	5 U	5 U	5 U	5 U	500 U
Manganese	.1 U	.1 U	.1 U	.1 U	10 U
Potassium	5 U	5 U	5 U	5 U	500 U
Sodium	2.5 U	2.5 U	2.5 U	2.5 U	250 U

Date Analyzed: 10/31/13 Data File: S103113B Prep Batch: 27358 Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A Instrument: MS2_7500SWA Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102513

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB V-175871- 10	CCB V-175871- 15	CCB V-175871- 28	CCB V-175871- 41	CCB V-175871- 54	CCB V-175871- 59	MB 27358-16	
Antimony	1 U	1 U	1 U	10	1 U	10	200 U	
Beryllium	10	1 U	1 U	10	1 U	10	200 U	
Cadmium	2 U	2 U	2 U	2 U	2 U	2 U	400 U	
Selenium	10 U	2000 U						
Silver	1 U	1 U	1 U	1 U	1 U	10	200 U	

Date Analyzed: 11/02/13 Data File: H15652A Prep Batch: 27365 Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg) Instrument: HGCV1A Units: All units in ppm except Hg and icp-ms in ppb Project Number: 3102513

Lab Name: Veritech Lab Code: Contract: Nras No: Sdg No: Case No:

Analyte	ICB-10	CCB-22	CCB-34	CCB-41	MB 27365 (1)- 11	
Mercury	.2 U					

eritech

Analyte	ICB-10	CCB-22	CCB-34	CCB-43	MB 27357 (167)-11	
Mercury	.5 U	.5 U	.5 U	.5 U	83 U	

# Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	LCS	Ma	atrix: AQUEO	US	SampleID: LCSW 27365				
Analyte	Batchld	DF	Data Fil	Seq#:	Spk Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	27365	1	A15652A2	14	4.8018	5.000	96	85	115
Antimony	27365	1	A15652A2	14	0.4692	.5000	94	85	115
Arsenic	27365	1	A15652A2	14	0.4579	.5000	92	85	115
Barium	27365	1	A15652A2	14	0.4851	.5000	97	85	115
Beryllium	27365	1	A15652A2	14	0.4713	.5000	94	85	115
Cadmium	27365	1	A15652A2	14	0.4767	.5000	95	85	115
Calcium	27365	1	A15652A2	14	48.4382	50.000	97	85	115
Chromium	27365	1	A15652A2	14	0.4825	.5000	96	85	115
Cobalt	27365	1	A15652A2	14	0.4825	.5000	96	85	115
Copper	27365	1	A15652A2	14	0.4575	.5000	92	85	115
Iron	27365	1	A15652A2	14	4.8386	5.000	97	85	115
Lead	27365	1	A15652A2	14	0.4724	.5000	94	85	115
Magnesium	27365	1	A15652A2	14	48.6801	50.000	97	85	115
Manganese	27365	1	A15652A2	14	0.4628	.5000	93	85	115
Mercury	27365	1	H15652A	12	10.6495	10	106	85	115
Nickel	27365	1	A15652A2	14	0.4789	.5000	96	85	115
Potassium	27365	1	A15652C2	11	45.1917	50.000	90	85	115
Selenium	27365	1	A15652A2	14	0.4830	.5000	97	85	115
Silver	27365	1	A15652A2	14	0.0936	0.1000	94	85	115
Sodium	27365	1	A15652C2	11	46.4868	50.000	93	85	115
Thallium	27365	1	A15652A2	14	0.4923	.5000	98	85	115
Vanadium	27365	1	A15652A2	14	0.4809	.5000	96	85	115
Zinc	27365	1	A15652A2	14	0.4846	.5000	97	85	115

TxtQcType:	LCSMR	Ma	trix: AQUEC	DUS	SampleID: LCSW MR 27365				
Analyte	Batchld	DF	Data Fil	Seq#:	Spk Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	27365	1	A15652A2	15	4.7677	5.000	95	85	115
Antimony	27365	1	A15652A2	15	0.4668	.5000	93	85	115
Arsenic	27365	1	A15652A2	15	0.4549	.5000	91	85	115
Barium	27365	1	A15652A2	15	0.4820	.5000	96	85	115
Beryllium	27365	1	A15652A2	15	0.4721	.5000	94	85	115
Cadmium	27365	1	A15652A2	15	0.4736	.5000	95	85	115
Calcium	27365	1	A15652A2	15	48.4661	50.000	97	85	115
Chromium	27365	1	A15652A2	15	0.4785	.5000	96	85	115
Cobalt	27365	1	A15652A2	15	0.4800	.5000	96	85	115
Copper	27365	1	A15652A2	15	0.4542	.5000	91	85	115
Iron	27365	1	A15652A2	15	4.8295	5.000	97	85	115
Lead	27365	1	A15652A2	15	0.4747	.5000	95	85	115
Magnesium	27365	1	A15652A2	15	48.8261	50.000	98	85	115
Manganese	27365	1	A15652A2	15	0.4691	.5000	94	85	115
Mercury	27365	1	H15652A	13	10.4004	10	104	85	115
Nickel	27365	1	A15652A2	15	0.4755	.5000	95	85	115
Potassium	27365	1	A15652C2	12	44.0776	50.000	88	85	115
Selenium	27365	1	A15652A2	15	0.4831	.5000	97	85	115
Silver	27365	1	A15652A2	15	0.0929	0.1000	93	85	115
Sodium	27365	1	A15652C2	12	45.9965	50.000	92	85	115
Thallium	27365	1	A15652A2	15	0.4918	.5000	98	85	115
Vanadium	27365	1	A15652A2	15	0.4786	.5000	96	85	115
Zinc	27365	1	A15652A2	15	0.4801	.5000	96	85	115

#### Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	MS	Mat	rix: AQUEC	DUS	Sample	D: AC	75362-002					
Analyte	Batchld	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	27365	1	A15652A2	18	A15652A2	16	4.6682	0.2U	5.000	93	70	130
Antimony	27365	1	A15652A2	18	A15652A2	16	0.4586	0.015U	.5000	92	70	130
Arsenic	27365	1	A15652A2	18	A15652A2	16	0.4426	0.04U	.5000	89	70	130
Barium	27365	1	A15652A2	18	A15652A2	16	0.5095	0.05U	.5000	102	70	130
Beryllium	27365	1	A15652A2	18	A15652A2	16	0.4619	0.008U	.5000	92	70	130
Cadmium	27365	1	A15652A2	18	A15652A2	16	0.4653	0.004U	.5000	93	70	130
Calcium	27365	1	A15652A2	18	A15652A2	16	132.0710	86.7499	50.000	91	70	130
Chromium	27365	1	A15652A2	18	A15652A2	16	0.4637	0.05U	.5000	93	70	130
Cobalt	27365	1	A15652A2	18	A15652A2	16	0.4619	0.02U	.5000	92	70	130
Copper	27365	1	A15652A2	18	A15652A2	16	0.4455	0.05U	.5000	8 <del>9</del>	70	130
Iron	27365	1	A15652A2	18	A15652A2	16	5.1263	0.5054	5.000	92	70	130
Lead	27365	1	A15652A2	18	A15652A2	16	0.4586	0.010U	.5000	92	70	130
Magnesium	27365	1	A15652A2	18	A15652A2	16	73.4184	27.1143	50.000	93	70	130
Manganese	27365	1	A15652A2	18	A15652A2	16	0.8476	0.3970	.5000	90	70	130
Mercury	27365	1	H15652A	16	H15652A	14	10.5174	0.2U	10	105	70	130
Nickel	27365	1 .	A15652A2	18	A15652A2	16	0.4518	0.02U	.5000	90	70	130
Potassium	27365	1	A15652C2	15	A15652C2	13	48.4023	5.5235	50.000	86	70	130
Selenium	27365	1	A15652A2	18	A15652A2	16	0.4672	0.05U	.5000	93	70	130
Silver	27365	1	A15652A2	18	A15652A2	16	0.0910	0.02U	0.100	91	70	130
Sodium	27365	1	A15652C2	15	A15652C2	13	64.3544	19.0026	50.000	91	70	130
Thallium	27365	1	A15652A2	18	A15652A2	16	0.4724	0.01U	.5000	94	70	130
Vanadium	27365	1	A15652A2	18	A15652A2	16	0.4644	0.05U	.5000	93	70	130
Zinc	27365	1	A15652A2	18	A15652A2	16	0.4632	0.05U	.5000	93	70	130
TxtQcType:	MSD	Mat	trix: AQUE	DUS	Sample	elD: AC	75362-002					
Analyte	Batchid	DF	Data Fil	Seg#:	NS Data Fil	Sea#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim

Thickorypo.					Campie							
Analyte	Batchid	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	27365	1	A15652A2	19	A15652A2	16	4.8371	0.2U	5.000	97	70	130
Antimony	27365	1	A15652A2	19	A15652A2	16	0.4745	0.015U	.5000	95	70	130
Arsenic	27365	1	A15652A2	19	A15652A2	16	0.4553	0.04U	.5000	91	70	130
Barium	27365	1	A15652A2	19	A15652A2	16	0.5222	0.05U	.5000	104	70	130
Beryllium	27365	1	A15652A2	19	A15652A2	16	0.4692	0.008U	.5000	94	70	130
Cadmium	27365	1	A15652A2	19	A15652A2	16	0.4730	0.004U	.5000	95	70	130
Calcium	27365	1	A15652A2	19	A15652A2	16	133.1280	86.7499	50.000	93	70	130
Chromium	27365	1	A15652A2	19	A15652A2	16	0.4764	0.05U	.5000	95	70	130
Cobalt	27365	1	A15652A2	19	A15652A2	16	0.4701	0.02U	.5000	94	70	130
Copper	27365	1	A15652A2	19	A15652A2	16	0.4574	0.05U	.5000	91	70	130
Iron	27365	1	A15652A2	19	A15652A2	16	5.2619	0.5054	5.000	95	70	130
Lead	27365	1	A15652A2	19	A15652A2	16	0.4671	0.010U	.5000	93	70	130
Magnesium	27365	1	A15652A2	19	A15652A2	16	74.7487	27.1143	50.000	95	70	130
Manganese	27365	1	A15652A2	19	A15652A2	16	0.8458	0.3970	.5000	90	70	130
Mercury	27365	1	H15652A	17	H15652A	14	10.3209	0.2U	10	103	70	130
Nickel	27365	1	A15652A2	19	A15652A2	16	0.4647	0.02U	.5000	93	70	130
Potassium	27365	1	A15652C2	16	A15652C2	13	49.7479	5.5235	50.000	88	70	130
Selenium	27365	1	A15652A2	19	A15652A2	16	0.4828	0.05U	.5000	97	70	130
Silver	27365	1	A15652A2	19	A15652A2	16	0.0939	0.02U	0.100	94	70	130
Sodium	27365	1	A15652C2	16	A15652C2	13	65.4890	19.0026	50.000	93	70	130
Thallium	27365	1	A15652A2	19	A15652A2	16	0.4835	0.01U	.5000	97	70	130
Vanadium	27365	1	A15652A2	19	A15652A2	16	0.4786	0.05U	.5000	96	70	130
Zinc	27365	1	A15652A2	19	A15652A2	16	0.4760	0.05U	.5000	95	70	130

# FORM5/FORM7 SPIKE RECOVERY DATA

Instrument Type: ICPMS Analytical Method(s):6020/200.8

TxtQcType:	LCS	Matri	x: AQUEC	DUS	Sample	ID: LC	SW 27365					
Analyte	Batchld	DF	Data Fil	Seq#:	- <u>·</u> · · ·		Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Antimony	27365	1	W110413	13			56.6730		56	101	85	115
Arsenic	27365	1	W110413	13			57.9200		56	103	85	115
Beryllium	27365	1	W110413	13			58.9910		56	105	85	115
Cadmium	27365	1	W110413	13			55.8160		56	100	85	115
Lead	27365	1	W110413	13			55.8100		56	100	85	115
Thallium	27365	1	W110413	13			52.3070		56	93	85	115
TxtQcType:	LCSMR	Matri	x: AQUE	DUS	Sample	ID: LC	SW MR 27365					
Analyte	BatchId	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Antimony	27365	1	W110413	14			52.4430		56	94	85	115
Arsenic	27365	1	W110413	14			53.5510		56	96	85	115
Beryllium	27365	1	W110413	14			54.1810		56	97	85	115
Cadmium	27365	1	W110413	14			52.5920		56	94	85	115
Lead	27365	1	W110413	14			52.6440		56	94	85	115
Thallium	27365	1	W110413	14			49.3850		56	88	85	115
TxtQcType:	MS	Matri	ix: AQUE	DUS	Sample	eID: AC	75362-002					-
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Antimony	27365	1	W110413	17	W110413	15	54.5670	2.0U	56	97	70	130
Arsenic	27365										10	
	27300	1	W110413	17	W110413	15	54.3590	0.8U	56	97	70	130
Beryllium	27365	1 1	W110413 W110413	17 17	W110413 W110413	15 15	54.3590 56.3280	0.8U 0.6U	56 56	97 101		130 130
Beryllium Cadmium									-		70	
•	27365	1	W110413	17	W110413	15	56.3280	0.6U	56	101	70 70	130
Cadmium	27365 27365	1	W110413 W110413	17 17	W110413 W110413	15 15	56.3280 52.9090	0.6U 0.8U	56 56	101 94	70 70 70	130 130
Cadmium Lead	27365 27365 27365 27365	1 1 1	W110413 W110413 W110413 W110413	17 17 17 17	W110413 W110413 W110413 W110413	15 15 15 15	56.3280 52.9090 52.4150	0.6U 0.8U 0.6U	56 56 56	101 94 94	70 70 70 70	130 130 130
Cadmium Lead Thallium	27365 27365 27365 27365	1 1 1 1	W110413 W110413 W110413 W110413	17 17 17 17	W110413 W110413 W110413 W110413	15 15 15 15 15	56.3280 52.9090 52.4150 49.7000	0.6U 0.8U 0.6U	56 56 56	101 94 94	70 70 70 70	130 130 130
Cadmium Lead Thallium TxtQcType:	27365 27365 27365 27365 27365 MSD	1 1 1 1 Matri	W110413 W110413 W110413 W110413 W110413	17 17 17 17 200S	W110413 W110413 W110413 W110413 Sample	15 15 15 15 15	56.3280 52.9090 52.4150 49.7000	0.6U 0.8U 0.6U 1.2U	56 56 56 56	101 94 94 89	70 70 70 70 70 70	130 130 130 130
Cadmium Lead Thallium TxtQcType: Analyte	27365 27365 27365 27365 27365 MSD Batchld	1 1 1 1 Matri DF	W110413 W110413 W110413 W110413 W110413 ix: AQUEC	17 17 17 17 DUS Seq#:	W110413 W110413 W110413 W110413 Sample NS Data Fil	15 15 15 15 15 EID: AC	56.3280 52.9090 52.4150 49.7000 75362-002 Spk Conc:	0.6U 0.8U 0.6U 1.2U NS Conc:	56 56 56 56 Spk Adde	101 94 94 89 Recov	70 70 70 70 70 70 20	130 130 130 130 Hi Lim
Cadmium Lead Thallium TxtQcType: Analyte Antimony	27365 27365 27365 27365 27365 MSD Batchld 27365	1 1 1 1 Matri DF 1	W110413 W110413 W110413 W110413 W110413 ix: AQUE0 Data Fil W110413	17 17 17 17 DUS Seq#: 18	W110413 W110413 W110413 W110413 Sample NS Data Fil W110413	15 15 15 15 15 EID: AC Seq# 15	56.3280 52.9090 52.4150 49.7000 75362-002 Spk Conc: 53.6630	0.6U 0.8U 0.6U 1.2U NS Conc: 2.0U	56 56 56 56 Spk Adde 56	101 94 94 89 <u>Recov</u> 96	70 70 70 70 70 70 70 70 20 20 20 70	130 130 130 130 130 Hi Lim 130
Cadmium Lead Thallium TxtQcType: Analyte Antimony Arsenic	27365 27365 27365 27365 27365 MSD Batchld 27365 27365	1 1 1 1 Matri DF 1 1	W110413 W110413 W110413 W110413 W110413 X: AQUEC Data Fil W110413 W110413	17 17 17 17 DUS Seq#: 18 18	W110413 W110413 W110413 W110413 Sample NS Data Fil W110413 W110413	15 15 15 15 15 15 15 Seq# 15 15	56.3280 52.9090 52.4150 49.7000 75362-002 Spk Conc: 53.6630 54.0810	0.6U 0.8U 0.6U 1.2U NS Conc: 2.0U 0.8U	56 56 56 56 56 <u>Spk Adde</u> 56 56	101 94 99 89 <u>Recov</u> 96 97	70 70 70 70 70 70 70 70 70 70	130 130 130 130 Hi Lim 130 130
Cadmium Lead Thallium TxtQcType: Analyte Antimony Arsenic Beryllium	27365 27365 27365 27365 27365 <b>MSD</b> Batchld 27365 27365 27365 27365	1 1 1 1 Matri DF 1 1 1	W110413 W110413 W110413 W110413 W110413 W110413 W110413 W110413 W110413	17 17 17 DUS Seq#: 18 18 18 18	W110413 W110413 W110413 W110413 Sample NS Data Fil W110413 W110413 W110413	15 15 15 15 15 15 15 15 15 15	56.3280 52.9090 52.4150 49.7000 75362-002 Spk Conc: 53.6630 54.0810 57.8060	0.6U 0.8U 0.6U 1.2U NS Conc: 2.0U 0.8U 0.6U	56 56 56 56 56 56 56 56 56	101 94 94 89 <u>Recov</u> 96 97 103	70 70 70 70 70 70 70 70 70 70 70	130 130 130 130 130 Hi Lim 130 130 130

Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	TxtQcType: LCSMR	Matrix: SOIL			SampleID: LCS MR 27357				
Analyte	Batchld	DF	Data Fil	Seq#:	Spk Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	27357	1	S15644D3	13	78.6119	88.4	89	54	146
Arsenic	27357	1	S15644C3	14	0.8946	0.996	90	81	119
Barium	27357	1	S15644C3	14	2.8555	3.10	92	83	117
Calcium	27357	1	S15644D3	13	68.5188	67.9	101	83	118
Chromium	27357	1	S15644C3	14	1.2867	1.36	95	80	121
Cobalt	27357	1	S15644C3	14	1.2456	1.28	97	83	116
Copper	27357	1	S15644C3	14	0.9938	1.02	97	81	119
Iron	27357	1	S15644D3	13	128.1410	126	102	41	158
Lead	27357	1	S15644C3	14	1.0603	1.15	92	82	119
Magnesium	27357	1	S15644D3	13	29.9319	30.1	99	77	123
Manganese	27357	1	S15644D3	13	3.1941	3.23	99	82	117
Mercury	27357	10	H15644S	15	11.9114	119.2	100	69	130
Nickel	27357	1	S15644C3	14	1.4920	1.53	98	82	118
Potassium	27357	1	S15644D3	13	27.5851	28.4	97	71	129
Sodium	27357	1	S15644D3	13	27.1571	27.6	98	71	129
Thallium	27357	1	S15644C3	14	1.6367	1.74	94	79	122
Vanadium	27357	1	S15644C3	14	0.8966	0.976	92	77	123
Zinc	27357	1	S15644C3	14	1.4806	1.61	92	81	119

TxtQcType:	LCS	Ma	atrix: SOIL		SampleID: LCS 27357				
Analyte	BatchId	DF	Data Fil	Seq#:	Spk Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	27357	1	S15644D3	12	77.6904	88.4	88	54	146
Arsenic	27357	1	S15644C3	13	0.9306	0.996	93	81	119
Barium	27357	1	S15644C3	13	2.9725	3.10	96	83	117
Calcium	27357	1	S15644D3	12	67.0486	67.9	99	83	118
Chromium	27357	1	S15644C3	13	1.3036	1.36	96	80	121
Cobalt	27357	1	S15644C3	13	1.2639	1.28	99	83	116
Copper	27357	1	S15644C3	13	0.9935	1.02	97	81	119
Iron	27357	1	S15644D3	12	128.4620	126	102	41	158
Lead	27357	1	S15644C3	13	1.0881	1.15	95	82	119
Magnesium	27357	1	S15644D3	12	29.9254	30.1	99	77	123
Manganese	27357	1	S15644D3	12	3.1856	3.23	99	82	117
Mercury	27357	10	H15644S	14	12.6926	119.2	106	69	130
Nickel	27357	1	S15644C3	13	1.4901	1.53	97	82	118
Potassium	27357	1	S15644D3	12	27.8807	28.4	98	71	129
Sodium	27357	1	S15644D3	12	27.0373	27.6	98	71	129
Thallium	27357	1	S15644C3	13	1.6981	1,74	98	79	122
/anadium	27357	1	S15644C3	13	0.9052	0.976	93	77	123
Zinc	27357	1	S15644C3	13	1.5013	1.61	93	81	119

#### Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: N	MSD	Mati	rix: SOIL		Sample	eID: AC	75388-001						
Analyte	Batchld	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual	Lo Lim	Hi Lim
Aluminum	27357	1	S15644D3	17	S15644D3	14	80.5369	63.5472	5.0	340	b	75	125
Arsenic	27357	1	S15644C3	18	S15644C3	15	0.4718	0.04U	0.5	94		75	125
Barium	27357	1	S15644C3	18	S15644C3	15	0.8972	0.3785	0.5	104		75	125
Calcium	27357	1	S15644D3	17	S15644D3	14	79.7165	26.4295	50	107		75	125
Chromium	27357	1	S15644C3	18	S15644C3	15	0.5711	0.1071	0.5	93		75	125
Cobalt	27357	1	S15644C3	18	S15644C3	15	0.5284	0.0546	0.5	95		75	125
Copper	27357	1	S15644C3	18	S15644C3	15	0.6301	0.1532	0.5	95		75	125
Iron	27357	1	S15644D3	17	S15644D3	14	133.8190	129.1140	5.0	94		75	125
Lead	27357	1	S15644C3	18	S15644C3	15	1.0608	0.3383	0.5	145	а	75	125
Magnesium	27357	1	S15644D3	17	S15644D3	14	75.5522	26.2494	50	99		75	125
Manganese	27357	1	S15644D3	17	S15644D3	14	3.0805	2.1108	0.5	194	ь	75	125
Mercury	27357	1	H15644S	19	H15644S	16	11.4785	0.9570	10	105		75	125
Nickel	27357	1	S15644C3	18	S15644C3	15	0.5994	0.1373	0.5	92		75	125
Potassium	27357	1	S15644D3	17	S15644D3	14	59.1921	9.0879	50	100		75	125
Sodium	27357	1	S15644D3	17	S15644D3	14	50.7805	2.5U	50	102		75	125
Thallium	27357	1	S15644C3	18	S15644C3	15	0.4757	0.015U	0.5	95		75	125
Vanadium	27357	1	S15644C3	18	S15644C3	15	0.6060	0.1411	0.5	93		75	125
Zinc	27357	1	S15644C3	18	S15644C3	15	0.8222	0.3538	0.5	94		75	125
						يتغاربها والتعاريف							
TxtQcType: N	ИS	Mat	rix: SOIL		Sample	elD: AC	75388-001						
TxtQcType: M Analyte	MS BatchId	Mati DF	rix: SOIL Data Fil	Seq#:	Sample NS Data Fil		75388-001 Spk Conc:	NS Conc:	Spk Adde	Recov	Qual	Lo Lim	Hi Lim
•••				Seq#: 16	•			NS Conc: 63.5472	Spk Adde 5.0	Recov 279	Qual b	Lo Lim 75	Hi Lim 125
Analyte	BatchId	DF	Data Fil		NS Data Fil	Seq#	Spk Conc:						
Analyte Aluminum	BatchId 27357	DF 1	Data Fil S15644D3	16	NS Data Fil S15644D3	Seq# 14	Spk Conc: 77.5140	63.5472	5.0	279		75	125
Analyte Aluminum Arsenic	BatchId 27357 27357	DF 1 1	Data Fil S15644D3 S15644C3	16 17	NS Data Fil S15644D3 S15644C3	Seq# 14 15	Spk Conc: 77.5140 0.4780	63.5472 0.04U	5.0 0.5	279 96		75 75	125 125
Analyte Aluminum Arsenic Barium	Batchld 27357 27357 27357 27357 27357 27357	DF 1 1 1	Data Fil S15644D3 S15644C3 S15644C3	16 17 17	NS Data Fil S15644D3 S15644C3 S15644C3	Seq# 14 15 15	Spk Conc: 77.5140 0.4780 0.9230	63.5472 0.04U 0.3785 26.4295 0.1071	5.0 0.5 0.5	279 96 109 114 97		75 75 75	125 125 125
Analyte Aluminum Arsenic Barium Calcium	Batchld 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644D3	16 17 17 16	NS Data Fil S15644D3 S15644C3 S15644C3 S15644D3	Seq# 14 15 15 14	Spk Conc: 77.5140 0.4780 0.9230 83.3205	63.5472 0.04U 0.3785 26.4295	5.0 0.5 0.5 50	279 96 109 114		75 75 75 75	125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium	Batchld 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644D3 S15644D3 S15644C3	16 17 17 16 17	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644D3 S15644C3	Seq# 14 15 15 14 15	Spk Conc: 77.5140 0.4780 0.9230 83.3205 0.5903	63.5472 0.04U 0.3785 26.4295 0.1071	5.0 0.5 0.5 50 0.5	279 96 109 114 97		75 75 75 75 75	125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt	Batchld 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644D3 S15644C3 S15644C3	16 17 17 16 17 17	NS Data Fil S15644D3 S15644C3 S15644C3 S15644D3 S15644C3 S15644C3 S15644C3	Seq# 14 15 15 14 15 15	Spk Conc: 77.5140 0.4780 0.9230 83.3205 0.5903 0.5455	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546	5.0 0.5 0.5 50 0.5 0.5	279 96 109 114 97 98		75 75 75 75 75 75 75	125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper	Batchld 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644C3	16 17 17 16 17 17 17	NS Data Fil S15644D3 S15644C3 S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644C3	Seq# 14 15 15 14 15 15 15	Spk Conc: 77.5140 0.4780 0.9230 83.3205 0.5903 0.5455 0.6557	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532	5.0 0.5 0.5 50 0.5 0.5 0.5 0.5	279 96 109 114 97 98 101	b	75 75 75 75 75 75 75 75	125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron	Batchld 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3	16 17 17 16 17 17 17 16	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3	Seq# 14 15 15 14 15 15 15 15 14	Spk Conc: 77.5140 0.4780 0.9230 83.3205 0.5903 0.5455 0.6557 135.5440	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140	5.0 0.5 0.5 50 0.5 0.5 0.5 5.0	279 96 109 114 97 98 101 129	b	75 75 75 75 75 75 75 75 75 75	125 125 125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead	Batchld 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3	16 17 17 16 17 17 17 16 17	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3	Seq# 14 15 15 14 15 15 15 15 14 15	Spk Conc: 77.5140 0.4780 0.9230 83.3205 0.5903 0.5455 0.6557 135.5440 0.9230	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108	5.0 0.5 50 0.5 0.5 0.5 0.5 5.0 0.5	279 96 109 114 97 98 101 129 117	b	75 75 75 75 75 75 75 75 75 75 75 75 75 7	125 125 125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium	Batchld 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3	16 17 17 16 17 17 17 16 17 16	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3	Seq# 14 15 15 14 15 15 15 15 14 15 14	Spk Conc: 77.5140 0.4780 0.9230 83.3205 0.5903 0.5455 0.6557 135.5440 0.9230 76.0659	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494	5.0 0.5 0.5 50 0.5 0.5 0.5 5.0 0.5 5.0	279 96 109 114 97 98 101 129 117 100	b	75 75 75 75 75 75 75 75 75 75 75 75	125 125 125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Batchld 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3	16 17 17 16 17 17 17 16 17 16 16	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 S15644D3	Seq# 14 15 15 14 15 15 15 14 15 14 14	Spk Conc:           77.5140           0.4780           0.9230           83.3205           0.5903           0.5455           0.6557           135.5440           0.9230           76.0659           2.7360	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108	5.0 0.5 50 0.5 0.5 0.5 5.0 0.5 50 0.5 50 0.5	279 96 109 114 97 98 101 129 117 100 125	b	75 75 75 75 75 75 75 75 75 75 75 75 75 7	125 125 125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	BatchId 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 S15644D3 H15644S	16 17 17 16 17 17 17 16 16 16 16 18	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 S15644D3 S15644D3 H15644S	Seq# 14 15 15 14 15 15 15 14 15 14 14 14	Spk Conc: 77.5140 0.4780 0.9230 83.3205 0.5903 0.5455 0.6557 135.5440 0.9230 76.0659 2.7360 10.8118	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570	5.0 0.5 50 0.5 0.5 0.5 5.0 0.5 50 0.5 50 0.5 10	279 96 109 114 97 98 101 129 117 100 125 99	b	75 75 75 75 75 75 75 75 75 75 75 75 75 7	125 125 125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	Batchid 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 H15644S S15644C3	16 17 17 16 17 17 17 16 16 16 18 17	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 H15644C3 S15644D3 S15644D3 S15644D3 S15644D3	Seq# 14 15 15 14 15 15 15 14 15 14 14 16 15	Spk Conc:           77.5140           0.4780           0.9230           83.3205           0.5903           0.5455           0.6557           135.5440           0.9230           76.0659           2.7360           10.8118           0.6133           58.7352           50.6497	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570 0.1373	5.0 0.5 50 0.5 0.5 0.5 5.0 0.5 50 0.5 10 0.5	279 96 109 114 97 98 101 129 117 100 125 99 95	b	75 75 75 75 75 75 75 75 75 75 75 75 75 7	125 125 125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	Batchid 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 S15644D3 S15644C3 S15644C3 S15644D3	16 17 17 16 17 17 17 16 16 16 18 17 16	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 H15644S S15644C3 S15644C3 S15644D3	Seq# 14 15 15 14 15 15 15 14 15 14 14 16 15 14	Spk Conc:           77.5140           0.4780           0.9230           83.3205           0.5903           0.5455           0.6557           135.5440           0.9230           76.0659           2.7360           10.8118           0.6133           58.7352	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570 0.1373 9.0879	5.0         0.5         0.5         50         0.5         0.5         0.5         0.5         0.5         5.0         0.5         5.0         0.5         5.0         0.5         50         0.5         50         0.5         50         0.5         50         0.5         50	279 96 109 114 97 98 101 129 117 100 125 99 95 99	b	75 75 75 75 75 75 75 75 75 75 75 75 75 7	125 125 125 125 125 125 125 125 125 125
Analyte Aluminum Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Sodium	Batchid 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3	16 17 17 16 17 17 17 16 16 16 18 17 16 16 16	NS Data Fil S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 H15644C3 S15644D3 S15644D3 S15644D3 S15644D3	Seq# 14 15 15 14 15 15 15 14 15 14 14 16 15 14 14	Spk Conc:           77.5140           0.4780           0.9230           83.3205           0.5903           0.5455           0.6557           135.5440           0.9230           76.0659           2.7360           10.8118           0.6133           58.7352           50.6497	63.5472 0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570 0.1373 9.0879 2.5U	5.0         0.5         0.5         50         0.5         0.5         0.5         5.0         0.5         5.0         0.5         5.0         0.5         50         0.5         50         0.5         50         50         50         50         50         50         50         50         50	279 96 109 114 97 98 101 129 117 100 125 99 95 99 99 101	b	75 75 75 75 75 75 75 75 75 75 75 75 75 7	125 125 125 125 125 125 125 125 125 125

#### Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: PS	Ma	trix: SOIL		Sample	D: AC	75388-001					
Analyte	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	1	S15644D3	18	S15644D3	14	68.4550	63.5472	5.0	98	80	120
Arsenic	1	S15644C3	19	S15644C3	15	0.4729	0.04U	0.50	95	80	120
Barium	1	S15644C3	19	S15644C3	15	0.8418	0.3785	0.50	93	80	120
Calcium	1	S15644D3	18	S15644D3	14	76.5144	26.4295	50	100	80	120
Chromium	1	S15644C3	19	S15644C3	15	0.5667	0.1071	0.50	92	80	120
Cobalt	1	S15644C3	19	S15644C3	15	0.5292	0.0546	0.50	95	80	120
Copper	1	S15644C3	19	S15644C3	15	0.6209	0.1532	0.50	94	80	120
Iron	1	S15644D3	18	S15644D3	14	134.2430	129.1140	5.0	103	80	120
Lead	1	S15644C3	19	S15644C3	15	0.7972	0.3383	0.50	92	80	120
Magnesium	1	S15644D3	18	S15644D3	14	76.8957	26.2494	50	101	80	120
Manganese	1	S15644D3	18	S15644D3	14	2.5915	2.1108	0.50	96	80	120
Nickel	1	S15644C3	19	S15644C3	15	0.5954	0.1373	0.50	92	80	120
Potassium	1	S15644D3	18	S15644D3	14	58.9665	9.0879	50	100	80	120
Sodium	1	S15644D3	18	S15644D3	14	50.7185	2.5U	50	101	80	120
Thallium	1	S15644C3	19	S15644C3	15	0.4788	0.015U	0.50	96	80	120
Vanadium	1	S15644C3	19	S15644C3	15	0.5937	0.1411	0.50	91	80	120
Zinc	1	S15644C3	19	S15644C3	15	0.7988	0.3538	0.50	89	80	120

Instrument Type: ICPMS Analy

Analytical Me	ethod(s):6020	0/200.8						ICP units in p	pm, ICPMS an	nd Hg in	ppb		
TxtQcType:	LCSMR	Matri	x: SOIL		Sample	eID: LC	S MR 27358						
Analyte	BatchId	DF	Data Fil	Seq#:	· · · · · · · · · · · · · · · · · · ·		Spk Conc:		Spk Adde	Recov	Qual L	o Lim	Hi Lin
Antimony	27358	1	S103113B	18			27.6700		88.2	31	0	.023	231
Beryllium	27358	1	S103113B	18			81.7900		72.3	113	8	2	118
Cadmium	27358	1	S103113B	18			212.9000		182	117	8	2	118
Selenium	27358	1	S103113B	18			171.3000		150	114	7	7	123
Silver	27358	1	S103113B	18			45.6500		40.4	113	7	5	125
TxtQcType:	LCS	Matri	x: SOIL		Sample	elD: LC	S 27358						
Analyte	Batchld	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual L	o Lim	Hi Lin
Antimony	27358	1	S103113B	17			22.2800		88.2	25	0	.023	231
Beryllium	27358	1	S103113B	17			76.8500		72.3	106	8	2	118
Cadmium	27358	1	S103113B	17			199.7000		182	110	8	2	118
Selenium	27358	1	S103113B	17			170.0000		150	113	7	7	123
Silver	27358	1	S103113B	17			41.7700	9 8000	40.4	103	7	5	125
TxtQcType:	MSD	Matri	x: SOIL		Sample	eID: AC	75388-001						
Analyte	Batchld	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual L	o Lim	Hi Lin
Antimony	27358	1	S103113B	23	S103113B	19	68.0600	1U	250	27	a 7		125
Beryllium	27358	1	S103113B	23	S103113B	19	190.8000	1.0790	250	76	7	5	125
Cadmium	27358	1	S103113B	23	S103113B	19	231.8000	2U	250	93	7	5	125
Selenium	27358	1	S103113B	23	S103113B	19	230.7000	10U	250	92	7	5	125
Silver	27358	1	S103113B	23	S103113B	19	44.2100	1U	50	88	7	5	125
TxtQcType:	MS	Matri	x: SOIL		Sample	elD: AC	75388-001						
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual L	o Lim	Hi Lin
Antimony	27358	1	S103113B	22	S103113B	19	60.9500	1U	250	24	a 7	5	125
Beryllium	27358	1	S103113B	22	S103113B	19	195.7000	1.0790	250	78	7	5	125
Cadmium	27358	1	S103113B	22	S103113B	19	224.8000	2U	250	90	7	5	125
Selenium	27358	1	\$103113B	22	S103113B	19	218.4000	10U	250	87	7	5	125
Silver	27358	1	S103113B	22	S103113B	19	43.1700	1U	50	86	7	E	125

Instrument Type: ICPMS Analytical Method(s):6020/200.8

TxtQcType: PS	Ма	trix: SOIL		Sample	elD: AC	75388-001					
Analyte	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lir	n Hi Lim
Antimony	1	S103113B	24	S103113B	19	47.8900	1U	50	96	80	120
Beryllium	1	S103113B	24	S103113B	19	39.8400	1.0790	50	78	a 80	120
Cadmium	1	S103113B	24	S103113B	19	47.7300	2U	50	95	80	120
Selenium	1	S103113B	24	S103113B	19	232.9000	10U	250	93	80	120
Silver	1	S103113B	24	S103113B	19	46.8900	1U	50	94	80	120

#### FORM6/FORM9 RPD/%Difference Data PREP BATCH: 27365

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

Analyte         Batchid         Data Fil         Seq#         Result 1         Result 2         RPD           Aluminum         27365         A15652A2         15         A15652A2         14         4.7677         4.8018         .71           Arsenic         27365         A15652A2         15         A15652A2         14         0.4649         0.4692         .51           Arsenic         27365         A15652A2         15         A15652A2         14         0.4420         0.4721         0.4713         .15           Gadmium         27365         A15652A2         15         A15652A2         14         0.4725         0.4255         .52           Cabrium         27365         A15652A2         15         A15652A2         14         0.4765         .04255         .52           Cobalt         27365         A15652A2         15         A15652A2         14         0.4422         0.4767         .438           Magnesium         27365         A15652A2         15         A15652A2         14         0.4422         0.4777         .72           Iron         27365         A15652A2         15         A15652A2         14         0.46128         1.3           Magnesiu	TxtQcType: L	CSMR	Matrix: AC	QUEOUS	Sam	pleID: LCS	W MR 27365			
Animony         27365         A15652A2         15         A15652A2         14         0.4668         0.4579         .66           Barum         27365         A15652A2         15         A15652A2         14         0.4549         0.4579         .66           Berylium         27365         A15652A2         15         A15652A2         14         0.4721         0.4713         .15           Calcum         27365         A15652A2         15         A15652A2         14         0.4721         0.4713         .15           Calcum         27365         A15652A2         15         A15652A2         14         0.4785         0.4825         .83           Cobalt         27365         A15652A2         15         A15652A2         14         0.4542         0.4475         .72           Iron         27365         A15652A2         15         A15652A2         14         4.8261         48.6801         .3           Magnesium         27365         A15652A2         15         A15652A2         14         0.4474         .49           Magnesium         27365         A15652A2         15         A15652A2         14         0.44281         .48.6801         .3	Analyte	Batchid	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Arsenic         27365         A15652A2         15         A15652A2         14         0.4549         0.4579         .66           Barium         27365         A15652A2         15         A15652A2         14         0.4721         0.4713         .15           Caldium         27365         A15652A2         15         A15652A2         14         0.4736         0.4767         .64           Caldium         27365         A15652A2         15         A15652A2         14         0.4736         0.4776         .64           Commun         27365         A15652A2         15         A15652A2         14         0.4800         0.4825         .83           Cohen         27365         A15652A2         15         A15652A2         14         0.4800         0.4625         .72           con         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         .13           wagenesium         27365         A15652A2         15         A15652A2         14         0.4759         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         .13 <t< td=""><td>Aluminum</td><td>27365</td><td>A15652A2</td><td>15</td><td>A15652A2</td><td>14</td><td>4.7677</td><td>4.8018</td><td></td><td>20</td></t<>	Aluminum	27365	A15652A2	15	A15652A2	14	4.7677	4.8018		20
Barium         27365         A15652A2         15         A15652A2         14         0.4820         0.4713         .15           Beryllium         27365         A15652A2         15         A15652A2         14         0.4721         0.4716         .64           Calcium         27365         A15652A2         15         A15652A2         14         0.4766         0.4787         .64           Calcium         27365         A15652A2         15         A15652A2         14         0.4786         0.4425         .52           Cobalt         27365         A15652A2         15         A15652A2         14         0.4425         .52           Coper         27365         A15652A2         15         A15652A2         14         0.4424         .4428         .13           Magnesium         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         .13           Magnesium         27365         A15652A2         15         A15652A2         14         0.4777         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4481         .448.261         .448.261         .448	Antimony	27365	A15652A2	15	A15652A2	14	0.4668	0.4692	.51	20
Beryllim 27365 A15652A2 15 A15652A2 14 0.4721 0.4713 .15 Cadmium 27365 A15652A2 15 A15652A2 14 0.4736 0.4767 .64 Calcium 27365 A15652A2 15 A15652A2 14 0.4785 0.4825 .83 Chromium 27365 A15652A2 15 A15652A2 14 0.4785 0.4825 .83 Copper 27365 A15652A2 15 A15652A2 14 0.4542 0.4575 .72 tron 27365 A15652A2 15 A15652A2 14 0.4542 0.4575 .72 tron 27365 A15652A2 15 A15652A2 14 0.4542 0.4575 .72 tron 27365 A15652A2 15 A15652A2 14 0.4786 0.4826 13 Manganese 27365 A15652A2 15 A15652A2 14 0.4770 0.4724 .49 Magnesium 27365 A15652A2 15 A15652A2 14 0.4691 0.4628 1.3 Manganese 27365 A15652A2 15 A15652A2 14 0.4691 0.4628 1.3 Marganese 27365 A15652A2 15 A15652A2 14 0.4691 0.4628 1.3 Marganese 27365 A15652A2 15 A15652A2 14 0.4691 0.4628 1.3 Marganese 27365 A15652A2 15 A15652A2 14 0.4775 45.1917 2.5 Selenium 27365 A15652A2 15 A15652A2 14 0.4831 0.4830 .024 Silver 27365 A15652A2 15 A15652A2 14 0.4831 0.4830 .024 Silver 27365 A15652A2 15 A15652A2 14 0.4918 0.4830 .024 Vanadium 27365 A15652A2 15 A15652A2 14 0.4918 0.4830 .024 Vanadium 27365 A15652A2 15 A15652A2 14 0.4918 0.4823 .11 Vanadium 27365 A15652A2 17 A15652A2 14 0.4766 0.4809 .48 Vanadium 27365 A15652A2 17 A15652A2 16 0.015U 0.015U Anilyte Batchid Data Fil Seq#: NS File Seq# Result 1 Result 2 RPD Aluminony 27365 A15652A2 17 A15652A2 16 0.04U 0.04U Calcium 27365 A15652A2 17 A15652A2 16 0.04U 0.04U Calcium 27365 A15652A2 17 A15652A2 16 0.004U 0.04U Calcium 27365 A15652A2 17 A15652A2 16 0.004U 0.04U Calcium 27365 A15652A2 17 A15652A2 16 0.004U 0.008U Calcium 27365 A15652A2 17 A15652A2 16 0.004U 0.004U Calcium 27365 A15652A2 17 A15652A2 16 0.005U 0.05U Calcium 27365 A15652A2 17 A15652A2 16 0.005U 0.05U Calcium 27365 A15652A2 17 A15652A2 16 0.005U 0.05U Calcium 27365 A15652A2 17 A15	Arsenic	27365	A15652A2	15	A15652A2	14	0.4549	0.4579		20
Cadmium         27365         A15652A2         15         A15652A2         14         0.4736         0.4767         64           Calcium         27365         A15652A2         15         A15652A2         14         0.4785         0.4825         .52           Cobalt         27365         A15652A2         15         A15652A2         14         0.4785         0.4825         .52           Copper         27365         A15652A2         15         A15652A2         14         0.4542         0.4575         .72           Copper         27365         A15652A2         15         A15652A2         14         0.4525         .43886         .19           Magnesium         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         1.3           Margnesium         27365         A15652A2         15         A15652A2         14         0.4775         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4830         .024           Silver         27365         A15652A2         14         0.4831         0.4830         .11           Thallium         27365	Barium	27365	A15652A2	-	A15652A2		0.4820	0.4851		20
Calcium         27365         A15652A2         15         A15652A2         14         0.4785         0.4825         .83           Chromium         27365         A15652A2         15         A15652A2         14         0.4800         0.4825         .83           Cobalt         27365         A15652A2         15         A15652A2         14         0.4800         0.4825         .72           Iron         27365         A15652A2         15         A15652A2         14         0.4747         0.4724         .49           Magnesium         27365         A15652A2         15         A15652A2         14         0.4747         0.4724         .49           Magnesium         27365         A15652A2         15         A15652A2         14         0.4601         0.4628         1.3           Manganese         27365         A15652A2         15         A15652A2         14         0.4776         45.1917         2.5           Solitum         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         .024           Silver         27365         A15652A2         15         A15652A2         14         0.4918         0.4809         .11 <td>Beryllium</td> <td></td> <td>A15652A2</td> <td></td> <td>A15652A2</td> <td>14</td> <td>0.4721</td> <td>0.4713</td> <td>.15</td> <td>20</td>	Beryllium		A15652A2		A15652A2	14	0.4721	0.4713	.15	20
Chromium         27365         A15652A2         15         A15652A2         14         0.4785         0.4825         .83           Cobait         27365         A15652A2         15         A15652A2         14         0.4800         0.4825         .52           Copper         27365         A15652A2         15         A15652A2         14         0.4824         0.4777         .72           Itom         27365         A15652A2         15         A15652A2         14         48.2851         48.661         .3           Magnesium         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         1.3           Mercury         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4923         .024           Silver         27365         A15652A2         15         A15652A2         14         0.4766         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         14         0.4766         0.4809         .48 <t< td=""><td>Cadmium</td><td>27365</td><td>A15652A2</td><td>15</td><td>A15652A2</td><td>14</td><td>0.4736</td><td>0.4767</td><td>.64</td><td>20</td></t<>	Cadmium	27365	A15652A2	15	A15652A2	14	0.4736	0.4767	.64	20
Cobalt         27365         A15652A2         15         A15652A2         14         0.4800         0.4825         .52           Copper         27365         A15652A2         15         A15652A2         14         0.4542         0.4575         .72           Magnesium         27365         A15652A2         15         A15652A2         14         0.4747         0.4724         .49           Magnesium         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         1.3           Marganese         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         .024           Solure         27365         A15652A2         15         A15652A2         14         0.4831         .4830         .024           Solure         27365         A15652A2         15         A15652A2         14         0.4918         .44646         .1           Vanadium         27365         A15652A2         15         A15652A2         14         0.4910         .4484         .92 <td>Calcium</td> <td></td> <td>A15652A2</td> <td>15</td> <td></td> <td>14</td> <td>48.4661</td> <td>48.4382</td> <td></td> <td>20</td>	Calcium		A15652A2	15		14	48.4661	48.4382		20
Copper         27365         A15652A2         15         A15652A2         14         0.4542         0.4575         .72           ron         27365         A15652A2         15         A15652A2         14         4.8295         4.8386         .19           Magneslum         27365         A15652A2         15         A15652A2         14         4.8295         4.8386         .3           Manganese         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         .3           Mercury         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         .024           Silver         27365         A15652A2         15         A15652A2         14         0.4923         .11           Thallium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11	Chromium	27365	A15652A2	15	A15652A2	14	0.4785	0.4825		20
Iron         27365         A15652A2         15         A15652A2         14         4.8295         4.8386         .19           Lead         27365         A15652A2         15         A15652A2         14         4.8295         4.8386         .19           Magnesium         27365         A15652A2         15         A15652A2         14         4.8201         4.8601         3           Manganese         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         1.3           Mickel         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         73           Potassium         27365         A15652A2         15         A15652A2         14         0.4810         0.4830         .024           Silver         27365         A15652A2         15         A15652A2         14         0.4913         0.4830         .73           Sodium         27365         A15652A2         15         A15652A2         14         0.4786         0.4809         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4780         0.4809         .16	Cobalt	27365	A15652A2	15	A15652A2	14	0.4800	0.4825	.52	20
Lead         27365         A15652A2         15         A15652A2         14         0.4747         0.4724         .49           Magnesium         27365         A15652A2         15         A15652A2         14         48.8261         3.           Magnesium         27365         H15652A         15         A15652A2         14         0.4691         0.4628         1.3           Mickel         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Polassium         27365         A15652A2         15         A15652A2         14         0.4781         0.4830         .024           Silver         27365         A15652A2         15         A15652A2         14         0.4931         0.4830         .024           Silver         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadum         27365         A15652A2         15         A15652A2         14         0.4786         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         14         0.4801	Copper	27365	A15652A2	15	A15652A2	14	0.4542	0.4575	.72	20
Magnesium         27365         A15652A2         15         A15652A2         14         48.8261         48.6801         .3           Manganese         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         1.3           Mercury         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         0.24           Silver         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         0.24           Solium         27365         A15652A2         15         A15652A2         14         0.4818         0.4923         11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92	Iron	27365	A15652A2	15	A15652A2	14	4.8295	4.8386	.19	20
Manganese         27365         A15652A2         15         A15652A2         14         0.4691         0.4628         1.3           Mercury         27365         H15652A         13         H15652A         12         10.4004         10.6495         2.4           Nickel         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         .024           Solur         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4918         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         16         0.20         .20            Analyte         Batchid         Data Fil         Seq#:         NS File         Seq#         Result 1         Result 2         RPD </td <td>Lead</td> <td>27365</td> <td>A15652A2</td> <td>15</td> <td>A15652A2</td> <td>14</td> <td>0.4747</td> <td>0.4724</td> <td></td> <td>20</td>	Lead	27365	A15652A2	15	A15652A2	14	0.4747	0.4724		20
Mercury         27365         H15652A         13         H15652A         12         10.4004         10.6495         2.4           Nickel         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Potassium         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         0.24           Silver         27365         A15652A2         15         A15652A2         14         0.4929         0.936         .73           Sodium         27365         A15652A2         15         A15652A2         14         0.4918         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtQCType: MR         Matrix:         AQUEOUS         SampleID: AC75362-002          Analyte         Batchid         Data Fil         Seq#:         NS File         Seq#         Result 1         Result 2         RPD           Aluminum         27365         A15652A2         17         A15652A2         16         0.015U            Arsenic         27365         A15652A2         1	Magnesium	27365	A15652A2	15	A15652A2	14	48.8261	48.6801	.3	20
Nickel         27365         A15652A2         15         A15652A2         14         0.4755         0.4789         .73           Potassium         27365         A15652A2         12         A15652A2         11         44.0776         45.1917         2.5           Selenium         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         .024           Silver         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           Zinc         27365         A15652A2         15         A15652A2         16         0.2U         .2U            Anitoony         27365         A15652A2         17         A15652A2         16         0.04U         0.04U	Manganese	27365	A15652A2	15	A15652A2	14	0.4691	0.4628	1.3	20
Potassium         27365         A15652C2         12         A15652C2         11         44.0776         45.1917         2.5           Selenium         27365         A15652A2         15         A15652A2         14         0.0929         0.0936         .73           Solur         27365         A15652A2         15         A15652A2         14         0.0929         0.0936         .73           Sodum         27365         A15652A2         12         A15652A2         14         0.4918         0.4923         .11           Thallium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtQcType:         MR         Matrix:         AQUEOUS         SampleID:AC75362-002          RPD           Aluminum         27365         A15652A2         17         A15652A2         16         0.015U            Altimony         27365         A15652A2         17         A15652A2         16         0.068U            Altimum         27365	Mercury	27365	H15652A	13	H15652A	12	10.4004	10.6495	2.4	20
Selenium         27365         A15652A2         15         A15652A2         14         0.4831         0.4830         .024           Silver         27365         A15652A2         15         A15652A2         14         0.0929         0.0936         .73           Sodium         27365         A15652A2         12         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4786         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtQcType:         MR         Matrix:         AQUEOUS         SampleID: AC75362-002             Analyte         Batchid         Data Fil         Seq#:         NS File         Seq#         Result 1         Result 2         RPD           Aluminum         27365         A15652A2         17         A15652A2         16         0.04U         0.04U            Arsenic         27365         A15652A2         17         A15652A2         16         0.05U         0.05U <td< td=""><td>Nickel</td><td>27365</td><td>A15652A2</td><td>15</td><td>A15652A2</td><td>14</td><td>0.4755</td><td>0.4789</td><td>.73</td><td>20</td></td<>	Nickel	27365	A15652A2	15	A15652A2	14	0.4755	0.4789	.73	20
Silver         27365         A15652A2         15         A15652A2         14         0.0929         0.0936         .73           Sodium         27365         A15652C2         12         A15652C2         11         45.9965         46.4868         1.1           Thallium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4918         0.4809         .480           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtQcType:         MR         Matrix:         AQUEOUS         SampleID: AC75362-002            Analyte         BatchId         Data Fil         Seq#:         NS File         Seq#         Result 1         Result 2         RPD           Antimony         27365         A15652A2         17         A15652A2         16         0.04U         0.04U            Barium         27365         A15652A2         17         A15652A2         16         0.05U            Cadmium         27365	Potassium	27365	A15652C2	12	A15652C2	11	44.0776	45.1917	2.5	20
Sodium         27365         A15652C2         12         A15652C2         11         45.9965         46.4868         1.1           Thallium         27365         A15652A2         15         A15652A2         14         0.4918         0.4923         .11           Vanadium         27365         A15652A2         15         A15652A2         14         0.4786         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtQcType:         Matrix:         AQUEOUS         SampleID: AC75362-002	Selenium	27365	A15652A2	15	A15652A2	14	0.4831	0.4830	.024	20
Thallium       27365       A15652A2       15       A15652A2       14       0.4918       0.4923       .11         Vanadium       27365       A15652A2       15       A15652A2       14       0.4786       0.4809       .48         Zinc       27365       A15652A2       15       A15652A2       14       0.4801       0.4846       .92         TxtQcType: MR       Matrix:       AQUEOUS       SampleID: AC75362-002	Silver	27365	A15652A2	15	A15652A2	14	0.0929	0.0936	.73	20
Vanadium         27365         A15652A2         15         A15652A2         14         0.4786         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4809         .48           Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtOcType: MR         Matrix:         AQUEOUS         SampleID: AC75362-002             Analyte         Batchid         Data Fil         Seq#:         NS File         Seq#         Result 1         Result 2         RPD           Aluminum         27365         A15652A2         17         A15652A2         16         0.015U         0.015U            Arsenic         27365         A15652A2         17         A15652A2         16         0.04U         0.04U            Baryllium         27365         A15652A2         17         A15652A2         16         0.008U             Calcium         27365         A15652A2         17         A15652A2         16         0.05U             Calcium         <	Sodium	27365	A15652C2	12	A15652C2	11	45.9965	46.4868	1.1	20
Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtQcType: MR         Matrix:         AQUEOUS         SampleID: AC75362-002	Thallium	27365	A15652A2	15	A15652A2	14	0.4918	0.4923	.11	20
Zinc         27365         A15652A2         15         A15652A2         14         0.4801         0.4846         .92           TxtQcType: MR         Matrix:         AQUEOUS         SampleID: AC75362-002					A15652A2	14	0.4786	0.4809	.48	20
Analyte         Batchld         Data Fil         Seq#:         NS File         Seq#         Result 1         Result 2         RPD           Aluminum         27365         A15652A2         17         A15652A2         16         0.2U         0.2U            Antimony         27365         A15652A2         17         A15652A2         16         0.015U         0.015U            Arsenic         27365         A15652A2         17         A15652A2         16         0.04U         0.04U            Barium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Cadmium         27365         A15652A2         17         A15652A2         16         0.008U         0.004U            Cadmium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Calcium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.05U         0.5054         3 <td>Zinc</td> <td>27365</td> <td>A15652A2</td> <td>15</td> <td>A15652A2</td> <td>14</td> <td>0.4801</td> <td>0.4846</td> <td>.92</td> <td>20</td>	Zinc	27365	A15652A2	15	A15652A2	14	0.4801	0.4846	.92	20
Aluminum       27365       A15652A2       17       A15652A2       16       0.2U       0.2U          Antimony       27365       A15652A2       17       A15652A2       16       0.015U       0.015U          Arsenic       27365       A15652A2       17       A15652A2       16       0.04U       0.04U          Barium       27365       A15652A2       17       A15652A2       16       0.05U          Beryllium       27365       A15652A2       17       A15652A2       16       0.008U       0.008U          Cadmium       27365       A15652A2       17       A15652A2       16       0.004U       0.004U          Calcium       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Calcium       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Cobalt       27365       A15652A2       17       A15652A2       16       0.05U       0.02U          Iron       27365       A15652A2       17       A15652A2       16       0.4903       0.5054	TxtQcType: N	٨R	Matrix: A	QUEOUS	Sam	pleID: AC7	5362-002			
Antimony       27365       A15652A2       17       A15652A2       16       0.015U       0.015U          Arsenic       27365       A15652A2       17       A15652A2       16       0.04U       0.04U          Barium       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Beryllium       27365       A15652A2       17       A15652A2       16       0.008U       0.008U          Cadmium       27365       A15652A2       17       A15652A2       16       0.004U       0.004U          Calcium       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Calcium       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Cobalt       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Cobalt       27365       A15652A2       17       A15652A2       16       0.010U       0.010U          Iron       27365       A15652A2       17       A15652A2       16       0.010U <td>Analyte</td> <td>Batchld</td> <td>Data Fil</td> <td>Seq#:</td> <td>NS File</td> <td>Seq#</td> <td>Result 1</td> <td>Result 2</td> <td>RPD</td> <td>Limi</td>	Analyte	Batchld	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limi
Arsenic       27365       A15652A2       17       A15652A2       16       0.04U       0.04U          Barium       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Beryllium       27365       A15652A2       17       A15652A2       16       0.008U       0.008U          Cadmium       27365       A15652A2       17       A15652A2       16       0.004U       0.004U          Calcium       27365       A15652A2       17       A15652A2       16       0.004U       0.004U          Calcium       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Cobalt       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Cobalt       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          Copper       27365       A15652A2       17       A15652A2       16       0.4903       0.5054       3         Lead       27365       A15652A2       17       A15652A2       16       0.010U	Aluminum	27365	A15652A2	17	A15652A2	16	0.2U	0.2U		20
Barium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Beryllium         27365         A15652A2         17         A15652A2         16         0.008U         0.008U            Cadmium         27365         A15652A2         17         A15652A2         16         0.004U         0.004U            Calcium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Calcium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Cobalt         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Copper         27365         A15652A2         17         A15652A2         16         0.4903         0.5054         3           Lead         27365         A15652A2         17         A15652A2         16         0.010U         0.2U	Antimony	27365	A15652A2	17	A15652A2	16	0.015U	0.015U		20
Beryllium         27365         A15652A2         17         A15652A2         16         0.008U         0.008U            Cadmium         27365         A15652A2         17         A15652A2         16         0.004U         0.004U            Calcium         27365         A15652A2         17         A15652A2         16         91.4220         86.7499         5.2           Chromium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Copper         27365         A15652A2         17         A15652A2         16         0.4903         0.5054         3           Lead         27365         A15652A2         17         A15652A2         16         0.4102         0.3970         3.5           Magnesium         27365         A15652A2         17         A15652A2         16         0.4112         0.3970         3.5	Arsenic	27365	A15652A2	17	A15652A2	16	0.04U	0.04U		20
Cadmium         27365         A15652A2         17         A15652A2         16         0.004U         0.004U            Calcium         27365         A15652A2         17         A15652A2         16         91.4220         86.7499         5.2           Chromium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Copper         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Copper         27365         A15652A2         17         A15652A2         16         0.4903         0.5054         3           Lead         27365         A15652A2         17         A15652A2         16         0.010U         0.010U            Magnesium         27365         A15652A2         17         A15652A2         16         0.4112         0.3970         3.5           Marganese         27365         A15652A2         17         A15652A2         16         0.02U	Barium	27365	A15652A2	17	A15652A2	16	0.05U	0.05U		20
Calcium         27365         A15652A2         17         A15652A2         16         91.4220         86.7499         5.2           Chromium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Copper         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Copper         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            ron         27365         A15652A2         17         A15652A2         16         0.4903         0.5054         3           Lead         27365         A15652A2         17         A15652A2         16         0.010U         0.010U            Magnesium         27365         A15652A2         17         A15652A2         16         0.4112         0.3970         3.5           Wercury         27365         A15652A2         17         A15652A2         16         0.02U	Beryllium	27365	A15652A2	17	A15652A2	16	0.008U	0.008U		20
Chromium         27365         A15652A2         17         A15652A2         16         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Copper         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Copper         27365         A15652A2         17         A15652A2         16         0.4903         0.5054         3           .ead         27365         A15652A2         17         A15652A2         16         0.010U         0.010U            Magnesium         27365         A15652A2         17         A15652A2         16         0.010U         0.010U            Magnesium         27365         A15652A2         17         A15652A2         16         0.4112         0.3970         3.5           Marcury         27365         A15652A2         17         A15652A2         16         0.02U            Nickel         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium         2736	Cadmium	27365	A15652A2	17	A15652A2	16	0.004U	0.004U		20
Chromium         27365         A15652A2         17         A15652A2         16         0.05U            Cobalt         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Copper         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Iron         27365         A15652A2         17         A15652A2         16         0.4903         0.5054         3           Lead         27365         A15652A2         17         A15652A2         16         0.010U         0.010U            Magnesium         27365         A15652A2         17         A15652A2         16         0.010U         0.010U            Magnesium         27365         A15652A2         17         A15652A2         16         0.4112         0.3970         3.5           Mercury         27365         A15652A2         17         A15652A2         16         0.02U             Nickel         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium <td>Calcium</td> <td>27365</td> <td>A15652A2</td> <td>17</td> <td>A15652A2</td> <td>16</td> <td>91.4220</td> <td>86.7499</td> <td>5.2</td> <td>20</td>	Calcium	27365	A15652A2	17	A15652A2	16	91.4220	86.7499	5.2	20
Cobalt       27365       A15652A2       17       A15652A2       16       0.02U       0.02U          Copper       27365       A15652A2       17       A15652A2       16       0.05U       0.05U          ron       27365       A15652A2       17       A15652A2       16       0.4903       0.5054       3         _ead       27365       A15652A2       17       A15652A2       16       0.010U       0.010U          Magnesium       27365       A15652A2       17       A15652A2       16       0.010U       0.010U          Magnesium       27365       A15652A2       17       A15652A2       16       0.010U       0.010U          Magnese       27365       A15652A2       17       A15652A2       16       0.4112       0.3970       3.5         Mercury       27365       A15652A2       17       A15652A2       16       0.02U       0.2U          Nickel       27365       A15652A2       17       A15652A2       16       0.02U       0.02U          Potassium       27365       A15652A2       17       A15652A2       16       0.05U	Chromium	27365	A15652A2	17	A15652A2	16	0.05U	0.05U		20
Copper27365A15652A217A15652A2160.05U0.05UIron27365A15652A217A15652A2160.49030.50543Lead27365A15652A217A15652A2160.010U0.010UMagnesium27365A15652A217A15652A2160.41020.39703.5Manganese27365A15652A217A15652A2160.41120.39703.5Mercury27365A15652A217A15652A2160.02U0.2UNickel27365A15652A217A15652A2160.02U0.02UPotassium27365A15652A217A15652A2160.05U0.02UPotassium27365A15652A217A15652A2160.05U0.05USelenium27365A15652A217A15652A2160.02U0.02USoliver27365A15652A217A15652A2160.02U0.02USodium27365A15652A217A15652A2160.02U0.02USodium27365A15652A217A15652A2160.02U0.02USodium27365A15652A217A15652A2160.02U0.02USodium27365A15652A217A15652A2160.01U0.01USod	Cobalt		the second se	17		16		0.02U		20
ron27365A15652A217A15652A2160.49030.50543Lead27365A15652A217A15652A2160.010U0.010UMagnesium27365A15652A217A15652A21628.707627.11435.7Magnese27365A15652A217A15652A2160.41120.39703.5Mercury27365H15652A115H15652A1140.2U0.2UNickel27365A15652A217A15652A2160.02U0.02UPotassium27365A15652A217A15652A2160.05U0.02UPotassium27365A15652A217A15652A2160.05U0.05UPotassium27365A15652A217A15652A2160.02U0.02USelenium27365A15652A217A15652A2160.02U0.02USoliver27365A15652A217A15652A2160.02U0.02USodium27365A15652A217A15652A21319.215919.00261.1Challium27365A15652A217A15652A2160.01U0.01U			A15652A2	17	A15652A2	16		0.05U		20
Lead27365A15652A217A15652A2160.010U0.010UMagnesium27365A15652A217A15652A21628.707627.11435.7Manganese27365A15652A217A15652A2160.41120.39703.5Mercury27365H15652A15H15652A140.2U0.2UNickel27365A15652A217A15652A2160.02U0.02UPotassium27365A15652A214A15652A2160.05U0.05USelenium27365A15652A217A15652A2160.02U0.05USilver27365A15652A217A15652A2160.02U0.02USodium27365A15652A217A15652A2160.02U0.02USolum27365A15652A217A15652A2160.02U0.02USolum27365A15652A217A15652A21319.215919.00261.1Thallium27365A15652A217A15652A2160.01U0.01U			A15652A2		A15652A2				3	20
Magnesium         27365         A15652A2         17         A15652A2         16         28.7076         27.1143         5.7           Manganese         27365         A15652A2         17         A15652A2         16         0.4112         0.3970         3.5           Mercury         27365         H15652A         15         H15652A         14         0.2U         0.2U            Nickel         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Solenium         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Soliver         27365         A15652A2         17         A15652A2         16         0.02U         0.02U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td>										20
Manganese         27365         A15652A2         17         A15652A2         16         0.4112         0.3970         3.5           Mercury         27365         H15652A         15         H15652A         14         0.2U         0.2U            Nickel         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium         27365         A15652A2         17         A15652A2         13         5.6070         5.5235         1.5           Selenium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Silver         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Soluter         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Soluter         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Soluter         27365         A15652C2         14         A15652C2         13         19.2159         19.0026         1.1		and the second se			THE REPORT OF THE PARTY OF THE					20
Mercury         27365         H15652A         15         H15652A         14         0.2U         0.2U            Nickel         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium         27365         A15652C2         14         A15652C2         13         5.6070         5.5235         1.5           Selenium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Silver         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Soldium         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Sodium         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Sodium         27365         A15652C2         14         A15652C2         13         19.2159         19.0026         1.1           Fhallium         27365         A15652A2         17         A15652A2         16         0.01U         0.01U	-									20
Nickel         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Potassium         27365         A15652C2         14         A15652C2         13         5.6070         5.5235         1.5           Selenium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Silver         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Solum         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Sodium         27365         A15652C2         14         A15652C2         13         19.2159         19.0026         1.1           Fhallium         27365         A15652A2         17         A15652A2         16         0.01U         0.01U	-									20
Potassium         27365         A15652C2         14         A15652C2         13         5.6070         5.5235         1.5           Selenium         27365         A15652A2         17         A15652A2         16         0.05U         0.05U            Silver         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Sodium         27365         A15652C2         14         A15652C2         13         19.2159         19.0026         1.1           Thallium         27365         A15652A2         17         A15652A2         16         0.01U         0.01U	•									20
Selenium         27365         A15652A2         17         A15652A2         16         0.05U            Silver         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Sodium         27365         A15652C2         14         A15652C2         13         19.2159         19.0026         1.1           'hallium         27365         A15652A2         17         A15652A2         16         0.01U         0.01U										20
Silver         27365         A15652A2         17         A15652A2         16         0.02U         0.02U            Sodium         27365         A15652C2         14         A15652C2         13         19.2159         19.0026         1.1           Thallium         27365         A15652A2         17         A15652A2         16         0.01U         0.01U										20
Sodium         27365         A15652C2         14         A15652C2         13         19.2159         19.0026         1.1           Thallium         27365         A15652A2         17         A15652A2         16         0.01U         0.01U										20
Thallium 27365 A15652A2 17 A15652A2 16 0.01U 0.01U										20
	/ /		1/ "/W Brideria							20
/anadium 27365 A15652A2 17 A15652A2 16 0.05U 0.05U										20
Vanadium 27365 A15652A2 17 A15652A2 16 0.050 0.050 Zinc 27365 A15652A2 17 A15652A2 16 0.05U 0.05U										20

a-Indicates Rpd Failed the criteria b-Method Rep Out but concentrations < 5*RL c-Serial dilution Out but conc < 10 * IDL

#### FORM6/FORM9 RPD/%Difference Data PREP BATCH: 27365

Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: N	ISD	Matrix: A	QUEOUS	Sam	pleID: AC753	62-002			
Analyte	Batchid	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	27365	A15652A2	19	A15652A2	18	4.8371	4.6682	3.6	20
Antimony	27365	A15652A2	19	A15652A2	18	0.4745	0.4586	3.4	20
Arsenic	27365	A15652A2	19	A15652A2	18	0.4553	0.4426	2.8	20
Barium	27365	A15652A2	19	A15652A2	18	0.5222	0.5095	2.5	20
Beryllium	27365	A15652A2	19	A15652A2	18	0.4692	0.4619	1.6	20
Cadmium	27365	A15652A2	19	A15652A2	18	0.4730	0.4653	1.6	20
Calcium	27365	A15652A2	19	A15652A2	18	133.1280	132.0710	.8	20
Chromium	27365	A15652A2	19	A15652A2	18	0.4764	0.4637	2.7	20
Cobalt	27365	A15652A2	19	A15652A2	18	0.4701	0.4619	1.8	20
Copper	27365	A15652A2	19	A15652A2	18	0.4574	0.4455	2.6	20
Iron	27365	A15652A2	19	A15652A2	18	5.2619	5.1263	2.6	20
Lead	27365	A15652A2	19	A15652A2	18	0.4671	0.4586	1.8	20
Magnesium	27365	A15652A2	19	A15652A2	18	74.7487	73.4184	1.8	20
Manganese	27365	A15652A2	19	A15652A2	18	0.8458	0.8476	.22	20
Mercury	27365	H15652A	17	H15652A	16	10.3209	10.5174	1.9	20
Nickel	27365	A15652A2	19	A15652A2	18	0.4647	0.4518	2.8	20
Potassium	27365	A15652C2	16	A15652C2	15	49.7479	48.4023	2.7	20
Selenium	27365	A15652A2	19	A15652A2	18	0.4828	0.4672	3.3	20
Silver	27365	A15652A2	19	A15652A2	18	0.0939	0.0910	3.2	20
Sodium	27365	A15652C2	16	A15652C2	15	65.4890	64.3544	1.7	20
Thallium	27365	A15652A2	19	A15652A2	18	0.4835	0.4724	2.3	20
Vanadium	27365	A15652A2	19	A15652A2	18	0.4786	0.4644	3	20
Zinc	27365	A15652A2	19	A15652A2	18	0.4760	0.4632	2.7	20
TxtQcType: S	SD	Matrix: A	QUEOUS	Sam	pleID: AC753	362-002			
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff	Limit
Aluminum	27365	A15652A2	21	A15652A2	16 5	0.0171	0.1147	25 c	10
Antimony	27365	A15652A2	21	A15652A2	16 5	0.0125	0.0062	914 c	10
Arsenic	27365	A15652A2	21	A15652A2	16 5	0.0015	0.0025		10
Barium	27365	A15652A2	21	A15652A2	16 5	0.0095	0.0441	7.6	10
Beryllium	27365	A15652A2	21	A15652A2	16 5	0.0012	0.0012	417 a	10
Cadmium	27365	A15652A2	21	A15652A2	16 5	0.0006	0.0005		10
Calcium	27365	A15652A2	21	A15652A2	16 5	17.4842	86.7499	0.77	10
Chromium	27365	A15652A2	21	A15652A2	16 5	0.0007	0.0014	158 c	10
Cobalt	27365	A15652A2	21	A15652A2	16 5	0.0012	0.0010	456 c	10
Copper	27365	A15652A2	21	A15652A2	16 5	-0.0082	-0.0023		10
ron	27365	A15652A2	21	A15652A2	16 5	0.1035	0.5054	2.4	10
Lead	27365	A15652A2	21	A15652A2	16 5	0.0032	0.0042	278 c	10
Vagnesium	27365	A15652A2	21	A15652A2	16 5	5.4857	27.1143	1.2	10
Vagnesium Vanganese	27365	A15652A2	21	A15652A2	16 5	0.0809	0.3970	1.2	10
vialiganese Nickel	27365	A15652A2	21	A15652A2	16 5	-0.0019	-0.0014		10
Potassium		A15652A2 A15652C2							
	27365		20	A15652C2	13 5	1.5647	5.5235	42 a	10
Selenium	27365	A15652A2	21	A15652A2	16 5	0.0033	-0.0034		10
Silver	27365	A15652A2	21	A15652A2	16 5	-0.0002	0.0007		10
Sodium	27365	A15652C2	20	A15652C2	13 5	3.9614	19.0026	4.2	10
[hallium	27365	A15652A2	21	A15652A2	16 5	0.0011	-0.0001		10
Vanadium	27365	A15652A2	21	A15652A2	16 5	0.0016	0.0066	25 c	10
Zinc	27365	A15652A2	21	A15652A2	16 5	0.0024	0.0105	14 c	10

ICP units in ppm, ICPMS and Hg in ppb

#### FORM6/FORM9 RPD/%Difference Data PREP BATCH: 27365

Instrument Type: ICPMS Analytical Method(s):6020/200.8

TxtQcType:	LCSMR	Matrix:	AQUEOUS	Sam	pleID: LCS	W MR 27365			
Analyte	Batchid	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	27365	W110413	14	W110413	13	52.4430	56.6730	7.8	20
Arsenic	27365	W110413	14	W110413	13	53.5510	57.9200	7.8	20
Beryllium	27365	W110413	14	W110413	13	54.1810	58.9910	8.5	20
Cadmium	27365	W110413	14	W110413	13	52.5920	55.8160	5.9	20
Lead	27365	W110413	14	W110413	13	52.6440	55.8100	5.8	20
Thallium	27365	W110413	14	W110413	13	49.3850	52.3070	5.7	20
TxtQcType:	MR	Matrix:	AQUEOUS	Sam	pleID: AC7	5362-002			
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	27365	W110413	16	W110413	15	2.0U	2.0U		20
Arsenic	27365	W110413	16	W110413	15	0.8U	0.8U		20
Beryllium	27365	W110413	16	W110413	15	0.6U	0.6U		20
Cadmium	27365	W110413	16	W110413	15	0.8U	0.8U		20
Lead	27365	W110413	16	W110413	15	0.6U	0.6U		20
Thallium	27365	W110413	16	W110413	15	1.2U	1.2U		20
TxtQcType:	MSD	Matrix:	AQUEOUS	San	pleID: AC7	5362-002		-	
Analyte	Batchld	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	27365	W110413	18	W110413	17	53.6630	54.5670	1.7	20
Arsenic	27365	W110413	18	W110413	17	54.0810	54.3590	.51	20
Beryllium	27365	W110413	18	W110413	17	57.8060	56.3280	2.6	20
Cadmium	27365	W110413	18	W110413	17	52.3120	52.9090	1.1	20
Lead	27365	W110413	18	W110413	17	51.3900	52.4150	2	20
Thallium	27365	W110413	18	W110413	17	48.7880	49.7000	1.9	20

#### FORM6/FORM9 RPD/%Difference Data PREP BATCH: 27357

Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: L	CSMR	Matrix: S	SOIL	Sam	pleID: LCS	MR 27357			
Analyte	BatchId	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	27357	S15644D3	13	S15644D3	12	78.6119	77.6904	1.2	20
Arsenic	27357	S15644C3	14	S15644C3	13	0.8946	0.9306	3.9	20
Barium	27357	S15644C3	14	S15644C3	13	2.8555	2.9725	4	20
Calcium	27357	S15644D3	13	S15644D3	12	68.5188	67.0486	2.2	20
Chromium	27357	S15644C3	14	S15644C3	13	1.2867	1.3036	1.3	20
Cobalt	27357	S15644C3	14	S15644C3	13	1.2456	1.2639	1.5	20
Copper	27357	S15644C3	14	S15644C3	13	0.9938	0.9935	.023	20
ron	27357	S15644D3	13	S15644D3	12	128.1410	128.4620	.25	20
Lead	27357	S15644C3	14	S15644C3	13	1.0603	1.0881	2.6	20
Magnesium	27357	S15644D3	13	S15644D3	12	29.9319	29.9254	.022	20
Manganese	27357	S15644D3	13	S15644D3	12	3.1941	3.1856	.27	20
Mercury	27357	H15644S	15	H15644S	14	11.9114	12.6926	6.4	20
Nickel	27357	S15644C3	14	S15644C3	13	1.4920	1.4901	.13	20
Potassium	27357	S15644D3	13	S15644D3	12	27.5851	27.8807	1.1	20
Sodium	27357	S15644D3	13	S15644D3	12	27.1571	27.0373	.44	20
Thallium	27357	S15644C3	14	S15644C3	13	1.6367	1.6981	3.7	20
Vanadium	27357	S15644C3	14	S15644C3	13	0.8966	0.9052	.96	20
Zinc	27357	S15644C3	14	S15644C3	13	1.4806	1.5013	1.4	20
TxtQcType: N	//R	Matrix: S	SOIL	Sam	pleID: AC7	5388-001			
Analyte	BatchId	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Aluminum	27357	S15644D3	15	S15644D3	14	61.8505	63.5472	2.7	20
adminut		01004400				61.8505		2.1	
	27357	S15644C3	16	S15644C3	15	0.04U	0.04U		20
Arsenic			16	S15644C3 S15644C3	15 15				20 20
Arsenic Barium	27357 27357 27357	S15644C3	16 15	S15644C3 S15644D3		0.04U	0.04U		
Arsenic Barium Calcium	27357 27357	S15644C3 S15644C3	16	S15644C3	15	0.04U 0.3429	0.04U 0.3785	 9.9	20
Arsenic Barium Calcium Chromium	27357 27357 27357	S15644C3 S15644C3 S15644D3	16 15	S15644C3 S15644D3	15 14 15 15	0.04U 0.3429 23.5714	0.04U 0.3785 26.4295	 9.9 11	20 20
Arsenic Barium Calcium Chromium Cobalt	27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644D3 S15644C3	16 15 16	S15644C3 S15644D3 S15644C3	15 14 15	0.04U 0.3429 23.5714 0.1007	0.04U 0.3785 26.4295 0.1071	9.9 11 6.1	20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper	27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644D3 S15644C3 S15644C3	16 15 16 16 16 15	S15644C3 S15644D3 S15644C3 S15644C3	15 14 15 15 15 15 14	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140	9.9 11 6.1 1.8 2.6 1.5	20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper ron Lead	27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644D3 S15644C3 S15644C3 S15644C3	16 15 16 16 16 15 16	S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644C3	15 14 15 15 15 14 15	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383	9.9 11 6.1 1.8 2.6	20 20 20 20 20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead	27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3	16 15 16 16 16 15	S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3	15 14 15 15 15 15 14	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140	9.9 11 6.1 1.8 2.6 1.5	20 20 20 20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper ron Lead Magnesium	27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3	16 15 16 16 16 15 16	S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644C3	15 14 15 15 15 14 15	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383	9.9 11 6.1 1.8 2.6 1.5 46 a	20 20 20 20 20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese	27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3	16 15 16 16 15 16 15 15 15 17	S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644D3 S15644C3 S15644C3 S15644D3	15 14 15 15 15 14 15 14	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377 25.2319	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494	9.9 11 6.1 1.8 2.6 1.5 46 a 4	20 20 20 20 20 20 20 20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Mercury	27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3	16 15 16 16 16 15 16 15 15	S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644D3 S15644C3 S15644D3 S15644D3 S15644D3	15 14 15 15 15 14 15 14 15 14 14	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377 25.2319 2.4267	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108	9.9 11 6.1 1.8 2.6 1.5 46 a 4 14	20 20 20 20 20 20 20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Mercury Nickel	27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3	16 15 16 16 15 16 15 15 15 17	S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 S15644D3 H15644S	15 14 15 15 15 14 15 14 14 14 14	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377 25.2319 2.4267 1.1961	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570	9.9 11 6.1 1.8 2.6 1.5 46 a 4 14 22 b	20 20 20 20 20 20 20 20 20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Mercury Nickel Potassium	27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 H15644S S15644C3	16 15 16 16 15 16 15 15 15 17 16	S15644C3 S15644D3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644D3 H15644D3 H15644S S15644C3	15 14 15 15 15 14 15 14 14 14 16 15	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377 25.2319 2.4267 1.1961 0.1291	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570 0.1373	9.9 11 6.1 1.8 2.6 1.5 46 a 4 14 22 b 6.1	20 20 20 20 20 20 20 20 20 20 20 20 20
Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Sodium	27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 H15644S S15644C3 S15644C3 S15644C3 S15644D3	16 15 16 16 15 15 15 15 17 16 15	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 H15644S S15644C3 S15644C3 S15644C3	15 14 15 15 15 14 15 14 14 16 15 14	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377 25.2319 2.4267 1.1961 0.1291 8.3981	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570 0.1373 9.0879	9.9 11 6.1 1.8 2.6 1.5 46 a 4 14 22 b 6.1 7.9	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Arsenic Arsenic Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Sodium Fhallium	27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357 27357	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 S15644D3 S15644C3 S15644C3 S15644D3 S15644D3	16 15 16 16 15 15 15 15 17 16 15 15	S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644C3 S15644D3 H15644D3 H15644C3 S15644C3 S15644D3 S15644D3 S15644D3	15 14 15 15 15 14 15 14 14 16 15 14 14 14	0.04U 0.3429 23.5714 0.1007 0.0536 0.1573 127.2540 0.5377 25.2319 2.4267 1.1961 0.1291 8.3981 2.5U	0.04U 0.3785 26.4295 0.1071 0.0546 0.1532 129.1140 0.3383 26.2494 2.1108 0.9570 0.1373 9.0879 2.5U	9.9 11 6.1 1.8 2.6 1.5 46 a 4 14 22 b 6.1 7.9 	20 20 20 20 20 20 20 20 20 20 20 20 20 2

#### FORM6/FORM9 RPD/%Difference Data PREP BATCH: 27357

ICP units in ppm, ICPMS and Hg in ppb

#### Instrument Type: ICP/HG Analytical Method(s):6010/200.7/7470A/7471A/245.1

Numinum         27357         S15644D3         17         S15644D3         16         80.5369         77.5140         3.8         20           Arsenic         27357         S15644C3         18         S15644C3         17         0.4718         0.4780         1.3         20           Jarkum         27357         S15644C3         18         S15644C3         17         0.6210         0.9230         2.8         20           Calcium         27357         S15644C3         18         S15644C3         17         0.5711         0.5903         3.3         20           Cobalt         27357         S15644C3         18         S15644C3         17         0.6301         0.6557         4         20           Copper         27357         S15644D3         17         S15644D3         16         13.8190         135.5440         1.3         20           Lead         27357         S15644D3         17         S15644D3         16         3.0805         2.7360         12         20           Marganese         27357         S15644D3         17         S15644D3         16         50.9055         7.7         20           Margaresium         27357         S15644C3 <th>TxtQcType: N</th> <th>ISD</th> <th>Matrix: SOI</th> <th>L</th> <th>Sam</th> <th>pleID: AC7538</th> <th>38-001</th> <th></th> <th></th> <th></th>	TxtQcType: N	ISD	Matrix: SOI	L	Sam	pleID: AC7538	38-001			
Arsenic         27357         S15644C3         18         S15644C3         17         0.4718         0.4780         1.3         20           Barium         27357         S15644C3         18         S15644C3         17         0.6972         0.9230         2.8         20           Chromium         27357         S15644C3         18         S15644C3         17         0.5711         0.5903         3.3         20           Cobait         27357         S15644C3         18         S15644C3         17         0.5284         0.5657         4         20           Copper         27357         S15644C3         18         S15644C3         17         1.0608         0.9230         14         20           Magnesium         27357         S15644D3         17         S15644D3         16         75.5522         76.0659         .68         20           Magnesium         27357         S15644D3         17         S15644D3         16         57.552         76.0659         .68         20           Mercury         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .26         20           Sodium         27357	Analyte	Batchld	Data Fil Se	eq#:	MS File	Seq#	Result 1	Result 2	RPD	Limit
Barium         27357         S15644C3         18         S15644C3         17         0.8972         0.9230         2.8         20           Calcium         27357         S1564403         17         S1564403         16         79.7165         83.3205         4.4         20           Cobalt         27357         S15644C3         18         S15644C3         17         0.5284         0.5455         3.2         20           Cobalt         27357         S15644C3         18         S15644C3         17         0.6301         0.6557         4         20           Copper         27357         S15644D3         17         S15644D3         16         73.8190         135.5440         1.3         20           Lead         27357         S15644D3         17         S15644D3         16         75.552         76.0659         .68         20           Marganese         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .26         20           Mercury         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .26         20           Sofium         27357	Aluminum	27357	S15644D3	17	S15644D3	16	80.5369	77.5140		20
Calcium         27357         S15644D3         17         S15644D3         16         79.7165         83.3205         4.4         20           Chromium         27357         S15644C3         18         S15644C3         17         0.5711         0.5903         3.3         20           Copper         27357         S15644C3         18         S15644C3         17         0.6301         0.6557         4         20           Copper         27357         S15644D3         17         S15644D3         16         133.8190         135.5440         1.3         20           Magnesium         27357         S15644D3         17         S15644D3         16         75.5522         76.0659         .68         20           Magnesium         27357         S15644D3         17         S15644D3         16         57.5522         76.0659         .68         20           Magnesium         27357         S15644D3         17         S15644D3         16         50.7904         .0.6133         2.3         20           Sodium         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .20           Thallium         27357	Arsenic	27357	S15644C3	18	S15644C3	17	0.4718	0.4780	1.3	20
Chromium         27357         S15644C3         18         S15644C3         17         0.5711         0.5903         3.3         20           Cobalt         27357         S15644C3         18         S15644C3         17         0.5284         0.5455         3.2         20           Copper         27357         S15644C3         18         S15644C3         17         0.6301         0.6557         4         20           ron         27357         S15644D3         17         S15644D3         16         133.8190         135.5440         1.3         20           Lead         27357         S15644D3         17         S15644D3         16         75.5522         76.0659         .68         20           Marganese         27357         S15644D3         17         S15644D3         16         53.0805         2.7360         12         20           Mercury         27357         S15644D3         17         S15644D3         16         59.1921         58.7352         .77         20           Sodium         27357         S15644D3         17         S15644D3         16         50.1921         58.7352         .77         20           Sodium         27357	Barium	27357	S15644C3	18	S15644C3	17	0.8972	0.9230	2.8	20
Cobalt         27357         S15644C3         18         S15644C3         17         0.5284         0.5455         3.2         20           Copper         27357         S15644C3         18         S15644C3         17         0.6301         0.6557         4         20           ron         27357         S15644D3         17         S15644D3         16         133.8190         135.5440         1.3         20           Lead         27357         S15644D3         17         S15644D3         16         75.5522         76.0659         .68         20           Wanganese         27357         S15644D3         17         S15644D3         16         3.0805         2.7360         12         20           Wercury         27357         S15644D3         17         S15644D3         16         59.1921         S8.7352         .77         20           Sodium         27357         S15644D3         17         S15644D3         16         59.1921         S8.7352         .77         20           Sodium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357	Calcium	27357	S15644D3	17	S15644D3	16	79.7165	83.3205		20
Copper         27357         S15644C3         18         S15644C3         17         0.6301         0.6557         4         20           ron         27357         S15644C3         17         S15644C3         16         133.8190         135.5440         1.3         20           Lead         27357         S15644C3         18         S15644C3         17         1.0608         0.9230         14         20           Wargnesim         27357         S15644D3         17         S15644D3         16         7.55522         76.0659         .68         20           Margnesim         27357         S15644D3         17         S15644D3         16         3.0805         2.7360         12         20           Mercury         27357         S15644D3         17         S15644D3         16         59.1921         58.7352         .77         20           Sodium         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .26         20           Thallium         27357         S15644D3         18         S15644C3         17         0.4757         0.4803         4.9         20           Zinc         27357	Chromium	27357	S15644C3	18	S15644C3	17	0.5711	0.5903	3.3	20
ron         27357         S15644D3         17         S15644D3         16         133.8190         135.5440         1.3         20           Lead         27357         S15644C3         18         S15644C3         17         1.0608         0.9230         14         20           Magnessum         27357         S15644D3         17         S15644D3         16         75.5522         76.0659         .68         20           Marganess         27357         S15644D3         17         S15644D3         16         3.0805         2.7360         12         20           Mercury         27357         S15644D3         17         S15644D3         16         59.1924         58.7352         77         20           Potassium         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .26         20           Sodium         27357         S15644C3         18         S15644C3         17         0.6606         0.6178         1.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.8222         0.833         4.9         20           Analyte         Batchid	Cobalt	27357	S15644C3	18	S15644C3	17	0.5284	0.5455	3.2	20
Lead         27357         S15644C3         18         S15644C3         17         1.0608         0.9230         14         20           Magnesium         27357         S15644D3         17         S15644D3         16         75.5522         76.0659         .68         20           Manganese         27357         S15644D3         17         S15644D3         16         3.0805         2.7360         12         20           Nickel         27357         S15644D3         18         S15644C3         18         S11.4785         10.8118         6         20           Nickel         27357         S15644D3         17         S15644C3         16         50.7904         0.6133         2.3         20           Sodium         27357         S15644C3         17         S15644C3         17         0.4750         50.6497         .26         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.4750         0.6633         4.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.6060         0.6178         1.9         20           Analyte         Batchid	Copper	27357	S15644C3	18	S15644C3	17	0.6301	0.6557	4	20
Magnesium         27357         S15644D3         17         S15644D3         16         75.5522         76.0659         .68         20           Manganese         27357         S15644D3         17         S15644D3         16         3.0805         2.7360         12         20           Mercury         27357         H15644S         19         H15644C3         16         3.0805         2.7360         12         20           Nickel         27357         S15644C3         18         S15644C3         17         0.5994         0.6133         2.3         20           Potassium         27357         S15644C3         17         S15644C3         16         59.1921         58.7352         .77         20           Sodium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           TxUQcType: SD         Matrix:         SOL         Sample/D: AC75388-001         Arsenic         27357         S15644D3         23         S15644D3         14         5         1.972<	Iron	27357	S15644D3	17	S15644D3	16	133.8190	135.5440	1.3	20
Marganese         27357         S15644D3         17         S15644D3         16         3.0805         2.7360         12         20           Mercury         27357         H15644S         19         H15644S         18         11.4785         10.8118         6         20           Nickel         27357         S15644D3         17         S15644D3         17         0.5994         0.6133         2.3         20           Potassium         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .26         20           Sodium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.6060         0.6178         1.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.8622         0.8633         4.9         20           TxtQcType:         SD         Matrix:         SOL         SampleID: AC75388-001         Lim         Analyte         Batchid         Data Fil         Seq#         NS File         Seg# DF <td>Lead</td> <td>27357</td> <td>S15644C3</td> <td>18</td> <td>S15644C3</td> <td>17</td> <td>1.0608</td> <td>0.9230</td> <td>14</td> <td>20</td>	Lead	27357	S15644C3	18	S15644C3	17	1.0608	0.9230	14	20
Mercury         27357         H15644S         19         H15644S         18         11.4785         10.8118         6         20           Nickel         27357         S15644C3         18         S15644C3         17         0.5994         0.6133         2.3         20           Potassium         27357         S15644D3         17         S15644D3         16         59.1921         58.7552         .77         20           Sodium         27357         S15644C3         18         S15644C3         16         50.7605         50.6497         .26         20           Thallium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           TxUQcType: SD         Matrix:         SOIL         SampleID: AC75388-001           Analyte         Batchid         Data Fil         Seq#         DF         Result 1         Result 2         %Diff         Lim           Aluminum         27357         S15644C3         23         S15644C3         15         0.07	Magnesium	27357	S15644D3	17	S15644D3	16	75.5522	76.0659	.68	20
Nickel         27357         S15644C3         18         S15644C3         17         0.5994         0.6133         2.3         20           Potassium         27357         S15644D3         17         S15644D3         16         59.1921         58.7352         .77         20           Sodium         27357         S15644C3         18         S15644C3         16         50.7805         50.6497         .26         20           Thallium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.6060         0.6178         1.9         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           TxQcType: SD         Matrix:         SOIL         SampleID: AC75388-001          Lim         Analyte         Batchid         Data Fil         Seq#:         NS File         Seq# DF         Result 1         Result 2         %Diff         Lim           Aluminum         27357         S15644C3         23         S15644C3	Manganese	27357	S15644D3	17	S15644D3	16	3.0805	2.7360	12	20
Potassium         27357         S15644D3         17         S15644D3         16         59.1921         58.7352         .77         20           Sodium         27357         S15644C3         17         S15644D3         16         50.7805         50.6497         .26         20           Thallium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.6060         0.6178         1.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           Aluminum         27357         S15644C3         22         S15644C3         14         5         12.9872         63.5472         2.2         10           Arsenic         27357         S15644C3         23         S15644C3         15         5         0.0001         0.0158          10	Mercury	27357	H15644S	19	H15644S	18	11.4785	10.8118	6	20
Sodium         27357         S15644D3         17         S15644D3         16         50.7805         50.6497         .26         20           Thallium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.6060         0.6178         1.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           TxtQcType: SD         Matrix:         SOIL         SampleID: AC75388-001              2.2         10           Analyte         Batchid         Data Fil         Seq#:         NS File         Seq# DF         Result 1         Result 2         %Diff         Lim           Auminum         27357         S15644C3         23         S15644C3         15         5         0.0001         0.0158          10           Barium         27357         S15644C3         23         S15644C3         15         5         0.0224         0.1071         4.6         10 <td>Nickel</td> <td>27357</td> <td>S15644C3</td> <td>18</td> <td>S15644C3</td> <td>17</td> <td>0.5994</td> <td>0.6133</td> <td>2.3</td> <td>20</td>	Nickel	27357	S15644C3	18	S15644C3	17	0.5994	0.6133	2.3	20
Thalium         27357         S15644C3         18         S15644C3         17         0.4757         0.4804         .98         20           Vanadium         27357         S15644C3         18         S15644C3         17         0.6060         0.6178         1.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           TxtQcType:         SD         Matrix:         SOIL         SampleID: AC75388-001            Lim           Analyte         Batchid         Data Fil         Seq#:         NS File         Seq# DF         Result 1         Result 2         %Diff         Lim           Arsenic         27357         S15644C3         23         S15644C3         15         5         -0.0001         0.0158          10           Barium         27357         S15644C3         23         S15644C3         15         5         0.0071         0.0158          10           Calcium         27357         S15644C3         23         S15644C3         15         5         0.0071         4.6         10           Cobalt	Potassium	27357	S15644D3	17	S15644D3	16	59.1921	58.7352	.77	20
Vanadium         27357         S15644C3         18         S15644C3         17         0.6060         0.6178         1.9         20           Zinc         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           TxtQcType: SD         Matrix:         SOIL         SampleID: AC75388-001              Model         A.9         20           Analyte         Batchid         Data Fil         Seq#:         NS File         Seq# DF         Result 1         Result 2         %Diff         Lim           Aluminum         27357         S15644C3         23         S15644C3         15         5         -0.0001         0.0158          10           Barium         27357         S15644C3         23         S15644C3         15         5         0.0024         0.1071         4.6         10           Calcium         27357         S15644C3         23         S15644C3         15         5         0.019         0.0546         8.9         10           Cobalt         27357         S15644C3         23         S15644C3         15         5         0.0306	Sodium	27357	S15644D3	17	S15644D3	16	50.7805	50.6497	.26	20
Zinc         27357         S15644C3         18         S15644C3         17         0.8222         0.8633         4.9         20           TxtQcType: SD         Matrix:         SOIL         SampleID: AC75388-001                20           Analyte         Batchld         Data Fil         Seq#:         NS File         Seq# DF         Result 1         Result 2         %Diff         Lim           Aluminum         27357         S15644C3         23         S15644C3         15         5         -0.0001         0.0158          10           Barium         27357         S15644C3         23         S15644C3         15         5         0.0783         0.3785         3.4         10           Calcium         27357         S15644C3         23         S15644C3         15         5         0.0224         0.1071         4.6         10           Cobalt         27357         S15644C3         23         S15644C3         15         5         0.0306         0.1532         0.11         10           Cobalt         27357         S15644C3         23         S15644C3         15         5         0.03	Thallium	27357	S15644C3	18	S15644C3	17	0.4757	0.4804	.98	20
TxtQcType: SD         Matrix:         SOIL         SampleID: AC75388-001           Analyte         BatchId         Data Fil         Seq#:         NS File         Seq# DF         Result 1         Result 2         %Diff         Lim           Aluminum         27357         S15644D3         22         S15644D3         14         5         12.9872         63.5472         2.2         10           Arsenic         27357         S15644C3         23         S15644C3         15         5         -0.0001         0.0158          10           Barium         27357         S15644C3         23         S15644C3         15         5         0.0783         0.3785         3.4         10           Calcium         27357         S15644C3         23         S15644C3         15         5         0.0224         0.1071         4.6         10           Cobalt         27357         S15644C3         23         S15644C3         15         5         0.0306         0.1532         0.11         10           Cobalt         27357         S15644C3         23         S15644C3         15         5         0.0306         0.1532         0.11         10           Iron	Vanadium	27357	S15644C3	18	S15644C3	17	0.6060	0.6178	1.9	20
Analyte         Batchild         Data Fil         Seq#:         NS File         Seq# DF         Result 1         Result 2         %Diff         Lim           Aluminum         27357         S15644D3         22         S15644D3         14         5         12.9872         63.5472         2.2         10           Arsenic         27357         S15644C3         23         S15644C3         15         5         -0.0001         0.0158          10           Barium         27357         S15644C3         23         S15644C3         15         5         0.0783         0.3785         3.4         10           Calcium         27357         S15644C3         23         S15644C3         15         5         0.0783         0.3785         3.4         10           Calcium         27357         S15644C3         23         S15644C3         15         5         0.0224         0.1071         4.6         10           Cobalt         27357         S15644C3         23         S15644C3         15         5         0.0306         0.1532         0.111         10           Iron         27357         S15644C3         23         S15644C3         15         5	Zinc	27357	S15644C3	18	S15644C3	17	0.8222	0.8633	4.9	20
Aluminum       27357       S15644D3       22       S15644D3       14       5       12.9872       63.5472       2.2       10         Arsenic       27357       S15644C3       23       S15644C3       15       5       -0.0001       0.0158        10         Barium       27357       S15644C3       23       S15644C3       15       5       0.0783       0.3785       3.4       10         Calcium       27357       S15644D3       22       S15644C3       15       5       0.0783       0.3785       3.4       10         Calcium       27357       S15644C3       23       S15644C3       15       5       0.0224       0.1071       4.6       10         Cobalt       27357       S15644C3       23       S15644C3       15       5       0.0119       0.0546       8.9       10         Copper       27357       S15644C3       23       S15644C3       15       5       0.0306       0.1532       0.11       10         Iron       27357       S15644D3       22       S15644D3       14       5       4.9934       26.2494       4.9       10         Magnesium       27357       S15644D3	TxtQcType: S	SD	Matrix: SO	IL	Sam	pleID: AC753	88-001			
Arsenic27357S15644C323S15644C3155-0.00010.015810Barium27357S15644C323S15644C31550.07830.37853.410Calcium27357S15644D322S15644D31455.150726.42952.610Chromium27357S15644C323S15644C31550.02240.10714.610Cobalt27357S15644C323S15644C31550.01190.05468.910Copper27357S15644C323S15644C31550.03060.15320.1110Iron27357S15644C323S15644C31550.06760.33830.06910Lead27357S15644D322S15644D314526.6156129.11403.110Lead27357S15644D322S15644D31450.06760.33830.06910Magnesium27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D31450.02710.13731.4<	Analyte	Batchid	Data Fil Se	eq#:	NS File	Seq# DF	Result 1	Result 2	%Diff	Limit
Barium27357S15644C323S15644C31550.07830.37853.410Calcium27357S15644D322S15644D31455.150726.42952.610Chromium27357S15644C323S15644C31550.02240.10714.610Cobalt27357S15644C323S15644C31550.01190.05468.910Copper27357S15644C323S15644C31550.03060.15320.1110Copper27357S15644C323S15644C31550.06760.33830.06910Iron27357S15644C323S15644C31550.06760.33830.06910Lead27357S15644D322S15644D31454.993426.24944.910Magnesium27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D3145-0.37251.0261	Aluminum	27357	S15644D3	22	S15644D3	14 5	12.9872	63.5472	2.2	10
Calcium27357S15644D322S15644D31455.150726.42952.610Chromium27357S15644C323S15644C31550.02240.10714.610Cobalt27357S15644C323S15644C31550.01190.05468.910Copper27357S15644C323S15644C31550.03060.15320.1110Iron27357S15644D322S15644D314526.6156129.11403.110Lead27357S15644D323S15644C31550.06760.33830.06910Magnesium27357S15644D322S15644D31454.993426.24944.910Manganese27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D31450.02710.13731.410Sodium27357S15644D322S15644D31450.02710.13731.410Sodium27357S15644D322S15644D3145-0.37251.026110Thallium27357S15644C323S15644C31550.00180.0062	Arsenic	27357	S15644C3	23	S15644C3	15 5	-0.0001	0.0158		10
Chromium27357S15644C323S15644C31550.02240.10714.610Cobalt27357S15644C323S15644C31550.01190.05468.910Copper27357S15644C323S15644C31550.03060.15320.1110Iron27357S15644C323S15644C314526.6156129.11403.110Lead27357S15644C323S15644C31550.06760.33830.06910Magnesium27357S15644D322S15644D31454.993426.24944.910Manganese27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D31451.56779.087914a10Sodium27357S15644D322S15644D3145-0.37251.026110Thallium27357S15644C323S15644C31550.00180.006210Vanadium27357S15644C323S15644C31550.02960.1411510	Barium	27357	S15644C3	23	S15644C3	15 5	0.0783	0.3785	3.4	10
Cobalt       27357       S15644C3       23       S15644C3       15       5       0.0119       0.0546       8.9       10         Copper       27357       S15644C3       23       S15644C3       15       5       0.0306       0.1532       0.11       10         Iron       27357       S15644D3       22       S15644D3       14       5       26.6156       129.1140       3.1       10         Lead       27357       S15644D3       22       S15644D3       15       5       0.0676       0.3383       0.069       10         Magnesium       27357       S15644D3       22       S15644D3       14       5       4.9934       26.2494       4.9       10         Magnesium       27357       S15644D3       22       S15644D3       14       5       0.4328       2.1108       2.5       10         Nickel       27357       S15644D3       22       S15644D3       14       5       0.0271       0.1373       1.4       10         Potassium       27357       S15644D3       22       S15644D3       14       5       -0.3725       1.0261        10         Sodium       27357       S15644	Calcium	27357	S15644D3	22	S15644D3	14 5	5.1507	26.4295	2.6	10
Copper27357S15644C323S15644C31550.03060.15320.1110Iron27357S15644D322S15644D314526.6156129.11403.110Lead27357S15644C323S15644C31550.06760.33830.06910Magnesium27357S15644D322S15644D31454.993426.24944.910Manganese27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644C323S15644C31550.02710.13731.410Potassium27357S15644D322S15644D31451.56779.087914a10Sodium27357S15644D322S15644D3145-0.37251.026110Thallium27357S15644C323S15644C31550.00180.006210Vanadium27357S15644C323S15644C31550.02960.1411510	Chromium	27357	S15644C3	23	S15644C3	15 5	0.0224	0.1071	4.6	10
Iron27357S15644D322S15644D314526.6156129.11403.110Lead27357S15644C323S15644C31550.06760.33830.06910Magnesium27357S15644D322S15644D31454.993426.24944.910Manganese27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644C323S15644C31550.02710.13731.410Potassium27357S15644D322S15644D31451.56779.087914a10Sodium27357S15644D322S15644D3145-0.37251.026110Thallium27357S15644C323S15644C31550.00180.006210Vanadium27357S15644C323S15644C31550.02960.1411510	Cobalt	27357	S15644C3	23	S15644C3	15 5	0.0119	0.0546	8.9	10
Iron27357S15644D322S15644D314526.6156129.11403.110Lead27357S15644C323S15644C31550.06760.33830.06910Magnesium27357S15644D322S15644D31454.993426.24944.910Manganese27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644D322S15644D31450.02710.13731.410Potassium27357S15644D322S15644D31451.56779.087914a10Sodium27357S15644D322S15644D3145-0.37251.026110Thallium27357S15644C323S15644C31550.00180.006210Vanadium27357S15644C323S15644C31550.02960.1411510	Copper	27357	S15644C3	23	S15644C3	15 5	0.0306	0.1532	0.11	10
Magnesium27357S15644D322S15644D31454.993426.24944.910Manganese27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644C323S15644C31550.02710.13731.410Potassium27357S15644D322S15644D31451.56779.087914a10Sodium27357S15644D322S15644D3145-0.37251.026110Thallium27357S15644C323S15644C31550.00180.006210Vanadium27357S15644C323S15644C31550.02960.1411510	Iron	27357	S15644D3	22	S15644D3	14 5	26.6156	129.1140	3.1	10
Manganese27357S15644D322S15644D31450.43282.11082.510Nickel27357S15644C323S15644C31550.02710.13731.410Potassium27357S15644D322S15644D31451.56779.087914a10Sodium27357S15644D322S15644D3145-0.37251.026110Thallium27357S15644C323S15644C31550.00180.006210Vanadium27357S15644C323S15644C31550.02960.1411510	Lead	27357	S15644C3	23	S15644C3	15 5	0.0676	0.3383	0.069	10
Manganese         27357         S15644D3         22         S15644D3         14         5         0.4328         2.1108         2.5         10           Nickel         27357         S15644C3         23         S15644C3         15         5         0.0271         0.1373         1.4         10           Potassium         27357         S15644D3         22         S15644D3         14         5         1.5677         9.0879         14         a         10           Sodium         27357         S15644D3         22         S15644D3         14         5         -0.3725         1.0261          10           Thallium         27357         S15644C3         23         S15644C3         15         5         0.0018         0.0062          10           Vanadium         27357         S15644C3         23         S15644C3         15         5         0.0296         0.1411         5         10	Magnesium	27357	S15644D3	22	S15644D3	14 5	4.9934	26.2494	4.9	10
Nickel         27357         S15644C3         23         S15644C3         15         5         0.0271         0.1373         1.4         10           Potassium         27357         S15644D3         22         S15644D3         14         5         1.5677         9.0879         14         a         10           Sodium         27357         S15644D3         22         S15644D3         14         5         -0.3725         1.0261          10           Thallium         27357         S15644C3         23         S15644C3         15         5         0.0018         0.0062          10           Vanadium         27357         S15644C3         23         S15644C3         15         5         0.0296         0.1411         5         10	Manganese	27357	S15644D3	22	S15644D3	14 5	0.4328	2.1108	2.5	10
Potassium         27357         S15644D3         22         S15644D3         14         5         1.5677         9.0879         14         a         10           Sodium         27357         S15644D3         22         S15644D3         14         5         -0.3725         1.0261          10           Thallium         27357         S15644C3         23         S15644C3         15         5         0.0018         0.0062          10           Vanadium         27357         S15644C3         23         S15644C3         15         5         0.0296         0.1411         5         10	Nickel	27357	S15644C3	23	S15644C3	15 5	0.0271	0.1373	1.4	10
Sodium         27357         S15644D3         22         S15644D3         14         5         -0.3725         1.0261          10           Thallium         27357         S15644C3         23         S15644C3         15         5         0.0018         0.0062          10           Vanadium         27357         S15644C3         23         S15644C3         15         5         0.0296         0.1411         5         10	Potassium	27357	S15644D3	22	S15644D3	14 5	1.5677	9.0879	14 a	10
Thallium         27357         S15644C3         23         S15644C3         15         0.0018         0.0062          10           Vanadium         27357         S15644C3         23         S15644C3         15         5         0.0296         0.1411         5         10	Sodium		S15644D3		S15644D3	14 5	-0.3725	1.0261		10
Vanadium 27357 S15644C3 23 S15644C3 15 5 0.0296 0.1411 5 10	Thallium	27357	S15644C3		S15644C3	15 5	0.0018	0.0062		10
	Vanadium				S15644C3			0.1411	5	10
	Zinc	27357	S15644C3	the second	S15644C3	15 5	0.0699	0.3538	1.2	10

a-Indicates Rpd Failed the criteria b-Method Rep Out but concentrations < 5*RL c-Serial dilution Out but conc < 10 * IDL

ICP units in ppm, ICPMS and Hg in ppb

#### FORM6/FORM9 RPD/%Difference Data PREP BATCH: 27358

Instrument Type: ICPMS Analytical Method(s):6020/200.8

TxtQcType:	LCSMR	Matrix: SCIL	Samp	elD: LCS N	IR 27358			
Analyte	Batchid	Data Fil Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	27358	S103113B 18	S103113B	17	27.6700	22.2800	22 a -	20
Beryllium	27358	S103113B 18	S103113B	17	81.7900	76.8500	6.2	20
Cadmium	27358	S103113B 18	S103113B	17	212.9000	199.7000	6.4	20
Selenium	27358	S103113B 18	S103113B	17	171.3000	170.0000	.76	20
Silver	27358	S103113B 18	S103113B	17	45.6500	41.7700	8.9	20
TxtQcType:	MR	Matrix: SOIL	Samp	elD: AC753	388-001			
Analyte	Batchld	Data Fil Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	27358	S103113B 20	S103113B	19	10	10		20
Beryllium	27358	S103113B 20	S103113B	19	1.2100	1.0790	11	20
Cadmium	27358	S103113B 20	S103113B	19	2U	2U		20
Selenium	27358	S103113B 20	S103113B	19	10U	10U		20
Silver	27358	S103113B 20	S103113B	19	10	1U	`	20
TxtQcType:	MSD	Matrix: SOIL	Samp	leID: AC753	388-001			
Analyte	Batchld	Data Fil Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Limi
Antimony	27358	S103113B 23	S103113B	22	68.0600	60.9500	11	20
Beryllium	27358	S103113B 23	S103113B	22	190.8000	195.7000	2.5	20
Cadmium	27358	S103113B 23	S103113B	22	231.8000	224.8000	3.1	20
Selenium	27358	S103113B 23	S103113B	22	230.7000	218,4000	5.5	20
Silver	27358	S103113B 23	S103113B	22	44.2100	43.1700	2.4	20
TxtQcType:	SD	Matrix: SOIL	Samp	leID: AC753	388-001			
Analyte	Batchid	Data Fil Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff	Limi
Antimony	27358	S103113B 21	S103113B	19 5	0.0242	0.0793	53 a	10
Beryllium	27358	S103113B 21	S103113B	19 5	0.2425	1.0790	12 a	10
Cadmium	27358	S103113B 21	S103113B	19 5	0.0570	0.2695	5.8	10
Selenium	27358	S103113B 21	S103113B	19 5	1.1370	4.0690	40 a	10
Silver	27358	S103113B 21	S103113B	19 5	0.0184	0.1646	44 a	10

# VERITECH Wet Chem Form1 Analysis Summary

	AC75362-002 Aqueous SW-15-1024201	3				Rece	ot Number: 3102 Prived Date: 10/25 Dilect Date: 10/24	5/2013
Cheft Sampleid.		5						
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICW	1	6.5	mg/L	2.0	10/30/13	10/30/13
Cyanide		CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13
	AC75362-003 Aqueous SW-4-10242013	,				Rece	ct Number: 3102 bived Date: 10/25 bliect Date: 10/24	5/2013
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride		CHLORIDE-ICW	1	6.5	mg/L	2.0	10/30/13	10/30/13
Cyanide		CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13
	AC75362-004					•	ct Number: 3102	
	Sediment/Encor	e					eived Date: 10/25	
Client SampleID:	SD-4-10242013					Co	ollect Date: 10/24	1/2013
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride		CHLORIDE-ICS	1	ND	mg/Kg	33	10/28/13	10/28/13
Cyanide		CN-S-9012	1	ND	mg/Kg	0.39	11/01/13	11/03/13
	A 075000 005					- ·		c40
	AC75362-005					•	ct Number: 3102	
	Aqueous						eived Date: 10/25	
Client SampleID:	SW-2-10242013	•			va	C	ollect Date: 10/24	1/2013
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride		CHLORIDE-ICW	1	6.6	mg/L	2.0	10/30/13	10/30/13
Cyanide		CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13
	AC75362-006 Sediment/Encor SD-2-10242013	e				Rece	ct Number: 3102 bived Date: 10/25 bliect Date: 10/24	5/2013
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride		CHLORIDE-ICS	1	ND	mg/Kg	27	10/28/13	10/28/13
Cyanide		CN-S-9012	1	ND	mg/Kg	0.32	11/01/13	11/03/13
	AC75362-007 Sediment/Encor SD-3-10242013	e				Rece	ct Number: 3102 eived Date: 10/25 ollect Date: 10/24	5/2013
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride	·	CHLORIDE-ICS	1	29	mg/Kg	25	10/28/13	10/28/13
Cyanide		CN-S-9012	1	ND	mg/Kg	0.30	11/01/13	11/03/13
	AC75362-008 Aqueous SW-1-10242013					Rece	ot Number: 3102 aived Date: 10/25 allect Date: 10/24	5/2013
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date
Chloride	••••	CHLORIDE-ICW	1	6.3	mg/L	2.0	10/30/13	10/30/13
Cyanide		CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13
Lab#:	AC75362-009					Projec	t Number: 3102	513
Matrix Client SampleID:	Sediment/Encore SD-1-10242013	e					eived Date: 10/25 ollect Date: 10/24	
Analysis		TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride		CHLORIDE-ICS	1	ND	mg/Kg	27	10/28/13	10/28/13
Cyanide		CN-S-9012	1	ND	mg/Kg	0.32	11/01/13	11/03/13
•			·		55			Page 1 of 2

Lab#: AC75362-010 Matrix Aqueous Client SampleID: FB-10242013					Rece	t Number: 3102 lived Date: 10/25 llect Date: 10/24	/2013
Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride	CHLORIDE-ICW	1	ND	mg/L	2.0	10/30/13	10/30/13
Cyanide	<b>CN-WATER-MUR</b>	1	ND	mg/L	0.020	10/29/13	10/29/13

# VERITECH Wet Chem Form1 Analysis Summary

# % Solids Report

#### Analysis Type: SOLIDS-SS BatchID: SOLIDS-SS-2415

QcType	SampleID:	Rounded Result	Raw Result	Units	Tare Weight	Wet Weight	Dry Weight	Analysis Date	Analyzed By	QC RPD	Rpd Limit
DUP	AC75356-008	82	82.10332	Percent	1.09	11.93	9.98	10/28/13	hossain	0.044	5
Sample	AC75356-008	82	82.13953	Percent	1.10	11.85	9.93	10/28/13	hossain		
Sample	AC75356-009	84	83.93966	Percent	1.10	12.37	10.57	10/28/13	hossain		
Sample	AC75360-001	81	81.48464	Percent	1.09	12.81	10.64	10/28/13	hossain		
Sample	AC75362-004	61	60.75217	Percent	1.09	11.46	7.40	10/28/13	hossain		
Sample	AC75362-006	74	73.52941	Percent	1.09	11.63	8.84	10/28/13	hossain		
Sample	AC75362-007	80	79.77233	Percent	1.09	12.51	10.21	10/28/13	hossain		
Sample	AC75362-009	74	74.02005	Percent	1.09	12.06	9.21	10/28/13	hossain		
Sample	AC75367-001	94	94.05458	Percent	1.09	11.35	10.74	10/28/13	hossain		
Sample	AC75367-002	90	90.00943	Percent	1.09	11.70	10.64	10/28/13	hossain		
Sample	AC75367-003	90	90.19757	Percent	1.09	14.25	12.95	10/28/13	hossain		
Sample	AC75367-004	93	93.49376	Percent	1.09	12.31	11.59	10/28/13	hossain		
Sample	AC75367-008	91	90.92628	Percent	1.08	11.66	10.70	10/28/13	hossain		
Sample	AC75367-010	84	83.62919	Percent	1.08	11.22	9.57	10/28/13	hossain		
Sample	AC75367-011	89	88.82733	Percent	1.10	11.93	10.72	10/28/13	hossain		
Sample	AC75367-012	88	88.49903	Percent	1.09	11.35	10.17	10/28/13	hossain		
Sample	AC75367-013	89	89.05560	Percent	1.09	12.42	11.18	10/28/13	hossain		
Sample	AC75367-017	89	88.79552	Percent	1.09	11.80	10.62	10/28/13	hossain		
Sample	AC75380-001	88	88.09524	Percent	1.08	12.84	11.44	10/28/13	hossain		
Sample	AC75380-003	96	96.04117	Percent	. 1.09	13.72		10/28/13	hossain		
Sample	AC75380-004	84	84.28094	Percent	1.10	13.06	11.18		hossain		

447 F.---

# MS/MSD/DUP Recovery

•		N-5067 300.0 rev2	2.1		Ś	Sample IE Matri	): AC753 ix Aqueo		2						
Qc Type:	MS	Limits			MS	Sam				M	S/MSD/	DUP	1	Non Spi	ke
Analyte	Amt	Recov		Dil	Conc	Conc	Recov		Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120		1	10.1968	6.5204	74		Mw	20131029104	18	10/30/13 16:47	20131029104	17	10/30/13 15:56
Qc Type:	MSD	Limi	ts		MS	Sam				M	S/MSD/	DUP	1	Non Spi	ke
Analyte	Amt		Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	10.2735	6.5204	75	0.7	MW	20131029104	19	10/30/13 17:12	20131029104	17	10/30/13 15:56

3102513 0156

	BatchRunID/RunID:>	201310291041-13				
	QcBatchID:>	LCSW-5067				
	Date/Time:===>	10/30/13 14:11				
	Analytical Method:====>	300.0 rev2.1				
	Matrix:===>	Aqueous	Soil	Soil	Soil	Soil
Analyte	300.0 rev2. Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Chloride	5 90-110	101				

# LCS Recoveries

. . . .

# Calibration Curve

# Instrument: IC2 Analysis Date: 10/29/13 Analytical Methods: 300.0 rev2.1;EPA 9056;EPA 9056A

			Are	Area Found						Concentrati	on Amount			
Batch ID:	Analyte:	Area1	Area2	Area3	Area4	Area5	Area6	Conc1	Conc2	Conc3	Conc4	Conc5	Conc6	ſŜġ
201310291041	Chloride	0	0.161	0.814	1.693	3.618	10.16	0	-	თ	10	20	50	99.9

# Calibration Summary:

Instrument: IC2 Analysis Meth: 300.0 rev2.1

i

Analysis Meth. 500.0 Tevz. I					Spk	
Analyte	Batch ID	Run#	Qc Type	Recov	Amt	Limit
Chloride	20131029104	7	ICV	94	10	90-110
Chloride	20131029104	10	CCV	90	10	90-110
Chloride	20131029104	22	CCV	92	10	90-110

# Blank Summary

Instrument: IC2

Qc Type: Meth	od Blank Summary	Prep l	Date: 1	0/30/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029104	10/30/13 13:46	MBW-5067	12	Chloride	ND	2.0
Qc Type: ICB S	Summary	Prep I	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029104	10/29/13 13:39	ICB	8	Chloride	ND	2.0
Qc Type: CCB	Summary	Prep l	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029104	10/30/13 13:20	ССВ	11	Chloride	ND	2.0
20131029104	10/30/13 18:54	ССВ	23	Chloride	ND	2.0

;

# 3102513 0160

Ref SampleID: 5 PPM	Ref Standard 3	d RuniD	Ref Standard 10/29/2013 11	
Sample ID: CCV	RunID:	10 Ana	alysis Date:	10/30/2013 12:55:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.7	9.7	11.72	
Chloride	6.55	6.16	6.94	
Fluoride	3.86	3.72	4	
Nitrate	12.5	11.33	13.71	
Nitrite	8.19	7.62	8.78	
Phosphorus (Ortho)	17.11	16.14	18.36	
Sulfate	18.51	17.67	19.67	
Sample ID: CCV	RunID:	22 Ana	alysis Date:	10/30/2013 6:28:00 PN
Analyte	RT	LowLimit	t Hi Limit	Flag
Bromide	10.61	9.7	11.72	
Chloride	6.5	6.16	6.94	
Fluoride	3.84	3.72	4	
Nitrate	12.39	11.33	13.71	
Nitrite	8.13	7.62	8.78	
Phosphorus (Ortho)	16.99	16.14	18.36	
Sulfate	18.43	17.67	19.67	
Sample ID: CCV	RunID:	29 An	alysis Date:	10/30/2013 9:26:00 PN
Analyte	RT	LowLimi	t Hi Llmit	Flag
Bromide	10.67	9.7	11.72	
Chloride	6.53	6.16	6.94	
Fluoride	3.85	3.72	4	
Nitrate	12.47	11.33	13.71	
Nitrite	8.17	7.62	8.78	
Phosphorus (Ortho)	17.07	16.14	18.36	
Sulfate	18.45	17.67	19.67	
Sample ID:CCV	RunID:	32 An	alysis Date:	10/31/2013 2:30:00 PM
Analyte	RT	LowLimit	t Hi Llmit	Flag
Bromide	10.65	9.7	11.72	
Chloride	6.52	6.16	6.94	
Fluoride	3.84	3.72	4	
Nitrate	12.45	11.33	13.71	
Nitrite	8.16	7.62	8.78	
Phosphorus (Ortho)	17.05	16.14	18.36	
Sulfate	18.45	17.67	19.67	

#### 3102513 0161

Ref SampleID: 5 PPM	Ref Standard 3	i RuniD	Ref Standard 10/29/2013 1	
Sample ID: CCV	RunID:	44 Ana	alysis Date:	10/31/2013 7:35:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.71	9.7	11.72	
Chloride	6.56	6.16	6.94	
Fluoride	3.87	3.72	4	
Nitrate	12.51	11.33	13.71	
Nitrite	8.21	7.62	8.78	
Phosphorus (Ortho)	17.12	16.14	18.36	
Sulfate	18.56	17.67	19.67	
Sample ID: CCV	RunID:	50 Ana	alysis Date:	10/31/2013 10:07:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.59	9.7	11.72	
Chloride	6.49	6.16	6.94	
Fluoride	3.83	3.72	4	
Nitrate	12.37	11.33	13.71	
Nitrite	8.12	7.62	8.78	
Phosphorus (Ortho)	16.98	16.14	18.36	

17.67

19.67

18.42

Sulfate

# MS/MSD/DUP Recovery

3102513 0162

		S-1118 EPA 9056	A			Sample IE Matri	): AC751 ix Soil	24-00	1							
Qc Type:	MS	Limits			MS	Sam			A	] [	м	S/MSD/	DUP	1	Non Spi	ke
Analyte	Amt	Recov		Dil	Conc	Conc	Recov		Flag		Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120		1	8.0068	4.5973	68		Ms		20131014115	107	10/28/13 12:24	20131014115	106	10/28/13 12:02
Qc Type:	MSD	Limi	s		MS	Sam					М	S/MSD/	DUP		Non Spi	ke
Analyte	Amt		Rpd	Dil	Conc	Conc	Recov	Rpd	Flag		Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	7.7938	4.5973	64	2.7	Ms		20131014115	108	10/28/13 12:45	20131014115	106	10/28/13 12:02

3102513 0163

	BatchRunID/RunID:>	201310141150-105			construction of polycon if collocation for the second will been used formation and a second s second second se	
	QcBatchID:===>	LCSS-1118				
	Date/Time:===>					
	Analytical Method:>					
	Matrix:>	Soil	Soil	Soil	Soil	Soil
Analyte	EPA 9056A Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Chloride	5 80-120	102				

# LCS Recoveries

Instrument: IC1 Analysis Date: 10/14/13 Analytical Methods: 300.0 rev2.1;EPA 9056;EPA 9056A Batch ID: Analyte: Area1 Are	Batch ID: 201310141150	
IC1 10/14/13 300.0 rev2.1;EPA Analyte: Chloride	Analyte: Chloride	Childride
9056;EPA ( Area1 0	Area1 0	c
27	Area2 0.278	0.270
Calil Area Found P Area3	Area3 0.984	U.904
Calibration Curve		2.021
Area5 A		
Area6	Area6 12.248	12.240
0 Conc	Conc1	c
Conc2 Co		
Concentration Amount Conc3 Conc4 5 10	Conc3 C	G
Conc5 Conc6		
Sq 99.762	1 9.762	19.762

# Calibration Summary:

Instrument: IC1 Analysis Meth: EPA 9056A

1

# Blank Summary

Instrument: IC1

Qc Type: Meth	od Blank Summary	Prep	Date: 1	0/28/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131014115	10/28/13 11:21	MBS-1118	104	Chloride	ND	20
Qc Type: ICB Summary		Prep Date: NA				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131014115	10/14/13 15:47	ICB	8	Chloride	ND	2.0
Qc Type: CCB Summary		Prep Date: NA				
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131014115	10/28/13 10:59	ССВ	103	Chloride	ND	2.0
20131014115	10/28/13 15:18	ССВ	115	Chloride	ND	2.0

Ref SampleID: 5 PPM	Ref Standard RunID 3		Ref Standard Date 10/14/2013 12:33:00 PM		
Sample ID: CCV	RunID:	14 Analy	/sis Date:	10/14/2013 5:56:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	8.064	7.059999	9.08		
Chloride	5.477	5.087	5.867		
Fluoride	3.661	3.517	3.797		
Nitrate	9.191	8.014001	10.394		
Nitrite	6.547	5.964	7.124		
Phosphorus (Ortho)	12.107	11.04	13.26		
Sulfate	13.631	12.65	14.65		
Sample ID: CCV	RunID:	17 Analy	ysis Date:	10/16/2013 10:40:00 AM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	8.044	7.059999	9.08		
Chloride	5.47	5.087	5.867		
Fluoride	3.66	3.517	3.797		
Nitrate	9.167	8.014001	10.394		
Nitrite	6.537	5,964	7,124		
Phosphorus (Ortho)	12.014	11.04	13.26		
Sulfate	13.534	12.65	14.65		
Sample ID: CCV	RunID:	29 Anal	ysis Date:	10/16/2013 2:58:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	8.05	7.059999	9.08		
Chloride	5.474	5.087	5.867		
Fluoride	3.66	3.517	3.797		
Nitrate	9.174	8.014001	10.394		
Nitrite	6.54	5.964	7.124		
Phosphorus (Ortho)	12.02	11.04	13.26		
Sulfate	13.54	12.65	14.65		
Sample ID: CCV	RunID: 41 A		ysis Date:	10/16/2013 7:19:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	8.037	7.059999	9.08		
Chloride	5.467	5.087	5.867		
Fluoride	3.657	3.517	3.797		
Nitrate	9.157	8.014001	10.394		
Nitrite	6.53	5.964	7.124		
Phosphorus (Ortho)	11.983	11.04	13.26		
Sulfate	13.52	12.65	14.65		

Ref SampleID: 5 PPM	Ref Standard RunID 3		Ref Standard Date 10/14/2013 12:33:00 PM	
Sample ID: CCV	RunID:	44 Analys	sis Date:	10/17/2013 10:40:00 AM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	8.054	7.059999	9.08	
Chloride	5.477	5.087	5.867	
Fluoride	3.667	3.517	3.797	
Nitrate	9.177	8.014001	10.394	
Nitrite	6.544	5.964	7.124	
Phosphorus (Ortho)	12.067	11.04	13.26	
Sulfate	13.587	12.65	14.65	
Sample ID:CCV	RunID:	56 Analy	sis Date:	10/17/2013 2:59:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	8.054	7.059999	9.08	
Chloride	5.474	5.087	5.867	
Fluoride	3.661	3.517	3.797	
Nitrate	9.177	8.014001	10.394	
Nitrite	6.541	5.964	7.124	
Phosphorus (Ortho)	12.067	11.04	13.26	
Sulfate	13.594	12.65	14.65	
Sample ID:CCV	RunID:	68 Analy	sis Date:	10/17/2013 7:19:00 PM
Analyte	RT	LowLimit	Hi LImit	Flag
Bromide	8.067	7.059999	9.08	
Chloride	5.484	5.087	5.867	
Fluoride	3.674	3.517	3.797	
Nitrate	9.194	8.014001	10.394	
Nitrite	6.554	5.964	7.124	
Phosphorus (Ortho)	12.064	11.04	13.26	
Sulfate	13.594	12.65	14.65	
Sample ID: CCV	RunID:	72 Analy	sis Date:	10/17/2013 8:46:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	8.067	7.059999	9.08	
Chloride	5.484	5.087	5.867	
Fluoride	3.674	3.517	3.797	
Nitrate	9.191	8.014001	10.394	
Nitrite	6.554	5.964	7.124	
Phosphorus (Ortho)	12.061	11.04	13.26	
Sulfate	13.594	12.65	14.65	

Ref SampleID: 5 PPM	Ref Standar 3	d RunID	Ref Standard 10/14/2013 12	
Sample ID: CCV	RunID:	75 Ana	alysis Date:	10/18/2013 11:38:00 AM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	8.047	7.059999	9.08	
Chloride	5.474	5.087	5.867	
Fluoride	3.674	3.517	3.797	
Nitrate	9.167	8.014001	10.394	
Nitrite	6.541	5.964	7.124	
Phosphorus (Ortho)	12.054	11.04	13.26	
Sulfate	13.571	12.65	14.65	
Sample ID: CCV	RunID:	87 Ana	alysis Date:	10/18/2013 3:57:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	8.037	7.059999	9.08	
Chloride	5.463	5.087	5.867	
Fluoride	3.66	3.517	3.797	
Nitrate	9.157	8.014001		
Nitrite	6.53	5.964	7.124	
Phosphorus (Ortho)	12.037	11.04	13.26	
Sulfate	13.557	12.65	14.65	
Sample ID: CCV	RunID:	99 Ana	alysis Date:	10/18/2013 8:18:00 PM
Analyte	RT	LowLimit	Hi Limit	Flag
Bromide	8.044	7.059999	9.08	
Chloride	5.47	5.087	5.867	
Fluoride	3.664	3.517	3.797	
Nitrate	9.167	8.014001	10.394	
Nitrite	6.537	5.964	7.124	
Phosphorus (Ortho)	12.037	11.04	13.26	
Sulfate	13.564	12.65	14.65	
Sample ID: CCV	RunID:	102 Ana	alysis Date:	10/28/2013 10:37:00 AN
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	8.024	7.059999	9.08	
Chloride	5.46	5.087	5.867	
Fluoride	3.66	3.517	3.797	
Nitrate	9.134	8.014001		
Nitrite	6.524	5.964	7.124	
Phosphorus (Ortho)	12.05	11.04	13.26	
Sulfate	13.564	12.65	14.65	

Ref SampleID: 5 PPM	Ref Standar 3		Ref Standard 10/14/2013 12	
Sample ID: CCV	RunID:	114 Analys	sis Date:	10/28/2013 2:56:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	8.027	7.059999	9.08	
Chloride	5.464	5.087	5.867	
Fluoride	3.664	3.517	3.797	
Nitrate	9.137	8.014001	10.394	
Nitrite	6.527	5.964	7.124	
Phosphorus (Ortho)	12.061	11.04	13.26	
Sulfate	13.571	12.65	14.65	

# MS/MSD/DUP Recovery

3102513 0171

· · ·	Batch: V ethod: E	V-837 PA 335.4	L		S	•	: AC75362 :: Aqueous		2						
Qc Type:	DUP	Limit	s	÷	DUP	Sample			an a	M	S/MSD/	DUP	٢	lon Spi	ke
Analyte			Rpd	Dii	Conc	Сопс	Rp	d	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide			20	1	0	0	N	A		20131029140	15	10/29/13 14:35	20131029140	14	10/29/13 14:33
Qc Type:	MS	Limit	s		MS	Sample	<u> </u>	-		M	S/MSD/	DUP	N	lon Spi	ke
Analyte	Amt	Recov		Dil	Conc	•	% Rec		Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125		1	0.3971	0	99			20131029140	16	10/29/13 14:37	20131029140	14	10/29/13 14:33
Qc Type:	MSD	Limit	S		MSD	Sample				MS/MSD/DUP		DUP	Non Spike		
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	% Rec Rp	d	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	20	1	0.3742	0	94 5.	.9		20131029140	17	10/29/13 14:39	20131029140	14	10/29/13 14:33

) 1

ļ

:

3102513 0172

	BatchRunID/RunID:===>	201310291405-12				
	QcBatchID:===>	LCSW-837				
	Date/Time:===>	10/29/13 14:29				
\.	Analytical Method:>	EPA 335.4				
1	Matrix:===>	Aqueous	Soil	Soil	Soil	Soil
Analyte	EPA 335.4 Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Cyanide	0.4 90-110	90				

-----

.

# LCS Recoveries

### Calibration Summary:

Instrument: DA1 Analysis Meth: EPA 335.4

:

÷

# Blank Summary

Instrument: DA1

Qc Type: Meth	od Blank Summary	Prep	Date: 1	0/29/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:26	MBW-837	11	Cyanide	ND	0.020
Qc Type: ICB S	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:24	ССВ	10	Cyanide	ND	0.020
Qc Type: CCB	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:49	ССВ	22	Cyanide	ND	0.020
20131029140	10/29/13 15:15	CCB	34	Cyanide	ND	0.020
20131029140	10/29/13 15:29	ССВ	42	Cyanide	ND	0.020
20131029140	10/29/13 15:45	ССВ	44	Cyanide	ND	0.020
	10/29/13 15:51	ССВ	48	Cyanide	ND	0.020

# MS/MSD/DUP Recovery

3102513 0175

•	Batch: S ethod: E	8-1250 EPA 9012B		5	Sample ID Matrix	: AC75462- :: Soil	001						
Qc Type:	DUP	Limits		DUP	Sample			MS	S/MSD/	DUP	1	lon Spi	ke
Analyte		Rpd	Dil	Conc	Conc	Rpc	I Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide		20	1	0	0	NA	λ	20131103185	15	11/03/13 19:28	20131103185	14	11/03/13 19:26
Qc Type:	MS	Limits		MS	Sample			MS	S/MSD/	/DUP	1	lon Spi	ke
Analyte	Amt	Recov	Dil	Conc	Conc	% Rec	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	1	0.3962	0	99		20131103185	16	11/03/13 19:30	20131103185	14	11/03/13 19:26
Qc Type:	MSD	Limits		MSD	Sample			MS	S/MSD/	/DUP	1	lon Spi	ke
Analyte	Amt	Recov Rpd	Dil	Conc		% Rec Rpc	l Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125 20	1	0.397	0	99 0.2	2	20131103185	17	11/03/13 19:32	20131103185	14	11/03/13 19:26

•

) I

.

t

2

3102513 0176

	BatchRunID/RunID:===> QcBatchID:===>					
	Date/Time:===>	11/03/13 19:22				
	Analytical Method:>	EPA 9012B				
	Matrix:>	Soil	Soil	Soil	Soil	Soil
Analyte	EPA 9012B Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Cyanide	0.4 90-110	106				

. .

### LCS Recoveries

# Calibration Summary:

÷

1

.. ù

а Э

# Blank Summary

Instrument: DA1

Qc Type: Meth	od Blank Summary	Prep	Date: 1	1/1/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131103185	11/3/13 19:19	MBS-1250	11	Cyanide	ND	0.24
Qc Type: ICB S	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131103185	11/3/13 19:17	ССВ	10	Cyanide	ND	0.020
Qc Type: CCB	Summary	Prep	Date: N			
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131103185	11/3/13 19:42	ССВ	22	Cyanide	ND	0.020
20131103185	11/3/13 20:07	ССВ	34	Cyanide	ND	0.020
20131103185	11/3/13 20:22	ССВ	42	Cyanide	ND	0.020

,

, A



Last Page of Report

#### ATTACHMENT C

#### TREND ANALYSIS

(Electronic Only)

Henningson, Durham & Richardson Architecture and Engineering, P.C. in association with HDR Engineering, Inc.