

March 17, 2014

Mr. Kevin Gregory Acting Director, Consultant Management Bureau NYS Dept. of Transportation POD # 33 50 Wolf Road Albany, NY 12232

Attention: Mr. Anjan Sen, P.E.

Re: PIN 8807.31.101Harrison Spill Site (Spill #94-07349)

Harrison Sub-Residency Westchester County, New York

Dear Mr. Sen:

The following letter report summarizes the field investigative procedures and results of the sampling, conducted by Henningson, Durham & Richardson Architecture and Engineering P.C. (HDR) on behalf of the New York State Department of Transportation (NYSDOT) at the above referenced site (Figure 1). The sampling was conducted in accordance with our October 16, 2013 approved scope, which was developed in accordance with the NYSDOT *Operation and Maintenance Plan for the Harrison Sub-Residency, Landfill and Petroleum Spill Area, February 2010.* The spill (#94-07349) associated with this site was closed by the New York State Department of Environmental Conservation (NYSDEC) on October 10, 2002 when the air sparge/soil vapor extraction (AS/SVE) system was shut down. The AS/SVE system was in operation for a total of two years. Currently the post-closure sampling and monitoring program is performed every fifth quarter.

Field Investigative Procedures

Groundwater monitoring at the site was performed to meet the monitoring requirements of the New York State Department of Environmental Conservation (NYSDEC) relating to NYSDEC Spill #94-07349. A discussion of the groundwater data from the groundwater monitoring wells is presented in this report.

On October 23rd, 2013, HDR sampled the groundwater wells to monitor the migration and natural attenuation of the contaminant plume. HDR obtained samples from two groundwater monitoring wells (MW-11 and PC-1) for chemical analysis using low-flow sampling techniques. Prior to commencing site activities, HDR conducted a visual inspection of the monitoring well casings and well heads to note any signs of damage or tampering. Static water level measurements and total depth measurements from all groundwater monitoring wells were also recorded.

Prior to commencement of sampling, a round of static water level measurements and total depth measurements were collected from all monitoring wells and field instrumentation were calibrated according to the respective manufacturer's standards. Nearly all of the monitoring wells initially included in the sampling program have been decommissioned by NYSDOT. The following wells, MW-11 and PC-1, were proposed for sampling during the October 2013 sampling event and are shown on Figure 2.

Phone: (845) 735-8300

Fax: (845) 735-7466

www.hdrinc.com

Each well was purged of three well volumes or until dryness using a Whale pump equipped with a Rheostat (for adjustable flow), in-line flow cell, and dedicated tubing. Field parameters of temperature, turbidity, dissolved oxygen (DO), pH, specific conductivity, and oxidation-reduction potential (Eh) were collected during purging and at the start of sampling at each well. The monitoring wells were sampled once they recovered to approximately 75% of their initial volume or within 2 hours, whichever came first. Groundwater samples were collected for contract laboratory analysis from each location using a dedicated bailer. Samples were transferred to clean, pre-preserved laboratory-supplied containers for analysis of BTEX (benzene, toluene, ethylbenzene and total xylenes) plus MTBE (methyl tertiary butyl ether), and the natural attenuation parameters: iron (dissolved, Fe-II), manganese (dissolved, Mn-II), bicarbonate alkalinity (as HCO₃), alkalinity (total), nitrate (NO₃), and sulfate (SO₄). Metals samples were filtered and preserved upon receipt at the laboratory. One (1) groundwater field duplicate was collected from monitoring well PC-1 and one (1) trip blank was submitted. The duplicate sample was collected at the same time and for the same landfill parameters as the original sample. The duplicate sample was given a "fictitious" sample ID (DMW-5-10232013) as to not indicate to the laboratory that it was a duplicate sample.

Groundwater Sampling Results

Groundwater sampling results from October 2013 are summarized on Table 1. The results were compared to the NYSDEC Class GA standards or guidance values (GV). Well sampling information is included on the sampling logs in Attachment A. Laboratory data packages associated with the October 2013 sampling are included as Attachment B. (Note that the Harrison Sub-Residency spill site was sampled concurrently with the landfill area; therefore, one of the data packages includes results from both sample sites). A figure of the historic well locations and related data are included in Attachment C.

The monitoring wells sampled are located downgradient or sidegradient of the plume. BTEX compounds were detected in the sample collected at MW-11 at concentrations of 2.7, 24, 1.2, and 8.6 ug/l for benzene, toluene, ethylbenzene and total xylenes, respectively, for a total BTEX concentration of 36.5 ug/l. Concentrations of benzene, ethylbenzene and m&p-xylenes exceeded their respective Class GA standard of 1, 5, and 5 ug/l, respectively. BTEX compounds were not detected at PC-1. MTBE was not detected in either of the wells sampled.

Dissolved iron was detected in the sample collected from MW-11 at a concentration of 4,100 ug/l. Dissolved manganese was detected in the samples collected from MW-11 and PC-1 at concentrations of 3,600 and 740 ug/l, respectively. The Class GA standard for both iron and manganese is 300 ug/l. In each case, the reported value exceeded the Class GA standard.

Total alkalinity and bicarbonate alkalinity results were the same at each of the wells; the concentration at MW-11 was 290 mg/l and the concentration at PC-1 was 190 mg/l. A Class GA standard has not been established for alkalinity. Nitrate was not detected at either location. Sulfate was detected in the sample collected from MW-11 at a concentration of 3.5 mg/l and in the sample collected from PC-1 at a concentration of 21 mg/l. Both results were less than the Class GA standard of 250 mg/l. Field parameters are discussed below in relation to the results and assessing the natural attenuation trends.

QAQC Sampling Results

A duplicate sample was collected from groundwater monitoring well PC-1 for QAQC purposes. The relative percent difference (RPD) was calculated for the sample collected from PC-1 and its duplicate sample, DMW-5-10232013, using the following formula:

% RPD =
$$\frac{X_1-X_2}{(X_1+X_2)/2} * 100\%$$

where, X1 is the original value (PC-1), and

X2 is the duplicate value (DMW-5-10232013)

RPD was not calculated for results where both samples were non-detect. For the remaining groundwater analytical results, the RPD ranged from 0% to 1.36%, where 0% would indicate the results were the same. All of the results of the RPD calculation indicate the results are within precision standards for both sampling and laboratory protocols.

One trip blank was submitted for analysis of BTEX and MTBE only. All results were non-detect.

Discussion

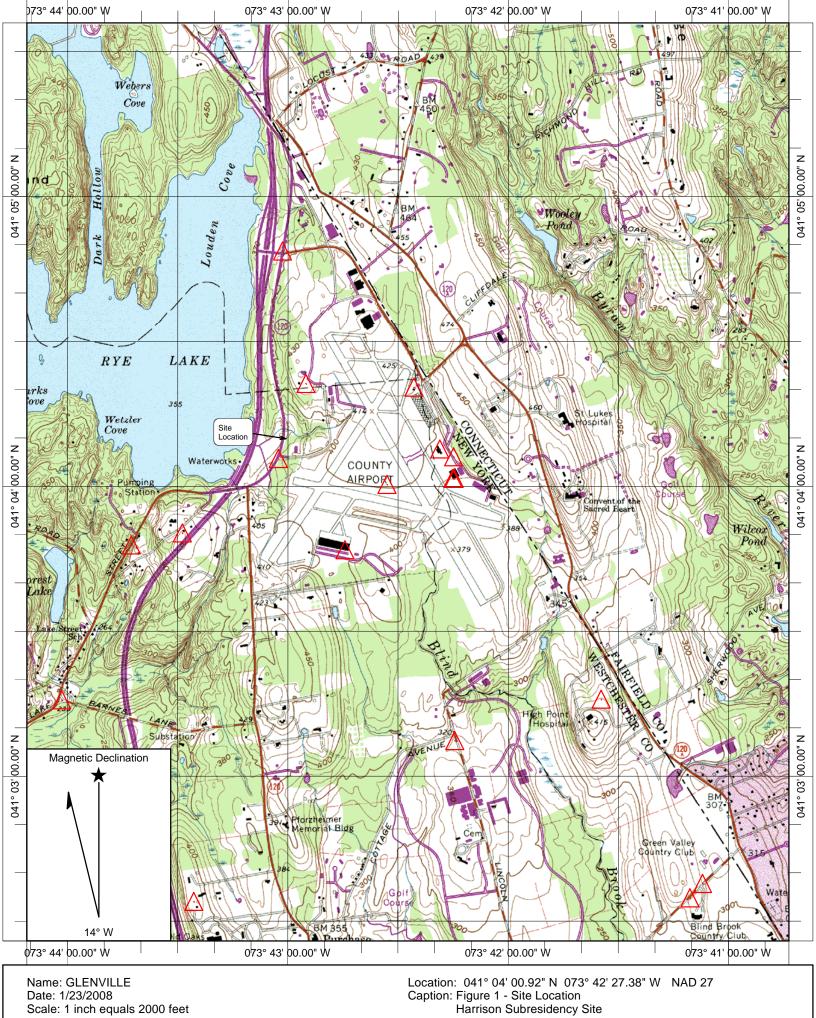
At the request of NYSDOT, HDR prepared graphs to coincide with the historical data presented in Attachment C to aid in the evaluation of trends in groundwater data over time. Findings were presented and discussed with NYSDOT on a conference call held on March 14, 2014.

With the exception of ORP, results obtained from the natural attenuation parameters analyzed suggest aerobic conditions may be present at the site. As seen in the past, BTEX results obtained from the down/sidegradient well, PC-1, are non-detect at the respective analytical reporting limits. BTEX concentrations at MW-11 are comparable to what has been observed over recent historic monitoring events. Although there have been slight increases or decreases over time, the concentrations suggest a stable plume. NYSDOT will continue to monitor the remaining Spill site wells on a fifth-quarterly basis.

If you have any questions or need additional information, please do not hesitate to contact me.

Very truly yours,

Melissa E. LaMacchia


Associate | Project Manager

Melapanha

cc: G. Fitzgerald, NYSDOT Region 8

Attachments

FIGURES

Monitoring well location

NOTE:

Monitoring Well PC-1 is located north of the site within the Landfill Area Source: NYSDOT

\M\Graphics\\\HarrisonGarageFigure_Rev15Dec08.des

Henningson, Durham & Richardson Architecture and Engineering, P.C. One Blue Hill Plaza Pearl River. NY 10965

Spill Site Monitoring Well Locations

NYSDOT • Harrison, NY

Figure 2

TABLES

TABLE 1

GROUNDWATER DATA SUMMARY Fifth Quarter Sampling - Harrison Spill Site October 2013

		Downgradien	t/Sidegradient	Duplicate		NYSDEC
	Upgradient			PC-1		Class GA
PARAMETER	MW-1	MW-11	PC-1	DMW-5-10232013	Trip Blank	Standards (a
	*	10/23/2013	10/23/2013	10/23/2013	10/23/2013	
Volatile Organic Compounds (ug/l)						
Benzene	*	2.7	ND	ND	ND	1
Ethylbenzene	*	24	ND	ND	ND	5
Toluene	*	1.2	ND	ND	ND	5 5
m&p-Xylenes	*	6.2	ND	ND	ND	5
o-Xylenes	*	2.4	ND	ND	ND	5
Total BTEX	*	36.5	ND	ND	ND	100
Methyl tert butyl ether (MTBE)	*	•	ND	ND	ND	50 GV
Metals (ug/l)						
Iron	*	4100	ND	ND	•	300
Manganese	*	3600	740	730	•	300
Natural Attenuation Parameters (mg/l)						
Total Alkalinity	*	290	190	•	•	NS
Bicarbonate Alkalinity	*	290	190	•	•	NS
Nitrate	*	ND	ND	•	•	10
Sulfate	*	3.5	21	•	•	250
Field Parameters						
Temperature (°C)	*	14.6	14.96	NA	•	NS
Hq	*	6.96	6.84	NA	•	NS
Specific conductivity (uS)	*	0.998	0.85	NA	*	NS
Oxidation-Reduction Potential (mV)	*	-14	-12	NA	•	NS
Dissolved Oxygen (mg/l)	*	8.3	3.11	NA	•	NS
Turbidity (NTUs)	*	45.1	2.0	NA	•	NS

GV - Guidance value.

Notes:

Not analyzed.

NS - No standard.

ND - Not detected.

NA - Not applicable.

^{*}Montoring wells and Piezometers have been properly closed and abandoned. Therefore they were not sampled.

ATTACHMENT A SAMPLING LOGS

Well Sampling Log

Well Casing Type: 2" PVC Start SWL: 12.76 Project: Harrison Landfill and Spill

Well ID No.: MW-11

Well Depth*:17.7Water Column Ht.:Date: 10/23/2013Screened Interval:n/aWell Volume (gallons):4.6Crew: AW/KH

Well Elevation*: n/a SWL During Sampling: Purge Method: Whale Pump

Ground Elevation: n/a Sample Time: 14:55 PID Head Space (ppm):

Well Condition: Good Sample Method: Bailer Meters Used: Horiba U-52, Turbidity Meter

Weather Conditions: 50's overcast Sample Analyses: BTEX + MTBE and natural attenuation parameters

Time	Est. Gallons Purged	Purge Rate (gpm)	Temp. (Co)	pН	ORP (mV)	Cond. (mS/m)	Turbidity (NTU)	D.O. (mg/L)	TDS (g/L)	Salinity (%)	Depth to Water*	Comments
1405	0		14.02	6.80	-37	1.39	66.0	4.67	0.850	0.7		
1406	1		14.40	6.92	-71	1.28	42.1	4.64	0.796	0.6		
1407	2		14.60	6.86	-74	0.998	45.1	8.30	0.602	0.5		Dry after 2 gallons

Comments:

Slight petroleum odor

Notes: NM - No measurement

^{* -} Measurement taken from top of well casing

HOR

Well Sampling Log

Well Casing Type: 2" PVC Start SWL: 7.82 Project: Harrison Landfill and Spill

Well ID No.: PC-1

Well Depth*:16.338.51Date: 10/23/2013Screened Interval:n/aWell Volume (gallons):7.9Crew: AW/KHWell Elevation*:n/aSWL During Sampling: n/aPurge Method: Whale Pump

Well Elevation*: n/a SWL During Sampling: n/a Purge Method: What Ground Elevation: n/a Sample Time: 12:50 PID Head Space (ppm): n/a

Well Condition: Lock eyelit damaged Sample Method: Bailer Meters Used: Horiba U-52

Weather Conditions: 50's overcast Sample Analyses: VOC + MTBE, SVOC, Metals (fi p--0

Time	Est. Gallons Purged	Purge Rate (gpm)	(Ca)	pН	ORP (mV)	Cond. (mS/m)	Turbidity (NTU)	D.O. (mg/L)	TDS (g/L)	Salinity (%)	Depth to Water*	Comments
11:42	0		14.38	6.53	-45	0.879	49	5.51	0.547	0.4		
11:44	3		14.95	6.57	-9	853.000	40	4.92	0.611	0.4		
11:47	6		14.79	6.77	-23	0.904	21	4.86	0.580	0.4		
11:52	8		14.96	6.84	-12	0.850	2.0	3.11	0.590	0.5		

Comments:

Notes: NM - No measurement

^{* -} Measurement taken from top of well casing

ATTACHMENT B LABORATORY ANALYTICAL DATA PACKAGES

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Project: NYSDOT-Harrison

Client PO: Not Available

Report To: HDR

One Blue Hill Plaza P.O. Box 1509

Pearl River, NY 10965

Attn: Melissa LaMaccha

Received Date: 10/24/2013

Report Date: 11/21/2013

Deliverables: NYDOH-CatA

Lab ID: AC75324

Lab Project No: 3102406

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Robin Cousineau - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

NJ (07071) PA (68-00463) NY (ELAP11408) KY (90124) CT (PH-0671)

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 122

HCV Case Narrative

Client: HDR HCV Project: 3102406

Project: NYSDOT-Harrison

Hampton-Clarke/Veritech (HC·V) received the following samples on October 24, 2013:

Client ID	HCV Sample ID	<u>Matrix</u>	<u>Analysis</u>
TB-10232013	AC75324-001	Aqueous	VO (624)
DMW-5-10232013 U	AC75324-002	Aqueous	VO (624), BNA (625), Chloride (300.0)
DMW-5-10232013 F	AC75324-003	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
PC-1-10232013 U	AC75324-004	Aqueous	VO (624), BNA (625), Chloride, Nitrate, Sulfate (300.0), Alkalinity
			(SM2320B)
PC-1-10232013 F	AC75324-005	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
LMW-4-10232013 U	AC75324-006	Aqueous	VO (624), BNA (625), Chloride (300.0)
LMW-4-10232013 F	AC75324-007	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
PC-2-10232013 U	AC75324-008	Aqueous	VO (624), BNA (625), Chloride (300.0)
PC-2-10232013 F	AC75324-009	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
LMW-2-10232013 U	AC75324-010	Aqueous	VO (624), BNA (625), Chloride (300.0)
LMW-2-10232013 F	AC75324-011	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)
MW-11-10232013 U	AC75324-012	Aqueous	BTEX (624), Nitrate, Sulfate (300.0), Alkalinity (SM2320B)
MW-11-10232013 F	AC75324-013	Aqueous	Metals (200.7)
PC-3-10232013 U	AC75324-014	Aqueous	VO (624), BNA (625), Chloride (300.0)
PC-3-10232013 F	AC75324-015	Aqueous	Metals (200.7/200.8/245.1), Cyanide (335.4)

Volatile Organic Analysis:

The Matrix Spike and Matrix Spike Duplicate for batches 5034 and 31163 recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

Base Neutral/Acid Extractable Analysis:

Sample AC75324-010 was analyzed at a 5X dilution due to high concentration of non-target analytes.

Samples AC75324-004, 006, 008, 010, 014, WMB29082 and MS had surrogate recoveries outside QC limits, but the recoveries are greater than 10%, therefore, no corrective action was necessary.

Metals Analysis:

The serial dilution for batch 27348 is outside QC limits for one or more analytes, suggesting matrix interference.

Samples AC75324-003, 005, 007, 009, 011, 013 and 015 were filtered and preserved in the laboratory per clients request.

Wet Chemistry Analysis:

The Matrix Spike and Matrix Spike Duplicate for batches 5066 and 5067-Chloride recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

The Matrix Spike for batch 5066-Slfate recovered outside QC limits. However, since the associated Method Blank and Laboratory Control Sample were within control, no corrective action was necessary.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Robin Cousineau (

Or

11/22/2013

Date

Quality Assurance Director

. .

Stanley Gilewicz Laboratory Director

Sampler (print name): Κηριτω) Wook Δε Date: 1913 13 lease note NUMBERED items. If not completed your analytical work may be delayed.	Date ur analytical	ted yo	₹/\ omple	not oc	ms. If	RED ite	name): JMBEF	er (print	Samp lease i	<u>ت</u> او													
0,000							roject	NJ LSRP Project	Z			١.											
Cooler Temperature				ช "	Project-Specific Reporting Limits High Contaminant Concentrations	eportin Conce	minant	ect-Sp	L Fig.			7					1					18	Additierial Notes
			•	άA	inetais-301 (ICF-INS 6020 to be & Ag) Check if applicable:	:	icable:	Check if applicable:	ا∵ل	Note	040		de		\nearrow	/X	1			1		62	7
			٤	, 0 >	6020)	Metals (ICP-MS 200.8 or 6020)	MS 2		¥ € S	+	0150	/3	142/01	(_			}	A	1		SW	Mac	lank 1
MUKIS + CV.	to to Ma	4	لما	×	>	BN or BNA (8270C SIM)	BN or BNA (8270C SIM)	or BN/	_L S ₽	+	हे	4	(1)(2)	10	3	1			8	27		7	The Contract
Note: Check if low-level groundwater methods required to meet current standards in NJ or PA:	t current stand	to mee	quired	ods re	ter meth	bundwa	evel gro	< if low-	e: Chec	Not	3		3	<u>'</u>	1	1				5		7	28/
RDS	ments, HAZA	equirer	ial Re	Spec	Notes,	ments.	Com				Time	_	Date	_		Ĭ Ĭ	Accepted by	Acc				red by:	10)Relinguished by:
																		i					
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\downarrow								#	-						O ,	C	<u>ح</u> 6	5			
		S			0	()					*	8	٨	K	۲	ァ	🕏	13 15.15	23/3	3	10232013	PC-3-1	Staffile
		W			7		×	ĸ	א	×		+-			9/	K	120	Hos HSS		35	10232013	MW - 11 -	012/013
		Ç,			2					-	×	*	*	¥	۲,	х	6	13 1340	10/23/13	30	10232013	2. MM?	010/011
100		w			5	10					×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	۸	х	×	~	1335		(0/23/13	S.	10232013	br-5.	008/009
		٧.			4						7	*	×	×	×	×	6	1310	10/23/13	200	10132613	- H- MM-	
		w			9	_		×	ĸ	x	×	*	×	٦	×	×	S	ים ועצם	10/23/13	30	10232013	PC-1.	sou/pos
		5			٧	ie					×	×	×	×	×	~	30	13 1230		Gw	- 10232cl3	DMW-5	002/003
		63													×	×	1200 >	 	1923/13	36	B-10232013	TB-10	8
9)Comments	HNO	HCI H2S	NaC	En	Me		V	۶.	†	H	†	-		10	T	<u> </u>	Time	╁		Matrix	4) Customer Sample ID	4) Cust	Lab Sample #
	D3		Н	Core)C	, 16			110.			ال	باز	b (G)	nposi	6) Sample	6	5)			-
		les	8) # of Bottles	# Q			(BTEX O	k + N.	in h (tet	s (Dist. Fe	(ide	(Lis f. 1.	hetals (le	SVOC Z	VDC 10		(C)	ıments)	m 9, Con	SL - Sludge OL - Oil xify under ite	GW - Ground Water SL - Sludge WW - Waste Water OL - Oil OT - Other (please specify under item 9, Comments)	GW - G WW - W OT - Ot	Batch # ACT\324
							·4)	trati		+ M -		hr)		င		Sample Type	S	7	A - Air	Soil Soil	Matrix Codes DW - Drinking Water S - Soil	DW - D	← N N N N
		ingent	Cont	eck if	<=== Check If Contingent	Δ				<u> </u>		-				(===>	ntingen	Check If Contingent ===>	읎				USE
									est	Requ	7) Analysis Request	7)A											FOR LAB
Please Check with Lab.		ays Avai	ot Alwa	TATN	Expedited TAT Not Always Available.							2											
Other:						"	Other:						cable):	2d) Quote/PO # (If Applicable):	te/PO#	d) Quo	2					to:	1d) Send Report to:
PDF		<u>.</u>	Other:			Weeks	(N)												Chia	March o	Melissa 6	to:	1c) Send Invoice to:
Excel - PA Regulatory		Category A	Cat		まり	Days (104) F	1		7	ر الا	Herrison	F	2c) Project Location (City/State):	tion (Cit	ect Loca	c) Proj	2		Q	-6300	735		1b) Email/Cell/Fax/Ph:
Excel - NY Regulatory	Jory B	Full / Category B	<u>(</u>		6; EPH)	1 Week (25%; EPH)	1 We			4.5	LinMacchis		1.37	ı	2b) Project Mgr.	b) Proj	2		CY	2	7	Paul f	
Excel - NJ Regulatory			CLP		TPH)	4 Days (35%; TPH)	4 Da												cloor	_	e fill P12 /121	- Blue	Address:
EQuIS EPA Region 2 or 5	NY / PA	Red - NJ / NY / PA	٦ ed		<u>%</u>	72 Hours (50%)	72 H				Harrison	- [MYSDOT	JSYN -	ec t.	2a) Project:	<u>,,</u>			100	li li	AGE V	1a) Customer:
FOINS 4-File / F7 / NYS	idiy		Waste		\$\$\text{\$\ext{\$\text{\$\exitting{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{	48 Hours (75%)	48 H		ļ		ation	nform	Project Information			-	_	.		3	Customer Information	2	
Hazsite/CSV	narv	Data Summary			0%)	24 Hours (100%)	24 H		ŀ)124	マ き	7H-0671	CT#	Y #11408)0463 N	PA #68-	J #07071	NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124	001	
Electronic Deliv.	t Type	Report Type			ound .	Turnaround		1	terprise	iness Er	mall Bus	taged, S	A Women-Owned, Disadvantaged, Small Business Enterprise	Owned,	Women	A		08004	W Jersey 780-6056	urei, Ne	Service Center: 137-D Gattrier Drive, Mount Laurel, New Jersey 08034 Ph (Service Center): 856-780-6057 Fax: 856-780-6056	(Service Cent	Service Ce
e Circle)	3)Reporting Requirements (Please Circle)	quiren	ng R	porti	<u>ع</u> (د				Ō	COR	ᇛ			ARKE VERITECH	ONCLÁRKE	HAMPTONCL		-1458	973-439	44-9787	Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458	26-9992 973-	Ph: 800-4;
/ of	Page_		0	24	3/02406			Y	STO	FCU	CHAIN OF CUSTODY	CH/		Ż		Ι		07004	w Jersey	field, Ne	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004	oute 46 West and	175 Route

PROJECT MODIFICATIONS

Client: HDR/LMS

HCV Project #: 3102406

Project: NYSDOT-Harrison

maureen192.168.1.87 11/22/2013 11:49:25 AM

Deliverables are NYDOH-Cat A per quote. MS 11/22/13

CONDITION UPON RECEIPT

Batch Number AC75324

Entered By: Ricardo

Date Entered 10/	24/2013 11:36:00 AN
------------------	---------------------

		Date Entered 10/24/2013 11:36:00 AM
1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 3.0.2.0
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC75324

Entered By: Ricardo

Date Entered 10/24/2013 11:36:00 AM

Lab#:	Container Siz	Container Typ	Parameter	Preservative	PH
AC75324-001	40ml	G	VO	HCL	1
AC75324-002	40ml	G	VO	HCL	1
AC75324-003	NA	NA	NA	NA	NA
AC75324-004	40ml	G	VO	HCL	1
AC75324-005	NA	NA	NA	NA	NA
AC75324-006	40ml	G	VO	HCL	1
AC75324-007	NA	NA	NA	NA	NA
AC75324-008	40ml	G	VO	HCL	1
AC75324-009	NA	NA	NA	NA	NA
AC75324-010	40ml	G	VO	HCL	1
AC75324-011	NA	NA	NA	NA	NA
AC75324-012	40ml	G	VO	HCL	1
AC75324-013	NA	NA	NA	NA	NA
AC75324-014	40ml	G	VO	HCL	1
AC75324-015	NA	NA	NA	NA	NA

Internal Chain of Custody

Lab#: AC75324-001 AC75324-001 AC75324-001 AC75324-001 AC75324-001 AC75324-001	DateTime: 10/24/13 10:40 10/24/13 11:34 10/24/13 18:11	Loc or User		A/ M	Analysis	Lab#:	DateTime:	or User	Bot Nu		Analysis
AC75324-001 AC75324-001 AC75324-001 AC75324-001 AC75324-001	10/24/13 10:40 10/24/13 11:34	RICAR		М	Analysis	Lab#:	DateTime:	User	Nu	М	Analusia
AC75324-001 AC75324-001 AC75324-001 AC75324-001	10/24/13 11:34		T		rangolo						Analysis
AC75324-001 AC75324-001 AC75324-001			0	М	Received	AC75324-006	10/28/13 10:06	R31	5	Α	NONE
AC75324-001 AC75324-001	10/24/13 18:11	RICAR	0	м	Login	AC75324-006	10/28/13 13:51	SG	5	Α	VOA
AC75324-001		R31	1	Α	NONE	AC75324-006	10/24/13 18:11	R31	6	Α	NONE
-	10/25/13 13:59	WP	1	Α	voa	AC75324-007	10/24/13 10:40	RICAR	0	М	Received
AC75324-001	10/24/13 18:11	R31	2	Α	NONE	AC75324-007	10/24/13 11:34	RICAR	0	М	Login
1	10/24/13 18:11	R31	3	Α	NONE	AC75324-007	10/24/13 12:12	R12	1	Α	NONE
AC75324-002	10/24/13 10:40	RICAR		М	Received	AC75324-007	10/29/13 09:12	ANTH	1	Α	cn-w
AC75324-002	10/24/13 11:34	RICAR	0	M	Login	AC75324-007	10/29/13 12:57	R12	1	A	NONE
AC75324-002	10/24/13 12:12		1	Α	NONE	AC75324-007	10/24/13 12:12	R12	2	Α	NONE
AC75324-002	10/30/13 09:31	DYR/JI		Α	BNA	AC75324-007	10/25/13 11:17	JU	2	Α	FILTER
AC75324-002	10/24/13 12:12		2	Α	NONE	AC75324-007	10/25/13 16:14	R12	2	Α	NONE
AC75324-002	10/30/13 09:31	DYR/JI	1 -	Α	BNA	AC75324-007	11/05/13 11:26	JU	2	Α	tdwi-hg
AC75324-002	10/30/13 09:50		2	Α	NONE	AC75324-007	11/05/13 12:41	R12	2	Α	NONE
AC75324-002	10/24/13 12:12	R12	3	Α	NONE	AC75324-008	10/24/13 10:40	RICAR		M	Received
AC75324-002	10/24/13 13:07	JW	3	A	IC NONE	AC75324-008	10/24/13 11:34	RICAR	i	M	Login
AC75324-002	10/24/13 17:38	R12	3	A	NONE	AC75324-008	10/24/13 12:12	R12	1	Α	NONE
AC75324-002 AC75324-002	10/30/13 15:27	JW	3	A	IC NONE	AC75324-008	10/30/13 09:31	DYR/JI	ł	A	BNA
AC75324-002 AC75324-002	10/30/13 16:25 10/24/13 18:11	R12 R31	3	A	NONE NONE	AC75324-008	10/24/13 12:12		2	A	NONE
AC75324-002 AC75324-002			5	A	NONE	AC75324-008	10/24/13 12:12	R12		A	NONE
AC75324-002 AC75324-002	10/24/13 18:11 10/25/13 18:06	R31 WP	5	A	voa	AC75324-008 AC75324-008	10/24/13 13:07 10/24/13 17:38	JW R12	3	A	IC NONE
AC75324-002 AC75324-002	10/28/13 10:06	R31	5	A	NONE	AC75324-008 AC75324-008	10/24/13 17:38	R31	4	A	NONE
AC75324-002 AC75324-002	10/28/13 10:06	SG	5	A	VOA	AC75324-008	10/24/13 18:11	R31	5	A	NONE
AC75324-002 AC75324-002	10/24/13 18:11		6	A	NONE	AC75324-008	10/25/13 18:06	WP	5	A	voa
AC75324-002 AC75324-003	10/24/13 10:40	RICAR		м	Received	AC75324-008	10/28/13 10:06	R31	5	A	NONE
AC75324-003	10/24/13 11:34	RICAR	1	M	Login	AC75324-008	10/28/13 13:51	SG	5	A	VOA
AC75324-003	10/24/13 12:12	R12	1	A	NONE	AC75324-008	10/24/13 18:11	R31	6	A	NONE
AC75324-003	10/28/13 10:33	ANTH	1	A	CN-W	AC75324-009	10/24/13 10:40	RICAR	1	м	Received
AC75324-003	10/28/13 16:14	R12	1	Α	NONE	AC75324-009	10/24/13 11:34	RICAR		м	Login
AC75324-003	10/24/13 12:12	R12	2	Α	NONE	AC75324-009	10/24/13 12:12	R12	1	Α	NONE
AC75324-003	10/25/13 11:17	JU	2	Α	FILTER	AC75324-009	11/05/13 11:26	JU	1	Α	tdwi-hg
AC75324-003	10/25/13 16:14	R12	2	Α	NONE	AC75324-009	11/05/13 12:41	1	1	Α	NONE
AC75324-003	11/05/13 11:26	JU	2	Α	tdwi-hg	AC75324-009	10/24/13 12:12		2	Α	NONE
AC75324-003	11/05/13 12:41	R12	2	Α	NONE	AC75324-009	10/29/13 09:12	ANTH	2	Α	cn-w
AC75324-004	10/24/13 10:40	RICAR	0	м	Received	AC75324-009	10/29/13 12:57	R12	2	Α	NONE
AC75324-004	10/24/13 11:34	RICAR	0	М	Login	AC75324-010	10/24/13 10:40	RICAR	0	м	Received
AC75324-004	10/24/13 12:12	R12	1	Α	NONE	AC75324-010	10/24/13 11:34	RICAR	0	м	Login
AC75324-004	10/24/13 12:12	R12	2	Α	NONE	AC75324-010	10/24/13 12:12	R12	1	Α	NONE
AC75324-004	10/30/13 09:31	DYR/J	2	Α	BNA	AC75324-010	10/24/13 12:12	R12	2	Α	NONE
AC75324-004	10/24/13 12:12	R12	3	Α	NONE	AC75324-010	10/30/13 09:31	DYR/J	1 2	Α	BNA
AC75324-004	10/24/13 13:07	JW	3	Α	IC	AC75324-010	10/24/13 12:12	R12	3	Α	NONE
AC75324-004	10/24/13 17:38	R12	3	Α	NONE	AC75324-010	10/24/13 13:07	JW	3	Α	IC
AC75324-004	10/30/13 15:27	JW	3	Α	IC	AC75324-010	10/24/13 17:38	R12	3	Α	NONE
AC75324-004	10/30/13 16:25	R12	3	Α	NONE	AC75324-010	10/24/13 18:11	R31	4	Α	NONE
AC75324-004	10/24/13 12:12	R12	4	Α	NONE	AC75324-010	10/24/13 18:11	R31	5	Α	NONE
AC75324-004	10/29/13 15:20	JW	6	Α	ALKALINITY	AC75324-010	10/25/13 18:06	WP	5	Α	voa
AC75324-004	10/29/13 17:15		6	Α	NONE	AC75324-010	10/28/13 10:06	R31	5	Α	NONE
AC75324-004	10/24/13 18:11		7	Α	NONE	AC75324-010	10/28/13 13:51	SG	5	Α	VOA
AC75324-004	10/24/13 18:11	R31	8	Α	NONE	AC75324-010	10/24/13 18:11	R31	6	Α	NONE
AC75324-004	10/25/13 18:06	WP	8	Α	voa	AC75324-011	10/24/13 10:40	RICAR	i	М	Received
AC75324-004	10/28/13 10:06	R31	8	Α	NONE	AC75324-011	10/24/13 11:34	RICAR		M	Login
AC75324-004	10/28/13 13:51	SG	8	A	VOA	AC75324-011	10/24/13 12:12		1	A	NONE
AC75324-004	10/24/13 18:11	R31	9	A	NONE	AC75324-011	10/25/13 11:17	JU	1	A	FILTER
AC75324-005	10/24/13 10:40	RICAR		M	Received	AC75324-011	10/25/13 16:14	R12	1	A	NONE
AC75324-005	10/24/13 11:34	RICAR		M	Login	AC75324-011	11/05/13 11:26	JU	1	A	tdwi-hg
AC75324-005	10/24/13 12:12	1	1	A	NONE	AC75324-011	11/05/13 12:41	R12	1	A	NONE
AC75324-005	10/28/13 10:33	ANTH B12		A	CN-W	AC75324-011	10/24/13 12:12	R12	2	A	NONE
AC75324-005	10/28/13 16:14	1	1	A	NONE	AC75324-011	10/29/13 09:12	ANTH		A	cn-w
AC75324-005	10/24/13 12:12	1		A	NONE	AC75324-011	10/29/13 12:57		2	A	NONE
AC75324-005	10/24/13 12:12	R12 JU	3	A	NONE	AC75324-012	10/24/13 10:40	RICAR		M	Received
AC75324-005 AC75324-005	10/25/13 11:17 10/25/13 16:14			A	FILTER NONE	AC75324-012	10/24/13 11:34	RICAR B12		M	Login
AC75324-005 AC75324-005	10/25/13 16:14 11/05/13 11:26		3	A		AC75324-012 AC75324-012	10/24/13 12:12		1	A A	NONE IC
AC75324-005 AC75324-005	11/05/13 11:26		3	A	tdwi-hg NONE	AC75324-012 AC75324-012	10/24/13 13:07 10/24/13 17:38	JW R12	1	A	NONE
AC75324-005 AC75324-006	10/24/13 10:40	RICAR		м	Received	AC75324-012	10/30/13 15:27	JW	1	A	IC
AC75324-006 AC75324-006	10/24/13 10:40	RICAR		М	Login	AC75324-012	10/30/13 16:25	R12	1	A	NONE
AC75324-006	10/24/13 11:34	1	1	A	NONE	AC75324-012	10/30/13 16:25	JW	2	A	ALKALINITY
AC75324-006	10/24/13 12:12	1		A	NONE	AC75324-012 AC75324-012	10/29/13 15:20		2	A	NONE
AC75324-006	10/30/13 09:31	DYR/JI		A	BNA	AC75324-012	10/24/13 18:11	R31	4	Â	NONE
AC75324-006 AC75324-006	10/24/13 12:12	1	3	A	NONE	AC75324-012	10/24/13 18:11		5	A	NONE
AC75324-006	10/24/13 13:07		WHITE COLUMN TWO	A	IC	AC75324-012	10/25/13 18:06		5	A	voa
AC75324-006	10/24/13 17:38	1		A	NONE	AC75324-012	10/28/13 10:06	1 3	5	A	NONE
AC75324-006	10/24/13 17:30			A	NONE	AC75324-012	10/28/13 13:51	SG	5	A	VOA
AC75324-006	10/24/13 18:11		5	A	NONE	AC75324-012	10/24/13 18:11		6	A	NONE
AC75324-006	10/25/13 18:06	1	5	A	voa	AC75324-013	10/24/13 10:40	RICAR		-	Received
					oolers or refrigerator R12, or R24				-	1	

Internal Chain of Custody

	, — appa ve-	T.	т	_)	·	1.			
		Loc	D-4	١,,					Loc	D . (
Lab#:	DateTime:	or User	Bot		Analysis		Lab#:	DateTime:	or	Bot		Analysis
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						Lab#.	Date linie.	User	Nu	IVI	Analysis
AC75324-013	10/24/13 11:34	RICAR	0	М	Login							
AC75324-013	10/24/13 12:12	R12	1	Α	NONE							
AC75324-013	10/25/13 11:17	JU	1	Α	FILTER							
AC75324-013	10/25/13 16:14		1	Α	NONE							
AC75324-013	11/05/13 11:26	JU	1	Α	tdwi-hg							
AC75324-013	11/05/13 12:41	R12	1	Α	NONE							
AC75324-014	10/24/13 10:40	RICAR	0	М	Received							
AC75324-014	10/24/13 11:34	RICAR	0	М	Login							
AC75324-014	10/24/13 12:12	R12	1	Α	NONE							
AC75324-014	10/24/13 12:12	R12	2	A	NONE							
AC75324-014	10/30/13 09:31	DYR/J	1 2	Α	BNA							
AC75324-014	10/24/13 12:12	R12	3	Α	NONE							
AC75324-014	10/24/13 13:07	JW	3	Α	IC							
AC75324-014	10/24/13 17:38	R12	3	Α	NONE	4						
AC75324-014	10/30/13 15:27	JW	3	Α	IC							
AC75324-014	10/30/13 16:25	R12	3	Α	NONE							
AC75324-014	10/24/13 18:11	R31	4	Α	NONE							
AC75324-014	10/24/13 18:11	R31	5	Α	NONE							
AC75324-014	10/25/13 18:06	WP	5	A	voa							
AC75324-014	10/28/13 10:06	R31	5	Α	NONE							
AC75324-014	10/28/13 13:51	SG	5	Α	VOA							
AC75324-014	10/24/13 18:11	R31	6	Α	NONE							
AC75324-015	10/24/13 10:40	RICAR	0	М	Received							
AC75324-015	10/24/13 11:34	RICAR	0	M	Login							
AC75324-015	10/24/13 12:12	R12	1	Α	NONE							
AC75324-015	10/25/13 11:17	JU	1	Α	FILTER							
AC75324-015	10/25/13 16:14	R12	1	Α	NONE							
AC75324-015	11/05/13 11:26	JU	1	Α	tdwi-hg							
AC75324-015	11/05/13 12:41	R12	1	Α	NONE							
AC75324-015	10/24/13 12:12	R12	2	Α	NONE		1					
AC75324-015	10/29/13 09:12	ANTH	2	Α	cn-w	7	į .					
AC75324-015	10/29/13 12:57	ALTERNATION OF THE	2	Α	NONE							

Client: HDR

HCV Project #: 3102406

Project: NYSDOT-Harrison

Lab#: AC75324-001

Sample ID: TB-10232013

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Volatile Organics + 10 (624)	EPA 624	***		EPA 624	10/25/13 20:57	WP

Lab#: AC75324-002

Sample ID: DMW-5-10232013 U

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Chloride (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 20:35	Janee
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/30/13 17:51	AHD/JB
Volatile Organics + 10 (624)	EPA 624	•		EPA 624	10/29/13 00:39	SG

Lab#: AC75324-003

Sample ID: DMW-5-10232013 F

	Prep	Prep		Analytical	Analysis	
Test Code	Method	<u>.</u> Date	Ву	Method	Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10/28/13	Anthony	EPA 335.4	10/28/13 15:52	af
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:27	OA
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 17:56	SRB
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:02	SRB
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:28	GK

Lab#: AC75324-004

Sample ID: PC-1-10232013 U

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
Alkalinity-Total (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
Chloride (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 19:45	Janee
Nitrate-N (Water) 300.0		10/24/13	Janee	300.0 rev2.1	10/24/13 17:45	Janee
o-Alkalinity		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/30/13 18:58	AHD/JB
Sulfate (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 18:03	Janee
Volatile Organics + 10 (624)	EPA 624			EPA 624	10/28/13 22:49	SG

Client: HDR

**HCV Project #:** 3102406

Project: NYSDOT-Harrison

Lab#:	AC75324-005	Sample ID:	PC-1-10232013 F
Laum.	AC13324-003	Sample ID.	FC-1-10232013 F

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10/28/13	Anthony	EPA 335.4	10/28/13 15:54	af
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:28	OA
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:00	SRB
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:06	SRB
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:31	GK

Lab#: AC75324-006 Sample ID: LMW-4-10232013 U

Test Code	Prep Method	-	Prep Date	Ву	Α	nalytical Method	Analysis Date	Ву
Chloride (Water) 300.0		:	10/24/13	Janee		300.0 rev2.1	10/24/13 19:52	Janee
Semivolatile Organics + 25 (625)	EPA 625	•	10/30/13	dyr		EPA 625	10/31/13 16:23	AHD/JB
Volatile Organics + 10 (624)	EPA 624					EPA 624	10/28/13 23:08	SG

Lab#: AC75324-007 Sample ID: LMW-4-10232013 F

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 14:56	af
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:30	OA
ΓAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:04	SRB ·
ΓAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:09	SRB
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:35	GK.

Lab#: AC75324-008 Sample ID: PC-2-10232013 U

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0		10/24/13	Janee	300.0 rev2.1	10/24/13 20:18	Janee
Semivolatile Organics + 25 (625)	EPA 625	10/30/13	dyr	EPA 625	10/30/13 19:42	AHD/JB
Volatile Organics + 10 (624)	EPA 624			EPA 624	10/28/13 23:26	SG

Client: HDR

HCV Project #: 3102406

Project: NYSDOT-Harrison

Lab#: AC75324-009	Sample ID: PC-2-10232013 F	

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 14:58	af
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:35	OA
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:09	SRB
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:12	SRB
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:45	GK

Lab#: AC75324-010	Sample ID: LMW-2-10232013 U	100

Test Code	Prep Method	£	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0			10/24/13	Janee	300.0 rev2.1	10/24/13 20:43	Janee .
Semivolatile Organics + 25 (625)	EPA 625	1	10/30/13	dуr	EPA 625	10/31/13 20:28	AHD/JB
Volatile Organics + 10 (624)	EPA 624				EPA 624	10/28/13 23:45	SG

Lab#: AC75324-011	Sample ID: LMW-2-10232013 F	
	The state of the s	

	Prep	P	rep		Analytical	Analysis	
Test Code	Method	D	ate	Ву	Method	Date	Ву
Cyanide-Water (EPA 335.4)	EPA 335.4	10	0/29/13	Anthony	EPA 335.4	10/29/13 15:00	af
Mercury (Water) 245.1	245.1 rev3.0	; 11	1/05/13	Julijana	245.1 rev3.0	11/7/13 12:36	OA
TAL Metals 200.7	EPA 200.2	11	1/05/13	Julijana	EPA 200.7	11/6/13 23:14	SRB
TAL Metals 200.7	EPA 200.2	11	1/05/13	Julijana	EPA 200.7	11/6/13 18:14	SRB
TAL Metals 200.8	EPA 200.2	11	1/05/13	Julijana	EPA 200.8	11/6/13 17:48	GK

Lab#: AC75324-012	Sample ID: MW-11-10232013 U	

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Alkalinity-Bicarbonate (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
Alkalinity-Total (SM2320B-97)		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
BTEX (624)	EPA 624			EPA 624	10/29/13 00:03	SG
Nitrate-N (Water) 300.0		10/24/13	Janee	300.0 rev2.1	10/24/13 19:01	Janee
p-Alkalinity		10/29/13	JW	SM2320B-97	10/29/13 00:00	JW
Sulfate (Water) 300.0		10/30/13	Janee	300.0 rev2.1	10/30/13 19:19	Janee

Project #: 3102406 Page 3 of 4

Client: HDR

HCV Project #: 3102406

Project: NYSDOT-Harrison

Lab#: AC75324-013

Sample ID: MW-11-10232013 F

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Metals Pair 200.7	EPA 200.2	11/05/13	Julijana	200.7	11/6/13 18:18	SRB

Lab#: AC75324-014

Sample ID: PC-3-10232013 U

Test Code	Prep Method		Prep Date	Ву	Analytical Method	Analysis Date	Ву
Chloride (Water) 300.0			10/30/13	Janee	300.0 rev2.1	10/30/13 21:01	Janee
Semivolatile Organics + 25 (625)	EPA 625	-	10/30/13	dyr	EPA 625	10/31/13 16:01	AHD/JB
Volatile Organics + 10 (624)	EPA 624				EPA 624	10/29/13 00:21	SG

Lab#: AC75324-015

Sample ID: PC-3-10232013 F

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Cyanide-Water (EPA 335.4)	EPA 335.4	10/29/13	Anthony	EPA 335.4	10/29/13 15:02	af	
Mercury (Water) 245.1	245.1 rev3.0	11/05/13	Julijana	245.1 rev3.0	11/7/13 12:38	OA	
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 18:40	SRB	
TAL Metals 200.7	EPA 200.2	11/05/13	Julijana	EPA 200.7	11/6/13 23:31	SRB	
TAL Metals 200.8	EPA 200.2	11/05/13	Julijana	EPA 200.8	11/6/13 17:52	GK	

Project #: 3102406

# **HCV Reporting Limit Definitions/Data Qualifiers**

## REPORTING DEFINITIONS

**DF** = Dilution Factor

**MDL** = Method Detection Limit

**RL*** = Reporting Limit

ND = Not Detected

**RT** = Retention Time

NA = Not Applicable

## **DATA QUALIFIERS**

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.

^{*}Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

# **HCV Report Of Analysis**

Client: HDR HCV Project #: 3102406

**Project:** NYSDOT-Harrison

Sample ID: TB-10232013 Lab#: AC75324-001

Lab#: AC75324-00 Matrix: Aqueous Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Volatile Organics + 10 (624)

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromochioromethane	1	ug/I	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND .
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	· 1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/I	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chioroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND

ple ID: TB-10232013 Lab#: AC75324-001 Matrix: Aqueous				Date: 10/23/2013 Date: 10/24/2013
trans-1,3-Dichloropropene	1	ug/i	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

## Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: DMW-5-10232013 U Lab#: AC75324-002

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Chloride (Water) 300.0

••	(				
	Analyte	DF	Units	RL	Result
	Chloride	5	mg/l	10	120

### Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/I	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/I	2.0	ND
2,4-Dimethylphenol	1	ug/I	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	. 1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/I	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	<u>'</u>	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	<u>'</u>	ug/l	2.0	ND
	1		2.0	ND
4-Chloro-3-methylphenol		ug/l	0.50	ND
4-Chloroaniline	1	ug/l	2.0	ND
4-Chlorophenyl-phenylether		ug/l	2.0	
4-Nitroaniline	1	ug/l		ND ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	. 1	ug/l	2.0	ND
Atrazine	. 1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/i	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	67
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND

-	DMW-5-10232013 U AC75324-002			Collection Date: Receipt Date:	
Matrix:	Aqueous				
	Di-n-octylphthalate	1	ug/l	2.0	ND
	Fluoranthene	1	ug/I	2.0	ND
	Fluorene	1	ug/l	2.0	ND
	Hexachlorobenzene	1	ug/l	2.0	ND
	Hexachlorobutadiene	1	ug/l	2.0	ND
	Hexachlorocyclopentadiene	1	ug/l	2.0	ND
	Hexachloroethane	1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
	Isophorone	1	ug/l	2.0	ND
	Naphthalene	1	ug/l	0.50	ND
	Nitrobenzene	1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine	1	ug/ł	0.50	ND
	N-Nitrosodiphenylamine	1	ug/i	2.0	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	1	ug/l	2.0	ND
	Phenol	. 1	ug/l	2.0	ND
	AND A STREET OF STREET AND A STREET AS A S	· ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		2.0	ND
	Pyrene		ug/l 	2.0	
;	Semivolatile Organics + 25 (625) Library Searc	hes			
	Analyte	DF	Units	RT	Result
	N-tert-Butyl-1-[(tert-butylimino)methyl	1	ug/l	11.74	9.6J
	Thiazole, 4-ethyl-2-propyl-	. 1	ug/l	13.7	4.6J
	unknown	1	ug/l	14.95	140J
	Cholest-5-en-3-ol (3.beta.)-	1	ug/l	15.13	6.3J
	unknown	1	ug/l	15.36	4.3J
	unknown	· : 1	ug/l	15.85	230J
	2-Propanol, 1-butoxy-	1	ug/l	5.17	8.5JB
	TotalSemiVolatileTic	1	_	NA NA	400J
		· · · · · · · · · · · · · · · · · · ·	ug/l		
,	Volatile Organics + 10 (624)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	· 1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	. 1	ug/l	1.0	ND
	1,1-Dichloroethene	. 1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
	1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
	1,2-Dibromo-3-Chloropropane	1		1.0	ND
			ug/l		ND ND
	1,2-Dichlorobenzene	1	ug/l	1.0 0.50	ND ND
	1,2-Dichloroethane		ug/l		
	1,2-Dichloropropane	1	ug/l	1.0	ND
		_	ug/l	1.0	ND
	1,3-Dichlorobenzene	1		4.0	
	1,3-Dichlorobenzene 1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane	1	ug/l ug/l	50	ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	1 1	ug/l ug/l ug/l	1.0	ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone	1	ug/l ug/l	1.0 1.0	ND ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	1 1	ug/l ug/l ug/l	1.0	ND ND ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone	1 1 1	ug/l ug/l ug/l	1.0 1.0	ND ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	1 1 1 1	ug/l ug/l ug/l ug/l	1.0 1.0 1.0	ND ND ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone	1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0	ND ND ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 10	ND ND ND ND ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 10 0.50	ND ND ND ND ND ND ND ND
	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane	1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50 1.0 1.0 1.0 10 0.50 1.0	ND

-	DMW-5-10232013 U AC75324-002					Date: 10/23/2013 Date: 10/24/2013
	Aqueous				Receipt	Date: 10/24/2013
	Carbon tetrachloride		1	ug/l	1.0	ND
	Chlorobenzene		1	ug/l	1.0	ND
	Chloroethane		1	ug/l	1.0	ND
	Chloroform		1	ug/i	1.0	ND
	Chloromethane	erren en alle automore. Arrore i versoni, en une de une en en en en	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene		1	ug/l	1.0	ND
	cis-1,3-Dichloropropene		1	ug/l	1.0	ND
	Cyclohexane		1	ug/l	1.0	ND
	Dibromochloromethane		1	ug/l	1.0	ND
	Dichlorodifluoromethane		1	ug/l	1.0	ND
	Ethylbenzene		1	ug/l	1.0	ND
	Isopropylbenzene	:	1	ug/l	1.0	ND
	m&p-Xylenes		1	ug/l	1.0	ND
	Methyl Acetate		1	ug/l	1.0	ND
	Methylcyclohexane		1	ug/l	1.0	ND
	Methylene chloride		1	ug/l	1.0	ND
	Methyl-t-butyl ether		1	ug/l	0.50	ND
	o-Xylene		1	ug/l	1.0	ND
	Styrene		1	ug/l	1.0	ND ·
	Tetrachloroethene		1	ug/l	1.0	ND
	Toluene	,	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene		1	ug/l	1.0	ND
	trans-1,3-Dichloropropene		1	ug/I	1.0	ND
	Trichloroethene		1	ug/l	1.0	ND
	Trichlorofluoromethane		1	ug/l	1.0	ND
	Vinyl chloride		1	ug/l	1.0	ND
	Xylenes (Total)		1	ug/l	1.0	ND .

# Volatile Organics + 10 (624) Library Searches

Analyte	•	DF	Units	RT	Result
No Unknown Compounds Detected		1	ug/l	NA	ND
TotalVolatileTic		1	ug/l	NA	ND

Sample ID: DMW-5-10232013 F

Lab#: AC75324-003

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

#### Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND

### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

### TAL Metals 200.7

Analyte		DF	Units	RL	Result
Aluminum		1	ug/l	100	ND
Barium	1	1	ug/l	25	84
Calcium	:	1	ug/l	1000	52000
Chromium		1	ug/l	25	ND
Cobalt	:	1	ug/l	10	ND
Copper		1	ug/l	25	ND
Iron		1	ug/l	150	ND
Magnesium		1	ug/l	1000	7900
Manganese		1	ug/l	25	730
Nickel	4	. 1	ug/l	10	ND
Potassium		1	ug/I	2500	4300
Selenium	*	1	ug/l	25	ND
Silver		1	ug/l	10	ND
Sodium		1	ug/I	2500	99000
Vanadium		1	ug/l	25	ND .
Zinc		1	ug/l	25	ND

#### TAL Metals 200.8

Analyte	5 4	DF	Units	RL	Result	
Antimony		1	ug/l	2.5	ND	
Arsenic		, 1	ug/l	1.0	ND	
Beryllium		1	ug/l	0.75	ND	
Cadmium		1	ug/l	1.0	ND	
Lead		1	ug/l	0.75	ND	
Thallium	• `	1	ug/l	1.5	ND	

Sample ID: PC-1-10232013 U Lab#: AC75324-004

Matrix: Aqueous

Collection Date: 10/23/2013

Receipt Date: 10/24/2013

Analyte	DF	Units	RL	Result
Alkalinity	1	mg/l	10	190
Alkalinity-Total (SM2320B-97)				
Analyte	DF	Units	RL	Result
Alkalinity	1	mg caco3/I	10	190
Chloride (Water) 300.0				<b>-</b>
Analyte	DF	Units	RL	Result
Chloride	5	mg/l	· 10	120
Nitrate-N (Water) 300.0				
Analyte	DF	Units	RL	Result
Nitrate	1	mg/l	1.0	ND
p-Alkalinity				
Analyte	DF	Units	RL	Result
p-Alkalinity	1	mg caco3/l	10	ND
	I	ing cacoon		NV
Semivolatile Organics + 25 (625)				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	. 1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	: 1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	. 1	ug/i	2.0	ND
2,4,6-Trichlorophenol	. 1	ug/l	2.0	ND
2,4-Dichlorophenol	• 1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	· 1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	. 1	ug/l	2.0	. ND
2-Methylnaphthalene	1	. ug/l	2.0	ND
2-Methylphenoi	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/I	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/I	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND

ID: PC-1-1023201 b#: AC75324-004	<b>3 U</b>			Collection Dat Receipt Dat	e: 10/23/2013 e: 10/24/2013
rix: Aqueous				Neceipt Dat	e. 10/24/2013
Benzo[g,h,i]per	viene	1	ug/l	2.0	ND
Benzo[k]fluorar		1	ug/l	2.0	ND
bis(2-Chloroeth		1	ug/l	2.0	ND
bis(2-Chloroeth		1	ug/l	0.50	ND
bis(2-Chloroisc		1	ug/l	2.0	ND
bis(2-Ethylhex)		1	ug/l	2.0	ND
Butylbenzylphti		1	ug/l	2.0	ND .
Caprolactam		1	ug/t	2.0	56
Carbazole		1	ug/l	2.0	ND
Chrysene		1	ug/l	2.0	ND
Dibenzo[a,h]an	thracene	1	ug/l	2.0	ND
Dibenzofuran		1	ug/l	0.50	ND
Diethylphthalat	e	1	ug/l	2.0	ND
Dimethylphthal		1	ug/l	2.0	ND
Di-n-butylphtha		1	ug/i	0.50	ND
Di-n-octylphtha		1	ug/l	2.0	ND
Fluoranthene		1	ug/l	2.0	ND
Fluorene		1	ug/l	2.0	ND
Hexachloroben	zene	1	ug/l	2.0	ND
Hexachlorobut	adiene	1	ug/i	2.0	ND
Hexachlorocyc	lopentadiene	1	ug/l	2.0	ND
Hexachloroeth:	ane	1	ug/l	2.0	ND
Indeno[1,2,3-c	d]pyrene	1	ug/l	2.0	ND
Isophorone		1	ug/l	2.0	ND
Naphthalene		1	ug/l	0.50	ND
Nitrobenzene	:	1	ug/i	2.0	ND
N-Nitroso-di-n-	propylamine	1	ug/I	0.50	ND
N-Nitrosodiphe	nylamine	1	u <b>g</b> /l	2.0	ND
Pentachloroph	enol	1	ug/l	10	ND
Phenanthrene		1	ug/l	2.0	ND
Phenol		1	ug/l	2.0	ND
Pyrene		1	ug/l	2.0	ND
Semivolatile Orga	anics + 25 (625) Library Searches				
Analyte		DF	Units	RT	Result
Glycine, N-(N-	[N-(1-oxodecyl)-L-alanyl]	1	ug/l	11.73	9.8J
2'-pivalonaphi		1	ug/l	13.7	7.7J
unknown		1	ug/l	14.41	6.7J
unknown		1	ug/l	14.95	190J
Cholest-5-en-	B-ol (3.beta.)-	1	ug/l	15.13	18J
unknown		1	ug/l	15.18	6.7J
unknown		1	ug/l	15.35	7.4J
unknown		1	ug/l	15.86	310J
	THYLENEDITHIOCARBAMATO)COPP	1	ug/l	16.11	6.0J
E 2-Propanol, 1-	hutowy	1	uall	5.16	4.8JB
Z-Propanoi, 1- TotalSemiVola	·	1	ug/l ug/l	NA	4.65B 570J
					3.00
Sulfate (Water) 30	JU.U				D- "
Analyte		DF	Units	RL	Result
Sulfate		1	mg/l	2.0	21
Volatile Organics	+ 10 (624)				
Analyte		DF	Units	RL	Result
1,1,1-Trichloroe	ethane	1	ug/l	1.0	ND
1,1,2,2-Tetrach	loroethane 1,2,2-trifluoroethane	1	ug/l ug/l	1.0 5.0	ND ND

-1-10232013 U 75324-004				Date: 10/23/2013 Date: 10/24/2013
ueous			•	
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND .
1,3-Dichlorobenzene	1	ug/ł	1.0	ND
1,4-Dichlorobenzene	1	ug/I	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	. ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND .
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	. 1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	 1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND ·
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1'	ug/l	1.0	ND
Dibromochloromethane	' 1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND .
m&p-Xylenes	1	_	1.0	ND ND
	1	ug/l	1.0	ND ND
Methyl Acetate	1	ug/l	1.0	ND ND
Methylcyclohexane	1	ug/l	1.0	ND .
Methylene chloride  Methyl-t-butyl ether	1	ug/l	0.50	ND ND
o-Xylene	1	ug/l	1.0	ND ND
	1	ug/l		ND ND
Styrene Tetrachloroethene	1	ug/l	1.0 1.0	ND ND
Toluene		ug/l		ND ND
	1	ug/l	1.0	
trans-1,2-Dichloroethene	1	ug/l	1.0	ND ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

# Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	NA	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: Lab#: Matrix: Sample ID: PC-1-10232013 F Lab#: AC75324-005

Matrix: Aqueous

Collection Date: 10/23/2013

Receipt Date: 10/24/2013

Cyanide-Water	(EPA 335.	4)
---------------	-----------	----

Analyte	DF	Units	RL	Result	
Cyanide	1	mg/l	0.020	ND	

#### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

#### TAL Metals 200.7

Analyte		DF	Units	RL	Result
Aluminum		1	ug/l	100	ND
Barium		1	ug/l	25	86
Calcium		1	ug/l	1000	51000
Chromium		1	ug/l	25	, ND
Cobalt		1 .	ug/l	10	ND
Copper		1	ug/l	25	ND
Iron		1	ug/I	150	ND ·
Magnesium	•	1	ug/l	1000	7900
Manganese	7	1	ug/l	25	740
Nickel		1	ug/l	10	ND
Potassium		1	ug/l	2500	4200
Selenium		1	ug/l	25	ND
Silver		1	ug/l	10	ND
Sodium	ž .	1	ug/i	2500	98000
Vanadium	i	1	ug/l	25	ND
Zinc		1	ug/l	25	ND

#### TAL Metals 200.8

Analyte		DF	Units	RL	Result	
Antimony		1	· ug/ì	2.5	ND	
Arsenic		1	ug/l	1.0	ND	
Beryllium		1.	ug/l	0.75	ND	
Cadmium	4 ***	1	ug/I	1.0	ND	
Lead		1	ug/l	0.75	ND	
Thallium	*	1	ug/l	1.5	ND	

Sample ID: LMW-4-10232013 U Lab#: AC75324-006

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Chloride (Water) 300.0

Chloride

- The last (value) could					
Analyte	DF	Units	RL	Result	

mg/l

2.0

#### Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	0.51	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	. 1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	, ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	. 1	ug/l	0.51	· ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	. 1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/i	0.51	ND
3,3'-Dichlorobenzidine	t 1:	ug/i	2.0	ND
3-Nitroaniline	. 1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND ND
4-Chloro-3-methylphenol	: 1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.51	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/i	2.0	ND
4-Nitrophenol	i 1	ug/l	2.0	ND
Acenaphthene	. 1	ug/I	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/i	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.51	ND
pis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	·	ug/i	2.0	ND ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	110
Carbazole	1	ug/l	2.0	ND
Chrysene	1		2.0	ND ND
Chrysene Dibenzo[a,h]anthracene	1	ug/l		
• • •		ug/l	2.0	ND ND
Dibenzofuran Diathylakthalata	1	ug/l	0.51	ND
Diethylphthalate	1	ug/l	2.0	ND
Dim <b>e</b> thylphthalate	1	ug/l	2.0	ND

	LMW-4-10232013 U AC75324-006			Collection Date: Receipt Date:	
	Aqueous			Receipt Date.	10/24/2013
- Indirizi	Di-n-octylphthalate	1	ug/l	2.0	ND
	Fluoranthene	1	ug/l	2.0	ND
	Fluorene	1	ug/l	2.0	ND
	Hexachlorobenzene	. 1	-	2.0	ND
	Hexachlorobutadiene	1	ug/l	2.0	ND
		1	ug/l		
	Hexachlorocyclopentadiene	1	ug/l	2.0	ND
	Hexachloroethane	1	ug/l	2.0	ND
	Indeno[1,2,3-cd]pyrene	. 1	ug/l	2.0	ND
	Isophorone	, 1	ug/l	2.0	ND .
	Naphthalene	1	ug/l	0.51	ND
	Nitrobenzene	1	ug/l	2.0	ND
	N-Nitroso-di-n-propylamine	<u> </u>	ug/l	0.51	ND
	N-Nitrosodiphenylamine	1	ug/l	2.0	ND
	Pentachlorophenol	1	ug/l	10	ND
	Phenanthrene	, 1	ug/l	2.0	. ND
	Phenol	1	ug/l	2.0	ND
	Pyrene	1	ug/l	2.0	ND
S	Semivolatile Organics + 25 (625) Library Sea	rches			
_		DF	Units	RT	Result
	Analyte				
	unknown	1	ug/l	11.73	55J
	unknown	1	ug/l	14.4	13J
	unknown	1	ug/l	14.94	11J
	unknown	<u> </u>	ug/l	15.84	18J
	2-Propanol, 1-butoxy-	1	ug/l	5.16	4.6JB
<u>v</u>	TotalSemiVolatileTic  /olatile Organics + 10 (624)	1 	ug/l	NA .	100J
 <b>v</b> -	/olatile Organics + 10 (624) Analyte	DF	Units	RL	Result
 <b>V</b> 	/olatile Organics + 10 (624)  Analyte 1,1,1-Trichloroethane	DF 1	Units ug/l	RL 1.0	Result ND
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	DF 1 1	Units ug/l ug/l	RL 1.0 1.0	Result ND ND
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	DF 1 1 1 1	Units ug/l ug/l ug/l	RL 1.0 1.0 5.0	Result  ND  ND  ND
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	DF 1 1	Units ug/l ug/l ug/l ug/l	RL 1.0 1.0 5.0 1.0	Result  ND  ND  ND  ND  ND
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane	DF  1 1 1 1 1	Units  ug/l  ug/l  ug/l  ug/l	RL 1.0 1.0 5.0 1.0	Result  ND  ND  ND  ND  ND  ND
	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	DF  1 1 1 1 1 1 1	Units  ug/l  ug/l  ug/l  ug/l  ug/l  ug/l	RL 1.0 1.0 5.0 1.0 1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1	Units  ug/l  ug/l  ug/l  ug/l  ug/l  ug/l  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1	Units  ug/l  ug/l  ug/l  ug/l  ug/l  ug/l  ug/l  ug/l  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	DF  1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	DF  1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
	Analyte  1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.50	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Tethoroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
V	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
V	Analyte  1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloroethane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dicyane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l	RL  1.0  1.0  5.0  1.0  1.0  1.0  1.0  1.0	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	DF  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units  ug/l  ug/l	RL  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
<u>v</u>	Analyte  1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform	DF  1  1  1  1  1  1  1  1  1  1  1  1  1	Units  ug/l	RL  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.	Result  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

-	LMW-4-10232013 U AC75324-006					Date: 10/23/2013
					Receipt	Date: 10/24/2013
matrix:	Aqueous					
	Chloroethane		1	ug/l	1.0	ND
	Chloroform		1	ug/l	1.0	ND
	Chloromethane		1	ug/l	1.0	ND
	cis-1,2-Dichloroethene		1	ug/l	1.0	ND
	cis-1,3-Dichloropropene		1	ug/l	1.0	ND
	Cyclohexane		1	ug/l	1.0	ND
	Dibromochloromethane		1	ug/l	1.0	ND
	Dichlorodifluoromethane		1	ug/l	1.0	ND
	Ethylbenzene		1	ug/l	1.0	ND
	Isopropyibenzene		1	ug/l	1.0	ND
	m&p-Xylenes	•	1	ug/l	1.0	ND
	Methyl Acetate	6. v	1	ug/l	1.0	ND
	Methylcyclohexane		1	ug/l	1.0	ND
	Methylene chloride		1	ug/I	1.0	ND
*	Methyl-t-butyl ether		1	ug/l	0.50	ND
	o-Xylene	•	1	ug/l	1.0	ND
	Styrene		1	ug/l	1.0	ND `
	Tetrachloroethene		1	ug/l	1.0	ND
	Toluene		1	ug/ł	1.0	ND
	trans-1,2-Dichloroethene		1	ug/i	1.0	ND
	trans-1,3-Dichloropropene		1	ug/l	1.0	ND
	Trichloroethene		1	ug/l	1.0	ND
	Trichlorofluoromethane		1	ug/l	1.0	ND
	Vinyl chloride	*	1	ug/l	1.0	ND
	Xylenes (Total)		1	ug/l	1.0	ND

#### Volatile Organics + 10 (624) Library Searches

Analyte	DF	Units	RT	Result	_
No Unknown Compounds Detected	1	ug/l	NA	ND	
TotalVolatileTic	1	u <b>a</b> /l	NA	ND	

Sample ID: LMW-4-10232013 F

Lab#: AC75324-007

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result	
Cyanide	1	mg/l	0.020	ND	

#### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/I	0.20	ND

#### TAL Metals 200.7

Analyte		DF	Units	RL	Result
Aluminum	:	1	ug/l	100	ND
Barium		1	ug/l	25	190
Calcium	ř	1	ug/l	1000	62000
Chromium		1 .	ug/l	25	ND .
Cobalt	1	1	ug/l	10	34
Copper	-	1	ug/l	25	ND
Iron	· ·	1	ug/l	150	64000
Magneslum		1	ug/l	1000	24000
Manganese		1	ug/l	25	15000
Nickel	\$ .	. 1	ug/l	10	ND
Potassium		1	ug/l	2500	5300
Selenium		1	ug/l	25	ND
Silver		1	ug/l	10	ND
Sodium		1	ug/l	2500	34000
Vanadium	÷ i	1	ug/l	25	ND
Zinc		1	ug/l	25	ND

#### TAL Metals 200.8

Analyte		DF	Units	RL	Result	
Antimony		1	ug/l	2.5	ND	
Arsenic		1	ug/t	1.0	1.4	
Beryllium	*	1	ug/l	0.75	ND	
Cadmium		1	ug/l	1.0	ND	
Lead		1	ug/l	0.75	ND	
Thallium		1	ug/l	1.5	ND	

Sample ID: PC-2-10232013 U Lab#: AC75324-008

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

#### Chloride (Water) 300.0

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	25

#### Semivolatile Organics + 25 (625)

Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	· 1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	2.0	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	. ND
2-Nitroaniline	1	ug/l	2.0	ND .
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/t	2.0	ND
3-Nitroaniline	, 1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	. 1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/I	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
	•	•		ND

D: PC-2-10232013 U D: AC75324-008			Collection Date: Receipt Date:	
:: Aqueous			•	
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/t	0.50	ND
Nitrobenzene	1	ug/ł	2.0	ND .
N-Nitroso-di-n-propylamine	. 1	ug/l	0.50	ND
N-Nitrosodiphenylamine	· 1	ug/l	2.0	ND
Pentachlorophenol	1	ug/l	10	ND
Phenanthrene	1	ug/l	2.0	ND
Phenol	. 1	ug/l	2.0	ND
Pyrene		ug/l	2.0	ND
Semivolatile Organics + 25 (625) Library Se				
Analyte	DF	Units	RT	Result
2-Propanol, 1-butoxy-	1	ug/I	5.17	5.7JB
TotalSemiVolatileTic	: 1	ug/l	NA	5.7J
Volatile Organics + 10 (624)				
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND -
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/I	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/I	1.0	ND
1,2-Dichlorobenzene	1	ug/ł	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	. 1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
		-g/1		

Lab#:	PC-2-10232013 U AC75324-008				Date: 10/23/2013 Date: 10/24/2013
Watrix.	Aqueous  cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND ·
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/l	1.0	ND
	Methyl Acetate	1	ug/i	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/I	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/I	1.0	ND
	trans-1,2-Dichloroethene	1	ug/I	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	. ND
	Trichloroethene	. 1	ug/l	1.0	ND
	Trichlorofluoromethane	. 1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND

### Volatile Organics + 10 (624) Library Searches

Xylenes (Total)

Analyte		DF	Units	RT	Result
No Unknown Compounds Detected	,	1	ug/l	NA	ND
TotalVolatileTic		1	ug/l	NA	ND

ND

1.0

Sample ID: PC-2-10232013 F Lab#: AC75324-009

Matrix: Aqueous

Collection Date: 10/23/2013

Receipt Date: 10/24/2013

Cyanide-Water (EPA 335)	.4)	ì
-------------------------	-----	---

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND
				and and an an and all half A ways

#### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.20	ND	

#### TAL Metals 200.7

Analyte		DF	Units	RL	Result	
Aluminum		1	ug/l	100	ND	
Barlum		1	ug/l	25	110	
Calcium		1	ug/l	1000	78000	
Chromium		1	ug/l	25	ND	
Cobalt		1	ug/l	10	ND	
Copper		1	ug/I	25	ND	
Iron		1	ug/l	150	21000	
Magnesium		1	ug/l	1000	21000	
Manganese		1	ug/l	25	10000	
Nickel		1	ug/I	10	ND	
Potassium		1	ug/l	2500	4800	
Selenium		1	ug/l	25	ND -	
Silver		1	ug/l	. 10	ND	
Sodium		1	ug/i	2500	46000	
Vanadium		1	ug/I	25	ND	
Zinc	•	1	ug/l	25	ND	

#### TAL Metals 200.8

Analyte		DF	Units	RL	Result
Antimony		1	ug/l	2.5	ND
Arsenic		1	ug/l	1.0	ND
Beryllium		1	ug/l	0.75	ND
Cadmium	*	1	ug/l	1.0	ND
Lead		1	ug/l	0.75	ND
Thallium		1	ug/l	1.5	ND .

Sample ID: LMW-2-10232013 U

Lab#: AC75324-010

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Matrix: Aqueous

#### Chloride (Water) 300.0

Analyte	DF	Units	RL	Result
Chloride	1	mg/l	2.0	14

#### Semivolatile Organics + 25 (625)

Analyte		DF	Units	RL	Result
1,1'-Biphenyl		5	ug/l	10	ND
1,2,4,5-Tetrachlorobenzene		5	ug/l	10	ND
2,3,4,6-Tetrachlorophenol		5	ug/l	10	ND
2,4,5-Trichlorophenol		5	ug/l	10	ND
2,4,6-Trichlorophenol	7	5	ug/l	10	ND
2,4-Dichlorophenol	:	5	ug/l	10	ND
2,4-Dimethylphenol	-	5	ug/l	2.5	ND
2,4-Dinitrophenol	*	5	ug/l	50	ND
2,4-Dinitrotoluene		5	ug/l	10	ND
2,6-Dinitrotoluene		5	ug/l	10	ND
2-Chloronaphthalene	_	5	ug/l	10	ND
2-Chlorophenol	-	5	ug/l	10	ND
2-Methylnaphthalene	·	5	ug/l	10	ND
2-Methylphenol	:	5	ug/l	2.5	ND
2-Nitroaniline		5	ug/l	10	ND
2-Nitrophenol	~	5	ug/l	10	ND
3&4-Methylphenol	· · · · · · · · · · · · · · · · · · ·	5	ug/l	2.5	ND
3,3'-Dichlorobenzidine	:	5	ug/l	10	ND
3-Nitroaniline	•	5	ug/l	10	ND
4,6-Dinitro-2-methylphenol	₹	5	ug/l	50	ND
4-Bromophenyl-phenylether	:	5	ug/l	10	ND
4-Chloro-3-methylphenol		5	ug/l	10	ND
4-Chloroaniline	-	5		2.5	ND
	÷	5	ug/l	10	ND ·
4-Chlorophenyl-phenylether 4-Nitroaniline	<del>-</del>	5	ug/l		ND
	2		ug/l	10	
4-Nitrophenol		5	ug/l	. 10	ND ND
Acenaphthene		5	ug/l	10	ND
Acenaphthylene		5	ug/l	10	ND ND
Acetophenone		5	ug/l	10	ND
Anthracene		5	ug/l	10	ND .
Atrazine		5	ug/l	10	ND
Benzaldehyde		5	ug/l	10	ND
Benzo[a]anthracene		5	ug/l	10	ND
Benzo[a]pyrene		5	ug/l	10	ND
Benzo[b]fluoranthene		5	ug/l	10	ND
Benzo[g,h,i]perylene		5	ug/l	10	ND
Benzo[k]fluoranthene		5	ug/I	10	ND
bis(2-Chloroethoxy)methane		5	ug/l	10	ND
ois(2-Chloroethyl)ether		5	ug/l	2.5	ND
ois(2-Chloroisopropyl)ether		5	ug/l	10	ND
bis(2-Ethylhexyl)phthalate		5	ug/l	10	ND
Butylbenzylphthalate		5	ug/l	10	ND
Caprolactam		5	ug/l	10	920
Carbazole		5	ug/l	10	ND
Chrysene		5	ug/l	10	ND
Dibenzo[a,h]anthracene		5	ug/l	10	ND
Dibenzofuran		5	ug/I	2.5	ND
Diethylphthalate		5	ug/I	10	ND
Dimethylphthalate		5	ug/l	10	ND

b#: AC	W-2-10232013 U 75324-010			Collection Date: Receipt Date:	
rix: Aqı				40	ND
	Di-n-octylphthalate	5	ug/l	10	ND
	Fluoranthene	5	ug/l	10	ND
	Fluorene	5	ug/l	10	ND
	Hexachlorobenzene	5	ug/l	10	ND 
	Hexachlorobutadiene	5	ug/l	10	ND
	Hexachlorocyclopentadiene	5	ug/l	10	ND
	Hexachloroethane	5	ug/l	10	ND
	Indeno[1,2,3-cd]pyrene	5	ug/l	10	ND
	Isophorone	5	ug/l	10	ND
	Naphthalene	5	ug/l	2.5	ND
	Nitrobenzene	5	ug/l	10	ND
	N-Nitroso-di-n-propylamine	. 5	ug/l	2.5	ND
	N-Nitrosodiphenylamine	. 5	ug/l	10	ND
	Pentachlorophenol	5	ug/l	50	ND
	Phenanthrene	, 5	ug/l	10	ND
	Phenol	5	ug/l	10	ND
	Pyrene	. 5	ug/l	10	ND
Semi	volatile Organics + 25 (625) Library Sea	rches			
	Analyte	DF	Units	RT	Result
	unknown	5	ug/l	14.94	37J
	unknown	5	ug/l	15.84	62J
	TotalSemiVolatileTic	5	ug/I	NA	99J
Volat	ile Organics + 10 (624)				
	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachioroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethane	1	ug/l	1.0	ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/I	1.0	ND
	1,2-Dibromo-3-chloropropane	· 1	ug/l	1.0	ND
	1,2-Dibromoethane	1	ug/l	1.0	ND
	1,2-Dichlorobenzene	1		1.0	ND
	1,2-Dichloroethane	1	ug/l ug/l	0.50	ND
	1,2-Dichloropropane	1	ug/l	1.0	ND ND
	1,3-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dichlorobenzene	1	ug/l	1.0	ND
	1,4-Dioxane	1	ug/l	50	ND
	2-Butanone	1	ug/l	1.0	ND
	2-Hexanone	1	ug/l	1.0	ND
	4-Methyl-2-pentanone	1	ug/l	1.0	ND
	Acetone	1	ug/l	10	ND
	Benzene	1	ug/l	0.50	ND
	Bromochloromethane	1	ug/I	1.0	ND
	Bromodichloromethane	1	ug/l	1.0	ND
	Bromoform	1	ug/l	1.0	ND
	Bromomethane	1	ug/l	1.0	ND
	Carbon disulfide	1	ug/l	1.0	ND
	Carbon tetrachloride	1	ug/l	1.0	ND
					ND
	Chlorobenzene	1	ug/l	1.0	ND
	Chlorobenzene	1	ug/l ug/l	1.0	ND ND

-	LMW-2-10232013 U AC75324-010				Date: 10/23/2013 Date: 10/24/2013
Matrix:	Aqueous				
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	· 1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	1	ug/I	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	1	ug/l	1.0	ND
	Methylene chloride	1	ug/l	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/i	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/l	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/I	1.0	, ND
	Trichloroethene	. 1	ug/I	1.0	ND
	Trichlorofluoromethane	1	ug/l	1.0	ND
	Vinyl chloride	1	ug/l	1.0	ND

# Volatile Organics + 10 (624) Library Searches

Xylenes (Total)

Analyte	DF	Units	RT	Result	
No Unknown Compounds Detected	1	ug/l	NA	· ND	
TotalVolatileTic	1	ug/l	NA	ND	

ug/l

1.0

ND

Sample ID: LMW-2-10232013 F

Lab#: AC75324-011

Matrix: Aqueous

Collection Date: 10/23/2013

Receipt Date: 10/24/2013

#### Cyanide-Water (EPA 335.4)

Analyte	DF	Units	RL	Result
Cyanide	1	mg/l	0.020	ND

#### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

#### TAL Metals 200.7

Analyte		DF	Units	RL	Result
Aluminum	,	1	ug/l	100	ND
Barium	:	1	ug/l	25	110
Calcium		1	ug/i	1000	83000
Chromium		1	ug/l	25	· ND
Cobalt		1	ug/l	10	ND
Copper		1	ug/l	25	ND
Iron		1	ug/i	150	ND
Magnesium		1	ug/l	1000	31000
Manganese		1	ug/l	25	210
Nickel	:	1	ug/l	10	ND
Potassium		1	ug/l	2500	4400
Selenium	•	1	ug/l	25	ND
Silver		1	ug/l	10	ND .
Sodium		1	ug/l	2500	30000
Vanadium		1	ug/l	25	ND
Zinc		1	ug/l	25	ND

#### TAL Metals 200.8

Analyte	DF	Units	RL	Result
Antimony	1	ug/ì	2.5	ND
Arsenic	1	ug/l	1.0	, ND
Beryllium	1	ug/l	0.75	ND
Cadmium	1	ug/l	1.0	ND
Lead	1	ug/l	0.75	ND
Thallium	1	ug/l	1.5	ND

Sample ID: MW-11-10232013 U Lab#: AC75324-012

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Alkalinity-Bicarbonate (SM2320B-97)

Analyte		DF	Units	RL	Result
Alkalinity		1	mg/l	10	290
Alkalinity-Total (SM232	DB-97)				
Analyte		DF	Units	RL	Result
Alkalinity		1	mg caco3/I	10	290
BTEX (624)					
Analyte		DF	Units	RL	Result
Benzene		1	ug/l	0.50	2.7
Ethylbenzene		1	ug/l	1.0	24
m&p-Xylenes		1	ug/l	1.0	6.2
o-Xylene		1	ug/I	1.0	2.4
Toluene		1	ug/I	1.0	1.2
Xylenes (Total)		1	ug/l	1.0	8.6
litrate-N (Water) 300.0					
Analyte		DF	Units	RL	Result
Nitrate		1	mg/l	1.0	ND
o-Alkalinity					
Analyte		DF	Units	RL	Result
p-Alkalinity		1	mg caco3/l	10	ND
Sulfate (Water) 300.0					
Analyte		DF	Units	RL	Result
Sulfate		1	mg/l	2.0	3.8

Sample ID: MW-11-10232013 F

Lab#: AC75324-013

Matrix: Aqueous

Collection Date: 10/23/2013

Receipt Date: 10/24/2013

#### Metals Pair 200.7

Analyte	DF	Units	RL	Result
Iron	1	ug/l	150	4100
Manganese	1	ug/l	25	3600

Sample ID: PC-3-10232013 U Lab#: AC75324-014

Matrix: Aqueous

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

### Chloride (Water) 300.0

Analyte	DF	Units	RL	Result	
Chloride	10	mg/l	20	180	

Semivolatile Orga	anics + :	25 (625)	1
-------------------	-----------	----------	---

Analyte		DF	Units	RL	Result
1.1'-Biphenyl		1	ug/I	2.1	ND
1,2,4,5-Tetrachlorobenzene		1	ug/I	2.1	ND
2,3,4,6-Tetrachlorophenol	:	1	ug/l	2.1	ND
2,4,5-Trichlorophenol	•	1	ug/I	2.1	ND
2,4,6-Trichlorophenol		1	ug/I	2.1	ND
2,4-Dichlorophenol		1	ug/I	2.1	ND
2,4-Dimethylphenol	:	1	ug/l	0.52	ND
2,4-Dinitrophenol	:	1	ug/l	10	ND
2,4-Dinitrotoluene		1	ug/l	2.1	ND
2,6-Dinitrotoluene	٥	1	ug/l	2.1	ND
2-Chloronaphthalene		1	ug/l	2.1	ND
2-Chlorophenol		1	ug/l	2.1	ND
2-Methylnaphthalene		1	ug/l	2.1	ND
2-Methylphenol	,	1	ug/l	0.52	ND
2-Nitroaniline		1	ug/l	2.1	ND
2-Nitrophenol		1	ug/l	2.1	ND
3&4-Methylphenol		1	ug/l	0.52	ND
3,3'-Dichlorobenzidine		1	ug/l	2.1	ND
3-Nitroaniline		1	ug/l	2.1	ND
4,6-Dinitro-2-methylphenol		1	ug/l	10	ND
4-Bromophenyl-phenylether		1	ug/l	2.1	ND
4-Chloro-3-methylphenol		1	ug/l	2.1	ND
4-Chloroaniline		1	ug/l	0.52	ND
4-Chlorophenyl-phenylether		1	ug/l	2.1	ND
4-Nitroaniline		1	ug/l	2.1	· ND
4-Nitrophenol		1	ug/l	2.1	ND
Acenaphthene		1	ug/l	2.1	ND
Acenaphthylene		1	ug/l	2.1	ND
Acetophenone		1	ug/l	2.1	ND
Anthracene	ī	1	ug/l	2.1	ND
Atrazine		1	ug/l	2.1	ND
Benzaldehyde	:	1	ug/l	2.1	ND
Benzo[a]anthracene		<u>·</u>	ug/l	2.1	ND
Benzo[a]pyrene		1	ug/l	2.1	ND
Benzo[b]fluoranthene		1	ug/l	2.1	ND
Benzo[g,h,i]perylene			ug/l	2.1	ND
Benzo[k]fluoranthene	The second section of the second seco	<u>.</u> 1	ug/l	2.1	ND
bis(2-Chloroethoxy)methane		1	ug/l	2.1	ND
bis(2-Chloroethyl)ether		1	ug/l	0.52	ND
bis(2-Chloroisopropyl)ether		1		2.1	ND
		1	ug/l	2.1	ND
bis(2-Ethylhexyl)phthalate		1	ug/l	2.1	ND
Butylbenzylphthalate			ug/l		31
Carbonala		1	ug/l	<b>2.1</b> 2.1	ND
Chanana		1	ug/l	F T	
Chrysene		1	ug/l	2.1	ND ND
Dibenzo[a,h]anthracene		1	ug/l	2.1	ND
Dibenzofuran		1	ug/l	0.52	ND
Diethylphthalate		1	ug/l	2.1	ND
Dimethylphthalate		1	ug/l	2.1	ND

Lab#:	PC-3-10232013 U AC75324-014 Aqueous				Date: 10/23/2013 Date: 10/24/2013
	Di-n-octylphthalate	1	ug/l	2.1	ND
	Fluoranthene	1	ug/l	2.1	ND
	Fluorene	1	ug/l	2.1	ND
	Hexachiorobenzene	1	ug/l	2.1	ND
	Hexachlorobutadiene	1	ug/l	2.1	ND
	Hexachlorocyclopentadiene	1	ug/l	2.1	ND
	Hexachloroethane	1	ug/l	2.1	ND
	Indeno[1,2,3-cd]pyrene	1	ug/l	2.1	ND
	Isophorone	1	ug/l	2.1	ND
	Naphthalene	1	ug/l	0.52	ND
	Nitrobenzene	· 1	ug/l	2.1	ND
	N-Nitroso-di-n-propylamine	1		0.52	ND
	N-Nitrosodiphenylamine	1	ug/l	2.1	ND ND
			ug/l		
	Pentachlorophenol	1	ug/l	10	ND ND
	Phenanthrene	1	ug/l	2.1	ND ND
	Phenol	1	ug/l	2.1	ND .
	Pyrene Semivolatile Organics + 25 (625) Library Sear	rches	ug/l	2.1	ND 
-	Analyte	DF	Units	RT	Result
	3-NITRO-4-METHYLPYRAZOLE	1	ug/l	14.95	88J
	unknown	1	ug/l	15.85	150J
	2-Propanol, 1-butoxy-	1	ug/l	5.16	4.5JB
	TotalSemiVolatileTic	1	ug/I	NA	240J
\ \	/olatile Organics + 10 (624)			· · · · · · · · · · · · · · · · · · ·	
_	Analyte	DF	Units	RL	Result
	1,1,1-Trichloroethane	1	ug/l	1.0	ND
	1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	5.0	ND
	1,1,2-Trichloroethane	1		1.0	ND
			ug/l		
	1,1-Dichloroethane	1	ug/l	1.0	· ND
	1,1-Dichloroethene	1	ug/l	1.0	ND
	4 0 0 T-i-blb			4.0	
	1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
	1,2,4-Trichlorobenzene	1	ug/l ug/l	1.0	ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	1	ug/l ug/l ug/l	1.0	ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	1	ug/l ug/l ug/l	1.0 1.0 1.0	ND ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene	1 .1	ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0	ND ND ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane	1 1 .1	ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50	ND ND ND ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene	1 .1	ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0	ND ND ND ND ND ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane	1 1 .1	ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50	ND ND ND ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	1 1 -1 1	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50	ND ND ND ND ND ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene	1 1 -1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0	ND ND ND ND ND ND ND ND ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene	1 1 -1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0	ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane	1 1 -1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0	ND
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 50	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 50 1.0	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 1.0 50 1.0 1.0	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 1.0 50 1.0 1.0	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 1.0 50 1.0 1.0 1.0	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromoform Bromomethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromoform Bromomethane Carbon disulfide	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ND N
	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromoform Bromomethane Carbon disulfide	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 0.50 1.0 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ND N

-	PC-3-10232013 U				Date: 10/23/2013
	AC75324-014			Receipt	t Date: 10/24/2013
Matrix:	Aqueous				
	Chloromethane	1	ug/l	1.0	ND
	cis-1,2-Dichloroethene	1	ug/l	1.0	ND
	cis-1,3-Dichloropropene	1	ug/l	1.0	ND
	Cyclohexane	1	ug/l	1.0	ND
	Dibromochloromethane	1	ug/l	1.0	ND
	Dichlorodifluoromethane	1	ug/l	1.0	ND
	Ethylbenzene	1	ug/l	1.0	ND
	Isopropylbenzene	1	ug/l	1.0	ND
	m&p-Xylenes	. 1	ug/l	1.0	ND
	Methyl Acetate	1	ug/l	1.0	ND
	Methylcyclohexane	: 1	ug/l	1.0	ND
	Methylene chloride	; 1	ug/i	1.0	ND
	Methyl-t-butyl ether	1	ug/l	0.50	ND
	o-Xylene	1	ug/l	1.0	ND
	Styrene	1	ug/l	1.0	ND
	Tetrachloroethene	1	ug/I	1.0	ND
	Toluene	1	ug/l	1.0	ND
	trans-1,2-Dichloroethene	1	ug/l	1.0	ND
	trans-1,3-Dichloropropene	1	ug/l	1.0	ND
	Trichloroethene	1	ug/l	1.0	ND
	Trichlorofluoromethane	1	ug/i	1.0	ND

#### Volatile Organics + 10 (624) Library Searches

Vinyl chloride

Xylenes (Total)

Analyte	-	DF	Units	RT	Result	
No Unknown Compounds Detected		1	ug/l	NA	ND	
TotalVolatileTic		1	ug/I	NA	ND	

ug/l

ug/l

1.0

1.0

ND

ND

Sample ID: PC-3-10232013 F Lab#: AC75324-015

Collection Date: 10/23/2013 Receipt Date: 10/24/2013

Matrix: Aqueous

C	/anide	-Water	(FPA	335.4	4١
~	aiiiue	- 7 7 4 (5 )	1617		+,

Analyte	DF	- Oi	its RL	Result	
Cyanide	1	mg/		ND	

#### Mercury (Water) 245.1

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.20	ND

#### TAL Metals 200.7

Analyte		DF	Units	RL	Result
Aluminum	÷ v	1	ug/l	100	ND
Barium		1	ug/l	25	150
Calcium		1	ug/l	1000	76000
Chromium		1	ug/l	25	ND
Cobalt		1	ug/l	10	ND
Copper	5 3	1	ug/l	25	ND
Iron		1	ug/l	150	ND
Magnesium	4	1	ug/l	1000	20000
Manganese		1	ug/i	25	280
Nickel	Ĭ	1	ug/l	10	ND
Potassium		1	ug/l	2500	6400
Selenium		1	ug/l	25	ND
Silver		1	ug/i	10	ND
Sodium		1	ug/l	2500	83000
Vanadium		1	ug/l	25	ND
Zinc		1	ug/l	25	ND

#### TAL Metals 200.8

Analyte		DF	Units	RL	Result
Antimony	,	1	ug/l	2.5	ND
Arsenic		1	ug/l	1.0	ND
Beryllium		1	ug/l	0.75	ND
Cadmium		1	ug/l	1.0	ND
Lead		1	ug/l	0.75	ND
Thallium		1	ug/l	1.5	ND

Sample Number: DAILY BLANK

Client Id:

Data File: 1M08762.D Analysis Date: 10/25/13 11:30

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids: 0

U	nits:	ug	/L
_			-

Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U

Worksheet #: 283100

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK

Client Id:

Data File: 1M08762.D

Analysis Date: 10/25/13 11:30

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

	Cas#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	0.1	

Worksheet #: 283100

A - Indicates an aldol condensate.

<sup>J - Indicates an attact contaensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

### Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M08806.D Analysis Date: 10/28/13 08:53

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U .	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	· U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	. U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U

Worksheet #: 283100

instrument.

**Total Target Concentration** 

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

#### ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: DAILY BLANK

Client Id:

Data File: 1M08806.D

Analysis Date: 10/28/13 08:53

Date Rec/Extracted:

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

	Cas#	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	0 <b>J</b>

Worksheet #: 283100

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Sample Number: AC75324-001

Client Id: TB-10232013 Data File: 1M08796.D

Analysis Date: 10/25/13 20:57

Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids: 0

omis: ug/L	nits: ug/L	
------------	------------	--

			• • • • • • • • • • • • • • • • • • • •	- g. <del>-</del>			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	· U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	Ų	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
7 <b>8-9</b> 3-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U ·
1330-20-7	Xylenes (Total)	1.0	U				

Total Target Concentration

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ColumnID: (^) Indicates results from 2nd column

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-001

Client Id: TB-10232013

Data File: 1M08796.D

Analysis Date: 10/25/13 20:57

Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

	Cas#	Compound	RT	Conc	
1		No Unknown Compounds Detected	0.00	ΟJ	

Worksheet #: 283100

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Sample Number: AC75324-002

Client Id: DMW-5-10232013 U

Data File: 1M08862.D Analysis Date: 10/29/13 00:39

Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

	Onits: ug/L								
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc		
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U		
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	. U	75-00-3	Chloroethane	1.0	U		
79-00-5	1,1,2-Trichloroethane	1.0	. U	67-66-3	Chloroform	1.0	U		
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U		
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ū		
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U		
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U		
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U		
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U		
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U		
107-06-2	1,2-Dichloroethane	0.50	Ü	98-82-8	Isopropylbenzene	1.0	U		
78-87 <b>-</b> 5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U		
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U		
106-46-7	1,4-Dichlorobenzene	1.0	· ·	108-87-2	Methylcyclohexane	1.0	U		
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U		
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U		
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U		
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U		
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U		
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U		
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U		
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U		
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U		
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U		
75-15-0	Carbon Disulfide	1.0	1.0	75-01-4	Vinyl Chloride	1.0	U		
1330-20-7	Xylenes (Total)	1.0	U						

Worksheet #: 283100

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-002

Client Id: DMW-5-10232013 U

Data File: 1M08862.D

Analysis Date: 10/29/13 00:39

Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

	Cas#	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	OJ

Worksheet #: 283100

A - Indicates an aldol condensate. J - Indicates an estimated value. B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Sample Number: AC75324-004

Client Id: PC-1-10232013 U

Data File: 1M08856.D Analysis Date: 10/28/13 22:49

Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

Cas#	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	· U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	Ü	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U ,
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283100

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

## ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-004

Client Id: PC-1-10232013 U

Data File: 1M08856.D

Analysis Date: 10/28/13 22:49

Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

	Cas #	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	0.J

Worksheet #: 283100

A - Indicates an aldol condensate.

<sup>A - Indicates an attact condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Sample Number: AC75324-006

Client Id: LMW-4-10232013 U

Data File: 1M08857.D

Analysis Date: 10/28/13 23:08

Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			Units: u	1 <b>9</b> /L			
Cas#	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	. 1.0	υ	156-59-2	cis-1,2-Dichloroethene	1.0	U
87 <b>-</b> 61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	· U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
<b>67-64-1</b>	Acetone	10	24	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	υ	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	υ				

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-006

Client Id: LMW-4-10232013 U

Data File: 1M08857.D

Analysis Date: 10/28/13 23:08

Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0.1	

Worksheet #: 283100

A - Indicates an aldol condensate, J - Indicates an estimated value, B - Indicates the analyte was found in the blank as well as in the sample, Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Sample Number: AC75324-008

Client Id: PC-2-10232013 U

Data File: 1M08858.D Analysis Date: 10/28/13 23:26

Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

Units: ug/L									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc		
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U		
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	, U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U		
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U		
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U		
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U		
87-61-6	1,2,3-Trichlorobenzene	1.0	· U	10061-01-5	cis-1,3-Dichloropropene	1.0	U		
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U		
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	Ų		
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U		
95-50-1	1,2-Dichlorobenzene	1.0	Ŋ	100-41-4	Ethylbenzene	1.0	U		
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U		
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U		
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U		
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U		
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U		
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U		
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U		
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U		
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U		
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U		
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U		
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	Ú		
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	Ü		
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U		
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U		
1330-20-7	Xylenes (Total)	1.0	U						

Worksheet #: 283100

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-008

Client Id: PC-2-10232013 U

Data File: 1M08858.D

Analysis Date: 10/28/13 23:26

Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc
. 1	No Unknown Compounds Detected	0.00	0 J

Worksheet #: 283100

A - Indicates an aldol condensate.

<sup>A - Indicates an attack condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Sample Number: AC75324-010

Client Id: LMW-2-10232013 U

Data File: 1M08859.D Analysis Date: 10/28/13 23:45 Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624 Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

			Omits. u	9, -			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55 <b>-</b> 6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	Ú	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	- 50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	.1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 283100

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

 $[\]emph{U}$  - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS VOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-010

Client Id: LMW-2-10232013 U

Data File: 1M08859.D

Analysis Date: 10/28/13 23:45

Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

	Cas#	Compound	RT	Conc
1		No Unknown Compounds Detected	0.00	01

Worksheet #: 283100

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1

#### ORGANICS VOLATILE REPORT

Sample Number: AC75324-012

Client Id: MW-11-10232013 U

Data File: 1M08860.D

Analysis Date: 10/29/13 00:03

Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/l

			Offics.	ug/L				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc	
71-43-2	Benzene	0.50	2.7	95-47-6	o-Xylene	1.0	2.4	
100-41-4	Ethylbenzene	1.0	24	108-88-3	Toluene	1.0	1.2	
136777612	m&p-Xylenes	1.0	6.2	1330-20-7	Xylenes (Total)	1.0	8.6	

B - Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ColumnID: (^) Indicates results from 2nd column R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1 ORGANICS VOLATILE REPORT

Sample Number: AC75324-014

Client Id: PC-3-10232013 U

Data File: 1M08861.D Analysis Date: 10/29/13 00:21 Date Rec/Extracted: 10/24/13-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 624

Matrix: Aqueous Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ua/L

Units: ug/L									
Compound	RL	Conc	Cas #	Compound	RL	Conc			
1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	υ			
1,1,2-Trichloro-1,2,2-trifluor	5.0	U	75-00-3	Chloroethane	1.0	U			
1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
1,1-Dichloroethane	1.0	υ	74-87-3	Chloromethane	1.0	U			
1,1-Dichloroethene	1.0	υ	156-59-2	cis-1,2-Dichloroethene	1.0	U			
1,2,3-Trichlorobenzene	1.0	υ	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U			
1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
1,2-Dibromoethane	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U			
1,2-Dichlorobenzene	1.0	υ	100-41-4	Ethylbenzene	1.0	U			
1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U			
1,2-Dichloropropane	1.0	U	136777612	m&p-Xylenes	1.0	U			
1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U			
1,4-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U			
1,4-Dioxane	50	υ	75-09-2	Methylene Chloride	1.0	U			
2-Butanone	1.0	υ	1634-04-4	Methyl-t-butyl ether	0.50	U			
2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	U			
4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U			
Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	U			
Benzene	0.50	υ	108-88-3	Toluene	1.0	U			
Bromochloromethane	1.0	υ	156-60-5	trans-1,2-Dichloroethene	1.0	U			
Bromodichloromethane	1.0	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
Bromoform	1.0	υ	79-01-6	Trichloroethene	1.0	U			
Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U			
Carbon Disulfide	1.0	υ	75-01-4	Vinyl Chloride	1.0	U			
Xylenes (Total)	1.0	υ							
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluor 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropa 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-Pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide	1,1,1-Trichloroethane         1.0           1,1,2,2-Tetrachloroethane         1.0           1,1,2-Trichloro-1,2,2-trifluor         5.0           1,1,2-Trichloroethane         1.0           1,1-Dichloroethane         1.0           1,1-Dichloroethane         1.0           1,2,3-Trichlorobenzene         1.0           1,2,4-Trichlorobenzene         1.0           1,2-Dibromo-3-Chloropropa         1.0           1,2-Dibromoethane         1.0           1,2-Dichlorobenzene         1.0           1,2-Dichloroethane         0.50           1,2-Dichloropropane         1.0           1,3-Dichlorobenzene         1.0           1,4-Dichlorobenzene         1.0           1,4-Dioxane         50           2-Butanone         1.0           2-Hexanone         1.0           4-Methyl-2-Pentanone         1.0           Acetone         10           Benzene         0.50           Bromochloromethane         1.0           Bromoform         1.0           Bromomethane         1.0           Carbon Disulfide         1.0	Compound         RL         Conc           1,1,1-Trichloroethane         1.0         U           1,1,2-Trichloroethane         1.0         U           1,1,2-Trichloro-1,2,2-trifluor         5.0         U           1,1,2-Trichloroethane         1.0         U           1,1-Dichloroethane         1.0         U           1,1-Dichloroethane         1.0         U           1,2,3-Trichlorobenzene         1.0         U           1,2,4-Trichlorobenzene         1.0         U           1,2-Dibromo-3-Chloropropa         1.0         U           1,2-Dibromoethane         1.0         U           1,2-Dichlorobenzene         1.0         U           1,2-Dichloroethane         0.50         U           1,2-Dichloropropane         1.0         U           1,3-Dichlorobenzene         1.0         U           1,4-Dioxane         50         U           2-Butanone         1.0         U           2-Butanone         1.0         U           4-Methyl-2-Pentanone         1.0         U           Acetone         10         U           Bromochloromethane         1.0         U           Bromodichloromethane	1,1,1-Trichloroethane         1.0         U         56-23-5           1,1,2,2-Tetrachloroethane         1.0         U         108-90-7           1,1,2-Trichloro-1,2,2-trifluor         5.0         U         75-00-3           1,1,2-Trichloroethane         1.0         U         67-66-3           1,1-Dichloroethane         1.0         U         74-87-3           1,1-Dichloroethane         1.0         U         156-59-2           1,2,3-Trichlorobenzene         1.0         U         1061-01-5           1,2,4-Trichlorobenzene         1.0         U         110-82-7           1,2-Dibromo-3-Chloropropa         1.0         U         124-48-1           1,2-Dibromoethane         1.0         U         75-71-8           1,2-Dichlorobenzene         1.0         U         100-41-4           1,2-Dichloropethane         0.50         U         98-82-8           1,2-Dichloroperopane         1.0         U         136777612           1,3-Dichlorobenzene         1.0         U         136777612           1,3-Dichlorobenzene         1.0         U         75-09-2           1,4-Dioxane         50         U         75-09-2           2-Butanone         1.0         U <td>Compound         RL         Conc         Cas # Compound           1,1,1-Trichloroethane         1.0         U         56-23-5         Carbon Tetrachloride           1,1,2,2-Tetrachloroethane         1.0         U         108-90-7         Chlorobenzene           1,1,2-Trichloroethane         1.0         U         75-00-3         Chloroethane           1,1,2-Trichloroethane         1.0         U         67-66-3         Chloroethane           1,1-Dichloroethane         1.0         U         74-87-3         Chloromethane           1,1-Dichloroethane         1.0         U         156-59-2         cis-1,2-Dichloroethane           1,2,3-Trichlorobenzene         1.0         U         110-82-7         Cyclohexane           1,2-Dibromo-3-Chloropropa         1.0         U         110-82-7         Cyclohexane           1,2-Dibromoethane         1.0         U         75-71-8         Dichlorodifluoromethane           1,2-Dichloroethane         1.0         U         136-77-61-8         Dichlorodifluoromethane           1,2-Dichloroethane         0.50         U         136-77-61-8         Dichloropropale           1,3-Dichlorobenzene         1.0         U         136-77-61-8         Biopropylbenzene           1,2-Dichloroe</td> <td>Compound         RL         Conc         Cas # Compound         RL           1,1,1-Trichloroethane         1.0         U         56-23-5         Carbon Tetrachloride         1.0           1,1,2-Trichloro-1,2,2-trifluor         5.0         U         75-00-3         Chlorobenzene         1.0           1,1,2-Trichloro-1,2,2-trifluor         5.0         U         75-00-3         Chloroform         1.0           1,1,2-Trichloroethane         1.0         U         67-66-3         Chloromethane         1.0           1,1-Dichloroethane         1.0         U         74-87-3         Chloromethane         1.0           1,1-Dichloroethane         1.0         U         156-59-2         cis-1,2-Dichloroethene         1.0           1,2,3-Trichlorobenzene         1.0         U         10061-01-5         cis-1,3-Dichloropropene         1.0           1,2,3-Trichlorobenzene         1.0         U         110-82-7         Cyclohexane         1.0           1,2-Tichlorobenzene         1.0         U         124-48-1         Dibromochloromethane         1.0           1,2-Dichloroptopane         1.0         U         75-71-8         Dichlorodifluoromethane         1.0           1,2-Dichloroptopane         1.0         U         136</td>	Compound         RL         Conc         Cas # Compound           1,1,1-Trichloroethane         1.0         U         56-23-5         Carbon Tetrachloride           1,1,2,2-Tetrachloroethane         1.0         U         108-90-7         Chlorobenzene           1,1,2-Trichloroethane         1.0         U         75-00-3         Chloroethane           1,1,2-Trichloroethane         1.0         U         67-66-3         Chloroethane           1,1-Dichloroethane         1.0         U         74-87-3         Chloromethane           1,1-Dichloroethane         1.0         U         156-59-2         cis-1,2-Dichloroethane           1,2,3-Trichlorobenzene         1.0         U         110-82-7         Cyclohexane           1,2-Dibromo-3-Chloropropa         1.0         U         110-82-7         Cyclohexane           1,2-Dibromoethane         1.0         U         75-71-8         Dichlorodifluoromethane           1,2-Dichloroethane         1.0         U         136-77-61-8         Dichlorodifluoromethane           1,2-Dichloroethane         0.50         U         136-77-61-8         Dichloropropale           1,3-Dichlorobenzene         1.0         U         136-77-61-8         Biopropylbenzene           1,2-Dichloroe	Compound         RL         Conc         Cas # Compound         RL           1,1,1-Trichloroethane         1.0         U         56-23-5         Carbon Tetrachloride         1.0           1,1,2-Trichloro-1,2,2-trifluor         5.0         U         75-00-3         Chlorobenzene         1.0           1,1,2-Trichloro-1,2,2-trifluor         5.0         U         75-00-3         Chloroform         1.0           1,1,2-Trichloroethane         1.0         U         67-66-3         Chloromethane         1.0           1,1-Dichloroethane         1.0         U         74-87-3         Chloromethane         1.0           1,1-Dichloroethane         1.0         U         156-59-2         cis-1,2-Dichloroethene         1.0           1,2,3-Trichlorobenzene         1.0         U         10061-01-5         cis-1,3-Dichloropropene         1.0           1,2,3-Trichlorobenzene         1.0         U         110-82-7         Cyclohexane         1.0           1,2-Tichlorobenzene         1.0         U         124-48-1         Dibromochloromethane         1.0           1,2-Dichloroptopane         1.0         U         75-71-8         Dichlorodifluoromethane         1.0           1,2-Dichloroptopane         1.0         U         136			

Worksheet #: 283100

Total Target Concentration

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS VOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-014

Client Id: PC-3-10232013 U

Data File: 1M08861.D

Analysis Date: 10/29/13 00:21

Date Rec/Extracted: 10/24/13-NA

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids:

Method: EPA 624

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	OJ	_

Worksheet #: 283100

#### Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

Data File

Spike or Dup: 1M08371.D

Sample ID:

AC75043-004(MS)

Analysis Date

10/15/2013 12:41:00 P

Non Spike(If applicable): 1M08293.D

AC75043-004

10/12/2013 2:56:00 AM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected	_	Lower	Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit
Chloromethane	1	20.085	0	20	100	1	273
Bromomethane	1	18.4118	0	20	92	1	242
Vinyl Chloride	1	20.1478	0	20	101	1	251
Chloroethane	1	17.3555	0	20	87	14	230
Trichlorofluoromethane	1	18.3935	0	20	92	17	181
Methylene Chloride	1	19.7563	0	20	99	1	221
1,1-Dichloroethene	1	21.0637	0	20	105	1	234
1,1-Dichloroethane	1	21.453	0	20	107	59	155
trans-1,2-Dichloroethene	1	21.0359	0	20	105	54	156
Chloroform	1	19.9272	0	20	100	51	138
1,2-Dichloroethane	1	19.8644	0	20	99	49	155
1,1,1-Trichloroethane	1	18.2291	0	20	91	52	162
Carbon Tetrachloride	1	17.2747	0	20	86	70	140
Bromodichloromethane	1	18.416	0	20	92	35	155
1,2-Dichloropropane	1	23.7121	0	20	119	1	210
Trichloroethene	1	20.1457	0	20	101	71	157
Benzene	1	22.2655	0	20	111	37	151
Dibromochloromethane	1	15.2435	0	20	76	53	149
2-Chloroethylvinylether	1	0	0	20	0*	1	305
cis-1,3-Dichloropropene	1	16.0916	0	20	80	1	227
trans-1,3-Dichloropropene	1	12.7931	0	20	64	17	183
1,1,2-Trichloroethane	1	18.1904	0	20	91	52	150
Tetrachloroethene	1	19.03	0	20	95	64	148
Toluene	1	19.8544	0	20	99	47	150
Chlorobenzene	1	18.6303	0	20	93	37	160
Bromoform	1	12.312	0	20	62	45	169
Ethylbenzene	1	20.5066	0	20	103	37	162
1,1,2,2-Tetrachloroethane	1	18.1549	0	20	91	46	157
1,3-Dichlorobenzene	1	19.4204	O	20	97	59	156
1,4-Dichlorobenzene	. 1	17.2459	0	20	86	18	190
1,2-Dichlorobenzene	1	17.2499	0	20	86	18	190

Data File

Spike or Dup: 1M08372.D

Sample ID:

AC75043-004(MSD)

Analysis Date 10/15/2013 12:57:00 P

Non Spike(If applicable): 1M08293.D

AC75043-004

10/12/2013 2:56:00 AM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

Wichiod: 02 1	Matrix: Addoord		шо туроттог				
		Spike	Sample	Expected	_	Lower	Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit
Chloromethane	1	19.1221	0	20	96	1	273
Bromomethane	1	21.5736	0	20	108	1	242
Vinyl Chloride	1	19.235	0	20	96	1	251
Chloroethane	1	17.9457	0	20	90	14	230
Trichlorofluoromethane	1	17.9666	0	20	90	17	181
Methylene Chloride	1	18.9108	0	20	95	1	221
1,1-Dichloroethene	1	19.0046	0	20	95	1	234
1,1-Dichloroethane	1	19.8658	0	20	99	59	155
trans-1,2-Dichloroethene	1	19.6229	0	20	98	54	156
Chloroform	1	19.031	0	20	95	51	138
1,2-Dichloroethane	1	19.5177	0	20	98	49	155
1,1,1-Trichloroethane	1	17.1467	0	20	86	52	162
Carbon Tetrachloride	1	16.9868	0	20	85	70	140
Bromodichloromethane	1	18.6698	0	20	93	35	155
1,2-Dichloropropane	1	22.3502	0	20	112	1	210
Trichloroethene	1	19.9325	0	20	100	71	157
Benzene	1	21.6932	0	20	108	. 37	151
Dibromochloromethane	1	15.8308	0	20	79	53	149
2-Chloroethylvinylether	1	0	0	20	0*	1	305
cis-1,3-Dichloropropene	1	15.6598	0	20	78	1	227
trans-1,3-Dichloropropene	1	12.8457	0	20	64	17	183
1,1,2-Trichloroethane	1	18.4706	0	20	92	52	150
Tetrachloroethene	1	18.8035	0	20	94	64	148
Toluene	1	19.9131	0	20	100	47	150
Chlorobenzene	1	18.8773	0	20	94	37	160
Bromoform	1	13.3694	0	20	67	45	169
Ethylbenzene	1	19.5771	0	20	98	37	162
1,1,2,2-Tetrachloroethane	1	17.5669	0	20	88	46	157
1,3-Dichlorobenzene	1	18.3161	0	20	92	59	156
1,4-Dichlorobenzene	1	17.3856	0	20	87	18	190
1,2-Dichlorobenzene	1	16.8979	0	20	84	18	190

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M08384.D

AC75034-001(MS)

10/15/2013 4:17:00 PM

Non Spike(If applicable): 1M08299.D AC75034-001

10/12/2013 4:37:00 AM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MS

111011104: 024		flatin. / iquo	000		ao Type. Mo		1
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
Chloromethane	1	17.9249	0	20	90	1	273
Bromomethane	1	17.5216	0	20	88	1	242
Vinyl Chloride	1	16.2139	0	20	81	1	251
Chloroethane	1	16.4595	0	20	82	14	230
Trichlorofluoromethane	1	16.5826	0	20	83	17	181
Methylene Chloride	1	18.4614	1.0862	20	87	1	221
1,1-Dichloroethene	1	18.8292	0	20	94	1	234
1,1-Dichloroethane	1	18.765	0	20	94	59	155
trans-1,2-Dichloroethene	1	19.582	0	20	98	54	156
Chloroform	1	17.4189	0	20	87	51	138
1,2-Dichloroethane	1	17.8542	0	20	89	49	155
1,1,1-Trichloroethane	1	16.0897	0	20	80	52	162
Carbon Tetrachloride	1	16.7114	0	20	84	70	140
Bromodichloromethane	1	17.8971	0	20	89	35	155
1,2-Dichloropropane	1	20.3143	0	20	102	1	210
Trichloroethene	1	19.3145	. 0	20	97	71	157
Benzene	1	20.4816	0	20	102	37	151
Dibromochloromethane	1	15.0604	0	20	75	53	149
2-Chloroethylvinylether	1	0	0	20	0 *	1	305
cis-1,3-Dichloropropene	1	13.7806	0	20	69	1	227
trans-1,3-Dichloropropene	1	10.7744	0	20	54	17	183
1,1,2-Trichloroethane	1	16.832	0	20	84	52	150
Tetrachloroethene	1	17.0884	0	20	85	64	148
Toluene	1	17.5276	0	20	88	47	150
Chlorobenzene	1	17.4425	0	20	87	37	160
Bromoform	1	12.5222	0	20	63	45	169
Ethylbenzene	1	19.5631	0	20	98	37	162
1,1,2,2-Tetrachloroethane	1	15.6824	o o	20	78	46	157
1,3-Dichlorobenzene	1	17.4481	Ö	20	87	59	156
1,4-Dichlorobenzene	1	15.6493	Ö	20	78	18	190
1,2-Dichlorobenzene	1	15.7989	Ö	20	79	18	190

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M08385.D

10/15/2013 4:34:00 PM

Non Spike(If applicable): 1M08299.D

AC75034-001

AC75034-001(MSD)

10/12/2013 4:37:00 AM

Inst Blank(If applicable):

Method: 624

Matrix: Aqueous

QC Type: MSD

		Spike	Sample	Expected		Lower	Upper
Analyte:	Col	Conc	Conc	Ćonc	Recovery	Limit	Limit
Chloromethane	1	15.9926	0	20	80	1	273
Bromomethane	1	17.0602	0	20	85	1	242
Vinyl Chloride	1	16.9316	0	20	85	1	251
Chloroethane	1	15.6231	0	20	78	14	230
Trichlorofluoromethane	1	16.7195	0	20	84	17	181
Methylene Chloride	1	17.1605	1.0862	20	80	1	221
1,1-Dichloroethene	1	17.8311	0	20	89	1	234
1,1-Dichloroethane	1	17.4675	0	20	87	59	155
trans-1,2-Dichloroethene	1	18.6718	0	20	93	54	156
Chloroform	1	17.0568	0	20	85	51	138
1,2-Dichloroethane	1	17.0153	0	20	85	49	155
1,1,1-Trichloroethane	1	16.0275	0	20	80	52	162
Carbon Tetrachloride	1	16.1389	0	20	81	70	140
Bromodichloromethane	1	16.7414	0	20	84	35	155
1,2-Dichloropropane	1	19.3993	0	-20	97	1	210
Trichloroethene	1	18.2473	0	20	91	71	157
Benzene	1	18.8513	0	20	94	37	151
Dibromochloromethane	1	15.0869	0	20	75	53	149
2-Chloroethylvinylether	1	0	0	20	0*	1	305
cis-1,3-Dichloropropene	1	13.4484	0	20	67	1	227
trans-1,3-Dichloropropene	1	10.4905	0	20	52	17	183
1,1,2-Trichloroethane	1	16.7142	0	20	84	52	150
Tetrachloroethene	1	17.0053	0	20	85	64	148
Toluene	1	17.1704	0	20	86	47	150
Chlorobenzene	1	16.7205	0	20	84	37	160
Bromoform	1	12.893	0	20	64	45	169
Ethylbenzene	1	17.6021	0	20	88	37	162
1,1,2,2-Tetrachloroethane	1	16.2266	0	20	81	46	157
1,3-Dichlorobenzene	1	16.6082	0	20	83	59	156
1,4-Dichlorobenzene	1	14.9936	0	20	75	18	190
1,2-Dichlorobenzene	1	15.1316	0	20	76	18	190

# Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: WMB29082

Client Id:

Data File: 10M40846.D

Analysis Date: 10/30/13 17:28 Date Rec/Extracted: NA-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

omis. ug/L							
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	Ü	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U		,		
	· • •						

Worksheet #: 283066

Total Target Concentration

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: WMB29082

Client Id:

Data File: 10M40846.D

Analysis Date: 10/30/13 17:28

Date Rec/Extracted: NA-10/30/13

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc	
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	<10%	
2		unknown	5.61	<10%	

Worksheet #; 283066

#### Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.

<sup>J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-002

Client Id: DMW-5-10232013 U

Data File: 10M40847.D

Analysis Date: 10/30/13 17:51

Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol. 500ml

Final Vol: 0.5ml

Dilution: 1

Solids: 0

Units: ug/L

Units: ug/L									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc		
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U		
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U		
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U		
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U		
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U		
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U		
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U		
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U		
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	67		
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U		
91-58-7	2-Chloronaphthaiene	2.0	U	218-01-9	Chrysene	2.0	U		
95-57-8	2-Chlorophenol	2.0	<u>u</u>	53-70-3	Dibenzo[a,h]anthracene	2.0	U		
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U		
95-48-7	2-Methylphenol	0.50	· U	84-66-2	Diethylphthalate	2.0	U		
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U		
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U		
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U		
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U		
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U		
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U		
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U		
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U		
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U		
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U		
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U		
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	. U		
83-32-9	Acenaphthene	2.0	· U	98-95-3	Nitrobenzene	2.0	U		
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U		
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U		
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U		
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U		
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U		
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U		
50-32-8	Benzo[a]pyrene	2.0	U						

Worksheet #: 283066

Total Target Concentration

67

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-002

Client Id: DMW-5-10232013 U

Data File: 10M40847.D

Analysis Date: 10/30/13 17:51

Date Rec/Extracted: 10/24/13-10/30/13

Matrix: Aqueous

Initial Vol: 500ml

Final Vol: 0.5ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.17	8.5 JB
2	31336-10-4	N-tert-Butyl-1-[(tert-butylimino)methyl]	11.74	9.6 J
3	41981-68-4	Thiazole, 4-ethyl-2-propyl-	13.70	4.6 J
.4		unknown	14.95	140 J
5	57-88-5	Cholest-5-en-3-ol (3.beta.)-	15.13	6.3 J
6		unknown	15.36	4.3 J
7		unknown	15.85	230 J

Worksheet #: 283066

Total Tentatively Identified Concentration 400

A - Indicates an aldol condensate.

<sup>J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.</li></sup> 

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-004

Client Id: PC-1-10232013 U

Data File: 10M40850.D Analysis Date: 10/30/13 18:58 Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1 Solids: 0

Units: ua/L

	Units: ug/L									
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc			
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	Ū			
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U			
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	Ü	207-08-9	Benzo[k]fluoranthene	2.0	U			
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U			
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	Ū			
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U			
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	. U			
51-28-5	2,4-Dinitrophenol	10	Ü	85-68-7	Butylbenzylphthalate	2.0	U			
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	56			
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U			
91-58 <b>-</b> 7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	Ü			
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	Ü			
91-57-6	2-Methylnaphthalene	2.0	U	132-64-9	Dibenzofuran	0.50	U			
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U			
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	Ü			
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	Ü			
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	Ü			
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	Ü			
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	Ü			
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U			
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U			
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U			
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U			
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U			
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	Ü			
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	Ü			
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U			
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	Ü			
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U			
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U			
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U			
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U			
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U			
50-32-8	Benzo[a]pyrene	2.0	U							

Worksheet #: 283066

Total Target Concentration

R - Retention Time Out

56

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-004

Client Id: PC-1-10232013 U

Data File: 10M40850.D

Analysis Date: 10/30/13 18:58

Date Rec/Extracted: 10/24/13-10/30/13

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	4.8 JB
2	35146-55-5	Glycine, N-[N-[N-(1-oxodecyl)-L-alanyl]g	11.73	9.8 J
3	7270-99-7	2'-pivalonaphthone	13.70	7.7 J
4		unknown	14.41	6.7 J
5		unknown	14.95	190 J
6	57-88-5	Cholest-5-en-3-ol (3.beta.)-	15.13	18 J
7		unknown	15.18	6.7 J
. 8		unknown	15.35	7.4 J
9		unknown	15.86	310 J
10	23301-60-2	BIS(TETRAMETHYLENEDITHIOCARB	16,11	6.0 J

Worksheet #: 283066

Total Tentatively Identified Concentration 570

A - Indicates an aldol condensate. J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

### Form1

#### ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-006

Client Id: LMW-4-10232013 U

Data File: 10M40877.D

Analysis Date: 10/31/13 16:23 Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 990ml

Final Vol: 1ml Dilution: 1

Solids: 0

Units: ug/L

			Units: u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	U
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.51	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.51	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	U
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	110
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	u	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	Û	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	ט	132-64-9	Dibenzofuran	0.51	U
95-48-7	2-Methylphenol	0.51	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.51	U
106-44-5	3&4-Methylphenol	0.51	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U
99-09-2	3-Nitroaniline	2.0	υ	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	U
106-47-8	4-Chloroaniline	0.51	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	Ú
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.51	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.51	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	υ	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	υ	129-00-0	Pyrene	2.0	U
50-32-8	Benzo[a]pyrene	2.0	U				

Worksheet #: 283066

Total Target Concentration

110

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte was journal in the stank as well as in the sample.

R - Retention Time Out

 $^{{\}it J}$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-006

Client Id: LMW-4-10232013 U

Data File: 10M40877.D

Analysis Date: 10/31/13 16:23

Date Rec/Extracted: 10/24/13-10/30/13

Matrix: Aqueous Initial Vol: 990ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

ing samula series de la meso de la meso. La menor de la composition de la meso de la

	Cas #	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	4.6 JB
2		unknown	11.73	55 <b>J</b>
3		unknown	14.40	13 J
4		unknown	14.94	11 J
5		unknown	15.84	18 J

Worksheet #: 283066

Total Tentatively Identified Concentration 100

A - Indicates an aldol condensate.

J - Indicates an attact concensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# Form1

ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-008

Client Id: PC-2-10232013 U

Data File: 10M40852.D Analysis Date: 10/30/13 19:42

Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids: 0

Units: ug/L

			Units: (	Jg/∟			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
92-52-4	1,1'-Biphenyl	2.0	U	205-99-2	Benzo[b]fluoranthene	2.0	U
95-94-3	1,2,4,5-Tetrachlorobenzene	2.0	U	191-24-2	Benzo[g,h,i]perylene	2.0	U
58-90-2	2,3,4,6-Tetrachlorophenol	2.0	U	207-08-9	Benzo[k]fluoranthene	2.0	U
95-95-4	2,4,5-Trichlorophenol	2.0	U	111-91-1	bis(2-Chloroethoxy)methan	2.0	Ū
88-06-2	2,4,6-Trichlorophenol	2.0	U	111-44-4	bis(2-Chloroethyl)ether	0.50	U
120-83-2	2,4-Dichlorophenol	2.0	U	108-60-1	bis(2-chloroisopropyl)ether	2.0	U
105-67-9	2,4-Dimethylphenol	0.50	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.0	Ų
51-28-5	2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.0	· U
121-14-2	2,4-Dinitrotoluene	2.0	U	105-60-2	Caprolactam	2.0	U
606-20-2	2,6-Dinitrotoluene	2.0	U	86-74-8	Carbazole	2.0	U
91-58-7	2-Chloronaphthalene	2.0	U	218-01-9	Chrysene	2.0	U
95-57-8	2-Chlorophenol	2.0	U	53-70-3	Dibenzo[a,h]anthracene	2.0	U
91-57-6	2-Methylnaphthalene	2.0	Ü	132-64-9	Dibenzofuran	0.50	U
95-48-7	2-Methylphenol	0.50	U	84-66-2	Diethylphthalate	2.0	U
88-74-4	2-Nitroaniline	2.0	U	131-11-3	Dimethylphthalate	2.0	U
88-75-5	2-Nitrophenol	2.0	U	84-74-2	Di-n-butylphthalate	0.50	U
106-44-5	3&4-Methylphenol	0.50	U	117-84-0	Di-n-octylphthalate	2.0	U
91-94-1	3,3'-Dichlorobenzidine	2.0	U	206-44-0	Fluoranthene	2.0	U ,
99-09-2	3-Nitroaniline	2.0	U	86-73-7	Fluorene	2.0	U
534-52-1	4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.0	U
101-55-3	4-Bromophenyl-phenylether	2.0	U	87-68-3	Hexachlorobutadiene	2.0	U
59-50-7	4-Chloro-3-methylphenol	2.0	U	77-47-4	Hexachlorocyclopentadiene	2.0	Ū
106-47-8	4-Chloroaniline	0.50	U	67-72-1	Hexachloroethane	2.0	U
7005-72-3	4-Chlorophenyl-phenylether	2.0	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U
100-01-6	4-Nitroaniline	2.0	U	78-59-1	Isophorone	2.0	U
100-02-7	4-Nitrophenol	2.0	U	91-20-3	Naphthalene	0.50	U
83-32-9	Acenaphthene	2.0	U	98-95-3	Nitrobenzene	2.0	U
208-96-8	Acenaphthylene	2.0	U	621-64-7	N-Nitroso-di-n-propylamine	0.50	U
98-86-2	Acetophenone	2.0	U	86-30-6	n-Nitrosodiphenylamine	2.0	U
120-12-7	Anthracene	2.0	U	87-86-5	Pentachlorophenol	10	U
1912-24-9	Atrazine	2.0	U	85-01-8	Phenanthrene	2.0	U
100-52-7	Benzaldehyde	2.0	U	108-95-2	Phenol	2.0	U
56-55-3	Benzo[a]anthracene	2.0	U	129-00-0	Pyrene	2.0	U
50-32-8		2.0	Ù				
					4		

Worksheet #: 283066

Total Target Concentration

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-008

Client Id: PC-2-10232013 U

Data File: 10M40852.D

Analysis Date: 10/30/13 19:42

Date Rec/Extracted: 10/24/13-10/30/13

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc
1	5131-66-8	2-Propanol, 1-butoxy-	5.17	5.7 JB

Worksheet #: 283066

Total Tentatively Identified Concentration 5.7

A - Indicates an aldol condensate.

J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.
Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-010(5X)

Client Id: LMW-2-10232013 U

Data File: 10M40888.D

Analysis Date: 10/31/13 20:28

Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625

Matrix: Aqueous Initial Vol: 1000ml

Final Vol: 1ml Dilution: 5

Solids: 0

Units: ug/L

Cas # Compound         RL Conc         Cas # Compound         RL Conc           92-52-4 1,1'-Biphenyl         10         U         205-99-2 Benzo[b]fluoranthene         10         U           95-94-3 1,2,4,5-Tetrachlorophenol         10         U         191-24-2 Benzo[b] h]perylene         10         U           58-90-2 2,3,4,6-Tetrachlorophenol         10         U         207-08-9 Benzo[k]fluoranthene         10         U           88-06-2 2,4,6-Trichlorophenol         10         U         111-91-1 bis(2-Chloroethoxy)methan         10         U           120-83-2 2,4-Dichlorophenol         10         U         108-60-1 bis(2-chloroisopropy)bether         10         U           150-67-9 2,4-Dimitrophenol         50         U         108-60-1 bis(2-chloroisopropy)bether         10         U           160-62-2 2,4-Dinitrotoluene         10         U         108-66-1 bis(2-chloroisopropy)bether         10         U           121-14-2 2,4-Dinitrotoluene         10         U         108-60-2 bis(2-chloroisopropy)bether         10         U           121-14-2 2,4-Dinitrotoluene         10         U         108-68-7 Buylbenzylphthalate         10         U           121-14-2 2,4-Dinitrotoluene         10         U         105-60-2 Caprolactam         10         92				Units: ug/l	L			
95-94-3 1,2,4,5-Tetrachlorobenzene 10 U 191-24-2 Benzo[g,h,i]perylene 10 U 58-90-2 2,3,4,6-Tetrachlorophenol 10 U 207-08-9 Benzo[k]fluoranthene 10 U 95-95-84 2,4-5-Trichlorophenol 10 U 1111-41-4 bis(2-Chloroethyy)pether 2.5 U 120-83-2 2,4-6-Trichlorophenol 10 U 1111-44-4 bis(2-Chloroethyy)pether 2.5 U 108-60-7 2,4-Diintrophenol 10 U 108-60-1 bis(2-chlorospropy)pether 10 U 105-67-9 2,4-Diintrophenol 50 U 85-88-7 Butylbenzylphthalate 10 U 121-14-2 2,4-Diintrophenol 50 U 85-88-7 Butylbenzylphthalate 10 U 121-14-2 2,4-Diintrotoluene 10 U 86-80-2 2,4-Diintrotoluene 10 U 86-80-2 Caprolactam 10 U 91-58-7 2-Chlorosphenol 10 U 86-74-8 Carbazole 10 U 91-58-7 2-Chlorophenol 10 U 86-74-8 Carbazole 10 U 91-58-7 2-Chlorophenol 10 U 86-74-8 Carbazole 10 U 91-58-7 2-Chlorophenol 10 U 132-64-9 Dibenzo(a,h)anthracene 10 U 91-58-7 2-Methylinaphthalene 10 U 132-64-9 Dibenzo(a,h)anthracene 10 U 88-74-2 U-Nitrophenol 2.5 U 84-66-2 Diethylphthalate 10 U 88-74-2 U-Nitrophenol 2.5 U 84-66-2 Diethylphthalate 10 U 88-74-3 Sa-Methylphenol 2.5 U 84-66-2 Diethylphthalate 10 U 88-74-3 Sa-Methylphenol 2.5 U 117-84-0 Di-n-obtylphthalate 10 U 99-09-2 3-Nitrophinol 10 U 84-74-2 Di-n-obtylphthalate 10 U 99-09-2 3-Nitrophinol 50 U 118-74-1 Hexachlorobenzeline 10 U 99-09-2 3-Nitrophinol 50 U 118-74-1 Hexachlorobenzelne 10 U 99-09-2 4-Chloro-methylphenol 50 U 118-74-1 Hexachlorobenzelne 10 U 99-09-2 4-Chloro-methylphenol 50 U 118-74-1 Hexachlorobenzelne 10 U 106-47-8 4-Chloro-methylphenol 10 U 97-74-74 Hexachlorobenzelne 10 U 106-47-8 4-Chloro-methylphenol 10 U 98-86-3 Nationaline 10 U 98-86-3 Nationaline 10 U 98-86-3 Nationaline 10 U 98-86-5 U 98	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
S8-90-2   2.3.4,6-Tetrachlorophenol   10	92-52-4	1,1'-Biphenyl	10	U	205-99-2	Benzo[b]fluoranthene	10	U
95-95-4         2.4.5-Trichlorophenol         10         U         111-91-1         bis(2-Chloroethxy)methan         10         U           88-06-2         2.4.6-Trichlorophenol         10         U         111-44-4         bis(2-Chloroethy)jether         2.5         U           120-83-2         2.4-Dimethylphenol         2.5         U         117-81-7         bis(2-Chloroethy)jether         10         U           15-28-5         2.4-Dimitrophenol         50         U         85-68-7         Butylbenzylphthalate         10         U           121-14-2         2.4-Dinitrotoluene         10         U         105-60-2         Caprolactam         10         U           96-52-7         2-Chloroaphthalene         10         U         218-01-9         Chrysene         10         U           95-57-8         2-Chlorophenol         10         U         53-70-3         Dibenzola, planthracene         10         U           95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-75-8         2-Nitrophenol         10         U         131-11-3         Dimethylphthalate         10         U           88-74-4         2-Nitrophenol	95-94-3	1,2,4,5-Tetrachlorobenzene	10	U	191-24-2	Benzo[g,h,i]perylene	10	U
88-06-2         2,4,6-Trichlorophenol         10         U         111-44-4         bis(2-Chlorosphyl)ether         2.5         U           120-83-2         2,4-Dichlorophenol         10         U         108-60-1         bis(2-Ethylnexyl)phthalate         10         U           105-67-9         2,4-Dimtrylphenol         50         U         117-81-7         bis(2-Ethylnexyl)phthalate         10         U           51-28-5         2,4-Dimtrylphenol         50         U         85-68-7         Butylbenzylphthalate         10         U           606-20-2         2,5-Dimitrotoluene         10         U         105-80-2         Caprolactam         10         U           91-58-7         2-Chlorophenol         10         U         218-01-9         Chrysene         10         U           91-58-7         2-Chlorophenol         10         U         53-70-3         Dibenzofuran         2.5         U           95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-74-8         2-Nitrophenol         10         U         131-11-3         Dimethylphthalate         10         U           88-74-8         2-Nitrophenol         2.5	58-90-2	2,3,4,6-Tetrachlorophenol	10	U	207-08-9	Benzo[k]fluoranthene	10	U
120-83-2   2,4-Dichlorophenol   10	95-95-4	2,4,5-Trichlorophenol	10	U	111-91-1	bis(2-Chloroethoxy)methan	10	Ų
105-67-9   2,4-Dimethylphenol   2.5   U   117-81-7   bis(2-Ethylhexyl)phthalate   10   U   51-28-5   2,4-Dinitrophenol   50   U   85-68-7   Butylbenzylphthalate   10   U   U   117-81-7   Bis(2-Ethylhexyl)phthalate   10   U   U   U   U   U   U   U   U   U	88-06-2	2,4,6-Trichlorophenol	10	U	111-44-4	bis(2-Chloroethyl)ether	2.5	U
51-28-5         2,4-Dinitrophenol         50         U         85-68-7         Butylbenzylphthalate         10         U           121-14-2         2,4-Dinitrofoluene         10         U         105-80-2         Caprolactam         10         920           606-20-2         2,6-Dinitrofoluene         10         U         86-74-8         Carbazole         10         U           91-58-7         2-Chlorophenol         10         U         53-70-3         Dibenzo[a,h]anthracene         10         U           95-57-8         2-Chlorophenol         10         U         53-70-3         Dibenzo[a,h]anthracene         10         U           95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-74-8         2-Nitrophenol         10         U         131-11-3         Dimethylphthalate         10         U           88-75-5         2-Nitrophenol         10         U         84-74-2         Di-n-butylphthalate         2.5         U           91-94-1         3,3-Dichlorobenzidine         10         U         265-44-0         Fluoranthene         10         U           99-09-2         3-Nitroaniline         10	120-83-2	2,4-Dichlorophenol	10	U	108-60-1	bis(2-chloroisopropyl)ether	10	U
121-14-2         2.4-Dinitrotoluene         10         U         105-60-2         Caprolactam         10         920           606-20-2         2.6-Dinitrotoluene         10         U         86-74-8         Carbazole         10         U           91-58-7         2-Chloropaphthalene         10         U         218-01-9         Chrysene         10         U           95-57-8         2-Chlorophenol         10         U         53-70-3         Dibenzofuran         2.5         U           95-48-7         2-Methylphaphthalene         10         U         132-64-9         Dibenzofuran         2.5         U           88-74-4         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-75-5         2-Nitroaniline         10         U         131-11-3         Dimethylphthalate         10         U           106-44-5         3-Nitroaniline         10         U         26-44-0         Di-n-octylphthalate         10         U           99-09-2         3-Nitroaniline         10         U         26-44-0         Picoranthene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U	105-67-9	2,4-Dimethylphenol	2.5	U	117-81-7	bis(2-Ethylhexyl)phthalate	10	U
606-20-2         2,6-Dinitrotoluene         10         U         86-74-8         Carbazole         10         U           91-58-7         2-Chlorophanol         10         U         53-70-3         Dibenzofuan, jlanthracene         10         U           95-57-8         2-Chlorophenol         10         U         53-70-3         Dibenzofuran         2.5         U           95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-74-4         2-Nitrophenol         10         U         84-67-2         Diethylphthalate         10         U           88-75-5         2-Nitrophenol         10         U         84-74-2         Di-n-butylphthalate         2.5         U           106-44-5         3&4-Methylphenol         2.5         U         117-84-0         Di-n-butylphthalate         10         U           99-09-2         3-Nitrophenol         10         U         266-44-2         Di-n-butylphthalate         10         U           99-09-2         3-Nitrophenol         10         U         266-44-0         Fluorene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U	51-28-5	2,4-Dinitrophenol	50	U	85-68-7	Butylbenzylphthalate	10	U
91-58-7         2-Chloronaphthalene         10         U         218-01-9         Chrysene         10         U           95-57-8         2-Chlorophenol         10         U         53-70-3         Dibenzofuran         2.5         U           95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-74-4         2-Nitrophenol         10         U         131-11-3         Dimethylphthalate         10         U           88-75-5         2-Nitrophenol         10         U         84-74-2         Di-n-butylphthalate         2.5         U           106-44-5         3&4-Methylphenol         2.5         U         117-84-0         Di-n-octylphthalate         10         U           91-94-1         3,3-Dichlorobenzidine         10         U         26-44-0         Fluoranthene         10         U           99-92-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-88-3         Hexachlorobetadiene         10         U           59-50-7         4-Chloro-3-methylphenol         10         U<	121-14-2	2,4-Dinitrotoluene	10	U	105-60-2	Caprolactam	10	920
95-57-8         2-Chlorophenol         10         U         53-70-3         Dibenzo[a,h]anthracene         10         U           91-57-6         2-Methylnaphthalene         10         U         132-64-9         Dibenzofuran         2.5         U           95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-75-5         2-Nitroaniline         10         U         131-11-3         Dimethylphthalate         2.5         U           106-44-5         3-Ritrophenol         10         U         84-74-2         Di-n-butylphthalate         2.5         U           106-44-5         3-Ritrophenol         2.5         U         117-84-0         Di-n-butylphthalate         2.5         U           91-94-1         3,3-Dichlorobenzidine         10         U         206-44-0         Fluoranthene         10         U           99-09-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-68-3         Hexachlorobutadiene         10         U           106-47-8         4-Chloroaniline         2.5	606-20-2	2,6-Dinitrotoluene	10	U	86-74-8	Carbazole	10	U
91-57-6         2-Methylnaphthalene         10         U         132-64-9         Dibenzofuran         2.5         U           95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-74-4         2-Nitroaniline         10         U         131-11-3         Dimethylphthalate         10         U           88-75-5         2-Nitrophenol         10         U         84-74-2         Di-n-butylphthalate         2.5         U           106-44-5         384-Methylphenol         2.5         U         117-84-0         Di-n-butylphthalate         10         U           91-94-1         3,3'-Dichlorobenzidine         10         U         206-44-0         Fluoranthene         10         U           99-09-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           534-52-1         4,6-Dinitro-2-methylphenol         50         U         118-74-1         Hexachlorobenzene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-68-3         Hexachlorocyclopentadiene         10         U           106-47-8         4-Chloro-3-inethylphenol	91-58-7	2-Chloronaphthalene	10	Ų	218-01-9	Chrysene	10	U
95-48-7         2-Methylphenol         2.5         U         84-66-2         Diethylphthalate         10         U           88-74-4         2-Nitroaniline         10         U         131-11-3         Dimethylphthalate         10         U           88-75-5         2-Nitrophenol         10         U         84-74-2         Di-n-butylphthalate         2.5         U           106-44-5         3&4-Methylphenol         2.5         U         117-84-0         Di-n-octylphthalate         10         U           99-9-1         3.3-Dichlorobenzidine         10         U         206-44-0         Fluoranthene         10         U           99-09-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           534-52-1         4,6-Dinitro-2-methylphenol         50         U         118-74-1         Hexachlorobutadiene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-68-3         Hexachlorobutadiene         10         U           106-47-8         4-Chloroaniline         2.5         U         67-72-1         Hexachlorobutadiene         10         U           100-72-2         4-Chlorophenyl-phenylether	95-57-8	2-Chlorophenol	10	U	53-70-3	Dibenzo[a,h]anthracene	10	U
88-74-4       2-Nitroaniline       10       U       131-11-3       Dimethylphthalate       10       U         88-75-5       2-Nitrophenol       10       U       84-74-2       Di-n-butylphthalate       2.5       U         106-44-5       3&4-Methylphenol       2.5       U       117-84-0       Di-n-octylphthalate       10       U         91-94-1       3.3'-Dichlorobenzidine       10       U       206-44-0       Fluoranthene       10       U         99-99-2       3-Nitroaniline       10       U       86-73-7       Fluorene       10       U         534-52-1       4,6-Dinitro-2-methylphenol       50       U       118-74-1       Hexachlorobenzene       10       U         101-55-3       4-Bromophenyl-phenylether       10       U       87-68-3       Hexachlorobutadiene       10       U         106-47-8       4-Chloro-3-methylphenol       10       U       77-47-4       Hexachlorocyclopentadiene       10       U         106-47-8       4-Chlorophenyl-phenylether       10       U       77-47-4       Hexachlorocyclopentadiene       10       U         100-01-6       4-Nitroaniline       2.5       U       67-72-1       Hexachlorocyclopentadiene       10	91-57-6	2-Methylnaphthalene	10	U	132-64-9	Dibenzofuran	2.5	U
88-75-5         2-Nitrophenol         10         U         84-74-2         Di-n-butylphthalate         2.5         U           106-44-5         3&4-Methylphenol         2.5         U         117-84-0         Di-n-octylphthalate         10         U           91-94-1         3,3'-Dichlorobenzidine         10         U         206-44-0         Fluoranthene         10         U           99-09-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           534-52-1         4,6-Dinitro-2-methylphenol         50         U         118-74-1         Hexachlorobenzene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-68-3         Hexachlorobutadiene         10         U           98-50-7         4-Chloro-3-methylphenol         10         U         77-47-4         Hexachlorocyclopentadiene         10         U           106-47-8         4-Chlorophenyl-phenylether         10         U         67-72-1         Hexachlorocyclopentadiene         10         U           100-01-6         4-Nitroaniline         2.5         U         67-72-1         Hexachlorocyclopentadiene         10         U           100-02-7	95-48-7	2-Methylphenol	2.5	U	84-66-2	Diethylphthalate	10	U
106-44-5         3&4-Methylphenol         2.5         U         117-84-0         Di-n-octylphthalate         10         U           91-94-1         3,3'-Dichlorobenzidine         10         U         206-44-0         Fluoranthene         10         U           99-09-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           534-52-1         4,6-Dinitro-2-methylphenol         50         U         118-74-1         Hexachlorobenzene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-68-3         Hexachlorobutadiene         10         U           59-50-7         4-Chloro-3-methylphenol         10         U         77-47-4         Hexachlorobutadiene         10         U           106-47-8         4-Chlorophenyl-phenylether         10         U         67-72-1         Hexachlorobutadiene         10         U           100-05-72-3         4-Chlorophenyl-phenylether         10         U         193-39-5         Indeno[1,2,3-cd]pyrene         10         U           100-01-6         4-Nitroaniline         10         U         78-59-1         Isophorone         10         U           83-32-9	88-74-4	2-Nitroaniline	10	U	131-11-3	Dimethylphthalate.	10	U
91-94-1         3,3'-Dichlorobenzidine         10         U         206-44-0         Fluoranthene         10         U           99-09-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           534-52-1         4,6-Dinitro-2-methylphenol         50         U         118-74-1         Hexachlorobenzene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-68-3         Hexachlorobutadiene         10         U           59-50-7         4-Chloro-3-methylphenol         10         U         77-47-4         Hexachlorocyclopentadiene         10         U           106-47-8         4-Chloroaniline         2.5         U         67-72-1         Hexachlorocyclopentadiene         10         U           100-57-2-3         4-Chlorophenyl-phenylether         10         U         193-39-5         Indeno[1,2,3-cd]pyrene         10         U           100-01-6         4-Nitroaniline         10         U         78-59-1         Isophorone         10         U           100-02-7         4-Nitrophenol         10         U         91-20-3         Naphthalene         2.5         U           83-32-9         Acenaphthyl	88-75-5	2-Nitrophenol	10	U	84-74-2	Di-n-butylphthalate	2.5	Ù
99-09-2         3-Nitroaniline         10         U         86-73-7         Fluorene         10         U           534-52-1         4,6-Dinitro-2-methylphenol         50         U         118-74-1         Hexachlorobenzene         10         U           101-55-3         4-Bromophenyl-phenylether         10         U         87-68-3         Hexachlorobutadiene         10         U           59-50-7         4-Chloro-3-methylphenol         10         U         77-47-4         Hexachlorocyclopentadiene         10         U           106-47-8         4-Chloropaniline         2.5         U         67-72-1         Hexachlorocyclopentadiene         10         U           7005-72-3         4-Chlorophenyl-phenylether         10         U         193-39-5         Indeno[1,2,3-cd]pyrene         10         U           100-01-6         4-Nitroaniline         10         U         78-59-1         Isophorone         10         U           100-02-7         4-Nitrophenol         10         U         91-20-3         Naphthalene         2.5         U           83-32-9         Acenaphthylene         10         U         98-95-3         Nitrobenzene         10         U           98-86-2         Acetophenone	106-44-5	3&4-Methylphenol	2.5	U	117-84-0	Di-n-octylphthalate	10	U
534-52-1       4,6-Dinitro-2-methylphenol       50       U       118-74-1       Hexachlorobenzene       10       U         101-55-3       4-Bromophenyl-phenylether       10       U       87-68-3       Hexachlorobutadiene       10       U         59-50-7       4-Chloro-3-methylphenol       10       U       77-47-4       Hexachlorocyclopentadiene       10       U         106-47-8       4-Chlorophenyl-phenylether       10       U       67-72-1       Hexachlorocyclopentadiene       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U       193-39-5       Indeno[1,2,3-cd]pyrene       10       U         100-01-6       4-Nitroaniline       10       U       78-59-1       Isophorone       10       U         100-02-7       4-Nitrophenol       10       U       91-20-3       Naphthalene       2.5       U         83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10 <td>91-94-1</td> <td>3,3'-Dichlorobenzidine</td> <td>10</td> <td>U</td> <td>206-44-0</td> <td>Fluoranthene</td> <td>10</td> <td>U</td>	91-94-1	3,3'-Dichlorobenzidine	10	U	206-44-0	Fluoranthene	10	U
101-55-3       4-Bromophenyl-phenylether       10       U       87-68-3       Hexachlorobutadiene       10       U         59-50-7       4-Chloro-3-methylphenol       10       U       77-47-4       Hexachlorocyclopentadiene       10       U         106-47-8       4-Chloroaniline       2.5       U       67-72-1       Hexachlorocyclopentadiene       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U       193-39-5       Indeno[1,2,3-cd]pyrene       10       U         100-01-6       4-Nitroaniline       10       U       78-59-1       Isophorone       10       U         100-02-7       4-Nitroaniline       10       U       91-20-3       Naphthalene       2.5       U         83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U	99-09-2	3-Nitroaniline	10	U	86-73-7	Fluorene	10	U
59-50-7       4-Chloro-3-methylphenol       10       U       77-47-4       Hexachlorocyclopentadiene       10       U         106-47-8       4-Chloroaniline       2.5       U       67-72-1       Hexachlorocethane       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U       193-39-5       Indeno[1,2,3-cd]pyrene       10       U         100-01-6       4-Nitroaniline       10       U       78-59-1       Isophorone       10       U         100-02-7       4-Nitrophenol       10       U       91-20-3       Naphthalene       2.5       U         83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         1912-24-9       Atrazine       10       U       87-86-5       Pentachlorophenol       50       U         190-52-7       Benzaldehyde       10       U       108-95-2       Phenol       10       U         56-55-3	534-52-1	4,6-Dinitro-2-methylphenol	50	U	118-74-1	Hexachlorobenzene	10	U
106-47-8       4-Chloroaniline       2.5       U       67-72-1       Hexachloroethane       10       U         7005-72-3       4-Chlorophenyl-phenylether       10       U       193-39-5       Indeno[1,2,3-cd]pyrene       10       U         100-01-6       4-Nitroaniline       10       U       78-59-1       Isophorone       10       U         100-02-7       4-Nitrophenol       10       U       91-20-3       Naphthalene       2.5       U         83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         120-12-7       Anthracene       10       U       87-86-5       Pentachlorophenol       50       U         1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U         100-52-7       Benzaldehyde       10       U       129-00-0       Pyrene       10       U	101-55-3	4-Bromophenyl-phenylether	10	U	87-68-3	Hexachlorobutadiene	10	U
7005-72-3       4-Chlorophenyl-phenylether       10       U       193-39-5       Indeno[1,2,3-cd]pyrene       10       U         100-01-6       4-Nitroaniline       10       U       78-59-1       Isophorone       10       U         100-02-7       4-Nitrophenol       10       U       91-20-3       Naphthalene       2.5       U         83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         120-12-7       Anthracene       10       U       87-86-5       Pentachlorophenol       50       U         1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U         100-52-7       Benzaldehyde       10       U       108-95-2       Phenol       10       U         56-55-3       Benzo[a]anthracene       10       U       129-00-0       Pyrene       10       U	59-50-7	4-Chloro-3-methylphenol	10	U	77-47-4	Hexachlorocyclopentadiene	10	U
100-01-6       4-Nitroaniline       10       U       78-59-1       Isophorone       10       U         100-02-7       4-Nitrophenol       10       U       91-20-3       Naphthalene       2.5       U         83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         120-12-7       Anthracene       10       U       87-86-5       Pentachlorophenol       50       U         1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U         100-52-7       Benzaldehyde       10       U       108-95-2       Phenol       10       U         56-55-3       Benzo[a]anthracene       10       U       129-00-0       Pyrene       10       U	106-47-8	4-Chloroaniline	2.5	U	67-72-1	Hexachloroethane	10	U
100-02-7       4-Nitrophenol       10       U       91-20-3       Naphthalene       2.5       U         83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         120-12-7       Anthracene       10       U       87-86-5       Pentachlorophenol       50       U         1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U         100-52-7       Benzaldehyde       10       U       108-95-2       Phenol       10       U         56-55-3       Benzo[a]anthracene       10       U       129-00-0       Pyrene       10       U	7005-72-3	4-Chlorophenyl-phenylether	10	Ü	193-39-5	Indeno[1,2,3-cd]pyrene	10	U
83-32-9       Acenaphthene       10       U       98-95-3       Nitrobenzene       10       U         208-96-8       Acenaphthylene       10       U       621-64-7       N-Nitroso-di-n-propylamine       2.5       U         98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         120-12-7       Anthracene       10       U       87-86-5       Pentachlorophenol       50       U         1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U         100-52-7       Benzaldehyde       10       U       108-95-2       Phenol       10       U         56-55-3       Benzo[a]anthracene       10       U       129-00-0       Pyrene       10       U	100-01-6	4-Nitroaniline	10	U	78-59-1	Isophorone	10	U
208-96-8         Acenaphthylene         10         U         621-64-7         N-Nitroso-di-n-propylamine         2.5         U           98-86-2         Acetophenone         10         U         86-30-6         n-Nitrosodiphenylamine         10         U           120-12-7         Anthracene         10         U         87-86-5         Pentachlorophenol         50         U           1912-24-9         Atrazine         10         U         85-01-8         Phenanthrene         10         U           100-52-7         Benzaldehyde         10         U         108-95-2         Phenol         10         U           56-55-3         Benzo[a]anthracene         10         U         129-00-0         Pyrene         10         U	100-02-7	4-Nitrophenol	10	U	91-20-3	Naphthalene	2.5	U
98-86-2       Acetophenone       10       U       86-30-6       n-Nitrosodiphenylamine       10       U         120-12-7       Anthracene       10       U       87-86-5       Pentachlorophenol       50       U         1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U         100-52-7       Benzaldehyde       10       U       108-95-2       Phenol       10       U         56-55-3       Benzo[a]anthracene       10       U       129-00-0       Pyrene       10       U	83-32-9	Acenaphthene	10	U	98-95-3	Nitrobenzene	10	U
120-12-7         Anthracene         10         U         87-86-5         Pentachlorophenol         50         U           1912-24-9         Atrazine         10         U         85-01-8         Phenanthrene         10         U           100-52-7         Benzaldehyde         10         U         108-95-2         Phenol         10         U           56-55-3         Benzo[a]anthracene         10         U         129-00-0         Pyrene         10         U	208-96-8	Acenaphthylene	10	, U	621-64-7	N-Nitroso-di-n-propylamine	2.5	U
1912-24-9       Atrazine       10       U       85-01-8       Phenanthrene       10       U         100-52-7       Benzaldehyde       10       U       108-95-2       Phenol       10       U         56-55-3       Benzo[a]anthracene       10       U       129-00-0       Pyrene       10       U	98-86-2	Acetophenone	10	U	86-30-6	n-Nitrosodiphenylamine	10	U
100-52-7         Benzaldehyde         10         U         108-95-2         Phenol         10         U           56-55-3         Benzo[a]anthracene         10         U         129-00-0         Pyrene         10         U	120-12-7	Anthracene	10	U	87-86-5	Pentachlorophenol	50	U
56-55-3 Benzo[a]anthracene 10 U 129-00-0 Pyrene 10 U	1912-24-9	Atrazine	10	U	85-01-8	Phenanthrene	10	U
56-55-3 Benzo[a]anthracene 10 U 129-00-0 Pyrene 10 U	100-52-7	Benzaldehyde	10	υ	108-95-2	Phenol	10	U
	56-55-3	•	10	υ	129-00-0	Pyrene	10	U
	50-32-8	Benzo[a]pyrene	10	Ū		•		

Worksheet #: 283066

Total Target Concentration

 $[\]it U$  - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

 $[\]it J$  - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### Form1e

#### ORGANICS SEMIVOLATILE REPORT **Tentatively Identified Compounds**

Sample Number: AC75324-010(5X)

Client Id: LMW-2-10232013 U

Data File: 10M40888.D

Analysis Date: 10/31/13 20:28

Date Rec/Extracted: 10/24/13-10/30/13

Matrix: Aqueous

Initial Vol: 1000ml

Final Vol: 1ml

Dilution: 5

Solids:

Method: EPA 625

Units: ug/L

	Cas#	Compound	RT	Conc	
1	,	unknown	14.94	37 J	
2		unknown	15.84	62 J	

Worksheet #: 283066

Total Tentatively Identified Concentration 99

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

#### Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: AC75324-014

Client Id: PC-3-10232013 U

Data File: 10M40876.D Analysis Date: 10/31/13 16:01

Date Rec/Extracted: 10/24/13-10/30/13

Column: DB-5MS 30M 0.250mm ID 0.25um film

Method: EPA 625 Matrix: Aqueous

Initial Vol: 970ml

Final Vol: 1ml

Dilution: 1 Solids: 0

Units: ua/L

			Units: u	ıg/L			
Cas	# Compound	RL	Conc	Cas #	Compound	RL	Conc
92-5	2-4 1,1'-Biphenyl	2.1	U	205-99-2	Benzo[b]fluoranthene	2.1	U
95-9	4-3 1,2,4,5-Tetrachlorobenzene	2.1	U	191-24-2	Benzo[g,h,i]perylene	2.1	, U
58-9	0-2 2,3,4,6-Tetrachlorophenol	2.1	U	207-08-9	Benzo[k]fluoranthene	2.1	U
95-9	5-4 2,4,5-Trichlorophenol	2.1	U	111-91-1	bis(2-Chloroethoxy)methan	2.1	U
88-0	6-2 2,4,6-Trichlorophenol	2.1	U	111-44-4	bis(2-Chloroethyl)ether	0.52	U
120-8	3-2 2,4-Dichlorophenol	2.1	· U	108-60-1	bis(2-chloroisopropyl)ether	2.1	· U
105-6	7-9 2,4-Dimethylphenol	0.52	U	117-81-7	bis(2-Ethylhexyl)phthalate	2.1	U
51-2	8-5 2,4-Dinitrophenol	10	U	85-68-7	Butylbenzylphthalate	2.1	U
121-1	4-2 2,4-Dinitrotoluene	2.1	U	105-60-2	Caprolactam	2.1	31
606-2	20-2 2,6-Dinitrotoluene	2.1	U	86-74-8	Carbazole	2.1	U
91-5	8-7 2-Chloronaphthalene	2.1	U	218-01-9	Chrysene	2.1	U
95-5	i7-8 2-Chlorophenol	2.1	U	53-70-3	Dibenzo[a,h]anthracene	2.1	U
91-5	57-6 2-Methylnaphthalene	2.1	Ü	132-64-9	Dibenzofuran	0.52	U
95-4	8-7 2-Methylphenol	0.52	U	84-66-2	Diethylphthalate	2.1	U
88-7	'4-4 2-Nitroaniline	2,1	υ	131-11-3	Dimethylphthalate	2.1	U
88-7	75-5 2-Nitrophenol	: 2.1	U	84-74-2	Di _† n-butylphthalate	0.52	U
106-4	4-5 3&4-Methylphenol	0.52	υ	117-84-0	Di-n-octylphthalate	2.1	U
91-9	94-1 3,3'-Dichlorobenzidine	2.1	U	206-44-0	Fluoranthene	2.1	U
99-0	9-2 3-Nitroaniline	2.1	U	86-73-7	Fluorene	2.1	U
534-5	2-1 4,6-Dinitro-2-methylphenol	10	U	118-74-1	Hexachlorobenzene	2.1	U
101-5	55-3 4-Bromophenyl-phenylether	2.1	U	87-68-3	Hexachlorobutadiene	2.1	U
59-5	0-7 4-Chloro-3-methylphenol	2.1	U	77-47-4	Hexachlorocyclopentadiene	2.1	U
106-4	7-8 4-Chloroaniline	0.52	U	67-72-1	Hexachloroethane	2.1	U
7005-7	'2-3 4-Chlorophenyl-phenylether	2.1	U	193-39-5	Indeno[1,2,3-cd]pyrene	2.1	U
100-0	11-6 4-Nitroaniline	2.1	U	78-59-1	Isophorone	2.1	U
100-0	2-7 4-Nitrophenol	2.1	U	91-20-3	Naphthalene	0.52	. U
83-3	2-9 Acenaphthene	2.1	U	98-95-3	Nitrobenzene	2.1	U
208-9	6-8 Acenaphthylene	2.1	U	621-64-7	N-Nitroso-di-n-propylamine	0.52	U
98-8	6-2 Acetophenone	2.1	U	86-30-6	n-Nitrosodiphenylamine	2.1	U
120-1	2-7 Anthracene	2.1	U	87-86-5	Pentachlorophenol	10	U
1912-2	4-9 Atrazine	2.1	υ	85-01-8	Phenanthrene	2.1	U
100-5	2-7 Benzaldehyde	2.1	U	108-95-2	Phenol	2.1	U
56-5	5-3 Benzo[a]anthracene	2.1	U	129-00-0	Pyrene	2.1	U
50-3	2-8 Benzo[a]pyrene	2.1	Ų				
			'				

Worksheet #: 283066

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

#### ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC75324-014

Client Id: PC-3-10232013 U

Data File: 10M40876.D

Analysis Date: 10/31/13 16:01

Date Rec/Extracted: 10/24/13-10/30/13

Right also by the strate it is a Pile. 化化铁铁 医二硫酸盐 化氯氯甲酚 Matrix: Aqueous

Initial Vol: 970ml

Final Vol: 1ml

Dilution: 1

Solids:

Method: EPA 625

Units: ug/L

unkaga aga selah selakah selakah kembanan beberapa Prenjaran gasara, selah sebagai kelah pelakan selakan

	Cas #	Compound	RT	Conc	
1	5131-66-8	2-Propanol, 1-butoxy-	5.16	4.5 JB	
2	38858-90-1	3-NITRO-4-METHYLPYRAZOLE	14.95	88 J	
3		unknown	15.85	150 J	

Worksheet #: 283066

Total Tentatively Identified Concentration 240

A - Indicates an aldol condensate.

J - Indicates an estimated value.

B - Indicates the analyte was found in the blank as well as in the sample. Y - Indicates the analyte was found in the blank at <10% of the concentration of the sample.

<10% - Indicates the analyte was found in the blank at < 10% of nearest Internal Standard

# FORM2

Surrogate Recovery

Method: EPA 625

				Surr	Dilute Out	Column1 S1	Column1 S2	Column1 S3	Column1 S4	Column1 S5	Column1 S6
Dfile	Sample# M	<b>/la</b> trix	Date/Time	Dil	Flag	Recov	Recov	Recov	Recov	Recov	Recov
10M4084	6.D WMB29082 A	Aqueous	10/30/13 17:28	1		38	22*	100	104	105	107
10M4084	7.D AC75324-002 A	\queous	10/30/13 17:51	1		59	40	105	106	113	112
10M4085	0.D AC75324-004 A	Aqueous	10/30/13 18:58	1		33	19*	103	104	101	111
10M4087	7.D AC75324-006 A	Aqueous	10/31/13 16:23	1		35	21*	97	96	107	100
10M4085	2.D AC75324-008 A	Aqueous	10/30/13 19:42	1	/	37	21*	100	101	105	106
10M4088	8.D AC75324-010( A	Aqueous	10/31/13 20:28	5	SAÓ.	30	17*	85	93	78	95
10M4087	6.D AC75324-014 A	Aqueous	10/31/13 16:01	1	- Adale:	35	21*	94	99	99	98
10M4084	4.D WMB29082(M A	Aqueous	10/30/13 16:44	1	' 'le	43	25*	107	104	110	118
10M4084	8.D AC75324-002( A	Aqueous	10/30/13 18:13	1		- 58	39	100	84	104	111
10 <b>M</b> 4084	9.D AC75324-002( A	Aqueous	10/30/13 18:35	1		62	42	104	90	104	116

Flags: SD=Surrogate diluted out

*=Surrogate out

Method: EPA 625

### **Aqueous Limits**

Spike			
Amt	Limits		
100	29-113		
-100	27-115		
50	51-139		
50	53-129		
100	54-149		
50	55-146		
	Amt 100 100 50 50 100		

Sample ID: AC75324-003

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: Matrix: DMW-5-10232013 F AQUEOUS

Units: UG/L Date Rec: 10/24/2013 Lab Code: Contract:

Sdg No: Case No:

Level:

LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol				File:	Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	19	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	19	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	19	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	19	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	19	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	613DNEW	19	MS	MS3_7700AQA

Comments:	_

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-003

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-5-10232013 F Matrix: AQUEOUS

Units: UG/L Date Rec: 10/24/2013 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7440-39-3	Barium	25	84	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7440-70-2	Calcium	1000	52000	1	100	50	11/06/13	27348	A15635A2	22	Ρ	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/06/13	27348	A15635A2	22	Ρ	PEICP2A
7439-95-4	Magnesium	1000	7900	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7439-96-5	Manganese	25	730	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	18	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2
7440-09-7	Potassium	2500	4300	1	100	50	11/06/13	27348	A15635B2	21	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2A
7440-23-5	Sodium	2500	99000	1	100	50	11/06/13	27348	A15635B2	21	Р	PEICPRAD2A
440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	22	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-005

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: PC-1-10232013 F Matrix: AQUEOUS

Units: UG/L Date Rec: 10/24/2013 Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol				File:	Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	20	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	613DNEW	20	MS	MS3_7700AQA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-005

% Solid:

Lab Name: Veritech

Nras No:

Client Id: PC-1-10232013 F

Units: UG/L

Lab Code:

Sdg No:

Matrix: AQUEOUS

Level: LOW

Date Rec: 10/24/2013

0

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	. м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-39-3	Barium	25	86	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-70-2	Calcium	1000	51000	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-50-8	Copper	25	. ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-95-4	Magnesium	1000	7900	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-96-5	Manganese	25	740	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	19	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-09-7	Potassium	2500	4200	1	100	50	11/06/13	27348	A15635B2	22	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Ρ	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-23-5	Sodium	2500	98000	1	100	50,	11/06/13	27348	A15635B2	22	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	23	Ρ	PEICP2A

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-007

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: LMW-4-10232013 F

Units: UG/L Date Rec: 10/24/2013 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr	
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	21	MS	MS3_7700AQA	
7440-38-2	Arsenic	1.0	1.4	1	100	125	11/06/13	27348	613DNEW	21	MS	MS3_7700AQA	
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	21	MS	MS3_7700AQA	
7440-43-9	Cadmium	1.0	ND	. 1	100	125	11/06/13	27348	0613DNEW	21	MS	MS3_7700AQA	
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	21	MS	MS3_7700AQA	
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	21	MS	MS3 7700AOA	

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-007

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: LMW-4-10232013 F Matrix: AQUEOUS

Units: UG/L Date Rec: 10/24/2013 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-39-3	Barium	25	190	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-70-2	Calcium	1000	62000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-48-4	Cobalt	10	34	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-89-6	Iron	150	64000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-95-4	Magnesium	1000	24000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-96-5	Manganese	25	15000	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	20	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-09-7	Potassium	2500	5300	1	100	50	11/06/13	27348	A15635B2	23	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-23-5	Sodium	2500	34000	1	100	50	11/06/13	27348	A15635B2	23	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	24	Р	PEICP2A

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-009

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: PC-2-10232013 F Matrix: AQUEOUS

Units: UG/L Date Rec: 10/24/2013 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol				File:	Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	613DNEW	24	MS	MS3_7700AQA

Comments:				

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-009

% Solid: 0

Lab Name:

Veritech Nras No:

Client ld: Matrix:

PC-2-10232013 F **AQUEOUS** 

Units: UG/L

Date Rec: 10/24/2013

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

							*					
Ins	М	Seq Num	File:		Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	100	Aluminum	7429-90-5
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	110	25	Barium	7440-39-3
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	78000	1000	Calcium	440-70-2
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	25	Chromium	440-47-3
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	10	Cobalt	440-48-4
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	25	Copper	440-50-8
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	21000	150	Iron	439-89-6
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	21000	1000	Magnesium	7439-95-4
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	10000	25	Manganese	439-96-5
HGCV1	cv	23	H15635A	27348	11/07/13	25	25	1	ND	0.20	Mercury	7439-97-6
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	10	Nickel	440-02-0
PEICPRAD2	Р	24	A15635B2	27348	11/06/13	50	100	1	4800	2500	Potassium	440-09-7
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	25	Selenium	7782-49-2
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	10	Silver	7440-22-4
PEICPRAD2	Р	24	A15635B2	27348	11/06/13	50	100	1	46000	2500	Sodium	7440-23-5
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	25	Vanadium	440-62-2
PEICP2	Р	25	A15635A2	27348	11/06/13	50	100	1	ND	25	Zinc	7440-66-6

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-011

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: LMW-2-10232013 F

Units: UG/L Date Rec: 10/24/2013 Lab Code:

Sdg No:

Matrix: AQUEOUS

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	25	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	25	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	25	MS	MS3_7700AQA

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-011

% Solid: 0

Lab Name: Veritech

Nras No:

Client ld: Matrix:

LMW-2-10232013 F **AQUEOUS** 

Units: UG/L

Lab Code:

Sdg No:

Level: LOW

Date Rec: 10/24/2013 Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	•	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-39-3	Barium	25	110	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-70-2	Calcium	1000	83000	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7439-95-4	Magnesium	1000	31000	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7439-96-5	Manganese	25	210	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	24	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-09-7	Potassium	2500	4400	1	100	50	11/06/13	27348	A15635B2	25	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-23-5	Sodium	2500	30000	1	100	50	11/06/13	27348	A15635B2	25	Р	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	26	Р	PEICP2A

Comments:			

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-013

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client ld: MW-11-10232013 F

Units: UG/L

Date Rec: 10/24/2013

Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Ca	as No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
743	9-89-6	lron	150	4100	1	100	50	11/06/13	27348	A15635A2	27	Р	PEICP2A
743	9-96-5	Manganese	25	3600	1	100	50	11/06/13	27348	A15635A2	27	Р	PEICP2A

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-015

% Solid:

0

Lab Name:

Veritech

Nras No:

Client Id: Matrix: PC-3-10232013 F **AQUEOUS** 

Units: UG/L Date Rec: 10/24/2013 Lab Code:

Contract:

Sdg No: Case No:

Level:

LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	26	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	613DNEW	26	мѕ	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	613DNEW	26	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	613DNEW	26	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	125	11/06/13	27348	613DNEW	26	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	26	MS	MS3_7700AQA

Comments:			

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC75324-015

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: PC-3-10232013 F

Units: UG/L Date Rec: 10/24/2013 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	100	ND	1	. 100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-39-3	Barium	25	150	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-70-2	Calcium	1000	76000	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-47-3	Chromium	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-48-4	Cobalt	10	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-50-8	Copper	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-89-6	Iron	150	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-95-4	Magnesium	1000	20000	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-96-5	Manganese	25	280	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	25	CV	HGCV1A
7440-02-0	Nickel	10	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-09-7	Potassium	2500	6400	1	100	50	11/06/13	27348	A15635B2	30	Р	PEICPRAD2A
7782-49-2	Selenium	25	ND	1	100	50	11/06/13	27348	A15635A2	32	P	PEICP2A
7440-22-4	Silver	10	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-23-5	Sodium	2500	83000	1	100	50	11/06/13	27348	A15635B2	30	P	PEICPRAD2A
7440-62-2	Vanadium	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A
7440-66-6	Zinc	25	ND	1	100	50	11/06/13	27348	A15635A2	32	Р	PEICP2A

Comments:		 	_
Comments:			-

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 27348

% Solid: 0

Lab Name: Veritech

Client Id:

MB 27348

Units: UG/L

Lab Code:

Matrix: AQUEOUS Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-38-2	Arsenic	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-41-7	Beryllium	0.75	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-43-9	Cadmium	1.0	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7439-92-1	Lead	0.75	ND	1	100	. 125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA
7440-28-0	Thallium	1.5	ND	1	100	125	11/06/13	27348	0613DNEW	12	MS	MS3_7700AQA

Comments:	` v	

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 27348 (0.5)

% Solid: 0

Lab Name: Veritech

Client Id:

MB 27348 (0.5)

AQUEOUS

Units: UG/L

Lab Code:

Matrix: Level: LOW

Ins	м	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	100	Aluminum	7429-90-5
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	7.5	Antimony	7440-36-0
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	20	Arsenic	7440-38-2
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Barium	7440-39-3
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	4.0	Beryllium	7440-41-7
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	2.0	Cadmium	7440-43-9
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	1000	Calcium	7440-70-2
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Chromium	7440-47-3
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	10	Cobalt	7440-48-4
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Copper	7440-50-8
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	150	Iron	7439-89-6
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	. ND	5.0	Lead	7439-92-1
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	1000	Magnesium	7439-95-4
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Manganese	7439-96-5
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	10	Molybdenum	7439-98-7
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	10	Nickel	7440-02-0
PEICPRAD2	Р	10	A15635B2	27348	11/06/13	50	100	1	ND	2500	Potassium	7440-09-7
PEICP2	Р	- 11	A15635A2	27348	11/06/13	50	100	1	ND	25	Selenium	7782-49-2
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	10	Silver	7440-22-4
PEICPRAD2	Р	10	A15635B2	27348	11/06/13	50	100	1	ND	2500	Sodium	7440-23-5
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	5.0	Thallium	7440-28-0
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Tin	7440-31-5
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Titanium	7440-32-6
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Vanadium	7440-62-2
PEICP2	Р	11	A15635A2	27348	11/06/13	50	100	1	ND	25	Zinc	7440-66-6

Comments:		 	
	-	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

#### Form1 Inorganic Analysis Data Sheet

Sample ID: MB 27348 (1)

% Solid: 0

Lab Name: Veritech

Client Id:

MB 27348 (1)

Units: UG/L

Lab Code:

Matrix: AQUEOUS Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7439-97-6	Mercury	0.20	ND	1	25	25	11/07/13	27348	H15635A	11	CV	HGCV1A

Comments:		1	

#### Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

#### FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 11/06/13

Data File: A15635A2

Lab Name: Veritech

Prep Batch: 27348

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Nras No:

Instrument: PEICP2A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 3102406

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LA AV AND ANTAL ANAMA I TOMPHEN POP
Analyte	ICB V-174666- 8	CCB-20	CCB-31	CCB-40	CCB-50	MB 27348 (0.5)-11
Aluminum	.2 U	.2 U	.2 U	.2 U	.2 U	.1 U
Antimony	.015 U	.015 U	.015 U	.015 U	.015 U	.0075 U
Arsenic	.04 U	.04 U	.04 U	.04 U	.04 U	.02 U
Barium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Beryllium	.008 U	.008 U	.008 U	.008 U	.008 U	.004 U
Cadmium	.004 U	.004 U	.004 U	.004 U	.004 U	.002 U
Calcium	2 U	2 U	2 U	2 U	2 U	1 U
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Cobalt	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Iron	.3 U	.3 U	.3 U	.3 U	.3 U	.15 U
Lead	.01 U	.01 U	.01 U	.01 U	.01 U	.005 U
Magnesium	2 U	2 U	2 U	2 U	2 U	1 U
Manganese	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Molybdenum	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Nickel	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Selenium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Silver	.02 U	.02 U	.02 U	.02 U	.02 U	.01 U
Thallium	.01 U	.01 U	.01 U	.01 U	.01 U	.005 <b>U</b>
Vanadium	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U
Zinc	.05 U	.05 U	.05 U	.05 U	.05 U	.025 U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

#### FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 11/06/13

Data File: A15635B2

Veritech Lab Name:

Prep Batch: 27348

Lab Code:

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Contract:

Nras No:

Instrument: PEICPRAD2A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 3102406

Case No:

ICB V-174666- vte 7	CCB-19 CCB-29	9 CCB-40 MB 27348 (0.5)-10	CCB-19	ICB V-174666- 7	Analyte
CCB-19	CCB-29			CCB-19	ICB V-174666- CCB-19
7	5 U 5 U		511	7	5
5 U	5U 5U	·			

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

#### FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 11/07/13

Data File: A15635C2

Prep Batch: 27348

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 3102406

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

						A A A A A A A A A A A A A A A A A A A
Analyte	ICB V-174666- 7	CCB-17	CCB-23			
Sodium	5 U	5 U	5 U			

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

### FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 11/07/13

Data File: H15635A

Prep Batch: 27348

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: HGCV1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 3102406

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

	ICB-10	CCB-22	CCB-34	CCB-41	MB 27348 (1)-	
Analyte					11	
Mercury	.2 U					

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

### FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 11/06/13

Data File: W110613DNEW

Prep Batch: 27348

Reporting Limits Used: AQUEOUS,200.7(ICP)/200.8(ICPMS)/245.1(Hg)

Instrument: MS3_7700AQA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 3102406

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

Analyte	CCB V-176106- 11	CCB V-176106- 23	CCB V-176106- 35	CCB V-176106- 40	MB 27348-12
Antimony	2 U	2 U	2 U	2 U	2.5 U
Arsenic	.8 U	.8 U	.8 U	.8 U	1 U
Beryllium	.6 U	.6 U	.6 U	.6 U	.75 U
Cadmium	.8 U	.8 U	.8 U	.8 U	1 U
Lead	.6 U	.6 U	.6 U	.6 U	.75 U
Thallium	1.2 U	1.2 U	1.2 U	1.2 U	1.5 U

Notes: a-indicates absolute value of result found above the reporting limits in CCB/ICB or result found above reporting limit in the MB u-indicates result below reporting limit

#### FORM6/FORM9 RPD/%Difference Data

PREP BATCH: 27348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

	MSD 	Matrix: A	AQUEOUS	Sarr	pleID: AC753	23-002				
Analyte	BatchId	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD		Limi
Aluminum	27348	A15635A2	17	A15635A2	16	5.6176	5.6685	.9		20
Antimony	27348	A15635A2	17	A15635A2	16	0.5551	0.5585	.6		20
Arsenic	27348	A15635A2	17	A15635A2	16	0.5569	0.5691	2.2		20
Barium	27348	A15635A2	17	A15635A2	16	1.0274	1.0459	1.8		20
Beryllium	27348	A15635A2	17	A15635A2	16	0.4758	0.4785	.56		20
Cadmium	27348	A15635A2	17	A15635A2	16	0.5463	0.5521	1		20
Calcium	27348	A15635A2	17	A15635A2	16	349.1310	357.5140	2.4		20
Chromium	27348	A15635A2	17	A15635A2	16	0.4702	0.4758	1.2		20
Cobalt	27348	A15635A2	17	A15635A2	16	0.4681	0.4725	.95		20
Copper	27348	A15635A2	17	A15635A2	16	0.5374	0.5411	.68		20
Iron	27348	A15635A2	17	A15635A2	16	65.7411	66.6855	1.4		20
Lead	27348	A15635A2	17	A15635A2	16	0.4632	0.4664	.7		20
Magnesium	27348	A15635A2	17	A15635A2	16	705.5400	722.6100	2.4		20
Manganese	27348	A15635A2	17	A15635A2	16	4.8830	4.9506	1.4		20
Nickel	27348	A15635A2	17	A15635A2	16	0.5491	0.5558	1.2		20
Potassium	27348	A15635B2	16	A15635B2	15	283.1150	289.4110	2.2		20
Selenium	27348	A15635A2	17	A15635A2	16	0.5491	0.5522	.56		20
Silver	27348	A15635A2	17	A15635A2	16	0.1130	0.1148	1.6		20
Sodium	27348	A15635C2	13	A15635C2	12	586.9030	573.9110	2.2		20
Thallium	27348	A15635A2	17	A15635A2	16	0.4321	0.4319	.044		20
Vanadium	27348	A15635A2	17	A15635A2	16	0.4936	0.4989	1.1		20
Zinc	27348	A15635A2	17	A15635A2	16	0.4966	0.5005	.77		20
TxtQcType: N	/ISD	Matrix: A	AQUEOUS	Sam	pleID: AC753	23-003				
Analyte	BatchId	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD		Limi
Mercury	27348	H15635A	17	H15635A	16	10.2202	10.3692	1.4		20
TxtQcType: S	SD .	Matrix: A	QUEOUS	Sam	pleID: AC753	23-002		-		
Analyte	Batchid	Data Fil	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff		Limi
Aluminum	27348	A15635A2	21	A15635A2	14 5	0.1714	0.6936	24	а	10
Antimony	27348	A15635A2	21	A15635A2	14 5	0.0087	0.0046			10
Arsenic	27348	A15635A2	21	A15635A2	14 5	-0.0011	0.0096			10
Barium	27348	A15635A2	21	A15635A2	14 5	0.1102	0.5351	2.9		10
Beryllium	27348	A15635A2	21	A15635A2	14 5	0.0005	0.0003		С	10
Cadmium	27348	A15635A2	21	A15635A2	14 5	0.0025	0.0027		С	10
Calcium	27348	A15635A2	21	A15635A2	14 5	63.8874	298.8880	6.9	_	10
Chromium	27348	A15635A2	21	A15635A2	14 5	0.0010	0.0018		С	10
Cobalt	27348	A15635A2	21	A15635A2	14 5	0.0010	0.0019		С С	10
Copper	27348	A15635A2	21	A15635A2	14 5	0.0006	0.0040		_	10
ron	27348	A15635A2	21	A15635A2	14 5	12.7283	60.7203	4.8		10
_ead	27348	A15635A2	21	A15635A2	14 5	0.0022	0.0026			10
Magnesium	27348	A15635A2	21	A15635A2	14 5	136.9560	658.8130	3.9		10
Manganese	27348	A15635A2	21	A15635A2	14 5	0.8909	4.3468	2.5		10
viarigariese Nickel	27348	A15635A2	21	A15635A2	14 5	0.0909	0.0910	0.99		10
Potassium	27348	A15635A2	20		13 5	41.1862	221.6880			
Selenium			21	A15635B2		-0.0031		7.1		10
	27348	A15635A2		A15635A2	14 5		0.0007	275	_	10
Silver	27348	A15635A2	21	A15635A2	14 5	0.0017	0.0018		С	10
Sodium	27348	A15635C2	15	A15635C2	10 5	124.5490	573.2770	8.6		10
TL = 110		ムコもんえもムク	21	A15635A2	14 5	-0.0016	-0.0084			10
	27348	A15635A2								
/anadium	27348	A15635A2	21	A15635A2	14 5	0.0189	0.0139	583	a	10
Thallium Vanadium Zinc								583	a C	

#### VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC75324-002 Project Number: 3102406 Matrix Aqueous Received Date: 10/24/2013 Client SampleID: DMW-5-10232013 U Collect Date: 10/23/2013 Dilution: Analysis TestGroup Result Units: RL Prep Date: Analysis Date: Chloride CHLORIDE-ICW 120 10/30/13 10/30/13 5 mg/L 10 Lab#: AC75324-003 Project Number: 3102406 Matrix Aqueous Received Date: 10/24/2013 Client SampleID: DMW-5-10232013 F Collect Date: 10/23/2013 Analysis TestGroup Dilution: Result Units: RL Prep Date: Analysis Date: CN-WATER-MUR Cyanide ND 0.020 10/28/13 mg/L 10/28/13 Lab#: AC75324-004 Project Number: 3102406 Matrix Aqueous Received Date: 10/24/2013 Client SampleID: PC-1-10232013 U Collect Date: 10/23/2013 Analysis TestGroup Dilution: Result Units: RL Prep Date: Analysis Date: Alkalinity 190 ALKALIN-MUR mg CaCO3/I 10 10/29/13 10/29/13 Alkalinity ALK-BICARB 190 10/29/13 1 mg/L 10 10/29/13 Chloride CHLORIDE-ICW 5 120 mg/L 10 10/30/13 10/30/13 Nitrate NO3-ICW ND 1.0 10/24/13 10/24/13 1 mg/L p-Alkalinity P-ALKALINITY 1 ND mg CaCO3/I 10 10/29/13 10/29/13 SO4-ICW 10/30/13 10/30/13 Sulfate 1 21 mg/L 2.0 Lab#: AC75324-005 Project Number: 3102406 Matrix Aqueous Received Date: 10/24/2013 Client SampleID: PC-1-10232013 F Collect Date: 10/23/2013 Analysis TestGroup Dilution: Result Units: RL Prep Date: Analysis Date: ND 0.020 **CN-WATER-MUR** mg/L 10/28/13 10/28/13 Cyanide Lab#: AC75324-006 Project Number: 3102406 Matrix Aqueous Received Date: 10/24/2013 Client SampleID: LMW-4-10232013 U Collect Date: 10/23/2013 Analysis Dilution: Result Units: RL Prep Date: Analysis Date: TestGroup Chloride CHLORIDE-ICW 1 16 mg/L 2.0 10/24/13 10/24/13 Lab#: AC75324-007 Project Number: 3102406 Matrix Aqueous Received Date: 10/24/2013 Collect Date: 10/23/2013 Client SampleID: LMW-4-10232013 F Analysis TestGroup Dilution: Result Units: RL Prep Date: Analysis Date: **CN-WATER-MUR** ND 0.020 10/29/13 10/29/13 Cyanide mg/L Lab#: AC75324-008 Project Number: 3102406 Matrix Aqueous Received Date: 10/24/2013 Client SampleID: PC-2-10232013 U Collect Date: 10/23/2013 Analysis TestGroup Dilution: Result Units: RL Prep Date: Analysis Date: 25 CHLORIDE-ICW mg/L 2.0 10/24/13 10/24/13 Chloride Lab#: AC75324-009 Project Number: 3102406 Received Date: 10/24/2013 Matrix Aqueous Client SampletD: PC-2-10232013 F Collect Date: 10/23/2013

Result

ND

Dilution:

Units:

mg/L

RL

0.020

Prep Date:

10/29/13

Analysis

Cyanide

TestGroup

CN-WATER-MUR

Analysis Date:

10/29/13

#### VERITECH Wet Chem Form1 Analysis Summary

Lab#: AC75324-010

Matrix Aqueous

Client SampleID: LMW-2-10232013 U

Project Number: 3102406 Received Date: 10/24/2013 Collect Date: 10/23/2013

Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride	CHLORIDE-ICW	1	14	mg/L	2.0	10/24/13	10/24/13

Lab#: AC75324-011

Matrix Aqueous

Client SampleID: LMW-2-10232013 F

Project Number: 3102406 Received Date: 10/24/2013 Collect Date: 10/23/2013

Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13

Lab#: AC75324-012

Matrix Aqueous

Client SampleID: MW-11-10232013 U

Project Number: 3102406 Received Date: 10/24/2013 Collect Date: 10/23/2013

Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Alkalinity	ALKALIN-MUR	1	290	mg CaCO3/I	10	10/29/13	10/29/13
Alkalinity	ALK-BICARB	1	290	mg/L	10	10/29/13	10/29/13
Nitrate	NO3-ICW	1	ND	mg/L	1.0	10/24/13	10/24/13
p-Alkalinity	P-ALKALINITY	1	ND	mg CaCO3/I	10	10/29/13	10/29/13
Sulfate	SO4-ICW	1	3.8	mg/L	2.0	10/30/13	10/30/13

Lab#: AC75324-014

Matrix Aqueous

Client SampleID: PC-3-10232013 U

Project Number: 3102406 Received Date: 10/24/2013 Collect Date: 10/23/2013

Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Chloride	CHLORIDE-ICW	10	180	mg/L	20	10/30/13	10/30/13

Lab#: AC75324-015

Matrix Aqueous

Client SampleID: PC-3-10232013 F

Project Number: 3102406 Received Date: 10/24/2013 Collect Date: 10/23/2013

Analysis	TestGroup	Dilution:	Result	Units:	RL	Prep Date:	Analysis Date:
Cyanide	CN-WATER-MUR	1	ND	mg/L	0.020	10/29/13	10/29/13

### Blank Summary

Instrument: IC2

Qc Type: Method Blank Summary Prep Date: 10/24/13	
go Type. Welfied Blank Guillinary	
Run Batch ID Analysis Date/Time Sample ID Run# Analyte Conc	RL
20131014152 10/24/13 14:54 MBW-5066 141 Chloride ND	2.0
20131014152 10/24/13 14:54 MBW-5066 141 Nitrate ND	1.0
20131014152 10/24/13 14:54 MBW-5066 141 Sulfate ND	2.0
20131029104 10/30/13 13:46 MBW-5067 12 Chloride ND	2.0
20131029104 10/30/13 13:46 MBW-5067 12 Nitrate ND	1.0
20131029104 10/30/13 13:46 MBW-5067 12 Sulfate ND	2.0
Qc Type: ICB Summary Prep Date: NA	
Run Batch ID Analysis Date/Time Sample ID Run# Analyte Conc	RL
20131014152 10/14/13 18:17 ICB 8 Chloride ND	2.0
20131014152 10/14/13 18:17 ICB 8 Nitrate ND	1.0
20131014152 10/14/13 18:17 ICB 8 Sulfate ND	2.0
20131029104 10/29/13 13:39 ICB 8 Chloride ND	2.0
20131029104 10/29/13 13:39 ICB 8 Nitrate ND	1.0
20131029104 10/29/13 13:39 ICB 8 Sulfate ND	2.0
Qc Type: CCB Summary Prep Date: NA	
Run Batch ID Analysis Date/Time Sample ID Run# Analyte Conc	RL
20131014152 10/24/13 14:28 CCB 140 Chloride ND	2.0
20131014152 10/24/13 21:34 CCB 152 Chloride ND	2.0
20131014152 10/24/13 14:28 CCB 140 Nitrate ND	1.0
20131014152 10/24/13 21:34 CCB 152 Nitrate ND	1.0
20131014152 10/24/13 14:28 CCB 140 Sulfate ND	2.0
20131014152 10/24/13 21:34 CCB 152 Sulfate ND	2.0
20131029104 10/30/13 13:20 CCB 11 Chloride ND	2.0
20131029104 10/30/13 18:54 CCB 23 Chloride ND	2.0
20131029104 10/30/13 21:52 CCB 30 Chloride ND	2.0
20131029104 10/30/13 13:20 CCB 11 Nitrate ND	1.0
20131029104 10/30/13 18:54 CCB 23 Nitrate ND	1.0
20131029104 10/30/13 21:52 CCB 30 Nitrate ND	1.0
20131029104 10/30/13 13:20 CCB 11 Sulfate ND	2.0
20131029104 10/30/13 18:54 CCB 23 Sulfate ND	2.0
20131029104 10/30/13 21:52 CCB 30 Sulfate ND	2.0

Ref SampleID: 5 PPM	Ref Standard	d RunID	Ref Standard 10/14/2013 4	
Sample ID: CCV	RunID:	11 Anal	ysis Date:	10/15/2013 11:30:00 AM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.44	9.389999	11.41	
Chloride	6.42	6	6.78	
Fluoride	3.8	3.64	3.92	
Nitrate	12.2	10.98	13.36	
Nitrite	8.03	7.4	8.56	
Phosphorus (Ortho)	16.59	15.42	17.64	
Sulfate	18.17	17.07	19.07	
Sample ID: CCV	RuniD:	23 Anal	ysis Date:	10/15/2013 4:35:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.49	9.389999	11.41	
Chloride	6.43	6	6.78	
Fluoride	3.8	3.64	3.92	
Nitrate	12.26	10.98	13.36	
Nitrite	8.04	7.4	8.56	
Phosphorus (Ortho)	16.64	15.42	17.64	
Sulfate	18.16	17.07	19.07	
Sample ID: CCV	RunID:	35 Anal	ysis Date:	10/15/2013 9:40:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.48	9.389999	11.41	
Chloride	6.45	6	6.78	
Fluoride	3.82	3.64	3.92	
Nitrate	12.25	10.98	13.36	
Nitrite	8.06	7.4	8.56	
Phosphorus (Ortho)	16.64	15.42	17.64	
Sulfate	18.22	17.07	19.07	
Sample ID: CCV	RunID:	39 Analy	ysis Date:	10/15/2013 11:22:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.46	9.389999	11.41	
Chloride	6.44	6	6.78	
Fluoride	3.81	3.64	3.92	
Nitrate	12.22	10.98	13.36	
Nitrite	8.04	7.4	8.56	
Phosphorus (Ortho)	16.59	15.42	17.64	
Sulfate	18.15	17.07	19.07	

Ref SampleID: 5 PPM	Ref Standard 3	d RuniD	Ref Standard 10/14/2013 4:	
Sample ID: CCV	RunID:	42 Anal	lysis Date:	10/16/2013 10:41:00 AM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.5	9.389999	11.41	
Chloride	6.46	6	6.78	
Fluoride	3.82	3.64	3.92	
Nitrate	12.27	10.98	13.36	
Nitrite	8.07	7.4	8.56	
Phosphorus (Ortho)	16.74	15.42	17.64	
Sulfate	18.3	17.07	19.07	
Sample ID: CCV	RunID:	54 Anal	lysis Date:	10/16/2013 3:46:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.9	9.389999	11.41	
Chloride	6.64	6	6.78	
Fluoride	3.89	3.64	3.92	
Nitrate	12.73	10.98	13.36	
Nitrite	8.32	7.4	8.56	
Phosphorus (Ortho)	17.18	15.42	17.64	
Sulfate	18.5	17.07	19.07	
Sample ID: CCV	RunID:	66 Ana	lysis Date:	10/16/2013 8:51:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.68	9.389999	11.41	
Chloride	6.53	6	6.78	
Fluoride	3.84	3.64	3.92	
Nitrate	12.49	10.98	13.36	
Nitrite	8.17	7.4	8.56	
Phosphorus (Ortho)	16.97	15.42	17.64	
Sulfate	18.34	17.07	19.07	
Sample ID: CCV	RunID:	78 Anal	lysis Date:	10/17/2013 1:56:00 AM
Analyte	RT	LowLimit	Hi Llmit	Flaġ
Bromide	10.6	9.389999	11.41	
Chloride	6.49	6	6.78	
Fluoride	3.83	3.64	3.92	
Nitrate	12.4	10.98	13.36	
Nitrite	8.12	7.4	8.56	
Phosphorus (Ortho)	16.86	15.42	17.64	
Sulfate	18.28	17.07	19.07	

Ref SampleID: 5 PPM	Ref Standard RunID 3		Ref Standard Date 10/14/2013 4:10:00 PM		
Sample ID: CCV	RunID:	86 Analy	/sis Date:	10/17/2013 5:19:00 AM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	0	9.389999	11.41	*	
Chloride	0	6	6.78	•	
Fluoride	0	3.64	3.92	*	
Nitrate	0	10.98	13.36	*	
Nitrite	0	7.4	8.56	•	
Phosphorus (Ortho)	0	15.42	17.64	•	
Sulfate	18.25	17.07	19.07		
Sample ID: CCV	RunID:	89 Analy	ysis Date:	10/18/2013 10:36:00 AM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.49	9.389999	11.41		
Chloride	6.45	6	6.78		
Fluoride	3.82	3.64	3.92		
Nitrate	12.25	10.98	13.36		
Nitrite	8.06	7.4	8.56		
Phosphorus (Ortho)	16.69	15.42	17.64		
Sulfate	18.31	17.07	19.07		
Sample ID: CCV	RunID:	100 Analy	ysis Date:	10/18/2013 5:10:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.45	9.389999	11.41		
Chloride	6.43	6	6.78		
Fluoride	3.81	3.64	3.92		
Nitrate	12.21	10.98	13.36		
Nitrite	8.04	7.4	8.56		
Phosphorus (Ortho)	16.68	15.42	17.64		
Sulfate	18.28	17.07	19.07		
Sample ID: CCV	RunID:	111 Analy	ysis Date:	10/18/2013 9:49:00 PM	
Analyte	RT	LowLimit	Hi Llmit	Flag	
Bromide	10.49	9.389999	11.41		
Chloride	6.46	6	6.78		
Fluoride	3.83	3.64	3.92		
Nitrate	12.26	10.98	13.36		
Nitrite	8.07	7.4	8.56		
Phosphorus (Ortho)	16.72	15.42	17.64		
Sulfate	18.33	17.07	19.07		

Ref SampleID: 5 PPM	Ref Standard		ef Standard 0/14/2013 4:	
Sample ID: CCV	RunID:	113 Analysi	is Date:	10/23/2013 11:34:00 AM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.39	9.389999	11.41	
Chloride	6.41	6	6.78	
Fluoride	3.8	3.64	3.92	
Nitrate	12.14	10.98	13.36	
Nitrite	8	7.4	8.56	
Phosphorus (Ortho)	16.53	15.42	17.64	
Sulfate	18.25	17.07	19.07	
Sample ID: CCV	RunID:	125 Analys	is Date:	10/23/2013 4:38:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.41	9.389999	11.41	
Chloride	6.41	6	6.78	
Fluoride	3.8	3.64	3.92	
Nitrate	12.16	10.98	13.36	
Nitrite	8.01	7.4	8.56	
Phosphorus (Ortho)	16.55	15.42	17.64	
Sulfate	18.23	17.07	19.07	
Sample ID: CCV	RuniD:	135 Analys	is Date:	10/23/2013 8:53:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.4	9.389999	11,41	
Chloride	6.41	6	6.78	
Fluoride	3.81	3.64	3.92	
Nitrate	12.15	10.98	13.36	
Nitrite	8.01	7.4	8.56	
Phosphorus (Ortho)	16.54	15.42	17.64	
Sulfate	18.25	17.07	19.07	
Sample ID: CCV	RunID:	139 Analys	is Date:	10/24/2013 2:03:00 PM
Analyte	RT	LowLimit	Hi Llmit	Flag
Bromide	10.67	9.389999	11,41	
Chloride	6.53	6	6.78	
Fluoride	3.85	3.64	3.92	
Nitrate	12.46	10.98	13.36	
Nitrite	8.17	7.4	8.56	
Phosphorus (Ortho)	16.91	15.42	17.64	
Sulfate	18.37	17.07	19.07	

Ref SampleID: 5 PPM	Ref Standar	d RunID	Ref Standard 10/14/2013 4	
Sample ID: CCV	RunID:	151 An	alysis Date:	10/24/2013 9:08:00 PM
Analyte	RT	LowLimi	t Hi Llmi	t Flag
Bromide	10.67	9.389999	11.41	
Chloride	6.53	6	6.78	
Fluoride	3.85	3.64	3.92	
Nitrate	12.47	10.98	13.36	
Nitrite	8.18	7.4	8.56	
Phosphorus (Ortho)	16.94	15.42	17.64	
Sulfate	18.41	17.07	19.07	
Sample ID: CCV	RunID:	154 An	alysis Date:	10/24/2013 10:25:00 PM
Analyte	RT	LowLimi	t Hi Llmi	t Flag
Bromide	10.65	9.389999	9 11.41	
Chloride	6.52	6	6.78	
Fluoride	3.85	3.64	3.92	
Nitrate	12.44	10.98	13.36	
Nitrite	8.16	7.4	8.56	
Phosphorus (Ortho)	16.91	15.42	17.64	
Sulfate	18.38	17.07	19.07	

#### LCS Recoveries

Chloride Nitrate Sulfate	5 90-110 5 90-110 5 90-110	105 98 112 CwLw	101 95 100			
nalyte	300.0 rev2.  Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
i	Date/Time:> Analytical Method:> Matrix:>	300.0 rev2.1	10/30/13 14:11 300.0 rev2.1 Aqueous	Soil	Soil	Soil
	BatchRunID/RunID:> QcBatchID:>	1	201310291041-13 LCSW-5067			

Prep Batch: W-5066 Method: 300.0 rev2.1 Sample ID: AC75324-004 Matrix Aqueous

Qc Type:	MS	Limits		MS	Sam		
Analyte	Amt	Recov	Dil	Conc	Conc	Recov	Flag
Chloride	5	80-120	1	156.100	150.065	121	Mw
Nitrate	5	80-120	1	4.95	0	99	
Sulfate	5	80-120	1	29.406	23.1479	125	Mw

٦	N	IS/MSD/	DUP	Non Spike				
	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date		
	2013101415	2 144	10/24/13 18:11	20131014152	143	10/24/13 17:45		
	2013101415	2 144	10/24/13 18:11	20131014152	143	10/24/13 17:45		
	2013101415	2 144	10/24/13 18:11	20131014152	143	10/24/13 17:45		

Qc Type:	MSD	Limi	its		MS	Sam			
Analyte	Amt	Recov		Dil		Conc	Recov	Rpd	Flag
Chloride	5	80-120	20	1	156.525	150.065	129	0.3	MW
Nitrate	5	80-120	20	1	5.0461	0	101	1.9	
Sulfate	5	80-120	20	1	29.1564	23.1479	120	0.9	

	M	S/MSD/	DUP	Non Spike				
	Batch	RuniD	Analysis Date	Batch	RunID	Analysis Date		
_	20131014152	145	10/24/13 18:36	20131014152	143	10/24/13 17:45		
	20131014152	145	10/24/13 18:36	20131014152	143	10/24/13 17:45		
	20131014152	145	10/24/13 18:36	20131014152	143	10/24/13 17:45		

Prep Batch: W-5067 Method: 300.0 rev2.1 Sample ID: AC75362-002 Matrix Aqueous

Qc Type:	MS	Limits		MS	Sam	,		М	S/MSD/	DUP		Non Spi	ke
Analyte	Amt	Recov	Dil	Conc	Conc	Recov	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	1	10.1968	6.5204	74	Mw	20131029104	18	10/30/13 16:47	20131029104	17	10/30/13 15:56
Nitrate	5	80-120	1	4.6307	0	93		20131029104	18	10/30/13 16:47	20131029104	17	10/30/13 15:56
Sulfate	5	80-120	1	13.2875	8.4209	97		20131029104	18	10/30/13 16:47	20131029104	17	10/30/13 15:56

Qc Type:	MSD	Lim	its		MS	Sam				М	S/MSD/	DUP		Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	Recov	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Chloride	5	80-120	20	1	10.2735	6.5204	75	0.7	MW	20131029104	19	10/30/13 17:12	20131029104	17	10/30/13 15:56
Nitrate	5	80-120	20	1	4.6845	0	94	1.2		20131029104	19	10/30/13 17:12	20131029104	17	10/30/13 15:56
Sulfate	5	80-120	20	1	13.5324	8.4209	102	1.8		20131029104	19	10/30/13 17:12	20131029104	17	10/30/13 15:56

#### Blank Summary

Instrument: DA1

Qc Type: Meth	od Blank Summary	Prep	0/28/13		,	
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:55	MBW-836	12	Cyanide	ND	0.020
Qc Type: ICB S	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:53	ССВ	11	Cyanide	ND	0.020
Qc Type: CCB	Summary	Prep	Date: N	IA		
Run Batch ID Analysis Date/Time		Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 15:18	ССВ	23	Cyanide	ND	0.020
20131028141	10/28/13 15:43	ССВ	35	Cyanide	ND	0.020

### Blank Summary

Instrument: DA1

Qc Type: Metho	od Blank Summary	Prep	Date: 1	0/28/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:55	MBW-836	12	Cyanide	ND	0.020
Qc Type: ICB S	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 14:53	ССВ	11	Cyanide	ND	0.020
Qc Type: CCB	Summary	Prep	Date: N	IA		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131028141	10/28/13 15:18	ССВ	23	Cyanide	ND	0.020
20131028141	CCB	35	Cyanide	ND	0.020	
20131028141	10/28/13 15:57	ССВ	43	Cyanide	ND	0.020

#### LCS Recoveries

	BatchRunID/RunID:	201310281414-13				
	QcBatchID:>	LCSW-836				
	Date/Time:===>	10/28/13 14:57				
	Analytical Method:>	EPA 335.4				
	Matrix:===>	Aqueous	Soil	Soil	Soil	Soil
Analyte	EPA 335.4 Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Cyanide	0.4 90-110	91				

Prep Batch: W-836 Method: EPA 335.4 Sample ID: AC75247-006

Matrix: Aqueous

Qc Type: DUP	Limits		DUP	Sample			М	S/MSD	/DUP		Non Spi	ke
Analyte	Rpd	Dil	Conc	Conc	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	20	1	0	0	NA		20131028141	16	10/28/13 15:03	20131028141	15	10/28/13 15:01

Qc Type:	MS	Limits		MS	Sample			M	S/MSD/	DUP	l	Non Spil	(e
Analyte	Amt	Recov	Dil	Conc	Conc	% Rec	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	1	0.3556	0	89		20131028141	17	10/28/13 15:05	20131028141	15	10/28/13 15:01

Qc Type:	MSD	Lim	its		MSD	Sample				M	S/MSD/	DUP	l	Non Spi	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	% Rec	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	20	1	0.3762	0	94	5.6		20131028141	18	10/28/13 15:07	20131028141	15	10/28/13 15:01

### Blank Summary

Instrument: DA1

Qc Type: Metho	od Blank Summary	Prep l	Date: 1	0/29/13		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:26	MBW-837	11	Cyanide	ND	0.020
Qc Type: ICB S	Summary	Prep	Date: N	IA .		
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:24	ССВ	10	Cyanide	ND	0.020
Qc Type: CCB	Summary	Prep	Date: N			
Run Batch ID	Analysis Date/Time	Sample ID	Run#	Analyte	Conc	RL
20131029140	10/29/13 14:49	ССВ	22	Cyanide	ND	0.020
20131029140	10/29/13 15:15	ССВ	34	Cyanide	ND	0.020
20131029140 10/29/13 15:29		ССВ	42	Cyanide	ND	0.020
20131029140	ССВ	44	Cyanide	ND	0.020	
20131029140	10/29/13 15:51	ССВ	48	Cyanide	ND	0.020

#### LCS Recoveries

	BatchRunID/RunID:>	201310291405-12				
	QcBatchID:>	1				
	Date/Time:>	10/29/13 14:29				
¥	Analytical Method:>	EPA 335.4				
•	Matrix:>	Aqueous	Soil	Soil	Soil	Soil
Analyte	EPA 335.4 Amt Limits Amt Limits	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags	% Rec Flags
Cyanide	0.4 90-110	90				

Prep Batch: W-837 Method: EPA 335.4 Sample ID: AC75362-002

Matrix: Aqueous

Qc Type: DUP MS/MSD/DUP Non Spike Limits DUP Sample Batch Batch RunID Analysis Date RunID Analysis Date Analyte Rpd Dil Conc Conc Rpd Flag 20 0 NA 20131029140 15 10/29/13 14:35 20131029140 14 10/29/13 14:33 Cyanide 1 0

Qc Type:	MS	Limits		MS	Sample			M	S/MSD/	'DUP		Non Spi	ke
Analyte	Amt	Recov	Dil	Conc	Conc	% Rec	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	1	0.3971	0	99		20131029140	16	10/29/13 14:37	20131029140	14	10/29/13 14:33

Qc Type:	MSD	Limi	ts		MSD	Sample				M	S/MSD/	DUP		Non Spil	ke
Analyte	Amt	Recov	Rpd	Dil	Conc	Conc	% Rec	Rpd	Flag	Batch	RunID	Analysis Date	Batch	RunID	Analysis Date
Cyanide	0.4	75-125	20	1	0.3742	0	94	5.9		20131029140	17	10/29/13 14:39	20131029140	14	10/29/13 14:33

Analysis Type: ALKAL-M

3102406 0119

Batch Number: ALKAL-M-373

Units:mg CaCO3/I

Calibration (	Curve	Information
---------------	-------	-------------

SUMMERS OF A STATE OF THE STATE	and the second second of the second s	Qc S	ummaı	v Res	ults	en makerin artika menang	áritá elimentosan az 171	an actional
Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
DUP LCS LCSD	AC75172-003 LCS LCSD	0 100 100	NA 75-125 75-125	20 NA 20	78.240085 99.57829 99.57829	NA 100 100	1.3 NA 0	

Analytical Method(s)

SM2320B-97

						@quests	WAYN SEMANDONES	CAR NOT THE PROPERTY OF	MANGE TO AN AND AND AN AND AN AND AN AN ANALYSIS OF A CORP. AND AN AND AN ANALYSIS OF AN AN ANALYSIS OF AN ANTANICAL	PROPERTY OF STREET, ST	ON BRIDGING THE CONTYNION	NAMES OF TAXABLE PARTY.	ROBOTO SALES SE LEGISLA
Sam #	Туре	мв	Result	RL	Per Sol	Full Resul		h2so4 (N)	Sam Vol (ml)	Prep Date	Prep By	Anal Date	Anal By
MB-1-10/29/13	МВ	MB-1-10/29/13	ND	10	100	6,0966	0.30	0.020322	50	10/29/13	JW	10/29/13	JW
LCS	LCS	MB-1-10/29/13	100	10	100	99.578	4.90	0.020322	50	10/29/13	JW	10/29/13	JW
LCSD	LCSD	MB-1-10/29/13	100	10	100	99.578	4.90	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-003	DUP	MB-1-10/29/13	78	10	100	78.24	3.85	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-002	Sample	MB-1-10/29/13	ND	10	100	8,1288	0.40	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-003	Sample	MB-1-10/29/13	79	10	100	79.256	3.90	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-004	Sample	MB-1-10/29/13	140	10	100	135.14	6.65	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-005	Sample	MB-1-10/29/13	62	10	100	61.982	3.05	0.020322	50	10/29/13	JW	10/29/13	JW
AC75324-004	Sample	MB-1-10/29/13	190	10	100	190.01	9.35	0.020322	50	10/29/13	JW	10/29/13	JW
AC75324-012	Sample	MB-1-10/29/13	290	10	100	293.65	14.45	0.020322	50	10/29/13	JW	10/29/13	JW

Mr 10/30/13

Analysis Type: ALKAL-P

3102406 0120

Batch Number: ALKAL-P-39

Units: mg CaCO3/l

Calibration Curve Information	Qc DU LC
THE PROPERTY OF THE PROPERTY O	LC .
e grane a private construente de la construente del la construente de la construente del la construente de la construent	eric hadenatelering was analysis

	GANG TRACKING STATES OF THE PERSONS	NG COMPANY AND THE VALUE OF THE PARTY OF THE	Qc S	ummai	ν Res	ults	NO. TALLOCATION AND AND THE SECOND		NO SESSION OF THE BUTTON OF
-	Qc Type	Qc Name	SpkAmt	Rec Lim	Rpd Lim	Raw Result	Recov	Rpd	Flags
Management Column Street	DUP LCS LCSD	AC75172-003 LCS LCSD	0 100 100	NA 75-125 75-125	20 <b>N</b> A 20	0 92.465555 90.433345	NA 92 90	NA NA 2.2	Nc

Analytical Method(s)

SM2320B-97

						38-3-4014	Herapage Section Control (Control	SHEART TO SHE SHEET SHEET SHEET	DE BREINFERDEN BERKELENDE WEGEN DE PRESENTA VERTE ALFORNACION DE DES MANDES (ANNOUNTE DE LA FERDE DE LA FERDE DE	managed made anamage of a term of other services of the	A STATE OF THE PARTY OF THE PAR	en and an in the section of the sect	AN EN PART HOLE AND STREET AND ST
Sam #	Туре	мв	Result	RL	Per Sol		i mi jth2so4	h2so4 (N)	Sam Vol (ml)	Prep Date	Prep By	Anal Date	Anal By
MB-1-10/29/13	MB	MB-1-10/29/13	ND	10	100	0	0	0.020322	50	10/29/13	JW	10/29/13	JW
LCS	LCS	MB-1-10/29/13	92	10	100	92.466	4.55	0,020322	50	10/29/13	JW	10/29/13	JW
LCSD	LCSD	MB-1-10/29/13	90	10	100	90.433	4.45	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-003	DUP	MB-1-10/29/13	ND	10	100	0	0	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-002	Sample	MB-1-10/29/13	ND	10_	100	00	0	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-003	Sample	MB-1-10/29/13	ND	10	100	0	0	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-004	Sample	MB-1-10/29/13	ND	10	100	0	0	0.020322	50	10/29/13	JW	10/29/13	JW
AC75172-005	Sample	MB-1-10/29/13	ND	10	100	0	0	0.020322	50	10/29/13	JW	10/29/13	JW
AC75324-004	Sample	MB-1-10/29/13	ND	10	100	0	0	0.020322	50	10/29/13	JW	10/29/13	JW
AC75324-012	Sample	MB-1-10/29/13	ND	10	100	0	0	0.020322	50	10/29/13	JW	10/29/13	JW

pp 10/30/13

	Analysis	Carbonate / E	Bicarbonate		Q.C. DATA				
	Batch#	39						Limits	Flags
	Date	10/29/2013			LCS RPD				
	Analyst	JW			LCS	99.58	RPD		
					LCSD	99.58	0.0	20	
					Carbonate RPD			İ	
		Titrant Result	Carbonate	Bicarbonate	Sample	0.00	RPD		
		P = 0	0	M	Sample Dup	0.00	NA	20	
		P < (1/2) M	2P	M-2P					
		P = (1/2) M	2P	0					
		P > (1/2) M	2 (M-P)	0	Bicarbonate RPD				
		P = M	0	0	Sample	79.26	RPD		
					Sample Dup	78.24	1.29	20	
***********	*************	*****************	**********	******************	*********************	********	**********	********	*******
	Samples #	M-Alkalinity	P-Alkalinity	Carbonate	Bicarbonate	RL		% Recovery	
		(Total)		CO3-2 as mg CaCO3/L	HCO3 as mg CaCO3/L			75-125%	
	MB	6.0966	0.00	0.00	6.0966	10			
	LCS	99.578	92.466	14.22	0.00	10		100	
	LCSD	99,578	90.433	18.29	0.00	10		100	
DUP	AC75172-003	78.24	0.00	0.00	78.24	10			
	AC75172-002	8.1288	0.00	0.00	8.1288	10			
C Sample	AC75172-003	79.256	0.00	0.00	79.256	10			
	AC75172-004	135.14	0.00	0.00	135,14	10			
	AC75172-005	61.982	0.00	0.00	61.982	10			
	AC75324-004	190.01	0.00	0.00	190.01	10			
	AC75324-012	293.65	0.00	0.00	293.65	10			T

Mr 10/30/13

^{*} Recovery is outside specified QC limits



Last Page of Report

# ATTACHMENT C HISTORIC DATA SUMMARY & TREND ANALYSIS (ELECTRONIC)





# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 1 of 10) Harrison Subresidency Spill Site

WELL ID: MW 1	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT
Volatile Organics (ug/L)														CRITERIA
MTBE	ND	54	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	50
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	-
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	-
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	_
m,p-Xylene	ND	ND	-	-	ND	ND	ND	ND	ND	ND	ND	•	•	-
O-Xylene	ND	ND	-	-	ND	ND	ND	ND	ND	ND	ND	•	•	-
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	-
TOTAL BTEX	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	٠	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	7,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	27,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	ND	•	207	3,760	264	•	•	5810	4840	•	•	•	•	300
Iron (dissolved)	ND	•	ND	298	35	85.1 B	56.5 B	58 B	96.1 B	ND	ND	•	•	300
Lead	ND	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	4,100	•	11,000	3,000	7,700	6,200	6,800	6,200	6,900	2,500	2,700	•	•	10,000
Sulfate (ug/L)	15,000	•	13,000	17,000	15,000	17,000	14,000	17,000	13,000	17,000	21,000	•	•	250,000
TOC (ug/L)	4,000	•	9,000	8,000	ND	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	97,400	•	59,000	42,000	30,000	16,000	45,000 H	56,000	73,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	3.6	1.97	6.42	8.3	2.5	3.89	4.2	5.9	7.36	5.10	3.45	•	•	N/A

WELL ID: MW 2	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)		(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CRITERIA
MTBE	5.5	15	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	2.1	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	8.0	2	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	2.7	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
m,p-Xylene	ND	-	-	-	ND	ND	ND	ND	ND	•	•	•	•	-
O-Xylene	3.8	-	-	-	ND	ND	ND	ND	ND	•	•	•	•	-
Xylenes (total)	3.8	2	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
TOTAL BTEX	16.6	4	ND	ND	ND	ND	ND	ND	ND	٠	•	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	10,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	22,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	6,330	75,600	10,400	•	•	3780	12,800	•	•	•	•	300
Iron (dissolved)	•	•	646	4,240	2,770	5,860	6,780	187	1,310	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND	ND *	81	58	70	230	87	•	•	•	•	10,000
Sulfate (ug/L)	•	•	14,000	150,000	25,000	15,000	15,000	26,000	9,700	•	•	•	•	250,000
TOC (ug/L)	•	•	17,000	18,000	ND	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	49,000	40,000	23,000	33,000	43,000 H	46,000	51,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	2.6	3.08	4.23	3.6	1.5	1.07	1.3	1.7	3.03	•	•	•	•	N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 2 of 10) Harrison Subresidency Spill Site

WELL ID: MW 3	BASELINE							(Oct 2005)/		10				TARGET
	(May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	EFFLUENT CRITERIA
Volatile Organics (ug/L)														Onnen
MTBE	50	21	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	64	ND	2	3	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	21	ND	2	3	ND	ND	ND	ND	1J	•	•	•	•	-
Ethylbenzene	350	ND	ND	40	82	120	61	ND	82	•	•	•	•	-
m,p-Xylene	460	-	-	-	44	56	15	20	10	•	•	•	•	-
O-Xylene	65	-	-	-	6	5	1 J	2J	ND	•	•	•	•	-
Xylenes (total)	525	2	170	110	50	61	16	22	10	•	•	•	•	-
TOTAL BTEX	960.0	2	174	156	132	181	77	22	93	•	•	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene	•		ND	•	•	•	•	•	•	•		•	•	50
Napthalene	160		4 J	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	24,000	•		•	•	•		•	•	•		•		250,000
Sodium	43,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	18,000	•	8,880	35,100	14,400	•	•	20,800	17,200	•	•	•		300
Iron (dissolved)	ND	•	2,410	4,000	7,250	6,870	7,030	5,260	4,610	•	•	•	•	300
Lead	8	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	ND	•	ND	ND *	ND	ND	ND	32	ND	•	•	•	•	10,000
Sulfate (ug/L)	ND	•	18,000	24,000	27,000	6,500	7,300	14,000	ND	•	•	•		250,000
TOC (ug/L)	10,000	•	27,000	70,000	6,300	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	9,200	•	•	•	•	•	•	•	•	•	•	•		N/A
Carbon Dioxide (ug/L)	105,000	•	48,000	70,000	45,000	84,000	51,000 H	61,000	65,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	2.1	2.93	1.89	3.0	1.1	1.36	1.04	1.26	1.33	•	•	•	•	N/A

WELL ID: MW 4	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)		(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT
Volatile Organics (ug/L)														CRITERIA
MTBE	13	3	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	4.4	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•		-
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	22	2	2	ND	16	ND	1 J	2J	ND	•	•	•		-
m,p-Xylene	•	_	-	-	1	ND	ND	ND	ND	•	•	•		-
O-Xylene	•	-	-	-	ND	ND	ND	ND	ND	•	•	•		-
Xylenes (total)	13	ND	1	ND	1	ND	ND	ND	ND	•	•	•	•	-
TOTAL BTEX	39.4	2	3	ND	17	ND	1	2	ND	•	•	•	٠	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•	•	•			•	•	•		50
Napthalene			ND	•	•	•	٠	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	8.000	•	•	•	•	•	•			•	•	•		250,000
Sodium	22,000	•	•	•	•	•	•	•	•	•	•	•		20,000
Iron (total)	•	•	1,360	1,330	3,480	•	•	307	14,600	•	•	•	•	300
Iron (dissolved)	•	•	1,010	ND	2,740	61.0 B	635	55.1 B	199B	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND	3,200	ND	2400	530	450	960	•	•	•	•	10,000
Sulfate (ug/L)	•	•	15,000	22,000	21,000	18,000	13,000	13,000	13,000	•	•	•	•	250,000
TOC (ug/L)	•	•	14,000	13,000	44,000	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	55,000	40,000	55,000	21,000	65,000 H	98,000	91,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	3.5	2.35	4.29	3.9	0.82	1.42	2	1.6	2.97	•	•	•		N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 3 of 10) Harrison Subresidency Spill Site

WELL ID: MW 5	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CRITERIA
MTBE	150	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	14	ND	1	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	32	2	2	ND	2	ND	ND	1J	ND	•	•	•	•	-
Ethylbenzene	410	ND	ND	ND	150	ND	99	140	75	•	•	•	•	-
m,p-Xylene	•	-	-	-	93	ND	42	46	12	•	•	•	•	-
O-Xylene	•	-	-	-	5	ND	2 J	3J	ND	•	•	•	•	-
Xylenes (total)	460	43	230	4	98	ND	44	49	12	•	•	•	•	-
TOTAL BTEX	916	45	233	4	250	ND	143	190	87	٠	٠	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			10	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	٠	•	•	٠	•	٠	•	•	25
Metals (ug/L)														
Chloride	60,000		•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	32,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	9,630	3,910	4.500	•	•	9770	9,830	•	•	•	•	300
Iron (dissolved)	•	•	2,930	1,820	1,240	7,070	4,560	6,100	4,690	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND	620	210	ND	ND	220	29	•	•	•	•	10,000
Sulfate (ug/L)	•	•	17,000	12,000	16,000	42,000	8,500	ND	ND	•	•	•	•	250,000
TOC (ug/L)	•	•	23,000	14,000	12,000	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•		•	N/A
Carbon Dioxide (ug/L)	•	•	68,000	12,000	28,000	100,000	73,000 H	74,000	ND	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	3.4	3.09	6.12	9.0	1.6	1.19	1.73	1.23	1.52	•	•	•	•	N/A

WELL ID: MW 6	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														
MTBE	73	20	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	7.9	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	7	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	98	ND	ND	3	61	ND	88	16	100	•	•	•	•	-
m,p-Xylene	•	-	-	-	30	14	37	27	28	•	•	•	•	-
O-Xylene	•	-	-	-	2	1	3 J	4J	3J	•	•	•	•	-
Xylenes (total)	112	21	6	27	33	16	40	31	31	•	•	•	•	-
TOTAL BTEX	224.9	21	6	30	94	16	128	47	131	•	•	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	40,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	33,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	1,720	2,410	2,750	•	•	4610	5,630	•	•	•	•	300
Iron (dissolved)	•	•	475	2,060	874	1,080	1,620	1,270	593	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND	ND *	ND	ND	ND	ND	ND	•	•	•	•	10,000
Sulfate (ug/L)	•	•	17,000	19,000	22,000	10,000	7,400	7,200	ND	•	•	•		250,000
TOC (ug/L)	•	•	17,000	25,000	ND	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	60,000	32,000	27,000	33,000	48,000	45,000	49,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	3.1	6.05	4.1	3.5	0.89	1.41	2.9	3.3	1.57	•	•	•		N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 4 of 10) Harrison Subresidency Spill Site

WELL ID: MW 7	BASELINE (May 2000)		(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT
Volatile Organics (ug/L)														CRITERIA
MTBE	16	38	17	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	3.4	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	_
Toluene	4	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	5.7	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
m,p-Xylene	•	-	-	-	ND	ND	ND	ND	ND	•	•	•	•	-
O-Xylene	•	-	-	-	ND	ND	ND	ND	ND	•	•	•	•	-
Xylenes (total)	4.8	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
TOTAL BTEX	17.9	ND	ND	ND	ND	ND	ND	ND	ND	٠	٠	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•			•	•			•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	40,000	•	•	•	•		•	•	•	•	•	•	•	250,000
Sodium	35,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	2,700	30,000	3,080	•	•	3960	18,000	•	•	•	•	300
Iron (dissolved)	•	•	1,880	4,020	2,380	2,190	2,640	1,600	165B	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND	ND*	150	ND	160	330	ND	•	•	•	•	10,000
Sulfate (ug/L)	•	•	15,000	38,000	20,000	8,200	13,000	11,000	7,400	•	•	•	•	250,000
TOC (ug/L)	•	•	16,000	21,000	11,000	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	78,000	35,000	37,000	27,000	42,000	63,000	41,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	3.2	3.12	4.43	3.4	1.0	2.2	1.8	2.0	2.66	•	•	•	•	N/A

WELL ID: MW 8	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)		(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CRITERIA
MTBE	68	6	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	110	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	26	ND	2	ND	ND	ND	2 J	ND	ND	•	•	•	•	-
Ethylbenzene	60	ND	ND	ND	2	1	41	2J	27	•	•	•	•	-
m,p-Xylene	160	-	-	-	1	ND	12	7	5	•	•	•	•	-
O-Xylene	40	-	-	-	ND	ND	2 J	2J	2J	•	•	•	•	-
Xylenes (total)	200	ND	34	7	1	ND	14	9	7	•	•	•	•	-
TOTAL BTEX	396	ND	36	7	3	1	57	11	34	•	•	٠	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene	•		ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene	34		ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	5,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	63,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	8,600	•	545	4,370	3,320	•	•	7160	4,070	•	•	•	•	300
Iron (dissolved)	230	•	ND	48.7 B	ND	1,890	3,310	3,160	282	•	•	•	•	300
Lead	ND	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	33	•	ND	ND *	190	ND	ND	120	28	•	•	•	•	10,000
Sulfate (ug/L)	ND	•	31,000	ND	ND	ND	3,800	ND	ND	•	•	•	•	250,000
TOC (ug/L)	12,000	•	21,000	25,000	ND	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	7,600	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	264,000	•	37,000	22,000	19,000	30,000	56,000	55,000	42,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	1.5	6.3	4.6	4.5	0.89	0.88	2.18	3.13	1.96		•	•		N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 5 of 10) Harrison Subresidency Spill Site

WELL ID: MW 9	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CRITERIA
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
m,p-Xylene	•	-	-	-	ND	ND	ND	ND	ND	•	•	•	•	-
O-Xylene	•	-	-	-	ND	ND	ND	ND	ND	•	•	•	•	-
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
TOTAL BTEX	ND	ND	ND	ND	ND	ND	ND	ND	ND	٠	•	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			2 J	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	260,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	160,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	4,570	7,870	12,600	•	•	232	16,000	•	•	•	•	300
Iron (dissolved)	•	•	ND	ND	ND	32.2 B	ND	44.9 B	450	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND	690	340	730	870	770	1,100	•	•	•	•	10,000
Sulfate (ug/L)	•	•	21,000	23,000	19,000	12,000	12,000	17,000	19,000	•	•	•	•	250,000
TOC (ug/L)	•	•	18,000	15,000	9,000	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	ND	ND *	ND	ND	ND	ND	ND	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	3.3	7.5	5.49	12.3	6.30	3.65	7.60	8.20	6.65	•	•	•	•	N/A

WELL ID: MW 11				(Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)										
MTBE				ND	ND	ND	ND	ND	ND	50
Benzene				ND	ND	0.88	0.88	ND	1.9	-
Toluene				1 J	ND	1	2.9	ND	ND	-
Ethylbenzene				10	3J	13	130	53	32	-
m,p-Xylene				7	ND	3.8	35	12	11	-
O-Xylene				ND	ND	1.6	3.1	1.2	2.3	-
Xylenes (total)				7	ND	5.4	38.1	13.2	13.3	-
TOTAL BTEX				18	3	20.28	171.88	66.2	47.2	100
Semi-volatile Org.(ug/L) 2-Methylnaphthalene				•	•	•	•	•		50
Napthalene				•	•	•	•	•	•	25
Metals (ug/L)										
Chloride				•	•	•	•	•	•	250,000
Sodium				•	•	•	•	•	•	20,000
Iron (total)				174,000	23,400	•	•	•	•	300
Iron (dissolved)				1370	307	ND	ND	610	5500	300
Lead				•	•	•	•	•	•	25
Other										
Nitrogen, Nitrate (ug/L)				0.98	240	ND	ND	ND	ND	10,000
Sulfate (ug/L)				57,000	15,000	19	9	14,000	3,300	250,000
TOC (ug/L)				•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)				•	•	•	•	•		N/A
Carbon Dioxide (ug/L)				230,000	140,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)				3.70	5.45	3.30	3.01	16.25	5.03	N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 6 of 10) Harrison Subresidency Spill Site

WELL ID: MW 12					(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)									OMILIMA
MTBE					ND	ND	ND	•	50
Benzene					ND	ND	ND	•	-
Toluene					ND	ND	ND	•	-
Ethylbenzene					23	4.1	3.4	•	-
m,p-Xylene					ND	ND	ND	•	-
O-Xylene					ND	ND	ND	•	-
Xylenes (total)					ND 23	ND	ND	•	-
TOTAL BTEX					23	4.1	3.4	•	100
Semi-volatile Org.(ug/L)									
2-Methylnaphthalene								•	50
Napthalene					:	:			25
Napthalene					*	•	•	·	23
Metals (ug/L)									
Chloride						•	•	•	250,000
Sodium					•	•	•	•	20,000
Iron (total)					•	•	•	•	300
Iron (dissolved)					650	2600	4100	•	300
Lead					•	•	•	•	25
Other									
Nitrogen, Nitrate (ug/L)					ND	0.35	ND	•	10,000
Sulfate (ug/L)					5.6	19.0	13,000	•	250,000
TOC (ug/L)					•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)					•	•	•	•	N/A
Carbon Dioxide (ug/L)					•	•	•	•	N/A
Dissolved Oxygen (mg/L)		1			1.10	2.61	4.51		N/A

WELL ID: MW 13						(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)										
MTBE						ND	ND	ND	•	50
Benzene						ND	ND	ND	•	-
Toluene						ND	ND	ND	•	-
Ethylbenzene						ND	ND	ND	•	-
m,p-Xylene						ND	ND	ND	•	-
O-Xylene						ND	ND	ND	•	-
Xylenes (total)						ND	ND	ND	•	-
TOTAL BTEX						ND	ND	ND	•	100
Semi-volatile Org.(ug/L) 2-Methylnaphthalene						•	•	•		50
Napthalene						•	•	•	•	25
Metals (ug/L)										
Chloride						•	•	•	•	250,000
Sodium						•	•	•	•	20,000
Iron (total)						•	•	•	•	300
Iron (dissolved)						•	•	•	•	300
Lead						•	•	•	•	25
Other										
Nitrogen, Nitrate (ug/L)						0.46	1.5	1300	•	10,000
Sulfate (ug/L)				1	l	13	23	25,000	•	250,000
TOC (ug/L)						•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)				1	l	•	•	•	•	N/A
Carbon Dioxide (ug/L)						•	•	•	•	N/A
Dissolved Oxygen (mg/L)					l	1.80	5.87	5.87		N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 7 of 10) Harrison Subresidency Spill Site

WELL ID: SP 1	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)		(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT
Volatile Organics (ug/L)														CRITERIA
MTBE	3.2	31	ND	ND	ND	•	•	•	•	•	•	•	•	50
Benzene	1.4	ND	ND	ND	ND	•	•	•	•	•	•	•	•	-
Toluene	3.7	ND	ND	ND	60	•	•	•	•	•	•	•	•	-
Ethylbenzene	4.0	ND	ND	2	22	•	•	•	•	•	•	•	•	-
m,p-Xylene	8.1	-	-	-	100	•	•	•	•	•	•	•	•	-
O-Xylene	2.9	-	-	-	42	•	•	•	•	•	•	•	•	-
Xylenes (total)	11.0	ND	ND	1	140	•	•	•	•	•	•	•	•	-
TOTAL BTEX	20.1	ND	ND	3	222	٠	٠	٠	٠	٠	٠	•	٠	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	16,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	45,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	3,940	3,720	NA	•	•	•	•	•	•	•	•	300
Iron (dissolved)	•	•	52.1 B	68.0 B	NA	•	•	•	•	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND*	160	NA	•	•	•	•	•	•	•	•	10,000
Sulfate (ug/L)	•	•	48,000	46,000	NA	•	•	•	•	•	•	•	•	250,000
TOC (ug/L)	•	•	25,000	17,000	ND	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	NA	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	18,000	19,000	NA	•	•	•	•	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	4.6	9.66	4.6	2.3	NA	•	•	•	•	•	•	•	•	N/A

WELL ID: MW 10 B	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CRITERIA
MTBE	4.9	•	ND	NA	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	2.1	•	ND	NA	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	ND	•	ND	NA	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	ND	•	1	NA	9	23	8	ND	9	•	•	•	•	-
m,p-Xylene	3.5	•	-	NA	2	15	2 J	ND	2J	•	•	•	•	-
O-Xylene	5.6	•	-	NA	ND	ND	ND	ND	ND	•	•	•	•	-
Xylenes (total)	9.1	•	ND	NA	2	15	2 J	ND	2	•	•	•	•	-
TOTAL BTEX	11.2	•	1	NA	11	38	10	ND	11	•	•	٠	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	NA	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	NA	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	34,000	•	•	NA	•	•	•	•	•	•	•	•	•	250,000
Sodium	27,000	•	•	NA	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	1,080	NA	1,190	•	•	1460	1,880	•	•	•	•	300
Iron (dissolved)	•	•	32.8 B	NA	462	644	592	456	343	•	•	•	•	300
Lead	•	•	•	NA	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND*	NA	ND	ND	120	ND	120	•	•	•	•	10,000
Sulfate (ug/L)	•	•	27,000	NA	19,000	9,000	12,000	12,000	8,100	•	•	•	•	250,000
TOC (ug/L)	•	•	14,000	NA	9,400	•	•	•	•	•	•	•		N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	NA	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	39,000	NA	39,000	25,000	32,000	25,000	14,000	•	•	•		N/A
Dissolved Oxygen (mg/L)	4.7		4.91	NA	2.0	2.9	2.4	1.1	5.35	•	•	•	•	N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 8 of 10) Harrison Subresidency Spill Site

WELL ID: SP 2	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)		(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CKITEKIA
MTBE	18	•	14	ND	ND	ND	ND	•	•	•	•	•	•	50
Benzene	19	•	ND	7	7	5	2 J	•	•	•	•	•	•	-
Toluene	25	•	ND	6	2	2	4 J	•	•	•	•	•	•	-
Ethylbenzene	110	•	1	42	ND	5	42	•	•	•	•	•	•	-
m,p-Xylene	52	•	-	-	4	1	13	•	•	•	•	•	•	-
O-Xylene	11	•	-	-	2	ND	ND	•	•	•	•	•	•	-
Xylenes (total)	63	•	ND	3	6	1	13	•	•	•	•	•	•	-
TOTAL BTEX	217.0	•	1	58	15	13	61	•	•	•	•	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	36,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	75,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	9,750	7,590	2,700	•	•	•	•	•	•	•	•	300
Iron (dissolved)	•	•	ND	126 B	ND	166 B	2,120	•	•	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND*	100	ND	37	ND	•	•	•	•	•	•	10,000
Sulfate (ug/L)	•	•	26,000	64,000	18,000	7,900	7,200	•	•	•	•	•	•	250,000
TOC (ug/L)	•	•	17,000	29,000	14,000	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	36,000	42,000	38,000	37,000	58,000	•	•	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	2.5	•	3.1	4.0	1.0	1.47	1.7		•	•	•			N/A

WELL ID: SP 3	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)		(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														
MTBE	38	•	7	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	110	•	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	39	•	1	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	200	•	ND	ND	ND	ND	ND	ND	31	•	•	•	•	-
m,p-Xylene	180	•	-	-	ND	ND	ND	ND	4J	•	•	•	•	-
O-Xylene	57	•	-	-	ND	ND	ND	ND	3J	•	•	•	•	-
Xylenes (total)	237	•	15	ND	ND	ND	ND	ND	7	•	•	•	•	-
TOTAL BTEX	586.0	•	16	ND	ND	ND	ND	ND	38	•	•	•	٠	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene			ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene			ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	6,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	38,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	2,970	1,060	133 B	•	•	3380	3,170	•	•	•	•	300
Iron (dissolved)	•	•	ND	ND	ND	116 B	384	891	572	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND*	100	ND	25	66	ND	ND	•	•	•		10,000
Sulfate (ug/L)		•	56,000	16,000	19,000	5,900	22,000	ND	ND	•	•	•		250,000
TOC (ug/L)	•	•	11,000	18,000	41,000	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	11,000	11,000	20,000	19,000	26,000	57,000	32,000	•	•	•		N/A
Dissolved Oxygen (mg/L)	3.4	•	4.21	5.7	1.1	1.7	2.2	1.05	3.27	•	•	•	•	N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 9 of 10) Harrison Subresidency Spill Site

WELL ID: SP 4	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT
Volatile Organics (ug/L)														CRITERIA
MTBE	24	•	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	50
Benzene	24	•	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Toluene	3.8	•	ND	ND	ND	ND	ND	ND	ND	•	•	•	•	-
Ethylbenzene	35	•	ND	3	26	ND	ND	ND	ND	•	•	•	•	-
m,p-Xylene	9.5	•	-	-	8	ND	ND	ND	ND	•	•	•	•	-
O-Xylene	2.4	•	-	-	ND	ND	ND	ND	ND	•	•	•	•	-
Xylenes (total)	11.9	•	ND	2	8	ND	ND	ND	ND	•	•	•	•	-
TOTAL BTEX	74.7	٠	ND	5	34	ND	ND	ND	ND	•	•	•	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene		•	ND	•	•	•	•	•	•	•	•	•	•	50
Napthalene		•	ND	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	16,000	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	24,000	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	3,790	5,350	2,490	•	•	10,400	25,400	•	•	•	•	300
Iron (dissolved)	•	•	602	1,810	1,810	2,460	44.5	953	326	•	•	•	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	ND*	ND*	ND	ND	150	200	ND	•	•	•	•	10,000
Sulfate (ug/L)	•	•	34,000	22,000	37,000	26,000	8,400	24,000	13,000	•	•	•	•	250,000
TOC (ug/L)	•	•	14,000	24,000	11,000	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	39,000	24,000	31,000	26,000	23,000	39,000	ND	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	4.2	•	6.89	4.2	2.4	6.2	3.4	3.8	5.6	•	•	•	•	N/A

WELL ID: GP 2	BASELINE (May 2000)	(Jan 2001)	(May 2001)	(Jan 2002)	(Jan 2003)	(Sept 2003)	(May 2004)	(Oct 2005)/ (Mar 2006)		(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CRITERIA
MTBE	•	•	•	•	3	ND	ND	•	•	•	•	ND	•	50
Benzene	•	•	•	•	ND	ND	ND	•	•	•	•	ND	•	-
Toluene	•	•	•	•	ND	ND	ND	•	•	•	•	ND	•	-
Ethylbenzene	•	•	•	•	ND	ND	ND	•	•	•	•	ND	•	-
m,p-Xylene	•	•	•	•	ND	ND	ND	•	•	•	•	ND	•	-
O-Xylene	•	•	•	•	ND	ND	ND	•	•	•	•	ND	•	-
Xylenes (total)	•	•	•	•	ND	ND	ND	•	•	•	•	ND	•	-
TOTAL BTEX	•	•	•	•	3	ND	ND	•	•	•	•	ND	•	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene	•	•	•	•	•	•	•	•	•	•	•	•	•	50
Napthalene	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	•	•	•	•	•	•	•	•	•	•	•	•		250,000
Sodium	•	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	•	•	•	•	•	•	•	•	•	•	•	300
Iron (dissolved)	•	•	•	•	•	•	•	•	•	•	•	ND	•	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	•	•	•	•	•	•	•	•	•	ND	•	10,000
Sulfate (ug/L)	•	•	•	•	•	•	•	•	•	•	•	21,000	•	250,000
TOC (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Dissolved Oxygen (mg/L)		•	•			•		•	•	•	•	16.79		N/A

# ATTACHMENT A MONITORING WELL HISTORICAL DATA SUMMARY May 2000 to July 2012 (Page 10 of 10) Harrison Subresidency Spill Site

WELL ID: PC-1								(Oct 2005)/ (Mar 2006)	(July 2007)	(Oct 2008)	(Jan 2010)	(Apr 2011)	(July 2012)	TARGET EFFLUENT CRITERIA
Volatile Organics (ug/L)														CRITERIA
MTBE	•	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	50
Benzene	•	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	-
Toluene	•	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	-
Ethylbenzene	•	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	-
m,p-Xylene	•	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	-
O-Xylene	•	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	-
Xylenes (total)	•	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	-
TOTAL BTEX	٠	•	•	•	•	•	•	ND	ND	ND	ND	ND	ND	100
Semi-volatile Org.(ug/L)														
2-Methylnaphthalene	•	•	•	•	•	•	•	•	•	•	•	•	•	50
Napthalene	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Metals (ug/L)														
Chloride	•	•	•	•	•	•	•	•	•	•	•	•	•	250,000
Sodium	•	•	•	•	•	•	•	•	•	•	•	•	•	20,000
Iron (total)	•	•	•	•	•	•	•	599	952	•	•	•	•	300
Iron (dissolved)	•	•	•	•	•	•	•	28.6 B	425	ND	ND	ND	ND	300
Lead	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Other														
Nitrogen, Nitrate (ug/L)	•	•	•	•	•	•	•	50	ND*	ND	ND	ND	ND	10,000
Sulfate (ug/L)	•	•	•	•	•	•	•	5000	37,000	34	36	13,000	1,400	250,000
TOC (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Petroleum Hydrocarbons (ug/L)	•	•	•	•	•	•	•	•	•	•	•	•	•	N/A
Carbon Dioxide (ug/L)	•	•	•	•	•	•	•	10,000	35,000	•	•	•	•	N/A
Dissolved Oxygen (mg/L)	•	•	•	•	•	•	•	2.72	3.02	4.1	1.92	16.57	5.13	N/A

Notes:

ND = Non Detect

B = Concentration below the reporting limit equal to or above the detection limit.

J = Concentration below the reporting limit.

H = Analyzed outside of the holding time.

* Nitrogen, Nitrate was analyzed outside the recommended holding time for this sample and therefore the analytical results may be biased low.