

Department of Transportation

ANDREW M. CUOMO Governor

MARIE THERESE DOMINGUEZ Acting Commissioner

> LANCE MacMILLAN, P.E. **Regional Director**

May 17, 2016

VIA EMAIL

Daniel Lanners, Project Manager NYS Department of Environmental Conservation **Division of Environmental Remediation, BURC** 625 Broadway Albany, NY 12233-7014

RE: SITE MANAGEMENT PERIODIC REVIEW REPORT SITE NUMBER 360035 NYSDOT HARRISON SUBRESIDENCY **ROUTE 120 TOWN OF HARRISON** WESTCHESTER COUNTY

Dear Mr. Lanners:

Attached please find the Site Management Periodic Review Report for the Harrison Sub-Residency in the Town of Harrison, Westchester County.

Please feel free to contact me at 845.431.5826 or gretchen.fitzgerald@dot.ny.gov if you have any questions or concerns.

Very truly yours,

Gretchen Fitzgerald Regional Construction Environmental Coordinator, Region 8

Enclosures

- C. Kochersberger, Transportation Maintenance Group, Main Office, NYSDOT, POD 54 CC: G. Boucher, Regional Maintenance Engineer, Region 8, NYSDOT
 - C. Kappeller, Maintenance Environmental Group, Region 8, NYSDOT
 - J. Argote, Resident Engineer, Residency 8-9, Region 8, NYSDOT

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Site Details	Box 1	
Sit	e No. 360035	DOX	
Sit	e Name Harrison Subresidency		
Site Cit Co Site	e Address: Route 120 Zip Code: 10528 y/Town: Harrison unty: Westchester e Acreage: 5.000		
Re	porting Period: May 14, 2016 to May 14, 2019		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form	•	*
5.	Is the site currently undergoing development?		X
		Box 2	
		YEŚ	NO
6.	Is the current site use consistent with the use(s) listed below? Closed Landfill	X	
7.	Are all ICs/ECs in place and functioning as designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
A	Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.
			121
Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 360035			Box 3
Description of Institu	itional Controls		
Parcel 971-22	<u>Owner</u> NYS Department of Transportation	Institutional Control	-
		O&M Plan	•
The NYSDOT is conducting sediment and groundwater conducted semi-annually ar	operation and maintenance of the landfill monitoring and visual inspections of the co ad groundwater samples are collected eve	which includes surface wat over material. Landfill inspe ery fifth quarter.	er, ections are
		•	Box 4
Description of Engin	eering Controls		
Parcel	Engineering Control		
511-22	Cover System Fencing/Access Control		
The landfill was closed in a	cordance with NVCRR Part 360 Closure	included copping of 2.6 ag	

Box 5

Periodic Review Report (PRR) Certification Statements

1. I certify by checking "YES" below that:

a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:

(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;

(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;

(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;

(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and

(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. 360035	
·	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIG I certify that all information and statements in Boxes 1,2, and 3 are true. I us statement made herein is punishable as a Class "A" misdemeanor, pursuan Penal Law.	SNATURE nderstand that a false t to Section 210.45 of the
Gretchen Fltzgerald at <u>4 Burnett Blud.</u> , Poughke print name print business address	epsic, NY 12603,
am certifying as <u>owner (NYSDoT</u>)	_(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	
A B	5/17/19
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

IC/EC CERTIFICATIONS

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>Gretchen Fltzgerald</u> at <u>HBurnett Blud.</u>, <u>Poughkeepsie</u>, NY 12603, print name print business address

am certifying as a Qualified Environmental Professional for the <u>NYSDOT</u> (owner (Owner or Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE) Date

Box 7

Site Management Periodic Review Report NYSDOT Harrison Sub-Residency Harrison, New York Site Number 360035 May 17, 2019

Introduction

The New York State Department of Transportation (DOT) Harrison sub-residency site is located east of Route 120 and west of the Westchester County Airport in the Town of Harrison, Westchester County (see Attachment 1).

Currently, there are two environmental concerns at the Harrison sub-residency:

- a 2.6 acre landfill, which is listed in the New York State Registry of Inactive Hazardous Waste Sites and is classified as a "Category 4", meaning that it has been remediated and only ongoing monitoring is required, and
- a "closed, does not meet standards" petroleum spill (#94-07349), for which ongoing monitoring continues to be conducted.

Over the past 19 years, results from extensive environmental monitoring (surface water, groundwater, sediment, landfill gas, petroleum-remediation gas emissions) indicate that these areas do not represent a significant threat to the environment, including the nearby Kensico Reservoir.

Site History

The Harrison sub-residency facility was built in 1967 to support the construction and operation of Interstate 684. Roadside and highway construction debris were disposed on-site in a landfill between 1967 and 1976. The area was fenced in 1972. In April 1993, a 55-gallon drum of road striping paint was removed from the landfill during a test pit excavation. Because the paint contained toluene (a solvent), the site was placed on the New York State Registry of Inactive Hazardous Waste Sites.

DOT consulted with the New York State Department of Environmental Conservation (DEC) and the New York State Department of Health (DOH) and performed an expedited, comprehensive investigation (i.e., Preliminary Site Assessment) of the landfill and its vicinity in 1995. Several drums containing hazardous or suspected hazardous waste, mostly paint products, were encountered and removed from the landfill. Based on the results of the investigation, DEC, DOH and DOT indicated that the landfill was not a significant threat to the reservoir.

After consulting with DEC, DOH, and the New York City Department of Environmental Protection (DEP), the landfill was re-graded and capped in accordance with stringent DEC landfill closure requirements on August 31, 1999. The cap includes a durable polyethylene liner to prevent the infiltration of water and subsequent leaching of contaminants into the environment. A small stream that drains into the reservoir was rerouted around the landfill so that it could not act as a collector trench for contaminants (see Attachment 2). The plastic liner extends beneath the repositioned stream, so that any leachate generated within the fill cannot discharge into surface water. Environmental monitoring results have shown no evidence of toxic contaminants from the landfill with the potential of reaching the reservoir.

SMPRR - Site # 360035 Harrison Sub-Residency May 17, 2019

DOT also identified a petroleum spill at the vicinity of the fuel tank area. With DEC approval, in August 1994, DOT removed three underground petroleum storage tanks (two 400-gallon and one 2000-gallon), 130 cubic yards of contaminated soil, and 8,000 gallons of contaminated water. There are currently no tanks remaining on this property. Monitoring results at the petroleum spill area suggested that the spill had not migrated off-site and was not a significant threat to the reservoir.

Landfill monitoring has been conducted on a quarterly basis since 2000. In February 2010, with concurrence from DOH and DEP, DEC granted permission to DOT to change this frequency to semi-annually. These monitoring reports have been and continue to be submitted to DEC, DOH and DEP.

Beginning in 2000, DOT completed quarterly groundwater, surface water, and sediment sampling and reports at the landfill area, and groundwater sampling and reports at the petroleum spill area. The quarterly reports changed to every-5th quarter reports in October 2005. These reports have been and continue to be submitted to DEC, DOH and DEP.

At the request of DOH and in coordination with DEC, a sub-slab soil gas investigation was conducted in March 2006 at two locations within the sub-residency building beneath the concrete slab foundation. The purpose of the sub-slab soil gas investigation was to assess the potential for vapor intrusion into the sub-residency building from the potential presence of volatile organic compounds in the groundwater and/or sub-surface soil adjacent to and/or beneath the building. DEC reviewed the results of the sub-slab investigation and concluded that the low levels of site-related volatile organic compounds detected in the sub-slab vapor of the sub-residency building indicated that the potential for exposure to site-related compounds via indoor vapor intrusion was unlikely. In addition, the presence of non-site related compounds at the levels detected in the sub-slab soil vapor did not represent an exposure concern considering the current use of the building.

In October 2013, the Town of Harrison Department of Public Works was served with a Notice of Violation from DEP regarding the operation of a solid waste management facility (i.e., organic yard waste transfer station) within 1000 feet of the Kensico Reservoir and a reservoir stem. In February 2015, the Town of Harrison accepted the terms of a variance granted by DEP permitting the Town's operations. The terms included site drainage improvements to be made by the Town. In February 2016, DEP determined that all variance mitigation measures had been installed, and DEP determined that the violation has been satisfactorily resolved.

Institutional and Engineering Controls

<u>Air Sparge/Soil Vapor Extraction System</u>

On October 31, 2000, DOT started operating an Air Sparge/Soil Vapor Extraction (AS/SVE) system at the petroleum spill area. This system was highly successful: a 90% overall reduction of contaminants was achieved in less than a year due to volatilization and bioremediation of the petroleum product. Because contaminant levels significantly decreased in the first year and then remained relatively constant (i.e., natural attenuation processes were/are effectively reducing and containing the plume), and it was agreed that the maximum benefits of the system had been achieved, the remedial system was taken off-line in October 2002. The pipes were plugged by DOT Maintenance in October 2006.

SMPRR - Site # 360035 Harrison Sub-Residency May 17, 2019

In March 2008, DEC determined that the remedial work performed at the site, specifically the past operations of the AS/SVE system and the monitoring program which is ongoing, had addressed the open spill number 94-07349. The spill was declared "Closed, does not meet standards". (The official spill closure date is 10/10/02, which is when the AS/SVE system was shut down). The ongoing monitoring program serves to document the status of the residual contamination.

In May - June 2008, after discussions among DOT, DEC, DOH, and DEP, thirteen wells in the petroleum spill area were "closed" or decommissioned. In June of 2008, two new wells, MW-12 and MW-13, were installed (see Attachments 3, 4, 12).

In November 2011 and May 2012, again after discussions among DOT, DEC, DOH, and DEP, five more wells were "closed" or decommissioned (three in the petroleum spill area, one in the landfill area, and one "outlier"). The existing well in the petroleum spill area which has been left open is MW-11 (see Attachments 5, 6, 13).

<u>Fence</u>

The Harrison sub-residency site is secured with a fence and a locked gate. There is also a fence surrounding the entire perimeter of the landfill, which is also locked. The Town of Harrison operates a leaf transfer station at the Harrison sub-residency. The Town operates out of the old sub-residency garage that is on-site. While the Town is not involved in the groundwater monitoring or landfill inspections, they are responsible for maintaining the area where they work. Any damage to the landfill fence is noted on the semi-annual landfill inspection reports. Any necessary repairs to the fence are made by DOT. On occasion, the Town of Harrison has been asked to fix portions of the fence that have been damaged by their operations.

Landfill Cap

The landfill was re-graded and capped in accordance with stringent DEC landfill closure requirements on August 31, 1999. The cap includes a durable polyethylene liner to prevent the infiltration of water and subsequent leaching of contaminants into the environment. Minor erosion on the western slope of the landfill became an issue in 2006. DOT Region 8 Maintenance applied wood chips to the area in the Spring of 2007. A permanent fix to the erosion/soil slump took place in May 2009 when it was repaired by DOT Residency 8-9 personnel. Approximately 6 inches of #2 crushed stone (NYSDOT Standard Spec. 623.12) was placed on the slump then covered with approximately 12 inches of fine stone fill (NYSDOT Standard Spec. 620.02). Repair suggestions were provided by the DOT Region 8 Geotechnical Group.

• Operations and Maintenance Plan

An Operations and Maintenance (O+M) plan was developed by DOT when well sampling and landfill monitoring began. The O+M plan has been updated throughout the years as necessary and is always shared with and agreed upon by DEC, DOH, and DEP. The most current O+M plan is dated February 2010 (see Attachment 7).

SMPRR - Site # 360035 Harrison Sub-Residency May 17, 2019

Please see the following attachments for more information:

Attachment 1 - Site Location Map

Attachment 2 - Site Map and Sampling/Monitoring Locations

Attachment 3 - Petroleum Spill Area Historic Well Locations

Attachment 4 - Landfill and Petroleum Spill Area Monitoring Well Locations as of June 2008

Attachment 5 - Landfill and Petroleum Spill Area Monitoring Well Locations as of May 2012

Attachment 6 - Petroleum Spill Area Monitoring Well Locations as of October 2018

Attachment 7 - Operations and Maintenance Plan for the Landfill and Petroleum Spill Area - February 2010

Attachment 8 - Groundwater Data Summary for the Petroleum Spill Area - October 2018

Attachment 9 - Groundwater Data Summary for the Landfill - October 2018

Attachment 10 - Surface Water Data Summary for the Landfill - October 2018

Attachment 11 - Sediment Data Summary for the Landfill – October 2018

Attachment 12 - Plugging Report for Well Closures in May and June 2008

Attachment 13 - Plugging Report for Well Closures in November 2011 and May 2012

AYOUT-7:07PM 2017 -7 res\TRC Working Pond + Harrison/Reports/Harrison Brvant ģ \$ Page Harris D03 ED IMAGES: NAN 8.5x11 -- ATTA DRAWING

Harrison Spill Area Historic Well Locations

200 Feet

Attachment 4

200 Feet

Attachment 5

ELLE NO ·

Figure 2 - Spill Site Monitoring Well Locations_r1.dwg

OPERATION AND MAINTENANCE PLAN FOR THE HARRISON SUBRESIDENCY LANDFILL AND PETROLEUM SPILL AREA

February 2010

Semi-annual (DOT)

- 1. Inspect monitoring wells.
- 2. Landfill cap (including cap vegetation) inspection.
- 3. Inspect landfill gas vents.
- 4. Inspect perimeter fence, gates, and signs.

Every 5 Quarters (Consultant)

5. Measure water level from monitoring wells.

Landfill Area Only:

- 6. Vector and vermin inspection.
- 7. Perimeter drainage swales.
- 8. Gas monitoring at gas vents and property line perimeter.
- 9. Sample ground- and surface- water for field parameters: Temperature, turbidity, DO, pH, and specific conductivity. In addition, sample groundwater only for: Eh (or ReDox; field parameter). (*See* Note 1 *below*).
- 10. Sample all the media for TCL VOCs, SVOCs, TAL-Metals (including cyanide and chloride). (*See* Note 2, Note 3, *and* Note 4 *below*).

Petroleum Spill Area Only:

- 11. Sample groundwater for field parameters: Temperature, turbidity, DO, pH, and specific conductivity, and Eh. (*See* **Note 1** *below*).
- 12. Sample groundwater for BTEX, MTBE, and natural attenuation parameters: Iron (dissolved; Fe-II), Manganese (dissolved; Mn-II), Bicarbonate Alkalinity (reported as HCO3), Alkalinity (Total), Nitrate (NO3), and Sulfate (SO4). Parameters can be modified based on discussions with DEC.

Other (DOT):

- 13. Twice a year during the growing season (e.g., End of June, Mid September): mow cap grass to a height of no lower than 15 cm.
- 14. After major rainfall events (5-year storms): inspect cap and drainage swales.

X Well purge water can be discharged immediately downgradient from the well.

Note 1: A flow cell meter must be used to measure all field parameters.

Note 2: *Groundwater*: filter samples for TAL-Metal analyses. *Surface Water*: unfiltered samples; filter samples for TAL-Metal analyses if *samples have been significantly disturbed* (e.g., the consultant dug a hole to collect a sample and water turbidity resulted from digging the hole; no unfiltered "disturbed" samples are to be collected for TAL-Metal analyses).

Note 3: Testing for pesticides and PCBs has been suspended after October 2005, because we have no evidence of any disposal of these contaminants at the site, and levels of these contaminants have not been detected or not significantly detected at site monitoring points.

Note 4: If field duplicate samples are collected, they will be performed on water samples only (not on sediment samples), since water samples are expected to be more homogeneous.

TABLE 1 NYSDOT - Harrison Sub-Residency Petroleum Spill Area Groundwater Analytical Data Summary October 2018

	CLIENT ID: LAB ID: COLLECTION DATE:	PC-1-1 AD071 10/15	102018 18-003 /2018	GW-DUP AD071 10/15	1-102018 18-005 5/2018	MW-11-102018 AD07118-007 10/15/2018		TB-1 AD07118-009 10/15/2018	
	NYSDEC Class GA								
Analyte	Standards ¹	Result	RL	Result	RL	Result	RL	Result	RL
Volatile Organic Compounds (µg/L)				•	•				
Benzene	1	ND	0.50	ND	0.50	ND	0.50	ND	0.50
Ethylbenzene	5	ND	1.0	ND	1.0	17	1	ND	1.0
m&p-Xylenes	5 ²	ND	1.0	ND	1.0	2	1	ND	1.0
Methyl-t-butyl ether	10	ND	0.50	ND	0.50	ND	0.50	ND	0.50
o-Xylene	5 ²	ND	1.0	ND	1.0	ND	1	ND	1.0
Toluene	5	ND	1.0	ND	1.0	ND	1	ND	1.0
Xylenes (Total)	5 ²	ND	1.0	ND	1.0	2	1	ND	1.0
Total BTEX	NS	ND	-	ND	-	19	-	ND	-
Metals (μg/L)				•	• •				
Iron	300/500 ³	240	300	230	300	1,600	300		
Manganese	300/500 ³	2,000	40	2,000	40	1,600	40		
Natural Attenuation Paramet	ers (μg/L)			_					
Alkalinity (Total)	NS	450	10			270	10		
Alkalinity (Bicarbonate)	NS	450	10			270	10		
Alkalinity (Carbonate)	NS	ND	10			ND	10		
Nitrite	NS	ND	1,000			ND	1,000		
Nitrate	NS	ND	1,000			ND	1,000		
Sulfate	250,000	8,100	2,000			7,500	2,000		
Sulfide ⁵	NS	ND	2	ND	2	ND	2		

Notes:

(1) - NYSDEC Class GA Standards are from Division of

Water Technical and Operational Guidance Series (1.1.1),

(2) -There is no GA value for total xylenes. The standards

for o-xylene, m-xylene, and p-xylene is 5 μ g/L

(3) Standard of 300 ug/L applies to each substance and 500 ug/L applies to the sum of these substances

(4) GW-DUP1-102018 is blind duplicate of PC-1-102018

(5) Sulfide was sampled separately from all other analytes, on October 23,

2018. Due to this, the laboratory IDs listed within the laboratory report for

sulfide analyis are different than those displayed above.

NS - No Standard

ND - Analyte not detected at the listed reporting limit

RL - Reporting Limit

µg/L - micrograms per liter

Shaded and **bolded** values exceed regulatory criteria

Alkalinity values are reported in milligrams of CaCO3 per liter (mg CaCO3/L)

Table 1

New York State Department of Transportation

Harrison Sub-Residency Landfill Site

Summary of Groundwater Sample Analytical Results for Volatile Organic Compounds

	CLIENT ID:	LMW-2	-102018	LMW-4-102018		PC-1-102018		GW-DUP1-10201	
	LAB ID:	AD071	18-001	AD071	37-001	AD071	18-003	AD071	18-005
	COLLECTION DATE:	10/15	6/2018	10/16	6/2018	10/15	/2018	10/15	6/2018
						_			
	NYSDEC Class GA	Result		Result		Result		Result	
Volatile Organic Compounds	Standards (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)
1,1,1-I richloroethane	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,1,2,2-1 etrachioroethane	5		1.0		1.0		1.0	ND	1.0
1,1,2-Trichloroethane	5 1		1.0		1.0		1.0		1.0
1 1-Dichloroethane	5		1.0		1.0		1.0		1.0
1 1-Dichloroethene	5		1.0	ND	1.0	ND	1.0	ND	1.0
1 2 3-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1.2.4-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1.2-Dibromo-3-chloropropane	0.04	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromoethane	6.00E-04	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,2-Dichloroethane	0.6	ND	0.50	ND	0.50	ND	0.50	ND	0.50
1,2-Dichloropropane	1	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,3-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0	ND	1.0
1,4-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0	ND	1.0
2-Butanone	50	ND	1.0	ND	1.0	ND	1.0	ND	1.0
2-Hexanone	50	ND	1.0	ND	1.0	ND	1.0	ND	1.0
4-Methyl-2-pentanone	NS	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Acetone	50	ND	5.0	ND	5.0	ND	5.0	ND	5.0
Benzene	1	ND	0.50	ND	0.50	ND	0.50	ND	0.50
Bromochloromethane	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Bromodichloromethane	50	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Bromoform	50	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Bromomethane	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Carbon disulfide	60	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Carbon tetrachloride	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Chlorobenzene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Chloroform	5 7		1.0	ND	1.0		1.0	ND	1.0
Chloromothana	1		1.0		1.0		1.0		1.0
	5		1.0		1.0		1.0		1.0
cis 1.3 Dichloropropopo	0.42		1.0		1.0		1.0		1.0
	0.4 NS		1.0		1.0		1.0		1.0
Dibromochloromethane	50		1.0		1.0		1.0		1.0
Dichlorodifluoromethane	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Ethylbenzene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Isopropylbenzene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
m&p-Xylenes	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Methyl Acetate	NS	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Methylcyclohexane	NS	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Methylene chloride	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Methyl-t-butyl ether	10	ND	0.50	ND	0.50	ND	0.50	ND	0.50
o-Xylene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Styrene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Tetrachloroethene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Toluene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
trans-1,2-Dichloroethene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
trans-1,3-Dichloropropene	0.4 ²	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Trichloroethene	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Trichlorofluoromethane	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Vinyl chloride	2	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Xylenes (Total)	5 ³	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Total VOCs	NS	ND	-	ND	-	ND	-	ND	-

Notes (1) - NYSDEC Class GA Standards are from Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998, revised April 2000.

⁽²⁾ - 0.4 μg/L applies to the sum of cis- and trans-1,3-dichloropropene.
⁽³⁾ -There is no GA value for total xylenes. The standards for o-xylene, m-xylene, and p-xylene is 5 μg/L

 $^{\rm (4)}$ - GW-DUP1-102018 is a blind duplicate of PC-1-102018

NS - No Standard

ND - Analyte not detected at the listed reporting limit RL - Reporting Limit µg/L - micrograms per liter

Shaded and bolded values exceed regulatory criteria

TRC Engineers, Inc.

Table 1 New York State Department of Transportation Harrison Sub-Residency Landfill Site Summary of Groundwater Sample Analytical Results for Volatile Organic Compounds

	CLIENT ID:	PC-2-	102018	PC-3-1	02018	TRIP B	LANKS
	LAB ID:	AD071	37-003	AD071	37-005	VAR	OUS
	COLLECTION DATE:	10/16	/2018	10/16	/2018	10/15/18 -	- 10/17/18
		Desult		Decult		Desult	
Valatila Organia Compounda	Standarda ¹ (ug/L)	Result		Result		Result	
1 1 1 Trichloroothano							<u>ΓΓ</u> (μg/L)
1,1,2,2 Tetrachloroethane	5		1.0		1.0		1.0
1 1 2-Trichloro-1 2 2-trifluoroethane	5		1.0		1.0		1.0
1 1 2-Trichloroethane	1		1.0	ND	1.0	ND	1.0
1 1-Dichloroethane	5	ND	1.0	ND	1.0	ND	1.0
1.1-Dichloroethene	5	ND	1.0	ND	1.0	ND	1.0
1.2.3-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0
1,2,4-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromo-3-chloropropane	0.04	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromoethane	6.00E-04	ND	1.0	ND	1.0	ND	1.0
1,2-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1,2-Dichloroethane	0.6	ND	0.50	ND	0.50	ND	0.50
1,2-Dichloropropane	1	ND	1.0	ND	1.0	ND	1.0
1,3-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1,4-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
2-Butanone	50	ND	1.0	ND	1.0	ND	1.0
2-Hexanone	50	ND	1.0	ND	1.0	ND	1.0
4-Methyl-2-pentanone	NS	ND	1.0	ND	1.0	ND	1.0
Acetone	50	ND	5.0	ND	5.0	ND	5.0
Benzene	1	ND	0.50	ND	0.50	ND	0.50
Bromochloromethane	5	ND	1.0	ND	1.0	ND	1.0
Bromodichloromethane	50	ND	1.0	ND	1.0	ND	1.0
Bromotorm	50	ND	1.0	ND	1.0	ND	1.0
Bromometnane	5	ND	1.0	ND	1.0	ND	1.0
Carbon disulfide	60 E		1.0		1.0		1.0
Chlorobonzono	5 5		1.0		1.0		1.0
Chloroethane	5		1.0		1.0		1.0
Chloroform	7		1.0		1.0		1.0
Chloromethane	5		1.0		1.0		1.0
cis-1 2-Dichloroethene	5		1.0	ND	1.0	ND	1.0
cis-1,2 Dichloropropene	0.4 ²	ND	1.0	ND	1.0	ND	1.0
Cyclohexane	NS	ND	1.0	ND	1.0	ND	1.0
Dibromochloromethane	50	ND	1.0	ND	1.0	ND	1.0
Dichlorodifluoromethane	5	ND	1.0	ND	1.0	ND	1.0
Ethylbenzene	5	ND	1.0	ND	1.0	ND	1.0
Isopropylbenzene	5	ND	1.0	ND	1.0	ND	1.0
m&p-Xylenes	5	ND	1.0	ND	1.0	ND	1.0
Methyl Acetate	NS	ND	1.0	ND	1.0	ND	1.0
Methylcyclohexane	NS	ND	1.0	ND	1.0	ND	1.0
Methylene chloride	5	ND	1.0	ND	1.0	ND	1.0
Methyl-t-butyl ether	10	ND	0.50	ND	0.50	ND	0.50
o-Xylene	5	ND	1.0	ND	1.0	ND	1.0
Styrene	5	ND	1.0	ND	1.0	ND	1.0
Tetrachloroethene	5	ND	1.0	ND	1.0	ND	1.0
loluene	5	ND	1.0	ND	1.0	ND	1.0
trans-1,2-Dichloroethene	5	ND	1.0	ND	1.0	ND	1.0
trans-1,3-Dichloropropene	0.4 ²	ND	1.0	ND	1.0	ND	1.0
	5	ND	1.0	ND	1.0	ND	1.0
	5	ND	1.0	ND	1.0	ND	1.0
Vinyi chioride	<u> </u>		1.0		1.0		1.0
Ayienes (Total)	5		1.0		1.0		1.0
TUIAL VUUS	ενi	עמ		UND .	-		-

Notes (1) - NYSDEC Class GA Standards are from Division of Water

 $^{(2)}$ - 0.4 μg/L applies to the sum of cis- and trans-1,3-dichloropr $^{(3)}$ -There is no GA value for total xylenes. The standards for o- $^{(4)}$ - GW-DUP1-102018 is a blind duplicate of PC-1-102018 NS - No Standard

ND - Analyte not detected at the

listed reporting limit

RL - Reporting Limit

µg/L - micrograms per liter

Shaded and bolded values exceed regulatory criteria

TRC Engineers, Inc.

Table 2New York State Department of TransportationHarrison Sub-Residency Landfill SiteSummary of Groundwater Sample Analytical Results for Semivolatile Organic Compounds

	CLIENT ID:	LMW-2	-102018	LMW-4-	-102018	PC-1-102018		
	LAB ID:	AD071	18-001	AD071	37-001	AD071	18-003	
	COLLECTION DATE:	10/15	5/2018	10/16	/2018	10/15	/2018	
	NYSDEC Class GA	Result		Result		Result		
Semivolatile Organic Compounds	Standards ¹ (ug/L)		RL (ug/L)		RL (ug/L)		RL (ua/L)	
1 1'-Biphenyl	NS		1 0		1.0		1 0	
1.2.4.5-Tetrachlorobenzene	10	ND	1.0	ND	1.0	ND	1.0	
1. 4-Dioxane	NS	ND	0.26	ND	0.25	ND	0.25	
2,3,4,6-Tetrachlorophenol	NS	ND	1.0	ND	1.0	ND	1.0	
2,4,5-Trichlorophenol	NS	ND	1.0	ND	1.0	ND	1.0	
2,4,6-Trichlorophenol	NS	ND	1.0	ND	1.0	ND	1.0	
2,4-Dichlorophenol	1	ND	0.26	ND	0.25	ND	0.25	
2,4-Dimethylphenol	1	ND	0.26	ND	0.25	ND	0.25	
2,4-Dinitrophenol	1	ND	5.2	ND	5.0	ND	5.0	
	5	ND	1.0	ND	1.0	ND	1.0	
2,6-Dinitrotoluene	5	ND	1.0	ND	1.0	ND	1.0	
2-Chlorophenol	NS NS		1.0		1.0		1.0	
2 Methylpaphthalene	NS		1.0		1.0		1.0	
2-Methylnaphthalene	NS		0.26		0.25		0.25	
2-Nitroaniline	5	ND	1.0	ND	1.0	ND	1.0	
2-Nitrophenol	NS	ND	1.0	ND	1.0	ND	1.0	
3&4-Methylphenol	NS	ND	0.26	ND	0.25	ND	0.25	
3,3'-Dichlorobenzidine	5	ND	1.0	ND	1.0	ND	1.0	
3-Nitroaniline	5	ND	1.0	ND	1.0	ND	1.0	
4,6-Dinitro-2-methylphenol	NS	ND	5.2	ND	5.0	ND	5.0	
4-Bromophenyl-phenylether	NS	ND	1.0	ND	1.0	ND	1.0	
4-Chloro-3-methylphenol	NS	ND	1.0	ND	1.0	ND	1.0	
4-Chloroaniline	5	ND	0.26	ND	0.25	ND	0.25	
4-Chlorophenyl-phenylether	NS	ND	1.0	ND	1.0	ND	1.0	
4-Nitroaniline	5	ND	1.0	ND	1.0	ND	1.0	
4-millophenol	NS 20		1.0		1.0	ND	1.0	
	ZU NS		1.0		1.0		1.0	
Acetonhenone	NS		1.0		1.0		1.0	
Anthracene	NS	ND	1.0	ND	1.0	ND	1.0	
Atrazine	7.5	ND	1.0	ND	1.0	ND	1.0	
Benzaldehyde	NS	ND	1.0	ND	1.0	ND	1.0	
Benzo[a]anthracene	NS	ND	1.0	ND	1.0	ND	1.0	
Benzo[a]pyrene	ND	ND	1.0	ND	1.0	ND	1.0	
Benzo[b]fluoranthene	NS	ND	1.0	ND	1.0	ND	1.0	
Benzo[g,h,i]perylene	NS	ND	1.0	ND	1.0	ND	1.0	
Benzo[k]fluoranthene	NS	ND	1.0	ND	1.0	ND	1.0	
bis(2-Chloroethoxy)methane	5	ND	1.0	ND	1.0	ND	1.0	
bis(2-Chioroethyl)ether	5		0.26		0.25	ND	0.25	
bis(2-Chioroisopropyr)ether	5		1.0		1.0		1.0	
Butylbenzylphthalate	NS		1.0		1.0		1.0	
Caprolactam	NS	ND	1.0	ND	1.0	ND	1.0	
Carbazole	NS	ND	1.0	ND	1.0	ND	1.0	
Chrysene	NS	ND	1.0	ND	1.0	ND	1.0	
Dibenzo[a,h]anthracene	NS	ND	1.0	ND	1.0	ND	1.0	
Dibenzofuran	NS	ND	0.26	ND	0.25	ND	0.25	
Diethylphthalate	NS	ND	1.0	ND	1.0	ND	1.0	
Dimethylphthalate	NS	ND	1.0	ND	1.0	ND	1.0	
Di-n-butylphthalate	50	ND	0.26	ND	0.25	ND	0.25	
Di-n-octylphthalate	NS	ND	1.0	ND	1.0	ND	1.0	
Fluoranchene	NS NS		1.0		1.0		1.0	
Hexachlorobenzene	0.04		1.0		1.0		1.0	
Hexachlorobutadiene	0.04		1.0		1.0		1.0	
Hexachlorocyclopentadiene	5	ND	1.0	ND	1.0	ND	1.0	
Hexachloroethane	5	ND	1.0	ND	1.0	ND	1.0	
Indeno[1,2,3-cd]pyrene	NS	ND	1.0	ND	1.0	ND	1.0	
Isophorone	NS	ND	1.0	ND	1.0	ND	1.0	
Naphthalene	NS	ND	0.26	ND	0.25	ND	0.25	
Nitrobenzene	0.4	ND	1.0	ND	1.0	ND	1.0	
N-Nitroso-di-n-propylamine	NS	ND	0.26	ND	0.25	ND	0.25	
N-Nitrosodiphenylamine	NS	ND	1.0	ND	1.0	ND	1.0	
Pentachlorophenol		ND	5.2	ND	5.0	ND	5.0	
	NS	ND	1.0	ND	1.0	ND	1.0	
Prieno			1.0		1.0		1.0	
Total SVOCs	NG		1.0		1.0		1.0	
1010101000	110		-		<u> </u>		-	

Notes

⁽¹⁾ - NYSDEC Class GA Standards are from Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998, revised April 2000.

 $^{(2)}$ - GW-DUP1-102018 is a blind duplicate of PC-1-102018

NS - No Standard

ND - Analyte not detected at the listed

reporting limit

Table 2 New York State Department of Transportation Harrison Sub-Residency Landfill Site Summary of Groundwater Sample Analytical Results for Semivolatile Organic Compounds

	CLIENT ID:	GW-DUP1	-102018 ⁽²⁾	PC-2-102018		PC-3-102018	
	LAB ID:	AD071	18-005	AD071	37-003	AD071	37-005
	COLLECTION DATE:	10/15	5/2018	10/16	/2018	10/16	/2018
	NYSDEC Class GA	Pocult		Pocult		Pocult	
Semivolatile Organic Compounds	Standards ¹ (ug/L)	(ua/L)	RL (ug/L)		RL (ug/L)		RL (ua/L)
1.1'-Biphenvl	NS	<u>ND</u>	1.0	ND	1.0	ND	1.0
1,2,4,5-Tetrachlorobenzene	10	ND	1.0	ND	1.0	ND	1.0
1, 4-Dioxane	NS	ND	0.25	ND	0.25	ND	0.25
2,3,4,6-Tetrachlorophenol	NS	ND	1.0	ND	1.0	ND	1.0
2,4,5-Trichlorophenol	NS	ND	1.0	ND	1.0	ND	1.0
2,4,6-Trichlorophenol	NS	ND	1.0	ND	1.0	ND	1.0
2,4-Dichlorophenol	1	ND	0.25	ND	0.25	ND	0.25
2,4-Dimethylphenol	1	ND	0.25	ND	0.25	ND	0.25
2,4-Dinitrophenol	5		5.0		5.0		5.0
2.6-Dinitrotoluene	5		1.0		1.0		1.0
2-Chloronaphthalene	NS	ND	1.0	ND	1.0	ND	1.0
2-Chlorophenol	NS	ND	1.0	ND	1.0	ND	1.0
2-Methylnaphthalene	NS	ND	1.0	ND	1.0	ND	1.0
2-Methylphenol	NS	ND	0.25	ND	0.25	ND	0.25
2-Nitroaniline	5	ND	1.0	ND	1.0	ND	1.0
2-Nitrophenol	NS	ND	1.0	ND	1.0	ND	1.0
3&4-Methylphenol	NS	ND	0.25	ND	0.25	ND	0.25
3,3'-Dichlorobenzidine	5	ND	1.0	ND	1.0	ND	1.0
3-Nitroaniline	5	ND	1.0	ND	1.0	ND	1.0
4,6-Dinitro-2-metnyipnenoi	NS NC		5.0	ND	5.0	ND	5.0
4-Biomophenyi-phenyiether	NS		1.0		1.0		1.0
4-Chloroaniline	5		0.25		0.25		0.25
4-Chlorophenyl-phenylether	NS		1.0	ND	1.0	ND	1.0
4-Nitroaniline	5	ND	1.0	ND	1.0	ND	1.0
4-Nitrophenol	NS	ND	1.0	ND	1.0	ND	1.0
Acenaphthene	20	ND	1.0	ND	1.0	ND	1.0
Acenaphthylene	NS	ND	1.0	ND	1.0	ND	1.0
Acetophenone	NS	ND	1.0	ND	1.0	ND	1.0
Anthracene	NS	ND	1.0	ND	1.0	ND	1.0
Atrazine	7.5	ND	1.0	ND	1.0	ND	1.0
Benzaldenyde	NS		1.0	ND	1.0		1.0
Benzolalnvrene			1.0		1.0		1.0
Benzo[b]fluoranthene	NS		1.0		1.0		1.0
Benzola,h.ilpervlene	NS	ND	1.0	ND	1.0	ND	1.0
Benzo[k]fluoranthene	NS	ND	1.0	ND	1.0	ND	1.0
bis(2-Chloroethoxy)methane	5	ND	1.0	ND	1.0	ND	1.0
bis(2-Chloroethyl)ether	1	ND	0.25	ND	0.25	ND	0.25
bis(2-Chloroisopropyl)ether	5	ND	1.0	ND	1.0	ND	1.0
bis(2-Ethylhexyl)phthalate	5	ND	1.0	ND	1.0	ND	1.0
Butylbenzylphthalate	NS	ND	1.0	ND	1.0	ND	1.0
	NS		1.0	ND	1.0		1.0
Carbazole	NS NS		1.0		1.0		1.0
Dibenzo[a.h]anthracene	NS	ND	1.0	ND	1.0	ND	1.0
Dibenzofuran	NS	ND	0.25	ND	0.25	ND	0.25
Diethylphthalate	NS	ND	1.0	ND	1.0	ND	1.0
Dimethylphthalate	NS	ND	1.0	ND	1.0	ND	1.0
Di-n-butylphthalate	50	ND	0.25	ND	0.25	ND	0.25
Di-n-octylphthalate	NS	ND	1.0	ND	1.0	ND	1.0
Fluoranthene	NS	ND	1.0	ND	1.0	ND	1.0
Fluorene	NS	ND	1.0	ND	1.0	ND	1.0
Hexachlorobenzene	0.04		1.0		1.0		1.0
Hexachloropuladiene	0.5		1.0		1.0		1.0
Hexachloroethane	5		1.0		1.0		1.0
Indeno[1,2,3-cd]pvrene	NS	ND	1.0	ND	1.0	ND	1.0
Isophorone	NS	ND	1.0	ND	1.0	ND	1.0
Naphthalene	NS	ND	0.25	ND	0.25	ND	0.25
Nitrobenzene	0.4	ND	1.0	ND	1.0	ND	1.0
N-Nitroso-di-n-propylamine	NS	ND	0.25	ND	0.25	ND	0.25
N-Nitrosodiphenylamine	NS	ND	1.0	ND	1.0	ND	1.0
Pentachlorophenol	1	ND	5.0	ND	5.0	ND	5.0
Phenanthrene	NS	ND	1.0	ND	1.0	ND	1.0
Prieno	1 NG		1.0		1.0	ND	1.0
Total SVOCs	NS NS		1.0		1.0		1.0
1010101000	110						-

Notes

(1) - NYSDEC Class GA Standards are from Division of Water Technica revised April 2000.

⁽²⁾ - GW-DUP1-102018 is a blind duplicate of PC-1-102018

NS - No Standard

ND - Analyte not detected at the listed

reporting limit Shaded and bolded values exceed regulatory criteria

Table 3 New York State Department of Transportation Harrison Sub-Residency Landfill Site Summary of Groundwater Sample Analytical Results for Metals, Cyanide and Chloride

	CLIENT ID:	LMW-2- AD071	-102018 18-001	LMW-4- AD071	-102018 37-001	PC-1-7 AD071	102018 18-003	GW-DUP1	-102018 ⁽³⁾ 18-005	PC-2-7 AD071	102018 37-003	PC-3-1 AD071	102018 37-005
	COLLECTION DATE:	10/15	5/2018	10/16	/2018	10/15	5/2018	10/15	/2018	10/16	6/2018	10/16	/2018
Metals, Cyanide, and	NYSDEC Class GA	Result		Result		Result		Result		Result		Result	
Chloride	Standards ¹ (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)
Aluminum	2,000	ND	100	ND	100	120	100	ND	100	ND	100	ND	100
Antimony	3	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5	ND	2.5
Arsenic	25	ND	1.0	2.0	1.0	ND	1.0	ND	1.0	1.8	1.0	ND	1.0
Barium	1,000	120	25	150	25	140	25	130	25	170	25	160	25
Beryllium	3	ND	0.75	ND	0.75	ND	0.75	ND	0.75	ND	0.75	ND	0.75
Cadmium	5	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Calcium	NS	78,000	1,000	40,000	1,000	170,000	1,000	170,000	1,000	81,000	1,000	74,000	1,000
Chromium	50	ND	25	ND	25	ND	25	ND	25	ND	25	ND	25
Cobalt	NS	ND	1	11	1	ND	1	ND	1	1.6	1	ND	1
Copper	200	ND	25	ND	25	ND	25	ND	25	ND	25	ND	25
Iron	300 / 500 ²	170	150	60,000	150	240	150	230	150	61,000	150	1,800	150
Lead	25	ND	0.75	ND	0.75	ND	0.75	ND	0.75	ND	0.75	ND	0.75
Magnesium	35,000	28,000	1,000	17,000	1,000	27,000	1,000	26,000	1,000	19,000	1,000	21,000	1,000
Manganese	300 / 500 ²	170	25	9,700	25	2,000	25	2,000	25	11,000	25	570	25
Mercury	0.7	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2
Nickel	100	ND	10	ND	10	ND	10	ND	10	ND	10	ND	10
Potassium	NS	3,900	2,500	3,500	2,500	4,900	2,500	5,000	2,500	3,700	2,500	7,300	2,500
Selenium	10	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5
Silver	50	ND	10	ND	10	ND	10	ND	10	ND	10	ND	10
Sodium	20,000	25,000	2,500	29,000	2,500	100,000	2,500	100,000	2,500	39,000	2,500	120,000	2,500
Thallium	0.5	ND	1.5	ND	1.5	ND	1.5	ND	1.5	ND	1.5	ND	1.5
Vanadium	NS	ND	25	ND	25	ND	25	ND	25	ND	25	ND	25
Zinc	2,000	ND	25	ND	25	ND	25	ND	25	ND	25	ND	25
Cyanide	200	ND	20	ND	20	ND	20	ND	20	ND	20	ND	20
Chloride	NS	15,000	2,000	32,000	2,000	230,000	20,000	220,000	20,000	21,000	2,000	230,000	20,000

Notes

(1) - NYSDEC Class GA Standards and Guidance Values are from Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998, revised April 2000.

 $^{(2)}$ - Standard of 500 $\mu g/L$ applies to the sum of Iron and Manganese

⁽³⁾ - GW-DUP1-102018 is a blind duplicate of PC-1-102018

NS - No Standard

ND - Analyte not detected at the listed reporting limit

RL - Reporting Limit

μg/L - micrograms per liter

Shaded and bolded values exceed Class GA Standards

Table 4

New York State Department of Transportation

Harrison Sub-Residency Landfill Site

Summary of Surface Water Sample Analytical Results for Volatile Organic Compounds

	CLIENT ID:	SW-1-	102018	SW-2-	102018	SW-3-	102018
	LAB ID:	AD071	61-001	AD071	61-003	AD071	61-005
	COLLECTION DATE:	10/17	7/2018	10/17	//2018	10/17	/2018
		Desuit		Desuit			
	GA Standards	Result		Result		Result	
Volatile Organic Compounds	(µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)
1,1,1-Irichloroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1,2,2-Tetrachloroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1,2-Trichloroethane	1	ND	1.0	ND	1.0	ND	1.0
1,1-Dichloroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1-Dichloroethene	5	ND	1.0	ND	1.0	ND	1.0
1,2,3-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0
1,2,4-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromo-3-chloropropane	0.04	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromoethane	6.00E-04	ND	1.0	ND	1.0	ND	1.0
1,2-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1,2-Dichloroethane	0.6	ND	0.50	ND	0.50	ND	0.50
1,2-Dichloropropane	1	ND	1.0	ND	1.0	ND	1.0
1,3-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1,4-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1.4-Dioxane	NS	ND	50	ND	50	ND	50
2-Butanone	50	ND	1.0	ND	1.0	ND	1.0
2-Hexanone	50	ND	1.0	ND	1.0	ND	1.0
4-Methyl-2-pentanone	NS	ND	1.0	ND	1.0	ND	1.0
Acetone	50	ND	5.0	ND	5.0	ND	5.0
Benzene	1	ND	0.50	ND	0.50	ND	0.50
Bromochloromethane	5	ND	1.0	ND	1.0	ND	1.0
Bromodichloromethane	50	ND	1.0	ND	1.0	ND	1.0
Bromoform	50	ND	1.0	ND	1.0	ND	1.0
Bromomethane	5	ND	1.0	ND	1.0	ND	1.0
Carbon disulfide	60		1.0		1.0		1.0
Carbon totrachlorido	5		1.0		1.0		1.0
Chlorobonzono	5		1.0		1.0		1.0
Chloroothana	5		1.0		1.0		1.0
Chloroform	<u> </u>		1.0		1.0		1.0
Chloromothana	7 F		1.0		1.0		1.0
	5		1.0		1.0		1.0
	5	ND	1.0	ND	1.0	ND	1.0
cis-1,3-Dichloropropene	0.4 -	ND	1.0	ND	1.0	ND	1.0
Cyclohexane	NS	ND	1.0	ND	1.0	ND	1.0
Dibromochloromethane	50	ND	1.0	ND	1.0	ND	1.0
Dichlorodifluoromethane	5	ND	1.0	ND	1.0	ND	1.0
Ethylbenzene	5	ND	1.0	ND	1.0	ND	1.0
Isopropylbenzene	5	ND	1.0	ND	1.0	ND	1.0
m&p-Xylenes	5 ³	ND	1.0	ND	1.0	ND	1.0
Methyl Acetate	NS	ND	1.0	ND	1.0	ND	1.0
Methylcyclohexane	NS	ND	1.0	ND	1.0	ND	1.0
Methylene chloride	5	ND	1.0	ND	1.0	ND	1.0
Methyl-t-butyl ether	10	ND	0.50	ND	0.50	ND	0.50
o-Xvlene	5 ³	ND	1.0	ND	1.0	ND	1.0
Styrene	5	ND	1.0	ND	1.0	ND	1.0
Tetrachloroethene	5	ND	1.0	ND	1.0	ND	1.0
Toluene	5	ND	1.0	ND	1.0	ND	1.0
trans-1.2-Dichloroethene	5	ND	1.0	ND	1.0	ND	1.0
trans_1_3_Dichloropropene	0 1 2		1.0		1.0		1.0
Trichloroethene	<u>0.4</u> Б		1.0		1.0		1.0
Trichlorofluoromathana	5		1.0		1.0		1.0
Vipyl chlorido			1.0		1.0		1.0
			1.0		1.0		1.0
	5	ND	1.0	ND	1.0	ND	1.0
LIDIAL VOUS	I NS	I NI)		I NI)		I ND	-

Notes

⁽¹⁾ - NYSDEC Class GA Standards are from Division of Water Technical and Operational Guidance Series (1.1.1), dated

June 1998, revised April 2000.

- $^{(2)}$ 0.4 µg/L applies to the sum of cis- and trans-1,3-dichloropropene. $^{(3)}$ -There is no GA value for total xylenes. The standards for o-xylene, m-xylene, and p-xylene is 5 µg/L
- ⁽⁴⁾ SW-DUP1-102018 is a blind duplicate of SW-3-102018

NYSDEC Class A Standards are applicable but are not listed as no VOCs were detected in any surface water samples

NS - No Standard

ND - Analyte not detected at the listed

reporting limit

- RL Reporting Limit
- µg/L micrograms per liter

Table 4 New York State Department of Transportation Harrison Sub-Residency Landfill Site Summary of Surface Water Sample Analytical Results for Volatile Organic Compounds

		SW-DUP1	-102018 ⁽⁴⁾	SW-4-	102018	TF	3-3
			61-007		61-008		61-010
		10/17	2/2018	10/17	2/2018	10/17	2/2018
	NVCDECTION DATE.	10/17	72010	10/17	/2010	10/17	/2010
	GA Standards'	Result		Result		Result	
Volatile Organic Compounds	(µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)
1,1,1-Trichloroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1,2,2-Tetrachloroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1,2-Trichloroethane	1	ND	1.0	ND	1.0	ND	1.0
1,1-Dichloroethane	5	ND	1.0	ND	1.0	ND	1.0
1,1-Dichloroethene	5	ND	1.0	ND	1.0	ND	1.0
1,2,3-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0
1,2,4-Trichlorobenzene	5	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromo-3-chloropropane	0.04	ND	1.0	ND	1.0	ND	1.0
1,2-Dibromoethane	6.00E-04	ND	1.0	ND	1.0	ND	1.0
1,2-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1,2-Dichloroethane	0.6	ND	0.50	ND	0.50	ND	0.50
1,2-Dichloropropane	1	ND	1.0	ND	1.0	ND	1.0
1,3-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1,4-Dichlorobenzene	3	ND	1.0	ND	1.0	ND	1.0
1,4-Dioxane	NS	ND	50	ND	50	ND	50
2-Butanone	50	ND	1.0	ND	1.0	ND	1.0
2-Hexanone	50	ND	1.0	ND	1.0	ND	1.0
4-Methyl-2-pentanone	NS	ND	1.0	ND	1.0	ND	1.0
Acetone	50	ND	5.0	ND	5.0	ND	5.0
Benzene	1	ND	0.50	ND	0.50	ND	0.50
Bromochloromethane	5	ND	1.0	ND	1.0	ND	1.0
Bromodichloromethane	50	ND	1.0	ND	1.0	ND	1.0
Bromoform	50	ND	1.0	ND	1.0	ND	1.0
Bromomethane	5	ND	1.0	ND	1.0	ND	1.0
Carbon disulfide	60	ND	1.0	ND	1.0	ND	1.0
Carbon tetrachloride	5	ND	1.0	ND	1.0	ND	1.0
Chlorobenzene	5	ND	1.0	ND	1.0	ND	1.0
Chloroethane	5		1.0		1.0	ND	1.0
Chloroform	7		1.0		1.0		1.0
Chloromethane	5		1.0		1.0		1.0
cis-1 2-Dichloroethene	5		1.0		1.0	ND	1.0
cis 1.3 Dichloropropopo	0.4.2		1.0	ND	1.0	ND	1.0
	0.4 NS		1.0		1.0		1.0
Dibromochloromothano	50		1.0		1.0		1.0
Diplomocnioromethane	50		1.0		1.0		1.0
	5		1.0		1.0		1.0
	5		1.0		1.0		1.0
	5 r ³		1.0		1.0		1.0
m&p-Xylenes	5	ND	1.0	ND	1.0	ND	1.0
Methyl Acetate	NS	ND	1.0	ND	1.0	ND	1.0
Methylcyclohexane	NS	ND	1.0	ND	1.0	ND	1.0
Methylene chloride	5	ND	1.0	ND	1.0	ND	1.0
Methyl-t-butyl ether	10	ND	0.50	ND	0.50	ND	0.50
o-Xylene	5 °	ND	1.0	ND	1.0	ND	1.0
Styrene	5	ND	1.0	ND	1.0	ND	1.0
Tetrachloroethene	5	ND	1.0	ND	1.0	ND	1.0
Toluene	5	ND	1.0	ND	1.0	ND	1.0
trans-1,2-Dichloroethene	5	ND	1.0	ND	1.0	ND	1.0
trans-1,3-Dichloropropene	0.4 ²	ND	1.0	ND	1.0	ND	1.0
Trichloroethene	5	ND	1.0	ND	1.0	ND	1.0
Trichlorofluoromethane	5	ND	1.0	ND	1.0	ND	1.0
Vinyl chloride	2	ND	1.0	ND	1.0	ND	1.0
Xvlenes (Total)	5 ³	ND	1.0	ND	1.0	ND	1.0
Total VOCs	NS	ND		ND		ND	

<u>Notes</u>

⁽¹⁾ - NYSDEC Class GA Standards are from Division of Water

June 1998, revised April 2000.

 $^{(2)}$ - 0.4 µg/L applies to the sum of cis- and trans-1,3-dichlorop $^{(3)}$ -There is no GA value for total xylenes. The standards for c

⁽⁴⁾ - SW-DUP1-102018 is a blind duplicate of SW-3-102018 NYSDEC Class A Standards are applicable but are not listed

NS - No Standard

ND - Analyte not detected at the listed

reporting limit

RL - Reporting Limit

µg/L - micrograms per liter

Table 5New York State Department of Transportation
Harrison Sub-Residency Landfill SiteSummary of Surface Water Sample Analytical Results for Semivolatile Organic Compounds

	CLIENT ID:	SW-1-	102018	SW-2-	102018	SW-3-	102018
	LAB ID:	AD071	61-001	AD071	61-003	AD071	61-005
	COLLECTION DATE:	10/17	/2018	10/17	/2018	10/17	/2018
	NYSDEC Class GA	Result		Result		Result	
Semivolatile Organic Compounds	Standards' (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)
1,1'-Biphenyi	NS 10		2.5		0.58		0.58
1,2,4,5-1 etrachiorobenzene			2.5		0.58		0.58
1,4-Dioxane	INS NC		0.62		0.14		0.14
2,5,4,0-1 etrachiorophenol	NS		2.5		0.58		0.58
2 4 6-Trichlorophenol	NS		2.5		0.50		0.58
2.4-Dichlorophenol	1	ND	0.62	ND	0.14	ND	0.14
2.4-Dimethylphenol	1	ND	0.62	ND	0.14	ND	0.14
2,4-Dinitrophenol	1	ND	12	ND	2.9	ND	2.9
2,4-Dinitrotoluene	5	ND	2.5	ND	0.58	ND	0.58
2,6-Dinitrotoluene	5	ND	2.5	ND	0.58	ND	0.58
2-Chloronaphthalene	NS	ND	2.5	ND	0.58	ND	0.58
2-Chlorophenol	NS	ND	2.5	ND	0.58	ND	0.58
2-Methylnaphthalene	NS	ND	2.5	ND	0.58	ND	0.58
2-Methylphenol	NS	ND	0.62	ND	0.14	ND	0.14
2-Nitroaniline	5	ND	2.5	ND	0.58	ND	0.58
2-Nitrophenol	NS	ND	2.5	ND	0.58	ND	0.58
	NS r		0.62		0.14	ND	0.14
3,3-DICNIORODENZIGINE	5		2.5		0.58		0.58
4 6-Dipitro-2-mothylphonol	C NIC		2.0 10		0.00 2.0		0.00 2 0
4-Bromonbenyl-nbenylether	NS NS		25		2.9 0.58		2. ୬ በ 5ጾ
4-Chloro-3-methylphenol	NS		2.5		0.58	ND	0.58
4-Chloroaniline	5		0.62		0.30		0.30
4-Chlorophenyl-phenylether	NS	ND	2.5	ND	0.58	ND	0.58
4-Nitroaniline	5	ND	2.5	ND	0.58	ND	0.58
4-Nitrophenol	NS	ND	2.5	ND	0.58	ND	0.58
Acenaphthene	20	ND	2.5	ND	0.58	ND	0.58
Acenaphthylene	NS	ND	2.5	ND	0.58	ND	0.58
Acetophenone	NS	ND	2.5	ND	0.58	ND	0.58
Anthracene	NS	ND	2.5	ND	0.58	ND	0.58
Atrazine	7.5	ND	2.5	ND	0.58	ND	0.58
Benzaldehyde	NS	ND	2.5	ND	0.58	ND	0.58
Benzo[a]anthracene	NS	ND	2.5	ND	0.58	ND	0.58
Benzo[a]pyrene	ND		2.5		0.58		0.58
Benzolo jiluorantnene	NS		2.5		0.58		0.58
Benzo[k]fluoranthono	NS NS		2.0		0.50		0.56
bis(2-Chloroethoxy)methane	5		2.5		0.58		0.58
bis(2-Chloroethyl)ether	1		0.62		0.00		0.30
bis(2-Chloroisopropyl)ether	5	ND	2.5	ND	0.58	ND	0.58
bis(2-Ethylhexyl)phthalate	5	ND	2.5	ND	0.58	ND	0.58
Butylbenzylphthalate	NS	ND	2.5	ND	0.58	ND	0.58
Caprolactam	NS	ND	2.5	ND	0.58	ND	0.58
Carbazole	NS	ND	2.5	ND	0.58	ND	0.58
Chrysene	NS	ND	2.5	ND	0.58	ND	0.58
Dibenzo[a,h]anthracene	NS	ND	2.5	ND	0.58	ND	0.58
Dibenzofuran	NS	ND	0.62	ND	0.14	ND	0.14
Diethylphthalate	NS	ND	2.5	ND	0.58	ND	0.58
Dimethylphthalate	NS	ND	2.5	ND	0.58	ND	0.58
Di-n-butyiphthalate	50	ND	0.62	ND	0.14	ND	0.14
	NS		2.5		0.58		0.58
	NO NC		2.5		U.50		U.50 0 E9
Heyachlorobenzone	0.04		2.5		0.58		0.58
Hexachlorobutadiene	0.04		2.5		0.58		0.58
Hexachlorocyclopentadiene	5	ND	2.5	ND	0.58	ND	0.58
Hexachloroethane	5	ND	2.5	ND	0.58	ND	0.58
Indeno[1,2,3-cd]pyrene	NS	ND	2.5	ND	0.58	ND	0.58
Isophorone	NS	ND	2.5	ND	0.58	ND	0.58
Naphthalene	NS	ND	0.62	ND	<u>0.</u> 14	ND	<u>0.</u> 14
Nitrobenzene	0.4	ND	2.5	ND	0.58	ND	0.58
N-Nitroso-di-n-propylamine	NS	ND	0.62	ND	0.14	ND	0.14
N-Nitrosodiphenylamine	NS	ND	2.5	ND	0.58	ND	0.58
Pentachlorophenol	1	ND	12	ND	2.9	ND	2.9
Phenanthrene	NS	ND	2.5	ND	0.58	ND	0.58
Phenol	1	ND	2.5	ND	0.58	ND	0.58
	NS	ND	2.5	ND	0.58	ND	0.58
Lotal SVOCs	NS	ND	-	ND	-	ND	-

<u>Notes</u>

⁽¹⁾ - NYSDEC Class GA Standards are from Division of Water Technical and Operational Guidance Series (1.1.1),

dated June 1998, revised April 2000.

⁽²⁾ - SW-DUP1-102018 is a blind duplicate of SW-3-102018

NYSDEC Class A Standards are applicable but are not listed as no SVOCs were detected in any surface water samples

NS - No Standard

ND - Analyte not detected at the

listed reporting limit

RL - Reporting Limit

µg/L - micrograms per liter

Table 5New York State Department of TransportationHarrison Sub-Residency Landfill SiteSummary of Surface Water Sample Analytical Results for Semivolatile Organic Compounds

SW-DUP1	-102018 ⁽²⁾	SW-4-102018				
AD071	61-007	AD071	61-008			
10/17	/2018	10/17	/2018			
Beault		Beault				
Result		Result				
	1 0		1 0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
	0.26		0.26			
	1.0		<u> </u>			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
	0.26		0.26			
	1.0		1.0			
	5.2		5.2			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
	1.0		1.0			
	1.0		1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
ND	1.0	ND	1.0			
	1.0		1.0			
ND	1.0		1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
	1.0		1.0			
	1.0		1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	0.26	ND	0.26			
ND	1.0	ND	1.0			
	0.26		0.20			
	5.2		1.U 5.2			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	1.0	ND	1.0			
ND	-	ND	-			

Table 6 New York State Department of Transportation Harrison Sub-Residency Landfill Site Summary of Surface Water Sample Analytical Results for Metals, Cyanide, and Chloride

		CLIENT ID:	SW-1-	102018	SW-2-102018		SW-3-102018	
		LAB ID:	AD071	61-001	AD071	61-003	AD071	61-005
		COLLECTION DATE:	10/17	/2018	10/17/2018		10/17	/2018
	NYSDEC Class	NYSDEC A Standards ¹						
Metals and Cyanide and	GA Standards ¹	(µg/L)	Result		Result		Result	
Chloride	(µg/L)		(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)
Aluminum	NS	100 (A(C))	390	200	ND	200	ND	200
Antimony	3	3 (H(WS))	ND	3.0	ND	3.0	ND	3.0
Arsenic	25	50 (H(WS)), 150 (A(C)), 340 (A(A))	ND	2.0	ND	2.0	ND	2.0
Barium	1,000	1,000 (H(WS))	ND	50	ND	50	92	50
Beryllium	3	3 (DW), 1,100 (A(C)) ²	ND	1.0	ND	1.0	ND	1.0
Cadmium	5	5 (H(WS), 2.8 (A(C)) ^{2,} 6 (A(A)) ²	ND	2.0	ND	2.0	ND	2.0
Calcium	NS	NS	43,000	5,000	44,000	5,000	170,000	5,000
Chromium	50	50 (H(WS)), 80 (A(C)) ²	ND	50	ND	50	ND	50
Cobalt	NS	5 (A(C))	ND	2	ND	2	ND	2
Copper	200	200 (H(WS)), 12.6 (A(C)) ² , 19.7 (A(A)) ²	ND	50	ND	50	ND	50
Cyanide	200	200 (H(WS)), 5.2 (A(C)), 22 (A(A)), 9,000 (H(FC))	ND	20	ND	20	ND	20
Iron	300 / 500 ³	300 (A(C) & E)	1,800	300	330	300	1,000	300
Lead	25	50 (H(WS))	ND	3	ND	3	ND	3
Magnesium	35,000	35,000 (H(WS))	12,000	5,000	12,000	5,000	24,000	5,000
Manganese	300 / 500 ³	300 (E)	1,500	40	280 ⁽³⁾	40	980	40
Mercury	0.7	0.7 (H(WS)), 0.77 (A(C)), 1.4 (A(A)), 7e-4 (H(FC)), 2.6e-3 (W)	ND	0.5	ND	0.5	ND	0.5
Nickel	100	100 (H(WS)), 73.3 (A(C)) ²	ND	50	ND	50	ND	50
Potassium	NS	NS	ND	5,000	ND	5,000	8100	5,000
Selenium	10	10 (H(WS)), 4.6 (A(C))	ND	10	ND	10	ND	10
Silver	50	50 (H(WS))	ND	20	ND	20	ND	20
Sodium	20,000	NS	9,300	5,000	14,000	5,000	99,000	5,000
Thallium	0.5	0.5 (H(WS)), 8 (A(C))	ND	2	ND	2	ND	2
Vanadium	NS	14 (FP)	ND	50	ND	50	ND	50
Zinc	2,000	2,000 (H(WS)), 126.8 (A(C)) ² , 165 (A(A)) ²	ND	50	ND	50	ND	50
Chloride	250,000	250,000 (H(WS))	23,000	2,000	7,800	2,000	170,000	10,000
Hardness (listed in milligrams liter)	of CaCO3 per	NS	150	6.6	160	6.6	500	6.6

 $\underline{\text{Notes}}^{(1)}$ - NYSDEC Class GA and Class A Standards & Guidance Values are from Division of Water Technical and Operational Guidance Values are norm June 1998, revised April 2000. ⁽²⁾ - Class A Standard(s) are based on hardness concentrations

 $^{(3)}$ - Standard of 500 $\mu g/L$ applies to the sum of Iron and Manganese

(4) - SW-DUP1-102018 is a blind duplicate of SW-3-102018

NS - No Standard

ND - Analyte not detected at the listed reporting limit

RL - Reporting Limit

µg/L - micrograms per liter

Shaded and bolded values exceed Class GA or Class A Standards or Guidance Values

NYSDEC Class A Standard Types:

TTODEO Oldoo / Coldinatia Typoo.	
A(C) - Fish Propogation	A(C)
H(WS) - Drinking Water	H(WS)
A(A) - Fish Survival	A(A)
H(FC) - Human Consumption of Fish	H(FC)
E - Aesthetic	E
W - Wildlife Protection	W

Table 6 New York State Department of Transportation Harrison Sub-Residency Landfill Site Summary of Surface Water Sample Analytical Results for Metals, Cyanide, and Chloride

		CLIENT ID:	SW-DUP1-102018 ⁽⁴⁾		SW-4-102018	
		LAB ID:	AD071	61-007	AD071	61-008
		COLLECTION DATE:	10/17	/2018	10/17	/2018
	NYSDEC Class	NYSDEC A Standards ¹				
Metals and Cyanide and	GA Standards ¹	(µg/L)	Result		Result	
Chloride	(µg/L)		(µg/L)	RL (µg/L)	(µg/L)	RL (µg/L)
Aluminum	NS	100 (A(C))	ND	200	9,000	200
Antimony	3	3 (H(WS))	ND	3.0	ND	3.0
Arsenic	25	50 (H(WS)), 150 (A(C)), 340 (A(A))	ND	2.0	2.6	2.0
Barium	1,000	1,000 (H(WS))	110	50	160	50
Beryllium	3	3 (DW), 1,100 (A(C)) ²	ND	1.0	ND	1.0
Cadmium	5	5 (H(WS), 2.8 (A(C)) ^{2,} 6 (A(A)) ²	ND	2.0	ND	2.0
Calcium	NS	NS	190,000	5,000	76,000	5,000
Chromium	50	50 (H(WS)), 80 (A(C)) ²	ND	50	ND	50
Cobalt	NS	5 (A(C))	ND	2	5.8	2
Copper	200	200 (H(WS)), 12.6 (A(C)) ² , 19.7 (A(A)) ²	ND	50	ND	50
Cyanide	200	200 (H(WS)), 5.2 (A(C)), 22 (A(A)), 9,000 (H(FC))	ND	20	ND	20
Iron	300 / 500 ³	300 (A(C) & E)	1,200	300	20,000	300
Lead	25	50 (H(WS))	ND	3	24	3
Magnesium	35,000	35,000 (H(WS))	27,000	5,000	23,000	5,000
Manganese	300 / 500 ³	300 (E)	1,100	40	4,600	40
Mercury	0.7	0.7 (H(WS)), 0.77 (A(C)), 1.4 (A(A)), 7e-4 (H(FC)), 2.6e-3 (W)	ND	0.5	ND	0.5
Nickel	100	100 (H(WS)), 73.3 (A(C)) ²	ND	50	ND	50
Potassium	NS	NS	9,500	5,000	6,200	5,000
Selenium	10	10 (H(WS)), 4.6 (A(C))	ND	10	ND	10
Silver	50	50 (H(WS))	ND	20	ND	20
Sodium	20,000	NS	120,000	5,000	31,000	5,000
Thallium	0.5	0.5 (H(WS)), 8 (A(C))	ND	2	ND	2
Vanadium	NS	14 (FP)	ND	50	ND	50
Zinc	2,000	2,000 (H(WS)), 126.8 (A(C)) ² , 165 (A(A)) ²	ND	50	110	50
Chloride	250,000	250,000 (H(WS))	150,000	10,000	41,000	2,000
Hardness (listed in milligrams liter)	of CaCO3 per	NS	500	6.6	310	6.6

 $\underline{\text{Notes}}^{(1)}$ - NYSDEC Class GA and Class A Standards & Guidance Values are from Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998, revised April 2000. ⁽²⁾ - Class A Standard(s) are based on hardness concentrations

 $^{(3)}$ - Standard of 500 $\mu g/L$ applies to the sum of Iron and Manganese

(4) - SW-DUP1-102018 is a blind duplicate of SW-3-102018

NS - No Standard

ND - Analyte not detected at the listed reporting limit

RL - Reporting Limit

µg/L - micrograms per liter

Shaded and bolded values exceed Class GA or Class A Standards or Gu

NYSDEC Class A Standard Types:

A(C) - Fish Propogation	A(C)
H(WS) - Drinking Water	H(WS)
A(A) - Fish Survival	A(A)
H(FC) - Human Consumption of Fish	H(FC)
E - Aesthetic	E
W - Wildlife Protection	W

Table 7

New York State Department of Transportation

Harrison Sub-Residency Landfill Site

Summary of Sediment Sample Analytical Results for Volatile Organic Compounds

		CLIENT ID:	SD-1-1	02018	SD-2-	102018	SD-3-	102018	SD-4-1	102018
		LAB ID:	AD071	61-002	AD071	61-004	AD071	61-006	AD071	61-009
	CO	LLECTION DATE:	10/17	/2018	10/17	/2018	10/17	7/2018	10/17	/2018
	NYSDEC	NYSDEC								
	Class A SGV	Class C SGV	Result		Result		Result		Result	
Volatile Organic Compounds	(mg/kg)	(mg/kg)	(mg/Kg)	RL (mg/Kg)	(mg/Kg)	RL (mg/Kg)	(mg/Kg)	RL (mg/Kg)	(mg/Kg)	RL (mg/Kg)
1,1,1-I richloroethane	1.8	8.6	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
1,1,2,2-I etrachloroethane	9 NG	18 NO	ND	0.0044	ND	0.0083	ND	0.0024	ND	0.0094
1,1,2-I richlere athere	NS	NS 0.0	ND	0.0027	ND	0.0051	ND	0.0015		0.0057
1,1,2-1 richloroethane	1.8	8.0 NC		0.0045		0.0085		0.0025		0.0095
1,1-Dichloroethane	NS 0.52	17		0.0027		0.0051		0.0015		0.0057
1,1-Dichlorobonzono	0.32	4.7		0.0027		0.0051		0.0013		0.0037
1,2,3-Trichlorobenzene	35	<u>2.0</u> 55		0.0034		0.0003		0.0019		0.0071
1.2-Dibromo-3-chloropropape	NS	NS		0.0044	ND	0.0002		0.0024		0.0033
1.2-Dibromoethane	NS	NS		0.0040	ND	0.0004		0.0025		0.0057
1 2-Dichlorobenzene	0.28	2.5		0.0027	ND	0.0099		0.0010		0.0007
1,2-Dichloroethane	NS	NS	ND	0.0042	ND	0.0079	ND	0.0023	ND	0.0089
1.2-Dichloropropane	NS	NS	ND	0.0036	ND	0.0068	ND	0.0020	ND	0.0076
1,3-Dichlorobenzene	1.8	7.1	ND	0.0041	ND	0.0077	ND	0.0023	ND	0.0087
1,4-Dichlorobenzene	0.72	3.3	ND	0.0030	ND	0.0057	ND	0.0017	ND	0.0064
1,4-Dioxane	NS	NS	ND	0.21	ND	0.39	ND	0.12	ND	0.44
2-Butanone	NS	NS	ND	0.0054	ND	0.010	ND	0.0030	ND	0.011
2-Hexanone	NS	NS	ND	0.0049	ND	0.0093	ND	0.0027	ND	0.010
4-Methyl-2-pentanone	NS	NS	ND	0.0054	ND	0.010	ND	0.0030	ND	0.011
Acetone	NS	NS	ND	0.027	ND	0.051	ND	0.015	ND	0.057
Benzene	0.53	1.9	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Bromochloromethane	NS	NS	ND	0.0047	ND	0.0087	ND	0.0026	ND	0.0098
Bromodichloromethane	NS	NS	ND	0.0033	ND	0.0061	ND	0.0018	ND	0.0069
Bromoform	NS	NS	ND	0.0048	ND	0.0090	ND	0.0026	ND	0.010
Bromomethane	NS	NS	ND	0.0035	ND	0.0066	ND	0.0020	ND	0.0075
Carbon disulfide	NS	NS	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Carbon tetrachloride	1.07	9.6	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Chlorobenzene	0.2	1.7	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Chloroethane	NS	NS	ND	0.0051	ND	0.0095	ND	0.0028	ND	0.011
Chloroform	NS	NS	ND	0.0044	ND	0.0083	ND	0.0024	ND	0.0094
Chloromethane	NS NC	NS	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
cis-1,2-Dichloroethene	NS NC	INS NC		0.0029	ND	0.0055	ND	0.0016		0.0062
	NS NC	NS NC		0.0027		0.0051		0.0015		0.0057
Dibromochleromothene	INS NS	INS NS		0.0027		0.0051		0.0015		0.0057
Dichlorodifluoromethane	NS NS	NS		0.0033		0.0001		0.0018		0.0009
Ethylbenzene	0.43	37		0.0027		0.0051		0.0015		0.0057
Isopropylbenzene	0.40	1.8		0.0027	ND	0.0051		0.0015		0.0057
m&p-Xylenes	0.82	7.2		0.0027	ND	0.0051	ND	0.0015		0.0057
Methyl Acetate	NS	NS	ND	0.0046	ND	0.0087	ND	0.0026	ND	0.0098
Methylcvclohexane	NS	NS	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Methylene chloride	NS	NS	ND	0.0049	ND	0.0092	ND	0.0027	ND	0.010
Methyl-t-butyl ether	NS	NS	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
o-Xylene	0.48	4.2	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Styrene	NS	NS	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Tetrachloroethene	16	57	ND	0.0030	ND	0.0056	ND	0.0016	ND	0.0063
Toluene	0.93	4.5	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
trans-1,2-Dichloroethene	1.2	11	ND	0.0028	ND	0.0052	ND	0.0015	ND	0.0058
trans-1,3-Dichloropropene	NS	NS	ND	0.0043	ND	0.0081	ND	0.0024	ND	0.0091
Trichloroethene	1.8	8.6	ND	0.0032	ND	0.0060	ND	0.0018	ND	0.0067
Trichlorofluoromethane	NS	NS	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Vinyl chloride	NS	NS	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Xylenes (Total)	0.59	5.2	ND	0.0027	ND	0.0051	ND	0.0015	ND	0.0057
Total VOCs	NS	NS	ND	-	ND	-	ND	-	ND	-

Notes

(1) - NYSDEC Class A and Class C Sediment Guidance Values are from NYSDEC Bureau of Habitat Screeing and Assessment of Contaminated Sediment Guidance, dated June 24, 2014.

NS - No Standard

ND - Analyte not detected at the listed reporting limit

RL - Reporting Limit

mg/kg - milligrams per kilogram Shaded and bolded values exceed regulatory criteria

TRC Engineers, Inc.

Table 8 New York State Department of Transportation Harrison Sub-Residency Landfill Site Summary of Sediment Sample Analytical Results for Semivolatile Organic Compounds

		CLIENT ID:	SD-1-	102018	SD-2-2	102018	SD-3-1	102018	SD-4-	102018
		LAB ID:	AD071	61-002	AD071	61-004	AD071	61-006	AD071	61-009
	с	OLLECTION DATE:	10/17	7/2018	10/17	/2018	10/17	/2018	10/17	7/2018
	NYSDEC	NYSDEC Class								
Semivolatile Organic	Class A SGV ¹	C SGV ¹	Result		Result		Result		Result	
Compounds	(mg/kg)	(mg/kg)	(mg/Kg)	RL (mg/Kg)	(mg/Kg)	RL (mg/Kg)	(mg/Kg)	RL (mg/Kg)	(mg/Kg)	RL (mg/Kg)
1,1'-Biphenyl	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
1,2,4,5-l etrachlorobenzene	1	5.3	ND	0.093	ND	0.21	ND	0.061	ND	0.11
2,3,4,6-1 etrachiorophenol	NS NS	NS NS		0.093	ND	0.21	ND	0.061	ND	0.11
2,4,5-Theriorophenol	NS NS	INS NS		0.093		0.21		0.001		0.11
2 4-Dichlorophenol	NS	NS		0.093		0.21		0.001		0.11
2.4-Dimethylphenol	NS	NS	ND	0.023	ND	0.052	ND	0.015	ND	0.028
2,4-Dinitrophenol	NS	NS	ND	0.46	ND	1.0	ND	0.30	ND	0.56
2,4-Dinitrotoluene	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
2,6-Dinitrotoluene	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
2-Chloronaphthalene	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
2-Chlorophenol	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
2-Methylnaphthalene	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
2-Methylphenol	NS	NS	ND	0.023	ND	0.052	ND	0.015	ND	0.028
2-Nitroaniline	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
2-Nitrophenol	NS NC	NS		0.093	ND	0.21	ND	0.061	ND	0.11
3&4-Methylphenol	NS NS	NS NS		0.023	ND	0.052	ND	0.015	ND	0.028
3-Nitroaniline	NS	NS		0.093		0.21		0.001		0.11
4.6-Dinitro-2-methylphenol	NS	NS	ND	0.093	ND	1.0	ND	0.30	ND	0.56
4-Bromophenyl-phenylether	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
4-Chloro-3-methylphenol	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
4-Chloroaniline	NS	NS	ND	0.023	ND	0.052	ND	0.015	ND	0.028
4-Chlorophenyl-phenylether	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
4-Nitroaniline	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
4-Nitrophenol	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Acenaphthene*	9.	04	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Acenaphthylene*	9.	82	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Acetophenone	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Anthracene [*]	11 NC	.88	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Aliazilie Benzaldebyde	NS NS	INS NS		0.093		0.21		0.061		0.11
Benzolalanthracene*	16	82	0.16	0.093	0.29	0.21	0.075	0.001	0.00	0.11
Benzo[a]pvrene*	19	.02	0.21	0.093	0.36	0.21	0.075	0.061	0.17	0.11
Benzo[b]fluoranthene*	19	.58	0.31	0.093	0.58	0.21	0.11	0.061	0.26	0.11
Benzo[g,h,i]perylene*	21	.90	0.14	0.093	0.3	0.21	ND	0.061	0.14	0.11
Benzo[k]fluoranthene*	19	.60	0.1	0.093	ND	0.21	ND	0.061	ND	0.11
bis(2-Chloroethoxy)methane	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
bis(2-Chloroethyl)ether	NS	NS	ND	0.023	ND	0.052	ND	0.015	ND	0.028
bis(2-Chloroisopropyl)ether	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
bis(2-Ethylhexyl)phthalate	360	360	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Butylbenzylphthalate	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Caprolactam	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Carbazole Chrysono*	16	NS 96		0.093	0.41	0.21		0.061	0.19	0.11
Dibenzo[a h]anthracene*	22	.00 44	0.23 ND	0.093		0.21		0.001		0.11
Dibenzofuran	NS	NS	ND	0.023	ND	0.052	ND	0.015	ND	0.028
Diethylphthalate	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Dimethylphthalate	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Di-n-butylphthalate	NS	NS	ND	0.023	ND	0.052	ND	0.015	ND	0.028
Di-n-octylphthalate	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Fluoranthene*	14	.16	0.35	0.093	0.5	0.21	0.13	0.061	0.27	0.11
Fluorene*	10	.78	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Hexachlorobenzene	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Hexachlorobutadiene	1.2	12	ND	0.093	ND	0.21	ND	0.061	ND	0.11
	U.81	8.1 NC		0.093		0.21		0.061		0.11
Indono[1,2,2,od]pyrono*	105	20	0.12	0.093		0.21		0.061		0.11
		.50 NG		0.093	0.22 ND	0.21		0.001		0.11
Naphthalene*	7	70	ND	0.093	ND	0.21	ND	0.001	ND	0.028
Nitrobenzene	NS 7.	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
N-Nitroso-di-n-propvlamine	NS	NS	ND	0.023	ND	0.052	ND	0.015	ND	0.028
N-Nitrosodiphenylamine	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Pentachlorophenol	14	19	ND	0.46	ND	1	ND	0.3	ND	0.56
Phenanthrene*	14	.90	0.16	0.093	ND	0.21	ND	0.061	0.12	0.11
Phenol	NS	NS	ND	0.093	ND	0.21	ND	0.061	ND	0.11
Pyrene*	13	.96	0.35	0.093	0.56	0.21	0.13	0.061	0.27	0.11

Total PAHs (16 Sampled) ²	4,000	35,000	2.1	-	3.2	-	0.6	-	1.6	-
Total SVOCs	NS	NS	2.1	-	3.2	-	0.6	-	1.6	-

Notes (1) - NYSDEC Class A and Class C Sediment Guidance Values are from NYSDEC Bureau of Habitat Screeing and Assessment of Contaminated Sediment Guidance, Table 5, (2) - The correction Factor (or multiplier) for Total PAH comparison when 16 of 34 PAHs are sampled is 9.3 (see above guidance Section A, Page 27)

* - These compounds are PAHs; Sediment Guidance Values listed are from the above guidance, Table 7.

NS - No Standard

ND - Analyte not detected at the listed reporting limit

RL - Reporting Limit

mg/kg - milligrams per kilogram

Table 9New York State Department of TransportationHarrison Sub-Residency Landfill SiteSummary of Sediment Sample Analytical Results for Metals and Cyanide

		CLIENT ID:	SD-1-102018		SD-2-102018		SD-3-102018		SD-4-102018	
		LAB ID:	AD07 ²	161-002	AD07161-004		AD07161-006		AD07161-009	
	C	OLLECTION DATE:	10/17/2018		10/17/2018		10/17/2018		10/17/2018	
	NYSDEC	NYSDEC								
	Class A SGV ¹	Class C SGV ¹	Result		Result		Result		Result	
Metals and Cyanide	(mg/kg)	(mg/kg)	(mg/kg)	RL (mg/kg)	(mg/kg)	RL (mg/kg)	(mg/kg)	RL (mg/kg)	(mg/kg)	RL (mg/kg)
Aluminum	NS	NS	6,500	560	8,900	1,200	27,000	360	16,000	670
Antimony	NS	NS	ND	2.2	ND	5.0	ND	1.5	ND	2.7
Arsenic	10	33	1.9	0.56	5.5	1.2	4.2	0.36	4.5	0.67
Barium	NS	NS	330	28	420	62	160	18	210	33
Beryllium	NS	NS	ND	0.56	ND	1.2	0.56	0.36	ND	0.67
Cadmium	1	5	ND	1.1	ND	2.5	1.2	0.73	1.9	1.3
Calcium	NS	NS	5,700	2,800	13,000	6,200	49,000	1,800	10,000	3,300
Chromium	43	110	19	14	ND	31	42	9.1	40	17
Cobalt	NS	NS	11	6.9	ND	16	15	4.5	13	8.3
Copper	32	150	15	14	45	31	45	9.1	45	17
Cyanide	NS	27	ND	0.67	1.9	1.5	1.3	0.44	ND	0.80
Iron	NS	NS	31,000	560	34,000	1,200	35,000	360	44,000	670
Lead	36	130	21	14	51	31	<u>150</u>	9.1	73	17
Magnesium	NS	NS	2,600	1,400	5,200	3,100	30,000	910	7,300	1,700
Manganese	NS	NS	17,000	280	18,000	250	430	18	1,300	33
Mercury	0.2	1	ND	0.23	ND	0.52	ND	0.15	ND	0.28
Nickel	23	49	ND	14	ND	31	35	9.1	30	17
Potassium	NS	NS	1,500	1,400	ND	3,100	2,800	910	3,400	1,700
Selenium	NS	NS	ND	5.6	ND	13	ND	3.6	ND	6.7
Silver	1	2.2	ND	0.56	ND	1.2	ND	0.36	ND	0.67
Sodium	NS	NS	ND	690	ND	1,600	650	450	ND	830
Thallium	NS	NS	ND	1.1	ND	2.5	ND	0.73	ND	1.3
Vanadium	NS	NS	ND	28	ND	62	68	18	52	33
Zinc	120	460	69	28	260	62	200	18	260	33
Chloride	NS	NS	ND	56	ND	120	200	36	100	67

<u>Notes</u>

⁽¹⁾ - NYSDEC Class A and Class C Sediment Guidance Values are from NYSDEC Bureau of Habitat Screeing and Assessment of Contaminated Sediment Guidance, dated June 24, 2014.

NS - No Standard

ND - Analyte not detected at the listed reporting limit

RL - Reporting Limit

mg/kg - milligrams per kilogram

Shaded and bolded values exceed Class A SGV; underlined results exceed Class C SGV

PLUGGING REPORT Page 1 of 2										
SPILL NO. 94-07349		SITE: HA	ARRISON			COUNTY: WE	STCHESTER			
Plugging Date: May and	June, 2008			Plugged By	: Greg P. &	Eric D.				
Well Number	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8			
Date Drilled	3-Apr-95	3-Apr-95	3-Apr-95	27-Oct-95	27-Oct-95	27-Oct-95				
Inside Diameter of well	4"	4"	4"	4"	4"	4"	See Below			
Length of Riser	2.0 Ft.	2.0 Ft.	2.0 Ft.	2.0 Ft.	5.0 Ft.	5.0 Ft.				
Length of Screen	10.0 Ft.									
Total Depth	12.0 Ft.	12.0 Ft.	12.0 Ft.	12.0 Ft.	15.0 Ft.	15.0 Ft.				
Surface Equipment	Flush	Flush	Flush	Flush	Flush	Flush				
	Mount	Mount	Mount	Mount	Mount	Mount				
Minimum Volume of Grout Required	9.9 Gal.	9.9 Gal.	9.9 Gal.	9.9 Gal.	12.4 Gal.	12.4 Gal.				
Well Number	MW-9	MW-10B*	SP-01	SP-02	SP-3	SP-4				
Date Drilled	17-Mar-99	16-Mar-99	14-Apr-97	14-Apr-97	17-Mar-99	17-Mar-99				
Inside Diameter of well	1.5"	1.5"	2"	2"	1.5"	1.5"				
Length of Riser	4.0 Ft.	22.5 Ft.	Unknown	Unknown	18.0 Ft.	19.0 Ft.				
Length of Screen	10.0 Ft.	4.0 Ft.	Unknown	Unknown	2.5 Ft.	2.5 Ft.				
Total Depth	14.0 Ft.	26.5 Ft.	20.0 Ft.	20.0 Ft.	20.5 Ft.	21.5 Ft.				
Surface Equipment	Flush Mount	Flush Mount	Flush Mount	Flush Mount	Flush Mount	Flush Mount				
Minimum Volume of Grout Required	1.6 Gal.	3.0 Gal.	4.6 Gal.	4.6 Gal.	2.3 Gal.	2.4 Gal.				
– .										

Remarks

A review of GEB records shows the following:

The above listed wells were plugged in May and June of 2008 using 160 gallons of grout.

MW-8 was probably 4" in diameter with a 15 Ft. Depth. This information is from the attached cross section.

The cross section shows MW-8 having the same depth as MW-7.

* MW-10B was drilled as SP-1B

The following wells remained unplugged MW-1, MW-11, GP-1 and GP-2

MW-12 and MW-13 were installed in June 2008 and also remained.

PLUGGING REPORT

SPILL NO. 94-07349

SITE: HARRISON

COUNTY: WESTCHESTER

Plugging Date: 29 Nov 2011 and 2 May 2012

Plugged By: NYS DOT, Bob Rickard

Well Number	MW-1	MW-12	MW-13	GP-1	GP-2	
Inside Diameter of well	4"	2"	2"	1 1/2"	2"	
Length of Riser	1 Ft.	8.2 Ft.	6.2 Ft.	5.1 Ft.	3.5 Ft.	
Length of Screen	7.5 Ft.	10.3 Ft.	10.3 Ft.	1.5 Ft.	2.0 Ft.	
Total Depth	8.5 Ft.	15.5 Ft. BGS	13.5 Ft. BGS	3.45 Ft. BGS	3.5 Ft. BGS	
Surface Equipment	Flush Mount	Protective Cover	Protective Cover	None	None	
Minimum Volume of Grout Required	7.0 Gal.	3.7 Gal.	3.1 Gal.	0.4 Gal.	0.8 Gal.	

Remarks

29 Nov 2011 Pluggings:

MW-13: The protective cover was extracted using a farm jack. The PVC had separated at the intersection of

the screen and riser (3.2 Ft. BGS). The soil was excavated to the top of the screen and 4.5 gallons of grout

was tremie poured, allowed to settle, then topped off.

GP-1 and GP-2: The PVC pipe was removed using a farm jack. Three gallons of grout were then top poured in

the voids, allowed to settle, then topped off.

2 May 2012 Pluggings:

MW-12: The protective cover and PVC were extracted using a farm jack. Six gallons of grout was then tremie

poured, allowed to settle, then topped off.

MW-1: The PVC pipe was removed using a farm jack. Eight gallons of grout were then tremie poured, allowed

to settle, then topped off. The flush mount cover and concrete pad were then removed using a jackhammer

and hand tools.

The surface for both wells was then restored using compacted topsoil.