

June 19, 2013

Transmitted: PDF File via E-Mail to Addressee USPS 1st Class Mail to CC List

Mr. Kent Johnson Senior Engineering Geologist New York State Dept. of Environmental Conservation Division of Environmental Remediation Remedial Section B, Remedial Bureau E 625 Broadway Albany, NY 12233-7017

SUBJECT: Groundwater Monitoring Report – No. 1 (Q1) for 2013 Former Safety-Kleen Service Center 27 St. Charles Street, Thornwood, New York

Dear Mr. Johnson:

This letter serves as the Safety-Kleen Systems, Inc., (Safety-Kleen) first quarter 2013 groundwater monitoring report for the above-referenced site (**Attachment 1 – Site Map**). The site map was revised to reflect current site operations. Basile Environmental Solutions, LLC (BES) collected the requisite groundwater samples and field data on March 13, 2013.

The samples were sent to Test America, Inc. (TA). TA holds NY NELAP and NYDOH laboratory certifications. A recent consolidation of TA functions necessitated that they use another network laboratory to perform analytical services for the volatile organic compounds (VOCs) for all Safety-Kleen NY sites. In specific, TA's New Jersey laboratory is now performing both the Mineral Spirit Range Organics (MSRO) analyses as well as the VOCs.

On May 16, 2013 TA informed BES that the analysis method for MSRO was being erroneously reported as EPA Method 8015. The method being used, is as originally prescribed and is EPA Method 8260b. This was confirmed with the Laboratory Director, Ann Gladwell on May 20, 2013 via telecom. The attached laboratory report (**Attachment** 4) reflects Method 8015 for MSRO. Future laboratory reports will be corrected. This matter was discussed during our May 21, 2013 telecom.

BES is also following up with the Laboratory Director on this matter, as well as the status of future MSRO analysis method modifications (from EPA 8260b to EPA 8015) as noted. The second quarter report will provide information regarding this matter as well.

The previously installed oxygen release compound – advanced (ORC-A®) slow release filter socks in GT-2R were again removed prior to sampling. After sampling, the socks were re-installed.

CLOSURE COMPLIANCE STATUS

The site is in the Compliance Monitoring phase of the Post Closure Monitoring program. A New York State multi-site Consent Order has been proposed by the NYSDEC. A draft of document is currently being prepared by the Agency.

SCOPE OF WORK

The following scope of work was performed at the above referenced site:

- 1. Quarterly groundwater gauging and collection of field parameters,
- 2. Quarterly groundwater sampling of site wells,
- 3. Packing of the sample set on-ice. The sample set was consolidated with N. Amityville Q1 samples on 3/14/2013. They were kept cool (on ice) and delivered to a TA courier for transport to the laboratory on 3/14/2013.
- 4. Removal and redeployment of the Oxygen Release Compound Advanced® Filter Socks at monitoring well GT-2R.

GROUNDWATER GAUGING AND FIELD PARAMETER COLLECTION

Monitoring wells GT-1R through GT-5 were gauged and field indicator parameters measured. The depth-to-groundwater, temperature, pH, conductivity, dissolved oxygen (DO), redox potential (ORP) and visual turbidity were recorded for each location.

The Field Log Sampling Summary is included as **Attachment 2.** The current and historic site field parameter measurements are presented in **Attachment 3, Table 1**.

Depth-to-groundwater ranged from 7.34 feet (GT-4) to 10.38 feet below grade (GT-1R). The water table was higher by approximately 0.50 feet. The changes in the depth to water across the site are presented below in **Figure 1**. The natural fluctuation in the water table due to seasonal variability is evident for wells GT-1R (down-gradient) and GT-3 (up-gradient).

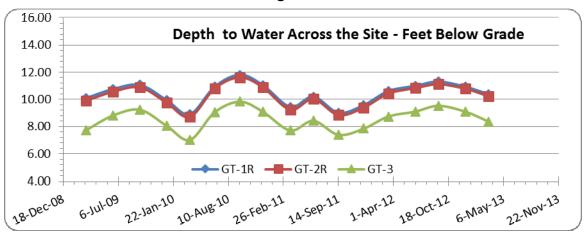


Figure 1

Figure 2 below depicts the flow conditions observed for March 13, 2013. The groundwater flow was west – northwest (**Attachment 2**). The "trough" feature was visible, and the water table generally steeper than previous quarters (1.03 %).

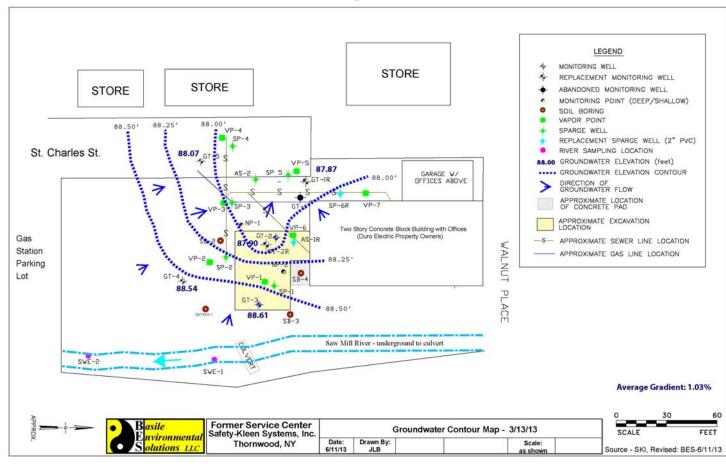
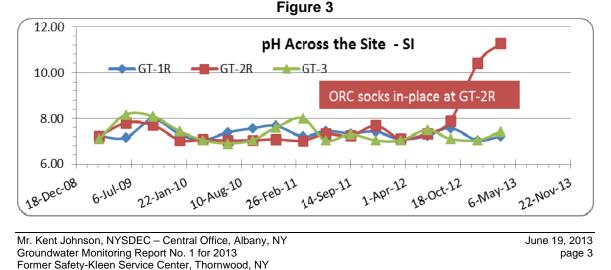



Figure 2

The average groundwater pH was within the normal range for naturally occurring groundwater (6 – 8 SI) at wells GT-1, GT-3, GT-4 and GT-5. The pH at GT-2R was 11.29. The ORC-A® media appears to be temporarily increasing pH in the area of the former tank pit. An increase in the local pH is not uncommon during the application of this product.

Dissolved oxygen (DO) as measured at GT-2R, was 6.2 milligrams/liter (mg/l); similar to last quarter – 6.10 mg/l. DO trends for GT-1R, GT-2R and GT-3 are presented below as **Figure 4**. DO at other site wells ranged from 2.88 mg/l (GT-5) to 3.80 mg/l (GT-1).

The higher DO noted at GT-2R is due to the (September 2012 renewed) ORC-A® filter socks still reacting with the groundwater and producing dissolved oxygen. The sustained benefit of using the oxygen releasing compound to increase the groundwater DO (in the target remedial area) remains visible.

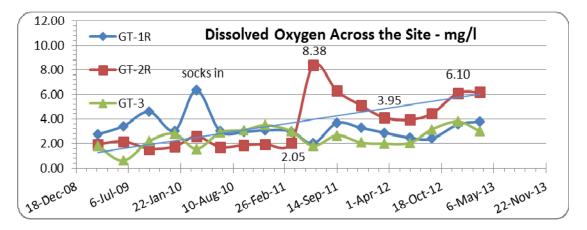


Figure 4

The ORP results were mainly positive and ranged from -10 uV (GT-1R) to 105 uV (GT-2R), suggesting that an oxidizing environment in the subsurface appears present.

GROUNDWATER SAMPLING

Each well was purged of 3 to 5 well volumes (conditions permitting) of groundwater with a submersible pump or bailer prior to sampling. Samples were collected with dedicated polyethylene bailers and placed into glass containers provided by TA, specified for each analysis.

Samples were kept cool during transport to the laboratory's courier and were accompanied by chain-of-custody documents and a trip blank.

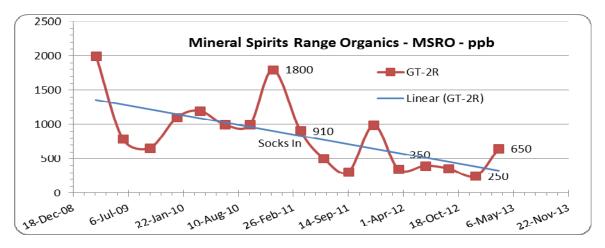
TA analyzed the water and groundwater samples for Volatile Organic Compounds (VOCs) via EPA Method 8260B and for Mineral Spirit-Range Organics (MSRO) via Modified EPA Method 8260B.

GROUNDWATER ANALYTICAL RESULTS

Historic (through September 2009) data are presented in **Attachment 3, Table 2**. This quarter's groundwater quality data are summarized in **Attachment 3, Table 3**.

The laboratory analytical report is included as **Attachment 4** (Executive Summary in hard copy, report on CD).

Volatile Organic Compounds (VOCs)


Low levels VOCs were detected in monitoring wells GT-1R, GT-2R and GT-5R. Target compounds were not detected above regulatory standards in any monitoring well, including GT-2R and its' duplicate (Duplicate).

Further, Tetrachloroethene (PCE) was again detected at concentrations below the reporting limits. It is possible that the trace PCE detections are indicative of another regional matter not associated with the former site operations.

Mineral Spirit-Range Organics (MSRO)

MSRO were not detected at GT-1R, GT-3, GT-4 or GT-5. MSRO was detected in GT-2R (and the duplicate) at concentrations of 650 and 590 ppb respectively. This is higher than recorded last quarter (250 to 300 ppb). The concentration of MSRO at GT-2R from March 2009 through the present is presented below as **Figure 5**. The increase and variation is not uncommon with a rise in the water table, and has been observed at this site historically.

Figure 5

(Sample Results – Duplicate not plotted)

GROUNDWATER SAMPLING SUMMARY

- 1. Depth to water across the site was higher by approximately 0.50 feet. The groundwater table flow field was generally similar to June's, but much steeper at 1.03% versus 0.80 % last quarter.
- 2. Direction of flow trended toward the west-northwest, as observed historically. A pronounced "trough-like" depression was visible but not substantial.
- 3. The groundwater pH was within the range for naturally occurring groundwater; with the exception it was reported at 11.29 at GT-2R. The buffering is likely due to dissolution of the ORC-A® media. The same effect has occurred historically with the deployment of new material (September 2012).

- 4. The dissolved oxygen content at monitoring well GT-2R was slightly higher (6.20 mg/l) than reported last period (6.10 mg/l). The elevated DO during the past eight quarters is due to the ORC-A® media reacting with groundwater.
- 5. Low VOC levels were detected but none at concentrations above the New York State groundwater quality standards.
- 6. The trace detections of PCE may be indicative of a regional matter not associated with former Safety-Kleen site operations.
- 7. Mineral Spirit Range Organics were only detected at monitoring well GT-2R. The concentrations reported this period (600/590 ppb) was higher than observed the previous quarter (250/300 ppb).
- 8. The variability in concentrations (GT-2R) is somewhat typical of the dissolved nature of MSRO, as well as subsurface conditions and a rise in the water table. However, levels are considerably lower than the previous three year high, and post installation of the ORC-A® filter socks, are still trending lower.

CONCLUSIONS

The increase in dissolved oxygen at the GT-2R location is a direct result of the ORC-A® filter socks reacting with groundwater. The MSRO concentrations have declined since the filter socks were installed during Q1 2011. The DO appears to be effective in lowering MSRO concentrations in the target well.

RECOMMENDATIONS

- 1. Continue monitoring groundwater on a quarterly basis, as well as the deployment of ORC-A® filter socks at GT-2R (change out Q3 2013).
- 2. Change, as needed, the ORC-A® filter socks with approval from the NYSDEC.

The second quarter sampling for 2013 was performed the evening June 19, 2013. If you should have any questions or comments concerning this report, please do not hesitate to contact me at (513) 956-2172.

As always, we appreciate the Department's assistance with this site.

Sincerely,

Safety-Kleen Systems, Inc.

Erely 1

Stephen D. Fleming, PE, CHMM Senior Remediation Manager

CC List and Attachments Next Page

Cc: J. Riedy, USEPA, New York, NY

C. Lichti, Duro Electric, Thornwood, NY

- N. Nelhuebel, VP Environmental Liabilities, Clean Harbors, Norwell, MA (CD)
- J. Basile, Basile Environmental Solutions, LLC, Cortland, NY

Figures

- **1.** Depth to Water Across the Site
- 2. Groundwater Contour Map
- 3. pH Across the Site
- 4. Dissolved Oxygen Across the Site
- 5. Mineral Spirit Range Organics Across the Site

Attachments

- **1.** Site Map (Revised June 2013)
- 2. Groundwater Gauging and Field Parameter Data Recording Form
 - Groundwater Gradient Work Sheet
- 3. Tables Groundwater Monitoring Data

 Table 1. - Field Data Water Quality Summary

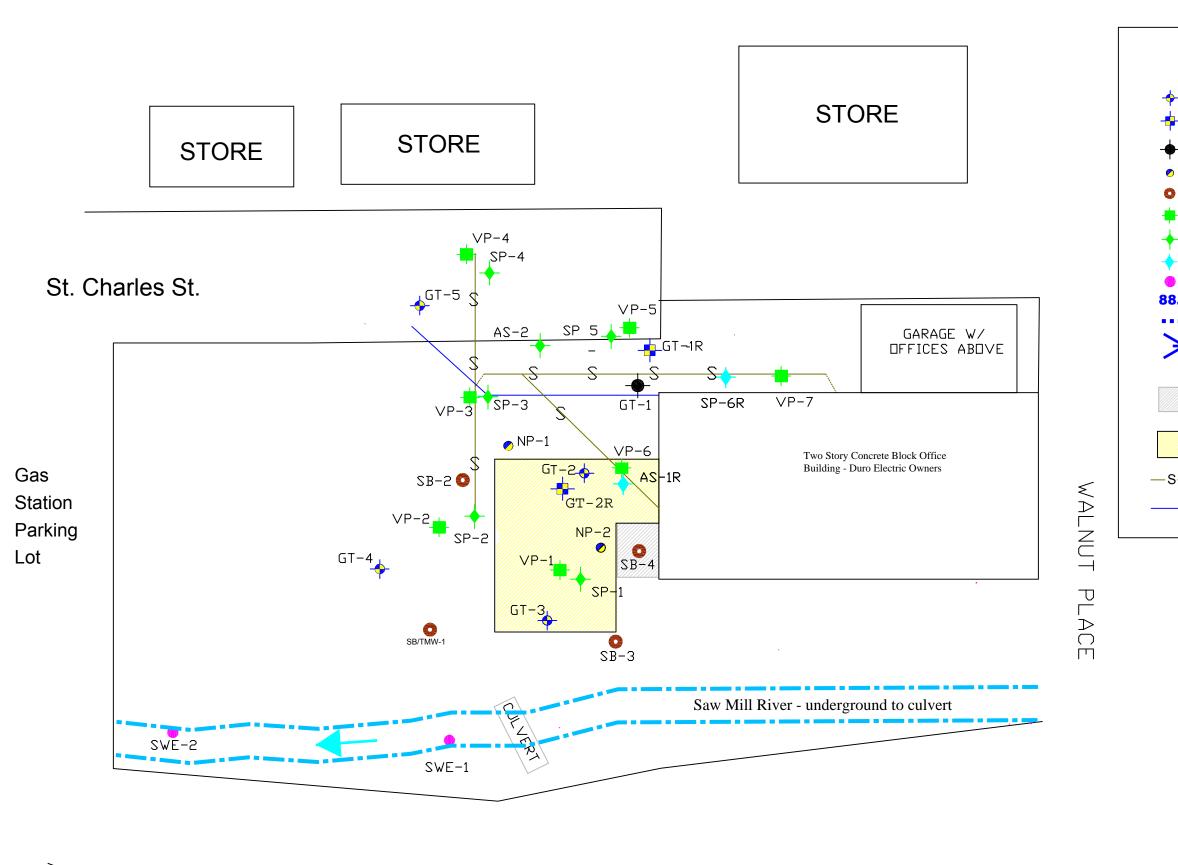
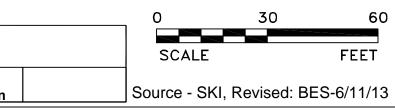

Table 2 – Historical Chemical Data (through September 2009)

Table 3 – Current Chemical Data (TA Labs)

4. Laboratory Report - On Attached Compact Disk - (Executive Summary in Print)


ATTACHMENT 1

Site Map

⊳							
	• Basile	Safety-Kleen Systems, Inc.			Si	te Map	
÷	Solutions LLC	Thornwood, NY	Date:	Drawn By:			Scale:
	Solutions LLC		6/13/13	JLB			as shown

LEGEND MONITORING WELL REPLACEMENT MONITORING WELL ABANDONED MONITORING WELL ABANDONED MONITORING WELL MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION (feet) GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE SEWER LINE LOCATION APPROXIMATE GAS LINE LOCATION	MONITORING WELL REPLACEMENT MONITORING WELL ABANDONED MONITORING WELL MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
REPLACEMENT MONITORING WELL ABANDONED MONITORING WELL MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION (feet) DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	REPLACEMENT MONITORING WELL ABANDONED MONITORING WELL MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
ABANDONED MONITORING WELL MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION (feet) DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	ABANDONED MONITORING WELL MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION (feet) DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	MONITORING POINT (DEEP/SHALLOW) SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION CONTOUR DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	SOIL BORING VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION CONTOUR DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	VAPOR POINT SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
 SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION CONTOUR DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION 	SPARGE WELL REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION CONTOUR DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	REPLACEMENT SPARGE WELL (2" PVC) RIVER SAMPLING LOCATION
RIVER SAMPLING LOCATION GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION CONTOUR DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	RIVER SAMPLING LOCATION
 GROUNDWATER ELEVATION (feet) GROUNDWATER ELEVATION CONTOUR DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION 	0
GROUNDWATER ELEVATION CONTOUR DIRECTION OF GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	
GROUNDWATER FLOW APPROXIMATE LOCATION OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	GROUNDWATER ELEVATION CONTOUR
OF CONCRETE PAD APPROXIMATE EXCAVATION LOCATION APPROXIMATE SEWER LINE LOCATION	
 APPROXIMATE SEWER LINE LOCATION 	
- APPROXIMATE GAS LINE LOCATION	- APPROXIMATE SEWER LINE LOCATION
	- APPROXIMATE GAS LINE LOCATION

ATTACHMENT 2

Groundwater Gauging and Field Parameter Data Recording Form

									page 1 of
		GROUND	WATER SAMI	PLING RECO	RD				
CITE NAME	Former S	afety-Klee	n Service Ce	enter			DATE	Mar	ch 13, 2013
SITE NAME	27 St. Cha	rles Street,	Thornwood	I, NY			Weather	cl	ear 38F
Samplers J	Jim Scerra/SEM								
Well N	ame / ID	GT-1R	GT-2R	GT-3	GT-4	GT-5	NP-1	NP-2	
Lab Analysis - I	EPA 8260b VOCs	Yes	Yes	Yes	Yes	Yes	No	No	
Lab Analysis - E	CPA 8015b MSRO	Yes	Yes	Yes	Yes	Yes	No	No	
Duplicate Samp	le:		Yes						
Collect Field Pa	rameters	Yes	Yes	Yes	Yes	Yes	No	No	
Diameter of We	ll Casing	2 in	2 in	2 in	2 in	2 in	2 in	1 in	
Depth of Well (f	ř.)	28.40	23.40	19.2	16.5	24.65	21.66	21.72	
ORC Socks - Remo	ve Prior/Replace Post		Yes						
Depth to Gro	oundwater (ft.)	10.38	10.23	8.36	7.34	8.41	NA	NA	
Water Colur	nn Height (ft.)	18.02	13.17	10.84	9.16	16.24	NA	NA	
Volume F	Purged (gal)	6	3.5 ~>dry	4.5	4.5	6.5	NA	NA	
Purging	g Method	Bailer	Bailer	Bailer	Bailer	Bailer			
Sampli	ing Time	8:45 PM	21:15	7:15 PM	7:45 PM	8:15 PM			
Samp	ole date	13-Mar	13-Mar	13-Mar	13-Mar	13-Mar			
GW Visual Obs	ervations								
C	color	clear	lt tan	tan	clear	clear			
S	heen	no	no	no	no	no			
(odor	no	very slight	no	no	no			
Field Parameter	s								
Tempe	erature (C)	11.8	11.6	9.0	10.1	11.8			
I	рН	7.22	11.29	7.42	7.13	7.15			
Conduc	tivity in uS	513	1388	369	471	512			
Dissolved (Oxygen (mg/L)	3.80	6.20	3.01	3.55	2.88			
		-10	105	10	60	10			
ORP (Eh(Mv))								
ORP (En (MV)) ity (visual)	low	high	high	low	low			

Safety-Kleen Systems, Inc. - Thornwood, NY Groundwater Elevation Gradient Calculations

		General In	formation		14 Mar 40		Site Gra	dient Calo	ulation	
Wells Gauged & not used:					14-Mar-13	Upgradient Elevation (ft)	Down Gradient Elevation (ft)	Delta H (ft)	Dist. b/w U/D (ft)	Gradient in ft/ft
Map Scale Conversion:	inch	to feet			GT-3 to GT-1R	88.61	87.87	0.74	46.56	1.59%
	1.15	30.00	26.09		GT-3 to GT-2R GT-3 to GT-5	88.61 88.61	87.90 88.07	0.71 0.54	78.13 92.42	0.91% 0.58%
Contour Interval		Variables			Formula				Average:	1.03%
Formula:	DF hi = Distance of d hi = delta from hig Delta h = distance b DBW = difference in	contour interval fr ghest elevation etween monitoring	(ft) g points (ft)	DF hi = (h	i x Delta h) / DBW					
				Well Pair	r Specific Calcul	ations				
	Well Pair	Well ID (hi) (GW Elev - ft)	Well ID (lo) (GW Elev - ft)	Delta h (ft)	Distance Between Wells (ft)	Well Pair	Well ID (hi) (GW Elev - ft)	Well ID (lo) (GW Elev - ft)	Delta h (ft)	Distance Between Wells (ft
	GT-3 to GT-4	88.61	88.54	0.07	46.56	GT-3 to GT-5	88.61	88.07	0.54	92.42
	Elevations to Plot	Delta from hi (ft)	Distance from hi (ft)	No. cms		Elevations to Plot	Delta from hi (ft)	Distan hi (ft)	ce from No. cms	
	88.50	0.11	73.2	2.8		88.50	0.11	18.8	0.7	
	88.25	0.36	239.5	9.2		88.25	0.36	61.6	2.4	
	88.00	0.61	405.7	15.6		88.00	0.61	104.4	4.0	
	87.75	0.86	572.0	21.9		87.75	0.86	147.2	5.6	
	87.50	1.11	738.3	28.3		87.50	1.11	190.0	7.3	
	Well Pair	Well ID (hi)	Well ID (lo)	Dolto h (ff)	Distance					
		(GW Elev - ft)	(GW Elev - ft)	Delta h (ft)	Between Wells (ft)		Groundwater	Elevations		
	GT-3 to GT-2	88.61	87.90	0.71	43.32		Well ID	Elevation (ft)		
	Elevations to Plot	Delta from hi (ft)	Distance from hi (ft)	No. cms			GT-1R	87.87		
	88.50	0.11	6.7	0.3			GT-2R	87.90		
	88.25	0.36	22.0	0.8			GT-3	88.61		
	88.00	0.61	37.2	1.4						
	87.75	0.86	52.5	2.0			GT-4	88.54		
	87.50	1.11	67.7	2.6			GT-5	88.07		
	Well Pair	Well ID (hi) (GW Elev - ft)	Well ID (lo) (GW Elev - ft)	Delta h (ft)	Distance Between Wells (ft)					
	GT-3 to GT-1	88.61	87.87	0.74	78.13					
	Elevations	Delta from	Distance from							
	to Plot	hi (ft)	hi (ft)	No.cms						
	88.50	0.11	11.6	0.4						
	88.25	0.36	38.0	1.5						
	88.00	0.61	64.4	2.5						
	87.75	0.86	90.8	3.5						

ATTACHMENT 3

Tables - Groundwater Monitoring Data

Table 1. - Field Data Water Quality Summary

 Table 2 – Historical Chemical Data (through September 2009)

 Table 3 – Current Chemical Data (TA Labs)

Tempurature recorded in °C Conductivity measured in µS Dissolved Oxygen measured in mg/L Eh measured in mV Ozone measured in mg/L

GT-1R				Compo	ound			
Sampling Date	Depth to Water (ft)	Water Table Elevation	Temperature °	рН	Cond.	D.O.	Eh	Ozone
06-Jul-05	11.33	86.92	13.0	7.23	683	3.35	n/m	n/m
20-Sep-05	12.47	85.78	15.3	7.41	658	3.75	95	over range
12-Dec-05	10.74	87.51	12.7	8.01	563	4.20	100	n/m
15-Mar-06	10.49	87.76	11.5	7.24	1143	5.15	146	0.15
22-Jun-06	10.80	87.45	14.0	7.07	1285	5.42	152	0.21
25-Sep-06	10.89	87.36	14.4	7.02	1464	3.83	429	n/m
18-Dec-06	10.60	87.65	14.1	7.18	1344	3.85	-116	n/m
26-Mar-07	10.23	88.02	12.5	7.07	1191	2.80	-28	n/m
25-Jun-07	10.92	87.33	13.6	7.06	1049	2.06	-3	n/m
19-Sep-07	11.68	86.57	15.8	7.21	1303	3.11	-35	n/m
21-Dec-07	11.69	86.56	13.8	7.11	1122	3.10	-10	n/m
28-Mar-08	10.42	87.83	12.3	7.04	814	2.85	-98	n/m
18-Jun-08	11.23	87.02	13.0	7.19	1062	3.00	-100	n/m
24-Sep-08	11.30	86.95	14.4	6.96	1422	3.90	160	n/m
17-Dec-08	10.54	87.71	12.9	7.28	978	2.92	88	n/m
11-Mar-09	10.09	88.16	11.7	7.23	1458	2.74	122	n/m
16-Jun-09	10.75	87.50	13.0	7.15	1370	3.42	72	n/m
23-Sep-09	11.06	87.19	14.0	7.97	1542	4.60	37	n/m
29-Dec-09	9.94	88.31	12.5	7.30	1185	3.05	85	n/m
23-Mar-10	8.91	89.34	11.2	7.05	1058	6.36	101	n/m
21-Jun-10	10.93	87.32	12.9	7.38	811	3.02	-125	n/m
21-Sep-10	11.81	86.44	13.8	7.57	728	2.95	-105	n/m
14-Dec-10	11.04	87.21	13.4	7.68	698	3.08	-100	n/m
23-Mar-11	9.45	88.80	10.4	7.20	839	2.99	-75	n/m
15-Jun-11	10.20	88.05	12.6	7.45	580	2.02	-25	n/m
14-Sep-11	9.02	89.23	16.0	7.34	574	3.68	-42	n/m
15-Dec-11	9.58	88.67	14.3	7.42	505	3.28	-15	n/m
13-Mar-12	10.61	87.64	12.6	7.08	491	2.88	-44	n/m
19-Jun-12	10.99	87.26	14.0	7.24	514	2.47	-50	n/m
11-Sep-12	11.31	86.94	14.1	7.58	603	2.40	-69	n/m
19-Dec-12	10.92	87.33	13.1	7.04	505	3.55	-15	n/m
13-Mar-13	10.38	87.87	11.8	7.22	513	3.80	-10	n/m

GT-2R				Compo	ound			
Sampling Date	Depth to Water (ft)	Water Table Elevation	Temperature °	рН	Cond.	D.O.	Eh	Ozone
06-Jul-05	11.09	87.04	13.4	7.05	773	2.2	n/m	n/m
20-Sep-05	11.60	86.53	17.3	7.13	787	2.40	<-80	0.09
12-Dec-05	10.00	88.13	11.0	7.33	641	1.81	<-80	n/m
15-Mar-06	NS	NS	NS	NS	NS	NS	NS	NS
22-Jun-06	10.60	87.53	16.0	7.01	1350	4.25	-50	0.2
25-Sep-06	10.73	87.40	17.0	7.06	1275	2.30	-65	n/m
18-Dec-06	10.45	87.68	14.5	7.09	1274	2.80	-100	n/m
26-Mar-07	10.05	88.08	12.4	7.03	1169	2.15	-110	n/m
25-Jun-07	10.71	87.42	14.0	7.1	1194	3.00	-140	n/m
19-Sep-07	11.49	86.64	16.9	7.02	1133	2.95	-100	n/m
19-Dec-07	11.48	86.65	15.3	7.07	863	2.95	-75	n/m
28-Mar-08	10.26	87.87	12.3	7.05	941	2.56	-157	n/m
18-Jun-08	11.00	87.13	13.2	7.02	1047	2.85	-150	n/m
24-Sep-08	11.12	87.01	16.7	6.79	969	1.81	-88	n/m
17-Dec-08	10.38	87.75	14.5	7.01	1015	1.74	-87	n/m
11-Mar-09	9.90	88.23	10.8	7.20	951	1.95	-58	n/m
16-Jun-09	10.56	87.57	13.2	7.81	1156	2.18	-140	n/m
23-Sep-09	10.88	87.25	16.2	7.71	1353	1.58	-163	n/m
29-Dec-09	9.75	88.38	13.5	7.05	1250	1.75	-75	n/m
23-Mar-10	8.71	89.42	10.8	7.06	1333	2.60	-50	n/m
21-Jun-10	10.80	87.33	13.4	7.03	1184	1.71	-25	n/m
21-Sep-10	11.62	86.51	17.0	7.04	1009	1.88	-50	n/m
14-Dec-10	10.88	87.25	14.3	7.08	839	1.95	-75	n/m
23-Mar-11	9.24	88.89	11.0	7.02	795	2.05	-58	n/m
15-Jun-11	10.03	88.10	13.3	7.32	762	8.38	10	n/m
14-Sep-11	8.85	89.28	17.5	7.23	755	6.28	-115	n/m
15-Dec-11	9.40	88.73	15.0	7.69	654	5.10	-109	n/m
13-Mar-12	10.43	87.70	13.0	7.11	634	4.11	-10	n/m
19-Jun-12	10.83	87.30	15.2	7.34	705	3.95	-22	n/m
11-Sep-12	11.12	87.01	17.2	7.90	689	4.44	-31	n/m
19-Dec-12	10.78	87.35	14.5	10.42	905	6.10	110	n/m
13-Mar-13	10.23	87.90	11.6	11.29	1388	6.20	105	n/m

GT-3				Compo	ound			
Sampling Date	Depth to Water (ft)	Water Table Elevation	Temperature °	рН	Cond.	D.O.	Eh	Ozone
06-Jul-05	9.58	87.39	13.4	7.15	561	2.22	n/m	n/m
20-Sep-05	10.50	86.47	18.8	7.43	525	2.21	<-80	0.27
12-Dec-05	9.10	87.87	12.5	7.23	507	2.81	<-80	n/m
15-Mar-06	8.73	88.24	10.1	6.98	913	2.90	-8	>1.5
22-Jun-06	9.05	87.92	14.0	6.92	847	3.58	-53	>1.5
25-Sep-06	9.15	87.82	17.0	7.04	707	3.55	-73	n/m
18-Dec-06	8.98	87.99	15.0 10.5	7.04	800	2.48	-122	n/m
26-Mar-07	8.33	88.64		7.03	722	2.50	-115	n/m
25-Jun-07	9.18	87.79	12.8	7.07	830	2.77	-123	n/m
19-Sep-07	9.99	86.98	17.8	7.12	646	2.88	-95	n/m
19-Dec-07	10.07	86.9	13.7	7.07	678	2.47	-105	n/m
28-Mar-08	8.63	88.34	9.8	7.09	903	2.45	-170	n/m
18-Jun-08	9.35	87.62	12.6	7.04	870	2.95	-125	n/m
24-Sep-08	9.50	87.47	17.5	6.74	854	1.93	-47	n/m
17-Dec-08	8.65	88.32	12.8	6.99	1310	1.89	-25	n/m
11-Mar-09	7.73	89.24	9.0	7.10	1301	1.80	52	n/m
16-Jun-09	8.81	88.16	11.0	8.17	717	0.60	-79	n/m
23-Sep-09	9.23	87.74	16.2	8.09	650	2.20	-109	n/m
29-Dec-09	8.05	88.92	14.0	7.44	785	2.80	-59	n/m
23-Mar-10	7.02	89.95	8.7	7.05	933	1.55	-24	n/m
21-Jun-10	9.05	87.92	13.5	6.90	854	2.90	-154	n/m
21-Sep-10	9.83	87.14	17.5	7.05	383	3.08	-150	n/m
14-Dec-10	9.08	87.89	14.6	7.60	596	3.50	-125	n/m
23-Mar-11	7.71	89.26	9.0	8.01	729	3.01	-85	n/m
15-Jun-11	8.43	88.54	11.5	7.03	714	1.80	-45	n/m
14-Sep-11	7.39	89.58	18.4	7.30	636	2.67	-40	n/m
15-Dec-11	7.85	89.12	15.1	7.03	630	2.08	-48	n/m
13-Mar-12	8.74	88.23	11.2	7.03	527	1.98	-22	n/m
19-Jun-12	9.10	87.87	14.0	7.50	492	2.05	-10	n/m
11-Sep-12	9.53	87.44	18.0	7.10	488	3.15	-174	n/m
19-Dec-12	9.09	87.88	13.2	7.04	400	3.80	25	n/m
13-Mar-13	8.36	88.61	9.0	7.42	369	3.01	10	n/m

GT-4				Compo	ound			
Sampling Date	Depth to Water (ft)	Water Table Elevation	Temperature °	рН	Cond.	D.O.	Eh	Ozone
06-Jul-05	8.28	87.60	12.7	7.03	697	2.92	n/m	n/m
20-Sep-05	9.19	86.69	17.4	7.23	680	2.10	15	-0.42
12-Dec-05	7.77	88.11	13.5	7.35	603	3.00	50	n/m
15-Mar-06	7.66	88.22	11.2	7.00	1036	3.10	40	0.4
22-Jun-06	7.90	87.98	13.5	7.15	1049	3.90	-23	>1.5
25-Sep-06	7.94	87.94	16.5	7.04	1025	4.00	60	n/m
18-Dec-06	7.80	88.08	14.8	7.02	851	2.95	-88	n/m
26-Mar-07	7.30	88.58	10.5	7.03	703	3.15	-81	n/m
25-Jun-07	7.95	87.93	13	7.07	1144	3.06	-66	n/m
19-Sep-07	8.58	87.30	17.2	7.03	1087	3.85	-60	n/m
19-Dec-07	8.55	87.33	14.7	7.07	826	3.05	-60	n/m
28-Mar-08	7.56	88.32	9.3	7.06	1040	3.55	-120	n/m
18-Jun-08	8.12	87.76	12.3	7.04	1021	3.65	-105	n/m
24-Sep-08	8.26	87.62	16.4	6.77	1199	1.39	62	n/m
17-Dec-08	7.56	88.32	13.5	7.15	762	2.25	26	n/m
11-Mar-09	6.97	88.91	9.1	7.15	1465	3.58	47	n/m
16-Jun-09	7.75	88.13	11.5	7.96	1158	1.00	-9	n/m
23-Sep-09	8.10	87.78	14.6	7.94	662	1.95	-21	n/m
29-Dec-09	7.14	88.74	13.5	7.55	725	2.25	15	n/m
23-Mar-10	6.07	89.81	9.5	7.05	844	2.18	57	n/m
21-Jun-10	7.94	87.94	12.0	7.04	1392	2.56	-110	n/m
21-Sep-10	8.64	87.24	13.2	7.03	901	3.20	-95	n/m
14-Dec-10	8.03	87.85	14.8	7.38	728	3.08	-90	n/m
23-Mar-11	6.84	89.04	9.8	7.81	670	3.85	-70	n/m
15-Jun-11	7.50	88.38	11.6	7.06	914	0.86	-20	n/m
14-Sep-11	6.51	89.37	16.8	7.04	761	1.06	-117	n/m
15-Dec-11	6.94	88.94	15.1	7.05	698	2.85	-95	n/m
13-Mar-12	7.78	88.10	12.7	7.08	665	2.81	-88	n/m
19-Jun-12	8.07	87.81	13.5	7.48	588	2.60	-35	n/m
11-Sep-12	8.31	87.57	17.0	7.41	548	2.30	-97	n/m
19-Dec-12	7.97	87.91	14.0	7.07	459	3.10	60	n/m
13-Mar-13	7.34	88.54	10.1	7.13	471	3.55	60	n/m

GT-5				Compo	ound			
Sampling Date	Depth to	Water Table						
Date	Water (ft)	Elevation	Temperature °	рН	Cond.	D.O.	Eh	Ozone
06-Jul-05	9.35	87.13	13.6	7.23	867	3.79	n/m	n/m
20-Sep-05	9.70	86.78	16.0	7.33	800	3.28	85	0.27
12-Dec-05	8.80	87.68	13.0	7.61	633	2.70	95	n/m
15-Mar-06	8.56	87.92	11.8	7.03	1438	4.91	108	0.20
22-Jun-06	8.84	87.64	15.0	6.90	1489	4.22	151	0.11
25-Sep-06	8.98	87.50	15.0	7.05	1438	4.15	82	n/m
18-Dec-06	8.65	87.83	13.3	7.21	1132	2.50	-28	n/m
26-Mar-07	8.27	88.21	12.4	7.06	1062	2.50	-61	n/m
25-Jun-07	8.97	87.51	14.5	7.08	1243	2.25	-8	n/m
19-Sep-07	9.75	86.73	15.1	7.13	1161	2.80	-50	n/m
19-Dec-07	9.78	86.7	13.2	7.05	1037	3.05	-60	n/m
28-Mar-08	8.44	88.04	12.6	7.05	950	2.88	-91	n/m
18-Jun-08	9.27	87.21	13.8	7.03	1126	3.05	-65	n/m
24-Sep-08	9.35	87.13	15.4	6.72	1336	2.80	142	n/m
17-Dec-08	8.60	87.88	12.9	7.00	1288	3.40	-73	n/m
11-Mar-09	8.11	88.37	12.2	7.25	1171	3.05	108	n/m
16-Jun-09	8.80	87.68	12.9	7.87	1095	1.61	40	n/m
23-Sep-09	9.11	87.37	14	7.88	1173	2.68	19	n/m
29-Dec-09	8.00	88.48	12.5	7.75	1255	2.95	-15	n/m
23-Mar-10	6.94	89.54	11.7	7.03	776	0.96	86	nm
21-Jun-10	9.01	87.47	13.7	7.02	1304	3.10	-123	n/m
21-Sep-10	9.86	86.62	14.5	7.32	897	3.20	-130	n/m
14-Dec-10	9.10	87.38	13.3	7.5	764	3.30	-108	n/m
23-Mar-11	7.51	88.97	10	7.53	759	4.22	-100	n/m
15-Jun-11	8.25	88.23	13.3	7.12	786	1.78	-60	n/m
14-Sep-11	7.09	89.39	14.2	7.23	580	1.46	-83	n/m
15-Dec-11	7.61	88.87	14.3	7.35	585	1.86	-102	n/m
13-Mar-12	8.64	87.84	13.2	7.07	627	2.05	-85	n/m
19-Jun-12	9.04	87.44	14.5	7.19	706	2.50	-60	n/m
11-Sep-12	9.40	87.08	15.0	7.61	744	3.20	-72	n/m
19-Dec-12	8.98	87.50	13.2	7.07	531	2.55	40	n/m
13-Mar-13	8.41	88.07	11.8	7.15	512	2.88	10	n/m

-			4.0	4.0		4.4	4.0	4.4	0:- 4.0	Educat				4.4.0		Maria		T - 4 - 1	
		СВ	1,2- DCB	1,3- DCB	1,4- DCB	1,1- DCA	1,2- DCA	1,1- DCE	Cis-1,2 DCE	Ethyl- benzene	PCE	Toluene	1,1,1- TCA	1,1,2 TCA	TCE	Vinyl- Chloride	Xylenes	Total VOCs	Mineral Spirits
Well		(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
ID	Date	0.0050	0.0030	0.0030	0.0030	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0020	0.0050	NA	0.050
GT-1	1-Dec-93																		
	13-Dec-93	NA	0.100	NA	0.033	0.067	NA	NA	0.064	0.170	0.140	0.011	0.240	NA	0.022	ND	0.680	1.570	NA
	6-Jul-94	NA	0.075	0.006	ND	0.066	NA	NA	ND	0.060	0.110	ND	0.160	NA	0.017	ND	0.190	0.709	0.740
	19-Oct-94	NA	0.150	0.010	0.004	0.056	NA	NA	ND	0.120	0.110	ND	0.210	NA	0.019	ND	0.300	1.008	0.900
	26-Jan-95	NA	0.090	0.007	0.035	0.047	NA	NA	0.034	0.120	0.130	ND	0.160	NA	0.023	ND	0.110	0.786	0.310
	13-Apr-95	NA	0.093	0.006	0.036	0.064	NA	0.002	0.059	0.130	0.120	ND	0.230	NA	0.024	ND	0.170	0.967	0.250
	25-Jul-95	ND	0.065	0.010	ND	0.072	0.002	0.004	0.016	ND	0.088	ND	ND	ND	0.024	ND	ND	0.281	7.793
	23-Jan-96	0.007	0.064	0.007	0.027	0.047	0.002	0.002	0.112	ND	0.066	ND	ND	ND	0.017	0.003	ND	0.380	5.220
	23-Apr-96	0.003	0.092	0.005	0.051	0.009	ND	ND	0.005	ND	0.068	ND	ND	ND	0.021	ND	ND	0.265	1.040
	18-Jul-96	ND	0.006	ND	0.006	0.003	NA	0.006	ND	0.005	ND	ND	0.005	0.006	ND	ND	0.005	0.042	ND
	8-Oct-96	0.004	0.022	0.005	0.019	0.010	ND	ND	0.003	0.025	0.064	ND	0.020	ND	0.007	ND	0.002	0.183	0.709
	7-Jan-97	0.008	0.055	0.008	0.037	0.014	ND	ND	0.016	0.060	0.103	0.002	0.058	ND	0.016	ND	0.017	0.394	0.350
	1-Apr-97	0.006	0.059	0.007	0.043	0.011	ND	ND	0.055	0.050	0.099	ND	0.038	ND	0.014	ND	0.005	0.392	2.030
	1-Jul-97	0.005	0.035	0.007	0.027	0.008	ND	ND	0.557	0.038	0.060	ND	0.020	ND	0.009	ND	0.032	0.798	0.370
	29-Oct-97	0.005	0.057	0.007	0.039	0.007	ND	ND	0.157	0.059	0.006	0.002	0.016	ND	0.003	0.004	0.046	0.408	0.190
	14-Jan-98	0.004	0.046	0.005	0.030	0.006	ND	ND	0.352	0.059	0.005	0.001	0.013	ND	0.002	0.010	0.049	0.583	0.119
	10-Apr-98	0.002	0.044	0.005	0.019	0.005	ND	0.001	0.352	0.073	0.009	0.008	0.020	ND	0.003	0.007	0.071	0.618	0.222
	22-Jul-98	0.006	0.026	0.005	0.019	0.004	ND	0.002	0.474	0.050	0.002	ND	0.007	ND	0.002	0.003	0.040	0.638	1.750
	14-Oct-98	0.006	0.042	0.007	0.026	0.005	ND	0.001	0.759	0.050	ND	0.001	0.010	ND	ND	0.088	0.047	1.043	0.430
	14-Oct-98	0.004	0.043	0.006	0.029	0.004	ND	ND	0.390	0.064	ND	ND	0.008	ND	ND	0.110	0.052	0.711	0.260
	6-Jan-99	0.008	0.057	0.007	0.029	0.006	ND	ND	0.497	0.082	ND	0.003	0.025	ND	ND	0.160	0.076	0.953	0.490
	6-Jan-99	0.005	0.048	0.005	0.029	0.004	ND	ND	0.310	0.081	ND	0.003	0.017	ND	ND	0.190	0.066	0.760	0.001
	7-Apr-99	0.006	0.073	0.006	0.026	0.005	ND	ND	0.246	0.065	0.003	0.002	0.014	ND	0.001	0.116	0.086	0.650	1.080
	7-Apr-99	0.004	0.046	0.005	0.027	0.003	ND	ND	0.180	0.066	ND	0.002	0.011	ND	ND	0.220	0.060	0.624	0.001
	1-Jul-99	ND	0.057	ND	0.035	ND	ND	ND	0.075	0.088	ND	ND	0.016	ND	ND	0.083	0.110	0.464	0.646
	1-Jul-99	ND	0.064	ND	0.038	ND	ND	ND	0.093	0.092	ND	ND	0.017	ND	ND	0.088	0.110	0.502	1.080
	28-Oct-99	0.003	0.039	0.006	0.032	0.002	ND	ND	0.035	0.059	ND	0.001	0.002	ND	ND	0.014	0.069	0.263	ND
	28-Oct-99	0.003	0.043	0.005	0.024	ND	ND	ND	0.039	0.062	ND	ND	NA	ND	ND	0.020	0.068	0.264	0.220
	8-Dec-99	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	0.004 0.007	ND ND	ND ND	ND ND	ND	ND ND	ND	0.004 0.010	ND
	9-Feb-00	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	0.007			ND ND	ND ND	ND	ND ND		ND ND
	9-Feb-00	ND										ND	ND					0.011	
	27-Apr-00	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.012 0.015	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.016	ND ND
	27-Jun-00 27-Jun-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.015	ND	ND	ND	ND	ND	ND	0.015 0.017	ND
	27-Jul-00 27-Jul-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	0.017 NS	ND
	27-Jui-00 24-Aug-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	24-Aug-00 27-Sep-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	18-Oct-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	0.003	ND
	18-Oct-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	0.003	ND
	30-Nov-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.003 NS	NS	NS	NS	NS	NS	NS	0.003 NS	NS
	13-Dec-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11-Jan-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	ND	ND	ND	ND	ND	ND	0.004	ND
	11-Jan-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	ND	ND	ND	ND	ND	ND	0.004	ND
	15-Feb-01	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.004 NS	NS	NS	NS	NS	NS	NS	0.004 NS	NS
	21-Mar-01	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	18-Apr-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.009	ND	ND	ND	ND	ND	ND	0.009	ND
	18-Apr-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.009	ND	ND	ND	ND	ND	ND	0.009	ND
	14-Aug-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	0.003	ND
	6-Nov-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003 0.017	ND	ND	ND	ND	ND	ND	0.003	ND
	01107 01										0.011							5.017	

			1,2-	1,3-	1,4-	1,1-	1,2-	1,1-	Cis-1,2	Ethyl-			1,1,1-	1,1,2		Vinyl-		Total	Mineral
		СВ	DCB	DCB	DCB	DCA	DCA	DCE	DCE	benzene	PCE	Toluene	TCA	TCA	TCE	Chloride	Xylenes	VOCs	Spirits
Well	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
ID	Date	0.0050	0.0030	0.0030	0.0030	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0020	0.0050	NA	0.050
	6-Nov-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.015	ND	ND	ND	ND	ND	ND	0.015	ND
	7-May-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.010	ND	ND	ND	ND	ND	ND	0.010	ND
	7-May-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.010	ND	ND	ND	ND	ND	ND	0.010	ND
GT-1R	29-Aug-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND	ND	ND	0.008	ND	ND	0.010	ND
	29-Aug-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	0.001	ND
	14-Nov-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	0.0010	ND
	14-Nov-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	0.0020	ND
	21-Apr-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0050	ND	ND	ND	ND	ND	ND	0.0050	ND
	21-Apr-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0050	ND	ND	ND	ND	ND	ND	0.0050	ND
	29-Sep-03	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	0.0040	ND	ND	ND	ND	ND	ND	0.0060	ND
	29-Sep-03	0.0020	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	0.0040	ND ND	ND ND	ND	ND	ND	ND	0.0060	ND ND
	4-Feb-04	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	0.0080 0.0070	ND	ND	ND ND	ND ND	ND ND	ND ND	0.0080 0.0070	ND
	4-Feb-04	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0070	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0070	ND ND
	29-Jun-04 17-Nov-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0040 0.0050	ND	ND	ND	ND	ND	ND	0.0040	ND
	24-Mar-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0040	ND	ND	ND	ND	ND	ND	0.0030	ND
	6-Jul-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0040	0.0010	ND	ND	ND	ND	ND	0.0050	ND
	20-Sep-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0040 ND	ND	ND	ND	ND	ND	ND	0.0000	ND
	12-Dec-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0040	ND	ND	ND	ND	ND	ND	0.0040	ND
	15-Mar-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	ND	ND	ND	ND	ND	0.0060	ND
	22-Jun-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0030	ND	ND	ND	ND	ND	ND	0.0030	ND
	25-Sep-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	ND	ND	ND	ND	ND	ND	0.0040	ND
	18-Dec-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	ND	ND	ND	ND	ND	ND	0.0050	ND
	26-Mar-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	ND	ND	ND	ND	ND	ND	0.0040	ND
	25-Jun-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	ND	ND	ND	ND	ND	ND	0.0040	ND
	19-Sep-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	0.0030	ND
	19-Dec-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	0.0030	ND
	28-Mar-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	ND	ND	ND	ND	ND	ND	0.0040	ND
	18-Jun-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND	0.002	ND
	24-Sep-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	0.003	ND
	17-Dec-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	0.002	ND
	11-Mar-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0034	ND	ND	ND	ND	ND	ND	0.0034	ND
	16-Jun-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0023	ND	ND	ND	ND	ND	ND	0.0023	ND
GT-2	23-Sep-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0025	ND	ND	ND	ND	ND	ND	0.0025	ND
G1-2	1-Dec-93	ND	0.005	0.014	ND	0.000	ND	ND	F4 000	ND	0.000	ND	ND	ND	ND	0.000	ND	F4 407	04 747
	25-Jul-95	ND ND	0.085	0.011	ND 0.002	0.096		ND ND	51.000	ND ND	0.002	ND	ND ND		ND	0.003	ND	51.197	91.717 3.630
	4-Oct-95	ND	0.004	ND		ND	ND		ND		0.003	ND		ND	ND	ND	ND	0.009	3.630
	23-Jan-96	0.002	0.002	ND	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	0.011	0.064
	23-Apr-96	0.001	0.006	ND	0.003	0.004	ND	ND	0.004	ND	0.001	ND	ND	ND	ND	ND	0.014	0.033	ND
	8-Oct-96	0.001	0.002	ND	0.003	0.006	ND	ND	0.003	ND	0.002	ND	ND	ND	ND	ND 0.006	0.001	0.019	ND
	7-Jan-97	0.007	0.007	0.002	0.006	0.009	ND	ND	0.006	0.002	ND	0.001	ND	ND	ND	0.006	0.011	0.056	0.096
	1-Apr-97 1-Jul-97	ND ND	0.002 ND	ND ND	0.002 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.009	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.004 0.009	ND ND
		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.009	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.009	ND ND
	29-Oct-97 14-Jan-98	0.006	0.006	0.001	0.005	0.010	ND ND	ND ND	0.001	0.003	0.006 ND	0.002	ND ND	ND ND	ND ND	ND ND	0.022	0.006	ND ND
	14-Jan-98 1-Apr-98	0.008	0.008	0.001 ND	0.005	0.010	ND	ND	0.001	0.003	ND	0.002	ND	ND	0.002	0.001	0.022	0.058	ND
	1-Apr-98 22-Jul-98	0.002 ND	0.004 ND	ND	0.003 ND	0.007 ND	ND	ND	0.003	0.003 ND	0.013	0.001 ND	ND	ND	0.002 ND	0.001 ND	0.017 ND	0.043	ND
	14-Oct-98	ND	ND	ND	ND	ND	ND	ND	0.003	ND	0.013	ND	ND	ND	ND	ND	ND	0.017	ND
	6-Jan-99	ND	ND	ND	ND	ND	ND	ND	0.002 ND	ND	0.008	ND	ND	ND	ND	ND	ND	0.010	ND
	0-Jaii-33							ND			0.000							0.000	

			1,2-	1,3-	1,4-	1,1-	1,2-	1,1-	Cis-1,2	Ethyl-			1,1,1-	1,1,2		Vinyl-		Total	Mineral
		СВ	DCB	DCB	DCB	DCA	DCA	DCE	DCE	benzene	PCE	Toluene	TCA	ТСА	TCE	Chloride	Xylenes	VOCs	Spirits
Well	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
ID	Date	0.0050	0.0030	0.0030	0.0030	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0020	0.0050	NA	0.050
	7-Apr-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.008	ND	ND	ND	ND	ND	ND	0.008	ND
	28-Oct-99	0.005	0.001	ND	0.003	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.012	ND
	9-Feb-00	0.001	ND	ND	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	ND
	27-Apr-00	0.002	0.002	ND	0.003	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	0.012	ND
	27-Jun-00	0.002	0.002	0.001	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.008	ND
	27-Jul-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	24-Aug-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	27-Sep-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	18-Oct-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	30-Nov-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	13-Dec-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11-Jan-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	15-Feb-01	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	21-Mar-01	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	18-Apr-01	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND
	14-Aug-01	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND
	6-Nov-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
	7-May-02	ND	0.001	ND	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND
	29-Aug-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND	ND	0.002	ND
	14-Nov-02	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	0.0040	ND
	21-Apr-03	0.002	ND	ND	0.001	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	0.004	ND
	29-Sep-03	0.007	0.002 0.003	0.002	0.006	ND ND	ND ND	ND ND	0.001 0.001		ND	ND ND	ND ND	ND 0.002	ND ND	ND ND	0.006	0.024	3.700 13.000
	20-Nov-03	0.006	0.003	0.002 0.002	0.008 0.009	ND	ND	ND	0.001	0.001 0.001	ND	ND	ND	0.002	ND	ND	0.009 0.011	0.032 0.035	1.700
	20-Nov-03	0.006					ND											0.035	
	4-Feb-04	0.008	0.002 0.001	0.001 ND	0.004 0.002	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.008	0.023	7.200 0.180
	29-Jun-04	0.004	0.001	ND	0.002		ND		ND	ND	ND	ND	ND	ND	ND	ND	0.002 0.002	0.009	
	29-Jun-04	0.004 ND	0.001	ND	0.002	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002 ND	0.009	0.140 0.76J
	17-Nov-04 17-Nov-04	0.006	ND	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.180J
	25-Mar-05	0.006	ND	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	0.009	1.600
	25-Mar-05 25-Mar-05	0.000	0.001	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	0.010	2.800
	6-Jul-05	0.007	0.001	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	0.012	3.200
	6-Jul-05	0.005	ND	ND	0.003	ND	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	0.001	0.009	2.300
	20-Sep-05	0.003	0.001	ND	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	0.009	0.170
	20-Sep-05	0.007	0.001	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	0.012	0.880
	12-Dec-05	0.007	ND	ND	0.003 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.012	5.700
	12-Dec-05	0.0030	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	1.300
	15-Mar-06	0.0030 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.003 NS	NS
	22-Jun-06	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0030	0.009	2.300
	22-Jun-06	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0030	0.009	1.500
	25-Sep-06	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0050 ND	0.003	0.430
	25-Sep-06	0.0050	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.007	0.490
	18-Dec-06	0.0050	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	1.200
	18-Dec-06	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.730
	26-Mar-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	0.300
	26-Mar-07	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.270
	25-Jun-07	0.0040	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	0.230
	25-Jun-07	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.270
	19-Sep-07	0.0060	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	0.440
	10 Och-01	0.0000			0.0000													0.012	0.770

			1,2-	1,3-	1,4-	1,1-	1,2-	1,1-	Cis-1,2	Ethyl-			1,1,1-	1,1,2		Vinyl-		Total	Mineral
		СВ	DCB	DCB	DCB	DCA	DCA	DCE	DCE	benzene	PCE	Toluene	TCA	TCA	TCE	Chloride	Xylenes	VOCs	Spirits
Well	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
ID	Dale	0.0050	0.0030	0.0030	0.0030	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0020	0.0050	NA	0.050
	19-Sep-07	0.0060	0.0010	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.009	0.440
	19-Dec-07	0.0030	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	0.640
	19-Dec-07	0.0030	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	0.650
	28-Mar-08	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.260
	28-Mar-08	0.0040	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.270
	18-Jun-08	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.300
	18-Jun-08	0.0040	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006	0.290
	24-Sep-08	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.810
dup	24-Sep-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.430
	17-Dec-08	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0020	1.300
dup	17-Dec-08	0.0035	ND	ND	0.0018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0053	1.200
see note	11-Mar-09	0.0025	ND	ND	0.0018		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0070	2.000
dup	11-Mar-09	0.0036	ND	ND	0.0018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0054	1.500
	NOTE:	0.0042	Note: 3/11 ND	1/09 sampl ND	e totals inclu	ude bromo ND	benzene ar ND	ND	ND	ane at 0.001 ND	2 and 0.00 ND	15 respectivly ND	V ND	0.0060				0.0102	0 700
	16-Jun-09	0.0043 0.0044	ND	ND	0.0020 0.0020	ND	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	ND	ND	0.0123	0.790
dup X-1	16-Jun-09				ane reporte						ND	ND	ND	0.0060	ND	ND	ND	0.0124	0.900
	NOTE:	0.0033	,1,2,2 100	achioroeth	0.0016		1,1,2106		bonning pen	00.									0.660
dup X-1	23-Sep-09 23-Sep-09	0.0034			0.0017														0.860
GT-3	23-3ep-09	NA	ND	NA	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.000	NA
0.0	6-Jul-94	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.000	ND
	19-Oct-94	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.000	ND
	26-Jan-95	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	13-Apr-95	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	25-Jul-95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	4-Oct-95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	23-Jan-96	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	23-Apr-96	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	18-Jul-96	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	8-Oct-96	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	7-Jan-97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	1-Apr-97	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.007	ND	ND	ND	ND	ND	ND	0.007	ND
	1-Jul-97	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND	0.002	ND
	14-Jan-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	29-Oct-97	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	0.001	ND
	14-Jan-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	10-Apr-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	22-Jul-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.009	ND
	14-Oct-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	6-Jan-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	7-Apr-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	9-Jul-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	28-Oct-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	9-Feb-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	27-Apr-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	27-Jun-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND
	27-Jul-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	24 4.00 00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	24-Aug-00	NO NO	140	110	110	110	110	110	110	110	140	110	110	NO	110	110	110	110	110

			1,2-	1,3-	1,4-	1,1-	1,2-	1,1-	Cis-1,2	Ethyl-			1,1,1-	1,1,2		Vinyl-		Total	Mineral
		СВ	DCB	DCB	DCB	DCA	DCA	DCE	DCE	benzene	PCE	Toluene	TCA	TCA	TCE	Chloride	Xylenes	VOCs	Spirits
Well	Date	(mg/l) 0.0050	(mg/l) 0.0030	(mg/l) 0.0030	(mg/l) 0.0030	(mg/l) 0.0050	(mg/l) 0.0020	(mg/l) 0.0050	(mg/l) NA	(mg/l) 0.050									
ID	18-Oct-00	ND	ND	ND															
	30-Nov-00	NS	NS	NS															
	13-Dec-00	NS	NS	NS															
	11-Jan-01	ND	ND	ND															
	15-Feb-01	NS	NS	NS															
	21-Mar-01	NS	NS	NS															
	18-Apr-01	ND	ND	ND															
	14-Aug-01	ND	ND	ND															
	6-Nov-01	ND	ND	ND															
	7-May-02	ND	ND	ND															
	29-Aug-02	ND	0.002	ND	ND	0.002	ND												
	14-Nov-02	ND	ND	ND															
	21-Apr-03	ND	ND	ND															
	29-Sep-03	0.003	ND	0.003	ND														
	4-Feb-04	ND	ND	ND															
	29-Jun-04	ND	ND	ND															
	17-Nov-04	ND	ND	ND															
	25-Mar-05	ND	ND	ND															
	6-Jul-05	ND	ND	ND															
	20-Sep-05	ND	ND	ND															
	12-Dec-05	ND	ND	ND															
	15-Mar-06	ND	ND	ND															
	22-Jun-06	ND	ND	ND															
	25-Sep-06	ND	ND	ND															
	18-Dec-06	ND	ND	ND															
	26-Mar-07	ND	ND	ND															
	25-Jun-07	ND	ND	ND															
	19-Sep-07	ND	ND	ND															
	17-Dec-07	ND	ND	ND															
	28-Mar-08	ND	ND	ND															
	18-Jun-08	ND	ND	ND															
	24-Sep-08	ND	ND	ND															
	17-Dec-08	ND	ND	ND															
	11-Mar-09	ND	ND	ND															
	16-Jun-09	ND ND	ND ND	ND ND															
GT-4	23-Sep-09 1-Dec-93	ND	ND	ND															
01-4	13-Dec-93	NA	ND	NA	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.000	NA
	13-Dec-93 6-Jul-94	NA	ND	NA	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.000	NA
	6-Jul-94 19-Oct-94	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.000	ND
	26-Jan-95	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.000	ND
	13-Apr-95	NA	ND	ND	ND	ND	NA	ND	0.000	ND									
	25-Jul-95	ND	0.000	ND															
	4-Oct-95	ND	0.000	ND															
	23-Jan-96	N D	N D	N D	N D	N D	ND	N D	N D	N D	N D	N D	N D	N D	N D	N D	ND	0.000	N D
	23-341-96 23-Apr-96	ND	0.001	ND															
	18-Jul-96	ND	0.000	ND															
	8-Oct-96	ND	0.000	ND															
	7-Jan-97	ND	0.000	ND															
I I	7-Jan-97	ND	ND	IND	ND	IND	ND		ND	IND	0.000	ND							

We

			1,2-	1,3-	1,4-	1,1-	1,2-	1,1-	Cis-1,2	Ethyl-			1,1,1-	1,1,2		Vinyl-		Total	Mineral
		СВ	DCB	DCB	DCB	DCA	DCA	DCE	DCE	benzene	PCE	Toluene	TCA	TCA	TCE	Chloride	Xylenes	VOCs	Spirits
Vell ID	Date	(mg/l) 0.0050	(mg/l) 0.0030	(mg/l) 0.0030	(mg/l) 0.0030	(mg/l) 0.0050	(mg/l) 0.0020	(mg/l) 0.0050	(mg/l) NA	(mg/l) 0.050									
	1-Apr-97	ND	0.000	ND															
	1-Jul-97	ND	0.000	ND															
	29-Oct-97	ND	0.001	0.001	ND														
	14-Jan-98	ND	0.000	ND															
	10-Apr-98	ND	0.000	ND															
	22-Jul-98	ND	0.000	ND															
	14-Oct-98	ND	0.000	ND															
	6-Jan-99	ND	0.001	ND															
	7-Apr-99	ND	0.000	ND															
	9-Jul-99	ND	0.000	ND															
	28-Oct-99	ND	0.000	ND															
	9-Feb-00	ND	0.000	ND															
	27-Apr-00	ND	0.000	ND															
	27-Jun-00	ND	0.000	ND															
	27-Jul-00	NS	NS	NS															
	24-Aug-00	NS	NS	NS															
	27-Sep-00	NS	NS	NS															
	18-Oct-00	NS	NS	NS															
	30-Nov-00	NS	NS	NS															
	13-Dec-00	NS	NS	NS															
	11-Jan-00	ND	ND	ND															
	15-Feb-01	NS	NS	NS															
	21-Mar-01	NS	NS	NS															
	18-Apr-01	ND	ND	ND															
	14-Aug-01	ND	ND	ND															
	6-Nov-01	ND	ND	ND															
	7-May-02	ND	ND	ND															
	29-Aug-02	ND	0.001	ND	ND	0.001	ND												
	14-Nov-02	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND
	21-Apr-03		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND		ND	ND ND	ND	ND ND	ND	ND	ND ND		ND ND
	29-Sep-03 4-Feb-04	0.002 ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	0.002 ND	ND
		ND	ND	ND															
	29-Jun-04 17-Nov-04	ND	ND	ND															
	25-Mar-05	ND	ND	ND															
	6-Jul-05	ND	ND	ND															
	20-Sep-05	ND	ND	ND															
	12-Dec-05	ND	ND	ND															
	15-Mar-06	ND	ND	ND															
	22-Jun-06	ND	ND	ND															
	25-Sep-06	ND	ND	ND															
	18-Dec-06	ND	ND	ND															
	26-Mar-07	ND	ND	ND															
	25-Jun-07	ND	ND	ND															
	19-Sep-07	ND	ND	ND															
	19-Dec-07	ND	ND	ND															
	28-Mar-08	ND	ND	ND															
	18-Jun-08	ND	ND	ND															
	24-Sep-08	ND	ND	ND															

			1,2-	1,3-	1,4-	1,1-	1,2-	1,1-	Cis-1,2	Ethyl-			1,1,1-	1,1,2		Vinyl-		Total	Mineral
		СВ	DCB	DCB	DCB	DCA	DCA	DCE	DCE	benzene	PCE	Toluene	ТСА	TCA	TCE	Chloride	Xylenes	VOCs	Spirits
Well	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)							
ID		0.0050	0.0030	0.0030	0.0030	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0020	0.0050	NA	0.050
	17-Dec-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	11-Mar-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	16-Jun-09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND							
GT-5	23-Sep-09	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND						
01-5	13-Apr-95	ND ND	ND	ND	ND	ND	NA	ND	0.001	ND	0.001	ND	ND	ND	ND	ND	ND	0.000	ND
	25-Jul-95 4-Oct-95	ND	ND	ND	ND	ND	NA	ND	0.001 ND	ND	0.001 ND	ND	ND	ND	ND	ND	ND	0.003	ND
	23-Jan-96	ND	ND	0.006	ND	ND	ND	ND	ND	ND	0.000	0.056							
	23-Jan-96 23-Apr-96	ND	ND	0.008 ND	ND	ND	ND	ND	ND	ND	0.000	0.056 ND							
	18-Jul-96	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.001	ND	0.001	ND	ND	ND	ND	0.000	ND
	8-Oct-96	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND							
	7-Jan-97	ND	ND	0.001	ND	ND	ND	ND	ND	ND	0.000	ND							
	1-Apr-97	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.007	ND							
	1-Apr-97	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.007	ND							
	29-Oct-97	ND	ND	ND	ND	0.001	ND	ND	ND	ND	0.000	ND							
	14-Jan-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	10-Apr-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	22-Jul-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	14-Oct-98	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND							
	6-Jan-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	7-Apr-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	9-Jul-99	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND
	28-Oct-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	28-Oct-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	9-Feb-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	9-Feb-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	27-Apr-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	27-Apr-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	27-Jun-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	27-Jun-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000	ND							
	27-Jul-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	24-Aug-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	27-Sep-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	18-Oct-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	18-Oct-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	30-Nov-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	13-Dec-00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	11-Jan-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	11-Jan-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	15-Feb-01	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	21-Mar-01	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	18-Apr-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	18-Apr-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	14-Aug-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	6-Nov-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	7-May-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	29-Aug-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	14-Nov-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
	21-Apr-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							

		СВ	1,2- DCB	1,3- DCB	1,4- DCB	1,1- DCA	1,2- DCA	1,1- DCE	Cis-1,2 DCE	Ethyl- benzene	PCE	Toluene	1,1,1- TCA	1,1,2 TCA	TCE	Vinyl- Chloride	Xylenes	Total VOCs	Mineral Spirits
Well	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
ID		0.0050	0.0030	0.0030	0.0030	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0020	0.0050	NA	0.050
	29-Sep-03	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND						
	4-Feb-04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.001	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.001	ND ND
-	29-Jun-04																		
	17-Nov-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND
	25-Mar-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	0.001	ND
	6-Jul-05	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	0.002	ND	ND ND	ND ND	ND ND	ND	ND	0.002	ND ND
	20-Sep-05	ND			ND ND	ND	ND		ND ND	ND	0.001 ND	ND	ND	ND	ND ND	ND	ND	0.001	
	12-Dec-05	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	15-Mar-06	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND		ND ND	ND	ND	ND	ND	ND		ND
	22-Jun-06	ND	ND	ND	ND	ND	ND	ND	ND		0.001	ND	ND	ND	ND	ND	ND	0.001	ND
	25-Sep-06	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.001 ND	ND	ND	ND	ND	ND	ND	0.001 ND	ND
	18-Dec-06	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND
	26-Mar-07	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	25-Jun-07	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND	ND		ND		
	19-Sep-07	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
	17-Dec-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	28-Mar-08 18-Jun-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	0.0010	ND
	24-Sep-08 17-Dec-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	0.0010	ND
	11-Mar-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0012 ND	ND	ND	ND	ND	ND	ND	0.0012 ND	ND
	16-Jun-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0094	ND
	23-Sep-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0094 ND	ND ND
	NOTE:	ND	ND	ND		form was d			=			l is 0.007 ppr		=	Total VOC		ND	ND	ND

Groundwater Monitoring Results - CA Program Safety-Kleen Systems, Inc. - Former Thornwood, NY Facility

		Detected										1,2	1,3	1,4	0	Total		1, 1	Cis 1,2	Total	Mineral	Total
Monitoring	Sample	Compound	Acetone	Bromo- methane	lodo- methane	carbon- disulfide	Chloroform	Methylene Chloride	PCE	TCE	Chloro- benzene	DCB	DCB	DCE	Xylene	Xylenes	Toluene	DCA	DCE	1,2 DCE	Spirit RO	VOCs
Location	Date	Units	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	5	5	60	7	5	5	5	5	3	3	3	5	15	5	5	5	2	50	n/a
					1	1	1			1												
GT-1R	12/29/2010		1.6				1.5	0.40	1.3	0.35												5.15
	3/23/2010						0.75	0.27	2.6	0.57												4.19
	6/21/2010		0.69				1.7	0.47	1.5				ľ									4.36
	9/21/2010		0.98				2	0.58	0.51													4.07
	12/14/2010		0.75				1.6		0.55								-				+	2.9
							1.0	0.4.4			┼────		┝───┦	├───	'	 					╂────┦	
	3/23/2011		0.78					0.14	3		<u> </u>		!	<u> </u>	'	<u> </u>					<u> </u>	3.92
	6/15/2011						0.39	0.13	1.1				!		'						ļ'	1.62
	9/14/2011		1.3					0.17	1.5													2.97
	12/15/2011								1.3													1.3
	3/14/2012								0.42													0.42
	6/19/2012						1		0.28		1						-				+	0.28
							ł				┼────		┝───┦	├	'	 					╂────┦	
	9/11/2012								0.24			<u> </u>	ļ!	<u> </u>	'	<u> </u>					<u> </u>	0.24
	12/19/2013								0.34		<u> </u>				'	Ļ					<u> </u>	0.34
	3/13/2013								0.52													0.52
		ī			1	1	T	r	r	1												
GT-2R	12/29/2009	Sample						0.14			4.3	0.77		<u> </u>	1.7	1.7					1,100	6.91
	3/23/2010	Duplicate: X-2	1.4					0.23		0.07	4.3	0.69	0.39	1.0	1.7	1.7	0.62		0.24	0.24	1,100	9.81
	3/23/2010	Sample	0.99		0.79	0.23		0.17		0.37	3.8 4.2	0.73	0.41 0.48	1.6 1.9	0.24	0.24		0.21	0.24 0.37	0.24	1,200 640	8.79 9.67
	6/21/2010	Duplicate: X-2 Sample	0.72		0.79	0.23	1				4.2	0.82	0.48	2.1	0.3	0.3		0.21	0.37	0.37	1,000	9.66
	0/21/2010	Duplicate: X-2	0.72								4.8	0.78	0.50	2.1	0.22	0.22	<u> </u>	0.14	0.24	0.24	1,700	8.86
	9/21/2010	Sample	1.3			0.11		0.14			4.0	0.79	0.47		0.10	0.10	-	0.20	0.34	0.34	1,000	7.69
		Duplicate: X-2				-		0.15			4.1	0.75	0.48	1.7					0.28	0.28	1,200	7.74
	12/14/2010	Sample	1								3.9	0.71	0.41	1.7	0.12		0.34	EMC	0.25	0.25	1,800	8.56
		Duplicate: X-2									3.8	0.72	0.47	1.6	0.17		0.36	LIVIC	0.27	0.27	1,900	7.49
	3/23/2011	Sample						0.11			5.1	0.78	0.51	1.8	'	Ļ			0.34	0.34	910	8.98
		Duplicate: X-2	1.4					0.16			5.4	0.78	0.48	1.9	0.18	<u> </u>			0.30	0.30	910	10.72
	6/15/2011	Sample	3.9					0.16			3.0 2.9	0.47	0.35	1.4	'	───		<u> </u>	<u> </u>	┣───	510	9.28 9.59
	9/14/2011	Duplicate: X-2 Sample	4.4 2.2					0.16			4.4	0.46	0.27	1.4 1.8		<u> </u>			0.25	0.25	560 310	9.58
	9/14/2011	Duplicate: X-2	3				1	0.28			4.4	0.59	0.45	1.0		<u> </u>			0.23	0.23	230	10.61
	12/15/2011	Sample	5				1	0.20			5.3	0.87	0.48	2.2			-		0.22	0.30	990	9.44
		Dup: GT-5B									5.4	0.92	0.46	2.3			1		0.25		820	9.33
	3/13/2012	Sample									3.9	0.61	0.35	1.7					0.23		350	6.79
		Dup: GT-5B									4.6	0.64	0.39	2.0				0.16	0.27		420	8.06
	6/19/2012	Sample	6.4		0.12						3.3	0.58	0.34	1.4			\square	0.18	0.34		400	12.66
		Dup: Duplicate	8.1		0.13	Benzene					3.2	0.58	0.35	1.4	Ļ'	L	\vdash		0.28	\square	400	14.04
	9/11/2012	Sample			0.098						4.0	0.62	0.35	1.5	Ļ'	 	—	0.18	0.31	0.31	330	7.37
	40/40/0015	Dup: Duplicate	4.4			0.16					4.5	0.72	0.42	1.8	 '	───	0.01	0.14	┣───	┝───	560	7.74
	12/19/2012	Sample	11								5.4	0.70	0.46	2.0	├ ────'	───	0.24	───	───	───	250	19.80 18.21
		Dup: Duplicate Sample	9.2							<u> </u>	5.5 3.2	0.76	0.51 0.29	2.0 1.2	├ ────'	├ ───	0.24	┝───	<u> </u>	───	300 650	18.21
	3/13/2013																					

Groundwater Monitoring Results - CA Program Safety-Kleen Systems, Inc. - Former Thornwood, NY Facility

		Detected										1,2	1,3	1,4	0	Total		1, 1	Cis 1,2	Total	Mineral	Total
Monitoring	Sample	Compound	Acetone	Bromo-	lodo-	carbon- disulfide	Chloroform	Methylene	PCE	TCE	Chloro-	DCB	DCB	DCE	Xylene	Xylenes	Toluene	DCA	DCE	1,2 DCE	Spirit RO	VOCs
Location	Date	Units	(ug/l)	methane (ug/l)	methane (ug/l)	(ug/l)	(ug/l)	Chloride (ug/l)	(ug/l)	(ug/l)	benzene (ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
		TOGS-STD->	50	5	5	60	7	5	5	5	5	3	3	3	5	15	5	5	5	2	50	n/a
GT-3	12/29/2009		1.8	1	[0.22	[0.14			r	r			1	[[2.16
61-3	3/23/2010		1.0		1.0			0.22	0.18	0.14											┝───┦	1.29
	6/21/2010		0.94		0.14			0.13	0.16	0.11											┝───┤	1.29
	9/21/2010		1.3		0.14			0.13													┝───┦	1.9
	12/14/2010							0.0														
	3/23/2011		1.3																			1.3
	6/15/2011		5.3																			5.3
	9/14/2011		0.94					0.14	0.29													1.37
	12/15/2011																					
	3/13/2012																					
	6/19/2012																					ļ
	9/11/2012																				ļļ	l
	12/19/2012																				├ ───┦	
	3/13/2013																					<u> </u>
GT-4	12/29/2009		1.7					0.26													<u>г і</u>	1.96
-	3/23/2010			0.29	0.8																	1.09
	6/21/2010				0.15																	0.15
	9/21/2010		0.9																			0.9
	12/14/2010																					<u> </u>
	3/23/2011		1.4					0.1													ļļ	1.5
	6/15/2011 9/14/2011		2.4					0.18													├ ───┦	2.58 0.14
	12/15/2011							0.14													┝───┤	0.14
	3/13/2012																					
	6/19/2012																					
	9/11/2012																					
	12/19/2012																					
	3/13/2013																					
				1	1			1		1			1	1	Ī	Ī	1	r	r	Ī		
GT-5	12/29/2009						1.1		0.17												ļļ	1.27
	3/23/2010				0.84		0.53		0.26													1.63
	6/21/2010							0.15	0.95												1	1.10
	9/21/2010		0.72						0.88													1.60
	12/14/2010						0.24		0.71													0.95
	3/23/2011		1.5					0.15	0.78													2.43
	6/15/2011								0.85													0.85
	9/14/2011		1.1					0.25	0.46													1.81
	12/15/2011								0.67													0.67
	3/13/2012								0.54													0.54
	6/19/2012								1.1													1.1
	9/11/2012								0.96					1								0.96
	12/19/2012						0.32		0.66												ĺ	0.98
	3/13/2013						0.69		0.38													1.07

ATTACHMENT 4

Laboratory Report

On – Compact Disk

(Executive Summary Printed)

ANALYTICAL REPORT

Job Number: 460-52390-1 Job Description: 2013 Safety-Kleen Thornwood

> For: Basile Environmental Solutions, LLC 1188 Hillside Drive Cortland, NY 3045

Attention: Joseph Basile, Jr., MSc.

emifer R. Capece

Approved for release. Jennifer Capece Project Mgmt. Assistant 3/27/2013 3:04 PM

Designee for Melissa Haas Project Manager I melissa.haas@testamericainc.com 03/27/2013

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132

TestAmerica Laboratories, Inc.TestAmerica Edison777 New Durham Road, Edison, NJ 08817Tel (732) 549-3900Fax (732) 549-3679www.testamericainc.com

Job Number: 460-52390-1

Job Description: 2013 Safety-Kleen Thornwood

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Jennifer R. Capece

Approved for release. Jennifer Capece Project Mgmt. Assistant 3/27/2013 3:04 PM

Designee for Melissa Haas

Table of Contents

Cover Title Page	1
Data Summaries	5
Report Narrative	5
Sample Summary	10
Executive Summary	11
Method Summary	12
Method / Analyst Summary	13
Sample Datasheets	14
Surrogate Summary	35
QC Data Summary	37
Data Qualifiers	49
QC Association Summary	50
Lab Chronicle	51
Organic Sample Data	54
GC/MS VOA	54
Method 8260B	54
Method 8260B QC Summary	55
Method 8260B Sample Data	66
Standards Data	111
Method 8260B ICAL Data	111
Method 8260B CCAL Data	156
Raw QC Data	164
Method 8260B Tune Data	164
Method 8260B Blank Data	172
Method 8260B LCS/LCSD Data	176
Method 8260B MS/MSD Data	183

Table of Contents

Method 8260B Run Logs	197
Method 8260B Prep Data	199
GC VOA	203
Method 8015B - GRO	203
Method 8015B - GRO QC Summary	204
Method 8015B - GRO Sample Data	211
Standards Data	246
Method 8015B - GRO ICAL Data	246
Method 8015B - GRO CCAL Data	267
Raw QC Data	285
Method 8015B - GRO Blank Data	285
Method 8015B - GRO LCS/LCSD Data	295
Method 8015B - GRO Run Logs	315
Method 8015B - GRO Prep Data	317
Shipping and Receiving Documents	320
Client Chain of Custody	321
Sample Receipt Checklist	323

Comments

No additional comments.

Receipt

The samples were received on 3/14/2013 5:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.1° C.

Except:

Technical and Operational Guidance Series subpart 1.1.1 (The New York State Ambient Water Quality Standards and Guidance Values) references a class GA standard of 0.04 ug/L for 1,2-dibromo-3-Chloropropane and 1,2,3-Trichloropropane. The laboratory is unable to meet this standard by reporting to their established reporting limit (RL) or method detection limit (MDL). Sample results are evaluated to the MDL, which is the lowest level the instrumentation has been able to detect, which is 0.4 ug/L for 1,2-Dibromo-3-Chloropropane and 0.42 ug/L for 1,2,3-Trichloropropane.

The Edison lab does not hold NY certification for the following analytes via method 8260 for water or soil: Ethyl Methacrylate, lodomethane and Methacrylonitrile.

GC/MS VOA

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 152498 were outside control limits for Benzyl chloride and Bromoform. The MS recoveries were also outside control limits for Chlorodibromomethane and 1,2-Dibromo-3-Chloropropane. The MS/MSD recoveries and %RPD could not be calculated for 2-Chloroethyl vinyl ether due to the sample preservation. The associated laboratory control sample (LCS) recoveries met acceptance criteria.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Project Specific Reporting Limits – Aqueous Samples

For aqueous samples, please note that the reporting limits listed below may vary for each sample analyzed based on sample volume, and/or sample dilution. The aqueous laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC) Technical & Operational Guidance Series (TOGS) section 1.1.1 class GA standards, and ASI's previously reported laboratory reporting limits where no TOGS class GA standard exists.

Analyte	Aqueous Project Specific Reporting Limits	Units
Acetone	50	ug/L
Acetonitrile	10	ug/L
Allyl chloride		ug/L
Benzene	1	
Benzyl chloride	10	ug/L
Bromodichloromethane		ug/L
Bromoform		ug/L
Bromomethane	5	ug/L
2-Butanone (MEK)		ug/L
Carbon disulfide		ug/L
Carbon tetrachloride		ug/L
Chlorobenzene		ug/L
Chloroethane		ug/L
2-Chloroethyl vinyl ether		ug/L
Chloroform	7	
Chloromethane	5	
cis-1,2-Dichloroethene	5	ug/L
cis-1,3-Dichloropropene	0.2	ug/L
Dibromochloromethane		ug/L
1,2-Dibromo-3-Chloropropane	0.04	
1,2-Dibromoethane		ug/L
Dibromomethane		ug/L
1,3-Dichlorobenzene	3	
1,4-Dichlorobenzene		ug/L
1,2-Dichlorobenzene	3	ug/L
Dichlorodifluoromethane	5	ug/L
1,1-Dichloroethane	5	ug/L
1,2-Dichloroethane		ug/L
1,1-Dichloroethene		ug/L
1,2-Dichloroethene, Total	2	
1,2-Dichloropropane	1	
Ethylbenzene	5	ug/L
Ethyl methacrylate	5	ug/L
2-Hexanone		ug/L
lodomethane	5	ug/L
Isobutyl alcohol		ug/L
Methacrylonitrile		ug/L
Methylene Chloride	5	ug/L
Methyl methacrylate		ug/L
4-Methyl-2-pentanone (MIBK)	5	ug/L
m&p-Xylene		ug/L
o-Xylene		ug/L
Styrene		ug/L
1,1,1,2-Tetrachloroethane	5	ug/L
1,1,2,2-Tetrachloroethane	5	ug/L
Tetrachloroethene	5	ug/L
Toluene	5	ug/L
trans-1,4-Dichloro-2-butene		ug/L
trans-1,2-Dichloroethene		ug/L

Analyte	Aqueous Project Specific Reporting Limit	Units
trans-1,3-Dichloropropene	0.2	ug/L
1,1,1-Trichloroethane	5	ug/L
1,1,2-Trichloroethane	1	ug/L
Trichloroethene	5	ug/L
1,2,3-Trichloropropane	0.04	ug/L
Vinyl acetate	5	ug/L
Vinyl chloride	2	ug/L
Xylenes, Total	15	ug/L
Mineral Spirit Range Organics	50	ug/L

Project Specific Reporting Limits – Solid Samples

For solid samples, please note that the reporting limits listed below will vary for each sample analyzed based on sample moisture content, sample volume, and/or sample dilution. The solid laboratory reporting limits are based on the New York State Department of Environmental Conservation (NYSDEC) Subpart 375-6.8(a) Unrestricted Use Soil Cleanup Objectives and TestAmerica Connecticut's laboratory reporting limits where no part 375 cleanup objectives exist.

Analyte	Solid Project Specific Reporting Limits	Units
Acetone	50	ug/Kg
Acetonitrile		ug/Kg
Allyl chloride	5	ug/Kg
Benzene		ug/Kg
Benzyl chloride		ug/Kg
Bromodichloromethane		ug/Kg
Bromoform		ug/Kg
Bromomethane		ug/Kg
2-Butanone (MEK)		ug/Kg
Carbon disulfide		ug/Kg
Carbon tetrachloride		ug/Kg
Chlorobenzene		ug/Kg
Chloroethane		ug/Kg
2-Chloroethyl vinyl ether		ug/Kg
Chloroform		ug/Kg
Chloromethane		ug/Kg
cis-1,2-Dichloroethene		ug/Kg
cis-1,3-Dichloropropene		ug/Kg
Dibromochloromethane		ug/Kg
1,2-Dibromo-3-Chloropropane		ug/Kg
1,2-Dibromoethane		ug/Kg
Dibromomethane		ug/Kg
1,3-Dichlorobenzene		ug/Kg
1,4-Dichlorobenzene		ug/Kg
1,2-Dichlorobenzene		ug/Kg
Dichlorodifluoromethane	5	ug/Kg
1,1-Dichloroethane	270	ug/Kg
1,2-Dichloroethane	20	ug/Kg
1,1-Dichloroethene		ug/Kg
1,2-Dichloroethene, Total	5	ug/Kg
1,2-Dichloropropane	5	ug/Kg
Ethylbenzene	1000	ug/Kg
Ethyl methacrylate	10	ug/Kg
2-Hexanone	10	ug/Kg
lodomethane	10	ug/Kg
Isobutyl alcohol	150	ug/Kg
Methacrylonitrile		ug/Kg
Methylene Chloride	50	ug/Kg
Methyl methacrylate	10	ug/Kg
4-Methyl-2-pentanone (MIBK)		ug/Kg
m&p-Xylene	5	ug/Kg
o-Xylene		ug/Kg
Styrene		ug/Kg
1,1,1,2-Tetrachloroethane		ug/Kg
1,1,2,2-Tetrachloroethane		ug/Kg
Tetrachloroethene		ug/Kg
Toluene		ug/Kg
trans-1,4-Dichloro-2-butene		ug/Kg
trans-1,2-Dichloroethene		ug/Kg

Analyte	Solid Project Specific Reporting Limits	Units
trans-1,3-Dichloropropene	5	ug/Kg
1,1,1-Trichloroethane	680	ug/Kg
1,1,2-Trichloroethane	5	ug/Kg
Trichloroethene	470	ug/Kg
1,2,3-Trichloropropane	5	ug/Kg
Vinyl acetate	20	ug/Kg
Vinyl chloride	5	ug/Kg
Xylenes, Total	260	ug/Kg
Mineral Spirit Range Organics	10000	ug/Kg

Client: Basile Environmental Solutions, LLC

Job Number: 460-52390-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
460-52390-1	GT-1R	Water	03/13/2013 2045	03/14/2013 1750
460-52390-2	GT-2R	Water	03/13/2013 2115	03/14/2013 1750
460-52390-3	GT-3	Water	03/13/2013 1915	03/14/2013 1750
460-52390-4	GT-4	Water	03/13/2013 1945	03/14/2013 1750
460-52390-5	GT-5	Water	03/13/2013 2015	03/14/2013 1750
460-52390-6	Duplicate	Water	03/13/2013 2000	03/14/2013 1750
460-52390-7	Trip Blank	Water	03/13/2013 0000	03/14/2013 1750

EXECUTIVE SUMMARY - Detections

Client: Basile Environmental Solutions, LLC

Job Number: 460-52390-1

460-52390-1 GT-1R 0.52 J 5.0 ug/L 8260B 460-52390-2 GT-2R 8260B 1,2-Dichlorobenzene 3.2 J 5.0 ug/L 8260B 1,3-Dichlorobenzene 0.46 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.26 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.26 J 5.0 ug/L 8260B 1.4-Dichlorobenzene 0.26 J 5.0 ug/L 8260B Toluene 0.26 J 5.0 ug/L 8260B Mineral Spirit Range Organics 650 7.0 ug/L 8260B Vertrachloroethene 0.38 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0	Lab Sample ID C Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
Chlorobenzene 3.2 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.46 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.29 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.26 J 5.0 ug/L 8260B Mineral Spirit Range Organics 650 50 ug/L 8260B Chloroform 0.69 J 7.0 ug/L 8260B Tetrachloroethene 0.38 J 5.0 ug/L 8260B 460-52390-6 DUPLICATE UPLICATE V 8260B 1,2-Dichlorobenzene 3.1 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.27 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 5.0 ug/L		GT-1R	0.52	J	5.0	ug/L	8260B	
1.2-Dichlorobenzene 0.46 J 3.0 ug/L 8260B 1.3-Dichlorobenzene 0.29 J 3.0 ug/L 8260B 1.4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.26 J 5.0 ug/L 8260B Mineral Spirit Range Organics 650 50 ug/L 8260B Konsorter Science Chloroform 0.69 J 7.0 ug/L 8260B Chloroform Tetrachloroethene 0.38 J 5.0 ug/L 8260B Chlorobenzene 1.2-Dichlorobenzene 0.31 J 5.0 ug/L 8260B Chlorobenzene 1.3-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1.4-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1.4-Dichlorobenzene 0.27 J 3.0 ug/L 8260B 1.4-Dichlorobenzene 0.27 J 5.0		GT-2R						
1.3-Dichlorobenzene 0.29 J 3.0 ug/L 8260B 1.4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.26 J 5.0 ug/L 8260B Mineral Spirit Range Organics 650 50 ug/L 8015B 460-52390-5 GT-5 GT-5 State State State Chloroform 0.69 J 7.0 ug/L 8260B 460-52390-6 DUPLICATE State State State Chlorobenzene 3.1 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 5.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8260B <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-		
1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.26 J 5.0 ug/L 8260B Mineral Spirit Range Organics 650 50 ug/L 8015B 460-52390-5 GT-5 GT-5 K K K Chloroform 0.69 J 7.0 ug/L 8260B Tetrachloroethene 0.38 J 5.0 ug/L 8260B 460-52390-6 DUPLICATE K K K K Chlorobenzene 3.1 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,2-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 3.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8260B <	,			J				
Toluene 0.26 J 5.0 ug/L 8260B Mineral Spirit Range Organics 650 50 ug/L 8015B 460-52390-5 GT-5 GT-5 Keiner Schlause Keiner Schlause Keiner Schlause Chloroform 0.69 J 7.0 ug/L 8260B Tetrachloroethene 0.38 J 5.0 ug/L 8260B A60-52390-6 DUPLICATE Keiner Schlause Keiner Schlause Keiner Schlause 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 5.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8260B Kineral Spirit Range Organics 0.17 J 7.0 ug/L 8260B Kineral Spirit Range Organics <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-		
Mineral Spirit Range Organics65050ug/L8015B460-52390-5GT-50.69J7.0ug/L8260BChloroform0.38J5.0ug/L8260B7001000000000000000000000000000000000000				J		-		
460-52390-5 GT-5 Chloroform 0.69 J 7.0 ug/L 8260B Tetrachloroethene 0.38 J 5.0 ug/L 8260B 460-52390-6 DUPLICATE			0.26	J	5.0	ug/L	8260B	
Chloroform 0.69 J 7.0 ug/L 8260B Tetrachloroethene 0.38 J 5.0 ug/L 8260B 460-52390-6 DUPLICATE V V V Chlorobenzene 3.1 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 3.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 500 ug/L 8260B Kineral Spirit Range Organics 500 1,7.0 ug/L 8260B	Mineral Spirit Range C	Drganics	650		50	ug/L	8015B	
Tetrachloroethene 0.38 J 5.0 ug/L 8260B 460-52390-6 DUPLICATE V V Chlorobenzene 3.1 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 3.0 ug/L 8260B Toluene 0.277 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8260B 460-52390-7 TRIP BLANK V V Number of the state of the s	460-52390-5	GT-5						
460-52390-6 DUPLICATE Chlorobenzene 3.1 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 5.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8015B Heo-52390-7 TRIP BLANK V V N Chloroform 0.17 J 7.0 ug/L 8260B	Chloroform		0.69	J	7.0	ug/L	8260B	
Chlorobenzene 3.1 J 5.0 ug/L 8260B 1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 0.27 J 5.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8015B 460-52390-7 TRIP BLANK Chloroform 0.17 J 7.0 ug/L 8260B	Tetrachloroethene		0.38	J	5.0	ug/L	8260B	
1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8015B 460-52390-7 TRIP BLANK Chloroform 0.17 J 7.0 ug/L 8260B	460-52390-6	DUPLICATE						
1,2-Dichlorobenzene 0.51 J 3.0 ug/L 8260B 1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8015B 460-52390-7 TRIP BLANK Chloroform 0.17 J 7.0 ug/L 8260B	Chlorobenzene		3.1	J	5.0	ug/L	8260B	
1,3-Dichlorobenzene 0.31 J 3.0 ug/L 8260B 1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8015B 460-52390-7 TRIP BLANK Chloroform 0.17 J 7.0 ug/L 8260B	1,2-Dichlorobenzene		0.51	J	3.0	-	8260B	
1,4-Dichlorobenzene 1.2 J 3.0 ug/L 8260B Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8015B 460-52390-7 TRIP BLANK Chloroform 0.17 J 7.0 ug/L 8260B	1,3-Dichlorobenzene		0.31	J	3.0	-	8260B	
Toluene 0.27 J 5.0 ug/L 8260B Mineral Spirit Range Organics 590 50 ug/L 8015B 460-52390-7 TRIP BLANK 0.17 J 7.0 ug/L 8260B				J	3.0	-		
Mineral Spirit Range Organics 590 50 ug/L 8015B 460-52390-7 TRIP BLANK 0.17 J 7.0 ug/L 8260B				J	5.0	-	8260B	
Chloroform 0.17 J 7.0 ug/L 8260B	Mineral Spirit Range C	Drganics	590			-		
Chloroform 0.17 J 7.0 ug/L 8260B	460-52390-7	TRIP BLANK						
•			0.17	J	7.0	ug/L	8260B	
	Methylene Chloride		1.4			ug/L	8260B	

METHOD SUMMARY

Client: Basile Environmental Solutions, LLC			Job Number: 460-52390-1	
Description	Lab Location	Method	Preparation Method	
Matrix:				
Matrix: Water				
Volatile Organic Compounds (GC/MS)	TAL EDI	SW846 8260B		
Purge and Trap	TAL EDI		SW846 5030B	
8015B - Mineral Spirt Range Organics	TAL EDI	SW846 8015B		
Purge and Trap	TAL EDI		SW846 5030B	
Lab References:				
TAL EDI = TestAmerica Edison				

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.