REMEDIAL INVESTIGATION REPORT

FARRAND CONTROLS SITE

Valhalla, Westchester County, New York (Site Registry No. 3-60-046)

CONTRACT NO. D003600-8

Prepared For

New York State Department of Environmental Conservation

AUGUST 2000

RLA/FARD1617(6/11/99)

REMEDIAL INVESTIGATION REPORT

FARRAND CONTROLS SITE VALHALLA, NEW YORK

SITE REGISTRY NO. 3-60-046

Prepared for

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

By

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK

AUGUST 2000

REMEDIAL INVESTIGATION REPORT FARRAND CONTROLS SITE

TABLE OF CONTENTS

Section		Title	<u>Page</u>
1.0	INTR	ODUCTION AND BACKGROUND	1-1
	1.1	Project Objectives	1-1
	1.2	Site Location and Ownership	1-2
	1.3	Land Use	1-2
	1.4	Site Description	1-2
	1.5	Site History and Operations	
	1.6	Regional Geology	
	1.7	Regional Hydrogeology and Drainage	
	1.8	Water Supply	
	1.9	Climate	
	1.10	Previous Investigations	
	1.11	Overview of Remedial Investigation and Report Organization	1-10
2.0	STUD	Y AREA INVESTIGATION	2-1
	2.1	Overview of Field Activities	2-1
	2.2	Historical Aerial Photograph Review	
	2.3	Commercial and Private Water Supply Well Surveys	
	2.4	Existing Groundwater Monitoring Well Survey	
	2.5	Existing Groundwater Monitoring Well Sampling	2-4
	2.6	Site Preparation	2-4
	2.7	Sampling Grid Network	2-5
	2.8	Surface Soil Sampling	2-5
	2.9	Test Trench Soil Sampling	2-5
	2.10	Soil Geoprobe Sampling	2-6
	2.11	Groundwater Geoprobe Sampling	2-7
	2.12	Surface Water Sampling	2-8
	2.13	Surface Water Sediment Sampling	
	2.14	Groundwater Monitoring Well Installation	2-9
		2.14.1 Monitoring Well Borehole Construction,	
		Sampling and Logging	
		2.14.2 Monitoring Well Construction	
		2.14.3 Monitoring Well Development	
	2.15	Groundwater Monitoring Well Sampling	
	2.16	Groundwater Level Measurement	
	2.17	In Situ Hydraulic Conductivity Testing	
	2.18	Indoor Air Sampling	2-14

Section		<u>Title</u>	Page
	2.19	Drummed Materials Disposal	2-14
	2.20	Surveying and Mapping	
	2.21	Health and Safety Program	
	2.22	Quality Assurance/Quality Control Program	2-16
	2.23	Data Validation	
3.0	PHY	SICAL AND ECOLOGICAL	
	СНА	RACTERISTICS OF THE STUDY AREA	3-1
	3.1	Surface Features	3-1
	3.2	Facility Features	3-1
	3.3	Soils	3-2
	3.4	Topography	3-3
	3.5	Drainage	
	3.6	Geology	
		3.6.1 Unconsolidated Deposits	
		3.6.2 Bedrock	
	3.7	Hydrogeology	
		3.7.1 Groundwater Flow	
		3.7.2 Hydraulic Conductivity and Groundwater Flow Velocity	
		3.7.3 Subsurface Effects On Groundwater and DNAPL Flow	
	3.8	Ecology and Wildlife Habitat Survey	
		3.8.1 Major Habitat Types	
		3.8.1.1 Forested Wetland	
		3.8.1.2 Maintained Lawn	
		3.8.1.3 Impervious Surfaces	
		3.8.2 Wetlands	
		3.8.3 Mammals	
		3.8.4 Birds	
		3.8.5 Fish	
		3.8.6 Reptiles and Amphibians	
		3.8.7 Rare Species and Critical Habitats	3-22
		3.8.8 Biological Associations Found in the	
		Project Vicinity	3-23
		3.8.9 Observations of Stress Potentially Related to	
		Site Contaminants	3-23
		3.8.10 Habitat Values of Vegetative Zones Within the	<i>.</i> -
	• •	Project Site	3-24
	3.9	Contaminant Pathways and Impact Analysis	3-26

Section		Title	Page
4.0	NAT	URE AND EXTENT OF CONTAMINATION	4-1
	4.1	Identification of Standards, Criteria and Guidelines	4-1
		4.1.1 Surface and Subsurface Soil	4-1
		4.1.2 Groundwater	4-1
		4.1.3 Surface Water	4-2
		4.1.4 Surface Water Sediment	4-2
		4.1.5 Indoor Air	4-3
	4.2	Analytical Results	4-3
		4.2.1 Surface Soil	
		4.2.2 Subsurface Soil	
		4.2.2.1 Test Trenches	
		4.2.2.2 Geoprobe Probeholes	
		4.2.3 Groundwater	
		4.2.3.1 Geoprobe Probeholes	
		4.2.3.2 Groundwater Monitoring Wells and Piezometers	
		4.2.4 Surface Water	
		4.2.5 Surface Water Sediment	
		4.2.6 Indoor Air	
		4.2.7 Natural Attenuation	
		4.2.8 Data Validation/Usability	4-21
5.0	CON	ICLUSIONS	5-1
	5.1	Surface Soil	5-1
	5.2	Subsurface Soil	5-1
	5.3	Groundwater	5-2
	5.4	Surface Water	5-3
	5.5	Surface Water Sediment	5-3
	5.6	Indoor Air	5-3
6.0	HUN	IAN HEALTH RISK ASSESSMENT	6-1
	6.1	Site Location and Environmental Setting	6-1
	6.2	Exposure Assessment	6-3
		6.2.1 Surface Soil	6-4
		6.2.2 Subsurface Soil	6-5
		6.2.3 Groundwater	6-6
		6.2.4 Surface Water	6-7
		6.2.5 Surface Water Sediment	6-8
		6.2.6 Air	6-8

7.0	REFE	RENCES	7-1
	6.3	Conclusion	6-9
Section		Title	Page

List of Appendices

Soil Geoprobe LogsA
Groundwater Monitoring Well Construction LogsB
Slug Test GraphsC
Survey MapD
GPR FigureE
Well Development and Purging LogsF
Analytical Data Tables - SoilG
Analytical Data Tables - GroundwaterH
Analytical Data Tables - Surface WaterI
Analytical Data Tables - Surface Water SedimentJ
Analytical Data Tables – Indoor AirK
Natural Attenuation Parameter ResultsL

List of Figures

1-1

1-2	Site Plan
2-1	Surface and Subsurface Soil Sample Locations
	Groundwater, Surface Water and Sediment Sample Locations
2-3	Location of Commercial Wells
3-1	Site Drainage and Subsurface Utility Map
3-2	Location of Geologic Cross Sections
3-3	Geologic Cross Section A-A'
3-4	Geologic Cross Section B-B' and C-C'
3-5	Top of Refusal Surface
3-6	Water Table Contour Map - April 15, 1999

Site Location Map

List of Figures (continued)

- 3-7 Water Table Contour Map November 2, 1999
- 3-7A Water Table Contour Map January 26, 2000
- 3-8 Hydrogeologic Cross Section A-A'
- 3-9 Hydrogeologic Cross Section B-B' and C-C'
- 3-10 Features Potentially Impacting Groundwater Flow and DNAPL Migration
- 3-11 Major Habitat Types of Site and Vicinity
- 4-1 Total Targeted VOC Concentrations in Soil
- 4-2 Total Targeted VOC Concentrations in Shallow Overburden Groundwater
- 4-3 Total Targeted VOC Concentrations in Deep Overburden Groundwater at the Top of Refusal Surface and Intermediate Depth
- 4-4 Locations of Chemical Cross Sections
- 4-5 Chemical Cross Section A-A'
- 4-6 Chemical Cross Sections B-B' and C-C'
- 4-7 Total Targeted VOC Concentrations in Shallow Overburden Groundwater Monitoring Wells and Piezometers -April 1999
- 4-8 Total Targeted VOC Concentrations in Deep Overburden Groundwater Monitoring Wells and Piezometers -April 1999
- 4-9 Total Targeted VOC Concentrations in Shallow Overburden Groundwater Monitoring Wells and Piezometers -November 1999
- 4-10 Total Targeted VOC in the Deep Overburden Groundwater and Bedrock Monitoring Wells - November 1999
- 4-11 Total Targeted VOC Concentrations in Surface Water and Sediment
- 4-12 Natural Attenuation Parameter Concentrations in Shallow Overburden Groundwater
- 4-13 Natural Attenuation Parameter Concentrations in Deep Overburden Groundwater

List of Tables

- 2-1 Commercial Well Survey Findings
- 2-2 Groundwater Monitoring Well and Piezometer Construction Details
- 3-1 Groundwater and Surface Water Elevation Data
- 3-2 Monitoring Well Hydraulic Head Data

List of Tables (continued)

3-3	Hydraulic Conductivity Data Summary
3-4	Remedial Investigation/Feasibility Study
	Vegetative Species
3-5	Remedial Investigation/Feasibility Study
	Mammals Likely to Inhabit the Site
3-6	Remedial Investigation/Feasibility Study
	Avifauna Likely to Inhabit the Site
3-7	Remedial Investigation/Feasibility Study
	Finfish Likely to Seasonally Inhabit the Site
3-8	Remedial Investigation/Feasibility Study
	Reptiles and Amphibians Likely to Inhabit the Site
3-9	Remedial Investigation/Feasibility Study
	Federally Listed or Proposed Threatened or
	Endangered Species in New York State
3-10	Remedial Investigation/Feasibility Study
	Floral and Faunal Associations Observed Within 2.5 Miles of the Site
3-11	Remedial Investigation/Feasibility Study
	Qualitative Habitat Value Analysis Within the Site and
	Surrounding Area
4-1	Sample Analyses Summary
4-2	Exceedances of NYSDEC Recommended Soil
	Cleanup Objectives -Surface Soil Samples
4-3	Exceedances of NYSDEC Recommended
	Soil Cleanup Objectives - Test Trench Soil Samples
4-4	Exceedances of NYSDEC Recommended Soil Cleanup
	Objectives - Geoprobe Soil Samples
4-5	Exceedances of NYSDEC Recommended Soil Cleanup
	Objectives - Monitoring Well Boring Soil Samples
4-6	Exceedances of NYSDEC Ambient Water Quality
	Standards - Geoprobe Groundwater Samples
4-7	Exceedances of NYSDEC Ambient Water Quality
	Standards - Groundwater Monitoring Well Samples
4-8	Exceedances of NYSDEC Surface Water
	Standards - Surface Water Samples
4-9	Exceedances of NYSDEC Contaminated Sediment
	Screening Values - Surface Water Sediment Samples
4-10	Exceedances of OSHA Standards and NIOSH
	Guidelines - Indoor Air Samples
4-11	Targeted VOC Constituent Percentages in Groundwater

1.0 INTRODUCTION AND BACKGROUND

This section presents the overall project objectives of the remedial investigation for the Farrand Controls Site, a description of the site, site history and previous investigations, and an overview of the remedial investigation and report organization.

1.1 **Project Objectives**

As part of New York State's program to investigate and remediate hazardous waste sites, the New York State Department of Environmental Conservation (NYSDEC) issued a work assignment to Dvirka and Bartilucci Consulting Engineers (D&B) of Woodbury, New York to conduct a remedial investigation and feasibility study (RI/FS) for the Farrand Controls Site located in Valhalla, Westchester County, New York. This work assignment has been issued under the Superfund Standby Contract between D&B and NYSDEC. The registry number for this New York State Class 2 Inactive Hazardous Waste Disposal Site is 3-60-046. The RI/FS for this site is being performed with funds allocated under the New York State Superfund Program.

The objectives of this RI/FS are to determine the nature, source(s) and extent of contamination; identify contaminant migration pathways and potential receptors; determine impacts to human health and the environment; evaluate the need for corrective action; identify and evaluate remedial alternatives; and select a long-term, cost-effective remedial plan.

This document, entitled "Remedial Investigation Report – Farrand Controls Site," addresses the investigation phase of the RI/FS, and is prepared in accordance with the federal Comprehensive Emergency Response, Compensation and Liability Act (CERCLA) and Superfund Amendments and Reauthorization Act (SARA), and the New York State Superfund Program, including the NYSDEC Technical and Administrative Guidance Memorandum (TAGM), *Guidelines for Remedial Investigation/Feasibility Studies*.

1.2 Site Location and Ownership

The Farrand Controls Site is located at 99 Wall Street in Valhalla, Westchester County, New York (see Figure 1-1). The site is currently owned by Farrand Controls, Inc., Division of Ruhle Companies, Inc., and is an active electronic component manufacturing facility.

1.3 Land Use

The Farrand Controls Site is currently used for light industrial purposes. To the northwest of the site is a commercial complex whose adjoining paved parking area is separated from the Farrand Controls parking area by concrete barriers. The commercial complex previously served as an annex to the Farrand Controls main site building, which housed the company's Optical Division. Upslope to the north is the Mount Eden Cemetery. Residential neighborhoods of detached, single-family dwellings border the site to the east and southeast, and extend upslope to the northeast. A wetland/pond complex borders the site to the southwest and west. A long paved driveway extends from Wall Street, separating site buildings from the wetlands. Area residents and workers at Farrand Controls use the Wall Street extension/driveway for walking, jogging, skating, exercising pets and bicycle riding.

1.4 Site Description

The Farrand Controls property is approximately 13.6 acres in size. The northeastern area, approximately 60 percent of the site is a hill, with bedrock outcrop at its base, and is undeveloped. The developed area of the property extends from the bedrock outcrop to the property boundaries to the northwest, west and south, and is hereafter referred to as the site and is illustrated on Figure 1-2. The site currently consists of a 28,255 square foot, one-story block and steel framed manufacturing building constructed in 1958 (see Figure 1-2). The original building of approximately 5,000 square feet was expanded in 1972. There is also an 8,312 square foot, wood frame "Quonset" style building on the site, which was constructed in 1958 as an indoor tennis court. Except for the eastern portion of the site and the bedrock escarpment, the site is primarily grassed and slopes gently to the west.

The site has been served by a municipal public water and sanitary sewer system since 1958, when the facility was constructed. The surrounding residential and commercial/industrial area is also served by public water and municipal sanitary sewers. Storm water is collected by an on-site storm sewer system that discharges to the wetlands located to the south and west of the facility.

The Farrand Controls main site building and most of the property boundaries are situated diagonally with respect to geographic north. To facilitate discussion of site information and evaluation of the remedial investigation findings, areas of the site and site main building will be referenced as southern, central and northern portions as designated in Figure 1-2.

1.5 Site History and Operations

Based on a review of aerial photography of the site, prior to 1958, the Farrand Controls Site was undeveloped with respect to building construction. The photographs indicate that portions of the site before 1958 were heavily disturbed as the result of surface mining, possibly a borrow pit or sand and gravel mine.

Operations at the site included machining of metals, photolithographic processing (including cupric etching), soldering, and electronic and mechanical assembly. In the basement of the original building, a sump was used to collect liquids from various floor drains. When the building was expanded in 1972, this sump was reportedly deactivated and a number of floor drains that emptied into the sump were plugged. Solvents used at the time of the sump deactivation included acetone, 1,1,1-trichloroethane, Freon, methylene chloride and isopropyl alcohol.

Since required by regulations, spent solvents at Farrand Controls Inc. have been drummed and staged on-site pending off-site disposal (personal communication from M. Frenz to A. Jaroszewski, 2/11/00). The drums were staged behind the main site building near the south

central portion of the building. Prior to this period, it is not known how the spent solvents were managed.

In 1993, it was reported that Ruhle Company cleaned out the accumulated sludge from the sump. Tests of the sludge confirmed the presence of 1,1,1-trichloroethane. In 1996, the sump contents, base and underlying shallow soil were removed by Farrand Controls personnel. This activity generated one drum of solids and one drum of liquids. Analysis of the liquids showed the presence of Freon 113, 1,1-dichloroethene, methylene chloride, 1,1-dichloroethane and 1,1,1-trichloroethane in concentrations between 65,000 and 25,000,000 ug/l. The sump was reportedly sealed after the materials were removed and is no longer in use.

1.6 Regional Geology

The Farrand Controls Site and its environs are part of the New England uplands physiographic province. Bedrock consists of Precambrian and Paleozoic sedimentary and igneous rocks that have been highly metamorphosed and complexly folded and faulted. In the vicinity of the site, bedrock is mapped as probably belonging to the Manhattan formation *Geologic Map of New York State, Lower Hudson Sheet* [Fischer, Isachsen and Rickard, 1970]). The Manhattan formation consists of pelitic, garnet-amphibolite schist and gneiss. Near the Valhalla area, the formation is considered to be of Cambrian age.

The moderate relief that characterizes the area is attributed to differences in the relative hardness of the underlying bedrock. Drainages have developed in areas of softer, more easily eroded bedrock and in weathered shear zones where faulting has weakened bedrock. These structural and lithologic controls on drainage produced the area's ridge-and-valley topography. Glacial erosion subsequently modified the landscape. During glacial retreat, deposition of sediments as till, outwash and moraines produced a complicated unconsolidated veneer above low-lying bedrock. The *Surficial Geologic Map of New York State, Lower Hudson Sheet* (Caldwell, 1989) describes this veneer as "poorly sorted, variably textured diamict deposited beneath glacial ice."

1.7 Regional Hydrogeology and Drainage

The shallow water table in the region occurs in unconsolidated deposits overlying bedrock in the lowlands. The shallow groundwater flows from the highlands toward the valley lows. In the site vicinity, this direction is generally southward. Groundwater at depth also occurs in the fractured bedrock.

Drainage from the area surrounding the Farrand Controls Site is primarily to the southeast toward the Bronx River (refer to Figure 1-1). To the south, the Bronx River becomes the Hutchinson River and empties into Long Island Sound at Eastchester Bay. In the vicinity of the site, drainage is partly contained internally in valley floor ponds.

1.8 Water Supply

The Farrand Controls Site has been served by public water since its development in 1958. The source of the potable water is the Kensico Reservoir.

Residences in the vicinity of the site also are served by the municipal water supply. A Water Use Survey conducted in the residential area downgradient of the site between Wall Street and the Taconic State Parkway reported no private wells. (This survey is discussed further in Section 2.3.) Private wells installed into bedrock on Railroad Avenue across the Taconic State Parkway are used for commercial purposes.

1.9 Climate

The climate in the Farrand Controls Site vicinity consists of a humid continental climate with secondary maritime influences from the Long Island Sound and the Atlantic Ocean. In nearby Scarsdale, mean monthly temperatures range from 30°F in January to 70°F in July. Mean maximum temperatures range from 38°F to 86°F and mean low temperatures range from 21°F to 62°F (*Soil Survey of Putnam and Westchester Counties, New York*, United States Department of Agriculture Soil Conservation Service, 1994). Total precipitation in Westchester County

averages between 44 and 47 inches per year. From May through September the average precipitation is 20 to 23 inches and from October through April it is 24 to 25 inches.

The prevailing wind direction, as determined from data (National Climatic Data Center) collected at the nearest recording station in White Plains, is from the west-northwest. Significant gusts occur in the winter; however, significant gusts related to thunderstorms or squalls also occur in the summer. The ridge to the north of the site may locally affect wind direction and speed.

1.10 Previous Investigations

The previous investigations discussed in this section were undertaken by the current facility owner without NYSDEC oversight. The results of the investigations have not been approved by the NYSDEC. The conclusions in this section are not necessarily those of the NYSDEC.

As the result of a Phase I site assessment conducted for the Farrand Controls Site in early 1993, which concluded that hazardous materials or petroleum products were suspected of being present in the soil and groundwater beneath the site, a series of investigations were undertaken. Figure 1-2 shows the groundwater monitoring system and sampling points which existed before the State Superfund remedial investigation was conducted and pertinent site features for reference regarding the below chronology.

In 1993, a Phase II site assessment was performed, which included four soil borings completed as monitoring wells (MW-1, MW-2, MW-3 and MW-4), field-screening of soil samples for volatile organic compounds (VOCs), and screening and analyses of water samples from the four monitoring wells and three sumps (SU-1, SU-2 and SU-3) within the building.

The "Draft Phase II Environmental Site Assessment, 99 Wall Street, Valhalla, New York," prepared by GZA GeoEnvironmental Inc., dated May 1993, presents analytical data on water samples from the four monitoring wells and three sumps that indicated VOCs were present

in all samples except from well MW-2. Elevated VOC concentrations were reported in samples from MW-3 (21,199.1 ug/l), SU-2 (178.1 ug/l) and SU-3 (1,414.9 ug/l).

In October 1993, additional investigation was undertaken at the site by Environmental Management, Ltd. (EML), which included a ground penetrating radar (GPR) survey, installation of four groundwater piezometers and collection of eight groundwater samples from monitoring wells MW-1, MW-2, MW-3 and MW-4, and the newly installed piezometers, P-5S, P-5M, P-5D and P-6. In a report entitled, "Subsurface Investigation, Farrand Controls, Valhalla, New York," dated April 8, 1998, EML presented the results of the investigation summarized as follows.

- The GPR survey allowed for the mapping of subsurface utilities prior to drilling activities and identified a number of shallow targets in a circular area immediately to the southwest of the building.
- The results of the groundwater analysis indicated that VOCs were not detected in MW-1 and MW-2, and that VOCs were detected at varying concentrations in MW-3, MW-4, P-5S, P-5M, P-5D and P-6, with the highest levels reported in MW-3 (6,320 ug/l) and P-5D (4,002 ug/l). Dense nonaqueous phase liquid (DNAPL) comprising methylene chloride, 1,1-dichloroethene, 1,1-dichloroethane, 1,1,1-trichloroethane and trichloroethene was present in P-5D.
- Rising and falling head slug tests were performed on MW-1, MW-2, MW-3 and MW-4 in January 1994. Based on the results of the slug tests and the subsequent hydrologic analysis, shallow groundwater flow beneath the site was reported to be to the south and southeast, and not toward the wetlands (southwest). Groundwater flow rates were calculated for the site, with estimated rates of 19.5 ft/yr for the overburden between MW-3 and MW-4. Because of the high hydraulic conductivity determined for the site's subsurface materials, the potential for higher rates of groundwater flow was suspected.

From April through November 1994, EML conducted additional investigation as follows:

- Groundwater elevation measurements at selected wells and piezometers.
- Slug testing of deep piezometer P-5D.
- Refraction-seismic survey to describe the geometry of the bedrock surface.
- Low-frequency (100 MHz) GPR survey to investigate subsurface stratigraphy.

- Soil-vapor screening survey of the sump and its immediate surroundings.
- Core sampling of the sump and underlying sediment (C1, C2, C3, C4 and C5).
- Installation of 10 additional shallow piezometers (P-7, P-8, P-9, P-10, P-11, P-12, P-13, P-14, P-15 and P-16).
- Sampling of 16 groundwater monitoring wells and piezometers (MW-1, MW-2, MW-3, MW-4, P-5S, P-5M, P-5D, P-6, P-7, P-8, P-9, P-10, P-11, P-12, P-13, P-14, P-15 and P-16).
- Collection of Geoprobe groundwater samples at probe refusal at locations identified by the seismic survey (GP-1, GP-2, GP-3 and GP-4).
- Performance of bench-scale tests to evaluate the feasibility of denitrification-based bioremediation of chlorinated VOCs in groundwater.

The results of the soil and groundwater data as reported in a "Remedial Investigation Report," dated April 1995, prepared by EML, indicated that VOCs were at low levels or not detected in MW-2, P-6, P-8, P-9, P-13, P-15 and P-16, and that VOCs were detected at varying concentrations in MW-3, MW-4, P-5S, P-5M, P-5D, P-7, P-10, P-11, P-12, P-14, GP-1, GP-2, GP-3, GP-4, C-1, C-2, C-3, C-4 and C-5, with the highest concentrations in MW-3 (12,916 ug/l), P-5D (26,303 ug/l), GP-2 (4,608 ug/l), and C-3 (3,412 ug/kg).

Additional results presented in the April 1995 report by EML are summarized and paraphrased below.

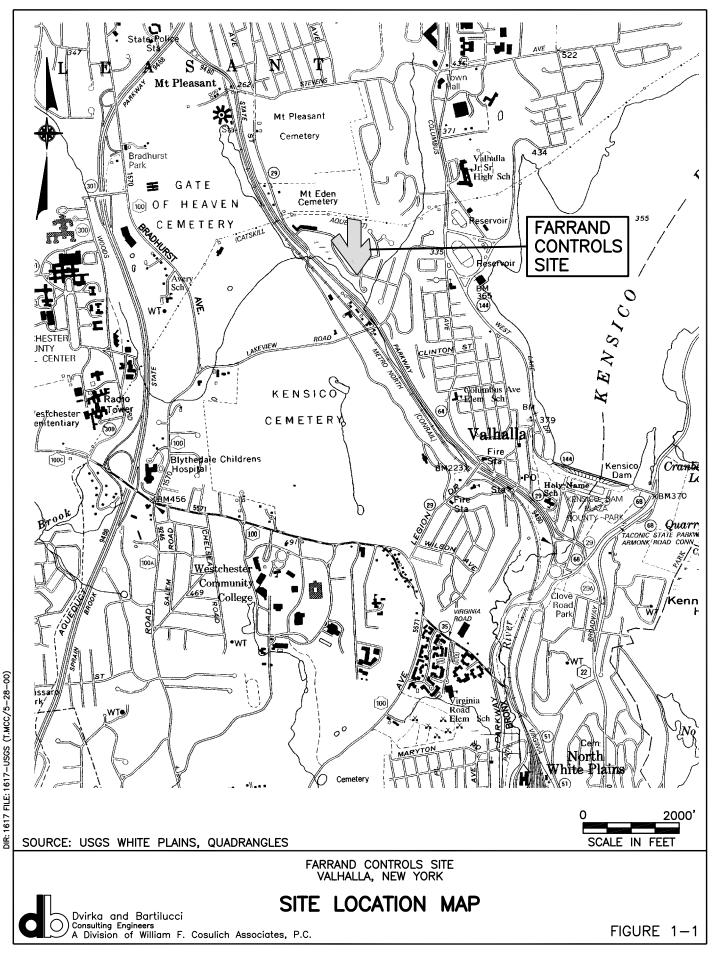
- Groundwater elevation data for two representative days, June 16 and August 16, 1994, were used to construct groundwater contour diagrams, which depict a consistent pattern of southeasterly groundwater flow over the course of the summer. Although the overall southeasterly groundwater flow pattern is consistent with that previously reported, the groundwater elevation data for the new piezometers suggested a strong southwest component of flow beneath the southeastern portion of the facility. At the approximate location of MW-4, groundwater flow appears to "bend" to the southwest toward the inferred zone of groundwater discharge represented by the adjacent wetlands.
- Based on the seismic-refraction survey, the depth to bedrock at the site was interpreted to range from 9.2 to 63.4 feet below the ground surface (bgs).

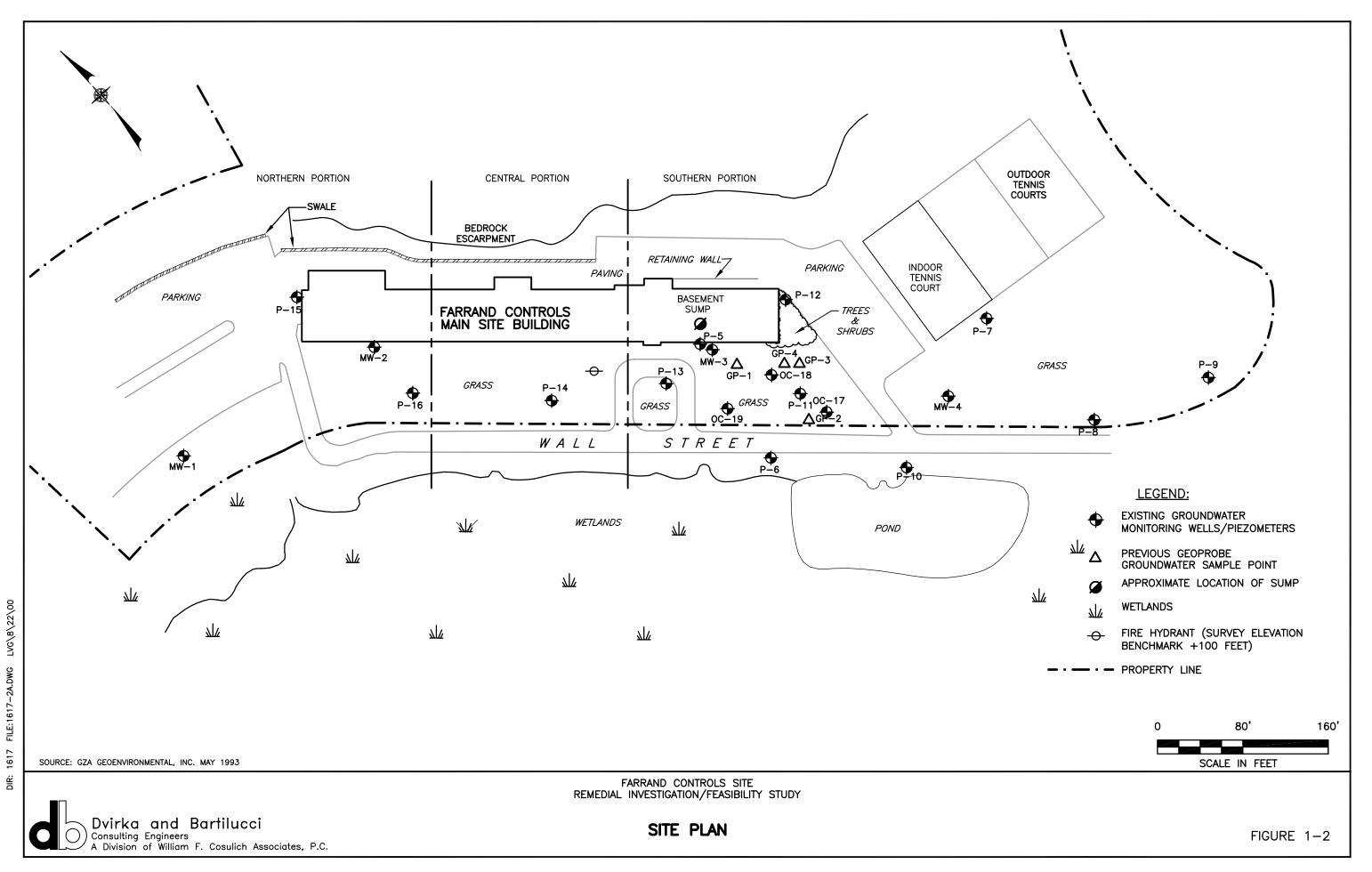
- The results of low-frequency GPR survey provided information on the water table and the organic silt stratum beneath the site. Using the stratigraphic and groundwater elevation data for boring P-5 as controls, the depth of the silt layer was inferred to range from 12 feet to 19 feet bgs.
- The organic silt layer was reported to exhibit an irregular "scalloped" surface along the survey lines that were performed perpendicular to the building. The surface of the organic silt stratum as shown on the GPR data records is characterized by small channel-shaped depressions which are offset by cusp-like peaks. With respect to the adjacent "peaks," these "channels" are on the scale of approximately 2 to 10 feet horizontally and 1 to 3 feet vertically. The surface relief of the silty clay stratum appears to be related to the partial erosion of this unit during the deposition of the overlying alluvium, therefore, the "channels" observed may represent relict drainage channels formed during this depositional period. Interpretation of the GPR data suggests that the surface of the organic silt stratum dips towards the wetlands to the southwest. Based on the GPR data, the organic silt stratum also appears to pinch out toward the ground surface to the southeast.
- A much deeper, but much less distinct layer, was observed in the GPR data and was interpreted as the bedrock surface and/or basal till. Using P-5 as a control, the depth to bedrock on the GPR data profiles is inferred to range from 26 to 51 feet bgs. The shape of the bedrock surface suggested by the GPR data compares well to the interpretation of the seismic data in that a similar bowl-shaped depression is suggested. However, the GPR data suggest that this "bowl" may be larger and more elongated in the northern direction.
- Anomalous "drip-like" features were observed in the GPR data immediately below certain areas of the organic silt stratum. These anomalies were particularly evident at locations immediately downgradient of the sump area. Detailed analysis of the GPR characteristics of these "drips" revealed anomalous amplitude and polarity signatures that might be expected from a DNAPL or DNAPL-like target.
- The results of the soil-vapor survey were inconclusive. PID measurements of the soil vapor below the concrete floor surrounding the sump did not exceed background concentrations (0-1.7 ppmv). Similarly, PID measurements of soil-vapor points driven into the soil outside of the building and through the exterior wall of the sump room were also at background concentrations. The headspace screening also indicated background conditions. A reading of 96 ppmv was obtained from the headspace of the steel drum that contained the sludge materials previously removed from the sump by Farrand Controls.

In September 1997, EML conducted additional investigation at the site, including the installation of three well clusters, OC-17, OC-18 and OC-19, to confirm the findings from Geoprobes GP-1, GP-2, GP-3 and GP-4. Each well cluster consisted of two wells, one shallow

and one deep. Based on a memorandum from Geovation Consultants, Inc. to EML, the groundwater sampling of these new wells and other selected wells/piezometers (MW-3, P-5D, P-15, OC-17S, OC-17D, OC-18S, OC-18D, OC-19S and OC-19D) showed VOCs ranging from 10,282 ug/l in MW-3 to 143.5 ug/l in OC-19S. No VOCs were found in P-15.

In an October 1997 Geovation Consultants, Inc. memorandum, it is stated that the previous GPR and hydrological investigation data suggests a "glaciofluvial channel" between OC-18 and OC-17 is "confirmed by the data," that there is a shallow dip of bedrock between P-5D and OC-17D, that the source of the VOCs is the building sump, and that "denitrification-mediated biodegradation" of the parent solvents TCE, TCA and Freon is occurring in site groundwater.


1.11 Overview of the Remedial Investigation and Report Organization


The Farrand Controls Site RI/FS was designed to identify the contaminant source(s), define the vertical and horizontal extent of soil and groundwater contamination, determine the impacts to nearby surface water bodies and indoor air, and provide recommendations for implementation of remedial measures at the site. The approach of the remedial investigation was to utilize existing data obtained from previous investigations and phased data collection during the RI/FS as the basis for its design.

The remainder of this report is organized as follows:

- Section 2.0 provides the results of well surveys and aerial photograph review, and describes the activities conducted during the remedial investigation;
- Section 3.0 describes the physical and ecological characteristics of the site and vicinity, including surface features, geology, hydrogeology and wildlife habitat;
- Section 4.0 discusses the nature and extent of contamination, including a discussion regarding identification of standards, guidelines and criteria for the various media sampled, data validation, analytical results and contaminant migration;

- Section 5.0 presents the conclusions of the remedial investigation, including a discussion of the source(s) and extent of the soil and groundwater contamination, and impacts on surface waters, sediment and indoor air;
- Section 6.0 provides the results of a human health risk assessment, and
- Section 7.0 provides report references.

2.0 STUDY AREA INVESTIGATION

2.1 Overview of Field Activities

Presented in the following sections is a description of the activities performed at the Farrand Controls Site as part of the remedial investigation. The activities were performed in accordance with the NYSDEC-approved Remedial Investigation and Feasibility Study (RI/FS) Work Plan, dated December 1998. Initial work plan activities, except for groundwater monitoring well installation, were conducted in January, March and April 1999. Based on the findings of the initial Phase I investigation, a follow-up investigation scope of work was developed and the work was conducted in October and November 1999, and January 2000. These latter investigation activities were designated Phase II of the remedial investigation. The scope of this Phase II investigation was described in the RI/FS Work Plan Amendment No. 1, dated September 1999.

The Phase I and II remedial investigation activities included the following tasks:

- Historical aerial photograph review
- Commercial and private water supply well surveys
- Existing monitoring well survey
- Existing monitoring well sampling
- Site preparation
- Sampling grid network
- Surface soil sampling
- Test trench soil sampling
- Subsurface Geoprobe soil sampling
- Groundwater Geoprobe sampling
- Surface water sampling

- Surface water sediment sampling
- Groundwater monitoring well installation
- Groundwater monitoring well sampling
- Groundwater level measurement
- In situ hydraulic conductivity testing
- Indoor air sampling
- Surveying and mapping
- Ecology and wildlife habitat survey
- Human health risk assessment

Descriptions of these activities are presented below. The locations and designations of the sampling points are shown in Figures 2-1 and 2-2.

2.2 Historical Aerial Photograph Review

A review of a series of aerial photographs for the Farrand Controls Site was conducted starting with the 1920 photograph and progressing through photographs of approximate 5-year intervals. Prior to 1958, the site was undeveloped with respect to building construction. The photographs indicate that eastern portions of the site in the vicinity of the tennis courts, before 1958, were heavily disturbed as the result of surface mining, possibly a borrow pit or sand and gravel mine, that began sometime between 1947 and 1954. The resolution of the small scale aerial photographs did not allow for pertinent detailed site activities to be identified.

2.3 Commercial and Private Water Supply Well Surveys

A commercial water supply well survey was conducted for the vicinity of the Farrand Controls Site to determine if commercial wells were impacted by groundwater contamination that may have migrated from the site. The survey focused on the downgradient area approximately 1/2 mile southeast of the site in the direction of the shallow groundwater flow. A

map showing the site and the approximate locations of downgradient commercial water supply wells is presented in Figure 2-3.

On January 19, 1999, the eight wells were sampled by the New York State Department of Health (NYSDOH) for volatile organic compounds (VOCs). No VOCs associated with the site were detected in any of the samples. NYSDOH informed the property owners of these findings through letters dated February 8, 1999.

During June, July and August 1999, the commercial well owners were surveyed to obtain construction information on the wells. This survey was conducted via telephone calls and facsimiles. The well owners and information obtained from the survey are provided in Table 2-1. In summary, the available information indicates that the commercial wells are fairly deep (between 300 and 400 feet below grade) bedrock wells.

NYSDEC conducted a private well survey during November and December 1999 of all residences south of Wall Street and west of Lakeview Avenue to the Taconic State Parkway. Survey forms were mailed to 54 residents. Twenty-five (25) responses were received, and all reported municipal water use.

2.4 Existing Groundwater Monitoring Well Survey

Twenty-four (24) existing monitoring wells and piezometers were installed at the Farrand Controls Site prior to the remedial investigation. The wells were designated MW-1 through 4, P-5 (S, I and D), P-6 through 16, and OC-17 through 19 (S and D). These wells and piezometers, the locations of which are shown in Figure 1-2, were inventoried and evaluated for sampling. The survey determined that the wells were usable for obtaining groundwater samples. Well and piezometer details, derived from field reconnaissance and the review of existing logs, are provided in Table 2-2. Most of the 0.75 and 1.25-inch diameter piezometers contained Teflon tubing with a check valve for purging and sampling.

The well log review also showed that well clusters OC-17, 18 and 19 (S and D) were each constructed within a single borehole and that the wells may not have annulus seals between the screen zones. Consequently, chemical and water level data collected from these wells may not be representative of separate screen zones, but a combination of influences from both zones.

2.5 Existing Groundwater Monitoring Well Sampling

To initially characterize site groundwater quality, 12 wells/piezometers (MW-3, P-5I and D, 6, 10, 11, 17S and D, 18S and D, and 19S and D) were sampled in April 1999. The samples were analyzed for select volatile organic compounds using EPA methods 8010/8020 by Severn Trent Laboratories (STL) using an on-site laboratory. The wells were sampled by purging three casing volumes of water using either a submersible pump and/or Teflon tubing with a check valve. Samples were collected using a PVC bailer or from the Teflon tubing. All purge water was containerized into 55-gallon drums and staged in a rear storage area.

2.6 Site Preparation

Farrand Controls Division of Ruhle Companies, Inc. operated during the remedial investigation activities. Office space and telephone access was provided by Farrand Controls within the main site building. No temporary on-site facilities (office trailers, equipment trailers, etc.) were established at the site during the investigation. All equipment, materials and supplies were transported to the site as needed.

Temporary decontamination pads for equipment were constructed during the project. The pads were constructed on the asphalt pavement in the rear of the main site building (shown in Figure 1-2). The pads measured approximately 10 feet square and were constructed of a wooden frame of 4-inch by 4-inch lumber and covered with heavy-duty plastic sheeting. Water for the decontamination of equipment for drilling and probing was obtained from the building's potable water supply.

Buried utilities were marked out prior to conducting any subsurface intrusive activity. These subsurface utilities included conduits for water supply, storm water, wastewater, electricity, telephone and gas.

2.7 Sampling Grid Network

Prior to performing sampling at the site, a grid was established on the site to locate sample points, with axes that paralleled the Farrand Controls main building walls. The transects were established every 25 feet. The grid layout is included in the sample location figures discussed in subsequent sections.

2.8 Surface Soil Sampling

To characterize surface soils for human health risk assessment, two surface soil samples were collected. The samples were collected in areas of high employee access or traffic. One sample was collected from the grass area in front of the main site building near the stairway entrance leading to the basement sump, and the other sample was collected in the vicinity of the picnic table along the southeastern side of the building (see Figure 2-1).

The samples were collected of the 0 to 2-inch surface horizon after scraping away grass. The samples were analyzed for Target Compound List +10 (TCL +10) VOCs, Freon 113, PCBs, Target Analyte List (TAL) metals and cyanide (CN).

2.9 Test Trench Soil Sampling

To investigate the potential for preferential contaminant flow pathways associated with buried utility trench backfill, five test trenches were excavated at the site. The designations and locations of the trenches are shown in Figure 2-1.

The test trenches were excavated on April 12 and 13, 1999 by Uni-Tech Drilling Co., Inc. The trenches were excavated by a backhoe to depths ranging from approximately 3 to 6 feet below grade. The trenches were logged for soil characteristics, fill material content, odor and volatile organic vapors using a photoionization detector (PID). The test pit logs are provided in Appendix A.

The targeted utility conduits, also shown on Figure 2-1, were uncovered and the underlying soil was inspected for any evidence of leakage or contamination (i.e., staining, odor). To characterize the soil quality along the utility lines, a sample from each trench from under the utility conduit was collected for laboratory analysis. The samples were analyzed on-site by STL for TCL +10 VOCs, Freon 113, PCBs, TAL metals and CN.

The test trenches were backfilled after sampling. The surface of the former trench was subsequently restored to pre-existing conditions after backfilling.

2.10 Soil Geoprobe Sampling

To characterize the subsurface soils in potential areas of contamination, samples were collected using a portable truck-mounted Geoprobe rig operated by Zebra Environmental, Inc. Approximately 15 probeholes were constructed along the walls of the southern portion of the main site building and through the basement sump.

Samples were collected in a polyethylene 4-foot long core. After each sample was retrieved, the core was removed from the sampler and screened in one-foot intervals for the presence of VOCs using a PID. The sample was then logged for geology and visually inspected. Probehole logs are provided in Appendix A.

The soil samples were collected from probeholes from the following locations and depths:

- Building sump generally at 3 or 4-foot horizons to 28 feet below the basement floor.
- Building perimeter just below the base of the building footings at approximately 6 to 10 feet below grade and at the refusal depth of the adjacent groundwater probes.

• Monitoring well borings - at horizons of highest PID readings.

Prior to collecting each sample, the core sampler was decontaminated using high pressure steam. A new polyethylene liner was used for each sample.

The samples were analyzed off-site, also by STL, for TCL +10 VOCs, Freon 113, TAL metals and CN. Approximately 70 percent of these samples were additionally analyzed on-site for selected VOCs and Freon 113.

After sampling, the probeholes were allowed to collapse and the top few feet filled with bentonite powder and hydrated. Probeholes constructed through pavement were patched with asphalt in the upper few inches. Formation material was containerized in drums at the rear site staging area shown in Figure 2-2.

2.11 Groundwater Geoprobe Sampling

To initially investigate the quality of the groundwater at and in the vicinity of the site, approximately 90 probeholes were constructed using the Geoprobe sampling methodology. Sampling horizons were selected to characterize the vertical distribution of groundwater contamination. The findings of this investigation were evaluated to identify permanent monitoring well locations. The probeholes were located on and downgradient of the site at locations shown in Figure 2-2A.

Groundwater samples were generally collected at two intervals: a shallow zone near the water table (shallow overburden groundwater) and a deep zone near probe refusal (deep overburden groundwater). When the depth to the refusal surface was less than 20 feet, one sample was collected near the top of the refusal surface. An intermediate depth sample was generally collected in the off-site probeholes to characterize the thicker aquifer present at this area.

2-7

The groundwater samples were collected by hydraulically driving a screen point sampler in the ground to the desired depth, opening and then retracting approximately 2 feet to expose a stainless steel screen. Polyethylene tubing, 3/8 inches in diameter and fitted with a clean stainless steel check valve, was inserted into the probe rods and slowly moved up and down to lift a column of water up to the surface. During purging prior to sampling, each sample was monitored in the field for pH, conductivity, temperature, dissolved oxygen and turbidity.

The samples were additionally screened for volatile organic vapors and tested for the presence of dense nonaqueous phase liquids (DNAPL) using Sudan IV dye.

Prior to sample collection, the sampler and probe rods were decontaminated using high-pressure steam. Dedicated polyethylene tubing was used to collect each sample. Backfilling of probeholes constructed through asphalt were completed with asphalt patch.

All of the groundwater Geoprobe samples collected prior to October 1999 were analyzed by the on-site laboratory for VOCs and Freon 113. Approximately 10 percent of the samples were additionally analyzed off-site for TCL +10 VOCs, Freon 113, PCBs, TAL metals and CN. Some of these samples were also analyzed for natural attenuation parameters including dissolved methane, ferrous iron, nitrate, sulfate, sulfide and total organic carbon (TOC). During the Phase II investigation, all of the samples were analyzed by the off-site laboratory for the parameters noted above, excluding PCBs.

2.12 Surface Water Sampling

Fourteen surface water samples were collected from the following locations (see Figure 2-1):

- One sample from the upgradient stream in the rear of the main site building;
- Five samples at the outfalls of the storm water discharge to the pond;
- Two samples near the center of the pond;

- One sample from the backyard sump at 23 Grand Boulevard;
- One sample in the western wetland area; and
- Four samples at downstream locations east of the pond.

The samples were obtained by collecting the water directly into laboratory-supplied containers. At paired surface water/sediment sampling points, the water sample was collected first.

The samples were analyzed for TCL +10 VOCs, Freon 113, PCBs, TAL metals, CN and TOC.

2.13 Surface Water Sediment Sampling

Six sediment samples were collected from the wetlands, pond and eastern steam (see Figure 2-1).

The samples were collected using a polyethylene scoop or dedicated PVC tubing from the top 6 inches of sediment. The sample locations from the center of the pond were accessed using a raft.

The samples were analyzed for TCL +10 VOCs, Freon 113, PCBs, TAL metals and CN. At two of the locations, TOC was also analyzed.

2.14 Groundwater Monitoring Well Installation

Seven groundwater monitoring wells were installed in the vicinity and downgradient of the site during the remedial investigation. The wells were constructed by Uni-Tech Drilling Co., Inc. The well locations were selected based on the Phase I Geoprobe findings and were installed to monitor the groundwater quality at the eastern edge of the contaminant plume and downgradient of the site source at the property boundary and along the Taconic State Parkway.

Four of the wells were installed in the overburden and three wells were installed into the underlying bedrock. The wells were installed to create clusters at three locations, each with a shallow water table well, a deeper overburden well on top of the bedrock and a well within the upper portion of the bedrock. At well cluster locations MW-8 and 10, the shallow well was existing. The well construction details are provided in Table 2-2. Well construction logs and diagrams are provided in Appendix B.

2.14.1 Monitoring Well Borehole Construction, Sampling and Logging

The overburden wells were installed using the hollow stem auger drilling method. Initially, at each well cluster location, a boring was constructed to determine the overburden geology and bedrock depth. Soil samples were generally collected at 5-foot intervals using a decontaminated stainless steel split-spoon sampler. The samples were collected in accordance with ASTM-1586. Each sample was logged for geology and screened for volatile organic vapors using a PID.

Spilt-spoon samplers were decontaminated in 5-gallon buckets at each of the drilling sites. Decontamination water was containerized in drums and staged onsite.

The bedrock wells were installed using a combination of hollow stem and air rotary drilling methods. A pilot hole was initially augered a few feet into apparent competent bedrock. Rock coring was then conducted up to 15 feet into bedrock. The rock cores were examined for content, competency, fractures, water bearing capacities, mineralogy and structures. Soil boring and rock core descriptions are included in the well logs in Appendix B. Based on the organic vapor screening results, one soil sample was selected for laboratory analysis of TCL +10 VOCs, Freon 113, TAL metals and CN.

Drill cuttings for all wells were containerized in 55-gallon drums and staged in the rear of the building. At the completion of drilling, the drill rig and tools were cleaned with high-pressure steam at the decontamination pad.

2.14.2 Monitoring Well Construction

Groundwater monitoring wells were installed in each borehole. Logs showing the well details are provided in Appendix B. The wells were constructed of 2-inch diameter Schedule 40, flush joint, PVC riser pipe and 10 feet of No. 10-slot, PVC well screen. The shallow well was constructed with 10 feet of screen bridging the water table to monitor the water table zone. The deep overburden wells were constructed on top of the refusal surface with a 10-foot screen. For the bedrock wells, a PVC well with a 10-foot screen was installed in the open rock zone.

For all of the wells, the screen zone, and to approximately 2 feet above the screen, was filled with No. 1 Morie grade sand. A bentonite pellet seal, approximately 2 feet thick, was then placed on top of the sand pack. The remaining annulus was pressure grouted with a cement/bentonite slurry to within 3 feet of grade. The well was finished at grade with a curb box with a bolted lid, cemented into a 2-foot square surface pad. The wells were secured with a locking compression fitting cap.

2.14.3 Monitoring Well Development

The monitoring wells were developed by pumping and surging to remove fine sediment from the well and to provide a good hydraulic connection to the surrounding formation. The quality of the development purge water was regularly monitored for specific conductivity, pH, temperature, dissolved oxygen and turbidity, generally until the field parameters stabilized. Development water associated with the deep and bedrock wells was collected into 55-gallon drums, which were transported to the on-site staging area. Water from the shallow wells was allowed to drain back to the shallow aquifer in the vicinity of the well heads. Well development information is provided in Appendix F.

2.15 Groundwater Monitoring Well Sampling

Groundwater samples were collected on three occasions: early April and November 1999, and late January 2000. The April sampling comprised selected existing wells and piezometers (MW-3, and P-5I, 5D, 6, 10, 17S, 17D, 18S, 18D, 19S and 19D). The November 1999 and January 2000 sampling comprised selected existing wells and piezometers (MW-1 and 3, and P-8, 9, 10, 12 and 14) and newly installed wells (MW-8D, 8R, 10D, 10R and 20-S, D and R). The samples were analyzed off-site for TCL +10 VOCs, Freon 113, TAL metals and CN.

The monitoring wells and piezometers (wells) were sampled by first measuring the depth to water and well bottom in order to calculate well purging volumes. The wells were then purged a minimum of three to five well volumes either by pumping with a submersible pump or lifting with a dedicated polyethylene tubing with a check valve. The two methods were necessary to address the well diameter variability (as small as 0.75 inches). The purge water was monitored for pH, turbidity, specific conductivity, temperature and dissolved oxygen. The number of well volumes was a function of stabilization of the field parameters. For wells with low yield, the samples were collected after the well recharged.

The groundwater samples were collected into the laboratory containers using a dedicated disposal polyethylene bailer if the well was purged by pumping, or directly from the dedicated tubing for the small diameter wells. The samples were appropriately labeled and stored in a cooler chilled with ice. Chain-of-custody forms were completed prior to shipment of the coolers to the laboratory.

Decontamination of the submersible pump was performed by washing with a solution of Alconox detergent and water, and then rinsing with potable water. During the April 1999 sampling event, all purge water was collected into 55-gallon drums and staged onsite. For the November 1999 sampling event, the purge water from the shallow wells was discharged to a permeable surface near the well head. The purge water from the deeper wells was placed into 55-gallon drums. For the January 2000 sampling, the purge water for the deeper wells was discharged to the site's sanitary system, further discussed in Section 2.19. Well purging information is provided in Appendix F.

2.16 Groundwater Level Measurement

Synoptic rounds of groundwater level measurements were obtained from all accessible wells and piezometers on three occasions: April 15 and November 2, 1999, and January 26, 2000. The static water level measurements were measured to a precision of 0.01 feet using an electronic water level indicator. The levels were measured from a marked point on top of the PVC well casing. The probe was decontaminated between uses.

2.17 In Situ Hydraulic Conductivity Testing

Six slug tests were performed in order to determine the hydraulic conductivity of subsurface materials between the contaminant source area sump and the wetlands. Slug tests were performed in monitoring wells MW-3, 4, 10D and 10R. Rising and falling head slug tests were performed in wells MW-10D and 10R. Because the water table intersected the screen zones in MW-3 and 4, only rising head tests were performed at these locations. These four wells were selected because they are downgradient of the sump and are screened at different formation horizons. MW-3 and 4 are screened at the water table at depths of 8 to 18 feet and 2 to 12 feet, respectively. MW-10D and 10R are screened at 43.5 to 53.5 feet and 61 to 63.5 feet, respectively.

Slug testing consisted of measuring the depth to water and inserting a pre-programmed 1.5-inch diameter, stainless steel transducer (Troll 4,000) into the well that processed data digitally through *Win-Situ*TM software. In shallow wells, the transducer was lowered to just above the bottom of the well. In deeper wells, the transducer was lowered to a depth of approximately 25 feet below the water table. The depth to water was measured using an electronic water level indicator until it was determined that the water level had returned static levels. In the shallow monitoring wells, the slug was a 27-inch long, 1.75 inch-diameter sealed tube, and in the deep and bedrock monitoring wells, the slug length was 54 inches and of the same diameter.

Falling head tests were performed after initial lowering of the slug. During the test, the tip of an electronic water level indicator was periodically lowered to determine whether the water

had reached its original level, after which the falling head slug test was considered complete. Tests were allowed to continue so that the more accurate transducer could continue to record minor changes. When the water elevation was stable, the slug was rapidly removed and the transducer recorded the recharge. Again, recovery estimates were made in the field using the electronic water level indicator. When recovery was complete, the transducer was removed and decontaminated using a soap water wash and deionized water rinse.

The process allowed two slug tests, one recording falling head and the second recording rising head, for each well. However, in monitoring well MW-4, the static water level intersected the screen; therefore, the falling head test would not be valid as water was displaced vertically into the gravel pack. For this well, only the rising head test reflects actual recovery from the aquifer. The digital data was analyzed with *Aquifer Test* (Waterloo Hydrogeologic) software using the Bouwer-Rice slug/bail test. The output graphs are provided in Appendix C.

2.18 Indoor Air Sampling

Indoor air sampling was conducted in the main site building basement in the vicinity of the source area (basement sump) and the adjacent office. Three indoor air samples were attempted, but a valve malfunction on the canister to establish background air quality prevented collection of this sample. Two composite samples were collected using Summa canisters with regulated air intake rates over an 8-hour period. The samples were analyzed for TCL +10 VOCs and Freon 113 by Air Toxics, LTD.

2.19 Drummed Materials Disposal

All drummed formation cuttings, well development and purge water, and the two drums generated from the previous sump cleanout by Farrand Controls personnel were disposed of offsite by Waste Management, Inc.

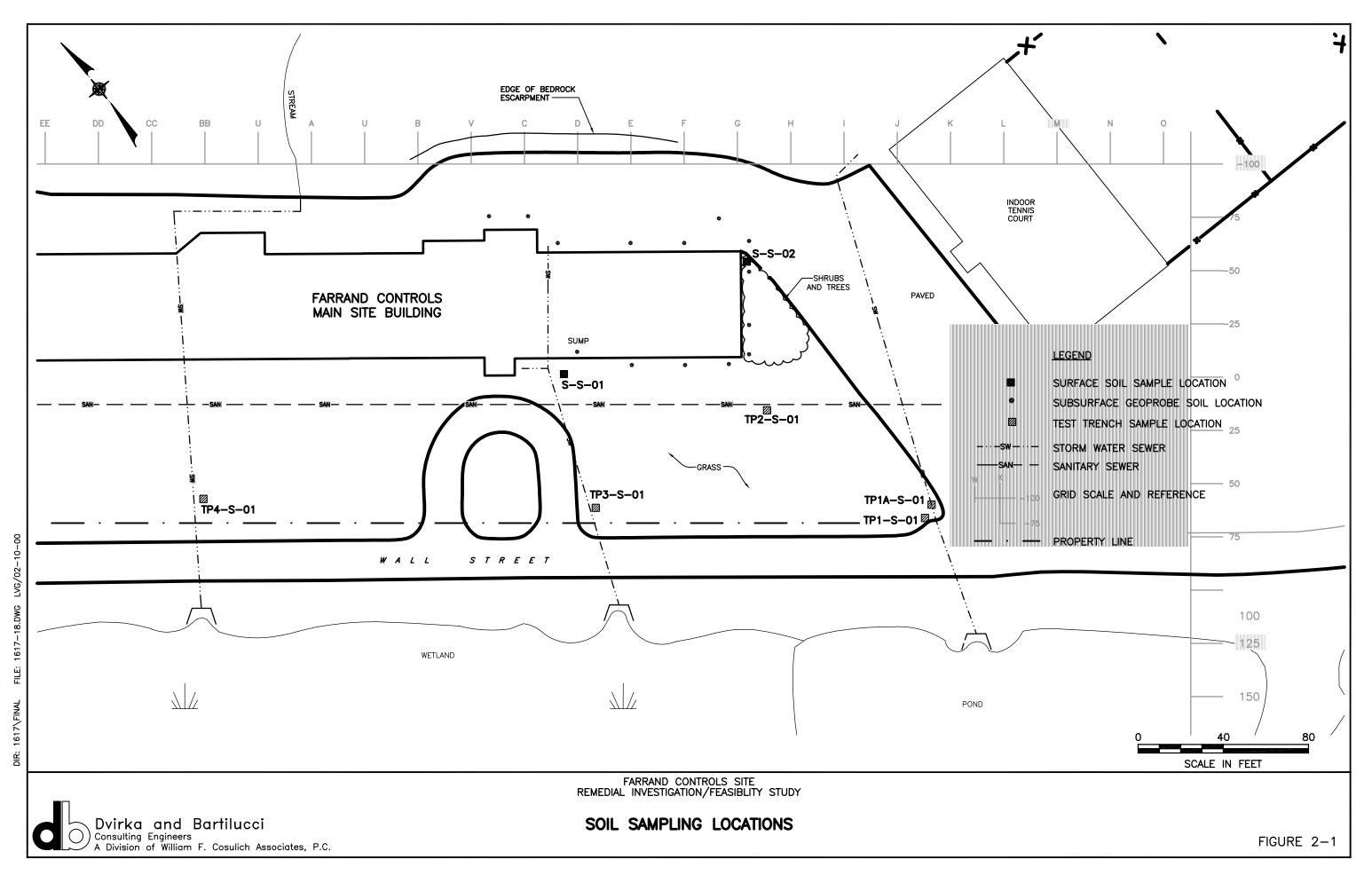
2.20 Surveying and Mapping

All new and existing monitoring well locations and piezometers were surveyed for horizontal and vertical control by YEC, Inc. The elevations were tied to a site benchmark (fire hydrant near front entrance of the site) set at an arbitrary elevation of 100.00 feet. Horizontal control was tied to the New York State Plane Coordinate System. The surveys were conducted in April and December 1999, after Phases 1 and 2 of the investigation were completed. The surveyed map is provided in Appendix D.

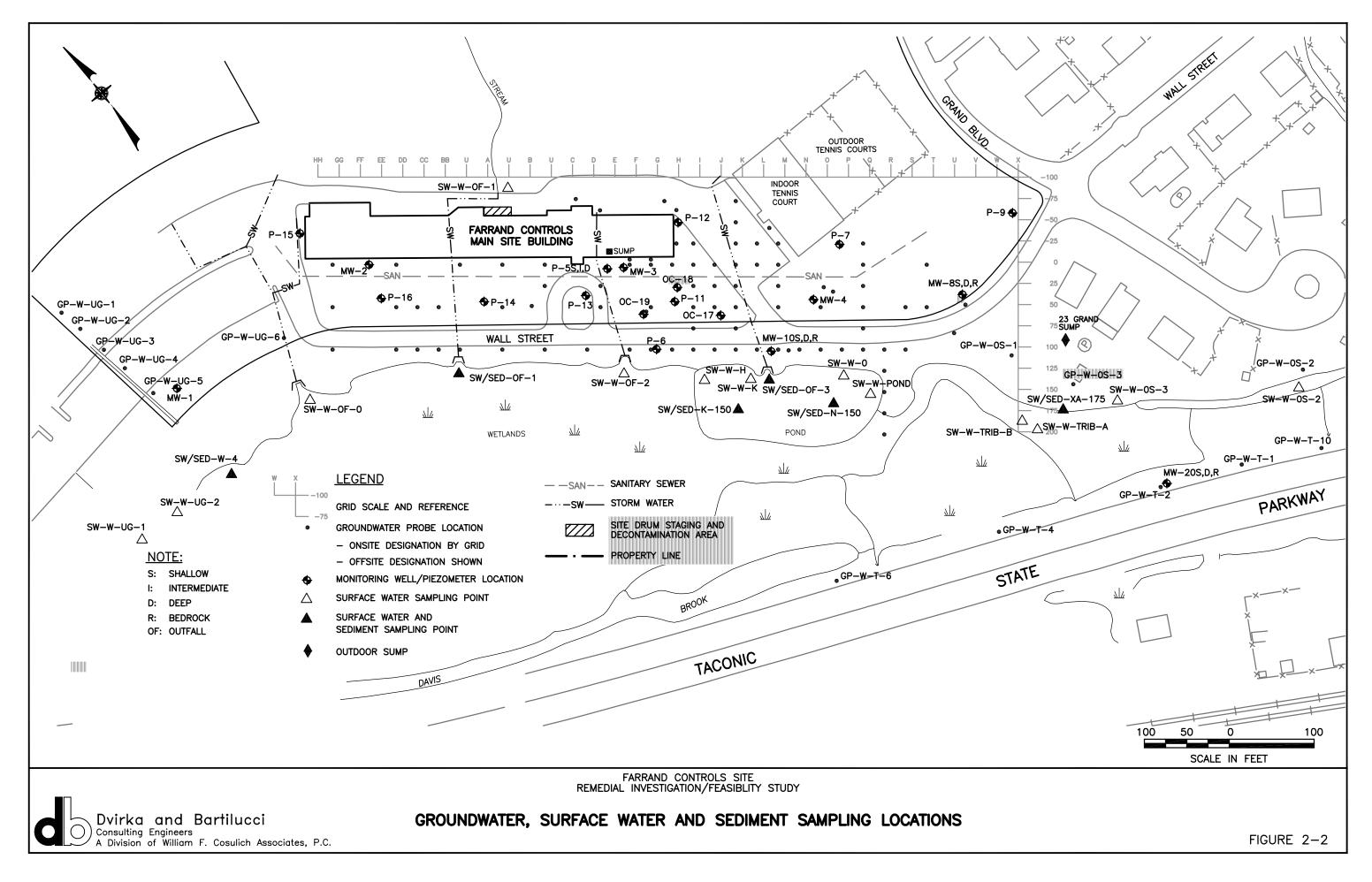
2.21 Health and Safety Program

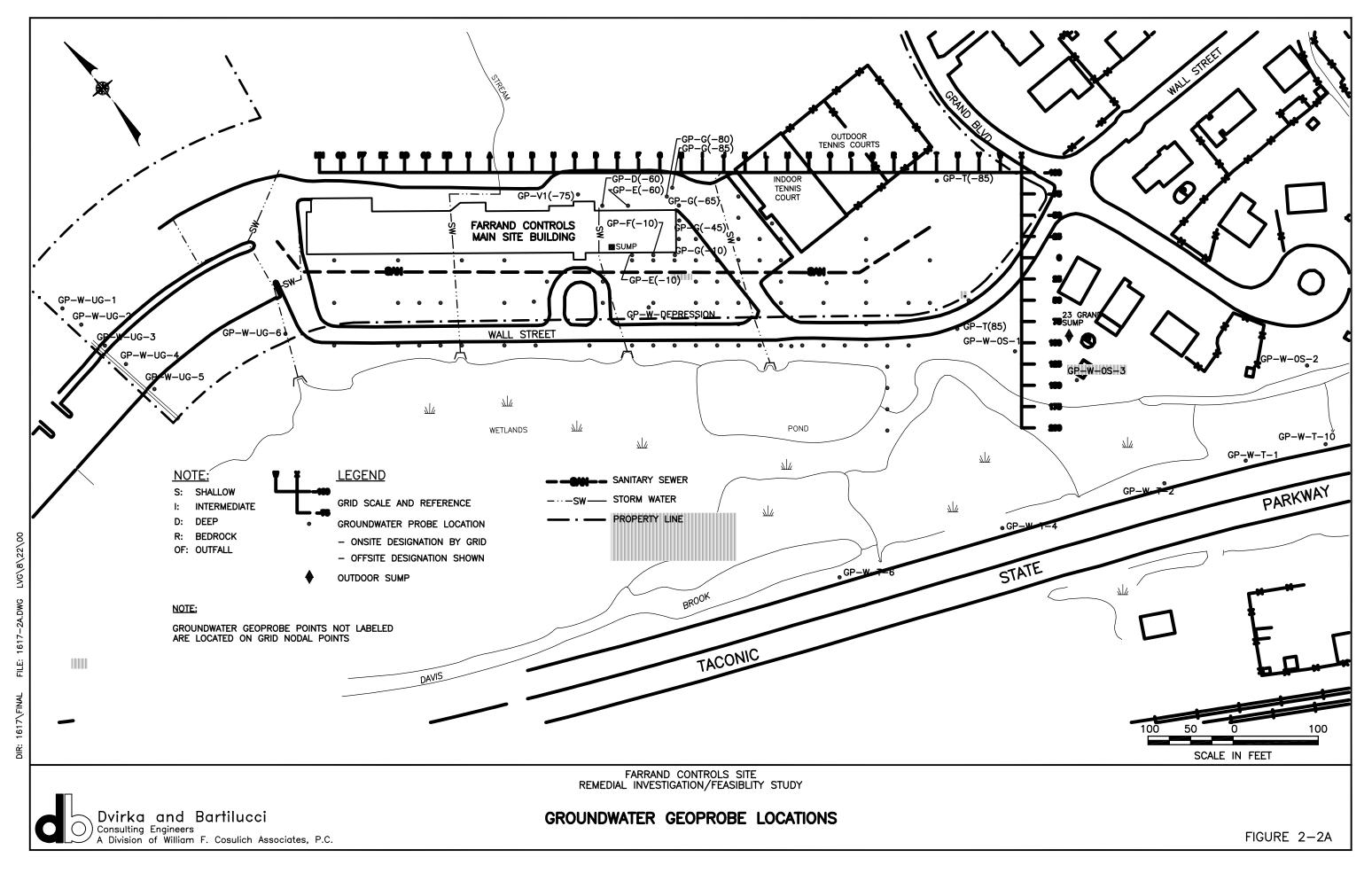
Prior to performance of the field program and as part of the RI/FS Work Plan, a sitespecific Health and Safety Plan was prepared in order to establish occupational health and safety requirements, responsibilities and procedures to protect workers during the field investigation at the Farrand Controls Site. The requirements for worker health and safety were based on the following:

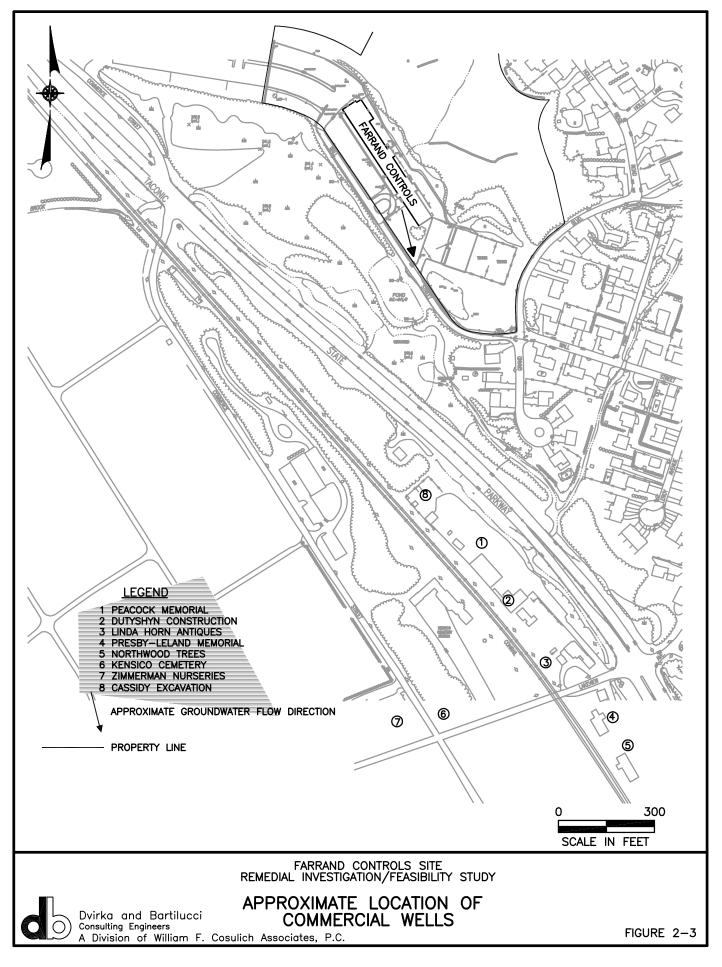
- The Standard Operating Safety Guides, US Environmental Protection Agency (EPA), Office of Emergency and Remedial Response;
- The Occupational Health and Safety Administration (OSHA) Regulations, 29 DFR Parts 1910.120 and 1926;
- NYSDEC Division of Hazardous Waste Remediation Technical and Administrative Memorandums 4016 and 4031;
- Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities, NIOSH, OSHA, USCG and EPA;
- Superfund Amendments and Reauthorization Act (SARA), Title I, Section 126


Activities associated with the remedial investigation were performed in accordance with this Health and Safety Plan.

2.22 Quality Assurance/Quality Control Program


As part of the RI/FS Work Plan, a Quality Assurance and Quality Control (QA/QC) Plan was prepared which describes the sample collection and analytical procedures to be used to ensure high quality, valid data. QA/QC samples were collected to assure quality control for the air, soil, surface water, sediment and groundwater samples obtained during the remedial investigation. The results of these samples will enable data evaluation for accuracy and provide support for the development of a remediation plan for the site. Sample collection and analytical procedures utilized during this investigation were performed in accordance with the procedures detailed in the QA/QC Plan.


2.23 Data Validation


Severn Trent Laboratories (STL) was utilized to perform the analyses of all site media sampled, except for the air samples collected during the remedial investigation. The air samples were analyzed by Air Toxics, LTD. STL is a New York State Department of Health (NYSDOH) Environmental Laboratory Approved Program (ELAP) and Contract Laboratory Program (CLP) certified laboratory meeting requirements for performing sample analysis according to NYSDEC 12/95 Analytical Services Protocols (ASP). Air Toxics is a NYSDOH approved laboratory. Summary documentation regarding data validation was completed by the laboratory using NYSDEC forms (Contract Laboratory Sample Information Sheets) and submitted with the data packages as required in the RI/FS Work Plan. The results of the data validation are presented in Section 4.

F:\1617\FINAL\1617-18.dwg, 04/22/05 02:22:17 PM, PMartorano

TABLE 2 - 1 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY COMMERCIAL WELL SURVEY FINDINGS

BUSINESS			SCREEN	DEPTH	DIAMETER	USAGE	STATUS	NOTES	
	INSTALLED		ZONE (ft)	(ft)	(in)				
Cassidy Excavating								No information obtained	
Dudyshyn Contracting								Had no information on well	
Peacock Memorial								Had no information on well	
Linda Horn Antiques	May-86	P.F. Beal & Son, Brewster, NY	?	305	6	Potable	Good working order		
Presby-Leland Memorial								Had no information on well	
Northwood Trees								No information obtained	
Kensico Cemetery	late 1800s, early 1900s	?	? - open in rock	400 (approx.)	6	?	?		
Zimmerman Nurseries								Had no information on well	

TABLE 2-2

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDNE MONITORING WELL AND PIEZOMETER CONSTRUCTION DETAILS

SITE	Date	Casing	Total	Screen	Screen Slot	Gravel	Bentonite
DESIGNATION	Installed	Diameter	Depth	Interval	Size	Pack	Seal
		(in)	(ft)	(ft)	(in)	(ft)	(ft)
MW-1	4/29/93	2	9	5-9	0.010	1.5-9	0.5-1.5
MW-2	4/29/93	2	17	7-17	0.010	6.5-18	5-6.5
MW-3	4/29/93	2	18	8-18	0.010	5-17	3-5
MW-4	4/29/93	2	12	2-12	0.010	1-12	0.5-1
P-5 S	11/19/93	0.75	13	8-13	0.010	6-13	5-6
P-5 I	11/19/93	0.75	20	18-20	0.010	16.5-20	15.5-16.5
P-5 D	11/19/93	1.25	48	43-48	0.010	42-48	37-42
P-6	11/19/93	0.75	7	3-7	0.010	8-12	5-6 & 7.5-12
P-7	6/2/94	1.25	19	9-19	0.010	8-12 **	7-8 **
MW-8 S (P-8)	6/2/94	1.25	10	6-10	0.010	5-10 **	4-5 **
MW-8 D	10/12/99	2	36	26-36	0.010	23-36	21-23
MW-8 R ***	10/19/99	2	56	41-56	0.010	39-56	37-39
P-9	6/2/97	1.25	10	7-10	0.010	6.5-10 **	5.5-6.5 **
MW-10 S (P-10)	6/2/94	1.25	10	6-10	0.010	5-10 **	4-5 **
MW-10 D	10/12/99	2	53.5	43.5-53.5	0.010	41-53.5	39-41
MW-10 R ***	10/20/99	2	63.5	61-63.5	0.010	59-63.5	57-59
P-11	6/2/94	1.25	15	5-15	0.010	4-15 **	3-4 **
P-12	6/2/94	1.25	18	8-18	0.010	7-18 **	6-7 **
P-13	6/3/94	1.25	15	5-15	0.010	4-15 **	3-4 **
P-14	6/3/94	1.25	15	5-15	0.010	4-15 **	3-4 **
P-15	6/3/94	1.25	8	1.5-8	0.010	1.5-8 **	0.5-1.5 **
P-16	6/3/94	1.25	15	5-15	0.010	4-15 **	3-4 **
P-17S (OC-17)	8/27/97	2	12	3.5-12	0.010	3-12	0-3
P-17D	8/27/97	2	35	30-35	0.020	28-35	0-3 *
P-18S (OC-18)	8/27/97	2	18	8-18	0.010	7-18	0-7
P-18D	8/27/97	2	27	22-27	0.020	20-27	0-7 *
P-19S (OC-19)	8/26/97	2	12	5-12	0.010	4.5-12	0-4.5
P-19D	8/26/97	2	51	46-51	0.020	45-51	0-4.5 *
MW-20 S	10/14/99	2	15	5-15	0.010	3-15	0.5-3
MW-20 D	10/14/99	2	77	67-77	0.010	65-77	63-65
MW-20 R ***	10/14/99	2	98	88-98	0.010	85-98	77-85
MW-21S	4/17/01	2	15	5-15	0.010	3-15	2-3
MW-21R***	4/17/01	2	28.8	18.8-28.8	0.010	15-28.8	10-15
MW-22S	4/12/01	2	15	5-15	0.010	3-15	1-3
MW-22R***	4/16/01	2	35	25-35	0.010	17-35	10-17

Notes

MW: Monitoring well

P: Piezometer

S: Shallow

I: Intermediate

D: Deep

R: Shallow bedrock well

* Well cluster lacking seal between screen zones

** Measurements were estimated from drawings in the logs

*** Bedrock wells have 4" diameter steel protective outer casings enclosing 2" PVC riser pipes in overburden

3.0 PHYSICAL AND ECOLOGICAL CHARACTERISTICS OF THE STUDY AREA

3.1 Surface Features

The predominant surface feature at the Farrand Controls Site is a sub-vertical, approximately 40 to 60 feet high escarpment rising behind the site buildings. Above the sub-vertical escarpment, slopes rise approximately 30 percent toward less steeply inclined upper ridge slopes. The escarpment and upper slopes are vegetated with primarily deciduous trees and shrubs. An ephemeral waterfall, known locally as Farrand Falls, descends a sparsely vegetated rock face at the base of the escarpment behind the main Farrand Controls building. Above the waterfall, drainage follows a well-developed swale eroded into the cliff. The swale originates near the northern part of the Mount Eden Cemetery loop road north of the site. A smaller drainage swale descends the escarpment between the main facility building and the indoor tennis court and appears to host an eroded slump.

A semi-enclosed basin south and southwest of the site supports a pond and surrounding wetlands. Beyond the wetlands to the west, are the Taconic State Parkway and Conrail railroad tracks. The southeast-elongated pond/wetland complex is approximately 1,000 feet long and approximately 300 to 400 feet wide. This is one in a series of local ponds and wetlands along which the parkway and railroad tracks are aligned. Several streams, some discontinuous, trend southeastward through the lowland.

Kensico Reservoir is located approximately 3,000 feet east of the site (Figure 1-1). The reservoir provides water for New York City and parts of lower New York State. The reservoir is upgradient of the Farrand Controls Site at a higher elevation of more than 100 feet.

3.2 Facility Features

Facilities at the Farrand Controls Site include two buildings, two outdoor tennis courts and paved driveways connecting parking areas in the rear, front and sides of the building (see Figure 1-2). Site buildings are accessed from Wall Street and are located northwest of the intersection of Wall Street and Grand Boulevard. A small visitors parking area in front of the main building forms a circular drive off the Wall Street extension/driveway.

A full basement underlies the central and western portion of the main building and provides office, laboratory, storage and maintenance space. Facility personnel stated that not much information is available on the building construction details.

Three sumps received industrial waste beneath the main site building. All three sumps exhibited contamination with VOCs in 1993, and the sump identified as SU-3 (most eastern), was determined to be a contaminant source. The other two sumps were located in the western part of the building basement. The source sump is constructed in the basement floor, the bottom of which is 8.3 feet below grade. The sump dimensions are three-foot square by 2.6 feet deep. From discussions with Farrand Controls personnel (M. Frenz personal communication to A. Jaroszewski, 1/19/00), pumped fluids from the sump, when it was operational, were discharged to either the storm water pipe immediately to the west or to a drain tile pipe possibly present along the footings of the front building wall.

Buried utilities at the site are comprised of electric, gas, telephone, water supply, storm water and sanitary wastewater sewers. The locations of these utilities are shown in Figure 3-1. Gas and telephone lines parallel the northeast side of the Wall Street extension/driveway. Supply water and sanitary sewers are located along the front of the main building and through the low grassy area between the tennis courts and Wall Street. The sanitary sewer extends toward the site from the former annex beneath asphalt pavement. Electrical power lines reach the main building from a pole located at the base of the cliff behind the main site building's eastern corner. It appears that the utility conduits that may be located in groundwater are the storm water sewer pipes located under the Farrand Controls main site building.

3.3 Soils

Soils at the Farrand Controls Site are mapped as part of the Urban land/Woodbridge soil series, except immediately adjacent to the wetlands where they are mapped as ponded Palm

Carlisle soils (*Ibid.*). Woodbridge soils are deep, moderately drained and generally found in uplands or near the base of upland areas. Water tables in these soils rise to within a few feet of the ground surface. Ponded Palm and Carlisle soils consist of very deep, nearly level, poorly drained soils found in depressions bordering lakes and streams. Throughout most of the year, these soils are inundated, sustaining ponds, freshwater marshes, wetland vegetation, and some shrubs and trees (*Ibid.*).

3.4 Topography

The Farrand Controls Site is located at an average elevation of approximately 240 feet in a flat to gently southwestward sloping (less than five percent) lowland. The site is situated below, and slightly west of, the southern extent of a southeast-trending ridge. The sub-vertical escarpment, discussed above in Section 3.1, marks the base of this ridge. Above the site, the ridge reaches an elevation of 524 feet. The ridge is part of a broad upland whose eastern slope forms the western shores of Kenisco Reservoir (see Figure 1-1).

Near the site, hummock topography along the base of the ridge suggests slumping of subridge slopes. Most of the slumping appears to originate at the inflection point of the sub-ridge profile where the convex profile of upper slopes changes to a somewhat concave mid-slope profile. Topographic anomalies suggest that slumping may have modified the upper sub-ridge slopes above Farrand Falls in the vicinity of Mount Eden Cemetery's loop road. Topographic anomalies suggestive of slumping also occur northwest of the site above the northern margins of the pond-wetland complex and along the road leading to Mount Eden Cemetery from the Taconic State Parkway. Slumping, possibly associated with reported historic quarrying, appears to have modified basal slopes above the site. A slump is visible on lower sub-ridge slopes east of Farrand Falls above the parking area between the main facility building and the tennis courts. A bowl-shaped depression breaks the cliff face at that location and is drained by a hummocky debris chute that descends to the paved parking area.

The triangularly shaped lowland on whose eastern margin the site is located trends southeastward from Mount Pleasant to just south of the Farrand Controls Site and westward toward (but not to) Bradhurst Avenue. Several closed basins, ponds and interior-draining streams occur within this lowland. Between the main site building and the wetlands, the terrain slopes less than five percent to the west-southwest.

3.5 Drainage

Site storm water is collected in four storm sewers that discharge to the adjacent southern wetlands. The water is primarily from the site with components of runoff from the highland to the northeast. Paved gutters at the base of the escarpment and catch basins direct runoff to the storm sewers. One storm sewer conveys water from Farrand Falls and the rear parking area, running beneath the main facility building. A second line originates from the catch basin at the bottom of the rear basement receiving ramp and runs under the building east of the main entrance and into the wetlands. This storm water sewer is reported to have received sump discharges as discussed in Section 3.2. East of the main site building, a third storm water sewer runs beneath the parking lot and carries runoff from the parking lot and from behind the tennis courts. The fourth storm sewer line located in the parking lot west of the main building is fed by two shorter sewers that intercept runoff from the parking lot and from the slopes above the escarpment.

It is possible (M. Frenz personal communication to A. Jaroszewski, 1/19/00) that a subgrade curtain drain is present in the rear of the northern half of the building that may divert shallow groundwater flow around the building. Basement sumps within the main site building are also part of the site drainage. Three active sumps are located in the central portion of the building basement. The sumps are equipped with pumps ranging from ¹/₄ to 1 HP with pumping capacities from 24 to 125 gallons per minute. The sumps are pumped when the groundwater enters the basement interior drain system. This water is treated prior to discharge into the sewer system. The specific pumping rates and frequencies for the sumps are not known. On May 26, 2000, Farrand Controls personnel observed that the pumps operated less than 10 percent of the time for up to 15-minute cycles. The pumped water from each sump is collected in a 4-inch drain line under the basement that discharges to the second sewer line discussed above and ultimately into the wetlands.

3-4

Surface water not entering the storm sewers percolates into the ground and/or drains via overland flow into the wetlands.

Following heavy rainfall from tropical autumn storms in 1999, water collected in local depressions forming temporary bogs near the tennis courts and near the main building's northwest corner. At that time, groundwater reportedly rose beneath the site building, flooding its basement (M. Frenz, personal communication to V. Vassil, 10/27/99).

3.6 Geology

The site geology described below was derived by analyzing geological data from the current and previous site investigations, including monitoring well, piezometer and Geoprobe probehole logs, review of results from previous geophysical studies, geomorphologic site reconnaissance, and reviews of aerial photographs and published geological and topographical maps. The site geologic deposits vary from bedrock outcrop to buried bedrock with unconsolidated deposits up to 75 feet thick.

3.6.1 Unconsolidated Deposits

Most of the Farrand Controls Site is immediately underlain by sandy, silty unconsolidated materials, probably deposited as alluvium (sediment deposited by water), glacial till and/or outwash. These deposits occur below approximately 2 to 5 feet of fine sandy silty loam soil. The unconsolidated deposits are of two main types. The primary unit that underlies most of the site consists predominantly of fine to medium-grained sands containing some gravel and silt. A less extensive fine-grained unit overlies the medium-grained sands near the wetlands where it is approximately 25 feet thick at monitoring well cluster MW-10 and pinches out northward between monitoring well MW-3 and the main site building. The fine-grained unit is comprised of interbedded silt, clay, and silty and clayey sands. Two geologic cross sections have been developed for the site: 1) southward across the site from the bedrock escarpment through the contaminant source sump to monitoring well clusters MW-10 and 20; and 2) southeastward

from the sump to bedrock monitoring well cluster MW-8. Locations of the cross sections are shown on Figure 3-2 and the cross section are presented in Figures 3-3 and 3-4.

- Unconsolidated Sand Unit

Subsurface deposits of fine to medium-grained, micacous and quartzo-feldspathic sand with some silts and gravels predominate across the site. These sands continue to a refusal surface (*i.e.*, surface beyond which the Geoprobe drive point could not penetrate because of the hardness of materials encountered) where increased gravels occur with the sand. The gravels may represent the top of the weathered bedrock or may be veneers of semi-consolidated, deeper subsurface deposits, such as till or colluvium that overlie bedrock (discussed below).

The unconsolidated sand unit is brown and reddish brown chromatic tones typical of an oxidizing environment, and probably relates to deposition within an outwash or alluvial regime. The unit ranges in thickness from not being present at the bedrock cliff face and less than 7 feet thick in borings near the tennis courts and at P-15, to approximately 34 feet thick at monitoring well cluster MW-8. At monitoring well cluster MW-10, the sandy unit is approximately 15 feet thick and underlies the locally extensive finer grained unit. Off-site at monitoring well cluster MW-20 (adjacent to the Taconic State Parkway), a predominantly sandy unit extends from the ground surface to a depth of 43 feet.

- Unconsolidated Fine-Grained Unit

Fine-grained materials are most prevalent adjacent to the pond/wetlands. At monitoring well cluster MW-10, fine-grained deposits occur from the ground surface to a depth of 33 feet. The fine-grained unit is absent at monitoring well cluster MW-8. Near the source area sump, a silty clay was reported between depths of approximately 20 to 27 feet at piezometer P-5. Probeholes F-(-10) and E-(-10) located near the sump encountered some silt in a sandy unit. The clay was overlain and underlain by sand. This suggests that the fine-grained unit pinches out in a northerly direction away from the wetlands. Typically, the fine-grained unit ranges in color from gray to gray-brown to green, and locally exhibits organic matter (decomposing vegetation). Gray

and green tones indicate deposition in a reducing environment, such as an oxygen-depleted bog or marsh. These conditions most likely characterize deposition occurring currently in the pond/wetland.

Off-site at monitoring well cluster MW-20, interbedded dark gray-brown and olive toned clay to silty sand were observed between depths of 43 to 58 feet. Most of these materials are soft (based on blow counts below 10 per 6-inch penetration), although a dense clay (yielding blow counts of 48/12 inches penetration) occurs at a depth of 54 to 55 feet.

Between depths of 58 and 78 feet in MW-20, red, yellow and orange sandy deposits are interbedded with brown and darker gray fine-grained sands. This unit was not detected in onsite borings.

- Semi-Consolidated Deep Deposits

Geoprobe probeholes indicate a "refusal surface" of significantly higher relief than exists at the ground surface. Refusal depths identified through probehole sampling were combined with descriptions from soil boring logs to construct a surface map of the refusal surface, which is provided as Figure 3-5. The mapped refusal surface may indicate the depth to bedrock in some locations and the depth to dense, unconsolidated till deposits or landslide deposits.

The refusal surface map indicates that the bedrock escarpment rising above the site probably continues beneath it, under the rear portion of the Farrand Controls main building. Several small, southwest-trending swales cross the refusal surface, particularly beneath the parking area west/northwest of the main site building, and beneath the eastern end of the building where a subsurface swale continues southwestward beneath the lawn (see Figure 3-5).

An anomalous, approximately 100-foot wide, 200-foot long topographic mound marks the refusal surface roughly between the tennis courts and the main site building, descending toward the wetland. This mound is characterized by an irregularly undulating or "hummocky" surface and overlies a bedrock low detected by seismic refraction and ground penetrating radar surveys conducted in 1994 (figure provided in Appendix D). The refusal surface mound occurs immediately below a scar in the cliff face, interpreted as an ancient landslide scarp. The bedrock depression detected geophysically may be the downslope continuation of the landslide failure surface, which was subsequently buried by colluvium (landslide debris) and then by the glacial till, outwash and/or alluvium that later (or concurrently) filled the lowlands.

Beneath the parking lot, the top of the refusal surface mound is within 7 to 10 feet of the ground surface and is fairly flat. Probehole J-(-50) encountered refusal 14 feet below grade. This suggests that the upper surface of the mound slopes backward or is crossed by a swale. The irregularly undulating, steeply sloping refusal surface extending from below the parking area toward the wetland is consistent with a landslide toe and run-out apron. Colluvium typically incorporates boulders and mud-debris along with vegetation. Boulders and large blocks would impede a Geoprobe, and if sufficiently large, could impede a drill rig. The buried landslide deposit is illustrated on the bedrock refusal surface map (Figure 3-5) and depicted on the geologic cross sections (Figures 3-3 and 3-4) as a colluvial wedge. Because its surface was not penetrated or sampled during Geoprobe probeholes, the composition and relative permeability of the mound is uncertain.

Colluvial run-out may extend to monitoring well MW-10D. MW-10D was installed to a depth of 53.5 feet, when drillers reported encountering hard rock. The rock was augered into for 0.5 feet during which drillers reported that augering became increasingly more difficult and the well was set at what was believed to be the bedrock surface. When monitoring well MW-10R was drilled, the substrate was alternately soft and hard between depths of 54 to 61 feet and speculation was made that the drill had encountered a weathered, steeply dipping fracture zone. At a depth of 63.5 feet, the borehole began collapsing around the augers and no core samples were obtained. The drillers determined that they could not auger further and the bedrock well was set in what was thought to be a fracture zone. Based on the geometry of the subsurface mound, it is not likely that MW-10R terminates in colluvium. More likely, this well is set within a weathered bedrock fracture zone.

Basal till was reported during the installation of piezometer P-5, between depths of 40.5 and 48 feet (Environmental Management, LTD, April 1995), and in the Geoprobe boring through the source area sump. However, informed description of the till is limited, and its characteristics and extent at the site are unknown. P-5 is located approximately 20 feet southwest of the source sump and was installed to just above the bedrock. At P-5, basal glacial till occurs immediately above bedrock. The boring in the sump reached a depth of approximately 40 feet below ground surface and terminated in three feet of coarse gravel interpreted as till. It is likely that several feet of till overlie the bedrock surface at the site, except where scoured away by post-depositional processes, such as stream flow or land sliding.

Off-site at monitoring well MW-20D, dark yellow-brown to red-brown and orange mottled with gray and brown sands and pebbles occur at a depth of 59 feet. Below this to a depth of 77 feet, mottled layers of highly chromatic sand alternate with dark gray sands and olive-gray/brown silty sands, clayey silts and silty clays. These highly chromatic sand units alternating with finer grained gray-brown units were not observed onsite and suggest divergent and locally fluctuating depositional environments.

3.6.2 <u>Bedrock</u>

Geologic materials exposed in the cliff face immediately west of the Farrand Controls Site consist of an intensely folded and jointed, black and white banded gneiss. Narrow, light colored quartzo-feldspathic bands occur between thicker, dark bluish gray-black amphibolitebearing bands. Observed bedrock is consistent with the Manhattan formation, a pelitic garnetamphibolite schist and schistose gneiss which is mapped at the site on the *Geologic Map of New York State* (Fischer, Isachsen and Rickard, 1970). Irregularly spaced, mainly steeply dipping joints and localized layers of highly foliated, mica-bearing schistose rock transmit groundwater which was observed "weeping" from the cliff face in October and November 1999. The stream that flows down the bedrock escarpment behind the main site building descends an angularity indented section of the cliff face where intersecting joint patterns have contributed to block failures in the exposed bedrock. Old landslide scars visible on the cliff face and on slopes above the escarpment on and off-site strongly suggest past episodes of slumping and/or block failures. The deep boring for monitoring well MW-8R penetrated 15 feet of competent, but fractured bedrock. Bedrock consisted of black and white banded gneiss with well developed pink garnet augen surrounded by white, recrystallized quartz in the white bands. The bluish-black bands are composed of amphibolite. Fractures in the core samples were probably rotated, therefore, the fracture orientations were not noted. However, most fractures dipped between 70 and 80 degrees. This is consistent with the steeply dipping fractures noted in similar bedrock exposed on the cliff face behind the main site building.

As discussed above, the deep boring for MW-10R penetrated a zone of alternating hard and soft material that may have been a weathered bedrock fracture zone. Although no samples were retrieved during attempts to collect rock cores from MW-10R, coarse, dark-gray drill slough circulated up the augers to the ground surface and was consistent with a black and white gneissic source.

Off-site at MW-20R, a zone of alternately hard and soft material was penetrated between depths of 77 and 83 feet. Although split-spoon samples were not successfully obtained from those intervals, material retrieved from the sample bit revealed a highly altered foliated rock with white quartz crystals and orange (calcite?) rhombs in a pale, bi-colored clayey groundmass. Some of the groundmass was light grayish beige and some was light blue-green. This material may be an indurated basal till or may be deeply weathered bedrock.

Underlying the clayey material, a 2.5 foot long bedrock core sample was retrieved from a 10-foot rock core sampler. The upper 6 to 10-inches of the core consisted of a fractured, pale silver to pale gray/green, greasy, foliated, platy rock identified in the field as talc-bearing serpentinite. Similar serpentinite bodies probably occur in fracture zones throughout the region, including the lowland adjacent to the site.

Below the serpentinite sample in monitoring well MW-20R, rock core was a fractured, gray, black and white banded gneissic mylonite that contained 0.5-inch wide bands of graphite. The lithology of the bedrock sampled at MW-20R is different from bedrock outcropping at the

Farrand Controls Site and encountered at MW-8R. Samples were unobtainable from the MW-10R boring. Drilling for monitoring wells MW-10R and MW-20R encountered a layer of alternately hard and soft material just below the initially determined refusal surface. Drilling conditions at these wells suggest that underlying materials may be similar, therefore, it is possible that serpentinite underlies MW-10R and that a major structural boundary crosses the lower (southern) portion of the site.

3.7 Hydrogeology

Geologic and hydrogeological properties at the Farrand Controls Site and vicinity produce a complex groundwater flow regime that is hydraulically influenced by subsurface heterogeneities, such as geological features and materials, and by the Farrand Controls facility structures.

3.7.1 Groundwater Flow

Horizontal groundwater flow at the Farrand Controls Site is predominantly southward, with southeast and southwest components in different parts of the site. In April and November 1999, and January 2000, the shallow water table was encountered within approximately 10 feet of the ground surface. Figures 3-6 and 3-7 present water table contour maps for April and November 1999, respectively. Attempts were made to develop potentiometric surface maps for the deep overburden groundwater, but were considered inappropriate because of the varied hydraulic heads and limited data points. The water levels and surveyed measuring point elevations are provided in Table 3-1.

Some water levels from the November 1999 gauging event appear anomalous. The water levels in identical site wells between the April and November 1999 gauging events were generally within approximately a foot of each other. The November 1999 levels in well cluster OC-18 were approximately three feet higher than in nearby wells and in cluster OC-17 were approximately two feet lower than in nearby wells. These differences did not occur in the April 1999 gauging, and because of their magnitude and isolated occurrence, are not used in ground

water flow determinations. It is possible that the anomalous readings represent intense localized flow regimes that reflect subsurface features with associated high recharge and discharge rates that might occur in the vicinity of a landslide "pocket" after a high precipitation event. In the two days prior to the November 2, 1999 water level measurements, significant precipitation occurred in the area with rainfall of approximately 2 inches. It also may be possible that the lack of seals between the shallow and deep screens in the "OC" wells contributes to the erratic groundwater elevations in the wells. As a result, the elevations in the wells are not considered reliable due to the assumed lack of seals.

The April, November 1999 and January 2000 water table maps, provided in Figures 3-6, 3-7 and 3-7A, are fairly similar. A steep hydraulic gradient exists at the northwestern area of the site, where the water table slopes about 4 percent to the south. Between monitoring well MW-2 and the circular driveway in front of the main site building, the water table slopes southward 0.5 percent. Anomalous high groundwater elevation readings at piezometer P-6 were recorded. This anomaly is evident in the water contour maps prepared in May 1993 and June 1994, and may be associated with localized recharge as discussed above. Localized water table flow may also be affected by the intermittent operation of the basement sump pumps under the southern portion of the main site building.

The groundwater levels for the January 2000 monitoring event were generally similar to the April and November 1999 levels. One exception was for MW-8R where the water level was approximately 13 feet deeper than in the November gauging event. This apparent anomalous reading was field confirmed. The water level in the bedrock well may reflect the effects of localized seismic activity. A small earthquake was reported to have occurred in the region within a few days of the January 2000 gauging event.

Groundwater elevations for monitoring wells and piezometers in April and November 1999, and January 2000, are presented in Table 3-1. Differences in head within clustered monitoring wells and piezometers provide evidence that the southern portion of the site is characterized by upwelling of deep overburden groundwater, while downward flow of shallow overburden groundwater occurs near the main building. The hydraulic head differences for the November 1999 and January 2000 gauging events were similar. Net hydraulic heads and associated vertical gradients for the November 1999 for well clusters MW-5, 8, 10 and 20 are provided in Table 3-2 and are discussed below.

Piezometer cluster P-5 indicates a greater head in the shallow piezometer and a net downward flow. Piezometer P-5 is located just south of the main site building near the source area sump. A net head difference of +0.12 feet exists between the shallow piezometer (screened at 8-13 feet) and the deep piezometer (screened at 43-48 feet) resulting in a downward gradient of 0.003 ft/ft.

All other monitoring well clusters, MW-8, 10 and 20, show upward flow. At cluster MW-8, upward flow occurs between all three screen intervals (6-10 feet, 26-36 feet and 39-56 feet) with a head difference of -0.57 feet between the bedrock and shallow wells, and a resulting upward gradient of 0.013 ft/ft. At cluster MW-10, flow is also upward between all screen intervals (6-10 feet, 41-53.5 feet and 59-63.5 feet) with a head difference of -1.65 feet and an average upward gradient of 0.043 ft/ft. Between MW-10D and MW-10R (screened within 5.5 feet of each other) the head difference is -1.09 feet with an upward gradient 0.073 ft/ft.

Off-site at well cluster MW-20, the head difference between the shallow and deep wells (screened at 5-15 feet and 67-77 feet) is -1.67 feet with an upward gradient of 0.023 ft/ft. Downward flow occurs between MW-20D and MW-20R (screened at 88-98 feet) where the head difference is +0.77 feet with a downward gradient of 0.035 ft/ft. However, net upward flow occurs between the bedrock and overburden wells where the net head difference is -0.9 feet. This implies unusual hydrologic conditions in the substrate or suggests that monitoring well MW-20D may be screened in the top of the bedrock.

Significant (greater than 1.0 feet) negative head differences observed at monitoring well clusters MW-10 and MW-20 are consistent with upwelling of deep groundwater. The net negative head difference between monitoring wells MW-8S and MW-8R was less than half that observed between shallow and deep/bedrock wells MW-10 and MW-20. This may reflect the shallower depth to bedrock at MW-8R or indicate that less upward flow occurs through the

garnet amphibolite gneiss observed there than through materials encountered in well clusters MW-10 and MW-20.

The well clusters and individual well screens discussed above are shown in the hydrogeologic sections in Figures 3-8 and 3-9. The net hydraulic head flow directions are included near the screen zones. Observations are as follows:

- The higher hydraulic heads in deep groundwater observed adjacent to the pond and along the lower/southern portions of the Farrand Controls Site indicates that the wetland/pond complex and the adjacent portion of the shallow overburden groundwater are recharged by deep groundwater rising through discontinuities in the bedrock. Upwelling near the pond may account for the anomalous groundwater high observed in piezometer P-6.
- Downward flowing shallow overburden groundwater near the source area sump and along the front of the main site building could transport dissolved contaminants downward, as well as enhance the downward migration of DNAPL. The change between positive and negative head differences that occurs across the site between piezometer P-5 and on-site monitoring well clusters MW-8 and MW-10 implies a zone exists between the main building and the pond/wetland where shallow groundwater flow is primarily horizontal.

3.7.2 Hydraulic Conductivity and Groundwater Flow Velocity

Slug tests performed in piezometer P-5D in 1994 by EML indicated hydraulic conductivities for unconsolidated sands and silts at the Farrand Controls Site as ranging from 2.74×10^{-2} cm/sec to 3.96×10^{-3} cm/second. These rates are consistent with the range reported for clean sand and gravel by Freeze and Cherry (1979).

Six slug tests were performed in four monitoring wells as part of this investigation to determine the hydraulic conductivity of subsurface materials between the source area sump and the wetlands. Slug tests were performed in wells MW-10R, 10D, 3 and 4. Rising and falling head slug tests were performed in MW-10D and 10R. Because the water table intersected the screen zones in MW-3 and MW-4, only rising head tests were performed at these locations.

Calculated hydraulic conductivities were 8.44 x 10^{-3} cm/sec (23.93 feet per day) for monitoring well MW-3, 3.87 x 10^{-2} cm/sec (109.73 feet per day) for well MW-4 and 5.53 x 10^{-3} cm/sec (15.68 feet/day) for well MW-10D. Although monitoring well MW-10R was placed in bedrock, its screen sits in a highly weathered saprolitic/fracture zone that yielded an average hydraulic conductivity value of 5.38 x 10-4 cm/sec (1.53 feet per day). Table 3-3 provides the hydraulic conductivities determined at the site and includes published hydraulic conductivity ranges for unconsolidated overburden sediments.

Slug test results indicate that hydraulic conductivity of unconsolidated materials at monitoring wells MW-3 and MW-10D are consistent with conductivities typical of silty fine sands, sands, well-sorted sands and glacial outwash. Results for the slug test at well MW-4 indicate hydraulic conductivity consistent with well sorted sands and glacial outwash. Material in the 2.5 foot screen zone in MW-10R has hydraulic conductivity values consistent with silt, sandy silt, clayey sand and glacial till. Hydraulic conductivities of shallow and deep overburden sediments at the site are consistent with conductivity values reported previously.

A groundwater flow rate was calculated for the shallow fine to medium-grained unit using the hydraulic conductivity values described above as follows:

$$Vx = \frac{1}{Ne} \frac{dh}{dl} K$$

where: Ne = porosity of 0.23 (Fetter, 1988)

$$\frac{dh}{dl}$$
 = gradient of .003 ft/ft (between MW - 3 and MW - 4)

K = hydraulic conductivity of 66.83 ft/day (average of MW-3 and MW-4)

The resultant groundwater flow velocity in the overburden sand unit is 1.04 ft/day. An actual flow velocity for the deep zone was difficult to calculate because of limited data points and varied vertical hydraulic heads. The lower K value derived from the slug test in MW-10D, screened in the lower deep zone, suggests a slightly lower flow rate for this finer sand unit.

3.7.3 Subsurface Effects On Groundwater and DNAPL Flow

Several surface and subsurface features apparently influence groundwater flow at the site and vicinity, and can potentially influence dissolved contaminant flow and DNAPL migration. These features are identified on Figure 3-10 and discussed below.

Shallow overburden groundwater flow is influenced by features such as:

- The regional and on-site escarpment resulting in downward flow components near the escarpment and upwelling at lowlands.
- The poorly draining adjacent lowland with its series of ponds and interconnected drainages, including the pond/wetlands which may result in localized recharge.
- The artificial features related to site development, such as:
 - The building basement walls and reported curtain sub-drain located along the back of the building resulting in diverted flow around the building.
 - The basement sump system that pumps groundwater under the southern portion of the basement.
 - The pavement and building rendering much of the upper portion of the site impermeable to infiltration of runoff and precipitation.
 - The storm water sewers below the central and north central portions of the building.

Complex subsurface structures are also influencing groundwater and DNAPL migration. At the site, irregularities in the sub-surface may be countering the tendency of some contaminants to move in the direction of groundwater flow. DNAPL could be migrating under the influence of gravity and not necessarily in the direction of groundwater flow. Where the bedrock surface or other surface of low permeability slopes away from groundwater flow, DNAPL may follow the sloping surface and concentrate in subsurface depressions. Steeply dipping bedrock fractures and plunging faults may provide pathways for contaminants to sink into the bedrock aquifer. The structures and potential contaminant migration effects are as follows:

- Large-scale swales in the refusal surface can, if of low permeability, influence DNAPL migration in a southwest flow.
- The buried colluvial wedge surface can concentrate DNAPL migration because of its low permeability; its hummocky surface has localized irregular swales in which DNAPL can pool.
- The geophysically identified bedrock depression beneath the parking area could serve as a drain for DNAPL migration and accumulation.
- Localized silt and clay layers in the vadose and phreatic zones can influence DNAPL migration; near the source area at P-5, a reported clay layer at a 20 to 27-foot depth horizon can direct the movement of DNAPL; the extent and attitude of this clay layer is not well defined by existing geologic data.

Other unmapped subsurface features that may exist to influence contaminant migration include the following:

- Ancient faults may be present, as suggested by a suite of linearly aligned features, such as the bedrock cliff and nearby streams, ponds and wetlands, lithologic contrasts between bedrock observed on site and across the pond and upwelling deep groundwater.
- Typically, anomalous groundwater flow is observed in fault zones, and on and below landslide scarps. Linearly aligned depressions are common in fault zones where gouged and fractured rock in and adjacent to faults is more easily weathered than surrounding rock. Faulting increases rock permeability by increasing fractures; as a result, faults often serve as conduits whereby groundwater (sometimes originating from significant depths) rises to the surface and recharges shallow aquifers.
- Landslides, common in fault zones, interrupt shallow groundwater flow. The scars left behind by an evacuated slide mass generally seep groundwater, which may also seep from the toe areas of slide deposits. The presence of seeps on the cliff face above the main site building suggests that seeps also occur in the subsurface along the buried portion of the cliff face and in the buried portion of the landslide scar.

3.8 Ecology and Wildlife Habitat Survey

This section provides an overall habitat based assessment of the Farrand Controls Site and vicinity. This assessment conforms to FWIA Step I guidelines of the NYSDEC Technical and Administrative Guidance Memorandum entitled, "*Fish and Wildlife Impact Analysis for* *Inactive Hazardous Waste Sites" (October, 1994).* The purpose of this section is to provide a description of the existing ecology of the site and vicinity, including a site specific description of major habitat types with associated fish and wildlife populations, and identify any other significant on-site resources. The information contained in this section was obtained during the Phase I remedial field investigation and supplemented with data from outside sources, including the NYSDEC and U.S. Fish and Wildlife Service. The field survey for this assessment was conducted in November 1998.

3.8.1 Major Habitat Types

The Farrand Control Site consists of a main site building, approximately 50' x 400', oriented northwest to southeast parallel to Wall Street. The rear of the building has a variable 30 to 50 foot paved driveway/parking area that abuts a rock outcrop which rises above the property towards the northeast. The front of the building has a maintained lawn with some ornamental shrubbery that spans 80 feet sloping gradually toward Wall Street to the southwest. Beyond Wall Street is a forested wetland that is approximately 450' by 250' stretching between Wall Street and the Taconic State Parkway. This wetland interfaces with Davis Brook which runs parallel to the parkway at this location. The areas surrounding the site are largely residential or undeveloped depending on the slope of the property. A forested bedrock outcrop rises adjacent to the rear parking area at an 80 degree slope over a 15 foot rise and then decreases grade to 40 degrees with a rise of over 100 feet. An intermittent stream is carved in the bedrock and tracks directly to the center of the main site building where a culvert conveys it beneath the building to the forested wetland by Wall Street. The major habitat types for the Farrand Control Site and the wetland immediately southwest of the site (see Figure 3-11) include:

- Forested Wetland (65%): Wetland with standing water year round which includes both undergrowth, such as catbrier, and woody vegetation, such as red maples;
- Maintained Lawn (20%): Regularly mowed and watered grass with some ornamental shrubs included; and
- Impervious Surfaces (15%): Includes the building, and paved parking and road ways.

The forested outcrop is not included for further discussion, since groundwater flow in the area is toward the wetland and no impact would be anticipated in this area.

Habitat types bordering the site include residential development to the northeast, southwest and east beyond the steep sloping rock outcrop approximately 0.7 miles. East of the Taconic State Parkway is sparsely developed grassland, residential areas and the watershed of Kensico Reservoir which lies approximately 0.3 miles east of the site. A list of the vegetation found in and around the site is provided in Table 3-4.

3.8.1.1 - Forested Wetland

The wetlands are downgradient of the building and receive surface water discharges and groundwater flow that traverse the site. The edges of the wetland where it slopes away from Wall Street are gradual and possess heavy ground vegetation such as catbrier and various sedges. The area also has a well developed canopy provided by red maples. In areas where standing water is more persistent the low vegetation is replaced by rooted aquatics and the tree canopy is thinned. Soils within this wetland are very poorly drained with a moderate buildup of organic material. The area immediately downgradient from outfalls has some stumps of trees that have died within the last 10 years.

3.8.1.2 - Maintained Lawn

This cover type represents approximately 20% of the Farrand Controls Site and includes the area between the main site building and Wall Street. The grass is routinely cut and maintained consistent with other residential lands in the immediate vicinity of the site. The grass is a planted lawn with some ornamental shrubs present, mostly near the building facade. The deep green color of the lawn suggests that it received adequate water and nutrient support. There is no indication in the lawn area of stress related to contamination.

3.8.1.3 - Impervious Surfaces

This habitat encompasses the roadways and parking areas both behind and in front of the main site building. A macadam material has been utilized and all runoff from the impervious areas is directed to discharge points into the wetlands. Except for water from Wall Street, which flows into culverts that direct discharge to the wetlands, other storm water filters through vegetation prior to wetlands area discharge.

3.8.2 Wetlands

Forested wetlands represent a substantial portion of the area under evaluation. This forested wetlands contains year round standing water and maintains surface water connection to Davis Brook. This waterway is classified by the New York State Department of Environmental Conservation as "Class C" which would make it suitable for contact recreation and the support of a fish population excluding trout. The wetlands receives discharges from the Farrand Controls Site and the adjacent residential community. The wetlands would also hold flood waters during the spring runoff and rainy season for the area. The wetlands would also afford flood water storage to Davis Brook. Flash flooding is possible during heavy rainfall events because of the large area that has generally steep slopes east of Davis Brook. The wetlands supports both facultative and obligate wetlands species on its northwest and southeast edges where poorly drained soils are seasonally saturated. The center of the wetlands contains standing water up to two feet deep and supports rooted aquatic vegetation and trees. Some trees have died, but it is not clear if this is due to continuous saturation or contaminant influences. This wetlands is regulated by both federal and New York State wetland legislation because of the connection to Davis Brook.

3.8.3 <u>Mammals</u>

The rural setting around the site and the presence of both forested upland and wetlands provides permits the site to host a variety of mammals which are generally tolerant of human activity. White-tailed deer (Odocoileus virginianus) were observed moving between the forested

rock outcrop and the wetlands during daylight hours. Eastern chipmunks (<u>Tamias striatus</u>) and cottontail rabbit (<u>Sylvilagus floridanus</u>) were also noted at the rock outcrop edge beyond the paved areas and rabbits were also observed feeding in the lawn areas. Tracks at the wetlands soft edge suggests the presence of feeding and bathing raccoons (<u>Procyon lotor</u>). The area also likely plays host to many common small mammals, including the gray squirrel (<u>Sciurus carolinensis</u>) and several species of rodents. Probable mammal inhabitants are listed in Table 3-5.

3.8.4 <u>Birds</u>

The rising rock outcrop with mature trees and the forested wetland overlooking open land afford an excellent opportunity for feeding hawks. Although no hawks were observed during the site visit, the red-tailed hawk is likely a common visitor to this area for feeding and resting. The forested area on the outcrop overlooking the site contains less than 50% low ground cover. Song birds and birds seeking grubbing opportunities in the soft earth abound in this area. The supply of fresh water in the wetland also adds to the attractiveness of this area to a wide variety of songbirds, including several species of finches and sparrows. Some dabbling ducks, including mallards, were observed in the wetlands. Wood duck sounds were also verbalized. No wading birds or other percivorous avifauna was observed suggesting that feeding opportunities for these species may be better in the nearby waterways at the Kensico Reservoir and the cemetery pond upstream of the site along Davis Brook. Most birds, excluding ducks that frequent the Atlantic Flyway, have the potential to rest at the site given the presence of the Hudson River 15 miles to the west. No breeding was observed although breeding indications would be limited at the time of the field survey. A subset of the New York State Bird Atlas listing for Westchester County, New York is presented in Table 3-6 providing species observed or expected to utilize the Farrand Controls Site.

3.8.5 <u>Fish</u>

As indicated earlier, Davis Brook is a Class C waterway capable of supporting a viable fish population. The connections to ponds both upstream and down stream of the site provide opportunity for both moving and stagnant water species to inhabit the brook. No fish activity

was observed in the standing water of the forested wetland. While seasonal connection between the brook and wetland would permit fish to enter the wetland, the shallow water and high summer temperatures would minimize year round fish viability. Longnose dace (<u>Rhinichthys cataractae</u>), other daces and common warm water fish, including largemouth bass (<u>Micropterus salmoides</u>), bluegill (<u>Lepomis macrochirus</u>) and creek chub (<u>Semotilus atromaculatus</u>), have been observed throughout Davis Brook A partial list of finfish species which likely frequent this area on a seasonal basis are provided in Table 3-7.

3.8.6 <u>Reptiles and Amphibians</u>

No reptiles or amphibians were observed on the site; however, the presence of both is expected to be common. The rock outcrop, paved parking area with limited traffic and nearby wetlands provides good habitat for both insect and small rodent eating snakes. Rocks and parking areas provide sunning opportunities. Ample cover is available. Employees of Farrand Controls described several snake sitings around the building that likely include the Eastern Garter Snake, ribbon snakes and black racers. The wetlands also provide breeding opportunities for many local amphibians including a variety of frogs. No frogs were observed during the time of the site review likely due to hibernation. Since there does not appear to be a sustained fish population in the wetland area it is likely that several species of frogs, salamanders and possibly newts occupy the wetland. Table 3-8 contains a list of reptiles and amphibians common to the area that could likely inhabit the site and/or surrounding areas.

3.8.7 Rare Species and Critical Habitats

Based on a review of the New York Natural Heritage files by the NYSDEC Wildlife Resources Center, there are no rare species or critical habitats known to occur on or adjacent to the Farrand Control Site. Except for occasional transient individuals, no federally listed or proposed endangered or threatened species exist within a two mile radius of the site according to the U.S. Department of the Interior, Fish and Wildlife Service. Table 3-9 provides a list of all federally listed and proposed threatened or endangered species in New York State.

3.8.8 Biological Associations Found in the Project Vicinity

The area surrounding the site within a 2.5-mile radius varies greatly. East of the site includes steep slopes on forested bedrock exposed hills, residential development and open water associated with reservoirs. The Farrand Controls facility fits the residential and rural nature of the area. The forested wetland of the site is one of several along the course of Davis Brook and along the Taconic State Parkway corridor. An association of cover types with common dominant species is presented in Table 3-10. The biological associations observed are common for this general area.

3.8.9 Observations of Stress Potentially Related to Site Contaminants

The wetlands adjacent to the Farrand Controls Site appear vibrant and support of a rich and diverse ecological community. Evaluations conducted on the wetlands and other sites along Davis Brook found the ecology and diversity of these wetlands comparable to others in the area. Despite this, there is one area of the wetland which raises concern. There is an area in the wetlands in the vicinity of the former sump outfall (shown on Figure 3-11) where biological activity and plant growth is sparse and several trees in this path are dead, which is not common throughout the wetlands and in areas of storm water discharge to the wetlands. This area also coincides with high volatile organic compound concentrations in surface water found in outfall sample SW-W-OF2.

The area of apparent vegetative stress also includes sediment sample point SW-K-150 which exceeded NYSDEC aquatic sediment guidance values for surface water sediment's lowest effect levels for antimony, barium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel and zinc. The VOC concentrations in surface waters would appear to be more of an influential factor since other areas such as SW-N-150 had similar sediment profiles, but does not visually illustrate vegetative impact. A conclusive determination cannot be derived from evaluation of the available information whether this vegetative anomaly is the result of chemical contamination or environmental hydrologic fluctuations in the wetlands. Focused floral and faunal chemical sampling of body burden levels coupled with environmental sampling would determine the reason for these apparent environmental impacts.

3.8.10 Habitat Values of Vegetative Zones Within the Project Site

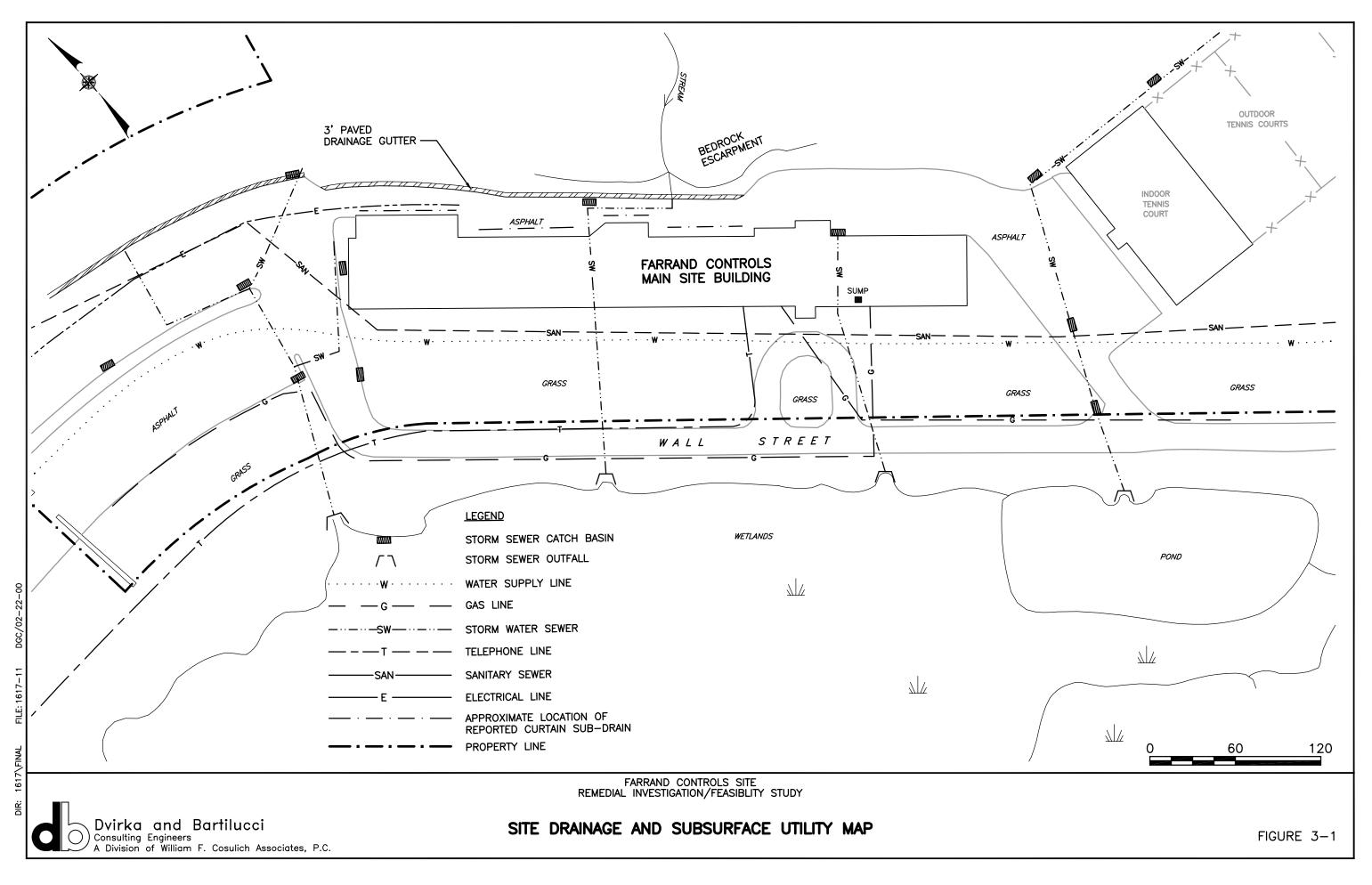
The assessment of habitat value provides for assessments of primary functions, such as food chain production, specialized habitat and hydrologic interactions. As part of the analysis, cultural values concerning recreation, aesthetics or other special features must be taken into consideration.

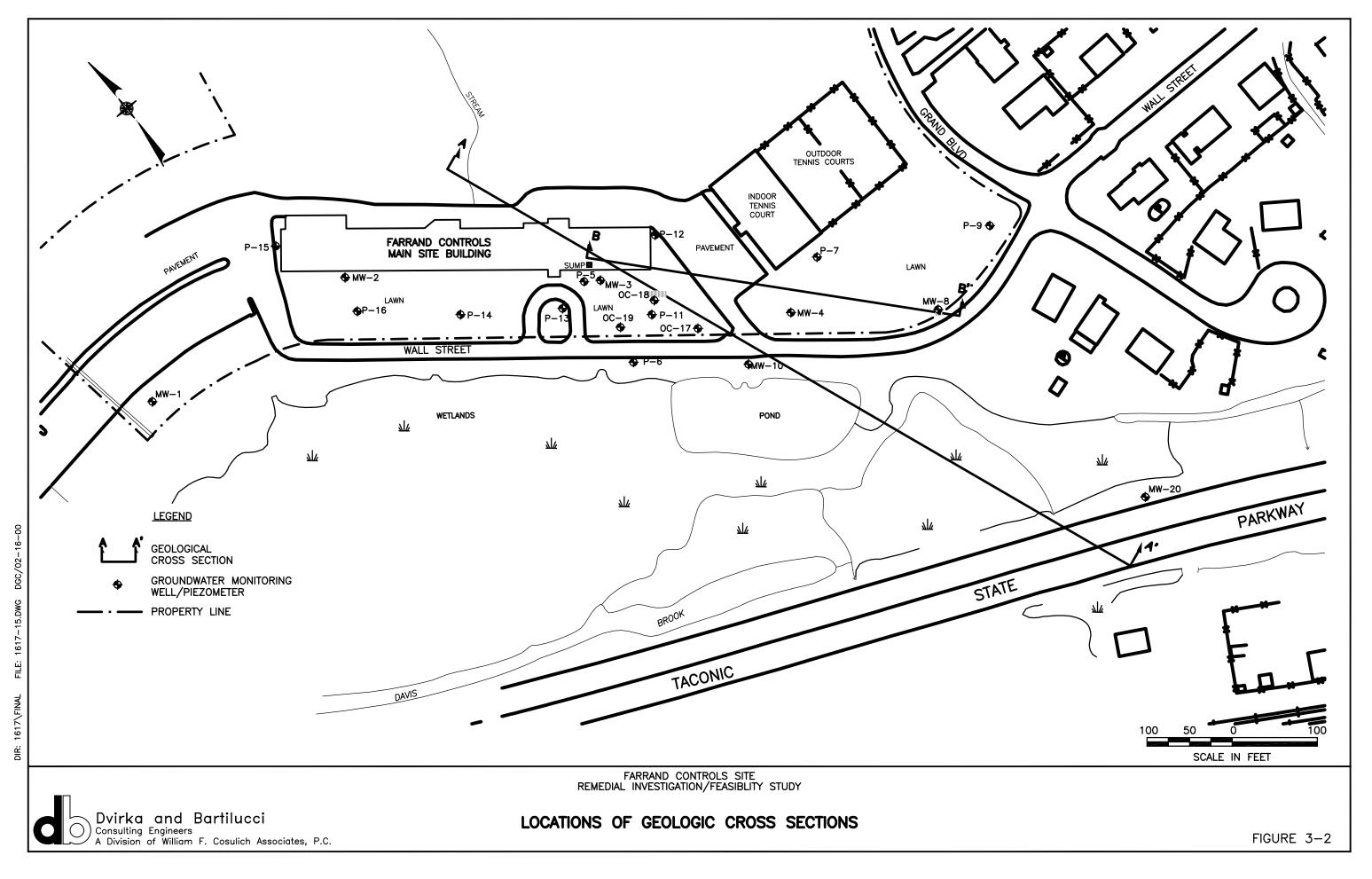
The information gathered as part of this remedial investigation can provide for a hierarchy of habitat values for the cover types found at the Farrand Control Site. It should be noted that this approach is highly subjective. Those functions assumed to be valuable in relative efficiency or importance are ranked as 3 (high), 2 (moderate) or 1 (low). Specific factors and brief descriptions which were utilized in the habitat value analysis of the site's qualitative evaluation are as follows:

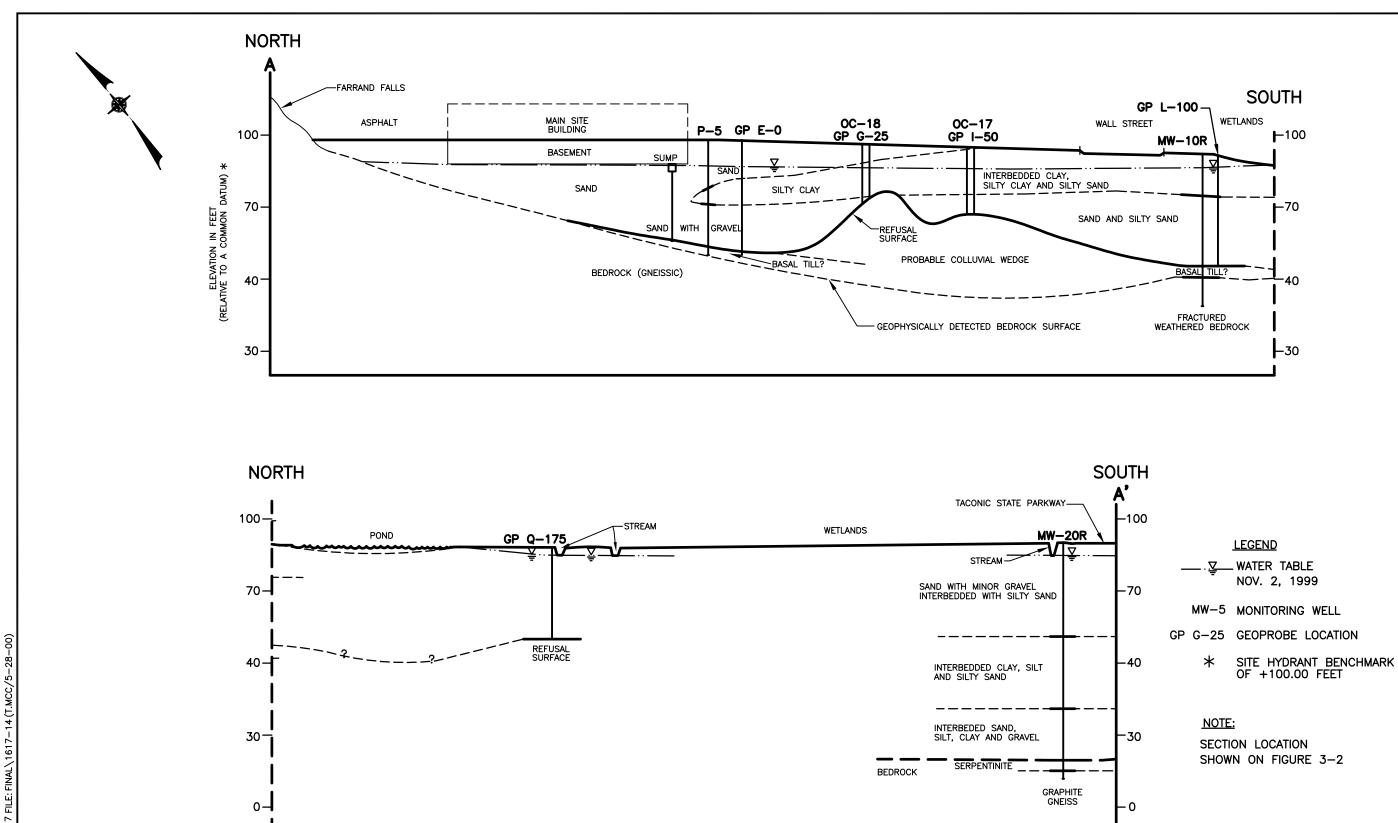
- <u>Nutrient Transport Function</u> Transport of nutrients in detrital-based food chains is strongly dependent on the hydrologic characteristics of the particular ecosystem. For example, wetlands located in lower lying areas export more detrital material than do the higher marsh areas infrequently affected by creek/river overflow. Similarly, detrital transport in the riverine systems is dependent on the river flow regime, especially during periods of peak discharge. In contrast, very little detrital material is exported from isolated ponds and marshes, except during periods of episodic overflow resulting from exceptionally high precipitation.
- <u>Food Chain Support</u> This function refers to the secondary productivity values of consumer species that a particular ecosystem can support. Secondary productivity is an overall measure of the efficiency of the habitat in terms of nutrient to transfer higher trophic levels.
- <u>Hydroperiod</u> This factor refers to the frequency of inundation either by river flow runoff or direct precipitation. Areas of good hydrologic linkage help maintain a regular interchange of nutrients and other materials necessary to support diverse flora and fauna.
- <u>Elevational Location</u> From the above, it is apparent that hydrologic relationships will progressively deteriorate as the depth of flooding decreases. The weakest hydrologic linkages exist in those areas physically isolated from other areas in the system.

- <u>Cultural Evaluation</u> This particular factor is difficult to assess in detail because of the number of socio-economic considerations which may be involved. Hence, the evaluation in relation to local residential, commercial, or industrial development is largely left to the professional judgement of the project personnel on a specific case-by-case basis.
- <u>Recreation</u> Recreation is a vital personal and social need which provides opportunity for self-expression, physical exercise, and a change of pace from normal or routine activities. Outdoor recreation is a major leisure activity and is growing in national importance with a trend towards a higher standard of living. A significant portion of the total recreational output is water based or water related. As such, greater weight is given to those types of habitats.
- <u>Socio-Economic</u> This factor pertains to benefits which can be attributed directly to renewable resources, recreational enjoyment, or other features associated with a particular habitat.
- <u>Aesthetics</u> Selected types of habitats are distinctive landscape features which can please the aesthetic sense through the intrinsic appreciation of natural beauty. Wetlands, or any other type of natural landscape, can also be offensive if their features have been adversely modified by incompatible human activities. Aesthetic value can be largely determined by the degree of visual diversity and contrast between the physical elements, such as landforms, water bodies, vegetation types and land use types.
- <u>Food Chain Production</u> This factor determines the growth of vegetation in a habitat and influences the populations and secondary productivity of animals that feed on the plants, or that feed at high trophic levels in the community.
- <u>Primary Productivity</u> Primary productivity is a measure of the stored food potential of the vegetation in excess of that used by the plants in metabolism. This determination provides an overall measure of the energy input directly available to the consumer species. It should be noted that the possible range of productivity values, both within and between particular environments, is extremely variable and dependent on a number of local conditions. For the present analysis, literature values for primary productivity as a function of biomass were utilized.
- <u>Water Purification Factor</u> Through a variety of physical, biological, and chemical processes, some habitats function to naturally purify water by removing organic and mineral particulate matter from runoff and/or rivers and streams. For example, wetlands may be significant in minimizing some of the harmful effects of pollutants introduced into natural ecological systems by the activities of man. Thus, wetlands, especially when part of riverine or estuarine systems, can be an integral part of water quality and pollution control objectives.

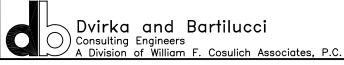
Based on the above factors, a qualitative analysis of the habitat value of the vegetative and aquatic communities at the Farrand Controls Site are presented in Table 3-11. These results show that the open water and forested wetland areas represent high value habitats. These habitats are prominent in primary productivity, nutrient transport and food chain support, while also providing aesthetic and recreational opportunities that would likely not otherwise be available in this location. The remainder of the habitat types do not possess any remarkable properties although in a rural and residential setting they represent conduits for wildlife between high value resource areas. On the site, the lawn is a conduit between the forested outcrop and the freshwater wetland. This property, presuming any identified contaminant concerns are remediated, will likely continue to provide a high quality habitat consistent with undevelopable property in a rural setting. Passive recreational opportunities for bird watching and wildlife observation should continue to be available in this region.


3.9 <u>Contaminant Pathways and Impact Analysis</u>


Past practices at the Farrand Controls site have resulted in the discharge of volatile organic compounds into the ground as a subsurface discharge. These chemicals had the potential to migrate through groundwater and storm sewers that exist on-site. Groundwater flow in the site vicinity provides much of the hydrologic make-up of the forested wetland adjacent to the site. Groundwater in the vicinity of the main site building discharges to the wetland area. Site storm water runoff and discharges from the basement sump were also directed to the wetland.


With the exception of one small area of stressed vegetation in the wetland, there is limited indication that an ecological impact related to chemical contamination has occurred at the Farrand Controls site. The area of stressed vegetation probably shows more an effect of discharge from sewer Outfall No. 2 beneath the building that culverts a stream and received discharges from the basement sump. A review of file information on the Farrand Controls manufacturing processes gave no indication that metals such as seen in the wetland sediments were generated by the manufacturing processes at Farrand Controls. The detected metals in the area of the stressed vegetation are common elements and are likely from runoff. The cause of

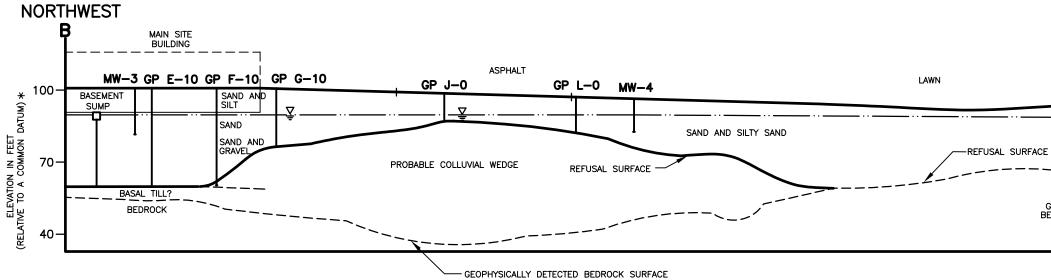
the stressed vegetation may be from the elevated VOCs detected in Outfall No. 2 sample and in the ponded surface water.


Based upon the soil and water sample analytical results, it would suggest that the potential pathways of concern for potential contaminant migration and exposure would be groundwater (VOCs), surface water (VOCs) and wetland sediments (metals). As indicated in section 3.8.9, environmental studies of the surrounding wetland found no indications of systems in stress related to environmental contamination. Within the wetland area in the vicinity of storm water discharge there exists several dead trees and the sediments are relatively void of vegetation. However, given the localized indication of impact, this circumstance is most likely a response to the former Outfall No. 2 discharges. Beyond this area the wetland vegetation appears normal and vibrant.

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBLITY STUDY

GEOLOGIC CROSS SECTION A-A'

Ш


1617

ż

8

0' 40

FIGURE 3-3

- _____.<u>v</u>_____ Water Table
- MW-3 MONITORING WELL
- GP E-10 GEOPROBE SOIL LOCATION
 - * SITE HYDRANT BENCHMARK OF +100.00 FEET

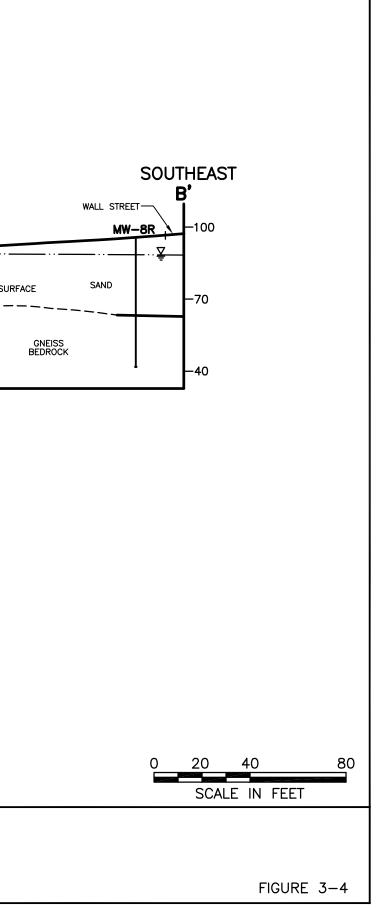
NOTE:

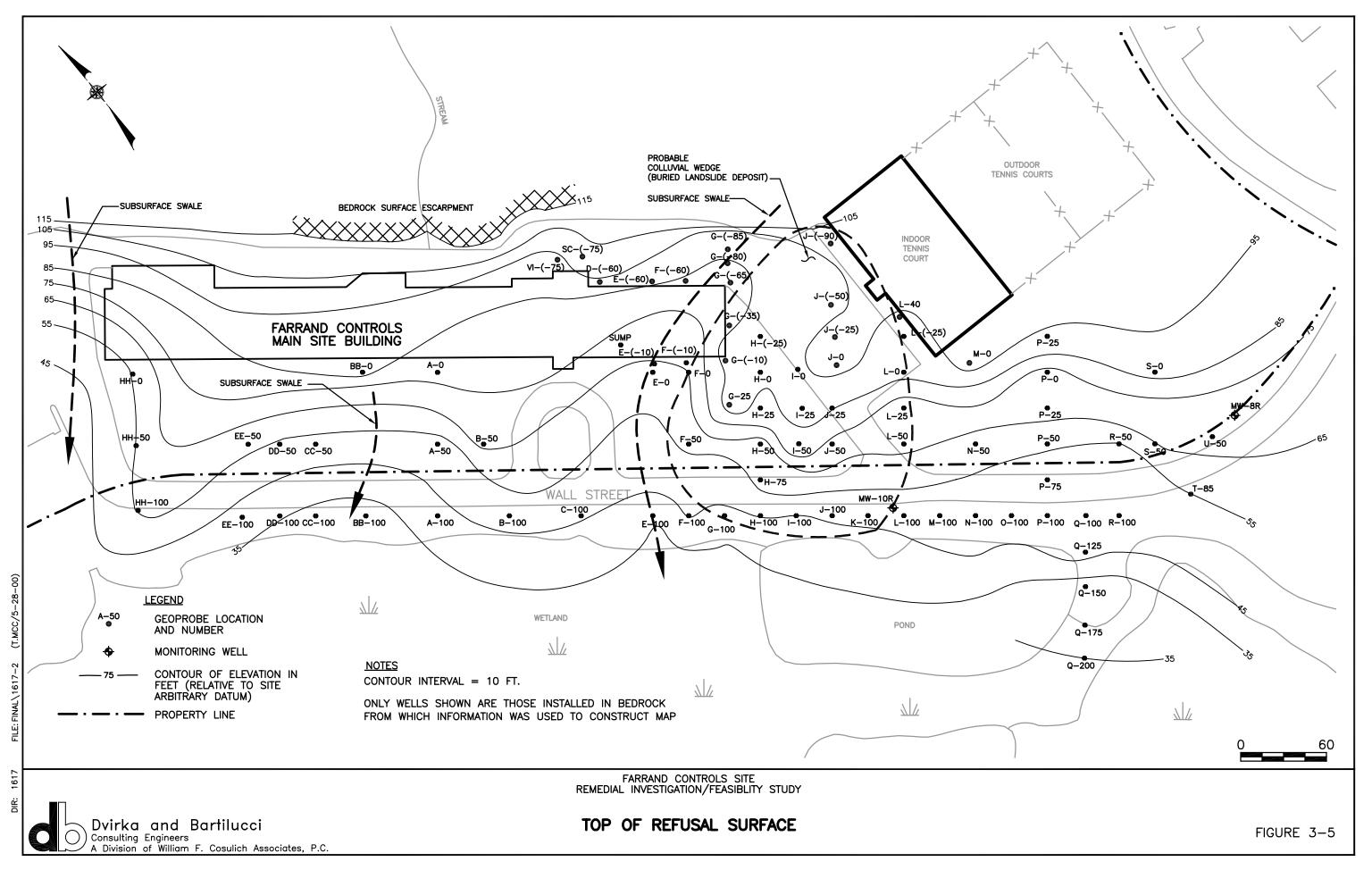
SECTION LOCATION SHOWN ON FIGURE 3-2

ଚ୍ଚ

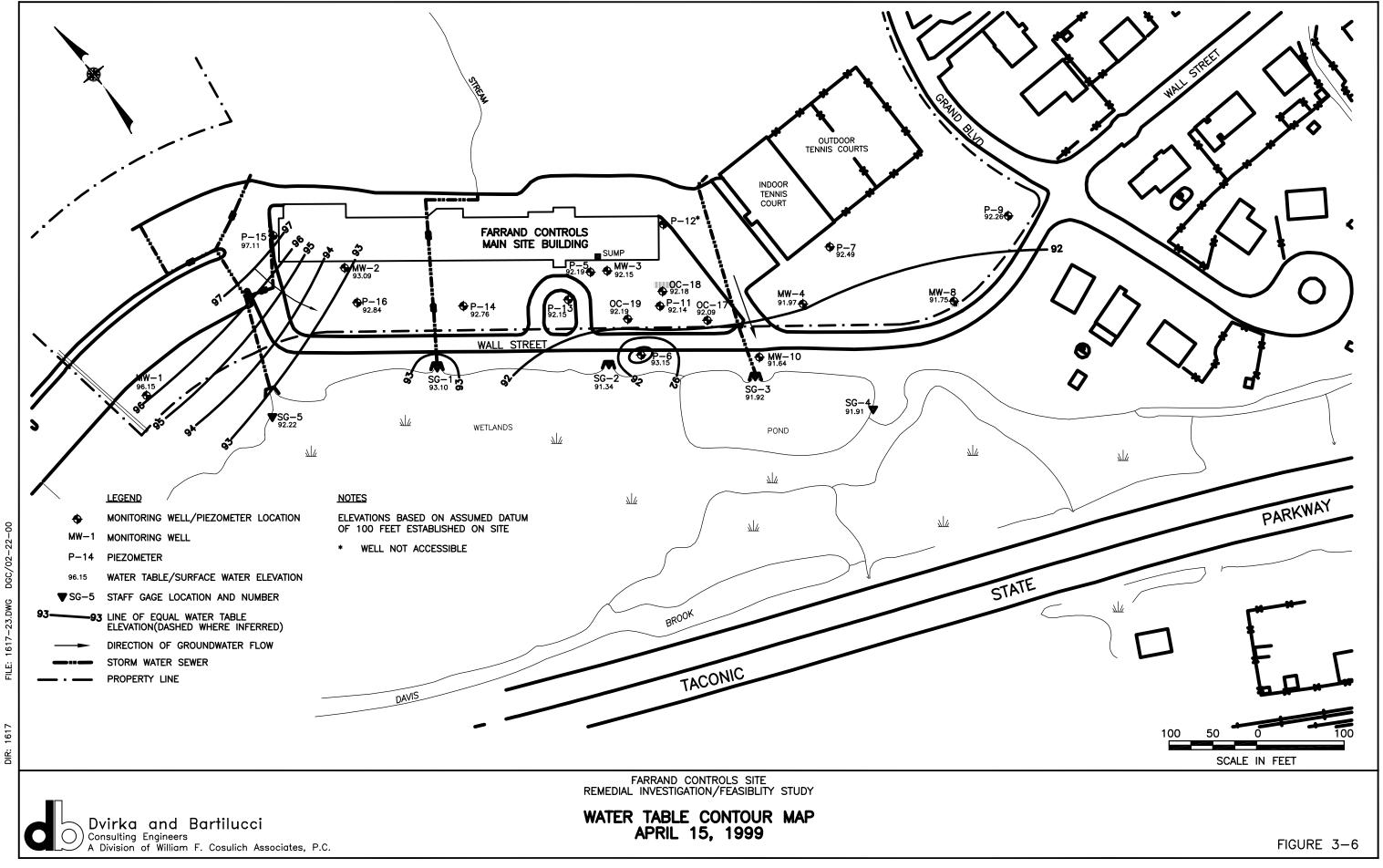
MCC

12

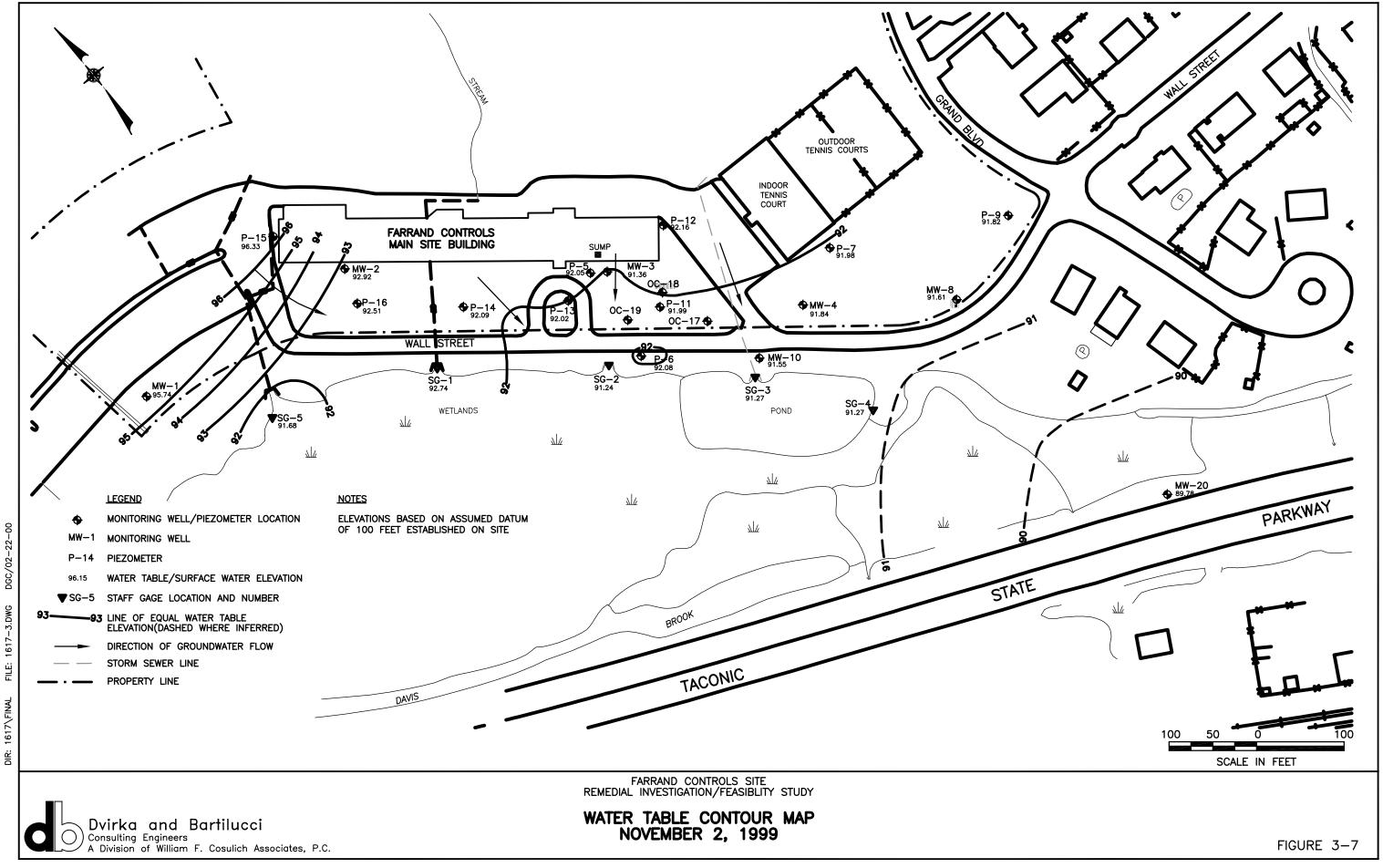

FILE: 161

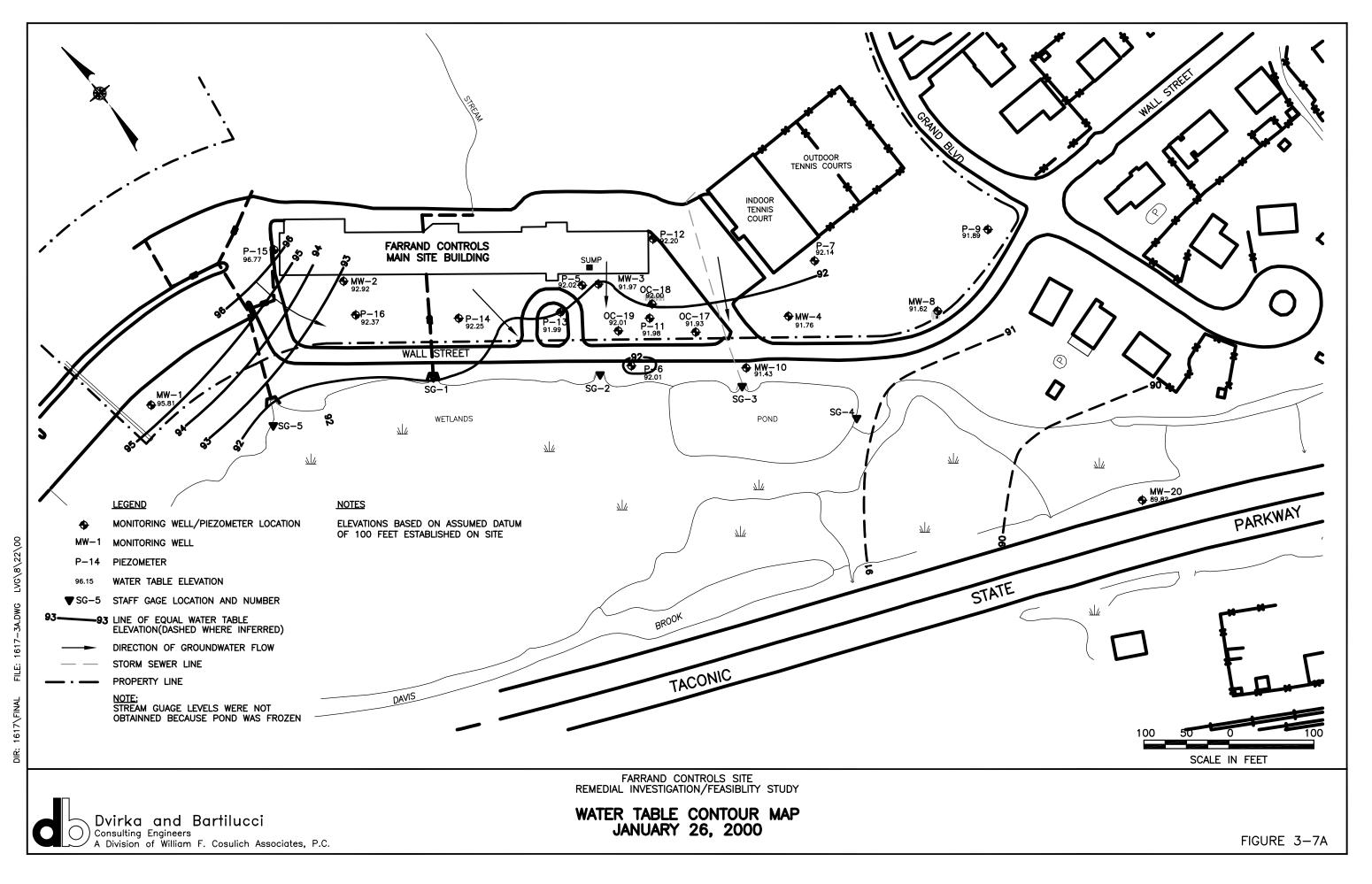

Dvirka and Bartilucci Consulting Engineers A Division of William F. Cosulich Associates, P.C.

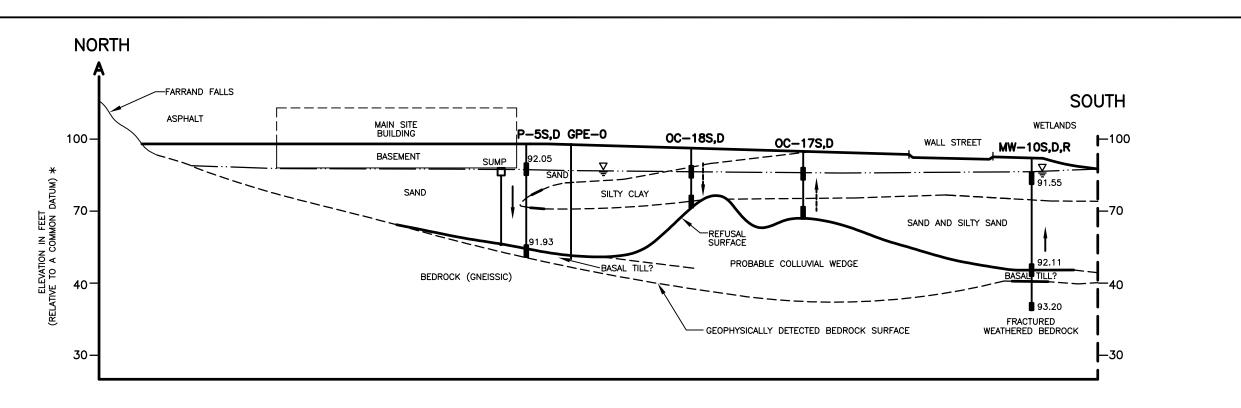
FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBLITY STUDY

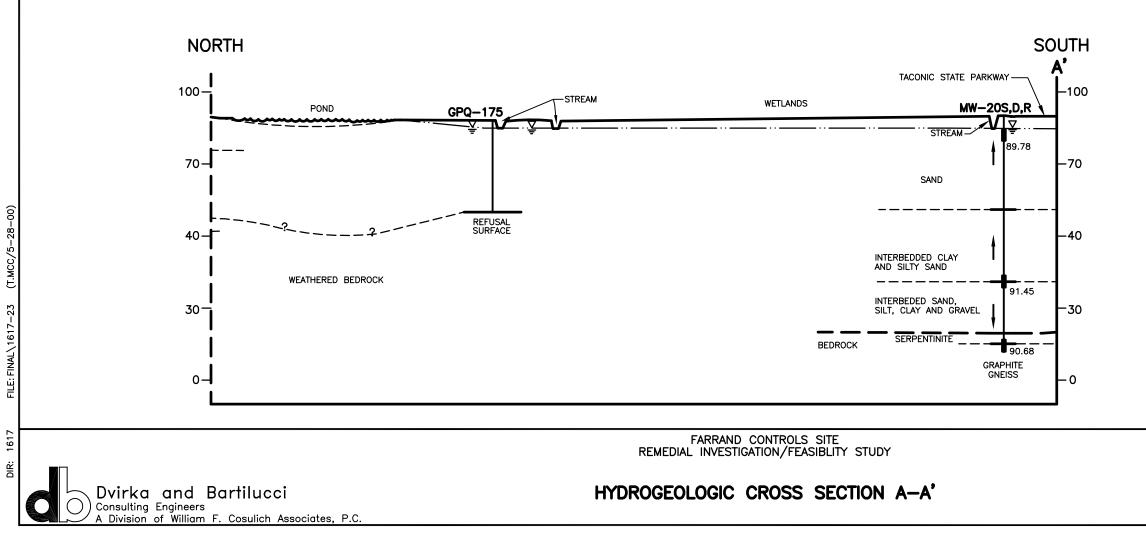

GEOLOGIC CROSS SECTION B-B'

F:\1617\FINAL\1617-12.dwg, 04/22/05 02:31:00 PM, PMartorano




F:\1617\FINAL\1617-2.dwg, 04/22/05 02:31:55 PM, PMartorano





04/22/05 02:39:26 PM, PMart

F.\1617\FINAL\1617-23.dwg,

<u>LEGEND</u>

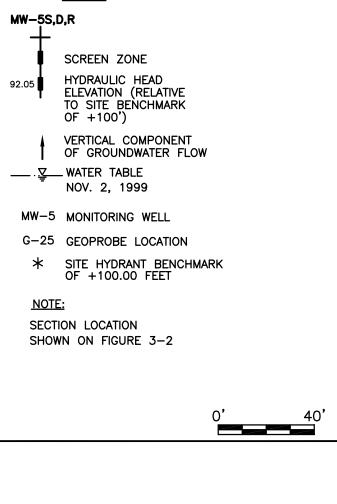
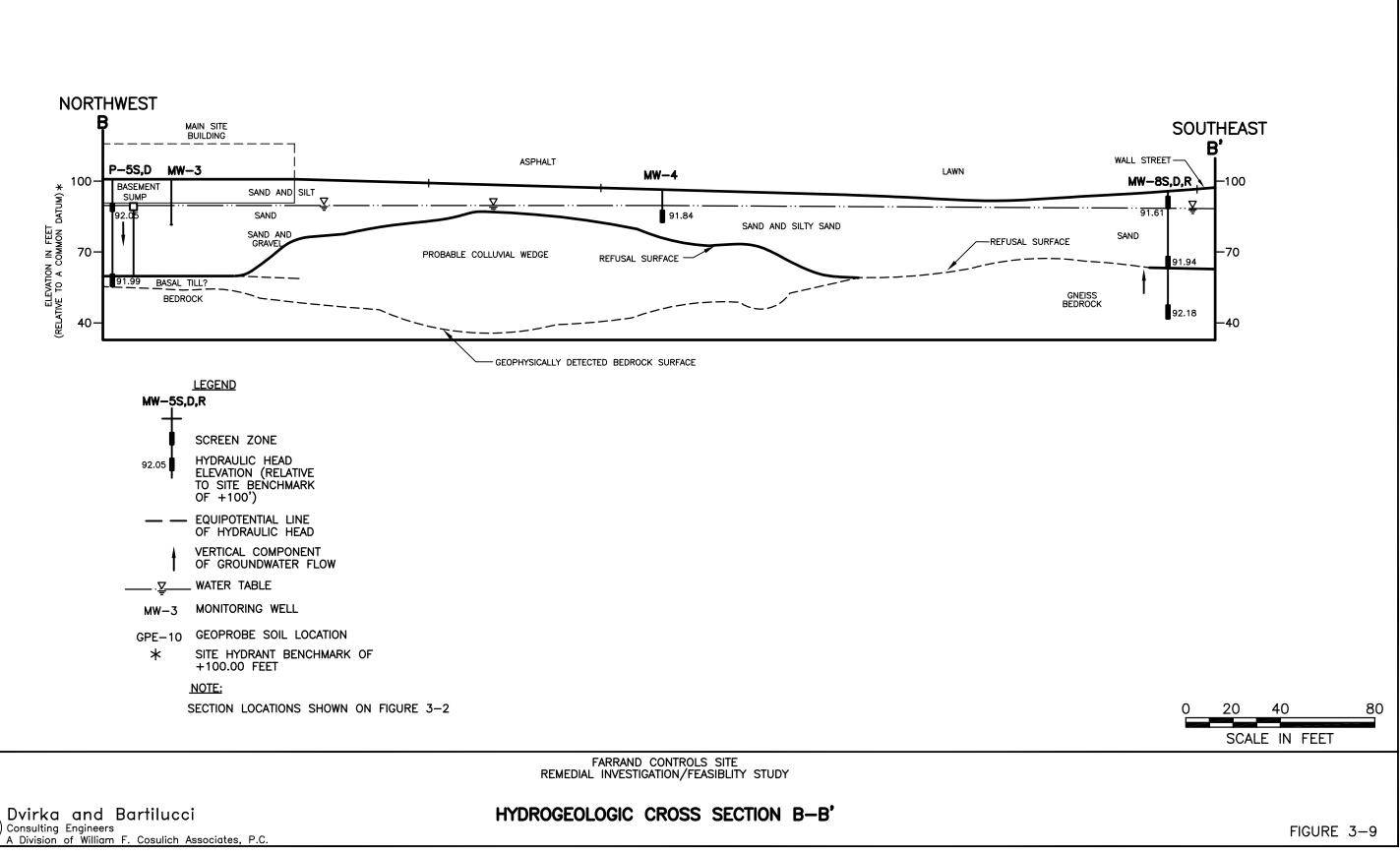
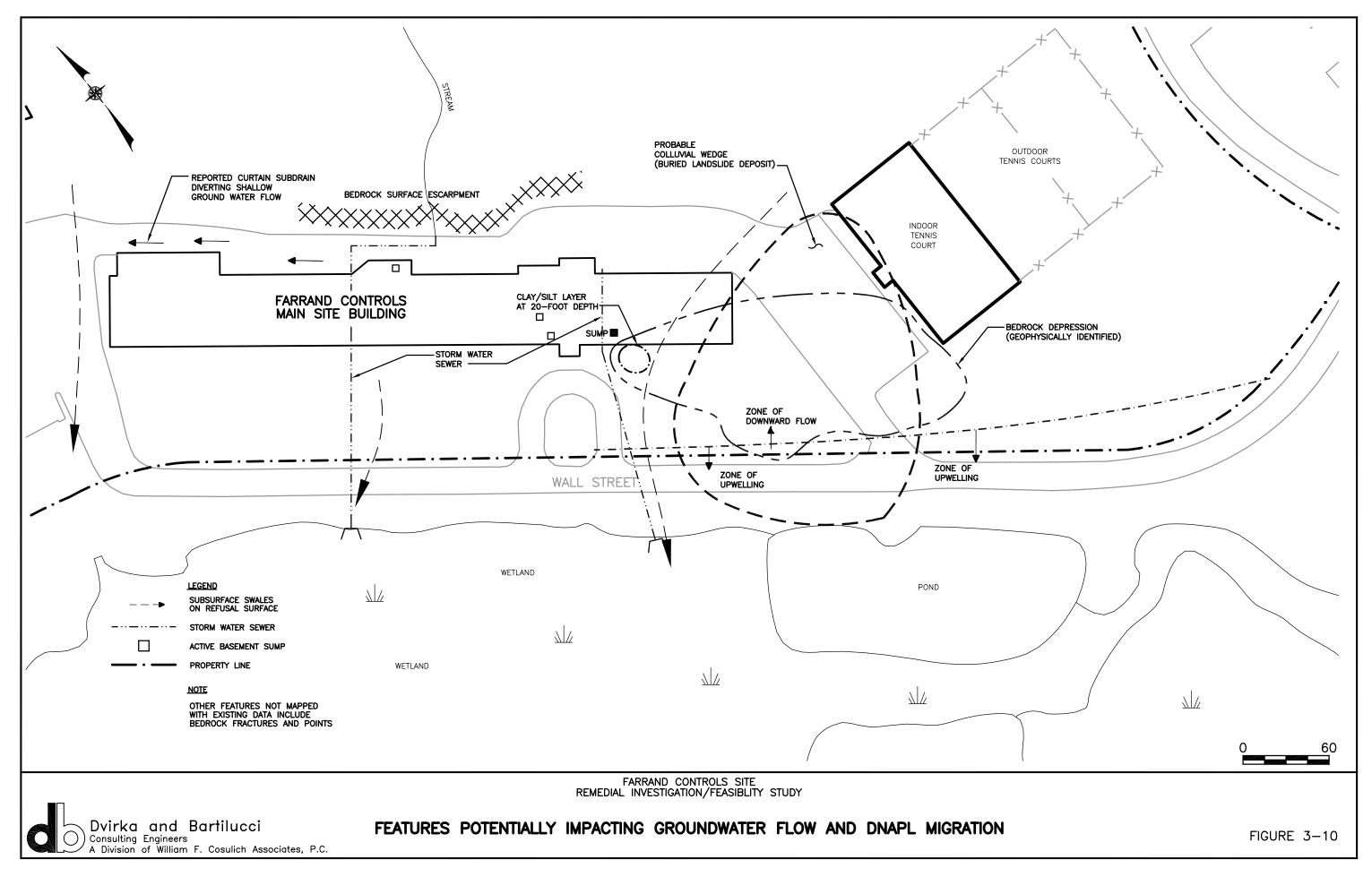
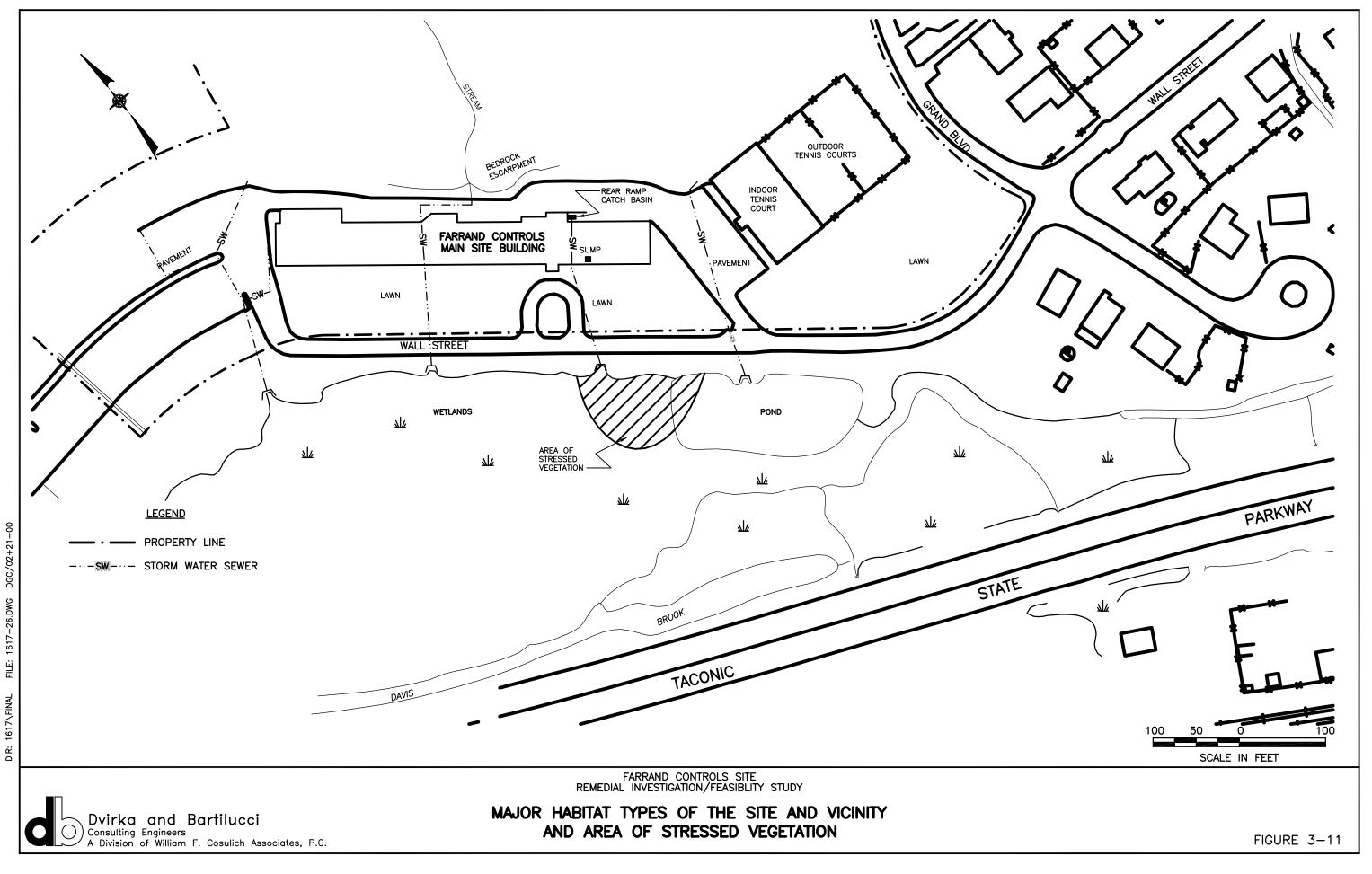



FIGURE 3-8


F:\1617\FINAL\1617-24.dwg, 04/22/05 02:40:22 PM, PMarto 1617


g

-24

FINAL\1617

ÿ

F:\1617\FINAL\1617-26.dwg, 04/22/05 02:43:13 PM, PMartorano

TABLE 3 - 1 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY GROUNDWATER AND SURFACE WATER ELEVATION DATA

		4/	15/99	11,	/2/99	1/2	6/00
Well Piezometer/Staff	Measuring Point	Depth To	Groundwater	Depth To	Groundwater	Depth To	Groundwater
Gauge Number	Elevation (feet)	Water (feet)	Elevation (feet)	Water (feet)	Elevation (feet)	Water (feet)	Elevation (feet)
MW-1	98.26	2.11	96.15	2.52	95.74	2.45	95.81
MW-2	103.73	10.64	93.09	10.81	92.92	10.81	92.92
MW-3	103.07	10.92	92.15	11.71	91.36	11.10	91.97
MW-4	97.45	5.48	91.97	5.61	91.84	5.69	91.76
P-5S	102.65	10.46	92.19	10.60	92.05	10.63	92.02
P-5I	102.72	NR		NR		10.71	92.01
P-5D	102.6	10.48	92.12	10.67	91.93	10.56	92.04
P-6	95.2	2.05	93.15	3.12	92.08	3.19	92.01
P-7	103.14	10.65	92.49	11.16	91.98	11.00	92.14
MW-8S (P-8)	98.96	7.21	91.75	7.35	91.61	7.34	91.62
MW-8 D	97.25	wn		5.31	91.94	5.29	91.96
MW-8R	97.44	wn		5.26	92.18	18.49	78.95
P-9	100.24	7.98	92.26	8.42	91.82	8.35	91.89
MW-10 S (P-10)	98.19	6.55	91.64	6.64	91.55	6.76	91.43
MS-10 D	95.89	wn		3.78	92.11	3.81	92.08
MW-10 R	96.48	wn		3.28	93.2	4.30	92.18
P-11	99.13	6.99	92.14	7.14	91.99	7.15	91.98
P-12	104.1	not accessible		11.94	92.16	11.90	92.20
P-13	100.84	8.69	92.15	8.82	92.02	8.85	91.99
P-14	99.4	6.64	92.76	7.31	92.09	7.15	92.25
P-15	104.18	7.07	97.11	7.85	96.33	7.41	96.77
P-16	100.42	7.58	92.84	7.91	92.51	8.05	92.37
P-17S (OC-17)	97.86	5.77	92.09	8.20	89.66	5.93	91.93
P-17D	98.07	5.98	92.09	8.22	89.85	6.11	91.96
P-18S (OC-18)	100.23	8.05	92.18	5.91	94.32	8.23	92.00
P-18D	100.24	8.02	92.22	6.10	94.14	8.21	92.03
P-19S (OC-19)	98.48	6.29	92.19	6.45	92.03	6.47	92.01
P-19D	98.67	6.43	92.24	6.59	92.08	6.60	92.07
MW-20 S	94.31	wn		4.53	89.78	4.49	89.82
MW-20 D	94.3	wn		2.85	91.45	2.92	91.38
MW-20R	94.19	wn		3.51	90.68	2.87	91.32
SG-1	94.97	1.87	93.10	2.23	92.74	NM	-
SG-2	93.15	1.81	91.34	1.91	91.24	NM	-
SG-3	93.53	1.61	91.92	2.26	91.27	NM	-
SG-4	93.3	1.39	91.91	2.03	91.27	NM	-
SG-5	94.65	2.43	92.22	2.97	91.68	NM	-

Notes

MW: Monitoring well P: Piezometer SG: Staff Gauge S: Shallow I: Intermediate D: Deep P-5I: Sampling tube blocked access

P-12: Broken lock could not be removed

OC: Existing groundwater monitoring wells/piezometers

2

wn: Well not yet installed --: Not available NM: Not measurable; frozen

PH2WATERLEVEL2.xls

TABLE 3-2

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY MONITORING WELL HYDRAULIC HEAD DATA APRIL 23, 2001

WELL	Total Depth (ft)	Screen Interval (ft)	Screen Mid-Point (ft)	Hydraulic Head (ft)	Hydraulic Head Difference (ft)	Hydraulic Gradient (ft)
P-5 S	13	8-13	10.5	92.30	-0.12	0.003
P-5 I*	20	18-20	21	92.42		
P-5 D	48	43-48	45.5	92.21	0.21	
MW-8 S (P-8)	10	6-10	8	92.00		
					-0.45	0.032
MW-8 D	36	26-36	31	92.45		
					-0.39	0.020
MW-8 R	56	41-56	48.5	92.84		
MW-10 S (P-10)	10	6-10	8	91.68		
					-0.66	0.016
MW-10 D	53.5	43.5-53.5	48.5	92.34		
					-0.09	0.006
MW-10 R	63.5	61-63.5	62.75	92.43		
MW-20 S	15	5-15	10	90.09		
					-1.71	0.027
MW-20 D	77	67-77	72	91.80		
					-0.21	0.010
MW-20 R	98	88-98	93	92.01		
MW-20S	15	5-15	10	92.70		
					0.01	0.001
MW-20R	33	18-28	23	92.69		
MW-22S	15	5-15	10	92.51		
					-0.05	0.003
MW-22R	35	25-35	30	92.56		

NOTES:

Depths are from grade

* Inaccessible

D: Deep

I: Intermediate

MW: Monitoring well

P: Piezometer

R: Bedrock

S: Shallow

TABLE 3-3 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY HYDRAULIC CONDUCTIVITY DATA SUMMARY

Monitoring Well	Hydraulic Conductivity (K) Determined From Slug Tests				
MW-03	Rising Head	Falling Head	Average		
feet/second	2.77E-04	n.a.	n.a.		
feet/day	23.93	n.a	n.a		
cm/second	8.44E-03	n.a	n.a.		

Monitoring Well	Hydraulic Conductivity (K) Determined From Slug Tests						
MW-04	Rising Head Falling Head Average						
feet/second	1.27E-03	n.a.	n.a.				
feet/day	109.73	n.a	n.a				
cm/second	3.87E-02	n.a	n.a				

Monitoring Well	Hydraulic Conductivity (K) Determined From Slug Tests					
MW-10D	Rising Head	Average				
feet/second feet/day cm/second	1.63E-04 14.08 4.97E-03	2.00E-04 17.28 6.10E-03	1.82E-04 15.68 5.53E-03			

Monitoring Well	Hydraulic Conductivity (K) Determined From Slug Tests					
MW-10R	Rising Head Falling Head Average					
feet/second feet/day cm/second	7.71E-06 0.67 2.35E-04	2.76E-05 2.38 8.41E-04	1.77E-05 1.53 5.38E-04			

n.a. Not applicable as only rising head test is valid for wells where water table intersects screen zone.

Hydraulic conductivity ranges for unconsolidated sediments in centimeters per second (Fetter, 1980)			
Clay	10 ⁻⁹ - 10 ⁻⁶		
Silt, sandy silts, clayey sands, glacial till	10⁻⁰ - 10⁻⁴		
Silty sands, fine sands	10 ⁻⁵ - 10 ⁻³		
Well sorted sands, glacial outwash	10 ⁻³ - 10 ⁻¹		
Well-sorted gravel	10 ⁻² - 1		

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY VEGETATIVE SPECIES OBSERVED ON THE SITE

Common Name

Scientific Name

Herbaceous Plants

Yarrow Aster Aster Daisy Chicory Bull thistle Crown vetch Lady's slipper Crabgrass Strawberry Narrow-leafed bush clover Bush clover Butter and eggs Evening primrose Yellow woodsorrel Ground cherry Pokeweed Broadleaf plantain Nightshade Common mullein Vetch

Shrubs and Vines

Alder Barberry Leatherleaf Forsythia Japanese honeysuckle Virginia creeper Poison ivy Multiflora rose Catbrier Achillea millefolium Aster spectabilis Aster undulatus Chrysanthemum sp. Cichorium intybus Cirsium vulgare Coronilla varia Cypripedium acaule Digitaria sp. Fragaria virginiana Lespedeza augustifolia Lespedeza virginiana Linaria vulgaris Oenothera biennis Oxalis stricta Physalis heterophylla Phytolacca americana Plantago major Solanum dulcamara Verbascum thapsus Vicia sp.

Alnus rugosa Berberis thunbergii Chamaedaphne calyculata Forsythia sp. Lonicera japonica Parthenocissus quinquefolia Rhus radicans Rosa multiflora Smilax

Table 3-4 (continued)

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY VEGETATIVE SPECIES OBSERVED ON THE SITE

Common Name

Scientific Name

Trees

Red maple Gray birch Flowering dogwood Black gum Large-toothed aspen Quaking aspen Poplar Black cherry White oak Black oak Acer rubrum Betula populifolia Cornus florida Nyassa sylvatica Populus grandidentata Populus tremuloides Populus deltoides Prunus serotina Quercus alba Quercus velutina

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY MAMMALS LIKELY TO INHABIT THE SITE

Common Name

Scientific Name

Eastern chipmunk Gray Squirrel Cottontail rabbit White-footed mouse House mouse Raccoon White-tailed Deer Tamias striatus Sciurus carolinensis Sylvilagus floridanus Peromyscus leucopus Mus musculus Procyon lotor Odocoileus virginianus

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY AVIFAUNA LIKELY TO INHABIT THE SITE

Common Name

Scientific Name

Winter wren Carolina wren Grav catbird Northern mockingbird Eastern bluebird American robin Wood thrush Cedar waxwing Solitary vireo Yellow warbler Yellow-rumped warbler Bay-breasted warbler Blackpoll warbler Pine warbler Ovenbird Common yellow-throat Eastern meadowlark Common grackle European starling House sparrow Northern cardinal Indigo bunting Brown-headed cowbird Scarlet tanager House finch Purple finch American goldfinch Northern junco Rufous-sided towhee Chipping sparrow Field sparrow Song sparrow White-throated sparrow Great blue heron Black-crowned night heron Canada goose Mallard

Troglodytes troglodytes Thryothorus ludovicianus Dumetella carolinensis **Mimus Polyglottis** Stalia sialis Turdus migratorius Hyocichla mustelina Bonbycilla cedrorum Vireo solitarius Dendroica petechia Dendroica coronata Dendroica castanea Dendroica striata Dendroica pinus Seirus aurocapillus Geothlypis trichas Sturnella magna Quiscalus quiscula Sturnus vulgaris Passer domesticus Cardinalis cardinalis Passerina cyanea Molothrus ater Piranga olivacea Carpodacus mexicanus Carpodacus purpureus Carduelis tristis Junco hyemalis Pipilo erythrophthalmus Spizella passerina Spizella pusilla Melospiza melodia Zonotrichia albicollis Ardea herodias Nycticorax nycticorax Branta canadensis Anas platyrhynchos

Table 3-6 (continued)

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY AVIFAUNA LIKELY TO INHABIT THE SITE

Common Name

Scientific Name

Black duck Sharp-shinned hawk Broad-winged hawk Red-tailed hawk Kestrel Ring-necked pheasant Killdeer Herring gull Mourning dove Yellow-bellied sapsucker Red-bellied woodpecker Downy woodpecker Hairy woodpecker Eastern kingbird American crow Blue jay Black-capped chickadee Tufted titmouse White-breasted nuthatch Red-breasted nuthatch Brown creeper House wren

Anas rubripes Accipiter striatus Buteo platypterus Buteo jamaicensis Falco sparverius Phasianus colchicus Charadrius vociferus Larus argentatus Zenaida macroura Sphyrapicus varius Melanerpes carolinus **Picoides** pubescens Picoides villosus Tyrannus tyrannus Corvus brachyrhynchos Cyanocitta cristata Parus atricapillus Parus bicolor Sitta carolinensis Sitta canadensis Certhia americana Troglodytes aedon

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY FINFISH LIKELY TO SEASONALLY INHABIT THE SITE

Common Name

Scientific Name

Fallfish Creek chub Golden shiner Blacknose dace Longnose dace Cutlips minnow Common shiner Fathead minnow Largemouth bass Bluegill Pumpkinseed Brown bullhead Semotilus corporalis Semotilus atromaculatus Notemigonus crysoleucas Rhinichthys atratulus Rhinichthys cataractae Exoglossum maxillingua Luxilus cornutus Pimephales promelas Micropterus salmoides Lepomis macrochirus Lepomis gibbosus Ictalurus nebulosus

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY REPTILES AND AMPHIBIANS LIKELY TO INHABIT THE SITE

Common Name

Scientific Name

Box turtle Eastern garter snake Eastern ribbon snake Eastern milk snake Northern black racer Red-backed salamander Red-spotted newt Northern spring peeper Green frog Pickerel frog Fowler's toad Terrapene carolina Thamnophis sirtalis Thamnophis sauritis Lampropeltis triangulum Coluber constrictor Plethodon cinereus Notophthalmus viridescens Hyla crucifer Rana clamitans Rana palustris Bufo woodhousei fowleri

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

Common Name	Scientific Name	<u>Status</u>	Distribution
Fishes			
Sturgeon, shortnose	Asipenser brevirostrum	Е	Hudson River and other Atlantic coastal rivers
Reptiles			Attaintic coastai fivers
Turtle, bog	Clemmys muhlenbergii	РТ	Albany, Columbia, Dutchess, Genesee, Orange, Oswego, Putnam, Seneca, Ulster, Wayne and Westchester Counties
Turtle, green	Chelonia mydas	Т	Oceanic summer visitor coastal waters
Turtle, hawksbill	Eretmochelys imbricata	Е	Oceanic summer visitor coastal waters
Turtle, leatherback	Dermochelys coriacea	Е	Oceanic summer visitor coastal waters
Turtle, loggerhead	Caretta caretta	Т	Oceanic summer visitor coastal waters
Turtle, Atlantic ridley	Lepidochelys kempii	Е	Oceanic summer visitor coastal waters
Birds			
Eagle, bald	Haliaeetus leucocephalus	Т	Entire state
Falcon, peregrine	Falco peregrinus	E	Entire state - re- establishment to former breeding range in progress

Table 3-9 (continued)

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

Common Name	Scientific Name	<u>Status</u>	Distribution
Plover, piping	Charadrius melodus	E T	Great Lakes Watershed Remainder of coastal New York
Tern, roseate	Sterna dougallii dougallii	Е	Southeastern coastal portions of state
Mammals			
Bat, Indiana	Myotis sodalis	Е	Entire state
Cougar, eastern	Felis concolor cougar	Е	Entire state - probably extinct
Whale, blue	Balaenoptera musculus	Е	Oceanic
Whale, finback	Balaenoptera physalus	Е	Oceanic
Whale, humpback	Megaptera novaeangliae	Е	Oceanic
Whale, right	Eubalaena glacialis	E	Oceanic
Whale, sei	Balaenoptera borealis	Е	Oceanic
Whale, sperm	Physeter catodon	Е	Oceanic
Mollusks			
Snail, Chittenango ovate amber	Succinea chittenangoensis	Т	Madison County
Mussel, dwarf wedge	Alasmidonta heterodon	Е	Orange County - lower Neversink River

Table 3-9 (continued)

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

Common Name	Scientific Name	<u>Status</u>	<u>Distribution</u>
Butterflies			
Butterfly, Karner blue	Lycaeides melissa samuelis	Е	Albany, Saratoga, Warren and Schenectady Counties
Plants			
Monkshood, northern wild	Aconitum noveboracense	Т	Ulster, Sullivan and Delaware Counties
Pogonia, small whorled	Isotria medeoloides	Т	Entire state
Swamp pink	Helonias bullata	Т	Staten Island - presumed extirpated
Gerardia, sandplain	Agalinis acuta	Е	Nassau and Suffolk Counties
Fern, American hart's- tongue	Asplenium scolopendrium var. Americana	Т	Counties
Orchid, eastern prairie fringed	Platanthera leucophea	Т	Not relocated in New York
Bulrush, northeastern	Scirpus ancistrochaetus	Е	Not relocated in New York
Roseroot, Leedy's ssp. Leedyi	Sedum integrifolium	Т	West shore of Seneca Lake
Amaranth, seabeach	Amaranthus pumilus	Т	Atlantic coastal plain beaches
Goldenrod, Houghton's	Solidago houghtonii	Т	Genesee County

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY FLORAL AND FAUNAL ASSOCIATIONS OBSERVED WITHIN 2.5 MILES OF THE SITE

Species	Grassland/ Field	Forested/ Grassland/ Field	Open Water	Developed/ Paved	Forested Wetland	Forested
Plants						
Crown vetch Fescue	Х	Х				
Virginia Creeper		Х				Х
Multiflora rose	Х	Х				
Red maple					Х	Х
Flowering Dogwood		Х				Х
Poplar		Х				Х
Animals						
Gray Squirrel		Х				Х
Rodents	Х	Х				Х
Mallard			Х		Х	
Hawks	Х	Х	Х		Х	Х
Finches		Х			Х	Х
Sparrows	Х	Х			Х	Х
Amphibians			Х		Х	
Longnose dace			Х		Х	
-						

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY QUALITATIVE HABITAT VALUE ANALYSIS WITHIN THE SITE AND SURROUNDING AREA

		Forested /				
Evaluation Factor	Maintained Lawn	Grassland/ Field	Open Water	Developed/ Paved	Forested Wetland	Forested
Food Chain Production	2	2	2	1	3	2
Primary Productivity	2	2	2	1	3	2
Nutrient Transport	1	1	3	1	2	1
Food Chain Support	2	2	3	1	3	2
Hydroperiod	1	1	3	1	3	1
Elevational Location	2	2	2	2	2	2
Cultural Location	1	1	2	1	2	2
Recreation	2	2	3	2	2	2
Socio-Economic	1	1	2	2	2	2
Aesthetics	2	2	3	1	3	3
Water Purification Factor	2	2	1	1	2	2
Totals	18	18	27	14	27	21

4.0 NATURE AND EXTENT OF CONTAMINATION

This section presents the analytical results for the samples collected during the remedial investigation, and discusses the location, nature and significance of contamination found at and downgradient of the Farrand Controls Site. The significance of contamination is based on a comparison of contaminant concentrations to standards, criteria and guidelines (SCGs) selected for the site which are described below.

4.1 Identification of Standards, Criteria and Guidelines

This section provides the standards, criteria and guidelines that are used to identify the contaminants, media and areas of concern, and on a preliminary basis, the potential threat to human health and the environment. The media for which SCGs apply for this investigation are surface and subsurface soil, groundwater, surface water, surface water sediment and indoor air.

4.1.1 <u>Surface and Subsurface Soil</u>

The SCGs used to evaluate the degree and extent of surface and subsurface soil contamination are based on the NYSDEC Technical and Administration Guidance Memorandum (TAGM) No. 4046, *Determination of Soil Cleanup Objective and Cleanup Levels (1994)*, and are contained in the respective data tables. The Recommended Soil Cleanup Objectives are developed to protect human health resulting from ingestion of soil and groundwater as a potable water supply.

4.1.2 Groundwater

For review and interpretation of groundwater sample analytical results, the SCGs selected for the site are based on NYSDEC Technical and Operational Guidance Series (TOGS) (1.1.1), *Ambient Water Quality Standards And Guidance Values and Groundwater Effluent Limitations* (1998). The water quality standards and guidance values provide ambient contaminant concentrations developed to protect New York State groundwater and refer to their bestclassified usage. Analytical results obtained for groundwater samples are compared to Class GA standards/guidelines for which the use is potable water supply and are contained in the respective data tables.

4.1.3 Surface Water

The SCGs used to evaluate the degree and extent of surface water contamination and fresh water fish survival are based the NYSDEC Technical and Operational Guidance Series (TOGS) (1.1.1), *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (1998)*. The analytical results obtained for surface samples are compared to Class C standards/guidelines which is the classification of the surface waters adjacent to the Farrand Controls Site.

4.1.4 Surface Water Sediment

Sediment quality criteria were derived for non-polar volatile organic compounds using equilibrium partitioning as per NYSDEC Division of Fish, Wildlife and Marine Resources *Technical Guidance for Screening Contaminated Sediment* (January 1999). Table 1 of this document was utilized to determine water quality criteria for Benthic Aquatic Life Chronic Toxicity and sediment octanol/water partitioning coefficients (Kow). Kow is approximately equal to sediment organic carbon/water partitioning coefficients (Koc). Sediment criteria were normalized for site specific organic carbon found in sediment samples SED-OF3 (1.08%) and SED-OF1 (5.63%), and were normalized to a default organic carbon content of 1% for sediment samples for which total organic content was not analyzed. Appendix J presents the calculations used to determine organic carbon normalized sediment criteria. Criteria are summarized in Table A-11 of Appendix J. Benthic Aquatic Life Chronic Toxicity Water Quality Criteria are comparable to water quality standards for fresh water fish survival in Class C surface waters [NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (1998)*].

Sediment criteria for metals were obtained from Table 2 in *Technical Guidance for Screening Contaminated Sediments*. Metal exceedance determinations were based on the Lowest Effect Levels and Severe Effect Levels.

4.1.5 Indoor Air

Indoor air criteria are based on two sources, which include Occupational Safety and Health Administration (OSHA) Recommended Exposure Limits (REL), and National Institute for Occupational Safety and Health Administration (NIOSH) Permissible Exposure Limits (PEL). Because air quality measurements were made in a commercial facility, OSHA and/or NIOSH standards were used for determining exceedances. Laboratory data was reported in both parts per billion by volume (ppbv) and micrograms per cubic meter (ug/m³). In order to be consistent with guidance value units, data summary table results are reported in ug/m³.

4.2 Analytical Results

Presented below as a function of media sampled are the results of the chemical characterization of the site. Media include surface soil, subsurface soil, groundwater, surface water, surface water sediment and indoor air. Complete analytical data tables, including results for all constituents analyzed, are provided by media in Appendixes G through K. In order to focus on the contaminants, media and areas of the site and study area which are of concern, primarily those sample results that exceed the SCGs described above are presented and discussed in this section. For soil and surface water, VOC concentrations below SCGs are discussed for source evaluation purposes. For reference in the following sections, the analyses for all sampled media during the remedial investigation are summarized in Table 4-1.

Primary analysis was for volatile organic compounds because they were identified as the contaminants of concern in the previous site investigations. Metals and PCB analyses were conducted on many of the investigation samples to provide for a comprehensive program. A few metals were detected above SCGs, but generally within an order of magnitude of the exceedance. These metals primarily included iron and zinc at concentrations that do not pose any significant

concerns, and are not related to the site. PCBs were not detected, or detected in very low concentrations, and also do not pose a concern.

The VOCs detected in the previous, as wells as current investigation, constitute a suite of eight chlorinated compounds including:

- trichloroethene (TCE)
- 1,1-dichloroethene (DCE)
- trans 1,2-dichloroethene (t-DCE)
- cis-1,2-dichloroethene (c-DCE)
- vinyl chloride (VC)
- 1,1,1-trichloroethane (TCA)
- 1,1-dichloroethane (DCA)
- 1,1,2-trichlorotrifluoroethane (Freon 113)

These compounds are referenced as the Total Targeted Volatile Organic Compounds (TVOCs) for the site.

4.2.1 <u>Surface Soil</u>

Two surface soil samples were collected at the site in areas accessible by Farrand Controls personnel to assess the potential for direct contact to soil contamination. The sample locations are shown on Figure 4-1. Although VOC concentrations did not exceed SCGs, TVOC concentrations for soil are included in Figure 4-1 for source evaluation purposes.

Neither surface soil sample contained any VOCs or PCBs above SCGs. Both soil samples exceeded SCGs for five metals with the following maximum concentrations: arsenic (14.7 mg/kg), copper (71.3 mg/kg), iron (10,800 mg/kg), mercury (0.28 mg/kg) and zinc (139

mg/kg). The concentrations were within approximately an order of magnitude of their SCGs (Table 4-2).

4.2.2 Subsurface Soil

Subsurface soil samples were collected from test trenches, Geoprobe probeholes and groundwater monitoring well borings. The test trench and probehole locations are shown on Figure 4-1 and the well boring locations for the new installed monitoring well clusters (MW-8, 10 and 20) are shown on Figure 2-2.

4.2.2.1 - <u>Test Trenches</u>

Five test trenches were excavated along buried utility lines (storm water and sanitary sewers) in the front of the building to investigate utility backfill as a preferential contaminant pathway. The trench locations and targeted utilities are shown on Figure 4-1.

There were no VOC or PCB exceedances of SCGs in any of the test trench samples (Table 4-3).

Metal exceedances occurred in all of the test trench samples and were all within an order of magnitude of their SCGs. Two to four exceedances occurred in test trench TP-1, 1A, 2 and 3, and seven exceedances occurred in TP-4.

In test trench TP-3, which was excavated along the storm water sewer passing near the sump source area, iron and zinc exceeded SCGs at 10,400 and 31.2 mg/kg, respectively. In TP-1, 1A and 2, beryllium, iron, nickel and zinc exceedances occurred with maximum concentrations of 0.36, 15,100, 17.3 and 81.4 mg/kg, respectively. In TP-4, in addition to the metal exceedances found in the other test trenches, copper, magnesium and selenium exceedances were detected at 48.3, 11,400 and 2.4 mg/kg, respectively.

4.2.2.2 - Geoprobe Probeholes

One probehole was constructed through the main building basement sump and thirteen probeholes were constructed along the walls of the southern portion of the building (Figure 4-1). The probeholes were constructed to refusal and samples were generally collected from the shallow zone (approximately 6 to 8 feet below grade) above the water table, and from the zone immediately overlying the refusal surface. PCBs were analyzed in three soil samples near the main site building and the results were below SCGs. VOC contamination at the sump, and metals and VOC exceedances along the building perimeter (Table 4-4) are discussed below.

- Sump

Samples were collected from the source area sump base (approximately 3 feet below the building basement floor) to 28 feet below at refusal. The water table was present near the sump base at the time of sampling as indicated by "wet" samples. The sample descriptions did not indicate any sensory identified impacts (i.e. staining, odor) pertaining to the soil under the sump.

No VOC exceedances of SCGs were associated with the sump samples (Table 4-4); however, VOCs are discussed below for source area evaluation purposes. Total targeted VOCs (TVOCs) were highest in the deepest sump sample (25 to 28 feet below the sump base) where the TVOC concentration was 326 ug/kg (Table G-7 of Appendix G). The primary chlorinated compounds present in this sample were TCE (97 ug/kg), TCA (71 ug/kg), c-DCE (57 ug/kg) and Freon 113 (53 ug/kg). The second highest TVOC concentration in the sump probehole was 93 ug/kg in the shallowest sample near the water table where only TCE and TCA were detected at 49 and 44 ug/kg, respectively.

- Building Perimeter

The perimeter building probehole VOC results were varied (Table 4-4). VOCs were not present in any of the samples obtained from the vadose zone (generally 6 to 8 feet below ground surface) near the water table. The only VOC concentrations in exceedance of SCGs in the soil

probehole samples were in GP-S-G(-10) near the southern building corner: TCA at 1,300 and TCE at 840 ug/kg. The sample was collected on top of the refusal surface at 18 to 20 feet below grade, which is shallower than most of the perimeter building probeholes to either side. Sporadic VOCs were present in the front of and along side of the building at varying depths on top of the refusal surface (see Figure 4-1).

All of the perimeter building probehole results showed exceedances of metals generally within one order of magnitude of their SCGs (Table 4-4). Beryllium, copper, iron, nickel and zinc exceedances occurred in most of the probeholes with maximum concentrations of 0.36, 45.1, 39,100, 44.9 and 109 mg/kg, respectively. The exceedances generally increased with depth, both with respect to number of constituents and concentration.

In the deeper samples, exceedances of the SCG for copper occurred with a maximum concentration of 45.1 mg/kg. Additional exceedances were detected in probeholes GP-S-G(-10) and GP-S-F(-10) located near the sump and at GP-S-V1(-75) located behind the building. Some of the exceedances at GP-S-V1(-75) were unique to that location, and included arsenic and barium at concentrations of 9.6 and 529 mg/kg, respectively.

Probehole sample GP-S-C(-75) was obtained from behind the main site building, upgradient of known site facilities and operations. The metal results from this probehole may be an indication of site background levels. Most metals that exceeded SCGs on the site also occurred in this probehole and at similar concentrations (see Table 4-4) indicating that the detected exceedances on-site reflect background levels and are not related to the release of contaminants from the site.

- Monitoring Well Borings

One soil sample from each of the new well cluster locations was collected from near the top of the refusal zone at MW-8 and 10, and at intermediate depth at MW-20.

No exceedances of SCGs for VOCs were detected in these samples. Metals exceedances of SCGs occurred in all three well locations for iron and zinc with maximum concentrations of 14,400 and 44.7 mg/kg, respectively (Table 4-5). Nickel exceeded its SCG at MW-8 at 22.1 mg/kg. Magnesium and mercury exceedances also occurred at MW-20 above their SCGs at 7,520 and 0.16 mg/kg, respectively. All exceedances were within an order of magnitude of the SCGs.

4.2.3 Groundwater

Characterization of the groundwater during the remedial investigation was conducted through Geoprobe probehole, and groundwater monitoring well and piezometer sampling as described in Section 2. Existing information and initial sampling of monitoring wells and piezometers aided in targeting areas for Geoprobe investigation.

4.2.3.1 - Geoprobe Probeholes

The Geoprobe groundwater sample on-site analyses targeted VOC contamination with confirmatory samples analyzed by the off-site laboratory. Approximately 10 percent of the samples were analyzed off-site for TCL VOCs, TAL metals and PCBs. As a conservative approach, the higher of the two results (on-site and off-site laboratory) was used for characterization and evaluation in this report. Field parameters were also measured for most samples and consisted of temperature, pH, conductivity, dissolved oxygen (DO), turbidity and Eh. The samples were also screened for the potential presence of DNAPL using Sudan IV dye. The field data is provided in Appendix L.

PCBs were not detected in any of the probehole samples. Exceedances of SCGs for metals (Table 4-6) were ubiquitous and primarily were comprised of iron and manganese. These exceedances did not occur in the off-site probeholes, but occurred in both the upgradient and downgradient on-site sampling points. Sodium exceeded its SCG at probehole GP-W-I0 at 158,000 ug/l. Off-site SCG exceedances for metals were comprised of chromium, copper,

magnesium and thallium at concentrations of 190, 268, 61,500 and 16.5 ug/l, respectively. These exceedances occurred at GP-W-T-6 near the Taconic State Parkway.

The horizontal distribution of TVOCs in the overburden groundwater is shown on Figures 4-2 and 4-3 for the shallow overburden groundwater (near the water table) and for the deep overburden groundwater (top of refusal surface), respectively. For perspective, the SCG for most of the VOCs is 5 ug/l (vinyl chloride is 2 ug/l) and the figures include a minimum concentration contour of 100 ug/l and a maximum of 10,000 ug/l for TVOC concentrations. For data collected from one horizon because of shallow refusal, generally associated with an aquifer thickness of less than 10 feet, the sample result is included in the refusal surface TVOC concentration map (Figure 4-3). The TVOC concentration contours on Figures 4-1 and 4-2 were prepared taking into account groundwater flow direction. Vertical profiles of TVOCs across the site showing sample locations and the refusal surface are shown in the chemical cross sections illustrated on Figures 4-5 and 4-6. The locations of the sections are shown on Figure 4-4. The VOC exceedances are included in Table 4-6 and are discussed below. The contoured TVOC concentrations on Figures 4-1 and 4-2 indicate two separate areas of VOC contamination: in the northwestern area of the site and the southern area of the main site building.

- Northwestern Area of Property

TVOC data was derived from five probeholes constructed along the northwestern property line and from approximately five probeholes constructed in the northern portion of the main site building's front lawn. Samples were collected from shallow and deep horizons at each probehole.

No VOCs were detected in shallow overburden groundwater samples in the front lawn of the northern part of the building. TVOC concentrations were detected in deep overburden groundwater on top of the refusal surface adjacent to the northwestern site boundary ranging from 25 to 1,345 ug/l (GP-W-UG-4). The primary compounds detected at GP-W-UG-4 were c-DCE and VC at 920 and 250 ug/l, respectively. At probehole GP-W-UG-6 located between the northern front lawn and the northwestern property boundary, TVOC was detected at 2,058 ug/l in

the deep sample. The most prevalent compounds identified in this probehole consisted of TCE, c-DCE and DCA at concentrations of 870, 740 and 230 ug/l, respectively.

- Area South of Main Building

The contoured TVOC concentration map for the shallow overburden groundwater (Figure 4-2) shows a shallow plume emanating from the southwest side of the main site building. The plume appears to be originating from a location near the basement sump, which is a suspected source area. The maximum TVOC concentrations were 3,620 ug/l at the sump and 5,500 ug/l near the sump outside the building wall. The primary VOCs present were TCE, TCA and Freon 113 in the sump and TCE and TCA outside of the building wall. The shallow overburden plume trends in a southerly direction in the direction of groundwater flow towards the pond (probeholes GP-W-L100 and GP-W-0100) where it appears to migrate off-site.

The TVOC concentration map for the deep overburden groundwater (Figure 4-3) indicates a plume emanating from the southwestern (area of the sump) and eastern (adjacent to the machine shop) corner of the site building. In the sump area, the TVOC concentration was 17,150 ug/l immediately outside the building wall and 5,090 ug/l at the eastern building corner. The VOCs present at the eastern building corner were TCE, TCA and Freon 113 at similar relative concentrations as in the sump probeholes. These apparent source plumes appear to coalesce and trend in a southerly direction toward the pond (concentration of 10,430 ug/l at GP-W-K100) and migrate off-site. The on-site plume has a maximum TVOC concentration of 150,000 ug/l at GP-W-I0 in the center of the paved area southeast of the building.

Screening for the presence of DNAPL was conducted on the probehole groundwater samples using Sudan IV dye. The screening results are provided in the Table H-7 of Appendix H. This screening indicated the possible presence of DNAPL in probehole GP-W-I0, where the highest TVOC concentration was detected at a depth of 14 to 18 feet.

Because of the elevated levels of chlorinated VOCs detected in the groundwater samples at the Farrand Controls Site, an evaluation was performed to determine if DNAPL could be present in the high concentration plume area near the southern building corner. The United States Environmental Protection Agency (USEPA) has prepared a fact sheet entitled "Estimating Potential for Occurrence of DNAPL at Superfund Fact Sheet Sites," dated January 1992. In this reference, USEPA provides a calculation to determine if DNAPL exists at a site. The reference indicates that for DNAPLs comprised of a mixture of chemicals, the effective solubility concept should be employed, utilizing the following equation:

Si^e = Xi Si where Si^e is the effective solubility Xi is the mole fraction of component I in the DNAPL mixture Si is the free-phase solubility of compound in mg/l

DNAPL compounds are generally detected at concentrations much less than 10 percent of their effective solubility limit in groundwater. The USEPA has identified dissolved phase concentrations of 10 percent of the effective solubility as an indicator of DNAPL at a site, and typically, dissolved contaminant concentrations greater than 1 percent of the aqueous solubility are highly suggestive of the presence of residual DNAPL.

As an indicator of the presence of DNAPL in the deep overburden groundwater (top of refusal surface), the dissolved concentrations of the constituents were compared to 1 percent of each compound's solubility. Freon 113 exceeded this value in approximately 20 locations. Four of these exceedances were located along the building wall near the sump and around the building to the southeast (Figure 4-3). The remaining Freon 113 exceedances were located in the center of the plume, southeast of the building's southern corner, in the area of the 10,000 ug/l TVOC concentration contour on Figure 4-3. The only other compounds that exceeded DNAPL indicator levels were TCE and TCA in one sample, GP-W-I0, at the center of the southern plume described above.

- Off-site

Off-site Geoprobe investigation consisted of four probeholes constructed adjacent to the southeastern edge of the pond, three on the residential properties further downstream to the

southeast and five along the Taconic State Parkway. At most of these locations, an intermediate depth sample was collected in addition to a shallow and deep overburden groundwater sample, to better characterize the thicker off-site aquifer.

TVOC concentrations indicate that most of the shallow overburden plume terminates at and likely discharges to the pond (Figure 4-2). Concentrations along the downgradient pond (transect Q) were non-detectable. TVOC concentrations were present in probeholes along the Taconic State Parkway between 10 and 144 ug/l. This could be a continuation of the shallow plume or result from upwelling of contamination from the deeper overburden groundwater.

The intermediate depth (approximate center between the shallow and deep sampling horizons) TVOC concentrations are shown on Figure 4-3. Along the downgradient edge of the pond, a maximum concentration of 4,340 ug/l was present, and off-site at the residential properties to the east, a maximum concentration of 1,477 ug/l was detected. Along the Taconic State Parkway, the maximum TVOC concentration in the intermediate zone was 288 ug/l.

The deep off-site TVOC concentrations (Figure 4-3) along the downgradient pond edge indicate that the plume is present at depth, ranging from 25 to 1,007 ug/l, however, the concentrations are less than in the intermediate or shallow zone. At the residential properties, the maximum TVOC concentration was 738 ug/l, which is lower than in the intermediate zone. The deep plume extends to the Taconic State Parkway with a maximum detected TVOC concentration of 240 ug/l.

4.2.3.2 - Groundwater Monitoring Wells and Piezometers

Groundwater was sampled from permanent monitoring wells and piezometers on three occasions. Existing wells were initially sampled in April 1999. The seven wells installed as part of this remedial investigation (located based on the findings of the April 1999 well and piezometer sampling, and the Geoprobe program) and seven existing wells and piezometers were sampled in November 1999 and January 2000. The new monitoring wells were installed downgradient of the sump at the site boundary (well cluster MW-10), further downgradient

off-site adjacent to the Taconic State Parkway (well cluster MW-20), and at the eastern lateral edge of the site plume between the site and the residential area to the east (well cluster MW-8). The locations of all Geoprobe probeholes, monitoring wells and piezometers are shown on Figure 2-3.

The VOC and metal exceedances for the groundwater monitoring wells and piezometers are provided in Table 4-7. A second round of sampling of the 14 wells was conducted in late January 2000. In the subsequent discussions of groundwater quality, referenced maps include the data from the wells and piezometers that were sampled during the particular event.

- April 1999 Sampling

Metals were not analyzed in the April 1999 samples. The April 1999 TVOC exceedances in the shallow and deep overburden groundwater are provided in Table 4-7, and the results are illustrated on Figures 4-7 and 4-8, respectively.

The shallow overburden well TVOC data is similar to the Geoprobe results in that the data indicate that contamination is emanating from the area of the basement sump. A maximum TVOC concentration of 8,660 ug/l was present in MW-3 near the sump. The VOC composition was similar to that of the probehole samples. On-site, the shallow overburden plume appears limited to the vicinity of Wall Street.

The TVOC concentrations in deep overburden groundwater are higher than in shallow overburden groundwater with a maximum concentration of 14,220 ug/l in OC-19D. The limited monitoring network indicated that the deep plume extends at least to Wall Street.

- November 1999 Sampling

The water levels during the November 1999 sampling event averaged approximately 0.5 foot lower than the April 1999 levels. This may be a factor in the increased VOC

contamination observed during the November 1999 sampling. The higher concentrations may be associated with residual product that may be entrapped in the soils below the water table.

A few metals exceeded SCGs, these being iron, magnesium, manganese and sodium (Table 4-7). Iron was mainly associated with the deep unconsolidated and bedrock wells, ranging from 368 to 1,300 ug/l. Manganese exceedances occurred mainly in the shallow and intermediate wells and ranged between 307 and 8,590 ug/l. Sodium exceedances were sporadic in all monitored zones with a maximum concentration of 62,000 ug/l detected off-site at MW-20R.

The on-site November 1999 VOC plume configuration for the shallow overburden groundwater was similar to the April 1999 plume (Figure 4-9). The TVOC concentration near the sump increased from 8,660 to 16,120 ug/l. The shallow overburden groundwater downgradient at the property boundary at MW-10S contained TVOCs at 42 ug/l indicating that this is the downgradient edge of the shallow plume. The TVOC concentration of 109 ug/l at MW-20S shows that contamination has reached the water table zone at the Taconic State Parkway and was probably transported to this area, in part, due to upwelling from the deeper overburden plume under the wetlands area.

A comparison of the on-site results for the April and November 1999 sampling rounds is not possible because the sampling events comprised, for the most part, different wells. The concentrations for the deep groundwater and bedrock wells for November 1999 are provided on Figure 4-10. The TVOC concentrations at well cluster MW-10 indicates that contamination has migrated to this location at depth and, in fact, is present within the bedrock at MW-10R where the TVOC concentration is highest at 1,753 ug/l. The TVOC concentration at MW-8 was 8 ug/l and was non-detectable in the deep overburden groundwater and bedrock groundwater monitoring wells. This indicates that bedrock in this area is not impacted and that this area defines the eastern edge of the site plume. Along the Taconic State Parkway, the TVOC concentration was detected in the deep overburden groundwater at 42 ug/l and was nondetectable in the bedrock well. - January 2000 Sampling

The January 2000 groundwater monitoring results were similar to the November 1999 results described above. The volatile organic compounds and metals detected in January 2000 were those detected in November 1999, and at concentrations within the same order of magnitude. The January 2000 results are included in Table H5 in Appendix H and exceedances are included in Table 4-7.

4.2.4 Surface Water

Surface water samples were collected in March, April and October 1999 (Table 4-8). An SCG is established for one of the targeted VOCs in the surface water at the site, TCE. TVOC concentrations are provided on Figure 4-11 and discussed below for off-site migration purposes. The maximum March/April TVOC concentrations in the wetlands were in outfall SW-W-0F2 at 1,720 ug/l and the downstream location, SW-W-0S2, at 29 ug/l.

The organic compound that exceeded its SCG for Class C Surface Water was trichloroethene (TCE). This occurred in March and October 1999 when TCE was detected at 280 and 370 ug/l, respectively, at SW-W-OF2. SW-W-OF2 is located at the outfall of the conduit that was once connected to the basement sump. Potential residual product and/or contaminated sediment in the conduit could be a source of elevated contaminants in OF2 discharges.

The four surface water samples collected in October 1999 confirm off-site migration of VOCs to the surface water adjacent to the Farrand Controls Site. Concentrations of TVOCs from April to November 1999 increased from 1,720 to 3,648 ug/l at SW-W-OF2, consistent with the observed increases in TVOCs in groundwater. The conduit of Outfall 2 (OF2) was connected to the basement sump in the past. Potential residual product and/or contaminated sediment in the conduit could be a source of elevated contaminants in OF2 discharges.

The samples collected in the center of the pond show TVOCs at a maximum concentration of 328 ug/l. VOC impacts extended downstream approximately 400 feet where TVOCs were present at a concentration of 7.7 ug/l. Although surface water contaminant concentrations were elevated at SW-W-OF2, concentrations are significantly lower in the pond. Also, data obtained from samples taken in the stream indicate that surface water contaminants are not migrating out of the pond along the stream.

Four metals exceeded SCGs (copper, iron, lead and zinc), except at sample point SW-W-W4 located in the wetlands near the northwestern site boundary. The exceedances in the pond and at the outfalls were within an order of magnitude of SCGs (see Table 408) with maximum concentrations of 36.2 ug/l for copper, 7230 ug/l for iron, 16.8 ug/l for lead and 188 ug/l for zinc. Approximately 200 feet downgradient of the pond in the stream at SW-XA-175, only iron exceeded SCGs and was detected at 620 ug/l.

At SW-W-W4, one of the northernmost surface water sampling points, exceedances were unlike those for the other surface water samples. Thirteen metals exceeded SCGs, which comprised arsenic, cadmium, chromium, cobalt, copper, iron, lead, mercury, nickel, selenium, thallium, vanadium and zinc (Table 4-8). The concentrations of these exceedances were up to three orders of magnitude higher than SCGs. It is noted in the sample log that sample SW-W-W4 was collected of ponded water when there was no flow fro the nearby outfall.

PCBs were not detected in any of the surface water samples.

4.2.5 Surface Water Sediment

No exceedances of SCGs for VOCs and PCBs were detected in the surface water sediment samples.

Six surface water sediment samples were collected: three at storm water outfall points in the wetlands and pond, two from the center of the pond and one at a downstream location. Seven metals exceeded Lowest Effect Levels (LEL), which included arsenic, cadmium, copper, iron, manganese, nickel and zinc. Arsenic exceeded its LEL in one pond sample at the northern upgradient edge of the wetlands and downstream. Cadmium marginally exceeded its LEL in two samples. Copper exceeded its LEL in all sediment samples. Iron and manganese exceed its LEL in most samples. Nickel exceeded its LEL in the pond and downstream.

Five metals exceeded Severe Effect Levels (SEL) (copper, iron, manganese, nickel and zinc) were detected in the sediment samples, generally within an order of magnitude of their SCGs (Table 4-9). Three metals (copper, iron and zinc) exceeded SELs in the pond. Nickel exceedances occurred in the central and northwestern portion of the wetlands (SED OF-1 and SED 4, respectively) slightly above its SCG (Figure 4-11). Manganese exceedances were sporadic and occurred in one wetland and one stream location.

4.2.6 Indoor Air

Two indoor air samples were collected from the Farrand Controls main site building: one adjacent to the sump and the other from the adjacent basement office. No VOCs exceeded the SCGs for indoor air (Table 4-10).

4.2.7 Natural Attenuation

Natural attenuation processes in soil and groundwater environments act to reduce the mass, toxicity, mobility, volume and/or concentration of contaminants. Evidence of natural attenuation are:

- Reduction in contaminant concentrations along the downgradient flow paths
- Loss of contaminant mass
- Generated compounds that indicate compound transformations

The primary in situ processes of natural attenuation consist of the following biological and physical mechanisms:

Biological mechanisms

- Biodegradation
- Chemical or biological stabilization or destruction of contaminants

Physical mechanisms

- Dispersion
- Dilution
- Adsorption
- Volatilization

The physical natural attenuation mechanisms are considered secondary and primarily involve transfer of contaminant mass. The effectiveness of chemical and biological degradation mechanisms (ITRC, 1999, *Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices*) for the site chlorinated VOCs are summarized as follows:

PROCESS	TCE	c-DCE	VC	TCA	DCA
Co-metabolic (w/CH4)	Y	Y	Y	Y&N	Ν
Direct Anaerobic	Ν	N	Y	Ν	Ν
Anaerobic/Denitification	Y&N	Ν	Ν	Ν	Ν
Anaerobic/Sulfate Reduction	Y	Y	Y	Y	Y
Anaerobic Methanogenic	Y	Y	Y	Y	Y

TCE: Trichloroethene c-DCE: cis- 1,2-Dichloroethene VC: Vinyl Chloride TCA: 1,1,1-Trichloroethane DCA: 1,1-Dichloroethane

The co-metabolic process is considered a minor natural attenuation process (ITRC, 1999). In the other metabolic processes, a VOC is converted to another chemical by replacing chlorine atoms. The carbon chloride bond is typically used as an electron acceptor for growth. Some bacteria in anaerobic systems use nitrate or sulfate as electron acceptors.

The occurrence of biodegradation and natural attenuation of the chlorinated VOC contamination present at the Farrand Controls Site can be evaluated by comparing the percentages of individual VOC constituent concentrations to TVOC concentrations, as well as evaluation of the concentrations and distribution of natural attenuation monitoring parameter results.

The primary degradation pathways for the site chlorinated VOCs, from "parent" to "daughter" compounds, are as follows:

- 1. TCE > c-DCE > VC > ethenes
- 2. TCA > c-DCE or DCA > VC or chloroethane
- 3. Freon > halogenated methanes > chlorine

The chlorinated VOC (TCE, DCE, VC, TCA, DCA and Freon 113) constituent percentages in the groundwater for selected areas of the site are provided in Table 4-11. The table includes groundwater monitoring well, piezometer and Geoprobe groundwater analytical data collected during the remedial investigation. Transformations of chlorinated VOCs to "daughter" products and their percentages relative to TVOC in various areas of the plume indicate that biodegradation may be occurring to some degree at and downgradient of the Farrand Controls Site.

In MW-3, which is located near the basement sump and monitors shallow overburden groundwater, TCA percentages in the shallow groundwater were between 77 and 81%, and total DCE was less than 1%. In the deep groundwater monitoring well in this area, P-5D, the TCA percentage was 24%. At deep overburden downgradient wells and piezometers OC-17D and MW-10D, the TCA percentage decreased to 24 and 15% and the total DCE percentage increased to 6 and 22%, respectively. VC which was 0% at MW-3 was 33% at MW-10D, but 0% in OC-17D and MW-10R. Further downgradient from the source at the Taconic State Parkway in MW-20S, TCA was 0 % and total DCE was 58%. The sporadic distribution of the constituent

percentages do not produce substantial conclusive trends but indicate that biodegradation may be occurring at the site to a limited degree.

Dissolved oxygen levels in the groundwater in the site vicinity generally were below 2.0 mg/l. In a low oxygen groundwater system such as this, the following characteristics for natural attenuation indicator parameters may occur:

- Dissolved oxygen is highest in background areas and decreases at the source and downgradient
- With the depletion of oxygen, alternate electron receptors can be sulfate and nitrate
- Chloride and methane increases downgradient of the plume
- Dissolved iron increases downgradient of the plume and at lateral plume fringes
- Sulfate reduction to sulfide can cause higher ferrous iron within the plume

Indicator natural attenuation parameters were measured in approximately 20 deep and 10 shallow Geoprobe groundwater samples to help evaluate the occurrence and degree of natural attenuation of the chlorinated VOC contaminants at the site. These parameters included dissolved oxygen and methane, ferrous iron, nitrate, sulfate and sulfide. The concentrations of these concentrations are summarized in the table in Appendix L and the distribution of these concentrations in the shallow and deep overburden groundwater samples are shown on Figures 4-12 and 4-13, respectively.

The concentrations and the distribution of the natural attenuation parameter results varied between and within the shallow and the deep overburden groundwater. Dissolved oxygen concentrations were sporadic in both the shallow and deep groundwater. The highest oxygen concentration was 5.46 mg/l near the northern building corner (Figure 4-12) within the TVOC plume. Downgradient oxygen levels ranged from 0.48 to 2.48 mg/l. Methane concentrations were highest (82 ug/l) near the downgradient edge of the plume. No definitive patterns for the remaining parameters were apparent. Natural attenuation monitoring results were generally sporadic and did not produce definitive patterns illustrative of significant natural attenuation.

4.2.8 Data Validation/Usability

Soil, groundwater, surface water, sediment and air samples were collected during the field investigation at the Farrand Controls Site. During the field program, a majority of the groundwater and soil samples were analyzed for selected VOCs (chlorinated and aromatic) utilizing a gas chromatograph equipped with an electron capture liquid detector (ECLD) and photoionization detector (PID) in an on-site mobile laboratory operated by Severn Trent Laboratories (STL). Other samples were sent to STL's off-site laboratory and analyzed for a variety of parameters, including Target Compound List + 10 (TCL + 10) VOCs, PCBs, Target Analyte List (TAL) metals, cyanide (CN) and natural attenuation parameters comprising dissolved methane, ferrous iron, nitrate, sulfate and sulfide.

The samples analyzed at the off-site laboratory were in accordance with New York State Department of Environmental Conservation (NYSDEC) 10/95 Analytical Services Protocol (ASP) methods.

The data packages submitted by both the STL mobile laboratory and the off-site STL laboratory have been reviewed to determine the usability of the data and if the sample analysis was contractually compliant.

Sample analyses (on and off-site) were performed within the method specified holding times. All quality assurance/quality control (QA/QC) requirements (i.e., surrogate recoveries, matrix spike/matrix spike duplicate recoveries, calibrations, blanks, etc.) meet NYSDEC 10/95 ASP contract criteria.

The methylene chloride, acetone and 2-butanone results for the samples analyzed at the off-site laboratory have been qualified as nondetect due to laboratory contamination. That is, the method blanks associated with the samples also contained these compounds and the sample concentrations were less than five times the concentration found in the corresponding method blank.

All but one sediment sample had a percent solids content of less than 50 percent, therefore, the metals results for those samples have been qualified as estimated possibly biased high.

All sample results have been deemed valid and usable for environmental assessment purposes as qualified above.

In addition to on-site analysis of the environmental samples collected as part of the field investigation, 35 of the samples were sent to an off-site laboratory for confirmatory analysis. The on-site analysis consisted of analyzing the samples for select chlorinated volatile organic compounds by gas chromatograph (GC). The off-site analysis was performed by gas chromatograph/mass spectrometer (GC/MS) for target compound list (TCL) volatile organic compounds. The total results for the chlorinated compounds vinyl chloride, Freon 113, 1,1-dichloroethene, 1,2-dichloroethene (total), 1,1-dichloroethane, 1,1,1-trichloroethane and tetrachloroethene for the on-site and off-site analysis were compared to determine the reliability of the on-site results.

In general, all of the on-site and off-site results were comparable with only one of the samples having an on-site total chlorinated volatile result being more than double that reported from the off-site laboratory. The total chlorinated volatile concentrations for sample GP-W-H-O (14 to 18 feet) were 18,000 and 59,000 ug/l for the off-site and on-site lab, respectively; however, the same compounds were detected in both sets of analyses. The discrepancy in concentration could be due to the loss of volatile organic compounds during shipment or in the preparation of the sample for analysis. Overall, the data from the on-site laboratory is comparable to the off-site laboratory and should be considered reliable and accurate.

5.0 CONCLUSIONS

The objectives of the remedial investigation portion of the RI/FS for the Farrand Controls Site were to determine the nature, source and extent of contamination, and to identify on a preliminary basis, the media and areas of the site of potential concern. The investigation findings evaluation is primarily based on comparison to standards, criteria and guidelines (SCGs) selected for the site. Exceedance of the SCGs is considered potentially significant contamination. VOC impacts below SCGs are discussed for source evaluation purposes in soil and surface water. Final determination regarding the threat to human health and the environment, and the need for remediation will be based on the risk assessment. Conclusions regarding the investigation results are provided below as a function of media.

5.1 Surface Soil

Based on the results of the remedial investigation, surface soil at the Farrand Controls Site does not appear to be contaminated and warrants no further action.

5.2 Subsurface Soil

The investigation results indicate that soils in the vadose and saturated zones beneath the basement sump are not significantly contaminated, which indicates that prior removal of contaminated sediment in the sump and underlying soil was effective in remediating this source of contamination in the immediate area of the sump. However, contaminated subsurface soil was detected in deep Geoprobe samples in the area of the building's eastern corner, southern corner and along the southwestern building wall near the sump. Soil SCGs were exceeded only by two compounds (Freon 113 and DCE) in one sample which was located at the building's southern corner.

5.3 Groundwater

- Groundwater at the site is significantly contaminated with volatile organic compounds, and DNAPL may be present in the subsurface overlying bedrock and the Geoprobe refusal surface. The VOCs detected in groundwater are TCE and its breakdown products c-DCE, t-DCE and VC; TCA and its breakdown products c-DCE, DCA, chloroethane and vinyl chloride; and Freon 113. The primary contaminants are TCE, TCA and Freon. These solvents were used and disposed at the site in the basement sump in the southern portion of the building.
- Based on the investigation results, there are shallow and deep overburden plumes of contaminated groundwater that migrate from the southern portion of the building. The shallow plume extends off-site in a southerly direction and appears to discharge to the adjacent surface waters. The deep plume appears to migrate also in a southerly direction beneath the pond and wetlands, and discharges, at least in part, also to the pond and wetlands, and shallow groundwater beyond the surface water system and in the vicinity of the Taconic State Parkway. The discharge to the wetlands and pond significantly impacts surface water quality. The downward flow of groundwater in the vicinity of the building and DNAPL are likely factors for the migration of contaminants to the underlying bedrock and Geoprobe refusal surface. Based on the sample results, contaminated groundwater was detected in bedrock south of the main site building.
- Although the deep overburden plume is primarily located south of the main site building, contamination is also present in the deep overburden groundwater west of the building, between the building and wetlands. The VOC concentrations in this area are sporadic and are not as high as in the narrower plume south of the main site building. The occurrence of this contamination may likely be associated with varied localized groundwater flow components, preferential flow pathways, the drain tile along the front of the building (if it is present), and the storm water sewer pipes, in particular, the pipe that runs adjacent to the sump, that run from beneath the building to the wetlands.
- In addition to the plumes originating from the area of the sump and southern portion of the building, groundwater contamination was also detected along the northwestern site boundary, which appears to be the result of an off-site source. In addition, the VOC fingerprint found in this area (primarily DCA and VC) is different from that found in the above areas of the site.
- Since the sump was effectively remediated, the source of groundwater contamination south of the building, at least in the shallow overburden groundwater, may result from: 1) significant contamination and possible DNAPL being retained in the capillary zone and soil pore space beneath the building and downgradient of the sump, or 2) residual contamination in the drain tile along the front of the building (if it does exist). The source of contaminated groundwater in the deep overburden is likely due to continuing migration of contamination from the shallow overburden and

also from highly contaminated groundwater and likely DNAPL overlying bedrock and the dense surface defined by Geoprobe refusal.

- The preferential pathways for migration of highly contaminated groundwater and possible DNAPL appear to be along surfaces of localized clay and silt layers; highly permeable material along reported subsurface drains, building footings and bedrock; and Geoprobe refusal surfaces.
- In addition to the sources described above, a source of contamination may exist in subsurface soil in the vadose zone near the building's eastern corner, near the machine shop. This source, if it exists, may have resulted from disposal and/or spills of solvents to ground surface or perhaps to a pit.

5.4 Surface Water

Surface water in the wetlands and pond adjacent to the site appears to be significantly contaminated with VOCs, primarily TCE and TCA, resulting from discharges of contaminated groundwater to the surface water and possibly discharges from the storm water outfall that runs beneath the site and adjacent to the basement sump. It is believed that this outfall was once connected to the source sump.

5.5 Surface Water Sediment

Based on the results of the investigation, sediments in the wetlands and pond adjacent to the site are not significantly contaminated and warrant no further action.

5.6 Indoor Air

Based on the sampling results and comparison to recommended occupational exposure levels, concentrations of volatile organic compounds in air in the main site building basement are within established limits and no further action is warranted with regard to indoor air under present conditions.

6.0 HUMAN HEALTH RISK ASSESSMENT

The purpose of this section is to evaluate the potential risks to human health associated with the Farrand Controls Site. Risks are evaluated on the basis of the site environmental setting and information on the nature and extent of contamination presented in previous chapters of this remedial investigation report. The relevant information is condensed here, in brief, and discussed within the context of current and potential human contact with contaminants of concern at potential locations where human exposure could occur.

As with any human health risk assessment conducted within the RI/FS process, this assessment is not intended to predict disease outcome, but rather, is meant to be used as a tool to make decisions regarding remediation. Given the available information for this site, and keeping the purpose of the assessment in mind, the following assessment for the Farrand Controls Site is qualitative, with an emphasis on exposure assessment.

6.1 Site Location and Environmental Setting

Information regarding the site location, setting and history is presented in detail in Sections 1 and 3 of this report. A detailed description of the remedial investigation is presented in Section 2, and details of the nature and extent of the contamination are discussed in Section 4. Portions of these sections relevant to the risk assessment are summarized in brief in the following paragraphs.

The Farrand Controls Site is located on a 13.6-acre parcel, of which approximately 60 percent is undeveloped. The developed portion of the site is occupied by a 28,255-square foot building, a 8,312-square foot indoor tennis court, and two outdoor tennis courts (east). Except for the eastern portion of the site and the bedrock escarpment to the north, the site is primarily grassy and slopes gently to the west.

To the northwest of the site is a paved parking lot for a commercial complex. Up-slope and to the north is a bedrock escarpment and the Mount Eden Cemetery. Residential

neighborhoods primarily composed of single-family dwellings border the site to the east and southeast, and extend up-slope to the northeast. A wetland/pond complex borders the site to the southwest and west. A long paved driveway extends from Wall Street (immediate southern border), separating site buildings from the wetlands. Area residents and workers use the Wall Street extension driveway for walking, jogging, skating, exercising pets and riding bicycles.

A full basement underlies the central and western portion of the main building and provides office, laboratory, storage and maintenance space. One sump received industrial waste beneath the main site building. The liquids in all three basement sumps were contaminated with volatile organic compounds, and the main sump designated SU-3 (most eastern) was identified as a contaminant source. The other two sumps may have been contaminated by groundwater during pumpage of the sumps.

There are buried utilities on site (see Figure 3-1). Gas and telephone lines run parallel to the northeast side of the Wall Street extension driveway. Water supply pipes and sanitary sewers run along the south (front) of the building. The storm sewer pipes which run underneath the main building appear to be located in groundwater. Site storm water is collected in four storm sewers which discharge to the adjacent southern wetlands. Surface water which does not enter storm sewers percolates into the ground and/or drains via overland flow into the wetlands.

Horizontal groundwater flow at the site is predominantly southward, with southeast and southwest components in different parts of the site. In April 1999, November 1999 and January 2000, the shallow water table was encountered within approximately 7 feet of the ground surface. There are also both upward and downward components of groundwater flow. The investigation determined that: 1) the wetland/pond complex and the adjacent portion of the shallow, unconsolidated aquifer are recharged by deep groundwater rising through discontinuities in the bedrock; and 2) downward flowing shallow groundwater near the source area sump and along the front (south) of the main building could transport dissolved contaminants downward, as well as enhance the downward migration of DNAPL. The buildings, pavement and storm water sewers may also influence the direction of shallow groundwater flow.

The wetlands are downgradient of the main building and receive surface water flow and groundwater discharge from the site. There is standing water year round, and the wetland system is connected to Davis Brook. NYSDEC classifies Davis Brook as a "Class C" waterway, suitable for contact recreation and the support of a fish population exclusive of trout. While fish species, such as largemouth bass, bluegills and creek chub, have been observed in Davis Brook, it is unlikely that conditions in the wetland (shallow water and high summer temperatures) would support a year-round population of fish.

There is an area in the wetlands in the vicinity of the former sump outfall (Figure 3-11) where stressed vegetation was observed. High VOC concentrations were found in the outfall sample associated with this location (SW-W-OF2).

The Farrand Controls Site is served by a public water supply, and residences and commercial complexes in the vicinity of the site are also serviced by public water. The public water supply is derived from the Kensico Reservoir, which is located approximately 3,000 feet east of the site. The reservoir is upgradient of the site at a higher elevation of more than 100 feet, and is thus, not impacted by overland flow or groundwater discharge from the site. Bedrock wells are also used for commercial purposes in the nearby vicinity. Based on the results of a private water well survey (see Section 2.3 of this report), there are no nearby potable private wells. In addition, sampling of the downgradient commercial wells determined that no site-related contaminants were detected in those wells. The well survey, well sampling and potential impacts to human health associated with ingestion of groundwater are discussed further in the exposure assessment below.

6.2 Exposure Assessment

The purpose of this exposure assessment is to determine how and when an individual might be exposed to contaminants of potential concern associated with the site. A contaminant of potential concern (COPC) is any chemical detected in a medium which could produce adverse health effects under the right conditions of dose and exposure. For exposure to occur, there must be a complete "pathway of exposure" where a person can come into contact with contaminants

of potential concern. For a pathway to be complete, there must be: 1) a source or medium containing COPC; 2) a location where human contact could take place (i.e. an exposure point); and 3) a feasible means for the COPC to enter into the person's body. The person who could come into contact with COPC at an exposure point is called a "receptor." The ways in which COPC can enter the body are called "routes of exposure." Oral (by mouth), dermal (contact with skin) and inhalation (breathing into the lungs) are the routes of exposure considered in this and other human health risk assessments. Consistent with the New York State Department of Health (NYSDOH) and other regulatory agencies, this assessment considers both current and hypothetical future exposures.

For ease of consideration, the exposure assessment is presented by medium of interest.

6.2.1 Surface Soil

Two surface soil samples were taken from grassy areas off the eastern and southern ends of the main building (Figure 4-1). No site-specific background samples were obtained. No VOC or PCB concentrations in these samples exceeded SCGs. However, there were several metals with maximum concentrations in excess of SCGs, including arsenic (14.7 mg/kg), copper (71.3 mg/kg), iron (10,800 mg/kg), mercury (0.28 mg/kg) and zinc (139 mg/kg). Given that large uncertainty factors associated with the toxicity of these metals (generally on the order of 100 to 1000), and the fact that exceedances are approximately within a factor of 10, the appearance of these metals in the surface soil is not of concern. It is also possible that area-wide distribution of these metals apart from site activities could account for some of the contamination on site.

Workers could be exposed to surface soils on site, as could recreational users of the site (joggers, walkers, pet walkers, rollerbladers and skateboarders), but the presence of grass would tend to mitigate such exposures. The primary routes of exposure for these receptors would be oral and dermal. However, overall, the absence of VOC and PCB concentrations above SCGs, the low duration and frequency of exposure, and the low levels of metals present, suggest that such exposures do not warrant concern from the perspective of unacceptable health risk.

6.2.2 Subsurface Soil

Subsurface soil samples were collected from test trenches, Geoprobe boreholes and groundwater monitoring well borings. The locations of these samples are shown in Figure 4-1.

None of the VOCs or PCBs detected in any of the test trench or monitoring well boring samples exceeded their respective SCGs. Metal exceedances (iron, nickel, beryllium, zinc, copper, magnesium and selenium) occurred in all of the test trench samples, and were all within an order of magnitude of their SCGs. All three well locations yielded borings with iron and zinc in excess of their respective SCGs.

With regard to probehole samples taken along the building perimeter, VOCs were not present in any of the samples taken from the vadose zone near the water table (generally 6 to 8 feet below ground surface). The only VOC concentrations in excess of SCGs in the soil probehole samples were in GP-S-G (10) near the southern corner of the building (TCA at 1,300 ug/kg, and TCE at 840 ug/kg). This sample was collected at a depth of 18 to 20 feet below grade on top of the refusal surface. Based on groundwater elevations obtained from a nearby monitoring well and piezometer (MW-3 and P-5S: see Table 3-1), this sample is well below the water table. All of the building perimeter probehole samples had metal concentrations in excess of their SCGs (generally, beryllium, copper, iron, nickel and zinc), but the exceedances were generally within one order of magnitude of the SCGs.

Samples were collected from the source area sump base (approximately 3 feet below the basement floor of the main building) to refusal (28 feet). VOCs were detected in these samples, but not at concentrations in excess of their respective SCGs. The VOCs primarily detected were TCE, TCA, cis-DCE and Freon 113.

Given that subsurface contamination is not readily accessible, future construction workers or workers servicing subsurface utilities, particularly along the southern portion of the building, would be the only receptors who could potentially be exposed to COPCs in subsurface soil (oral, dermal and inhalation routes). However, exposure for these receptors is unlikely due to

the fact that contamination above SCGs was only detected in a sample which is well below the water table. Most construction is likely to occur at depths above the water table, and not at a depth of 18 to 20 feet where the contaminated sample was obtained. Hypothetically, the high VOC concentrations in subsurface soil near GP-S-G(10) could adversely impact utility workers servicing the water and sanitary sewer lines which run along the southern portion of the building. Any worker involved with subsurface construction could be exposed to COPCs in the soil. However, these exposures are likely to be mitigated by; 1) the use of personal protective equipment; and 2) the fact that most of the work is likely to be done at shallower depths and in locations where the VOC concentrations fell below their respective SCGs. As with surface soil, the relatively small exceedances of the inorganics are not cause for concern from the perspective of adverse health impacts.

6.2.3 Groundwater

Groundwater at the site is significantly contaminated with VOCs which were used and disposed of at the site in the basement sump in the southern portion of the building (primarily TCE, TCA and Freon 113). The investigation results indicate that there are shallow and deep plumes migrating from the southern portion of the building. The shallow plume extends off site in a southerly direction and appears to discharge to the adjacent surface waters. The deep plume appears to migrate in a southerly direction beneath and upwards to the pond and wetlands in the vicinity of the Taconic State Parkway. There is also significant contamination in deep groundwater west of the building (concentrations lower than in the main plume). Contamination was also detected in groundwater at the northwestern site boundary, but this contamination appears to originate from an off-site source (different fingerprint from previously mentioned contamination).

There is no current human exposure to contaminated groundwater. As discussed in Section 2.3, a commercial water supply survey was conducted over a 1/2-half mile area downgradient (southeast) of the site. Eight wells were located on Railroad Avenue (Figure 2-3). Construction information, available for only two of these wells, indicates that the wells are deep

bedrock wells (300 to 400 feet below grade). NYSDOH sampled all eight wells on January 19, 1999. No VOCs associated with the site were detected in any of the samples.

NYSDEC conducted a private well survey during November and December of 1999. All residences south of Wall Street and west of Lakeview Avenue to the Taconic State Parkway were contacted. Of the 54 residences contacted, only 25 responded. All of these residents reported municipal water use. As mentioned previously, the municipal water supply is derived from the Kensico Reservoir, which is unimpacted by the site.

Although there is no current exposure to groundwater, the potential for groundwater exposure exists. Construction workers engaged in subsurface activities could be exposed via dermal and inhalation routes to COPCs in groundwater. In addition, downgradient well users (either current commercial wells or hypothetically developed private wells) could be exposed via COPCs migrating off site. These receptors could be exposed by oral and dermal routes.

6.2.4 Surface Water

VOCs and inorganics are present in surface waters migrating off site. Except for TCE, there are no SCGs for the VOCs detected in surface water samples. The SCG for TCE (40 ug/l) was exceeded in the outfall sample (SW-W-OF2) that was once connected to the basement sump. Only one metal, iron, exceeded SCGs in the downstream samples. A number of metals exceeded their respective SCGs in an upstream sample (SW-W-W4), suggesting that inorganic contamination in surface water is not site related (see Section 4.2.4 and Table 4-8). Exposure to surface waters in the wetlands is possible, but not likely. Access to the wetland area is difficult and it is not an attractive area for recreational pursuits. Swimming is not an option due to the nature of the area, but wading is theoretically possible. Ingestion of contaminated fish is not an issue due to the nature of the site-related contamination (VOCs do not bioaccumulate and biomagnify).

6-7

6.2.5 Surface Water Sediment

Six surface water sediment samples were collected: three at storm water outfall points in the wetlands and pond, two from the center of the pond and one at a downstream location. There were no exceedances of SCGs for VOCs or PCBs. Two levels of SCGs were used for metals in surface water sediment, these being Lowest Effect level (LEL) and Severe Effect Level (SEL). Metals were detected above SCGs for both LEL and SEL; however, the SCGs exceeded are for the protection of benthic organisms, not human health. All of the exceedances were generally within an order of magnitude of their SCGs. In addition, as with surface water, exposure through contact with sediment is possible, though not likely. In addition to the inaccessible nature of the wetland area, most sediments are overlain by water, making contact even less likely.

6.2.6 <u>Air</u>

Exposure to COPCs released to air from either groundwater (volatilization) or soil (volatilization and emission of particulates) is a consideration. There is a potential for inhalation exposure to VOCs released from both soil and groundwater. Two indoor air samples were collected from the Farrand Controls main site building: one adjacent to the sump and the other from an adjacent office. No VOCs detected in either sample exceeded recommended occupational exposure levels. The negative air samples and the lack of COPCs in the top 6 to 8 feet of soil with concentrations above SCGs, suggest that inhalation exposures are unlikely to be of concern.

Exposures for current on-site workers is possible, although current exposure is not of concern (Section 2.18 - Air Sampling Results). VOC-contaminated water seeps into the basement from time-to-time, and individuals working in the basement or occupying the basement office are potentially at risk of exposure. Inhalation exposure for hypothetical excavation workers is also possible due to the presence of VOC contamination in subsurface soil and groundwater.

6-8

Exposure via inhalation is also possible for individuals engaged in recreational activities on site (tennis courts and Wall Street driveway extension) through exposure to COPCs released to air from subsurface soil, groundwater and surface water. However, such exposures are likely to be negligible due to: 1) the mitigating effect soil and grass or pavement above the subsurface contamination; 2) the relatively low concentrations of VOCs in areas where recreational activity or trespassing is likely to occur; and 3) the inaccessibility of the wetland area, and the relatively low concentrations of VOCs detected in surface water samples taken from the wetlands.

6.3 Conclusion

There are currently no complete pathways for human exposure associated with contamination in media on the Farrand Controls Site or migrating from the site.

There are inorganic COPCs present in all media sampled at the site. However, the concentrations of these COPCs are generally within an order of magnitude of their SCGs, and exposure to these COPCs would be limited. Therefore, exposure to inorganic COPCs present in site-related media are not of concern from the perspective of human health risk.

The following exposure pathways involving volatile organic COPCs are currently not complete, but could potentially become complete for the following receptors:

On-site Farrand Controls workers

- Inhalation of VOCs released to air from groundwater in the basement of the main building
- Dermal contact with VOC-contaminated groundwater in the basement of the main building
- Inhalation exposure to VOCs released to air from soil and groundwater from a hypothetical open subsurface construction near the sump source area

On-site workers engaged in subsurface utility repairs or subsurface construction

- Oral, dermal and inhalation exposure to VOCs in subsurface soil at the southern corner of the building
- Dermal and inhalation exposure to VOCs in shallow groundwater which may be present in an excavation near the sump source area, or near the secondary plume on the western side of the main building

On-site trespassers or recreationists

• Dermal exposure to VOCs in surface water or discharging groundwater (remote possibility)

Nearby downgradient residents and commercial establishments

• Oral and dermal exposure to VOCs in groundwater

7.0 **REFERENCES**

- Bouwer and Rice, 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, Vol. 12, No. 3, p.423-428.
- Caldwell, D.H. et al, 1970, Lower Hudson Sheet Surficial Geologic Map of New York State New York State Museum and Science Service: map
- Fisher, D.W. et al, 1970, Lower Hudson Sheet Geologic Map of New York State, New York State Museum and Science Service: map
- Freeze, R.A. and Cherry, J.A., 1979, Groundwater, Prentice-Hall, Inc., Englewood, NJ. pp. 16, 29 and 37.
- Insitu, Inc., 1997, Win-Situ Version 2.19.00 software
- IRTC, 1999, Natural Attenuation of Chlorinated Solvents in Groundwater; Principles and Practice; Internet Seminar
- NYSDEC, 1994, Determination of Soil Cleanup Objective and Cleanup Levels; TAGM No. 4046
- NYSDEC, 1994, Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites
- NYSDEC, 1998, Memorandum: Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values.
- NYSDEC, 1999, Technical Guidance for Screening Contaminated Sediment
- U.S. Department of Agriculture, 1994, Soil Survey of Putnam and Westchester Counties, New York
- USEPA, 1992, Estimating Potential for Occurrence of DNAPL at Superfund Fact Sheet Sites
- Turner, A.S., 1995, Deposition providing overview of the biotic components of the marshland areas adjacent to the Farrand Controls facility

Waterloo Hydrogeologic, 1997, Aquifer Test software

APPENDIX A

SOIL GEOPROBE LOGS

GEOPROBE SOIL SAMPLE LOGS FARAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY

Location	Date	Depth Interval	Sample I.D.	PID (ppm)	Description
GP-S-VI	10/4/99	0 - 3" 3" - 3' 3' - 4' 4' -8' 8' - 12' 12' - 14' 14' - 15' 15' - 18' 18' - 18.5'	GP-S-VI- (-75) (14-16')	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Asphalt and concrete. Dark brown-red fine to medium SAND, some crushed gravel, broken rock. Brown, well sorted, fine SAND, dry, trace silt. Brown, medium SAND, mixed with some gray-white crushed rock fragments at 6'), dry. Brown gray, fine SAND, some silt, well sorted, moist to wet. Water table at ~ 11'. Light reddish brown SILTY SAND, trace clay, trace gray silt. Brown - light reddish-brown coarse SAND and fine GRAVEL, trace crushed rock some silt. Difficult drilling. Reddish orange brown, coarse to medium, poorly sorted SAND, trace to little silt, trace clay. Weathered ROCK and coarse SAND, wet to saturated. REFUSAL.

SUMP GEOPROBE LOG FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY

DEPTH INTERVAL *	DESCRIPTION
<u>0 – 4'</u>	Brown fine SAND, little silt, trace fine to medium sub-angular gravel.
7 – 10'	Brown to black fine SAND, trace silt. No odor, wet.
10 – 13'	Same
13 – 17'	Same
17 – 21'	Same
21 – 25'	Same, with trace fine gravel.
25 – 28'	Same, coarse GRAVEL with more "till."

* Depth given from bottom of sump

BUILDING PERIMETER SOIL SAMPLE LOGS FARRAND CONTROLS SITE REMEDIAL INVESIGATION/FEASIBILITY STUDY

Sample Location	Date	Depth Interval	Sample Description			
GP-S-G(-10)	3/17/99	6-8'	Tan, gray, black and white fine SAND, little silt. Damp. No odor.			
		18'	No odor, no reaction with dye.			
GP-S-F(-10)	3/17/99	6-8'	Tan, brown gray, fine SAND, little to some silt, dry to Damp. No odor.			
		28-30'	Brown to dark brown/gray fine SAND, trace sub-round to sub-angular gravel, trace to little silt. No odor. Slight to questionable reaction with dye.			
GP-S-E(-10)	3/17/99	6-8'	Tan, gray-brown fine SAND, little silt, no reaction with dye.			
		33-37'	Brown fine SAND little silt, little fine angular to sub- angular gravel wet. Possible reaction with dye.			
GP-S-G(-25)	3/18/99	5-8'	Gray, brown/black and white fine SAND, trace fine sub- angular to sub-round gravel, trace silt. No reaction with dye.			
		18-20'	No reaction with dye.			
GP-S-G(-45)	3/18/99	6-8'	Tan, gray, brown fine SAND, little silt, trace fine sub- angular gravel. No reaction with dye.			
		25-27'	No reaction with dye.			
GP-S-G(-65)	3/19/99	6-8	Brown tan, gray fine SAND little silt. No reaction with dye.			
		25-27'				
GP-S-G(-85)	3/19/99	6-7'	Brown tan SILT to CLAYEY SILT.			
		7-8'	Brown, black, tan fine SAND.			
		20-22'	Brown gray TILL. Fine to medium SAND little subround medium gravel, little silt. Wet. No reaction with dye.			

TEST PIT LOGS FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILIY STUDY

Location	Date	Depth Interval	Sample I.D.	Description
TP-1	4/12/99	0 ~ 3' 3' - 4'	TP1-S-01	Brown fine SAND some clayey silt, trace to little fine gravel. Dark brown fine SAND, little silt, trace fine gravel.
TP-1A	4/12/99	0 0.5' 0.5' 4+'	TP1A-S-01	Brown topsoil, brown fine SAND some clayey silt. Orange brown fine SAND, little clayey silt, trace fine grave; Boulder. Wet at 3.5'. Dark gray soil beneath pipe.
TP-2	4/12/99	0 3'	TP2-S-01	Brownish tan clayey SILT and fine SAND with trace gravel. Damp.
ТР-З	4/12/99	0 - 1' 1' - 3' 3' - 6'	TP3-S-01	Brown top soil. Brownish tan, fine SAND, little clay and silt, trace gravel fill. Tan fine SAND, trace silt, pipe at 4-5 feet deep. Sample collected at 6', below base of pipe.
TP-4	4/12/99	0 – 0.5" 0.5" – 3' 3' – 5'	TP-4-S-01	Topsoil, grass roots. Dark brown, silty fine SAND, trace clay occasional boulders and cobbles. Dark gray silty fine SAND, trace fine gravel, moist to wet. 36" concrete pipe and 30" diameter steel pipe discharging water in test pit.

APPENDIX B

GROUNDWATER MONITORING WELL CONSTRUCTION LOGS

		Virka nd Bartilu	CCİ MGINEERS XIATES, P.C.	mariDill	Ргоје		: Farra	nd Controls	Boring No.: MW-8D Sheet <u>1</u> of <u>2</u> By: V. Vassil			
Driller: Drill Ri	Iling Contractor: UniTech/AmeriDrill iller: Tom Brown ill Rig: Cantera CT-350 te Started: 10/12/99				Drillin Drive Date (ng Metho Hamme Complet	od: HS/ r Weigh ted: 10/	ht: Boring Diameter: 6 7/8 inches				
Depth (ft.)	No.	Soi Type	I Sample Blows Per 6"	Rec	FID	field scr PID	CH4		mple Description			
-0-	110.	Type		Nec	ppm	ppm	ppm	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
-1-					<u> </u>			-				
-2-			 									
-3-		ss	7 7	24"		0.0		Well sorted, light b	prown, fine sand.			
-4-			7 8 9					Weakly stratified.				
-5-			5									
-6-				· ·								
-7-					1							
-8-		SS	6 3	24"		0.0		Poorly sorted, brown, fine to medium sand, trace pebbles				
-9-			4 5									
-10-												
-11-												
-12-												
-13-	_	SS	2 2	24"		0.0		Same as above running sand at 13	micaceous sand problem with			
-14-			3 5				••					
-15-												
-16-												
-17-												
-18-	~~						⊢. .					
-19-		SS	2 3	24"		0.0		Same				
-20-			3 2									
Sample Types: SS = Split Spoon UC = Undisturbed Core								NOTES:				

Dvirka and Bartilucci CONSULTING ENGINEERS					- I	ct No.: ct Name		nd Controls	Boring No.: MW-8D Sheet <u>2</u> of <u>2</u> . By: V. Vassil		
Drilling Contractor: UniTech/AmeriDrill Driller: Tom Brown Drill Rig: Cantera CT-350					Drillir Drive	ogist: A. ng Metho Hamme	od: HS/ er Weigh	A nt:	Boring Completion Depth: 36' Ground Surface Elevation: Boring Diameter: 67/8 "		
Date S	tartec	I: 10/1:	_			Complet					
 Denth	<u>-</u> -	<u>Soi</u>	I Sample	<u>}</u>		field scr		1			
Depth (ft.)	No.	Туре	Blows Per 6"	Rec	FID ppm	PID ppm	CH4 ppm	Sa	mple Description		
-21-											
-22-											
-23-		SS	3 4	24"		0.0		Same; still problen	ns with running sand.		
-24-			3 2								
-25-											
-26-											
-27-	·										
-28-		SS	10 8	24"		0.0		Same; sands heaving 2 to 3 feet in augers			
-29-			7 12								
-30-											
-31-	_							Harder augering			
-32-											
-33-											
	MW- 8D-	SS	4 4	24"				Brown, poorly sorte gravel.	ed fine medium sand with trace		
	34 – 36 '		4 50					Weathered schist,	quartz.		
-36-								base	of boring at 36 ft		
-37-				·							
-38-											
-39-											
-40-											
-41-											
SS = Sp	Sample Types: SS = Split Spoon JC = Undisturbed Core						NOTES: Set 2" PVC well at	36 feet, screened 26-36 feet.			

_

.

Driller: Drill R	and P Bartilucci CONSULTING ENGINEERS Drilling Contractor: UniTech/AmeriDrill G Driller: Tom Brown D Drill Rig: Cantera CT-350 D						. Vassil od: Rot r Weigh	nt:	By: V. Vassil Boring Completion Depth: 56 feet y Ground Surface Elevation: Boring Diameter: 10 "			
Date 5	lartet					Complet			<u> </u>			
Depth (ft.)	No.	Туре	Sample Blows Per 6"	Rec	FID	field scr PID	CH4	Sample Description Gra				
-0-		- Type			ppm	ppm	ppm		andy, silty overburden. D for depth to 35 feet.	. I		
-35-								Gneissic regolith to depth of 41 feet.				
-37-						··						
-38-												
-39-												
-40-												
-41-		UC .		48 "		0.0			d white gneiss with pale pink d vertically-dipping schistosity;	1		
-42-									ge between fine bands of white d black biotite. Tightly folded.			
-43-								Same oneiss with	quartz bands up to 0.5" thick.	/		
-44-								4" fracture zone wi	ith wet silt, sand and gravel- Iteration products in steeply	7		
-45-									renulated slickensides			
-46-		UC		48"	· • · • · • · • · • · • · • · • · • · •	0.0		on rock surroundin Solid black, white to sub-vertical sch	and pale pink gneiss, vertical	21		
-47-								4" fracture zone wi clasts underlain	ith rock fractured in 1.0 - 2.5" by competent rock alternating			
-48-								with rock exhibiting	g thin, weakly altered fractures.	} <u>}</u>		
-49-									utting foliation exhibiting soft neral tentatively identified as talc	FT		
-50-												
SS = S	Sample Types: SS = Split Spoon UC = Undisturbed Core							NOTES:		<u> </u>		

Dvirka and Bartilucci consulting Engineers ADMISION OF WILLIAW F COSILICH ASSOCIATES, P.C. Drilling Contractor: UniTech/AmeriDrill Driller: Tom Brown Drill Rig: Cantera CT-350 Date Started: 10/14/99					Projec Geolo Drillin Drive	st No.: st Name gist: V g Methe Hamme Complet	: Farra Vassil od: Rot r Weigł	nt:	Boring No.: - MW 8R Sheet 2 of 2 By: V. Vassil Boring Completion Depth: 56 feet Ground Surface Elevation: Boring Diameter: 10"		
D41		Soi	l Sample) 	VOC	field scr	eening				
Depth (ft.)		Туре	Blows Per 6"	Rec	FID ppm	PID ppm	CH4 ppm	5a	mple Description	Graph	
-51-		UC		48"	ļ	0.0		longitudinally. Slic	er third of core fractured kensides line fracture as does		
-52-							ļ	pale green alterati	ion mineral (talc? serpentine?).		
-53-								Cross fractures pr	oducing 2-3" clasts.	Ŧ	
-54-				 				Hairline fractures of schistocity.	on folded gneiss with vertical		
-55-								Black and white gi and hairline fractu	neiss with pink augen (2-5 cm) res around augen.		
-56-								Bas	se of boring at 56 feet	-	
Sample SS = S UC = U	olit Sp	boon	ore	L	1	1	L		56 feet; screened 41-56 feet. We ide 4" steel) above bedrock.	il double	

Dvirka and Bartilucci CONSULTING ENCINEERS Drilling Contractor: UniTech/AmeriDrill Driller: Tom Brown					Proje Geolo Drillin	ogist: A	: Farra Jarosz od: HS/	4	Boring No.: MW-10D Sheet <u>1</u> of <u>3</u> . By: V. Vassil Boring Completion Depth: 53.5 feet Ground Surface Elevation:
	Drill Rig: Cantera CT-350 Date Started: 10/12/99					Hamme	-		Boring Diameter: 6 7/8 "
Date S	tartec					Complet			<u> </u>
Depth	<u> </u>	50	I Sample Blows	• 1	FID	field scr	CH4	-	mple Description
(ft.)		Туре		Rec	ppm	ppm	ppm	34	
-0-									
-1-									
-2-									
-3-		SS	4 5	24"		0.0		Mottled gray/brown pebbles.	n silt and fine sand. Trace
-4-			6 4						
-5-									
-6-					<u> </u>				
-7-					1				
-8-			3 5	24"		3.5		Gray clay with pied	ces of wood.
-9-			7 8					Light grey clayey s Dark gray, fine to r	and. nedium sand, well-sorted.
-10-									
-11-									
-12-									
-13-		SS	5 8	24"		0.3		Light greenish-brov	wn silt; trace clay.
-14-			9 10						
-15-	-								
-16-			.						
-17-									
-18-			4 7	24"		0.0		Poorly sorted, silty	clayey sand, trace pebbles.
-19-			5 4					Brown silt with qua	irtz and mica.
-20-									
SS = Sp	ample Types: S = Split Spoon IC = Undisturbed Core							NOTES:	

.

		virka nd artiluc osuchasso	NGINEERS CIATES, P.C.		Proje		: Farra	nd Controls	Boring No.: MW-10D Sheet <u>2</u> of <u>3</u> . By: V. Vassil	
Drilling Driller: Drill Ri Date S	Ton g: Ca	n Browr antera C	CT-350	neriDrill	Drillin Drive Date (g Metho Hamme Complet	od: HS/ r Weigh ed: 10/	nt: (13/99	Boring Completion Depth: 53.5' Ground Surface Elevation: Boring Diameter: 6 7/8 "	
Depth	No		I Sample Blows Per 6"	Rec	FID	field scr PID	CH4	Sample Description		
(ft.) -21-	No.	Туре	Pero	Keu	ppm	ppm	ppm		<u> </u>	
-22-										
-23-		SS	4 5	24"		0.0		Brown medium sa Micaceous.	and to silty, clayey sand;	
-24-			5 5							
-25-										
-26-]		
-27-					1					
-28-		SS	13 12	24"		0.0		Brown, medium sa micaceous.	and and fine clayey sand,	
-29-			10 10					Brown, well-sorte	d, fine sand.	
-30-										
-31-								1		
-32-	· · · · · · · · · · · · · · · ·									
-33-		SS	7 8	24"	1-	0.0		Olive brown, fine	sandy silt.	
-34-		· ·	9 10					Brown micaceous	, fine sand with mafics.	
-35-								1		
-36-								1		
-37-										
-38-		SS	14 10	24"		0.0		Olive brown fine s Brown silty very fi	•	
-39-			10 12		<u> </u>				medium sand with mafics and	
-40-	<u>-</u>				 			, , , , , , , , , , , , , , , , , , ,		
-41-										
Sample SS = S UC = U	plit Sp	oon	ore		<u> </u>	L	-	NOTES:		

11/12/99

		virka nd artiluc DSULTING EF	IGINEERS CIATES, P.C.	···	+ -	ct No.: ct Name		nd Controls	Boring No.: MW-10D Sheet <u>3</u> of <u>3</u> . By: V. Vassil		
Driller: Drill Ri	Ton i g: Ca	n Brown antera C I: 10/12	CT-350 2/99		Drillin Drive Date (gist: V. g Metho Hamme Complet	od: HSA r Weigh ed: 10/	it:	Boring Completion Depth: 53.5 feet Ground Surface Elevation: Boring Diameter: 6 7/8 inches		
Depth	No	Soi Type	Sample Blows Per 6"	Rec	FID	Field scr PID	CH4	Sample Description			
(ft.) -42-	NO.	туре	Felo	Rec	ppm	ppm	ppm				
-43-		SS	7 8	24"		0.0		Olive brown, fine s	and.		
-44-			12								
-45-			17								
-46-											
-47-											
-48-	MW- 10D	SS	12 12	24"		0.5		Brown, medium fir	ne sand with mafics.		
-49-	48- 50'		15 14					Problem with runn been drilling wash	ing sand, sample may have		
-50-					[
-51-											
-52-											
-53-									ed hard surface, drilled into it 0.5 ' of boring at 53.5 feet		
-54-			· · · · · · · · · · · · · · · · · ·		-		· · · · · · · · · · · · · · · · · · ·				
-55-											
- 56-											
-57-											
-58-											
-59-				<u> </u>							
-60-											
-61-											
-62-											
Sample SS = S UC = U	plit Sp	oon	ore		•		- <u>.</u> .	NOTES: 2" PVC well set at	53.5 feet; screened 43.5-53.5 feet.		

		Dvirka Ind Bartiluc DNSULTING EP DOSULCHASSO	NGINEERS <u>CIATES, P.C.</u>		Projec		e: Farra	nd Controls	Boring No.: MW-10R Sheet <u>1</u> of <u>1</u> . By: V. Vassil
-		ractor: U n Brown	JniTech/Ar	neriDrill		gist: V.		-	Boring Completion Depth: 63.5 feet
		n Brown antera C				g Metho			Ground Surface Elevation:
	-	i: 10/18				Hamme Complet	-		Boring Diameter: 10 inches
Duite			l Sample			Complet			· · · · · · · · · · · · · · · · · · ·
Depth			Blows	Γ	FID	PID	CH4		mple Description
(ft.)	No.	Туре	Per 6"	Rec	ppm	ppm	ppm		
-0-									andy, silty overburden. DD for depth to 53.5 feet
-53-									
-54-									
-55-									suggestive of drilling through ed zone, alternating hard and
-56-								soft substrate.	
-57-									
-58-									
-59-									
-60-								Material surfacing	aterial, no sample obtained. from drill rods consisting of
-61-		UC		0"				rock fragments (pro	ay decomposed metamorphic esumed gneiss) clast size
-62-								consistent with co	
-63-								Bore hole caving ir boring te	n above drill bit. erminated at 63.5 feet
-64 -									
-65-									
-66-									
-67-									
-68-							-		
-69-									
-70-									
Sample						h		NOTES:	· · · · · · · · · · · · · · · · · · ·
UC = Ur	ndistu	rbed Co	ле						63.5 feet; screened 61-63.5 feet. Well VC inside 4" steel) above bedrock.

		Dvirka and Bartilu onsulting e COSULCH ASS	CCÌ ENGINEERS DCIATES, P.C.		Proje		: Farra	nd Controls Boring No.: MW-20D Sheet <u>1</u> of <u>4</u> . By: V. Vassil
		n Brow	UniTech/A	meriDrill		o <mark>gist:</mark> V		Boring Completion Depth: 77 feet
			n CT-350			ng Metho		
	-	d: 10/1					-	nt: 140 lb. Boring Diameter: 6 7/8 "
Date C		-	il Sample			Complet		
Depth			Blows	, 	FID	PID	CH4	Sample Description
(ft.)	No.	Туре		Rec	ppm	ppm	ppm	
-0-								Dark brown sandy loarn soil.
-1-		<u> </u>	·					
-2-				1				
-3-		SS	3	15"		0.0		Dark brown clayey, silty fine sand with rootlets. Damp.
-4-			5 4					Dark gray-brown medium sand with trace clay. Wet.
-5-								
-6-								
-7-								
-8-		SS	4 3	9"		0.1		Dark gray-brown coarse sand with minor sub-round quartz and sub-angular gneissic gravels (1/4 – 3/8").
-9-			2					quanz and sub-angular gheissic gravels (114 – 576).
-10-								
-11-								
-12-								
-13-		SS	3 2	20"		0.2		Dark grey-brown clayey fine sand.
-14-	<u></u> .		3			0.2		Dark brown silty fine sand.
-15-			8			0.1		Dark brown medium fine sand, trace silt.
-16-	<u> </u>							
-17-								
	MW- 20D	SS	4 4	20"		0.2		Dark gray-brown fine sand.
-19-	18- 20'		5 7			0.2		
-20-								
Sample SS = Sp UC= Ur	lit Spo	on	ore	1	[NOTES:

Drilling	Contr		ngineers <u>cates, p.c.</u> JniTech/Ai	neriDrill	Proje Geolo	ogist: V	: Farra	nd Controls	Boring No.: MW-20D Sheet <u>2</u> of <u>4</u> . By: V. Vassil Boring Completion Depth: 77 feet		
Driller: Drill Ri						ig Metho		4 n t: 140 lb.	Ground Surface Elevation:		
Date S	-					Complet	_		Boring Diameter: 6 7/8"		
		Soi	I Sample		VOC	field scr	eening				
Depth (ft.)	No.	Туре	Blows Per 6"	Rec	FID ppm	PID ppm	CH4 ppm	Sa	mple Description		
-21-		- 7					<u> </u>				
-22-								-			
-23-	· · · · · ·	SS	3 5	24"		0.0			ine sand (drill slough?) silty very fine sand, laminated.		
-24-			11 13]	,		
-25-											
-26-											
-27-									-		
-28-		SS	10 11	16"		0.0		Dark gray-brown f	ine sand. silty very fine silicous sand with		
-29-			15 20					mafics.			
-30-											
-31-											
-32-											
-33-		SS	7 11	24"		0.0		Medium gray-brow	n silty very fine sand. Laminated.		
-34 -			13 15			-					
-35-											
-36-											
-37-											
-38-		SS	5 7	24″		0.0			m, micacous, silty fine sand with 0.25 inches long/wide.		
-39-			8						-		
-40-			10					(gray, silty clay in s	ated, clayey silt grading into clay sampler shoe).		
-41-				···-							
Sample SS = Sp UC = Ui	olit Sp	oon	ore			1		NOTES:			

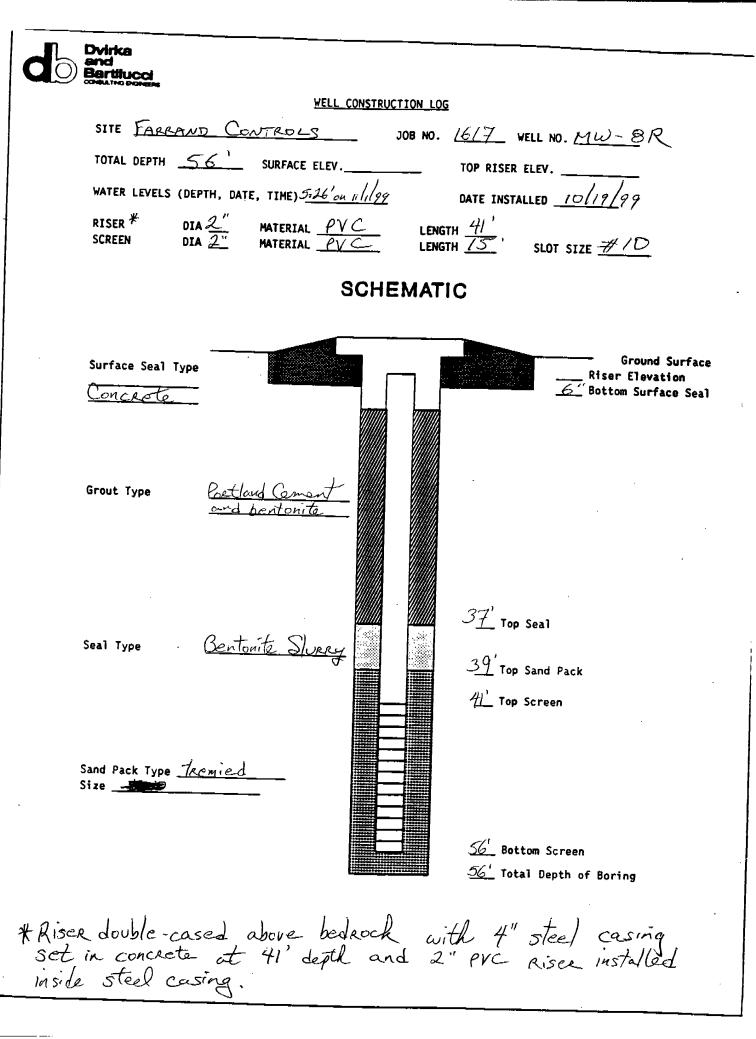
Drilling Driller:		n Brown	ngineers <u>ciates, pc.</u> JniTech/Ai J	meriDrill	Proje Geolo	ct No.: ct Name ogist: V	: Farra . Vassil	nd Controls A	Boring No.: MW-20D Sheet <u>3</u> of <u>4</u> . By: V. Vassil Boring Completion Depth: Ground Surface Elevation: 77 feet	
Drill Ri Date S						Hamme Complet	_	nt: 140 lb. / /99	Boring Diameter: 6 7/8"	
Depth		Soi	l Sample Blows			field scr PID]	male Deceription	
(ft.)	No.	Туре		Rec	ppm	ppm	ppm	Sample Description		
-42-										
-43-		SS	4 5	24"		0.0		Loose, gray-browr slough?)	n silty clay and sand (drill	
-44-			8 8					Olive-gray, lamina silt and trace fine s	ted highly plastic clay with minor sand.	
-45-										
-46-								1		
-47-										
-48-		SS	5 7	24"		0.0	·	Olive-gray, lamina	ted fine sandy, clayey silt.	
-49-			8 8						rline layers of gray brown d olive gray clayey silt.	
-50-										
-51-										
-52-										
-53-		SS	12 15	24"		0.0		Olive gray-brown o	clayey, silty fine sand.	
-54-			21 27						rown laminated clay with gray, at ¼" spacings. Dense.	
-55-										
-56-										
-57-			<u></u>				1 			
-58-		SS	12 10	24"		0.0		Gray, silty, mediun	n-fine sand	
-59-			8 10			-			, laminated, fine sandy clay. ge/dark grey/brown medium	
-60-			<u> </u>					sand with pebbles		
-61-										
-62-				<u>. </u>						
Sample SS = Sp UC = Ui	olit Sp	oon	I	L		I		NOTES:		

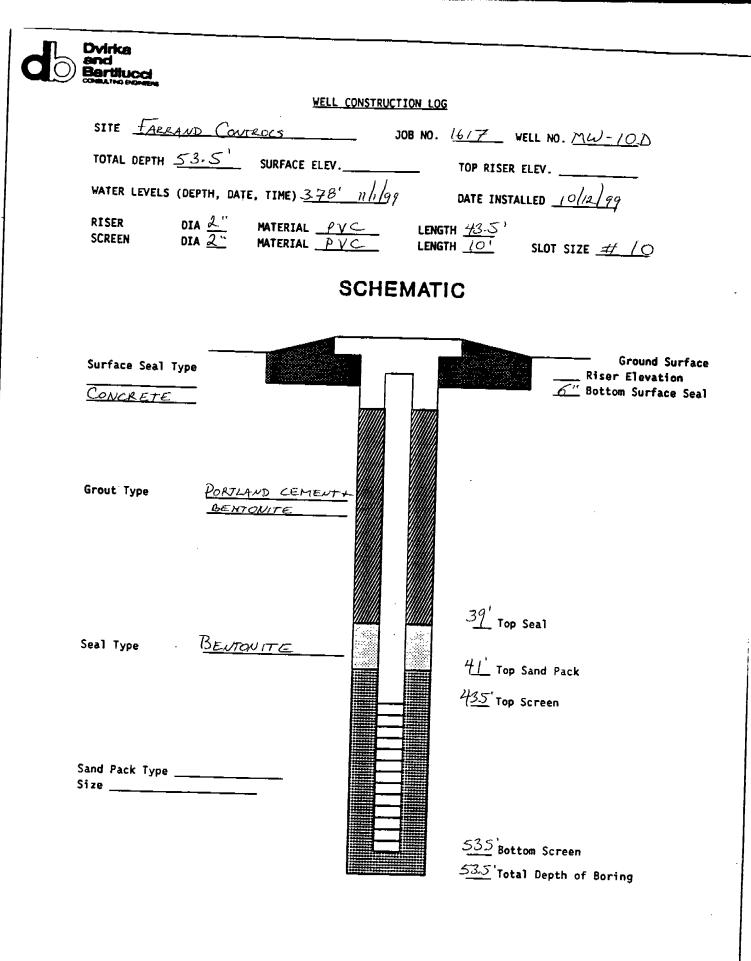
		Virka nd Bartilue Insulting El OSULCHASSO	NGINEERS CIATES, P.C.		Proje		: Farra	nd Controls	Boring No.: MW-20D Sheet <u>4</u> of <u>4</u> By: V. Vassil	
Driller: Drill Ri Drill Ri Date S	Ton g: Ca	n Browr antera (I: 10/14	CT-350 4/99		Drillin Drive Date (Complet	od: HS/ er Weigh ted: 10/	4 nt: 140 lb. /14/99	Boring Completion Depth: 77 feet Ground Surface Elevation: Boring Diameter: 6 7/8 inches	
Depth (ft.)		Soi Type	I Sample Blows Per 6"	Rec	FID FID	Field scr	CH4	Sample Description		
-63-		SS	10 12 14	11"		0.0	ppm	Gray, micacous fine sand. Orange-brown-gray medium sand with 1.5-inch clast of guartz-veined, biotite schist/gneiss.		
65-			14							
-66-								-		
-67-										
-68-		SS	10 11	13 "		0.0		Dark gray, mediun Olive brown, mica	n-fine sand. cous, silty very fine sand.	
-69- -70-			13 14					-		
-71-								-	-	
-72-								-	· · · · ·	
-73-		SS	5 7	24"		0.0		Dark gray-brown r Olive-gray, thinly l	nedium sand. aminated, fine sandy, clayey silt	
-74-			7 9					Olive brown, thinly fine sand.	laminated silty clay trace very	
-75- -76-		In		10"		0.0		Mottled orange/al	ive growelive brown	
-77-		rods						decomposed meta Silty clayey ground	ive-gray/olive-brown, morphic rock in micacous, sandy dmass with sub-round quartz and gular rock fragments.	
-78-				,					boring at 77 feet	
-79-										
-80-								1		
-81-			-] ,		
-82- -83-										
-83- Sample SS = S UC = U	olit Sp	oon	ore					NOTES: 1. Auger refusal a 2. Set 2" PVC we	at 77 feet. Il at 77 feet; screened 67-77 feet.	

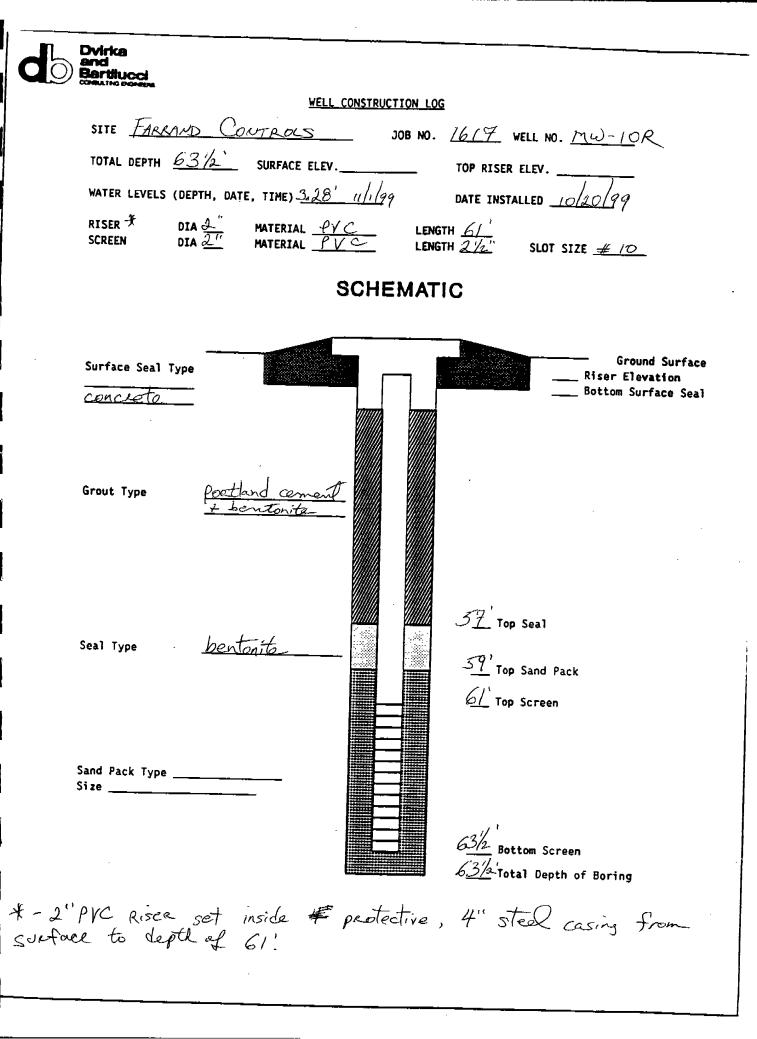

Drilling	Contr	virka nd artiluc suchasso actor: U Brown	^{igineers} Dates, pc. JniTech/Ai	meriDrill	Proje	ct No.: ct Name ogist: V.	: Farra Vassil	nd Controls	Boring No.: MW-20R Sheet <u>1</u> of <u>1</u> By: V. Vassil Boring Completion Depth: 981 Ground Surface Elevation:	feet
Drill Ri	g: Ca	antera C	CT-350			Hamme		•	Boring Diameter: 6 7/8 "	
		: 10/19				Complet	-			
		Soil	Sample)	voc	field scr	reening			
Depth			Blows		FID	PID	CH4	Sa	mple Description	Graph
(ft.)	No.	Туре	Per 6"	Rec	ppm	ppm	ppm	ļ		
									andy, silty, clayey overburden. DD for depth to 77 feet.	
-78-										
-79-								Between 77 and 8	termittently soft and hard drilling 3' – hollow-stem augered to 83'	
-80-								and set outer casi	ng.	
-81-										
-82-										
-83-			· · · · · · · · · · · · · · · · · · ·							
-84-									aled highly altered, foliated rock Itz and orange calcite crystals	
-85-								(rhombs) in clayey	groundmass consisting of pale d blue green clay (chlorite?).	
-86-										
-87-										
-88-		UC		2.5' of 10'core		0.0			een, greasy, foliated, platy rock, e/talc, fractured in 2-4" pieces.	RZ.
-89-										
-90-						0.0			hite banded, fractured gneissic inch thick bands of a greasy,	11/2
-91-									mineral tentatively identified as paper black, soils hands, hard-	
-92-								ness <2). Frequen	tly fractured along boundary bands and gneissic mylonite.	
-93-									G (<u>·</u> ₽′⁄₹
-94-										
-95-										
-96-										
-97-										
-98								base	of boring at 98 feet	
Sample SS = Sp UC = Ur	olit Sp	oon	ore	L		<u> </u>			98 feet; screened 88-98 feet. Well ide 4″ steel) above bedrock.	double

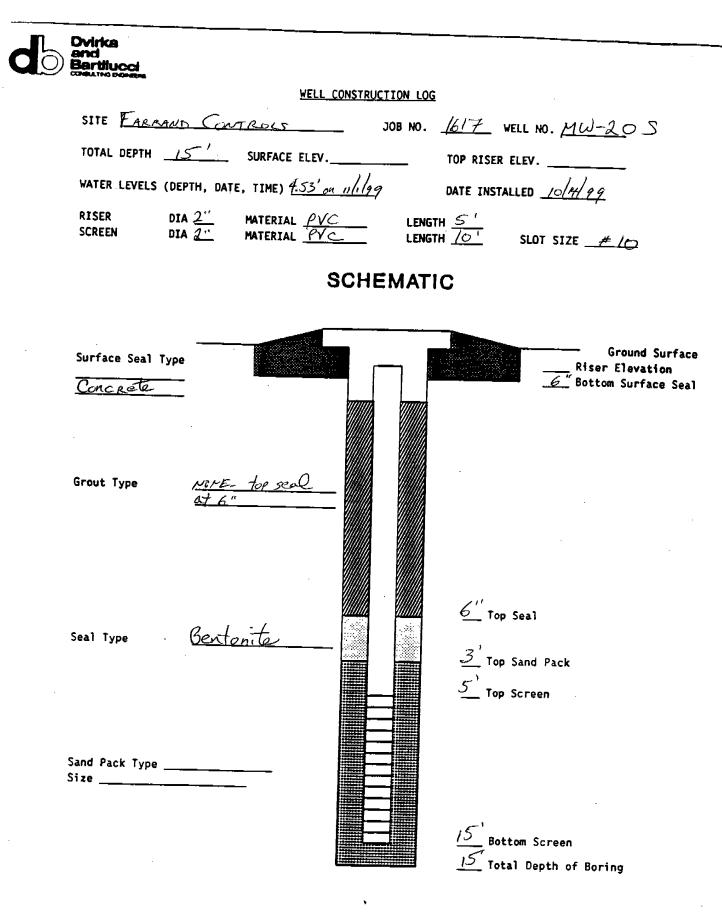
11/11/99

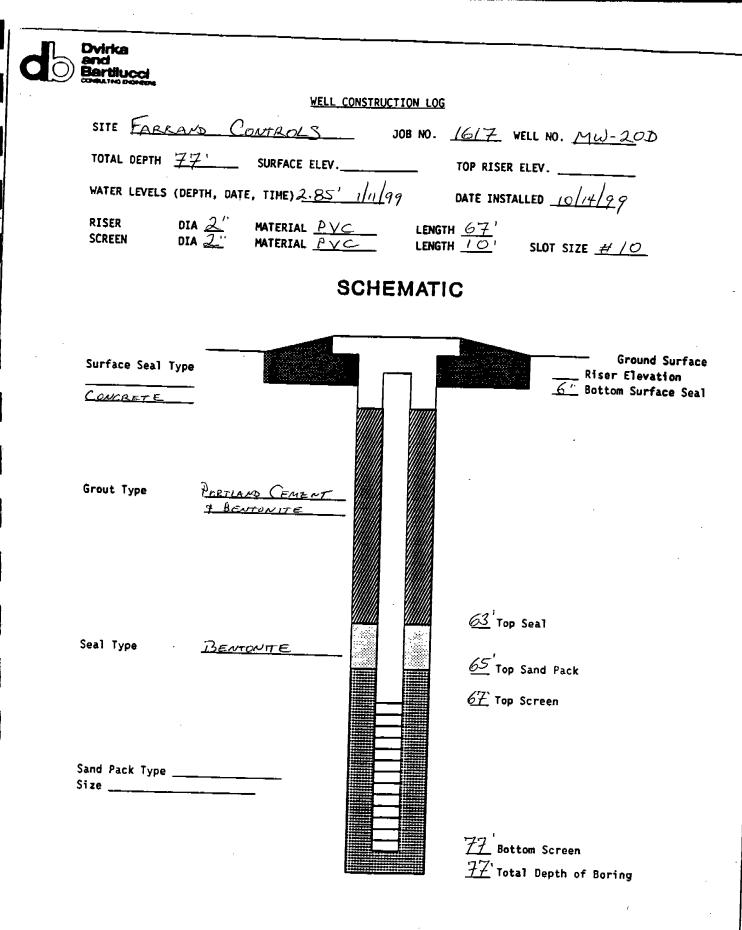
-

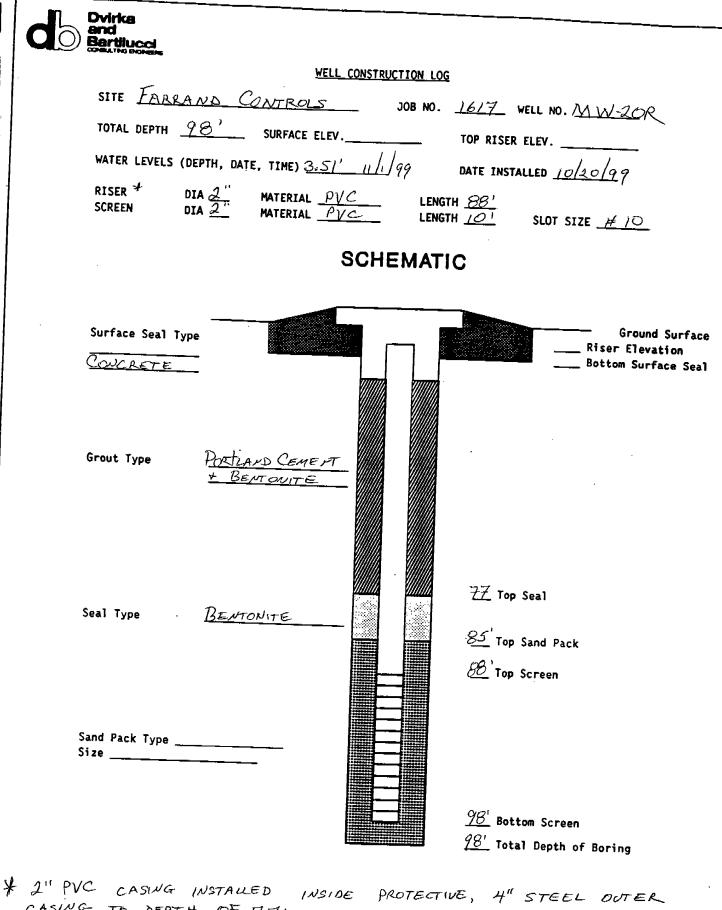

GEOPROBE SOIL SAMPLE LOGS FARAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY

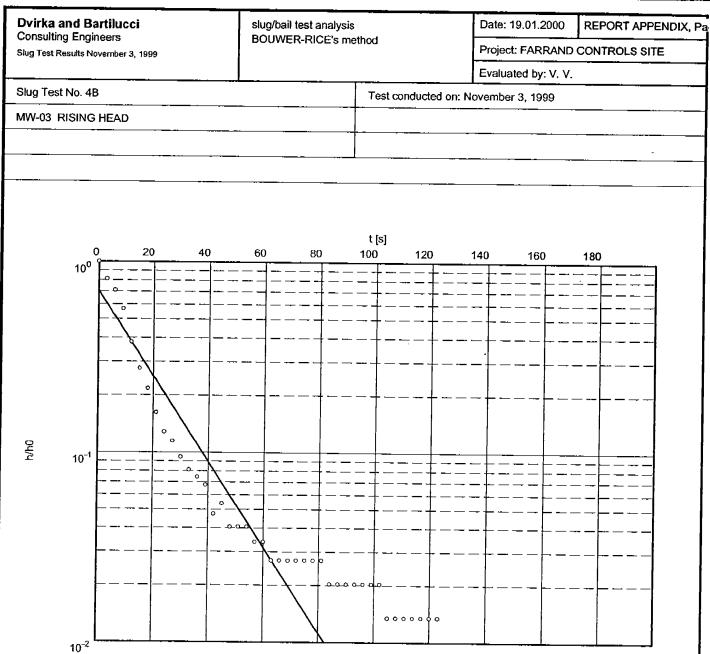

Location	Date	Depth Interval	Sample I.D.	PID (ppm)	Description
GP-S-C	10/5/99	$0 - 2^{*}$ 2" - 4'		0.0	Asphalt. Light brown, fine to medium, well sorted dry SAND, trace fine, sub-round gravel.
		4' - 7' 7' - 8'		0.0 0.0	Light brown to brown fine, well sorted dry SAND. Light red-brown very fine SAND, some silt, trace fine gravel.
		8' – 9.5' 9' – 11'	GP-S-C-(-75) (9-11')	0.0 0.0	Light brown to light gray fine Sand, dry, little silt. Light brown-gray SILT, wet.
		11' 11.5'	(3-11)	0.0	Decomposed rock, wet. REFUSAL.
GP-S-D	10/4/99	0 - 3' 3'' - 4'		0.0 0.0	Asphalt.
		4' - 8'		0.0	Brown fine SAND, well sorted, wet, little medium to fine gravel, some to little silt. Light red-brown fine to medium SAND, wet to
		8' – 12'	GP-S-D-(-60) (7-9')	0.0	saturated, trace flat, sub-round gravel. Brown medium SAND, wet, some fine sub-round
		13'			gravel, trace fine sand and silt. REFUSAL.
GP-S-E	10/4/99	0 – 3" 3" – 4'		0.0 0.0	Asphalt. Brown, medium fine SAND, little gravel, trace silt, dry to
		4' – 7.5'		0.0	damp Brown, well-sorted fine to medium SAND, wet at 5-6'.
		7.5' – 8' 8' – 12'	GP-S-E-(-60)	0.0 0.0	Brown, coarse SAND and sub-round GRAVEL. Light reddish brown, poorly sorted, coarse to medium SAND with fine to medium sub-round gravel, rock
		12' – 14'	(10-12')	0.0	fragments at sample base. Saturated, fine to medium GRAVEL with sandy gravel, coarse sand and rock fragments at sample base.
		14.5'			REFUSAL.
GP-S-F	10/4/99	0 – 3" 3" – 4'		0.0 0.0	Broken concrete/asphalt. Brown SILT, some sand with dry, medium sand at 4'.
		4' 4.5'		0.0	Brown-orange fine to medium SAND, trace fine gravel, trace black sand lens.
		4.5' – 5'		0.0	Brown Silt and fine SAND.
		5'-8'		0.0	Brown, very fine well sorted SAND, damp.
		8' – 10' 10' – 10.5'		0.0	Brown fine SAND, damp to moist.
·		10 - 10.5 10.5' - 12'		0.0 0.0	Crushed rock/(till?) Brown silty, clayey SAND, some gravel, wet.
		12'-16'	GP-S-F-(-60)	0.0	Brown clayey, silty GRAVEL and fine to medium,
		16' 19'	(14-16))	0.0	poorly sorted GRAVEL, trace fine sand and silt. Brown clayey silty SAND and sub-round GRAVEL,
				0.0	poorly sorted, trace silt and rock fragments. REFUSAL.


.





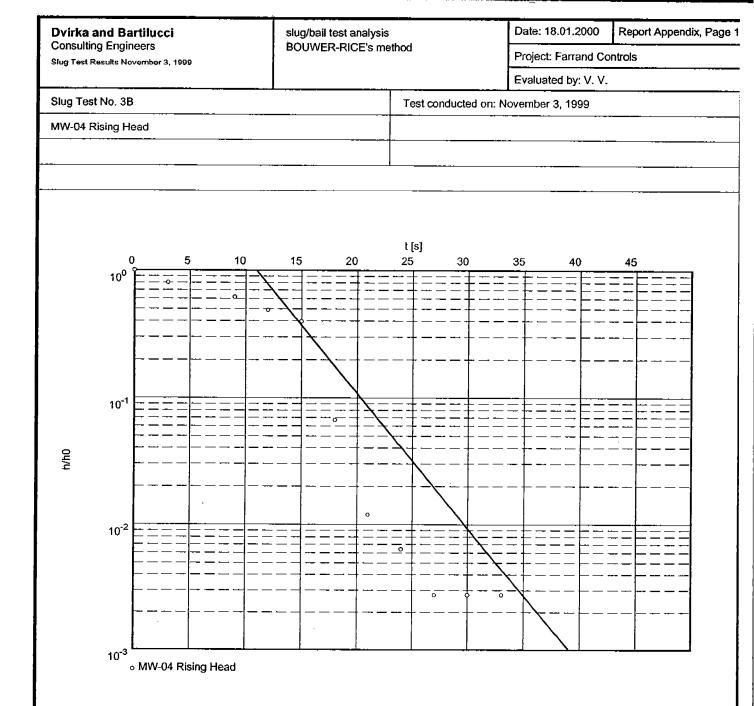




CASING TO DEPTH OF 771

APPENDIX C

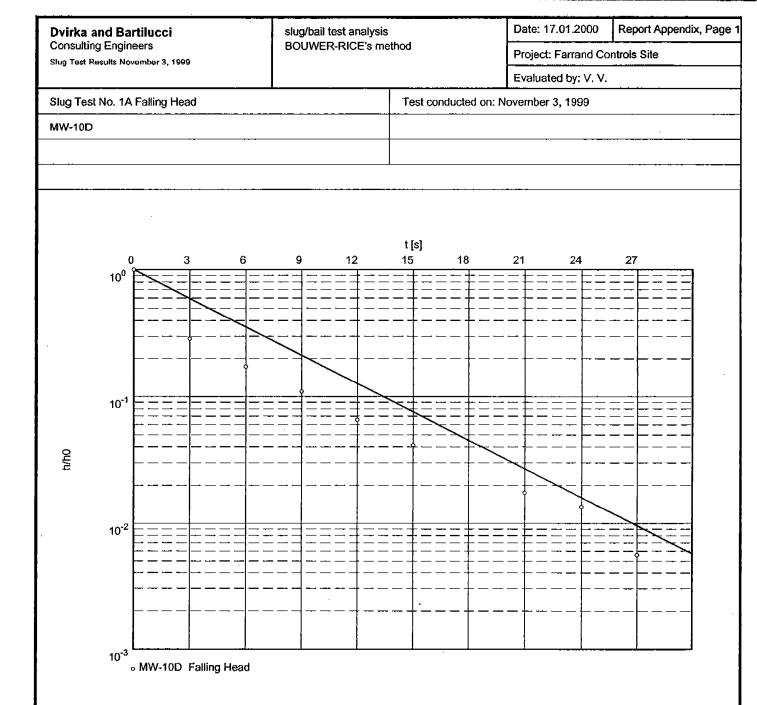
SLUG TEST GRAPHS



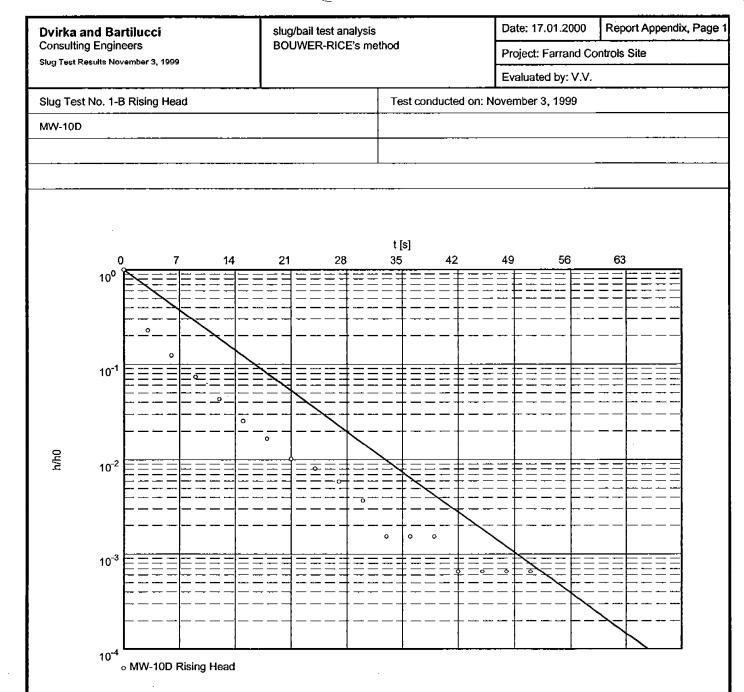
∘ MW-03

Hydraulic conductivity [ft/s]: 2.77 x 10⁻⁴

Screen zone spanned water table, therefore second straight line was used to determine K

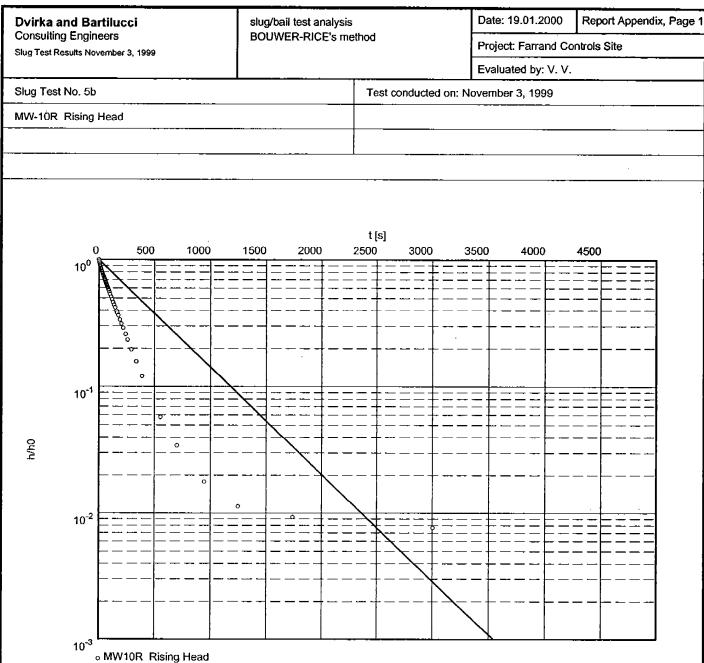

	d Bartilucci	slug/bail test analysis		Date: 19.01.2000	REPORT APPENDIX,			
Consulting I Slug Test Resu	ngineers Its November 3, 1999	BOUWER-RICE's meth	hod	Project: FARRAN	D CONTROLS SITE			
	·			Evaluated by: V. V	1.			
Slug Test N	o. 4B		Test conducted of	n: November 3, 1999				
MW-03 RIS	ING HEAD		MW-03					
Static water	level: 6.79 ft below datum		· · · · ·					
- 1	Pumping test duration	Water level	Dra	wdown				
1	[s]0	[ft] 5.31		[ft]				
2	3	5.59		-1.48 -1.20				
3	6	5.74		-1.05				
4	9	5.95		-0.84				
5	12	6.23		-0.56				
<u>6</u> 7	<u> </u>	<u> </u>		-0.41				
8	21	6.55		-0.32 -0.24				
9	24	6.60		-0.24 -0.19	· · · · · · · · · · · · · · · · · · ·			
10	27	6.62	_	-0.17	···			
		6.65		-0.14				
12 13	3336	6.67		-0.12				
14	39	<u> </u>		-0.11 -0.10				
15	42	6.72		-0.07	· · · · ·			
16	45	6.71		-0.08				
17	48	6.73		-0.06				
18 19	51	6.73		-0.06	··-			
20	<u>54</u> 57	<u> </u>		-0.06	· · · · · · · · · · · · · · · · ·			
21	60	6.74		-0.05				
22	63	6.75	·	-0.04	·			
23	66	6.75		-0.04				
24 25		6.75		-0.04				
25	<u>72</u> 75			-0.04				
27	78	6.75	·	-0.04 -0.04				
28	81	6.75		-0.04				
29		6.76		-0.03				
30 31	87	6.76		-0.03				
31	90 93	6.76 6.76		-0.03				
33	96	6.76		-0.03				
34	99	6.76		-0.03				
35	102	6.76		-0.03				
36 37	<u> </u>	6.77		-0.02				
38	111	<u> 6.77</u> 6.77		-0.02				
39	114	6.77	+	-0.02	· · · · · · · · · · · · · · · · · · ·			
40	117	6.77		-0.02				
41	120	6.77		-0.02				
_42	123	6.77		-0.02				
					·			
				· · · · · · · · · · · · · · · · · · ·				
	_							

Hydraulic conductivity [ft/s]: 1.27 x 10⁻³


Screen zone spanned water table, therefore second straight line was used to determine K

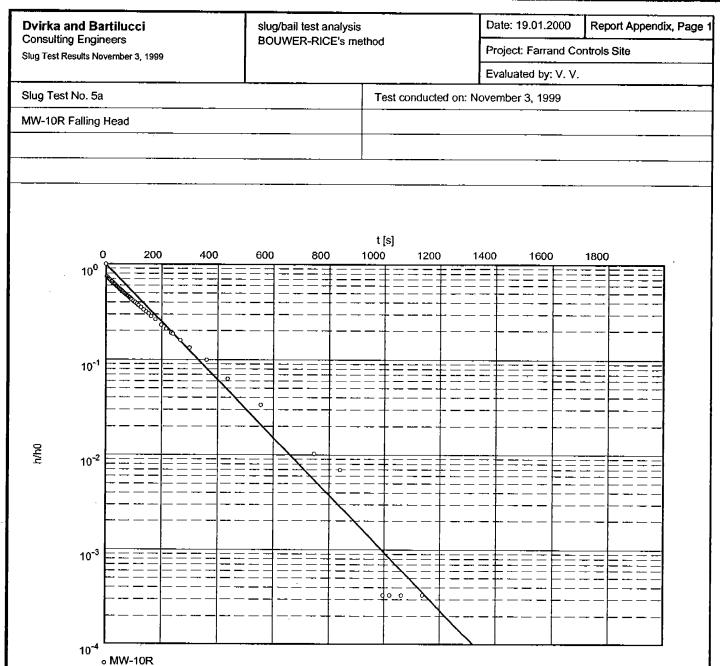
Dvirk	a and Bartilucci	slug/bail test analysis		Date: 18.01.2000	Report Appendix, Page 2
Consul Siug Tes	Iting Engineers st Results November 3, 1999	BOUWER-RICE's met	thod	Project: Farrand Co	Introls
				Evaluated by: V. V.	
Slug Te	est No. 3B		Test conducted on: N	ovember 3, 1999	<u> </u>
MW-04	Rising Head		MW-04 Rising Head		
	······································	·······			
Static v	water level: 8.37 ft below datum	l_			
	Pumping test duration	Water level	Drawdov	wn	
				ľ	
1	[S]0	[ft]7.28	[ft]	-1.09	
2	3	7.50		-0.87	·····
3	6 9	5.53		-2.84	
5	12	7.70		-0.67 -0.53	
6 7	15	7.94		-0.43	
- 7	<u>18</u>	<u> </u>		-0.07 -0.01	
9	24	8.38	·····	0.01	·
10	27 30	8.37		-0.00	
12	33	8.37		-0.00	
		·			
			· · · · · · · · · · · · · · · · · · ·		
_					
			· · ·		
		<u> </u>			

Hydraulic conductivity [ft/s]: 2.00 x 10⁻⁴


Dvirka a	nd Bartilucci	slug/bail test analysis	·	Date: 17.01.2000	Report Appendix, Page
	J Engineers suits November 3, 1999	BOUWER-RICE's met	hod	Project: Farrand Co	ntrols Site
				Evaluated by: V. V.	
Slug Test	No. 1A Falling Head		Test conducted on: N	.	
MW-10D			MW-10D Falling Hea	ıd	<u> </u>
Static wate	er level: 16.79 ft below datum				
	Pumping test duration	Water level	Drawdo	w/D	· · · · · · · · · · · · · · · · · · ·
			Diawoo		
	[s]	[ft]	[ft]		
2	<u>0</u> 3	<u> </u>		<u>2.51</u> 0.72	
3	6	17.22	<u> </u>	0.43	
4	9	17.06		0.27	
5	12	16.95		0.16	
6	15	16.89		0.10	
8	21 24	16.83 16.82		0.04	
9	27	16.82	<u> </u>	0.03	
					· · · · ·
					· · · · · · · · · · · · · · · · · · ·
		<u></u>	· · · - · · · · · · · · · · · · · ·		·
<u>[</u>			· [
	·····				
	· · · · · · · · · · · · · · · · ·			·	
· · · · · · · · ·					
1		· · · · ·		-····	
		······			
					·
<u> </u>				· · · · · · · · · · · · · · · · · · ·	
				· / ·	
		······			
	······				

Hydraulic conductivity [ft/s]: 1.63 x 10⁻⁴

	a and Bartilucci	slug/bail test analysis		Date: 17.01.2000	Report Appendix, Page 2	
	Iting Engineers st Results November 3, 1999	BOUWER-RICE's met	hod	Project: Farrand Controls Site		
			Evaluated by: V.V.			
Şlug T	est No. 1-B Rising Head		Test conducted on: November 3, 1999			
MW-10	DD		MW-10D Rising Head	1		
					· · · · · · · · · · · · · · · · · · ·	
Static	water level: 16.77 ft below datum			·····	<u> </u>	
	Pumping test duration	Water level	Drawdov	wn		
1	[s]0	[ft] 12.18	[ft]	-4.59		
2	3	15.73		-1.04		
3	6	16.20		-0.57		
4	9			-0.34	· · · ·	
5	<u>12</u> 15	<u> </u>		-0.20		
7	18	16.69		-0.08	· · · · · · · · · · · · · · · · · · ·	
8	21	16.72		-0.05		
9 10	24 27	16.73		-0.04 -0.03		
11	30	<u> </u>		-0.03	· · · · · · · · · · · · · · · · · · ·	
12	33	16.76		-0.01	· · · ·	
13	36	16.76		-0_01		
14 15	<u> </u>	16.76		-0.01	· · · · · · · · · · · · · · · · ·	
16	42 45	<u> </u>		0.00		
17	48	16.77		0.00		
18	51	16.77		0.00		
	· · · · · · · · · · · · · · · · · · ·					
					· · · · · · · · · · · · · · · · · · ·	
	·		· · • • · · · · · · · · · · · · · · · ·		· · · ·	
	·	<u> </u>				
		· · ·				
<u>`</u> -			· · ·			
			· · · · · · · · · · · · · · · · · · ·	<u>_</u>		
			· · ·			
	··· ··· ···				-	
					· · ·	
	·				· · · · · · · · · · · · · · · · · · ·	
			· · ·			
		······································				
1			1	I		


,

Hydraulic conductivity [ft/s]: 7.71 x 10⁻⁶

Dvirka and Bartilucci		slug/bail test analysis		Date: 19.01.2000	Report Appendix, Page	
Consulting Engineers Slug Test Results November 3, 1999		BOUWER-RICE's method		Project: Farrand Controls Site		
				Evaluated by: V. V.		
Slug Tes	st No. 5b		Test conducted on: N	ovember 3, 1999		
MW-10F	Rising Head		MW10R Rising Head			
	.	· · · · · · · · · · · · · · · · · · ·	j		· · · ·	
	· · · · · · · · · · · · · · · · · · ·				······································	
Static wa	ater level: 16.22 ft below datum		<u>r'</u>	···		
	Pumping test duration	Water level	Drawdov	WŇ		
	[s]	[ft]	[ft]			
1	0	13.73		-2.48		
2	3	13.80		-2.42		
3	6	13.88		-2.34		
4	9	13.94		-2.27		
5	12	13.99		-2.22		
<u>6</u> 7	<u> </u>	<u> </u>		-2.18 -2.13		
8	21	14.08		-2.13		
9	24	14.12		-2.09		
10	27	14.20		-2.02		
11	30	14.23		-1.98		
12	33	14.27		-1.94		
13	36	14.30		-1.91		
14	39	14.33		-1.88		
15 16	42	14.36		-1.85		
10	<u>45</u> 48	<u> </u>	• • •	-1,82		
18	51	14.43		-1.76		
19	54	14.49		-1.72		
20	57	14.52		-1.70		
21	60	14.55		-1.67	·	
22	63	14.57		-1.64		
23	66	14.60		-1.62		
24 25	<u>69</u> 72	14.63 14.65		<u>-1.59</u> -1.56		
26	72	14.65		-1.54	· · ·	
27	78	14.70		-1.51		
28	81	14.73		-1.49		
29	84	14.75		-1.46		
30	87	14.77		-1.44	_	
31	90	14.80		-1.42		
32 33	96 102	14.84		-1.37		
34	102	14.89 14.95		-1.33 -1.27		
35	120	15.01		-1.21		
36	129	15.07	<u> </u>	-1.15	······································	
37	138	15.12		-1.10		
38	147	15.17		-1.04		
39	159	15.24		-0.98		
40 41	<u>165</u> 174	15.27		-0.95		
41	174	<u>15.31</u> 15.38		-0.90 -0.83		
43	204	15.44		-0.77		
44	219	15.50		-0.72		
45	240	15.57		-0.64	· · · · ·	
46	258	15.63		-0.58		
47	294	15.73		-0.49		
48	336	15.82		-0.39		
49	390	15.92		-0.30		

Dvirka and Bartilucci		slug/bail test analysis		Date: 19.01.2000	Report Appendix, Page 3	
Cons	ulting Engineers	BOUWER-RICE's me	thod	Project: Farrand Controls Site		
Siug H	est Results November 3, 1999			Evaluated by: V. V.		
Slug	Test No. 5b	Test conducted on: N				
MW-1	OR Rising Head		MW10R Rising Head	· · · · ·		
Static	water level: 16.22 ft below datum			<u> </u>		
	Pumping test duration	Water level	Drawdov			
	i uniping test dataton	vvaler lever	Drawdor			
	[s]	[ft]	(ft)			
51 52	702 945	16.13 16.17		-0.08 -0.04		
53	1248	16.19		-0.03	· · · ·	
54	1740	16.19		-0.02		
55 56	<u> </u>	16.20 16.22		-0.02 0.00		
				0.00		
		<u> </u>				
		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·				
					····	
		· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	· <u> </u>				
	· · · · · · · · · · · · · · · · · · ·					
					· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·	
	······································	· · · · · · · · · · · · · · · · · · ·				
				·		
					······································	
		· · · · · · · · · · · · · · · · · · ·			,,,,,,,	
		· · · · · · · · · · · · · · · · · · ·				
				I		

Hydraulic conductivity [ft/s]: 2.76 x 10⁻⁵

	and Bartilucci	slug/bail test analysis		Date: 19.01.2000	Report Appendix, Page 2		
	ting Engineers Results November 3, 1999	BOUWER-RICE's me	thod	Project: Farrand Co	I		
	Results november 5, 1999			Evaluated by: V. V.			
Slug Te	t No. 5a Test conducted on: November 3, 1999						
MW-10	R Falling Head		MW-10R				
					·····		
Static w	ater level: 16.21 ft below datum						
	Pumping test duration	Water level	Drawdov				
	[5]	[ft]	[ft]				
1	0 3			3.03			
3		18.43		2.23			
4	9	18.38		2.17	· · · · · · · · · · · · · · · · · · ·		
5	12	18.33		2.12			
.6	15	18.29		2.08			
7	18	18.25		2.04			
8	21	18.20		1_99			
10	24 27	<u> </u>		1.96 1.91			
11	30	18.08		1.87			
12	33	18.05		1.84			
13	36	18.01		1.80			
14	39	17.98		1.77			
15	42	17.95		1.74			
16 17	45	17.92		1.71			
18	<u>48</u> 51	<u> </u>		1.68			
19	54	17.83	· · · · · · · · · · · · · · · · · · ·	1.62			
20	57	17.80		1.59			
21	60	17.77		1.56			
22	63	17.74	· · · ·	1.53			
23 24	<u>66</u> 69	17.71		1.50			
25	72	17.69 17.66		1.48			
26	75	17.64		1.43			
27	78	17.62		1.41			
28	81	17.60		1.39	· · · ·		
29		17.57		1.36			
30 31	87	17.55		1.34			
32	90 93	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u>1.31</u> 1.28			
33	99	17.45		1.24			
34	105	17.41		1.20			
35	111	17.37		1.16			
36	117	17.33		1.12			
37 38	<u> </u>	17.28		1.07			
39	135	<u> </u>		1.01 0.96			
40	153	17.13		0.92			
41	162	17.07	· · · · · · · · · · · · · · · · · · ·	0.86			
42	177	17.00		0.79			
43	198	16.90		0.69			
44	216	16.84		0.63			
45 46	234 240	<u> </u>		0.57			
40	240	16.69		0.48			
48	300	16.61		0.40			
49	360	16.51		0.30			
50	435	16.40	0.19				

Dvirka and E	Bartilucci	slug/bail test analysis	slug/bail test analysis		Report Appendix, Page		
Consulting Eng Slug Test Results		BOUWER-RICE's me	ethod	Project: Farrand	Project: Farrand Controls Site		
			Evaluated by: V. V.				
Slug Test No. !	5a		Test conducted or	n: November 3, 1999			
MW-10R Fallin	g Head		MW-10R				
Static water lev	vel: 16.21 ft below datum						
	mping test duration	Water level	Draw	down			
	[s]	[ft]	[1	ft]			
51	555	16.31		0.10			
52 53	747	16.24		0.03			
	840	16.23		0.02			
54 55	996			0.00			
56	1020 1062	<u> </u>		0.00			
57	1138	16.21		0.00			
				0.00			
	_				······································		
				<u> </u>	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·					
				/			
		· · · · · · · · · · · · · · · · · · ·		<u> </u>			
					·······		
<u> </u>							
	· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·	<u> </u>					
					· · · · · · · · · · · ·		
				·			
<u> </u>							
	······						
				— <u> </u>			
		······	···· · · · · · · · · · · · ·		<u> </u>		
				—·			

APPENDIX D

SURVEY REPORTS

•

-

JOB: 99015 Crew: FD,HS,GD Material: FIELD DATA Notes: YEC/FARRAND CONTROLS;99 WALL STREET, VALHALLA, NY DATE BEGUN: 04-07-99 08:12:31 DATE ENDED: 04-08-99 12:38:21 UNIT: Distance unit: FEET Angle unit: D.M.S. Azimuth system: NORTH Angle direction: RIGHT Vertical system: ZENITH ACTIVITY POINT HEIGHT HORIZONTAL VERTICAL DISTANCE CREATED TIME/DESC -----04-07-99 08:20:24 OCC. STA. 1 5.17 SPIKE REF. DIR.: Occupy station: 1 Backsight: 4 Azimuth: 339.00000 BACKSIGHT 0.00000 90.04550 567.7251 MAG PK 4 2 SIDESHOT 5.02 47.22350 88.53300 213.7100 MAG PK 2 271.06300 213.7100 MAG PK SIDESHOT 5.02 227.22350 567.7251 MAG PK **BACKSIGHT** 4 180.00000 269.55050 NOTE: B/S HGT=5.05 279.9951 MW-9 SIDESHOT 21 5.13 149.34400 89.35400 22 167.42000 89.47500 186.5851 MW-8 SIDESHOT 5.13 23 5.13 110.57450 87.57450 110.1152 MW-7 .SIDESHOT 24 5.13 103.15450 91.53350 38.5251 MW-4 SIDESHOT 25 90.02350 SIDESHOT 5.13 10.21500 101.8000 MW-OC17 SIDESHOT 26 1.88 12.28250 90.48050 158.1851 MW-11 SIDESHOT 27 5.13 18.43550 89.14000 159.9649 MW-18 SIDESHOT 28 5.13 5.36100 89.58000 192.1500 MW-19 SIDESHOT 29 5.13 8.19050 89.27200 520.9251 MW-2 SIDESHOT 30 5.13 18.42200 88.50450 228.0151 MW-3 SIDESHOT 31 5.13 4.06500 89.45450 501.9100 MW-P16 SIDESHOT 32 5.13 17.19200 88.57500 244.2395 MW-P5 33 5.13 5.02100 89.47100 380.9400 MW-P14 SIDESHOT SIDESHOT 34 5.13 9.03500 89.30450 261.8400 MW-P13 35 SIDESHOT 5.13 352.58100 90.26150 176.8500 MW-P6 NOTE: FLUSH MOUNT 36 SIDESHOT 5.13 330.48400 90.28400 46.4200 MW-P10 SIDESHOT 37 5.13 40.14150 88.25400 198.2700 MW-12 SIDESHOT 38 5.13 40.36500 88.33500 205.3751 BLDG COR NOTE:

@ END RMC(RMC=ROLLED MAC CURB)

lime: 03-23-99 16:14:21

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DES	с
			16 00150	08 57350	273.4200	BLDG COR	
SIDESHOT NOTE:	39	5.13	16.02150	0.0/000	273.4200	PTDO COK	-
NOTE: @ COR CO	NC						
SIDESHOT	40	5.13	15.13550	89.03100	286.8300	BLDG COR	
NOTE:	40		10.10000				
DITTO							
SIDESHOT	41	1.20	108.48300	89.33300	133.7500	BLDG COR	
SIDESHOT	42		83.28200	89.23250	85.6100	BLDG COR	
SIDESHOT	43		67.51300	87.26000	132.9251	BLDG COR	
SIDESHOT	44		66.28250		144.9800	BLDG COR	
DCC. STA.	1					04-07-99 10:01:0)4
						SPIKE	
BACKSIGHT	4		0.00000			MAG PK	
SIDESHOT		5.13	157.27450	89.32350	329.0051	BL*RMC1	
NOTE:							
RMC=FACI	E ROLL	ED MAC					
SIDESHOT		5.13	151.26250	89.32550			
SIDESHOT	47		150.59300				
SIDESHOT	48		150.49450		310.1000		
SIDESHOT			157.28500				
SIDESHOT	50	5.13	151.08400	89.30500	2 96. 9600	ANC	
NOTE :							
ANC=ANC							
SIDESHOT	51		151.22400				
SIDESHOT			153.03200		312.4651		
SIDESHOT			157.56000		313.0600		
SIDESHOT			155.15400		302.9051		
SIDESHOT			162.56450			PC*RMC1	
SIDESHOT			155.22450		290.3500 289.7751		
- SIDESHOT			154.56300				
SIDESHOT			169.12050			PC*RMC2	
SIDESHOT			162.14550				
SIDESHOT			169.41450				
SIDESHOT			173.55000 176.08000				
SIDESHOT			181.55550		169.8051		
SIDESHOT			179.01450				
SIDESHOT SIDESHOT			190.18500		98-6500	PT*RMC1	
SIDESHOT			179.54000			PT*RMC2	
SIDESHOT			200.35300		51.9600		
SIDESHOT			270.00000			PC*RMC2	
SIDESHOT			274.51250				
SIDESHOT			16.03050		26.0300		
NOTE :							
@ GPM(C	PM=GAS	5 PAINT	MARK/TPM=TE	LEPHONE/WPM:	=WATER/EPM=	ELECTRIC/SPM=SEW	'ER)
SIDESHOT			30.55450	90.01500	49.6300) PT*RMC2	
SIDESHOT				91.27450		EL*RMC1	
SIDESHOT			335.07550	90.58250	61.8600) CBCP	
NOTE :							

NOTE:

ACTIVITY	POINT	HEIGHT	HOR I ZONTAL	VERTICAL	DISTANCE	CREATED T	IME/DESC
1.85'X 5	5.0'						
SIDESHOT		5.13	38.46400	89.26150	70.8751		
SIDESHOT			40.32050	89.21300 89.15300	73.6951		
SIDESHOT	76		42.30100	89.15300	74.1600		
SIDESHOT	77		75.29150	87.39200	80.1200	RMC2	
SIDESHOT	78		344.48050	90.53500	75.4400	RMC1	
SIDESHOT	79		83.58400		84.1351	RMC2	
SIDESHOT	80	5.13	349.37550	90.38450			
SIDESHOT	81	5.13	99.39450	87.30450			
SIDESHOT	82	5.13	109.49450				
SIDESHOT	83	5.13	354.41000		217.8200		
SIDESHOT	84		355.43550				
SIDESHOT	8 5		70.19100				
SIDESHOT	86		73.45100				
S I DE SHOT			356.20150		328.4100	RMC1	
SIDESHOT			81.29450	87.12100	85.0400	RMC2	
SIDESHOT			75.03400	87.40000	82.0700 379.0100	RMC2	
SIDESHOT			356.46000	90.25550	379.0100	RMC1	
SIDESHOT			69.24550		106.0751		
SIDESHOT			357.04400	90.22200			
SIDESHOT			66.15250		129.0100	CL*RMC2	
SIDESHOT				90.18450	480.2800	RMC1	
SIDESHOT				90.15400	5 19.5600 197.9000	KMCI BI * DMC?	
SIDESHOT	96	5.13	40.45350	88.3/130	197.9000	DL+RMC2	
NOTE:							
FROM BL SIDESHOT			357.45300	9 0. 09500	570.7200	PC*RMC1	
SIDESHOT	· 09	5.13	37.27150				
SIDESHOT		5.13					
SIDESHOT	100	5 13	0.14300				
SIDESHOT	101	5.13	35,15050	90.07450 89.08200	131.5400	RMC2	
SIDĖSHOT		5.13	32.11500	89.22250	112.6651	RMC2	
NOTE:							
@ WPM							
SIDESHOT	103	5.13	359.32200			BL*,PC*R	MC3
SIDESHOT		\$ 5.13	23.59000				
SIDESHOT	105	5 5.13	24.46200	90.26250	80.2700) CBFI	
NOTE:							
2.1'SQU						DVG 3	
SIDESHOT			0.18000				
SIDESHOT) $PC * RMC2$	
SIDESHOT) PT*RMC3	
SIDESHOT						$\frac{RMC2}{PC*RMC3}$	
SIDESHOT							
SIDESHOT) PT*,EL*R	MC2
SIDESHOT SIDESHOT							
NOTE:	L 11.		5.27330				
$1 \text{ or } \mathbf{v}$	4 1 7						

Time: 03-23-99 16:14:21

-

		HEICUT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
ACTIVITY	FOINT					
SIDESHOT	114	5.13	9.58550	89.25150	277.4900	RMC3
SIDESHOT	114		9.42050	89.34000	261.0351	
SIDESHOT			7.46050	89.50300	253.8900	
SIDESHOT	116	5.13	5.13250	91.05500		BL*, PC*RMC2
SIDESHOT	117		2.23550	90.26450	250.6400	
SIDESHOT	118		1.13400	90.47350	73.0951	
SIDESHOT	119		359.22500	90.40000	84.7851	
SIDESHOT	120		359.22250	90.33400	134.3100	
SIDESHOT	121			90.34450	222.1400	
SIDESHOT			359.29050	90.35150	229.4400	
SIDESHOT		5.13	359.59200	90.30350	232.8751	
SIDESHOT		5.13	1.34350	89.57100	236.9951	
SIDESHOT		5.13	$8.13250 \\ 12.07150$			
SIDESHOT		5.13	12.07150	89.29150	247.2300	PT*,EL*RMC2
S I DE SHOT	127	5.13	13.58450	89.05250	270.8731	FIT, ELTRICZ
NOTE :						
@ COR C				00.00050	204 2500	BL*, PC*RMC2
SIDESHOT	128	5.13	13.15100	89.08350	284.3300	DL+, PC+RMC2
NOTE:						
DITTO						DWG2
SIDESHOT		5.13	1.07200	90.31100		
SIDESHOT	130	5.13	10.14450	89.28250		
SIDESHOT	131	5.13	359.45450	90.33150		
SIDESHOT	132	5.13	5.59300	89.57300		
SIDESHOT		5.13	3.35350	90.15550	269.2451	FP
NOTE:						
FP=FLAG	POLE	ON 4'SC	QUARE CONC BA	ASE		
SIDESHOT		5.13	1.46150	90.25300		
SIDESHOT		5.13	0.23550	90.30150		
SIDESHOT			359.33050	90.30400	314.1551	PT*RMC2
-SIDESHOT			359.32050	90.21000	403.0851	
SIDESHOT			359.31450	90.14500	492.1000	RMC2
SIDESHOT			359.32550		555.0451	PC*RMC2
SIDESHOT			359.57100			
SIDESHOT			1.36050			PT*RMC2
SIDESHOT			144.21150			BL*GPM
SIDESHOT			151.40400			GPM(GV)
SIDESHOT			152.29500		362.3800	
SIDESHOT			155.12050	89.36100		GV
SIDESHO			154.44200			GPM(GV)
			157.06450			
SIDESHOT SIDESHOT			157.36250			
SIDESHO			158.43400			
			158.06000			
SIDESHO			155.39250			
SIDESHO?	L 13.	1 2.13	155.55230	09.27200		
NOTE:	n					
FROM UI		2 5.13	164.13200	89.25350	246.8200) GPM
SIDESHO					-	
SIDESHO						
SIDESHO'	1 10	+ J.IJ	100.39000	03.10000	2101000	

Time: 03-23-99 16:14:21

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
SIDESHOT	155	5.13	175.13150	89.57150	100.0651	ТРМ
SIDESHOT	156		176.33300	89.23050	143.2100	
SIDESHOT	157		177.30000	89.39250	61.2600	GPM
SIDESHOT	158		135.37550	90.49300	91.5900	
NOTE:	100	2.12				
24"						
SIDESHOT	159	5.13	136.43100	92.10400	69.6851	CBFI
NOTE:	100	5115	1000,000			
2.0'SQU	ARE					
SIDESHOT	160	5.13	155.10150	90.55250	7.9800	GPM
SIDESHOT	161	5.13	152.21050	90.18400	9.9600	
SIDESHOT	162		157.30150	89.58500	185.1300	
SIDESHOT	163		16.03450	90.21100	21.7351	
SIDESHOT	164	5.13	7.22150	90.52550	65.9400	
SIDESHOT	165	5.13	1.59450	90.23450	100.2100	
SIDESHOT	166	5.13	2,59350	90.38100	80.1351	
SIDESHOT	167	5.13	0.53350	90.22150	151.7300	TPM
SIDESHOT	168		0.46550	90.23100	167.2451	
SIDESHOT	169		1.00000	90.25000	208.1751	TPM
SIDESHOT			0.30150		225.4600	GPM, BL*GSPM
SIDESHOT	171	5.13	3.24100	90.20150	228.5951	GSPM,BL*GSPM1
NOTE :						
@ GV						2DM
SIDESHOT		5.13	358.42150	90.34050	226.4851	GPM
SIDESHOT		5.13	8.34450	89.53550	232.5151	
SIDESHOT		5.13	8.34450 354.39100	90.34400	228.7551	
SIDESHOT	175	5.13	19.12400	89.02550	240.0801	EL*GSPM
NOTE:						
TO BLDG			4 00050	00 15350	232.2751	CSDM1
SIDESHOT			4.09350	90.15350 88.02050	232.2751	
SIDESHOT		15.60	354.31450		268.9500	
SIDESHOT			10.14400 12.36100	89.08500		
SIDESHOT		9 5.13	355.15000	90.37500		
SIDESHOT			13.36550			EL*GSPM1
SIDESHOT	181		10.00000	02.03400	505.2100	
NOTE: TO BLDO	<u>.</u>					
SIDESHOT		2 5.13	356.08150	90.29400	367.1600	GPM
SIDESHOT			356.33250			GPM
SIDESHOT			0.51450			TPM,BL*TSPM
SIDESHOT						
SIDESHOT					518.6500) GPM
SIDESHOT			12.32150) EL*TSPM
NOTE:						
TO BLDO	3					
SIDESHO		8 5.13	358.22050	90.11500	597.735	
SIDESHO					340.415	
SIDESHO						
SIDESHO	r 19	1 5.13	0.31400	90.16500	379.995	1 TPM

Time: 03-23+99 16:14:21

ΑCΤΙVΙΤΥ	ροιντ	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
SIDESHOT	192	5.13	0.40450	90.04150		
SIDESHOT	193	5.13	0.09050	90.11400	474.4051	TPM
SIDESHOT	194	5.13	358.29350	9 0 .03150	699.0900	GPM
SIDESHOT	195	5.13	359.55300	9 0.065 50	560.6351	TPM
SIDESHOT	196	7.80	357.08350	89.49150	723.6100	GPM
SIDESHOT	197	5.13	357.57100	90.13000	596.0500	ТРМ
SIDESHOT			356.06250	90.25500	466.2351	EE-100
SIDESHOT		5.13	355.50150	90.32100	362.8551	A-100
SIDESHOT	200	5.13	3.05400	89.52250	463.9700	EE-50
NOTE:						
HOLE						
SIDESHOT	201	8.20	9.01200	8 9. 04400	471.2700	EE-0
SIDESHOT	2 02	5.13	354.11450	90.31000	266.7851	C-100
SIDESHOT	203	5.13	352.46150	90.31550	215.8751	E-100
SIDESHOT	204	5.13	352.18450	90.25000	191.7800	
SIDESHOT	205	5.13	350.02200	90.19350	143.3400	
SIDESHOT	206	5.13	350.02200 0.04200	90.15150		
SIDESHOT	207	7.12	10.11500	89.44250		
SIDESHOT	208	5.13	18.49350	89.21300		
SIDESHOT	209	5.13	348.33100	90.19150		
SIDESHOT	210	5.13	342.30350	90.34400		K-100
SIDESHOT	211	5.13	333.23450	9 0. 35450	50.8351	L-100
SIDESHOT	212	5.13	315.00550	90.02350 88.38450 89.13100	29.3300	
SIDESHOT	213	5.13	261.11550	88.38450	21.0300	N-100
SIDESHOT			216.15050	89.13100	37.2500	
SIDESHOT	215		200.52000	8 9. 08450	58.2200	
SIDESHOT	216	5.13	178.07050	89.29500	57.2400	P-75
NOTE:						
HOLE						
	217	5.13	153.26300	91.24550	63.4000	P-50
NOTE: _						
DITTO						
SIDESHOT	218	5.13	137.54300	91.35300	78.5251	P-25
NOTE:						
DITTO						
	219	5.13	128.30250	90.39350	97.4200	P-0
NOTE:						
DITTO	220	5 1 2	100 50500	00 00450	100 4051	D (25)
SIDESHOT SIDESHOT			120.59500	89.09450		P - (-25)
SIDESHOT			195.21400 190.59200	89.05550 89.09050	80.1351 107.1851	
SIDESHOT			188.15450	89.26500	127.8400	
SIDESHOT			207.15050	92.23200	121.7751	
SIDESHOT			222.10150	92.00050	135.3200	
SIDESHOT			231.56550	92.00050	149.2900	
SIDESHOT			238.34200	91.53350	163.3100	
SIDESHOT			191.18000	89.33400	245.9195	
SIDESHOT			8,21050		412.2200	
SIDESHOT			8.28400	89.27500	408.2800	

Time: 03-23-99 16:14:21

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
SIDESHOT SIDESHOT SIDESHOT SIDESHOT SIDESHOT SIDESHOT SIDESHOT OCC. STA.	231 232 233 234 235 236 237 238 2	5.13 8.20 8.20 5.13 5.13 5.13 5.13 5.13 5.13 5.34	$ \begin{array}{r} 11.55000\\9.26000\\9.46200\\14.36150\\35.17250\\51.42100\\53.59350\\66.18150\end{array} $	89.14450 89.15400 89.07200 89.15550 89.27550 88.58000 88.50450 88.15550	$\begin{array}{c} 345.4051\\ 320.4100\\ 321.0451\\ 240.6151\\ 102.6400\\ 76.2951\\ 112.0551\\ 144.3551 \end{array}$	SMH HYD'T WV WV WPM GSPM EL*GSPM 04-08-99 06:12:17
SIDESHOI SIDESHOT BACKSIGHT	3 1	5.18	0.00000 132.05400 312.05450 180.00050	270.04300 268.47250	534.8151 213.7151	MAG PK SPIKE
NOTE: B/S HGT SIDESHOT SIDESHOT SIDESHOT SIDESHOT NOTE:	=5.17 239 240 241	5.13 6.13 5.73	290.50000 282.29050 280.51350 125.01100	89.25400 88.52500 89.05300	63.9700 83.5500 104.7300 108.3000	BLDG COR BLDG COR BLDG COR
© TOP F SIDESHOT	ACE BL 243	K & CON 5.13	C RET WALL(E 126.24350	8&CRW)/2.4'' 89.46550	TALL 133.3800	BLDG COR
NOTE:	244		128.59250	89.48500	235.5951	BLDG COR
SIDESHOT NOTE <u>:</u>	245	9.90	LINK FENCE) 129.22550	88.48300	265.8951	BLDG COR
NOTE:	246	AC 5.13	131.09050	89.56250	369.4951	BLDG COR
@ COR M SIDESHOT OCC. STA.	247	9.63 5.34	131.20500	89.20300	441.0151	BLDG COR 04-08-99 06:34:06 MAG PK
BACKSIGHT SIDESHOT SIDESHOT SIDESHOT	249	5.13 5.13	0.00000 131.28200 131.27100 132.44500	0.00000 89.55500 89.56000 90.03300	402.9800 396.5851) SPIKE) COR CONC L COR CONC) DMH
SIDESHOT NOTE:	251	5.13	.9'(N-S)X 4. 132.38400	90.00000		DMH
SIDESHOT NOTE:	r 252	2 5.13	N-S) CONC PAD 132.31550 E-W)CONC PAD	89.57300	226.6500) ДМН

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
SIDESHOT	253	5.13	129.33500	89.51350	279.8100	COR CONC
NOTE:						
BM#2						
SIDESHOT	254		129.55150	89.53150		COR CONC
SIDESHOT			129.52300	89.53450		COR CONC
SIDESHOT			128.26100	89.43150	161.1600	
SIDESHOT			128.00400	89.43150	144.1200	
SIDESHOT			127.40400	89.50100		COR CONC
SIDESHOT			127.19200	89.54050		COR CONC
SIDESHOT			126.59000	89.52300		COR CONC COR CONC
SIDESHOT			126.44300 126.24050	89.535 50 89.54500		COR CONC
SIDESHOT NOTE:	26 2	5.13	126.24030	39.34300	109.0300	COR CONC
@ COR Ba	.CPW					
SIDESHOT		5.13	116.29350	89.22550	40,7800	COR B&CRW
SIDESHOT		5.13	115.03200	90.23200		COR B&CRW
SIDESHOT	265	5.13	96.11450	88.09000	28,7600	
NOTE:	200					
HL=HYDR.	AULIC	LIFT				
SIDESHOT			82.28100	87.37150	22.2551	COR HL
SIDESHOT			120.34250	90.36550	108.5251	<record deleted=""></record>
SIDESHOT	268	11.80	120.33200	90.36550	108.5000	CBFI
NOTE:						
1.7'SQU						
SIDESHOT	267	8.20	297.40250	88.52500	38.7751	CBFI
NOTE:						
2.0'SQU				00 00500	20 2151	
SIDESHOT	269	5.13	104.19300	89.38500	38.3131	BL*EPM
NOTE:	DC					
- FROM BL SIDESHOT		5.13	122.57150	89.21050	35 3751	EPM,BL*EPM1
SIDESHOT			126.32050	89.35500		EL*EPM1
SIDESHOT			162.47550	90.14300	42.4751	
SIDESHOT			328.00550	90.13100		BL*RMC3
SIDESHOT			324.41000	89.38250	91.0251	
SIDESHOT			295.37200	89.34000		PC*RMC3
SIDESHOT			292.24500	90.00100	58.5951	
SIDESHOT			293.18550	90.52100	51.5700	PT*RMC3
SIDESHOT			319.08350	90.28550	68.1300	
SIDESHOT	279		328.17300	90.32000		EL*RMC3
SIDESHOT	280	5.13	224.48000	72.36200	67.5100) UP
NOTE :						
NO WIRE						
SIDESHOT			232.04350) EL*EMP,UP
SIDESHOT			230.01250 279.03400			ANCHOR
SIDESHOT NOTE:	283	6.80	2/9.03400	88.37300	105.4151	. БЕтЕМ
EM=EDGE	MAC					
SIDESHOT		5.13	283.08400	89.46500	66.5500) EM
			220,00,00	0,110000		

Page 8

Time: 03-23-99 16:14:21

-

ΑCΤΙVΙΤΥ	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
		*				
SIDESHOT	285	15.60	234.10300	6 9. 52400		
SIDESHOT	286	6.\$0	298.19550	90.52450	36.2000	
SIDESHOT	287	6.80	298.49100	89.46200 93.28450 93.09050	28.4300	EL*EM,BL*RMC3
SIDESHOT	288		272.16000	93.28450	15.4000	PC*RMC3
SIDESHOT	289		251.19550	93.09050	13.2851	RMC3
SIDESHOT	290		221.29550	92.42050	15.4651	PC*RMC3
SIDESHOT	291		178.22500	88.24100	30.6651	RMC3
SIDESHOT	292		165.43300		41.9500	PT*RMC3
SIDESHOT	293		147.52150	89.04250	84.5951	RMC3
	294		142.32350	89.52450	131.7000	EL*RMC3
SIDESHOT	295		141.20000		141.1400	BL*TC
NOTE:	275	0112	111110000			
TC=TIE (164 0451	T O
SIDESHOT	296		139.16300		154.8151	
SIDESHOT			134.46250			EL*TC,BL*EM
SIDESHOT			134.15250	89.42100	168.8600	
SIDESHOT			133.10000	89.49450	177.8100	EM
SIDESHOT	300	5.13	133.05150	89.57300	224.1351	EM
NOTE:						
@ COR C						514
SIDESHOT	301	5.13	133.08450			
SIDESHOT	302		133.03100			CLF(GATE)
SIDESHOT	303		133.06300			
SIDESHOT			133.22550	8 9. 33000	346.3700	
SIDESHOT	305	5.13	33.18350	91.11200	78.6051	H-0
NOTE :						
HOLE						11 (ED)
SIDESHOT	306	5.13	55.08100	89.42300	41.6151	H-(-50)
NOTE :						
DITTO					67 2000	APECORD DELETEDS
SIDESHOT	307	5.13	33.55150	90.39300	67.2000	<pre><record deleted=""> <record deleted=""></record></record></pre>
NOTE:	0.0.0					-KECOKD DELEIED*
67.2			24 21200	00 53300	60 0000) CL END CP
	308	\$ 5.13	34.21300	90.52300	09.0000	CLEND CI
NOTE:			_			
CP=CONC				00 40300	CE 0751	OT PEC CP
SIDESHOT	. 307	5.13	32.21200	90.49300	02.0/21	
NOTE:						
DITTO			0 00000	0.00000	0 0000	MAG PK
TRAVERSE		3 5.13	0.00000	0.00000	0.0000	04-08-99 08:08:42
OCC. STA.		3 5.28				MAG PK
DACKSTOUT		.	0.00000	90.06050	534 815	1 MAG PK
BACKSIGHT		2				1 MAG PK
SIDESHO1		4.96				1 MAG PK
SIDESHOT		4 4.96	234.15350			1 MAG PK
BACKSIGHT		2	180.00000	109.3413U	724.017	I MIN LIN
NOTE:						
B/S HGT		0 5 1 7	13.48350	90.01050	01 125	1 BLDG COR
SIDESHOT	r 30	9 5.13	12.40330	20101030	JI.IJJ	

fime: 03-23-99 16:14:21

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
SIDESHOT	310	5.13	38.53500	90.21500	113.2500	BLDG COR
SIDESHOT	311	5.13	27.03500	89.40400	91.7000	C1-WM
OCC, STA.	3	5.28	-			04-08-99 08:14:58
	5					MAG PK
BACKSIGHT	2		0.00000	0.00000	0.0000	MAG PK
SIDESHOT	312	5.13	8.07300	90.16100	83.0300	HYD'T
SIDESHOT	313	5.13	9.00350	90.06000	82.3800	wV
SIDESHOT	314	5.13	9.00350 358.19300	90.16150	312.7351	WF
NOTE:						
WF=BOT B	EDGE WA	ATER FA	LLS			
SIDESHOT	315	5.13	357.47250	89.46100	272.3200	BEG CLF
NOTE:						
TO GATE	@ EMA	С				
SIDESHOT	316	5.13	351.31300	90.28400	95.6351	PT*EM
SIDESHOT	317	5.13	351.44000	90.28400	95.6351	CLF(GATE)
SIDESHOT	318	5.13	351.31300 351.44000 345.51550 3.08300	89.30150	98.4700	BEG CLF
SIDESHOT	319	5.13	3.08300	90.12050	94.6951	CLF(GATE)
NOTE:						<u>.</u>
@ BLDG I	LINE(+	/-)		~ ~ ` `		
SIDESHOT	320	5.90	347.11300	89.45050	76.8451	BL*RMC3
SIDESHOT	321	5.13	3 39 .09100	90.29450	60.1600	КМСЗ
NOTE:						
@ COR CO	ONC					
	322	5.13	337.02450	90.12500	58.4051	DMH
NOTE :						
IN 5'SQ	UARE C	ONC PAE)		.	DO+DVOD
SIDESHOT	323	5.13	333.39400	91.05450	36.1700	PC*KMC3
SIDESHOT	324	5.13	164.11250	89.33150	38.8400	KMC3
SIDESHOT	325	5.13	164.11250 156.49200 155.40200	89.28100	90.4651	
-SIDESHOT	326	5.13	155.40200	89.13000	118.2600	UMN
NOTE:						
IN 5'SQ	UARE C	ONC PAL)		040 10C1	EL *DMC3
SIDESHOT	327	15.60	146.59050	87.00300	242.1251	
	328	\$ 15.60	148.18550	86.32550	245.6851	DL≁CW
NOTE:	~		A 1 m			
CW=FACE	CONC	WALL/3.	U'WIDE	00 -00	040 CC00	
			147.48050		240.5500	
SIDESHOT	330) 15.60	146.54050	87.04150	243.3151	. Cw
NOTE:						
@ COR M		0 00	101 01400	00 05400	112 1000	CW, BL*RMC3
SIDESHOT	531	8.20	131.21400	89.05400	230.1800	/ Cirju⊒≉KiiQu
NOTE:						
@ COR M) 15 20	143.12050	87.07500	238.9100) wv
SIDESHOT		2 15.60	143.12050			
SIDESHOT		3 15.60				<pre></pre>
SIDESHOT		4 15.60	130.31150 130.32400			
SIDESHOT			119.52250			
SIDESHOT SIDESHOT		4 8.20 6 14.40	107.43150			
SIDESHOI	530	0 14.40	101.40100	09.10000	47J.07V(

Fime: 03-23-99 16:14:21

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCÉ	CREATED TIME/DESC

NOTE:						
@ WATER	FIEV					
SIDESHOT		15 60	105.55500	89 04100	232.8787	MW-1
SIDESHOT	227	5 1 3	112.11300		251.4951	
			129.25000		176.3351	
SIDESHOT	240	3.1J 8.20	74 24350	91.22250	190 1751	EL*TPM
		5.13	124.47150	91.22250	131.5051	RMC3.CBCP
SIDESHOT	341	5.15	124.4/130	39.30000	151.5051	
NOTE: CBCP=1,	0'V 4	<u>^'</u>				
CBCP=1,	9 . 4.	5 1 2	116 12200	90.22400	97 6051	RMC 3
SIDESHOT	242	5.13	74.52550		59 7100	RMC3, CBCP
	343	5.15	/4.52550	90.40500	52.1100	KM65,6261
NOTE: CBCP=1.	0'Y 4	0'				
SIDESHOT			68 35550	01 32050	59.3000	PC * RMC 3
SIDESHUT	244	5 1 3	68.35550	91.32050	59.3000 65.9000	BMC3
SIDESHOT SIDESHOT SIDESHOT	240	5.15	65.24300 69.44500	91.34250	69.5151	PC*RMC3
SIDESHOT	340	2.13	99.28450	00 50 350	83.0451	PMC3
SIDESHOT	147	5.20	99.23430	91.45500	101 6151	PMC 3
						PMC 3
SIDESHOT			122.57400	91.04450	226 7547	EL*RMC3,CW
SIDESHOT	320	5.13	129.01550	90.39000	230.7347	EL*RMCJ,CW
SIDESHOT	351	2.13	62.47550	92.01500 92.01150 92.03250 92.12100	110.4931	
SIDESHOT	352	5.13	63.49150	92.01150	114.4400	
SIDESHOT		5.13	64.50150	92.03230	110.9800	PI*RMCI
SIDESHOT	354	5.13	64.39300	92.12100	133.4800	
SIDESHOT	322	5.13	65.49200	91.55550	133.6751	RMCI, CBCP
NOTE:	. .	~ 1				
CBCP=1.		0,			140 2251	DO+DVO1
SIDESHOT	356	5.13	89.49400 95.58000 99.49000	91.58200	148.3351	
SIDESHOT	357	5.13	95.58000	91.44050	159.1051	RMCI
S I DESHOT - S I DESHOT S I DESHOT	358	B 0.00	99.49000	91.19500	170.1200	EL*RMC1
SIDĘSHOT	359	6.00	100.22150	91.16350	171.8551	BL*, PC*RMC1
SIDESHOT	360	8.20	94.41300	90.56350	188.3751	CL END MS
NOTE :						
MS=MAC	SWALE/	3'WIDE(+/-)			21/21
SIDESHOT	361	11.80	107.52550	89.25350 91.06350	201.6200	
SIDESHOT						EL*RMC1
SIDESHOT	r 363	3 5.13	113.54350	91.07450	249.5200	CW CW
NOTE:						
@ COR N						
SIDESHOT	=	15.60	103.30500			
SIDESHOT		5 5.13	35.21300			
SIDESHO	Г 366	5 5.13	49.29050	91.36300	143.9200	RMC2,CBCP
NOTE :						
CBCP=1					100 000	
SIDESHO	Г 36'	7 5.13	45.54050	90.58250	126.8251	EL*RMC2
NOTE:						
@ COR (PI + PNG2
SIDESHO	г 368	8 5.13	44.50500	90.58250	123,1051	BL*RMC2
NOTE :						

-

(ime: 03-23-99 16:14:21

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED	TIME/DESC
					•		-
DITTO					110 0151	DVG2	
	369	5.13	40.27300	90.35350	110.0151	RMC2	
SIDESHOT	370	5.13	33.48250	90.1/250	97.5251	EL + KMCZ	
NOTE:							
@ COR CO)NU 271	5 1 3	31.26450	00 10550	94 2700	BI * RMC'?	
NOTE:	5/1	2.13	51.20450	90.10550	J412100	DL·RMCL	
DITTO							
SIDESHOT	372	5 13	26.55050	90.08500	87.8200	EL*RMC2	
NOTE:	272	5.15	20.00000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
DITTO							
	373	5.13	19.27550	90.05300	83.3400	BL*RMC2	
NOTE :							
DITTO							
SIDESHOT	374	5.13	8.50200	90.19500			
SIDESHOT	375	5.13	6.02400	90.15500	79.2000		
SIDESHOT	376	5.13	3.56100	90.12200	84.7300	PT*RMC2	
SIDESHOT	377	5.13	3.29350	90.10050	94.0600	EL*RMC2	
TRAVERSE	4	5.13	0.00000	0.00000	0.0000		
SIDESHOT TRAVERSE OCC. STA.	4	5.06					9 09:59:41
					100 0100	MAG PK	
BACKSIGHT			0.00000	88.12100	567.7200	MAG PK	
SIDESHOT	1	4.98	126.16000	89.5/350	567 7200	SPIKE	
BACKSIGHT	1	4.98	306,13330	270.02300	180 0051	MAG PK	
SIDESHOT	נ פרג	5 1 3	306.15550 179.59550 245.03200	271.47400	73 4100	CL BEG	CHD
NOTE:	J / Q	5.15	243.03200	72.34330	/0.1100	00 000	
CHD=CON	C HEAD	WATT /1	1'WIDE				
			239.21350	92.29450	68.2700	CL END	CHD
_ SIDESHOT			240.14400		74.3600		
NOTE:		55					
OF-0=IN	V(ON S	ILT) 24	"CMP				
SIDESHOT	381	5 13	71.00450	86.23500	91.8243	M W -2	
SIDESHOT	382	5.13	98.01100	87.49300	76.1704	MW-16	
SIDESHOT			116.10350		191.1151	MW-14	
SIDESHOT			118.39000	89.26500	312.0100		
SIDESHOT	385	5.13	139.28100	91.25050	162.4100	OF-1	
NOTE:							
		SILT) 24					
SIDESHOT			114.00350	89.07500			
SIDESHOT			114.32400	89.09150	3 59.6251 377.0651		
SIDESHOT			123.25000	89.52400	414.6600		
SIDESHOT SIDESHOT				89.45200 89.36400			
SIDESHOT			124.01250		468.0551		
NOTE:	160		127.01230	09.33100	40010001	7-147 I (
	OT FRO	OM STA#4	ARE FOR TR	IANGULATION	PURPOSES O	NLY/PREV	IOUSLY LOCATE
FROM S					_	_	
SIDESHOT	392	2 15.60	132.02100	89.01350	356.7951	OF-2	

..

Page 12

Time: 03-23-99 16:14:21

ACTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
NOTE:						
NO PIPE	VISIBI	LE		00 17550	100 0000	PLDC COR
SIDESHOT	393	5.13	114.43050	89.1/550	420.8200	SC-1
	394	5.13	140.46250	91.21000	103.3300	30-1
NOTE:	E CALLCI	r.				
SG=STAF1 OCC. STA.						04-08-99 10:36:23
OCC. SIA.	+	5.00				MAG PK
BACKSIGHT	3		0.00000	0.00000	0.0000	
SIDESHOT	395	5.13	28.50150	85.40450	66.7900	SMH
SIDESHOT	396	5.13	27.33000	85.38100	65.6451	BL*ECW
NOTE:						
FROM EL	*RMC1	@ COR W	LK			
SIDESHOT	397	5.13	80.19300	86.50400	90.7200	ECW
SIDESHOT	398	5.13	100.25100	88.03250	150.1500	ECW
SIDESHOT	399	5.13	106.32150	88.29100	194.4700	ECW
			111.19150			ECW
SIDESHOT	401	5.13	113.27050	88,59000	296.8651	EL*ECW
NOTE:	~~~~~					
TO COR		5 1 2	112.46200	00 56550	200 2651	
	402	2.13	112.40200	88.30330	299.3031	BE+ECW
NOTE: @ EDGE	CONC					
SIDESHOT		5 1 3	109 11400	88.44000	237.4051	ECW
SIDESHOT		5.13	102.29400	88.18150	172.2000	ECW
SIDESHOT	405	5.13	87,54200	87.21550	110.9951	ECW
SIDESHOT SIDESHOT	406	5.13	102.29400 87.54200 28.04350	85.46400	69.4400	EL*ECW
NOTE:						
TO BL*R			C WLK			
OCC. STA.	1	5.08				04-08-99 11:18:49
-						SPIKE
	4		0.00000	90.04300	567.7200	MAG PK
NOTE:						
B/S HGT	=4.96	14 10	185.24350	00 25150	573 6351	05-2
SIDESHOT	407	14.10	185.24350	89.33430	583 0400	SW-2
OCC. STA.	408		190.11900	09.4/230	101.0400	04-08-99 11:28:44
OCC. SIA.	1	5.00				SPIKE
BACKSIGHT	4		0.00000	0.00000	0.0000	MAG PK
SIDESHOT			327.09350		66.1500	
NOTE:						
NO PIPE	VISIB	BLE				
SIDESHOT		15.60	226.57000		327.5351	
SIDESHOT		15.60	311.28250			<record deleted=""></record>
SIDESHOT			311.28250		70.3200	
SIDESHOT		14.30	244.39400		294.2200	
SIDESHOT		15.60	264.20050		297.4000	
SIDESHOT SIDESHOT		11.80 14.30	281.16400 294.32250		334.8300 390.6351	
SIDESHOI	. 413	14.30	194.01100	30.33130	390.0331	1 0

ime: 03-23-99 10:14:21

ACTIVITY	POINT	HEIGIIŤ	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
SIDESHOT			304.43000	88.36250	456.1500	
OCC. STA.						04-08-99 11:53:03 SPIKE
BACKSIGHT	4		0.00000	90.04400	567.7251	MAG PK
TRAVERSE	5	5.18	173.09400 353.09350 179.59550	89.18050	187.8351	MAG PK
TRAVERSE	5	5.18	353.09350	270.42000	187.8351	MAG PK
BACKSIGHT	4		179.59550	269.55300	567.7200	MAG PK
NOTE :						
B/S HGT:						
OCC. STA.	5	5.27				04-08-99 11:59:04
						MAG PK
BACKSIGHT	1		0.00000	9 0. 45250	187.8351	SPIKE
NOTE:						
B/S HGT	=4.99					
SIDESHOT	417	15.60	67.03250 247.04500 228.51250	270.13550	270.3151	<record deleted=""></record>
SIDESHOT	418	11.80	247.04500	39.46050	270.1551	T-3
SIDESHOT	417	8.20	228.51250	90.26400	307.7551	
SIDESHOT	419	15.60 8.20	215.32350	89.24500	370.4451	T-1
SIDESHOT	420	8.20	234.50500	91.53350	146.1900	08-3
SIDESHOT	421	8.20	234.50500 239.31050 83.54300	92.20300	171.8000	SW-3
SIDESHOT	422	5.13	83.54300	89.28150	190.0200	COR CLF
NOTE:		_				
@ TENNI						
	423	5.13	74.06150	89.26400	303.4300	COR CLF
NOTE:						
DITTO	404	5 1 2	217 26060	02 12000	147 1951	50.4
			317.36050	93.12000	147.1851	04-08-99 12:36:40
OCC. STA.	4	2.13				MAG PK
BACKSICHT	1		0.00000	89 57050	567 7200	SPIKE
NOTE:	1		0.00000	05.57030	207.7200	ST IND
B/S HGT	-1 00					
		15 60	107.00500	86 51400	101 6251	SG-5
SIDESHOI	+20	17.00	107.00300	20.11400	101.0251	5 00

Y.E.C. INC./	FARRAND CONTR	ROLS	DATE OF SURV	EY APRIL 12,	1999
Pt.No. Code 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 311 337	North 2130.9120 2125.7945 2280.1641 2270.7353 2352.2352 2406.5213 2413.2938 2429.2302 2732.8727 2479.3087 2699.2019 2493.5824 2595.7426 2498.0723 2394.2272 2279.9495 2454.4252 2821.3650 2843.7788	East 2121.0260 2003.2083 1979.3297 1907.8755 1833.0423 1817.1558 1833.2445 1784.3609 1657.4609 1816.8575 1632.2788 1807.2582 1695.3583 1767.0497 1758.7795 1830.6417 1897.9349 1643.6186 1411.5009	102.460	Desc. MW-P9 MW-P8 MW-P7 MW-4 MW-OC17 MW-P11 MW-OC18 MW-OC19 MW-2 MW-2 MW-3 MW-P16 MW-P16 MW-P15 MW-P12 MW-P15 MW-1	
		E	LEVATIONS		
WELL I.D.	GROUND	TOP OF CASING		TOP OF RISER	(PVC)
MW-1 MW-2	96.42 101.70	98.25 103.89		98.26 103.73	
M W -3	101.30	103.32		103.07	
MW-4	95.38	97,66		97.45	
MW-P5	101.13	102.89		102.60 102.72 102.65	3" 2" 1 "S
MW-P6	95.22	95.29 (FLU	SH MOUNT)	95.20	
MW-P7	100.58	103.23		103.14	
MW-P8	97.30	99.08		98. 96	
MW-P9	9 8. 63	100.60		100.24	
MW-P10	96. 26	98.26		98.19	
MW-P11	97.69	99.38		99.13	
MW-P12	102.14	104.14		1 04 .10	
MW-P13	9 8. 95	100.89		100.84	
MW-P14	98.12	99.62		99.40	
MW-P15	102.46	104.46		104.18	
MW-P16	98.81	100.44		100.42	
MW-0C17	9 6. 59	9 8. 61		97.86 98.07	
M W- OC18	98.83	100.66		100.23 100.24	

-

ELEVATIONS

WELL I.D.	GROUND	TOP OF CASING	TOP OF RISER(PVC)
MW-0C19	96.78	98.90	98.48 S 98.67 D

.....

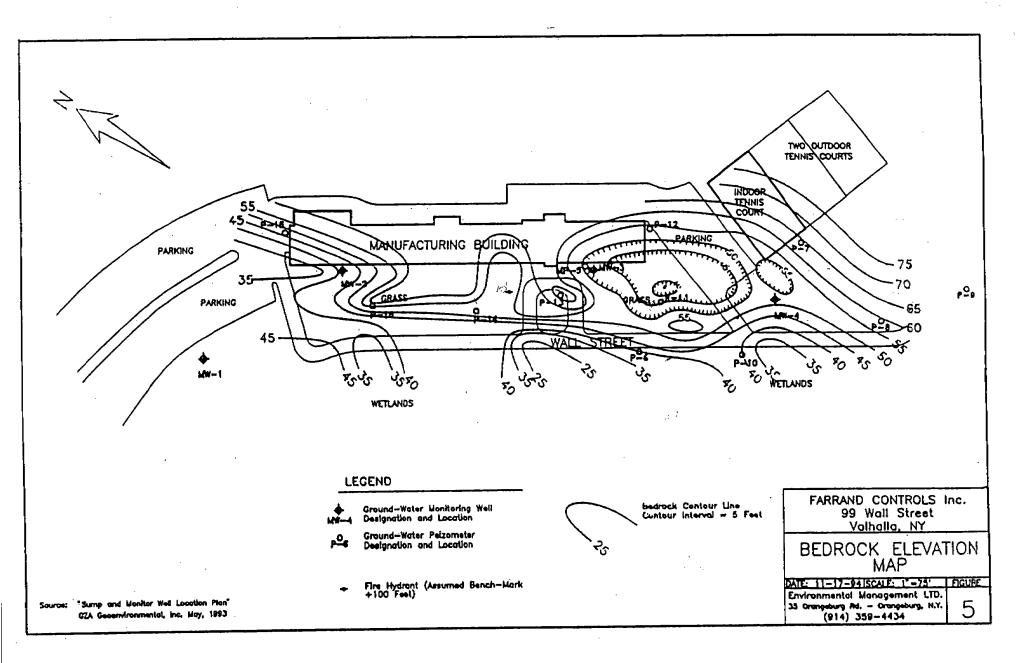
.

JOB: 99015 Crew: FD,HS Material: FIELD DATA Notes: YEC/FARRAND CONTROLS; NEW WELL LOC'S DATE BEGUN: 12-13-99 06:26:13 DATE ENDED: 12-13-99 09:54:51 UNIT: Distance unit: FEET Angle unit: D.M.S. Azimuth system: NORTH Angle direction: RIGHT Vertical system: ZENITH POINT HEIGHT HORIZONTAL VERTICAL DISTANCE CREATED TIME/DESC ACTIVITY OCC. STA. 2 0.00 12-13-99 08:38:35 MAG PK BACKSIGHT 1 0.00000 91.12300 213.7100 SPIKE SIDESHOT 501 0.00 122.20000 90.34500 106.1700 GP-D SIDESHOT 502 0.00 118.02450 90.55050 73.0400 GP-E SIDESHOT 503 0.00 101.49400 88.36350 33.5700 GP-F SIDESHOT 504 0.00 132.53300 89.47000 132.5100 GP-VI 0.00 SIDESHOT 505 133.21400 89.49350 109.0300 GP-SC SIDESHOT 506 0.00 95.50350 87.45500 24.3200 s-5-2(?)SIDESHOT 507 0.00 75.38050 87.43050 22.7951 s - 5 - 2(?)NOTE: S-5-2 LOCATIONS=CENTER OF CONC PATCHED DRILL HOLES/THERE ARE TWO SUCH CLUST ERS @ APPROX LOC OF S-5-2 SIDESHOT 508 0.00 334.04050 89.56150 104.3251 ₩-6 OCC. STA. 0.00 1 12-13-99 09:11:07 SPIKE **BACKSIGHT** 2 0.00000 88.49550 213.7200 MAG PK 509 SIDESHOT 0.00 302.31000 90.23100 215.4200 SG-2 SIDESHOT 510 0.00 302.52450 90.26000 216.6251 OF-2 NOTE: NO PIPE VISIBLE/SHOULD BE SAME AS SIDESHOT#392 SIDESHOT 511 0.00 330.26300 89.00250 259.4400 S-5-1 SIDESHOT 512 0.00 283.12250 90.48300 51.9751 MW-10D SIDESHOT 513 0.00 278.46300 90.13350 39.6051 MW-10R SIDESHOT 514 0.00 119.53450 89.49150 193.1151 MW-8D SIDESHOT 515 0.00 119.04450 89.46150 199.6400 MW-8R UNIT: Distance unit: FEET Angle unit: D.M.S. Azimuth system: NORTH Angle direction: RIGHT Vertical system: VERT DIST UNIT: Distance unit: FEET

. -

•

-


.

4CTIVITY	POINT	HEIGHT	HORIZONTAL	VERTICAL	DISTANCE	CREATED TIME/DESC
Angle ur Azimuth Angle di Vertical	system irectio	: NORTH	łT			
OCC. STA.	5	0.00				12-13-99 09:25:23
	_					MAG PK
BACKSIGHT	1		0.00050	90.38450	187.8400	SPIKE
SIDESHOT	516	0.00	231.07350	89.48250	308.9400	MW-20R
S I DE SHOT	517	0.00	229.54550	89.48350	313.1551	
SIDESHOT	518	0.00	228.52450	89.48400	316.6200	
SIDESHOT	519	0.00	11.03250	92.14350		W-N-25(?)

•

APPENDIX E

GPR FIGURE

APPENDIX F

WELL DEVELOPMENT AND PURGING LOGS

MONITORING WELL DEVELOPMENT LOG FARRAND CONTROLS RI/FS

<u>Well</u>	Date	Pumping <u>Rate</u>	<u>Time</u>	<u>рН</u>	<u>Conductivity</u>	<u>Turbidity</u>	Dissolved <u>Oxygen</u>	<u>Temperature</u>	Comments/ Observations
8D	10/18/99	4 l/min.	1612	5.37	0.179	999	0.21	14.5	
			1625	5.49	0.157	10	0.06	12.4	Slightly cloudy
			1635	5.44	0.158	10	0.75	12.2	Cloudy after surging
			1700	5.51	0.158	10	1.16	12.3	Surged
			1724	5.52	0.158	10	1.26	12.8	-
	10/19/99	4 l/min.	0833	5.39	0.191	468	0.03	11.2	Surged at 0853
			0900	5.78	0.165	16	0.16	12.1	Surged at 0906
			0930	5.16	0.165	24	0.07	122	
			1000	5.79	0.166	999	0.18	12.5	Surged at 0958
			1030	5.84	0.166	34	0.29	12.3	
8R	10/20/99	4l/min.	1530	8.86	0.140	275	0.82	15.5	
			1600	8.46	0.118	200	0.84	15.4	
10D	10/19/99	4l/min.	1308	6.22	0.387	999	0.93	13.1	Surged at 1321
			1331	6.29	0.448	169	0.91	12.7	Surged at 1338
			1402	6.23	0.456	606	1.19	12.8	
			1435	6.28	0.459	999	1.01	12.9	
			1631	6.24	0.475	79	1.31	13.1	Surged at 1610
			1701	6.47	0.478	51	1.34	12.9	
	10/20/99	4 l/min.	1030	6.21	0.489	733	0.21	13.4	
			1130	6.48	0.485	22	0.90	13.0	
10R	10/20/99	4l/min.	1400	8.84	0.284	17	0.50	14.5	
			1420	8.59	0.279	9	0.25	14.8	
20S	10/20/99	4l/min.	1717			999			Surged 4 times
			1731			300			
			1757			400			
	10/21/99	4 l/min.	1121	7.90	0.653	999	0.02	17.0	
			1448	6.58	0.751	999	0.02	16.9	Surged 1446 to 1447
			1504	6.95	0.655	62	0.03	16.9	Surged
20D	10/21/99	4 l/min.	1103	8.33	1.980	999	0.03	13.3	
			1132	7.48	1.990	611	0.29	12.6	
			1432	6.89	2.000	823	2.31	14.3	Surged 1432 to 1463
			1531		2.070	92	0.07	13.0	Surged 1515 to 1522
			1401	7.57	2.510	386		12.3	Surged 1531 to 1537
			1413			161			

<u>UNITS</u>

pH: Standard units Conductivity: mS/cm Temperature: C degrees Turbidity: NTU Dissolved Oxygen: mg/l

MONITORING WELL SAMPLING LOG FARRAND CONTROLS RI/FS

<u>Well</u>	<u>Date</u>	<u>Time</u>	Depth to <u>Water</u>	Total <u>Depth</u>	Gallons <u>Removed</u>	рH	<u>Conductivity</u>	<u>Turbidity</u>	Dissolved <u>Oxygen</u>	<u>Temperature</u>	Comments/ Observations
8D	11/1/99	9.45	5.31	36	0	6.25	0.222	1	6.11	16.2	
00	11/1/00	0.10	0.01	00	3	6.31	0.170	218	5.13	13.9	
					6	6.10	0.177	301	5.13	12.8	
					9	6.11	0.178	138	5.15	12.8	
					12	6.12	0.183	68	5.33	13.2	
		1100			15	6.16	0.173	48	5.32	13.0	
8R	11/1/99	1040	5.26	61	0	12.18	2.230	190		13.1	
					10	11.34	0.645	25		15.3	Pumped dry
8S	11/1/99	1130	7.35	11	0	6.28	0.200	895	7.29	16.3	
					1	6.42	0.202	344	8.53	15.9	
					2	6.49	0.202	556	7.70	15.9	
					3	6.50	0.204	298	7.69	15.9	
20R	11/1/99	1325	3.5	98	0	12.24	4.950	28	2.97	14.1	
					15	12.40	4.050	150	1.51	13.4	
					30	12.52	6.120	37	1.46	13.6	
					45	11.84	4.840	20	1.59	14.5	
					60	11.66	2.360	17	1.51	15.2	
	11/1/99	1545			80	1.66	1.980	20	1.51	14.8	Water slightly gray
20D	11/2/99	1005	2.85	75	0	5.76	1.680	5	1.80	15.6	
					5	6.22	2.190	6	0.44	14.0	
					10	6.38	2.200	26	1.06	13.7	
					15	6.46	2.790	4	0.41	13.0	
					20	6.62	2.760	4	0.44	13.1	
					25	6.67	2.720	6	0.30	13.2	
20S	11/1/99	1535	4.53	15.6	0	8.15	0.757	172	2.23	15.9	
					1	7.64	0.817	>999	2.37	15.9	
					2	7.20	0.750	>999	2.22	16.0	
					3	7.36	0.702	>999	3.20	16.0	
		1000			4	7.25	0.699	>999	3.31	16.0	
		1600			5	7.31	0.699	>999	3.38	16.0	Water slightly gray
10S	11/2/99		7	12	0	5.64	1.000	230	4.87	15.8	
					0.25	5.76	2.030	233	6.15	15.7	
					0.5	5.81	1.040	206	6.79	15.6	
					0.75	5.87	1.080	131	6.64	15.8	
					1	5.74	1.090	163	4.48	15.6	
					1.25	5.60	1.080	85	2.70	15.3	
		1315			1.5	5.64	1.080	58	2.81	15.5	Water slightly gray
3	11/2/99		12	20	0	5.32	0.357	531	2.50	16.6	
					1	5.27	0.346	556	2.27	`6.4	
					3	5.28	0.344	624	2.14	16.4	
		4500			4	5.22	0.344	218	2.29	16.3	
		1520			6	5.32	0.344	84	2.36	16.3	
100	11/2/99		3.78	52	0	6.22	1.690	2			
100	11/2/00		0.70	52	10	6.22	2.480	8			
					20	6.34	2.560	1			
					30	6.45	2.650	2			
		1320			40	6.48	2.770	1			
1	11/3/99		11	20	0	6.25	0.490	999	2.65	15.1	
					2	6.25	0.426	837	3.32	13.7	
					4	6.26	0.451	892	3.32	15.1	
					6	6.29	0.456	651	3.27	15.1	

MONITORING WELL SAMPLING LOG FARRAND CONTROLS RI/FS

		1130	Depth to	Total	8 Gallons	6.24	0.458	672	3.32 Dissolved	15.1	Comments/
<u>Well</u>	Date	<u>Time</u>	Water	<u>Depth</u>	Removed	<u>pH</u>	Conductivity	<u>Turbidity</u>	<u>Oxygen</u>	<u>Temperature</u>	Observations
10R	11/2/99	1500	3.28	63	0	8.69	0.214	68		16.2	
					10	9.80	0.231	25		14.2	
					20	9.00	0.282	14		13.9	
		1530			30	9.03	0.283	8		13.3	
D12	11/3/99	1035	11.94	19.75	0	5.15	0.160	>999		16.6	
FIZ	11/3/99	1055	11.54	19.75	2	5.21	0.155	>999		16.8	
					4	5.21	0.155	>999 >999		17.0	
		1035			4 6	5.24	0.155	>999		17.0	
P9	11/4/99	1250	8.4	11.15	0	5.66	0.105	999		13.9	
					1	5.78	0.102	625		13.5	
					2	5.77	0.102	323		13.9	
		1300			3	5.78	0.102	289		13.5	
P14	11/4/99	1400	7	16.15	0	6.27	0.645	>999		15.1	
					2	6.47	0.656	>999		15.3	
					4	6.48	0.678	>999		15.2	
		1410			6	6.48	0.645	>999		15.2	
8S	1/27/00	1240	7.3	10	0	5.87	0.209	999	6.57	4.9	
00	1/2//00	1240	7.5	10	1	6.94	0.184	302	8.26	5.6	
		1245			2	7.96	0.215	288	7.25	4.7	
		1245			2	7.50	0.215	200	1.25	4.7	
8R	1/27/00	1130	18.5	56	0	11.60	1.020	0.1	5.23	6.8	
					5	10.52	0.275	3	1.72	8.6	
		1200			10	11.05	0.425	34	2.57	9.7	Well went dry
8D	1/27/00	1330	5.3	36	0	6.68	0.119	1	4.33	8.1	
					5	6.31	0.161	3	4.85	10.5	
					10	6.28	0.162	4	5.33	10.9	
					15	6.27	0.160	7	4.82	10.9	
10D	1/27/00	1400	3	53	0	6.66	0.504	1	3.10	10.6	
			Ū.		14	6.48	0.522	4	0.68	11.3	
					21	6.41	0.518	5	0.42	11.1	
		1430			28	6.51	0.517	3	0.68	10.6	
400	4/07/00	4 4 0 0	5.0	10	0	0.00	0.000		0.04	- 4	
105	1/27/00	1430	5.3	10	0	6.60	0.889	441	2.21	5.1	
		1445			1	6.89 6.01	0.920	278	6.27	6.4	Croop/grov with oulfur ada
		1445			2	6.91	0.970	150	7.07	7.7	Green/gray with sulfur odo
10R	1/27/00	1325	4.3	63.5	0	9.17	0.293	4	0.24	9.2	
					10	8.08	0.350	6	0.75	10.8	
					20	8.13	0.357	7	0.51	11.1	
					30	8.04	0.385	7	0.38	10.8	
		1415			50	7.87	0.387	7	0.05	10.8	
20R	1/28/00	1220	4	98	0	11.42	2.490	>999	1.42	8.4	
					20	11.92	2.770	3	1.16	10.7	
					40	11.96	2.100	1	2.20	11.2	
					60	12.08	2.410	63	1.51	11.6	
		1330			70	12.40	2.700	238	3.84	12.0	
20D	1/28/00	1220	3	77	0	9.77	2.110	0	3.41	8.2	
200	1/20/00	1000	5	11	20	9.77 8.72	3.720	0 4	2.30	o.2 10.5	
					20 40	7.92	2.890	4	2.30	9.2	
		1430			40 60	7.86	3.040	6	1.35	9.2	
	4 100 100										
20S	1/28/00	1200	4.49	15	0	6.97	0.717	449	1.63	8.9	
	well sar	molina					2 of 3				4/22/05

MONITORING WELL SAMPLING LOG FARRAND CONTROLS RI/FS

					2	7.01	0.738	726	1.43	9.9	
			Dawth to	Tatal	6 Callana	7.01	0.712	712	1.72	10.1	Commontel
Woll	Data	Time	Depth to Water	Total Donth	Gallons	ъЦ	Conductivity		Dissolved	Tomporaturo	Comments/ Observations
<u>Well</u>	<u>Date</u>	Time	Water	<u>Depth</u>	<u>Removed</u>	<u>pH</u>	Conductivity	<u>Turbidity</u>	<u>Oxygen</u>	<u>Temperature</u>	Observations
		1245			10	7.05	0.705	354	1.87	10.6	
P12	1/28/00	1500	12	19	0	6.38	1.990	>999	6.83	9.6	
					4	5.73	1.530	>999	7.03	10.8	
					8	5.50	1.520	>999	7.76	11.6	
		1545			12	5.53	1.540	>999	7.96	11.8	
P9	1/28/00	1625	9	11	0	5.60	0.110	267	11.27	4.7	
10	1/20/00	1020	Ũ		1	5.66	0.109	253	11.15	5.1	
					2	5.65	0.108	247	10.53	5.4	
					3	5.70	0.107	247	10.68	5.6	
					4	5.80	0.105	385	10.75	5.7	
		1630			5	5.80	0.105	353	10.40	5.6	
			10								
1	1/28/00	1710	12	20	0	6.28	0.358	>999	4.04	3.9	
					1	6.27	0.360	>999	3.42	3.7	
					2	6.30	0.359	>999	3.80	3.6	
					3	6.35	0.359	>999	4.05	3.6	
					4	6.38	0.355	>999	4.28	3.6	
		1715			5	6.30	0.354	>999	4.14	3.6	
3	1/28/00	1510	13	18	0	6.24	0.362	990	1.78	9.2	
					1	6.04	0.372	990	1.44	9.1	
					2	5.98	0.341	211	2.86	11.8	
					3	5.93	0.338	238	2.54	12.2	
					4	5.93	0.330	204	3.53	11.7	
		1515			5	5.91	0.329	261	3.38	12.1	
P14	1/28/00	1550	8	16	0	6.40	0.864	>999	1.35	8.0	
	1/20/00	1000	5	10	2	6.32	0.854	>999	1.16	9.1	
					4	6.36	0.864	>999	0.96	9.4	
		1600			6	6.42	0.817	>999	2.42	9.1	
					Ũ	0.12	0.017			0.1	

UNITS pH: Standard units Conductivity: mS/cm Temperature: C degrees Turbidity: NTU Dissolved Oxygen: mg/l

APPENDIX G

ANALYTICAL DATA TABLES - SOIL

TABLE G - 1 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY SURFACE SOIL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION	I		S-S-01	S-S-02			
SAMPLE DEPTH	· · · · · · · · · · · · · · · · · · ·		0-2"	0-2"			
DATE OF COLLECTION			11/11/99	11/11/99			
DILUTION FACTOR			1	1			
PERCENT SOLIDS			88	88			
Targeted	NYSDEC Recommended Soil	CRDL					
Compounds	Cleanup Objective		(ug / kg)	(ug / kg)			
Vinyl Chloride	200	10	U	U			
Freon 113	6000	10	U	U			
1,1-Dichloroethene	400	10	υ	Ū			
t-1,2-Dichloroethene	300	10	NA	NA			
1,1-Dichloroethane	200	10	U	υ			
c-1,2-Dichloroethene	250	10	NA	NA			
1,1,1-Trichloroethane	800	10	1 J	0.6 J			
Trichloroethene	700	10	8 J	1J			
1,2 Dichloroethene(total)		10	U	U			
TOTAL TARGETED VOCs							
Additional Compounds							
Acetone	200	10	17 B	28 B			
Methylene Chloride	100	10	U	3 J			
Carbon Tetrachloride	600	10	U	U			
1,2-Dichloroethane	100	10	Ŭ	Ū			
Tetrachloroethene	1400	10	11 J	Ū			
Benzene	60	10	0.4 J	3 J			
Toluene	1500	10	0.7 J	U			
Chlorobenzene	1700	10	U	Ū			
Ethylbenzene	5500	10	0.3 J	Ū			
M&P-Xylene		10	NA	Ū			
O-Xylene		10	NA	Ū			
Xylenes	1200	10	0.3 J	Ū			
2 - Butanone	300	10	U	Ū			
Carbon Disulfide	2700	10	υ	Ū			
TOTAL NON-TARGETED VO	OCs		28.17	34			

QUALIFIERS/ABBREVIATIONS:

B: Compound also found in the method blank. U: Compound analyzed for but not detected. CRDL: Contract Required Detection Limit. ug/kg: Micrograms per kilogram.

NA: Not analyzed for.

J: Compound found at level below CRDL value estimated. ---: Not established.

TABLE G - 2 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY SURFACE SOIL SAMPLE RESULTS PCBs

SAMPLE IDENT	IFICATION		S-S-01	S-S-02
SAMPLE DEPTH		ſ	(0-2")	(0-2")
DATE OF COLLI	ECTION		11/11/99	11/11/99
DILUTION FACT	OR	ŀ	1	_1
PERCENT SOLII	DS		88	88
PCBs	NYSDEC Recommended Soil Cleanup Objective	CRDL	(ug / kg)	(ug / kg)
Aroclor-1016	*	33	U	U
Aroclor 1221	*	66	U	U U
Aroclor-1232	*	33	U	U
Aroclor-1242	*	33	U	U
Aroclor-1248	•	33	U	U
Aroclor-1254	*	33	53 P	93 P
Aroclor-1260	*	33	44 P	86 P
TOTAL PCBs	1000		97	179

QUALIFIERS/ABBREVIATIONS:

ug/kg: Micrograms per kilogram.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

P: Concentrations between two columns had a % difference greater than 25%, lower value reported.

*: Cleanup Objective not provided for individual constituents.

TABLE G - 3 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY SURFACE SOIL SAMPLE RESULTS METALS

SAMPLE IDEN	TIFICATION		S-S-01	S-S-02
SAMPLE DEPTI	H		0-2"	0-2"
DATE OF COLL	ECTION		11/11/99	11/11/99
PERCENT SOLI	DS		82	82
Metals	NYSDEC Recommended Soil	IDL	(mg/kg)	(mg / kg)
	Cleanup Objective		(IIIg / Kg)	
Aluminum	33000 *	22	8100	5900
Antimony	-	10	U	Ŭ
Arsenic	7.5	6	14.7	9.4
Barium	300	1	81.3	62
Beryllium	0.16	1	U	U
Cadmium	10**	1	.52 B	.71 B
Calcium	35000 *	70	1950	5840
Chromium	50**	1	25.2	24.3
Cobalt	. 30	2	6.4 B	4.7 B
Copper	25	1	38.4	71.3
Iron	2000	50	10800	8060
Lead	500 *	2	79.3	94.9
Magnesium	5000 *	30	2790	2910
Manganese	5000	1	362	320
Mercury	0.1	0.1	0.28	0.24
Nickel	13	3	12	8.8
Potassium	43000 *	66	878 B	554 B
Selenium	2	4	U	U
Silver	-	2	.58 B	1.1 B
Sodium	8000*	32	143 B	107 B
Thallium	-	. 7	U	U
Vanadium	150	2	17.5	13.3
Zinc	20	8	84.5	139
Cyanide	-	10	U	U

QUALIFIERS/ABBREVIATIONS:

mg / kg: Milligrams per kilogram.

IDL: Instrument Detection Limit.

* Objective is site background, value is upper end of range.

**Proposed Cleanup Objective in TAGM 4046 dated 1/24/94

- : Not established.

U: Compound analyzed for but not detected.

B: Concentration is < CRDL > IDL.

: Concentration exceeds NYSDEC Recommended Soil Cleanup Objective.

TABLE G - 4 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY TEST TRENCH SOIL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•• ···	r -			TTD0 (1 01		
Onte OF COLLECTION 4/12/99								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.		-
Disk of the second se								
Targeted Compounds NYSDEC Recommended Soil Cleanup Objective CRDL 0 (ug / kg)	DILUTION FACTOR			-	-		-	-
Compounds Cleanup Objective (ug / kg)	PERCENT SOLIDS			81	100	89	100	81
Components Cleanup Objective I <thi< th=""> I<td></td><td></td><td>ÇRDL</td><td>(119 / kg)</td><td>(ug/kg)</td><td>(ng / kg)</td><td>(ug / kg)</td><td>(ug/kg)</td></thi<>			ÇRDL	(119 / kg)	(ug/kg)	(ng / kg)	(ug / kg)	(ug/kg)
Freen 113600010UUUUUU1,1-Dichloroethene40010UUUUUUt-1,2-Dichloroethane30010NANANANANA1,1-Dichloroethane20010UUUUUe-1,2-Dichloroethane25010NANANANANA1,1-Trichloroethane800104J2J2JUUTrichloroethene70010UUUUU12 Dichloroethene70010UUUUUTOTAL TARGETED VOCS422UUAcetone2001011 J3613U22Methylene Chloride100103JB2JB2JB2JB2JBCarbon Tetachloride60010UUUUU1,2-Dichloroethane140010UUUUU1,2-Dichloroethane150010UUUUUEnzene6010UUUUUUChloroethane150010UUUUUChloroethane170010UUUUUKateshoroethane1000UUUU1,2-Dichloroethane140010UU <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
1,1-Dichloroethene40010UUUUUUt-1,2-Dichloroethene30010NANANANANA1,1-Dichloroethane20010UUUUUc-1,2-Dichloroethene25010NANANANA1,1,1-Tichloroethane800104J2J2JUUTrichloroethene70010UUUUU12,Dichloroethene(total)10UUUUUTOTAL TARGETED VOCs422UUAdditional Compounds10UUUUUAcetone2001011,13613U22Methylene Chloride100103JB2JB2JB2JB2JBCarbon Tetrachloride60010UUUUU1,2-Dichloroethane100010UUUUULenne140010UUUUU1,2-Dichloroethane150010110.8 J1,1UUBenzene6010UUUUUUChloroethane150010UUUUUM&P-Xylene10UUUUUM&P-Xylene10U	Vinyl Chloride			-	-	_	_	_
i-1,2-Dichloroethene30010NANANANANA1,1-Dichloroethane20010UUUUUc-1,2-Dichloroethane25010NANANANA1,1-Trichloroethane800104 J2 J2 JUUTrichloroethane70010UUUUUTrichloroethene70010UUUUUTOTAL TARGETED VOCs422UUAdditional Compounds422 JB2 JB2 JBAcetone2001011 J3613U22Methylene Chloride100103 JB2 JB2 JB2 JB2 JBCarbon Tetrachloride60010UUUUUTetrachloroethene140010UUUUUTotachoroethene170010UUUUUChloroethene170010UUUUUEnzene6010UUUUUChloroethene170010UUUUU10UUUUUUChloroethene160010UUUUCarbon Chloride170010UUUUCarbon Chloride1700 <td></td> <td>6000</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td>		6000	10					
1,1-Dichloroethane20010UUUUUUc-1,2-Dichloroethane25010NANANANANA1,1,1-Trichloroethane800104 J2 J2 JUUTrichloroethane70010UUUUU10UUUUUUU122.1UUUUU121210UUUU121210UUUU121210UUUU13141010UUU141313U221415Additional Compounds100103 JB2 JB2 JB2 JB2 JBAcetone20010113613U22Methylene Chloride10010UUUUU12-Dichloroethane10010UUUUU12-Dichloroethane140010UUUUU12-Dichloroethane1500101J $C.8J$ 1JUUBenzene6010UUUUUChlorobenzene170010UUUUUM&P-Xylene10UUUUUOxylene <td>1,1-Dichloroethene</td> <td>400</td> <td>10</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	1,1-Dichloroethene	400	10				-	
c.1.2-Dichlorothne101010NANANANA1,1,1-Trichloroethane800104 J2 J2 JUUTrichloroethane70010UUUUUU12 Dichloroethene(total)10UUUUUUTOTAL TARGETED VOCs422UUUAdditional Compounds422UUUAdditional Compounds422UUAcetone2001011 J3613U22Methylene Chloride100103 JB2 JB2 JB2 JB2 JBCarbon Tetrachloride60010UUUUU1,2-Dichloroethane10010UUUUU1,2-Dichloroethane10010UUUUU1,2-Dichloroethane10010UUUUUTotuene150010UUUUUUBenzene550010UUUUUUM&P-Xylene10UUUUUM&P-Xylene10UUUUUXylenes120010UUUUUXylenes120010 <td>t-1,2-Dichloroethene</td> <td>300</td> <td>10</td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td></td>	t-1,2-Dichloroethene	300	10	NA	NA			
1,1,1-Trichloroethane800104 J2 J2 JUUTrichloroethene70010UUUUUU1,2 Dichloroethene(total)10UUUUUUTOTAL TARGETED VOCs422UUUAdditional Compounds422UUAcetone2001011 J3613U22Methylene Chloride100103 JB2 JB2 JB2 JB2 JB2 JBCarbon Tetrachloride60010UUUUU1,2-Dichloroethane10010UUUUUTetrachloroethane10010UUUUUBenzene6010UUUUUUChlorobenzene170010UUUUUChlorobenzene170010UUUUUMeP-Xylene10UUUUUMeP-Xylene10UUUUUXylenes120010UUUUUXylenes120010UUUUUXylenes120010UUUUUXylenes120010UUU	1,1-Dichloroethane	200	10	U	Ŭ	U	U	U
Trichloroethene70010UUUUUU12 Dichloroethene(total)10UUUUUUTOTAL TARGETED VOCs422UUAdditional Compounds422UUAdditional Compounds422UUAdditional CompoundsAcetone2001011 J3613U22Methylene Chloride100103 JB2 JB2 JB2 JB2 JBCarbon Tetrachloride60010UUUUU1,2-Dichloroethane100010UUUUUTetrachloroethane100010UUUUUBenzene6010UUUUUUChlorobenzene17001011 $O.8 J$ 1 JUUChlorobenzene550010UUUUUM&P-Xylene10UUUUUVylenes120010UUUUUZStatanone30010UUUUCarbon Disulfide270010UUUUU	c-1,2-Dichloroethene	250	10	NA	NA	NA.	NA	NA
1,2 Dichlorethene(total)10UUUUUTOTAL TARGETED VOCs-422UUAdditional Compounds2001011 J3613U22Additional Compounds2001011 J3613U22Methylene Chloride100103 JB2 JB2 JB2 JB2 JB2 JBCarbon Tetrachloride60010UUUUU1,2-Dichloroethane10010UUUUUTetrachloroethane10010UUUUUBenzene6010UUUUUUBenzene6010UUUUUUChlorobenzene170010U2JUUUChlorobenzene170010U2JUUUM&P-Xylene10UUUUUO-Xylene10UUUUUZ - Butanone30010UUUUUUZ - Butanone30010UUUUUUZ - Butanone30010UUUUUUZ - Butanone30010UUUUUUZ - Butanone30010	1,1,1-Trichloroethane	800	10	4 J	2 J	2 J	U	U
TOTAL TARGETED VOCs 4 2 2 U U Additional Compounds Acetone 200 10 11 J 36 13 U 22 Methylene Chloride 100 10 31B 2 JB 2 JB<	Trichloroethene	700	10	U	U	ប	U	υ
Additional Compounds 200 10 11 J 36 13 U 22 Acetone 200 10 11 J 36 13 U 22 Methylene Chloride 100 10 3 JB 2 JB 2 JB 2 JB 2 JB 2 JB Carbon Tetrachloride 600 10 U	1,2 Dichloroethene(total)		10	U	U	U		
Acetone 200 10 11 J 36 13 U 22 Methylene Chloride 100 10 3 JB 2 JB 1 J U JB JB JD JD JD JD JD JD	TOTAL TARGETED VOCs			4	2	2	U U	, U
Acetone 200 10 11 J 36 13 U 22 Methylene Chloride 100 10 3 JB 2 JB 1 J U JB JB JD JD JD JD JD JD	Additional Compounds	· · · · · · · · · · · · · · · · · · ·						
Carbon Tetrachloride 600 10 U U U U U U $1,2$ -Dichloroethane 100 10 U U U U U Tetrachloroethane 1400 10 U U U U U Benzene 60 10 U U U U U Toluene 1500 10 $1J$ $O.8 J$ $1J$ U U Chlorobenzene 1700 10 U $2J$ U U U Ethylbenzene 5500 10 U U U U U M&P-Xylene $$ 10 U U U U U O-Xylene $$ 10 U U U U U Z-Butanone 300 10 U U U U U Carbon Disulfide 2700 10 U U $1J$ U U	-	200	10	11 J	36	13	U	22
1,2-Dichloroethane10010UUUUUTetrachloroethene140010UUUUUUBenzene6010UUUUUUToluene15001011 $O.8 J$ 11UUChlorobenzene170010U2 JUUUEthylbenzene550010UUUUUM&P-Xylene10UUUUUVylenes120010UUUUUZ - Butanone30010UUUUUCarbon Disulfide270010UUUUU	Methylene Chloride	100	10	3 ЛВ	2 ЈВ	2 JB	2 JB	2 JB
Tetrachloroethene140010UUUUUUBenzene 60 10 10 U U U U U U Toluene150010 $1J$ $0.8 J$ $1 J$ U U U Chlorobenzene170010 U $2 J$ U U U Ethylbenzene550010 U U U U U M&P-Xylene10 U U U U U O-Xylene10 U U U U U Zylenes120010 U U U U U Carbon Disulfide270010 U U U U U	Carbon Tetrachloride	600	10	U	U	U	U	υ
Benzene 60 10 U U U U U Toluene 1500 10 $1J$ $O.8 J$ $1 J$ U U Chlorobenzene 1700 10 U $2 J$ U U U Ethylbenzene 5500 10 U U U U U U M&P-Xylene $$ 10 U U U U U U O-Xylene $$ 10 U U U U U U Xylenes 1200 10 U U U U U U 2 - Butanone 300 10 U U U U U U Carbon Disulfide 2700 10 U U $1J$ U U	1,2-Dichloroethane	100	10	U	U	U	U	U
Toluene 1500 10 1 J O.8 J 1 J U U Chlorobenzene 1700 10 U 2 J U U U U Ethylbenzene 5500 10 U U U U U U M&P-Xylene 10 U U U U U O-Xylene 10 U U U U U Xylenes 1200 10 U U U U U 2 - Butanone 300 10 U U U U U Carbon Disulfide 2700 10 U U U U U	Tetrachloroethene	1400	10	U	U	U	U	U
Chlorobenzene 1700 10 U 2 J U U U Ethylbenzene 5500 10 U U U U U U M&P-Xylene 10 U U U U U U O-Xylene 10 U U U U U Xylenes 1200 10 U U U U U 2 - Butanone 300 10 U U U U U Carbon Disulfide 2700 10 U U 11 U U	Benzene	60	10	U	U	υ	U	U
Ethylbenzene 5500 10 U U U U U M&P-Xylene 10 U U U U U U O-Xylene 10 U U U U U U Xylenes 1200 10 U U U U U 2 - Butanone 300 10 U U U U U Carbon Disulfide 2700 10 U U 11 U U	Toluene	1500	10	1 J	Ó.8 J	1 J	υ	U
M&P-Xylene 10 U U U U U U O-Xylene 10 U U U U U U Xylenes 1200 10 U U U U U 2 - Butanone 300 10 U U U U Carbon Disulfide 2700 10 U U 11 U	Chlorobenzene	1700	10	U	2 J	U	U	U
M&P-Xylene 10 U U U U U U O-Xylene 10 U U U U U U Xylenes 1200 10 U U U U U U 2 - Butanone 300 10 U U U U U Carbon Disulfide 2700 10 U U 11 U U	Ethylbenzene	5500	10	U	U	U	U	υ
O-Xylene 10 U U U U Xylenes 1200 10 U U U U 2 - Butanone 300 10 U U U U U Carbon Disulfide 2700 10 U U 11 U U		-	10 ´	U	υ	U	U	U
Xylenes 1200 10 U U U U 2 - Butanone 300 10 U U U U U Carbon Disulfide 2700 10 U U 1J U U	-		10	U	U	U	υ	U
2 - Butanone 300 10 U U U U Carbon Disulfide 2700 10 U U 1J U U		1200	10	U	U	U	U	υ
		300	10	U	U	U	υ	υ
TOTAL NON-TARGETED VOCs 15 40.8 17 2 24	Carbon Disulfide	2700	10	U	U	1 J	U	υ
	TOTAL NON-TARGETED V	OCs		15	40.8	17	2	24

QUALIFIERS/ABBREVIATIONS:

J: Compound found at or below CRDL, value estimated.

U: Compound analyzed for but not detected.

CRDL: Contract Required Detection Limit.

B: Compound also found in method blank.

ug/kg: Micrograms per kilogram. NA: Not analyzed. ---: Not established.

TABLE G - 5 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY TEST TRENCH SAMPLE RESULTS PCBs

SAMPLE IDENTI	FICATION		TP1-S-01	TP1A-S-01	TP2-S-01	TP3-S-01	TP4-S-01
SAMPLE DEPTH	(ft)		4	4	3	6	5
DATE OF COLLE	CTION		4/12/99	4/12/99	4/12/99	4/12/99	4/12/99
DILUTION FACT	OR		1	1	1	1	1
PERCENT SOLIE	S		83	87	89	91	86
PCBs	NYSDEC Recommended Soil Cleanup Objective	CRDL	(ug / kg)				
Aroclor-1016	*	33	U	U	U	U	U
Aroclor 1221	*	66	U	U	U	ប	U U
Aroclor-1232	*	33	υ	U	U	U	U
Aroclor-1242	*	33	U	U	U	ប	U
Aroclor-1248	*	33	U	U	U	U	U
Aroclor-1254	*	33	3.7 J	U	U	U	U
Aroclor-1260	*	33	3.9 JB	U	U	U	U
TOTAL PCBs	1000	160	7.6	U	U	U	U

QUALIFIERS/ABBREVIATIONS:

ug/kg: Micrograms per kilogram.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

J: Compound found at or below CRDL, value estimated.

B: Compound also found in method blank.

*: Cleanup Objective not provided for individual constituents.

TABLE G - 6 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY TEST TRENCH SAMPLE RESULTS METALS

SAMPLE IDEN			TP1-S0-1	TP1A-S-01	TP2-S-01	TP3-S-01	TP4-S-01
SAMPLE DEPT			4	4	3	6	5
DATE OF COL	LECTION		4/12/99	4/12/99	4/12/99	4/12/99	4/12/99
PERCENT SOL	IDS		83	87	89	91	96
Metals	NYSDEC Recommended Soil Cleanup Objective	ID	(mg / kg)				
Aluminum	33000 *	22	12800	10800	10700	4190	25300
Antimony	-	10	U	U	U	U	1:5 B
Arsenic	7.5	6	3.5	U	2.4	1.4 B	2
Barium	300	1	54.3	40.4 B	87.1	48.1	217
Beryllium	0.16	1	0.36 B	0.30 B	0.32 B	U	0.39 B
Cadmium	10**	1	0.82	0.46 B	0.63 B	0.28 B	1.9
Calcium	35000 *	70	1110	830 B	2290	2010	2800
Chromium	50**	1	18.9	19	20.6	9.8	43.6
Cobalt	30	2	5.8 B	5.2 B	7.2 B	4.8 B	15.9
Copper	25	1	13.8	8.2	22.3	11.7	48.3
Iron	2000	50	15100	14900	18100	10400	37000
Lead	500 *	2	14.1	4.9	48	3.2	14
Magnesium	5000 *	30	3390	3580	4570	2250	11400
Manganese	5000	1	106	88.4	246	117	446
Mercury	0.1	0.1	U	U	0.047	U	ີບໍ່
Nickel	13	3	14.9	11.7	17.3	9.6	34.1
Potassium	43000 *	66	610 B	628 B	1680	1360	9010
Selenium	2	4	1.1	U	U	0.89 B	2.4
Silver	-	2	υ	U	U	U	U
Sodium	8000*	32	69.3 B	83.3 B	81.4 B	121 B	430 B
Thallium	-	7	U	U	U	υ	2.8
Vanadium	150	2	20.8	19.7	23.1	11.1	63.3
Zinc	20	8	57.4	33.2	81.4	31.2	86.9
Cyanide	-	10	U	U	U	U	U
			1				

QUALIFIERS/ABBREVIATIONS:

mg / kg: Milligrams per kilogram.

CRDL: Contract Required Detection Limit.

IDL: Instrument Detection Limit.

* Objective is site background, value is upper end of range.

- : Not established.

U: Compound analyzed for but not detected.

B: Compound is > IDL but < CRDL.

**Proposed Cleanup Objectives in TAGM 4046 dated 1/24/94

: Concentration exceeds NYSDEC Recommended Soil Cleanup Objective.

TABLE G-7 FARRAND CONTROLS SITE **REMEDIAL INVESTIGATION/FEASIBILITY STUDY** GEOPROBE SOIL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICAT	ION		GPS-C(-75)	GP-SD(-60)	GPS-E(-10)	GPS-E(-10)	GPS-E(-60)	GPS-E(-60)	GPS-F(-10)	GPS-F(-10)
SAMPLE DEPTH			(9-11')	(7-9')	(6-8')	(33-35')	(10-12')	(10-12')	(6-8')	(28-30')
DATE OF COLLECTION	1		10/04/99	10/04/99	03/18/99	03/18/99	10/04/99	10/04/99	03/17/99	03/17/99
DILUTION FACTOR			1	1	1	25	1	1	<u>i</u>	1
PERCENT SOLIDS			80	81	90	88	85	85	85	87
LABORATORY LOCAT	AMPLE DEPTH ATE OF COLLECTION LUTION FACTOR BRCENT SOLIDS ABORATORY LOCATION (ON / OFF) SITE urgeted NYSDEC Recommended Dompounds Soil Cleanup Objective ompounds Soil Cleanup Objective nyl Chloride 200 eon 113 6000 1-Dichloroethene 300 1-Dichloroethene 200 1,2-Dichloroethene 1,2-Dichloroethene 700 1,1-Trichloroethene 700 2 Dichloroethene 700 2 Dichloroethene 200 1,1-Trichloroethene 200 1,1-Trichloroethene 200 1,1-Trichloroethene 200 1,1-Trichloroethene 200 1,1-Trichloroethene 200 1 20 1,1-Trichloroethene 200 2 Dichloroethene 1 2 Dichloroethene 1 2 Dichloroethene 1 2 Dichloroethene 100 1 DTAL TARGETED VOCs 1 1 ethylene Chloride 100 <td>OFF</td> <td>OFF</td> <td>ON</td> <td>ON</td> <td>OFF</td> <td>OFF</td> <td>ON</td> <td>ON</td>		OFF	OFF	ON	ON	OFF	OFF	ON	ON
Targeted	AMPLE DEPTH ATE OF COLLECTION ILUTION FACTOR ERCENT SOLIDS ABORATORY LOCATION (ON / OFF) SITE argeted NYSDEC Recommended ompounds Soil Cleanup Objective inyl Chloride 200 eon 113 6000 1-Dichloroethene 400 1,2-Dichloroethene 1,1-Trichloroethene 1,1-Trichloroethene 700 2 Dichloroethene(total) OTAL TARGETED VOCs dditional Compounds cetone 200 ethylene Chloride 100 arbon Tetrachloride 100 2-Dichloroethene 100			(ug / kg)	(un Ura)	(un tha)	(no / lea)	(no / ho)	(11-2)	6
Compounds	Soil Cleanup Objective		(ug / kg)	(ug / kg/	(ug / kg)					
Vinyl Chloride	200	10	U	U	U	U.	U	U	U	υ
Freon 113		10	U	U	U	110	U	U	U	U
1,1-Dichloroethene	400	10	Ŭ	U	U	37	ប	U	U	υ
t-1,2-Dichloroethene		10	NA	NA	U	υ	U	U	U	U
1,1-Dichloroethane	200	10	·U	U	U	(U	U	U	U	1.7
c-1,2-Dichloroethene		10	NA	NA	U	U	U	U	U	U
1,1,1-Trichloroethane	800	10	U	U	U	150	U	U	U	4.3
Trichloroethene	700	10	U	0.6 J	U	150	U	U	U	12
1,2 Dichloroethene(total)		10	U	U	NA	NA	NA	NA	NA	NA
TOTAL TARGETED VO	Cs		υ	0.6	<u> </u>	447	Ŭ	U	U	18
Additional Compounds										
Acetone	200	10	9 JB	26 B				10 JB		
Methylene Chloride	100	10	3 J	2 J	U	J	U	2 J	U	U
Carbon Tetrachloride	600	10	U	U	U	U	U	υ	U	U
1,2-Dichloroethane	. 100	10	U	U	U	U	U	U	U	U
Tetrachloroethene	1400	10	0.8 J	U	U	U	U	U	U	U
Benzene	60	10	U	U	U	υ	U	U	U	U
Toluene	1500	10	U	ប	U	U	U	U	U	U
Chlorobenzene	1700	10	U	U	U	U	U	U	U	U
Ethylbenzene	5500	10	U	U	U	U	U	U	U	U
. M&P-Xylene	~ ~	10	U ·	U	U	U	U	U	U	U
O-Xylene		10	U	U	U	U	U	U	U	U
Xylenes	1200	10	U	Ŭ	U	U	U	U	U	U
2 - Butanone	300	10	U	4 J	NA	NA	NA	U	NA	NA
Carbon Disulfide	2700	10	U	NA						
TOTAL NON-TARGETE	D VOCs		12.8	32	U	U	U	12	U	U

QUALIFIERS/ABBREVIATIONS:

B: Compound also found in method blank U: Compound analyzed for but not detected CRDL: Contract Required Detection Limit J: Compound found at or below CRDL, value estimated NA: Not analyzed

ug/kg: Micrograms per kilogram --: Not established

Concentration exceeds NYSDEC Recommended Soil Cleanup Objective

TABLE G-7 FARRAND CONTROLS SITE **REMEDIAL INVESTIGATION/FEASIBILITY STUDY** GEOPROBE SOIL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICAT	ION	GPS-F(-60)	GP-S G(-10)	GP-S G(-10)	GP-S G(-25)	GP-S G(-25)	GP-S G(-45)	GP-S G(-45)	GP-S G(-65)	
SAMPLE DEPTH		(14-16')	(5-8')	(18-20')	(6-8')	(16-18')	(6-8')	(25-27')	(6-8')	
DATE OF COLLECTION	1	10/04/99	03/17/99	03/17/99	03/18/99	03/18/99	03/18/99	03/18/99	03/19/99	
DILUTION FACTOR			1	1	50	5	5	5	5	5
PERCENT SOLIDS			81	93		78	78	89	88	87
LABORATORY LOCAT	ION (ON / OFF) SITE	-	OFF	ON	ON	ON	ON	ON	ON	ON
Targeted	NYSDEC Recommended	CDRL	(u_{α}/k_{α})	(na (lea)	(may 1) and	(<i>.</i>
Compounds	Soil Cleanup Objective		(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)
Vinyl Chloride	200	10	Ŭ	U	U	U	U	<u> </u>	U	U
Freon 113	6000	10	U	U	860	U	20	U	υ	U
1,1-Dichloroethene	400	10	U	υ	180	U	Ŭ	U	υ	Ū
t-1,2-Dichloroethene	300	10	NA	U	υ	U	U	Ū	Ū	Ŭ
1,1-Dichloroethane	200	10	U	Ū	U	U	U	U	Ū	Ŭ
c-1,2-Dichloroethene		10	NA	Ŭ	U	υ	U	U	Ū	Ŭ
1,1,1-Trichloroethane	800	10	U	U	1300	υ	11	U	U	U
Trichloroethene	700	10	U	U	840	U	U	U	17	Ŭ
1,2 Dichloroethene(total)	·	10	U	NA	NA	NA	NA	NA	NA	NA
TOTAL TARGETED VO	Ċs		U	U	3180	U	31	U	17	U
Additional Compounds										
Acetone	200	10								
Methylene Chloride	100	10	2	U	U	U	U	U	U	U
Carbon Tetrachloride	600	10	U	U	U	U	U	Ŭ	บั	ប
1,2-Dichloroethane	100	10	U	U	U	U	U	U	Ū	Ū
Tetrachloroethene	1400	10	U	U	U	U	U	U	Ū	Ū
Benzene	60	10	U	U	U	U	Ū	Ū	Ŭ	Ŭ
Toluene	1500	10	U	U	U	U	Ū	Ŭ	Ŭ	Ŭ
Chlorobenzene	1700	10	U	U	Ŭ	Ŭ	Ŭ	Ū	Ŭ	Ŭ
Ethylbenzene	5500	10	U	U	U	Ŭ	Ū	Ū	Ŭ	Ŭ
M&P-Xylene		10	Ŭ	U	υ	υ	U	Ŭ	Ŭ	Ŭ
O-Xylene		10	U	U .	U	Ū	Ŭ	Ū	Ū	Ŭ
Xylenes	1200	10	U	U	U	υ	U	Ū	Ŭ	Ŭ
2 - Butanone	300	10	NA	NA	NA	NA	NA	ŇĂ	NA	NĂ
Carbon Disulfide	2700	10	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL NON-TARGETE	D VOCs		2	U	U	U	U	U	U	<u>U</u>

OUALIFIERS/ABBREVIATIONS:

B: Compound also found in method blank U: Compound analyzed for but not detected CRDL: Contract Required Detection Limit J: Compound found at or below CRDL, value estimated NA: Not analyzed

ug/kg: Micrograms per kilogram --: Not established

Concentration exceeds NYSDEC Recommended Soil Cleanup Objective

TABLE G-7 . FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY GEOPROBE SOIL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICAT	GP-S G(-65)	GP-S G(-80)	GP-S G(-80)	GP-S G(-85)	GP-S G(-85)	GP-S V1(-75)	GP-S V1(-75)	GP-S SUMP		
SAMPLE DEPTH		(25-27')	(6-8')	(22-24')	(6-8')	(20-22')	(1-16')	(12-16')	(0-4')	
DATE OF COLLECTION	03/19/99	03/19/99	03/19/99	03/22/99	03/22/99	10/04/99	10/04/99	04/08/99		
DILUTION FACTOR			5	5	5	5	5	1	1	10
PERCENT SOLIDS			100	88	85	75	95	83	83	100
LABORATORY LOCAT			ON	ON	ON	ON	ON	OFF	OFF	ON
Targeted		CDRL	(ug/kg)	(110 (110)	(1 m)	6-15-2	4 (1)			
Compounds	Soil Cleanup Objective		(ug/kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)
Vinyl Chloride	200	10	Ŭ	U	Ū	U	. U	Ū	U	U
Freon 113	6000	10	· 79	U	8,8	U	52	U	U	Ŭ
1,1-Dichloroethene	400	10	25	U	U	U	J	U	U	U
t-1,2-Dichloroethene	300	10	U	U	U	U	U	NA	NA	Ū
1,1-Dichloroethane	200	10	24	U	U	U	U	U	U	Ŭ
c-1,2-Dichloroethene		10	U	U	U	U	U	NA	NA	U
1,1,1-Trichloroethane	800	10	190	U	19	U	71	. U	U	44
Trichloroethene	700	10	140	U	J	U	13	U	2J	49
1,2 Dichloroethene(total)		10	NA	NA	NA	NA	NA	NA	U	NA
TOTAL TARGETED VO	Cs		458	U	27.8	U	136	U	2	93
Additional Compounds										
Acetone	200	10						19	19 B	
Methylene Chloride	100	10	U	U	U.	U	U	U	2 J	J
Carbon Tetrachloride	600	10	U	U	U	U	U	U	NA	Ŭ
1,2-Dichloroethane	100	10	U	U	U	U	U	U	NA	U
Tetrachloroethene	1400	10	υ	U	U	U	U	U	NA	11
Benzene	60	10	U	U	U	Ŭ	U	U	NA	U
Toluene	1500	10	U	U	U	U	U	U	NA	Ū
Chlorobenzene	1700	10	J	U	U	U	U	U	NA	U
Ethylbenzene	5500	10	U	U	U	U	U	U	NA	U
M&P-Xylene		10	Ŭ	U	υ	U	U	U	NA	U
O-Xylene		. 10	U	U	υ	U	U	U	NA	U
Xylenes	1200	10	ប	U	ប	υ	U	U	NA	Ŭ
2 - Butanone	300	10	NA	NA	NA	NA	NA	NA	4 J	NA
	Carbon Disulfide 2700 10		NA	NA	NA	NA	NA	NA	NA	NA
TOTAL NON-TARGETE	D VOCs		U	U	U	U	υ	19	25	11

QUALIFIERS/ABBREVIATIONS:

B: Compound also found in method blank U: Compound analyzed for but not detected CRDL: Contract Required Detection Limit J: Compound found at or below CRDL, value estimated NA: Not analyzed

ug/kg: Micrograms per kilogram --: Not established

Concentration exceeds NYSDEC Recommended Soil Cleanup Objective

TABLE G-7 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY GEOPROBE SOIL SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICAT	ION		GP-S SUMP					
SAMPLE DEPTH		(7-10')	(10-13')	(13-17')	(17-20')	(21-25')	(25-28')	
DATE OF COLLECTION	1	04/09/99	04/09/99	04/09/99	04/09/99	04/09/99	04/09/99	
DILUTION FACTOR			10	10	5	5	5	5
PERCENT SOLIDS	_		100	100	100	100	100	100
LABORATORY LOCAT			ON	ON	ON	ON	ON	ON
Targeted	NYSDEC Recommended	CDRL	6					
Compounds	Soil Cleanup Objective		(ug / kg)					
Vinyl Chloride	200	10	U	Ŭ	Ū	Ū	U	6
Freon 113	6000	10	U	J	j	J	Ŭ	53
1,1-Dichloroethene	400	10	υ	U	Ŭ	Ū	Ŭ	19
t-1,2-Dichloroethene	300	10	U	U	Ū	Ŭ	Ŭ	Ŭ
1,1-Dichloroethane	200	10	U	U	Ū	Ŭ	Ŭ	23
c-1,2-Dichloroethene		10	U	U	Ŭ	ΰ	Ū į	57
1,1,1-Trichloroethane	800	10	22	Ū	5.7	I I	Ţ	71
Trichloroethene	700	10	27	U	J	5.4	7.4	97
1,2 Dichloroethene(total)		10	NA	NA	NA	NA	NA	97 NA
TOTAL TARGETED VO	Cs		49	U	5.7	5.4	7.4	326
Additional Compounds								
Acetone	200	10		i	ĺ			
Methylene Chloride	100	10	J	J	J	J	J	J
Carbon Tetrachloride	600	10	U	Ŭ	Ŭ	Ŭ	Ů	υ υ
1,2-Dichloroethane	100	10	U	Ū	ŭ	Ŭ	Ŭ	Ŭ
Tetrachloroethene	1400	10	U	Ŭ	Ŭ	Ŭ	υ	Ŭ
Benzene	60	10	U	Ū,	Ū	Ŭ	Ŭ	Ŭ
Toluene	1500	10	ប	Ū	Ŭ	Ŭ	Ŭ	ប
Chlorobenzene	1700	10	U	υ	υ	Ŭ	Ŭ	υ
Ethylbenzene	5500	10	U	U	Ū	Ŭ	ŭ	Ŭ
M&P-Xylene		10	U	U	Ū	Ŭ	Ŭ	ບັ
O-Xylene		10	U	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ
Xylenes	1200	10	U .	Ū	Ŭ	Ŭ	U U	Ŭ
2 - Butanone	300	10	NA	NA	NA	NA	NA	NA
Carbon Disulfide	2700	10	NA	NA	NA	NA	NA	NA
TOTAL NON-TARGETE	D VOCs		Ŭ	U	Ū		<u> </u>	<u> </u>

QUALIFIERS/ABBREVIATIONS:

B: Compound also found in method blank U: Compound analyzed for but not detected CRDL: Contract Required Detection Limit J: Compound found at or below CRDL, value estimated NA: Not analyzed

ug/kg: Micrograms per kilogram --: Not established

Concentration exceeds NYSDEC Recommended Soil Cleanup Objective

...

.

TABLE G-8 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/ FEASIBILITY STUDY GEOPROBE SOIL SAMPLE RESULTS PCBs

SAMPLE IDENTI	FICATION	GPS-D(-60)	GPS-F(-60)	GPSV1(-75)	
SAMPLE DEPTH		(7-9')	(14-16')	(12-16')	
DATE OF COLLE	CTION		10/4/99	10/4/99	10/4/99
DILUTION FACT	OR		1	1	1
PERCENT SOLID	S	70	86	70	
PCBs	NYSDEC Recommended	CRDL		6 (1)	(11)
	Soil Cleanup Objective		(ug / kg)	(ug / kg)	(ug / kg)
Aroclor-1016	*	33	U	U	U
Aroclor 1221	*	66	U	U	U
Aroclor-1232	*	33	U	Ŭ	U
Aroclor-1242	*	33	U	U	U
Aroclor-1248	*	33	U	U	U
Aroclor-1254	*	33	U	16 JB	Ŭ
Aroclor-1260	*	33	U	υ	U
TOTAL PCBs	10000		U	16	U

QUALIFIERS/ABBREVIATIONS:

ug/kg: Micrograms per kilogram.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

J: Compound found at or below CRDL, value estimated.

B: Compound also found in method blank.

*: Cleanup Objective not provided for individual constituents.

TABLE G-9 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY GEOPROBE SOIL SAMPLE RESULTS

METALS

SAMPLE IDENTIFICATION			GP-S-C(-75)	GP-S-D(-60)	GP-S-E(-10)	GP-S-E(-10)	GP-S-E(-60)	GP-S-F(-10)	GP-S-F(-10)	GP-S-F(-60)	GP-S-G(-10)
SAMPLE DEPTH			(9-11')	(7-9')	(6-8')	(33-35')	(10-12')	(6-8')	(28-30')	(14-16')	(6-81)
	DATE OF COLLECTION		10/4/99	10/4/99	3/18/99	3/18/99	10/4/99	3/17/99	3/17/99	10/4/99	3/17/99
PERCENT SOL			80	81	85.4	81.6	85	90.5	81.9	80.8	93
Metals	NYSDEC Recommended	Ug/L	(mg / kg)	(ma/ka)			• <u>···</u>				
	Soil Cleanup Objective		((8/8/	((mg / kg)					
Aluminum	33000 *	22	7770	7370	15700	5830	10800	6240	19100	11400	3910
Antimony	-	10	1.8 B	U	U	U	3.1 B	U	. U	2.4B	5910 U
Arsenic	7.5	6	1.2 B	1.3 B	7.8	U	1 B	Ū	Ŭ	1.4B	и П
Barium	300	1	37.3 B	48.6	94.2	36.8 B	65,8	35 B	210	82.7	34.4 B
Beryllium	0.16	1	U	U	0.36 B	U	U	U	0.23 B	U	јч.ч Б U
Cadmium	10**	1	U	U	1.2	0.45 B	Ū	0.39 B	1.4	Ŭ	0.39 B
Calcium	35000 *	70	2610	8220	2140	683 B	3010	1260	1700	1420	0.39 B 1850
Chromium	50**	1	15.9	14.6	43.8	13.8	15.2	10.3	34.7	30.9	9.4
Cobalt	30	2	14.6	5.5 B	8,4	3.3 B	7 B	5.3 B	19.3	9.7 B	5.1 B
Copper	25	1	31.5	18.2	21.8	18.2	29.4	13.2	45.1	30.5	эл в 14.8
Iron	2000	50	14200	14100	22300	10400	17800	10800	39100	21100	14.8
Lead	500 *	2	2.9	3.1	42.2	2.9	3	3.5	6	4.2	
Magnesium	5000 *	30	3280	3160	5310	3170	5480	2310	7430	5280	3
Manganese	5000	1	357	250	378	176	355	119	468	352	1580
Mercury	0.1	0.1	0.01	U	0.068	.,.e	.0024 B	υ	408 U	0.005	66 U
Nickel	13	3	35.1	17.9	25.2	19.9	32.2	12.5	40.6	44.9	11.1
Potassium	43000 *	66	1110	1320	2380	1110	2170	1130	10000	2640	
Selenium	2	4	U	U	U	U	U	U	1.7	2040 U	612 B U
Silver	-	2	U	υ	υ	Ŭ	U	U U	II II	U U	U U
Sodium	8000*	32	105 B	· 162 B	397 B	76.3 B	227 B	67.4 B	204 B	134 B	82.1 B
Thallium	-	7	U	U	U	U	U	U	U U	154 D	о2.1 Б U
Vanadium	150	. 2	16.6	16.5	27.7	12	25.1	11.6	37.3	26.2	12
Zinc	20 .	8	50	41	86.5	27.6	72.2	29.9	109	76.4	20.9
Cyanide	-	10	U	U	NA	NA	U	NA	NA	U	NA

QUALIFIERS/ABBREVIATIONS:

mg/kg: Milligrams per kilogram.

IDL: Instrument Detection Limit.

* Objective is site background. Value is upper end of range.

** Proposed cleanup level

- : Not established.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

Concentration exceeds NYSDEC Soil Cleanup Objective.

TABLE G-9 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY GEOPROBE SOIL SAMPLE RESULTS METALS

SAMPLE IDENTIFICATION			GP-S-G(-10)	GP-S-G(-25)	GP-S-G(-25)	GP-S-G(-45)	GP-S-G(-45)	GP-S-G(-65)	GP-S-G(-65)	GP-S-G(-80)	GP-S-G(-80)
SAMPLE DEPTH			(18-20)	(6-8')	(16-18')	(6-8')	(25-27')	(6-8')	(25-27')	(6-8')	(22-24')
DATE OF COL			3/17/99	3/18/99	3/18/99	3/18/99	3/18/99	3/19/99	3/19/99	3/19/99	3/19/99
PERCENT SO		·	84.2	91.1	81.9	88.4	86.2	90,5	83.3	91	78.3
Metals	NYSDEC Recommended	Ug/L	(mg / kg)								
	Soil Cleanup Objective	<u> </u>			(8)	(8, **8)	(ing / ing)	(112, 12)	(ing / kg)	(mg / kg)	(mg / kg)
Aluminum	33000 *	22	9660	11600	10600	4550	15500	5370	12200	5890	13300
Antimony	-	10	1.3 B	U	U	U	1.7 B	U	U	Ŭ	U 13500
Arsenic	7.5	6	U	2.2	U	U	υ	υ	U	1.6 B	Ŭ
Barium	300	1	93.2	102	89.1	38.8	156	47	117	44.9	123
Beryllium	0.16	1	0.22 B	0.14 B	0.2 B	U	0.16 B	U	U	U	0.18 B
Cadmium	10**	1	0.68	0.8	0.56 B	0.37 B	1	0.36 B	0.7 B	0.39 B	0.71 B
Calcium	35000 *	70	2080	1450	2180	2030	1500	2510	1600	0.39 B 1270	0.71 B 1560
Chromium	50**	1	19	23.7	23.1	10.1	28	12.8	23.8	12.4	23.5
Cobalt	30	2	13.6	6.9	10.4	3.7 B	16.2	5 B	19.6	5.1 B	
Copper	25	1 1	38.2	18.1	27.9	11	29.5	14.5	28.6	13.8	9,4
Iron	2000	50	26300	19800	21000	9480	31000	12000	25000	12400	31.4
Lead	500 *	2	4.4	28.1	5.1	2.8	4.8	2.6	4.8		25300
Magnesium	5000 *	30	3350	4360	7160	2280	6520	2810	5700	2.9	4.2
Manganese	5000	1	321	255	328	119	236	1		2520	5210
Mercury	0.1	0.1	U	0.035 B	U	U	236 U	167 U	296 U	256	461
Nickel	13	3	32.3	18.3	39.4	8.6	27.4	10,9	26.7	U	U
Potassium	43000 *	66	3690	3630	3280	1180	7690			10.5	33.8
Selenium	2	4	1.9	1.3	1.1	U 1180	2	1470	5440	1100	4940
Silver	-	2	Ŭ	U.U.	υ	U	U U		1,1 U	U	0.63 B
Sodium	8000*	32	108 B	115 B	145 B	144 B	176 B	146 B	-	U	U
Thallium	-	7	U	U	U 19 D	U 144 D	U 1765	146 B U	155 B	119 B	154 B
Vanadium	150	2	20.7	20.7	25.4	10.6	29,4	13.8	U 24,9	U 12	U
Zinc	20	8	55.7	72,4	73.7	23.6	77.1	30.3		13	28.2
Cyanide		10	NA						68.3	25.1	59.4
	BBREVIATIONS:	10	NA	NA							

QUALIFIERS/ABBREVIATIONS:

mg/kg: Milligrams per kilogram.

IDL: Instrument Detection Limit.

* Objective is site background. Value is upper end of range.

** Proposed cleanup level

-: Not established.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

: Concentration exceeds NYSDEC Soil Cleanup Objective.

SSS Metals

TABLE G-9 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY GEOPROBE SOIL SAMPLE RESULTS METALS

SAMPLE IDEN	TIFICATION		GP-S(-85)	GP-S(-85)	GPS1V(-75)
SAMPLE DEP		(6-8')	(20-22')	(1-16')	
DATE OF COI	LECTION	3/22/99	3/22/99	10/4/99	
PERCENT SOL	LIDS		93.9	83.3	83
Metals	NYSDEC Recommended	Ug/L	(
	Soil Cleanup Objective		(mg / kg)	(mg / kg)	(mg / kg)
Aluminum	33000 *	22	6100	13000	14000
Antimony	-	10	U	U	58.5
Arsenic	7.5	6	U	U	9.6
Barium	300	1	43.6	112	529
Beryllium	0.16	1	U	0.2 B	9.8
Cadmium	10**	1	0.37 B	0.74 B	0.24 B
Calcium	35000 *	70	1350	1050	5560
Chromium	50**	1	12	20.6	69.3
Cobalt	30	2	4.8 B	10.2	114
Copper	25	1	13.8	42.9	81.2
Iron	2000	50	12100	24400	23600
Lead	500 *	2	2.9	4.8	8.8
Magnesium	5000 *	30	2620	4730	9500
Manganese	5000	I	265	554	456
Mercury	0.1	0.1	NR	U	0.0044
Nickel	13	3	12.2	40.2	143
Potassium	43000 *	66	1050	4430	8350
Selenium	2	·4	0.96	1	2.3
Silver	-	2	U	U	5.9
Sodium	8000*	32	138 B	138 B	4950
Thallium	-	7	U	U	12.6
Vanadium	150	2	13.5	23.7	131
Zinc	20	8	27.2	65.9	187
Cyanide	-	10	NA	NA	U

QUALIFIERS/ABBREVIATIONS:

mg/kg: Milligrams per kilogram.

IDL: Instrument Detection Limit.

* Objective is site background. Value is upper end of range.

** Proposed cleanup level

- : Not established.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

Concentration exceeds NYSDEC Soil Cleanup Objective.

TABLE G - 10 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY MONITORING WELL SOIL BORING SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION) (11/ 01)	200	
SAMPLE DEPTH	i		MW-8D	MW-10D	MW-20D
DATE OF COLLECTION	·		(34-36')	(48-50')	(18-20')
DILUTION FACTOR			10/12/99	10/13/99	10/14/99
PRECENT SOLIDS		·	1	1	1
Targeted		T	100	82	100
Compounds	NYSDEC Recommended	CRDL	(ug /kg)	(ug /kg)	(ug /kg)
Vinyl Chloride	Soil Cleanup Objective	ļ	·	ļ	
Freon 113	200	10	U	U	U
	6000	10	U	U	U
1,1-Dichloroethene	400	10	U	U	U U
t-1,2-Dichloroethene	300	10	NA	NA	NA
1,1-Dichloroethane	200	10	U	U	2J
c-1,2-Dichloroethene	250	10	NA	NA	NA
1,1,1-Trichloroethane	800	10	U	U	U U
Trichloroethene	700	10	U	2J	9J
1,2-Dichloroethene(total)		10	U	U	U
TOTAL TARGETED VOCs			U	2	12
Additional Compounds					r
Acetone	200	10	7 JB	38 B	9 JB
Methylene Chloride	100	10	U	2 J	1.J
Carbon Tetrachloride	600	10	υ	U	υ
1,2-Dichloroethane	. 100	10	U	U	Ū
Tetrachloroethene	1400	10	U	3 J	Ŭ
Benzene	60	10	U U	Ŭ	Ū
Toluene	1500	10	U	1 J	0.6 J
Chlorobenzene	1700	10	U	υ	U
Ethylbenzene	5500	10	Ū	Ŭ	Ŭ
M&P-Xylene		10	Ū	Ū	Ŭ
O-Xylene		10	Ū	Ŭ	υ
Xylenes (Total)	1200	10	Ū	·Ū	Ŭ
2-Butanone	300	10	Ū	13	5 J
Carbon Disulfide	2700	10	Ū	Ŭ	1 J
TOTAL NON-TARGETED VC	Cs	-	7	57	16.6

QUALIFIERS/ABBREVIATIONS:

B: Compound also found in the method blank.

U: Compound analyzed for but not detected.

CRDL: Contract Required Detection Limit

J: Compound found at level below CRDL value estimated.

---: Not established.

NA: Not analyzed.

ug/kg: Micrograms per kilogram.

TABLE G-11 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY MONITORING WELL BORING SAMPLE RESULTS METALS

SAMPLE IDENTI	FICATION		MW-8D	MW-10D	MW-20D
SAMPLE DEPTH			(34-36')	(48-50')	(18-20')
DATE OF COLLE	CTION		10/13/1999	10/14/1999	10/14/1999
PERCENT SOLID	S		80.4	82.7	80.9
Metals	NYSDEC Recommended	IDL	((1-)		
	Soil Cleanup Objective		(mg / kg)	(mg / kg)	(mg / kg)
Aluminum	33000 *	22	6770	4650	7560
Antimony	-	10	2.7 B	1.6 B	3.3 B
Arsenic	7.5	6	U	U	1.8 B
Barium	300	1	51.8	32.3 B	69.8
Beryllium	0.16	1	U	U	U :
Cadmium	10**	1	U	U	U
Calcium	35000 *	70	2060	6520	10800
Chromium	50**	1	14.9	11.9	16.6
Cobalt	30	2	6 B	4 B	5.9 B
Соррег	25	1	14.2	9.9	14.8
Iron	. 2000	50	14000	10400	14400
Lead	500 *	2	1.9	1.9	3.4
Magnesium	5000 *	30	2790	4470	7520
Manganese	5000	1	292	156	202
Mercury	0.1	0.1	.0058 B	.006 B	0.16
Nickel	13	3	22.1	8.2 B	12.4
Potassium	43000 *	66	1420	927 B	2720
Selenium	2	4	υ	U	1.3
Silver	-	2	U	U	Ū
Sodium	8000*	32	157 B	249 B	265 B
Thallium	· _	7	U	U	U
Vanadium	150	2	16	12.3	17.6
Zinc	20	8	37.3	40	44.7
Cyanide	_ ·	10	0.71	U	U

QUALIFIERS/ABBREVIATIONS:

mg/kg: Milligrams per kilogram.

IDL: Instrument Detection Limit.

* Objective is site background. Value is upper end of range.

- : Not established.

U: Compound analyzed for but not detected.

B: Concentration is above IDL but < CRDL.

**Proposed Cleanup Objectives in TAGM 4046 dated 1/24/94.

: Concentration exceeds NYSDEC Recommended Soil Cleanup Guideline **APPENDIX H**

ANALYTICAL DATA TABLES - GROUNDWATER

- -----REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS OFF-SITE LABORATORY

SAMPLE IDENTIFICATION			GP-W B-50	GP-W B-50	GP-W B-100	CD NUD 100						i
SAMPLE DEPTH			(8-12')	(36-40')	(12-16')	GP-W B-100 (46-50')	GP-W BBO	GP-W D25	GP-W D(-60)	GP-W G-(-10)	GP-W G-(-25)	GP-W G-(-65)
DATE COLLECTED			1/7/99	t/7/99	1/7/99	(46-50')	18-22	(42-46')	(4-8')	(12-16')	(12-16')	23-27
DILUTION FACTOR			1	2	1///99	5	4/6/99	4/7/99	10/4/99	3/19/99	3/19/99	3/19/99
Targeted	NYSDEC Class GA Ground-		·		<u> </u>		<u> </u>	5		· · · · · · · · · · · · · · · · · · ·		20
Compounds	water Standard/Guideline	CRDL	(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / 1)	(ug / l)	(ug / 1)	(ug / ł)	(ug / 1)	(ug / i)
Vinyl Chloride	2 ST	10	U	9 J	U	23 J	U	40 J				
Freon 113	5 ST	10	υ	7 J	Ū.	16 J	, U		U U	48	U U	U
1,1-Dichloroethene	5 ST	10	U	6 5	<u>บ</u>	υ	Ŭ	32 J	υ		61	1000
1,2-Dichloroethene (total)	5 ST *	10	11	250	บ	520	U U	400	. ບ ບ	2 J	11	110 J
1,1-Dichloroethane	5 ST	10	2 J	55	3 J	100	บ บ	93	U U	U	2 J	U
1,1,1-Trichloroethane	5 ST	10	2 J	13 J	51	27 J	15	47 J		2 J	3 J	89 J
Trichloroethene	5 ST	10 :	17	360	4 J	660	15 U	47 J 430	11	40	44	1800
Total Targeted VOCs			32	700	12	1346	15	430	0.7 J	16	19	330
Additional Compounds					·	1340	<u> </u>	1042	1.7	Ľ08	130	3329
Methylene Chloride	5 ST	10	U	υ	ប	U	.,, I					
Carbon Tetrachloride	5 ST	10	ບັ	υ	υ	U U	U	U	11	ប	1 J	U
1,2-Dichloroethane	0.6 ST	10	U U	υ	υ	υ	U	U	U	U	U	U
Tetrachloroethene	5 ST	10	Ŭ	U	ม - บ บ	υ	U	U	U	U	U	U
Benzene	I ST	10	Ŭ	Ŭ	U	U U	U	U	υ	U	υ	υ
Toluene	5 ST	10	U	υ υ	U U		U	υ	υ	υ	υ	U
Chlorobenzene	5 ST	10	υ	υ	U U	U	U	U	υ	U	0.3 J	U
Ethylbenzene	5 ST	10	U U	U U	U U	U	U	U	U	U	U	υ
Styrene	5 ST	10	U U	ប	บ บ	บ บ	U	Ŭ	U	Ŭ	' U	υ
Xylene	5 ST	10	Ŭ	U	υ	U U	บ บ	U	U	U	U	U
Chloromethane	5 ST	10	ŭ	Ŭ	υŬ	U U	υ	ប ប	U	U	υ	υ
Bromomethane	5 ST	10	Ŭ	Ŭ	Ű	Ŭ	υ	U U	ប ប	υ	U	σ
Chloroethane	5 ST	10	Ŭ	Ŭ	Ŭ	υ	υ υ	υ		U	U	U
Acetone	50 ST	10	ັບ	ບັ	U U	υ	9 JB	υ	U	U	U	U
Carbon Disulfide	-	10	ΰ	ΰ	Ŭ	υ	и и	UUU	8 JB	U	U	U
Chloroform	7 ST	10	บ	ប	U	·U	υ υ	υ υ	UU	U	U	U
2-Butanone	50 GV	10	υ	Ũ	ΰ	υ	υ	υ		U	U	U
Bromodichloromethane	50 ST	10	Ū	Ŭ	บ.	υ	υ	U U	3 JB	U	U	U
1,2-Dichloropropane	1 ST	10	Ŭ	Ŭ	ນັ	Ŭ,	υ	υ	י ז ע	บ บ	U	U
c-1,3-Dichloropropene	0.4 ST **	10	Ŭ	Ū	Ŭ	Ŭ	υ	υ	U U	U U	U	U
Dibromochloromethane	50 ST	10	υ	U	Ŭ	Ŭ	U U	υ	U U I	UU	U U	U
1,1,2-Trichloroethane	1 ST	10	υ	υ	Ŭ	υ	ບ ບ	υ	υ	U U		U
t-1,3-Dichloropropene	0.4 ST **	10	ប	ប	U	Ŭ	Ŭ	Ŭ	Ŭ	UU	. บ บ	U
Bromoform	50 ST	10	U	U	ប	บั	Ŭ	υ	U	υ	υ	U
4-Methyl-2-Pentanone	•	10	U	υ.	U	Ū	Ŭ	U	υ	υ	υ	U U
2-Hexanone	50 ST	10	U	U	U	υ	Ŭ	Ŭ	Ŭ	U U	υ	U U
1,1,2,2,-Tetrachloroethane	<u>5 ST</u>	10	υ	υ	U	υ	Ŭ	υ	ŭ	υ	υ	UUU
Total Non-Targeted VOCs			υ	υ				— <u> </u>	12	<u> </u>	1.3	
QUALIFIERS/ABBREVIATIONS:										U	1.3	U

ug/l= Micrograms per liter.

ST: Standard.

GV: Guidance Value.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

-: Not established

Concentration exceeds NYSDEC Standard / Guideline

* Total of cis- and trans- DCE

** : Value given for sum of -cis and -trans isomers

REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS OFF-SITE LABORATORY

SAMPLE IDENTIFICATION			GP-W H-0	GP-W H-50	GP-W H-100	GP-W IO	GP-W J-25					
SAMPLE DEPTH			(14-18)	(36-40)	(51-55)	14-18	(12-16')	GP-W J-50	GP-W K-100	GP-W M-100	GP-W L(-40)	GP-W N(25)
DATE COLLECTED			1/25/99	1/20/99	1/8/99	4/5/99	1/13/99	(12-16') 1/21/99	(48-52')	(44-48')	(12-16')	(6-10')
DILUTION FACTOR	· · ·		50	20	2	200	20	5	1/9/99 50	1/13/99	10/4/99	10/4/99
Targeted	NYSDEC Class GA Ground-	CRDL							50	10	4	
Compounds	water Standard/Guideline	CKUL	(ug / I)	(ug / l)	(ug / l)	(ug / I)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug/l)	(ug / I)
Vinyl Chloride	2 ST	10	U	U	20	Ŭ	<u> </u>	22 J	U	υ	U .	
Freon 113	5 ST	10	5600	2900	93	ັບ	2300	31 J	3700	900	υ	
1,1-Dichloroethene	5 ST	10	1600	160 J	15 J	5800	160 J	30 Ĵ	280 J	100	12 J	16
1,2-Dichloroethene (total)	5 ST *	10	U	210	220	0	<u> </u>	260	U	170	<u>12</u> _J	2 J
1,1-Dichloroethane	5 ST	10	2400	200	58	2800	67 J	86	240 J	120	23 1	0.6 J
1,1,1-Trichloroethane	5 ST	10	950	1600	67	18000	770	220	2200	690	350	6 1
Trichloroethene	5 ST	10	7300	780	180	33000	490	480	1400	520	140	<u> </u>
Total Targeted VOCs			17850	5850	653	59600	3787	1129	7820	2500		13
Additional Compounds									/020	2300	525	37.6
Methylene Chloride	5 ST	10	360 J	32 J	υ	U	υ	4 3	U	υ	17.10	[
Carbon Tetrachloride	5 ST	10	ΰ	U	 IIJ	Ŭ	υ	υ	U	120	17 JB	1 1
1,2-Dichloroethane	0.6 ST	10	υ	ΰ	Ŭ	υ	บ	υ	UU	U	U	U
Tetrachloroetheae	5 ST	10	ΰ	ΰ	υ	U	ט ע	υ	υ		ប	U
Benzene	1 ST	10	Ū	υ	υ	U	U U	υ	υ	U	U	U
Toluene	5 ST	10	Ŭ	Ŭ	Ŭ	Ŭ	U U	บ บ	υ	U	U	U
Chlorobenzene	5 ST	10	Ŭ	U U	υ	690 J	U U	U U	-	U	U	U
Ethylbenzene	5 ST	10	ŭ	U U	υŬ	U	U U	U U	ប ប	U	U	U
Styrene	5 ST	10	Ŭ	Ŭ	Ŭ	Ű	บ บ	υ	U U	บ บ	U U	U
Xylene	5 ST	10	Ū.	Ŭ	Ŭ	Ŭ.	ບ	υ	U U	U U	υ	U
Chloromethane	5 ST	10	υ	Ū	Ŭ	υ	ບັ	υ	Ŭ	ប	U U	U U
Bromomethane	5 ST	10	υ	U	U	Ū	ΰ	ΰ	U	υ	υ	υ υ
Chloroethane	5 ST	10	υ	υ	υ	U	Ū	 	υ	Ŭ,	υ	U
Acetone	50 ST	10	540 B	220 B	υ	Ŭ	Ŭ	23 JB	Ŭ	Ŭ	49 B	-
Carbon Disulfide	-	10	U	U	U	Ŭ	Ŭ	U U	υ	υ	49 B U	3 JB
Chloroform	7 ST	10	U	U	U	Ū	Ŭ	Ŭ	Ŭ,	ΰ	U	U U
2-Butanone	50 GV	10	υ	U	U	U	บ	12 JB	1500	ΰ	ц зв	-
Bromodichloromethane	50 ST	10	υ	U	U	U	ΰ	ບັ	U	U U	U U	1 JB U
1,2-Dichloropropane	1 ST	10	υ	U	υ	ΰ	ΰ	ບັ	υ	Ŭ	υ	U U
c-1,3-Dichloropropene	0.4 ST **	10	U	U	ប	ប	Ŭ	บ	υ	Ŭ	Ŭ	U U
Dibromochloromethane	50 ST	10	ប	υ	υ	ប	Ŭ	υ	ΰ	υ	υ	υ
1,1,2-Trichloroethane	1 ST	10	U	Ŭ	υ	U	U	Ŭ	υ	υ	υ	U U
t-1,3-Dichloropropene	0.4 ST **	10	U	U	ប	U	Ū	Ŭ	Ű	υ	υ	υ
Bromoform	50 ST	10	U	U	U	υ,	U	Ŭ	Ű	υ	υ	υ
4-Methyl-2-Pentanone	-	10	U	57 J	U	υ	υ	Ŭ	Ū,	υ	ŭ	U
2-Hexanone	50 ST	10	υ	U	υ	ប	U	ນັ	υ	Ŭ	U	υ
1,1,2,2,-Tetrachloroethane	5 ST	10	ບ	27 J	U	ប	U	υ	υ	U	υ	Ŭ
Total Non-Targeted VOCs			900	336	11	U	U	50	1500	120	77	5
OUALIFIERS/ABBREVIATIONS:										- 44	11	J

QUALIFIERS/ABBREVIATIONS:

ug/l= Micrograms per liter.

ST: Standard.

GV: Guidance Value.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

-: Not established

: Concentration exceeds NYSDEC Standard / Guideline

* Total of cis- and trans- DCE

** : Value given for sum of -cis and -trans isomers

REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS OFF-SITE LABORATORY

SAMPLE IDENTIFICATION			GP-W P-0	GP-P Q-(150)	GP-W-T6	GP-W R-100						
SAMPLE DEPTH			(26-30)	(68-72')	(12-16)	(48-52')	GP-W T-85	GP-W EE-0	GP-W EE-100	GP-W OS-1	GP-W OS-2	GP-W OS-3
DATE COLLECTED			1/15/99	3/24/99	4/13/99	(48-52)	(44-48')	(6-10')	(60-64')	(51-55')	(35-39')	51-55
DILUTION FACTOR			1	4	4/13/99	20	1/20/99	4/2/99	3/31/99	3/23/99	3/25/99	3/26/99
Targeted	NYSDEC Class GA Ground-	anne			<u>_</u>	20			5	10	!	2
Compounds	water Standard/Guideline	CRDL	(ug / l)	(ug / 1)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / I)	(ug / l)
Vinyi Chloride	2 ST	10	U	Ú Ú	U	U U	U					
Freon 113	5 ST	10	24	Ū	Ŭ	2600	48	U U	16 J	U	<u> </u>	<u> </u>
1,1-Dichloroethene	5 ST	10	U	32 J	Ŭ	250	28	U U	U	U	10	260
1,2-Dichloroethene (total)	5 ST *	10	Ű		U	110 J	28 1 J		12 J	2 J	8 J	76
1,1-Dichloroethane	5 ST	10	8 J	70	U	110 J		U	490	U	[]	16 J
1,1,1-Trichloroethane	5 ST	10	91	<u> </u>	U	140 J	45 2 J	<u> </u>	110	4 J	10	78
Trichloroethene	5 ST	10	19	330	U U	860		<u>6</u>]	53	6 J	<u> </u>	71
Total Targeted VOCs			60	454	<u> </u>		18	U	570	9 J	18	250
Additional Compounds		<u>, </u>				4960	142	7	1251	21	58	751
Methylene Chloride	5 ST	10	U	υ								
Carbon Tetrachloride	5 ST	10	υ	υ	U	U	U	3]	I3 J	ប	υ	U
1,2-Dichloroethane	0.6 ST	10	ប ប		U	Ŭ	U	U	U.	U	U	U
Tetrachloroethene	5 ST	10	U U	U	U	U	U	υ	U	U	ប	U
Benzene	1 ST	10		U	U	U.	U	υ	U	υ	U,	Ŭ
Toluene	5 ST		U	U	U	U	υ	ប	U	υ	U	U
Chlorobenzene	5 ST	10	U	U	U	ប	υ	U	U	υ	U	υ
Ethylbenzene	5 ST	10	υ	U	υ	U	Ŭ	U	U	U	υ	U
Styrene	5 ST	10	U	U	U	U	U	υ	U U	U	U	U
Xylene	5 ST	10 10	U U	U	υ	U	U	U	υ	U	υ	U
Chloromethane	5 ST	10	U U	บ บ	U	U	υ	ý	υ	υ	υI	U
Bromomethane	5 ST	10	υ	_	U	U	υ	U	U	υ	U	υ
Chloroethane	5 ST	10	υ	U	U	U	U	U	ប	U	U	ប
Acetone	50 ST	10	U U	U	U	U	U	υ	26 J	U	ប	U
Carbon Disulfide	-	10	U	32 JB	U	U	4 JB	υ	65 B	U	10 B	U
Chloroform	- 7 ST		-	υ	U	U	υ	្រ ប	U	υ	U	υ
2-Butanone	50 GV	10	υ υ	U	U	Ŭ	υ	U U	υ	υ	υ	υ
Bromodichloromethane	50 ST	10	-	U	ប 	U	U	U	U	υ	31	U
I,2-Dichloropropane	1 ST	10 10	U U	U	U	U	U	υ	U	U	υ	υ
c-1,3-Dichloropropene	0.4 ST **	10	υ	U	U	U	U	υ	U	υ	U	U
Dibromochloromethane	50 ST	10	υ υ	U	U	υ	U	U	U	υ	U	U
1,1,2-Trichloroethane	I ST	10	υ	U U	U	U	U	U	U	υ	U	υ
t-1,3-Dichloropropene	0.4 ST **	10	υ	υ	U	U	U	U .	U	U	U	ប
Bromoform	50 ST	10	U		U	U	U	U	U	U	U	U
4-Methyl-2-Pentanone		10	U I	υ	U U	U	U	υ	U	U	U	U
2-Hexanone	50 ST	10	U U	υ	UU	U	U	U	U	U	υ	υ
1,1,2,2,-Tetrachloroethane	5 ST	10	υ	υ	U U	υ	U	υ	U	U	U	U
Total Non-Targeted VOCs			<u> </u>	32	U		<u> </u>	U	U	<u> </u>	1.1	<u> </u>
QUALIFIERS/ABBREVIATIONS:				34	<u> </u>	U	4	3	104	<u> </u>	14	U

ug/l= Micrograms per liter.

ST: Standard.

GV: Guidance Value.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

-: Not established

: Concentration exceeds NYSDEC Standard / Guideline.

* Total of cis- and trans- DCE

** : Value given for sum of -cis and -trans isomers

REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS OFF-SITE LABORATORY

SAMPLE IDENTIFICATION			GP-W 0100	GP-W-SUMP	GP-W UG1	GP-W V1(-75)	HP-W-L125(3-5)
SAMPLE DEPTH			(23-27')	(27-31')	(12-16')	(12-16')	
DATE COLLECTED			3/29/99	1/22/99	3/30/99	10/4/99	3/25/99
DILUTION FACTOR			5	20	1	· 1	10
Targeted Compounds	NYSDEC Class GA Ground- water Standard/Guideline	CRDL	(ug / l)	(ug / 1)	(ug / 1)	(ug / I)	(ug / l)
Vinyl Chloride	2 ST	10	U	υ	U	U	270
Freon 113	5 ST	10	400	1100	U	υ	5.9
1,1-Dichloroethene	5 ST	10	73	100 J	ΰ	Ŭ	U
1,2-Dichloroethene (total)	5 ST *	10	36 J	150 J	υ	U	480
1.1-Dichloroethane	5 ST	10	55	140 J	ΰ	ŭ	56
1,1,1-Trichloroethane	5 ST	10	570	2400	υ	Ū	Ü
Trichloroethene	5 ST	10	280	910	υ	Ŭ	Ŭ
Total Targeted VOCs		<u> </u>	1414	4800	<u> </u>	U	811,9
Additional Compounds							
Methylene Chloride	5 ST	10	64	10 J	33	1 JB	υ
Carbon Tetrachloride	5 ST	10	U	U	U	U .	U
1,2-Dichloroethane	0.6 ST	10	U	ບ	υ	Ŭ	υ
Tetrachloroethene	5 ST	10	U	54 J	υ	υ	υ
Benzene	1 ST	10	U	U	U	U	υ
Toluene	5 ST	10	U	[7 J	υ	0,2 J	ΰ
Chlorobenzene	5 ST	10	Ŭ	U	Ū	U	Ŭ
Ethylbenzene	5 ST	10	บ	υ	Ű	υ	ΰ
Styrene	5 ST	10	Ŭ	Ŭ	Ŭ	Ŭ	ΰ
Xylene	5 ST	10	Ũ	υ	υ	υ	ΰ
Chloromethane	5 ST	10	U	U	ប	U	υ
Bromomethane	5 ST	10	U	ប	υ	U	υ
Chloroethane	5 ST	10	Ŭ	ប	υ	U	υ
Acetone	50 ST	10	140 B	ប	υ	5 JB	υ
Carbon Disulfide	-	10	Ú	ប	υ	U	υ
Chloroform	7 ST	10	U	U	υ	U	υ
2-Butanone	50 GV	10	υ	ប	U	4 JB	U
Bromodichloromethane	50 ST	10	ប	U	U	U	U
1,2-Dichloropropane	1 ST	10	U	U	U	U	U
c-1,3-Dichloropropene	0.4 ST **	10	υ	U	U	U	U
Dibromochloromethane	50 ST	10	υ	U	ប	U	Ŭ
1,1,2-Trichloroethane	I ST	10	υ	U U	ប	U	υ
t-1,3-Dichloropropene	0.4 ST **	10	υ	υ	ប	υ	ប
Bromoform	50 ST	10	U	U	U	U	Ŭ
4-Methyl-2-Pentanone	-	10	U	U	ប	2 J	U
2-Hexanone	50 ST	10	U	U	ប	3 J	U
1,1,2,2,-Tetrachloroethane	5 ST	10	U	U	U U]	ប
Total Non-Targeted VOCs			204	81	3	16.2	U U

QUALIFIERS/ABBREVIATIONS:

ug/l= Micrograms per liter.

ST: Standard.

GV: Guidance Value.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

-: Not established

Concentration exceeds NYSDEC Standard / Guideline.

* Total of cis- and trans- DCE

** : Value given for sum of -cis and -trans isomers

GP-GW VOCs.xls

ON-SITE LABORATORY

SAMPLE IDENTIFIC	ATION		GP-W A-0	GP-W A-0	GP-W A-50	GP-W A-50	GP-W A-100	GP-W A-100	GP-W B-0	GP-W B-0	GP-W B-25
SAMPLE DEPTH IN	FEET		(8-12')	(23-27')	(10-14')	(45-49')	(4-8')	(51-55')	(12-16')	(22-26')	(12-16')
DATE OF COLLECT	ION		01/04/99	01/04/99	01/04/99	01/04/99	01/05/99	01/05/99	04/06/99	04/06/99	04/05/99
DILUTION FACTOR			1	1	1	10	1	10	5	10	5
Targeted	NYSDEC Class GA	CRDL									
Compounds	Groundwater Standard										
Vinyl Chloride	2 ST	1	U	U	U	U	U	30	U	14	U
Freon 113	5 ST	1	U	U	U	17	U	35	U	13	U
1,1-Dichloroethene	5 ST	1	U	U	U	U	U	18	U	U	U
t-1,2-Dichloroethene	5 ST	1	U	U	U	U	U	U	U	- U	υ
1,1-Dichloroethane	5 ST	1	U	6.2	2.9	U	U	160	U	61	U
c-1,2-Dichloroethene	5 ST	1	U	21	11	U	U	450	U	240	U
1,1,1-Trichloroethane	5 ST	1	υ	1.3	1.4	16	U	59	U,	19	U
Trichloroethene	5 ST	1	U	27	16	U	U	400	U	310	U
TOTAL TARGETED	VOCs		U	55.5	31.3	33	U	1152	U	657	U

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

. •

SAMPLE IDENTIFIC			GP-W B-25	GP-W B-50	GP-W B-50	GP-W B-100	GP-W B-100	GP-W C-100	GP-W C-100	GP-W D-25
SAMPLE DEPTH IN	FEET		(33-37')	(8-12')	(36-40')	(12-16')	(46-50')	(12-16')	(48-52')	(12-16')
DATE OF COLLECT	ION		04/05/99	01/06/99	01/06/99	01/06/99	01/06/99	01/06/99	01/06/99	04/07/99
DILUTION FACTOR			10	5	10	5	10	5	100	5
Targeted	NYSDEC Class GA	CRDL				······································				
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	12	U	U	U	36	12	1 U	U
Freon 113	5 ST	1	12	U	U	U	25	U	T T	U U
1,1-Dichloroethene	5 ST	1	U	U	U	U	12	Ū	Ū	Ŭ
t-1,2-Dichloroethene	5 ST	1	U	U	U	U	Ū	Ŭ	Ū	U U
1,1-Dichloroethane	5 ST	1	62	U	60	U	130	24	U	U U
c-1,2-Dichloroethene	5 ST	1	260	12	250	U	440	110	410	Ŭ
1,1,1-Trichloroethane	5 ST	1	13	U	13	U	42	9.5	Ū	Ū
Trichloroethene	5 ST	1	300	19	290	U	400	140	140	Ŭ
TOTAL TARGETED	VOCs	-	659	31	613	U	1085	295.5	550	

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC	CATION		GP-W D-25	GP-W E-(-10)	GP-W E-(-10)	GP-W E-0	GP-W E-0	GP-W E-65	GP-W E-65	GP-W E-100
SAMPLE DEPTH IN	FEET		(42-46')	(12-16')	(33-37')	(16-20')	(39-43')	(12-16')	(24-28')	(12-16')
DATE OF COLLECT	ION		04/07/99	03/17/99	03/17/99	01/21/99	01/21/99	04/06/99	04/06/99	01/06/99
DILUTION FACTOR			20	10	100	500	50	20	20	10
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	47	U	U	U	U	U	38	1 U
Freon 113	5 ST	1	24	88	4900	U	550	U	22	Ū
1,1-Dichloroethene	5 ST	1	26	36	1600	U	69	Ū	26	Ŭ
t-1,2-Dichloroethene	5 ST	1	U	U	Ú	U	U	U	U	Ŭ
1,1-Dichloroethane	5 ST	1	100	U	1000	υ	110	Ū	93	280
c-1,2-Dichloroethene	5 ST	1	400	U	150	ប	400	26	320	160
1,1,1-Trichloroethane	5 ST	11	56	270	5200	4000	330	U	54	18
Trichloroethene	5 ST	1	410	110	4300	1500	520	40	450	170
TOTAL TARGETED	VOCs		1063	504	17150	5500	1979	66	1003	628

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC	ATION		GP-W E-100	GP-W F-(-10)	GP-W F-(-10)	GP-W F-0	GP-W F-0	GP-W F-50	GP-W F-50	GP-W F-100
SAMPLE DEPTH IN	FEET		(58-62')	(12-16')	(26-30')	(16-20')	(36-40')	(12-16')	(41-45')	(12-16')
DATE OF COLLECT			01/06/99	03/17/99	03/17/99	01/21/99	01/21/99	01/22/99	01/22/99	01/07/99
DILUTION FACTOR			5	10	100	5	50	10	50	10
Targeted	NYSDEC Class GA	CRDL								10
Compounds	Groundwater Standard]
Vinyl Chloride	2 ST	1	12.6	U	U	U	U	υ	U	l 11
Freon 113	5 ST	1	U	70	2500	78	430	140	1800	
1,1-Dichloroethene	5 ST	1	U	12	650	22	120	22	190	
t-1,2-Dichloroethene	5 ST	1	U	U	U	U	U	U U	U	
1,1-Dichloroethane	5 ST	1	20	U	210	Ū	100	49	100	57
c-1,2-Dichloroethene	5 ST	1	120	U	Ŭ	U	270	170	210	150
1,1,1-Trichloroethane	5 ST	1	U	62	2600	70	390	100	990	25
Trichloroethene	5 ST	1	110	31	2000	61	550	200	660	220
TOTAL TARGETED	VOCs		262.6	175	7960	231	1860	681	3950	452

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

SAMPLE IDENTIFIC	ATION		GP-W F-100	GP-W G-(-10)	GP-W G-(-10)	GP-W G-(-25)	GP-W G-(-45)	GP-W G-(-45)	GP-W G-(-65)	GP-W G-(-65)
SAMPLE DEPTH IN I	FEET		(53-57')	(12-16')	(16-20')	(14-18')	(12-16')	(23-27')	(12-16')	(23-27')
DATE OF COLLECTI	ON		01/07/99	03/17/99	03/17/99	03/18/99	03/18/99	03/18/99	03/19/99	03/19/99
DILUTION FACTOR			50	10	10	5	5	100	5	100
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	U	U	U	υ	U
Freon 113	5 ST	1	U	76	190	150	130	3200	150	1600
1,1-Dichloroethene	5 ST	1	U	Ŭ	38	16	U	600	U	240
t-1,2-Dichloroethene	5 ST	1	U	U	U	U	U	U	U	U
1,1-Dichloroethane	5 ST	1	U	U	υ	6	U	270	U	U
c-1,2-Dichloroethene	5 ST	1	160	U	U	Ú	U	U	U	U
1,1,1-Trichloroethane	5 ST	1	U	42	230	150	82	4200	85	2100
Trichloroethene	5 ST	1	120	16	150	44	23	1500	21	490
TOTAL TARGETED	VOCs		280	134	608	366	235	9770	256	4430

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

SAMPLE IDENTIFIC	ATION		GP-W G-(-80)	GP-W G-(-80)	GP-W G-(-85)	GP-W G-(-85)	GP-W G-100	GP-W G-100	GP-W H-(-25)	GP-W H-0
SAMPLE DEPTH IN :	FEET		(12-16')	(20-24')	(12-16')	(18-22')	(12-16')	(58-62')	(9-13')	(14-18')
DATE OF COLLECT	ION		03/19/99	03/19/99	03/22/99	03/22/99	01/07/99	01/07/99	01/22/99	01/22/99
DILUTION FACTOR			5	50	5	50	10	50	1000	2500
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	U	10	U	U	U
Freon 113	5 ST	1	36	2100	31	920	U	U	5500	23000
1,1-Dichloroethene	5 ST	1 1	U	230	U	77	U	U	2100	4200
t-1,2-Dichloroethene	5 ST	1 1	U	Û	U	U	υ	U	U	U
1,1-Dichloroethane	5 ST	1	U	140	U	U	28	υ	ប	U
c-1,2-Dichloroethene	5 ST	1	U	U	U	U	110	170	υ	U
1,1,1-Trichloroethane	5 ST	1	52	2100	23	970	17	U	8800	12000
Trichloroethene	5 ST	1	9.1	520	U	190	190	130	6500	20000
TOTAL TARGETED	VOCs		97.1	5090	54	2157	355	300	22900	59200

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

Standard/Guideline.

.

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC	ATION		GP-W H-25	GP-W H-50	GP-W H-50	GP-W H-75	GP-W H-75	GP-W H-100	GP-W H-100	GP-W I-0	GP-W I-25
SAMPLE DEPTH IN	FEET		(12-16')	(12-16')	(36-40')	(12-16')	(40-44')	(12-16')	(51-55')	(14-18')	(13-17')
DATE OF COLLECT	ION		01/20/99	01/19/99	01/19/99	01/13/99	01/13/99	01/07/99	01/07/99	04/05/99	04/05/99
DILUTION FACTOR			100	10	200	5	50	10	20	2500	500
Targeted	NYSDEC Class GA	CRDL							20	2300	500
Compounds	Groundwater Standard										
Vinyl Chloride	2 ST	1	U	U	U	22	υ	18	44	U	U
Freon 113	5 ST	1	2200	130	3300	7.2	970	U	270	48000	6900
1,1-Dichloroethene	5 ST	1	440	120	250	12	100	10	36	13000	1300
t-1,2-Dichloroethene	5 ST	1 1	U	Ū	Ū	Ū	Ŭ	<u> </u>	<u> </u>	U	U
1,1-Dichloroethane	5 ST	1	U	U	Ŭ	63	90	60	95	4000	U U
c-1,2-Dichloroethene	5 ST	1 1	U	U	U	140	280	180	310	<u>- 4000</u>	U 11
1,1,1-Trichloroethane	5 ST	1 1 1	1300	420	1700	44	500	36	170	32000	2500
Trichloroethene	5 ST	1 1	1100	230	1000	150	480	290	300		3500
TOTAL TARGETED	VOCs		5040	900	6250	438.2	2420	594	1225	53000	3900 15600

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC	ATION		GP-W I-50	GP-W I-50	GP-W I-100	GP-W I-100	GP-W -J(-25)	GP-W J-(-50)	GP-W J-(-75)	GP-W J-0	CD WING
SAMPLE DEPTH IN	FEET		(12-16')	(25-29')	(12-16')	(51-55')	(6-10')	(10-14')	· · · · · · · · · · · · · · · · · · ·		GP-W J-25
DATE OF COLLECT	ION		04/05/99	04/05/99	01/07/99	01/07/99	04/05/99	04/02/99	(5-9')	(6-10')	(12-16')
DILUTION FACTOR		_	50	200	10	20	04/03/99		04/02/99	04/02/99	01/12/99
Targeted	NYSDEC Class GA	CRDL			10	20	I	200	10	100	50
Compounds	Groundwater Standard										
Vinyl Chloride	2 ST	1	U	U	U	36	2.1	U	υ	U	
Freon 113	5 ST	1	960	6200	Ŭ	120	140	3900	120		<u>U</u>
1,1-Dichloroethene	5 ST	1	110	720	Ŭ	24	7.1	U		2100	2000
t-1,2-Dichloroethene	5 ST		U	U	Ŭ	11			Ŭ	250	260
1,1-Dichloroethane	5 ST		Ū	230	22	79	7.9	U	U	U	U
c-1,2-Dichloroethene	5 ST	1	Ŭ	<u></u>	100	290		U		U	U
1,1,1-Trichloroethane	5 ST		530	3300			3.2	U	U	120	Ŭ
Trichloroethene	5 ST		380		15	91	11	1900	37	1000	660
				2500	· 220	260	7.5	600	10	620	460
TOTAL TARGETED	VUCs		1980	12950	357	900	178.8	6400	167	4090	3380

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

SAMPLE IDENTIFIC	ATION		GP-W J-50	GP-W J-50	GP-W J-75	GP-W J-75	GP-W J-75	GP-W J-100	GP-W J-100	GP-W K-(-25)
SAMPLE DEPTH IN	FEET		(12-16')	(26-30')	(12-16')	(17-21')	(42-46')	(12-16')	(48-52')	(5-9')
DATE OF COLLECT	ION		01/20/99	01/20/99	04/01/99	04/01/99	04/01/99	01/08/99	01/08/99	04/07/99
DILUTION FACTOR			50	50	10	50	500	10	20	100
Targeted	NYSDEC Class GA	CRDL							20	100
Compounds	Groundwater Standard]
Vinyl Chloride	2 ST	1	U	U	36	U	U	U	37	1 TT
Freon 113	5 ST	1	U	2000	35	730	5700	Ŭ	27	1700
1,1-Dichloroethene	5 ST	1	υ	330	34	200	750	υ	U	240
t-1,2-Dichloroethene	5 ST	1	U	U	U	U	U	U	Ŭ	<u> </u>
1,1-Dichloroethane	5 ST	1	88	160	89	120	Ū	22	100	150
c-1,2-Dichloroethene	5 ST	1	300	210	300	300	Ū	110	320	<u>150</u>
1,1,1-Trichloroethane	5 ST	1	340	1100	220	770	2900	11	46	1200
Trichloroethene	5 ST	1	530	920	390	900	1700	210	260	720
TOTAL TARGETED	VOCs '		1258	4720	1104	3020	11050	353	790	4010

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC	ATION		GP-W K-0	GP-W K-100	GP-W K-100	GP-W L-(-25)	GP-W L-0	GP-W L-25	GP-W L-25	GP-W L-50
SAMPLE DEPTH IN	FEET		(6-10')	(12-16')	(48-52')	(13-17')	(10.5-14.5')	(12-16')	(30-34')	(12-16')
DATE OF COLLECT	ION		04/07/99	01/08/99	01/08/99	01/22/99	01/12/99	01/12/99	01/12/99	01/12/99
DILUTION FACTOR			10	5	500	100	25	50	100	
Targeted	NYSDEC Class GA	CRDL							100	
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	21	U	U	U	U	υ.	11
Freon 113	5 ST	1 1	180	6.9	5200	850	1100	1900	3900	210
1,1-Dichloroethene	5 ST	1	25	13	830	140	140	290	610	160
t-1,2-Dichloroethene	5 ST	1	U	Ŭ	Ú	U	U	U	<u>010</u>	100
1,1-Dichloroethane	5 ST	1	13	61	U	U	40	61	160	47
c-1,2-Dichloroethene	5 ST	1	U	170	U	U	U	U	<u>U</u>	98
1,1,1-Trichloroethane	5 ST	1	100	40	2800	510	360	760	1600	240
Trichloroethene	5 ST	1	40	190	1600	280	280	800	1400	170
TOTAL TARGETED	VOCs		358	501.9	10430	1780	1920	3811	7670	936

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC	CATION		GP-W L-50	GP-W L-100	GP-W L-100	GP-W M-100	GP-W M-100	GP-W N-50	GP-W N-50	GP-W N-100
SAMPLE DEPTH IN	FEET		(30-34')	(12-16')	(48-52')	(12-16')	(44-48')	(12-16')	(36-40')	(12-16')
DATE OF COLLECT	ION		01/12/99	01/08/99	01/08/99	01/11/99	01/11/99	01/20/99	01/20/99	01/11/99
DILUTION FACTOR			200	10	50	5	100	5	200	10
Targeted	NYSDEC Class GA	CRDL								10
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	U	U	U	U	υ
Freon 113	5 ST	1	4800	73	680	18	2600	24	4500	29
1,1-Dichloroethene	5 ST	1	870	120	97	32	290	15	570	Ū
t-1,2-Dichloroethene	5 ST	1	U	U	Ŭ	U	U	U	U	TT TT
1,1-Dichloroethane	5 ST	1	U	37	110	32	120	13	Ŭ	Ŭ
c-1,2-Dichloroethene	5 ST	1	U	100	200	48	150	7.5	Ŭ	Ŭ
1,1,1-Trichloroethane	5 ST		2300	390	510	140	1300	130	1800	Ŭ
Trichloroethene	5 ST	1	1500	300	510	120	880	91	1400	Ŭ
TOTAL TARGETED	VOCs		9470	1020	2107	390	5340	280.5	.8270	29

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

Standard/Guideline.

÷...

SAMPLE IDENTIFIC			GP-W N-100	GP-W O-100	GP-W O-100	GP-W P-(-25)	GP-W P-0	GP-W P-0	GP-W P-25	GP-W P-25
SAMPLE DEPTH IN	FEET		(44-48')	(12-16')	(51-55')	(6-10')	(12-16')	(26-30')	(16-20')	(32-36')
DATE OF COLLECT	ION		01/12/99	01/12/99	01/12/99	01/18/99	01/14/99	01/14/99	01/14/99	01/14/99
DILUTION FACTOR			100	5	200	5	5	10	10	5
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	16	U	υ	U	U	U	U
Freon 113	5 ST	1	3500	170	850	υ	11	31	68	25
1,1-Dichloroethene	5 ST	1	350	64	U	Ū Ū		U	U	<u></u>
t-1,2-Dichloroethene	5 ST	1	Ŭ .	U	U	Ū	Ŭ	U	U U	U U
1,1-Dichloroethane	5 ST	1	150	53	Ū	ŭ	6.8	U U	υ	8.2
c-1,2-Dichloroethene	5 ST	1	200	140	U	Ŭ	U	Ŭ	Ŭ	<u> </u>
1,1,1-Trichloroethane	5 ST	1	1500	140	390	Ū	Ŭ	Ŭ	20	7.1
Trichloroethene	5 ST	1	1100	220	350	υ	20	24	19	20
TOTAL TARGETED	VOCs		6800	803	1590	U	37.8	55	107	60.3

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC	ATION		GP-W P-50	GP-W P-50	GP-W P-75	GP-W P-75	GP-W P-100	GP-W P-100	GP-W O-100	GP-W Q-100
SAMPLE DEPTH IN	FEET		(12-16')	(40-44')	(12-16')	(44-48')	(12-16')	(44-48')	(12-16')	(47-51')
DATE OF COLLECT	ION		01/13/99	01/13/99	01/13/99	01/13/99	01/13/99	01/13/99	3/23//99	03/23/99
DILUTION FACTOR			10	50	5	50	5	100	5	10
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	υ.	υ	U	U	U	U	U	U
Freon 113	5 ST	1	U	440	U	1500	54	2600	24	180
1,1-Dichloroethene	5 ST	1	U	55	υ	150	25	510	Ū	210
t-1,2-Dichloroethene	5 ST	1	U	U	υ	U	U	Ŭ	Ū	IJ
1,1-Dichloroethane	• 5 ST	1	U U	U	6.3	U	56	Ū	Ŭ	240
c-1,2-Dichloroethene	5 ST	1	U	U	U	U	45	Ŭ	Ŭ	15
1,1,1-Trichloroethane	5 ST	1	U	180	U ·	540	98	1000	9.8	Ū
Trichloroethene	5 ST	1	IJ	150	7.5	450	98	1000	4.4	290
TOTAL TARGETED	VOCs		U	825	13.8	2640	376	5110	38.2	935

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

Standard/Guideline.

•

SAMPLE IDENTIFIC			GP-W Q-125	GP-W Q-125	GP-W Q-125	GP-W Q-150	GP-W Q-150	GP-W Q-150	GP-W Q-175	GP-W 0-175
SAMPLE DEPTH IN	FEET		(6-10')	(32-36)	(56-60')	(6-10')	(32-36')	(68-72')	(6-10')	(32-36')
DATE OF COLLECT	ION		03/23/99	03/25/99	03/23/99	03/23/99	03/24/99	03/23/99	03/23/99	03/24/99
DILUTION FACTOR			5	50	10	1	5	5	1	1
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	υ	U	U	U	U	U	TF
Freon 113	5 ST	1	U	1700	300	U	140	Ŭ	Ŭ	U
1,1-Dichloroethene	5 ST	1	U	400	70	U	65	54	Ū	Ŭ.
t-1,2-Dichloroethene	5 ST	1	U	U	U	υ	U	U U	U	Ŭ
1,1-Dichloroethane	5 ST	1	U	ប	84	U	35	82	U U	U U
c-1,2-Dichloroethene	5 ST	T	U	U	93	U	85	25	U	U U
1,1,1-Trichloroethane	5 ST	1	ប	940	170	U	230	U	Ŭ	Ŭ
Trichloroethene	5 ST	1	U	1300	290	U	220	220	Ŭ	Ŭ
TOTAL TARGETED	VOCs		U	4340	1007	U	775	381	U	U

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC	CATION		GP-W Q-175	GP-W Q-200	GP-W Q-200	GP-W Q-200	GP-W R-50	GP-W R-50	GP-W R-100	GP-W R-100
SAMPLE DEPTH IN	FEET		(66-70')	(6-10')	(32-36')	(68-72')	(12-16')	(42-46')	(12-16')	(48-52')
DATE OF COLLECT	ION		03/23/99	03/25/99	03/26/99	03/25/99	01/18/99	01/18/99	01/13/99	01/13/99
DILUTION FACTOR			5	5	5	1	5	10	5	100
Targeted	NYSDEC Class GA	CRDL								100
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	υ	U	U	U	U
Freon 113	5 ST	1	U	U	U	บ -	8.6	230	32	1800
1,1-Dichloroethene	5 ST		U	U	17	Ū	U	35	<u>J</u>	270
t-1,2-Dichloroethene	5 ST	1	U	U	U	Ū	U	<u>U</u>	U	<u>270</u>
1,1-Dichloroethane	5 ST	1	U	U	23	Ŭ	U U	55	12	U T
c-1,2-Dichloroethene	5 ST	1	U	U	13	2.2	т Т	<u>JJ</u>	6.7	
1,1,1-Trichloroethane	5 ST	1	U	U	26	U	U	84	27	710
Trichloroethene	5 ST	1 1	41	U	130	22	U	73	25	660
TOTAL TARGETED	VOCs	·	41	U	209	24.2	8.6	477	102.7	3440

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC	CATION		GP-W S-0	GP-W S-50	GP-W S-50	GP-W T-1	GP-W T-I	GP-W T-1	GP-W T-2	GP-W T-2
SAMPLE DEPTH IN	FEET	-	(9-13')	(12-16')	(30-34')	(12-16')	(26-30')	(57-61')	(12-16')	(31-35')
DATE OF COLLECT	ION		01/22/99	01/18/99	01/18/99	04/14/99	04/14/99	04/14/99	04/14/99	04/14/99
DILUTION FACTOR			5	1	10	5	5	10	5	5
Targeted	NYSDEC Class GA	CRDL						10		
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	U	U	U	U	Ĩ
Freon 113	5 ST	1	U	18	20	11	10	Ŭ	Ŭ	30
1,1-Dichloroethene	5 ST	1	U	1.6	U	14	19	Ŭ	28	11
t-1,2-Dichloroethene	5 ST	1	υ	υ	U	·U	U	U U	<u></u>	
1,1-Dichloroethane	5 ST	1	U	3	12	12	15	U	33	
c-1,2-Dichloroethene	5 ST	1	U	U	U	11	39	U U	8.9	U
1,1,1-Trichloroethane	5 ST	1	U	6.3	Ŭ	36	65	11	9.1	23
Trichloroethene	5 ST	1	U	3.8	Ŭ	60	140	20	32	32
TOTAL TARGETED	VOCs		U	32.7	32	144	288	31	111	<u> </u>

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds.

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC			GP-W T-2	GP-W T-4	GP-W T-4	GP-W T-4	GP-W T-6	GP-W T-6	GP-W T-10	GP-W T-10
SAMPLE DEPTH IN			(70-74')	(12-16')	(28-32')	(56-60')	(12-16')	(36-40')	(12-16')	(52-56')
DATE OF COLLECT	ION		04/14/99	04/14/99	04/14/99	04/14/99	04/14/99	04/14/99	04/14/99	04/14/99
DILUTION FACTOR			5 -	5	5	5	5	5	5	5
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	U	U	U	T	ŧJ
Freon 113	5 ST	1	34	U	U	Ŭ	Ū	ц Ц	U U	U TT
1,1-Dichloroethene	5 ST	1	21	U	U	Ŭ	Ū	U	11 11	U U
t-1,2-Dichloroethene	5 ST	11	Ū	U	U	U	Ŭ	Ŭ	U U	U U
1,1-Dichloroethane	5 ST	1	10	U	U	U	Ŭ	Ŭ	9.9	П
c-1,2-Dichloroethene	5 ST	1	20	U	U	Ū	U U	U	U	
1,1,1-Trichloroethane	5 ST	1 1	68	U	U	Ŭ	U U	Ŭ	U U	9.2
Trichloroethene	5 ST	1	87	14	56	Ŭ	Ŭ	Ŭ	U U	<u> </u>
TOTAL TARGETED	VOCs		240	14	56	U	U	U	9.9	9.2

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC	ATION		GP-W T-85	GP-W T-85	GP-W U-50	GP-W U-50	GP-W BB-0	GP-W BB-0	CD WDD 100	OD W DD 100
SAMPLE DEPTH IN	FEET		(12-16')	(44-48')	(12-16')	(29-33')	(10-14')	(18-22')		GP-W BB-100
DATE OF COLLECT	ION		01/18/99	01/18/99	01/18/99	01/19/99	04/06/99		(12-16')	(64-68')
DILUTION FACTOR			1	10	1	5	04/00/99	04/06/99	01/19/99	01/19/99
Targeted	NYSDEC Class GA	CRDL						10	5	10
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	TI	TT	U		.
Freon 113	5 ST	1	23	42	6.7	U U	U U			<u> </u>
1,1-Dichloroethene	5 ST	1	3.1	21	U	U U	U U	U	U	17
t-1,2-Dichloroethene	5 ST	1	U	U	Ŭ	U	U Ц	U	U	12
1,1-Dichloroethane	5 ST	1 1	5.1	40	1.5	U U	U	U		U
c-1,2-Dichloroethene	5 ST	1 1	U	U	Ŭ	υ	U 1	U	U -	110
1,1,1-Trichloroethane	5 ST	1 1	10	U U	2.3	U U			U	280
Trichloroethene	5 ST		11	13	2.5 U	-	24	11	ប	61
TOTAL TARGETED		└────┡	52.2			<u> </u>	U	U	U	260
TOTAL TAROLLED	<u>YUUS</u>		34.4	116	10.5	<u> </u>	24	11	U	740

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC	ATION		GP-W CC-50	GP-W CC-50	GP-W CC-100	GP-W CC-100	GP-W DD-50	GP-W DD-50	GP-W DD-100	GP-W DD-100
SAMPLE DEPTH IN	FEET		(12-16')	(44-48')	(12-16')	(62-66')	(12-16')	(44-48')	(12-16')	(59-63')
DATE OF COLLECT		_	01/19/99	01/19/99	01/19/99	01/19/99	01/20/99	01/20/99	01/20/99	01/20/99
DILUTION FACTOR			1	5	1	5	1	10	1	5
Targeted	NYSDEC Class GA	CRDL			······					
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	21	U	U	ŢŢ	19
Freon 113	5 ST	1	U	U	U	19	Ū	Ū	U	18
1,1-Dichloroethene	5 ST	1	U	U	U	19	U	Ū	U U	16
t-1,2-Dichloroethene	5 ST	1	U	U	υ	U	Ū	Ŭ	U	13 U
1,1-Dichloroethane	5 ST	1	U	25	U	100	Ū	Ŭ	U	100
c-1,2-Dichloroethene	5 ST	1	1.9	110	U	180	Ū	60	U U	180
1,1,1-Trichloroethane	5 ST	1	U	5.1	U	80	. บ	U	Ĩ	64
Trichloroethene	5 ST	1	U	98	υ	160	บ	70	υ	160
TOTAL TARGETED	VOCs		1.9	238.1	Ü	579	U	130	U	557

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC	ATION		GP-W EE-0	GP-W EE-0	GP-W EE-50	GP-W EE-50	GP-W EE-100	GP-W EE-100	GP-W HH-0	GP-W HH-0
SAMPLE DEPTH IN	FEET		(6-10')	(16-20')	(12-16')	(49-53')	(12-16')	(60-64')	(12-16')	(40-44')
DATE OF COLLECT	ION		03/31/99	03/31/99	03/31/99	03/31/99	03/29/99	03/29/99	03/30/99	03/30/99
DILUTION FACTOR			1	1		1	5	10	5	5
Targeted	NYSDEC Class GA	CRDL								
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	U	U	34	U	ĨĨ
Freon 113	5 ST	1	U	U	U	U	Ŭ	30	ŭ	U U
1,1-Dichloroethene	5 ST	1	·U	U	U	U	Ū	24	ц Ц	U U
t-1,2-Dichloroethene	5 ST	1	U	U	U	U	Ŭ	U	U U	U U
1,1-Dichloroethane	5 ST	1	U	1.1	U	U	Ū	150	U U	П
c-1,2-Dichloroethene	5 ST	1	U	U	U	υ	U U	460	U U	· 11
1,1,1-Trichloroethane	5 ST	1	υ	6.3	U	ប	Ū	83	IJ	U U
Trichloroethene	5 ST	1	U	U	υ	U	Ū ·	440	Ŭ	U
TOTAL TARGETED	VOCs		U	7.4	U	U	<u> </u>	1221	Ū	<u>U</u>

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC		_	GP-W HH-50	GP-W HH-50	GP-W HH-100	GP-W HH-100	GP-W OS-1	GP-W OS-1	GP-W OS-1	GP-W OS-2
SAMPLE DEPTH IN	FEET		(16-20')	(48-52')	(12-16')	(46-50')	(6-10')	(24-28')	(51-55')	(12-16')
DATE OF COLLECT.	ION		03/31/99	03/29/99	03/29/99	03/29/99	03/22/99	03/26/99	03/22/99	03/24/99
DILUTION FACTOR	UTION FACTOR		1		5	10	5	25	1	<u></u>
Targeted	NYSDEC Class GA	CRDL							<u>1</u>	<u> </u>
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	υ	90	IJ	U	U	l
Freon 113	5 ST	1	U	U	Ū	U	U	780	16	
1,1-Dichloroethene	5 ST	1	IJ	U	Ū	10	12	87	3.5	
t-1,2-Dichloroethene	5 ST	1	U	U	Ū	<u>U</u>	<u> </u>	<u> </u>	3,5 U	
1,1-Dichloroethane	5 ST	1	U	2.7	Ŭ	52	U U	U	3.4	U
c-1,2-Dichloroethene	5 ST	1	U	10	Ŭ	450	U	U	- 3,4 U	
1,1,1-Trichloroethane	5 ST	1	U	U	Ū į	<u>U</u>	8.6	390	5.6	
Trichloroethene	5 ST	1	U	9.6	Ŭ	70	6.2	220	10	
TOTAL TARGETED	TOTAL TARGETED VOCs		U	22.3	<u>U</u>	672	26.8	1477	38.5	U

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard -

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

SAMPLE IDENTIFIC	ATION		GP-W OS-2	GP-W OS-3	GP-W OS-3	GP-W OS-3	GP-W UG-1	GP-W UG-1	GP-W UG-2	
SAMPLE DEPTH IN	FEET		(35-39')	(6-10')	(24-28')	(51-55')	(12-16')	(48-52')		GP-W UG-2
DATE OF COLLECT	COLLECTION		03/24/99	03/25/99	03/25/99	03/25/99	03/30/99	03/30/99	(12-16')	(28-32')
DILUTION FACTOR	ILUTION FACTOR		1	5	50	10	1	03/30/99	03/30/99	03/30/99
Targeted	NYSDEC Class GA	CRDL				10	I	1	3	10
Compounds	Groundwater Standard									
Vinyl Chloride	2 ST	1	U	U	U	U	U	TI	ប	* 7
Freon 113	5 ST	1	8.6	16	330	270	U U	U	U	U
1,1-Dichloroethene	5 ST	1	7.1	U	100	96	U U	U	U	U
t-1,2-Dichloroethene	5 ST	1 1	U	U U	U	<u>J0</u>			U	U
1,1-Dichloroethane	5 ST	1 1	8.8	U U	U	72		0	0	U
c-1,2-Dichloroethene	5 ST		II	U U	Ŭ	11	U	U	0	U
1,1,1-Trichloroethane			9.3	U U			U	0	U	U
Trichloroethene	5 ST			ũ	300	69	U	U	U	U
			<u>15</u> 48.8	U	390	220	U	U	U	U
TOTAL TARGETED	OTAL TARGETED VOCs			16	1120	738	U	Ū	Ü	U

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES VOLATILE ORGANIC COMPOUNDS ON-SITE LABORATORY

SAMPLE IDENTIFIC	ATION		GP-W UG-3	GP-W UG-3	GP-W UG-4	GP-W UG-4	GP-W UG-5	GP-W UG-5		
SAMPLE DEPTH IN	FEET		(12-16')	(54-58')	(12-16')	(50-54')				GP-W UG-6
DATE OF COLLECT	E OF COLLECTION		03/30/99	03/30/99	04/01/99	03/31/99	(12-16')	(53-57')	(12-16')	(42-46')
DILUTION FACTOR	TION FACTOR			5	5	03/31/99	04/01/99	04/01/99	04/02/99	04/02/99
Targeted	NYSDEC Class GA	CRDL						5	5	20
Compounds	Groundwater Standard						Ē			
Vinyl Chloride	2 ST	1	U	12	IJ	250	IT	T		
Freon 113	5 ST		U	U	U U	U	11	U	U	38
1,1-Dichloroethene	5 ST		Ŭ	17	U U				U	52
t-1,2-Dichloroethene	5 ST		Ŭ	U	U	U		U	U	38
1,1-Dichloroethane	5 ST		1	60	U	U	U	U	U	U
c-1,2-Dichloroethene	5 ST		U TT		U	120	U	U	U	230
1,1,1-Trichloroethane	5 ST		U	160	U	920	U	6.7	U	740
			U	87	U	U	U	U	U	90
Trichloroethene	5 ST		<u>U</u>	76	U	55	U	18	U	870
TOTAL TARGETED	OTAL TARGETED VOCs			412	U	1345	U	24.7	<u> </u>	2058

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC

SAMPLE IDENTIFIC			SUMP	SUMP	GP-W-DEPRS.	GP-W-DEPRS.
SAMPLE DEPTH IN	FEET		(27-31')	(12-16')	(12-16')	(38-42')
DATE OF COLLECT	ION		01/21/99	01/21/99	04/13/99	04/13/99
DILUTION FACTOR			50	50	20	100
Targeted	NYSDEC Class GA	CRDL				
Compounds	Groundwater Standard	1. [i
Vinyl Chloride	2 ST	1	U	U	U	U
Freon 113	5 ST	1	1100	75	υ	740
1,1-Dichloroethene	5 ST	1	180	U	υ	130
t-1,2-Dichloroethene	5 ST	1	U	ប	υ	U
1,1-Dichloroethane	5 ST	1	100	100	υ	100
c-1,2-Dichloroethene	5 ST	1	170	410	U	340
1,1,1-Trichloroethane	5 ST	1	1300	250	110	400
Trichloroethene	5 ST	1	770	510	37	470
TOTAL TARGETED	VOCs		3620	1345	147	2180

QUALIFIERS/ABBREVIATIONS:

U: Compound analyzed for but not detected

B: Compound also found in the method blank

CRDL: Contract Required Detection Limit

ST: Standard

VOCs: Volatile Organic Compounds

Values in ug/l (Micrograms per liter)

Concentration exceeds NYSDEC Standard/Guideline.

VOCs on-site lab +10

TABLE H - 3 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GROUNDWATER GEOPROBE SAMPLES PCBs

SAMPLE IDENT	IFICATION		GP-W-B50	GP-W-B50	GP-W-B100	GP-W-B100	GP-W-BB0	GP-W-D25	GP-W-G(-10)	GP-W-G(-25)
SAMPLE DEPTH	H (ft)		8-12	36-40	12-16	46-50	18-22	42-46	12-16	12-16
DATE COLLECT	red		1/7/99	1/7/99	1/7/99	1/7/99	4/6/99	4/7/99	3/19/99	3/19/99
DILUTION FAC	TOR		1	i	1	1	1	1	1	1
UNITS	VITS		(ug / l)	(ug / l)	(ug / 1)	(ug/l)	(ug / l)	(ug / l)	(ug / l)	(ug / l)
PCBs	NYSDEC Class GA Ground- water Standard/Guideline	CRDL			·`\$_^,			(*8/-)		
Aroclor-1016		1	U	U		· · · · · · · · · · · · · · · · · · ·	U	<u> </u>	<u>т</u>	
Aroclor 1221	*	2	υ	U	U	U	Ū	U U	U U	· 11
Aroclor-1232	*	1	ប	U	U	U	Ū	U U	Ŭ	U U
Aroclor-1242	*	1	U	U	U	U	Ū	Ū	U U	U U
Aroclor-1248	*	1	U	U	U	Ū	Ŭ		Ŭ	U U
Aroclor-1254	*	1	U	υ	U	Ū	Ū	U U		U U
Aroclor-1260	*	1	U	U	U	Ū	Ū	U U	й П	U II
Total PCBs	0.09 ST		ND	ND	ND	ND	ND	ND	ND	ND

QUALIFIERS/ABBREVIATIONS;

ug / 1: Micrograms per liter.

*: Standard applies to the sum of these constituents.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

ND: Not Detected

TABLE H - 3 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GROUNDWATER GEOPROBE SAMPLES

PCBs

SAMPLE IDENT	TIFICATION		GP-W-G(-65)	GP-W-H0	GP-W-H50	GP-W-H100	GP-W-I0	GP-W-J25	GP-W J-50
SAMPLE DEPTI	H (ft)		23-27	14-18	36-40	51-55	14-18	12-16	12-16
DATE COLLEC	TED		3/18/99	1/25/99	1/20/99	1/8/99	4/5/99	1/13/99	1/21/99
DILUTION FAC	TOR		1	1	1	1	I	1	1
UNITS			(ug / 1)	(ug / ĺ)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / 1)
PCBs	NYSDEC Class GA Ground- water Standard/Guideline	CRDL					 		
Aroclor-1016	*	1	U	U	U	U	U	U	U
Aroclor 1221	*	2	U	U	U	U	U	U	U
Aroclor-1232	*	1	U	U	U	U	U	U	U
Aroclor-1242	*	1	U	U	U	U	U	U	U
Arocior-1248	*	1	U U	U	U	U	U	U	U
Aroclor-1254	*	1	U U	U	U	U	U	U	U ¹
Aroclor-1260	*	1	U U	U	U	υ	U	U	U
Total PCBs	0.09 ST		ND	ND	ND	ND	ND	ND	ND

QUALIFIERS/ABBREVIATIONS:

ug / 1: Micrograms per liter.

*: Standard applies to the sum of these constituents.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

ND: Not Detected

3

TABLE H - 3 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GROUNDWATER GEOPROBE SAMPLES PCBs

SAMPLE IDENT	IFICATION		GP-W-K100	GP-W-M100	GP-W-P0	GP-P-Q(150)	GP-W-R100	GP-W T-85	GP-W-EE0
SAMPLE DEPTH	I (ft)		48-52	44-48	26-30	68-72	48-52	44-48	10-Jun
DATE COLLECT	ſED		1/9/99	1/13/99	1/15/99	3/24/99	1/14/99	1/20/99	4/2/99
DILUTION FAC	TOR		1	1	1	1	1	1	1
UNITS			(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / i)	(ug / 1)
PCBs	NYSDEC Class GA Ground- water Standard/Guideline	CRDL						<u> (</u>	(**8, *)
Aroclor-1016	*	1	U	U	U	U	U		
Aroclor 1221	*	2	U	υ	U	U U	Ū	Ū	Ŭ
Aroclor-1232	*	1	U	U	U	U	ប	IJ	Ŭ
Aroclor-1242	*	1	υ	U	U	Ū	Ū	Ŭ	Ŭ
Aroclor-1248	*	1	U	U U	U	Ū	Ŭ	с П	Ŭ
Aroclor-1254	+	1	υ	U	Ŭ	Ū	Ŭ	Ū	U U
Aroclor-1260	14	1	U	U	U	Ū	Ŭ	ប	U U
Total PCBs	0.09 ST		ND	ND	ND	ND	ND	ND .	ND

QUALIFIERS/ABBREVIATIONS:

ug / l: Micrograms per liter.

*: Standard applies to the sum of these constituents.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

ND: Not Detected

TABLE H - 3 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GROUNDWATER GEOPROBE SAMPLES

PCBs

SAMPLE IDENTI	IFICATION		GP-W-EE100	GP-W-OS1	GP-W-OS2	GP-W-OS-3	GP-W-UG1	GP-W-0100	GP-W-SUMP	GP-W-T6
SAMPLE DEPTH	. (ft)		60-64	51-55	35-39	51-55	12-16	23-27	27-31	12-16
DATE COLLECT	ED		3/31/99	3/23/99	3/25/99	3/25/99	03/27/99	3/29/99	1/22/99	4/13/99
DILUTION FACT	TOR		1	1	1	1	1	1	1	1
UNITS			(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / 1)	(ug / l)
PCBs	NYSDEC Class GA Ground- water Standard/Guideline	CRDL				<u>_</u>				
Aroclor-1016	*	1	U	U	U	U	U	<u> </u>	U	U
Aroclor 1221	*	2	U	U	U	U	Ū	Ū	Ū	Ŭ
Aroclor-1232	*	1	U	U	U	U	U	υ	Ū	Ū
Aroclor-1242	+	1	U	·U	U	U	U	υ	u u	Ŭ
Aroclor-1248	+	1	U	Ŭ	U	U	υ	Ū	Ū	Ŭ
Aroclor-1254	+	1	U	U	U U	U	U	Ū	Ŭ.	Ŭ
Aroclor-1260	*	1	U	U	U (U	U U	υ	Ū	Ŭ
Total PCBs	0.09 ST		ND	ND	ND	ND	ND	ND	ND	ND

QUALIFIERS/ABBREVIATIONS:

ug / 1: Micrograms per liter.

*: Standard applies to the sum of these constituents.

CRDL: Contract Required Detection Limit.

U: Compound analyzed for but not detected.

ND: Not Detected

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY GEOPROBE GROUNDWATER SAMPLES METALS

SAMPLE IDEN			GP-W-B50	GP-W-B50	GP-W- B100	GP-W-B100	GP-W-BB0	GP-W-D(25)	GPWD(-60)	GP-W-EE0
SAMPLE DEPT	H (ft)		8-12	36-40	12-16	46-50	18-22	42-46	4-8	••
DATE COLLEC	TED		01/07/1999	01/07/1999	01/07/1999	01/07/1999	04/16/1999	04/07/1999	10/04/1999	04/02/1999
Metals	NYSDEC Class GA Ground- water Standard/Guideline	IDL	(ug / l)	(ug / 1)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / l)	(ug / l)
Aluminum	-	22	108 B	92.3 B	149 B	103 B	211	235	1370	215
Antimony	3 ST	10	U	U	υ	4.3 B	υ	U	7 B	Ū
Arsenic	25 ST	6	U	3.7 B	U	U	Ŭ	Ū	<u> </u>	Ū
Barium	1000 ST	1	49.4 B	59.2 B	43 B	95.8 B	24.6 B	28.1 B	9.2 B	49.2 B
Beryllium	3 GV	1	U	U	. U	U	U	U	1	U
Cadmium	5 ST	1	U	U	U,	U	1.7 B	1.4 B	U	1.7 B
Calcium	-	70	51100	57000	64100	80400	15900	76500	18700	12900
Chromium	50 ST	1	U	U	U	U	U	U	2.1 B	U
Cobalt	-	2	6.6 B	3.6 B	2.2 B	2.7 B	υ	U	υ	Ū
Copper	200 ST	1	U	U	U	U	1.5 B	1.6 B	2.7 B	5.5 B
Iron	300 ST*	50	165	190	221	156	394	429	1590	414
Lead	25 ST	2	U	U	U	U	2.2 B	2.2 B	U	3
Magnesium	35000 GV	30	19900	19000	28800	25200	5520	21600	1640 B	4970 B
Manganese	300 ST*	1	584	1300	305	590	73.3	443	62.4	110
Mercury	0.7 ST	0.1	Ú	U	0.3	Ū	0.17 B	U	U	U
Nickel	100 ST	3	8.8 B	U	U	U	6 B	4.7 B	Ū	5.5 B
Potassium	- ⁻	66	2670 B	3530 B	4320 B	3180 B	2090 B	2530 B	1700 B	2070 B
Selenium	10 ST	4	U	U	2 B	1.6 B	U	U	υ	U
Silver	50 ST	2	U	U	U	U	υ	U	υ	Ū
Sodium	20000	32	9920	10500	9310	8680	10600	9100	17700	5310
Thallium	0.5 GV	7	Ŭ	U	ប	U	U	U	U	· U
Vanadium	-	2	U	U	Ŭ	Ū	υ	Ŭ	Ŭ	Ŭ
Zinc	2000 GV	8	9.9 B	2.8 B	5 B	1.3 B	· Ū	Ŭ	174	Ŭ
Cyanide	200 ST	10	U de la	1801 U	U	U.	Ū	Ŭ	υ	Ŭ

QUALIFIERS/ABBREVIATIONS: ug/l= Micrograms per Liter.

ST: Standard.

GV: Guidance Value.

- : Standard/guidance value not established.

IDL: Instrument Detection Limit.

U: Compound analyzed for but not detected.

B: Concentration is > IDL but < CRDL.

J: Compound found at level below CRDL, value estimated

ST*: Standard for the sum of Iron and Manganese is 500 ug/l.

CRDL: Contract Required Detection Limit.

Concentration exceeds NYSDEC Standard/Guideline.

gp-gw metals

SAMPLE IDEN	TIFICATION		GP-W-EE100	GP-W-G(-10)	GP-W-G(-25)	GP-W-G(-65)	GP-W-H0	GP-W-H50	GP-W-H100
SAMPLE DEPT			60-64	12-16	12-16	23-27	14-18	36-40	51-55
DATE COLLEC	CTED		03/31/1999	03/19/1999	03/19/1999	03/18/1999	01/25/1999	01/20/1999	01/08/1999
Metals	NYSDEC Class GA Ground- water Standard/Guideline	IDL	(ug / l)	(ug / 1)	(ug / 1)	(ug / 1)	(ug / l)	(ug / l)	(ug / i)
Aluminum	-	22	24.7 B	4370	6700	4940	1150	719	87.6 B
Antimony	3 ST	10	U	υ	U	U	U	U	U
Arsenic	25 ST	6	U	U	6.7 B	U	U	U	U
Barium	1000 ST	1	67.9 B	93.7 B	64.4 B	56.6 B	73.6 B	70.2 B	50.7 B
Beryllium	3 GV	I	U	U	U	U	U	U	U
Cadmium	5 ST	1	1.4 B	1.4 B	1.6 B	1.7 B	U U	U	U
Calcium	-	70	42800	40500	23400	15000	70200	59800	90300
Chromium	50 ST	1	U	7.1 B	13.9	10.3	4.9 B	2 B	U
Cobalt	-	2	8.7 B	5.2 B	6.8 B	13.4 B	21.8 B	24.7 B	4.2 B
Copper	200 ST	1	1.3 B	10.8 B	11.2 B	20.1 B	3.7 B	5.4 B	U
Iron	300 ST*	50	Ū	9480	12100	12400	2160	2120	106
Lead	25 ST	2	U	4.1	5.6	7.4	U.	Ŭ	U
Magnesium	35000 GV	30	15400	9470	8060	5410	29100	19600	30300
Manganese	300 ST*	1	888	1030	757	1600	537	3230	750
Mercury	0.7 ST	0.1	Ū	Ū	U -	U	U	0.23	U
Nickel	100 ST	3	13.8 B	25,8 B	35.7 B	27.9 B	18.9 B	20.4 B B	U
Potassium	-	66	2860 B	2940 B	2680 B	2590 B	4780 B	3460 B B	3100 B
Selenium	10 ST	4	U	U	U	U	U	U	4.4 B
Silver	50 ST	2	⁻ U	U ·	U ·	U U	U	U	U
Sodium	20000	32	8260	19600	17500	6380	12800	9850	11700
Thailium	0,5 GV	7	U	U	U	U	υ	υ	U
Vanadium	-	2	U	6.2 B B	7.9 B	8.8 B	U	U	U
Zinc	2000 GV	8	U U	11.7 B B	33.8	30.2	33.9	71.2	4.6 B
Cyanide	200 ST	10	U	U	U	U	U	υ	U

QUALIFIERS/ABBREVIATIONS:

ug/l= Micrograms per Liter.

ST: Standard.

GV: Guidance Value.

- : Standard/guidance value not established.

IDL: Instrument Detection Limit.

U: Compound analyzed for but not detected.

B: Concentration is > IDL but < CRDL.

J: Compound found at level below CRDL, value estimated

ST*: Standard for the sum of Iron and Manganese is 500 ug/l.

CRDL: Contract Required Detection Limit.

: Concentration exceeds NYSDEC Standard/Guideline.

gp-gw metals

SAMPLE IDEN			GP-W-I0	GP-W-J2	5	GP-W-J50	GP-W-K100	GP-W-M100	GPWL(-40)	GPWN(-25)
SAMPLE DEPT			14-18	12-16		12-16	48-52	44-48	12-16	6-10
DATE COLLEC	TED		04/05/1999	01/13/199	9	01/21/1999	01/09/1999	01/13/1999	10/04/1999	10/04/1999
Metals	NYSDEC Class GA Ground- water Standard/Guideline	IDL	(ug / 1)	(ug / l)		(ug / l)	(ug / 1)	(ug/l)	(ug / 1)	(ug / 1)
Aluminum	• .	22	201	113	В	96.4 B	3290	106 B	2240	1180
Antimony	3 ST .	10	U	U		U	U	U	U	U
Arsenic	25 ST	6	U	U		U	U	U	Ū	Ū Ū
Barium	1000 ST	1	5 B	33.2	в	34.4 B	73.8 B	35.8 B	54.9 B	86.6 B
Beryllium	3 GV	1	U	U		1 U	U	U	Ū	U U
Cadmium	5 ST	1	1.5 B	U		U	υ	υ	U	Ū
Calcium	а н м.	70	8350	5100		40100	40900	50600	17000	42500
Chromium	50 ST	1	1.3 B	U		U	8.1 B	U	5.6 B	3.8 B
Cobalt		2	U	4.1	В	υ	30.4 B	6.6 B	5.5 B	5.4 B
Copper	200 ST	1	1.8 B	υ		υ	13.4 B	U	10.3 B	11.2 B
Iron	300 ST*	50	343	206		177	6830	907	5280	2690
Lead	25 ST	2	3	2.2	В	U	3.1	U	<u> </u>	<u> </u>
Magnesium	35000 GV	30	438 B	148000		10600	12200	16600	5750	13500
Manganese	300 ST*	1 ;	4 B	1900		2320	4440	1640	546	2010
Mercury	0.7 ST	0.1	U .	0.12	B	anga U	0.33	U	<u> </u>	<u>- 2010</u> U
Nickel	100 ST	3	3.4 B	7.3	B	12 B	32.1 B	10.5 B	13.7 B	10.6 B
Potassium	-	66	6900	2760	В	2390 B	3340 B	3230 B	2270 B	1880 B
Selenium	10 ST	4	4.7 B	1.2	В	U.	1.5 B	U	U U	U
Silver	50 ST	2	U	ປ່		. U	υ	Ŭ	Ū	Ū
Sodium	20000	32	158000	16600		8100	8340	9220	5180	4560 B
Thallium	0.5 GV	7	U	1 ບໍ		U	U	Ŭ	U	U 1000 B
Vanadium	-	2	10 B	U		Ū	6.3 B	Ŭ	4.6 B	3В
Zinc	2000 GV	8	28.9	3.5	в	Ū	21.3	7.5 B	39.7	17.4 B
Cyanide	200 ST	10	U	U			U	U	Ŭ	U 1/14 D

QUALIFIERS/ABBREVIATIONS:

ug/l= Micrograms per Liter.

ST: Standard.

GV: Guidance Value.

-: Standard/guidance value not established.

IDL: Instrument Detection Limit.

U: Compound analyzed for but not detected.

B: Concentration is > IDL but < CRDL.

J: Compound found at level below CRDL, value estimated

ST*: Standard for the sum of Iron and Manganese is 500 ug/l.

4

CRDL: Contract Required Detection Limit.

: Concentration exceeds NYSDEC Standard/Guidline.

1.1

SAMPLE IDEN	TIFICATION		GP-W-P	0	GP-W-OS1	GP-W-OS2	GP-W-OS3	GP-W-0100	GP-P-Q(150)	
SAMPLE DEPT	H (ft)		26-30		51-55	35-39	51-55	23-27	68-72	
DATE COLLEC			01/15/199	9	03/23/1999	03/25/1999	03/25/1999	03/29/1999	03/24/1999	
Metals	NYSDEC Class GA Ground- water Standard/Guideline	IDL	(ug / 1)		(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	
Aluminum	-	22	116	В	U	33.2 B	U	45,4 B	U	
Antimony	3 ST	10	U U		U	υ	U U	U	U	
Arsenic	25 ST	6	U		U	U	1 U	U	U	
Barium	1000 ST	1	20.3	В	52.4 B	37 B	36.9 B	119 B	127 B	3
Beryllium	3 GV	1	U U		U	U	U	U	U	
Cadmium	5 ST	1	U		1 B	U	1.3 B	1.1 B	1.1 B	3
Calcium	-	70	18800		19300	39800	35400	10800	51600	
Chromium	50 ST	1	U U		U	υ	ີບ	U	2.2 B	3
Cobalt	-	2	4.5	в	5.1 B	5.1 B	5.1 B	6.6 B	U	
Copper	200 ST	1	U		U a	1.1 B	U	1.4 B	U	
Iron	300 ST*	50	258		บ	່ບຶ	υ	139	U	
Lead	25 ST	2	U		2.2 B	U	2.7 B	2.1 B	U	
Magnesium	35000 GV	30	5560		5950	13400	11900	30200	19900	
Manganese	300 ST*	1	851		673	909	857	2410	97.1	
Мегсигу	0.7 ST	0.1	U		U	U	U	0.25	0.13 B	3
Nickel	100 ST	3	6.6	В	12.4 B	5,6 B	6.2 B	12.4 B	6.4 B	3
Potassium	-	66	2060	В	2380 B	2630 B	2300 B	4090 B	5950	1
Selenium	10 ST	4) U		U	U	U	U	U	
Silver	50 ST	2	U		U .	U	U	U	U	
Sodium	20000	32	5000	В	4380 B	7630	6310	10800	9110	
Thallium	0.5 GV	7	. U		υ	U	U	υ	U	
Vanadium	-	2	U		υ	υ	U	U	U	
Zinc	2000 GV	8	9.9	в	94.6	υ.	U	U	U	
Cyanide	200 ST	10	U		Ŭ	U .	U	U	U	1

QUALIFIERS/ABBREVIATIONS:

ug/l= Micrograms per Liter.

ST: Standard.

GV: Guidance Value.

-: Standard/guidance value not established.

IDL: Instrument Detection Limit.

U: Compound analyzed for but not detected.

B: Concentration is > IDL but < CRDL.

J: Compound found at level below CRDL, value estimated

ST*: Standard for the sum of Iron and Manganese is 500 ug/l.

CRDL: Contract Required Detection Limit.

SAMPLE IDENT	IFICATION		GR-W-R(100)	GP-W-SUMP	GP-W-T6	GP-W-T(85)	GP-W-UG-1	GPWV1(-75)
SAMPLE DEPTH			48-52	27-31	12-16	44-48	12-16	12-16
DATE COLLECT	TED		01/13/1999	01/22/1999	04/14/1999	01/20/1999	04/01/99	10/04/1999
Metals	NYSDEC Class GA Ground- water Standard/Guideline	IDL	(ug / 1)	(ug / l)	(ug / 1)	(ug / l)	(ug / 1)	(ug / l)
Aluminum	-	22	101 B	67.1 B	51400	U U	U	1500
Antimony	3 ST	10	U	U	U	U	U	U
Arsenic	25 ST	6	U	U	17.6	U	U	U
Barium	1000 ST	1	81.8 B	48.4 B	965	33.4 B	31.4 B	9.2 B
Beryllium	3 GV	1	U	U	1.11 B	U	1	U 1
Cadmium	5 ST	1	U	U	9.6	U	1.2 B	U
Calcium	-	70	88800	43600	83600	40200	20700	16500
Chromium	50 ST	1	U	υ	190	U	U	3.1 B
Cobalt	-	2	4.9 B	17.2 B	83.9	6.3 B	3.9 B	U
Copper	200 ST	1	U	2 B	268	U	1.2 B	3.2 B
Iron	300 ST*	50	198	176	144000	70.4 B	U	1790
Lead	25 ST	2	U	Ŭ	65.3	Ŭ	U	U
Magnesium	35000 GV	30	26000	12500	61500	11200 B	7220	1570 B
Manganese	300 ST*	1	216	1630	3080	1750	523	78
Mercury	0.7 ST	0.1	ប	U	0.12 B	U	0.17 B	U
Nickel	100 ST	3	U	15.5 B	150	9.1 B	10 B	Ū
Potassium	-	66	2940 B	2820 B	21100	2340 B	2510 B	1580 B
Selenium	10 ST	4	υ	U	8.3	U	U	υ
Silver	50 ST	2	U	U	U	. U	U	U
Sodium	20000	32	12800	15300	15600	6010	6040	15800
Thallium	0.5 GV	7	5.2 B	U	16.5	U	U	υ
Vanadium	-	2	U	υ	143	U	U	U
Zinc	2000 GV	8	3.4 B	42.8	300	8.7 B	29.5	22.5
Cyanide	200 ST	10	U	U	U	U	U	U
QUALIFIERS/A	BBREVIATIONS:							
ug/l= Micrograms	s per Liter.					: Cor	centration exceeds N	YSDEC
ST: Standard.	:			a sa a	, North	Star	ndard/Guideline.	
GV: Guidance V	alue.							
-: Standard/guida	ance value not established.							
IDL: Instrument								
•	alyzed for but not detected.							
	is $>$ IDL but $<$ CRDL.	. 1	· · · ·	- 	. 1. 1			
	nd at level below CRDL, value es							
	r the sum of Iron and Manganese	is 500 ug/l.						
CRDL: Contract	Required Detection Limit.				-			
				н .				
			-		на страни страни страни и страни с	:	· · ·	•

.

SAMPLE IDENTIFICATION			MW-1	MW-1	MW-3	MW-3	MW-3	P-5D	P-51	P-6
DATE OF COLLECTION			11/2/99	1/28/00	4/9/99	11/2/99	1/28/00	4/9/99	4/9/99	4/12/99
DILUTION FACTOR		_	1	1	200	100	100	250	200	1
UNITS			(ug / 1)	(ug / l)	(ug/l)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / 1)
LABORATORY LOCATION (C	DN/OFF) SITE		OFF	OFF	ON	OFF	OFF	ON	ON	ON
Targeted	NYSDEC Class GA Ground-	CRDL								
Compounds:	water Standard/Guidance Value									
Vinyl Chloride	2 ST	10	υ	U	U -	U	280 J	U	υ	U
Freon 113	5 ST	10	υ	U	640	440 J	U	1800	U	U
1,1-Dichloroethene	5 ST	10	U	U	490	670 J	360 J	310	ប	υ
t-1,2-Dichloroethene	5 ST	10	NA	NA	U	NA	NA	U	υ	υ
1,1-Dichloroethane	5 ST	10	U	U	υ	110 J	υ	υ	υ	υ.
c-1,2-Dichloroethene	5 ST	10	NA	NA	U	NA	NA	υ	390	U
1,2-Dichloroethene (total)	5 ST*	10	1 J	1 J	NA	200 J	U	NA	NA	NA
1,1,1-Trichloroethane	5 ST	10	U	U	6700	13000	9800	900	υ	υ
Trichloroethene	5 ST	10	2 J	U	830	1700	930 J	750	680	1 บ
Total Targeted VOCs			3	ប	8660	16120	11370	3760	1070	υ
Additional Compounds:										
Chloroethane	5 ST	10	U	U	NA	U	U	NA	NA	NA
Chloroform	7 ST	10	. U	U	NA	U	U	NA	NA	NA
Acetone	50 ST	10	U.	U	NA	ប	659 JB	NA	NA	NA
Methylene Chloride	5 ST	10	U	U	BQL	U	U	BQL	BQL	BQL
Carbon Tetrachloride	5 ST	10	ប	U	U	ប	U	U	U	U
1,2-Dichloroethane	0.6 ST	10	U	U	υ	U	U	U	U	U
Tetrachloroethene	5 ST	10	U	U	υ	ប	υ	U	U	U
Benzene	1 ST	10	2 J	1 J	ប	υ	U	U	U	υ
Toluene	5 ST	10	U	υ	υ	ប	υ	U	U	.U
Chlorobenzene	5 ST	10	υ	U	υ	υ	υ	υ	U	υ
Ethylbenzene	5 ST	10	Ŭ	υ	υ	ប	υ	U	U	υ
M&P-Xylene	5 ST	10	υ	U	U	U	U	U	U	υ
O-Xylene	5 ST	10	υ	<u> </u>	ប	U	U	Ŭ	υ	U
Total Non-Targeted VOCs			. 2	1	U	U.	659	U	Ŭ	U

QUALIFIERS/ABBREVIATIONS:

ug / l: Micrograms per liter.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

CRDL: Contract Required Detection Limit.

BQL: Detected below the minimum quantitation limit.

NA : Compound not analyzed for.

: Exceeds NYSDEC groundwater Standard/Guidance Value.

ST: Standard

ST*: Applies to the sum of the cis and trans isomers.

l of 5

SAMPLE IDENTIFICATION			MW-8S	MW-8S	MW-8D	MW-8D	MW-8R	MW-8R	P-9	P-9
DATE OF COLLECTION			11/2/99	1/27/00	11/1/99	1/27/00	11/2/99	1/27/00	11/4/99	1/28/00
DILUTION FACTOR			1	1	1	1	I I	1	1	1
UNITS			(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)
LABORATORY LOCATION (ON/OFF) SITE		OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Targeted	NYSDEC Class GA Ground-	CRDL								
Compounds:	water Standard/Guidance Value	CRDC								
Vinyl Chloride	2 ST	10	U	U	U	U	U	U	Ŭ	U
Freon 113	5 ST	10	0.8 J	υ	5 J	υ	υ	U	U	υ
1,1-Dichloroethene	5 ST	10	U	U	U	υ	υ	U	U	U
t-1,2-Dichloroethene	5 ST	10	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5 ST	10	υ	U	υ	υ	υ	1 J	ប	U
c-1,2-Dichloroethene	5 ST	10	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethene (total)	5 ST*	10	υ	U	U	U	U	U	ບ	υ
1,1,1-Trichloroethane	5 ST	10	υ	U	U	U	U	U	U	U
Trichloroethene	5 ST	10	1 J	U	3 J	U	υ	υ	U	U
Total Targeted VOCs			1.8	U	8	U	U	1	Ű	U
Additional Compounds:										<u> </u>
Chloroethane	5 ST	10	υ	U	υ	υ	U	U	ប	ប
Chloroform	7 ST	10	ប	ប	U	υ	3 J	U	υ	U
Acetone	50 ST	10	υ	U	U	υ	15	U	υ	U
Methylene Chloride	5 ST	10	U	U	U	υ	υ	ບັ	ບ	U
Carbon Tetrachloride	5 ST	10	υ	ប	U	υ	U	U	U	U
1,2-Dichloroethane	0.6 ST	10	υ	υ	U	υ	U	U	U	U
Tetrachloroethene	5 ST	10	U	υ	U	U	ប	. U	υ	U
Benzene	I ST	10	U	υ	U	ΙJ	U	0.5 J	υ	U
Toluene	5 ST	10	U	ប	U	U	2 J	U	U	υ
Chlorobenzene	5 ST	10	U	ប	U	U	U	υ	υ	υ
Ethylbenzene	5 ST	10	U	U	U	U	U	υ	U	υ
M&P-Xylene	5 ST	10	U	U	U	U	υ	U	υ	υ
O-Xylene	5 ST	10	U	U	U	U	U	U	Ŭ	ម
Total Non-Targeted VOCs			U _i	U	U	ប	20	0.5	U	U

QUALIFIERS/ABBREVIATIONS:

ug / l: Micrograms per liter.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

CRDL: Contract Required Detection Limit.

BQL: Detected below the minimum quantitation limit.

NA : Compound not analyzed for.

: Exceeds NYSDEC groundwater Standard/Guidance Value, ST: Standard

ST*: Applies to the sum of the cis and trans isomers.

2 of 5

SAMPLE IDENTIFICATION	· · · · · · · · · · · · · · · · · · ·					,				<u></u>
DATE OF COLLECTION			P-10	MW-10S	MW-108	MW-10D	MW-10D	MW-10R	MW-10R	P-11
			4/12/99	11/2/99	1/27/00	11/2/99	1/27/00	11/2/99	1/27/00	4/12/99
DILUTION FACTOR			I	1		2	2	5	10	20
UNITS			(ug / 1)	(ug / l)						
LABORATORY LOCATION			ON	OFF	OFF	OFF	OFF	OFF	OFF	ON
Targeted	NYSDEC Class GA Ground-	CRDL								
Compounds:	water Standard/Guidance Value									
Vinyi Chloride	2 ST	10	3.9	5 J	14	33	27	U	Ŭ	U
Freon 113	5 ST	10	1.4	1]	4 J	200	390	470	780	98
l,l-Dichloroethene	5 ST	10	3.5	2 J	11	30	40	200	230	72
t-1,2-Dichloroethene	5 ST	10	υ	NA	NA	NA	NA	NA	NA	Ŭ
1,1-Dichloroethane	5 ST	10	9.8	12	26	65	75	270	350	υ
c-1,2-Dichloroethene	5 ST	10	11	NA	NA	NA	NA	NA	NA	บ
1,2-Dichloroethene (total)	5 ST*	10	NA	10	32	190	190	23 J	29 J	NA
1,1,1-Trichloroethane	5 ST	10	3.4	3 J	14	130	280	180	290	850
Trichloroethene	5 ST	10	12	9 J	36	230	260	610	630	210
Total Targeted VOCs			45	42	137	878	1262	1753	2309	1230
Additional Compounds:										
Chloroethane	5 ST	10	NA	8 J	14	4 J	5 J	ប	ប	NA
Chloroform	7 ST	10	NA	10	U	υ	υ	Ŭ	U U	NA
Acetone	50 ST	10	NA	υ	U	υ	σ	U	95 J	NA
Methylene Chloride	5 ST	10	BQL	υ	3 J	1 JB	U	υ	11 J	BQL
Carbon Tetrachloride	5 ST	10	U	U	U	U	U U	υ	U	U
1,2-Dichloroethane	0.6 ST	10	ប	υ	υ	Ū	Ŭ	Ŭ	υ	บ บ
Tetrachloroethene	5 ST	10	υ	υ	υ	U	U	Ű	Ŭ	U
Benzene	1 ST	10	υ	0.8 J	0.9 1	U .	υ	Ŭ	Ŭ	U U
Toluene	5 ST	10	υ	υ	υ	υ	υ	Ŭ	U	υ
Chlorobenzene	5 ST	10	υ	Ü.	υ	U	U	U U	υ	U U
Ethylbenzene	5 ST	10	U	υ	Ū	υ	υ	υ	υ	U
M&P-Xylene	5 ST	10	U U	U	Ŭ	U	υ	υ	Ŭ	บ บ
O-Xylene	5 ST	10	υ	Ŭ	U	υ	U	Ŭ	Ŭ	U U

QUALIFIERS/ABBREVIATIONS:

ug / I: Micrograms per liter.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated,

CRDL: Contract Required Detection Limit.

BQL: Detected below the minimum quantitation limit.

NA : Compound not analyzed for.

ST: Standard

ST*: Applies to the sum of the cis and trans isomers.

: Exceeds NYSDEC groundwater Standard/Guidance Value.

3 of 5

SAMPLE IDENTIFICATION			P-12	P-12	P-14	P-14	OC-17D	OC-175	OC-18D	OC-185
DATE OF COLLECTION			11/3/99	1/28/00	11/4/99	1/28/00	4/8/99	4/8/99	4/8/99	4/8/99
DILUTION FACTOR			İ	1	1	1	200	20	200	200
UNITS			(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / l)
LABORATORY LOCATION (ON/OFF) SITE		OFF	OFF	OFF	OFF	ON	ON	ON	ON
Targeted	NYSDEC Class GA Ground-	CRDL								
Compounds:	water Standard/Guidance Value									
Vinyl Chloride	2 ST	10	U	U	U	U	BQL	U	υ	 ປ
Freon 113	5 ST	10	66	120	U	U	1500	120	5600	300
1,1-Dichloroethene	5 ST	10	υ	U	Ŭ	U	220	85	600	64
t-1,2-Dichloroethene	5 ST	10	NA	NA	NA	NA	U	U	U	<u>_</u>
1,1-Dichloroethane	5 ST	10	2 J	4 J	2 Ј	U	130	32	250	BQL
c-1,2-Dichloroethene	5 ST	10	NA	U	NA	NA	230	57	U	ັບ
1,2-Dichloroethene (total)	5 ST*	10	4 J	U	U	U	NA	NA	NA	NĂ
1,1,1-Trichloroethane	5 ST	10	34	100	0.4 J	υ	840	760	3100	250
Trichloroethene	5 ST	10	24	14	. U	U	680	290	1800	230
Total Targeted VOCs			130	238	2.4	U	3600	1344	11350	844
Additional Compounds:					· <u></u>					
Chloroethane	5 ST	10	υ	υ	U	U	NA	NA	NA	NA
Chloroform	7 ST	10	υ	υ	U	υ	NA	NA	NA	NA
Acetone	50 ST	10	υ	υ	U	บ	NA	NA	t i i	
Methylene Chloride	5 ST	1			U U				NA	NΔ
	J 31	10	U	U	U U				NA	NA BOL
Carbon Tetrachloride	5 ST	10 10	U U	-	U	U	BQL	BQL	BQL	BQL
Carbon Tetrachloride 1,2-Dichloroethane				U	-	ប ប	BQL U	BQL U	BQL U	BQL U
	5 ST	10	U	U U	U U	U	BQL U U	BQL U U	BQL U U	BQL U U
1,2-Dichloroethane	5 ST 0.6 ST	10 10	U U	ប ប ប	บ บ บ	ប ប ប ប	BQL ປ ບ ບ	BQL บ บ บ	BQL U U U	BQL U U U
1,2-Dichloroethane Tetrachloroethene	5 ST 0.6 ST 5 ST	10 10 10	ប ប ប	ប ប ប ប	ប ប ប ប	ប ប ប ប	BQL U U U U	BQL บ บ บ	BQL บ บ บ บ	BQL U U U U
1,2-Dichloroethane Tetrachloroethene Benzene	5 ST 0.6 ST 5 ST 1 ST	10 10 10 10	ប ប ប ប	ט ט ט ט ט	บ บ บ บ	ប ប ប ប	<u></u> ชดูเ บ บ บ บ	BQL U U U U U	BQL U U U U U	BQL U U U U
1,2-Dichloroethane Tetrachloroethene Benzene Toluene	5 ST 0.6 ST 5 ST 1 ST 5 ST	10 10 10 10 10	บ บ บ บ บ	บ บ บ บ บ บ	ប ប ប ប ប ប	ប ប ប ប ប ប	<u></u> ชดูเ บ บ บ บ บ	BQL บ บ บ บ บ	BQL U U U U U	BQL U U U U U
1,2-Dichloroethane Tetrachloroethene Benzene Toluene Chlorobenzene	5 ST 0.6 ST 5 ST 1 ST 5 ST 5 ST	10 10 10 10 10 10	บ บ บ บ บ	บ บ บ บ บ บ	บ บ บ บ บ	ប ប ប ប ប	<u></u> BQL บ บ บ บ บ บ	вQL U U U U U U U	BQL U U U U U U U	BQL U U U U U U U
1,2-Dichloroethane Tetrachloroethene Benzene Toluene Chlorobenzene Ethylbenzene	5 ST 0.6 ST 5 ST 1 ST 5 ST 5 ST 5 ST	10 10 10 10 10 10 10	บ บ บ บ บ บ	บ บ บ บ บ บ บ	ប ប ប ប ប ប ប	ប ប ប ប ប ប ប	<u></u> ชดูเ บ บ บ บ บ	BQL บ บ บ บ บ	BQL U U U U U	BQL U U U U U

QUALIFIERS/ABBREVIATIONS:

ug / 1: Micrograms per liter.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

CRDL: Contract Required Detection Limit.

BQL: Detected below the minimum quantitation limit.

NA : Compound not analyzed for,

: Exceeds NYSDEC groundwater Standard/Guidance Value.

ST: Standard

ST*: Applies to the sum of the cis and trans isomers.

- .

.

SAMPLE IDENTIFICATION			OC-19D	OC-195	MW-20S	MW-20S	MW-20D	MW-20D	MW-20R	MW-20R
DATE OF COLLECTION			4/9/99	4/9/99	11/1/99	1/28/00	11/1/99	1/28/00	11/1/99	1/28/00
DILUTION FACTOR			200	50	1	1	1	1	1	1
UNITS			(ug/1)	(ug / 1)	(ug / 1)	(ug / l)	(ug / 1)	(ug / l)	(ug / i)	(ug / l)
LABORATORY LOCATION (ON/OI	FF) SITE		ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
Targeted N	YSDEC Class GA Ground-	CRDL								
Compounds: wat	ter Standard/Guidance Value	CLOP								
Vinyl Chloride	2 ST	10	U	υ	6 J	7 J	U	U	U	U
Freon 113	5 ST	10	6700	1600	U	U	U	U	U	U
1,1-Dichloroethene	5 ST	10	810	180	15	11	2	2 Ј	U	U
t-1,2-Dichloroethene	5 ST	10	U	U	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	5 ST	10	310	110	24	23	4 J	4 J	U	U
c-1,2-Dichloroethene	5 ST	10	U	U	NA	NA	NA	NA	NA	NA
1,2-Dichloroethene (total)	5 ST*	10	NA	NA	64	53	4 J	3 J	υ	υ
1,1,1-Trichloroethane	5 ST	10	4000	1100	U	U	U	υ	U	Ŭ
Trichloroethene	5 ST	10	2400	640	U	U	32	15	U	ប
Total Targeted VOCs			14220	3630	109	94	42	24	U	U
Additional Compounds:								• • • • • • •		
Chloroethane	5 ST	10	NA	NA	U	U	U	U	U	U
Chloroform	7 ST	10	NA	NA	U	υ	2 J	2 J	8 J	4.
Acetone	50 ST	10	NA	NA	υ	ប	U	บ	U	ប
Methylene Chloride	5 ST	10	BQL	BQL	υ	2 J	U	ប	U	10 H
Carbon Tetrachloride	5 ST	10	ប	U	υ	υ	υ	2 J	Ŭ	2
1,2-Dichloroethane	0.6 ST	10	U	U	U	υ	U	ប	U	ប
Tetrachloroethene	5 ST	10	U	U	υ	U	υ	U	Ŭ	U
Benzene	1 ST	10	ប	υ	U	ប	υ	U	U	U
Toluene	5 ST	10	U	U	ប	U	0.4 J	U	- 1 J	U
Chlorobenzene	5 ST	10	U	U	υ	U	υ	U	U	U
Ethylbenzene	5 ST	10	υ	U	U	U	υ	U	U	ប
M&P-Xylene	5 ST	10	υ	υ	U	U	υ	U	U	U
O-Xylene	5 ST	10	U	U	U	U	U	U	U	U
Total Non-Targeted VOCs			U	. U,	U	2	2.4	4	9	16

QUALIFIERS/ABBREVIATIONS:

ug / 1: Micrograms per liter.

U: Compound analyzed for but not detected.

B: Compound also found in the method blank.

J: Compound found at level below CRDL, value estimated.

CRDL: Contract Required Detection Limit.

BQL: Detected below the minimum quantitation limit.

NA : Compound not analyzed for.

: Exceeds NYSDEC groundwater Standard/Guidance Value.

ST: Standard

ST*: Applies to the sum of the cis and trans isomers.

REMEDIAL INVESTIGATION / FEASIBILITY STUDY GROUNDWATER MONITORING WELL SAMPLE RESULTS METALS

SAMPLE IDENT	FICATION		<u>M</u> W-1	MW-I	MW-3	MW-3	MW-8S	MW-8S	MW-8D	MW-8D	MW-8R
DATE OF COLLE			11/2/99	1/29/00	11/2/99	1/29/00	11/2/99	1/29/00	11/1/99	1/29/00	11/2/99
METALS	NYSDEC Class GA Ground- water Standard/Guidance Value	IDL	(ug / l)	(ug / i)	(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / l)	(ug / l)
Aluminum	-	22	U	859 B	υ	υ		1270	606	U	431
Antimony	3 ST	10	ប	16 B	U	υ	υ	27.6 B	υ	U	U
Arsenic	25 ST	6	5.2 B	U	5.2 B	U	U	U	υ	U	5,11
Barium	1000 ST	ı	72.4 B	66.3	44.3 B	42.7 B	22,3 B	34.5 B	35.4 B	22 B	123 1
Beryllium	' 3 GV	1	U	U	U	U	ប .	U	U	υ υ	
Cadmium	5 ST	1	υ	U	υ	υ	U.	U	υ	U	U U
Calcium	-	70	37000	23600 B	42600	33800	28400	25900	22200	16700 B	31500
Chromium	50 ST	1	U	υ	U	U	υ	U	υ	U	U
Cobalt		2	υ	U	υ	U	U	U U	3.2B	υ	Ŭ
Copper	200 ST	1	υ	27.6 B	υ	υ	Ū	υ	U	บั	2.9 1
Iron	300 ST*	50	. U.	9690	υ	265 B	υ	2750	1300	752	451
Lead	25 ST	2	υ	U	υ	U	ט ד	U	U	U	U
Magnesium	35000 GV	30	9530	6640 B	12500	10100 B	6960	7330 B	6620	4810 B	5130
Manganese	300 ST*	1	2520	1630	2100	1530	U	138	101	17.6 B	40.3
Mercury	0.7 ST	0.1	U	U	U	U	U	ប	U	U	U
Nickel	100 ST	3	U	υ	υ	U	U.	ΰ	4,2 B	U	3,1 E
Potassium	-	66	5070	1940 B	2590 B	1310 B	2800 B	1260 B	2120 B	1460 B	22500
Selenium	10 ST	4	U	υ	U	U	U	U	U	U	U
Silver	50 ST	2	U	υ	1.3 B	U	\$.5 B	U	1.7 B	U	1.5 E
Sodium	20000	32	19600	10300 B	6350	5230 B	2250 B	1170	3570 B	2800 B	16100
Thallium	0.5 GV	7	U	υ	υ	υ	ប	. U	U	U	U
Vanadium	-	2	υ	U	υ	υ	υ	6.1 B	2.5 B	Ŭ	4,4 E
Zinc	2000 GV	8	U	17.2 B	5.3 B	10.1 B	U	21.9 B	U	37.9 B	U
Cyanide	200 ST	_10	U	υ	U	υ	U	υ	υ	U	- U

QUALIFIERS/ABBREVIATIONS:

ug / I: Micrograms per liter.

U: Analyzed for but not detected,

B: Concentration is > IDL but <CRDL

J: Compound found at level below CRDL, value estimated.

IDL: Instrument Detection Limit.

ST: Standard.

GV : Guidance Value.

- : Standard/guidance value not established.

CRDL: Contract Required Detection Limit.

ST*: Standard for the sum of Iron and Manganese is 500 ug / L

Exceeds NYSDEC groundwater Standard / Guidance Value,

REMEDIAL INVESTIGATION / FEASIBILITY STUDY GROUNDWATER MONITORING WELL SAMPLE RESULTS METALS

SAMPLE IDENT	IFICATION		MW-8R	P-9	P-9	MW-10S	MW-10S	MW-10D	MW-10D	MW-10R	MW-10R	P-12
DATE OF COLLE			· 1/29/00	11/4/99	1/29/00	11/2/99	1/29/00	11/2/99	1/29/00	11/2/99	1/29/00	11/3/99
METALS	NYSDEC Class GA Ground- water Standard/Guidance Value	IDL	(ug / 1)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)
Aluminum		22	U	U	396 B	U	U	212	255 B	190 B	U	 ז
Antimony	3 ST	10	U	U	U	U	U	. U	Ŭ	U	υ	υ
Arsenic	25 ST	6	U	υ	U	5.4 B	υ	U	U	Ŭ	υ	υ υ
Barium	1000 ST	1	68.3 B	14.9 B	18.7 B	124 B	111 B	50.9 B	44.8 B	114 B	81.1	29.2 I
Beryllium	3 GV	L	U	ប	U	υ	υ	U	U	U	U 9	U
Cadmium	• 5 ST	1	ប	U U	U	U	U	2.3 B	υ	υ	U	U
Calcium	-	70	23700 B	10200	8240 B	138000	110000	67800	61700	46300	47800	14200
Chromium	50 ST	1	U	U	υ	U	U	2.2 B	υ	ŭ	. U	U
Cobalt		2	U	2.3B B	U [,]	2.5 B	U	3.9 B	Ū	2.3 B	Ŭ	U U
Copper	200 ST	1	U	U.	υ	υ	. U	4.4 B	U	U	7.3 В	υ
Iron	300 ST*	50	U	υ	529	υ	12300	368	207 Bi	401	ט גע ע	U U
Lead	25 ST	2	U	. υ	υ	υ	U	U	υ	U	Ŭ	Ŭ
Magnesium	35000 GV	30	4780 B	2280 B	2150 B	26600	27800	22600	20800	11700	12500 B	3510
Manganese	300 ST*	Ĺ	15.5 B	5.2B	13.7 B	2730	1890	307	237	49.6	72.7 B	58.2
Mercury	0.7 ST	0.1	U	υ	U	U	U	U U	U	U	υ υ	0,13 1
Nickel	100 ST	3	U	4.5 B	υ	U	U	3.9 B	U I	3.8 B	U	11.5
Potassium	-	66	2670 B	1320-B	686 B	8710	3940 B	5470	2040 B	4040 B	2450 B	1820 1
Selenium	10 ST .	4	U	U	U	7,8.	υ	6.4	U	U	U	1020 . U
Silver	50 ST	2	U	1.9 B	υ	1,6 B	υ	U	U	1.3 B	·U	. 1.4 1
Sodium	20000	32	5980 B	2990 B	2050 B	31400	15500 U	9640	6530 B	10200	7010 B	10500
Thallium	0.5 GV	7	υ	U	U	U	U	υ	ບ້	U	U	U
Vanadium	-	2	U	U	U	U	U	U	U	2,4 B	Ŭ	U U
Zinc	2000 GV	8	18.7 B	U	9.1	4.9 B	18,6	9.7 B	32.5 B	υ	19.1 B	Ŭ
Cyanide	200 ST	10	U	υ	U	U	υ	υ	U	υ	U	U U

QUALIFIERS/ABBREVIATIONS:

ug / I: Micrograms per liter.

.

U: Analyzed for but not detected.

B: Concentration is > IDL but <CRDL

J: Compound found at level below CRDL, value estimated.

IDL: Instrument Detection Limit.

ST: Standard,

GV : Guidance Value,

-: Standard/guidance value not established.

CRDL: Contract Required Detection Limit.

ST*: Standard for the sum of Iron and Manganese is 500 ug / l.

Exceeds NYSDEC groundwater Standard / Guidance Value.

ŧł.

 \mathbf{Y}_{i}

REMEDIAL INVESTIGATION / FEASIBILITY STUDY GROUNDWATER MONITORING WELL SAMPLE RESULTS METALS

SAMPLE IDENT	IFICATION		P-12	P-14	P-14	MW-20S	MW-20S	MW-20D	MW-20D	MW-20R	MW-20R
DATE OF COLL	ECTION		1/29/00	11/4/99	1/29/00	11/1/99	1/29/00	11/1/99	1/29/00	11/1/99	1/29/00
METALS	NYSDEC Class GA Ground- water Standard/Guidance Value	IDL	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)
Aluminum	-	22	252 B	71.4 B	U	91.6 B	U	58.4 B	306 B	545	1800
Antimony	3 ST	10	υ	υ	υ	υ	U	υ	U	U	ม บ
Arsenic	25 ST	6	U	U	U	υ	U	U	U U	4 B	ບ
Barium	1000 ST	1	22.4 B	123 B	129 B	104 B	90 B	268	87.1 B	140 B	215 B
Beryllium	3 GV	1	U	U	U	υ	บ	U	U	υ. 1	U
Cadmium	5 ST	1	υ	U	υ	U	ប	U	5.8 B	U	U
Calcium		70	11700 B	63800	74600	77400	71200	270000	229000	94400	104000
Chromium	50 ST	L	υ	U	υ	υ	U	U	549	8.6 B	6.5 B
Cobalt	-	2	U	5.1 B	U	2.2 B	U	2.4 B	U	2 B	U U
Copper	200 ST	1	U	υ	U	ប	Ŭ	U	8.5 B	3.3 B	15.3 B
Iron	300 ST*	50	U	U	42200	1080	υ	U	269 B	801	2420
Lead	25 ST	2	υ	U	U	U	υ	Ŭ	U U	U	U
Magnesium	35000 GV	30	3080 B	17500	21900	25800	24400 B	110000	89200	9000	1940 B
Manganese	300 ST*	1	24.6 B	8590	12000	555	522	69.9	171	19,3	31.6 B
Mercury	0.7 ST	0,1	υ	NR	U	υ	U	U	U	U	U
Nickel	100 ST	3	U	U	U	Ū	υ	บั	U	8.2 B	υ
Potassium	-	66	662 B	5020	3260 B	4910 B	2450 B	8100	4400 B	130000	194000
Selenium	10 ST	4	υ.	U	υ	6.7	U	ប	U	U	U
Silver	50 ST	2 [υ [υ	υ	1.1B B	υ	1.7 B	Ŭ	1,5 B	υ
Sodium	20000	32	3890 B	7690	5860 B	24100	17100 B	26400	17800 B	62000	124000
Thallium	0.5 GV	7	U	U	υ	U	υ	U	υ	U	U
Vanadium		2	υ	U	U	U	Ū	U	U	2.5 B	7.2 B
Zinc	2000 GV	8	35,3	15.3 B	20,8	34.7	12,6 B	U	35.6	11.1 B	19,8 B
Cyanide	200 ST	10	υ	U	υ	U	U	υ	U		ប

QUALIFIERS/ABBREVIATIONS:

ug / I: Micrograms per liter,

U: Analyzed for but not detected.

B: Concentration is > IDL but <CRDL

J: Compound found at level below CRDL, value estimated.

IDL: Instrument Detection Limit.

ST: Standard.

GV : Guidance Value.

-: Standard/guidance value not established.

CRDL: Contract Required Detection Limit.

ST*: Standard for the sum of Iron and Manganese is 500 ug / I.

Exceeds NYSDEC groundwater Standard / Guidance Value.

٦

SAMPLE IDENTIFICATION		GP-W A-0	GP-W A-0	GP-W A-50	GP-W A-50	GP-W A-100	GP-W A-100	GP-W B-0	GP-W B-0	GP-W B-50
SAMPLE DEPTH	UNITS	(8-12')	(23-27')	(10-14')	(45-49')	(4-8')	(51-55')	(12-16')	(22-26')	(8-12')
DATE OF COLLECTION		1/4/99	1/4/99	1/4/99	1/4/99	1/5/99	1/5/99	4/6/99	4/6/99	1/6/99
рH	(SU)	6.09	6.59	6.78	6.76	7.09	6.58	6,90	7.17	6.26
Conductivity	(mS/cm)	0.500	0.373	0.378	0.378	0.349	0.327	0.212	0.440	0.401
Temperature	(°C)	7.8	12.0	10.1	10,1	1.1	10.9	11.9	12.0	10.1
Dissolved Oxygen	(mg / l)	4.93	1.60	2.78	2.78	6.30	0.40	3.15	0.65	1.23
Turbidity	(NTU)	>999	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR	NR	NR	NR	NR	NR			NR
Eh	(mV)							-26.9	-7.14	

SAMPLE IDENTIFICATION		GP-W B-50	GP-W B-100	GP-W B-100	GP-W C-100	GP-W C-100	GP-W-D-(-60)	GP-W-DEPRS	GP-W-DEPRS	GP-W E-(-10)
SAMPLE DEPTH	UNITS	(36-40')	(12-16')	(46-50')	(12-16')	(48-52')	(4-8')	(12-16')	(38-42')	(12-16')
DATE OF COLLECTION		1/6/99	1/6/99	1/6/99	1/6/99	1/6/99	10/4/99	4/13/99	4/13/99	3/17/99
рH	(SU)	6.88	7.26	7.23	7.01	5.51	7.47	6,14	6.86	6.50
Conductivity	(mS/cm)	0.404	0.483	0.513	0.574	0.640	0.224	0.313	0.586	0.295
Temperature	(°C)	9.1	11.1	5.5	10.2	11.0	19.8	10.6	12.4	14.0
Dissolved Oxygen	(mg / l)	1.18	0.85	0.74	9.40	1.93	6.74	0,93	0.65	6.93
Turbidity	(NTU)	>999	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR	NR	NR	NR	NR				NR
Eh	(mV)	••		÷ -						-6.6

SAMPLE IDENTIFICATION		GP-W E-0	GP-W E-0	GP-W E-100	GP-W E-100	GP-W F-(-10)	GP-W F-0	GP-W F-0	GP-W F-100	GP-W F-100
SAMPLE DEPTH	UNITS	(16-20')	(39-43')	(12-16')	(58-62')	(12-16')	(16-20')	(36-40')	(12-16')	(53-57')
DATE OF COLLECTION		01/21/99	01/21/99	01/06/99	01/06/99	03/17/99	01/21/99	01/21/99	01/07/99	01/07/99
pH	(SU)	5.84	6,59	6.54	7.04	6.38	5,55	5.40	6.43	7.04
Conductivity	(mS/cm)	0.226	0.553	0.621	0.604	0.244	0.255	0.282	0.572	0.606
Temperature	(°C)	13.2	12.1	11,2	9.9	15.3	12.6	12.3	10.8	11.2
Dissolved Oxygen	(mg / I)	1.05	0.22	0.34	8.54	1.26	1.29	0,54	1.18	2.87
Turbidity	(NTU)	>999	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR	NR	NR	NR	NR			NR	NR
Eh	(mV)	••				8				

Qualifiers:

DNAPL: Dense Non-aqueous Phase Liquid. - -: No data was collected for this sample. NR: No Response.

Notes:

(1) DNPAL screening performed with Sudan IV dye. .

SAMPLE IDENTIFICATION		GP-W G-(-10)	GP-W G-(-10)	GP-W G-(-25)	GP-W G-(-45)	GP-W G-(-45)	GP-W G-(-65)	GP-W G-(-65)	GP-W G-(-80)	GP-W H-50
SAMPLE DEPTH	UNITS	(12-16')	(16-20')	(14-18')	(12-16')	(23-27')	(12-16')	(23-27')	(12-16')	(36-40')
DATE OF COLLECTION		03/17/99	03/17/99	03/18/99	03/18/99	03/18/99	03/19/99	03/19/99	03/19/99	01/19/99
IPH	(SU)	6.23	6.01	5.91	5.86	6.04	5.80	6.04	6,18	6.58
Conductivity	(mS / cm)	0.470	0.203	0.160	0.246	0.177	0.134	0.151	0.132	0.422
Temperature	(°C)	12.1	13.1	13.7	13.6	13.6	10.4	12.0	12.6	12.1
Dissolved Oxygen	(mg / l)	5.46	4.24	3.90	6,61	0.62	6.05	2.22	7.53	1.34
Turbidity	(NTU)	>999	>999	>999	>999	551	881	990	370	>999
DNAPL Screening	(1)		NR	NR						NR
Eh	(mV)	20.2	30.2	23.6	21.3		21.9	4.99	54.4	

SAMPLE IDENTIFICATION		GP-W G-(-80)	GP-W G-(-85)	GP-W G-(-85)	GP-W G-100	GP-W G-100	GP-W H-0	GP-W H-25	GP-W H-50	GP-W I-100
SAMPLE DEPTH	UNITS	(20-24')	(12-16')	(18-22')	(12-16')	(58-62')	(14-18')	(12-16')	(12-16')	(12-16')
DATE OF COLLECTION		03/19/99	03/22/99	03/22/99	01/07/99	01/07/99	01/22/99	01/20/99	01/19/99	01/07/99
рH	(SU)	6.13	5.72	5.96	6.24	7.03	5.92	5.48	6.26	6.63
Conductivity	(mS/cm)	0.158	0.148	0.152	0.441	0.542	0,411	0.249	0.426	0.515
Temperature	(°C)	11.4	10.0	10.0	11.4	10.3	12.3	10.4	12.0	10.5
Dissolved Oxygen	(mg / l)	0.67	6,47	2.81	10.68	1.02	0.73	2.08	0.40	0.60
Turbidity	(NTU)	880	676	546	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR	NR	NR	NR	NR	NR		NR	NR
Eh	(mV)	69,6	51,8	40				1		

SAMPLE IDENTIFICATION		GP-W H-75	GP-W H-75	GP-W H-100	GP-W H-100	GP-W I-0	GP-W 1-25	GP-W I-50	GP-W 1-50	GP-W J-75
SAMPLE DEPTH	UNITS	(12-16')	(40-44')	(12-16')	(51-55')	(14-18')	(13-17')	(12-16')	(25-29')	(42-46*)
DATE OF COLLECTION		01/13/99	01/13/99	01/07/99	01/07/99	04/05/99	04/05/99	04/05/99	04/05/99	04/01/99
pH	(SU)	6.24	6.64	6.86	6,92	4,22	6.79	6.05	6.34	6.92
Conductivity	(mS/cm)	0.396	0.515	0.567	0.585	0.593	0.363	0.338	0.285	0.562
Temperature	(°C)	11.5	11.3	9.9	10.5	12.9	12.6	11.5	12.7	11.1
Dissolved Oxygen	(mg / l)	1.13	0.62	10.62	11.66	2.48	0.19	0.85	7.70	0.82
Turbidity	(NTU)	>999	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR	NR	NR	NR				NR	NR NR
Eh	(mV)					-55.9	-34.4	35.9	4.45	

Qualifiers:

DNAPL: Dense Non-aqueous Phase Liquid - -: No data was collected for this sample,

NR: No Response.

Notes:

(1) DNPAL screening performed with Sudan IV dye.

SAMPLE IDENTIFICATION		GP-W I-100	GP-W J-(-50)	GP-W J-0	GP-W J-25	GP-W J-50	GP-W J-50	GP-W J-75	GP-W J-75	00.000	
SAMPLE DEPTH	UNITS	(51-55')	(10-14')	(6-10')	(12-16')	(12-16')	(26-30')	(12-16')		GP-W L-50	<u>GP-W Q-100</u>
DATE OF COLLECTION		01/07/99	04/02/99	04/02/99	01/12/99	01/20/99	01/20/99	04/01/99	(17-21')	(12-16')	(12-16')
pH	(SU)	6.86	6.83	6.82	6.32	5.99	6.08		04/01/99	01/12/99	3/23//99
Conductivity	(mS/cm)	0.579	0.550	0.990	0.405	0.298		7.17	7.01	6.31	7.36
Temperature	(°C)						0.324	0.435	0.261	0.402	0.577
Dissolved Oxygen	· · ·	11.0	12.6	12.7	11.3	11.1	11.9	11.5	12.5	12,1	10.2
	(mg / l)	10.32	0.73	3.12	0.48	1.04	0.47	0.47	0.65	0.63	0.32
Turbidity	(NTU)	>999	>999	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR			NR :	NR	NR			NR	NR
Eh	(mV)		6.1	12.3				-64.9	-31.2		-19.1

SAMPLE IDENTIFICATION		GP-W J-100	GP-W J-100	GP-W K-100	GP-W K-100	GP-WL-0	GP-W L-25	GP-W L-25	GP-W L-(-40)	CP W D 100	00 400
SAMPLE DEPTH	UNITS	(12-16')	(48-52')	(12-16')	(48-52')	(10.5-14.5')	(12-16')	(30-34')	(12-16')	(44-48*)	
DATE OF COLLECTION		01/08/99	01/08/99	01/08/99	01/08/99	01/12/99	01/12/99	01/12/99	10/04/99	01/13/99	(48-52')
pН	(SU)	6.79	6.71	6,91	6.38	6.44	6.62	6.15	6.42	7.54	01/13/99
Conductivity	(mS / cm)	0.585	0.585	5.970	0.274	0.388	0.815	0.415	0.490	0,793	7.23 0.556
Temperature	(°C)	11.2	11.2	11.3	10.6	12.8	12.3	12.9	17.1	11.0	8.7
Dissolved Oxygen	(mg / i)	0.22	0.22	0.05	0.62	1.75	2.12	0.50	5.03	1.39	0.7 1.82
Turbidity	(NTU)	<999	>999	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR		NR	NR	NR	NR	NR		NR	NR I
Eh	(mV)								1		TAX -

SAMPLE IDENTIFICATION		GP-W L-50	GP-W N-25	GP-W P-25	GP-W P-50	GP-W P-50	GP-W P-75	GP-W P-75	GP.W P.100	GP-W Q-200	GP-W T-85
SAMPLE DEPTH	UNITS	(30-34')	(6-10')	(32-36')	(12-16')	(40-44')	(12-16')	(44-48')	(12-16')	(32-36')	(44-48')
DATE OF COLLECTION		01/12/99	10/05/99	01/14/99	01/13/99	01/13/99	01/13/99	01/13/99	01/13/99	03/26/99	01/18/99
lpH	(SU)	6,24	6.54	6.94	6.77	6.77	6.44	7.20	6,43	7.98	6.71
Conductivity	(mS / cm)	0.308	0.410	0.161	0.717	0.221	1.530	0.432	1.090	0.369	0.266
Temperature	(°C)	12.8	15.8	9.1	10,1	9.1	12.3	11.8	11.5	11.0	11.8
Dissolved Oxygen	(mg / l)	0.78	4.72	3.42	0.50	0.86	0.55	1.15	2.86	1.67	0.97
Turbidity	(NTU)	>999	>999	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR		NR	NR	NR	NR	NR	NR	NR	NR
Eh	(mV)									-94	

Qualifiers:

DNAPL: Dense Non-aqueous Phase Liquid --: No data was collected for this sample. NR: No Response.

Notes:

(1) DNPAL screening performed with Sudan IV dye.

SAMPLE IDENTIFICATION		GP-W Q-100	GP-W Q-125	GP-W Q-125	GP-W Q-150	GP-W Q-150	GP-W Q-175	GP.W.O 175	GP-W T-4
SAMPLE DEPTH	UNITS	(47-51')	(6-10')	(32-36)	(32-36')	(68-72')	(6-10')	(66-70')	(56-60')
DATE OF COLLECTION		03/23/99	03/23/99	03/25/99	03/24/99	03/23/99	03/23/99	03/23/99	04/14/99
pH	(SU)	8.22	7.08	7.77	7.52	8.67	7.42	7.94	8.04
Conductivity	(mS / cm)	0.414	0.708	0,591	0.663	0.417	0.443	0.617	0.496
Temperature	(°C)	10.7	10.1	10.9	11.8	11.9	9.2	11.6	13.1
Dissolved Oxygen	(mg / I)	0.17	0.15	0.41	0.21	0.14	0.87	2.44	0.02
Turbidity	(NTU)	>999	>999	766	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR	NR				NR	NR	-333
Eh	(mV)	-23.9	-9.2	-43.8	-48.5	-96	-47.6	-33.7	

SAMPLE IDENTIFICATION		GP-W S-0	GP-W S-50	GP-W S-50	GP-W T-2	GP-W T-4	GP-W BB-0	GP-W T-10	GP-W T-85
SAMPLE DEPTH	UNITS	(9-13')	(12-16')	(30-34')	(31-35')	(28-32')	(10-14')	(52-56')	
DATE OF COLLECTION		01/22/99	01/18/99	01/18/99	04/14/99	04/14/99	04/06/99	04/14/99	<u>(12-16')</u>
pH	(SU)	6.31	6,85	7.19	7.89	7.28	6.66	7.70	6.78
Conductivity	(mS/cm)	0.147	0.308	0.306	1.020	0.685	0.188	0.548	0.393
Temperature	(°C)	9.6	11.0	11.5	12.7	11.9	13.5	12.9	
Dissolved Oxygen	(mg / I)	3.50	1.80	2.02	0.49	0.55	2.13	0.18	11.8 0.31
Turbidity	(NTU)]	>999	>999	>999	>999	>999	>999	>999	>999
DNAPL Screening	(1)		NR	NR					>999 NR
Eh	<u>(mV)</u>						-11.5		

SAMPLE IDENTIFICATION		GP-W U-50	GP-W U-50	GP-W VI-75	GP-W EE-0	GP-W R-50	GP-W R-50	GP-W T-6	GP-W T-10
SAMPLE DEPTH	UNITS	(12-16')	(29-33')	(12-16')	(6-10')	(12-16')	(42-46')	(36-40')	(12-16')
DATE OF COLLECTION		01/18/99	01/19/99	10/04/99	03/31/99	01/18/99	01/18/99	04/14/99	04/14/99
РH	(SU)	6.80	6.58	7.07	6.33	6.37	6.75	8.13	6.92
Conductivity	(mS / cm)	0.300	0.175	0.219	0.278	0.403	0.232	0.277	0.701
Temperature	(°C)	11.7	11.5	18.4	14.7	10.6	11.5	12.8	11.9
Dissolved Oxygen	(mg / I)	-1.06	2.52	7.84	0.92	0.87	1.51	0.87	0.26
Turbidity	(NTU)	>999	>999	960	>999	>999	>999	>999	>999
DNAPL Screening	(1)	NR	NR			NR	NR	-333	
Eh	(mV)				-16.2		1		

Qualifiers:

DNAPL: Dense Non-aqueous Phase Liquid --: No data was collected for this sample. NR: No Response.

Notes:

(1) DNPAL screening performed with Sudan IV dye.

SAMPLE IDENTIFICATION		GP-W 8B-0	GP-W BB-100	GP-W CC-50	GP-W CC-50	GP-W CC-100	CP-WIDD 60	CP W DD 400	GP-W DD-100	00.00.00	
SAMPLE DEPTH	UNITS	(18-22')	(64-68')	(12-16')	(44-48')	(12-16')	(44-48')	(12-16')			GP-W EE-0
DATE OF COLLECTION		04/06/99	01/19/99	01/19/99	01/19/99	01/19/99	01/20/99	01/20/99	(59-63') 01/20/99	(24-28')	(16-20')
PH	(SU)	6.88	6.94	6,33	6.86	6.72	6.36	6.36	6.65	03/26/99	03/31/99
Conductivity	(mS / cm)	0.184	0.386	0.855	0.330	0.840	0.388	0.699	0.388	0.564	6.60
Temperature	(°C)	13.7	12.6	13.1	12.6	12.5	11.4	12.6			0.164
Dissolved Oxygen	(mg/l)	5.34	1.09	0.88	0.83	1.41	0.16		11.3	11.6	14.7
Turbidity	(NTU)	>999	>999	>999	>999	>999	>999	0.86	0.71	0.51	4.28
DNAPL Screening	(1)	••	NR		NR	NR i		>999	>999	>999	>999
Eh	(mÝ)	2.7						NR	NR	NR	NR
			L				••	••		-54,7	7.2

SAMPLE IDENTIFICATION		GP-W EE-50	GP-W EE-100	GP-W EE-100	GP-W HH-0	GP-WHH-0		GP-W OS-1 **	GP-W UG-4		
SAMPLE DEPTH	UNITS	(49-53')	(12-16')	(60-64')	(12-16')	(40-44')	(46-50')			GP-W OS-2	GP-W OS-2
DATE OF COLLECTION		03/31/99	03/29/99	03/29/99	03/30/99			(6-10')	(50-54')	(12-16')	(35-39')
loH	(SU)	7.52	6.72			03/30/99	03/29/99	03/22/99	03/31/99	03/24/99	03/24/99
Conductivity	• •			6.53	7.27	6.98	7.03	7.00	6.37	8.06	8.03
_	(mS / cm)	0.331	0.875	0.368	0.616	0.378	0.431	0.589	0.532	0.525	0.319
Temperature	(°C)	15.9	11.4	13,1	13.9	14.4	13.9	10.1	16.4	11.0	11.9
Dissolved Oxygen	(mg / l)	0.98	1.10	0.85	1.73	0.53	0,15	0.23	0.46		
Turbidity	(NTU)	467	>999	>999	>999	>999				0.20	0.81
DNAPL Screening	(1)		NR	NR			>999	>999	>999	>999	>999
IEh I	(mV)				NR	NR	NR	NR	NR		
	<u>(uiv)</u>		-36.7	-2.7	-43.1	6	-26.7	0.2	25.6	-44.5	7.53

SAMPLE IDENTIFICATION		GP-W OS-1	GP-W OS-3	GP-W OS-3	GP-W OS-3	GP-W UG-1	GP-WUG-3	GP-W UG-6	GP-W UG-6		
SAMPLE DEPTH	UNITS	(51-55')	(6-10')	(24-28')	(51-55')	(12-16')	(54-58')			SUMP	SUMP
DATE OF COLLECTION		03/22/99	03/25/99	03/25/99	03/25/99	03/30/99		(12-16')	(42-46')	(12-16')	(27-31')
ρΗ	(SU)	7.46	7.00	7.62			03/30/99	04/02/99	04/02/99	01/21/99	01/21/99
Conductivity	(mS / cm)			=	6.99	6.55	7.39	6.93	7.22	FIELD PARA-	6.36
	• • • • • • • • • • • • •	0.167	0.465	0.613	0.285	0.189	0,380	0.560	0.296	METERS NOT	0.417
Temperature	(°C)	9,9	9.0	12.1	10.9	11.6	16.1	12.7	12.9	MEASURED	15.0
Dissolved Oxygen	(mg / I)	2.81	0.80	0.77	2.31	1.96	0.05	0.75			
Turbldity	(NTU)	546	979	>999	>999	>999				BECAUSE OF	0.71
DNAPL Screening	(1)	NR			- 333		>999	>999	>999	POSSIBLE	>999
Eh	•••					NR		N [DNAPL	NR
	(mV)	-23.7	83.1	-45.6	-62.1	5	-20.6	-27.2	-3.6		

Qualifiers:

DNAPL: Dense Non-aqueous Phase Liquid --: No data was collected for this sample. NR: No Response.

Notes:

(1) DNPAL screening performed with Sudan IV dye. **APPENDIX I**

ANALYTICAL DATA TABLES - SURFACE WATER

SAMPLE IDENTIFICATION			23 GRAND SUMP	SW-K-150	SW-N-150	SW-W-4	SW-W-POND	SW-W-H
DATE OF COLLECTION			3/25/99	10/15/99	10/15/99	4/16/99	3/23/99	3/25/99
LABORATORY LOCATION (C	NSITE/OFFSITE)		ON	OFF	OFF	ON	ON	ON
DILUTION FACTOR			5	1	1	1	5	5
Targeted	NYSDEC Class C Surface-	CRDL	(ug / l)	(ug / I)	(ug / 1)	(ug / l)	(ug / l)	(ug / 1)
Compounds	water Standard/Guideline	0.02			(46,17)	(45,1)	(45.1)	((ug / l))
Vinyl Chloride	•-	10	U	U	3 J	U	Ŭ	U
Freon 113		10	U	0.7 J	12	U	5.9	13
1,1-Dichloroethene		10	U	U	11	U	U	BQL
t-1,2-Dichloroethene		10	U	NA	NA	NA	U	υ
1,1-Dichloroethane		10	U	4 J	41	U	7.1	18
c-1,2-Dichloroethene		10	U	NA	NA	NA	U	6.2
1,2-Dichloroethene (total)	·	10	NA	2 J	28	U	NA	NA
1,1,1-Trichloroethane		10	U	12	200	1 U	99	190
Trichloroethene	40	10	U	2 J	33	U	8.1	20
Total Targeted VOCs			U	20.7	328	Ŭ	120.1	247.2
Additional Compounds								
Methylene Chloride]	10	ប	U	1 J	U	U	U
Carbon Tetrachloride		10	U	U	U	U	U	U
1,2-Dichloroethane		10	U	2 J	U	l U	U	U
Tetrachloroethene		10	U	U	U	U	U	U
Benzene	760 GV	10	U	U	U	U	U	U
Toluene	480 GV	10	U	U	U	U	U	U
Chlorobenzene		10	U	U	U	U	U	U
	150 GV	10	υ	U	U	U	U	U
M&P-Xylene		10	U	NA	NA	NA	Ŭ	U
O-Xylene		10	U	NA	NA	NA	U	U
Xylene (total)	590 GV	10	NA	U	U	U	NA	NA
Chloroethane		10	NA	6 J	29	U	NA	NA
Chloroform		10	NA	2 J	I J	U	NA	NA
Bromodichloromethane		10	NA	0.2 J	U	U	NA	NA
Acetone	•••	10	NA	U	U	U	NA	NA
2-Butanone		10	NA	U	U	U	NA	NA
Total Non-Targeted VOCs			U	10.2	31	Ŭ	U	U

QUALIFIERS/ABBREVIATIONS:

ug / 1: Micrograms per liter

U: Compound analyzed for but not detected

CRDL: Contract Required Detection Limit

GV: Guidance Value

NA: Not analyzed

J: Compound detected below CRDL

B: Compound also found in the method blank

---: Not established

SAMPLE IDENTIFICATION			SW-W-K	SW-W-O	SW-W-1(FF)	SW-W-OF0
DATE OF COLLECTION			3/25/99	3/25/99	1/5/99	3/26/99
LABORATORY LOCATION	(ONSITE/OFFSITE)		ON	ON	OFF	ON
DILUTION FACTOR			5	10	1	5
Targeted Compounds	NYSDEC Class C Surface- water Standard/Guideline	CRDL	(ug / l)	(ug / l)	(ug / !)	(ug / l)
Vinyl Chloride	•	10	U U	U	U U	U U
Freon 113		10	8.9	Ū	Ū	Ū
1,1-Dichloroethene		10	U	U	U	U
t-1,2-Dichloroethene		10	U	U	NA	U
1,1-Dichloroethane		10	U	U	U U	U
c-1,2-Dichloroethene		10	U	U	NA	U
1,2-Dichloroethene (total)		10	NA	NA	U	NA
1,1,1-Trichloroethane		10	32	47	U	U
Trichloroethene	40	10	U	U	U	U
Total Targeted VOCs	······································		40.9	47	U	Ū
Additional Compounds						
Methylene Chloride		10	U	U	U	U
Carbon Tetrachloride		10	U	U	U	U
1,2-Dichloroethane		10	U	U	U	U
Tetrachloroethene		10	U	U	U	U
Benzene	760 GV	10	U	U	U	U
Toluene	480 GV	10	U	U	U	U
Chiorobenzene		10	U	U	U	U
•	150 GV	10	U	U	U	U
M&P-Xylene		10	U	U	NA	U U
O-Xylene		10	U	U	NA	υ
Xylene (total)	590 GV	10	NA	NA	U	NA
Chloroethane		10	NÅ	NA	U	NA
Chloroform		10	NA	NA	U	NA
Bromodichloromethane		10	NA	NA	υ	NA
Acetone		10	NA	NĂ	U	NA
2-Butanone		10	NA	NA	Ų	NA
Total Non-Targeted VOCs			U	U	U	U

QUALIFIERS/ABBREVIATIONS:

ug / l: Micrograms per liter

U: Compound analyzed for but not detected

CRDL: Contract Required Detection Limit

GV: Guidance Value

NA: Not analyzed

J: Compound detected below CRDL

B: Compound also found in the method blank

---: Not established

SAMPLE IDENTIFICATION		_	SW-V	W-OF1	SW-	W-OF2	SW-OF2
DATE OF COLLECTION			3/2	6/99		26/99	10/15/99
LABORATORY LOCATION (C	ONSITE/OFFSITE)		ON	OFF	ON	OFF	OFF
DILUTION FACTOR			5	5	25	10	20
Targeted	NYSDEC Class C Surface-	CRDL	(ug / 1)	(ug (1)	(11 - (1))	(1)	
Compounds	water Standard/Guideline	CIOL	(ug/i)	(ug / l)	(ug / l)	(ug / 1)	(ug / l)
Vinyl Chloride		10	U	Ū	υ	U U	28 J
Freon 113		10	U	υ	51	U	120 J
1,1-Dichloroethene		10	U) U	48	35 J	110 J
t-1,2-Dichloroethene		10	U	Í NA	U	NA	NA
1,1-Dichloroethane		10	U	4 J	37	54 J	420
c-1,2-Dichloroethene		10	11	NA	41	NA	NA
1,2-Dichloroethene (total)		10	NA	16	NA	51 J	300
1,1,1-Trichloroethane		10	17	16	1100	1300	2300
Trichloroethene	40	10	19	24	280	280	370
Total Targeted VOCs			47	60	1557	1720	3648
Additional Compounds						•	
Methylene Chloride	1	10	υ	2 J	U	44 JB	21 J
Carbon Tetrachloride		10	U	U U	U	U	U
1,2-Dichloroethane		10	U	U	U	U	U
Tetrachloroethene		10	U	U	U	23 J	Ū
Benzene	760 GV	10	U	υ	U	U	U
Toluene	480 GV	10	U	U	U	U	U
Chlorobenzene		10	U	U	U U	U	U
	150 GV	10	U	U	U	U	U
M&P-Xylene		10	U	NA	U	NA	NA
O-Xylene		10	U	NA	U	NA	NA '
Xylene (total)	590 GV	10	NA	Ŭ	NA	U	1 U
Chloroethane		10	NA	U	NA	U	270
Chloroform		10	NA	U	NA	U	υ
Bromodichloromethane		10	NA	U	NA	U	U
Acetone		10	NA	8 JB	NA	100 B	320
2-Butanone		10	NA	U	NA	U	U
Total Non-Targeted VOCs			U	10	U	167	611

QUALIFIERS/ABBREVIATIONS:

ug / l: Micrograms per liter

U: Compound analyzed for but not detected

CRDL: Contract Required Detection Limit

GV: Guidance Value

NA: Not analyzed

J: Compound detected below CRDL

B: Compound also found in the method blank

---: Not established

SAMPLE IDENTIFICATION			SW-	W-OF3	SW-W OS-2	SW-W-OS3 Stream	SW-W-TRIB-A	SW-W-TRIB-B
DATE OF COLLECTION			3/.	26/99	3/28/99	3/25/99	3/25/99	3/25/99
LABORATORY LOCATION (ONSITE/OFFSITE)		ON	OFF	OFF	ON	ON	ON
DILUTION FACTOR			5	l	1	5	5	1
Targeted Compounds	NYSDEC Class C Surface- water Standard/Guideline	CRDL	(ug / 1)	(ug / 1)	(ug / ī)	(ug / 1)	(ug / l)	(ug / l)
Vinyl Chloride	Hater Blandard Guidenne	10	U	+		Ū	U	
Freon 113		10	11	U	U	υ	U U	ប ម
1,1-Dichloroethene		10	υ	U U	U U	υ		U U
t-1,2-Dichloroethene		10	Ŭ	NA	NĂ	υ	U U	υ
1,1-Dichloroethane		10	Ŭ	2 J	2 J	Ŭ	U U	υ
c-1,2-Dichloroethene		10	Ū	NA	NA	Ŭ	Ŭ	Ŭ
1,2-Dichloroethene (total)		10	NĂ	U	1 J	NA	NA	NA
1,1,1-Trichloroethane		10	24	19	24	5,2	υ	U U
Trichloroethene	40	1 10	BQL	5 J	2 J	U	υ	Ŭ
Total Targeted VOCs			35	26	29	5.2	U	Ū
Additional Compounds								
Methylene Chloride]	10	U	2 JB	4 JB	U	U	U
Carbon Tetrachloride		10	U	U	U	U	Ū	<u></u>
1,2-Dichloroethane		10	U	U	U	U	υ	υ
Tetrachloroethene		10	U	U	U	U	U	U
Benzene	760 GV	10	U	U	U	U	U	U
Toluene	480 GV	10	U	U	U	U	U	U
Chlorobenzene		10	U	U	U	U	U	U
	150 GV	10	U	U	U	U	U	υ
M&P-Xylene		10	U	NA	U	U ·	U	U
O-Xylene		10	U	NA	U	U	U	U
Xylene (total)	590 GV	10	NA	U	U	NA	NA	NA
Chloroethane		10	NA	Ŭ	U	NA	NA	NA
Chloroform		10	NA	U	υŕ	NA	NA	NA
Bromodichloromethane		10	NA	U	U	NA	NA	NA
Acetone		10	NA	4 JB	38 B	NA	NA	NA
2-Butanone		10	NA	3 J _	U	NA	NA	NA
Total Non-Targeted VOCs		1	U	9	42	U	U	U

QUALIFIERS/ABBREVIATIONS:

ug / l: Micrograms per liter

U: Compound analyzed for but not detected

CRDL: Contract Required Detection Limit

GV: Guidance Value

NA: Not analyzed

J: Compound detected below CRDL

B: Compound also found in the method blank

---: Not established

SAMPLE IDENTIFICATION			SW-W-UG1	SW-W-UG2	SW-XA-175
DATE OF COLLECTION			3/30/99	3/31/99	10/15/99
LABORATORY LOCATION (C	NSITE/OFFSITE)		ON	ON	OFF
DILUTION FACTOR			1	1	1
Targeted Compounds	NYSDEC Class C Surface- water Standard/Guideline	CRDL	(ug / 1)	(ug / l)	(ug / 1)
Vinyl Chloride		10	1.7	U U	U U
Freon 113		10	U	Ū	0.3 J
1,1-Dichloroethene	,	10	U	υ	U
t-1,2-Dichloroethene		10	U	U	NA
1,1-Dichloroethane		10	U	υ	21
c-1,2-Dichloroethene		10	1.3	U U	NA
1,2-Dichloroethene (total)		10	NA	NA	0.8 J
1,1,1-Trichloroethane		10	U	U	4 J
Trichloroethene	40	10	U	2	0.6 J
Total Targeted VOCs			3	2	7.7
Additional Compounds					
Methylene Chloride		10	BQL	BQL	υ
Carbon Tetrachloride		10	ົບ	Ū	Ū
1,2-Dichloroethane		10	ប	Ū	Ū
Tetrachloroethene		10	U	U	υ
Benzene	760 GV	10	U	U	Ū
Toluene	480 GV	10	U	U U	U
Chlorobenzene		10	U	U	U
	150 GV	10	U	U	U
M&P-Xylene		10	U	U	NA
O-Xylene		10	ប	U	NA
Xylene (total)	590 GV	10	NA	NA	U
Chloroethane		10	NA	NA	4 J
Chloroform		10	NA	NA	2 J
Bromodichloromethane		10	NA	NA	0.3 J
Acetone	•••	10	NA	NA	υ
2-Butanone		10	NA	NA	U
Total Non-Targeted VOCs			U	U	6.3

QUALIFIERS/ABBREVIATIONS:

ug / 1: Micrograms per liter

U: Compound analyzed for but not detected

CRDL: Contract Required Detection Limit

GV: Guidance Value

NA: Not analyzed

J: Compound detected below CRDL

B: Compound also found in the method blank

---: Not established

TABLE I-2 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY SURFACE WATER SAMPLE RESULTS

PCBs

SAMPLE IDENTIFIC	ATION		SW-W-4	SW-W-OF1	SW-W-OF2	SW-W-OF3	SW-W-1(FF)	SW-W-OS-2
DATE OF COLLECTI	ON		4/16/99	3/25/99	3/25/99	3/25/99	1/5/99	3/29/99
DILUTION FACTOR			1	1	1	1	1	1
PCBs	NYSDEC Class C Surface Water Standard/Guideline	CRDL	(ug / l)	(ug / l)	(ug / 1)	(ug / l)	(ug / l)	(ug / l)
Aroclor-1016	*	1	U	U	U	<u>н</u>	<u>тт</u>	TT
Aroclor-1221	*	2	U	Ū	ι υ	U U	U U	
Aroclor-1232	*	1	U	Ŭ	U U		U U	U U
Aroclor-1242	*	1	Ŭ	ŭ	U U			U U
Aroclor-1248	*		Ŭ	II II	U U		U U	
Aroclor-1254	*		Ū	U U	U U			
Aroclor-1260	he .		Ŭ	Ŭ	1 1			U
Total PCBs	10 ^{-6**} ST	1	U	U	<u> </u>	<u> </u>	<u> </u>	

QUALIFIERS/ABBREVIATIONS:

ug/ l: Micrograms per liter.

U: Compound analyzed for but not detected.

CRDL: Contract Required Detection Limit.

ST: Standard.

*: Standard not provided for individual constituents.

**: Applies to the sum of Aroclors.

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY SURFACE WATER SAMPLE RESULTS INORGANIC PARAMETERS

SAMPLE IDENTIFICA			SW-K-150	SW-N-150	SW-W-4	SW-W-OF1	SW-W-OF2	SW-W-OF2
DATE OF COLLECTIC			10/15/99	10/15/99	4/15/99	03/25/99	03/25/99	10/15/99
Metals	NYSDEC Class C Surface Water Standard/Guideline	IDŁ	. (ug / l)	(ug / l)	(ug / 1)	(ug / 1)	(ug / <u>1</u>)	(ug / l)
Aluminum		22	170 B	1580	131000	U	87.3 B	U
Antimony		10	U	្រ	ប	U	U	Ŭ
Arsenic	150 ST	6	U	U	176	U	U	ΰ
Barium		1	54.2 B	106 B	2060	24.5 B	47.1 B	71.8 B
Beryllium	11 ST	1	U	U	2.1 B	U	U	ນ ບ
Cadmium	2.1*	1 1	U	U U	43.1	1.3 B	1.3 B	Ū
Calcium		70	31500	33800	68600	20000	34000	48200
Chromium	74.1*	1	υ	3.7 B	234	U	1.2 B	U
Cobalt	5 ST	2	ប	υ	164	Ŭ	U	ນັ
Copper	8.9*	L	6.7 B	22.6 B	963	1.8 B	30.5	36.2
lron .	300 ST	50	1380	7230	479000	102	895	2920
Lead	3.8*	2	υ	16.8	1310	U	2.2 B	U
Magnesium		30	9930	10400	49500	5670	6180	9710
Manganese		1	267	668	4170	4.8 B	189	699
Mercury	0.0007 ST	0,1	ប	υΓ	1.3	U	Ŭ	Ŭ
Nickel	52*	3	U	4.2 B	428	5.5 B	5.5 B	Ŭ
Potassium		66	1980 B	2160 B	26700	1600 B	3460 B	4070 B
Selenium	4.6 ST	4	U	υ	46.9	υ	U	υ υ
Silver	0.1 ST	2	U	υ	U	บั	U U	ບັ
Sodium		32	14000	13100	10900	7390	31600	26300
Thallium	8 ST	7	υ	υ	34.8	U	U	10300 U
Vanadium	14 ST	2	Ŭ	5.1 B	352	Ŭ	บ	Ŭ
Zinc	82.6*	8	188	123	2520	Ŭ	16.5 B	70
Cyanide	5.2 ST	10	U	U	U	υ	U	10
TOC (mg / L)		.	NA	NA	30.4	1,61	1.22	NA

QUALIFIERS/ABBREVIATIONS:

ug / I: Micrograms per liter.

U: Compound analyzed for but not detected.

CRDL: Contract Required Detection Limit.

ST: Standard.

B: Concentration is > IDL but < CRDL,

: Concentration exceeds NYSDEC

Standard/Guideline.

NA: Compound not analyzed.

IDL: Instrument Detection Level

NOTE:

--- : Value not established.

*: Value was calculated using default value for hardness of 100 ppm

FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY SURFACE WATER SAMPLE RESULTS INORGANIC PARAMETERS

SAMPLE IDENTIFIC			SW-W-OF3	SW-W-OS2	SW-W-1(FF)	SW-XA-175
DATE OF COLLECTI	<u> </u>		03/25/99	03/29/99	1/6/99	10/15/99
Metals	NYSDEC Class C Surface Water Standard/Guideline	IDL	(ug / l)	(ug / l)	(ug / l)	(ug / l)
Aluminum		22	U	U	54.9 B	56.2 B
Antimony		10	U	υ	ប	U U
Arsenic	150 ST	6	U U	7 B	3.1 B	- U
Barium		1	24.1 B	39 B	23 B	51.6 B
Beryllium	11 ST		υ	บ็	ů Ú	
Cadmium	2.1*	1	1.3 B	1.I B	บ้	U U
Calcium		70	16200	31200	15600	32300
Chromium	74.1*		U	U	U	52500 U
Cobalt	5 ST	2	Ŭ	Ū	U U	U U
Copper	8.9*		4.6 B	2.4 B	Ŭ	2.5 B
Iron	300 ST	50	159	133	31.6 B	620
Lead	3.8*	2	U	U	51.6 B U	020 U
Magnesium		30	3140 B	9360	4710 B	-
Manganese			20.5	12.9 B	4/10 B	9870
Mercury	0.0007 ST	0.1	U	U	U U	(39
Nickel	52*	3	13.5 B	3.5 B	υ	U U
Potassium		66	1190 B	1970 B	1380 B	U
Selenium	4.6 ST	4	1.50 B	4.8 B	1380 B U	1910 B
Silver	0.1 ST	2	υ		-	U
Sodium		32	4630 B	U 23100	. U	Ŭ
Thallium	8 ST	7	4630 B U	23100 U	6020 6 6 D	15200
Vanadium	14 ST	2	υŬ	U U	5.5 B	U
Zinc .	82.6*	8	45.1	บ บ	U 5.6 B	U
Cyanide	5.2 ST	10	υ	Ŭ	U	
FOC (mg / L)		-	1.31	3.36	NA	NA

QUALIFIERS/ABBREVIATIONS:

ug / l: Micrograms per liter,

U: Compound analyzed for but not detected,

CRDL: Contract Required Detection Limit.

ST: Standard.

B: Concentration is > IDL but < CRDL.

: Concentration exceeds NYSDEC Standard/Guideline.

NA: Compound not analyzed.

IDL: Instrument Detection Level

NOTE:

- :Value not established

*: Value was calculated using default value for hardness of 100 ppm

.

APPENDIX J

ANALYTICAL DATA TABLES - SURFACE WATER SEDIMENT

SAMPLE IDENTIFICATI	ON		SED K-150	GED MILLO			<u>1 </u>	
SAMPLE DEPTH			0-4"	SED N-150 0-4"	SED OF-1	SED OF-3	SED S-4	SED XA-175
DATE OF COLLECTION			10/15/99		0-4"	0-4"	0-4"	0-4"
DILUTION FACTOR			10/13/99	10/15/99	03/26/99	03/25/99	04/15/99	10/15/99
PERCENT SOLIDS			100	100	1	1	1	11
Targeted	NYSDEC	CRDL	100	100	50	83	25	32
Compounds	Sediment Criteria	CIOL	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug/kg)
Vinyl Chloride		10	U	U	3 J	U	U	
Freon 113		10	Ū	Ū	Ŭ	U	U U	U
1,1-Dichloroethene		10	Ū	Ŭ	U U	Ŭ	U	U
1,2-Dichloroethene(total)		10	Ū	Ũ	5 J	U	υ	U U
1,1-Dichloroethane		10	3 J	Ŭ	10 J	31	U U	
1,1,1-Trichloroethane		10	U	Ũ	2 J	18	บ บ	5 J
Trichloroethene		10	0.7 J	Ŭ	2 J 7 J	10 J	U U	1J
	TOTAL TARGETED VOCs			ND ND	27	31	ND	U 6
Additional Compounds		10	· · · · · · · · · · · · · · · · · · ·		<u></u>			
Acetone		10	31 B	14 B	18.JB	7 ЛВ	220 B	76 1
Methylene Chloride		10	IJ	2 J	23	12	220 B 6 JB	76 B
Carbon Tetrachloride		10	U	Ū	U I	U 12	at o U	6J
1,2-Dichloroethane	***	10	υ	υ	ŭ	U U	ប ប	U U
Tetrachloroethene		10	υ	Ū I	Ŭ	υ	U U	U U
Benzene	1595 ¹ /306 ² /283 ³	10	υ	υ	υ	U U	-	
Toluene	2759 ¹ /529 ² /490 ³	10	υ	U U	υ	U U	ប ប	U
Chlorobenzene	197 ¹ /38 ² /35 ³	10	υ	υ	υ	1 J	*	U
Ethylbenzene	1351 ¹ /259 ² /240 ³	10	Ŭ	ŭ	-		U	υ
M&P-Xylene	5180 ¹ /994 ² /920 ³	10	ប	-	U	U.	U	U
O-Xylene	5180 ¹ /994 ² /920 ³	10	- 1	U	NA	NA	U	U
Xylenes	5180 ¹ /994 ² /920 ³	.	U	U	NA	NA	U	U
Carbon Disulfide		10	U	U	U	U	U	υ
2-Butanone		10	U	U	1 J	υ	2 J	1 J
	TOTAL NON-TARGETED VOCs		<u>9</u> j 41	7 J	4 J	4 J	78 B	43
				23	46	24	306	121
QUALIFIERS/ABBREVIATI	ONS:			NOTES				

---: Not established

VOCs: Volatile organic compounds U: Compound analyzed for but not detected

CRDL: Contract Required Detection Limit J: Compound found at or below CRDL. Value estimated

B: Compound also found in method blank.

ug/kg: Micrograms per kilogram

WQC: Water Quality Criteria

NOTES

Concentration exceeds NYSDEC WQC

¹ Value derived using Equilibrium Partitioning method and appropriate surface water criteria (NYSDEC Division of Fish, Wildlife and Marine Resources Technical Guidance For Screening Contaminated Sediment January 1999, for sample SED-OF-1, based on fraction organic carbon = 5.63%

² Value derived using method and sources described above, for sample SED-OF-3, based on fraction organic carbon = 1.08%

Value derived using method and source described above, for default fraction organic carbon = 1%, for samples where TOC was not analyzed.

TABLE A - 11 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION FEASIBILITY STUDY NYSDEC GUIDANCE VALUES FOR SURFACE WATER SEDIMENT CONTAMINANTS

	LOG Kow	Kow	Benthic Aquatic Life Chronic Toxicity (Fresh) WQC	Benthic Aquatic Life Chronic Toxicity (Fresh) Scoc	Benthic Aquatic Life Chronic Toxicity (Fresh) SC (foc = 5.63%) ¹	Benthic Aquatic Life Chronic Toxicity (Fresh) SC (foc = 1.08%) ²	Benthic Aquatic Life Chronic Toxicity (Fresh) SC (foc = 1%) ³
Compound/Constituent		l/kg	ug/l	ug/gOC	ug/kg	ug/kg	ug/kg
Targeted VOCs							ug/kg
Vinyl Chloride	0.06	14.13	-				
1,2-Dichloroethene (total)	1.48	30.2					
1,1-Dichloroethane	1.48	30.2	-				
1,1,1-Trichloroethane	n.a,	n.a.		n.a.	 n.a.		
Trichloroethene	2.29	194.98				<u>n.a.</u>	<u>n.a.</u>
Additilonal VOCs							
Acetone	n.a.	n.a.		n.a.			
Methylene Chloride	n.a.	n.a.			<u>n.a.</u>	n.a.	n.a.
Chlorobenzene	2.84	691.83	5		<u>n.a.</u>	<u>n.a.</u>	n.a.
Carbon Disulfide	n.a.	n.a.			197	38	35
2-Butanone	n.a.	n.a.		<u>n.a.</u>	n.a.	n.a.	n.a.
BTEX		1.66		n.a.	n.a.	n.a.	n.a.
Benzene	2.13	134,9	210				
Ethylbenzyne	3.15	1412.54	17		1595	306	283
Toluene	2.69	489.78	100	24	1351	259	240
Xylene	3.15	1412.54	65	49	2759	529	490
	10,101	1912.04	00	92	5180	994	920

NOTES:

¹ Value derived using Equilibrium Partitioning method and appropriate surface water criteria (NYSDEC Division of Fish, Wildlife and Marine Resources, *Technical Guidance For Screening Contaminated Sediment, January, 1999*) using an organic carbon content of 5.63% (foc = 56.3g OC/kg sediment)

² Value derived using Equilibrium Partitioning method and appropriate surface water criteria (NYSDEC Division of Fish, Wildlife and Marine Resources, *Technical Guidance For Screening Contaminated Sediment*, January, 1999) using an organic carbon content of 1.08% (foc = 10.8g
 ³ Values derived using Equilibrium Partitioning method and appropriate surface water criteria (NYSDEC Division of Fish, Wildlife and Marine Resources, *Technical Guidance For Screening Contaminated Sediment*, January, 1999) using a default organic carbon content of 1.08% (foc = 10.8g
 ³ Values derived using Equilibrium Partitioning method and appropriate surface water criteria (NYSDEC Division of Fish, Wildlife and Marine Resources, *Technical Guidance For Screening Contaminated Sediment*, January, 1999) using a default organic carbon content of 1% (foc = 10 g

ug/kg : micrograms per kilogram

ug/gOC : Micrograms per gram organic carbon

- : no surface water/sediment guidance value established.

n.r.: not regulated

n.a. - derivation using equilibrium partitioning not valid as compound is potar organic

foc: fraction organic carbon by weight

Kow: octanol/water partition coefficient

 K_{oc} : sediment organic carbon/water partition coefficeint, where K_{oc} approximately = K_{ow}

WQC: water quality criterion

SCoc: organic carbon normalized sediment criterion, where SCoc = WQC * K_{ow}

SC : site specific sediment criteria, where SC = SCoc * foc

Sheet №____of___5 By V. Vassil_ Date 6 Chkd. by____Date__ Project: FARAND CONTROLS ____ Job Nº <u>/</u>6/구 Subject: DETRAMATION OF SC FOR BENZENE; 10 Kow = 2.13 SCoc = WQC x Kow = 210 18/2 × 134.9 1/2 × 1 kg/1000 gC = 28.33 "9/g OC a) FOR SEDIMENT SAMPLES WITH NO TOC ANALYSIS (SED-K-150, SED-N-150, SD-S-4 and SED-XA175). USE DEFAULT FOC = 1% = 10g0Colly Sc = SCoc × foc = 28.33 % OC × 10 gOC/kg = 283 4 /kg = 0,28 mg/kg b) FOR SEDIMENT SAMPLE SED-OF3; WHERE TOC = 10800 mg/Lg FOC = 10.8 oc/kg Sc= Sloc x foc = 28.33 \$/gOC × 10.8g OC/4 = 306 vs/kg = . 31 mg/kg c) For SEDIMENT SAMPLE SED-OF1; WHERE TOC = 56300 m/4 Sc= SCoc × foc = 28.33 3/ OC × 56.3, OC/4 = 1,595 us/kg = 1.6 mg/kg

Dvirka Sheet Nº 2 of 5 By V. VASSIL Date 6 Chkd. by ____ Date Project: FARRAM CONTROLS ____ Job № *[61*7 Subject: DETERMINATION OF SC FOR ETHYLBENZENE; 100 KOW = 3.13 S Coc= WCQ X Kow = 17 3/2 × 1412.5 2/4g × 1kg/1000 gOC = 24 4/g OC a) FOR SEDIMENTA WITH NO TOC ANALYSIS, USE DEFAULT FOC= 170 = 10g OC/kg Sc= Scoc x foc = 24 00/goc × 10 goc/kg = 240 "/Lg B) FOR SEDIMENT SAMPLE # SED-OF3; WHERE TOC= 10,800 mg/Lg FOC= 1.08% = 10.8 goc/Lg SC = SCoc x foc = 24 %/g OC × 10.8 800/kg = 259 " /kg c) FOR SEDIMENT SAMPLE # SED-OF1; WHERE TOC= 56,300 M/2 FOC= 5.63% = 56.3 g OC/KE SC= SCOCX for = 24 8/g OC x 56.3 300/kg = 1, 35/ "3/kg

Dvirka Sheet Nº <u>3</u> of <u>5</u> By V. VASSIL Date 6/4/00 Chkd. by_____Date__ Project: FARRANN CONTROLS ____ Job Nº <u>/6(</u>7 Subject: DETERMINATION OF SC FOR TOLUENE; log Kow = 2.69 $WCQ = 100^{44}$ SCoc = WQC x Kow = 100 49/2 × 489.8 2/kg × 1 ks/1000 g OC = 49 "g/g DC a) FOR SEDIMENT SAMPLES WITH NO TOC ANALYSIS, USE foc = 1% foc = 10 g OC/kg Sc= Scocx foc = 49 "\$/gOC × 10 900/4 = 490 "3/kg b) FOR SEDIMENT SAMPLE SED-OF3, WHERE TOC = 10 800 mg/kg foc = 1.08% = 10.8 goc/kg Sc= SCoc x foc = 49 us/30C x 10.8 30c/kg = 529 1/kg c) FOR SEDIMENT SAMPLE SED-OFI, WHERE TOC= 56300 mg/kg for = 5.63% = 56.3 goc/kg Se = SCoc × foc = 49 "9/gOC × 56.39° / 4g = 2,758.7 "s/kg

Dvirka Sheet Nº 4 of 5 By V. VASSIL Date 6/7/00 Chkd. by____Date___ Project: FARRAND CONTROLS _____ Job Nº _____ Subject: DETERMINATION OF SC FOR XYLENE; log Kow = 3.15 WQC = 65 SCoc = WQC X Kow = 65 1/2 × 1412.5 2/kg × 1 6/1000 g OC = 91.8 m/goc = 92 v3/goc a) FOR SEDIMENT SAMPLES WITH NO TOC ANALYSIS, USE DEFAULT: FOC = 1% = 10 gOC/leg Sc= Scoc x foc = 92 4/goc x 10 goc/ks = 920 v3/kg b) FOR SEDIMENT SAMPLE SED-OF3, WHERE TOC= 10,800 mg/s FOC = 10.8 goc/kg Sc= Scoc x foc = 92 "/gOC × 10.8 goc/hs = 994 ~8/kg c) FOR SEDIMENT SAMPLE SED-OFI, WHERE TOC = 56300 mg/, FOC = 56.3 g OC/hy. Sc= SCocx foc = 92"3/3 OC x 56.3 3 OC/kg - 5180 v3/kg

virka Sheet Nº <u>5</u> of <u>5</u> By V. VASS 14 Date 6/7/00 Chkd. by____Date_ ____ Job Nº /6(ア Project: FARRAND CONTROLS Subject: <u>Determination of Sc For CHLOROBENZENE; log Kow = 2.84</u> WPC = <u>5.0</u> % SCOC= WQC × KOW = 5 1/2 × 691.8 2/Lg× 1 kg/1000 g OC = 3.5 4/ gOC a) FOR SEPIMENT SAMPLES WITH NO TOC ANALYSIS, USE DEFAULT FOC = 120 = 10gOC/kg! Sc= SCoc x foc = 3.5" / OC X 10 00/ /4 = 35,0 "s/kg b) FOR SEDIMENT SAMPLE SED-OF3; WHERE TOC= 10800 mg/kg FOC = 1.08 % = 10.8 8 %/kg Sc = SCocx foc = 3.5 "/3 OC × 10.8 " (kg = 37.8 % = 38 4/kg c) FOR SEDIMENT SAMPLE SED-OFI, WHERE TOC = 56300 MI/kg : for = 5.63 % = 56.3 % 00 /kg SE= SCOOK for = 3.5 %/gOC x 56.3 8 OC/kg = 197 4 / kg

TABLE J - 2 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY SURFACE WATER SAMPLE RESULTS

······	· · · · · · · · · · · · · · · · · · ·			PCBs				
SAMPLE IDENTIFICATION			SW-K-150	SW-N-150	SW-W-OF1	SW-W-0F3	SW-W-4	SW-XA-175
SAMPLE DEPTH			0-4"	0-4"	0-4"	0-4"	0-4"	0-4"
DATE OF COLL			10/15/99	10/15/99	4/5/99	3/25/99	4/15/99	10/15/99
DILUTION FAC			1	1	1	1	1	1
PERCENT SOLI	PERCENT SOLIDS		45	26	40	87	40	43
PCBs	NYSDEC Screening Guidance Value	CRDL	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)	(ug / kg)
Aroclor-1016	*	33	U	U	U	Ŭ	Ŭ	U
Aroclor 1221	*	66	U	U	U	U	Ŭ	U U
Aroclor-1232	*	33	U	υ	Ū	Ū	U	1
Aroclor-1242	* .	33	U	U	U	Ŭ	Ŭ	11
Aroclor-1248		33	U	U	120 P	Ū	Ŭ	
Aroclor-1254	*	33	U	Ū	150 P	7.1 JP	ប	
Aroclor-1260	*	33	Ŭ	U U	U	U	20 JP	υ
TOTAL PCBs	19.3 ug/gOC	160	U	U	270	7.1	20	U

OUALIFIERS/ABBREVIATIONS:

*: Guidance value applies to total

GV: Guidance value

ug/kg: Micrograms per kilogram

CRDL: Contract Required Detection Limit

- : Not established

U: Compound analyzed for but not detected.

P: Concentrations between the 2 columns were > 25% different, lower value reported.

: Concentration exceeds NYSDEC Screening Guidance Value

TABLE J-3 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/ FEASIBILITY STUDY SURFACE WATER SEDIMENT SAMPLE RESULTS INORGANIC PARAMETERS

SAMPLE IDENT	SAMPLE IDENTIFICATION					SED-0F1	SED-0F3	SD-S-4	SED-XA-175
SAMPLE DEPTH	SAMPLE DEPTH					0-4"	0-4"	0-4"	0-4"
DATE OF COLLECTION			10/15/99	10/15/99	3/25/99	3/25/99	4/15/99	10/15/99	
PERCENT SOLI	PERCENT SOLIDS			44.1	27.9	44.8	80.7	46	36.4
Metals		dance Values for er Sediments (1) Severe Effect Level (ppm)	IDL	(mg / kg)	(mg / kg)	(mg / kg)	(mg / kg)	(mg / kg)	(mg / kg)
Aluminum			22	17800	28800	10600	4300	27600	21800
Antimony	2	25	10	4.9 B	7.5 B	U	U	1 0	5 B
Arsenic	6	33	6	5.6	8.9	Ū	2.1	9,6	10.3
Barium			1	164	286	110	28 B	245	202
Beryllium			1	U	υ	0.4 B	0.2 B	0.77 B	U
Cadmium	0.6	9	1	υ	υ	1.3 B	0.9	2.5	i U
Calcium			70	5760	5460	6400	47100	2850	6690
Chromium	26	110	1	40.4	78.5	23.8	6	42.4	35.3
Cobalt			2	11.3 B	16.3 B	11.6 B	4.8 B	20.2	19.4 B
Соррег	16	110	1	82.6	<u> </u>	77.4	37.1	66.5	39.5
lron	20000	40000	50	34700		16500	12000	177 4 2 3 4 6	28400
Lead	31	110	2	46.8	93.3	44.9	17.7	108	36.9
Magnesium			30	7210	8890	4270	14600	8540	6550
Manganese	460	1100	1	490	584	605	144	17 - 2 080 - 1	- 440
Mercury	0.15	1.3	0.1	0.16	0.23	0.046	0.029	0.1	0.2
Nickel	16	50	3	29.8	46.2	- -	13.7		37.4
Potassium			66	3000	3610	1870	826 B	4390	1820 B
Selenium		•	4	2.4	5.9	U	0.78 B	2.8	υ
Silver	1	2.2	2	υ	0.75 B	U	U	U	U
Sodium			32	355B	471 B	148 B	154 B	244 B	538 B
Thallium			7	υ	U	U	U	υ	U
Vanadium			2	41.1	60.5	22.3	13.2	66.6	41
Zinc	120	270	8	236	-478	<u> 2</u>	103	236	188
Cyanide			10	υ	U	U	U	υ	U
TOC*			2	NA	NA	56300	10800	NA	NA

QUALIFIERS/ABBREVIATIONS:

mg/kg: Milligrams per kilogram.

IDL: Instrument Detection Limit.

*: Total Organic Carbon.

Concentration exceeds NYSDEC Lowest Effect Guidance

: Concentration exceeds NYSDEC Severe Effect Guidance

Value for surface water sediments.

----: No Guidance Value established.

U: Compound analyzed for but not detected.

B: Concentration is > IDL but < CRDL.

Sed met

APPENDIX K

ANALYTICAL DATA TABLES – INDOOR AIR

TABLE K - 1 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION / FEASIBILITY STUDY INDOOR AIR ANALYTICAL RESULTS DETECTED VOLATILE ORGANIC COMPOUNDS

	<u>LE IDENTIFI</u>	AA-A-01 (Sump)	AA-A-02 (Adjacent Sump)		
	E OF COLLE	CTION	····	1/25/99	1/25/99
Targeted	geted NYSDEC NYSDEC OSHA (O)*				
Compounds	SGC	AGC	NIOSH (N)*		
Freon 113	1,800,00	30,000	7,600,000 (O)(N)	υ	9.9 J
Chloromethane	22,000	770	100,000-(O)	U	3.1 J
cis- 1,2 Dichloroethene	190,000	1,900	ca (N)	U	6.1 J
1,1,1-Trichloroethane			ca (N)	U	42.0
Trichloroethene	33,000	4.5 E-01	ca (N)	U	30.0
TOTAL TARGETED VOCs				U	91.1
Additional Compounds				· · · · · · · · · · · · · · · · · · ·	
Acetone	140,000	1,400	590,000 (N)	18,000.0 E	2,400.0 E
Methylene Chloride	41,000	27	ca (N)	73.0 J	2.2 J
Ethanol	450,000	45,000	1,900,000 (N)	1,200.0	180.0
Toluene	45,000	400	375,000 (N)	υ	14.0 J
Chlorobenzene			350,000 (O)	U	7.8 J
M,P Xylene	100,000	300	435,000 (N)	U	7.4 J
2-Propanol	230,000	2,300	400,000 (O) (N)	υ	18.0 J
2-Butanone	140,000	300	590,000 (O)(N)	U	18.0 J
TOTAL N	ON-TARGE	TED VOCs		19,273.0	2,647.4

NOTES:

Analyses conducted using EPA Method TO-14 GC/MS Full Scan Units are ug/m³, micrograms per cubic meter

QUALIFIERS/ABBREVIATIONS:

VOCs: volatile organic compounds

- U: Compound analyzed for but not detected
- J: Estimated value
- E: Exceeds calibration curve range
- --: Not established

- SGC: Air Guide short term exposure
- AGC: Air Guide averaged annual exposure
- NIOSH: National Institute for Occupational Safety and Health, Recommended Exposure Limit (REL)
- OSHA: Occupational Safety and Health Administration, Permissable Exposure Limit (PEL)
- *: Where OSHA and NIOSH limits differ, lowest limits are given
- ca: Carcinogenic, no exposure limits established
- (O): OSHA REL
- (N): NIOSH PEL

APPENDIX L

NATURAL ALTERNATION PARAMETER RESULTS

TABLE L - 1 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY NATURAL ATTENUATION PARAMETER SAMPLE RESULTS

SAMPLE IDENTIFICATION	GP-W-B50	GP-W-B50	GP-W-B100	GP-W-B100	GP-W-H100	GP-W-K100	GP-W-M100	GP-W-H0
DATE OF COLLECTION	1/6/99	1/6/99	1/6/99	1/6/99	1/7/99	1/8/99	1/11/99	1/23/99
SAMPLE DEPTH (ft)	8-12	36-40	12-16	46-50	51-55	48-52	44-48	14-18
UNITS*	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)
Ferrous Iron	12.9	U	2.55	1.77	12.8	12.8	40.7	40.7
Nitrate	0.12	U	U	U	0.11	U	U	U
Sulfate	33.1	34.8	28.8	28.3	36.7	40.8	41.2	40.7
Sulfide	U	U	1.8	U	U	U	U	3.14
Dissolved Methane (ug/l)	20	80	15	220	150	37	70	23
Dissolved Oxygen	1.23	1.18	0.85	0.74	11.66	0.62	0.48	0.73
					·			
SAMPLE IDENTIFICATION	GP-W-J25	GP-W-R100	GP-W-P0	GP-W-T85	GP-W-H50	GP-W-J50	GP-W-SUMP	GP-W-0100
DATE OF COLLECTION	1/12/99	1/13/99	1/14/99	1/18/99	1/19/99	1/20/99	1/21/99	3/27/99
SAMPLE DEPTH (ft)	12-16	48-52	26-30	44-48	36-40	12-16	27-31	23-27
UNITS*	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / 1)	(mg / l)	(mg / l)	(mg / l)
Ferrous Iron	0.52	1.44	0,71	17.2		U	38	36
Nitrate	2,56	U	0.45	0.153	0.229	υ	0.373	0.13
Sulfate	41.3	48.7	20.8	26.3	38.2	34.2	47.2	37.9
Sulfide	U	U	Ŭ	U	1.2	1.28	47.2 U	57,9 U
Dissolved Methane (ug/l)	U	15	Ū	8	67	82	40	180
Dissolved Oxygen	0.48	1.82	4.11	0.97	1.34	1.04	40 0.71	100

Notes:

U: Constituent analyzed for but not detected.

- -: Constituent not analyzed.

*: Dissolved methane units are (ug / l).

TABLE L - 1 FARRAND CONTROLS SITE REMEDIAL INVESTIGATION/FEASIBILITY STUDY NATURAL ATTENUATION PARAMETER SAMPLE RESULTS

SAMPLE IDENTIFICATION	GP-W-G(-10)	GP-W-G(-25)	GP-W-G(-65)	GP-W-OS1	GP-W-0150	GP-W-OS2	GP-W-OS3
DATE OF COLLECTION	3/18/99	3/19/99	3/22/99	3/22/99	3/23/99	3/25/99	3/26/99
SAMPLE DEPTH (ft)	12-16	12-16	23-27	51-55	68-72	35-39	51-55
UNITS*	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)
Ferrous Iron	U	U	2.03	12.7	191	53.3	41.9
Nitrate	1.12	1.54	0.751	0.8	U	0.56	0.57
Sulfate	50.9	48.1	27.9	24.8	40.1	31.5	32.2
Sulfide	1 U	U	U	64.4	5.6	U	1.7
Dissolved Methane (ug/l)	8	U	10	8	22	11	12
Dissolved Oxygen	5.46		2.22	2.81	0.14	0.81	2.31

SAMPLE IDENTIFICATION	GP-W-EE100	GP-W-UG1	GP-W-EEO	GP-W-BBO	GP-W-D25	GP-W-I0	GP-W-T6
DATE OF COLLECTION	3/29/99	3/30/99	3/31/99	4/6/99	4/7/99	4/5/99	4/14/99
SAMPLE DEPTH (ft)	60-64	12-16		18-22	42-46	14-18	12-16
UNITS *	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)	(mg / l)
Ferrous Iron	30.7	105	U	U	9.18	Ū	12.5
Nitrate	0.23	U	0.97	0.93	0.11	35.8	U
Sulfate	36.8	30.8	27.6	27.3	34.2	U	U
Sulfide	U	U	U	U	U	246	U
Dissolved Methane (ug/l)	220	15	· 9	8	170	20	30
Dissolved Oxygen	0.85	1.96	4.28	5.34		2.48	

Notes:

U: Constituent analyzed for but not detected.

- -: Constituent not analyzed.

*: Dissolved methane units are (ug / l).