






























SURFACE SOIL	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
Volatile Organic Compounds (VOCs)	None	ND		
(1.003)				
Semivolatile Organic Compounds				
(SVOCs)				
NORTH YARD	Benzo(a)anthracene	0.0194 - 18.3	0.224	3/9
	Benzo(a)pyrene	0.0136 - 16.8	0.061	6/9
	Benzo(b)fluoranthene	0.0226 - 22.7	1.1	2/9
	Benzo(k)fluoranthene Chrysene	0.0109 - 8.590 0.0214 - 19.4	1.1 0.4	2/9 3/9
	Dibenzo(a,h)anthracene	0.0246 - 3.260	0.014	4/9
	Indeno(1,2,3-cd)pyrene	0.0697 - 13.4	3.2	1/9
	macro(1/2)s ca)pyrene	0.0057 10.1	0.2	-//
SOUTH YARD	Benzo(a)anthracene	0.060 - 8.180	0.224	15/21
	Benzo(a)pyrene	0.077 - 5.950	0.061	17/21
	Benzo(b)fluoranthene	0.085 - 7.950	1.1	10/21
	Benzo(k)fluoranthene	0.073 - 5.0	1.1	6/21
	Chrysene	0.088 - 7.7	0.4	15/21
	Dibenzo(a,h)anthracene	0.0212 - 1.030	0.014	12/21
PRI ON PUM PRI				
BELOW BUILDING	Benzo(a)anthracene	10.7	0.224	1/1
	Benzo(a)pyrene	8.8	0.061	1/1
	Benzo(b)fluoranthene	9.9 3.9	1.1	1/1 1/1
	Benzo(k)fluoranthene Chrysene	10	0.4	1/1
	Dibenzo(a,h)anthracene	1.4	0.014	1/1
	Indeno(1,2,3-cd)pyrene	5.1	3.2	1/1
	(-,-,, _F)			
Polychlorinated Biphenyls (PCBs)/Pesticides				
NORTH YARD	Total Aroclors	ND - 20.1	1	2/9
SOUTH YARD	Total Aroclors	ND - 7	1	9/23
BELOW BUILDING	Total Aroclors	15.5	1	1/1
Inorganic Compounds				
Inorganic Compounds NORTH YARD	Arsenic	1.5 - 34.8	7.5	2/9
0 ,	Barium	70.7 - 556	300	1/9
0 ,	Barium Chromium	70.7 - 556 5.4 - 52.1	300 50	1/9 1/9
0 ,	Barium Chromium Copper	70.7 - 556 5.4 - 52.1 81.9 - 905	300 50 25	1/9 1/9 5/9
0 ,	Barium Chromium Copper Iron	70.7 - 556 5.4 - 52.1	300 50	1/9 1/9 5/9 8/9
0 ,	Barium Chromium Copper Iron Lead	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040	300 50 25 2000 500	1/9 1/9 5/9 8/9 4/12
0 ,	Barium Chromium Copper Iron	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400	300 50 25 2000	1/9 1/9 5/9 8/9
0 ,	Barium Chromium Copper Iron Lead Mercury	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88	300 50 25 2000 500 0.1	1/9 1/9 5/9 8/9 4/12 6/9
0 ,	Barium Chromium Copper Iron Lead Mercury Nickel	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7	300 50 25 2000 500 0.1 13	1/9 1/9 5/9 8/9 4/12 6/9 7/9
0 ,	Barium Chromium Copper Iron Lead Mercury Nickel	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7	300 50 25 2000 500 0.1 13	1/9 1/9 5/9 8/9 4/12 6/9 7/9
NORTH YARD	Barium Chromium Copper Iron Lead Mercury Nickel Zinc	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7 73.9 - 1040	300 50 25 2000 500 0.1 13 20	1/9 1/9 5/9 8/9 4/12 6/9 7/9
NORTH YARD	Barium Chromium Copper Iron Lead Mercury Nickel Zinc Arsenic	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7 73.9 - 1040	300 50 25 2000 500 0.1 13 20	1/9 1/9 5/9 8/9 4/12 6/9 7/9 7/9
NORTH YARD	Barium Chromium Copper Iron Lead Mercury Nickel Zinc Arsenic Barium	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7 73.9 - 1040 2.3 - 106 38.4 - 1540 0.08 - 0.77 7.5 - 77.4	300 50 25 2000 500 0.1 13 20 7.5 300 0.16 50	1/9 1/9 5/9 8/9 4/12 6/9 7/9 7/9 16/21 2/21 8/21 3/21
NORTH YARD	Barium Chromium Copper Iron Lead Mercury Nickel Zinc Arsenic Barium Beryllium Chromium Copper	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7 73.9 - 1040 2.3 - 106 38.4 - 1540 0.08 - 0.77 7.5 - 77.4 40.8 - 5630	300 50 25 2000 500 0.1 13 20 7.5 300 0.16 50 25	1/9 1/9 5/9 8/9 4/12 6/9 7/9 7/9 16/21 2/21 8/21 3/21 21/21
NORTH YARD	Barium Chromium Copper Iron Lead Mercury Nickel Zinc Arsenic Barium Beryllium Chromium Copper Iron	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7 73.9 - 1040 2.3 - 106 38.4 - 1540 0.08 - 0.77 7.5 - 77.4 40.8 - 5630 7440 - 110000	300 50 25 2000 500 0.1 13 20 7.5 300 0.16 50 25 2000	1/9 1/9 5/9 8/9 4/12 6/9 7/9 7/9 16/21 2/21 8/21 3/21 21/21
NORTH YARD	Barium Chromium Copper Iron Lead Mercury Nickel Zinc Arsenic Barium Beryllium Chromium Copper	70.7 - 556 5.4 - 52.1 81.9 - 905 15800 - 72400 6.3 - 7040 0.12 - 0.88 12.6 - 39.7 73.9 - 1040 2.3 - 106 38.4 - 1540 0.08 - 0.77 7.5 - 77.4 40.8 - 5630	300 50 25 2000 500 0.1 13 20 7.5 300 0.16 50 25	1/9 1/9 5/9 8/9 4/12 6/9 7/9 7/9 16/21 2/21 8/21 3/21 21/21

SURFACE SOIL	Potential Contaminants of Concern	Concentration Range Detected (ppm) a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
	Selenium	0.354	2	2/21
	Vanadium	15.5 - 431	150	1/21
	Zinc	73.3 - 3560	20	21/21
SURFACE SOIL	Potential Contaminants of Concern	Concentration Range Detected (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
BELOW BUILDING	Arsenic	21.1	7.5	1/1
BEEGW BUIEDING	Copper	259	25	1/1
	Iron	29500	2000	1/1
	Lead	3130	500	
		1.9	0.1	1/1 1/1
	Mercury Nickel	1.9	13	,
		· ·		1/1
	Zinc	169	20	1/1
SUBSURFACE SOIL	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
Volatile Organic Compounds				
(VOCs)				
NORTH YARD	Acetone	0.0072 - 1480	0.2	2/79
	Benzene	0.0017 - 7.44	0.06	4/79
	Ethylbenzene	0.0016 - 402	5.5	4/79
	Hexachlorobenzene	ND - 0.42	0.41	1/163
	Methylene Chloride	0.001 - 0.404	0.1	2/79
	Toluene	0.0019 - 468	1.5	4/79
	Xylene (total)	0.0022 - 3190	1.2	4/79
	Total VOC	ND - 4061.703	10	4/83
	Total VOC	140 1001.700	10	1/00
SOUTH YARD	no SCG exceedances			
BELOW BUILDING	Xylene(total)	0.0092 - 20.7	1.2	1/17
Semivolatile Organic Compounds				
(SVOCs)	235 11 1 1 1	0.0405		0./4
NORTH YARD	2-Methylnapthalene	0.0192 - 78.2	36.4	2/163
	2-Methylphenol	0.0587 - 0.979	0.1	5/163
	Acenaphthylene	14.8 - 43.3	41	1/163
	Anthracene	0.0163 - 113	50	2/163
	Benzo(a)anthracene	0.0152 - 245	0.224	103/163
	Benzo(a)pyrene	0.0297 - 219	0.061	132/163
	Benzo(b)fluoranthene	0.0134 - 268	1.1	57/163
	Benzo(g,h,i)perylene	0.0214 - 158	50	2/163
	Benzo(k)fluoranthene	0.0183 - 91.4	1.1	35/163
	Bis(2-ethylhexyl)phthalate	0.0158 - 3700	50	21/163
	Chrysene	0.0112 - 233	0.4	89/163
	Dibenzo(a,h)anthracene	0.0161 - 58	0.014	77/163
	Dibenzofuran	0.0184 - 65.6	6.2	4/163
	Fluoranthene	0.0214 - 727	50	4/163
	Fluorene	0.0174 - 72.8	50	2/163
	Ideno(1,2,3-cd)pyrene	0.0186 - 176	3.2	23/163
	Napthalene	0.0144 - 88.6	13	9/163
	Phenol	0.081 - 243	0.03	22/163
	Pyrene Tatal SVOC	0.0174 - 527	50 500	6/163
	Total SVOC	ND - 3979.350	500	14/172

SUBSURACE SOIL		Potential Contaminants of	Concentration Range		Frequency Exceeding Screening
Benzo(a)pyrene 0.028-19.5 0.061 37/47	SUBSURFACE SOIL	Concern	Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Criteria
Benzo(k)fluoranthene	SOUTH YARD	\ /	0.019 - 20.5	0.224	29/47
Benzo(s)fluoranthene		\ /1 /			,
Chrysene		\ /			,
Dibenzo(a,h)anthracene 0.0108 - 2.1 0.014 29/47 1/47		()			,
Ideno(1,2,3-ed)pyrene					,
SUBSURFACE SOIL Potential Contaminants of Concentration Range Detected (ppm)		(' ' /			,
SUBSURFACE SOIL Potential Contaminants of Concern		Ideno(1,2,3-cd)pyrene	0.0182 - 10.1	3.2	1/4/
SUBSURFACE SOIL				Concentration	_
Potential Contaminants of Concertration Range Detected (ppm) Screening (ppm) Screening (ppm) Contest					
SUBSURFACE SOIL Concern Detected (ppm)		Potential Contaminants of	Concentration Range	Detected ¹	
BELOW BUILDING	SUBSURFACE SOIL		Detected (ppm) a	(ppm) ^a	
2-Methylphenol 0.060 - 0.239 0.1			(1)	(11)	
Benzo(g,h.i)perylene 0.0697 - 55.1 50 1/112	BELOW BUILDING				,
Benzo(a)anthracene Benzo(a)anthracene Benzo(b)Buoranthene 0.0221-139 0.224 83/112 Benzo(b)Buoranthene 0.024-135 1.1 49/112 Benzo(a)pyrene 0.021-216 0.4 73/112 Dibenzo(a)pyrene 0.0224-28 0.061 61/112 Chrysene 0.0212-156 0.4 73/112 Dibenzo(a,b)anthracene 0.0212-156 0.4 73/112 Dibenzo(a,b)anthracene 0.0292-2910 0.014 46/112 Di-n-butyl phthalate 0.0497-149 8.1 1/112 Fluoranthene 0.0172-421 50 4/112 Fluoranthene 0.0172-421 50 4/112 Benzo(a)pyrene 0.0193-66 3.2 11/112 Pentachlorophenol ND-1-69 1 1/112 Pentachlorophenol ND-1-69 1 1/112 Pentachlorophenol 0.0434-0.346 0.03 3/112 Pyrene 0.0276-354 50 3/79 Total SVOC ND-2434-952 500 1/112 PCBs/Pesticides ND-2434-952 500 1/112 PCBs/Pesticides ND-3434 10 1/47 BELOW BUILDING Total Arcclors ND-97600 10 35/166 SOUTH YARD Arsenic 1.1-60.6 7.5 93/165 Beryllium 0.07-12 0.16 17/165 Cadmium 0.03-20.8 10 1/165 Chromium 6.2-727 50 35/165 Gobalt 29-41.4 30 1/165 Cobalt 29-41.4 30 1/165 Cobalt 29-41.4 30 1/165 Copper 10-34800 25 154/165 Lead 5.7-41900 500 83/168 TCLP Lead 0.63-8.8 5 2/14 Mercury 0.039-13.1 0.1 141/164 Nickel 6.4-143 13 145/165 Selenium 0.23-29.7 2 21/119 SOUTH YARD Arsenic 1.1-896 150 2/165 South YARD Arsenic 1.1-896 150 2/165 Selenium 0.23-29.7 2 21/119		/ 1			
Benzo(b)fluoranthene 0.024 - 135 1.1 49/112		(0 /1)			,
Benzo(k)fluoranthene		\ /			
Benzo(a)pyrene		\ /			
Chrysene		\ /			
Dibenzofuran Dibe		, ,,,,,			,
Dibenzo(a,h)anthracene Dibenzo(a,h)anthrac					,
Di-n-butyl phthalate					
Fluoranthene 0.0172 - 421 50 4/112 Ideno(1,2/3-cd) pyrene 0.0193 - 66 3.2 11/112 Napthalene 0.0215 - 207 13 5/112 Pentachlorophenol ND - 1.69 1 1/112 Phenol 0.0434 - 0.346 0.03 3/112 Pyrene 0.0276 - 354 50 3/79 Total SVOC ND - 2434.952 500 1/112 PCBs/Pesticides				+	,
Ideno(1,2,3-cd) pyrene		, ,			
Napthalene					,
Pentachlorophenol ND - 1.69 1 1/112 Phenol 0.0434 · 0.346 0.03 3/112 Pyrene 0.0276 · 354 50 3/79 Total SVOC ND - 2434.952 500 1/112 PCBs/Pesticides		, , , , ,			
Phenol 0.0434 - 0.346 0.03 3/112		1			
Pyrene					,
Total SVOC ND - 2434.952 500 1/112					,
NORTH YARD				500	
NORTH YARD					,
NORTH YARD					
SOUTH YARD Total Aroclors ND - 23.3 10 1/47	PCBs/Pesticides				
BELOW BUILDING Total Aroclors ND - 5510 10 21/119	NORTH YARD	Total Aroclors	ND - 97600	10	35/166
BELOW BUILDING Total Aroclors ND - 5510 10 21/119					
Inorganic Compounds	SOUTH YARD	Total Aroclors	ND - 23.3	10	1/47
Inorganic Compounds					
NORTH YARD Arsenic 1.1 - 60.6 7.5 93/165 Barium 25 - 18200 300 66/165 Beryllium 0.07 - 1.2 0.16 17/165 Cadmium 0.03 - 20.8 10 1/165 Chromium 6.2 - 727 50 35/165 Cobalt 2.9 - 41.4 30 1/165 Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165	BELOW BUILDING	Total Aroclors	ND - 5510	10	21/119
NORTH YARD Arsenic 1.1 - 60.6 7.5 93/165 Barium 25 - 18200 300 66/165 Beryllium 0.07 - 1.2 0.16 17/165 Cadmium 0.03 - 20.8 10 1/165 Chromium 6.2 - 727 50 35/165 Cobalt 2.9 - 41.4 30 1/165 Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165					
Barium 25 - 18200 300 66/165 Beryllium 0.07 - 1.2 0.16 17/165 Cadmium 0.03 - 20.8 10 1/165 Chromium 6.2 - 727 50 35/165 Cobalt 2.9 - 41.4 30 1/165 Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165	Inorganic Compounds				
Beryllium 0.07 - 1.2 0.16 17/165 Cadmium 0.03 - 20.8 10 1/165 Chromium 6.2 - 727 50 35/165 Cobalt 2.9 - 41.4 30 1/165 Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165	NORTH YARD				The state of the s
Cadmium 0.03 - 20.8 10 1/165 Chromium 6.2 - 727 50 35/165 Cobalt 2.9 - 41.4 30 1/165 Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165					,
Chromium 6.2 - 727 50 35/165 Cobalt 2.9 - 41.4 30 1/165 Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165		,			
Cobalt 2.9 - 41.4 30 1/165 Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					
Copper 10 - 34800 25 154/165 Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					
Iron 3240 - 295000 2000 154/165 Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					,
Lead 5.7 - 41900 500 83/168 TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47				+	
TCLP Lead 0.63 - 8.8 5 2/14 Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					,
Mercury 0.039 - 13.1 0.1 141/164 Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					
Nickel 6.4 - 143 13 145/165 Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					-
Selenium 0.23 - 29.7 2 31/165 Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47		,		+	•
Vanadium 11.4 - 896 150 2/165 Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					
Zinc 30.1 - 32500 20 155/165 SOUTH YARD Arsenic 2.1 - 70 7.5 24/47					-
SOUTH YARD Arsenic 2.1 - 70 7.5 24/47				+	
					,
Barium 34.4 - 4460 300 4/47	SOUTH YARD	Arsenic	2.1 - 70	7.5	24/47
		Barium	34.4 - 4460	300	4/47

SUBSURFACE SOIL	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
	Beryllium	0.71 - 1	0.16	7/47
	Chromium	4.3 - 697	50	2/47
	Copper	15.6 - 1940	25	41/47
	Iron	5240 - 78600	2000	47/47
	Lead	8.7 - 6230	500	8/47
	Mercury	0.049 - 3.5	0.1	32/47
	Nickel	8.5 - 79	13	40/47
	Selenium	1.2 - 5.1	2	3/47
	Zinc	22.1 - 5220	20	47/47
SUBSURFACE SOIL	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
BELOW BUILDING	Arsenic	1.3 - 98	7.5	44/114
	Barium	28.1 - 1540	300	12/114
	Beryllium	0.11 - 1	0.16	7/114
	Chromium	5.2 - 106	50	5/114
	Copper	11 - 11300	25	103/114
	Iron	5110 - 342000	2000	114/114
	Lead	8.9 - 15900	500	63/114
	TCLP Lead	1.2 - 27.1	5	2/4
	Mercury	0.03 - 5.8	0.1	98/114
	Nickel	6.8 - 133	13	73/114
	Selenium	0.37 - 23.7	2	11/114
	Zinc	8.8 - 5050	20	109/114
	ZARC	0.0 0000	20	105/111
BICC PARKING LOT	Beryllium	ND - 0.8	0.16	1/6
	Iron	6920 - 18600	2000	6/6
	Mercury	0.039 - 0.72	0.1	1/6
	Nickel	9.3 - 15.9	13	3/6
	Zinc	19.5 - 111	20	5/6
GROUNDWATER ²	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppb) ^a	SCG ^b (ppb) ^a	Frequency Exceeding Screening Criteria
Volatile Organic Compounds				
(VOCs)		44		0.1:=
NORTH YARD	Benzene	1.1 - 14.9	1	3/17
	Tetrachlorethene	16.5 - 58.9	5	4/17
	Xylene(total)	ND - 8.5	5	1/17
Semivolatile Organic Compounds				
(SVOCs)				
NORTH YARD	2-Methylphenol	ND - 2.6J	1	1/17
	Bis(2-ethylhexyl)phthalate	ND - 63.8	5	1/17
	Phenol	2.3J - 4.8J	1	2/17
PCBs/Pesticides	None	ND		
Inorganic Compounds				
NORTH YARD	Aluminum	206 - 4640J	100	8/19
	Barium	260 - 4120	1000	5/19
	Darran			
	Iron Lead	259 - 25900 4.7 - 64.4	300 25	19/19 6/19

GROUNDWATER ²	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppb) ^a	SCG ^b (ppb) ^a	Frequency Exceeding Screening Criteria	
	Magnesium	9660 - 239000	35000	10/19]
	Manganese	23 - 1030	300	8/19]
	Sodium	41900 - 3460000	20000	19/19	
SOUTH YARD	Aluminum	296 - 1830	100	2/6	
33 4111 111112	Iron	871 - 31400	300	5/6	
	Lead	3 - 104	25	1/6	
	Magnesium	31100 - 125000	35000	4/6	
	Manganese	147 - 1490	300	5/6	
	Sodium	105000 - 888000	20000	6/6	
					1
BELOW BUILDING	Aluminum	425 - 10900	100	2/5	
	Iron	574 - 34900	300	5/5	
	Lead	8.4 - 64.4	25	2/5	
	Magnesium	55400 - 263000	35000	5/5	
	Manganese	458 - 6510	300	5/5	
	Sodium	35900 - 1840000	20000	5/5	
SURFACE WATER	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria	
Volatile Organic Compounds					
(VOCs)	Not Analyzed				
Semivolatile Organic Compounds					
(SVOCs)	Not Analyzed				
PCBs/Pesticides	Not Analyzed				
Inorganic Compounds	Iron	316 - 436	300	2/2	
	Sodium	3530000 - 3630000	20000	2/2	1
SURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppb) ^a	SCGb	(ppb) ^a	Frequency Exceeding Screening Criteria
Volatile Organic Compounds (VOCs)	Not Analyzed				
(1003)	Not Allaryzed				
Semivolatile Organic Compounds (SVOCs)					
BUILDING INTERTIDAL	Acenaphthene	22.3 - 65	LEL	16	6/18
	Acenaphthylene	45 - 133	LEL	44	13/18
	Anthracene	23.9 - 205	LEL	85.3	5/18
	Benzo(a)anthracene	44.2 - 588	LEL	261	7/18
	Rongo(a)	40.7 564	LEL	430	4/18
	Benzo(a)pyrene	49.7 - 564	НН	0.7*	16/18
	bis(2-Ethylhexyl)phthalate	163 - 1360	LEL*	199.5*	1/18
	Chrysene	47.4 - 901	LEL	384	5/18
	Dibenzo(a,h)anthracene	36.3 - 79.9	LEL	63.4	5/18
	Diethyl phthalate	216 - 216	LEL*	1*	1/18
	Fluoranthene Fluorene	66.3 - 1320	LEL	600	5/18
	Phenanthrene	50.8 - 85.1 90 - 496	LEL LEL	19 240	5/18 5/18
	Pyrene	74.4 - 1340	LEL	665	5/18
	Total PAHs	440.4 - 7284.6	LEL	4022	5/18
					, , , , , , , , , , , , , , , , , , ,
BUILDING SUBTIDAL	Acenaphthene	52.5 - 430	LEL	16	3/5
	Acenaphthylene	75.5 - 116	LEL	44	4/5

SURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppb) ^a		(ppb) ^a	Frequency Exceeding Screening Criteria
	Anthracene	50.8 - 183	LEL	85.3	4/5
	Benzo(a)anthracene	200 - 824	LEL	261	4/5
	Benzo(a)pyrene	205 - 565	LEL	430	4/5
	Derizo(a)pyrene	200 - 300	HH	0.7*	5/5
	Chrysene	216 - 856	LEL	384	4/5
	Dibenzo(a,h)anthracene	46.6 - 72.5	LEL	63.4	1/5
	Fluoranthene	395 - 2870	LEL	600	4/5
	Fluorene	44.3 - 103	LEL	19	4/5
	Phenanthrene	115 - 744	LEL	240	4/5
	Pyrene	396 - 2240	LEL	665	4/5
	Total PAHs	2206.8 - 10329.2	LEL	4022	4/5
	1000111115	2200.0 10027.2	EEE	1022	1/ 5
ADJACENT TO YARD	Acenaphthylene	34.5 - 77.5	LEL	44	4/7
In precion to the	Anthracene	43.8 - 85.4	LEL	85.3	1/7
			LEL	261	3/7
	Benzo(a)anthracene	95.1 - 347	HH	0.7	7/7
	Chrysene	89.1 - 388	LEL	384	1/7
	Dibenzo(a,h)anthracene	31.9 - 66.4	LEL	63.4	1/7
	Potential Contaminants of	Concentration Range			Frequency Exceeding
SURFACE SEDIMENT	Concern	Detected ¹ (ppb) ^a	SCGb	(ppb) ^a	Screening Criteria
BUILDING INTERTIDAL		4.1	LEL	22.7	10/18
			SEL	180	6/18
	Aroclor 1248	59.6 - 2550	WB	1.4*	9/18
			HH	0.0008*	9/18
			LEL	22.7	17/18
			SEL	180	14/18
	Aroclor 1260	54.1 - 33300	WB	1.4*	15/18
			HH	0.0008*	15/18
			LEL	22.7	· · · · · · · · · · · · · · · · · · ·
			SEL		17/18
	Total PCBs	54.1 - 33300		180	15/18
			WB	1.4*	15/18
DIVISION AS CHARTER AT			НН	0.0008*	15/18
BUILDING SUBTIDAL			LEL	22.7	9/16
	Aroclor 1248	162 - 481	SEL	180*	8/16
			WB	1.4*	11/16
			HH	0.0008*	11/16
			LEL	22.7	10/16
	Aroclor 1260	58.6 - 15800	SEL	180*	9/16
	71100101 1200	30.0 10000	WB	1.4*	13/16
			HH	0.0008*	13/16
	Total PCBs	165 - 15800	LEL	22.7	15/15
ADJACENT TO YARD			LEL	22.7	6/7
	Aroclor 1248	66.2 - 168	WB	1.4	6/7
			HH	0.0008	6/7
			LEL	22.7	6/7
	Aroclor 1260	47.9 - 280	SEL	180	1/7
			WB	1.4	6/7
			HH	0.0008	6/7
			LEL	22.7	6/7
	Total PCBs	0 - 448	SEL	180	3/7
			WB	0.0008	6/7
			HH	0.0008	6/7

SURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b	(ppm) ^a	Frequency Exceeding Screening Criteria
Inorganic Compounds					
BUILDING INTERTIDAL	Arsenic	1.3 - 22.4	LEL	8.2	15/18
	Cadmium	1.1 - 3.8	LEL	1.2	5/18
	Chromium	6.5 - 117	LEL	81	4/18
			LEL	34	16/18
	Copper	26.2 - 324	SEL	270	2/18
			LEL	46.7	16/18
	Lead	30 - 1040	SEL	218	7/18
			LEL	0.15	16/18
	Mercury	0.71 - 1.6	SEL	0.71	15/18
			LEL	20.9	16/18
	Nickel	5.5 - 62.4	SEL		
				51.6	2/18
	Silver	2 - 4.6	LEL	1	12/18
			SEL	3.7	2/18
	Zinc	64.3 - 1000	LEL	150	16/18
			SEL	410	1/18
BUILDING SUBTIDAL	Arsenic	5.6 - 17.7	LEL	8.2	10/24
	Cadmium	0.0044 - 1.3	LEL	1.2	1/24
	Copper	56.4 - 88.3	LEL	34	24/24
	Lead	58.8 - 1190	LEL	46.7	24/24
	Lead	36.6 - 1190	SEL	218	2/24
			LEL	0.15	23/24
	Mercury	0.078 - 3.1	SEL	0.71	12/24
	Nickel	19.8 - 30.8	LEL	20.9	21/24
	Silver	1.8 - 3.5	LEL	1	16/24
	Zinc	105 - 182	LEL	150	7/24
					,
CANDA CE CEDINATIVE	Potential Contaminants of	Concentration Range		a	Frequency Exceeding
SURFACE SEDIMENT	Concern	Detected ¹ (ppb) ^a		(ppb) ^a	Exceeding Screening Criteria
SURFACE SEDIMENT ADJACENT TO YARD	Concern Arsenic	Detected (ppb) a 5.9 - 9.4	LEL	8.2	Exceeding Screening Criteria 6/15
	Concern	Detected ¹ (ppb) ^a			Exceeding Screening Criteria
	Concern Arsenic	Detected (ppb) a 5.9 - 9.4	LEL	8.2	Exceeding Screening Criteria 6/15
	Concern Arsenic Copper Lead	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186	LEL LEL	8.2 34	Exceeding Screening Criteria 6/15 15/15
	Concern Arsenic Copper	Detected (ppb) a 5.9 - 9.4 54.7 - 134	LEL LEL	8.2 34 46.7	Exceeding Screening Criteria 6/15 15/15 15/15
	Concern Arsenic Copper Lead	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186	LEL LEL LEL	8.2 34 46.7 0.15	Exceeding Screening Criteria 6/15 15/15 15/15 17/17
	Concern Arsenic Copper Lead Mercury	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1	LEL LEL LEL SEL	8.2 34 46.7 0.15 0.71	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17
	Concern Arsenic Copper Lead Mercury Nickel	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3	LEL LEL LEL SEL LEL	8.2 34 46.7 0.15 0.71 20.9	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15
ADJACENT TO YARD SUBSURFACE SEDIMENT	Concern Arsenic Copper Lead Mercury Nickel Silver	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202	LEL LEL LEL SEL LEL LEL LEL LEL	8.2 34 46.7 0.15 0.71 20.9	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15
ADJACENT TO YARD SUBSURFACE SEDIMENT Volatile Organic Compounds	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range	LEL LEL LEL SEL LEL LEL LEL LEL	8.2 34 46.7 0.15 0.71 20.9 1 150	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding
ADJACENT TO YARD SUBSURFACE SEDIMENT	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range	LEL LEL LEL SEL LEL LEL LEL LEL	8.2 34 46.7 0.15 0.71 20.9 1 150	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding
ADJACENT TO YARD SUBSURFACE SEDIMENT Volatile Organic Compounds	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range	LEL LEL LEL SEL LEL LEL LEL LEL	8.2 34 46.7 0.15 0.71 20.9 1 150	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range	LEL LEL LEL SEL LEL LEL LEL LEL	8.2 34 46.7 0.15 0.71 20.9 1 150	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a	LEL LEL LEL SEL LEL LEL SEL LEL SCGb	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed 1,4-Dichlorobenzene 2-Methylnaphthalene	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a 91.3 - 764 49.8 - 265	LEL LEL LEL LEL SEL LEL LEL LEL LEL LEL	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a	LEL	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a 12* 70 16	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria 1/18 2/18 5/18
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed 1,4-Dichlorobenzene 2-Methylnaphthalene Acenaphthene	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a 91.3 - 764 49.8 - 265 19.8 - 1030	LEL	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a 12* 70 16 500	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria 1/18 2/18 5/18 1/18
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed 1,4-Dichlorobenzene 2-Methylnaphthalene	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a 91.3 - 764 49.8 - 265	LEL	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a 12* 70 16 500 44	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria 1/18 2/18 5/18 1/18 13/18
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed 1,4-Dichlorobenzene 2-Methylnaphthalene Acenaphthene	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a 91.3 - 764 49.8 - 265 19.8 - 1030	LEL	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a 12* 70 16 500 44 85.3	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria 1/18 2/18 5/18 1/18 13/18 9/18
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed 1,4-Dichlorobenzene 2-Methylnaphthalene Acenaphthylene	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a 91.3 - 764 49.8 - 265 19.8 - 1030 33.7 - 144	LEL	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a 12* 70 16 500 44 85.3 1100	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria 1/18 2/18 5/18 1/18 1/18 1/18
SUBSURFACE SEDIMENT Volatile Organic Compounds (VOCs) Semivolatile Organic Compounds (SVOCs)	Concern Arsenic Copper Lead Mercury Nickel Silver Zinc Potential Contaminants of Concern Not Analyzed 1,4-Dichlorobenzene 2-Methylnaphthalene Acenaphthylene	Detected (ppb) a 5.9 - 9.4 54.7 - 134 56.4 - 186 0.57 - 1 22.1 - 34.3 1.8 - 2.7 125 - 202 Concentration Range Detected (ppb) a 91.3 - 764 49.8 - 265 19.8 - 1030 33.7 - 144	LEL	8.2 34 46.7 0.15 0.71 20.9 1 150 (ppb) ^a 12* 70 16 500 44 85.3	Exceeding Screening Criteria 6/15 15/15 15/15 17/17 5/17 15/15 13/15 9/15 Frequency Exceeding Screening Criteria 1/18 2/18 5/18 1/18 13/18 9/18

SUBSURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected (ppb) a	SCCh	(ppb) ^a	Frequency Exceeding Screening Criteria
302301411023221112111	Concern	Beteeten (ppb)	LEL	430	6/18
	Ponzo(a)nymona	35.1 - 2700	SEL	ł	· ·
	Benzo(a)pyrene	33.1 - 2700	HH	1600 0.7	1/18
	bis(2-Ethylhexyl)phthalate	E4.6 70.6000	LEL*	ł	16/18
	bis(2-Ethylnexy))phthalate	54.6 - 796000		199.5*	2/18
	Chrysene	48.9 - 3120	LEL	384	9/18
			SEL LEL	2800	1/18
	Dibenzo(a,h)anthracene	48.9 - 421	SEL	63.4	3/18
	Fluoranthene	045 5000		260	1/18
	Puorantinene	84.5 - 5000	LEL LEL	600 19	5/18 6/18
	Fluorene	38.5 - 859	SEL	540	1/18
	Naphthalene	20.2 (54		ł	· · · · · · · · · · · · · · · · · · ·
	Naphthalene	39.2 - 654	LEL	160	1/18
	Phenanthrene	39.2 - 5500	LEL	240	6/18
			SEL	1500	1/18
	Pyrene	131 - 6060	LEL	665	8/18
	Tatal DAIL	600 4 001FD	SEL	2600	1/18
	Total PAHs	698.1 - 38172	LEL	4022	6/18
BUILDING SUBTIDAL		(T.O. 00.6			4 /=
BUILDING SUBTIDAL	2-Methylnaphthalene	67.8 - 93.6	LEL	70	1/5
	Acenaphthene	26.9 - 2560	LEL	16	4/5
			SEL	500	2/5
	Acenaphthylene	50.1 - 137	LEL	44	5/5
	Anthracene	90.9 - 511	LEL	85.3	5/5
	Benzo(a)anthracene	316 - 1680	LEL	261	5/5
	. ,		SEL	1600	1/5
	Benzo(a)pyrene	354 - 866	LEL	430	2/5
			HH	0.7	5/5
	Chrysene	342 - 1650	LEL	384	2/5
	Dibenzo(a,h)anthracene	40.1 - 68.8	LEL	63.4	2/5
	Fluoranthene	585 - 8640	LEL	600	4/5
			SEL	5100	1/5
	Fluorene	32.9 - 802	LEL	19	5/5
			SEL	540	2/5
	Naphthalene	31.5 - 426	LEL	160	2/5
SUBSURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppb) ^a	SCGb	(ppb) ^a	Frequency Exceeding Screening Criteria
	Dl		LEL	240	4/5
	Phenanthrene	185 - 2170	SEL	1500	2/5
BUILDING SUBTIDAL	D	(01 5550	LEL	665	4/5
	Pyrene	631 - 5570	SEL	2600	2/5
	Total PAHs	3678.8 - 26743.7	LEL	4022	4/5
ADJACENT TO YARD	Acenaphthene	147 - 147	LEL	16	1/7
	Acenaphthylene	34.2 - 66.3	LEL	44	4/7
	Anthracene	38.4 - 327	LEL	85.3	1/7
	Benzo(a)anthracene	91 - 700	LEL	261	2/7
	Benzo(a)pyrene	99.3 - 669	LEL	430	1/7
	C	00.0 (7)	HH	0.7	7/7
	Chrysene	92.8 - 674	LEL	384	1/7
	Dibenzo(a,h)anthracene	30.2 - 97.9	LEL	63.4	1/7
	Fluoranthene	135 - 1400	LEL	600	1/7
	Fluorene	167 - 167	LEL	19	1/7
	Phenanthrene	60.6 - 1370	LEL	240	1/7
	Pyrene Total BALIa	173 - 1540	LEL	665	1/7
	Total PAHs	948.4 - 9001.6	LEL	4022	1/7

SUBSURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppb) ^a	SCGb	(ppb) ^a	Frequency Exceeding Screening Criteria
PCBs/Pesticides					
BUILDING INTERTIDAL			LEL	22.7	12/18
	Aroclor 1248	95 - 3500	SEL	180	9/18
			WB	1.4	11/18
			HH	0.0008	11/18
			LEL	22.7	17/18
	Aroclor 1260	87.1 - 4330	SEL	180	16/18
	11100101 1200	07.12 1000	WB	1.4	15/18
			HH	0.0008	15/18
			LEL	22.7	17/18
	Total PCBs	87.5 - 7830	SEL	180	16/18
	Total T CBS	07.5 7050	WB	1.4	15/18
			HH	0.0008	15/18
BUILDING SUBTIDAL			LEL	22.7	11/16
			SEL	180	9/16
	Aroclor 1248	156 - 322	WB	1.4	10/16
			HH	0.0008	10/16
			LEL	22.7	1/16
			SEL	180	1/16
	Aroclor 1254	252 - 252	WB	1.4	1/16
			НН	0.0008	1/16
			LEL	22.7	15/16
			SEL	180	10/16
	Aroclor 1260	114 - 2700	WB	1.4	14/16
			HH	0.0008	14/16
			LEL	22.7	15/15
			SEL	180	15/15
	Total PCBs	270 - 2700	WB	1.4	14/15
			HH	0.0008	14/15
ADJACENT TO YARD			LEL	22.7	7/7
	Aroclor 1248	114 - 224	SEL	180	1/7
	Arocior 1248	114 - 224	WB	1.4	7/7
			HH	0.0008	7/7
			LEL	22.7	7/7
	Aroclor 1260	69 - 274	SEL	180	2/7
	7110CIOI 1200	0) = 2/ 4	WB	1.4	7/7
			HH	0.0008	7/7
			LEL	22.7	7/7
	Total PCBs	201 - 425	SEL	180	7/7
	10(a) 1 CD3	201 - 120	WB	1.4	7/7
			HH	0.0008	7/7

SUBSURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected (ppm) (a	SCG [♭]	(ppm) ^a	Frequency Exceeding Screening Criteria
Inorganic Compounds					
BUILDING INTERTIDAL	Arsenic	1.4 - 26.5	LEL	8.2	16/18
	Cadmium	1 - 6.2	LEL	1.2	12/18
	Chromium	6.9 - 234	LEL	81	13/18
	Copper	50.1 - 967	LEL	34	18/18
	Соррег	30.1 - 307	SEL	270	7/18
	Lead	29.2 - 6440	LEL	46.7	16/18
	Ecaci	27.2 - 0440	SEL	218	12/18
	Mercury	0.038 - 5.6	LEL	0.15	16/18
	Wereary	0.030 - 3.0	SEL	0.71	14/18
	Nickel	7.4 - 148	LEL	20.9	16/18
	Nickei	7.4 - 140	SEL	51.6	4/18
	Silver	2.9 - 6.2	LEL	1	12/18
	Sliver	2.9 - 0.2	SEL	3.7	8/18
	Zinc	66 - 1210	LEL	150	16/18
	Zinc	00 - 1210	SEL	410	7/18
BUILDING SUBTIDAL	Arsenic	6 - 11	LEL	8.2	11/24
	Cadmium	0.95 - 1.6	LEL	1.2	4/24
	Chromium	24.9 - 84.3	LEL	81	1/24
	Copper	16.9 - 170	LEL	34	23/24
	Lead 12 - 539	LEL	46.7	23/24	
		12 - 539	SEL	218	3/24
			LEL	0.15	23/24
	Mercury	0.082 - 1.3	SEL	0.71	12/24
	Nickel	20.1 - 30.5	LEL	20.9	21/24
			LEL	1	22/24
	Silver	1.8 - 3.8	SEL	3.7	2/24
	Zinc	65.7 - 261	LEL	150	10/24
					,
ADJACENT TO YARD	Arsenic	6.4 - 9.4	LEL	8.2	7/15
	Cadmium	0.96 - 1.4	LEL	1.2	2/15
	Chromium	47.3 - 85.5	LEL	81	1/15
	Copper	59.4 - 131	LEL	34	15/15
	Lead	57.5 - 190	LEL	46.7	15/15
			LEL	0.15	15/15
	Mercury	0.51 - 1.2	SEL	0.71	5/15
	Nickel	22.4 - 29.9	LEL	20.9	15/15
			LEL	1	13/15
	Silver	1.9 - 3.8	SEL	3.7	1/15
	Zinc	129 - 189	LEL	150	8/15
	-				-, -

Environmental Media and Interior Building Materials Range of Sampling Results and Exceedances of Standards, Criteria and Guidelines (SCGs) BICC Cables Corporation, Yonkers, New York

INTERIOR BUILDING MATERIAL SURFACE ACCUMULATION/IMPACTS (POST-CLEAN)	Potential Contaminants of Concern	Concentration Range Detected ¹ (µg/100cm ²) ^a	SCG (µg/100cm²) ^a	Frequency Exceeding Screening Criteria
PCBs/Pesticides	Total Aroclors	ND - 860	1	220/421
Inorganic Compounds	Lead	ND - 1,320	4.3	213/345
INTERIOR BULK CONCRETE BUILDING MATERIAL	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
PCBs/Pesticides	Total Aroclors	ND - 3,905	1	various ^(d)
Inorganic Compounds	Lead	ND-303	500	0/43
INTERIOR BULK WOOD BUILDING MATERIAL	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a	SCG ^b (ppm) ^a	Frequency Exceeding Screening Criteria
PCBs/Pesticides	Total Aroclors	ND - 36.4	1	19/44
Inorganic Compounds	Lead	3.7 - 2680	500	3/14

Notes

Soil: NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives

Groundwater: Class GA Groundwater Standards

Sediment: NYSDEC Sediment Screening Criteria - see note \boldsymbol{c}

Surface Building Material: Site-specific Long-Term Occupancy Criteria (LTOC) based on Binghamton Office Fire Re-entry Criteria and 40 CFR Part 745

Bulk Building Material: Site-specific LTOC and NYSDEC TAGM 4046

LEL = ERL (Effects Range-Low) and SEL = ERM (Effects Range-Median) unless otherwise noted

HIH = Human Health Bioaccumulation (ug/gOC). Organic carbon normalized data was compared to sediment screening criteria.

 $^{^{1}}$ Concentration ranges exhibit minimum to maximum detected values. Some ranges do not include non-detect values.

² 7/19/01 results for MW-07 excluded due to the presence of sheen, and 1/22/02 results for MWI-01 are excluded due to high turbidity.

a ppb=parts per billion, which is equivalent to micrograms per liter, ug/L, in water and ug/kg in sediment; ppm=parts per million, which is equivalent to milligrams per kilogram, mg/kg, in soil and sediment, and mg/L for metals concentrations determined using the Toxicity Characteristic Leachate Procedure (TCLP).

^b Screening criteria include the following:

^c LEL=Lowest Effects Level and SEL=Severe Effects Level. Exceedances of either of these screening criteria is reflected in this table. If both criteria are exceeded, then the sediment is classified as severely impacted. If only the LEL is exceeded, then the impact is classified as moderately impacted.

d Number of criteria exceedances difficult to quantify given the evaluation criteria for PCB in bulk concrete (I.e., upper 0.5-inch and then subsequent 1-inch intervals. See table 4 for extent of PCB impacted concrete at depth

^{* =} Benthic Aquatic Life Chronic Toxicity (ug/gOC). Organic carbon normalized data was compared to the sediment screening criteria. WB = Wildlife Bioaccumulation (ug/gOC). Organic carbon normalized data was compared to the sediment screening criteria.

	Potential Contaminants of	Concentration Range
SURFACE SEDIMENT	Concern	Detected ¹ (ppb) ^a
Volatile Organic Compounds	Name	
(VOCs)	None	
Semivolatile Organic Compounds		
(SVOCs)		
	Acenaphthene	141 - 141
	Acenaphthylene	55.7 - 74.5
	Anthracene	48.8 - 219
	Benzo(a)anthracene	191 - 688
	Benzo(a)pyrene	142 - 433
	Chrysene	201 - 834
	Dibenzo(a,h)anthracene	32.8 - 69.7
	Fluoranthene	406 - 2820
	Fluorene	32.6 - 199
	Phenanthrene	205 - 3260
	Pyrene	402 - 2260
	Total PAHs	2266.1 - 12232.3
PCBs/Pesticides		
1 CD31 esticiaes		
	Aroclor 1248	55.9 - 460
	- Aroclor 1254	130 - 380
	Aroclor 1260	39.7 - 219
	Total PCBs	111.2 - 840
SURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected (ppb) a
Inorganic Compounds		
	Arsenic	4.1 - 12.3
	Cadmium	0.81 - 1.3
	Copper	42.3 - 98.8
	Lead	20.6 - 90
	Mercury Nickel	0.18 - 0.7 16.5 - 33.3
	Silver	16.5 - 33.3
	Zinc	79.3 - 178
		-
	ı	

Potential Contaminants of Concern	Concentration Range Detected ¹ (ppb) ^a
None	ND
TVOIC	ND
2-Methylnaphthalene	230 - 230
Acenaphthene	31.7 - 731
	34.2 - 56.7
Anthracene	49.1 - 932
Benzo(a)anthracene	164 - 2690
Benzo(a)pyrene	178 - 1370
Chrysene	147 - 2990
Dibenzo(a,h)anthracene	30.9 - 245
- Fluoranthene	226 - 10400
Fluorene	35.7 - 1030
Phenanthrene	131 - 12600
- Pyrene	305 - 8480
Total PAHs	1764.9 - 45830.6
- Aroclor 1248	42.5 - 440
- Aroclor 1254	450 - 450
- Aroclor 1260	54.8 - 292
Total PCBs	97.3 - 890
	Concern None 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Phenanthrene Pyrene Total PAHs Aroclor 1248 Aroclor 1254 Aroclor 1260

SUBSURFACE SEDIMENT	Potential Contaminants of Concern	Concentration Range Detected ¹ (ppm) ^a
Inorganic Compounds		
	Arsenic	2.5 - 11.4
	Cadmium	1.1 - 1.6
	Copper	23.3 - 149
	Lead	19 - 87.5
	Mercury	0.18 - 0.82
	Nickel	8.6 - 25.5
	Silver	2 - 4.2
	Zinc	49.6 - 167

Notes:

LEL = ERL (Effects Range-Low) and SEL = ERM (Effects Range-Median) unless otherwise noted * = Benthic Aquatic Life Chronic Toxicity (ug/gOC). Organic carbon normalized data was compared to th HH = Human Health Bioaccumulation (ug/gOC). Organic carbon normalized data was compared to the HH = Human Health Bioaccumulation (ug/gOC).

 $^{^{1}}$ Concentration ranges exhibit minimum to maximum detected values. Some ranges do not inclu

^a ppb=parts per billion, which is equivalent to ug/kg in sediment;

^b Screening criteria include the following: Sediment: NYSDEC Sediment Screening Criteria - see note c

^c LEL=Lowest Effects Level and SEL=Severe Effects Level. Exceedances of either of these screeni If both criteria are exceeded, then the sediment is classified as severely impacted. If only the LEI is classified as moderately impacted.

Table 3
Extent of Soil/Fill Exceeding the SCGs
BICC Cables Corporation, Yonkers, New York

Area	Maximum PCB Concentration in Surface Soil (ppm)	Maximum PCB Concentration in Subsurface Soil (ppm)		VOC(s) Present at Concentrations Above SCG(s)?	Estimated Depth of PCB impacts (ft)	Estimated Volume of PCB Impacted Surface Soil (cys)	Estimated Volume of PCB and VOC Impacted Subsurface Soil (cys)
BICC Parking Lot	Note (1)	ND	Note (1)	no	0	0	0
South Yard	7	23.3	0.2	no	19-20	2,323	1,182
North Yard	20.1	97,600	4,062	yes	20	39	17,118
Below Building	15.5	5,510	0.95	yes	15	24	1,502

Notes

(1) Due to the lack of exposed soil in the BICC Parking Lot, no surface soil samples were collected from this area.

(2) Based on the PID measurements collected during soil sampling activities, no VOC analysis was deemed necessary for the BICC Parking Lot soil samples.

ND: not detected

Extent of Interior Building Materials Exceeding the Standards, Criteria and Guidelines (SCGs) BICC Cables Corporation, Yonkers, New York

 $Impacted\ Building\ Construction\ Materials\ Limited\ To\ Surface\ Accumulation/\ Surficial\ Impacts\ (PCBs\ and\ Lead)^{(1)}$

Floor	Estimated Surficial Concrete Floor Surface Area (SF)	Estimated Surficial Wood Floor Surface Area (SF)	Estimated Surficial Wall and Ceiling Surface Area (SF) ⁽²⁾
First Floor	49,925	NA	273,470
Second Floor	50,385	13,650	231,910
Third Floor	3,095	7,600	98,685
Fourth Floor	NA	11,350	12,000
Stairwells	8,400	NA	25,315

Notes:

NA-This type of building material is not present on this floor

- (1) Excludes the East and West Warehouse, Paint Shop and Guard House.
- (2) These values conservatively represent the total wall and ceiling surface areas since floor and ceiling cleaning would be conducted with any floor remediation.

Impacted Concrete Building Material Floors at Depth (PCBs Only)

Floor	Maximum Depth of PCBs Exceeding LTOC	Estimated Concrete Surface Area (SF)	Total Estimated Percent of Concrete With PCB Impact At Depth (Per Floor)	Estimated Concrete Volume (CY)	Total Estimated Volume By Floor (CY)
	≤ ¹ / ₁₆ -Inch	5,635		1.08	
	≤ ¹ / ₈ -Inch	6,870		2.65	
	$\leq \frac{1}{2}$ -Inch	41,055		64	
	≤1-Inch	1,470		4.5	
First Floor	> 1-Inch	59,575	67%	1,450	1,525
	\leq $^{1}/_{16}$ -Inch	9,745		1.8	
	\leq ¹ / ₂ -Inch	1,345		2.06	
	≤ 1-Inch	1,370		4.2	
Second Floor	> 1-Inch	14,100	34.50%	346	360
	\leq $^{1}/_{16}$ -Inch	NA		NA	
	\leq $^{1}/_{2}$ -Inch	3,400		5.2	
	≤ 1-Inch	NA		NA	1
Third Floor	> 1-Inch	11,930	83%	293	300

Notes:

Does not include surficial quantities provided above.

With the exception of the stairwells, no concrete building material is located on the fourth floor.

The depth intervals provided correlate to the intervals for which the Section 8 technologies will be evaluated.

NA- Maximum depth of contamination exceeds this interval

Impacted Wood Building Material Floors at Depth (PCBs Only)

Floor	Estimated Wood Surface Area (SF)	Estimated Wood Volume (CY)
First Floor	NA	NA
Second Floor	11,340	105
Third Floor	2,105	20
Fourth Floor	4,170	40

Note:

(1) Does not include surficial quantities provided above

NA-Wood building material is not present on this floor

Table 5 Remedial Alternative Costs BICC Cables Corporation, Yonkers, New York

Remedial Alternative	Capital Cost	Present Value OM&M	Total Present Worth
E1 - No Further Action	\$0	\$0	\$0
E2 - Surface Cover including Common Actions C1 (Groundwater Monitoring), C2 (Site management plan), and C4 (Bulkhead Restoration)	\$3,331,448	\$981,933	\$4,343,482
E3 - Excavation and Off-Site Disposal (0' - 4') with surface cover including Common Actions C1, C2, and C4	\$7,686,365	\$803,515	\$8,489,879
E3 - Excavation and Off-Site Disposal (0' - 8') with surface cover including Common Actions C1, C2, and C4	\$12,091,716	\$803,515	\$12,895,231
E3 - Excavation and Off-Site Disposal (0' - 12 ') with surface cover including Common Actions C1, C2, and C4	\$14,861,791	\$803,515	\$15,658,149
E3 - Excavation and Off-Site Disposal (0' - 16') with surface cover including Common Actions C1, C2, and C4	\$17,941,556	\$803,515	\$18,737,914
E3 - Excavation and Off-Site Disposal (0' - 20') with surface cover including Common Actions C1, C2, and C4	\$19,439,307	\$803,515	\$20,235,665
E4 - Excavation and Off-Site Disposal to Pre-Disposal Conditions including Common Actions C1, C2, and C4	\$42,988,725	\$803,515	\$43,646,124
S1 - No Action (Areas I-IV)	\$0	\$0	\$0
S2A - Monitored Natural Recover (Areas I-IV) including Common Actions C8 (Debris and Hotspot Removal)	\$346,500	\$785,200	\$1,131,666
S3A - Sediment Removal (Areas I-IV)			
including Common Actions C8	\$2,964,617	\$0	\$2,964,617
S4A - Sediment Capping (Areas I-IV) including Common Actions C8	\$2,859,431	\$961,791	\$3,821,223

Table 5 Remedial Alternative Costs BICC Cables Corporation, Yonkers, New York

		Present Value	Total Present
Remedial Alternative	Capital Cost	OM&M	Worth
S1B - No Action (Areas V)	\$0	\$0	\$0
S2B - Monitored Natural Recover (Area V)			
including Common Actions C8	\$138,600	\$557,121	\$695,721
S3B - Sediment Removal (Area V)			
including Common Actions C8	\$857,615	\$0	\$857,615
S4B - Sediment Capping (Area V)			
including Common Actions C8	\$1,438,010	\$907,443	\$2,345,452
I1 - No Action	\$14,775	\$37,900	\$60,255
I2 - Building Material Encapsulation and			
Removal including Common Actions C3			
(Removal of Debris within building subsurface			
structures), C5 (Removal of interior storm			
water/trench system), C6 (Removal of Process	#12 F02 F0F	# 2.2.2. F .2.2	\$10.4 50.5 (4
tanks), and C7 (cleaning of lead extrusion pits)	\$12,598,595	\$2,363,508	\$18,172,564
I3 - Building Interior Remediation			
including Common Actions			
C3, C5, C6, and C7	\$15,175,048	\$0	\$15,175,048
I4 - Building Demolition including	.		* * * * * * * * * * * * * * * * * * *
Common Actions C3, C5, and C6	\$10,610,383	\$139,142	\$10,749,525
SUM TOTAL of		****	
ALTERNATIVES E3, S3a, S1B, and I4	\$28,436,791	\$942,657	\$29,372,291