

April 24, 2020

Mr. Gerald Pratt
New York State Department of Environmental Conservation
Division of Environmental Remediation
Section C Bureau C Geologist
625 Broadway, 11th Floor
Albany, New York 12233

Re: Baseline Groundwater Sampling Analysis

One Commerce Park 115 Wall Street Valhalla, New York NYSDEC Site # 360054

Dear Mr. Pratt:

Apex Companies, LLC (Apex) is pleased to submit this Groundwater Sampling Summary Report for the above referenced project site (herein referred at the Subject Property). A Site Location Map is included as **Figure 1**. The groundwater sampling event was performed as the baseline groundwater sampling event for the remedial activities in progress at the Subject Property, in accordance with the approved Injection Work Plan (IWP), dated December 10, 2019 (revised). Based on the IWP, a total of fifteen (15) groundwater wells were sampled utilizing low-flow techniques. The groundwater purge logs are provided as **Attachment A**. Sample Locations are provided on **Figure 2**.

The groundwater samples were analyzed for volatile organic compounds (VOCs) with Freon-113, total organic carbon (TOC), chlorides, and the following metals: iron, manganese and chromium. Additionally, based on the request of the NYSDEC, in a letter dated March 30, 2018, groundwater sampling analysis included 1,4-dioxane (by a modified EPA Method 8270) and perand poly-fluoroalkyl substances (PFAS, by EPA Method 537), termed 'emerging contaminants' for select wells. This analysis was performed in accordance with the guidance documents provided by the New York State Department of Environmental Conservation (NYSDEC). Since there is no known source of PFAS currently or historically at the Subject Property, these four (4) wells will provide sufficient, representative screening level data and will serve to satisfy the NYSDEC requirement for dissolved phase groundwater sample collection and analysis for 1,4-dioxane and PFAS (i.e., "emerging contaminants") for this project.

The samples were submitted to Alpha Analytical, of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP)-certified laboratory. A NYSDEC Analytical Services Protocols (ASP) laboratory provided a Category B laboratory data deliverable format report.

Page 2

A summary of the groundwater sampling results for VOCs are provided as **Table 1**; results for TOC, chlorides, iron, manganese and chromium are provided as **Table 2**; and, results for 1,4-dioxane and PFAS are provided as **Table 3**. The analytical laboratory reports are provided as **Attachment B** and the Data Usability Summary Reports are provided as **Attachment C** (for VOCs, TOC, chlorides and select metals) and **Attachment D** (for emerging contaminants analysis).

The results of the baseline groundwater sampling event for VOCs, TOC, chlorides, iron, manganese and chromium will be utilized to compare to the results of the post-injection monitoring with the intent to document the creation of subsurface conditions that will result in the continued decrease of the chemicals of concern (COC), as documented in the IM summary Report and the IWP.

Sincerely,

Apex Companies, LLC

Joseph P. Gavin, P.G.

Project Manager

Daniel J. Smith, P.E.

Vice President

Cc: Mr. Ronald Roth, Diamond Properties

Jim Diamond, Diamond Properties

Attachments

Tables

Table 1 - Summary of Volatile Organics Compounds in Groundwater

VOCs	NY - GA Ambient Water Standards	MW-1S (5.5-15.5')	MW-1I (30-35')	MW- (50-5		MW-2S (5-15')		MW-2I (30-35')	MW-2D (50-55')		MW-3S (5-15')		/IW-3I 80-35')		MW-3D (45-50')	MW-4S (5-15')		MW-4I (30-35')	MW-7S (5.5'-15.5		MW-7I (25'-35')		P-1 (5-15')	P- (5-1	-2 15')
VOCS	and Guidance Values (ug/l)	Baseline (12/16/19)	Baseline (12/16/19)	Basel (12/26		Baseline (12/26/19))	Baseline (12/26/19)	Baseline (12/26/19)		Baseline 12/27/19)		aseline (/16/19)		Baseline (12/27/19)	Baseline (12/16/19		Baseline (12/27/19)	Baseline (12/26/19		Baseline (12/26/19)		Baseline (12/27/19)	Base (12/2	eline 27/19)
Methylene chloride	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	_	0.7 L			U	0.7 U	0.7	U	0.7 U	0.7	Ú	0.7	U	0.7 U	0.7	U
1,1-Dichloroethane	5.0	2.3 J	3.6	J 1.1	J	0.7	U	0.7 U	0.7 U		0.7 L			IJ	0.7 U	0.7	U	0.7 U	0.7	U	0	U	0.7 U	0.7	U
Chloroform	7.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
Carbon tetrachloride	5.0	0.13 U 0.14 U	0.54	U 0.13 U 0.14	U	0.13	U	0.13 U	0.13 U 0.14 U		0.13 L			U	0.13 U 0.14 U	0.13	U	0.13 U 0.14 U	0.13	U	0.13 0.14	U	0.13 U 0.14 U	0.13	
1,2-Dichloropropane Dibromochloromethane	1.0 50*	0.14 U 0.15 U	0.55 0.6	U 0.14	- 11	0.14 0.15	U	0.14 U 0.15 U	0.14 U 0.15 U		0.14 L			U	0.14 U	0.14 0.15	111	0.14 U	0.14 0.15	11		U	0.14 U	0.14	
1,1,2-Trichloroethane	1.0	0.13 U	2.0	U 0.13	$\frac{1}{0}$	0.15	II	0.13 U	0.13 U		0.15 C			U	0.13 U	0.13	U	0.13 U	0.15	U	0.13	11	0.15 U	0.13	
Tetrachloroethene	5.0	0.7	0.72	U 0.18	U	0.18	U	0.18 U	0.18 U		0.18 L			U	0.18 U	0.18	U	0.18 U	0.18	U	0.18	U	0.18 U	0.18	ŭ
Chlorobenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	J	0.7 L	J 0	.7 L	U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
Trichlorofluoromethane	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	J	0.7 L	J 0	.7 L	U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
1,2-Dichloroethane	0.6	0.13 U	0.53	U 0.13	U	0.13	U	0.13 U	0.13 U		0.13 L	<u> </u>	13 L	U	0.13 U	0.13	U	0.13 U	0.13	U	0.13	U	0.13 U	0.13	Ū
1,1,1-Trichloroethane	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
Bromodichloromethane	50*	0.19 U	0.77	U 0.19	10	0.19	U	0.19 U	0.19 U		0.19 L			U	0.19 U	0.19	0	0.19 U	0.19	111		U	0.19 U	0.19	
trans-1,3-Dichloropropene cis-1,3-Dichloropropene	0.4	0.16 U 0.14 UJ	0.66 0.58	U 0.16 UJ 0.14	10	0.16	U	0.16 U 0.14 U	0.16 U 0.14 U		0.16 L	<u> </u>		11	0.16 U 0.14 U	0.16 0.14	1111	0.16 U 0.14 U	0.16 0.14	11	0.16 0.14	U	0.16 U 0.14 U	0.16	
1,3-Dichloropropene, Total	0.4	0.14 U	0.58	U 0.14	- U	0.14	11	0.14 U	0.14 U		0.14 L	<u> </u>		IJ	0.14 U	0.14	U	0.14 U	0.14	U	0.14	U II	0.14 U	0.14	
1,1-Dichloropropene	0.4	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L	<u> </u>		U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
Bromoform	50*	0.65 U	2.6	U 0.65	U	0.65	Ū	0.65 U	0.65 U		0.65 L	Ť		U	0.65 U	0.65	U	0.65 U	0.65	U		U	0.65 U	0.65	
1,1,2,2-Tetrachloroethane	5.0	0.17 U	0.67	U 0.17	U	0.17	U	0.17 U	0.17 U		0.17 L			U	0.17 U	0.17	U	0.17 U	0.17	U	• • • • • • • • • • • • • • • • • • • •	U	0.17 U	0.17	U
Benzene	1.0	2.0	49	2.4		0.16	U	0.16 U	0.16 U		0.16 L		16 L	U	0.16 U	0.16	U	0.16 U	0.16	U	0.16	U	0.16 U	0.16	
Toluene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
Ethylbenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L	<u> </u>		U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
Chloromethane Bromomethane	5.0 5.0	0.7 UJ 0.7 UJ		UJ 0.7	10	0.7	U	0.7 U 0.7 UJ	0.7 U		0.7 U	Ť		_	0.7 U	0.7	UJ	0.7 U	0.7	U		U	0.7 U	0.7	U
Vinyl chloride	5.0	0.7 UJ 1.8 J+	2.8 60	UJ 0.7 J+ 2.1	11	0.7	UJ	0.7 UJ 0.07 U	0.7 U. 0.07 U		0.7 L	<u> </u>	.7 U)-J	0.7 U	0.7	J+	1.2	0.7 0.08	J		UJ	0.7 U	0.7	Ŭ
Chloroethane	5.0	0.7 U	2.8	U 0.7	- U	0.07	11	0.07 U	0.07 U		0.07 C		.,	U	0.07 U	0.88	U	0.7 U	0.08	U		U	0.07 U	0.07	U
1,1-Dichloroethene	5.0	0.17 U	0.68	U 0.17	U	0.17	U	0.17 U	0.17 U	_		J 0.		U	0.17 U		U	0.17 U		U		U	0.17 U		
trans-1,2-Dichloroethene	5.0	1.5 J	4.1	J 0.71	J	0.7	U	0.7 U	0.7 U		0.7 L	J 0		U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
Trichloroethene	5.0	96	26	1.3		0.18	U	0.18 U	5.8		0.18 L	J 0.	49 J	J	4.4	0.18	U	0.18 U	0.18	U	0.18	U	0.18 U	0.18	U
1,2-Dichlorobenzene	3.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	J	0.7 L	J 0	.7 L	U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
1,3-Dichlorobenzene	3.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L	J O		U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
1,4-Dichlorobenzene	3.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L	Ů		U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
Methyl Tert Butyl Ether	10*	0.7 U	2.8	U 0.7	- I U	0.7	U	0.7 U	0.7 U		0.7 L	·		U	0.7 U	0.7	111	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
m,p-Xylene o-Xylene	5.0 5.0	0.7 U	2.8	U 0.7	11	0.7	U	0.7 U 0.7 U	0.7 U		0.7 L	J 0		11	0.7 U	0.7	111	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
Xylene (total)	5.0	0.7 U	2.8	U 0.7	- U	0.7	11	0.7 U	0.7 U		0.7 L	·		U .	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U II	0.7 U	0.7	
cis-1,2-Dichloroethene	5.0	49	370	6.2	++	0.7	U	0.7 U	0.74 J		0.7 L			J	0.7 U	1.2	J	3.0	0.7	U	0.7	U	0.7 U	0.7	- U
1,2-Dichloroethene, Total	5.0	51 J	370	J 6.9	J	0.7	U	0.7 U	0.74 J	J	0.7 L	J 2		J	0.7 U	1.2	J	3.0	0.7	U	0.7	U	0.7 U	0.7	U
Dibromomethane	5.0	1.0 U	4.0	U 1.0	U	1.0	U	1.0 U	1.0 U	J	1.0 L	J 1	.0 L	U	1.0 U	1.0	U	1.0 U	1.0	U	1.0	U	1.0 U	1.0	U
1,2,3-Trichlorobenzene	0.04	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	J	0.7 L	J 0	.7 L	U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
Acrylonitrile	5.0	1.5 U	6.0	U 1.5	U	1.5	U	1.5 U	1.5 U		1.5 L		.5 L	U	1.5 U	1.5	U	1.5 U	1.5	U	1.5	U	1.5 U	1.5	U
Styrene	5.0	0.7 U	2.8	U 0.7		0.7	U	0.7 U	0.7 U		0.7 L) 0		U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
Dichlorodifluoromethane Acetone	5.0 50*	5.1 1.7 J	4.0 38	U 1.0 1.5	10	1.0	U	1.0 U 1.5 U	1.0 U	_	1.0 L	<u> </u>		U	1.0 U	1.0	111	1.0 U 1.5 U	1.0	11	2.8	U	1.0 U	1.0	U
Carbon disulfide	60	1.7 J	4.0	U 1.0	10	1.5 1.0	U II	1.5 U	1.0 U		1.0 L		.5	J I	1.0 U	1.0	U	1.0 U	1.5 1.0	U	2.2	J	1.0 U	1.0	
2-Butanone (MEK)	50*	1.9 U	7.8	U 1.9	U	1.9	U	1.9 U	1.9 U	_	1.9 L	. —	.9	U	1.9 U	1.9	U	1.9 U	1.9	U		U	1.9 U	1.9	U
Vinyl acetate	-	1.0 U	4.0	U 1.0	U	1.0	U	1.0 U	1.0 U	J	1.0 L	. —	.0 L	U	1.0 U	1.0	U	1.0 U	1.0	U		U	1.0 U	1.0	U
4-Methyl-2-pentanone(MIBK)	-	1.0 U	4.0	U 1.0	U	1.0	U	1.0 U	1.0 U	J	1.0 L	J 1	.0 L	U	1.0 U	1.0	U	1.0 U	1.0	U	1.0	U	1.0 U	1.0	U
2-Hexanone	50	1.0 U	4.0	U 1.0	U	1.0	U	1.0 U	1.0 U		1.0 L	J 1	.0 ل	U	1.0 U	1.0	U	1.0 U	1.0	U	1.0	U	1.0 U	1.0	U
Bromochloromethane	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L	, v		U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
2,2-Dichloropropane	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	_	0.7 L	·		U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
1,2-Dibromoethane 1,3-Dichloropropane	0.0006 5.0	0.65 U 0.7 U	2.6 2.8	U 0.65	1 0	0.65	U	0.65 U 0.7 U	0.65 U		0.65 L			<u> </u>	0.65 U	0.65 0.7	III	0.65 U	0.65	U II	0.65	U	0.65 U	0.65	U
1,1,1,2-Tetrachloroethane	5.0	0.7 U	2.8	U 0.7	U U	0.7	II	0.7 U	0.7 U		0.7 C	Ů		y	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	11
Bromobenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	u	0.7 U	0.7 U		0.7 L	·		U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
n-Butylbenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L	J 0		U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
sec-Butylbenzene	5.0	0.92 J	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	J	0.7 L	J O	.7 L	U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
tert-Butylbenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U	J	0.7 L	J O	.7 L	U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
o-Chlorotoluene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U			0.7 L	Ť		U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
p-Chlorotoluene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U			0.7 L			U	0.7 U	0.7	U	0.7 U		U		U	0.7 U	0.7	U
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	0.04 0.5	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7 0.7	U	0.7 U 0.7 U	0.7	U		U	0.7 U	0.7	U
Isopropylbenzene	0.5 5	0.7 U	2.8	U 0.7	111	0.7	U	0.7 U 0.7 U	0.7 U		0.7 L			U I	0.7 U	0.7	II I	0.7 U	0.7 0.7	U		U	0.7 U	0.7	U
p-Isopropyltoluene	5.0	0.7 U	2.8	U 0.7	111	0.7	II I	0.7 U	0.7 U		0.7 C			J I	0.7 U	0.7	ii l	0.7 U	0.7		0.7	U	0.7 U	0.7	11
Naphthalene	10	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			J	0.7 U	0.7	Ū	0.7 U	0.7	U		U	0.7 U	_	U
n-Propylbenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7	U	0.7 U		U		U	0.7 U	0.7	U
1,2,3-Trichlorobenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7	U	0.7 U	0.7	U	0.7	U	0.7 U	0.7	U
1,2,4-Trichlorobenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			J	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U		U
1,3,5-Trimethylbenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 l			U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
1,2,4-Trimethylbenzene	5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
1,4-Dioxane	-	61 U	240	U 61	U	61	U	61 U	61 U		61 L			U	61 U	61	U	61 U	61	U		U	61 U	61	U
p-Diethylbenzene	l - I	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L			U	0.7 U	0.7	U	0.7 U	0.7	U		U	0.7 U	0.7	U
		0.7	0.0	11 ^ -		^ 7		Λ 7			n,		7					., .	• • • •		,, ,		0.7	1, ,	
p-Ethyltoluene 1 2 4 5-Tetramethylbenzene	- 5.0	0.7 U	2.8	U 0.7	U	0.7	U	0.7 U	0.7 U		0.7 L				0.7 U	0.7 0.54	111	0.7 U	0.7	11		U	0.7 U	0.7	11
1,2,4,5-Tetramethylbenzene	5.0	0.54 U	2.2	U 0.54	U	0.54	U	0.54 U	0.54 U	J	0.54 L	J 0.	54 L	U U	0.54 U	0.54	U	0.54 U	0.54	U	0.54	U	0.54 U	0.54	U
	5.0				UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU			J		J 0.	54 L	U U		+	U			U	0.54 0.7			0.54	U

Notes

VOCs - Volatile Organic Compunds
* - Represents a Class GA Guidance Value, all other values are Glass GA Standards

ug/l - micrgrams per liter

Yellow Highlight and Bold - Concentration exceeds GA Standards or GA Guidance Value -' - Regulatory Guidance Value is not available.

J - Approximated Value

U - Value reported under the Method Detection Limit (MDL)

J+ - The analyte result is an estimated value and may be biased high.

Table 2 - Summary of Select Metals and General Chemistry in Groundwater

Metals	NY - GA Ambient Water Standards	MW-1S (5.5-15.5')	MW-1I (30-35')		MW-1D (50-55')		MW-2S (5-15')		MW-2I (30-35')		MW-2D (50-55')		MW-3S (5-15')	
	and Guidance Values (ug/l)	Baseline (12/16/19		Baseline (12/16/19		Baseline (12/26/19)	Baseline (12/26/19)	Baseline (12/26/19)	Baseline (12/26/19		Baseline (12/27/19	
Chromium, Total	50	3.0	J	2.0	U	6.0	J	27		2.0	U	4.0	J	8.0	J
Iron, Total	300	26900		5280		10900		34800		3720		13500		172000	
Manganese, Total	300	11000		2050		3190		1300		44		71		12600	

Metals	NY - GA Ambient Water Standards	MW-3I (30-35')		MW-3D (45-50')		MW-4S (5-15')		MW-4I (30-35')	MW-7S (5.5'-15.5')	MW-7I (25'-35')		P-1 (5-15')	P-2 (5-15')	
	and Guidance	Baseline		Baseline		Baseline		Baseline	Baseline	Baseline		Baseline	Baseline	;
Chromium, Total	50	2.0	U	3.0	J	2.0	UJ	22	28	7.0	J	129	2.0	J
Iron, Total	300	10400		4100		3930		19500	50000	3670		134000	62500	
Manganese, Total	300	8950		135		650	J	1310	1960	205		1700	5150	

General Chemistry	NY - GA Ambient Water Standards	MW-1S (5.5-15.5')	MW-1I (30-35')	MW-1D (50-55')	MW-2S (5-15')	MW-2I (30-35')	MW-2D (50-55')	MW-3S (5-15')	
	and Guidance	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline	Baseline	
Chloride	250000	130000	79000	35000	83000	71000	79000	1700000	
Total Organic Carbon	-	20000	19000	2300	5800	3000	1900	18000	J

General Chemistry	NY - GA Ambient Water Standards	MW-3I (30-35')		MW-3D (45-50')		MW-4S (5-15')	MW-4I (30-35')	MW-7S (5.5'-15.5'))	MW-7I (25'-35')	P-1 (5-15')	P-2 (5-15')	
	and Guidance	Baseline		Baseline		Baseline	Baseline	Baseline		Baseline	Baseline	Baseline	
Chloride	250000	850000		100000		64000	68000	610000		310000	71000	240000	
Total Organic Carbon	-	2400	J+	1100	J	4700	6800	3300	J	10000	9800	2900	J

Notes

ug/l - micrgrams per liter

Yellow Highlight and Bold - Concentration exceeds GA Standards or GA Guidance Value

- -' Regulatory Guidance Value is not available.
- J Approximated Value
- U Value reported under the Method Detection Limit (MDL)
- J+ The analyte result is an estimated value and may be biased high.

Table 3 - Groundwater Analytical Results for Per- and Polyfluoroalkyl Substances and 1,4-dioxane

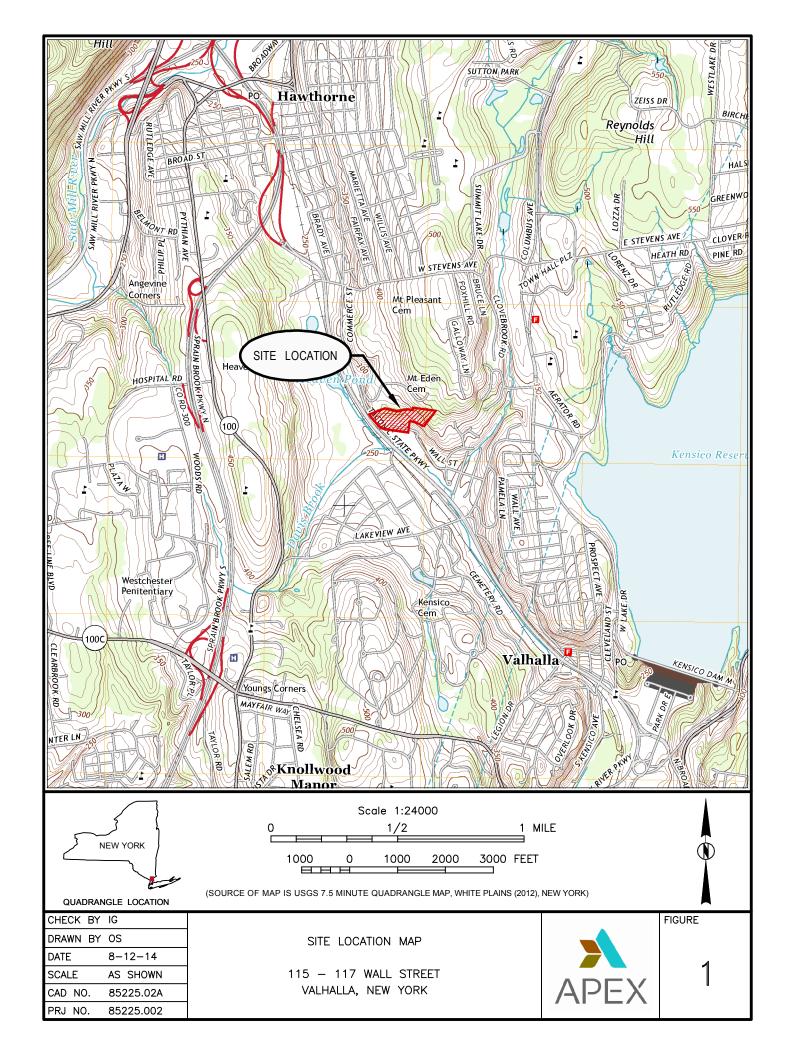
Emerging Contaminats	NY - GA Ambient Water Standards	MW-1S (5.5-15.5)	')	MW-1I (30-35')		MW-3I (30-35')		MW-4S (5-15')	
Lineiging contaminate	and Guidance Values (ng/l)	Baseline (12/16/19		Baseline (12/16/19		Baseline (12/16/19		Baseline (12/16/1	
1,4-dioxane	-	602		697		171		214	
Perfluorobutanoic Acid (PFBA)	-	15.9		16.9		23.8		6.36	
Perfluoropentanoic Acid (PFPeA)	-	11.7		11.4		6.3	J	5.2	
Perfluorobutanesulfonic Acid (PFBS)	-	4.25		2.88		3.18	J	1.58	J
Perfluorohexanoic Acid (PFHxA)	-	8.75		7.65		5.06	J+	3.58	J+
Perfluoroheptanoic Acid (PFHpA)	-	5.71		4.4		2.68	J	2.15	
Perfluorohexanesulfonic Acid (PFHxS)	-	4.6		1.22	J	1.88	U	0.851	J
Perfluorooctanoic Acid (PFOA)	-	16.3		8.45		5.6	J	4.27	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	-	1.42	U	1.24	U	6.66	U	1.18	U
Perfluoroheptanesulfonic Acid (PFHpS)	-	0.732	U	0.642	U	3.44	U	0.61	U
Perfluorononanoic Acid (PFNA)	-	1.79	J	0.332	J	1.56	U	0.582	J
Perfluorooctanesulfonic Acid (PFOS)	-	8.03		1.58	J	2.52	U	2.72	
Perfluorodecanoic Acid (PFDA)	-	0.485	J	0.284	U	1.52	U	0.518	J
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	-	1.29	U	1.13	U	6.06	U	1.07	U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	-	0.689	U	0.604	U	5.3	J+	0.574	U
Perfluoroundecanoic Acid (PFUnA)	-	0.276	U	0.242	U	1.3	U	0.23	U
Perfluorodecanesulfonic Acid (PFDS)	-	1.04	U	0.914	U	4.9	U	0.869	U
Perfluorooctanesulfonamide (FOSA)	-	0.617	U	0.541	U	2.9	U	0.514	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	-	0.962	J+	0.75	U	4.98	J+	0.713	U
Perfluorododecanoic Acid (PFDoA)	-	0.396	U	0.347	U	1.86	U	0.33	U
Perfluorotridecanoic Acid (PFTrDA)	-	0.348	U	0.305	U	1.64	U	0.29	U
Perfluorotetradecanoic Acid (PFTA)	-	0.264	U	0.231	U	1.24	U	0.22	U
PFOA/PFOS (Total)	-	24.3		10	J	5.6	J	6.99	

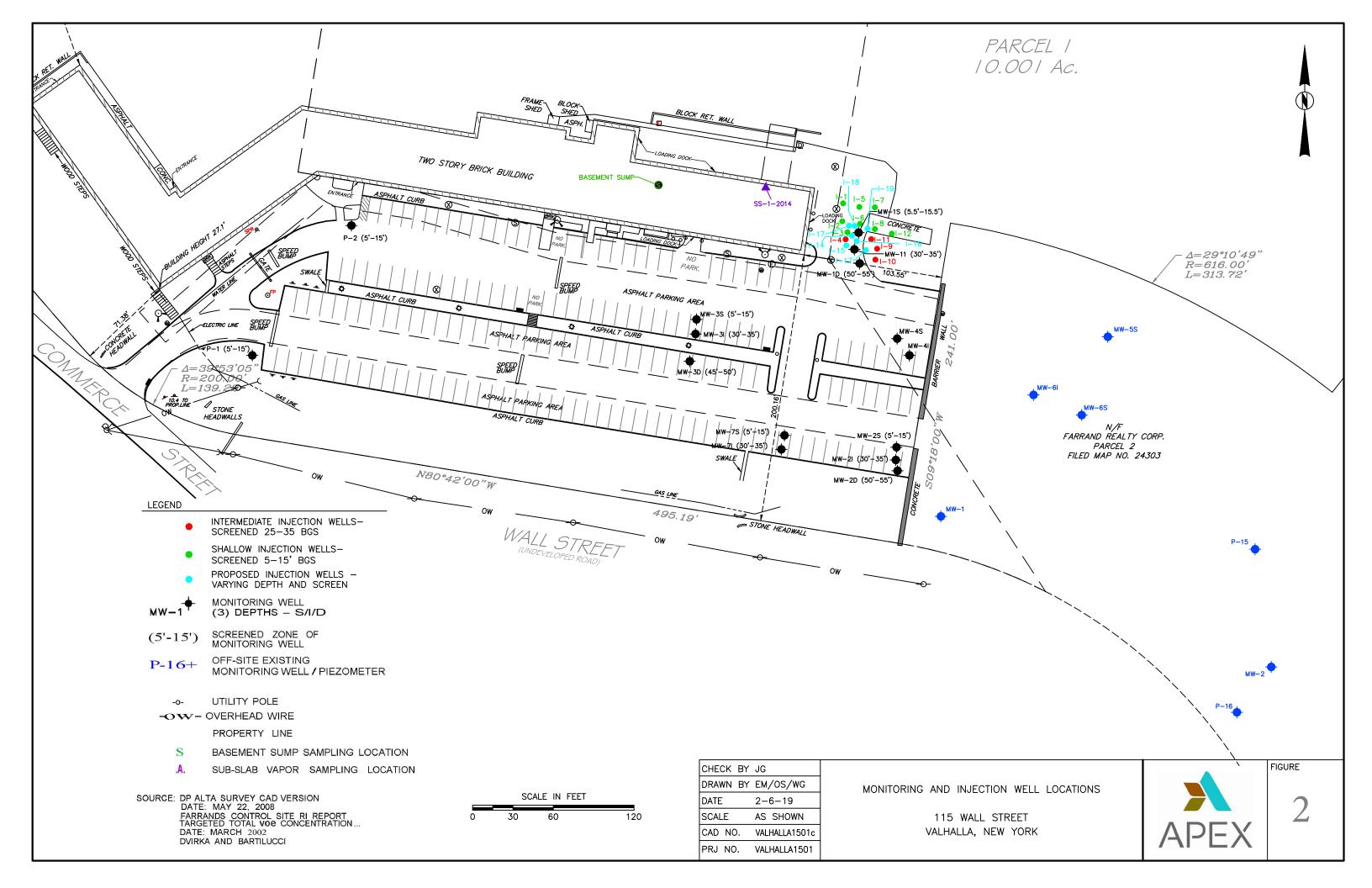
Notes

PFAS - Per- and Polyfluoroalkyl Substances

ng/l - nanogram per liter

Yellow Highlight and Bold - Concentration exceeds GA Standards or GA Guidance Value


- -' Regulatory Guidance Value is not available.
- J Approximated Value
- U Value reported under the Method Detection Limit (MDL)


Well Screen Interval in Parenthesis

J+ - The analyte result is an estimated value and may be biased high.

Figures

Attachments

Page ___ of ___

GROUNDWATER SAMPLING FIE	LD DATA SHEET
PROJECT #: Valhalla 1501 DATE: 12/16/19	ADDRESS: 115 Wall Street SAMPLER/S: JQ/DK
CASING DIAMATER (inches): 2 3 4 GALLONS/LINEAR FOOT: 0.17 0.38 0.66	3x Well Vol: 14.61 5x Well Vol: 24.35
DTW: 10.05 DTB: 14.92 PRODUCT PRESENT: No SAMPLING/PURGING EQUIPMENT: Peristaltic Pump	

Time (24 Hr)	Volume [*]	pH (units)	Conductivity (ms/cm)	Temperature	D.O. (ppm)	ORP	Turbidity (NTU)	Color (visual)
13:50	0,3	5.92	1.53	12.7	0.62	24	62.3	Clean
13:55	9.5	5.84	1.62	13,4	0	14	66.1	clean
	0.7	5.83	1.62	13.6	0	12	60.5	Clean
14:05	0.9	5.82	1.63	13.6	0		55.1	clear
14:10	1	5.82	1.64	13.5	Ô	12	55.1	Clear
<i>Y</i> .								
14:10	560	99	Samp in	Δ				
))				
		look	Dup	here	q t	14:	20	
		İ		2.5				<u> </u>

REMARKS/NOTES:	 	 	
	 <u> </u>	 	

/-	Page of
GROUNDWATER SAM	IPLING FIELD DATA SHEET
9	WELL ID:
a 1501	ADDRESS: 115 Wall street

PROJECT #: V9 h9 10 1501

DATE: 12/16/19

CASING DIAMATER (inches):

GALLONS/LINEAR FOOT:

SAMPLER/S: John Quing

3 4 3x Well Vol: 12 6 Gallans

0.17 0.38 0.66 5x Well Vol: 21 1 Gallans

DTW: 10.55 DTB: 35.35 PRODUCT PRESENT: No PRODUCT THICKNESS:

SAMPLING/PURGING EQUIPMENT: Peristaltic Pump, Horiba

Time (24 Hr)	Volume [.] (gal)	pH (units)	Conductivity (ms/cm)	Temperature (*F/C)	D.O. (ppm)	ORP	Turbidity (NTU)	Color (visual)
14:42		11,22	18.7	13.27	0.15	-324	41.5	Clean
14:47	0.4	11.31	1.66	13.39	0	-318	43.9	Clear
14:52	0.6	11.35	1.66	13, 37	0		44.3	clear
14:57	8.0	11.32	1.66	13,38	Q	-305	37,2	clear
15:02	1.0	11.34	1.66	13.34	0	-297	33, 2	clear
			1					

REMARKS/NOTES:		
\$/2		

GROUNDWATER SAMPLING FIELD DATA SHEET

CLIENT: Valhalla	WELL ID: MW-3I
PROJECT #: Valhalla 1501	ADDRESS: 115 Wall Street
DATE: 12/16/19	SAMPLER/S: NK/JQ
CASING DIAMATER (inches): 2 3 4 GALLONS/LINEAR FOOT: 0.17 0.38 0.66	3x Well Vol: 13, 3 Gallon 5 5x Well Vol: 22, 1 Gallon S
DTW: 857 DTB: 34.96 PRODUCT PRESENT: NO	_PRODUCT THICKNESS:
SAMPLING/PURGING EQUIPMENT: Den Pomo Horiba	

Time (24 Hr)	Volume' (gal)	pH (units)	Conductivity (ms/cm)	Temperature (*F/*C)	D.O. (ppm)	ORP	Turbidity (NTU)	Color (visual)
1046	0.7	6.25	2.77	12.57	0.91	-63	342	Clear
1051		6.33	2.74	13.22	0.09	-66	433	& Brinn
1056	13	6.36	2.76	13.33	0.0	-71	407	Heilt Brown
1101	1.7	6.37	2,78	13.41	0.0	-73	3 73	J
1106	2.0	6.38	2.81	13,42	0.0	-75	315	Chea_
ilh	Well	Man	dry	after 1	12,5	94	ons	
			/					
		Wait	ing for	recharge	and	then		
		Samp	ling	3				
			,					
11:30	Be	999	Sampl	ina				
				- Maria				v-

REMARKS/NOTES:	55			
_			 	
	·		 	

Page		of
rage	'	וט

GROUNDWATER SAMPLING FIELD DATA SHEET								
PROJECT #: Valhala 1501	WELL ID: 45 ADDRESS: 15 Wall Street							
DATE: 12/16/19	SAMPLER/S: JQ/DK							
CASING DIAMATER (inches): 2 3 4 GALLONS/LINEAR FOOT: 0.17 0.38 0.66	3x Well Vol: 1.31 5x Well Vol: 2.18							
DTW: 7.19 DTB: 14.90 PRODUCT PRESENT: No SAMPLING/PURGING EQUIPMENT: Peristaltic Pump	_PRODUCT THICKNESS:							

Time (24 Hr)	Volume (ga!)	pH (units)	Conductivity (ms/cm)	Temperature (°F/C)	D.O. (ppm)	ORP	Turbidity (NTU)	Color (visual)
12:17		6.54	0.544	9.56	4.04	-7	88,1	Clean
12:24	0.4	6.46	0.479	9.69	3,56	8	51.1	Clear
12:29		6:45	0,471	9.78	2.76	17	34.3	Clear
12:34		6.42	0.470	9,96	2.77	21	25,9	clear
12:40		6.41	0.471	9,97	2,75		24,4	Clear
12:45	1.2	6.40	0.470	9.96	2.73	22	24.1	clear
	- 11	1 1						
12:50	Cole	cted	Sample					
			•					
			Took	MS+M	50			
				*				

REMARKS/NOTES:	 	 	

ANALYTICAL REPORT

Lab Number: L1960215

Client: APEX Companies, LLC

120-D Wilbur Place Bohemia, NY 11716

ATTN: Joe Gavin

Phone: (631) 567-1777

Project Name: VALHALLA
Project Number: VALHALLA

Report Date: 12/23/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1960215-01	FIELD BLANK	FIELD BLANK	115 WALL STREET, NY	12/16/19 10:00	12/16/19
L1960215-02	MW-3I	WATER	115 WALL STREET, NY	12/16/19 11:30	12/16/19
L1960215-03	MW-4S	WATER	115 WALL STREET, NY	12/16/19 12:50	12/16/19
L1960215-04	MW-1S	WATER	115 WALL STREET, NY	12/16/19 14:10	12/16/19
L1960215-05	MW-1I	WATER	115 WALL STREET, NY	12/16/19 15:00	12/16/19
L1960215-06	DUP-121619	WATER	115 WALL STREET, NY	12/16/19 14:20	12/16/19
L1960215-07	TRIP BLANK	TRIP BLANK (AQUEOUS)	115 WALL STREET, NY	12/16/19 00:00	12/16/19

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1960215-07: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

Total Metals

L1960215-01: The Field Blank has a result for iron present above the reporting limit. The sample was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over.

The WG1323231-4 MSD recoveries, performed on L1960215-03, are outside the acceptance criteria for chromium (74%) and manganese (72%). A post digestion spike was performed and was within acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/23/19

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-01 Date Collected: 12/16/19 10:00

Client ID: FIELD BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET NV Field Pres: Not Specific

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Field Blank
Analytical Method: 1,8260C
Analytical Date: 12/20/19 20:26

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-01 Date Collected: 12/16/19 10:00

Client ID: FIELD BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	· Westborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-01 Date Collected: 12/16/19 10:00

Client ID: FIELD BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	112	70-130	

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-02 Date Collected: 12/16/19 11:30

Client ID: MW-3I Date Received: 12/16/19

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/20/19 20:48

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.1		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: VALHALLA L1960215

Project Number: Report Date: VALHALLA 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-02 Date Collected: 12/16/19 11:30

Client ID: Date Received: 12/16/19 MW-3I Sample Location: Field Prep: Not Specified 115 WALL STREET, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ugh Lab					
Trichloroethene	0.49	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.4	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	2.4	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-02 Date Collected: 12/16/19 11:30

Client ID: MW-3I Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	109	70-130	

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-03 Date Collected: 12/16/19 12:50

Client ID: MW-4S Date Received: 12/16/19

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/20/19 21:10

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.88	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-03 Date Collected: 12/16/19 12:50

Client ID: MW-4S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Campio Location.

Volatile Organics by GC/MS - Westborough Lab Trichloroeherine ND Ug1 0.50 0.18 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.2-Dichlorobenzene	Volatile Organics by GC/MS - We	estborough Lab					
1.2-Dichlorobenzene	Trichloroothono	ND		ua/l	0.50	0.18	1
1,3-Dichlorobenzene ND Ugil 2,5 0,70 1 1,4-Boikhorobenzene ND Ugil 2,5 0,70 1 1,4-Boikhoropropane ND Ugil 2,5 0,70 1 1,4-Boikhorobenzene ND Ugil 2,5 0,70 1 1,4-Boikhorobenzen							
1.4.Dichlorobenzene							
Mothyl tert buyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 c-Xylene ND ug/l 2.5 0.70 1 c-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 1.2 J ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 Activation of the commentation ND ug/l 5.0 1.0 1 Activation of the commentation ND ug/l 5.0 1.0 1 Activation of the commentation ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodiffurormethane ND ug/l 5.0 1.0 1 Activation ND ug/l <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
ND							
o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.2 J ug/l 2.5 0.70 1 L2-Dichloroethene, Total 1.2 J ug/l 5.0 0.70 1 Dichromomethane ND ug/l 5.0 1.0 1 L2,3-Trichloropropane ND ug/l 5.0 1.5 1 Aczyfonitrile ND ug/l 5.0 1.5 1 Slyrene ND ug/l 5.0 1.0 1 Acztofidromethane ND ug/l 5.0 1.0 1 Actorofidromethane ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0	<u> </u>						
Xylenes, Total ND ugfl 2.5 0.70 1 cis-1,2-Dichloreethene 1.2 J ugfl 2.5 0.70 1 1,2-Dichloreethene, Total 1.2 J ugfl 2.5 0.70 1 Dibromomethane ND ugfl 2.5 0.70 1 1,2,3-Trichloropropane ND ugfl 5.0 1.5 1 Acrylonitrile ND ugfl 5.0 1.5 1 Styrene ND ugfl 5.0 1.5 1 Dichlorodiflurormethane ND ugfl 5.0 1.0 1 Acetone ND ugfl 5.0 1.0 1 Carbon disulfide ND ugfl 5.0 1.0 1 Carbon disulfide ND ugfl 5.0 1.0 1 Viryl acetate ND ugfl 5.0 1.0 1 4-Methyl-2-pentanone ND ugfl 2.5 0.70 </td <td>· · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · ·						
1.2 J ug/l 2.5 0.70 1							
1,2-Dichloroethene, Total 1.2	·		J				
Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.5 1 Acatone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acatete ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-E-bichloropropane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Di							
1,2,3-Trichloropropane ND ug/l 2,5 0,70 1 Acrylonitrile ND ug/l 5,0 1,5 1 Styrene ND ug/l 2,5 0,70 1 Dichlorodifluoromethane ND ug/l 5,0 1,0 1 Acetone ND ug/l 5,0 1,5 1 Carbon disulfide ND ug/l 5,0 1,9 1 2-Butanone ND ug/l 5,0 1,9 1 Vinyl acetate ND ug/l 5,0 1,0 1 4-Methyl-2-pentanone ND ug/l 5,0 1,0 1 2-Hexanone ND ug/l 2,5 0,70 1 Bromochloromethane ND ug/l 2,5 0,70 1 1,2-Dibromochlane ND ug/l 2,5 0,70 1 1,1,1,2-Tetrachloroethane ND ug/l 2,5 0,70 1							1
Actylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 <t< td=""><td>1,2,3-Trichloropropane</td><td>ND</td><td></td><td></td><td>2.5</td><td>0.70</td><td>1</td></t<>	1,2,3-Trichloropropane	ND			2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2-Pechloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1-1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 <t< td=""><td>Acrylonitrile</td><td>ND</td><td></td><td></td><td>5.0</td><td>1.5</td><td>1</td></t<>	Acrylonitrile	ND			5.0	1.5	1
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromothane ND ug/l 2.5 0.70 1 1,2-Dibromothane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroptane ND ug/l 2.5 0.70 1 1,1,1	Styrene	ND			2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND			5.0	1.0	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butlanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <	Acetone	ND			5.0	1.5	1
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <	Carbon disulfide	ND			5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1	2-Butanone	ND			5.0	1.9	1
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1	Vinyl acetate	ND		ug/l	5.0	1.0	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromochloromethane	ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 sopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
v	Isopropylbenzene	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
	Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-03 Date Collected: 12/16/19 12:50

Client ID: MW-4S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	114	70-130	

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-04 Date Collected: 12/16/19 14:10

Client ID: MW-1S Date Received: 12/16/19

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/20/19 21:32

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	2.3	J	ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.70		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	2.0		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.8		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.5	J	ug/l	2.5	0.70	1

Project Name: Lab Number: VALHALLA L1960215

Project Number: Report Date: VALHALLA 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-04 Date Collected: 12/16/19 14:10

MW-1S Client ID: Date Received: 12/16/19

Sample Location: Field Prep: Not Specified 115 WALL STREET, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroethene	96		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	49		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	51	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	5.1		ug/l	5.0	1.0	1
Acetone	1.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	0.92	J	ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-04 Date Collected: 12/16/19 14:10

Client ID: MW-1S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	gh Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	3.8		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	108	70-130	

Project Name: Lab Number: VALHALLA L1960215

Project Number: Report Date: VALHALLA 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-05 D Date Collected: 12/16/19 15:00

Client ID: MW-1I

Date Received: 12/16/19 Sample Location: Field Prep: 115 WALL STREET, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/20/19 21:54

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	10	2.8	4	
1,1-Dichloroethane	3.6	J	ug/l	10	2.8	4	
Chloroform	ND		ug/l	10	2.8	4	
Carbon tetrachloride	ND		ug/l	2.0	0.54	4	
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4	
Dibromochloromethane	ND		ug/l	2.0	0.60	4	
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4	
Tetrachloroethene	ND		ug/l	2.0	0.72	4	
Chlorobenzene	ND		ug/l	10	2.8	4	
Trichlorofluoromethane	ND		ug/l	10	2.8	4	
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4	
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4	
Bromodichloromethane	ND		ug/l	2.0	0.77	4	
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4	
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4	
1,3-Dichloropropene, Total	ND		ug/l	2.0	0.58	4	
1,1-Dichloropropene	ND		ug/l	10	2.8	4	
Bromoform	ND		ug/l	8.0	2.6	4	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4	
Benzene	49		ug/l	2.0	0.64	4	
Toluene	ND		ug/l	10	2.8	4	
Ethylbenzene	ND		ug/l	10	2.8	4	
Chloromethane	ND		ug/l	10	2.8	4	
Bromomethane	ND		ug/l	10	2.8	4	
Vinyl chloride	60		ug/l	4.0	0.28	4	
Chloroethane	ND		ug/l	10	2.8	4	
1,1-Dichloroethene	ND		ug/l	2.0	0.68	4	
trans-1,2-Dichloroethene	4.1	J	ug/l	10	2.8	4	

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-05 D Date Collected: 12/16/19 15:00

Client ID: MW-1I Date Received: 12/16/19

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Trichloroethene	26		ug/l	2.0	0.70	4
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	ND		ug/l	10	2.8	4
p/m-Xylene	ND		ug/l	10	2.8	4
o-Xylene	ND		ug/l	10	2.8	4
Xylenes, Total	ND		ug/l	10	2.8	4
cis-1,2-Dichloroethene	370		ug/l	10	2.8	4
1,2-Dichloroethene, Total	370	J	ug/l	10	2.8	4
Dibromomethane	ND		ug/l	20	4.0	4
1,2,3-Trichloropropane	ND		ug/l	10	2.8	4
Acrylonitrile	ND		ug/l	20	6.0	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	38		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
Vinyl acetate	ND		ug/l	20	4.0	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
Bromochloromethane	ND		ug/l	10	2.8	4
2,2-Dichloropropane	ND		ug/l	10	2.8	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
1,3-Dichloropropane	ND		ug/l	10	2.8	4
1,1,1,2-Tetrachloroethane	ND		ug/l	10	2.8	4
Bromobenzene	ND		ug/l	10	2.8	4
n-Butylbenzene	ND		ug/l	10	2.8	4
sec-Butylbenzene	ND		ug/l	10	2.8	4
tert-Butylbenzene	ND		ug/l	10	2.8	4
o-Chlorotoluene	ND		ug/l	10	2.8	4
p-Chlorotoluene	ND		ug/l	10	2.8	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Hexachlorobutadiene	ND		ug/l	10	2.8	4
Isopropylbenzene	ND		ug/l	10	2.8	4
p-Isopropyltoluene	ND		ug/l	10	2.8	4
Naphthalene	ND		ug/l	10	2.8	4

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-05 D Date Collected: 12/16/19 15:00

Client ID: MW-1I Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	10	2.8	4	
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4	
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4	
1,3,5-Trimethylbenzene	ND		ug/l	10	2.8	4	
1,2,4-Trimethylbenzene	ND		ug/l	10	2.8	4	
1,4-Dioxane	ND		ug/l	1000	240	4	
p-Diethylbenzene	ND		ug/l	8.0	2.8	4	
p-Ethyltoluene	ND		ug/l	8.0	2.8	4	
1,2,4,5-Tetramethylbenzene	ND		ug/l	8.0	2.2	4	
Ethyl ether	ND		ug/l	10	2.8	4	
trans-1,4-Dichloro-2-butene	ND		ug/l	10	2.8	4	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	112	70-130	

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-06 Date Collected: 12/16/19 14:20

Client ID: DUP-121619 Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/20/19 22:16

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	2.4	J	ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.75		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	2.0		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.5		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.5	J	ug/l	2.5	0.70	1

Project Name: Lab Number: VALHALLA L1960215

Project Number: Report Date: VALHALLA 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-06 Date Collected: 12/16/19 14:20

Client ID: Date Received: 12/16/19 DUP-121619

Sample Location: Field Prep: Not Specified 115 WALL STREET, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Trichloroethene	98		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	51		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	53	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	5.2		ug/l	5.0	1.0	1
Acetone	1.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	0.91	J	ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-06 Date Collected: 12/16/19 14:20

Client ID: DUP-121619 Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	3.6		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	109		70-130	

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-07 Date Collected: 12/16/19 00:00

Client ID: TRIP BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Trip Blank (Aqueous)

Analytical Method: 1,8260C

Analytical Date: 12/21/19 10:39

Analyst: JC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-07 Date Collected: 12/16/19 00:00

Client ID: TRIP BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		a/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND ND		ug/l	2.5	0.70	1
<u> </u>	ND ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane .	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: L1960215-07 Date Collected: 12/16/19 00:00

Client ID: TRIP BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	93	70-130	

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/20/19 18:15

arameter	Result	Qualifier Ur	nits	RL	MDL
olatile Organics by GC/MS - V	Westborough La	b for sample(s)): 01-06	Batch:	WG1323788-5
Methylene chloride	ND	ι	ıg/l	2.5	0.70
1,1-Dichloroethane	ND	ι	ıg/l	2.5	0.70
Chloroform	ND	ι	ıg/l	2.5	0.70
Carbon tetrachloride	ND	ι	ıg/l	0.50	0.13
1,2-Dichloropropane	ND	ι	ıg/l	1.0	0.14
Dibromochloromethane	ND	ι	ıg/l	0.50	0.15
1,1,2-Trichloroethane	ND	ι	ıg/l	1.5	0.50
Tetrachloroethene	ND	ι	ıg/l	0.50	0.18
Chlorobenzene	ND	ι	ıg/l	2.5	0.70
Trichlorofluoromethane	ND	ι	ıg/l	2.5	0.70
1,2-Dichloroethane	ND	ι	ıg/l	0.50	0.13
1,1,1-Trichloroethane	ND	l	ıg/l	2.5	0.70
Bromodichloromethane	ND	ι	ıg/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ι	ıg/l	0.50	0.16
cis-1,3-Dichloropropene	ND	U	ıg/l	0.50	0.14
1,3-Dichloropropene, Total	ND	U	ıg/l	0.50	0.14
1,1-Dichloropropene	ND	U	ıg/l	2.5	0.70
Bromoform	ND	U	ıg/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	U	ıg/l	0.50	0.17
Benzene	ND	U	ıg/l	0.50	0.16
Toluene	ND	U	ıg/l	2.5	0.70
Ethylbenzene	ND	U	ıg/l	2.5	0.70
Chloromethane	ND	U	ıg/l	2.5	0.70
Bromomethane	ND	l	ıg/l	2.5	0.70
Vinyl chloride	ND	U	ıg/l	1.0	0.07
Chloroethane	ND	U	ıg/l	2.5	0.70
1,1-Dichloroethene	ND	U	ıg/l	0.50	0.17
trans-1,2-Dichloroethene	ND	U	ıg/l	2.5	0.70
Trichloroethene	ND	U	ıg/l	0.50	0.18

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/20/19 18:15

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 01-06	Batch:	WG1323788-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/20/19 18:15

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - Wes	stborough La	b for sample(s):	01-06	Batch:	WG1323788-5
o-Chlorotoluene	ND	ug.	/I	2.5	0.70
p-Chlorotoluene	ND	ug	/I	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug	/I	2.5	0.70
Hexachlorobutadiene	ND	ug	/I	2.5	0.70
Isopropylbenzene	ND	ug	/I	2.5	0.70
p-Isopropyltoluene	ND	ug	/I	2.5	0.70
Naphthalene	ND	ug	/I	2.5	0.70
n-Propylbenzene	ND	ug	/I	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug	/I	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug	/I	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug	/I	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug	/I	2.5	0.70
1,4-Dioxane	ND	ug	/I	250	61.
p-Diethylbenzene	ND	ug	/I	2.0	0.70
p-Ethyltoluene	ND	ug	/I	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug.	/I	2.0	0.54
Ethyl ether	ND	ug	/I	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug	/I	2.5	0.70

		Acceptance
Surrogate	%Recovery Qualifier	-
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	107	70-130

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/21/19 10:12

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 07	Batch:	WG1324030-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/21/19 10:12

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 07	Batch:	WG1324030-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/21/19 10:12

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 07	Batch:	WG1324030-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
4.0 Dishlare atheres at	400	70.400
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	105	70-130
Dibromofluoromethane	99	70-130

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
olatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s):	01-06 Batch:	WG1323788-3	WG1323788-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	110		100		70-130	10	20	
Chloroform	99		100		70-130	1	20	
Carbon tetrachloride	98		99		63-132	1	20	
1,2-Dichloropropane	97		98		70-130	1	20	
Dibromochloromethane	90		92		63-130	2	20	
1,1,2-Trichloroethane	94		98		70-130	4	20	
Tetrachloroethene	95		97		70-130	2	20	
Chlorobenzene	94		96		75-130	2	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	95		97		70-130	2	20	
1,1,1-Trichloroethane	97		99		67-130	2	20	
Bromodichloromethane	94		98		67-130	4	20	
trans-1,3-Dichloropropene	81		84		70-130	4	20	
cis-1,3-Dichloropropene	83		85		70-130	2	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	82		83		54-136	1	20	
1,1,2,2-Tetrachloroethane	88		88		67-130	0	20	
Benzene	100		100		70-130	0	20	
Toluene	97		100		70-130	3	20	
Ethylbenzene	95		98		70-130	3	20	
Chloromethane	160	Q	160	Q	64-130	0	20	
Bromomethane	160	Q	160	Q	39-139	0	20	

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1323788-3	3 WG1323788-4			
Vinyl chloride	150	Q	150	Q	55-140	0	20	
Chloroethane	130		150	Q	55-138	14	20	
1,1-Dichloroethene	120		120		61-145	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	110		110		70-130	0	20	
1,2-Dichlorobenzene	98		98		70-130	0	20	
1,3-Dichlorobenzene	99		100		70-130	1	20	
1,4-Dichlorobenzene	98		98		70-130	0	20	
Methyl tert butyl ether	78		84		63-130	7	20	
p/m-Xylene	95		100		70-130	5	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	92		94		70-130	2	20	
1,2,3-Trichloropropane	87		91		64-130	4	20	
Acrylonitrile	86		91		70-130	6	20	
Styrene	95		95		70-130	0	20	
Dichlorodifluoromethane	140		140		36-147	0	20	
Acetone	67		78		58-148	15	20	
Carbon disulfide	120		120		51-130	0	20	
2-Butanone	75		79		63-138	5	20	
Vinyl acetate	90		99		70-130	10	20	
4-Methyl-2-pentanone	72		72		59-130	0	20	
2-Hexanone	63		70		57-130	11	20	

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s):	01-06 Batch: W	G1323788-3 WG1323788-4		
Bromochloromethane	97		100	70-130	3	20
2,2-Dichloropropane	88		91	63-133	3	20
1,2-Dibromoethane	89		92	70-130	3	20
1,3-Dichloropropane	93		97	70-130	4	20
1,1,1,2-Tetrachloroethane	93		94	64-130	1	20
Bromobenzene	94		94	70-130	0	20
n-Butylbenzene	100		110	53-136	10	20
sec-Butylbenzene	100		100	70-130	0	20
tert-Butylbenzene	83		84	70-130	1	20
o-Chlorotoluene	99		98	70-130	1	20
p-Chlorotoluene	98		98	70-130	0	20
1,2-Dibromo-3-chloropropane	77		89	41-144	14	20
Hexachlorobutadiene	93		98	63-130	5	20
Isopropylbenzene	97		98	70-130	1	20
p-lsopropyltoluene	100		100	70-130	0	20
Naphthalene	76		80	70-130	5	20
n-Propylbenzene	99		100	69-130	1	20
1,2,3-Trichlorobenzene	84		88	70-130	5	20
1,2,4-Trichlorobenzene	88		88	70-130	0	20
1,3,5-Trimethylbenzene	100		100	64-130	0	20
1,2,4-Trimethylbenzene	99		100	70-130	1	20
1,4-Dioxane	80		88	56-162	10	20
p-Diethylbenzene	98		100	70-130	2	20

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number:

L1960215

Report Date:

12/23/19

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06	Batch:	WG1323788-3	WG1323788-4				
p-Ethyltoluene	99			100		70-130	1		20	
1,2,4,5-Tetramethylbenzene	90			90		70-130	0		20	
Ethyl ether	97			100		59-134	3		20	
trans-1,4-Dichloro-2-butene	92			82		70-130	11		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	101	104	70-130	
Toluene-d8	101	102	70-130	
4-Bromofluorobenzene	98	98	70-130	
Dibromofluoromethane	102	106	70-130	

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	7 Batch: WG1:	324030-3	WG1324030-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	110		110		63-132	0	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	97		100		63-130	3	20	
1,1,2-Trichloroethane	99		100		70-130	1	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	97		100		70-130	3	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	100		110		70-130	10	20	
cis-1,3-Dichloropropene	100		110		70-130	10	20	
1,1-Dichloropropene	110		110		70-130	0	20	
Bromoform	91		95		54-136	4	20	
1,1,2,2-Tetrachloroethane	98		100		67-130	2	20	
Benzene	110		110		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		110		70-130	10	20	
Chloromethane	110		100		64-130	10	20	
Bromomethane	78		82		39-139	5	20	

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 07	Batch: WG	1324030-3	WG1324030-4		
Vinyl chloride	110		110		55-140	0	20
Chloroethane	120		120		55-138	0	20
1,1-Dichloroethene	110		110		61-145	0	20
trans-1,2-Dichloroethene	110		110		70-130	0	20
Trichloroethene	100		100		70-130	0	20
1,2-Dichlorobenzene	98		100		70-130	2	20
1,3-Dichlorobenzene	100		100		70-130	0	20
1,4-Dichlorobenzene	99		100		70-130	1	20
Methyl tert butyl ether	110		110		63-130	0	20
p/m-Xylene	100		105		70-130	5	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	100		110		70-130	10	20
Dibromomethane	100		100		70-130	0	20
1,2,3-Trichloropropane	93		100		64-130	7	20
Acrylonitrile	110		110		70-130	0	20
Styrene	100		100		70-130	0	20
Dichlorodifluoromethane	100		100		36-147	0	20
Acetone	110		100		58-148	10	20
Carbon disulfide	110		110		51-130	0	20
2-Butanone	94		100		63-138	6	20
Vinyl acetate	120		130		70-130	8	20
4-Methyl-2-pentanone	100		100		59-130	0	20
2-Hexanone	100		100		57-130	0	20

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westb	orough Lab Associated	sample(s): 0	7 Batch: WG	1324030-3	WG1324030-4				
Bromochloromethane	110		110		70-130	0		20	
2,2-Dichloropropane	110		140	Q	63-133	24	Q	20	
1,2-Dibromoethane	98		100		70-130	2		20	
1,3-Dichloropropane	100		100		70-130	0		20	
1,1,1,2-Tetrachloroethane	100		100		64-130	0		20	
Bromobenzene	97		100		70-130	3		20	
n-Butylbenzene	100		110		53-136	10		20	
sec-Butylbenzene	110		100		70-130	10		20	
tert-Butylbenzene	100		110		70-130	10		20	
o-Chlorotoluene	100		110		70-130	10		20	
p-Chlorotoluene	100		110		70-130	10		20	
1,2-Dibromo-3-chloropropane	91		95		41-144	4		20	
Hexachlorobutadiene	98		110		63-130	12		20	
Isopropylbenzene	100		110		70-130	10		20	
p-Isopropyltoluene	96		100		70-130	4		20	
Naphthalene	94		98		70-130	4		20	
n-Propylbenzene	100		110		69-130	10		20	
1,2,3-Trichlorobenzene	97		100		70-130	3		20	
1,2,4-Trichlorobenzene	98		100		70-130	2		20	
1,3,5-Trimethylbenzene	100		110		64-130	10		20	
1,2,4-Trimethylbenzene	100		110		70-130	10		20	
1,4-Dioxane	100		98		56-162	2		20	
p-Diethylbenzene	100		110		70-130	10		20	

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number:

L1960215

Report Date:

12/23/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 07	Batch: WG	1324030-3	WG1324030-4			
p-Ethyltoluene	100		110		70-130	10		20
1,2,4,5-Tetramethylbenzene	98		100		70-130	2		20
Ethyl ether	100		100		59-134	0		20
trans-1,4-Dichloro-2-butene	100		110		70-130	10		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	96	110	70-130	
Toluene-d8	101	101	70-130	
4-Bromofluorobenzene	103	103	70-130	
Dibromofluoromethane	100	99	70-130	

Project Name:VALHALLAProject Number:VALHALLA

Lab Number: L1960215

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD I %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-4S	- Westborough I	_ab Ass	sociated sample((s): 01-06 QC	Batch ID: WG132	3788-6 WG132	3788-7	QC Sample	e: L1960)215-03	Client ID:
Methylene chloride	ND	10	11	110	11	110		70-130	0		20
1,1-Dichloroethane	ND	10	9.6	96	10	100		70-130	4		20
Chloroform	ND	10	10	100	10	100		70-130	0		20
Carbon tetrachloride	ND	10	9.9	99	10	100		63-132	1		20
,2-Dichloropropane	ND	10	9.6	96	10	100		70-130	4		20
Dibromochloromethane	ND	10	9.1	91	9.4	94		63-130	3		20
,1,2-Trichloroethane	ND	10	9.6	96	10	100		70-130	4		20
Tetrachloroethene	ND	10	9.4	94	10	100		70-130	6		20
Chlorobenzene	ND	10	9.2	92	9.7	97		75-130	5		20
richlorofluoromethane	ND	10	13	130	13	130		62-150	0		20
,2-Dichloroethane	ND	10	9.4	94	9.5	95		70-130	1		20
1,1,1-Trichloroethane	ND	10	10	100	10	100		67-130	0		20
Bromodichloromethane	ND	10	9.3	93	9.9	99		67-130	6		20
rans-1,3-Dichloropropene	ND	10	7.9	79	8.0	80		70-130	1		20
cis-1,3-Dichloropropene	ND	10	8.0	80	8.3	83		70-130	4		20
1,1-Dichloropropene	ND	10	11	110	11	110		70-130	0		20
Bromoform	ND	10	8.0	80	8.8	88		54-136	10		20
1,1,2,2-Tetrachloroethane	ND	10	9.3	93	10	100		67-130	7		20
Benzene	ND	10	11	110	11	110		70-130	0		20
Foluene	ND	10	9.7	97	9.9	99		70-130	2		20
Ethylbenzene	ND	10	9.5	95	9.9	99		70-130	4		20
Chloromethane	ND	10	13	130	14	140	Q	64-130	7		20
Bromomethane	ND	10	8.9	89	11	110		39-139	21	Q	20

Project Name:VALHALLAProject Number:VALHALLA

Lab Number: L1960215

_	Native	MS	_MS	MS		MSD .	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS MW-4S	- Westborough	Lab As	sociated sample	(s): 01-06 QC	Batch ID	: WG13237	788-6 WG1323	3788-7	QC Sample	e: L1960	215-03	Client ID:
/inyl chloride	0.88J	10	16	160	Q	17	170	Q	55-140	6		20
Chloroethane	ND	10	16	160	Q	17	170	Q	55-138	6		20
1,1-Dichloroethene	ND	10	12	120		12	120		61-145	0		20
rans-1,2-Dichloroethene	ND	10	11	110		11	110		70-130	0		20
Trichloroethene	ND	10	11	110		11	110		70-130	0		20
1,2-Dichlorobenzene	ND	10	9.2	92		10	100		70-130	8		20
1,3-Dichlorobenzene	ND	10	9.3	93		10	100		70-130	7		20
1,4-Dichlorobenzene	ND	10	9.3	93		10	100		70-130	7		20
Methyl tert butyl ether	ND	10	8.6	86		8.9	89		63-130	3		20
o/m-Xylene	ND	20	19	95		20	100		70-130	5		20
o-Xylene	ND	20	19	95		19	95		70-130	0		20
cis-1,2-Dichloroethene	1.2J	10	12	120		12	120		70-130	0		20
Dibromomethane	ND	10	9.7	97		9.8	98		70-130	1		20
1,2,3-Trichloropropane	ND	10	9.3	93		10	100		64-130	7		20
Acrylonitrile	ND	10	8.9	89		9.6	96		70-130	8		20
Styrene	ND	20	18	90		19	95		70-130	5		20
Dichlorodifluoromethane	ND	10	15	150	Q	14	140		36-147	7		20
Acetone	ND	10	10	100		10	100		58-148	0		20
Carbon disulfide	ND	10	12	120		12	120		51-130	0		20
2-Butanone	ND	10	9.3	93		8.9	89		63-138	4		20
/inyl acetate	ND	10	9.2	92		9.6	96		70-130	4		20
1-Methyl-2-pentanone	ND	10	8.2	82		8.5	85		59-130	4		20
2-Hexanone	ND	10	7.8	78		8.0	80		57-130	3		20

Project Name:VALHALLAProject Number:VALHALLA

Lab Number:

L1960215

Report Date:

12/23/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-4S	- Westborough	Lab Asso	ociated sample(s): 01-06 QC	Batch ID: WG13237	'88-6 WG132	3788-7 QC Sample	e: L196	0215-03 Client ID:
Bromochloromethane	ND	10	9.6	96	10	100	70-130	4	20
2,2-Dichloropropane	ND	10	7.1	71	7.1	71	63-133	0	20
1,2-Dibromoethane	ND	10	9.0	90	9.4	94	70-130	4	20
,3-Dichloropropane	ND	10	9.5	95	9.8	98	70-130	3	20
1,1,1,2-Tetrachloroethane	ND	10	8.8	88	9.4	94	64-130	7	20
Bromobenzene	ND	10	9.0	90	10	100	70-130	11	20
n-Butylbenzene	ND	10	9.8	98	11	110	53-136	12	20
sec-Butylbenzene	ND	10	10	100	11	110	70-130	10	20
ert-Butylbenzene	ND	10	8.0	80	8.9	89	70-130	11	20
o-Chlorotoluene	ND	10	9.4	94	10	100	70-130	6	20
o-Chlorotoluene	ND	10	9.1	91	10	100	70-130	9	20
1,2-Dibromo-3-chloropropane	ND	10	8.8	88	9.4	94	41-144	7	20
Hexachlorobutadiene	ND	10	9.1	91	10	100	63-130	9	20
sopropylbenzene	ND	10	9.4	94	10	100	70-130	6	20
o-Isopropyltoluene	ND	10	9.4	94	11	110	70-130	16	20
Naphthalene	ND	10	8.2	82	9.1	91	70-130	10	20
n-Propylbenzene	ND	10	9.5	95	10	100	69-130	5	20
1,2,3-Trichlorobenzene	ND	10	8.5	85	9.5	95	70-130	11	20
1,2,4-Trichlorobenzene	ND	10	8.5	85	9.6	96	70-130	12	20
1,3,5-Trimethylbenzene	ND	10	9.4	94	10	100	64-130	6	20
1,2,4-Trimethylbenzene	ND	10	9.6	96	10	100	70-130	4	20
1,4-Dioxane	ND	500	500	100	510	102	56-162	2	20
p-Diethylbenzene	ND	10	9.2	92	10	100	70-130	8	20

Project Name:VALHALLAProject Number:VALHALLA

Lab Number:

L1960215

Report Date:

12/23/19

Parameter	Native Sample	MS Adde		MS %Recove	ry Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-4S	- Westborough	Lab A	ssociated sample	(s): 01-06	QC Batch II	D: WG13237	788-6 WG1323	3788-7	QC Sample	: L1960	0215-03	Client ID:
p-Ethyltoluene	ND	10	9.5	95		10	100		70-130	5		20
1,2,4,5-Tetramethylbenzene	ND	10	8.8	88		9.7	97		70-130	10		20
Ethyl ether	ND	10) 10	100		11	110		59-134	10		20
trans-1,4-Dichloro-2-butene	ND	10	8.2	82		7.9	79		70-130	4		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	104	102	70-130
4-Bromofluorobenzene	98	101	70-130
Dibromofluoromethane	108	103	70-130
Toluene-d8	100	101	70-130

METALS

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

SAMPLE RESULTS

Lab ID:L1960215-01Date Collected:12/16/19 10:00Client ID:FIELD BLANKDate Received:12/16/19Sample Location:115 WALL STREET, NYField Prep:Not Specified

Sample Depth:

Matrix: Field Blank

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Chromium, Total	ND		mg/l	0.010	0.002	1	12/20/19 10:26	12/20/19 18:28	EPA 3005A	1,6010D	PE
Iron, Total	0.054		mg/l	0.050	0.009	1	12/20/19 10:26	12/20/19 18:28	EPA 3005A	1,6010D	PE
Manganese, Total	ND		mg/l	0.010	0.002	1	12/20/19 10:26	12/20/19 18:28	EPA 3005A	1,6010D	PE

12/16/19 11:30

Date Collected:

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

SAMPLE RESULTS

Lab ID: L1960215-02

Client ID: MW-3I Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Chromium, Total	ND		mg/l	0.010	0.002	1	12/20/19 10:26	3 12/20/19 18:24	EPA 3005A	1,6010D	PE
Iron, Total	104		mg/l	0.050	0.009	1	12/20/19 10:26	3 12/20/19 18:24	EPA 3005A	1,6010D	PE
Manganese, Total	8.95		mg/l	0.010	0.002	1	12/20/19 10:26	3 12/20/19 18:24	EPA 3005A	1,6010D	PE

12/16/19 12:50

Date Collected:

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

SAMPLE RESULTS

Lab ID: L1960215-03

Client ID: MW-4S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Chromium, Total	ND		mg/l	0.010	0.002	1	12/20/19 10:26	12/20/19 19:02	EPA 3005A	1,6010D	PE
Iron, Total	3.93		mg/l	0.050	0.009	1	12/20/19 10:26	12/20/19 19:02	EPA 3005A	1,6010D	PE
Manganese, Total	0.650		mg/l	0.010	0.002	1	12/20/19 10:26	12/20/19 19:02	EPA 3005A	1,6010D	PE

12/16/19 14:10

Date Collected:

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

SAMPLE RESULTS

Lab ID: L1960215-04

Client ID: MW-1S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Chromium, Total	0.003	J	mg/l	0.010	0.002	1	12/20/19 10:20	6 12/20/19 18:33	EPA 3005A	1,6010D	PE
Iron, Total	26.9		mg/l	0.050	0.009	1	12/20/19 10:20	6 12/20/19 18:33	EPA 3005A	1,6010D	PE
Manganese, Total	11.0		mg/l	0.010	0.002	1	12/20/19 10:20	6 12/20/19 18:33	EPA 3005A	1,6010D	PE

12/16/19 15:00

Date Collected:

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

SAMPLE RESULTS

Lab ID: L1960215-05

Client ID: MW-1I Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Chromium, Total	ND		mg/l	0.010	0.002	1	12/20/19 10:26	3 12/20/19 18:37	EPA 3005A	1,6010D	PE
Iron, Total	5.28		mg/l	0.050	0.009	1	12/20/19 10:26	3 12/20/19 18:37	EPA 3005A	1,6010D	PE
Manganese, Total	2.05		mg/l	0.010	0.002	1	12/20/19 10:26	3 12/20/19 18:37	EPA 3005A	1,6010D	PE

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

SAMPLE RESULTS

Lab ID:L1960215-06Date Collected:12/16/19 14:20Client ID:DUP-121619Date Received:12/16/19Sample Location:115 WALL STREET, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Chromium, Total	0.003	J	mg/l	0.010	0.002	1	12/20/19 10:26	12/20/19 19:23	EPA 3005A	1,6010D	PE
Iron, Total	30.9		mg/l	0.050	0.009	1	12/20/19 10:26	3 12/20/19 19:23	EPA 3005A	1,6010D	PE
Manganese, Total	10.8		mg/l	0.010	0.002	1	12/20/19 10:26	3 12/20/19 19:23	EPA 3005A	1,6010D	PE

Project Name: VALHALLA Lab Number: L1960215 Project Number: VALHALLA

Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mans	field Lab for sa	ample(s):	01-06 B	atch: Wo	G13232	31-1				
Chromium, Total	ND		mg/l	0.010	0.002	1	12/20/19 10:26	12/20/19 18:54	1,6010D	PE
Iron, Total	ND		mg/l	0.050	0.009	1	12/20/19 10:26	12/20/19 18:54	1,6010D	PE
Manganese, Total	0.004	J	mg/l	0.010	0.002	1	12/20/19 10:26	12/20/19 18:54	1,6010D	PE

Prep Information

Digestion Method: EPA 3005A

Project Name: VALHALLA **Project Number:** VALHALLA

Lab Number: L1960215

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recove Qual Limits		Qual	RPD Limits
Total Metals - Mansfield Lab Associated sam	ple(s): 01-06 Batch: V	NG1323231-2				
Chromium, Total	84	-	80-120	-		
Iron, Total	86	-	80-120	-		
Manganese, Total	80	-	80-120	-		

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-06	QC Bate	ch ID: WG1323	3231-3	WG132323	1-4 QC Sam	ple: L1	960215-03	Client	ID: MW-4S
Chromium, Total	ND	0.2	0.172	86		0.148	74	Q	75-125	15	20
Iron, Total	3.93	1	4.92	99		4.87	94		75-125	1	20
Manganese, Total	0.650	0.5	1.07	84		1.01	72	Q	75-125	6	20

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: VALHALLA L1960215 Project Number: VALHALLA

Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: Date Collected: L1960215-01 12/16/19 10:00 Client ID: FIELD BLANK Date Received: 12/16/19 Not Specified Sample Location: 115 WALL STREET, NY Field Prep:

Sample Depth:

Matrix: Field Blank

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Chloride	0.87	J	mg/l	1.0	0.20	1	-	12/20/19 19:58	121,4500CL-E	TL
Total Organic Carbon	0.37	J	mg/l	0.50	0.11	1	-	12/19/19 23:08	1,9060A	DW

Project Name: Lab Number: VALHALLA L1960215 Project Number: VALHALLA

Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: Date Collected: L1960215-02 12/16/19 11:30

Client ID: MW-3I Date Received: 12/16/19 Not Specified Sample Location: 115 WALL STREET, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Chloride	850		mg/l	20	4.0	20	-	12/20/19 22:35	121,4500CL-E	TL
Total Organic Carbon	2.4		mg/l	0.50	0.11	1	-	12/19/19 17:32	1,9060A	DW

Project Name: Lab Number: VALHALLA L1960215 Project Number: VALHALLA

Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: Date Collected: L1960215-03 12/16/19 12:50

Client ID: MW-4S Date Received: 12/16/19 Not Specified Sample Location: 115 WALL STREET, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal)								
Chloride	64.		mg/l	1.0	0.20	1	-	12/20/19 22:35	121,4500CL-E	TL
Total Organic Carbon	4.7		mg/l	0.50	0.11	1	-	12/19/19 18:05	1,9060A	DW

Project Name: Lab Number: VALHALLA L1960215 Project Number: VALHALLA

Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: Date Collected: L1960215-04 12/16/19 14:10

Client ID: MW-1S Date Received: 12/16/19 Not Specified Sample Location: 115 WALL STREET, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Chloride	130		mg/l	10	2.0	10	-	12/20/19 22:38	121,4500CL-E	TL
Total Organic Carbon	20		mg/l	2.0	0.46	4	-	12/19/19 23:40	1,9060A	DW

Project Name: Lab Number: VALHALLA L1960215 Project Number: VALHALLA

Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: Date Collected: L1960215-05 12/16/19 15:00

Client ID: MW-1I Date Received: 12/16/19 Not Specified Sample Location: 115 WALL STREET, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b								
Chloride	79.		mg/l	10	2.0	10	-	12/20/19 20:08	121,4500CL-E	TL
Total Organic Carbon	19		mg/l	5.0	1.1	10	-	12/19/19 19:09	1,9060A	DW

Project Name: Lab Number: VALHALLA L1960215 Project Number: VALHALLA

Report Date: 12/23/19

SAMPLE RESULTS

Lab ID: Date Collected: L1960215-06 12/16/19 14:20 Client ID: DUP-121619 Date Received: 12/16/19 Not Specified Sample Location: 115 WALL STREET, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lal)								
Chloride	110		mg/l	10	2.0	10	-	12/20/19 20:11	121,4500CL-E	TL
Total Organic Carbon	18		mg/l	2.0	0.46	4	-	12/20/19 15:28	1,9060A	DW

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab for san	nple(s): 01	-05 Ba	tch: WC	G1322838-1				
Total Organic Carbon	ND	mg/l	0.50	0.11	1	-	12/19/19 08:08	1,9060A	DW
General Chemistry - Westb	orough Lab for san	nple(s): 06	Batch	: WG13	23069-1				
Total Organic Carbon	ND	mg/l	0.50	0.11	1	-	12/20/19 06:16	1,9060A	DW
General Chemistry - Westb	orough Lab for san	nple(s): 01	-06 Ba	tch: WC	G1323406-1				
Chloride	0.56 J	mg/l	1.0	0.20	1	-	12/20/19 19:56	121,4500CL-I	E TL

Lab Control Sample Analysis Batch Quality Control

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

Report Date: 12/23/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s)	: 01-05	Batch: WG13228	838-2				
Total Organic Carbon	95		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	:06 B	satch: WG1323069	-2				
Total Organic Carbon	92		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 01-06	Batch: WG13234	406-2				
Chloride	100		-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960215

Report Date: 12/23/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01-05	QC Batch II	D: WG1322838-4	QC Sample: L19	960215-03 Clie	nt ID: MW-48	3
Total Organic Carbon	4.7	16	22	111	-	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 06 C	QC Batch ID: V	VG1323069-4 (QC Sample: L1960	215-06 Client II	D: DUP-1216	19
Total Organic Carbon	18	40	59	103	-	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01-06	QC Batch II	D: WG1323406-4	QC Sample: L19	960215-03 Clie	nt ID: MW-48	3
Chloride	64.	20	81	85	-	-	58-140	-	7

Lab Duplicate Analysis Batch Quality Control

Project Name: VALHALLA **Project Number:** VALHALLA Lab Number:

Report Date:

L1960215

12/23/19

Parameter	Native Sample	Duplicate Sample	<u>Units</u>	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated samp	le(s): 01-05 QC Batch	ID: WG1322838-3	QC Sample: L	_1960215-03	Client ID: MW-4S
Total Organic Carbon	4.7	4.8	mg/l	2	20
General Chemistry - Westborough Lab Associated samp	le(s): 06 QC Batch ID:	WG1323069-3 QC	C Sample: L19	60215-06 Cli	ient ID: DUP-121619
Total Organic Carbon	18	19	mg/l	5	20
General Chemistry - Westborough Lab Associated samp	le(s): 01-06 QC Batch	ID: WG1323406-3	QC Sample: L	_1960215-03	Client ID: MW-4S
Chloride	64.	64	mg/l	0	7

Lab Number: L1960215

Report Date: 12/23/19

Project Name: VALHALLA Project Number: VALHALLA

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent
B Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1960215-01A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-01B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-01C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-01D	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-01E	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-01F	Plastic 60ml unpreserved	Α	7	7	4.2	Υ	Absent		CL-4500(28)
L1960215-01G	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1960215-02A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-02B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-02C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-02D	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-02E	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-02F	Plastic 60ml unpreserved	Α	7	7	4.2	Υ	Absent		CL-4500(28)
L1960215-02G	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1960215-03A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03A1	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03A2	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03B1	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03B2	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03C1	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)

Serial_No:12231917:05 *Lab Number:* L1960215 *Report Date:* 12/23/19

Project Name: VALHALLAProject Number: VALHALLA

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1960215-03C2	Vial HCI preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260(14)
L1960215-03D	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-03D1	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-03D2	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-03E	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-03E1	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-03E2	Vial H2SO4 preserved	Α	NA		4.2	Υ	Absent		TOC-9060(28)
L1960215-03F	Plastic 60ml unpreserved	Α	7	7	4.2	Υ	Absent		CL-4500(28)
L1960215-03F1	Plastic 60ml unpreserved	Α	7	7	4.2	Υ	Absent		CL-4500(28)
L1960215-03F2	Plastic 60ml unpreserved	Α	7	7	4.2	Υ	Absent		CL-4500(28)
L1960215-03G	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1960215-03H	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1960215-03I	Plastic 250ml HNO3 preserved	Α	<2	<2	4.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1960215-04A	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-04B	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-04C	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-04D	Vial H2SO4 preserved	В	NA		4.0	Υ	Absent		TOC-9060(28)
L1960215-04E	Vial H2SO4 preserved	В	NA		4.0	Υ	Absent		TOC-9060(28)
L1960215-04F	Plastic 60ml unpreserved	В	7	7	4.0	Υ	Absent		CL-4500(28)
L1960215-04G	Plastic 250ml HNO3 preserved	В	<2	<2	4.0	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1960215-05A	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-05B	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-05C	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-05D	Vial H2SO4 preserved	В	NA		4.0	Υ	Absent		TOC-9060(28)
L1960215-05E	Vial H2SO4 preserved	В	NA		4.0	Υ	Absent		TOC-9060(28)
L1960215-05F	Plastic 60ml unpreserved	В	7	7	4.0	Υ	Absent		CL-4500(28)
L1960215-05G	Plastic 250ml HNO3 preserved	В	<2	<2	4.0	Υ	Absent		CR-TI(180),MN-TI(180),FE-TI(180)
L1960215-06A	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)

Serial_No:12231917:05 *Lab Number:* L1960215 *Report Date:* 12/23/19

Project Name:VALHALLAProject Number:VALHALLA

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1960215-06B	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-06C	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-06D	Vial H2SO4 preserved	В	NA		4.0	Υ	Absent		TOC-9060(28)
L1960215-06E	Vial H2SO4 preserved	В	NA		4.0	Υ	Absent		TOC-9060(28)
L1960215-06F	Plastic 60ml unpreserved	В	7	7	4.0	Υ	Absent		CL-4500(28)
L1960215-06G	Plastic 250ml HNO3 preserved	В	<2	<2	4.0	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1960215-07A	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-07B	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-07C	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1960215-07D	Vial HCl preserved	В	NA		4.0	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: **VALHALLA** L1960215 **Project Number: VALHALLA Report Date:** 12/23/19

GLOSSARY

Acronyms

EDL

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values. MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1960215Project Number:VALHALLAReport Date:12/23/19

Data Qualifiers

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: VALHALLA Lab Number: L1960215

Project Number: VALHALLA Report Date: 12/23/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12231917:05

ID No.:17873 Revision 15

Published Date: 8/15/2019 9:53:42 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

These samples have I	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project # VQID Q (Use Project name as P Project Manager: J ALPHAQuote #: Turn-Around Time Standar Rush (only if pre approved by Alpha	way gooper Ave, Suite 1	street, Valhalla	1501	ge of	Deliv	ASP- EQuil Other Ilatory NY TO AWQ NY Re NY Ur	Requi DGS Standa estricted	ireme	nt	NY Part	(4 File)	ALPHA Job #	on on of s.	
Please specify Metal	s or TAL.		Colle	ection	Sample	I Samulada	CL VOC	中 (元人の)	lorides	20	-AS	+-Dioxque		□ Done □ Lab to do Preservation □ Lab to do (Please Specify below	t a l	
(Lab Use Only)	N .	nple ID	Date	Time	Matrix	-Sampler's Initials	!-	Me	Ch	3	PF	<u>-</u>		Sample Specific Commen	nts e	
-02	31		12/16/14	19:00	W	<u>50</u>	X	X	X	X	X	X				
-03	45		12/16/19	12:50	W	IR	X	X	X	X	X	$\hat{\mathcal{L}}$	_			
-04	45-MS		12/16/19	12:55	W	Ja	X	X	X	X	X	Ž				
-05	45-MSI)	12/11/19		W	20	X	X	X	X	X	X	_			
-06	MW-15		17/11/10		W	20	X	X	X	X	X	<u> </u>	_			
-07	MW-IJ		12/1/18	15:00	w	JR	X	X	X	X	2	X	_			
-08	DUP- 12	17.14	12/16/19	14:20	W	TO	X	Χ	1	X	^	X	_			
	041216	1611	121017	14, CV	W	20	X	X	X	X	X	<u> </u>	+		-	
reservative Code:	Container Code P = Plastic	Westboro: Certification N	o: MA935		SADSTANY											
= HCI = HNO ₃ = H ₂ SO ₄ = NaOH	A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification N	o: MA015	0		tainer Type reservative								Please print clearly, le and completely. Samp not be logged in and turnaround time clock start until any ambigui	ples can	
= Na1SO ₄ = Na ₂ S ₂ O ₃ E = Zn Ac/NaOH = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinguished B	sy: Ela ja	Date/T 12/16/19 12/16/19	ime 4:00 17:16 2 14/	Taylo	Receiy N	Ad	de	21) A)	z/19/2/19/1	Date/T	16,00 117 214	resolved. BY EXECUTHIS COC, THE CLIE HAS READ AND AGE TO BE BOUND BY AI TERMS & CONDITIO	TING ENT REES LPHA'S	
m No: 01-25 HC (rev. 30-Sept-2013)				VIVIETO PUT MINUS			raphy AM 10/16/19 214							(See reverse side.)		

Wastborgugh, MA 91591	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Natiwsh, NJ 07430: 35 Whithe Albany, NY 12285; 14 Welker t Tonawanda, NY 14150: 275 Co	Way	9 5	Page			in	Rec'd					ALPHA-Job#
8 Welkup Dr. TEL: 508-698-9220	320 Forbes Blvd TEL: 506-922-9300	Project Information Project Name: Vo	Malla				and particle	ASP-	200		V	ASP-	R	6 Fing Information ✓ Same as Client Info
FAX: 506-898-9193	FAX: 508-822-3288			Freet	WY		4 =		n 8 (1 F	lie)			S (4 File)	PO#
Cirent Internation		Project # VIII Q	1200		, IV I		4 -	Other		,	ט		- (,	137
Client: APEX						Regulatory Requirement					Disposal Site Information			
	will bur Place					NY TOGS NY Part 375				nt 375	Please identify below location of			
		ALPHAQuote #:		V-11	V		1 🙃	AWQ	Standa	rds		NY CF	2-51	applicable disposal facilities.
Phone: 631-56	7-1777	Turn-Around Time						NY Re	stricte	d Use		Other		Disposal Facility:
Fax:		Standar	d 🗹	Due Date:				NY Ur	nestric	ted Use	,			□ NJ NY
Email: JOB, GOVIN	(10) 2 DEX (05. (01)	Rush (only if pre approved	d) []	# of Days:			0	NYC S	ower (Diecher	ge			Other:
These samples have b	een previously analyz	ed by Alpha					ANA	YSIS						Sample Filtration
Other project specific Please specify Metals			rate	Deliv	Rab	t y	- VOC	7 (F. 16, C)	Prides	C	AS	- Diexage		☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	J	Q.	2	0	IL	1-		
(Lab Use Only)			Date	Time	Matrix	Initials	<u> -</u>	E	Q	-~-	12			Sample Specific Comments
	Field	denk	12/16/9	19,00	W	201	X	^	X	X	X	X		
	V11W-5-	<u> </u>	12/1/11	1/:30	W/	170	7.	A.	X	4	X	X.	_	
	TS MS		12/16/17	12:50	6/	10 V	S	X	X.	1	Х	X		
Morrow	45-MS	N	12/16/19	12155	W	10	X	×	X	-/-	X	X	_	
(80)	N 1 5	U	12/11/11	13100	W	Ja	X	7	·	0	.^ X	<u></u>	-	
	14 W - 11		12 111 114	15/00	W	TO	X	X	>	(A)	X	X	_	
	DUP- 12	1619	12/16/19	14:20	W	TO	×	~	X	×	v.	X	-	
	747-16	-1011	1	14120	379	UM		_	^	^				
Preservative Code: A = None B = HCl C = HNO ₃	Container Code P = Plaetic A = Amber Glass V = Vial	Westboro: Certification Mansfield: Certification Mansfield: Certification Mansfield: Man			Con	tainer Type	V	8	P					Please print clearly, legibly and completely. Samples can not be logged in and
D = H₂SO₄ E = NaOH	G = Glass B = Bacteria Cup				F	evitsvreaer	13							turnaround time clock will no
F = MeOH	C = Cube	Relinquished	Bv	Date/	Time	3.1	Regêiy	6d By	_	_	-	Date	Time	start until any ambiguities an resolved. BY EXECUTING
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	O = Other E = Encore D = BOD Bottle	3/10 Yum		2/16/19			14			/	z/1			
Form No: 01-25 HC (rev. 3	30- So pt-2013)													(See reverse side.)

ANALYTICAL REPORT

Lab Number: L1961700

Client: APEX Companies, LLC

120-D Wilbur Place Bohemia, NY 11716

(631) 567-1777

ATTN: Joe Gavin

Phone:

Project Name: VALHALLA

Project Number: VALHALLA 1501

Report Date: 03/25/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961700 **Report Date:** 03/25/20

Alpha Sample I	D Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1961700	0-01 MW2S	WATER	115 WALL ST, VALHALLA, NY	12/26/19 10:35	12/26/19
L1961700	0-02 MW2I	WATER	115 WALL ST, VALHALLA, NY	12/26/19 11:35	12/26/19
L1961700	D-03 MW2D	WATER	115 WALL ST, VALHALLA, NY	12/26/19 12:35	12/26/19
L1961700	D-04 MW1D	WATER	115 WALL ST, VALHALLA, NY	12/26/19 09:45	12/26/19
L1961700	0-05 MW7S	WATER	115 WALL ST, VALHALLA, NY	12/26/19 13:45	12/26/19
L1961700	0-06 MW7I	WATER	115 WALL ST, VALHALLA, NY	12/26/19 14:45	12/26/19

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

Case Narrative (continued)

Report Revision

March 25, 2020: Freon-113 has been added to the Volatile Organics analyte list on L1961700-01 through -06.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

Total Metals

The WG1325823-3 MS recovery for iron (10%), performed on L1961700-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ΔLPHA

Date: 03/25/20

ORGANICS

VOLATILES

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-01 Date Collected: 12/26/19 10:35

Client ID: MW2S Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/30/19 13:41

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: Lab Number: VALHALLA L1961700

Project Number: Report Date: VALHALLA 1501 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-01 Date Collected: 12/26/19 10:35

Client ID: MW2S Date Received: 12/26/19 Sample Location: Field Prep: Not Specified

115 WALL ST, VALHALLA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: VALHALLA L1961700

Project Number: Report Date: VALHALLA 1501 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-01 Date Collected: 12/26/19 10:35

Client ID: Date Received: 12/26/19 MW2S

Sample Location: Field Prep: Not Specified 115 WALL ST, VALHALLA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	91	70-130	

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-02 Date Collected: 12/26/19 11:35

Client ID: MW2I Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/30/19 14:06

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-02 Date Collected: 12/26/19 11:35

Client ID: MW2I Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-02 Date Collected: 12/26/19 11:35

Client ID: MW2I Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	91	70-130	

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-03 Date Collected: 12/26/19 12:35

Client ID: MW2D Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/30/19 14:30

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	5.8		ug/l	0.50	0.18	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-03 Date Collected: 12/26/19 12:35

Client ID: MW2D Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.74	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-03 Date Collected: 12/26/19 12:35

Client ID: MW2D Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	94	70-130	

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-04 Date Collected: 12/26/19 09:45

Client ID: MW1D Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/30/19 14:55

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	1.1	J	ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	2.4		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	2.1		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	0.71	J	ug/l	2.5	0.70	1	
Trichloroethene	1.3		ug/l	0.50	0.18	1	

Project Name: Lab Number: VALHALLA L1961700

Project Number: Report Date: VALHALLA 1501 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-04 Date Collected: 12/26/19 09:45

Client ID: MW1D Date Received: 12/26/19 Not Specified

Sample Location: Field Prep: 115 WALL ST, VALHALLA, NY

Parameter	Result	Qualifier (Jnits	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ı	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ı	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ı	ug/l	2.5	0.70	1
p/m-Xylene	ND	ı	ug/l	2.5	0.70	1
o-Xylene	ND	ı	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	6.2	ı	ug/l	2.5	0.70	1
Dibromomethane	ND	ı	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ı	ug/l	2.5	0.70	1
Acrylonitrile	ND	ı	ug/l	5.0	1.5	1
Styrene	ND	ı	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ı	ug/l	5.0	1.0	1
Acetone	ND	ı	ug/l	5.0	1.5	1
Carbon disulfide	ND	ı	ug/l	5.0	1.0	1
2-Butanone	ND	ı	ug/l	5.0	1.9	1
Vinyl acetate	ND	ı	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ı	ug/l	5.0	1.0	1
2-Hexanone	ND	ı	ug/l	5.0	1.0	1
Bromochloromethane	ND	ı	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ı	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ı	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ı	ug/l	2.5	0.70	1
Bromobenzene	ND	ı	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ı	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ı	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ı	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ı	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ı	ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	-	ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-04 Date Collected: 12/26/19 09:45

Client ID: MW1D Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	92	70-130	

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-05 Date Collected: 12/26/19 13:45

Client ID: MW7S Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/30/19 15:20

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.08	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-05 Date Collected: 12/26/19 13:45

Client ID: MW7S Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Campio Educationi 110 Tritle O1, Tritle II, Televi, Tri

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-05 Date Collected: 12/26/19 13:45

Client ID: MW7S Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	94		70-130	

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-06 Date Collected: 12/26/19 14:45

Client ID: MW7I Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/30/19 15:45

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-06 Date Collected: 12/26/19 14:45

Client ID: MW7I Date Received: 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.8	J	ug/l	5.0	1.5	1
Carbon disulfide	2.2	J	ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961700-06 Date Collected: 12/26/19 14:45

Client ID: MW7I Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	93	70-130	

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/30/19 10:00

Analyst: PD

Parameter	Result	Qualifier Units	; RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1325839-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	

Project Name: VALHALLA
Project Number: VALHALLA 1501

Lab Number: L1961700 **Report Date:** 03/25/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/30/19 10:00

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s):	01-06 Batch:	WG1325839-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70

L1961700

03/25/20

Project Name:VALHALLALab Number:Project Number:VALHALLA 1501Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/30/19 10:00

Analyst: PD

arameter	Result	Qualifier Unit	s RL	MDL	
olatile Organics by GC/MS - We	estborough Lab	o for sample(s):	01-06 Batch:	WG1325839-5	
Hexachlorobutadiene	ND	ug/	/l 2.5	0.70	
Isopropylbenzene	ND	ug/	l 2.5	0.70	
p-Isopropyltoluene	ND	ug/	l 2.5	0.70	
Naphthalene	ND	ug/	l 2.5	0.70	
n-Propylbenzene	ND	ug/	1 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/	1 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/	1 2.5	0.70	
1,4-Dioxane	ND	ug/	1 250	61.	
Freon-113	ND	ug/	1 2.5	0.70	
p-Diethylbenzene	ND	ug/	1 2.0	0.70	
p-Ethyltoluene	ND	ug/	1 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/	1 2.0	0.54	
Ethyl ether	ND	ug/	l 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/	1 2.5	0.70	

		A	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	92		70-130	

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961700

Report Date: 03/25/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1325839-3	WG1325839-4			
Methylene chloride	96		94		70-130	2	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	96		94		70-130	2	20	
Carbon tetrachloride	92		89		63-132	3	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	95		95		63-130	0	20	
1,1,2-Trichloroethane	100		99		70-130	1	20	
Tetrachloroethene	95		93		70-130	2	20	
Chlorobenzene	99		99		75-130	0	20	
Trichlorofluoromethane	93		90		62-150	3	20	
1,2-Dichloroethane	88		87		70-130	1	20	
1,1,1-Trichloroethane	93		91		67-130	2	20	
Bromodichloromethane	92		90		67-130	2	20	
trans-1,3-Dichloropropene	100		99		70-130	1	20	
cis-1,3-Dichloropropene	100		97		70-130	3	20	
1,1-Dichloropropene	98		95		70-130	3	20	
Bromoform	96		91		54-136	5	20	
1,1,2,2-Tetrachloroethane	110		100		67-130	10	20	
Benzene	99		97		70-130	2	20	
Toluene	100		98		70-130	2	20	
Ethylbenzene	100		99		70-130	1	20	
Chloromethane	90		89		64-130	1	20	
Bromomethane	26	Q	23	Q	39-139	12	20	

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L196

L1961700

Report Date: 03/25/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborou	gh Lab Associated	sample(s):	01-06 Batch: V	WG1325839-3 WG1325839-4		
Vinyl chloride	84		80	55-140	5	20
Chloroethane	77		74	55-138	4	20
1,1-Dichloroethene	99		95	61-145	4	20
trans-1,2-Dichloroethene	100		96	70-130	4	20
Trichloroethene	94		93	70-130	1	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		99	70-130	1	20
1,4-Dichlorobenzene	100		99	70-130	1	20
Methyl tert butyl ether	96		94	63-130	2	20
p/m-Xylene	100		95	70-130	5	20
o-Xylene	100		95	70-130	5	20
cis-1,2-Dichloroethene	98		96	70-130	2	20
Dibromomethane	91		88	70-130	3	20
1,2,3-Trichloropropane	100		100	64-130	0	20
Acrylonitrile	110		110	70-130	0	20
Styrene	95		95	70-130	0	20
Dichlorodifluoromethane	86		82	36-147	5	20
Acetone	120		120	58-148	0	20
Carbon disulfide	100		99	51-130	1	20
2-Butanone	120		120	63-138	0	20
Vinyl acetate	140	Q	130	70-130	7	20
4-Methyl-2-pentanone	110		110	59-130	0	20
2-Hexanone	110		120	57-130	9	20

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961700

Report Date: 03/25/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: W0	G1325839-3 WG1325839-4		
Bromochloromethane	100		98	70-130	2	20
2,2-Dichloropropane	96		90	63-133	6	20
1,2-Dibromoethane	97		97	70-130	0	20
1,3-Dichloropropane	100		100	70-130	0	20
1,1,1,2-Tetrachloroethane	98		96	64-130	2	20
Bromobenzene	100		98	70-130	2	20
n-Butylbenzene	120		110	53-136	9	20
sec-Butylbenzene	120		98	70-130	20	20
tert-Butylbenzene	110		100	70-130	10	20
o-Chlorotoluene	110		100	70-130	10	20
p-Chlorotoluene	110		100	70-130	10	20
1,2-Dibromo-3-chloropropane	91		92	41-144	1	20
Hexachlorobutadiene	110		100	63-130	10	20
Isopropylbenzene	110		100	70-130	10	20
p-Isopropyltoluene	120		110	70-130	9	20
Naphthalene	100		98	70-130	2	20
n-Propylbenzene	110		100	69-130	10	20
1,2,3-Trichlorobenzene	100		99	70-130	1	20
1,2,4-Trichlorobenzene	100		100	70-130	0	20
1,3,5-Trimethylbenzene	110		100	64-130	10	20
1,2,4-Trimethylbenzene	110		100	70-130	10	20
1,4-Dioxane	104		100	56-162	4	20
Freon-113	97		92	70-130	5	20

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961700

03/25/20

Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recove	ry Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Batch	n: WG1325839-3	3 WG1325839-4				
p-Diethylbenzene	110		100		70-130	10		20	
p-Ethyltoluene	110		100		70-130	10		20	
1,2,4,5-Tetramethylbenzene	110		100		70-130	10		20	
Ethyl ether	98		97		59-134	1		20	
trans-1,4-Dichloro-2-butene	110		99		70-130	11		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
4.0 Dishlarasthana d4	00		70.420
1,2-Dichloroethane-d4	89	90	70-130
Toluene-d8	99	102	70-130
4-Bromofluorobenzene	103	102	70-130
Dibromofluoromethane	91	90	70-130

METALS

12/26/19 10:35

Date Collected:

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-01

Client ID: MW2S Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Chromium, Total	0.027		mg/l	0.010	0.002	1	12/30/19 15:15	5 12/31/19 18:57	EPA 3005A	1,6010D	LC
Iron, Total	34.8		mg/l	0.050	0.009	1	12/30/19 15:15	5 12/31/19 18:57	EPA 3005A	1,6010D	LC
Manganese, Total	1.30		mg/l	0.010	0.002	1	12/30/19 15:15	12/31/19 18:57	EPA 3005A	1,6010D	LC

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-02 Date Collected: 12/26/19 11:35

Client ID: MW2I Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	nsfield Lab										
Chromium, Total	ND		mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 18:29	EPA 3005A	1,6010D	LC
Iron, Total	3.72		mg/l	0.050	0.009	1	12/30/19 15:1	5 12/31/19 18:29	EPA 3005A	1,6010D	LC
Manganese, Total	0.044		mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 18:29	EPA 3005A	1,6010D	LC

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

 Lab ID:
 L1961700-03
 Date Collected:
 12/26/19 12:35

 Client ID:
 MW2D
 Date Received:
 12/26/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Chromium, Total	0.004	J	mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 19:15	EPA 3005A	1,6010D	LC
Iron, Total	13.5		mg/l	0.050	0.009	1	12/30/19 15:1	5 12/31/19 19:15	EPA 3005A	1,6010D	LC
Manganese, Total	0.071		mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 19:15	EPA 3005A	1,6010D	LC

12/26/19 09:45

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-04 Date Collected:

Client ID: MW1D Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Chromium, Total	0.006	J	mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 19:20	EPA 3005A	1,6010D	LC
Iron, Total	10.9		mg/l	0.050	0.009	1	12/30/19 15:1	5 12/31/19 19:20	EPA 3005A	1,6010D	LC
Manganese, Total	3.19		mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 19:20	EPA 3005A	1,6010D	LC

12/26/19 13:45

Date Collected:

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-05

Client ID: MW7S Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Chromium, Total	0.028		mg/l	0.010	0.002	1	12/30/19 15:15	12/31/19 19:24	EPA 3005A	1,6010D	LC
Iron, Total	50.0		mg/l	0.050	0.009	1	12/30/19 15:15	12/31/19 19:24	EPA 3005A	1,6010D	LC
Manganese, Total	1.96		mg/l	0.010	0.002	1	12/30/19 15:15	12/31/19 19:24	EPA 3005A	1,6010D	LC

12/26/19 14:45

Date Collected:

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-06

Client ID: MW7I Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Chromium, Total	0.007	J	mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 19:29	EPA 3005A	1,6010D	LC
Iron, Total	3.67		mg/l	0.050	0.009	1	12/30/19 15:1	5 12/31/19 19:29	EPA 3005A	1,6010D	LC
Manganese, Total	0.205		mg/l	0.010	0.002	1	12/30/19 15:1	5 12/31/19 19:29	EPA 3005A	1,6010D	LC

Project Name: VALHALLA Lab Number: L1961700 Project Number: VALHALLA 1501

Report Date: 03/25/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mans	field Lab for sample(s):	: 01-06 B	atch: Wo	G13258	23-1				
Chromium, Total	ND	mg/l	0.010	0.002	1	12/30/19 15:15	12/31/19 18:48	1,6010D	LC
Iron, Total	ND	mg/l	0.050	0.009	1	12/30/19 15:15	12/31/19 18:48	1,6010D	LC
Manganese, Total	ND	mg/l	0.010	0.002	1	12/30/19 15:15	12/31/19 18:48	1,6010D	LC

Prep Information

Digestion Method: EPA 3005A

Project Name: VALHALLA

Project Number: VALHALLA 1501

LA Batch Qt

Lab Number:

L1961700

03/25/20

Report Date:

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Reco Qual Limit		Qual	RPD Limits
Total Metals - Mansfield Lab Associated sa	ample(s): 01-06 Batch: W	G1325823-2				
Chromium, Total	104	-	80-120	-		
Iron, Total	105	-	80-120	-		
Manganese, Total	94	-	80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: VALHALLA

Project Number: VALHALLA 1501 Lab Number:

L1961700

Report Date:

<u>Parameter</u>	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-06	QC Bat	tch ID: WG132	5823-3	QC Sam	ple: L1961700-01	Client ID: MV	V2S	
Chromium, Total	0.027	0.2	0.226	100		-	-	75-125	-	20
Iron, Total	34.8	1	34.9	10	Q	-	-	75-125	-	20
Manganese, Total	1.30	0.5	1.76	92		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961700

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	6 QC Batch ID:	WG1325823-4 QC Sample:	L1961700-01	Client ID:	MW2S	
Chromium, Total	0.027	0.028	mg/l	4		20
Iron, Total	34.8	35.4	mg/l	2		20
Manganese, Total	1.30	1.33	mg/l	2		20

INORGANICS & MISCELLANEOUS

Project Name: VALHALLA Lab Number: L1961700 Project Number: VALHALLA 1501

Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: Date Collected: L1961700-01 12/26/19 10:35

Client ID: MW2S Date Received: 12/26/19 Not Specified Sample Location: 115 WALL ST, VALHALLA, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Chloride	83.		mg/l	10	2.0	10	-	12/30/19 21:22	121,4500CL-E	TL
Total Organic Carbon	5.8		mg/l	0.50	0.11	1	-	12/30/19 07:10	1,9060A	AG

Project Name: VALHALLA Lab Number: L1961700 Project Number: VALHALLA 1501

Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: Date Collected: L1961700-02 12/26/19 11:35

Client ID: MW2I Date Received: 12/26/19 Not Specified Sample Location: 115 WALL ST, VALHALLA, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Chloride	71.		mg/l	10	2.0	10	-	12/30/19 19:49	121,4500CL-E	TL
Total Organic Carbon	3.0		mg/l	0.50	0.11	1	-	12/30/19 07:10	1,9060A	AG

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-03 Date Collected: 12/26/19 12:35

Client ID: MW2D Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La)								
Chloride	79.		mg/l	1.0	0.20	1	-	12/30/19 21:17	121,4500CL-E	TL
Total Organic Carbon	1.9		mg/l	0.50	0.11	1	-	12/30/19 07:10	1,9060A	AG

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-04 Date Collected: 12/26/19 09:45

Client ID: MW1D Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b								
Chloride	35.		mg/l	1.0	0.20	1	-	12/30/19 21:18	121,4500CL-E	TL
Total Organic Carbon	2.3		mg/l	0.50	0.11	1	-	12/30/19 07:10	1,9060A	AG

Project Name: VALHALLA Lab Number: L1961700 Project Number: VALHALLA 1501

Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: Date Collected: L1961700-05 12/26/19 13:45

Client ID: MW7S Date Received: 12/26/19 Not Specified Sample Location: 115 WALL ST, VALHALLA, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Chloride	610		mg/l	10	2.0	10	-	12/30/19 19:59	121,4500CL-E	TL
Total Organic Carbon	3.3		mg/l	0.50	0.11	1	-	12/30/19 07:10	1,9060A	AG

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961700-06 Date Collected: 12/26/19 14:45

Client ID: MW7I Date Received: 12/26/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Chloride	310		mg/l	10	2.0	10	-	12/30/19 21:20	121,4500CL-E	TL
Total Organic Carbon	10.		mg/l	2.0	0.46	4	-	12/30/19 07:10	1,9060A	AG

Project Name: VALHALLA Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for san	nple(s): 01	I-06 Ba	tch: W	G1325643-1				
Total Organic Carbon	ND	mg/l	0.50	0.11	1	-	12/30/19 07:10	1,9060A	AG
General Chemistry - W	estborough Lab for san	nple(s): 01	I-06 Ba	tch: Wo	G1325855-1				
Chloride	0.56 J	ma/l	1.0	0.20	1	_	12/30/19 19:45	121.4500CL -	F TI

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961700

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG1325643-2				
Total Organic Carbon	101	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG1325855-2				
Chloride	100	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: VALHALLA

Project Number:

VALHALLA 1501

Lab Number:

L1961700

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery C	Recovery Qual Limits		RPD Qual Limits
General Chemistry - Westbo	orough Lab Assoc	iated samp	le(s): 01-06	QC Batch II	D: WG1325643-4	QC Sample: L1	1961686-01 CI	lient ID:	MS Sample
Total Organic Carbon	29.	40	74	112	-	-	80-120	-	20
General Chemistry - Westbo	orough Lab Assoc	iated samp	le(s): 01-06	QC Batch II	D: WG1325855-4	QC Sample: L1	1961710-01 CI	lient ID:	MS Sample
Chloride	72.	20	84	60	-	-	58-140	-	7

Lab Duplicate Analysis Batch Quality Control

Project Name: VALHALLA Batch Quality
Project Number: VALHALLA 1501

Lab Number:

L1961700

Report Date:

Parameter	Native Sam	ple D	Duplicate Sample	Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab As	ssociated sample(s): 01-06	QC Batch ID:	WG1325643-3	QC Sample:	L1961686-01	Client ID:	DUP Sample	
Total Organic Carbon	29.		30	mg/l	3		20	
General Chemistry - Westborough Lab As	ssociated sample(s): 01-06	QC Batch ID:	WG1325855-3	QC Sample:	L1961710-01	Client ID:	DUP Sample	
Chloride	72.		73	mg/l	1		7	

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961700 **Report Date:** 03/25/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler			Date/Time	Analysis(*)			
L1961700-01A	Vial HCI preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-01B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-01C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-01D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
L1961700-01E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
L1961700-01F	Plastic 60ml unpreserved	Α	7	7	3.4	Υ	Absent		CL-4500(28)
L1961700-01G	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		CR-TI(180),MN-TI(180),FE-TI(180)
L1961700-02A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-02B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-02C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-02D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
L1961700-02E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
L1961700-02F	Plastic 60ml unpreserved	Α	7	7	3.4	Υ	Absent		CL-4500(28)
L1961700-02G	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		CR-TI(180),MN-TI(180),FE-TI(180)
L1961700-03A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-03B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-03C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-03D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
L1961700-03E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
L1961700-03F	Plastic 60ml unpreserved	Α	7	7	3.4	Υ	Absent		CL-4500(28)
L1961700-03G	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		CR-TI(180),MN-TI(180),FE-TI(180)
L1961700-04A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L1961700-04B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)

Lab Number: L1961700

Report Date: 03/25/20

Project Name: VALHALLA
Project Number: VALHALLA 1501

Container Infe		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1961700-04C	Vial HCI preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
	L1961700-04D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
	L1961700-04E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
	L1961700-04F	Plastic 60ml unpreserved	Α	7	7	3.4	Υ	Absent		CL-4500(28)
	L1961700-04G	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
	L1961700-05A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
	L1961700-05B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
	L1961700-05C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
	L1961700-05D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
	L1961700-05E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
	L1961700-05F	Plastic 60ml unpreserved	Α	7	7	3.4	Υ	Absent		CL-4500(28)
	L1961700-05G	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
	L1961700-06A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
	L1961700-06B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
	L1961700-06C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
	L1961700-06D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
	L1961700-06E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-9060(28)
	L1961700-06F	Plastic 60ml unpreserved	Α	7	7	3.4	Υ	Absent		CL-4500(28)
	L1961700-06G	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)

Project Name: Lab Number: VALHALLA L1961700 **Project Number:** VALHALLA 1501 **Report Date:** 03/25/20

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1961700Project Number:VALHALLA 1501Report Date:03/25/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

 $\boldsymbol{RE} \quad \ \, \text{-Analytical results} \text{ are from sample re-extraction}.$

S - Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: VALHALLA 1501 Lab Number: L1961700

Project Number: VALHALLA 1501 Report Date: 03/25/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 a Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client: A DCX Address: JOHA Phone 31 20 Fax: Email: DC GCALL	7-1777	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: UCUV Project Location: S Project # (Use Project name as Pro Project Manager; ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	Dalla Wall St Dalla Dalla Joe 6		1		Delivo	NJ Fu EQuis Other latory SRS I SRS I	Requirements of the second of	educed ile) reman ential/N t to Gr Water	_ E	EQuIS sident ater y Stan	(4 File)	ALPHA Job # L1961 700 Billing Information Site Information Is this site impacted by Petroleum? Yes Petroleum Product:	
These samples have be							ANA	YSIS		_				Sample Filtration	Т
		Other project specific re		/comments:			LVOC	ETALS	Jorides	J				□ Done □ Lab to do Preservation □ Lab to do	otal Bot
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle Date,	ection Time	Sample Matrix	Sampler's Initials	15	ME	ch	5				Samula Sanaisa Camanata	1
61700-01	MW2S		12/26/19			JE-	1	_		¥	+	-		Sample Specific Comments	В
-07	ICUM		1 or poll		4	115	X	×	X		-	-	-		_
			-	11:35	-	7=	Y	×	×	y	-	-	_		_
703	M M 3 D			13 35	\vdash	75	Y	×	Y	4	-	\rightarrow	-		_
	MWID			0945	\vdash	15	X	Y	7	_	-	\rightarrow	-4-		_
705	MMIS			1345	1	75	7	Y	4	4	_	_	_		_
-06	MW 7I		-	1442		74	Y	7	~	+		_			
												_			
Preservative Code: Container Code Westboro: Certification No; MA A = None P = Plastic Westboro: Certification No; MA B = HCI A = Amber Glass Mansfield: Certification No; MA C = HNO ₃ V = Vial Mansfield: Certification No; MA D = H ₂ SO ₄ G = Glass G = Glass E = NaOH B = Bacteria Cup Relinquisped By; F = MeOH O = Other Relinquisped By;			o: MA015	Date/	P	reservative	Regeiv	ed By	n/		(2)	Date/7	ime,	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will no start until any ambiguities ar resolved. BY EXECUTING THIS COC, THE CLIENT	ot
1 1 Vedinguished But				126/19	1618	5	MIN			Apr	12/20	1)/	1/50	HAS READ AND AGREES TO BE BOUND BY ALPHA	

ANALYTICAL REPORT

Lab Number: L1961789

Client: APEX Companies, LLC

120-D Wilbur Place Bohemia, NY 11716

ATTN: Joe Gavin
Phone: (631) 567-1777

Project Name: VALHALLA

Project Number: VALHALLA 1501

Report Date: 03/25/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961789 **Report Date:** 03/25/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1961789-01	MW4I	WATER	115 WALL ST, VALHALLA, NY	12/27/19 12:55	12/27/19
L1961789-02	MWP1	WATER	115 WALL ST, VALHALLA, NY	12/27/19 12:05	12/27/19
L1961789-03	MWP2	WATER	115 WALL ST, VALHALLA, NY	12/27/19 10:50	12/27/19
L1961789-04	MW3D	WATER	115 WALL ST, VALHALLA, NY	12/27/19 09:35	12/27/19
L1961789-05	MW3S	WATER	115 WALL ST, VALHALLA, NY	12/27/19 08:40	12/27/19

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	lease contact Project Management at 800-624-9220 with any questions.									

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

Case Narrative (continued)

Report Revision

March 25, 2020: Freon-113 has been added to the Volatile Organics analyte list on L1961789-01 through -05.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/25/20

Jufani Morrissey-Tiffani Morrissey

ANALYTICAL

ORGANICS

VOLATILES

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-01 Date Collected: 12/27/19 12:55

Client ID: MW4I Date Received: 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/31/19 13:07

Analyst: JAL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.2		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-01 Date Collected: 12/27/19 12:55

Client ID: MW4I Date Received: 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	3.0		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: VALHALLA L1961789

Project Number: Report Date: VALHALLA 1501 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-01 Date Collected: 12/27/19 12:55

Client ID: Date Received: 12/27/19 MW4I

Sample Location: Field Prep: Not Specified 115 WALL ST, VALHALLA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	120	70-130	
Dibromofluoromethane	103	70-130	

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-02 Date Collected: 12/27/19 12:05

Client ID: MWP1 Date Received: 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/31/19 13:38

Analyst: JAL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-02 Date Collected: 12/27/19 12:05

Client ID: MWP1 Date Received: 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-02 Date Collected: 12/27/19 12:05

Client ID: MWP1 Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	117		70-130	
Dibromofluoromethane	102		70-130	

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-03 Date Collected: 12/27/19 10:50

Client ID: MWP2 Date Received: 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/31/19 14:08

Analyst: JAL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-03 Date Collected: 12/27/19 10:50

Client ID: MWP2 Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-03 Date Collected: 12/27/19 10:50

Client ID: MWP2 Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	120	70-130	
Dibromofluoromethane	102	70-130	

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-04 Date Collected: 12/27/19 09:35

Client ID: MW3D Date Received: 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/31/19 14:39

Analyst: JAL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	4.4		ug/l	0.50	0.18	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-04 Date Collected: 12/27/19 09:35

Client ID: MW3D Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-04 Date Collected: 12/27/19 09:35

Client ID: MW3D Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	118	70-130	
Dibromofluoromethane	103	70-130	

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-05 Date Collected: 12/27/19 08:40

Client ID: MW3S Date Received: 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/31/19 15:09

Analyst: JAL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-05 Date Collected: 12/27/19 08:40

Client ID: MW3S Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	150		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: L1961789-05 Date Collected: 12/27/19 08:40

Client ID: MW3S Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	118		70-130	
Dibromofluoromethane	105		70-130	

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/31/19 06:00

Analyst: MM

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane				
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	estborough Lab	for sample(s):	01-05 Batch:	WG1326239-5
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	2.5	0.70
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	2.5	0.70
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	2.5	0.70
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	1.0	0.14
Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	0.50	0.15
Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	1.5	0.50
Trichlorofluoromethane 1,2-Dichloroethane	ND	ug/l	0.50	0.18
1,2-Dichloroethane	ND	ug/l	2.5	0.70
·	ND	ug/l	2.5	0.70
1,1,1-Trichloroethane	ND	ug/l	0.50	0.13
	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: VALHALLA
Project Number: VALHALLA 1501

Lab Number: L1961789 **Report Date:** 03/25/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/31/19 06:00

Analyst: MM

Parameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	01-05 Batch:	WG1326239-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961789 **Report Date:** 03/25/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/31/19 06:00

Analyst: MM

Parameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS - We	stborough Lab	for sample(s):	01-05 Batch:	WG1326239-5	
Hexachlorobutadiene	ND	ug/	1 2.5	0.70	
Isopropylbenzene	ND	ug/	l 2.5	0.70	
p-Isopropyltoluene	ND	ug/	l 2.5	0.70	
Naphthalene	ND	ug/	l 2.5	0.70	
n-Propylbenzene	ND	ug/	l 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	l 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	l 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,4-Dioxane	ND	ug/	l 250	61.	
Freon-113	ND	ug/	l 2.5	0.70	
p-Diethylbenzene	ND	ug/	l 2.0	0.70	
p-Ethyltoluene	ND	ug/	l 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/	1 2.0	0.54	
Ethyl ether	ND	ug/	l 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/	l 2.5	0.70	

		A	Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	108		70-130		
Toluene-d8	102		70-130		
4-Bromofluorobenzene	118		70-130		
Dibromofluoromethane	101		70-130		

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961789

Report Date: 03/25/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough I	Lab Associated s	sample(s):	01-05 Batch: \	NG1326239-3	WG1326239-4		
Methylene chloride	98		99		70-130	1	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	96		98		63-132	2	20
1,2-Dichloropropane	110		110		70-130	0	20
Dibromochloromethane	90		88		63-130	2	20
1,1,2-Trichloroethane	100		99		70-130	1	20
Tetrachloroethene	95		94		70-130	1	20
Chlorobenzene	98		97		75-130	1	20
Trichlorofluoromethane	96		97		62-150	1	20
1,2-Dichloroethane	110		110		70-130	0	20
1,1,1-Trichloroethane	98		100		67-130	2	20
Bromodichloromethane	97		98		67-130	1	20
trans-1,3-Dichloropropene	100		100		70-130	0	20
cis-1,3-Dichloropropene	100		100		70-130	0	20
1,1-Dichloropropene	100		100		70-130	0	20
Bromoform	91		91		54-136	0	20
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20
Benzene	100		100		70-130	0	20
Toluene	100		100		70-130	0	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	120		120		64-130	0	20
Bromomethane	100		100		39-139	0	20

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961789

Report Date: 03/25/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Wes	tborough Lab Associated	sample(s):	01-05 Batch: \	WG1326239-3	WG1326239-4				
Vinyl chloride	110		110		55-140	0		20	
Chloroethane	110		110		55-138	0		20	
1,1-Dichloroethene	93		96		61-145	3		20	
trans-1,2-Dichloroethene	96		98		70-130	2		20	
Trichloroethene	97		99		70-130	2		20	
1,2-Dichlorobenzene	92		94		70-130	2		20	
1,3-Dichlorobenzene	94		95		70-130	1		20	
1,4-Dichlorobenzene	93		93		70-130	0		20	
Methyl tert butyl ether	100		100		63-130	0		20	
p/m-Xylene	95		90		70-130	5		20	
o-Xylene	90		90		70-130	0		20	
cis-1,2-Dichloroethene	96		97		70-130	1		20	
Dibromomethane	94		94		70-130	0		20	
1,2,3-Trichloropropane	110		110		64-130	0		20	
Acrylonitrile	120		120		70-130	0		20	
Styrene	90		90		70-130	0		20	
Dichlorodifluoromethane	79		80		36-147	1		20	
Acetone	130		130		58-148	0		20	
Carbon disulfide	100		100		51-130	0		20	
2-Butanone	120		120		63-138	0		20	
Vinyl acetate	140	Q	140	Q	70-130	0		20	
4-Methyl-2-pentanone	110		110		59-130	0		20	
2-Hexanone	110		110		57-130	0		20	

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number: L1961789

Report Date: 03/25/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Reco Qual Limi	-	RPD Qual Limits
/olatile Organics by GC/MS - W	estborough Lab Associated	sample(s): 0	1-05 Batch: W	G1326239-3 WG13	26239-4	
Bromochloromethane	90		90	70-13	0 0	20
2,2-Dichloropropane	100		100	63-13	3 0	20
1,2-Dibromoethane	93		92	70-13	0 1	20
1,3-Dichloropropane	100		100	70-13	0 0	20
1,1,1,2-Tetrachloroethane	92		92	64-13	0 0	20
Bromobenzene	94		94	70-13	0 0	20
n-Butylbenzene	110		110	53-13	6 0	20
sec-Butylbenzene	100		100	70-13	0 0	20
tert-Butylbenzene	97		98	70-13	0 1	20
o-Chlorotoluene	100		100	70-13	0 0	20
p-Chlorotoluene	99		100	70-13	0 1	20
1,2-Dibromo-3-chloropropane	89		89	41-14	4 0	20
Hexachlorobutadiene	100		100	63-13	0 0	20
Isopropylbenzene	100		100	70-13	0 0	20
p-Isopropyltoluene	98		100	70-13	0 2	20
Naphthalene	99		100	70-13	0 1	20
n-Propylbenzene	100		100	69-13	0 0	20
1,2,3-Trichlorobenzene	100		100	70-13	0 0	20
1,2,4-Trichlorobenzene	96		99	70-13	0 3	20
1,3,5-Trimethylbenzene	100		110	64-13	0 10	20
1,2,4-Trimethylbenzene	100		110	70-13	0 10	20
1,4-Dioxane	92		94	56-16	2 2	20
Freon-113	98		100	70-13	0 2	20

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961789

Report Date:

03/25/20

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-05 Batc	h: WG1326239-3	3 WG1326239-4				
p-Diethylbenzene	95		98		70-130	3		20	
p-Ethyltoluene	95		98		70-130	3		20	
1,2,4,5-Tetramethylbenzene	120		130		70-130	8		20	
Ethyl ether	100		100		59-134	0		20	
trans-1,4-Dichloro-2-butene	120		110		70-130	9		20	

_	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	106	106	70-130
Toluene-d8	106	103	70-130
4-Bromofluorobenzene	104	106	70-130
Dibromofluoromethane	97	99	70-130

METALS

12/27/19 12:55

Date Collected:

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961789-01

Client ID: MW4I Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	nsfield Lab										
Chromium, Total	0.022		mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 20:39	EPA 3005A	1,6010D	LC
Iron, Total	19.5		mg/l	0.050	0.009	1	12/31/19 11:1	7 01/02/20 20:39	EPA 3005A	1,6010D	LC
Manganese, Total	1.31		mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 20:39	EPA 3005A	1,6010D	LC

12/27/19 12:05

Date Collected:

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961789-02

Client ID: MWP1 Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Chromium, Total	0.129		mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:25	EPA 3005A	1,6010D	LC
Iron, Total	134		mg/l	0.050	0.009	1	12/31/19 11:1	7 01/02/20 21:25	EPA 3005A	1,6010D	LC
Manganese, Total	1.70		mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:25	EPA 3005A	1,6010D	LC

12/27/19 10:50

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961789-03 Date Collected:

Client ID: MWP2 Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Chromium, Total	0.002	J	mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:34	EPA 3005A	1,6010D	LC
Iron, Total	62.5		mg/l	0.050	0.009	1	12/31/19 11:1	7 01/02/20 21:34	EPA 3005A	1,6010D	LC
Manganese, Total	5.15		mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:34	EPA 3005A	1,6010D	LC

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

 Lab ID:
 L1961789-04
 Date Collected:
 12/27/19 09:35

 Client ID:
 MW3D
 Date Received:
 12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Chromium, Total	0.003	J	mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:38	EPA 3005A	1,6010D	LC
Iron, Total	4.10		mg/l	0.050	0.009	1	12/31/19 11:1	7 01/02/20 21:38	EPA 3005A	1,6010D	LC
Manganese, Total	0.135		mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:38	EPA 3005A	1,6010D	LC

12/27/19 08:40

Date Collected:

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

SAMPLE RESULTS

Lab ID: L1961789-05

Client ID: MW3S Date Received: 12/27/19
Sample Location: 115 WALL ST, VALHALLA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Chromium, Total	0.008	J	mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:42	EPA 3005A	1,6010D	LC
Iron, Total	172		mg/l	0.050	0.009	1	12/31/19 11:1	7 01/02/20 21:42	EPA 3005A	1,6010D	LC
Manganese, Total	12.6		mg/l	0.010	0.002	1	12/31/19 11:1	7 01/02/20 21:42	EPA 3005A	1,6010D	LC

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansf	field Lab for sample(s):	01-05 B	atch: W	G13260	95-1				
Chromium, Total	ND	mg/l	0.010	0.002	1	12/31/19 11:17	01/02/20 20:27	1,6010D	LC
Iron, Total	ND	mg/l	0.050	0.009	1	12/31/19 11:17	01/02/20 20:27	1,6010D	LC
Manganese, Total	ND	mg/l	0.010	0.002	1	12/31/19 11:17	01/02/20 20:27	1,6010D	LC

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961789

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01-05 Batc	ch: WG1326	095-2					
Chromium, Total	104		-		80-120	-		
Iron, Total	111		-		80-120	-		
Manganese, Total	98		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: VALHALLA

Project Number:

ALHALLA

VALHALLA 1501

Lab Number:

L1961789

Report Date:

<u>Parameter</u>	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-05	QC Bat	tch ID: WG132	6095-3	QC Sam	ple: L1961789-01	Client ID: MV	V4I		
Chromium, Total	0.022	0.2	0.229	104		-	-	75-125	-		20
Iron, Total	19.5	1	20.6	110		-	-	75-125	-		20
Manganese, Total	1.31	0.5	1.83	104		-	-	75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961789

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	5 QC Batch ID:	WG1326095-4 QC Sample:	L1961789-01	Client ID:	MW4I	
Chromium, Total	0.022	0.022	mg/l	1		20
Iron, Total	19.5	19.8	mg/l	2		20
Manganese, Total	1.31	1.34	mg/l	2		20

INORGANICS & MISCELLANEOUS

Project Name: VALHALLA Lab Number: L1961789 Project Number: VALHALLA 1501 Report Date:

03/25/20

SAMPLE RESULTS

Lab ID: Date Collected: L1961789-01 12/27/19 12:55

Client ID: MW4I Date Received: 12/27/19 Not Specified Sample Location: 115 WALL ST, VALHALLA, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Chloride	68.		mg/l	1.0	0.20	1	-	12/30/19 21:26	121,4500CL-E	TL
Total Organic Carbon	6.8		mg/l	0.50	0.11	1	-	01/02/20 09:16	1,9060A	DW

Project Name: VALHALLA Lab Number: L1961789 Project Number: VALHALLA 1501 Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: Date Collected: L1961789-02 12/27/19 12:05

Client ID: MWP1 Date Received: 12/27/19 Not Specified Sample Location: 115 WALL ST, VALHALLA, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Chloride	71.		mg/l	1.0	0.20	1	-	12/30/19 21:28	121,4500CL-E	TL
Total Organic Carbon	9.8		mg/l	0.50	0.11	1	-	01/02/20 09:53	1,9060A	DW

Project Name: VALHALLA Lab Number: L1961789 Project Number: VALHALLA 1501

Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: Date Collected: L1961789-03 12/27/19 10:50

Client ID: MWP2 Date Received: 12/27/19 Not Specified Sample Location: 115 WALL ST, VALHALLA, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal)								
Chloride	240		mg/l	10	2.0	10	-	12/30/19 20:18	121,4500CL-E	TL
Total Organic Carbon	2.9		mg/l	0.50	0.11	1	-	01/02/20 10:30	1,9060A	DW

Project Name: VALHALLA Lab Number:

L1961789

Project Number: VALHALLA 1501

Report Date:

03/25/20

SAMPLE RESULTS

Lab ID: L1961789-04 Date Collected:

12/27/19 09:35

Client ID:

MW3D

Date Received:

12/27/19

Sample Location: 115 WALL ST, VALHALLA, NY

Not Specified Field Prep:

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Chloride	100		mg/l	10	2.0	10	-	12/30/19 20:20	121,4500CL-E	TL
Total Organic Carbon	1.1		mg/l	0.50	0.11	1	-	01/02/20 11:01	1,9060A	DW

Project Name: VALHALLA Lab Number: L1961789 Project Number: VALHALLA 1501

Report Date: 03/25/20

SAMPLE RESULTS

Lab ID: Date Collected: L1961789-05 12/27/19 08:40

Client ID: MW3S Date Received: 12/27/19 Not Specified Sample Location: 115 WALL ST, VALHALLA, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Chloride	1700		mg/l	100	20.	100	-	12/30/19 21:30	121,4500CL-E	TL
Total Organic Carbon	18		mg/l	5.0	1.1	10	-	01/02/20 11:36	1,9060A	DW

Project Name: VALHALLA Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b for sam	ple(s): 01	-05 Ba	tch: WO	G1325855-1				
Chloride	0.56	J	mg/l	1.0	0.20	1	-	12/30/19 19:45	121,4500CL-E	TL
General Chemistry - W	estborough La	b for sam	ple(s): 01	-05 Ba	tch: WO	G1326306-1				
Total Organic Carbon	ND		mg/l	0.50	0.11	1	-	01/02/20 08:13	1,9060A	DW

Lab Control Sample Analysis Batch Quality Control

Project Name: VALHALLA

Project Number: VALHALLA 1501

Lab Number:

L1961789

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG1325855-2				
Chloride	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG1326306-2				
Total Organic Carbon	100	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: VALHALLA

Project Number:

VALHALLA 1501

Lab Number:

L1961789

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limit	•	RPD Qual Limits
General Chemistry - Westbo	orough Lab Assoc	iated samp	le(s): 01-05	QC Batch II	D: WG1325855-4	QC Sample: I	L1961710-01	Client ID:	MS Sample
Chloride	72.	20	84	60	-	-	58-140) -	7
General Chemistry - Westbo	orough Lab Assoc	iated samp	le(s): 01-05	QC Batch II	D: WG1326306-4	QC Sample: I	L1961789-04	Client ID:	MW3D
Total Organic Carbon	1.1	4	5.3	105	-	-	80-120) -	20

Lab Duplicate Analysis Batch Quality Control

Project Name: VALHALLA Batch Quality C
Project Number: VALHALLA 1501

Lab Number:

L1961789

Report Date:

Parameter	Native Sam	ple D	ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG1325855-3	QC Sample:	L1961710-01	Client ID:	DUP Sample
Chloride	72.		73	mg/l	1		7
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG1326306-3	QC Sample:	L1961789-03	Client ID:	MWP2
Total Organic Carbon	2.9		3.0	mg/l	3		20

Serial_No:03252013:11 *Lab Number:* L1961789

Project Name: VALHALLA

Project Number: VALHALLA 1501

Report Date: 03/25/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L1961789-01A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-01B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-01C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-01D	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-01E	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-01F	Plastic 120ml unpreserved	Α	7	7	2.2	Υ	Absent		CL-4500(28)
L1961789-01G	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		CR-TI(180),MN-TI(180),FE-TI(180)
L1961789-02A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-02B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-02C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-02D	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-02E	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-02F	Plastic 120ml unpreserved	Α	7	7	2.2	Υ	Absent		CL-4500(28)
L1961789-02G	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		CR-TI(180),MN-TI(180),FE-TI(180)
L1961789-03A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-03B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-03C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-03D	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-03E	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-03F	Plastic 120ml unpreserved	Α	7	7	2.2	Υ	Absent		CL-4500(28)
L1961789-03G	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1961789-04A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-04B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)

Lab Number: L1961789

Report Date: 03/25/20

Project Name: VALHALLA

Project Number: VALHALLA 1501

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L1961789-04C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-04D	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-04E	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-04F	Plastic 120ml unpreserved	Α	7	7	2.2	Υ	Absent		CL-4500(28)
L1961789-04G	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)
L1961789-05A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-05B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-05C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L1961789-05D	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-05E	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L1961789-05F	Plastic 120ml unpreserved	Α	7	7	2.2	Υ	Absent		CL-4500(28)
L1961789-05G	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		CR-TI(180),FE-TI(180),MN-TI(180)

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1961789Project Number:VALHALLA 1501Report Date:03/25/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- $\boldsymbol{RE} \quad \ \, \text{-Analytical results} \text{ are from sample re-extraction}.$
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: VALHALLA 1501 Lab Number: L1961789

Project Number: VALHALLA 1501 Report Date: 03/25/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 16

Published Date: 2/17/2020 10:46:05 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: O	lay oper Ave, Suite 10		Page		Delive	Date I in L erable ASP-/ EQuis	ab	12	_	7/1 SP-B Quis (4	9 File)	ALPHA Job	17 89 ation	TO STATE OF THE PARTY OF THE PA
Client Information		Project # UCUN		501		ı		Other		92	1022	7.A	113			
Client: Poex		(Use Project name as Pr	oject#)				Regu	latory	Requi	rement		VIII		Disposal Site	Information	
Bonerusci	ulbur	Project Manager: Jo ALPHAQuote #:	e GA	lin				NY TO	GS Standar	ds		Part 37 CP-51	5	Please identify i applicable dispo	below location of osal facilities.	
Phone: (031-50	2 1222				1 SOAT -	SIN SIN	님		stricted					Disposal Facility	v-	
Fax:		Turn-Around Time Standard		Due Date:				NY Un	restrict	ed Use	_	HOL:		□ и	NY	
		Rush (only if pre approved) []	# of Days:			_=			ischarg	0			Other:		HC al
These samples have be	The second secon						ANA	LYSIS					_	Sample Filtra	ation	,
Other project specific Please specify Metals		ents:					LVOC	etal3	lovides	200				☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Spec	9	tal Bot.
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Date	ection Time	Sample Matrix	Sampler's Initials	5	Ž	ક	1			4.0	Sample Specif	ic Comments	e
6/789-01	MW 4T		12/27/19	1255	w	JE	Y	×	×	Y						П
707	MW PI		1111	1205	IN	JE	×	×	بر	×		\neg				
-07	MWPa			1050	W	JE-	×	×	×	4		\neg				П
- 04	MW3D			935	IN	18	¥	~	~	×		\top	Т	- 2		П
- 05	MW33		4	840	w	IF	X	X	V	×						П
							_									П
												\neg				П
																П
																Г
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type								and comple not be logg turnaround start until a	time clock will any ambiguities	can not are
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle -Sept-2013)	Relinquished	AAC	12/27/19 12/27/19 12/27/19	1320	Rox	Beceiv	ved By	5.4	AZ	2/2/	27/9 27/9 24/	132	THIS COC HAS REAL TO BE BO	BY EXECUTING THE CLIENT D AND AGREES UND BY ALPH CONDITIONS. (se side.)	S IA'S

ANALYTICAL REPORT

Lab Number: L1960300

Client: APEX Companies, LLC

120-D Wilbur Place Bohemia, NY 11716

ATTN: Joe Gavin

Phone: (631) 567-1777

Project Name: VALHALLA
Project Number: VALHALLA
Report Date: 01/22/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: VALHALLA
Project Number: VALHALLA

 Lab Number:
 L1960300

 Report Date:
 01/22/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1960300-01	FIELD BLANK	FIELD BLANK	115 WALL STREET, NY	12/16/19 10:00	12/16/19
L1960300-02	MW-3I	WATER	115 WALL STREET, NY	12/16/19 11:30	12/16/19
L1960300-03	MW-4S	WATER	115 WALL STREET, NY	12/16/19 12:50	12/16/19
L1960300-04	MW-1S	WATER	115 WALL STREET, NY	12/16/19 14:10	12/16/19
L1960300-05	MW-1I	WATER	115 WALL STREET, NY	12/16/19 15:00	12/16/19
L1960300-06	DUP-121619	WATER	115 WALL STREET, NY	12/16/19 14:20	12/16/19

Project Name:VALHALLALab Number:L1960300Project Number:VALHALLAReport Date:01/22/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions

Project Name:VALHALLALab Number:L1960300Project Number:VALHALLAReport Date:01/22/20

Case Narrative (continued)

Report Submission

January 22, 2020: Final report.

December 27, 2019: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by Isotope Dilution

L1960300-03, -05, and -06: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

WG1323894-6 and WG1323894-7: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juxon & Med Susan O' Neil

Title: Technical Director/Representative Date: 01/22/20

ORGANICS

SEMIVOLATILES

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-01 Date Collected: 12/16/19 10:00

Client ID: FIELD BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Field Blank Extraction Method: EPA 3510C
Analytical Method: 1.8270D-SIM Extraction Date: 12/20/19 05:15

Analytical Method: 1,8270D-SIM Extraction Date: 12/20/19 Analytical Date: 12/23/19 14:00

Analyst: PS

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	nsfield Lab				
1,4-Dioxane	ND	ng/l	150	33.9	1
Surrogate		% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8		45			15-110

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-01 Date Collected: 12/16/19 10:00

Client ID: FIELD BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Campio Ecoation.

Sample Depth:

Matrix: Field Blank Extraction Method: ALPHA 23528
Analytical Method: 134,LCMSMS-ID Extraction Date: 12/23/19 10:30

Analytical Date: 01/16/20 15:08

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.75	0.358	1			
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.75	0.347	1			
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.75	0.209	1			
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.75	0.288	1			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.75	0.198	1			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.75	0.330	1			
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.75	0.207	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.75	1.17	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.75	0.604	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.75	0.274	1			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.75	0.442	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.75	0.267	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.75	1.06	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	0.618	J	ng/l	1.75	0.568	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.75	0.228	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.75	0.860	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.75	0.509	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	0.716	J	ng/l	1.75	0.705	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.75	0.326	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.75	0.287	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.75	0.218	1			
PFOA/PFOS, Total	ND		ng/l	1.75	0.207	1			

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-01 Date Collected: 12/16/19 10:00

Client ID: FIELD BLANK Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	99		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	108		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	94		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	95		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	97		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	100		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	105		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	104		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	99		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	112		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	75		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	36		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	87		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	99		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	90		33-143	

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-02 Date Collected: 12/16/19 11:30

Client ID: MW-3I Date Received: 12/16/19

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/20/19 05:15
Analytical Date: 12/23/19 14:28

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	171.		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			44			15-110

Project Name: Lab Number: VALHALLA L1960300

Project Number: Report Date: VALHALLA 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-02 Date Collected: 12/16/19 11:30

Client ID: Date Received: MW-3I 12/16/19

Sample Location: Field Prep: 115 WALL STREET, NY Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 12/23/19 10:30 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: JW

01/16/20 17:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	23.8		ng/l	10.0	2.04	1
Perfluoropentanoic Acid (PFPeA)	6.30	J	ng/l	10.0	1.98	1
Perfluorobutanesulfonic Acid (PFBS)	3.18	J	ng/l	10.0	1.19	1
Perfluorohexanoic Acid (PFHxA)	5.06	J	ng/l	10.0	1.64	1
Perfluoroheptanoic Acid (PFHpA)	2.68	J	ng/l	10.0	1.13	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	10.0	1.88	1
Perfluorooctanoic Acid (PFOA)	5.60	J	ng/l	10.0	1.18	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	10.0	6.66	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	10.0	3.44	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	10.0	1.56	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	10.0	2.52	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	10.0	1.52	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	10.0	6.06	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	5.30	J	ng/l	10.0	3.24	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	10.0	1.30	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	10.0	4.90	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	10.0	2.90	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	4.98	J	ng/l	10.0	4.02	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	10.0	1.86	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	10.0	1.64	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	10.0	1.24	1
PFOA/PFOS, Total	5.60	J	ng/l	10.0	1.18	1

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-02 Date Collected: 12/16/19 11:30

Client ID: MW-3I Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	93	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	112	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	101	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	92	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	105	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	122	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	102	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	106	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	94	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	118	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	84	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	105	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	18	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	94	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	91	33-143

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-03 Date Collected: 12/16/19 12:50

Client ID: MW-4S Date Received: 12/16/19

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/20/19 05:15
Analytical Date: 12/23/19 14:55

Analyst: PS

Parameter	Result	Qualifier L	Inits	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	ansfield Lab					
1,4-Dioxane	214.	ı	ng/l	150	33.9	1
Surrogate		%	Recovery	Qualifier		eptance iteria
1.4-Dioxane-d8			48		1	15-110

Project Name: Lab Number: VALHALLA L1960300

Project Number: Report Date: VALHALLA 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-03 Date Collected: 12/16/19 12:50

Client ID: Date Received: MW-4S 12/16/19 Field Prep: Not Specified

Sample Location: 115 WALL STREET, NY

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 12/23/19 10:30 Analytical Method: 134,LCMSMS-ID Analytical Date: 01/16/20 18:10

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	6.36		ng/l	1.77	0.362	1
Perfluoropentanoic Acid (PFPeA)	5.15		ng/l	1.77	0.351	1
Perfluorobutanesulfonic Acid (PFBS)	1.58	J	ng/l	1.77	0.211	1
Perfluorohexanoic Acid (PFHxA)	3.58		ng/l	1.77	0.291	1
Perfluoroheptanoic Acid (PFHpA)	2.15		ng/l	1.77	0.200	1
Perfluorohexanesulfonic Acid (PFHxS)	0.851	J	ng/l	1.77	0.333	1
Perfluorooctanoic Acid (PFOA)	4.27		ng/l	1.77	0.209	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.77	1.18	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.77	0.610	1
Perfluorononanoic Acid (PFNA)	0.582	J	ng/l	1.77	0.276	1
Perfluorooctanesulfonic Acid (PFOS)	2.72		ng/l	1.77	0.447	1
Perfluorodecanoic Acid (PFDA)	0.518	J	ng/l	1.77	0.270	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.77	1.07	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.77	0.574	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.77	0.230	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.77	0.869	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.77	0.514	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.77	0.713	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.77	0.330	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.77	0.290	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.77	0.220	1
PFOA/PFOS, Total	6.99		ng/l	1.77	0.209	1

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-03 Date Collected: 12/16/19 12:50

Client ID: MW-4S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	88		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	90		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	90		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	70		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	103		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	84		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	244		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	93		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	84		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	194	Q	7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	77		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	95		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	30		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	72		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	82		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	70		33-143	

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-04 Date Collected: 12/16/19 14:10

Client ID: MW-1S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/20/19 05:15
Analytical Date: 12/23/19 16:19

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfie	ld Lab					
1,4-Dioxane	602.		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			48			15-110

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-04 Date Collected: 12/16/19 14:10

Client ID: MW-1S Date Received: 12/16/19
Sample Location: 115 WALL STREET NV Field Pres: Not Specific

Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 12/23/19 10:30
Analytical Date: 01/16/20 19:00

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	ion - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	15.9		ng/l	2.13	0.434	1
Perfluoropentanoic Acid (PFPeA)	11.7		ng/l	2.13	0.421	1
Perfluorobutanesulfonic Acid (PFBS)	4.25		ng/l	2.13	0.253	1
Perfluorohexanoic Acid (PFHxA)	8.75		ng/l	2.13	0.349	1
Perfluoroheptanoic Acid (PFHpA)	5.71		ng/l	2.13	0.240	1
Perfluorohexanesulfonic Acid (PFHxS)	4.60		ng/l	2.13	0.400	1
Perfluorooctanoic Acid (PFOA)	16.3		ng/l	2.13	0.251	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.13	1.42	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.13	0.732	1
Perfluorononanoic Acid (PFNA)	1.79	J	ng/l	2.13	0.332	1
Perfluorooctanesulfonic Acid (PFOS)	8.03		ng/l	2.13	0.536	1
Perfluorodecanoic Acid (PFDA)	0.485	J	ng/l	2.13	0.323	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.13	1.29	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.13	0.689	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.13	0.276	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.13	1.04	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.13	0.617	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	0.962	J	ng/l	2.13	0.855	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.13	0.396	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.13	0.348	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.13	0.264	1
PFOA/PFOS, Total	24.3		ng/l	2.13	0.251	1

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-04 Date Collected: 12/16/19 14:10

Client ID: MW-1S Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	101		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	91		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	89		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	101		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	96		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	244		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	99		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	82		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	148		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	47		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	72		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	30		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	53		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	58		33-143	

Lab Number: **Project Name:** VALHALLA L1960300

Project Number: Report Date: VALHALLA 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-05 Date Collected: 12/16/19 15:00

Client ID: Date Received: MW-1I 12/16/19

Sample Location: Field Prep: 115 WALL STREET, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 12/20/19 05:15 Analytical Method: 1,8270D-SIM Analytical Date: 12/23/19 16:49

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	ansfield Lab					
1,4-Dioxane	697.		ng/l	150	33.9	1
Surrogate		Q.	% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8			43		,	15-110

Project Name: Lab Number: VALHALLA L1960300

Project Number: Report Date: VALHALLA 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-05 Date Collected: 12/16/19 15:00

Client ID: Date Received: MW-1I 12/16/19 Sample Location: Field Prep: 115 WALL STREET, NY Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 12/23/19 10:30 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: JW

01/16/20 19:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	16.9		ng/l	1.86	0.380	1
Perfluoropentanoic Acid (PFPeA)	11.4		ng/l	1.86	0.369	1
Perfluorobutanesulfonic Acid (PFBS)	2.88		ng/l	1.86	0.222	1
Perfluorohexanoic Acid (PFHxA)	7.65		ng/l	1.86	0.306	1
Perfluoroheptanoic Acid (PFHpA)	4.40		ng/l	1.86	0.210	1
Perfluorohexanesulfonic Acid (PFHxS)	1.22	J	ng/l	1.86	0.351	1
Perfluorooctanoic Acid (PFOA)	8.45		ng/l	1.86	0.220	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.86	1.24	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.86	0.642	1
Perfluorononanoic Acid (PFNA)	0.332	J	ng/l	1.86	0.291	1
Perfluorooctanesulfonic Acid (PFOS)	1.58	J	ng/l	1.86	0.470	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86	0.284	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.86	1.13	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.86	0.604	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86	0.242	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.86	0.914	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.86	0.541	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86	0.750	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86	0.347	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86	0.305	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86	0.231	1
PFOA/PFOS, Total	10.0	J	ng/l	1.86	0.220	1

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-05 Date Collected: 12/16/19 15:00

Client ID: MW-1I Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

rrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
erfluoro[13C4]Butanoic Acid (MPFBA)	98		2-156
erfluoro[13C5]Pentanoic Acid (M5PFPEA)	112		16-173
erfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89		31-159
erfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	68		21-145
erfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	85		30-139
erfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94		47-153
erfluoro[13C8]Octanoic Acid (M8PFOA)	93		36-149
I,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	308	Q	1-244
erfluoro[13C9]Nonanoic Acid (M9PFNA)	101		34-146
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89		42-146
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	85		38-144
I,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	207	Q	7-170
Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	74		1-181
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85		40-144
erfluoro[13C8]Octanesulfonamide (M8FOSA)	35		1-87
Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	75		23-146
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	73		24-161
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	70		33-143

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-06 Date Collected: 12/16/19 14:20

Client ID: DUP-121619 Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/20/19 05:15
Analytical Date: 12/23/19 17:19

Analyst: PS

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
1,4 Dioxane by 8270D-SIM - Ma	nsfield Lab					
1,4-Dioxane	446.	ng/l	150	33.9	1	
Surrogate		% Recover	y Qualific		eptance riteria	
1.4-Dioxane-d8		48			15-110	

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-06 Date Collected: 12/16/19 14:20

Client ID: DUP-121619 Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 12/23/19 10:30

Analyst: JW

01/16/20 19:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor						
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab												
Perfluorobutanoic Acid (PFBA)	14.6		ng/l	1.90	0.388	1						
Perfluoropentanoic Acid (PFPeA)	11.9		ng/l	1.90	0.376	1						
Perfluorobutanesulfonic Acid (PFBS)	3.88		ng/l	1.90	0.226	1						
Perfluorohexanoic Acid (PFHxA)	8.94		ng/l	1.90	0.312	1						
Perfluoroheptanoic Acid (PFHpA)	5.56		ng/l	1.90	0.214	1						
Perfluorohexanesulfonic Acid (PFHxS)	4.03		ng/l	1.90	0.357	1						
Perfluorooctanoic Acid (PFOA)	15.4		ng/l	1.90	0.224	1						
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.90	1.27	1						
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.90	0.654	1						
Perfluorononanoic Acid (PFNA)	1.75	J	ng/l	1.90	0.296	1						
Perfluorooctanesulfonic Acid (PFOS)	7.80		ng/l	1.90	0.479	1						
Perfluorodecanoic Acid (PFDA)	0.342	J	ng/l	1.90	0.289	1						
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.90	1.15	1						
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.616	1						
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.247	1						
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.90	0.932	1						
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.90	0.551	1						
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.764	1						
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.354	1						
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.311	1						
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.236	1						
PFOA/PFOS, Total	23.2		ng/l	1.90	0.224	1						

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

SAMPLE RESULTS

Lab ID: L1960300-06 Date Collected: 12/16/19 14:20

Client ID: DUP-121619 Date Received: 12/16/19
Sample Location: 115 WALL STREET, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

rrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
erfluoro[13C4]Butanoic Acid (MPFBA)	100		2-156
erfluoro[13C5]Pentanoic Acid (M5PFPEA)	98		16-173
erfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88		31-159
erfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	76		21-145
erfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	87		30-139
erfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	101		47-153
erfluoro[13C8]Octanoic Acid (M8PFOA)	89		36-149
I,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	251	Q	1-244
erfluoro[13C9]Nonanoic Acid (M9PFNA)	94		34-146
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89		42-146
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	82		38-144
I,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	154		7-170
Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	66		1-181
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85		40-144
erfluoro[13C8]Octanesulfonamide (M8FOSA)	35		1-87
Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	65		23-146
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	72		24-161
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	64		33-143

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 12/23/19 08:21 Extraction Date: 12/20/19 05:15

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
1,4 Dioxane by 8270D-SIM - Mansf	ield Lab fo	r sample(s):	01-06	Batch: WG	1323073-1	
1,4-Dioxane	ND		ng/l	150	33.9	

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,4-Dioxane-d8	25	15-110

Project Name: VALHALLA

VALHALLA

Lab Number:

L1960300

Report Date: 01/22/20

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 01/16/20 14:18

Project Number:

Analyst: JW

Extraction Method: ALPHA 23528 12/23/19 10:30 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope VG1323894-1	Dilution -	Mansfield	Lab for sa	ample(s): 0	1-06 Batch:	
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.408	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.238	
Perfluorohexanoic Acid (PFHxA)	0.384	J	ng/l	2.00	0.328	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.376	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.688	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.504	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00	1.21	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00	0.648	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.980	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic A (NEtFOSAA)	cid ND		ng/l	2.00	0.804	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248	
PFOA/PFOS, Total	ND		ng/l	2.00	0.236	

Project Name: VALHALLA Lab Number: L1960300

Project Number: VALHALLA Report Date: 01/22/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 01/16/20 14:18 Extraction Date: 12/23/19 10:30

Analyst: JW

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-06 Batch: WG1323894-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	102	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	112	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	97	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	96	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	98	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	98	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	96	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	101	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	92	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	111	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	74	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	42	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	79	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	95	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	88	33-143

Lab Control Sample Analysis Batch Quality Control

Project Name: VALHALLA **Project Number:** VALHALLA

Lab Number:

Report Date:

L1960300 01/22/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated samp	le(s): 01-06	Batch: WG13	323073-2	WG1323073-3				
1,4-Dioxane	108		108		40-140	0		30	

Surrogate	LCS %Recovery Qua		Acceptance Qual Criteria
1,4-Dioxane-d8	25	24	15-110

Lab Control Sample Analysis Batch Quality Control

Project Name: VALHALLA
Project Number: VALHALLA

Lab Number: L1960300

Report Date: 01/22/20

rameter	LCS %Recovery	LCSI Qual %Recov		%Recovery Limits	RPD	Qual	RPD Limits
rfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	01-06 Batch:	WG1323894-2	WG1323894-3		
Perfluorobutanoic Acid (PFBA)	101	107		67-148	6		30
Perfluoropentanoic Acid (PFPeA)	103	109		63-161	6		30
Perfluorobutanesulfonic Acid (PFBS)	96	102		65-157	6		30
Perfluorohexanoic Acid (PFHxA)	101	109		69-168	8		30
Perfluoroheptanoic Acid (PFHpA)	100	110		58-159	10		30
Perfluorohexanesulfonic Acid (PFHxS)	104	112		69-177	7		30
Perfluorooctanoic Acid (PFOA)	104	111		63-159	7		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	113	127		49-187	12		30
Perfluoroheptanesulfonic Acid (PFHpS)	108	118		61-179	9		30
Perfluorononanoic Acid (PFNA)	102	105		68-171	3		30
Perfluorooctanesulfonic Acid (PFOS)	102	105		52-151	3		30
Perfluorodecanoic Acid (PFDA)	106	111		63-171	5		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	123	109		56-173	12		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	119	132		60-166	10		30
Perfluoroundecanoic Acid (PFUnA)	102	112		60-153	9		30
Perfluorodecanesulfonic Acid (PFDS)	92	111		38-156	19		30
Perfluorooctanesulfonamide (FOSA)	96	101		46-170	5		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	112	124		45-170	10		30
Perfluorododecanoic Acid (PFDoA)	103	111		67-153	7		30
Perfluorotridecanoic Acid (PFTrDA)	110	120		48-158	9		30
Perfluorotetradecanoic Acid (PFTA)	104	110		59-182	6		30

Lab Control Sample Analysis Batch Quality Control

Project Name: VALHALLA

Lab Number:

L1960300

Project Number: VALHALLA

Report Date:

01/22/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-06 Batch: WG1323894-2 WG1323894-3

Surrogate (Extracted Internal Standard)	LCS %Recovery	LCSD Qual %Recovery	Qual	Acceptance Criteria
Surrogate (Extracted Internal Standard)	70Necovery			
Perfluoro[13C4]Butanoic Acid (MPFBA)	99	99		2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	108	107		16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	91	92		31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	93	91		21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	95	93		30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	91	91		47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	94	93		36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	103	104		1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	96	96		34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91	89		42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86	86		38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	105	113		7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65	66		1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94	92		40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	38	36		1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	76	73		23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	90	89		24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	89	90		33-143

Matrix Spike Analysis Batch Quality Control

Project Name:VALHALLAProject Number:VALHALLA

Lab Number:

L1960300

Report Date:

01/22/20

Parameter	Native Sample	MS Added	MS Found		MS covery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
1,4 Dioxane by 8270D-SIM - M 4S	lansfield Lab	Associated	sample(s): 01	1-06	QC Batcl	h ID: WGʻ	1323073-4	WG1323073-	5 QC	Sample: L1	960300-	03 CI	ient ID: MW-
1,4-Dioxane	214	4630	5160		107		5090	105		40-140	1		30

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,4-Dioxane-d8	45	43	15-110	

Matrix Spike Analysis Batch Quality Control

Project Name:VALHALLAProject Number:VALHALLA

Lab Number: L1960300

Report Date: 01/22/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	r rpd	RPD Qual Limits
Perfluorinated Alkyl Acids by Is Client ID: MW-4S	sotope Dilution	ı - Mansfield	d Lab Assoc	iated sample(s):	01-06	QC Batch	ID: WG132389	4-6 WG1323894-	7 QC S	sample: L1960300-03
Perfluorobutanoic Acid (PFBA)	6.36	35	44.3	109		45.0	108	67-148	2	30
Perfluoropentanoic Acid (PFPeA)	5.15	35	44.9	114		45.5	113	63-161	1	30
Perfluorobutanesulfonic Acid (PFBS)	1.58J	31	34.1	110		36.4	115	65-157	7	30
Perfluorohexanoic Acid (PFHxA)	3.58	35	42.2	110		42.5	109	69-168	1	30
Perfluoroheptanoic Acid (PFHpA)	2.15	35	41.2	112		41.4	110	58-159	0	30
Perfluorohexanesulfonic Acid (PFHxS)	0.851J	31.9	33.3	104		35.7	110	69-177	7	30
Perfluorooctanoic Acid (PFOA)	4.27	35	44.9	116		45.2	115	63-159	1	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	33.2	42.4	128		42.0	124	49-187	1	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	33.2	37.3	112		35.7	105	61-179	4	30
Perfluorononanoic Acid (PFNA)	0.582J	35	40.1	115		41.4	116	68-171	3	30
Perfluorooctanesulfonic Acid (PFOS)	2.72	32.4	33.8	96		33.5	93	52-151	1	30
Perfluorodecanoic Acid (PFDA)	0.518J	35	38.1	109		41.1	115	63-171	8	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	33.6	43.0	128		46.2	135	56-173	7	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	35	43.4	124		40.5	113	60-166	7	30
Perfluoroundecanoic Acid (PFUnA)	ND	35	37.1	106		39.0	109	60-153	5	30
Perfluorodecanesulfonic Acid (PFDS)	ND	33.8	36.5	108		36.9	107	38-156	1	30
Perfluorooctanesulfonamide (FOSA)	ND	35	38.8	111		43.0	120	46-170	10	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	35	42.0	120		37.5	105	45-170	11	30
Perfluorododecanoic Acid (PFDoA)	ND	35	37.7	108		38.2	107	67-153	1	30
Perfluorotridecanoic Acid (PFTrDA)	ND	35	39.4	113		40.6	114	48-158	3	30
Perfluorotetradecanoic Acid (PFTA)	ND	35	37.2	106		40.9	115	59-182	9	30

Matrix Spike Analysis Batch Quality Control

Project Name: VALHALLA Project Number: VALHALLA Lab Number:

L1960300

Report Date:

01/22/20

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG1323894-6 WG1323894-7 QC Sample: L1960300-03 Client ID: MW-4S

	MS	8	MS	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	179	Q	179	Q	7-170	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	233		231		1-244	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	66		76		23-146	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65		70		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	88		85		40-144	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	82		79		38-144	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	68		71		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	77		81		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102		96		47-153	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	79		78		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	70		63		33-143	
Perfluoro[13C4]Butanoic Acid (MPFBA)	81		88		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	84		92		16-173	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	24		19		1-87	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98		96		42-146	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	80		87		36-149	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	89		94		34-146	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89		84		31-159	

Project Name:VALHALLALab Number:L1960300Project Number:VALHALLAReport Date:01/22/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	er Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1960300-01A	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-01B	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-01C	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-02A	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-02B	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-02C	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-02D	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-03A	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-03A1	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-03A2	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-03B	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-03B1	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-03B2	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-03C	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-03C1	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-03C2	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-03D	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-03D1	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-03D2	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-04A	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-04B	Amber 250ml unpreserved	Α	7	7	4.2	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-04C	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)

Lab Number: L1960300

Report Date: 01/22/20

Project Name:VALHALLAProject Number:VALHALLA

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1960300-04D	Plastic 250ml unpreserved	Α	NA		4.2	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-05A	Amber 250ml unpreserved	В	7	7	4.0	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-05B	Amber 250ml unpreserved	В	7	7	4.0	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-05C	Plastic 250ml unpreserved	В	NA		4.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-05D	Plastic 250ml unpreserved	В	NA		4.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-06A	Amber 250ml unpreserved	В	7	7	4.0	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-06B	Amber 250ml unpreserved	В	7	7	4.0	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L1960300-06C	Plastic 250ml unpreserved	В	NA		4.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1960300-06D	Plastic 250ml unpreserved	В	NA		4.0	Υ	Absent		A2-NY-537-ISOTOPE(14)

Serial_No:01222011:29 **Lab Number:** L1960

Project Name:VALHALLALab Number:L1960300Project Number:VALHALLAReport Date:01/22/20

PFAS PARAMETER SUMMARY

Perfluoroctadecanoic Acid PFODA 1617-11-6 Perfluorothexadecanoic Acid PFHAD 67905-19-5 Perfluorotridecanoic Acid PFTDA 376-06-7 Perfluorotridecanoic Acid PFTDA 278-29-48 Perfluorotridecanoic Acid PFDOA 307-55-1 Perfluoroundecanoic Acid PFDA 308-94-8 Perfluoronanoic Acid PFDA 335-76-2 Perfluorochanoic Acid PFDA 375-95-1 Perfluorochanoic Acid PFDA 375-95-1 Perfluorochanoic Acid PFDA 375-95-1 Perfluorochanoic Acid PFDA 375-95-1 Perfluorochanoic Acid PFPDA 375-95-1 Perfluorochabanoic Acid PFPBA 375-95-1 Perfluorobotanoic Acid PFPBA 375-92-4 Perfluorobotanoic Acid PFPBA 375-92-4 Perfluorobotanoic Acid PFDA 375-92-8 Perfluorobotanosulfonic Acid PFDS 335-77-3 Perfluorobotanosulfonic Acid PFDS 375-92-8 Perfluorobotanosulfonic Acid PFPBS	Parameter	Acronym	CAS Number
Perfluorohexadecanoic Acid PFHXDA 67905-19-5 Perfluorotridecanoic Acid PFTA 376-06-7 Perfluorotridecanoic Acid PFTDA 77629-94-8 Perfluorododecanoic Acid PFDA 307-55-1 Perfluorododecanoic Acid PFDA 335-76-2 Perfluorodecanoic Acid PFDA 335-76-2 Perfluoronecanoic Acid PFDA 335-76-2 Perfluorohexanoic Acid PFDA 375-86-1 Perfluorohexanoic Acid PFDA 375-87-9 Perfluorohexanoic Acid PFHAA 375-88-9 Perfluorohexanoic Acid PFHAA 307-24-4 Perfluorobecanoic Acid PFPAA 276-90-3 Perfluorododecanesulfonic Acid PFBA 276-90-3 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDODS 79780-39-5 Perfluorododecanesulfonic Acid PFDOS 335-77-3 Perfluorododecanesulfonic Acid PFDS 335-77-3 Perfluorochesulfonic Acid PFDS 335-77-3 Perfluorochesulfonic Acid PFDS 375-92-8 Perfluorochesulfonic Ac	PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorohexadecanoic Acid PFHXDA 67905-19-5 Perfluorotridecanoic Acid PFTA 378-08-7 Perfluorotridecanoic Acid PFDA 307-56-1 Perfluorotridecanoic Acid PFDA 307-56-1 Perfluorodecanoic Acid PFDA 335-76-2 Perfluorondecanoic Acid PFDA 335-76-2 Perfluorondecanoic Acid PFDA 335-76-2 Perfluorondecanoic Acid PFDA 335-76-2 Perfluorohexanoic Acid PFDA 335-67-1 Perfluorohexanoic Acid PFHAA 375-88-9 Perfluorohexanoic Acid PFHAA 307-24-4 Perfluorodecanoic Acid PFPAA 2706-90-3 Perfluorodecanoic Acid PFPAA 2706-90-3 Perfluorodecanoic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDOS 395-73-3 Perfluorododecanesulfonic Acid PFDOS 395-73-3 Perfluorododecanesulfonic Acid PFDOS 335-77-3 Perfluorododecanesulfonic Acid PFNS 335-73-5 Perfluorocotracesulfonic Acid	Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorotoleradecanoic Acid PFTA 376-06-7 Perfluorotoldecanoic Acid PFTDA 72629-94-8 Perfluorotoldecanoic Acid PPDAA 307-85-1 Perfluoroundecanoic Acid PFDA 335-76-2 Perfluorononanoic Acid PFDA 335-96-1 Perfluorononanoic Acid PFNA 375-98-1 Perfluorobeptanoic Acid PFNA 375-86-9 Perfluorobeptanoic Acid PFHAA 375-86-9 Perfluorobeptanoic Acid PFHAA 375-86-9 Perfluorobetanoic Acid PFPAA 375-86-9 Perfluorobetanoic Acid PFBA 376-90-33 Perfluorobetanoic Acid PFBA 376-90-33 Perfluorotodecanesulfonic Acid PFBA 375-92-4 Perfluorotodecanesulfonic Acid PFBA 375-92-8 Perfluorotodecanesulfonic Acid PFDOS 378-93-95 Perfluorotodecanesulfonic Acid PFNS 86259-12-1 Perfluorotodecanesulfonic Acid PFNS 86259-12-1 Perfluorotocatesulfonic Acid PFNS 375-92-8 Perfluorotocatesulf	Perfluorohexadecanoic Acid	PFHxDA	
Perfluorotirdecanoic Acid PFTDA 72629-94-8 Perfluorotirdecanoic Acid PFDoA 307-55-1 Perfluorotirdecanoic Acid PFUNA 2088-94-8 Perfluorotirdecanoic Acid PFDA 335-76-2 Perfluorotiranoic Acid PFDA 375-86-1 Perfluorotocationic Acid PFDA 375-85-9 Perfluorotiranoic Acid PFHPA 375-85-9 Perfluorobazionic Acid PFEA 370-24-4 Perfluorobazionic Acid PFEA 370-24-4 Perfluorobazionic Acid PFEA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFEBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDS 375-73 Perfluorododecanesulfonic Acid PFDS 335-77-3 Perfluorododecanesulfonic Acid PFDS 335-77-3 Perfluorotopatinaesulfonic Acid PFNS 68259-12-1 Perfluorotopatinaesulfonic Acid PFNS 375-92-8 Perfluorotopatinaesulfonic Acid PFRS 375-73-5 Perfluorotopatinaesulfonic Acid PFRS 375-73-5	Perfluorotetradecanoic Acid		
Perfluorododecanoic Acid PFDoA 307-85-1 Perfluoromecanoic Acid PFUnA 208-94-8 Perfluorononancic Acid PFDA 335-76-2 Perfluorononancic Acid PFNA 375-95-1 Perfluoroneptanoic Acid PFNA 375-96-1 Perfluorobeptanoic Acid PFHpA 375-85-9 Perfluoroberanoic Acid PFHAA 307-24-4 Perfluorobetanoic Acid PFPBA 2706-90-3 Perfluorobetanoic Acid PFBA 2706-90-3 Perfluorodocanesulfonic Acid PFBA 2706-90-3 Perfluorodecanesulfonic Acid PFDS 375-22-4 Perfluorodecanesulfonic Acid PFDS 335-77-3 Perfluorodecanesulfonic Acid PFDS 335-77-3 Perfluorobetanesulfonic Acid PFDS 375-92-8 Perfluorobetanesulfonic Acid PFDS 375-92-8 Perfluorobetanesulfonic Acid PFHyS 375-92-8 Perfluorobetanesulfonic Acid PFBS 375-93-5 FULOROTELOMERS PFPBS 2706-91-4 PERFLUOROALEXANE SULFONAMIDES (FSAS)			
Perfluoroundecanoic Acid PFUnA 2058-94-8 Perfluoronodecanoic Acid PFDA 335-76-2 Perfluoronocanoic Acid PFNA 375-96-1 Perfluoropocanoic Acid PFOA 335-67-1 Perfluoropentanoic Acid PFHpA 375-85-9 Perfluoropentanoic Acid PFHAA 307-24-4 Perfluoropentanoic Acid PFBA 2706-90-3 Perfluorododecanesulfonic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDS 335-77-3 Perfluorododecanesulfonic Acid PFDS 335-77-3 Perfluorododecanesulfonic Acid PFDS 335-77-3 Perfluorododecanesulfonic Acid PFDS 335-77-3 Perfluorocotanesulfonic Acid PFDS 335-72-3 Perfluorophezanesulfonic Acid PFNS 68259-12-1 Perfluorophezanesulfonic Acid PFNS 375-92-8 Perfluorophezanesulfonic Acid PFNS 375-73-5 Perfluorobezanesulfonic Acid PFNS 375-73-5 PELUOROTELOMERS PFNS 375-73-5 PLUOROTELO	Perfluorododecanoic Acid		
Perfluorodecanoic Acid PFDA 335-76-2 Perfluorononancia Acid PFNA 375-95-1 Perfluoroctanoic Acid PFOA 335-67-1 Perfluoroheptanoic Acid PFHPA 375-85-9 Perfluoroheptanoic Acid PFHPA 375-85-9 Perfluorobutanoic Acid PFPBA 2706-90-3 Perfluorobutanoic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFBBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDBS 335-77-3 Perfluorodecanesulfonic Acid PFDB 335-77-3 Perfluorodecanesulfonic Acid PFNS 88259-12-1 Perfluorobecanesulfonic Acid PFNS 88259-12-1 Perfluorobetanesulfonic Acid PFNS 375-82-8 Perfluorobetanesulfonic Acid PFNS 355-46-4 Perfluorobetanesulfonic Acid PFNS 355-46-4 Perfluorobetanesulfonic Acid 110-2FTS 120226-60-0 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 10-2FTS 120226-60-0 1H,1H,2H,2H-Perfluoroctanesulfonic Acid 8.2FTS 3910-83-4	Perfluoroundecanoic Acid		
Perfluoronananic Acid PFNA 375-96-1 Perfluorocatanic Acid PFNA 335-67-1 Perfluorohexancic Acid PFHpA 375-88-9 Perfluorohexancic Acid PFHbA 307-24-4 Perfluorobutannoic Acid PFBA 276-90-3 Perfluorobutannoic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDB 375-72-3 Perfluorododecanesulfonic Acid PFDB 395-77-3 Perfluorodoanesulfonic Acid PFDS 395-77-3 Perfluoronanesulfonic Acid PFNS 68259-12-1 Perfluorohexanesulfonic Acid PFNS 376-92-8 Perfluorohexanesulfonic Acid PFNS 375-92-8 Perfluorohexanesulfonic Acid PFPRS 376-92-8 Perfluorobutanesulfonic Acid PFPRS 376-93-5 PERFLUOROE PFPRS 376-93-5 PERFLUOROE PFPRS 376-93-5 PERFLUOROE PFPRS 376-91-8 PERFLUOROE PFRS 376-91-8 PERFLUOROE PFPRS 3910-8-34-4	Perfluorodecanoic Acid		
Perfluorocotanoic Acid PFOA 335-67-1 Perfluoroheptanoic Acid PFI-PA 375-85-9 Perfluoroheptanoic Acid PFI-PA 2706-90-3 Perfluorobutanoic Acid PFDA 2706-90-3 Perfluorobutanoic Acid PFDA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDDS 335-77-3 Perfluorodecanesulfonic Acid PFDDS 335-77-3 Perfluorobus Acid PFDS 335-77-3 Perfluoronoctanesulfonic Acid PFDS 376-92-1 Perfluorobeptanesulfonic Acid PFDS 376-92-8 Perfluorobeptanesulfonic Acid PFI-PS 376-92-8 Perfluorobeptanesulfonic Acid PFPBS 376-92-8 Perfluorobeptanesulfonic Acid PFPBS 376-91-6 Perfluorobetanesulfonic Acid PFPBS 276-91-4 Perfluorobetanesulfonic Acid PFPBS 375-73-5 FLUOROTELOMERS III,1H,2H,2H-Perfluorocdecanesulfonic Acid 10.2FTS 120226-60-0 1H,1H,2H,2H-Perfluorocdecanesulfonic Acid 6.2FTS 37619-9-2 1H,1H,2H,2H-Perfluorocdecanesulfonic Acid <td>Perfluorononanoic Acid</td> <td></td> <td></td>	Perfluorononanoic Acid		
Perfluoroheptanoic Acid PFHpA 375-85-9 Perfluoropentanoic Acid PFHxA 307-24-4 Perfluoropotanoic Acid PFPBA 2706-90-3 Perfluorotobutanoic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDODS 3780-39-5 Perfluorodecanesulfonic Acid PFDODS 3780-39-5 Perfluoronanaesulfonic Acid PFDS 335-77-3 Perfluoronanaesulfonic Acid PFNS 68259-12-1 Perfluoroheptanesulfonic Acid PFNS 68259-12-1 Perfluoroheptanesulfonic Acid PFHyS 375-92-8 Perfluoropentanesulfonic Acid PFHyS 375-92-8 Perfluoropentanesulfonic Acid PFPBS 375-73-5 PELUOROTELOMES PFBS 375-73-5 FLUOROTELOMES 111,112,212-Perfluorodecanesulfonic Acid 8.2FTS 39108-34-4 111,112,212-Perfluorodecanesulfonic Acid 8.2FTS 39108-34-4 111,112,212-Perfluoroctanesulfonic Acid 8.2FTS 39108-34-4 111,112,212-Perfluoroctanesulfonic Acid 8.2FTS 3910-32-4 PERFLUOROALKANE	Perfluorooctanoic Acid		
Perfluoronexanoic Acid PFHxA 307-24-4 Perfluoropentanoic Acid PFPeA 2706-90-3 Perfluorobutanoic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDDDS 375-22-3 Perfluorododecanesulfonic Acid PFDDS 335-77-3 Perfluoronctanesulfonic Acid PFNS 68259-12-1 Perfluorocotanesulfonic Acid PFNS 1763-23-1 Perfluoropentanesulfonic Acid PFNS 375-92-8 Perfluoropentanesulfonic Acid PFNS 375-92-8 Perfluoropentanesulfonic Acid PFNS 375-92-8 Perfluoropentanesulfonic Acid PFPRS 376-92-8 Perfluoropentanesulfonic Acid PFPRS 375-93-5 PERFLUOROTELOMERS T 111,112,121-Perfluorododecanesulfonic Acid 10.2FTS 120226-60-0 111,112,121-Perfluorodecanesulfonic Acid 8.2FTS 39108-34-4 111,112,121-Perfluorodecanesulfonic Acid 6.2FTS 27619-97-2 111,112,121-Perfluorodecanesulfonic Acid 8.2FTS 39108-34-4 111,112,121-Perfluorodecanesulfonic Acid NEIFOSA	Perfluoroheptanoic Acid		
Perfluoropentanoic Acid PFPA 2706-90-3 Perfluorobutanoic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDA 375-22-4 Perfluorodecanesulfonic Acid PFDODS 79780-39-5 Perfluorononanesulfonic Acid PFDS 335-77-3 Perfluorononanesulfonic Acid PFNS 68259-12-1 Perfluoroneptanesulfonic Acid PFNS 68259-12-1 Perfluoroneptanesulfonic Acid PFNS 375-32-1 Perfluoroneptanesulfonic Acid PFHpS 375-92-8 Perfluoropetanesulfonic Acid PFNS 355-46-4 Perfluoropotanesulfonic Acid PFPS 375-73-5 FLUOROTELOMERS PFBS 375-73-5 FLUOROTELOMERS *** 10:2FTS 39108-34-4 H1,H2,H2,H-Perfluorodcanesulfonic Acid 8:2FTS 39108-34-4 H1,H1,H2,H2,H-Perfluorobcanesulfonic Acid 8:2FTS 39108-34-4 H1,H1,H2,H2,H2-Perfluorobcanesulfonic Acid 8:2FTS 39108-34-4 H1,H1,H2,H2,H2-Perfluorobcanesulfonic Acid 8:2FTS 3751-24-72-4 PERFLUOROALKANE SULFONAM	·	•	
Perfluorobutanoic Acid PFBA 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) PFDODS 79780-39-5 Perfluorododecanesulfonic Acid PFDS 335-77-3 Perfluorononanesulfonic Acid PFDS 325-71-3 Perfluoronotanesulfonic Acid PFNS 68259-12-1 Perfluorobetanesulfonic Acid PFNS 375-92-8 Perfluorophetanesulfonic Acid PFHBS 375-92-8 Perfluorophetanesulfonic Acid PFHBS 375-92-8 Perfluorophetanesulfonic Acid PFHBS 375-73-5 Perfluorophetanesulfonic Acid PFPBS 375-73-5 FLUOROTELOMERS PFPBS 375-73-5 FLUOROTELOMERS 1 1.02-ETS 1 20226-60-0 111,112,212-Perfluorododecanesulfonic Acid 8.2FTS 39108-34-4 11,112,124-Perfluorododecanesulfonic Acid 8.2FTS 39108-34-4 11,112,124-Perfluoroctanesulfonic Acid 8.2FTS 375124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) PERFLUOROALKANE SULFONAMIDES (FASAs) 754-91-6 PERFLUOROALKANE SULFONYL SUBSTANCES NEIFOSA 4151-50-2			
Perfluorododecanesulfonic Acid PFDoDS 79780-39-5 Perfluorodecanesulfonic Acid PFDS 335-77-3 Perfluorononanesulfonic Acid PFDS 1763-29-1 Perfluorochanesulfonic Acid PFDS 1763-29-1 Perfluoroheptanesulfonic Acid PFHpS 375-92-8 Perfluoropetanesulfonic Acid PFHpS 355-46-4 Perfluoropetanesulfonic Acid PFPeS 2706-91-4 Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS TU.2FTS 1 20226-60-0 H1,11,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 H1,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 27619-97-2 H1,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 27619-97-2 H1,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 39108-34-4 H1,11,2H,2H-Perfluoroctanesulfonamide NEFOSA 754-91-6 N-Ethyl Perfluoroctanesulfonamide NEFOSA 4151-50-2 N-Methyl Perfluoroctanesulfonamide NEFOSA 4151-50-2 N-Ethyl Perfluoroctanesulfonamido Ethanol NEFOSE 1444-80-9	·		
Perfluorododecanesulfonic Acid PFDoDS 79780-39-5 Perfluorodecanesulfonic Acid PFDS 335-77-3 Perfluorononanesulfonic Acid PFDS 1763-29-1 Perfluorochanesulfonic Acid PFDS 1763-29-1 Perfluoroheptanesulfonic Acid PFHpS 375-92-8 Perfluoropetanesulfonic Acid PFHpS 355-46-4 Perfluoropetanesulfonic Acid PFPeS 2706-91-4 Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS TU.2FTS 1 20226-60-0 H1,11,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 H1,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 27619-97-2 H1,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 27619-97-2 H1,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 39108-34-4 H1,11,2H,2H-Perfluoroctanesulfonamide NEFOSA 754-91-6 N-Ethyl Perfluoroctanesulfonamide NEFOSA 4151-50-2 N-Methyl Perfluoroctanesulfonamide NEFOSA 4151-50-2 N-Ethyl Perfluoroctanesulfonamido Ethanol NEFOSE 1444-80-9	PERFLLIOROALKYL SUILFONIC ACIDS (PESAs)		
Perfluorodecanesulfonic Acid PFDS 335-77-3 Perfluorononanesulfonic Acid PFNS 68259-12-1 Perfluoronesulfonic Acid PFOS 1763-22-1 Perfluoroheptanesulfonic Acid PFHpS 375-92-8 Perfluorohexanesulfonic Acid PFHxS 355-46-4 Perfluoropentanesulfonic Acid PFBS 376-79-5 Perfluorobutanesulfonic Acid PFBS 375-73-5 PFUOROTELOMERS TIL,11,2H,2H-Perfluorodecanesulfonic Acid 10:2FTS 120226-60-0 1H,11,2H,2H-Perfluorodecanesulfonic Acid 6:2FTS 39108-34-4 1H,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 27619-97-2 1H,11,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) PERFLUOROALKANE SULFONAMIDES (FASAs) 754-91-6 N-Ethyl Perfluorocctane Sulfonamide NEIFOSA 4151-50-2 N-Methyl Perfluorocctanesulfonamide NEIFOSA 4151-50-2 N-Ethyl Perfluorocctanesulfonamide Ethanol NEIFOSE 1691-99-2 N-Methyl Perfluorocctanesulfonamido Ethanol NEIFOSE 24448-09-7 N-Ethyl Perflu		PEDODS	70780-30-5
Perfluoronanesulfonic Acid PFNS 68259-12-1 Perfluoroctanesulfonic Acid PFOS 1763-29-1 Perfluorophanesulfonic Acid PFHpS 375-92-8 Perfluorophanesulfonic Acid PFHxS 355-46-4 Perfluorophanesulfonic Acid PFPBS 2706-91-4 Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS ************************************			
Perfluoroctanesulfonic Acid PFOS 1763-23-1 Perfluoroheptanesulfonic Acid PFHpS 375-92-8 Perfluoropentanesulfonic Acid PFHxS 355-46-4 Perfluoropentanesulfonic Acid PFPsS 2706-91-4 Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS TUDETTS 12026-60-0 1H.,1H.,2H.,2H-Perfluorodecanesulfonic Acid 10.2FTS 39108-34-4 1H.,1H.,2H.,2H-Perfluorodecanesulfonic Acid 8.2FTS 39108-34-4 1H.,1H.,2H.,2H-Perfluorodeanesulfonic Acid 6.2FTS 27619-97-2 1H.,1H.,2H.,2H-Perfluorodeanesulfonic Acid 4.2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) VERFLUOROALKANE SULFONAMIDES (FASAs) 754-91-6 N-Ethyl Perfluorocatane Sulfonamide NEIFOSA 31506-32-8 N-Methyl Perfluorocatanesulfonamide Ethanol NEIFOSE 1691-99-2 N-Ethyl Perfluorocatanesulfonamido Ethanol NEIFOSE 1691-99-2 N-Methyl Perfluorocatanesulfonamidoacetic Acid NEIFOSA 2991-50-6 N-Methyl Perfluorocatanesulfonamidoacetic Acid NEIFOSA 2991-50-6 N-Methyl			
Perfluoroheptanesulfonic Acid PFHpS 375-92-8 Perfluorohexanesulfonic Acid PFHxS 355-46-4 Perfluoropentanesulfonic Acid PFPeS 2706-91-4 Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS TUDENTIAL PERFUNCTION ACID 10:2FTS 120226-60-0 1H.1H,2H.2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H.1H,2H,2H-Perfluorobexanesulfonic Acid 8:2FTS 39108-34-4 1H.1H,2H,2H-Perfluorobexanesulfonic Acid 6:2FTS 27619-97-2 1H,1H,2H,2H-Perfluorobexanesulfonic Acid 6:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) FOSA 754-91-6 N-Eithyl Perfluorooctane Sulfonamide NEIFOSA 4151-50-2 N-Methyl Perfluorooctane Sulfonamide NMeFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES NEIFOSE 1691-99-2 N-Methyl Perfluorooctanesulfonamido Ethanol NIEFOSE 24448-09-7 N-Ethyl Perfluorooctanesulfonamido Ethanol NIEFOSA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NIEFOSA 2991-50-6 N-Me			
Perfluorohxanesulfonic Acid PFHxS 355-46-4 Perfluoropentanesulfonic Acid PFPeS 2706-91-4 Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS TU2ETS 120226-60-0 1H,1H,2H,2H-Perfluorododecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 27619-97-2 1H,1H,2H,2H-Perfluorobexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAS) VERFLUOROALKANE SULFONAMIDES (FASAS) Perfluoroctanesulfonamide FOSA 754-91-6 N-Ethyl Perfluoroctane Sulfonamide NEtFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES VERFLUOROALKANE SULFONYL SUBSTANCES VERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluoroctanesulfonamido Ethanol NEtFOSE 1691-99-2 N-Methyl Perfluoroctanesulfonamido Ethanol NEtFOSA 2991-50-6 N-Ethyl Perfluoroctanesulfonamidoacetic Acid NETFOSA 2991-50-6 N-Methyl Perfluoroctanesulfonamidoacetic Acid NETFOSA 2991-50-6			
Perfluoropentanesulfonic Acid PFPeS 2706-91-4 Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS IH,1H,2H,2H-Perfluorodecanesulfonic Acid 10:2FTS 120226-60-0 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 6:2FTS 27619-97-2 1H,1H,2H,2H-Perfluorohexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAS) Perfluoroctanesulfonamide FOSA 754-91-6 N-Ethyl Perfluoroctane Sulfonamide NEIFOSA 4151-50-2 N-Methyl Perfluoroctane Sulfonamide NMEFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES NEIFOSE 1691-99-2 N-Ethyl Perfluoroctanesulfonamido Ethanol NEIFOSE 1691-99-2 N-Methyl Perfluoroctanesulfonamido Ethanol NMEFOSA 2991-50-6 N-Methyl Perfluoroctanesulfonamidoacetic Acid NMEFOSA 2991-50-6 N-Methyl Perfluoroctanesulfonamidoacetic Acid NMEFOSA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 17.2,2,3,3,3-Heptafluoropropoxyl-Propanoic Acid HFPO-DA	•	•	
Perfluorobutanesulfonic Acid PFBS 375-73-5 FLUOROTELOMERS 1H,1H,2H,2H-Perfluorododecanesulfonic Acid 10:2FTS 120226-60-0 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluorooctanesulfonic Acid 6:2FTS 27619-97-2 1H,1H,2H,2H-Perfluorobexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAS) PERFLUOROALKANE SULFONAMIDES (FASAS) PERFLUOROALKANE SULFONAMIDES (FASAS) PERFLUOROALKANE SULFONYL SUBSTANCES N-Methyl Perfluorooctane Sulfonamide NEFOSA 4151-50-2 N-Methyl Perfluorooctanesulfonamido Ethanol NMeFOSE 24448-09-7 N-Ethyl Perfluorooctanesulfonamidoacetic Acid NEIFOSA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMEFOSA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluorononanoic Acid ADONA 919005-14-4 CHLORO-ERFLUOROALKYL SULFONIC ACIDS			
### FLUOROTELOMERS 1H,1H,2H,2H-Perfluorododecanesulfonic Acid 11:2FTS 120226-60-0 11:1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 11:1H,2H,2H-Perfluorooctanesulfonic Acid 6:2FTS 27619-97-2 11:1H,2H,2H-Perfluorohexanesulfonic Acid 6:2FTS 757124-72-4 #### PERFLUOROALKANE SULFONAMIDES (FASAs) Perfluorooctanesulfonamide FOSA N-Ethyl Perfluorooctane Sulfonamide NEIFOSA N-Hethyl Perfluorooctane Sulfonamide NetroSA N-Methyl Perfluorooctane Sulfonamide NetroSA N-Ethyl Perfluorooctanesulfonamido NetroSA N-Ethyl Perfluorooctanesulfonamido Ethanol NEIFOSE N-Ethyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Ethyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Ethyl Perfluorooctanesulfonamidoacetic Acid NEIFOSA N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluoroonanoic Acid CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	·		
1H,1H,2H,2H-Perfluoroddecanesulfonic Acid 10:2FTS 120226-60-0 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluorooctanesulfonic Acid 6:2FTS 27619-97-2 1H,1H,2H,2H-Perfluorohexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAS) Perfluorooctanesulfonamide FOSA 754-91-6 N-Ethyl Perfluorooctane Sulfonamide NEtFOSA 4151-50-2 N-Methyl Perfluorooctane Sulfonamide NMeFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorooctanesulfonamido Ethanol NEtFOSE 1691-99-2 N-Methyl Perfluorooctanesulfonamido Ethanol NMeFOSE 24448-09-7 N-Ethyl Perfluorooctanesulfonamidoacetic Acid NEtFOSAA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluorononanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Ox		PFDS	3/5-/3-5
1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluoroctanesulfonic Acid 6:2FTS 27619-97-2 1H,1H,2H,2H-Perfluorohexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) Perfluorocotanesulfonamide FOSA 754-91-6 N-Ethyl Perfluorocotane Sulfonamide NEtFOSA 4151-50-2 N-Methyl Perfluorocotane Sulfonamide NMeFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorocotanesulfonamido Ethanol NEtFOSE 1691-99-2 N-Methyl Perfluorocotanesulfonamido Ethanol NMeFOSE 24448-09-7 N-Ethyl Perfluorocotanesulfonamidoacetic Acid NETFOSAA 2991-50-6 N-Methyl Perfluorocotanesulfonamidoacetic Acid NMeFOSA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluorononanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid6:2FTS27619-97-21H,1H,2H,2H-Perfluorohexanesulfonic Acid4:2FTS757124-72-4PERFLUOROALKANE SULFONAMIDES (FASAs)PerfluorooctanesulfonamideFOSA754-91-6N-Ethyl Perfluorooctane SulfonamideNEtFOSA4151-50-2N-Methyl Perfluorooctane SulfonamideNMeFOSA31506-32-8PERFLUOROALKANE SULFONYL SUBSTANCESN-Ethyl Perfluorooctanesulfonamido EthanolNEtFOSE1691-99-2N-Methyl Perfluorooctanesulfonamido EthanolNMeFOSE24448-09-7N-Ethyl Perfluorooctanesulfonamidoacetic AcidNEtFOSAA2991-50-6N-Methyl Perfluorooctanesulfonamidoacetic AcidNMeFOSAA2355-31-9PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic AcidHFPO-DA13252-13-64,8-Dioxa-3h-Perfluorononanoic AcidADONA919005-14-4CHLORO-PERFLUOROALKYL SULFONIC ACIDS11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid11Cl-PF3OUdS763051-92-9			
1H,1H,2H,2H-Perfluorohexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) Perfluorooctanesulfonamide FOSA 754-91-6 N-Ethyl Perfluorooctane Sulfonamide NEtFOSA 4151-50-2 N-Methyl Perfluorooctane Sulfonamide NMeFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorooctanesulfonamido Ethanol NEtFOSE 1691-99-2 N-Methyl Perfluorooctanesulfonamido Ethanol NMeFOSE 24448-09-7 N-Ethyl Perfluorooctanesulfonamido Ethanol NMeFOSE 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluoroonanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9			39108-34-4
Perfluorooctanesulfonamide FOSA 754-91-6 N-Ethyl Perfluorooctane Sulfonamide NEtFOSA 4151-50-2 N-Methyl Perfluorooctane Sulfonamide NEtFOSA 31506-32-8 N-Methyl Perfluorooctane Sulfonamide NMeFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorooctanesulfonamido Ethanol NEtFOSE 1691-99-2 N-Methyl Perfluorooctanesulfonamido Ethanol NMeFOSE 24448-09-7 N-Ethyl Perfluorooctanesulfonamidoacetic Acid NMeFOSE 24448-09-7 N-Ethyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluoronanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11CI-PF3OUdS 763051-92-9		6:2FTS	27619-97-2
Perfluorooctanesulfonamide N-Ethyl Perfluorooctane Sulfonamide N-Ethyl Perfluorooctane Sulfonamide N-Ethyl Perfluorooctane Sulfonamide N-Methyl Perfluorooctane Sulfonamide NMeFOSA N-Methyl Perfluorooctane Sulfonamide NMeFOSA N-Methyl Perfluorooctanesulfonamido Ethanol NEtFOSE N-Ethyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Methyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Methyl Perfluorooctanesulfonamidoacetic Acid NETFOSAA N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA NMeFOS	1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
N-Ethyl Perfluorooctane Sulfonamide NMeFOSA NEthyl Perfluorooctane Sulfonamide NEthyl Perfluorooctanesulfonamido Ethanol NEthyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Methyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Methyl Perfluorooctanesulfonamidoacetic Acid NEthyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA NMeF	PERFLUOROALKANE SULFONAMIDES (FASAs)		
N-Methyl Perfluorooctane Sulfonamide NMeFOSA 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorooctanesulfonamido Ethanol NEtFOSE NMeFOSE NMeFOSE NMeFOSE 1691-99-2 NMeFOSE 24448-09-7 N-Ethyl Perfluorooctanesulfonamidoacetic Acid NEtFOSAA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid 4,8-Dioxa-3h-Perfluorononanoic Acid CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	Perfluorooctanesulfonamide	FOSA	754-91-6
PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Methyl Perfluorooctanesulfonamido Ethanol NMeFOSE N-Ethyl Perfluorooctanesulfonamidoacetic Acid NEtFOSAA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 4,8-Dioxa-3h-Perfluorononanoic Acid HFPO-DA 4,8-Dioxa-3h-Perfluorononanoic Acid HFPO-DA 4,8-Dioxa-3h-Perfluorononanoic Acid TICI-PF3OUdS 763051-92-9	N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Ethyl Perfluorooctanesulfonamido Ethanol N-Methyl Perfluorooctanesulfonamido Ethanol N-Methyl Perfluorooctanesulfonamido Ethanol N-Ethyl Perfluorooctanesulfonamidoacetic Acid NEtFOSAA N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA NMeF	N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
N-Methyl Perfluorooctanesulfonamido Ethanol N-Ethyl Perfluorooctanesulfonamidoacetic Acid NEtFOSAA NEtFOSAA NEtFOSAA NMeFOSA NMeFOSAA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluorononanoic Acid HFPO-DA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid N-Ethyl Perfluorooctanesulfonamidoacetic Acid N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid NMeFOSAA 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 4,8-Dioxa-3h-Perfluorononanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamidoacetic Acid PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid 4,8-Dioxa-3h-Perfluorononanoic Acid CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid NMeFOSAA 2355-31-9 13252-13-6 ADONA 919005-14-4 11CI-PF3OUdS 763051-92-9	N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Methyl Perfluorooctanesulfonamidoacetic Acid PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid 4,8-Dioxa-3h-Perfluorononanoic Acid CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid NMeFOSAA 2355-31-9 13252-13-6 ADONA 919005-14-4 11CI-PF3OUdS 763051-92-9	N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluorononanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
4,8-Dioxa-3h-Perfluorononanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
4,8-Dioxa-3h-Perfluorononanoic Acid ADONA 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	4,8-Dioxa-3h-Perfluorononanoic Acid	-	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11Cl-PF3OUdS 763051-92-9	CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
		11CI-PE3OLIdS	763051-92-9
	9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1

Project Name: Lab Number: **VALHALLA** L1960300 **Project Number: VALHALLA Report Date:** 01/22/20

GLOSSARY

Acronyms

EDL

LCSD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1960300Project Number:VALHALLAReport Date:01/22/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:VALHALLALab Number:L1960300Project Number:VALHALLAReport Date:01/22/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- $\boldsymbol{RE} \quad \ \, \text{-Analytical results} \text{ are from sample re-extraction}.$
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: VALHALLA Lab Number: L1960300
Project Number: VALHALLA Report Date: 01/22/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 15 Published Date: 8/15/2019 9:53:42 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

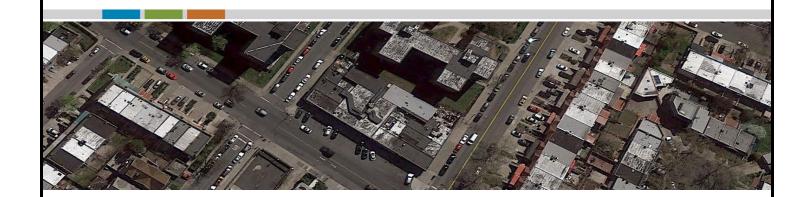
EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.


Document Type: Form

	7- 1777	Project Information Project Name: VQ Project Location: I/5 Project # VQI) A (Use Project name as Project Manager: ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	Oroject Information Project Name: Vo No Ig Project Location: II 5 Wol Street, NY Project Manager: Vollo Q Use Project name as Project #) Vollo Q Project Manager: Vo Gavin LPHAQuote #: Turn-Around Time Standard V Due Date: Rush (only if pre approved) # of Days: by Alpha						Date Rec'd in Lab Comparison					
	c requirements/comm						VOC	(Fe, M, C)	onides	. 8	5-	- Dioxque		Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)		mple ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	TCL	Meta	Chlo	TOC	PFA	1,4		Sample Specific Comments e
100215-01		denk	12/16/19	19:00	W	J.	X	X	X	X	X	X		
10000-02	37		12/16/19	1/: 30	W	IQ	X	X	X	X	X	X		
* - 03	45		12/16/19	12:50	W	JQ	X	X	X	X	X	X		
17) -04	45-MS		12/16/19	12:55	W	Ja	X	×	X	X	X	X	_	
J -05	45-MS)	12/16/14	13:00	W	IS	X	X	X	X	X	X		
-06	MW-15		14/6/19	14:10	W	JR	X	X	X	X	X	X		
-07	MW-1J		12/16/19	15:00	W	Ja	X	X	X	X	^	X		
-08	DUP-12	1619	12/16/19	14,20	W	20	X	X	X	X	X	Х	-	
Preservative Code:	Container Code	010. V V V V V V V V V V V V V V V V V V V												
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type reservative								Please print clearly, legibly and completely, Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	604 0 = Other 803						Regely A4	Ad By	in the	a)	z/1 2/1 3/	Date/	Time 1600	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S

Client: P Client	Westborough, MA 01581 8 Walkup Dr. TEL: 509-896-9220 FAX: 508-868-9183	NEW YORK CHAIN OF CUSTODY Manaffield, MA 02040 320 Forbes 61vd TEL: 508-822-9300 FAX: 508-822-3288	Albany, NY 12205: 14 Welker W. Tonawanda, NY 14150: 275 Coo Project Information Project Name: VQ Project Location:	Mahwah, NJ 07430: 38 Whitney Rd, Suite 6 Alberry, NY 12305: 14 Welker Way Tonawands, NY 14150: 275 Cooper Ava, Suite 106 Project Information Project Name: Vo 1 9 Project Location: 15					Date Rec'd in Lab Deliverables ASP-A EQuIS (1 File)			ASP-B EQuIS (4 File)				Biling Information Same as Olient Info		
Address: 2 9 D V USE Project Manager: 30 P Q V In AIP HAQuete 5: Phone: (3 1 1 7 1 7 7 1 7 1 1 1 1 1 1 1 1 1 1 1	Client Information				Valled I	BOL		_	Other		7444475		-			A CONTRACTOR OF THE PROPERTY O		
Phone: (3 1 6 7 7 7 7 7 Tare Section Trime Due Date: Due Date: Die		willbur Pace	Project Manager: J			1501			NY TO)GS					0.5	Please identify below location of applicable disposal facilities.		
Other project specific requirementa/comments: Done Lab to do Please specify Metals or TAL.	Fax:		Standard						NY Un	res tric	ted Ve	₽	Other			Disposal Facility:		
Please specify Metals or TAL. ALPHA Lab ID (Lab Use Only) Sample ID Collection Date Tima Matrix Initials Sample Sample Sample Sample Sample Initials Sample Specific Commer Sample Specific	These samples have b	een previously analyze	ed by Alpha					ANA	YSIS					1		Sample Filtration	T	
Collection Sample			ients:					VOC	1 (F MB)			\ \ \ \ !) exa			Lab to do Preservation Lab to do	- 0 - 0 - 0 - 0	
Cab Use Only Sample ID Date Time Matrix Initials	ALPHA Lab ID		I- ID	Colk	ection	Sample	Sampler's	z	3	100	\leq	I						
Preservative Code: Container Code P = Plastic P = Na ₃ S ₂ C ₃ Code P = MaCH C = Cube C = NathSQ C = Cube C = C	(Lab Use Only)	58	mp le ID	Date	Time			<u>-</u>	E	$\overline{\mathcal{Q}}$	-					Sample Specific Comments	6	
Preservative Code: A = None P = Plastic A = Amber Glass V = Vial P = Mach C = Cube C = Cube C = Cube C = NaCh C = Cube C = NaCh C = Cube C =		Field	MANK	12/16/19	19:00	W	JB	×	X	X	X	χ	X					
Preservative Code: A = None B = HCl C = NacOH E = NacOH		MW-37		12/19/11	1/:30	W	70	7,	Ä	X.	ě.	X	X					
Preservative Code: A = None B = Picl A = Amber Glass C = HNO ₃ D = H ₃ SO ₄ E = NaCH C = C = C = C = C = C = C = C = C = C =	M	W- 45		12/16/19	12:50	60	JQN	B	X	×.	3	Х	X					
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH E = MaOH E = MaOH C = Cube C = NaNeOH C = Cube C = C	MIN	45-MS		12/16/19	12:55	W	Ja	X	Ж	Х	X	×	X			Separate		
Preservative Code: A = None B = HCl C = HNO ₃ D = V ₂ SO ₄ E = NaOH E = NaOH E = NaOH C = Cube G = NaHSO ₄ H = Na ₂ S ₂ O ₃ H = Na ₂ S ₂ O ₃ E = Encore D = BOD Bottle D = BOD Bottle D = Close D = BOD Bottle D = Close D = BOD Bottle D = Close D = BOD Bottle D = Close D = BOD Bottle	IV16	1-45-MS.	0	2/16/17	13100	W	IQ	X	×	1	X	X	X	6				
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH C = Chibe C = NaHSO ₄ D = Bod Bottle C = Relinquished By: D = Bod Bottle D = BOD Bottle D = BOD Bottle D = BOUND BY A Container Type Container Type Container Type Container Type Container Type Please print clearly, keen and completely. Samp not be logged in and turns round time clock start until any ambigure resolved. By EXECUTION THIS COC, THE CLIE THAS READ AND AGA TO BE BOUND BY A		, v		6/16/19		W	JR	X	X	X	X	X	X			Deliverable		
Preservative Code: A = None P = Plastic Container Code A = None P = Plastic Mensfield: Certification No: MA935 Container Type Preservative Container Type Preservative Preser		MW-lat		100 1 1001	15100	14	JX	X	X	<	K	X	X					
A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vlal D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ O = Other H = Na ₂ S ₂ O ₃ E = Encore H = Na ₂ S ₂ O ₃ D = BOD Sattle O = Other O = Oth		D11- 2	1619	12/16/19	14:20	W	Ja	X	X	Х	X	×	X/					
A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vlal D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ O = Other H = Na ₂ S ₂ O ₃ E = Encore H = Na ₂ S ₂ O ₃ D = BOD Sattle O = Other O = Oth	Und South Walks										14		/					
A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vlal D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ O = Other H = Na ₂ S ₂ O ₃ E = Encore H = Na ₂ S ₂ O ₃ D = BOD Sattle O = Other O = Oth											11							
D = H ₂ SO ₄	A = None B = HCl	P = Plastic A ≃ Amber Glass				Con	tainer Type		?	P						Please print clearly, legible and completely. Samples		
G = NaHSO ₄	D = H ₂ SO ₄ E = NeOH	G = Glass B = Bacteria Cup	l''' s	_	27.				C							tumaround time clock will start until any ambiguities	are	
Form No: 01-25 HC /nor. 30-Sent-2013) (See reverse side,)	H = Na ₂ S ₂ O ₃ E = Encore K/E = Zn Ac/N _B OH D = BOD Bottle					77	Regely W			/	z/1				THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS.	S IA'S		

APEX COMPANIES, LLC

Data Usability Summary Report For Baseline Sampling Event

One Commerce Park Property 115 Wall Street Valhalla, New York 10595

PREPARED FOR:

Diamond Properties, LLC 330 North Bedford Road Suite 145 Mount Kisco, New York 10549

April 23, 2020

Apex Companies, LLC 120-D Wilbur Place Bohemia, New York 11716

Table of Contents

Sco	pe o	of Work	k	1
Sco	pe o	of Worl	k	1
1.0		Analy	rtical Laboratory	1
	1.1	-	ditation	
			atory Data Packages	
			atory Analytical Methods	
		1.3.1	VOCs	î
		1.3.2	Inorganic Analyses	2
	1.4	Data (Qualification	2
2.0		Data '	Validation	3
	2.1	SDG L	1960215	3
		2.1.1	VOCs	3
		2.1.2	Metals	6
		2.1.3	Chloride	
		2.1.4	TOC	8
	2.2	SDG L	.1961700	
		2.2.1	VOCs	10
		2.2.2	Metals	12
		2.2.3	Chloride	13
		2.2.4	TOC	14
	2.3	SDG L	.1961789	14
		2.3.1	VOCs	15
		2.3.2	Metals	17
		2.3.3	Chloride	17
		2.3.4	TOC	18

i

Data Usability Summary Report for Baseline Sampling Event Site 360054 115 Wall Street, Valhalla, New York

Scope of Work

Environmental samples were collected from the One Commerce Park Site in Valhalla, New York. These samples consisted of groundwater which were collected in December 2019. Only environmental samples collected during baseline sampling were evaluated using the DEC ASP Category B data deliverable for this Data Usability Summary Report. Analytical results were validated, and usability was determined using the following guidelines:

- NYSDEC Analytical Services Protocol (ASP);
- USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic and Inorganic Data Validation, and;
- USEPA and Standard Methods analytical methods.

1.0 Analytical Laboratory

Samples collected were analyzed by Alpha Analytical of Mansfield and Westborough, Massachusetts. Alpha Analytical holds accreditation under New York state ID 11627 and 11148 and the NELAC Institute (TNI) codes TNI00262 and TNI01316.

1.1 Accreditation

Alpha Analytical is accredited by New York state for the analysis of volatile organic compounds (VOCs) by the United States Environmental Protection Agency (EPA) Method 8260C, metals by EPA 6010D, total organic carbon (TOC) by EPA 9060A, and chloride by Standard Methods (SM) 4500-CI-E.

1.2 Laboratory Data Packages

Laboratory data packages were complete and included cover pages, chain of custodies, sample log-in information, and case narratives. Raw data was included in data packages and was used in the validation process.

1.3 Laboratory Analytical Methods

Groundwater samples for this Data Usability Summary Report were reviewed for the analysis of VOCs by EPA Method 8260C, metals by EPA 6010D, TOC by EPA 9060A, and chloride by SM 4500-Cl-E. Data validation for these analytical methods are included in Section 2.

1.3.1 VOCs

Groundwater samples were analyzed by EPA Method 8260C. Data validation included review of requirements from EPA methods and recommendations from the EPA *National Functional Guidelines for Superfund Organic Methods Review*, January 2017 (CLP Guidance).

1.3.2 Inorganic Analyses

Groundwater samples were analyzed for metals by EPA 6010D, TOC by EPA 9060A, and chloride by SM 4500-CI-E. Data validation included review of requirements from EPA methods and Standard Methods and recommendations from the EPA National Functional Guidelines for Superfund Inorganic Methods Review, January 2017 (CLP Guidance).

1.4 Data Qualification

Laboratory data may be qualified with the following flags:

- **J** The analyte result is an estimated value.
- **J-** The analyte result is an estimated value and may be biased low.
- **J+** The analyte result is an estimated value and may be biased high.
- **U** The analyte was analyzed for but was not detected over the laboratory detection limit.
- **UJ** The analyte was analyzed for but was not detected over the laboratory detection limit. Due to findings with data quality, the laboratory detection limit may be inaccurate and is an estimated value.
- **R** The analyte result is unusable due to data quality deficiencies.

2.0 Data Validation

The following subsections include data validation for individual Sample Delivery Groups (SDG). Each sample within the SDG was reviewed based on EPA method or Standard Method guidelines, CLP Guidance's and NYSDEC's ASP. Summaries of data validation findings and qualifier verification are included below.

2.1 SDG L1960215

Data validation and review was conducted for groundwater samples within SDG L1960215 in accordance with the EPA National Functional Guidelines for Superfund Organic and Inorganic Methods Review, January 2017, and NYSDEC Analytical Services Protocol. The SDG included four groundwater samples, one field blank, one trip blank, and one field duplicate to be analyzed for VOCs by EPA Method 8260C, metals by EPA 6010D, TOC by EPA 9060A, and chloride by SM 4500-Cl-E. The groundwater samples are listed below.

SDG ID	Sample ID	Matrix	Sample Date	Sample Time
L1960215-01	Field Blank	Water	December 16, 2019	10:00
L1960215-02	MW-3I	Groundwater	December 16, 2019	11:30
L1960215-03	MW-4S	Groundwater	December 16, 2019	12:50
L1960215-04	MW-1S	Groundwater	December 16, 2019	14:10
L1960215-05	MW-1I	Groundwater	December 16, 2019	15:00
L1960215-06	DUP-121619	Groundwater	December 16, 2019	14:20
L1960215-07	Trip Blank	Water	December 16, 2019	00:00

Samples were received within twenty-four hours of sampling by the analytical laboratory, Alpha Analytical. As indicated by the analytical laboratory sample delivery group summary: the cooler temperatures upon receipt were 4.2°C and 4.0°C, custody seals were not utilized, and containers were accurately labeled and reflected the chain of custody. Headspace in volatile organic analysis (VOA) water containers was not noted and samples are assumed to be within compliance. The trip blank was received by the laboratory but was not included on the chain of custody. At the request of Apex, the sample was logged in and analyzed for VOCs by 8260C.

2.1.1 VOCs

Holding Times

Samples were received below 6°C and were analyzed within the method holding time limit of 14 days for preserved water without headspace. Analysis for VOCs was performed between four and five days from sample collection. Groundwater samples were preserved with hydrochloric acid (HCl) to a pH<2, which was verified by the laboratory after analysis.

Instrument Performance Check

Bromofluorobenzene (BFB) was evaluated for mass spectra requirements and frequency to ensure adequate instrument performance. Four sequences and subsequently four BFB standards were analyzed for samples included in SDG L1960215. This includes two calibration sequences and two environmental sample sequences. BFB tune checks were completed less than 12 hours before the final sample injection. All BFB tunes were within instrument and CLP guidance requirements.

Initial Calibration

Two initial calibrations were used to quantitate VOC data for SDG L1960215. The first calibration was performed on November 27, 2019 and was used to quantitate data for environmental samples and associated quality control. A second calibration was performed on December 19, 2019 and was used to quantitate the trip blank data and associated quality control samples.

Both calibration curves included at least five calibration points, were performed prior to ICVs, samples and blanks, and were within twelve hours of a BFB check standard. Relative Response Factors (RRF) and Percent Relative Standard Deviations (%RSD) were calculated for each analyte and surrogate. The minimum RRF and %RSD for target analytes were within control limits as stated in Table 4 of the EPA *National Functional Guidelines for Superfund Organic Methods Review*, January 2017. However, a *Q flag was noted for bromomethane and iodomethane for ICAL 16379 and all RRFs shown were not used in the %RSD calculation. Results for these analytes are considered estimated; however, only trip blank data is affected.

Initial Calibration Verification

A second source initial calibration verification was analyzed after the calibrations. The RRF for target analytes and surrogate analytes were generally above minimums and below the maximum %D as presented in the CLP Guidance. For the initial calibration verification associated with ICAL 16326 was outside of the control limit for chloromethane, bromomethane, and cis-1,3-dichloropropene. Groundwater results for wells MW-1I, MW-1S, MW-3I, and MW-4S were not detected for chloromethane, bromomethane, and cis-1,3-dichloropropene and results are 'UJ' flagged.

Continuing Calibration Verification

Continuing calibration verifications (CCVs) were evaluated to determine instrument performance and calibration validity during each analytical run. Continuing calibration verification standards were analyzed at the beginning of each analytical run for environmental samples. Closing CCVs were not analyzed per EPA Method 8260C.

The RRF for target analytes and surrogate analytes were generally above minimums and below the maximum %D as presented in the CLP Guidance. For the continuing calibration verification analyzed on 12/20/2019 at 16:47 and associated with ICAL 16326, dichlorodifluoromethane, chloromethane, vinyl chloride, and bromomethane were out of the maximum %D as presented in the CLP guidance. Groundwater results for wells MW-1I, MW-1S, MW-3I, and MW-4S were not detected for chloromethane, bromomethane, and cis-1,3-dichloropropene and results are 'UJ' flagged.

Blanks

Two method blanks (one per analytical batch), one field blank, and one trip blank were analyzed by EPA Method 8260C to assess possible contamination from the laboratory or the field. There were no detections of qualifier-ion confirmed target analytes in any blanks associated with this SDG.

Surrogates

The percent recoveries of surrogate compounds were evaluated to determine method and instrument performance. Surrogate recoveries for environmental and quality control samples were within laboratory control limits. Raw data was checked for calculation and transcription errors and none were found.

Laboratory Control Sample

Laboratory control sample (LCS) and laboratory control sample duplicates (LCSDs) were analyzed at a rate of one per analytical batch. The percent recoveries and %RPDs for target analytes were within laboratory-defined control limits, with the following exceptions.

For analytical batch WG1323788, target analytes chloromethane, bromomethane, vinyl chloride, and chloroethane were recovered above the upper control limit. This LCS and LCSD are associated with groundwater results for wells MW-1I, MW-1S, MW-3I, and MW-4S. Detected results are 'J+' flagged as estimated values that may be biased high; not detected results are not flagged.

For analytical batch WG1324030, the target analyte 2,2-dichloropropane was recovered above the upper control limit for the LCSD and the %RPD exceeded the control limit. The associated sample included in this analytical batch was the trip blank, which was not detected for 2.2-dichloropropane. No data was flagged.

Matrix Spike/Matrix Spike Duplicate

One matrix spike (MS) and matrix spike duplicate (MSD) were analyzed for analytical batch WG1323788. This MS and MSD used groundwater collected from well MW-4S as the source. The recovery of target analytes was outside of the laboratory-defined control limits for chloromethane, vinyl chloride, chloroethane, and dichlorodifluoromethane. Additionally, the RPD for chloromethane exceeded the control limit. The matrix source (MW-4S) was not detected for chloromethane, chloroethane, and dichlorodifluoromethane; therefore, no data was flagged for these results. The vinyl chloride result was previously flagged with 'J+' for MW-4S due to a high recovery in the LCS/LCSD. This flag will remain.

Field Duplicate

One field duplicate was collected from well MW-1S. Detected results greater than five times the reporting limit were controlled using a %RPD maximum of 30 percent. Results were within this control limit.

Internal Standard

All required internal standards were added to samples, blank samples and quality control samples at the same specified concentration to monitor system performance and quantify target analytes. Raw data was checked against acceptance criteria for retention times and area response. Retention times did not differ more than 10 seconds from the check standard (beginning calibration check verification). Area responses were within 50-200% of the check standard.

Target Analyte Identification

Target analyte detections are confirmed by ion fragments and retention times. Raw data was evaluated based on relative intensities (±20% from the check standard) and the relative retention time (RRT; within ±0.06 retention time

units from the check standard). lons and retention times were generally within these control limits, with the following exceptions.

For groundwater collected from well MW-3I, cis-1,2-dichloroethene and trichloroethene were detected between the minimum reporting limit and the method detection limit. The secondary ion intensities were below the lower control limit; however, the tertiary ions were within the $\pm 20\%$ control limit and the analyte peaks were within the RRT control limit of ± 0.06 retention time units. Based on the tertiary ion relative intensities and the retention times, the cis-1,2-dichloroethene and trichloroethene results are considered to be reportable. Failures associated with the secondary ion intensities are most likely due to analyte concentrations being below the reporting limit.

For groundwater collected from well MW-4S, cis-1,2-dichloroethene was detected between the minimum reporting limit and the method detection limit. The secondary ion intensity was below the lower control limit; however, the tertiary ion was within the $\pm 20\%$ control limit and the analyte peak was within the RRT control limit of ± 0.06 retention time units. Based on the tertiary ion relative intensity and the retention time, the cis-1,2-dichlroethene result is considered to be reportable. Failures associated with the secondary ion intensity is most likely due to analyte concentrations being below the reporting limit.

For groundwater collected from well MW-1S, acetone was detected between the minimum reporting limit and the method detection limit. The secondary ion intensity was below the lower control limit; however, the analyte peak was within the RRT control limit of ±0.06 retention time units. Failures associated with the secondary ion abundance are most likely due to analyte concentrations being below the reporting limit and the analyte results is still considered to be reportable. Trans-1,2-dichloroethene was also detected between the minimum reporting limit and the method detection limit. The tertiary ion relative intensity was outside of the control limit; however, the retention time was within the control limit. The tertiary ion failure is associated with the trace detection of trans-1,2-dichloroethene and results are reportable. Additionally, cis-1,2-dichlorothene was detected above the reporting limit but the secondary ion relative abundance was outside of the control limit. The result is considered reportable based on the retention time of the peak and analyte mass spectra compared to the reference spectra.

For groundwater collected from well MW-4S, the secondary ion abundance for cis-1,2-dichloroethene was outside of the ±20% range. However, the tertiary ion abundance and retention time were within the control limits and the analyte mass spectra was similar to the reference spectra. The result is considered reportable as cis-1,2-dichloroethene.

Target Analyte Quantitation and Reported Contract Required Quantitation Limits

Results for positively identified analytes and method reporting limits were calculated correctly by the laboratory and adjusted based on initial sample volumes. Internal standards based on the ICAL were used for quantitation of analytes in samples and quality control samples. Primary ion fragments used to identify analytes and mean RRF were the same as the ICAL.

2.1.2 Metals

Preservation and Holding Time

Groundwater samples were received by the laboratory with nitric acid (HNO₃) preservative. The pH of the samples was confirmed by the laboratory to be less than two (<2). Samples were prepared and analyzed within four days of sampling. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

Target analytes were calibrated using a two-point calibration curve. The initial and continuing calibration verification standards were within 10% of their true values.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Results for ICB and CCB check samples were within control limits.

One method blank was analyzed for analytical batch WG1323231. Manganese was detected between the method detection limit and the minimum reporting limit. The associated environmental samples were either not detected or manganese detections were greater than ten times the method blank concentration.

One field blank was collected and analyzed with groundwater samples collected on 12/16/2020. Iron was detected in the field blank above the minimum reporting limit. Groundwater sample concentrations for iron were greater than ten times the field blank concentration; therefore, potential contamination from the field is not considered to have significant influence on groundwater sample concentrations.

Interference Check Standard

The ICSAB and ICSA check standards were within 20% of the true value and ND values were no greater than ±RL.

Laboratory Control Sample

Target analyte recoveries were within ±20% of true values.

Matrix Spike/Matrix Spike Duplicate

One MS and MSD were analyzed for analytical batch WG1323231. Groundwater collected from well MW-4S was used as the source sample. The recoveries of chromium and manganese were below the lower control limit and a post-digestion spike was utilized and was within acceptable criteria. Per CLP Guidance the detected manganese result for well MW-4S is 'J' flagged as an estimated value; the not detected result for chromium is 'UJ' flagged.

Field Duplicate

One field duplicate was collected from well MW-1S. Detected results greater than five times the reporting limit were controlled using a %RPD maximum of 30 percent. Results were within this control limit.

2.1.3 Chloride

Preservation and Holding Time

Groundwater samples were received by the laboratory without preservative per the analytical method. Samples were prepared and analyzed within four days of collection and within the 28-day holding time. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

Chloride was calibrated using an eight-point calibration curve. The correlation coefficient (r²) of the calibration curve was 0.999. The initial and continuing calibration verification standards were within 10% of their true values. Continuing calibration verification standards were performed every 10 samples.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Trace detections of chloride were found in ICB and CCB samples.

One method blank was analyzed for analytical batch WG1323406. Chloride was detected in the method blank at a similar concentration to the ICB and CCB samples. Laboratory contamination is suspected; however, the associated groundwater sample concentrations were greater than ten times the method blank concentration. Laboratory contamination is not suspected to have significantly influenced groundwater sample concentrations.

One field blank was collected and analyzed with groundwater samples collected on 12/16/2020. Chloride was detected in the field blank between the method detection limit and the minimum reporting limit. The concentration of chloride in the field blank was similar to concentrations found in the ICB, CCB, and method blank; therefore, this contamination is considered to be laboratory-based.

Laboratory Control Sample

One LCS was analyzed for analytical batch WG1323406 and the result was within $\pm 20\%$ of the true value.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed for analytical batch WG1323406 and groundwater collected from well MW-4S was used as the source sample. The chloride recovery was within $\pm 40\%$ of the true value.

Laboratory Duplicate

One laboratory duplicate was analyzed for analytical batch WG1323406 and groundwater collected from well MW-4S was used as the source sample. The chloride RPD was less than the control limit of 7 percent.

Field Duplicate

One field duplicate was collected from well MW-1S. The chloride results were within the 30 percent RPD control limit.

2.1.4 TOC

Preservation and Holding Time

Groundwater samples were received by the laboratory preserved with sulfuric acid (H_2SO_4) to a pH less than 2. Samples were prepared and analyzed within four days of collection and within the 28-day holding time. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

TOC was calibrated using a five-point calibration curve. The correlation coefficient (r^2) of the calibration curve was 0.999. The initial and continuing calibration verification standards were within 10% of their true values.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Trace detections of TOC were below method detection limits.

Two method blanks were analyzed; one for each analytical batch (WG1322838 and WG1323069). TOC was not

detected above detection limits.

One field blank was collected and analyzed with groundwater samples collected on 12/16/2020. TOC was detected between the method detection limit and minimum reporting limit and may indicate that contamination was present during sampling. Detected results less than ten times the field blank concentration are 'J+' flagged.

Target Analyte Quantitation

The TOC chromatogram for groundwater collected from well MW-3I had an abnormal peak shape that may indicate that an interferent is contributing to the TOC concentration. The TOC result for well MW-3I should be considered estimated and was previously flagged as 'J+' due to field blank contamination.

Laboratory Control Sample

One LCS was analyzed per analytical batch (WG1322838 and WG1323069). TOC results were within $\pm 10\%$ of the true value.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed per analytical batch (WG1322838 and WG1323069). Groundwater collected from wells MW-4S and MW-1S was used as the source matrix. The TOC recovery was within $\pm 20\%$ of the true value.

Laboratory Duplicate

One laboratory duplicate was analyzed for both analytical batches WG1322838 and WG1323069. Groundwater collected from wells MW-4S and MW-1S was used as the source matrix. The TOC RPDs were less than the control limit of 20 percent.

Field Duplicate

One field duplicate was collected from well MW-1S. The TOC results were within the 30 percent RPD control limit.

2.2 SDG L1961700

Data validation and review was conducted for groundwater samples within SDG L1961700 in accordance with the EPA National Functional Guidelines for Superfund Organic and Inorganic Methods Review, January 2017, and NYSDEC Analytical Services Protocol. The SDG included six groundwater samples to be analyzed for VOCs by EPA Method 8260C, metals by EPA 6010D, TOC by EPA 9060A, and chloride by SM 4500-CI-E. The groundwater samples are listed below.

SDG ID	Sample ID	Matrix	Sample Date	Sample Time
L1961700-01	MW-2S	Groundwater	December 26, 2019	10:35
L1961700-02	MW-21	Groundwater	December 26, 2019	11:35
L1961700-03	MW-2D	Groundwater	December 26, 2019	12:35
L1961700-04	MW-1D	Groundwater	December 26, 2019	09:45

L1961700-05	MW-7S	Groundwater	December 26, 2019	13:45
L1961700-06	MW-7I	Groundwater	December 26, 2019	14:45

Samples were received within twenty-four hours of sampling by the analytical laboratory, Alpha Analytical. As indicated by the analytical laboratory sample delivery group summary: the cooler temperature upon receipt was 3.4°C, custody seals were not utilized, and containers were accurately labeled and reflected the chain of custody. Headspace in volatile organic analysis (VOA) water containers was not noted and samples are assumed to be within compliance.

2.2.1 VOCs

Holding Times

Samples were received below 6°C and were analyzed within the method holding time limit of 14 days for preserved water without headspace. Analysis for VOCs was performed within four days from sample collection. Groundwater samples were preserved with hydrochloric acid (HCl) to a pH<2, which was verified by the laboratory after analysis.

Instrument Performance Check

Bromofluorobenzene (BFB) was evaluated for mass spectra requirements and frequency to ensure adequate instrument performance. Two sequences and subsequently two BFB standards were analyzed for samples included in SDG L1961700. This includes one calibration sequence and one environmental sample sequence. BFB tune checks were completed less than 12 hours before the final sample injection. All BFB tunes were within instrument and CLP quidance requirements.

Initial Calibration

One initial calibration (ICAL16379) was used to quantitate VOC data for SDG L1961700.

The calibration curve included at least five calibration points, were performed prior to ICVs, samples and blanks, and were within twelve hours of a BFB check standard. Relative Response Factors (RRF) and Percent Relative Standard Deviations (%RSD) were calculated for each analyte and surrogate. The minimum RRF and %RSD for target analytes were within control limits as stated in Table 4 of the EPA *National Functional Guidelines for Superfund Organic Methods Review*, January 2017. However, a *Q flag was noted for bromomethane and iodomethane for ICAL 16379 and all RRFs shown were not used in the %RSD calculation. Results for these analytes are considered estimated and the not detected values are 'UJ' flagged.

Initial Calibration Verification

A second source initial calibration verification was analyzed after calibration. The RRF for target analytes and surrogate analytes were above minimums and below the maximum %D as presented in the CLP Guidance.

Continuing Calibration Verification

Continuing calibration verifications (CCVs) were evaluated to determine instrument performance and calibration

validity during each analytical run. Continuing calibration verification standards were analyzed at the beginning of each analytical run for environmental samples. Closing CCVs were not analyzed per EPA Method 8260C.

The RRF for target analytes and surrogate analytes were generally above minimums and below the maximum %D as presented in the CLP Guidance. However, bromomethane was outside of the maximum %D as presented in the CLP guidance. Groundwater samples were not detected for bromomethane and results are 'UJ' flagged.

Blanks

One method blank was analyzed for analytical batch WG1325839. There were no detections of qualifier-ion confirmed target analytes in the method blank.

Surrogates

The percent recoveries of surrogate compounds were evaluated to determine method and instrument performance. Surrogate recoveries for environmental and quality control samples were within laboratory control limits. Raw data was checked for calculation and transcription errors and none were found.

Laboratory Control Sample

One laboratory control sample (LCS) and one laboratory control sample duplicates (LCSDs) were analyzed for analytical batch WG1325839. The percent recoveries and %RPDs for target analytes were within laboratory-defined control limits, with the following exceptions.

Bromomethane was recovered below the lower control limit. The not detected results are 'UJ' flagged.

Vinyl acetate was recovered above the upper control limit for the LCS. The not detected results were not flagged.

Matrix Spike/Matrix Spike Duplicate

MS/MSDs were not analyzed.

Field Duplicate

Field duplicates were not utilized. Laboratory precision is determined from the analytical batch LCS/LCSD.

Internal Standard

All required internal standards were added to samples, blank samples and quality control samples at the same specified concentration to monitor system performance and quantify target analytes. Raw data was checked against acceptance criteria for retention times and area response. Retention times did not differ more than 10 seconds from the check standard (beginning calibration check verification). Area responses were within 50-200% of the check standard.

Target Analyte Identification

Target analyte detections are confirmed by ion fragments and retention times. Raw data was evaluated based on relative intensities (±20% from the check standard) and the relative retention time (RRT; within ±0.06 retention time units from the check standard). Ions and retention times were generally within these control limits, with the following

exceptions.

For groundwater collected from well MW-2D, cis-1,2-dichloroethene was detected between the minimum reporting limit and the method detection limit. The secondary ion intensity was above the upper control limit; however, the tertiary ion was within the ±20% control limit and the analyte peaks were within the RRT control limit of ±0.06 retention time units. Based on the tertiary ion relative intensity, the retention time, and the mass spectra when compared to the reference standard, the cis-1,2-dichlroethene result is considered to be reportable. Failures associated with the secondary ion intensities are most likely due to analyte concentrations being below the reporting limit.

For groundwater collected from well MW-1D, the secondary ion abundance for cis-1,2-dichloroethene was outside of the ±20% range. However, the tertiary ion abundance and retention time were within the control limits and the analyte mass spectra was similar to the reference spectra. The result is considered reportable as cis-1,2-dichloroethene.

Target Analyte Quantitation and Reported Contract Required Quantitation Limits

Results for positively identified analytes and method reporting limits were calculated correctly by the laboratory and adjusted based on initial sample volumes. Internal standards based on the ICAL were used for quantitation of analytes in samples and quality control samples. Primary ion fragments used to identify analytes and mean RRF were the same as the ICAL.

2.2.2 Metals

Preservation and Holding Time

Groundwater samples were received by the laboratory with nitric acid (HNO₃) preservative. The pH of the samples was confirmed by the laboratory to be less than two (<2). Samples were prepared and analyzed within five days of sampling. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

Target analytes were calibrated using a two-point calibration curve. The initial and continuing calibration verification standards were within 10% of their true values.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Results for ICB and CCB check samples were within control limits for target analytes.

One method blank was analyzed for analytical batch WG1325823 and target analytes were not detected.

Interference Check Standard

The ICSAB and ICSA check standards were within 20% of the true value and ND values were no greater than ±RL

Laboratory Control Sample

Target analyte recoveries were within $\pm 20\%$ of true values.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed for analytical batch WG1325823. Groundwater collected from well MW-2S was used as the

source sample. The recovery of iron was below the lower control limit; however, the sample concentrations was greater than four times the spiked concentration. Results are not controlled.

Field Duplicate

A field duplicate was not utilized for this SDG.

2.2.3 Chloride

Preservation and Holding Time

Groundwater samples were received by the laboratory without preservative per the analytical method. Samples were prepared and analyzed within four days of collection and within the 28-day holding time. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

Chloride was calibrated using an eight-point calibration curve. The correlation coefficient (r^2) of the calibration curve was 0.999. The initial and continuing calibration verification standards were within 10% of their true values. Continuing calibration verification standards were performed every 10 samples.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Trace detections of chloride were found in the ICB and CCB samples.

One method blank was analyzed for analytical batch WG1325855. Chloride was detected in the method blank at a similar concentration to the ICB and CCB samples. Laboratory contamination is suspected; however, the associated groundwater sample concentrations were greater than ten times the method blank concentration. Laboratory contamination is not suspected to have significantly influenced groundwater sample concentrations.

Laboratory Control Sample

One LCS was analyzed for analytical batch WG1325855 and the result was within $\pm 20\%$ of the true value.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed for analytical batch WG1325855 and groundwater from another SDG was used as the source sample. The chloride recovery was within $\pm 40\%$ of the true value.

Laboratory Duplicate

One laboratory duplicate was analyzed for analytical batch WG1325855 and groundwater from another SDG was used as the source sample. The chloride RPD was less than the control limit of 7 percent.

Field Duplicate

A field duplicate was not utilized. Laboratory precision was determined from the laboratory duplicate.

2.2.4 TOC

Preservation and Holding Time

Groundwater samples were received by the laboratory preserved with sulfuric acid (H_2SO_4) to a pH less than 2. Samples were prepared and analyzed within four days of collection and within the 28-day holding time. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

TOC was calibrated using a five-point calibration curve. The correlation coefficient (r²) of the calibration curve was greater than 0.999. The initial and continuing calibration verification standards were within 10% of their true values.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Trace detections of TOC were below method detection limits.

One method blank was analyzed for analytical batch WG1325643 and TOC was not detected above the detection limits.

Target Analyte Quantitation

The TOC chromatogram for groundwater collected from well MW-7S had an abnormal peak shape that may indicate that an interferent is contributing to the TOC concentration. The TOC result for well MW-3I should be considered estimated and is 'J' flagged.

Laboratory Control Sample

One LCS was analyzed and the TOC result was within ±10% of the true value.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed, which used a groundwater sample from another SDG as the source matrix. The TOC recovery was within ±20% of the true value.

Laboratory Duplicate

One laboratory duplicate was analyzed for analytical batch WG1325643 and groundwater from another SDG was used as the matrix source sample. The TOC RPD was less than the control limit of 20 percent.

Field Duplicate

A field duplicate was not utilized. Laboratory precision was determined from the laboratory duplicate.

2.3 SDG L1961789

Data validation and review was conducted for groundwater samples within SDG L1961789 in accordance with the EPA National Functional Guidelines for Superfund Organic and Inorganic Methods Review, January 2017, and NYSDEC Analytical Services Protocol. The SDG included five groundwater samples to be analyzed for VOCs by EPA Method 8260C, metals by EPA 6010D, TOC by EPA 9060A, and chloride by SM 4500-Cl-E. The groundwater samples are listed below.

SDG ID	Sample ID	Matrix	Sample Date	Sample Time
L1961789-01	MW-4I	Groundwater	December 27, 2019	12:55
L1961789-02	MW-P1	Groundwater	December 27, 2019	12:05
L1961789-03	MW-P2	Groundwater	December 27, 2019	10:50
L1961789-04	MW-3D	Groundwater	December 27, 2019	09:35
L1961789-05	MW-3S	Groundwater	December 27, 2019	08:40

Samples were received within twenty-four hours of sampling by the analytical laboratory, Alpha Analytical. As indicated by the analytical laboratory sample delivery group summary: the cooler temperature upon receipt was 2.2°C, custody seals were not utilized, and containers were accurately labeled and reflected the chain of custody. Headspace in volatile organic analysis (VOA) water containers was not noted and samples are assumed to be within compliance.

2.3.1 VOCs

Holding Times

Samples were received below 6° C and were analyzed within the method holding time limit of 14 days for preserved water without headspace. Analysis for VOCs was performed within four days from sample collection. Groundwater samples were preserved with hydrochloric acid (HCl) to a pH<2, which was verified by the laboratory after analysis.

Instrument Performance Check

Bromofluorobenzene (BFB) was evaluated for mass spectra requirements and frequency to ensure adequate instrument performance. Two sequences and subsequently two BFB standards were analyzed for samples included in SDG L1961789. This includes one calibration sequence and one environmental sample sequence. BFB tune checks were completed less than 12 hours before the final sample injection. All BFB tunes were within instrument and CLP guidance requirements.

Initial Calibration

One initial calibration (ICAL16377) was used to quantitate VOC data for SDG L1961789.

The calibration curve included at least five calibration points, were performed prior to ICVs, samples and blanks, and were within twelve hours of a BFB check standard. Relative Response Factors (RRF) and Percent Relative Standard Deviations (%RSD) were calculated for each analyte and surrogate. The minimum RRF and %RSD for target analytes were within control limits as stated in Table 4 of the EPA *National Functional Guidelines for Superfund Organic Methods Review*, January 2017.

Initial Calibration Verification

A second source initial calibration verification was analyzed after calibration. The RRF for target analytes and surrogate analytes were above minimums and below the maximum %D as presented in the CLP Guidance.

Continuing Calibration Verification

Continuing calibration verifications (CCVs) were evaluated to determine instrument performance and calibration validity during each analytical run. Continuing calibration verification standards were analyzed at the beginning of each analytical run for environmental samples. Closing CCVs were not analyzed per EPA Method 8260C.

The RRF for target analytes and surrogate analytes were above minimums and below the maximum %D as presented in the CLP Guidance.

Blanks

One method blank was analyzed for analytical batch WG1326239. There were no detections of qualifier-ion confirmed target analytes in the method blank.

Surrogates

The percent recoveries of surrogate compounds were evaluated to determine method and instrument performance. Surrogate recoveries for environmental and quality control samples were within laboratory control limits. Raw data was checked for calculation and transcription errors and none were found.

Laboratory Control Sample

One laboratory control sample (LCS) and one laboratory control sample duplicate (LCSD) were analyzed for analytical batch WG1326239. The percent recoveries and %RPDs for target analytes were within laboratory-defined control limits, with the following exceptions.

Vinyl acetate was recovered above the upper control limit for the LCS and LCSD. The associated groundwater results were not detected for vinyl acetate and results were not flagged.

Matrix Spike/Matrix Spike Duplicate

MS/MSDs were not analyzed.

Field Duplicate

Field duplicates were not utilized. Laboratory precision is determined from the analytical batch LCS/LCSD.

Internal Standard

All required internal standards were added to samples, blank samples and quality control samples at the same specified concentration to monitor system performance and quantify target analytes. Raw data was checked against acceptance criteria for retention times and area response. Retention times did not differ more than 10 seconds from the check standard (beginning calibration check verification). Area responses were within 50-200% of the check standard.

Target Analyte Identification

Target analyte detections are confirmed by ion fragments and retention times. Raw data was evaluated based on relative intensities ($\pm 20\%$ from the check standard) and the relative retention time (RRT; within ± 0.06 retention time units from the check standard). lons and retention times were generally within these control limits.

Target Analyte Quantitation and Reported Contract Required Quantitation Limits

Results for positively identified analytes and method reporting limits were calculated correctly by the laboratory and adjusted based on initial sample volumes. Internal standards based on the ICAL were used for quantitation of analytes in samples and quality control samples. Primary ion fragments used to identify analytes and mean RRF were the same as the ICAL.

2.3.2 Metals

Preservation and Holding Time

Groundwater samples were received by the laboratory with nitric acid (HNO₃) preservative. The pH of the samples was confirmed by the laboratory to be less than two (<2). Samples were prepared and analyzed within six days of sampling. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

Target analytes were calibrated using a two-point calibration curve. The initial and continuing calibration verification standards were within 10% of their true values.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Results for ICB and CCB check samples were within control limits for target analytes.

One method blank was analyzed for analytical batch WG1326095and target analytes were not detected.

Interference Check Standard

The ICSAB and ICSA check standards were within 20% of the true value and ND values were no greater than ±RL.

Laboratory Control Sample

Target analyte recoveries were within ±20% of true values.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed for analytical batch WG1326095. Groundwater collected from well MW-4I was used as the source sample. Recoveries of target analytes were within ±25% of expected values.

Field Duplicate

A field duplicate was not utilized for this SDG.

2.3.3 Chloride

Preservation and Holding Time

Groundwater samples were received by the laboratory without preservative per the analytical method. Samples were

prepared and analyzed within three days of collection and within the 28-day holding time. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

Chloride was calibrated using an eight-point calibration curve. The correlation coefficient (r²) of the calibration curve was 0.999. The initial and continuing calibration verification standards were within 10% of their true values. Continuing calibration verification standards were performed every 10 samples.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the beginning and end of the sequence and every 10 samples. Trace detections of chloride were found in the ICB and CCB samples.

One method blank was analyzed for analytical batch WG1325855. Chloride was detected in the method blank at a similar concentration to the ICB and CCB samples. Laboratory contamination is suspected; however, the associated groundwater sample concentrations were greater than ten times the method blank concentration. Laboratory contamination is not suspected to have significantly influenced groundwater sample concentrations.

Laboratory Control Sample

One LCS was analyzed for analytical batch WG1325855 and the result was within ±10% of the true value.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed for analytical batch WG1325855 and groundwater from another SDG was used as the source sample. The chloride recovery was within $\pm 40\%$ of the true value.

Laboratory Duplicate

One laboratory duplicate was analyzed for analytical batch WG1325855 and groundwater well MW-3D was used as the sourced matrix. The chloride RPD was less than the control limit of 7 percent.

Field Duplicate

A field duplicate was not utilized. Laboratory precision was determined from the laboratory duplicate.

2.3.4 TOC

Preservation and Holding Time

Groundwater samples were received by the laboratory preserved with sulfuric acid (H_2SO_4) to a pH less than 2. Samples were prepared and analyzed within six days of collection and within the 28-day holding time. Preparation and analysis dates that are reported were confirmed with raw data.

Calibration

TOC was calibrated using a five-point calibration curve. The correlation coefficient (r²) of the calibration curve was greater than 0.999. The initial and continuing calibration verification standards were within 10% of their true values.

Blanks

An ICB was analyzed after each calibration and a CCB was analyzed after every CCV, which was analyzed at the

beginning and end of the sequence and every 10 samples. Trace detections of TOC were below method detection limits.

One method blank was analyzed for analytical batch WG1326306 and TOC was not detected above the detection limits.

Target Analyte Quantitation

The TOC chromatogram for groundwater collected from wells MW-P2, MW-3D, and MW-3S had an abnormal peak shape that may indicate that an interferent is contributing to the TOC concentration. The TOC result for groundwater from these monitoring wells should be considered estimated and results are 'J' flagged.

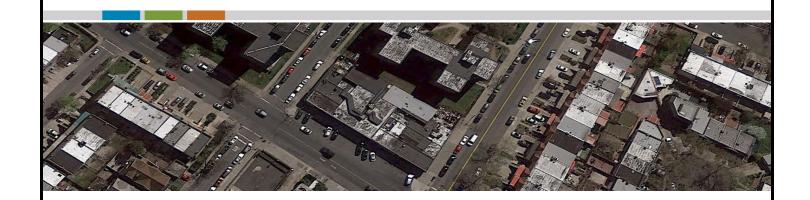
Laboratory Control Sample

One LCS was analyzed and the TOC result was within $\pm 10\%$ of the true value.

Matrix Spike/Matrix Spike Duplicate

One MS was analyzed, which used a groundwater from well MW-3D as the matrix source. The TOC recovery was within ±20% of the true value.

Laboratory Duplicate


One laboratory duplicate was analyzed for analytical batch WG1326306 and groundwater from well MW-P2 was used as the matrix source. The TOC RPD was less than the control limit of 20 percent.

Field Duplicate

A field duplicate was not utilized. Laboratory precision was determined from the laboratory duplicate.

APEX COMPANIES, LLC

Data Usability Summary Report For Emerging Contaminants

One Commerce Park Property 115 Wall Street Valhalla, New York 10595

PREPARED FOR:

Diamond Properties, LLC 330 North Bedford Road Suite 145 Mount Kisco, New York 10549

April 23, 2020

Apex Companies, LLC 120-D Wilbur Place Bohemia, New York 11716

Table of Contents

Sco	ope of Work1				
	cope of Work				
1.0		Analytical Laboratory1			
	1.1	Accreditation			
	1.2	Laboratory Data Packages1			
		Laboratory Analytical Methods1			
		1.3.1 1,4-Dioxane			
		1.3.2 PFAS			
	1.4	Data Qualification			
2.0	Data Validation				
	2.1	SDG L1960300			
		2.1.1 1,4-Dioxane			
		2.1.2 PFAS			

Data Usability Summary Report for Emerging Contaminant Sampling Event Site 360054 115 Wall Street, Valhalla, New York

Scope of Work

Environmental samples were collected from the One Commerce Park Site in Valhalla, New York. These samples consisted of groundwater which were collected in December 2019. Only environmental samples analyzed for perand polyfluorinated alkyl substances (PFAS) and 1,4-dioxane were evaluated using the DEC ASP Category B data deliverable for this Data Usability Summary Report. Analytical results were validated, and usability was determined using the following guidelines:

- NYSDEC Analytical Services Protocol (ASP);
- Guidelines for Sampling and Analysis of PFAS under NYSDEC's Part 375 Remedial Programs (January 2020);
- USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Validation, and;
- USEPA analytical methods.

1.0 Analytical Laboratory

Samples collected were analyzed by Alpha Analytical of Mansfield, Massachusetts. Alpha Analytical holds accreditation under New York state ID 11627 and the NELAC Institute (TNI) code TNI00262.

1.1 Accreditation

Alpha Analytical is accredited by New York state for the analysis of 1,4-dioxane by EPA Method 8270D-SIM. Alpha Analytical is accredited by New York state for PFAS by EPA Method 537.

1.2 Laboratory Data Packages

Laboratory data packages were complete and included cover pages, chain of custodies, sample log-in information, and case narratives. Raw data was included in data packages and was used in the validation process.

1.3 Laboratory Analytical Methods

Groundwater samples for this Data Usability Summary Report were reviewed for the analysis of 1,4-dioxane by EPA Method 8270D-SIM and PFAS by Isotope Dilution Method (formerly EPA Method 537 modified). Data validation for these analytical methods are included in Section 2.

1.3.1 1.4-Dioxane

Groundwater samples were analyzed by EPA Method 8270D-SIM. Data validation included review of requirements from EPA methods and recommendations from the EPA *National Functional Guidelines for Superfund Organic Methods Review*, January 2017 (CLP Guidance).

1.3.2 PFAS

Groundwater samples were analyzed by Isotope Dilution Method (formerly EPA 537 modified). Data was validated in accordance with *Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs* (NYSDEC, 2020). NYSDEC's guidelines were used for evaluation of data quality since the EPA does not have analytical methods or technical guidance for evaluating PFAS data when isotope dilution is used.

1.4 Data Qualification

Laboratory data may be qualified with the following flags:

- J The analyte result is an estimated value.
- **J-** The analyte result is an estimated value and may be biased low.
- **J+** The analyte result is an estimated value and may be biased high.
- **U** The analyte was analyzed for but was not detected over the laboratory detection limit.
- **UJ** The analyte was analyzed for but was not detected over the laboratory detection limit. Due to findings with data quality, the laboratory detection limit may be inaccurate and is an estimated value.
- **R** The analyte result is unusable due to data quality deficiencies.

2.0 Data Validation

The following subsections include data validation for individual Sample Delivery Groups (SDG). Each sample within the SDG was reviewed based on EPA method guidelines, CLP Guidance's and NYSDEC's ASP. Summaries of data validation findings and qualifier verification are included below.

2.1 SDG L1960300

Data validation and review was conducted for groundwater samples within SDG L1960300 in accordance with the EPA National Functional Guidelines for Superfund Organic Methods Review, January 2017, NYSDEC Analytical Services Protocol, and NYSDEC Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs. The SDG included four groundwater samples, one field blank, and one field duplicate to be analyzed for 1,4-dioxane by EPA Method 8270D-SIM and PFAS by Isotope Dilution Method. The groundwater samples are listed below.

SDG ID	Sample ID	Matrix	Sample Date	Sample Time
L1960300-01	Field Blank	Water	December 16, 2019	10:00
L1960300-02	MW-3I	Groundwater	December 16, 2019	11:30
L1960300-03	MW-4S	Groundwater	December 16, 2019	12:50
L1960300-04	MW-1S	Groundwater	December 16, 2019	14:10
L1960300-05	MW-1I	Groundwater	December 16, 2019	15:00
L1960300-06	DUP-121619	Groundwater	December 16, 2019	14:20

Samples were received by the analytical laboratory, Alpha Analytical. As indicated by the analytical laboratory sample delivery group summary: the cooler temperatures upon receipt were 4.2° C and 4.0° C, custody seals were not utilized, and containers were accurately labeled and reflected the chain of custody.

2.1.1 1,4-Dioxane

Preservation and Holding Times

Samples were received by the laboratory below 6°C, were extracted four days from sample collection and analyzed three days after extraction. Extraction dates and analysis dates from raw data were confirmed against reported dates.

GC/MS Instrument Performance Check

Decafluorotriphenylphosphine (DFTPP) mass spectra and mass listing was evaluated for ion abundance requirements and analysis frequency to ensure adequate instrument performance. Raw data was evaluated to ensure instrument tuning was within CLP requirements. DFTPP was analyzed at the beginning of each sequence and within 12 hours of the last sample injection. Raw data abundances and calculations were checked against tune reports. No discrepancies were found

Initial Calibration

Initial calibration was performed before ICV, samples and required blanks and within 12 hours of the DFTPP tune check. A minimum of five standards that ranged between 10 ppb and 10000 ppb were used to calibrate the instrumentation. The initial calibration summary report was checked for correct calculation of RRF, mean RRF and %RSD. The initial calibration summary report was generated from acquisition software. RRF and %RSD of target analytes were within CLP guidance.

Initial Calibration Verification

Initial calibration verification was performed after calibration and before any samples, quality control samples, blank analysis and continuing calibration verification. The ICV standard was prepared at 1000 ppb. The RRF and %D for target analytes were above minimum RRFs stated in CLP guidance.

Continuing Calibration Verification

The CCV was analyzed at the mid-point of the calibration curve at 1000 ppb. Only one CCV was included in raw data, which was analyzed at the beginning of the analytical sequence. RRF of analytes were compared to mean RRF from the initial calibration, all were within CLP control limits.

Blanks

One method blank and one field blank were extracted with the associated field samples. There were no detections of target analytes within the method blank or field blank. Chromatograms were also reviewed to ensure all peaks within the target analyte range were were identified.

Surrogates

The recoveries of the surrogate compound 1,4-dioxane-d8 were within the CLP recovery control limit of 40 to 110 percent. Each surrogate was accurately identified, as confirmed after raw data review of retention times and primary ion

Laboratory Control Sample/Laboratory Control Sample Duplicate

One laboratory control sample and laboratory control sample duplicate were extracted and analyzed with field samples. Percent recoveries and RPDs were within laboratory derived control limits.

Matrix Spike/Matrix Spike Duplicate

Matrix spike and matrix spike duplicate were prepared with groundwater collected from MW-4S. Percent recoveries and RPDs were within laboratory derived control limits.

Internal Standard

Internal standards were added to all samples, quality control samples and blanks. For quantitation of 1,4-dioxane, the internal standard 1,4-dichlorobenzene-d4 was used. Area and retention times for internal standards were within limits set by the check standard. The check standard used was the initial CCV. Raw data was compared to summary data pages and no discrepancies were found.

Target Analyte Quantitation and Reported Contract Require Quantitation Limit

Sample results and reporting limits were correctly calculated based on sample preparation initial and final volumes. Correct internal standards were used to quantitate target analytes. The same mean RRF and quantitation ions were used consistently.

2.1.2 PFAS

Preservation and Holding Times

Samples were received by the laboratory below 6° C, were extracted seven days from sample collection, and analyzed twenty-four (24) days after extraction. Extraction dates and analysis dates from raw data were confirmed against reported dates. The maximum holding time for PFAS extraction of non-potable water is 14 days from sample collections and 28 days from extraction to analysis, January, 2020. Sample extraction and analysis were within these holding times.

Sample Preparation

Each sample and associated QC batch samples were prepared using solid phase extraction (SPE).

Mass Calibration

Mass calibration data was not provided but is assumed to have met manufacturer guidelines.

PFAS Identification

Standards for both branched and linear isomers were used for PFHxS, PFOA, PFOS, N-MeFOSAA, and N-EtFOSAA. All other analytes were quantitated using linear standards only.

Initial Calibration

Isotopically labeled analogs were used for quantitation. If a labeled analog is not available, the closest extracted internal standard analyte was used for quantitation. For linear and quadratic fit calibrations, five and six standards must be used, respectively, and the coefficient of determination (R²) must be greater than 0.990. Response factors must have a percent relative standard deviation (%RSD) less than 20%.

For initial calibration 16305, the %RSDs for response factors for M2-4:2 FTS and M2-6:2 FTS were greater than 20%. M2-6:2 FTS is an extracted internal standard and associated with results for field samples. Recoveries for M2-6:2 FTS should be considered estimated.

For target analytes, the low-level standards were within 50-150% for analyte recoveries and mid-level standards were within 70-130%.

Initial and Continuing Calibration Verification

The laboratory control limits for the initial and continuing calibration verification is 70-130% for target analytes and 50-150% for isotopically labeled extracted internal standard analytes. The initial calibration verification associated with ICAL 16305 was within the acceptance criteria for target analytes.

Continuing calibration verification standards were analyzed at a frequency of one per ten field samples. Low-level and mid-level calibration verification standards were used. The acceptance limits for low-level standards was 50-150% for analyte recovery and 70-130% for mid-level calibration verification analyte recovery. Branched isomers were recovered below the lower control limit for CCVs I17217 and I17249 for PFOS and/or PFOA; however, summed concentrations of the branched and linear isomers were within range of the known spiked concentration (or true value). No data is flagged.

Method Blank

One method blank was analyzed for analytical batch WG1323894. PFHxA was detected at a concentration between the reporting limit and the method detection limit at 0.384 nanograms per liter (ng/L). The associated field samples

were generally greater than ten times the method blank concentration for PFHxA, with the exception of groundwater collected from wells MW-4S and MW-3I. A dilution was performed for well MW-3I prior to extraction; therefore, raw results were compared to the method blank. The concentration of PFHxA for wells MW-4S and MW-31 may be significantly influenced by laboratory contamination and the results are 'J+' flagged as estimated values with possible high bias.

Field Blank

One field blank was performed and analyzed with field samples collected on December 16, 2019. NMeFOSAA and NEtFOSAA were detected between the reporting limit and method detection limit at 0.618 ng/L and 0.716 ng/L, respectively. Groundwater samples collected from MW-3I and MW-1S also had similar concentrations of NMeFOSAA and/or NEtFOSAA that were less than ten times the concentration found in the field blank. These samples may have had some contribution from field contamination and results are 'J+' flagged as estimated values with possible high bias.

Field Duplicate

One field duplicate was collected from well MW-1S. Results greater than two times the reporting limit are controlled and must not exceed an RPD of 30%. Target analytes were within the 30% RPD control limit.

Laboratory Control Samples

The recovery and RPD for target analytes in the associated batch LCS/LCSD were within laboratory derived control limits.

Matrix Spike/Matrix Spike Duplicate

The source sample for the matrix spike and matrix spike duplicate was MW-4S. The recovery and RPD for target analytes in the associated batch were within laboratory derived control limits.

Extractable Internal Standard Analytes

Extractable internal standards (EIS) were generally within the 50-150% control limit for field samples. Exceptions include the following.

- Field blank: M8FOSA recovered below 50%.
- MW-3I: M8FOSA recovered below 50%.
- MW-4S: M2-6:2FTS and M2-6:2FTS recovered above 150%; and M8FOSA recovered below 50%.
- MW-1S: M2-6:2FTS recovered above 150%; and d3-NMeFOSAA and M8FOSA recovered below 50%.
- MW-11: M2-6:2FTS and M2-6:2FTS recovered above 150%; and M8FOSA recovered below 50%.
- Field duplicate: M2-6:2FTS and M2-6:2FTS recovered above 150%; and M8FOSA recovered below 50%.

These are known problematic analytes and native compounds are recovery corrected. No data was flagged.

Secondary Ion Transition Monitoring

Ion ratios were within laboratory derived criteria.

Signal to Noise Ratio

Signal to noise data was not provided; however, it is assumed that all signal to noise ratios were greater than 3:1.

Peak Integrations

Peak integrations were reviewed and were consistent with standards.