

Write or Copy/Paste Document Title In This Space

DO NOT PHOTOCOPY. PRINT FROM PDF VERSION ONLY.

ALTA Environmental Corp. 121 Broadway, Colchester, Connecticut 06415 Phone: (860) 537-2582, Fax: (860) 537-8374

12 January 2022 File No. 1064-01

Finch's Country Store 4 Bedford-Banksville Road North Castle, NY 10506

Attention: Mr. Michael Gjini

Re: September 2021 Water Supply Well and Water Treatment System Monitoring Results

Dear Mr. Gjini:

The water supply serving Finch's Country Store is currently treated with two in-line sediment filters and a Hallett ultraviolet (UV) disinfection system, referred to herein as your treatment system. Please note that the treatment system serving the store appears to be designed to remove particulate matter and eliminate bacteria from the water supply. This type of treatment system is not designed to remove volatile organic compounds (VOCs). As such, water quality samples collected from before or after the treatment system should be considered as representative of the quality of the store's drinking water supply with respect to VOCs.

On 22 September 2021, ALTA Environmental Corporation (ALTA) personnel collected a sample of the untreated ("Raw") water from the store after letting the tap run for approximately 28 minutes. A copy of ALTA's Residential Sampling Record Form is attached. The water sample was placed into laboratory-provided sample containers, which contained the appropriate preservative for samples intended for VOCs analysis. The sample was placed on ice and kept chilled until delivery to a laboratory that is accredited pursuant to New York State Department of Health (NYS DOH) Environmental Laboratory Accreditation Program for the requested analyses. Specifically, the raw water sample was submitted to Phoenix Environmental Laboratories, Inc. (Phoenix, NY Registration #11301) for analysis for VOCs by Environmental Protection Agency (EPA) Method 524. 2. The testing was performed in general conformance with the Connecticut Department of Energy & Environmental Protection (DEEP) "*Reasonable Confidence Protocols*" (RCP), although the requested analyses are not technically RCP methods. The laboratory report is attached along with ALTA's Data Quality Assurance/Data Usability Evaluation (DQA/DUE) forms. Laboratory results are summarized below:

Sample Location	Compound	Concentration (µg/l)	NYS Regulatory Limit (µg/l)
Raw (untreated)	cis-1,2-dichloroethene (cis-1,2-DCE)	0.57	5

Notes:

Raw – untreated water sample collected before the UV disinfection system and sediment filters $(\mu g/l)$ – micrograms per liter

The concentration of cis-1,2-DCE detected in the sample of the untreated ("Raw") water from before the treatment system is below the NYS DOH Part 5 Maximum Contaminant Level (MCL) Drinking Water Standards

Finch's Country Store 12 January 2021 Page 2

(DWS) for these compounds, and generally consistent with past testing results. Part 5 does not have compound-specific DWS for cis-1,2-DCE, but this compound falls under the definition of a "Principal Organic Compound" (POC) for which the DWS is 5 μ g/l for each individual compound. No further action other than routine monitoring is warranted at this time, which will be scheduled for March 2022.

If you have questions regarding these results, please do not hesitate to contact the undersigned.

Sincerely yours, ALTA Environmental Corporation

Beran Stean

Brian A. Straub Staff Scientist

nles

Evan J. Glass President

Attachments:

ALTA's Residential Sampling Record Form Phoenix Report GCJ34944, with ALTA DQA/DUE Forms

c: David A. Crosby, NYS Department of Environmental Conservation George Momberger, NYS Department of Environmental Conservation Carlos Torres, Westchester County Department of Health Guy Sutton, Esq.

L1064 Finch (Sep 2021)

FILE NO.	1064	C. Gull		CLIENT:	MISC		
AMPLING DATE:				PROJECT:	Quant	TAL ANIAL	ENG W
	9/22/21			PROJECT: 12	es vacava	The prenk	SA AMOL
IELD PERSONNEL:	BSMACB	-		LOCATION: 4	1 ASAMAR	n-Blakalla	Snerp
WBATH		<20 - 20 -	30 - 40 - 50 - 60 -	70 - 80 - 90 - >90	RISOT	The NY	10010
unny	Overcast Dry		WINDC	ONDITIONS		ACE CONDITIONS	
artly cloudy	Heavy Clouds · Slightly humi	d	None to Little	Mod. to Heavy	Ery	Standing Water	
ain (Light/Heavy)	Mod. humid		Little to Mod,		Lamp	Snow: inches	
leet (Light/Heavy)	Very humid		Steady	Variable	Wet	Other:	
now (Light/Heavy)			Direction From:				- <u>-</u>
		WATER S.	AMPLING INFO	RMATION (a)			•
SAMPLE LOCATION/	SAMPLING LOCATI	ON/	SAMPLED	ESCRIPTION/	SAMPLING	· · · ·	
DESIGNATION	FLOWRATE & TIM	ES	COM	MENTS	DEVICE	· · · CONTAIN	ERS
4 BB			12 Ms	SUME	Glaveio		
	h	TIME		SSIME	CLOVED	Varis	
Reno	Purging Started:	1050	-	IMNE	MAND	VOL	
MW	Purging Stopped:	1118					
	Sample:	1118					
		TIME	-				
	Purging Started:	-	- ·				• •
	Purging Stopped:		-				
•	Sample:						
, B							
	Durania o Ottanta da	TIME			1.00		
1 N. X	Purging Started: Purging Stopped:		- · · · ·				3×
	Sample:				1 × 2 (1)		
	- Dampio,	···· ····		· · ·	· · · ·	6. 1	
		TIME					
	Purging Started:	THAT	-				
	Purging Stopped:	2	-				
	Sample;		-				
			·	·		······································	
×		TIME					
	Purging Started:		· · · · ·				
1	Purging Stopped:					×	
	Sample:						
	······································	TIME				Xx	2
	Purging Started:						
	Purging Stopped:						
MARKS:	Sample:						
CILINA	Cellectes Ar KING Flem KING Flem KIJ (KSK MILES evices are cleaned using the following to inse, distilled or dejonized water rinse,	00	21 IN	BASEM	EAT		
SAMAG		, .			0	Maline	
- Has IRK	VING Mem	SM	10 850	MONT !	nuch	rensing-	1.1
olo un		1 .		1	A 1 1A	acidant	

Friday, October 01, 2021

Attn: Brian Straub ALTA Environmental 121 Broadway Colchester, CT 06415

Project ID: NSSC C10641 SDG ID: GCJ34944 Sample ID#s: CJ34944

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Telephone (860) 645-1102 Fax (360) 645-0823

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

October 01, 2021

SDG I.D.: GCJ34944

524 Analysis:

1,2,3 Trichloropropane does not meet NY TOGS GA criteria, this compound is analyzed by GC/ECD method 504 or 8011 to achieve this criteria.

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

October 01, 2021

SDG I.D.: GCJ34944

Project ID: NSSC C10641

Client Id	Lab Id	Matrix
4 BB RAW	CJ34944	DRINKING WATER

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

FOR:

Analysis Report

October 01, 2021

Attn: Brian Straub ALTA Environmental 121 Broadway Colchester, CT 06415

Sample Information		Custody Inform	nation	Date	Time
Matrix:	DRINKING WATER	Collected by:	BS	09/22/21	11:18
Location Code:	ALTAENV	Received by:	SW	09/22/21	17:11
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		Г. I	DI	enc in	00124044

Laboratory Data

SDG ID: GCJ34944 Phoenix ID: CJ34944

Project ID: NSSC C10641 Client ID: 4 BB RAW

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
raidilletei	Nesuit	FQL	Units	Dilution	Date/Time	Бу	I/elelelice	
Volatiles								
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,1,1-Trichloroethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,1,2-Trichloroethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,1,2-Trichlorotrifluoroethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	1
1,1-Dichloroethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,1-Dichloroethene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,1-Dichloropropene	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
1,2,3-Trichlorobenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,2,3-Trichloropropane	ND	0.25	ug/L.	1	09/27/21	HM	E524.2	
1,2,4-Trichlorobenzene	ND	0.50	ug/L	1	09/27/21	HM	E524,2	
1,2,4-Trimethylbenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,2-Dichlorobenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,2-Dichloroethane	ND	0.50	ug/L	. 1	09/27/21	НМ	E524.2	
1,2-Dichloropropane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,3,5-Trimethylbenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,3-Dichlorobenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,3-Dichloropropane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
1,4-Dichlorobenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
2,2-Dichloropropane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
2-Chlorotoluene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
4-Chlorotoluene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Benzene	ND	0,50	ug/L	1	09/27/21	HM	E524.2	
Bromobenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Bromochloromethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Bromodichloromethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	

Project ID: NSSC C10641 Client ID: 4 BE RAW

Phoenix I	I.D.:	CJ34944
-----------	-------	---------

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Bromoform	ND	0,50	ug/L	1	09/27/21	HM	E524,2	
Bromomethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Carbon tetrachloride	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Chlorobenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Chloroethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Chloroform	ND	0.50	ug/L	1	09/27/21	НМ	E524,2	
Chloromethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
cis-1,2-Dichloroethene	0.57	0.50	ug/L	1	09/27/21	HM	E524.2	
cis-1,3-Dichloropropen∋	ND	0.40	ug/L	1	09/27/21	HM	E524.2	
Dibromochloromethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Dibromomethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Dichlorodifluoromethane	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Ethylbenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Hexachlorobutadiene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Isopropylbenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
m&p-Xylene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Methyl t-butyl ether (MTBE)	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
Methylene chloride	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Naphthalene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
n-Butylbenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
n-Propylbenzene	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
o-Xylene	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
p-Isopropyltoluene	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
sec-Butylbenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Styrene	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
tert-Butylbenzene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Tetrachloroethene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Toluene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
Total 1,3-Dichloropropene	ND	0.40	ug/L	. 1	09/27/21	НМ	E524.2	1
Total Trihalomethanes	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
Total Xylenes	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1	09/27/21	HM	E524.2	
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	09/27/21	НМ	E524.2	
Trichloroethene	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
Trichlorofluoromethane	ND	0.50	ug/L	1	09/27/21	НМ	E524.2	
Vinyl chloride	ND	0,50	ug/L	1	09/27/21	НМ	E524.2	
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	95		%	1	09/27/21	НМ	70 - 130 %	
% Bromofluorobenzene	99		%	1	09/27/21	ΗM	70 - 130 %	
Volatile Library Search	Completed				09/30/21	HM.		

Project ID: NSSC C10641				Pł	noeni	x I.D.: CJ3494	4	
Client ID: 4 BB RAW					14.24° - 12			
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director October 01, 2021 Reviewed and Released by: Rashmi Makol, Project Manager

		1E		CLIENT ID				
VC		ANALYSIS DATA SHEET		4 BB F	AW			
Lab Name: Phoenix E	Environmental Labs		Client: ALTAENV					
Lab Code: Phoenix	Case No.:		SAS No.:	SDG No.:	GCJ34944			
Matrix:(soil/water) D	RINKING WATER		Lab Sample ID	: <u>CJ34944</u>				
Sample wt/vol:	5	(g/mL) <u>mL</u>	Lab File ID:	0927_19.D				
Level: (low/med)	<u></u>		Date Received	: 09/22/21				
% Moisture: not dec.	100		Date Analyzed	09/27/21				
GC Column:	RTX-VMS	ID: <u>0.18mm</u>	Dilution Factor		1			
Purge Volume:	(uL)		Soil Aliquot Vo	l (uL):	n,a.			
		CONCENTRATIC	N UNITS:					

0

Number TICs found:

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	- 1446			
de la companya de la				
	×			
				-

FORM I VOA-TIC

J - Used when estimating ε concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.
 N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 03045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

October 01, 2021		<u>Q</u>	A/QC Data				SDG I	.D.: (GCJ349	944	
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 593846 (ug/L), C	C Samp	le No: CJ34561 (CJ3	4944)								
Volatiles - Drinking Wate	r										
1,1,1,2-Tetrachloroethane	ND	0.50	103	105	1.9				70 - 130	30	
1,1,1-Trichloroethane	ND	0.50	103	106	2.9				70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	100	106	5.8				70 - 130	30	
1,1,2-Trichloroethane	ND	0.50	99	104	4.9	- C			70 - 130	30	
1,1-Dichloroethane	ND	0.50	101	103	2.0				70 - 130	30	
1,1-Dichloroethene	ND	0.50	95	99	4.1				70 - 130	30	
1,1-Dichloropropene	ND	0.40	100	103	3.0				70 - 130	30	
1,2,3-Trichlorobenzene	ND	0.50	100	107	6.3				70 - 130	30	
1,2,3-Trichloropropane	ND	0.50	106	110	3.7				70 - 130	30	
1,2,4-Trichlorobenzene	ND	0.50	99	102	3.0				70 - 130	30	
1,2,4-Trimethylbenzene	ND	0.50	98	101	3.0				70 - 130	30	
1,2-Dichlorobenzene	ND	0.50	100	104	3,9				70 - 130	30	
1,2-Dichloroethane	ND	0.50	103	107	3.3				70 - 130	30	
1,2-Dichloropropane	ND	0.50	97	103	6.0				70 - 130	30	
1,3,5-Trimethylbenzene	ND	0.50	100	103	3.0				70 - 130	30	
1,3-Dichlorobenzene	ND	0.50	100	103	3.0				70 - 130	30	
1,3-Dichloropropane	ND	0.50	101	107	5.8				70 - 130	30	
1,4-Dichlorobenzene	ND	0.50	98	102	4.0				70 - 130	30	
2,2-Dichloropropane	ND	0.50	105	106	0.9				70 - 130	30	
2-Chlorotoluene	ND	0.50	101	106	4.8		•		70 - 130	30	
4-Chlorotoluene	ND	0.50	100	105	4.9				70 - 130	30	
Benzene	ND	0.50	100	104	3,9				70 - 130	30	
Bromobenzene	ND	0.50	102	105	2,9				70 - 130	30	
Bromochloromethane	ND	0.50	99	103	4.0				70 - 130	30	
Bromodichloromethane	ND	0.50	101	104	2.9				70 - 130	30	
Bromoform	ND	0.50	103	109	5.7				70 - 130	30	
Bromomethane	ND	0.50	98	101	3.0				70 - 130	30	
Carbon tetrachloride	ND	0.50	120	123	2.5				70 - 130	30	
Chlorobenzene	ND	0.50	99	101	2,0				70 - 130	30	
Chlorcethane	ND	0.50	102	104	1.9				70 - 130	30	
Chlorcform	ND	0.50	103	106	2,9				70 - 130	30	
Chloromethane	ND	0.50	. 97	102	5.0				70 - 130	30	
cis-1,2-Dichloroethene	ND	0.50	97	102	5.0				70 - 130	30	
cis-1,3-Dichloropropene	ND	0.40	97	100	3.0				70 - 130	30	
Dibromochloromethane	ND	0,50	100	104	3.9				70 - 130	30	
Dibromomethane	ND	0.50	103	108	4.7				70 - 130	30	
Dichlorodifluoromethane	ND	0.50	105	108	2.8				70 - 130	30	
Ethylbenzene	ND	0.50	104	108	3.8				70 - 130	30	
Hexachlorobutadiene	ND	0,40	99	104	4.9				70 - 130	30	
lsopropylbenzene	ND	0.50	103	104	1.0				70 - 130	30	
m&p-Xylene	ND	0.50	105	107	1.9				70 - 130	30	

QA/QC Data

SDG I.D.: GCJ34944

Parameter	Blank	Bik RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Methyl t-butyl ether (MTBE)	ND	0.50	100	105	4.9			United	70 - 130	30	
Methylene chloride	ND	0.50	88	91	3.4				70 - 130	30	
Naphthalene	ND	0.50	99	105	5.9				70 - 130	30	
n-Butylbenzene	ND	0.50	103	106	2.9				70 - 130	30	
n-Propylbenzene	ND	0.50	102	105	2.9				70 - 130	30	
o-Xylene	ND	0.50	99	101	2.0				70 - 130	30	
p-lsopropyltoluene	ND	0.50	100	103	3.0				70 - 130	30	
sec-Butylbenzene	ND	0.50	100	102	2.0				70 - 130	30	
Styrene	ND	0.50	102	106	3.8				70 - 130	30	
tert-Butylbenzene	ND	0.50	98	101	3.0				70 - 130	30	
Tetrachloroethene	ND	0.50	98	101	3.0				70 - 130	30	
Toluene	ND	0.50	101	104	2.9				70 - 130	30	
trans-1,2-Dichloroethene	ND	0.50	97	99	2.0				70 - 130	30	
trans-1,3-Dichloropropene	ND	0.40	100	103	3.0				70 - 130	30	
Trichloroethene	ND	0.50	10C	102	2.0				70 - 130	30	
Trichlorofluoromethane	ND	0.50	103	107	3.8				70 - 130	30	4
Trichlorotrifluoroethane	ND	0.50	91	93	2.2				70 - 130	30	
Vinyl chloride	ND	0.50	99	106	6.8				70 - 130	30	
% 1,2-dichlorobenzene-d4	93	%	104	104	0.0				70 - 130	30	
% Bromofluorobenzene Comment:	96	%	102	101	1.0				70 - 130	30	

This batch consists of a blank, LCS and LCSD.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference LCS - Laboratory Control Sample LCSD - Laboratory Control Sample Duplicate MS - Matrix Spike MS Dup - Matrix Spike Duplicate NC - No Criteria Intf - Interference

Ulis ille

Phyllis/Shiller, Laboratory Director October 01, 2021

Friday, October 01, 2021 Criteria: NY: DW, GW State: NY		Sample Criteria Exceedances Report GCJ34944 - ALTAENV									
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units			
CJ34944	\$524WMR	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L			

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. **Project Number:**

Client: ALTA Environmental

Project Location: NSSC C10641

Laboratory Sample ID(s): CJ34944

Sampling Date(s): 9/22/2021

List RCP Methods Used (e.g., 8260, 8270, et cetera) None

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	☑ Yes □ No		
1A	Were the method specified preservation and holding time requirements met?	☑ Yes □ No		
18	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA		
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	☑ Yes □ No		
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	⊻ Yes □ No □ NA		
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	¥ Yes □ No		
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?	☑ Yes □ No □ Yes ☑ No		
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	🗌 Yes 🗹 No		
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	🗆 Yes 🗹 No		

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Sign	ature: Rashnin Makol	Position: Project Manager
Printed Name:	Rashmi Makol	Date: Friday, October 01, 2021
Nama of Labora	tory Phoenix Environmental Labs Inc.	

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

October 01, 2021

SDG I.D.: GCJ34944

SDG Comments

The client requested volatiles by 524.2. The RCP narrative is provided at the request of the client.

524 Analysis:

1,2,3 Trichloropropane does not meet the requested criteria, this compound is analyzed by GC/ECD method 504 or 8011 to achieve this criteria

VOA-524

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM21 09/27/21-1

Harry Mullin, Chemist 09/27/21

CJ34944 (1X)

Initial Calibration Evaluation (CHEM21/524_092321):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

524 Method Continuing Calibration Verification (CHEM21/0927_03-524_092321): Internal standard areas were within 70-130% of the initial calibration with the following exceptions: None. 100% of the target compounds met criteria. The following compounds did not meet minimum % deviations: None. The following compounds did not meet recommended response factors: None. The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 593846 (CJ34561) CHEM21 9/27/2021-1

CJ34944(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. This batch consists of a blank, LCS and LCSD.

Temperature Narration

The samples were received at 3.3C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 05045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

October 01, 2021

SDG I.D.: GCJ34944

The samples were received at 3.3C with cooling initiated. (Note acceptance criter a for relevant matrices is above freezing up to 6° C)

							•											Coola		er: Yes	
PHOP Environmenta	HAIN OF CUSTODY RECORD 77 East Middle Turnpike, Manchester, CT 06040 iii: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726						Coolant: IPK ICE IN Temp & C. Pg 1 of 1 Data Delivery: Fax#: Email: BUNNOAUA GUV.COM						1								
Customer: Address:	NU	BROWN	WAU	06415	e cop	_	Projec Repor nvoic	t to:	B	yss pu/ sm	IN .	C1064 STRAU STRAU	5			Ph	oject F one # x #:		560)	639-6	5505
Sampler's Signature <u>Matrix Code:</u> DW=Drinking Water G	W=Grour			Date: <u>9</u>			nalysis		524	2						Trans	nel le	1 - 01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Part Line	1500ml	SOPPI SOPPI
SE=Sediment SL=S HOENIX USE ONLY SAMPLE #	Custon Iden	S=Soil/Solid her Sample tification	Sample Matrix	Date Sampled	Time Sampled		INC	/	/						N OF W	and container	CONTRACTOR	Auge 100	23 - 23 - 2 2 - 23 - 2 2 - 23 - 2	133 1250ril 12	250ml Boll
34944 4	^E BB	FKW	DW	<u> १/२५५</u>	1118	×										2					2
							· · · ·									-					
				1					-												
		· · · · · · · · · · · · · · · · · · ·																			
		•																			1/2
Relinguished by: Accepted/by: BIUNN STILNUB Amelling										RI Direct Exposure (Residential) GW Other		CT CP Cert CW Protection SW Protection SW Protection		on on	MA MCP Certification GW-1 GW-2 GW-3		Data Format		C		
Comments, Special Requirements or Regulations: PLGAJS PRANDS INB QKLQC WM REP ND INB COMPLEMENT CMM					Turnaround: 1 Day* 2 Days* 3 Days* Standard					GA Mobility GB Mobility Residential DEC I/C DEC Other		□ s-1			Other Data Package Tier II Checklist Full Data Package Phoenix Std Rep Other						
							Other RCHAR	GE AF	PLIES		State	where sa	mples	were c	ollec	ted:		14_	su	RCHARG	E APPLI

Page 14

ALTA ENVIRONMENTAL CORPORATION LABORATORY DATA QUALITY ASSURANCE/DATA USABILITY EVALUATION FORM

Laboratory Report Number: OUR PHUCHIC GC534944

Instructions: Use check mark or "Y" for Yes; N for "No", NA fcr not applicable; circle and annotate as warranted.

Data Quality Assessment (DQA): General

Was the Laboratory Certification Form (LCF): received? $\underline{\gamma}$; signed? $\underline{\gamma}$; dated? $\underline{\gamma}$; with Chain of Custody attached? Y; with all questions answered? Y; and indicating Reasonable Confidence was attained? Y. NOTE: VOCS BY 574.2 15. NO AN PCP METHON Were any significant non-conformances indicated with respect to sample temperature, preservation or holding 15. NOT

time? . N

DOA: Laboratory Report Package

Were results reported for all analyses requested? (Note: PM to track this as draft lab reports arrive) Are concentrations reported only above RLs and are RLs below per inent RSR-criteria (spot check)? Are results reported on a dry-weight basis (spot check)? Yes; NA (e.g., water samples). Were any dilutions factors (DFs) > 1 used? N If se, are RLs below pertinent RSR criteria, or detections for one -No NA en 1 ··· · · · · · · · · · · or more compounds above criterion (spot ck)? ... Yes Were surrogate recoveries within range (spot check)? - Yes; No; NA

Were data for matrix spike and/or matrix spike dupes reported? Yes; No,

· If so, were the data within range? Yes; No; NA

Was a narrative included regarding QC non-conformances? (If yes, address in DUE) REP CENTIPULATION REPORT

DQA:Site-Specific QA/QC

Were site-specific matrix spikes/matrix spike dupes. (MS/MSD) run? N. If no, address in DUE. If yes, were recoveries within accepted range? Yes; Yes, with exceptions (address in DUE); A Was RPD w/in accept, range? (<50% RPD for solids; <30% RFD for aqu.); If no, address in DUE; NA.

Were the following run? equipment blanks \underline{N} , trip blanks \underline{N} , other blanks \underline{N} . If yes, were any contaminants detected? ____ Yes ___ No ____ NA If contamination was detected and/or if these blanks were not run, address in DUE.

Were field duplicates run? NIf yes, was RPD within accepted range? Yes No (<50% RPD for solids; <30% RPD for aqueous); If no, address in Data Usability Evaluation .

DQA: Explanations and Notes

1,2,3- THICHIUND PROPANE DOISS NOT MELET : NYS CHUNGLIN - NOT CONNECT ANOT A CONSTITUENT OF CONCERN (5B ON CAB CONTRIANION FORM)

-1-

Lab#: PHUEVIX G-CJ34944

Data Usability Evaluation (DUE): Intended Use of the Data

The data are intended for determining compliance with the RSRs (check to acknowledge), except if noted otherwise below: TERTING FUN for KIG MUNICING Here

Wor5

DUE: Site-Specific QA/QC

If equipment blanks, trip blanks and/or field blanks were not run, any contamination reported for environmental samples is conservatively assumed to derive from the media sampled (i.e., not from cross contamination) (check to acknowledge), or is in whole or in part attributed to lab contamination (e.g., as associated with detections in lab blanks) (check to acknowledge and explain further)

If field duplicates were not run, the lack of such data for this laboratory package does not adversely affect the usability of the data for its intended purpose, due to the amount and internal consistency of the testing data available for the site (including the available non-project-specific QC data and project-specific QC data that may be available for other samples collected from this site) (Check to acknowledge);

Were field duplicate samples collected for other sampling events at this site? ____Yes; ___No

DUE: Narrative

Evaluation of Common Narrative Comments: (check/circle and annotate as pertinent)

Question No. 4: Addressed in narrative? ____ Yes; WNo

If yes, some of the QA/QC performance criteria specified in the DEP Reasonable Confidence Protocol documents were not achieved for certain compounds in certain batches of soil samples, and:

- A. Laboratory control sample (LCS), MS, MS dupe and/or continuing calibration (CC) is/are <u>high</u> for certain COCs; therefore the results for these compounds may be blased high.
 Yes (conservative, OK)
 - B. LCS, MS, MS dupe and/or CC is/are <u>low</u> for certain compounds; therefore the results for these compounds may be biased low. ____Yes (provide additional information below for each such compound); ____No
 - Of these, based on review of the totality of the soil and/or groundwater quality data available for the site, the compounds listed here are <u>not constituents of concern</u> (COCs) for this site. Therefore, not achieving the QA/QC performance criteria associated with these compounds does not adversely affect the usability of the data for its intended purpose.
 _____ check to acknowledge and list compounds here.
 - Of these, the compounds listed here are on the list of "<u>Poorly Performing Compounds</u>" (PPCs), in Appendix F to the DEP QA/QC DQA and DUE Guidance Document (May 2009) ____ check to acknowledge and list compounds here (may also be listed above);

Provide additional usability information for COCs with possible low bias. (check if NA) Lab#: PHOENIX GCJ34944

Question No. 6: Addressed in narrative? _Yes; No

If yes, analysis for subsets of the method-specific analyte lists were requested based on the site-specific Conceptual Site Model developed by the Project Manager. Use of site-specific analytes does not adversely affect the usability of the reported data for its intended purpose.

(check to acknowledge) Question No. 7: Addressed in narrative? Yes; No

If yes, project-specific QC testing was not requested (i.e., MS/MSD). Given the amount and internal consistency of the testing data available for the site, the lack of such data for this laboratory package does not adversely affect the usability of the data for its intended purpose. · (check to acknowledge)

Other Questions addressed in narrative? ___Yes; __ No (provide additional information below) REY FURM

58. - 1,2,3 - THICHIURO PROPARE PUES NOT MEET CAUPENIA FUR 524.2 METRUP - NUT & CENSITIVISANT OF CENCISION -DUE: Other Notes (e.g., for contamination associated with lab blarks and LCF questions answered "No")

THIS COMPOUND NEVER OGENEGAT IN prevenses SAMPLES

DUE: Conclusions

The data in this package are usable for their intended purpose

Yes No

_Yes, with possible exceptions:

BAS 12/22/21 (initial and date):

Resolutions (e.g., for possible exceptions)

(initial and date):

Evan/RCP DQA DUE Form, Rev 2018