

Consolipated Edison Company of New York Inc. 31-01 20th Avenue Long Island City NY 11105-2048 www.conEdison

June 23, 2011

BY FEDERAL EXPRESS OVERNIGHT

JUN 2 7 2011

Mr. John Miller Environmental Engineer Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 11th Floor Albany, New York 12233-7017

Subject: 2010 Indoor Air and Soil Gas Investigation Report

Pemart Avenue former MGP Site (NYSDEC Site No. V00566)

Peekskill, New York

Voluntary Clean-up Agreement - Index No. D2-0003-02-08

Dear Mr. Miller:

Enclosed for the Department's review and approval are two hard copies and one electronic copy on CD of the 2010 Indoor Air and Soil Gas Investigation Report for the Pemart Avenue Works former MGP.

Please contact me directly should you have any questions regarding this submittal.

Very truly yours,

Neil O'Halloran Project Manager,

MGP Remediation Group

Environment, Health and Safety Department

Enc.

cc: F. Navratil, NYSDOH

G. Heitzman, NYSDEC (w/o Enc.)

M. Wilcken, Esq. Con Edison (w/o Enc.)

E. Louie, Con Edison (w/o Enc.)

Project Files

JUN 2 7 2011

2010 Indoor Air and Soil Gas Investigation

Pemart Former Manufactured Gas Plant Site Peekskill, New York

2010 Indoor Air and Soil Gas Investigation Pemart Former Manufactured Gas Plant Site

Peekskill, New York

Prepared By Mark McCabe

Reviewed By Doug Simmons

Contents

1.0	Intro	oductio	on	1-′
	1.1	Project	t Background	1-
	1.2	Project	t Objectives	1-
2.0	Pre	vious In	nvestigation	2-
	2.1	Soil Ga	as	2-
	2.2	Indoor	· Air	2-5
3.0	Inve	estigatio	on Scope of Work	3-
	3.1	Soil Ga	as Sampling	3-
		3.1.1	Utility Clearance	3-^
		3.1.2	Sub Slab Sampling Point Installation	3-
		3.1.3	Collection of Soil Gas Samples	3-
	3.2	Indoor	Air Sampling	3-2
	3.3	Meteor	rological Measurements	3-2
4.0	Pres	sentatio	on and Discussion of Results	4-'
	4.1	Soil Ga	as	4-
		4.1.1	190 North Water Street (north)	4-^
		4.1.2	190 North Water Street (south)	4-2
		4.1.3	400 Main Street	4-2
		4.1.4	200 North Water Street	4-2
	4.2	Indoor	Air	4-3
		4.2.1	190 North Street (north) – Woodworking Shop	4-3
		4.2.2	190 North Street (south) – Currently Unoccupied	4-4
		4.2.3	400 Main Street	4-5
		4.2.4	200 North Water Street	4-€
5.0	Con	clusion	ns and Recommendations	5-1
6 N	Refe	erences		6.1

List of Appendices

Appendix A Sampling Information and Results – 2008 Investigation

Appendix B 2010 Field Sampling Forms

Appendix C 2010 Questionnaire and Survey Forms

Appendix D 2010 Meteorological Data

Appendix E 2010 Data Usability Summary Report

List of Tables

Table 1 Soil Gas and Indoor Air Sample Summary, Air and Soil Gas Collected on March 18, 2010

Table 2 Air and Soil Gas Samples – Summary of Analytical Data for Volatile Organic Compounds,

March 18, 2010

List of Figures

Figure 1 Site Map

Figure 2 Soil Vapor and Indoor Air Sampling Locations 2010

1.0 Introduction

This report presents a summary of field observations and analytical results from the Indoor Air and Soil Gas Investigation conducted on March 18, 2010 at the Pemart Avenue Former Manufactured Gas Plant (MGP) Site. The performance of the sampling program was requested by the New York State Department of Conservation (NYSDEC) as part of the ongoing investigation of the site.

1.1 Project Background

Results of the Remedial Investigation (RI) of the site showed that subsurface soil and groundwater are impacted by several sources, including MGP-related residuals (e.g., coal tar), petroleum releases, and solvents. Impacts from one or more of these source materials were detected in the areas adjacent to the buildings at the following addresses:

- 190 North Water Street the former gas works building: The northern two-thirds of the building is currently used by a custom wood-working shop; the remaining area formerly housed a commercial laboratory that specialized in the analysis of asbestos-containing materials, but was unoccupied during the 2010 sampling.
- 400 Main Street an off-site building located adjacent to the former gas holders (i.e., the east side of North Water Street): The ground floor of the building is used as a thrift shop and the second floor is used for residential and commercial purposes.
- 200 North Water Street located in the area of a former electrical generating plant: The first floor is used as a warehouse and parking garage, while the second floor serves as a homeless shelter (Jan Peek Homeless Shelter).

The locations of these buildings are illustrated on Figure 1.

In response to the RI findings, AECOM, on behalf of Con Edison, prepared and submitted a Work Plan (ENSR, 2008) associated with soil gas sampling and sub slab/indoor air sampling at the buildings most likely to be effected by subsurface residuals from the MGP site: 190 North Water Street and 400 Main Street. The sampling was completed on June 26, 2008 and the data was provided to NYSDEC in a report dated March 3, 2009 (AECOM, 2009). The results from the sampling demonstrated that the levels of constituents in indoor air were generally consistent with established background values, and were likely attributable to cleaning products that were stored in the buildings. A survey and inventory of products/materials used and/or stored in each of the buildings was completed prior to sampling. The results of the surveys/inventories were documented on New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire and Building Inventory Forms. The potential for vapor intrusion risk was determined to be low.

1.2 Project Objectives

Based on the results of the June 2008 sampling, NYSDEC requested a second round of sampling in a letter dated October 16, 2009. The objectives for the second sampling round included the following:

 Evaluate the potential for vapor intrusion under "worst-case" conditions, i.e., during the heating season, in the two buildings that had been sampled previously; and Evaluate indoor air quality at 200 North Water Street, a structure in residential use and not sampled previously.

The second round of sampling was conducted on March 18, 2010 in accordance with the procedures approved in the 2008 Work Plan. The remainder of this report is organized in the following manner: a summary of the results and conclusions from the previous sampling program are provided for reference in Section 2; the scope of work for the 2010 sampling activities is detailed in Section 3; and the results from the program are presented in Section 4, with conclusions and recommendations provided in Section 5, and references in Section 6. Data summaries from the 2008 program, NYSDOH Indoor Air Quality Questionnaire and Building Inventory Forms, field data sheets, meteorological data, and the Data Usability Summary Report (DUSR) from the current effort are provided in the appendices to this document.

2.0 Previous Investigation

The Work Plan for the 2008 sampling was developed in accordance with guidance provided by the NYSDOH for evaluating soil vapor intrusion (NYSDOH, 2006) and approved by NYSDEC in a letter dated June 16, 2008. The scope of work outlined in the Work Plan was developed to address the following objectives:

- Evaluate the nature and extent of volatile organic compounds (VOCs) in soil gas related to subsurface soil and groundwater impacts that were identified during the RI;
- Determine if the VOCs associated with soil and groundwater impacts are present in soil gas beneath the concrete building foundation slabs; and
- Evaluate the potential for the VOCs detected in the sub slab areas to migrate into and adversely influence indoor air quality in the associated buildings.

The field work was conducted on June 26, 2008. A figure illustrating the sampling locations and summary table of results are provided in Appendix A. The results from the program are summarized below.

2.1 Soil Gas

The results from the soil gas samples from areas not associated with the individual site buildings indicated the presence of over 20 VOCs including: aromatic hydrocarbons (MGP, petroleum, solvents); alkanes (primarily petroleum); and chlorinated hydrocarbons (solvents). The results from sub slab results are summarized below. Locations at 190 North Water Street and 400 Main Street were prioritized for evaluation since they were believed to have the greatest potential to exhibit impacts from MGP residuals. Separate evaluations were conducted for the 190 North Water Street structure to address the specific uses of the property. Note that the following summaries focus on the principal constituents of interest for the program, i.e., those providing the greatest potential to exceed NYSDOH background values in indoor air. For the purpose of this summary, constituents with concentrations greater than or equal to 10 μ g/m³ have been identified as principal constituents.

Sub Slab - 190 North Water Street (north)

Sixteen VOCs were detected in the sub slab sample. Principal constituents included:

- Constituents potentially related to MGP residuals
 - xylenes 2,000 µg/m³
 - toluene 1,300 µg/m³
 - ethylbenzene 510 µg/m³
 - carbon disulfide 110 µg/m³
 - benzene 47 μg/m³
 - heptane 28 µg/m³
 - hexane 20 µg/m³.

- Non-MGP constituents
 - acetone 1,500 μg/m³
 - chloroform 430 μg/m³
 - 1,1,1-trichloroethane 180 μg/m³
 - bromodichloromethane 46 μg/m³
 - tetrachloroethene 31 μg/m³
 - 2 propanol 13 μg/m³.

Sub Slab - 190 North Water Street (south)

Six VOCs were detected in the sub slab sample. Principal constituents included:

- · Constituents potentially related to MGP residuals:
 - toluene 42 μg/m³
- Non-MGP constituents
 - trichloroethene 5,800 µg/m³
 - tetrachloroethene 110 μg/m³
 - 1,1,1-trichloroethane 89 μg/m³
 - chloroform 67 µg/m³
 - 2-propanol 42 μg/m³

Sub-Slab - 400 Main Street

A total of 33 VOCs were detected in the sub slab sample. Principal constituents included:

- Constituents potentially related to MGP residuals:
 - xylenes 110 μg/m³
 - toluene 75 µg/m³
 - ethylbenzene 21 µg/m³
 - hexane 10 μg/m³
- Non-MGP constituents:
 - chloroform 640 μg/m³
 - ethanol 350 μg/m³
 - 1,1,1-trichloroethane 320 μg/m³
 - acetone 79 µg/m³
 - bromodichloromethane 51 μg/m³
 - 2-propanol 36 μg/m³
 - 1,3 dichlorobenzene 16 μg/m³

2-butanone - 12 μg/m³

2.2 Indoor Air

Indoor samples were collected concurrently with the sub slab samples at each of the buildings. The following summaries again focus on the principal constituents for the study. In this case, the summaries present those constituents that either have concentrations that exceed the background levels established by NYSDOH, or are consistent with the upper range (within the 75th and 90th percentiles) of that database. The results from these activities are summarized below.

190 North Street (north) – This area of the building was occupied by a custom woodworking business at the time samples were collected.

- Two VOCs were detected at levels greater than the NYSDOH background values:
 - acetone 19,000 μg/m³
 - chloroform 120 μg/m³
- Toluene was detected within the upper range of the NYSDOH database.

The concentration of acetone is an order of magnitude greater than the associated soil gas value and thought to result from an interior source. Levels of the other constituent known to be present in both indoor air and soil gas (chloroform) are present at consistent levels in both media. Acetone and chloroform are common elements of the cleaning products identified within the workspace.

190 North Water Street (south) – This area of the building was occupied by an asbestos analytical laboratory at the time samples were collected.

The following constituents exceeded the background levels established by NYSDOH.

- Constituents potentially related to MGP residuals:
 - toluene 72 µg/m³
 - m,p-xylenes 42 μg/m³
 - o-xylene 13 µg/m³
 - 1,2,4-trimethylbenzene 11 μg/m³
 - ethylbenzene 9.8 µg/m³
 - 1,2,3-trimethylbenzene 3.1 μg/m³
- Non-MGP constituents:
 - acetone 1,300 µg/m³
 - 2-butanone 17 μg/m³
 - chloroform 13 µg/m³
- Five additional constituents were detected at concentrations within the upper range of the NYSDOH background values. They included: 1,3,5-trimethylbenzene, benzene, heptane, hexane, and 2,2,4-trimethylpentane. None of these VOCs were detected in the corresponding sub slab soil gas sample.

Indoor air impacts did not appear to be related to vapor intrusion. There was no consistent pattern in the number or types of constituents when reviewed with respect to the soil gas results, and constituent levels were generally greater in indoor air. The associated inventory of interior spaces identified the presence of products that could be potential sources of VOCs, including: paint, furniture polish, air freshener aerosol spray, disinfectant aerosol spray, and ice melt pellets.

Additionally, the building is located at the intersection with North Water Street, which receives significant traffic by commercial trucks (e.g., delivery, construction, landscaping trucks, etc.) and passenger vehicles, including numerous taxis. The analytical results of the upwind and downwind ambient air samples were generally similar and contained detectable levels of 14 of the 19 constituents identified in indoor air samples.

2.2.1 400 Main Street

No constituents exceeded the range of background levels established by NYSDOH. Two constituents (m/p-xylenes and 1,1,1-trichloroethane) were detected at concentrations within the upper range of the background database:

The following conclusions were developed from a review of the results from the 2008 program.

- Soil gas across much of the Site contains numerous VOCs that originated from multiple source materials including MGP residuals (coal tar), petroleum products (e.g., gasoline and fuel oil), and solvents (e.g., acetone and trichloroethene).
- Based on the concentrations of VOCs detected in indoor air and the condition of the concrete floor slabs at grade, the potential for VOCs to migrate into the buildings and adversely affect indoor air quality is low or non-existent.
- The overall indoor air quality in the various buildings was attributed to the use and/or storage
 of products and/or materials as part of the routine commercial operations and/or influence
 from ambient (outside) air.

3.0 Investigation Scope of Work

The air and soil gas samples for the 2010 investigation were collected and analyzed in accordance with the methods and procedures outlined in the Work Plan. The specific sampling locations are shown on Figure 2, and copies of field sampling forms are provided in Appendix B. A description of each component of the sampling and analytical program is provided below.

3.1 Soil Gas Sampling

Sampling locations were consistent with those used during the previous program with the following exception: a sample was collected from a crawl space associated with 200 North Main Street. The crawl space is accessed from a slotted man hole in the floor of the warehouse/garage area, and is open to ambient air through vents in the side of the building. Activities associated with the installation of sub slab sampling points and collection of soil gas samples are described below.

3.1.1 Utility Clearance

Prior to selecting specific sampling locations for the soil gas samples for the 2008 sampling event, which were resampled during the 2010 sampling event, a survey was conducted to identify and locate sub-slab utilities (e.g., electrical lines, water pipes, gas lines, sewer lines, etc.) in the areas of proposed sampling. The underground utility clearance process included a Code 753 mark out, review of available as-built utility maps and drawings, and the review of utility mark-outs previously conducted during the RI. The specific sampling locations were selected so as to avoid encountering and potentially damaging any subsurface utilities during installation of the soil gas sampling points.

3.1.2 Sub Slab Sampling Point Installation

Prior to installing the soil gas sampling points, an electric hammer drill was used to create a small (½-inch) diameter hole. The drill was advanced to a depth of approximately three inches below the bottom of the concrete foundation slab. An expendable stainless steel mesh soil gas sampling point attached to TeflonTM sampling tubing was installed in the drilled hole so that a portion of the sample tube extended approximately two feet above the top of the concrete slab. The annulus (space between the drill hole and the sampling tubing) was sealed using hydrated granular bentonite to isolate the soil gas from ambient air.

3.1.3 Collection of Soil Gas Samples

After installation of the sampling point, a photoionization detector (PID) was attached to the TeflonTM sampling tube to perform an initial screening of the soil gas for total VOCs (TVOCs). As described in the Work Plan, a total of five sample tube volumes were then purged using the PID. Following purging, the PID was re-attached to the TeflonTM sample tube to perform a final post-purge screening of the soil gas. Note that the purging process was not required for the sample collected within the crawl space at 200 North Main Street.

Subsequent to purging the sample tube, a 6-liter Summa canister (pre-cleaned and evacuated), equipped with a calibrated flow regulator was connected to the sample tubing. The valves of all flow regulators were then opened within a period of approximately 15 minutes to initiate collection of soil gas, and the initial canister pressures indicated on the flow regulator gauges were recorded. The Summa canister pressures shown on the flow regulator pressure gauges were periodically monitored

to verify that there were no leaks. Samples were collected over a two-hour period. Prior to closing the valves and terminating the sample collection, the final canister pressures were recorded.

Columbia Analytical Services (CAS) in Simi Valley, California prepared the Summa canisters, provided calibrated flow meters, and performed the soil gas analyses. The samples were analyzed for VOCs using the United States Environmental Protection Agency (USEPA) Method TO-15 modified to included additional analytes that are considered to be indicative of a coal tar source, e.g., naphthalene, indane, indene, and thiophene.

3.2 Indoor Air Sampling

Sampling locations were consistent with those used during the 2008 program with the following exceptions:

- 400 North Water Street SSV03 was moved a short distance due to the presence of wall-towall carpet and clothing racks that had been installed since the 2008 sampling round.
- 200 North Water Street samples were collected from the following locations that had not been sampled previously: first floor warehouse/garage area and second floor residential area. Note that an additional quality control sample was collected in the residential area of the building.

Each Summa canister was placed so that the inlet port of the attached flow regulator was at chair height, or approximately three feet above the floor, to mimic the breathing zone of a child. Prior to sample collection, the indoor air in the vicinity of each sample location was screened for TVOCs using a PID. The valves of all flow regulators were then opened within a period of approximately 15 minutes to initiate collection of soil gas and the initial canister pressures indicated on the flow regulator gauges were recorded. The Summa canister pressures shown on the flow regulator pressure gauges were periodically monitored to verify that there were no leaks. Samples were collected over a two-hour period. Prior to closing the valves and terminating the sample collection, the final canister pressures were recorded. As in the case of the soil gas samples, analysis was conducted by CAS.

A survey and inventory of products/materials used and/or stored in each of the buildings was completed prior to sampling. The results of the surveys/inventories were documented on NYSDOH Indoor Air Quality Questionnaire and Building Inventory Forms. The completed forms are provided in Appendix C. Note that samples of ambient air, intended to provide additional information on site-specific background conditions, were not collected due to an oversight.

3.3 Meteorological Measurements

Reports of meteorological data for the area were obtained for the date of sampling in the event that the information was needed to support the evaluation of the indoor air results. This quality controlled local climatological data was obtained electronically at www.weatherunderground.com (from a meteorological station at Stewart International Airport in Newburgh, New York which is located approximately 24 miles northwest of the Site). Hourly measurements of visibility, dew point, relative humidity, wind speed and direction, and barometric pressure were reported and are summarized in Appendix D.

4.0 Presentation and Discussion of Results

The findings of this sampling and analytical program, including field measurements, product inventories and analytical data, were reviewed in order to evaluate the potential for soil vapor intrusion. All analytical data presented herein were validated using USEPA Region 2 data validation Standard Operating Procedures (SOPs) as guidance. The validation process as it was applied to the analytical data for samples collected as part of the soil vapor intrusion investigation described herein is documented in the DUSR that was prepared in accordance with the NYSDEC Guidance for Development of Data Usability Summary Reports (NYSDEC, 2001). Where necessary, the USEPA Region 2 SOPs were modified to incorporate project-specific or method-specific criteria. Data qualifiers were applied consistent with the Region 2 Guidance. The DUSR for the March 18, 2010 sampling is provided as Appendix E. The data are valid as reported and may be used for the purpose of assessing the potential for soil vapor intrusion. No data qualifications were required for the 2010 data. The sampling and analytical data are discussed below.

4.1 Soil Gas

Soil gas samples were collected from sub slab locations at 190 North Water Street and 400 Main Street, as well as a crawl space location at 200 North Main Street. The results from field screening and constituent-specific sampling activities are provided in Tables 1 and 2, respectively and discussed below. As discussed previously (Section 2), the summaries focus on the principal constituents of interest for the program, i.e., those with concentrations greater than 10 μ g/m³ since they are thought, given the anticipated attenuation provided by soil and building foundations, to provide the greatest potential to be associated with significant levels in indoor air.

4.1.1 190 North Water Street (north)

The initial field screening of soil gas at the location (SSV01) indicated levels of TVOCs that ranged, between 2.4 and 4.1 ppm. The results from the constituent-specific analysis of the sample indicated that the following constituents were detected:

- trichloroethene 4,400 μg/m³
- tetrachloroethene 68 μg/m³
- 1,1,1-trichloroethane 50 μg/m³
- cis-1,2-dichloroethene 27 μg/m³

All of these chlorinated constituents are associated with cleaning solvents. A comparison of these results to the 2008 data indicates that in the 2010 samples there were fewer VOCs detected (i.e., 4 in 2010 versus 16 in 2008). No reason for this observation between the two sampling events is apparent. It is noted that the detection levels for the 2010 sample for this location were elevated. In efforts to determine if other VOCs were potentially present below the high reported detection levels and thus not reported, the chromatograms were reviewed by the laboratory. Based on the chromatogram reviews, no other VOCs were identified.

4.1.2 190 North Water Street (south)

The field screening of soil gas at SSV02 indicated TVOC levels ranging from 0.1 and 1.9 ppm. The results from the constituent-specific analysis of the sample indicated that 21 VOCs were present at detectable levels. The results for the principal constituents of interest are summarized below.

- Constituent potentially related to MGP residuals:
 - benzene 11 μg/m³
 - isopentane 10 μg/m³
- Non-MGP constituents:
 - 1,1,1-trichloroethane 50 μg/m³
 - ethanol 38 μg/m³
 - tetrachloroethene 14 μg/m³

A comparison of the data with the 2008 results indicates an increased number of constituents detected, likely due to improved analytical sensitivity. However, the results suggest a trend towards lower concentrations in 2010, e.g. trichloroethene 1 μ g/m³ versus 5,800 μ g/m³ in 2008.

4.1.3 400 Main Street

Field screening results of soil gas at location SSV03 ranged from 2.1 to 2.8 ppm of TVOCs. The results from the constituent-specific analysis of the sample indicated that 16 VOCs were detected. The levels of potential MGP constituents, including aromatic compounds (toluene, m/p xylene, benzene) and alkanes (hexane, heptane, 2-methylpentane, 2,2,4-trimethylpentane, isopentane) were all less than 10 μ g/m³.

Principal non-MGP constituents were limited to the following:

- tetrachloroethene 130 μg/m³
- ethanol 36 µg/m³
- acetone 19 μg/m³

A comparison to the 2008 results indicates that there are currently fewer constituents at detectable levels (16 versus 30 in 2008), and that there are generally lower concentrations for those constituents that were detected in both events.

4.1.4 200 North Water Street

The screening results from the crawl space (CS-1) were less than 1 ppm of TVOCs. A total of 14 VOCs were detected in the samples. Note that, as opposed to the discussions of sub slab data, the concentrations for all constituents are presented below since the crawl space "vents" directly to the adjacent warehouse/garage space.

- Constituents potentially related to MGP residuals included:
 - isopentane 8.3 μg/m³
 - toluene 3.6 µg/m³

- hexane $3.4 \,\mu g/m^3$
- 2-methylpentane 2.8 µg/m³
- benzene 1.7 μg/m³
- cyclohexane 1.5 μg/m³
- 2,2,4-trimethylpentane 1.2 μg/m³
- heptane 0.845 µg/m³
- Non MGP constituents included:
 - ethanol 28 μg/m³
 - cis-1,2-dichloroethene 7.2 μg/m³
 - trichloroethene 3.0 μg/m³
 - dichlorodifluoromethane (Freon 12) 2.3 μg/m³
 - propene 1.2 μg/m³
 - trichlorofluoromethane (Freon 11) 1.1 μg/m³

The source of VOCs in the crawl space is unclear. Although sub slab results are not available for this area, the types and levels of constituents are similar to those observed in soil gas samples collected near the outside the NW corner of 190 Water Street (SV03) in 2008. Similarly, the constituent levels are generally consistent with the background values for indoor air established by NYSDOH.

4.2 Indoor Air

Indoor air samples were collected concurrently with the soil gas samples. The meteorological conditions during the sampling were generally representative of the season. The temperatures fluctuated between 24.8 and 35.6 degrees Fahrenheit and the barometric pressure was stable (between 29.87 and 29.77 inches mercury [Hg]). Wind speed during the sampling period ranged from 9.2 to 11.5 mph. The results from the samples are summarized below.

4.2.1 190 North Street (north) – Woodworking Shop

Eleven VOCs were detected at location IA-01; none exceeded the range of NYSDOH background levels.

- Potentially MGP related constituents included:
 - isopentane 4.1 µg/m³
 - toluene 2.3 µg/m³
 - hexane 1.7 µg/m³
 - naphthalene -1.6 µg/m³
 - 2-methylpentane 1.4 µg/m³
 - 1,2,4-trimethylbenzene 0.97 µg/m³
 - benzene 0.88 µg/m³

- Non-MGP constituents included:
 - ethanol 40 µg/m³
 - acetone 11 µg/m³
 - dichlorodifluoromethane (Freon 12) 2.6 μg/m³
 - trichlorofluoromethane (Freon 11) 1.2 μg/m³

A review of the results with respect to the previous data indicates that a greater number of constituents were detected in the recent program (11 versus 3 in 2008) due to increased sensitivity in the analysis. For those constituents that were detected in both programs (acetone, chloroform, and ethanol), the concentrations were observed to be significantly lower in 2010.

There is no evidence of vapor intrusion. None of the VOCs detected at elevated levels in soil gas were present in the corresponding indoor air sample and the building inspection showed that the concrete foundation slab is 4 to 7-inches thick with no significant cracks or breaches. Further, the pre-sampling inventory noted the storage of materials consistent with woodworking, including wood stain, paint, mineral spirits, glues, and contact cement, as well as a motorcycle (with a gasoline-filled fuel tank), and engine motor oil. These stored materials contained 1,2,4-trimethylbenzene, benzene, hexane, toluene, xylenes, acetone, and/or other VOCs. It is also noted that the building is heated by a fuel-oil fired boiler, which is located in the northwest corner of the northern portion of the building at 190 North Water Street.

4.2.2 190 North Street (south) - Currently Unoccupied

The screening results from the sampling location in the lower level of the former lab space ranged from 0.1 to 1.9 ppm of TVOCs. A total of 17 VOCs were detected in the indoor air sample. None exceeded the range of NYSDOH background levels and only one constituent, chloroform $(1.4 \,\mu\text{g/m}^3)$, was present at a level within the upper range of the established background values. Other constituents included:

- Potentially MGP related constituents included:
 - isopentane 6.7 μg/m³
 - toluene 6.2 µg/m³
 - xylenes 3.2 µg/m³
 - hexane 2.2 µg/m³
 - 2-methylpentane 2.1 μg/m³
 - benzene 1.6 μg/m³
 - 1,2,4-trimethylbenzene 1.4 µg/m³
 - heptane 1.2 µg/m³
 - 2,2,4-trimethylpentane 1.2 μg/m³
 - naphthalene 1.1 µg/m³
- Non-MGP constituents included:
 - ethanol 140 µg/m³

- acetone 21 μg/m³
- 2-propanol- 3.0 μg/m³
- dichlorodifluoromethane (Freon 12) 2.3 μg/m³
- trichlorofluoromethane (Freon 11) 1.7 μg/m³
- propene 1.6 µg/m³

As with the north location in the building, the results do not suggest that vapor intrusion is occurring. The nature and concentrations of constituents are similar to those observed in the north end of the building, supporting the effect of interior sources of impacts. During the pre-sampling inventory, paint, furniture polish, air freshener aerosol spray, disinfectant aerosol spray, and ice melt pellets were observed in the building. According to their labels, these products and materials contained 1,2,4-trimethylbenzene, ethylbenzene, toluene, xylenes, 2-butanone (MEK), acetone, ethanol, other VOCs, and petroleum distillates.

4.2.3 400 Main Street

The constituent-specific results for location IA-03 indicate that 10 VOCs were detected. However, none exceeded the range of NYSDOH background levels. They included:

- Potentially MGP related constituents included:
 - isopentane 5.2 μg/m³
 - toluene –1.8 μg/m³
 - hexane 1.8 µg/m³
 - 2-methylpentane 1.6 μg/m³
 - benzene- 0.93 µg/m³
 - 2,2,4-trimethylpentane 0.89 µg/m³
- Non-MGP constituents included:
 - ethanol 27 µg/m³
 - acetone 12 µg/m³
 - dichlorodifluoromethane (Freon 12) 2.3 μg/m³
 - trichlorofluoromethane (Freon 11) 1.2 μg/m³

A review of the data indicates that the results are generally consistent with those obtained in 2008 and do not suggest the occurrence of vapor intrusion. The foundation slab (8-inch thick) did not contain significant cracks or breaches and the constituents detected were consistent with the products observed during the pre-sampling inventory, including carpet detergent, car cleaning products, fire extinguishers; containing hydrocarbons, and other VOC-containing products. It is also noted that the building is located at the intersection with North Water Street, which receives significant traffic by commercial trucks (e.g., delivery, construction, landscaping trucks, etc.) and passenger vehicles, including numerous taxis.

4.2.4 200 North Water Street

Indoor air samples were collected from the following areas of the building:

- First Floor Area (1 sample) warehouse, parking garage
- Second Floor Area (3 samples including a duplicate) homeless shelter

Field screening results in all locations indicated that there were no detectable levels of TVOC in the building.

4.2.5 First Floor Area – Parking Garage and Warehouse

The constituent-specific results from location IA-05 indicate that a total of 16 VOCs were detected in the warehouse and parking garage area of the building. Only two constituents, cis-1,2-trichloroethene (1.4 $\mu g/m^3$) and trichloroethene (1 $\mu g/m^3$) exceeded the range of NYSDOH background values. A third constituent, cyclohexane (6.2 $\mu g/m^3$) was determined to be within the upper range of background values. The remaining constituents included the following.

- Constituents potentially related to MGP residuals included:
 - isopentane 7.5 μg/m³
 - toluene 6.3 μg/m³
 - hexane $2.1 \,\mu g/m^3$
 - 2-methylpentane 2.1 μg/m³
 - benzene 1.5 µg/m³
 - heptanes 1.4 µg/m³
 - 2,2,4-trimethyl pentane 1.0 μg/m³
- Non MGP constituents included:
 - ethanol 43 μg/m³
 - acetone 18 µg/m³
 - dichlorodifluoromethane (Freon 12) 2.4 μg/m³
 - propene 1.5 µg/m³
 - trichlorofluoromethane (Freon 11) 1.1 μg/m³
 - trichloroethene 1.0 μg/m³

The constituents were similar in number/type to those detected in crawlspace. However, the constituents with elevated levels with regard to background (cis-1,2-trichloroethene, trichloroethene, and cyclohexane) were present at greater levels in the garage than in the crawlspace.

4.2.6 Second Floor Area – Residential Use

The results from the samples collected in the residential space (IA-06 and IA-07) indicated that 16 VOCs were detected. None exceeded the range of NYSDOH background values, and two

constituents, ethanol (1,300 µg/m³) and cyclohexane (3 µg/m³), were within the upper range of the NYSDOH background concentrations for indoor air. The remaining constituents included the following.

- Constituents potentially related to MGP residuals included:
 - isopentane 21 μg/m³
 - toluene $7.1 \,\mu\text{g/m}^3$
 - hexane $3.9 \,\mu g/m^3$
 - 2-methylpentane 3.6 μg/m³
 - xylenes 2.3 μg/m³
 - benzene 2.2 µg/m³
 - heptanes 1.8 μg/m³
 - 2,2,4-trimethylpentane 1.7 μg/m³
 - naphthalene 1.1 µg/m³
- Non MGP constituents included:
 - 2-propanol 86 μg/m³
 - acetone 34 µg/m³
 - propene 21 μg/m³
 - dichlorodifluoromethane (Freon 12) 2.7 μg/m³
 - trichlorofluoromethane (Freon 11) 1.7 μg/m³

Both cyclohexane and ethanol are constituents of one or more of the cleaning products noted in the pre-sampling inventory for the facility.

5.0 Conclusions and Recommendations

The following conclusions are based on the data and field observations and measurements. The following conclusions can be drawn from the results of the monitoring program:

Soil Gas

- The results are consistent with RI findings and indicate the presence of constituents that are attributable to MGP petroleum and solvent releases.
- The composition and concentrations of VOCs in soil gas have not changed significantly between the 2008 and 2010 sampling events. This suggests that flux of VOCs to soil gas from impacted subsurface soil and groundwater is in a quasi-steady state.
- The foundations of the buildings appear to be competent and structurally sound and are serving as effective barriers against vapor intrusion.

Indoor Air

- Constituent concentrations are largely consistent with indoor air background levels established by NYSDOH.
- VOCs that were detected at concentrations that exceeded their respective NYSDOH background values are generally limited to those VOCs that are also constituents of materials and/or products that are used and/or stored inside the buildings, such as paints, varnishes, solvents and cleaning products.
- The findings are consistent with the results from the 2008 study.

Program results demonstrate that indoor air levels are likely attributable to use/storage of cleaning product and are generally consistent with background conditions. There is no indication that any mitigation measures are warranted at this time.

6.0 References

AECOM, 2009. Indoor Air and Soil Gas Investigation, Pemart Avenue former MGP Site. March 2009.

ENSR, 2008. Air Sampling Workplan at Pemart Avenue Former MGP, Peekskill, New York. March 31, 2008.

NYSDEC, 2001. Guidance for the Development of Data Usability Summary Reports, New York State Department of Environmental Conservation Division of Environmental Remediation. August 2001.

NYSDOH, 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York, New York State Department of Health Bureau of Environmental Exposure Investigation. October 2006.

Table 1
Soil Gas and Indoor Air Sample Summary
Air and Soil Gas Collected on March 18, 2010
Pemart Ave Former MGP, Peekskill, NY

Sample	Canister	Location	Depth of Sample Probe	Date	Sam	Sample Duration	fion	Canister Pressure (mmHa)	ster (mmHa)	PID Screening Range (ppm)	eening (ppm)
			(inches below surface grade)		Start	Stop	Hrs:Mins		Final	Pre	Post
SSV01	SC01071	Indoor - lower level - wood-working shop on SC01071 floor behind table saw at the center of southern wall of room	o	3/18/2010	11:52	13:53	2:01	30	7	4.1	2.4
IA01	AC01351	Indoor - lower level - wood-working shop by the inside door	NA	3/18/2010	11:51	13:52	2:01	59	7	NA	NA
SSV02	SC00840	Indoor - lower level - NE corner of lab office space under side table	6.5	3/18/2010	11:46	13:47	2:01	28	9	1.9	0.1
IA02	AC01097	Indoor - lower level - center of lab office at table height behind couch	NA	3/18/2010	11:48	13:47	1:59	29	5.5	AN	NA
SSV03	SC00890	Indoor - lower level - western garage floor between 2 concrete slabs	10	3/18/2010	12:03	14:04	2:01	29.5	9	2.1	2.8
IA03	AC01569	AC01569 Indoor - lower level - western garage on top of mini fridge on northern wall	NA	3/18/2010	11:59	13:59	2:00	28	4	A A	NA
IA05	AC01040 of box	Indoor - 1st floor - shelter storage area on top of box	NA	3/18/2010	11:15	13:15	2:00	30	8	A N	A V
CS-1	SC00558	Indoor - 1st floor - crawl space beneath manhole, co-located with IA-05	through top of manole cover	3/18/2010	11:23	13:23	2:00	28.5	5	6:0	0
IA-06	AC00884	AC00884 street side of building on top of dresser	NA	3/18/2010	11:41	14:15	2:34	29	8	ΑN	¥ N
IA-07	AC00845	Indoor - 2nd floor - shelter male bedroom on dresser	NA	3/18/2010	11:36	13:38	2:02	30	8	NA	NA
IA-07 (Duplicate)	AC00919	Indoor - 2nd floor - shelter male bedroom on dresser	AN	3/18/2010	11:37	13:36	1:59	28.5	5	Ą Z	₹ Z

Notes:

Background PID screening conducted of indoor or ambient air at each soil gas sample location.

NA = Not Applicable

190 North Water Street	Air and Soil Gas Samples. M arch 18, 201
200 North Water Street	Table 2 Air and Soil Gas Samples- Summary of Analytical Data for Volatile Organic Compounds March 18, 2010 - Pemart Ave. Works Former MGP, Peekskill, NY
400 Main Street	

Sample Location			190 North 1	190 North Water Street			21	200 North Water Street	*		400 Main Street	Street	NYSDOH Background Indoor Air Concentrations ^(a)	oite.
Sample Type	CAS number	Indoor Air	Sub Slab Soil Gas	Indoor Air	Sub Slab Soil Gas	Sub Slab/Man- hole Soil Gas		Indoor Air	or Air		Indoor Air	Sub Slab Soil Gas		,
Sample Name Sample Date		IA-01 3/18/10	SSV-01 3/18/10	IA-02 3/18/10	SSV-02 3/18/10	CS-01 3/18/10	IA-05 3/18/10	IA-06 3/18/10	IA-07 (DUP) 3/18/10	IA-07 3/18/10	IA-03 3/18/10	SSV-03 3/18/10	75th Percentile	90th Percentile
Possibly MGP Related 1			27 - 22 - 2		1, -, -									\Box
1,2,3-Trimethylbenzene	526-73-8	0.75 U	25 U	0.710	0.71 U	0.73 U	0.74 ∪	0.84 ∪	0.80 U	0.78 U	0.69 U	0.73 U	11	
1,2,4-Trirnethylbenzene	95-63-6	0.97	25 (1	1.4	1.6	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	1 2 3	
1.3.5-Trimethylbenzene	108-67-8	0.75 U	25 U	0.71.0	0.710	0.73 U	0.74 U	0.84 (0.80 U	0.78 U	0.69 U	0.73 U	1.5	
1,2,3,4-Tetramethylbenzene	488-23-3	0.75 U	25.0	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73.0	2 2	T
1,2,3,5-Terramethylbenzene	527-53-7	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 ()	0.80 U	0.78 U	0.69 U	0.73 U	Z Z	1
1,2,4,5-Tetrarnethyloenzene	95-93-2	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 0	0.840	0.800	0.781	0.69.0	0.73.0	S N	T
2,3-Dimethylpentane*	565-59-3	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	2.2	T
2-Methylpentane ³	107.83.5	14	11 50	31	9 0	3.6	21	3.6	2.1	20	16	2.7	NA	-
4-Ethyltoluene	622-96-8	0.75U	25 U	0.71 U	0,710	0,73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	NA S	1
4-Methyl-2-pentanone	108-10-1	0.75 U	25.0	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	0.86	
Benzene	71-43-2	0.88	25 U	1.6	11	1.7	1.5	2.2	1.2	1.2	0.93	2.1	5.9	1
Carbon disulfide	75-15-0	7.5.0	250 U	nr.2	7.1.0	7.3 U	7.4 U	8.4.0	8.0 U	7.8 U	6.9 U	7.3 U	NA	
Cyclonexane	110-82-7	1.5 U	N 05	1.40	1.40	1.5	6.2		1.6 U	1.60	1.4 U	1.5 0	2.5	T
Ethylbenzene	100-41-4	0.75 U	25 U	0.71.0	0.80	0.73 U	0.74 U	0.84 U	0.80 U	0.781	0.69 U	0.730	100	1
Heptane	142-82-5	0.75.0	250	1.2	1.2	0.84	1.4	2 2	0.800	0.780	0.690	0.90	, 0	1
Hexane	540-84-1	11 SZ U	250	172	1 4	1,4	10.1	1.7	1.1	0.83	0.89	0.2	2 0	1
odene 3	95.13.6	0.75	11.50	0.7111	0.71 11	0.73.0	0.7411	0.8411	0.8011	0.281	0.690	0.73 L	NA I	1
Indan	496-11-7	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.840	0.80 U	0.78 U	0.69.0	0.73 L	Z	-
sogentage ³	78-78-4	41	25 U	6.7	10	8.3	7.5	21	7.9	8.5	5.2	7.1	40	
Nacinthalene	91-20-3	1.6	25 U	E	0.71 U	0.73 U	0.74 U	E	0.80 U	0.78U	0.69 U	0.73 U	20	1
Styrene	100-42-5	0.75 U	25 U	0.71 U	0.73	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69.0	0.73 U	0.64	-
Thiophene ³	110-02-1	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	NA A	
Toluene	108-88-3	2.3	25 U	6.2	9.2	3,6	6.3	7.1	2.9	2.9	1.8	4.9	24.8	124
m/p-Xylenes	179601-23-1	1.5 U	50 U	2.3	2.7	1.5 U	1.7	2.2	1.6 U	1.60	140	1.6	4.6	
o-Xylene	95-47-6	0.75 U	25 U	0.87	0.97	0.73 ∪	0.74 ∪	0.84 U	0.80 U	0.78 U	0.69 ∪	0.73 U	4.4	
Not MGP Related	71.55.6	0.7511	5	07111	5	0.7311	0.74	0.8411	0.80	0.78 U	U 69.0	7.7		
1.1.2.2-Tetrachloroethane	79-34-5	0.75 U	25.0	0.71.0	0.71 U	0.73 U	0.74 U	0.84	0.80 U	0.78 U	0.69 U	0.73 U	0.25	1
1,1,2-Trichloroethane	79-00-5	0.75 U	25 U	0.71 U	0.710	0.73 U	0.74 U	0.84 U	0.80 0	0.78 U	0.69 U	0.54.0	0.25	1
1,1-Dichloroethane	75-34-3	0.75 U	25 U	0.71 U	0.71.0	0.73 U	0.74 U	0.84 U	0.80 U	0.7s U	0.69 U	0.73 U	0.25	
1,1-Dichloroethene	75-35-4	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	0.25	
1,2,4-Trichlorobenzene	120-82-1	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	6.73 U	0.25	1
1,2-Dibromoethane (EDB)	106-93-4	0.75.0	25.0	0./10	0.710	0.7311	0.740	0.84 0	0.800	0.780	0.69.0	0 73 1	0.25	1
1.2-Dichloroethane	107-06-2	0.7511	7511	0.71.0	0.71.0	0.73.0	0.74	0.84	0.80 U	0.78U	0.69 U	0.73 U	0.25	1
1.2-Dichloropropane	78-87-5	0.75 U	25.0	0.71 U	0.71.0	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73.0	0.25	1
1,3-Butadiene	106-99-0	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	N A	
1.3-Dichlorobenzene	541-73-1	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	a.78 U	0.69 U	0.73 U	0.25	
1,4-Dichlorobenzene	106-46-7	0.75 U	25 U	0.71.0	0.71.0	0.73 U	0.74 U	0.84 U	0.80 U	0,78 U	0.69 U	0.73 U	0.54	1
1,4-Dioxane	79-93-3	0.75 U	250 11	7111	0.71.0	7311	7411	8.4	801.0	0.780	6.90	730	7.3	1
Acetone	67-64-1	11	250 U	21	7.2	7.3 0	18	34	13	14	12	19	52	1
Benzyl chloride	100-44-7	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0,69 U	0.73 U	NA	7
Bromodichloromethane	75-27-4	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	NA	
Bromoform	75-25-2	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	U 69.0	0.73 U	N	1
Bromomethane	74-83-9	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84.0	0.80 U	0.78 U	0.69 U	0.73 U	0.25	1
Carbon tetrachloride	56-23-5	0.75 U	25 0	0.71.0	0.71.0	0.73 U	0.740	0.84	0.80	0.78	0.69.0	0.73.0	0.55	1
Chlorobenzene	108-90-7	0.75 U	250	0.71.0	0.710	0.73 U	0.740	0.84	0.80	0.78 U	0.69.0	0.73.0	0.25	1
Chloroethane	67 66 3	0.750	130	0./10	0./10	0.730	0.740	0.84.0	0.801	0.7811	0.691	0.750	120	1
Chlorotorm	74-97-3	0.750	75.0	0.7111	0.7111	0.730	0.740	0.84	0.80 0	0.7811	0.691	0.73 U	200	1
cis-12-Dichloroethere	156-59-7	0.750	27	0.71.0	0.71.0	7.2	0.740	0.84	0.800	0.78 U	0.690	0.73.0	0.25	1
cis-1 3-Dichloroncopens	10061-01-5	0.750	25	0.71 U	0.71 U	0.73.0	0.74 U	0.84	0.50	0.78 U	0.69.0	0.73 U	0.25	+
Dibromochioromethane	124-48-1	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.94 U	0.80 U	0.78 U	0.69 U	0.73 U	NA	+
Ethanol	64-17-5	40	250 U	140	38	28	43	1300	150	170	27	36	540	
Trichlorofluoromethane (Freon 11)	75-69-4	1.2	25 U	1.7	1.4	E	E	1.7	E	1.1	1.2	1.3	5.4	1
1,1,2-Trichlorotrifluoroethane (Freon 113)	76-13-1	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69.0	0.73 U	1.1	1
1,2-Dichlorotetrafluoroethane	76-14-2	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 U	0.25	1
Dichlorodifluoromethane (Freon 12)	75-71-8	2.6	25 U	2.3	2.3	2.3	2.4	2.7	2.2	2.3	2.3	2.5	4.1	-
Hexachlorobutadiene	87-68-3	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 u	0.69 u	0.73 Y	0.25	1
Methyl rert-Buryl Ether	1634-04-4	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 ∪	0.73 U	5.6	+

Air and Soll Gas Samples- Summary of Analytical Data for Volatile Organic Compounds March 18, 2010 - Pemart Ave. Works Former MGP, Peekskill, NY

Sample Location	<u> </u>		190 North	190 North Water Street			2	200 North Water Street	et		400 Main Street	n Street	NYSDOH Background Indoor Air Concentrations ^(a)	ound Indoor Air ations ^(a)
Sample Type	CAS number	Indoor Air	Sub Slab Soil Gas	Indoor Air	Sub Slab Soil Gas	Sub Slab/Man- hole Soil Gas		Indo	Indoor Air		Indoor Air	Sub Slab Soil Gas	75th Boscontile	anth Dancarille
Sample Name	ਜੋ ਜੋ ਜੋ	IA-01 3/18/10	3/18/10	IA-02 3/18/10	3/18/10 3/18/10	CS-01 3/18/10	3/18/10 3/18/10	1A-06 3/18/10	IA-07 (DUP) 3/18/10	IA-07 3/18/10	01/81/E E0-VI	3/18/10 3/18/10	7301 refeemble	Sour refrenche
Melthylene chloride (dichloromethane)	75-09-2	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	n 69'0	U 57.0	9.6	22
2-Propanol	67-63-0	1.5 U	50 U	3.0	1.4 U	1.5 U	1.5 ບ	86	6.2	6.3	1.4 U	1.5 U	NA	NA
Propene	115-07-1	0.75 U	25 U	1.6	2.2	1.2	1.5	21	2.9	2.7	U 69.0	4.0	NA	NA
Tetrachloroethene	127-18-4	0.75 U	68	0.71 U	14	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	n 69.0	130	1.1	2.9
Tetrahydrofuran	109-99-9	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	U 69.0	0.73 U	0.35	3.3
trans-1,2-Dichloroethene	156-60-5	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	n 69'0	0.73 U	NA	NA
trans-1,3-Dichloropropene	10061-02-6	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	U 69.0	0.73 U	0.25	0.25
Trichloroethene	79-01-6	0.75 U	4400	0.71 U	0.97	3		0.84 U	0.80 U	0.78 U	N 69'0	0.73 U	0.25	0.48
Vinyl acetate	108-05-4	7.SU	250 U	7.1 U	7.1 U	7.3 U	7.4 U	8.40	8.0 U	7.8 U	6.9 U	7.3 U	NA	N _D
Vinyl chloride	75-01-4	0.75 U	25 U	0.71 U	0.71 U	0.73 U	0.74 U	0.84 U	0.80 U	0.78 U	0.69 U	0.73 บ	0.25	0.25

- Notes: All concentrations in units of Micrograms per cubic meter (ug/m³)
 These compounds may be related to either MGP sources or non-MGP sources, or both. MGP sources include MGP tars and petroleum feedstocks used in MGP processes, such as the
 Non-MGP sources include MGP tars and petroleum feedstocks used in MGP processes, such as the
 Non-MGP sources include cleaning products, floor wash and polish, vehicle exhaust, construction materials, and cigarette smoke.
 These compounds were not included in the laboratory's 2008 routine target compound list. However, the laboratory searched for them in 2008 as tentatively identified compounds (TiCs) and reported estimated concentration that exceeded its75th Percentile NYSDOH Background Air Concentration.
 Compound was detected at a concentration that exceeded its90th Percentile NYSDOH Background Air Concentration.
 Compound detected at estimated concentration.

U - Compound was not detected at or above the concentration given.

NF- Compound not found when searched as TIC.

NA - Not available. No data available for background concentrations of these compounds.

NJ - Result reported is presumptively present at an estimated concentration.

NYSDOH- New York State Department of Health.

NYSDOH, 2006. Final NYSDOH Center for Environmental Health Soil Vapor Intrusion Guidance. Appendix C. Table C1. Indoor Air 75th and 90th values. October, 2006. Bold - Compound was detected at concentration shown.

Appendix A

Sampling Information and Results – 2008 Investigation

Soil Gas and Indoor Air Sample Summary Air and Soil Gas Samples Collected on June 26, 2008 Pemart Ave Former MGP, Peekskill, NY Table A-1

			7 17 - 4									Designation of the Office of t	All All DID
Sample	Canister		Sample Probe					Canister	Canister Pressure	PID Scr	PID Screening	Screening Range	g Range
Number	Number	Location	(inches below	Date	Sa	Sample Duration	ration	шш)	(mmHg)	Range (ppm)	(mdd)	(mdd)	m)
	N.	The state of the s	surface grade)		Start	Stop	Hrs:Mins.	Initial	Final	Pre	Post	Time	Bkd.
SSV01	SC00969	Indoor - lower level - wood-working shop on floor behind table saw at the center of southern wall of room	6	6/26/2008	18:00	20:33	2:33	30	4	0.8	1.5	17:40	0-1.2
IA01	AC00996	Indoor - lower level - wood-working shop on table adjacent to tablesaw along southern wall of room	NA	6/26/2008	18:00	20:34	2:34	30	-	N A	AN	17:40	0-1.2
SSV02	SC00326	Indoor - lower level - NE corner of lab office space under side table	6.5	6/26/2008	17:58	20:08	2:10 *	20	0	1.2	1.2	17:38	0-1.6
IA02	AC00285	Indoor - lower level - center of lab office at table height behind couch	NA	6/26/2008	17:59	20:28	2:29	28	-	NA	NA	17:38	0-1.6
SSV03	SC00294	Indoor - lower level - western garage floor center	10	6/26/2008	18:05	20:22	2:17	30	е	0.5	0.5	17:30	0-0.8
1A03	AC01122	Indoor - lower level - western garage on top of mini fridge on northern wall	NA	6/26/2008	18:05	20:22	2:17	28	2.5	NA	NA	17:30	0-0.8
OD-010	AC00958	Outdoor - chair height- outside western garage of 400 Main Street	AN	6/26/2008	18:03	20:16	2:13	26.5	2	AA	AN	17:20	0
OD-02D	AC01170	Outdoor - chair height- outside NW corner of 190 North Water Street	ΑN	6/26/2008	17:55	20:30	2:35	30	4	AN	Ϋ́	17:25	0
SV01	SC00173	Outdoor - rock landscape area along former SC00173 electric generating plant on west-side of N. Water Street	15	6/26/2008	17:50	20:42	2:52	29	0	4.8	2.2	17:45	0
SV01 (Duplicate)	SC00658	Outdoor - rock landscape area a electric generating plant on west Water Street	15	6/26/2008	17:50	20:43	2:53	30	1	4.8	2.2	NR	NR
SV02	SC01025	Outdoor - parking garage in taxi cab lot along former coal conveyor area	15.5	6/26/2008	17:02	20:50	3:48 *	26.5	0	6.2	7.2	17:50	0-1.5
SV03	SC00863	Outdoor - NW corner of 190 North Water Street	15	6/26/2008	17:56	20:31	2:35 *	29	0	0.7	6:0	17:54	0
SV04	SC1020	Outdoor - in grass area on east side of North Water Street west of former gas holder	40	6/26/2008	18:01	20:05	2:04	30	4	5.4	1.4	18:00	0
SV05	SC00473	Outdoor - asphalt paved parking lot at intersection of North Water Street and Main Street near former coal pile area	21	6/26/2008	18:07	20:13	2:06	29.5	2	NR	N R	18:05	0-0.5

* Endicates time of sampling stopped, however, sample canister may have drawn sample faster than 2-hour regulator based on field observations.
 - Pre and Post PID screening conducted through TeflonTM lubing with the drill rod sealed with bentonite at both the concrete and the top of the rod.
 - Background PID screening conducted of indoor or ambient air at each soil gas sample location.
 - NA = Not Applicable
 - NR = Not Recorded

ossibly MGP Related 1 aphthalene ,2,4-Trimethylpentane 2,4,5-Tetramethylbenzene ,2,3,5-Tetramethylbenzene ,2,3,4-Tetramethylbenzene³ ,2,3-Trimethylbenzene 3-Butadiene
3-Dichlorobenzene Methylpentane³ thyltoluene 3-Dimethylpentane Methyl-2-pentanone .4-Trichlorobenzene
-Dibromoethane (EDB)
-Dichlorobenzene p-Xylenes ylbenzene bon disulfide hiorodifluoromethane (Freon 12) 5.2-Dichloroethene bon tetrachioride zyi chloride -Dioxane Dicniorobenzene 1,3-Dichloropropene romochloromethane 2,2-Tetrachioroethane
2-Trichloroethane
Dichloroethane MGP Related² 4-Trimethylbenzene
5-Trimethylbenzene hlorofluoromethane (Freon 11)
2-Trichlorotrifluoroethane (Freon 113)
Dichlorotetrafluoroethane Dichloroethane Dichloropropane phene noform chioroethene none (MEK) Sample Location Sample Type CAS number 108-90-7
75-00-3
67-66-3
74-87-3
156-59-2
10061-01-5
124-48-1
64-17-5
75-69-4
76-13-1
76-14-2
75-71-8 107-83-5
622-96-8
108-10-1
71-43-2
75-15-0
110-82-7
100-41-4
142-82-5
110-54-3 496-11-7 78-78-4 91-20-3 100-42-5 95-93-2 565-59-3 591-78-6 527-53-7 123-91-1 78-93-3 67-64-1 100-44-7 75-27-4 75-25-2 74-83-9 56-23-5 106-99-0 541-73-1 106-46-7 75-35-4 120-82-1 106-93-4 95-50-1 107-06-2 78-87-5 540-84-1 95-13-6 IA-01 5/26/2008 ndoor Air 100 U U 100 U U 001 Sub Slab Soil Gas SSV-01 5/26/2008 180 8.5 U 8. 190 North Water Street ndoor Air Sub Slab Soil Gas SSV-02 :/26/2008 89 33 U 34 U 35 U 36 U 37 U 38 2.2 0.70 U 1.2 1.2 0.70 U NF NF NF 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 1.2 1.3 1.3 1.5 100 Main Street Sub Slab Soil Gas SSV-03 5/26/2008 320 1.2 U 4.9 1.2 U **5V01** 6/26/2008 Landscaped Area (200 N. Water Street) **5V01 (DUP)** 6/26/2008 55 J 6.2 U 6.2 Taxi Parking Lot **SV02** 5/26/2008 990
620 U
620 U 620 U NF 620 Soil Gas Outside Northwest Corner of 190 N. Water St. 620 U
620 U
620 U
NF
NF
NF
620 U
830
620 U
620 U
830
620 U
620 U
830
620 U
620 U
620 U Landscaped Area (North Water St.-East Side) **5/04** 5/26/2008 350 2,0 U 11 3,6 2,0 U 2, Municipal Parking Lot **5V05** 6/26/2008 300 300 7110 71 OD-01U 6/26/2008 0.69 U Upwind 0.69 U NF NF NF 0.69 U NF 0.69 U NF 0.69 U NF Ambient Air **OD-02D** 6/26/2008 Downwind 0.65 U 75th Percentile NYSDOH Background Indoor Air Concentrations (a) 90th Percentile

Table A-2
Air and Soil Gas Samples- Summary of Analytical Data for Volatile Organic Compounds
June 26, 2008 - Pemart Ave. Works Former MGP, Peekskill, NY

Table A-2 Air and Soil Gas Samples- Summary of Analytical Data for Volatile Organic Compounds June 26, 2008 - Pemart Ave. Works Former MGP, Peekskill, NY

Sample Location Sample Type Sample Name Sample Date Hexachlorobutadiene Methyl tert-Butyl Ether Methylene chloride (dichloromethane) 2-Propanal	2	Indoor Air IA-01 6/26/2008 100 U 100 U 100 U	Sut Soi 6/24 8 8 8 8	190 North Water Street Slab Indoo Indoo	r Street Indoor Air IA-02 6/26/2008 1.6 U 1.6 U 1.6 U 2.6	Sub Slab Soil Gas Sv.02 5726/26/2008 33 U 33 U 33 U 33 U 33 U	400 Main Street Indoor Air \$ IA-03 6/26/2008 6/270U 0.70U 0.70U 0.70U 0.70U 0.70U 0.70U 0.70U		SV01 6/26/2008 6.2 U 6.2 U 6.2 U	Landscaped Area (200 N. Water Street) 01	8 6	Outside Northwest Corner of 190 N. Water St. Soil Gas 5V03 626/2008 620 U 620 U 620 U	Landscaped Area (North Water St East Side) SV04 6/26/2008 2.0 U 2.0 U 18	Municipal Parking Lot 5V0S 6/26/2008 7.1 U 7.1 U 7.1 U 24	Upwind Ambi OD-01U 6/26/2008 0.69 U 0.69 U 0.69 U 1.6	Down Ambient Air OD. 8 6/26, 0.6 0.6 0.6	Downwind OD-02D 6/26/2008 0.65 U 0.65 U 1.1	NYSDOH Background Indoor Air Concentrations (A) Con
	87-68-3 1634-04-4	100 U	8.5	clc	1.6U	33 U	0.70 U 0.70 U	1.2 U	6.2 U	6.20	620 U	₹5œ0 ∪ 0.2€	2.0 U	7.1 U		0.69 U	0.69 U 0.65 U	U 0.65 U
tethylene chloride (dichloromethane)	75-09-2	100 U	8.5	<u></u>	1.6 U	33.∪	0.70 U	6.6	6.2 U	6.20	620 U	620 U	2.00	7.10		0.69 🗓		0. 6 5 U
2-Propanol	67-63-0	170	11	ω.	26	42	2.5	36	8.0	21	620 U	620 U	18	24		1.6		1.1
Propene	115-07-1	100 U	8.5 U	c	1.60	3310	3.4	1.20	6.2 U	40.1	620 U	620 U	2.0 U	216		0.69 U		0.65 U
Tetrachloroethene	127-18-4	100 U	31	1	1.6 U	110	0.97	7.3	5.2 U	6.2 W	2000	620 W	2.8	86		0.69 ⊌		0.65 U
Tetrahydrofuran	109-99-9	U 00.1	8.50	c	1.60	33 U	0.70 U	1.20	6.2 U	6.20	620 U	620 U	2.0 ∪	7.10		0.69 U		Desti
trans-1,2-Dichloroethene	156-60-5	100 U	8.5 U	C	1.60	33 U	0.70 U	1.20	6.2 U	20	620 Ú	620 U	2.0 U	7.10		0.69 U		
trans-1,3-Dichloropropene	10061-02-6	100 U	8.5 U	U	1.60	33 U	0.7011	1.2 U	6.21	6.20	620 U	620 U	2.0 U	7.10		0.69, U	0.65 U	0.65 U
Trichloroethene	79-01-6	100 U	8.5 ∪	_	1.60	5800	0.70 U	7.8	1 0 S Z	2600 J	170000	4700	2.6	29	П.	0.69 U		0.65 U
Vinyl acetate	108-05-4	0.000T	85 U	U	16.0	330'0	7.00	0.21.	62 U	62 U	6200 U	6200 U	20 U	71 U		6.9 U		6.5 U

75-01-4 100'U 8.5U 1.6U 33'U

0.70 U

6.2 U

620 U

620 U

- Notes: All concentrations in units of Micrograms per cubic meter (ug/m³)

 1. These compounds may be related to either MGP sources or non-MGP sources include MGP tars and petroleum feedstocks used in MGP processes, such as the carbureted water gas process.

 2. Non-MGP sources include cleaning products, floor wash and polish, vehicle exhaust, construction materials, and cigarette smoke.

 3. These compounds were not included in the laboratory's 2008 routine target compound list. However, the laboratory searched for them in 2008 as tentatively identified compounds (TICs) and reported estimated concentrations when identification criteria were met. They were part of Compound was detected at a concentration that exceeded its 95th Percentile NYSDOH Background Air Concentration.

 3. Compound detected at estimated concentration that exceeded its 95th Percentile NYSDOH Background Air Concentration.

 3. Compound detected at estimated concentration.

U - Compound was not detected at or above the concentration given.
NF- Compound not found when searched as TIC.
NA - Not available. No data available for background concentrations of these compounds.
NJ - Result reported is presumptively present at an estimated concentration.
NYSDOH- New York State Department of Health.
a- NYSDOH, 2006. Final NYSDOH Center for Environmental Health Soil Vapor Intrusion Guidance. Appendix C. Table C1. Indoor Air 75th and 90th values. October, 2006.
8old - Compound was detected at concentration shown.

Meteological Data for June 6, 2008 Stewart International Airport Newburgh, New York Table A-3

Hourly Observations

Month/Year: 06/2008

Station Location: STEWART INTERNATIONAL AIRPORT (14714)

Latitude: 41.504

Longitude: -74.105

Elev: 0 feet above sea level

Notes:

Stewart International Airport is approximately 24 miles Northwest of site Source: www.ncdc.noaa.gov

www.ncdc.noaa.gov

Environment

_

•

-

Appendix B

2010 Field Sampling Forms

,,,

-

-

_

_
-
-
-
,
•
-
_
-
-
-

-
==

AECOM

Location ID: SSV_0/

ient:	Con Edison			Date:	3/18/2010 Tin	ne: Start //	52 am/nm
Project N		er MCP			710/2010		53 am/pm
	ation: Peekskill, New Yo					1 111311 12.	3 2 am/pm
Sile Loca	Condo)rk	~ GFOF	Callagtar(a):	M Ctamanana	C Wataba	
vveatner	Conds: Sunhy Cig	117 Erecae	/- 65 /-	Collector(s):	M. Stepanova	, S. Wright	
	ATION SKETCH/DESCRI		0 - 4 - 4	las	-C- 1 00 4	www.	na plica
_00	and working	real) Same	roca	non as pre	2/5003 3	12/200
	ound one.						
Lo	N Water S	m w	JA.01 Idos	cross-secti	Pinikal = Pfinal =	+/-30 -7	
2. SAMF	PLE COLLECTION Sub-slas esting Equipment used		0.46		16/ CUM	ua (2.6	N Man / 1
- Method:	Sub-slav	Vaj	UV Sal	spie w j	02 (4/4/	17- 10-11	1 4841/01
Field T	esting Equipment used	•	Make '	,	Model	Serial Nur	nber
	Canister		PPP RAE				
211							
24h	DID Danding	l m: 1	DID Des Ess	1 7:	DID Dooding	l Time	DID Booding
<u>Time</u> Start	PID Reading	Time	PID Reading	<u>Time</u>	PID Reading	Time	PID Reading
	amblent	11:52		-			
:10sec :20sec		11. 10	0.5				
	Hatt purging	 	<i>V</i> · 5				
:30sec				 			
:40sec		 		-		_	
:50sec		+					
:60sec 1 minute	Finish Purpling	-	211				
	nest PID Reading =	4.1	7.25	· I	<u> </u>		
			- 1				
3. SAMP	PLE COLLECTION:	Method: _C	2-100 7	flow c	ortrolled S	UMMIL	- -
Sample I	D No. of Containers	Contai	ner type		Analysi	e Pen	Time
			• •				Time
	/\	66	SUMMA	E	xpanded 7	071	
55V_(01 1				/		
	01 1						
55V_1	21						
	21						
55V_1						,	
55V_1	11/6/	240				3/18	///

AECOM

Location ID: IA 01

	Con Edison		0	Date:3	/18/2010 Tim	e: Start //:	
roject N	· · · · · · · · · · · · · · · · · · ·					Finish 13	52 am/pm
ite Loca							
/eather	Conds: Sunny, Cist	ht Greezo.	1920E	Collector(s):	M. Stepanova,	S. Wright	
LOCAT	TION SKETCH/DESC	RIPTION					
(N Water S	105	A.01 7.55V-01 wood	PR	init = -x $mal = -7$	29	
	N Water S	tree t	table				
Loc	cation	and the second s	galance. P in addition to the second	cross-sectio	nal profile		
							- And Market
SAMPI	LE COLLECTION Substing Equipment used	Va mor	cample	41/5	MMA CON'C	dera 19	hu mou
ielnod: Sald Ta	eting Equipment used	Vagra	Make	-//	Model	Sprint Now	har
iela i e	sing Equipment used	•	ppb PID RAE		Model	Seriai Nun	iber
			ppo I ID ICIL				
24h							
<u> ime</u>	PID Reading	Time	PID Reading	<u>Time</u>	PID Reading	Time	PID Reading
rt	<u> </u>	17:51	0				
ec							
ec							
ec							
ec ec							
<u></u>					all - Williams		
ec l							
	//						
inute	et PID Reading -	: 10	VII.4	L			
inute Highe	est PID Reading =		2 hr -1	low co	m to led S	UMMA	
Higher SAMPL	LE COLLECTION:	Method: _		low co	no ho led S		
Higher SAMPL	LE COLLECTION: No. of Containe	Method: _ ers Contai	ner type		Analysis	Req.	- Time
	LE COLLECTION: No. of Containe	Method: _ ers Contai				Req.	Time
Higher SAMPL mple ID	LE COLLECTION: No. of Containe	Method: _ ers Contai	ner type		Analysis	Req.	Time
Higher SAMPL	LE COLLECTION: No. of Containe	Method: _ ers Contai	ner type		Analysis	Req.	Time
Higher SAMPL mple ID	LE COLLECTION: No. of Containe	Method: _ ers Contai	ner type		Analysis	Req.	Time
Higher SAMPL nple ID	No. of Containe	Method:_ ers Contai	ner type		Analysis	Req.	Time

1. LOCATION SKETCHDESCRIPTION Vacant assesses low location same as previous squipling but no furniture N water str Init pressure = -28 Pin pressure = -6 2. SAMPLE COLLECTION Method: Scis clad vapor sampling w/66 Summa conister d-hr has Field Testing Equipment used Make Model Serial Number Canister Canister SC 00840 24h Time PID Reading Time PID Reading Time PID Reading Time PID Reading Start 1.0sec 9 for few for flow controlled SUMMA 40sec 50sec 60sec 1.9 Highest PID Reading 1.9 3. SAMPLE COLLECTION: Method: S. hr flow controlled SUMMA Sample ID No. of Containers Container type Analysis Req. Time SSIV. 02 1 6 L Summa TO-15 Expanded list Notes		Conds: Sunmy, Eig				M. Stepanova, S		
Init pressure = -28 Fin pressure = -28 Fin pressure = -6 SSV-02 IA-02 IA-02 SAMPLE COLLECTION Method: Cross-sectional profile Serial Number can is less than the serial Number cross-sectional profile cross-sectional	<u> </u>	vacant a supling bu	goesk 1 h	s low	LOCATI ture	son same as	pre vi	aus
2. SAMPLE COLLECTION Method: Sc. B. slad vapor sampling w/ 61 Symma Conister 2-hr 12 Make Model Serial Number Serial Number Canister 2-hr 12 24h Time PID Reading Time PID R		****						
Cross-sectional profile 2. SAMPLE COLLECTION Method: Serial Number Conjster SC 00840 24h Time PID Reading Time PID Reading Time PID Reading Time PID Reading Start Conjster Start Purge 1.5 30sec Sec 1.9 Highest PID Reading 1.9 3. SAMPLE COLLECTION: Method: Sample ID No. of Containers Container type Analysis Req. Time SSU-02 1 64 Summa TO-15 Expanded Gist		124	-door	T [Fin	pressure =	-6	
Cross-sectional profile 2. SAMPLE COLLECTION Method: Second Se		*	v 02.			,		
Cross-sectional profile 2. SAMPLE COLLECTION Method: Serial Number Conjster SC 00840 24h Time PID Reading Time PID Reading Time PID Reading Time PID Reading Start Conjster Start Purge 1.5 30sec Sec 1.9 Highest PID Reading 1.9 3. SAMPLE COLLECTION: Method: Sample ID No. of Containers Container type Analysis Req. Time SSU-02 1 64 Summa TO-15 Expanded Gist		0 7A	.02					
2. SAMPLE COLLECTION Method: Scarb slab vapor Sampling w/66 Symma Conistle (2-hr has Field Testing Equipment used) Make Model Serial Number (Conistle Serial Number Serial Number Serial Number Start) 24h Time PID Reading Tim								
2. SAMPLE COLLECTION Method: Side sides vapor sampling w/66 Symma Conistle (2-hr has Field Testing Equipment used) Make Make Model Serial Number Conistle (2-hr has Serial Number) 24h Time PID Reading Time PID Reading Time PID Reading Time PID Reading Start 10sec Ghrient 1646 0 20sec Start purge 1.5 30sec 666 1.9 Highest PID Reading 1.9 Highest PID Reading 1.9 Method: 2-hr flow- controlled Summa Sample ID No. of Containers Container type Analysis Req. Time SSIV-02 1 64 Summa TD-15 Expanded Gist		2athroom	1					
2. SAMPLE COLLECTION Method: Side sleets vapor sampling w/66 Symma Conistle (2-hr has field Testing Equipment used) Make Model Serial Number (Conistle Serial Number (Conist		cleonifies	- agent a comment of the second					
2. SAMPLE COLLECTION Method: Scient stand vapor sampling w/6L Symma Conistle (2-hr has Field Testing Equipment used) Make Make Model Serial Number Conistle (2-hr has Serial Number) 24h Time PID Reading Time PID Reading Time PID Reading Time PID Reading Start 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lo	ocation 1 1	,	*	cross-section	onal profile		
24h Time PID Reading Time Time PID Reading Time PID Readi				- 01	/	<i>(1)</i>	0 . / .	12 4-
24h Time PID Reading PID	a Method:	Sub slad V	apor	saupung	w/ 6	56 SUMMA	CRNISTRY	10 -111 /P
Time PID Reading Time PID Reading Time PID Reading Time PID Reading Start 10sec Abrient By6 0 20sec Start purge 1.5 30sec Start purge 1.9 Highest PID Reading 1.9 3. SAMPLE COLLECTION: Method: 2. hr flow Controlled SUM MA Sample ID No. of Containers Container type Analysis Req. Time SSI/-02 1 64 Summa TD-15 Expanded Gist	Field T	esting Equipment used	/	Make	,	Model	Serial Num	iber
Time PID Reading Start 10sec QMS; ent MY6 0 20sec Start purge 1.5 30sec 666 1.9 Highest PID Reading = 1.9 3. SAMPLE COLLECTION: Method: 2. Mr flow controlled SUM MY5 Sample ID No. of Containers Container type Analysis Req. Time 5511.02 1 64 Summa TD-15 Expanded Gist				- panietti KA-k		CUN/5724	- VUOTL	
Time PID Reading PID	24h		*					All the state of t
10sec Q. Mijent 146 0 20sec Stent purge 1.5 30sec 1.9 40sec 1.9 Highest PID Reading = 1, 9 Sample ID No. of Containers Container type Analysis Req. Time 551/-02 1 64 Summa TO-15 Expanded Gist		PID Reading	Time	PID Reading	<u>Time</u>	PID Reading	Time	PID Reading
20sec Start purge 1.5 30sec Start purge 1.9 40sec 1.9 40		, , , , , , , , , , , , , , , , , , ,						
30sec 646. 40sec 50sec 560sec 7.9 Highest PID Reading = 1.9 3. SAMPLE COLLECTION: Method: 2. Ar flow- Controlled SUM MA Sample ID No. of Containers Container type Analysis Req. Time SSIV. 02 1 61 Summa TD-15 Expanded list			14.46					
Alosec Solvec I minute Frol purge Highest PID Reading = 1, 9 3. SAMPLE COLLECTION: Method: 2 hr flow controlled SUM MA Sample ID No. of Containers Container type Analysis Req. Time SSIV. 02 1 6 L Summa TD-15 Expanded Gist								
Solve 100 purge 1,9 Highest PID Reading = 1,9 3. SAMPLE COLLECTION: Method: 2. Ar flow- controlled SUM MA Sample ID No. of Containers Container type Analysis Req. Time SSV. 02 1 6 L Summa TD-15 Expanded 4'st	20sec							
Highest PID Reading = 1.9 3. SAMPLE COLLECTION: Method: 2. Ar flow Controlled SUM MA Sample ID No. of Containers Container type Analysis Req. Time SSI/-02 1 64 Summa TO-15 Expanded Gist	20sec 30sec			1, 9				
Highest PID Reading = 1, 9 3. SAMPLE COLLECTION: Method: 2. hr flow-controlled SUMMY Sample ID No. of Containers Container type Analysis Req. Time SSI/-02 1 64 Summa TD-15 Expanded Gist	20sec 30sec 40sec			1.9				
Highest PID Reading = 1.9 3. SAMPLE COLLECTION: Method: 2. Ar flow. Controlled SUM MA Sample ID No. of Containers Container type Analysis Req. Time SSI/-02 1 64 Summa TO-15 Expanded 4'st	:20sec :30sec :40sec :50sec			1.9				
3. SAMPLE COLLECTION: Method: 2. Mr flow- Controlled SUM MA Sample ID No. of Containers Container type Analysis Req. Time SSI/-02 1 64 Summa TO-15 Expanded Gist	:20sec :30sec :40sec :50sec	646.						
Sample ID No. of Containers Container type Analysis Req. Time SSV-02 1 64 Summa TD-15 Expanded Gist	20sec 30sec 40sec 50sec 60sec	End puroe		1.9				
Sample ID No. of Containers Container type Analysis Req. Time SSV-02 1 64 Summa TD-15 Expanded Gist	20sec 30sec 40sec 50sec 60sec	End puroe	1.5	1.9		ALL		
Sample ID No. of Containers Container type Analysis Req. Time SSV-02 1 64 Summa TD-15 Expanded Gist	:20sec :30sec :40sec :50sec :60sec	End puroe	,	7				
SSV-02 1 66 Summa TO-15 Expanded list	:20sec :30sec :40sec :50sec :60sec 1 minute	End purge est PID Reading =	,	7	flow- C	on trolled SU,	M MA	
SSV-02 1 61 Summa TO-15 Expanded list	:20sec :30sec :40sec :50sec :60sec 1 minute	End purge est PID Reading =	,	7	flow- C	on trolled SU	M MJ	
	:20sec :30sec :40sec :50sec :60sec 1 minute High	End purge est PID Reading =	Method:	2. pr	flow- C			Time
Notes:	:20sec :30sec :40sec :50sec :60sec 1 minute High	End purge PLE COLLECTION: D No. of Containe	Method:	1. 9 2. Mr		Analysis F	Req.	Time
Notes:	:20sec :30sec :40sec :50sec :60sec 1 minute High	End purge PLE COLLECTION: D No. of Containe	Method:	1. 9 2. Mr		Analysis F	Req.	Time
·	:20sec :30sec :40sec :50sec :60sec 1 minute High	End purge PLE COLLECTION: D No. of Containe	Method:	1. 9 2. Mr		Analysis F	Req.	Time
	:20sec :30sec :40sec :50sec :60sec 1 minute High 3. SAMP	End purge PLE COLLECTION: D No. of Containe	Method:	1. 9 2. Mr		Analysis F	Req.	Time
Signature	:20sec :30sec :40sec :50sec :50sec 1 minute High 3. SAMP	End purge PLE COLLECTION: D No. of Containe	Method:	1. 9 2. Mr		Analysis F -15 Expanda	Req. A G'st	

Location ID: IA_D2

AECOM

	Con Edison			Date:3	/18/2010 Tim		
Project No	Pemart Avenue Forn	ner MGP				Finish_/3	: <u>47</u> am/pm
Site Locati							
Weather C	Conds: Sunny Cist	il creeze,	20-50E	Collector(s):	M. Stepanova,	S. Wright	
1. LOCAT	Vacant as	PTION Best 5 Supern	la8,	furnitur	e renieve.	d as a	sh pareo/
	N. Water S	typed, 4,	71 # 1		prosure = -		
1 200	ation			arana nastin	nal profile]
Loca	ation			cross-sectio	nai prome		
Method:	ECOLLECTION Judgor Aim	w/6.	L Su	MMA c	Onisters (a	hr fl	av centroller
Field Tes	ting Equipment used	Ma	ke PID_RAE		Model	Serial Nui	nber
24h							
<u>Time</u>	PID Reading	Time PIE	Reading	Time	PID Reading	Time	PID Reading
Start							
10sec		11:47	0				
20sec							
30sec							
40sec							
50sec							
60sec							
minute			VO				
	st PID Reading = E COLLECTION:	<i>O</i> Method: <u>ℒ</u>	-hr	flow · Co	ontrolled Si	umma	_
Sample ID	No. of Containers			-	Analysis		Time
A 02	1	61 Suma	114	10	15 Expano	100/	

lotes:							
Signature_	M 5/4	p			Date	3/18/	10

ient:	Con Edison		C	ate:	3/18/2010 Tim	ie: Start <u>/2</u> :	<i>0</i> ≶_am/pm
1 1	No: Pemart Avenue Forn					Finish /4	04 am/pm
	ation: Peekskill, New Yo						
Weather	Conds: <u>sunny</u> light	Bree to	~65° 1- (Collector(s):	M. Stepanova,	S. Wright	No.
1. LOCA	TION SKETCH/DESCRI	PTION					
400	Main Str. Mr.	46 51	bre with to	irninive	sieces throw	phout .	Pravious
leach	on is conpoled	150	elient su	ggested	new location	Between	2 seen concrete
				00			slais
	Main			P_{i}	nit = -295		
	, Y***	-			n = - 6		
ļ				71	n - 0		
	Furtiture and ser pieces						
	•,		12				
	Furtiture and sec	wer	we ta				
	pieces		7 2				
	_TA_04						
	× 550_03		151	araan aaati	anal profile		
	bation	-		cross-section			h Abian Ari
2. SAMP	PLE COLLECTION, SUB-SUB Va esting Equipment used	,		10	CLIANA 1	, /	0
Method:	500-500 Va	por 5	a peino	W/ 62	JUM11/14 C	anister (a	- Mr rep. 1970r
Field To	esting Equipment used		Make		Model	Serial Nun	nber
		·	ppb PID KAE	<u> </u>			
24h			Annual Annua		_		
Time	PID Reading	Time	PID Reading	Time	PID Reading	Time	PID Reading
Start		<u> </u>	Name of the second seco				
:10sec :20sec	0.2	-					
:30sec	1.8		<u> </u>				
:40sec	2.0						
:50sec	2./_						
:60sec 1 minute	7.0						
L	<u> </u>						
mign	est PID Reading =	<i>≪. 1</i>					
			4/ (•		. 11 A	
3. SAMP	LE COLLECTION:	Method:	2-hr-16	OW . CO	, holled Sur	NMI	_
0	•		•				The -
Sample II		S Conti	ainer type)	Analysis	Req.	Time
<u>550-03</u>	3 1	8L	SUMMA	·	Expanded To	/-/3	
·			****		/		And the second
Notes:							,
HEREN							
	m C1	17 1 -				1	1
Olemanters	, MSI)	pa	hova	•	D-4-	3/18	/2010
Signature		//			Date	7/0,	,, -
						7 7	**************************************

ient:	Con Edison)ate:3	/18/2010 T	ime: Start //:	5 9 am/pm
Project No	: Pemart Avenue Form	ner MGP				Finish /3.	C9 am/pm
Site Locati	on: Peekskill, New Y	ork					
	Conds: SUMMY ligh		-65°F (Collector(s):	M. Stepano	va, S. Wright	
1. LOCAT 400 1h	Main Str. Uni new subsel	PTION 1. St st act s	tore Nas	canpetion Book	ig @ Bol le	xorion. Ce	· locotko)
	Pioces of Arminare throughout	Sewer.	The year	P in P An	it = - 28 al = - 4		
	XO						
Loca	ation			cross-section	nal profile		
Method:	E COLLECTION To Loor air 5 ting Equipment used		Make ppb PID RAE	SL SUA	MA Cani Model	ster /2-hr Serial Nur	repulador nber
24h							
Time	PID Reading	Time	PID Reading	Time	PID Reading	Time	PID Reading
Start	Q						
10sec							
20sec							
30sec							
40sec							
50sec			**************************************				
60sec							
minute							
	st PID Reading =	O Method: <u>o</u>	2-hr fle	nu-rega	lated SU	MM/J	
Sample ID	No. of Container	s Conta	iner type	·	Analys	sis Req.	Time
7A 03	. 1	66 54	MMA	EXE	nanded 70	<u>- /\</u>	
				1			
Votes:	ha -1						
Signature_	111 5/2	1091	rova	,	Date	3/18/20	D/ U_

Site Loca	Con Edison No: Pemart Avenue Formation: Peekskill, New Y				3/18/2010		:23 am/pm
	Conds: Sunny lie		70, N650F (Collector(s):	M. Step	anova, S. Wright	
4.1004	TION OVETOURESOR	IDTION					
1. LUGA	NTION SKETCH/DESCR Water Street Cailer Cra nhole	/ / /	Cann - h.	20. 6	. Modlent	Barlinger	Programme of the second
200 N .	Waiter Street	157 gr	bc 10 804	400 Th	Kan Lou	The chart	20
Mai	nhole tru	$\frac{\omega}{\gamma}$	24CE 391	// CP [24]	ren yrung	60 5007 m	me
Ţ <u>, , , , , , , , , , , , , , , , , , , </u>			garate			2 ~~	
	N WATER STRE	2011	- AND	P_{I}	11/2 = -20		
	MH/~	30"dian.		D.A.	01=-6	∽	
	N Water Ster N Water Ster MH/~ 1805 1804	XXY 1	() []	アカル	w/ 6	<u> </u>	
	JA05						
	18/2/10	k 1	111				
	OC XIC						
	St01 a	00					
1	و ب ب به به	>	1				
l lo	ocation			cross-section	onal profile		
2. SAMP	PLE COLLECTION	or ce	unpo w/h	/ SUMM	MA com los	a lu 2. hu ch	Con Contra
Method: Field To	Sub-clock vap esting Equipment used	<u> </u>	Make	/4/-//	Model	Serial Nu	mher
i icia 10	esting Equipment used		SPECIAL C		,110001	Serial Nul	11001
			Tree contracts				
24h	1	1	-	1	1	1	1
<u>Time</u>	PID Reading	Time	PID Reading	<u>Time</u>	PID Readi	ng <u>Time</u>	PID Readin
Start :10sec	0,m 8;ent	1020	0				
20sec	Hart pureing	100,50	$\overline{}$				
30sec							
40sec							
40360							
50sec					1		
50sec 60sec	Elnich Piero		n a				
50sec 60sec 1 minute	Finish Purgina		p. 9				
50sec 60sec 1 minute	Finish Purging est PID Reading =		Q. 9				
50sec 60sec 1 minute			Y				
50sec 60sec 1 minute High	est PID Reading =	Method: /	Y	vo- cout	ro/led	SUMM A	
50sec 60sec 1 minute High		Method:	Y	no- conti	ro/fed	SUMMI A	_
50sec 60sec 1 minute High 3. SAMP	est PID Reading =		Y	.co- cout		SUMM A	
50sec 60sec 1 minute High 3. SAMP	PLE COLLECTION: No. of Container	rs Conta	∠h~ <i>f.Cc</i> ainer type		An	alysis Req.	— Time
50sec 60sec 1 minute High 3. SAMP	PLE COLLECTION: No. of Container	rs Conta	∠h~ <i>f.Cc</i> ainer type			alysis Req.	— Time
50sec 60sec 1 minute High 3. SAMP	PLE COLLECTION: No. of Container	rs Conta	∠h~ <i>f.Cc</i> ainer type		An	alysis Req.	Time
50sec 60sec 1 minute High 3. SAMP Sample II	PLE COLLECTION: No. of Container	rs Conta	∠h~ <i>f.Cc</i> ainer type		An	alysis Req.	Time
50sec 60sec 1 minute High 3. SAMP	PLE COLLECTION: No. of Container	rs Conta	∠h~ <i>f.Cc</i> ainer type		An	alysis Req.	Time
Sosec 60sec 1 minute High 3. SAMP Sample II	PLE COLLECTION: No. of Container	rs Conta	Lh~ ∫.Cc ainer type uMMA		An ipo, nale d	alysis Req.	Time

, ाient:	Con Edison			Date:	3/18/2010	Time:	Start //:1	5 am/pm
Project N	lo: Pemart Avenue For	mer MGP		_				am/pm
1 1	ation: Peekskill, New Y			-			77.	
	Conds: 54nny ligh		14 N 687	Collector	(s): <u>M. S</u>	tepanova, S	. Wright	_
1. LOCA	TION SKETCH/DESCR	IPTION						
			torano s	bace -	La relino	reto	illow!	
0/	Notes Street Street	2000/	W4 27 0	V	or engre		C, SET	
	,		• •					
	N. Water Str DI Box e JA. OS Box e Frox Cleaning supplication		Barusa das	<i>f</i>	Pinit : -	-1 /-30)	
Lo	cation 0 //			cross-se	ectional profile			
2. SAMP Method:	LE COLLECTION jn down a in used	16.	2 SUAMA	A coni	sten /2h	r conti	holled y	Clow)
Field Te	sting Equipment used				Model		Serial Num	ber /
		· · · · · · · · · · · · · · · · · · ·	ppb PID RAI					
24h								
Time	PID Reading	Time	PID Reading	g Time	PID Re	ading	Time	PID Reading
Start				2		5		115 Reading
:10sec	ansbient	11:15	T					
:20sec		1						
:30sec								
:40sec								
50sec		 					- Annay - Anna	
:60sec		-						
1 minute		Q						
	est PID Reading =	0	0					L
, ng m	oot i ib itoadilig -	U						
3. SAMPI	LE COLLECTION:	Method:	J.hr	flow.	can to 1/ea	1 54.	MMA	
Sample ID	1		ainer type	/-		Analysis R	•	Time
TAO:	<i>J</i>	0.2	MMA		panded	10 - 1)	
					·			
Notes:								
Notes: Signature	11151	sp:	anova			Date	3/18/	/10

AECOM

Project No: Penart Avenue Former MGP Site Location: Peekskill, New York Weather Conds: Geney, Right brase, 65° f 1. LOCATION SKETCH/DESCRIPTION Home less shelter and floor, femalo darn bedroom, focing N water street. No Water Street \$200. Phint = 29 Pand = 8 Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Industrative for the pline of 61 Suri M Canisters (2hr reculotor Field Testing Equipment used Make Model Serial Number ppb PID Reading Time PID Reading Time PID Reading Time PID Reading Time PID Reading Start Start 11:30 0 1 Ilosec and Start 11:30 0 1 Ilosec 130 Sec 130 Sec 150 Sosc 150 Sosc 150 Sec 15	Site Location Peckskill, New York Weather Conds: Sunny, Right brase 55° F Collector(s): M. Stepanova, S. Wright 1. LOCATION SKETCH/DESCRIPTION Home less Shelter and flew female dam bedroom, focing Number street, \$200. Not had your female dam bedroom, focing Number street, \$200. Plant = 29 Final = 8 Location 2. SAMPLE COLLECTION Method: Industry air compling w/ 61 Surful Canster's (2hr recolledor Make ppb PID RALE) 24h Time PID Reading Time PID Readin	lient:	Con Edison		D	eate:3	/ <u>18/2010</u> Time	: Start <u>//</u> :	∀ / am/pm
Weather Conds: Eunny, light trave, 65° F Collector(s): M. Stepanova, S. Wright 1. LOCATION SKETCH/DESCRIPTION Home less shetter, and floor, female darn bedroom, facing N water street. N Water Street \$200. Pluit = 29 Pand = 8 Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Industrair salupling w/61 Suri M Canister's (2hr reaclabor Field Testing Equipment used Make Model Serial Number photosec 100 pp. 1130 0 1100 pp. 1130 pp. 1130 0 1100 pp. 1130	Weather Conds: Sunny, light brave, 66° F Collector(s): M. Stepanova, S. Wright 1. LOCATION SKETCH/DESCRIPTION Home left shetter and floor, female dam bindroom, forcing N. Water Street. N. Water Street \$200. Page 100 Prind = 29 Radiway Beds Location Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Index air sampling w/61 SuryM Canister's (2hr racilobor Field Testing Equipment used Make Model Serial Number ppb PID Reading Time PID Reading T	Project N	o: Pemart Avenue Fo	rmer MGP				Finish /4:	/S am/pm
1. LOCATION SKETCH/DESCRIPTION Home less she fler and floor, female darm bedroom, forcing N water street, #200. N Water Street, #200. Phint = 29 Por Malway Beds Location 2. SAMPLE COLLECTION Method: Indur air sampling w/61 sum M cansters (2hr ragulator field Testing Equipment used) Make Model Serial Number ppb-PID Reading Time PID Rea	1. LOCATION SKETCH/DESCRIPTION Home less shetter and floor, female dam bedroom, facing N water street. N water Street #200. Pinit = -29 Pinit =	Site Loca	tion: Peekskill, New	York					
Home less shelter, and floor, fevalo dorn bedroom, forcing N. Water street. N. Water Street, #200, Pinit = -29 Panal = -8 Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Industry Field Testing Equipment used Make PhD Reading Time PID Reading Time PID Re	Homeless shetter, and floor, female dam bedroom, facing N water street. N Water Street #200 Pinit = -29 Poor Joor Final = -8 Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Industry air sampling w/61 SumM conisters (2hm raculotor Make Model Serial Number Serial Number ppb PID RAE 2th Make Model Serial Number PID Reading Time	Weather	Conds: funny, lie	h breeze:	~65°F (Collector(s):	M. Stepanova, S	. Wright	
Location Pint = -29	Notes: Notes Not								
Location Pinit = -2 9	Notes Note	H	omeless she	Her o	End Place	or 10	male dorn /	Bedrooi	и,
N Water Street \$200. Pint = -29 Pand = -8 Beds Location 2. SAMPLE COLLECTION Method: Induor air gampling w/61 SwiM Canisters (2hr reculotor Field Testing Equipment used Make Model Serial Number ppb PID Reading Time PID Re	Notes: Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Notes Note		orcius N Wat	er str	007				
Location cross-sectional profile 2. SAMPLE COLLECTION Method: Industral sampling w/6L Sum Make Model Serial Number PID Reading Time PID Rea	Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Industr air sampling w/6L Summ Canister's (2hr reciclotor Field Testing Equipment used Make Model Serial Number ppb-PID RAE 24h Time PID Reading	1	,						
Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Industral sampling w/6L Swim Canister's (2hr raculator Field Testing Equipment used Make Model Serial Number 24h Time PID Reading Time	Location Sed's Location Sed's	*-	N Water 9	Treet 3	#200	P	147 = -20	7	
Location Cross-sectional profile 2. SAMPLE COLLECTION Method: Industral sampling w/6L Swim Canister's (2hr raculator Field Testing Equipment used Make Model Serial Number 24h Time PID Reading Time	Location Sed's Location Sed's	<u></u>	7 door		''	'n	,,,,,	/	
Bed's	Bed's		women -	X	= JA.06	ρ_{γ}	Sinal = -8		
Bed's	Bed's		clory						
Location cross-sectional profile 2. SAMPLE COLLECTION Method: Induor air gampling w/6L Sum M. Consters (2hr reaclabor Field Testing Equipment used Make Model Serial Number PPD PID RAE 24h Time PID Reading Time PID Reading Time PID Reading Time PID Reac Start // 30 0 10sec Arr810n f 20sec 30sec 30sec 50sec 50sec 50sec 50sec 50sec 1 minute	Location Cross-sectional profile		- hal	Twall					
Location cross-sectional profile 2. SAMPLE COLLECTION Method: Induor air sampling w/6L Suri MA Canister's (2hr reculator Field Testing Equipment used Make Model Serial Number PID Reading Time PID Reading Tim	Location cross-sectional profile 2. SAMPLE COLLECTION Method: Induor air sampling w/6L Sum MM Canister's (2hr reculous Field Testing Equipment used Make Model Serial Number PID Reading Time P		A Committee of the Comm						
Location cross-sectional profile 2. SAMPLE COLLECTION Method: Induor air sampling w/6L Suri MA Canister's (2hr reculator Field Testing Equipment used Make Model Serial Number PID Reading Time PID Reading Tim	Location cross-sectional profile 2. SAMPLE COLLECTION Method: Induor air sampling w/6L Sum MM Canister's (2hr reculous Field Testing Equipment used Make Model Serial Number PID Reading Time P	ľ	•		Best &				
2. SAMPLE COLLECTION Method: induor air gampling w/6L SuriMA conister's (2hr reaclator Field Testing Equipment used Make Model Serial Number Photograph	2. SAMPLE COLLECTION Method: Jadwr air sampling w/6L SumM Canister's (2hr reculator Field Testing Equipment used Make Model Serial Number 24h Time PID Reading Time PID Readi		Martin Company and the State of the Company and the Company of the						
2. SAMPLE COLLECTION Method: induor air gampling w/6L SuriMA conister's (2hr reaclator Field Testing Equipment used Make Model Serial Number Photograph	2. SAMPLE COLLECTION Method: Jadwr air sampling w/6L SumM Canister's (2hr reculator Field Testing Equipment used Make Model Serial Number 24h Time PID Reading Time PID Readi								
2. SAMPLE COLLECTION Method: Induor air gauspling w/6L Swift Conicler's (2hr reaclator Field Testing Equipment used Make Model Serial Number PD Reading Time PID Reading Time	2. SAMPLE COLLECTION Method:								
Method: Induor air sampling w/6L SumMA Consters (2hr reculosor Field Testing Equipment used) Make Model Serial Number PID Reading Time PID R	Method: Induor air salupling w/6L Sun/M Canister's (2hr reaclobor Field Testing Equipment used Make Model Serial Number 24h Time PID Reading PID Reading Time PID Reading PID Reading Time PID	Loc	cation			cross-sectio	nal profile		
Method: Industrial regulation w/6L Subject Make Model Serial Number PID Reading Time PID R	Method: Industrial sale place of sale pling w/6L SumM Canister's (2hr reculobor Field Testing Equipment used Make Model Serial Number 24h Time PID Reading Ti								_
24h Time PID Reading Time	24h Time PID Reading = 0 3. SAMPLE COLLECTION: Method: 2-hr flow co-trolled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 64 SUMMA TD-15 expanded	2. SAMP	LE COLLECTION	. alima	11/100	WMA On	10 mm / 2/		Dala
24h	24h Time PID Reading = 0 3. SAMPLE COLLECTION: Method: 2-hr flow co-trolled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 64 SUMMA TD-15 expanded	Method:	induor air gal	apirna	w/ 62 >ar	1001 (20	1/514 > (XM)	recui	eutor.
Time PID Reading Time Time PID Reading Time Time Time	24h Time PID Reading PID Reading PID Reading Time PID Reading PID Rea	Field Te	sting Equipment used	,	Make		Model	Serial Nun	nber
Time PID Reading Time P	Time PID Reading Time P			MIII.	-bbo-kin kvr				
Time PID Reading Time P	Time PID Reading Time P	246							
Start //:30 0 :10sec aux8; au t :20sec :30sec :40sec :50sec :60sec 1 minute	Start 10sec 10sec 20sec 20sec 30sec 40sec 50sec 60sec 1 minute Highest PID Reading = 3. SAMPLE COLLECTION: Method: 2-hr flow co-trolled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 GL SUMMA Notes:		PID Reading	Time	PID Reading	l Time l	PID Reading	l Time	PID Read
:10sec	:10sec and, on t :20sec :30sec :40sec :50sec :60sec 1 minute Highest PID Reading = O 3. SAMPLE COLLECTION: Method: 2-hr flow controlled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 GL SUMMA TO-15 expanded Notes:		<u> </u>			111110	1 1D Reading	111110	11D Kead
:20sec :30sec :40sec :50sec :50sec :10minute :20sec :40sec :50sec	20sec 30sec 30se		ambion t	11.30	T T				
:30sec	3. SAMPLE COLLECTION: Method: 2-hr flow controlled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 64 SUMMA TD-15 expanded Notes:	J							
:40sec	:40sec :50sec :60sec 1 minute Highest PID Reading = 3. SAMPLE COLLECTION: Method: 2-hr flow co-trolled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 6 SUMMA TO-15 expanded Notes:								
:50sec :60sec 1 minute	:50sec :60sec 1 minute Highest PID Reading = 3. SAMPLE COLLECTION: Method: 2-hr flow co-trolled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 6 SUMMA TD-15 expanded Notes:								
:60sec 1 minute	1 minute Highest PID Reading = 3. SAMPLE COLLECTION: Method: 2-hr flow controlled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 6 SUMMA TD-15 expanded Notes:								
1 minute	Highest PID Reading = O 3. SAMPLE COLLECTION: Method: 2-hr flow co-trolled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 6 SUMMA TO-15 expanded Notes:			<u> </u>					
	Highest PID Reading = 0 3. SAMPLE COLLECTION: Method: 2-hr flow co-trolled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 6 SUMMA TO-15 expanded Notes:								
	3. SAMPLE COLLECTION: Method: 2-hr flow controlled SUMMA Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 6 SUMMA TD-15 expanded Notes:		at DID Banding						
	Sample ID No. of Containers Container type IA 06 Analysis Req. Time TO-15 expanded Notes:								
	Sample ID No. of Containers Container type Analysis Req. Time IA 06 1 6 Summa TD-15 expanded Notes:	3 SAMPI	E COLLECTION:	Method:	2-60 -1	Paul Car	trolled SUA	MA	
3 SAMPLE COLLECTION: Method: 2-hr - Sour Controlled SCLAMA	IA 06 1 & SUMMA TO-15 expanded	J. Orien i		wictiou	- //·	cou co	101160 30(19	71//	
3. SAMPLE COLLECTION: Method: 2-hr flow controlled SUMMA	IA 06 1 & SUMMA TO-15 expanded	Sample ID	No. of Contains	ers Conta	iner type		Analysis R	en .	Time
,	Notes:			-		-			,
Sample ID No. of Containers Container type Analysis Req. Time	Notes:	1400	2 1	10c 5u	MATA	10-	13 expander	<u> </u>	
Sample ID No. of Containers Container type Analysis Req. Time							/		
Sample ID No. of Containers Container type Analysis Req. Time									
Sample ID No. of Containers Container type Analysis Req. Time		Notes:		***************************************	1,000				
Sample ID No. of Containers Container type IA 06 1 6 SUMMA TD-15 expanded Time	Signature M 5/010 2010 3/18/10								
Sample ID No. of Containers Container type IA 06 1 64 SUMMA TD-15 expanded Time	Signature 1/15/010 201/01		1.0					,	,
Sample ID No. of Containers Container type IA 06 1 6 SUMMA TD-15 expanded Time	Signature /// 5/014- 201/a/		Vh 11					2/10	11.1
Sample ID No. of Containers Container type IA 06 1 GL SUMMA TD-15 expanded Notes:	Dignature /// // CII/O	Signature	1/15/2	Da no	Va		Date	7/18/	// 0
Sample ID No. of Containers Container type IA 06 1 BL SUMMA TD-15 expanded Time	·								

AECOM

	Con Edison		C)ate:3	/18/2010 Time	: Start 11:	
	Pemart Avenue For					Finish 13 !	<u>3♂</u> am/pm
	on: Peekskill, New '						
Weather C	conds: sunny, esqu	nt Breez	th 482. E	Collector(s):	M. Stepanova, S	S. Wright	
	ON SKETCH/DESCR						
200	N. Water Str	eet, h	omelles sh	oHer D.	not floor,	riale a	Corus Bedn
usin	dows facing	me 1	river				
	· · · · · · · · · · · · · · · · · · ·						
nins	N. Water 5.	treet	· · · · · · · · · · · · · · · · · · ·	JA_07	Pstart = 1	F30	
					,	•	
1	The second of th	The same of the state of the same of the s	Artes de cale	α 1	n	0.0	
, = 1,				Dup 1	Patart = -2 Panish = - 5	<i>ል.</i> ን	
ale 1		1/////	$\eta \eta = 1$	•	Panish = - S	_	
edroom	14 7 7 7 7 7	0.1	74 02				
		Dypi	IA_07				
1	- 1	Dnni	inn\				
	and the second s		11.(.,)				
Loca	ation			cross-section	nal profile		
2. SAMPL Method: Field Test	E COLLECTION Judoor & GAH Ling Equipment used	pling	w/62 5	SUMMA	Canisters (2h Model	Serial Num	her
	g =-qp		ppb PID RAE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	001101111111	

24h			and the second s				
<u>Time</u>	PID Reading	Time	PID Reading	<u>Time</u>	PID Reading	Time	PID Reading
Start							
:10sec	0						
:20sec	0						
:30sec	0			<u> </u>			
:40sec							
:50sec							
:60sec	<u> </u>						
				l I			1
1 minute		-					· · · · · · · · · · · · · · · · · · ·
\	st PID Reading =	0					
\	st PID Reading =						
Highe	st PID Reading =		2-hr fle	ow-Cont	holled SUMI	1A	-
Highes 3. SAMPLI Sample ID	E COLLECTION: No. of Containe	Method:	ainer type		Analysis F	Req.	- Time
Highes 3. SAMPLI Sample ID	E COLLECTION: No. of Containe	Method:	ainer type		Analysis F	Req.	
Highes 3. SAMPLI Sample ID	E COLLECTION: No. of Containe	Method:	ainer type		MP Addition and	Req.	
Highes 3. SAMPLI Sample ID 7/1_07	E COLLECTION: No. of Containe	Method:	ainer type		Analysis F	Req.	
Highes 3. SAMPLI Sample ID	E COLLECTION: No. of Containe	Method:	ainer type		Analysis F	Req.	
Highes 3. SAMPLI Sample ID 7/1_07 Notes:	E COLLECTION: No. of Container	Method: rs Control 6 2 50 6 2 50	ainer type AMMA AMMA		Analysis F O-15 expande	Req.	
Highes 3. SAMPLI Sample ID 7/1_07 Oup_1 Notes:	E COLLECTION: No. of Containe	Method: rs Control 6 2 50 6 2 50	ainer type AMMA AMMA		Analysis F O-15 expande	Req.	

Appendix C

2010 Questionnaire and Survey Forms

•	
•	
-	
•	
-	
-	
-	
-	

NEW YORK STATE DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL HEALTH ASSESSMENT BUREAU OF TOXIC SUBSTANCE ASSESSMENT

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Maria Stepanova		Date Prepared 3/18/2010
		(updated from previous inventory-6/08)
Preparer's Affiliation AECOM		Phone No. 845-206-8765
1. OCCUPANT	Name:	Dominic Perruccio
	Address:	190 N. Water Street (South)
	•	Peekskill, NY
	County:	Westchester
	Home Ph	one No. Office Phone No. 9147342119
2. OWNER OR LANDLORD:	Name:	
(If different than occupant)	Address:	
	Phone No)
A. <u>Building Construction Characteris</u>		
Type (circle appropriate responses):	Single Family	Multiple Dwelling Commercial Public School Lab- Asbestos Testing
Ranch	2-Family	Lau- Aspestos Testing
Raised Ranch	Duplex	
Split Level Colonial	Apartment House	Units
Mobile Home		<u>l</u>
Modile Home	Other specify	
Residence Age Appr. 50 yrs General Des	scription of Building C	Construction Materials Concrete
Is the building insulated? Yes No	How air tight is the b	ouilding? Average.

(1 S D = 4 /	(continu	4 0 1
V311-2 (CUILLIA	CUI

B.	•	Basement construction characteristics (circle all that apply):
	1.	Full basement, crawlspace, slab on grade, other
	2.	Basement floor: concrete, dirt, other
	3.	Basement floor: uncovered, covered, with carpet, painted, laminant floor tiles
	4.	Concrete floor: unsealed, sealed; with paint
	5.	Foundation walls: poured concrete, block, laid up stone, other <u>brick</u>
	6.	The basement is: wet, damp, dry <u>Dry</u> Sump present? y/n N Water in sump? y/n NA
	7.	The basement is: finished, unfinished Finished.
	8.	Identify potential soil vapor entry points (e.g., cracks, utility ports, etc.) Utilities from site/overhead.
	9.	Describe how air tight the basement is
C.		HVAC (circle all that apply):
	1.	The type of heating system(s) used in this residence is/are:
		Hot Air Circulation Heat Pump
		·
		Hot Water Radiation Unvented Kerosene Heater
		Steam Radiation Wood stove
		Electric Baseboard Other (specify) Hot Water Casting Unit
	2.	The type(s) of fuel(s) used is/are: Natural Gas, Fuel Oil Electric, Wood, Coal Solar
		Other (specify)
	3.	Is the heating system's power plant located in the basement or another area: Main Floor.
	4.	Is there air-conditioning? Yesy No Central Air or Window Units? Window units.
		Specify the location
	5.	Are there air distribution ducts present? Yes / No
	6.	Describe the supply and cold air return duct work in the basement including whether there is a cold air return, the tightness of duct joints

D.	Potential Indoor Sources of Pollution
1.	Has the house ever had a fire? Yes No
2.	Is there an attached garage? Yes No
3.	Is a vehicle normally parked in the garage? Yes No
4.	Is there smoking in the building? Yes (No)
5.	Is there a kerosene heater present? Yes No
6.	Is there a workshop, hobby or craft area in the residence? Yes No
7.	Have cleaning products been used recently? (res) No When & Type? Regular office/kitchen cleaning.
8.	Have cosmetic products been used recently? Yes / No When & Type?
9.	Has painting/staining been done in the last 6 months? Yes /No Where & When?
10	. Is there new carpet, drapes or other textiles? (es) No Where & When? Carpet and furniture has been removed since last sampling round.
11	. Have air fresheners been used recently? (es) No Where & When?
12	. Is there a bathroom exhaust fan? Yes No Where is it vented?
13	Is there a clothes dryer? Yes / No If yes, is it vented outside? Yes/No
14	. Has there been a pesticide application? Yes /No Where & Type?
15	An inventory of all products used or stored in the home should be performed. Any products that contain volatile organic compounds or chemicals similar to the target compounds should be listed. The attached product inventory form should be used for this purpose.
16	Is there a kitchen exhaust fan? Yes (No) Where is it vented?
17	Are there odors in the building? Yes / No If yes, describe
18	If yes, what types of solvents are used? Acetone, propanol If yes, are their clothes washed at work? Y/N
19	On any of the building occupants use or regularly work at a dry-cleaning service (circle response)? Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service
20	Is there a radon mitigation system for the building/structure? YND Date of Installation:

E. Water and Sewage (Circle the appropriate resp	onse)
Source of Water	
Public Water Drilled Well Driven Well	Dug Well Other (Specify)
Water Well Specifications: NOT APPLICABLE (NA)	
Well Diameter	Grouted or Ungrouted
Well Depth	Type of Storage Tank
Depth to Bedrock	Size of Storage Tank
Feet of Casing	Describe type(s) of Treatment
Water Quality: NA	
Taste and/or odor problems? y / n If so, describe _	
How long has the taste and/or odor been present	
Sewage Disposal: Public Sewer Septic Tank Lead	ch Field Other (Specify)
Distance from well to septic system Type	e of septic tank additive

F. Plan View

Draw a plan view sketch for each floor of the residence and if applicable, indicate air sampling locations, possible indoor air pollution sources and PID meter readings.

G. Potential Outdoor Sources of Pollution

Draw a sketch of the area surrounding the residence being sampled. If applicable, provide information on the spill location (if known), potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system if applicable, and a qualifying statement to help locate the site on a topographical map.

Household Products Inventory

Occupant / residence 190 N. Water Street (South), Peekskill, NY

Investigator: Maria Stepanova

Date: 3/18/2010

ct Description (dispenser, size, facturer) Additional Comments			Plug Hydraulic Cement (3 lbs) Portland Cement and Lime Used	Furniture polish with lemon oil by Power House	Joint Compound (32 oz)	Oz) Used	ener (9.7 oz)	Styrene Acrylic Polymer, ethylene Used Used	Interior semi-gloss paint, vinyl
Product Description (dispenser, manufacturer)	Rust Oleum Protective Enamel (32 oz)	Rust Oleum Metallic Metal Finish (11 oz)	Dry Lock Plug Hydraulic Cement (3 lbs)	Furniture Polish (12.5 oz)	Wallboard Joint Compound (32 oz)	Lysol (19 oz)	Air Freshener (9.7 oz)	Ice Melt (12 lbs)	
Location	Office	Office	Office	Office/Kitchen	Office/Kitchen	Office/Kitchen	Office/Kitchen	Office/Kitchen	:

Location	Product Description (dispenser, size, manufacturer)	Ingredients	Additional Comments
Bathroom	Clorox Bathroom Cleaner (30 oz)		Used
Doth Son	Enforce: 10 min Unit Clog Demover (64 oz)		
Bathroom	Moist Wipes	,	Used
Bathroom	Oust Air Freshener (19 oz)		Used
Bathroom	Lysol Cling Gel Toilet Cleaner (14 oz)		Used
Note: Substantially the sai	Note: Substantially the same as inventory from 6/28/2008		

Note: Substantially the same as inventory from 6/28/2008.

NEW YORK STATE DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL HEALTH ASSESSMENT BUREAU OF TOXIC SUBSTANCE ASSESSMENT

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

Preparer's Name Maria Stepanova	Date Prepared 3/18/2010
	(updated from previous inventory-6/08)
Preparer's Affiliation AECOM	Phone No. 845-206-8765
1. OCCUPANT	Name: Tom Allen
	Address: 190 N. Water Street (North)
	Peekskill, NY
	County: Westchester
	Home Phone No. Office Phone No.
2. OWNER OR LANDLORD:	Name: Mark Goldfarb
(If different than occupant)	Address: 190 N. Water Street
	Westchester
	Phone No.
A. Building Construction Charact	eristics eristics
Type (circle appropriate responses):	Single Family Multiple Dwelling Commercial Public S Wood working building
Ranch	2-Family
Raised Ranch	Duplex
Split Level Colonial	Apartment HouseUnits Number of floors
Mobile Home	Other specify
	Description of Building Construction Materials Concrete
Is the building insulated? Yes(No	How air tight is the building?

O:	SR-	3 (continued)
В.		Basement construction characteristics (circle all that apply): No basement, 1st floor on slab.
	1.	Full basement, crawlspace slab on grade, other
	2.	Basement floor: concrete, dirt, other
	3.	Basement floor: uncovered covered, with
	4.	Concrete floor: unsealed; with paint
	5.	Foundation walls: poured concrete, block, laid up stone, other _brick
	6.	The basement is: wet, damp, dry <u>Dry</u> Sump present? y/r N Water in sump? y/n NA
	7.	The basement is: finished, unfinished
	8.	Identify potential soil vapor entry points (e.g., cracks, utility ports, etc.) Utilities from overhead, there are no utilities from the ground.
	9.	Describe how air tight the basement is
c.		HVAC (circle all that apply):
	1.	The type of heating system(s) used in this residence is/are:
		Hot Air Circulation Heat Pump
		Hot Water Radiation Unvented Kerosene Heater
		Steam Radiation Wood stove
		Electric Baseboard Other (specify) Hot Water Ceiling Units
	2.	The type(s) of fuel(s) used is/are: Natural Gas, Fuel Oil Electric, Wood, Coal Sola
		Other (specify) Domestic hot water tank fueled by: gas
	3.	Is the heating system's power plant located in the basement or another area: Main Floor.
	4.	Is there air-conditioning? Yes /No Central Air or Window Units? NA
		Specify the location
	5.	Are there air distribution ducts present? Yes / No

6. Describe the supply and cold air return duct work in the basement including whether there is a cold air return, the tightness of duct joints

	OSR-3 (continued)
).	Potential Indoor Sources of Pollution
1.	Has the house ever had a fire? Yes No
2.	Is there an attached garage? Yes No
3.	Is a vehicle normally parked in the garage? Yes No Motorcycle
4.	Is there smoking in the building? Yes No
5.	Is there a kerosene heater present? Yes No
6.	Is there a workshop, hobby or craft area in the residence? Yes/ No
7.	Have cleaning products been used recently? Yes / No When & Type?
8.	Have cosmetic products been used recently? Yes / No When & Type?
9.	Has painting/staining been done in the last 6 months? Yes/ No Where & When? Regularly due to wood work business
10	. Is there new carpet, drapes or other textiles? Yes No Where & When?
11	. Have air fresheners been used recently? Yes /No Where & When?
12	. Is there a bathroom exhaust fan? Yes No Where is it vented?
13	. Is there a clothes dryer? Yes / No If yes, is it vented outside? Yes/No
14	. Has there been a pesticide application? Yes / No Where & Type?
15	An inventory of all products used or stored in the home should be performed. Any products that contain volatile organic compounds or chemicals similar to the target compounds should be listed. The attached product inventory form should be used for this purpose.
	. Is there a kitchen exhaust fan? Yes No Where is it vented?
17	. Are there odors in the building? Ves/No If yes, describe Paint and Stain Odors
18	Do any of the building occupants use solvents at work? Ves No If yes, what types of solvents are used? Mineral Spirits If yes, are their clothes washed at work? Y/N
19	.Do any of the building occupants use or regularly work at a dry-cleaning service (circle response)? Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service
20	. Is there a radon mitigation system for the building/structure? YND Date of Installation:

E. Water and Sewage (Circle the appropriate response) Source of Water Public Water Drilled Well Driven Well Dug Well Other (Specify)_____ Water Well Specifications: NOT APPLICABLE (NA) Grouted or Ungrouted _____ Well Diameter _____ Type of Storage Tank Well Depth _____ Size of Storage Tank Depth to Bedrock _____ Feet of Casing Describe type(s) of Treatment _____ Water Quality: NA Taste and/or odor problems? y / n If so, describe ______ How long has the taste and/or odor been present ______ Sewage Disposal: (Public Sewer) Septic Tank Leach Field Other (Specify)

Distance from well to septic system _____ Type of septic tank additive _____

F. Plan View

Draw a plan view sketch for each floor of the residence and if applicable, indicate air sampling locations, possible indoor air pollution sources and PID meter readings.

G. Potential Outdoor Sources of Pollution

Draw a sketch of the area surrounding the residence being sampled. If applicable, provide information on the spill location (if known), potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system if applicable, and a qualifying statement to help locate the site on a topographical map.

Household Products Inventory

Occupant / residence 190 N. Water Street (North), Peekskill, NY

Investigator: Maria Stepanova

Date: 3/18/2010

Location	Product Description (dispenser, size, manufacturer)	Ingredients	Additional Comments
ww-br	30 Wood Finish Stain & Polyurethane Seal (32 oz)	MiniWax (wax-based stain)	Unopened/Used MiniWax Co. Saddle River, NJ
ww-br	Watco-Danish Oil Finish (1 pint)		Unopened/Used Watco-Oleum Co. Vernon Hills, IL
ww-br	Zinssen Cover Stain Primer-Sealer (1 gal)	Product # 03551, High Hide Base Oil	Unopened/Used Zinsser Co (800-225-8543)
WW-BR	Pro Finisher – Water Based Polyurethane (1 gal)		Unopened/Used
WW-BR	Gemini Coatings (WB-0230) (1 gal)	2 butoxethanol/111-76-2 water-borne acrylic satin	Unopened
WW-BR	White Satin Paint (116oz)	Latex-acrylic paint	Used
ww-br	Mineral Spirits (1 gal)		Used Barr Product #GKSP94006 bleanstrip.com
ww-br	Elmer's Carpenter Wood Filler (3.25 oz)		Used
WW-BR	WD-40 (10 oz)		Used WD40.com for MSDS

Notes:
Substantially the same as inventory from 6/28/2008.
WW – Wood Working Studio
BR – Former Boiler Room
GH – Former Generating House

NEW YORK STATE DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL HEALTH ASSESSMENT BUREAU OF TOXIC SUBSTANCE ASSESSMENT

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

This form must be completed for each residence involved in indoor air testing. Preparer's Name Maria Stepanova Date Prepared 3/18/2010 Preparer's Affiliation AECOM Phone No. 845-206-8765 1. OCCUPANT Name: Jan Peek Homeless Shelter Address: 200 N. Water Street Peekskill, NY County: Westchester Home Phone No. Office Phone No. 2. OWNER OR LANDLORD: (If different than occupant) Address: Phone No. **Building Construction Characteristics** Type (circle appropriate responses): Single Family Multiple Dwelling Commercial Public School Ranch 2-Family Raised Ranch Duplex Split Level Apartment House _____Units Colonial Number of floors ____ Other specify 1st floor - retail storage, 2nd floor - homeless Mobile Home Residence Age General Description of Building Construction Materials Brick, wood, and steel. Is the building insulated? Yes/No

How air tight is the building? 2nd floor – air tight, 1st floor – not airtight.

OSR-3	(continue	d)

В.		Basement construction characteristics (circle all that apply): 1st floor acts as basement. Please take into account below.						
	1.	1. Full basement, crawlspace slab on grade, other						
	2.	Basement floor: concrete, dirt, other						
	3.	3. Concrete floor: unsealed, painted, overed; with						
	4.	4. Foundation walls: poured concrete, block, laid up stone, other <u>primarily block</u> .						
	5.	5. The basement is: wet, damp, dry <u>Dry</u> Sump present? y/\(\overline{\infty} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	6.	6. The basement is: finished, unfinished <u>Finished</u> .						
	7. Identify potential soil vapor entry points (e.g., cracks, utility ports, etc.) Manhole.							
	8.	8. Describe how air tight the basement is Not very airtight. There is a garage door and closed windows.						
C.		HVAC (circle all that apply):						
	1. The type of heating system(s) used in this residence is/are:							
		Hot Air Circulation Heat Pump						
		Hot Water Radiation Unvented Kerosene Heater						
		Steam Radiation Wood stove						
		Electric Baseboard Other (specify) Hot Water Ceiling Unit						
	2.	The type(s) of fuel(s) used is/are: Natural Gas, Fuel Oil, Electric, Wood, Coal Solar						
		Other (specify)						
	3.	3. Is the heating system's power plant located in the basement or another area:						
	4. Is there air-conditioning? Yes No Central Air or Window Units? Central air.							
		Specify the location						
	5.	Are there air distribution ducts present? Yes No						
	6.	Describe the supply and cold air return duct work in the basement including whether there is a cold air return, the tightness of duct joints NA						

D.	Potential Indoor Sources of Pollution					
	Has the house ever had a fire? Yes No					
3.	Is a vehicle normally parked in the garage? Yes No					
4.	Is there a kerosene heater present? Yes No					
5.	5. Is there a workshop, hobby or craft area in the residence? Yes No					
6.	6. An inventory of all products used or stored in the home should be performed. Any products that contain volatile organic compounds or chemicals similar to the target compounds should be listed. The attached product inventory form should be used for this purpose.					
7.	Is there a kitchen exhaust fan? Yes No Where is it vented? Outside					
8.	Has the house ever been fumigated? If yes describe date, type and location of treatment. Pest control perform weekly inspections and sometimes use spray (Raid).					
E.	Water and Sewage (Circle the appropriate response)					
Sourc	e of Water					
Pu	blic Water Drilled Well Driven Well Dug Well Other (Specify)					
Water Well Specifications: NOT APPLICABLE (NA)						
	Well Diameter Grouted or Ungrouted					
	Well Depth Type of Storage Tank					
	Depth to Bedrock Size of Storage Tank					
	Feet of Casing Describe type(s) of Treatment					
Water Quality: NA						
Taste and/or odor problems? y / n If so, describe						
Но	How long has the taste and/or odor been present					
Sewage Disposal: Public Sewer Septic Tank Leach Field Other (Specify)						
Di	stance from well to septic systemType of septic tank additive					

F. Plan View

Draw a plan view sketch for each floor of the residence and if applicable, indicate air sampling locations, possible indoor air pollution sources and PID meter readings.

G. Potential Outdoor Sources of Pollution

Draw a sketch of the area surrounding the residence being sampled. If applicable, provide information on the spill location (if known), potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system if applicable, and a qualifying statement to help locate the site on a topographical map.

 $\stackrel{\mathcal{N}}{\longleftarrow}$

N. Water Street

200 N. Whiter Street

Hudson River

Household Products Inventory

Occupant / residence 200 N. Water Street, Peekskill, NY

Investigator: Maria Stepanova

Date: 3/18/2010

Location	Product Description (dispenser, size, manufacturer)	VOC Ingredients	Additional Comments
Supply Closet	Lysol Disinfectant Spray (20 cans)	ethanol	
	Raid Spray (18 oz)	Isoparrafin Hydrocarbon	
	Scotch Gard	Ethylbenzene, 1-methylethylbenzene, isobutene, 1,1-difluoroethane, ethanol	
	Gold Coat Floor Finish (2 Gal)	¥V.	
	Great Stuff Foam Sealant	4,4-diphenylmethane diisocyanate	
	Rest Easy Bed Bug Spray (12 x 16 fl ounces)	∀ Z	
	Hair Detangler (8 ounces)	¥Z.	
	Cabinet Magic Wood Treatment (5 oz)	Hyrdrolated light petroleum distillate	Possibly containing cyclohexane
	Aqua Clear	Dicylcohexylmethane	Breaks down to containing

NEW YORK STATE DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL HEALTH ASSESSMENT BUREAU OF TOXIC SUBSTANCE ASSESSMENT

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Maria Stepanova		Date Prepared 3/18/2010		
		(updated from previous inventory-6/08)		
Preparer's Affiliation AECOM	_	Phone No. 845-206-8765		
1. OCCUPANT	Name:			
	Address:			
	County:			
	Home Pho	one No. Office Phone No.		
2. OWNER OR LANDLORD:	Name:	Phil Miller		
(If different than occupant)	Address:	400 Main Street		
	-	Peekskill, NY		
	Phone No			
A. Building Construction Characteristics				
Type (circle appropriate responses):	Single Family	Multiple Dwelling Commercial Public Schoo Abandoned		
Ranch	2-Family			
Raised Ranch	Duplex			
Split Level	Apartment House	Units		
Colonial Mobile Home	Number of floors Other specify	2		
Widdle Home	Other specify			
Residence Age NA General Des	cription of Building C	onstruction Materials Concrete		
ls the building insulated? Yes/No	How air tight is the b	uilding? Not tight.		

В.		Basement construction characteristics (circle all that apply):
	1.	Full basement, crawlspace, slab on grade, other
	2.	Basement floor: concrete, dirt, other
	3.	Basement floor: uncovered, covered, with partial concrete/partial tiles
	4.	Concrete floor: unsealed; with
		Foundation walls: poured concrete, block, laid up stone, other brick
		The basement is: wet, damp, dry <u>Dry</u> Sump present? y/p N Water in sump? y/n NA
		The basement is: finished, unfinished Partially Finished.
		
	٥.	Identify potential soil vapor entry points (e.g., cracks, utility ports, etc.) Sewer injection pit.
	9.	Describe how air tight the basement is
C.		HVAC (circle all that apply):
	1.	The type of heating system(s) used in this residence is/are:
		Hot Air Circulation Heat Pump
		Hot Water Radiation Unvented Kerosene Heater
		Steam Radiation Wood stove
		Electric Baseboard Other (specify) Natural gas heat ceiling unit.
	2.	The type(s) of fuel(s) used is/are: Natural Gas Fuel Oil, Electric, Wood, Coal Solar
		Other (specify)
	3.	Is the heating system's power plant located in the basement or another area: SW corner of bldg.
	4	Is there air-conditioning? Yes (No) Central Air or Window Units?
	٦.	
		Specify the location
	5.	Are there air distribution ducts present? Yes / (No)
	6.	Describe the supply and cold air return duct work in the basement including whether there is a cold air return, the tightness of duct joints

D.	Potential Indoor Sources of Pollution			
1.	Has the house ever had a fire? Yes No			
2.	Is there an attached garage? Ves No			
3.	Is a vehicle normally parked in the garage? Yes No			
4.	Is there smoking in the building? Yes No			
5.	Is there a kerosene heater present? Yes No			
6.	Is there a workshop, hobby or craft area in the residence?	Yes No		
7.	Have cleaning products been used recently? Yes /No)Who	en & Type?		
	Have cosmetic products been used recently? Yes / No W			
9.	Has painting/staining been done in the last 6 months? Yes	/ No Where & When? unknown		
10	. Is there new carpet, drapes or other textiles? Yes /No W	here & When?		
11	. Have air fresheners been used recently? Yes /No Where	& When?		
12	. Is there a bathroom exhaust fan? Yes No	Where is it vented?		
13	. Is there a clothes dryer? Yes / No	If yes, is it vented outside? Yes/No		
14	. Has there been a pesticide application? Yes / No Where a	& Type?		
15	. An inventory of all products used or stored in the home sh contain volatile organic compounds or chemicals similar to The attached product inventory form should be used for the	o the target compounds should be listed.		
16	. Is there a kitchen exhaust fan? Yes No	Where is it vented?		
17	. Are there odors in the building? Yes / No	If yes, describe		
18	18. Do any of the building occupants use solvents at work? Yes/No If yes, what types of solvents are used? If yes, are their clothes washed at work? Y/N			
19	.Do any of the building occupants use or regularly work at Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or le Yes, work at a dry-cleaning service	No		
20	. Is there a radon mitigation system for the building/structur	e? YN Date of Installation:		

E.	Water and Sewage (Circle the appropriat	<u>e response)</u>
Sour	e of Water	
Pu	blic Water Drilled Well Driven V	Well Dug Well Other (Specify)
Wate	r Well Specifications: NOT APPLICABLE	(NA)
	Well Diameter	Grouted or Ungrouted
	Well Depth	Type of Storage Tank
	Depth to Bedrock	Size of Storage Tank
	Feet of Casing	
Wate	r Quality: NA	
Та	ste and/or odor problems? y / n If so, deso	cribe
Н	ow long has the taste and/or odor been present	:
Sewa	ge Disposal: Public Sewer Septic Tank	Leach Field Other (Specify)
Di	stance from well to septic system	_Type of septic tank additive

F. Plan View

Draw a plan view sketch for each floor of the residence and if applicable, indicate air sampling locations, possible indoor air pollution sources and PID meter readings.

First Floor:

G. Potential Outdoor Sources of Pollution

Draw a sketch of the area surrounding the residence being sampled. If applicable, provide information on the spill location (if known), potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system if applicable, and a qualifying statement to help locate the site on a topographical map.

Household Products Inventory

Occupant / residence 400 N. Water Street, Peekskill, NY

Investigator: Maria Stepanova

Date: 3/19/2010

Location	Product Description (dispenser, size, manufacturer)	Ingredients	Additional Comments
Basement West Room	Fire Extinguisher	Dry chemicals, mica, magnesium, aluminum	Good (full), Unopened
Basement West Room	Hoover Steam Vac/Carpet Detergent (64 oz)	Anionic and nonionic surfactant	Used
Basement West Room	Towel n/ Foam Expanding Sealant (12 oz)	MDI monomer, polyurethane resin, propane/isobutene	Used
Basement West Room	Auto Magic Dressing and Protectant (5 gal)	Synthetic isoparaffinic hydrocarbon, silicone fluid, mineral spirits, dye	Used (Empty)
Basement West Room	Armor All Protectant Wipes (17" x 9")		Used (Empty)
Basement Fast	Fire Extinguisher Angul Sentry		

Basement East | Fire Extinguisher Ansul Sentry
Note: Substantially the same as inventory from 6/28/2008.

-	
-	
-	
-	
==	
=	
-	
-	
-	
-	
-	
-	
-	
-	
•	
-	
-	
-	

ALCOM	2010 Indoor Air and 30ii Gas investigation	Litvironinient	
Appendix D			
2010 Meteor	ological Data		
			June 201

ان م

Meteological Data for March 18, 2010 Stewart International Airport Newburgh, New York Table D-1

Hourly Observations Month/Year: 03/2010 Station Location: STEWART INTERNATIONAL AIRPORT (14714)

Latitude: 41.504 Longitude: -74.105 Elev: 0 feet above sea level

						Wind	Station	
Time	Temperature	Visibility	Dew Point	Relative Humidity	Wind Speed	Direction	Pressure	Comments
Military	Degrees		Degrees					
Time	Fahrenheit	Miles	Fahrenheit	%	Miles per hour		Inches Hg	
045	46.4	10	26.6	46	9.2	West	29.89	
0145	42.8	10	26.6	53	6.9	West	29.88	
0245	42.8	10	26.6	23	9.2	West	29.88	
0345	41	10	26.6	25	6.9	West	29.87	
0445	41	10	26.6	25	4.6	West	29.86	
0545	41	10	26.6	- 57	6.9	MSM	29.86	
0645	39.2	20	26.6	61	6.9	West	29.86	
0745	39.2	20	26.6	61	6.9	West	29.87	
0845	46.4	20	28.4	50	11.5	West	29.87	
0945	51.8	20	32	47	15	West	29.87	
							· · · · · · · · · · · · · · · · · · ·	は 1 日本
製いことを								
1545	64.4	50	28.4	56	16.1	West	29.75	
1645	66.2	20	23	19	20.7	WNW	29.74	
1745	64.4	20	24.8	22	11.5	WNW	29.73	
1845	62.6	20	24.8	24	11.5	NNN	29.74	
1945	57.2	10	26.6	31	4.6	Variable	29.75	
2045	53.6	10	26.6	32	4.6	Variable	29.77	
2145	48.2	10	30.2	920	Calm	Calm	29.78	
2245	46.4	10	30.2	53	Calm	Calm	29.97	
2345	46.4	10	28.4	20	Calm	Calm	29.79	
Statistics								
MAX	66.20	20.00	35.60	61.00	20.70		29.97	
MIN	39.20	10.00	23.00	19.00	4.60		29.73	
AVG	51.49	15.22	27.77	42.78	9.84		29.83	

Notes: Stewart International Airport is approximately 24 miles Northwest of site Source: http://www.wunderground.com

Appendix E

2010 Data Usability Summary Report

•
•
100
•
=

•
•
•
/ 100
•

•
•
خضم
•

March 2010 Indoor Air And Sub-Slab Vapor Sampling Data Usability Summary Report

Pemart Avenue Former MGP Peekskill, New York

March 2010 Indoor Air And Sub-Slab Vapor Sampling Data Usability Summary Report

Pemart Avenue Former MGP Peekskill, New York

Prepared By:

Waverly Braunstein

Reviewed By:

Douglas E. Simmons, PG

1.0 Data Usability Summary Report

1.1 Summary

This Data Usability Summary Report (DUSR) includes a discussion of the usability of the data collected in the month of March, 2010 during the site investigation at the former MGP site located at Pemart Avenue, Peekskill, NY. A total of 11 air samples were collected and analyzed for a project specific list of volatile organic compounds (VOCs) using EPA Method TO-15.

The data were with reference to the "USEPA Region II Validation Standard Operating Procedure for Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15 (SOP# HW-31, Revision #4)," October, 2006, and Method TO-15. Laboratory control limits and/or method criteria were used as appropriate as the basis for data review actions. Data qualifiers which may have been applied were consistent with the Region 2 guidance and consisted of the following:

Qualifier	Definition
J	Estimated
U	Not detected
UJ	Not detected, estimated
JN	Tentative identification, estimated
R	Rejected

Elements reviewed in preparing the DUSR were consistent with those specified in the NYSDEC guidance (NYSDEC, 2001).

In general, the data were found to be valid, and may be considered usable for decision making purposes. No data were rejected.

Selected data points were qualified as estimated (J/UJ) due to QC nonconformances. All QC nonconformances are summarized below.

1.2 Holding Times

Holding times were met for all analyses. No data were qualified on this basis.

1.3 Quality Control

Quality control (QC) elements were reviewed for compliance with acceptance criteria.

Calibrations – Initial and continuing calibrations met acceptance criteria for all analyses. No data were qualified on this basis.

Blanks – Blanks associated with the samples included laboratory method blanks and canister blanks for those samples collected in individually certified canisters (IA-05, IA-06, IA-07, and DUP-01). No

target compounds were detected in any of these blanks. No data were qualified on the basis of blank contamination.

Surrogates – Surrogate recoveries were acceptable for all analyses. No data were qualified on this basis.

Internal Standards – All internal standards fell within acceptable retention time windows for all analyses and all internal standard recoveries were acceptable. No data were qualified on this basis.

Laboratory Duplicates – Laboratory duplicate analyses were performed at the required frequency and all acceptance criteria were met. No data were qualified on this basis.

Field Duplicates - Samples IA-07 and DUP-01 were collected as the field duplicate pair.

The results for detected compounds and their RPDs are tabulated below. Precision was deemed acceptable for all results since the RPD criteria were met.

Compound	MRL (ppbv)	IA-07 (ppbv)	DUP-1 (ppbv)	RPD
Propene	0.45	1.6	1.7	6
Dichlorodifluoromethane	0.16	0.47	0.45	4
Ethanol	4.1	92	81	13
Acetone	3.3	6.0	5.6	7
Trichlorofluoromethane	0.14	0.22	0.20	10
n-Hexane	0.22	0.61	0.67	9
Benzene	0.24	0.38	0.39	3
2,2,4-Trimethylpentane	0.17	0.18	0.24	29
Toluene	0.21	0.78	0.76	3
alpha-Pinene	0.14	0.67	0.67	0
d-Limonene	0.14	0.31	0.33	6
2-Methylbutane	0.26	2.9	2.7	7
2-Methylpentane	0.22	0.58	0.60	3
Isopropyl alcohol	0.63	2.6	2.5	4

Criteria: RPD≤ 50; if both the sample and duplicate are ≥5x SQL. The RPD criterion is doubled if both the sample and duplicate results are <5x SQL.

Laboratory Control Samples – Laboratory control samples (LCSs) were associated with all analyses. The recoveries of the LCSs associated with all analyses met the acceptance criteria in all cases.

1.4 Detection Limits and Sample Results

The samples were analyzed at minor dilutions due to the requirement to pressurize the canisters prior to analysis. Sample results and sample quantitation limits were adjusted accordingly. The following additional dilution was performed due to the reasons listed.

Sample ID	Dilution Factor	Reason for Dilution
IA-06	100x	Ethanol exceeded the calibration range in the undiluted analysis.

1.5 Completeness of Deliverables

The data were reported as NYSDEC ASP Category B deliverables. No significant omissions or deficiencies were noted.

1.6 Conclusions

In general, the data are valid as reported and may be used for decision making purposes. No data were rejected or qualified.

Attachments

May 2010

RESULTS OF ANALYSIS

Page I of 4

Client: AECOM Environment

Client Sample ID: IA_05 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-001

Test Code: EPA TO-15 Date Collected: 3/18/10
Instrument ID: Tekmar AUTOCAN/Agilent 5973 inert/6890N/MS9 Date Received: 3/23/10
Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media:

6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01040

Initial Pressure (psig): -2.4 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.48

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	1.5	0.74	0.87	0.43	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.4	0.74	0.48	0.15	
74-87-3	Chloromethane	ND	0.74	ND	0.36	
77.14.2	1,2-Dichloro-1,1,2,2-					
76-14-2	tetrafluoroethane (CFC 114)	ND	0.74	ND	0.11	
75-01-4	Vinyl Chloride	ND	0.74	ND	0.29	
106-99-0	1,3-Butadiene	ND	0.74	ND	0.33	
74-83-9	Bromomethane	ND	0.74	ND	0.19	
75-00-3	Chloroethane	ND	0.74	ND	0.28	
64-17-5	Ethanol	43	7.4	23	3.9	
75-05-8	Acetonitrile	ND	0.74	ND	0.44	
107-02-8	Acrolein	ND	3.0	ND	1.3	
67-64-1	Acetone	18	7.4	7.5	3.1	
75-69-4	Trichlorofluoromethane	1.1	0.74	0.20	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.5	ND	0.60	
107-13-1	Acrylonitrile	ND	0.74	ND	0.34	
75-35-4	1,1-Dichloroethene	ND ND	0.74	ND	0.19	
75-09-2	Methylene Chloride	ND	0.74	ND	0.21	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.74	ND	0.24	
76-13-1	Trichlorotrifluoroethane	ND	0.74	ND	0.097	
75-15-0	Carbon Disulfide	ND	7.4	ND	2.4	
156-60-5	trans-1,2-Dichloroethene	ND	0.74	ND	0.19	
75-34-3	1,1-Dichloroethane	ND	0.74	ND	0.18	

EXAMPLE = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2).xls - Sample

TO15scan xls - NL - PageNo

RESULTS OF ANALYSIS

Page 2 of 4

Client: **AECOM Environment**

Client Sample ID: IA 05 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-001

Test Code:

EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Test Notes:

Container ID:

AC01040

Initial Pressure (psig):

-2.4

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.48

1.00 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data 🚗 Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.74	ND	0.21	`
108-05-4	Vinyl Acetate	ND	7.4	ND	2.1	
78-93-3	2-Butanone (MEK)	ND	7.4	ND	2.5	-
156-59-2	cis-1,2-Dichloroethene	1.4	0.74	0.35	0.19	
141-78-6	Ethyl Acetate	ND	1.5	ND	0.41	
110-54-3	n-Hexane	2.1	0.74	0.60	0.21	
67-66-3	Chloroform	ND	0.74	ND	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.74	ND	0.25	
107-06-2	1,2-Dichloroethane	ND	0.74	ND	0.18	-
71-55-6	1,1,1-Trichloroethane	ND	0.74	ND	0.14	
71-43-2	Benzene	1.5	0.74	0.48	0.23	
56-23-5	Carbon Tetrachloride	ND	0.74	ND	0.12	100
110-82-7	Cyclohexane	6.2	1.5	1.8	0.43	
7 8-8 7-5	1,2-Dichloropropane	ND	0.74	ND	0.16	
75-27-4	Bromodichloromethane	ND	0.74	ND	0.11	_
79-01-6	Trichloroethene	1.0	0.74	0.19	0.14	
123-91-1	1,4-Dioxane	ND	0.74	ND	0.21	
540 -8 4-1	2,2,4-Trimethylpentane (Isooctane)	1.0	0.74	0.22	0.16	-
80-62-6	Methyl Methacrylate	ND	1.5	ND	0.36	
142-82-5	n-Heptane	1.4	0.74	0.33	0.18	
10061-01-5	cis-1,3-Dichloropropene	ND	0.74	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.74	ND	0.18	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

RESULTS OF ANALYSIS

Page 3 of 4

Client: AECOM Environment CAS Project ID: P1001028
Client Sample ID: IA 05 CAS Sample ID: P1001028-001

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

,---

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Date Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Γest Notes:

Container ID: AC01040

Initial Pressure (psig): -2.4 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.48

CAS#	Compound	Result	MRL	Result	MRL	Data
100(1.02.(4 1.2 Di-H	μg/m³	μg/m³	ppbV	ppbV	Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.74	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.74	ND	0.14	
108-88-3	Toluene	6.3	0.74	1. 7	0.20	
591-78-6	2-Hexanone	ND	0.74	ND	0.18	
124-48-1	Dibromochloromethane	ND	0.74	ND	0.087	
106-93-4	1,2-Dibromoethane	ND	0.74	ND	0.096	
123-86-4	n-Butyl Acetate	ND	0.74	ND	0.16	
111-65-9	n-Octane	ND	0.74	ND	0.16	
127-18-4	Tetrachloroethene	ND	0.74	ND	0.11	
108-90-7	Chlorobenzene	ND	0.74	ND	0.16	
100-41-4	Ethylbenzene	ND	0.74	ND	0.17	
179601-23-1	m,p-Xylenes	1.7	1.5	0.39	0.34	
75-25-2	Bromoform	ND	0.74	ND	0.072	
100-42-5	Styrene	ND	0.74	ND	0.17	
95-47-6	o-Xylene	ND	0.74	ND	0.17	
111-84-2	n-Nonane	ND	0.74	ND	0.14	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.74	ND	0.11	
98-82-8	Cumene	ND	0.74	ND	0.15	
80-56-8	alpha-Pinene	1.0	0.74	0.19	0.13	
103-65-1	n-Propylbenzene	ND	0.74	ND	0.15	
622-96-8	4-Ethyltoluene	ND	0.74	ND	0.15	
108-67-8	1,3,5-Trimethylbenzene	ND	0.74	ND	0.15	

_ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:

P1001028_TO15 (2).xls - Sample

TO15scan xis - NL - PageNo

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: IA_05 CAS Project ID: P1001028 CIENT Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-001

Test Code: EPA TO-15 Date Collected: 3/18/10
Instrument 1D: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10
Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01040

Initial Pressure (psig): -2.40 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.48

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
95-63-6	1,2,4-Trimethylbenzene	ND	0.74	ND	0.15	
100-44-7	Benzyl Chloride	ND	0.74	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.74	ND	0.12	***
106-46-7	1,4-Dichlorobenzene	ND	0.74	ND	0.12	
526-73-8	1,2,3-Trimethylbenzene	ND	0.74	ND	0.15	
95-50-1	1,2-Dichlorobenzene	ND	0.74	ND	0.12	-
5989-27-5	d-Limonene	9.0	0.74	1.6	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.74	ND	0.077	
120-82-1	1,2,4-Trichlorobenzene	ND	0.74	ND	0.10	144
91-20-3	Naphthalene	ND	0.74	ND	0.14	
87-68-3	Hexachlorobutadiene	ND	0.74	ND	0.069	
78-78-4	2-Methylbutane	7.5	0.74	2.5	0.25	
79-20 - 9	Methyl Acetate	ND	0.74	ND	0.24	_
107-83-5	2-Methylpentane	2.1	0.74	0.59	0.21	
110-02-1	Thiophene	ND	0.74	ND	0.22	
565-59-3	2,3-Dimethylpentane	ND	0.74	ND	0.18	
108-87-2	Methylcyclohexane	0.98	0.74	0.24	0.18	
496-11-7	Indan	ND	0.74	ND	0.15	
95-13-6	Indene	ND	0.74	ND	0.16	•
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.74	ND	0.13	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.74	ND	0.13	
527 - 53-7	1,2,3,5-Tetramethylbenzene	ND	0.74	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028_TO15 (2).xls - Sample

TO15scan.xls - NL - PageNo

RESULTS OF ANALYSIS

Page 1 of 4

Client: **AECOM Environment**

Client Sample ID: CS 01 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-002

Date Collected: 3/18/10 Test Code: EPA TO-15 nstrument 1D: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container 1D: SC00558

> Initial Pressure (psig): Final Pressure (psig): -2.2 3.5

> > Canister Dilution Factor: 1.46

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	1.2	0.73	0.68	0.42	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.73	0.47	0.15	
74-87-3	Chloromethane	ND	0.73	ND	0.35	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.73	ND	0.10	
75-01-4	Vinyl Chloride	ND	0.73	ND	0.29	
106-99-0	1,3-Butadiene	ND	0.73	ND	0.33	
74-83-9	Bromomethane	ND	0.73	ND	0.19	
75-00-3	Chloroethane	ND	0.73	ND	0.28	
64-17-5	Ethanol	28	7.3	15	3.9	
75-05-8	Acetonitrile	ND	0.73	ND	0.43	
107-02-8	Acrolein	ND	2.9	ND	1.3	
67-64-1	Acetone	ND	7.3	ND	3.1	
75-69-4	Trichlorofluoromethane	1.1	0.73	0.20	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.5	ND	0.59	
107-13-1	Acrylonitrile	ND	0.73	ND	0.34	
75-35-4	1,1-Dichloroethene	ND	0.73	ND	0.18	
75-09-2	Methylene Chloride	ND	0.73	ND	0.21	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.73	ND	0.23	
76-13-1	Trichlorotrifluoroethane	ND	0.73	ND	0.095	
75-15-0	Carbon Disulfide	ND	7.3	ND	2.3	
156-60-5	trans-1,2-Dichloroethene	ND	0.73	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.73	ND	0.18	

■ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:Date:

P1001028_TO15 (2).xls - Sample (2)

TO15scan xls - NL - PageNo

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: CS_01 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-002

Test Code: EPA TO-15 Date Collected: 3/18/10
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: SC00558

Initial Pressure (psig): -2.2 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.46

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.73	ND	0.20	<u> </u>
108-05-4	Vinyl Acetate	ND	7.3	ND	2.1	
78-93-3	2-Butanone (MEK)	ND	7.3	ND	2.5	
156-59-2	cis-1,2-Dichloroethene	7.2	0.73	1.8	0.18	
141-78-6	Ethyl Acetate	ND	1.5	ND	0.41	
110-54-3	n-Hexane	3.4	0.73	0.95	0.21	-
67-66-3	Chloroform	ND	0.73	ND	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.73	ND	0.25	
107-06-2	1,2-Dichloroethane	ND	0.73	ND	0.18	
71-55 - 6	1,1,1-Trichloroethane	ND	0.73	ND	0.13	
71-43-2	Benzene	1.7	0.73	0.52	0.23	
56-23-5	Carbon Tetrachloride	ND	0.73	ND	0.12	-
110-82-7	Cyclohexane	1.5	1.5	0.44	0.42	
78-87-5	1,2-Dichloropropane	ND	0.73	ND	0.16	
75-27-4	Bromodichloromethane	ND	0.73	ND	0.11	_
79-01-6	Trichloroethene	3.0	0.73	0.55	0.14	
123-91-1	1,4-Dioxane	ND	0.73	ND	0.20	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	1.2	0.73	0.26	0.16	
80-62 - 6	Methyl Methacrylate	ND	1.5	ND	0.36	
142-82-5	n-Heptane	0.84	0.73	0.20	0.18	
10061-01-5	cis-1,3-Dichloropropene	ND	0.73	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.73	ND	0.18	_

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2).xls - Sample (2)

TO15scan.xls - NL - PageNo.

RESULTS OF ANALYSIS

Page 3 of 4

Client: AECOM Environment CAS Project ID: P1001028
Client Sample ID: CS_01 CAS Sample ID: P1001028-002

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code: EPA TO-15 Date Collected: 3/18/10 nstrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 → Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: SC00558

Initial Pressure (psig): -2.2 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.46

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.73	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.73	ND	0.13	
108-88-3	Toluene	3.6	0.73	0.95	0.19	
591-78-6	2-Hexanone	ND	0.73	ND	0.18	
124-48-1	Dibromochloromethane	ND	0.73	ND	0.086	
106-93-4	1,2-Dibromoethane	ND	0.73	ND	0.095	
123-86-4	n-Butyl Acetate	ND	0.73	ND	0.15	
111-65-9	n-Octane	ND	0.73	ND	0.16	
127-18-4	Tetrachloroethene	ND	0.73	ND	0.11	
108-90-7	Chlorobenzene	ND	0.73	ND	0.16	
100-41-4	Ethylbenzene	ND	0.73	ND	0.17	
179601-23-1	m,p-Xylenes	ND	1.5	ND	0.34	
75-25-2	Bromoform	ND	0.73	ND	0.071	
100-42-5	Styrene	ND	0.73	ND	0.17	
₹95-47-6	o-Xylene	ND	0.73	ND	0.17	
111-84-2	n-Nonane	ND	0.73	ND	0.14	-
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.73	ND	0.11	
98-82-8	Cumene	ND	0.73	ND	0.15	
80-56-8	alpha-Pinene	ND	0.73	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.73	ND	0.15	
622-96-8	4-Ethyltoluene	ND	0.73	ND	0.15	
108-67-8	1,3,5-Trimethylbenzene	ND	0.73	ND	0.15	

__vD = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:

P1001028_TO15 (2) xls - Sample (2)

TO15scan xls - NL - PageNo..

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: CS_01 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-002

Test Code: EPA TO-15 Date Collected: 3/18/10
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10
Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: SC00558

Initial Pressure (psig): -2.20 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.46

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
95-63-6	1,2,4-Trimethylbenzene	ND	0.73	ND	0.15	-
100-44-7	Benzyl Chloride	ND	0.73	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.73	ND	0.12	-
106-46-7	1,4-Dichlorobenzene	ND	0.73	ND	0.12	
526-73-8	1,2,3-Trimethylbenzene	ND	0.73	ND	0.15	
95-50-1	1,2-Dichlorobenzene	ND	0.73	ND	0.12	
5989-27-5	d-Limonene	0.97	0.73	0.17	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.73	ND	0.076	
120-82-1	1,2,4-Trichlorobenzene	ND	0.73	ND	0.098	-
91-20-3	Naphthalene	ND	0.73	ND	0.14	_
87-68-3	Hexachlorobutadiene	ND	0.73	ND	0.068	
78-78-4	2-Methylbutane	8.3	0.73	2.8	0.25	
79-20-9	Methyl Acetate	ND	0.73	ND	0.24	_
107-83-5	2-Methylpentane	2.8	0.73	0.81	0.21	
110-02-1	Thiophene	ND	0.73	ND	0.21	
565-59-3	2,3-Dimethylpentane	ND	0.73	ND	0.18	-
108-87-2	Methylcyclohexane	ND	0.73	ND	0.18	
496-11-7	Indan	ND	0.73	ND	0.15	
95-13-6	Indene	ND	0.73	ND	0.15	-
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.73	ND	0.13	
488-23-3	I,2,3,4-Tetramethylbenzene	ND	0.73	ND	0.13	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.73	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2) xls - Sample (2)

TO15scan xls - NL - PageNo.

RESULTS OF ANALYSIS

Page 1 of 4

Client: **AECOM Environment**

Client Sample ID: IA_07 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-003

EPA TO-15 Test Code: Date Collected: 3/18/10 nstrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 **A**nalyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

AC00845 Container ID:

> Initial Pressure (psig): -3.0 Final Pressure (psig): 3.5

> > Canister Dilution Factor: 1.56

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	2.7	0.78	1.6	0.45	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.78	0.47	0.16	
74-87- 3	Chloromethane	ND	0.78	ND	0.38	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.78	ND	0.11	
75-01-4	Vinyl Chloride	ND	0.78	ND ND	0.11	
106-99-0	1,3-Butadiene	ND	0.78	ND ND	0.35	
74-83-9	Bromomethane	ND	0.78	ND	0.20	
75-00-3	Chloroethane	ND	0.78	ND	0.30	
64-17-5	Ethanol	170	7.8	92	4.1	
75-05-8	Acetonitrile	ND	0.78	ND	0.46	
107-02-8	Acrolein	ND	3.1	ND	1.4	
67-64-1	Acetone	14	7.8	6.0	3.3	
75-69-4	Trichlorofluoromethane	1.2	0.78	0.22	0.14	
67-63-0	2-Propanol (Isopropyl Alcohol)	6.3	1.6	2.6	0.63	
107-13-1	Acrylonitrile	ND	0.78	ND	0.36	
75-35-4	1,1-Dichloroethene	ND	0.78	ND	0.20	_
75-09-2	Methylene Chloride	ND	0.78	ND	0.22	
1 07 - 05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.78	ND	0.25	
76-13-1	Trichlorotrifluoroethane	ND	0.78	ND	0.10	
75-15-0	Carbon Disulfide	ND_	7.8	ND	2.5	
156-60-5	trans-1,2-Dichloroethene	ND	0.78	ND	0.20	
75-34-3	1,1-Dichloroethane	ND	0.78	ND	0.19	

EXECUTE: Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
	TO16 1 17 P 21

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: IA_07 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-003

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container 1D: AC00845

Initial Pressure (psig): -3.0 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.56

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.78	ND	0.22	
108-05-4	Vinyl Acetate	ND	7.8	ND	2.2	Inner
78 - 93-3	2-Butanone (MEK)	ND	7.8	ND	2.6	-
156-59-2	cis-1,2-Dichloroethene	ND	0.78	ND	0.20	
141-78-6	Ethyl Acetate	ND	1.6	ND	0.43	
110-54-3	n-Hexane	2.1	0.78	0.61	0.22	
67-66-3	Chloroform	ND	0.78	ND	0.16	
109-99-9	Tetrahydrofuran (THF)	ND	0.78	ND	0.26	
107-06-2	1,2-Dichloroethane	ND	0.78	ND	0.19	•
71-55-6	1,1,1-Trichloroethane	ND	0.78	ND	0.14	
71-43-2	Benzene	1.2	0.78	0.38	0.24	
56-23-5	Carbon Tetrachloride	ND	0.78	ND	0.12	=
110-82-7	Cyclohexane	ND	1.6	ND	0.45	
78-87-5	1,2-Dichloropropane	ND	0.78	ND	0.17	
75-27-4	Bromodichloromethane	ND	0.78	ND	0.12	-
79-01-6	Trichloroethene	ND	0.78	ND	0.15	
123-91-1	1,4-Dioxane	ND	0.78	ND	0.22	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	0.83	0.78	0.18	0.17	_
80-62-6	Methyl Methacrylate	ND	1.6	ND	0.38	_
142-82-5	n-Heptane	ND	0.78	ND_	0.19	
10061-01-5	cis-1,3-Dichloropropene	ND	0.78	ND	0.17	
108-10-1	4-Methyl-2-pentanone	ND	0.78	ND	0.19	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2).xls - Sample (3)

TO15scan xls - NL - PageNo.

RESULTS OF ANALYSIS

Page 3 of 4

Client: **AECOM Environment** CAS Project ID: P1001028 Client Sample ID: IA 07 CAS Sample ID: P1001028-003

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code:

EPA TO-15 Date Collected: 3/18/10 nstrument 1D: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

AC00845 Container ID:

> Initial Pressure (psig): Final Pressure (psig): -3.0 3.5

> > Canister Dilution Factor: 1.56

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.78	ND	0.17	_
79-00-5	1,1,2-Trichloroethane	ND	0.78	ND	0.14	
108-88-3	Toluene	2.9	0.78	0.78	0.21	
591-78 - 6	2-Hexanone	ND	0.78	. ND	0.19	
124-48-1	Dibromochloromethane	ND	0.78	ND	0.092	
106-93-4	1,2-Dibromoethane	ND	0.78	ND	0.10	
123-86-4	n-Butyl Acetate	ND	0.78	ND	0.16	
111-65-9	n-Octane	ND	0.78	ND	0.17	
127-18-4	Tetrachloroethene	ND	0.78	ND	0.12	
108-90-7	Chlorobenzene	ND	0.78	ND	0.17	
100-41-4	Ethylbenzene	ND	0.78	ND	0.18	
179601-23-1	m,p-Xylenes	ND	1.6	ND	0.36	
75-25-2	Bromoform	ND	0.78	ND	0.075	
100-42-5	Styrene	ND	0.78	ND	0.18	
95-47-6	o-Xylene	ND	0.78	ND	0.18	
111-84-2	n-Nonane	ND	0.78	ND	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.78	ND	0.11	
98-82-8	Cumene	ND	0.78	ND	0.16	
80-56-8	alpha-Pinene	3.8	0.78	0.67	0.14	
103-65-1	n-Propylbenzene	ND	0.78	ND	0.16	
622-96-8	4-Ethyltoluene	ND	0.78	ND	0.16	
108-67-8	1,3,5-Trimethylbenzene	ND	0.78	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
-	TO15scan xls - NL - PageNo

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: IA_07 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-003

Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10
Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00845

Initial Pressure (psig): -3.00 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.56

Date Collected: 3/18/10

CAS#	Compound	Result	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
95-63-6	1,2,4-Trimethylbenzene	<u>μg/m³</u> ND	0.78	ND	0.16	Quanner
100-44-7	Benzyl Chloride	ND	0.78	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	0.78	ND	0.13	141
106-46-7	1,4-Dichlorobenzene	ND	0.78	ND	0.13	
526-73-8	1,2,3-Trimethylbenzene	ND	0.78	ND	0.16	
95-50-1	1,2-Dichlorobenzene	ND	0.78	ND	0.13	
5989-27-5	d-Limonene	1.7	0.78	0.31	0.14	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.78	ND	0.081	
120-82-1	1,2,4-Trichlorobenzene	ND	0.78	ND	0.11	-
91-20-3	Naphthalene	ND	0.78	ND	0.15	_
87-68-3	Hexachlorobutadiene	ND	0.78	ND	0.073	
78-78-4	2-Methylbutane	8.5	0.78	2.9	0.26	
79-20-9	Methyl Acetate	ND	0.78	ND	0.26	_
107-83-5	2-Methylpentane	2.0	0.78	0.58	0.22	
110-02-1	Thiophene	ND	0.78	ND	0.23	
565-59-3	2,3-Dimethylpentane	ND	0.78	ND	0.19	
108-87-2	Methylcyclohexane	ND	0.78	ND	0.19	
496-11 - 7	Indan	ND	0.78	ND	0.16	
95-13 - 6	Indene	ND	0.78	ND	0.16	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.78	ND	0.14	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.78	ND	0.14	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.78	ND	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date:		
Verified by.	Varified Day	Data:
	vermed by.	Date.

P1001028_TO15 (2).xls - Sample (3)

TO15scan xls - NL - PageNo.

RESULTS OF ANALYSIS

Page 1 of 4

Client: AECOM Environment

Client Sample ID: DUP_1 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-004

Test Code: EPA TO-15 Date Collected: 3/18/10
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00919

Initial Pressure (psig): -3.3 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.60

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	2.9	0.80	1.7	0.47	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.2	0.80	0.45	0.16	
74-87-3	Chloromethane	ND	0.80	ND	0.39	
76 14 2	1,2-Dichloro-1,1,2,2-					
76-14-2	tetrafluoroethane (CFC 114)	ND	0.80	ND	0.11	
75-01-4	Vinyl Chloride	ND	0.80	ND	0.31	
106-99-0	1,3-Butadiene	ND	0.80	ND	0.36	
74-83-9	Bromomethane	ND	0.80	ND	0.21	
75-00-3	Chloroethane	ND	0.80	ND	0.30	
64-17-5	Ethanol	150	8.0	81	4.2	
75-05-8	Acetonitrile	ND	0.80	ND	0.48	
107-02-8	Acrolein	ND	3.2	ND	1.4	_
67-64-1	Acetone	13	8.0	5.6	3.4	
75-69-4	Trichlorofluoromethane	1.1	0.80	0.20	0.14	
67-63-0	2-Propanol (Isopropyl Alcohol)	6.2	1.6	2.5	0.65	
107-13-1	Acrylonitrile	ND	0.80	ND	0.37	
75-35-4	1,1-Dichloroethene	ND	0.80	ND	0.20	
75-09-2	Methylene Chloride	ND	0.80	ND	0.23	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.80	ND	0.26	
76-13-1	Trichlorotrifluoroethane	ND	0.80	ND	0.10	
75-15-0	Carbon Disulfide	ND	8.0	ND	2.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.80	ND	0.20	
75-34-3	1,1-Dichloroethane	ND	0.80	ND ND	0.20	

EXAMPLE To Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028 TO15 (2).xls - Sample (4)

TO15scan xls - NL - PageNo

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: DUP_1 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-004

Test Code: EPA TO-15 Date Collected: 3/18/10
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

Analyst: Wida Ang Date Analyzed: 3/30/10
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00919

Initial Pressure (psig): -3.3 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.60

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data 📸 Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.80	ND	0.22	
108-05-4	Vinyl Acetate	ND	8.0	ND	2.3	-
78-93 - 3	2-Butanone (MEK)	ND	8.0	ND	2.7	•
156-59-2	cis-1,2-Dichloroethene	ND	0.80	ND	0.20	
141-78-6	Ethyl Acetate	ND	1.6	ND	0.44	
110-54-3	n-Hexane	2.4	0.80	0.67	0.23	
67-66-3	Chloroform	ND	0.80	ND	0.16	
109-99-9	Tetrahydrofuran (THF)	ND	0.80	ND	0.27	
107-06-2	1,2-Dichloroethane	ND	0.80	ND	0.20	-
71-55-6	1,1,1-Trichloroethane	ND	0.80	ND	0.15	
71-43-2	Benzene	1.2	0.80	0.39	0.25	
56-23-5	Carbon Tetrachloride	ND	0.80	ND	0.13	-
110-82-7	Cyclohexane	ND	1.6	ND	0.47	
78-87-5	1,2-Dichloropropane	ND	0.80	ND	0.17	
75-27-4	Bromodichloromethane	ND	0.80	ND	0.12	
79-01-6	Trichloroethene	ND	0.80	ND	0.15	
123-91-1	1,4-Dioxane	ND	0.80	ND	0.22	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	1.1	0.80	0.24	0.17	-
80-62-6	Methyl Methacrylate	ND	1.6	ND	0.39	_
142-82-5	n-Heptane	ND	0.80	ND	0.20	
10061-01-5	cis-1,3-Dichloropropene	ND	0.80	ND	0.18	-
108-10-1	4-Methyl-2-pentanone	ND	0.80	ND	0.20	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:			

P1001028_TO15 (2).xis - Sample (4)

TO15scan.xls - NL - PageNo

RESULTS OF ANALYSIS

Page 3 of 4

Client: AECOM Environment CAS Project ID: P1001028
Client Sample ID: DUP_1 CAS Sample ID: P1001028-004

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Date Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister

Test Notes:

Container ID: AC00919

Initial Pressure (psig): -3.3 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.60

1.00 Liter(s)

Volume(s) Analyzed:

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.80	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.80	ND	0.15	
108-88-3	Toluene	2.9	0.80	0.76	0.21	
591-78-6	2-Hexanone	ND	0.80	ND	0.20	
124-48-1	Dibromochloromethane	ND	0.80	ND	0.094	
106-93-4	1,2-Dibromoethane	ND	0.80	ND	0.10	
123-86-4	n-Butyl Acetate	ND	0.80	ND	0.17	
111-65-9	n-Octane	ND	0.80	ND	0.17	
127-18-4	Tetrachloroethene	ND	0.80	ND	0.12	
108-90-7	Chlorobenzene	ND	0.80	ND	0.17	
100-41-4	Ethylbenzene	ND	0.80	ND	0.18	
179601-23-1	m,p-Xylenes	ND	1.6	ND	0.37	
75-25-2	Bromoform	ND	0.80	ND	0.077	
100-42-5	Styrene	ND	0.80	ND	0.19	
■ 95 - 47-6	o-Xylene	ND	0.80	ND	0.18	
111-84-2	n-Nonane	ND	0.80	ND	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.80	ND	0.12	
98-82-8	Cumene	ND	0.80	ND	0.16	
80-56-8	alpha-Pinene	3.7	0.80	0.67	0.14	
103-65-1	n-Propylbenzene	ND	0.80	ND	0.16	
622-96-8	4-Ethyltoluene	ND	0.80	ND	0.16	
108-67-8	1,3,5-Trimethylbenzene	ND	0.80	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
· ·	TO! Scan xls - NI - PageNo

P1001028_TO15 (2).xls - Sample (4)

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client:

AECOM Environment

Client Sample ID: DUP 1

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

CAS Project ID: P1001028 CAS Sample ID: P1001028-004

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Test Code:

EPA TO-15

Instrument 1D:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Sampling Media:

6.0 L Summa Canister

Wida Ang

Test Notes:

Container 1D:

AC00919

Initial Pressure (psig):

-3.30

Final Pressure (psig):

3.50

Volume(s) Analyzed:

Canister Dilution Factor: 1.60

1.00 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier■
95-63-6	1,2,4-Trimethylbenzene	ND	0.80	ND	0.16	
100-44-7	Benzyl Chloride	ND	0.80	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	0.80	ND	0.13	-
106-46-7	1,4-Dichlorobenzene	ND	0.80	ND	0.13	
526-73-8	1,2,3-Trimethylbenzene	ND	0.80	ND	0.16	
95-50-1	1,2-Dichlorobenzene	ND	0.80	ND	0.13	-
5989-27-5	d-Limonene	1.8	0.80	0.33	0.14	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.80	ND	0.083	
120-82-1	1,2,4-Trichlorobenzene	ND	0.80	ND	0.11	-
91-20-3	Naphthalene	ND	0.80	ND	0.15	
87-68-3	Hexachlorobutadiene	ND	0.80	ND	0.075	
78-78-4	2-Methylbutane	7.9	0.80	2.7	0.27	-
79-20-9	Methyl Acetate	ND	0.80	ND	0.26	_
107-83-5	2-Methylpentane	2.1	0.80	0.60	0.23	
110-02-1	Thiophene	ND	0.80	ND	0.23	
565-59-3	2,3-Dimethylpentane	ND	0.80	ND	0.20	
108-87-2	Methylcyclohexane	ND	0.80	ND	0.20	
496-11-7	Indan	ND	0.80	ND	0.17	
95-13-6	Indene	ND	0.80	ND	0.17	100
95-93-2	1,2,4,5-Tetramethylbenzene	ND_	0.80	ND	0.15	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.80	ND	0.15	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.80	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

RESULTS OF ANALYSIS

Page 1 of 4

AECOM Environment Client:

CAS Project ID: P1001028 Client Sample ID: IA 06 CAS Sample ID: P1001028-005 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Date Collected: 3/18/10 Test Code: EPA TO-15 nstrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Wida Ang Date Analyzed: 3/30/10

Analyst: Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed:

1.00 Liter(s) Test Notes: 0.10 Liter(s)

Container ID: AC00884

> Initial Pressure (psig): Final Pressure (psig): -3.8 3.6

> > Canister Dilution Factor: 1.68

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	21	0.84	12	0.49	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.7	0.84	0.54	0.17	
74-87-3	Chloromethane	ND	0.84	ND	0.41	
76 14 2	1,2-Dichloro-1,1,2,2-					
76-14-2	tetrafluoroethane (CFC 114)	ND	0.84	ND	0.12	
75-01-4	Vinyl Chloride	ND	0.84	ND	0.33	
106-99-0	1,3-Butadiene	ND	0.84	ND	0.38	_
74-83-9	Bromomethane	ND	0.84	ND	0.22	
75-00-3	Chloroethane	ND	0.84	ND	0.32	
64-17-5	Ethanol	1,300	84	690	45	D
75-05-8	Acetonitrile	ND	0.84	ND	0.50	
107-02-8	Acrolein	ND	3.4	ND	1.5	
67-64-1	Acetone	34	8.4	14	3.5	
75-69-4	Trichlorofluoromethane	1.7	0.84	0.29	0.15	
67-63-0	2-Propanol (Isopropyl Alcohol)	86	1.7	35	0.68	
107-13-1	Acrylonitrile	ND	0.84	ND	0.39	
75-35-4	I, I-Dichloroethene	ND	0.84	ND ND	0.21	
75-09-2	Methylene Chloride	ND	0.84	ND	0.24	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.84	ND	0.27	
76-13-1	Trichlorotrifluoroethane	ND	0.84	ND	0.11	
75-15-0	Carbon Disulfide	ND	8.4	ND	2.7	
156-60-5	trans-1,2-Dichloroethene	ND	0.84	ND	0.21	
75-34-3	1,1-Dichloroethane	ND	0.84	ND	0.21	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

Verified By:	Date:
· · · · · · · · · · · · · · · · · · ·	

P1001028_TO15 (2).xls - Sample (5)

TO15scan.xls - NL - PageNo.:

RESULTS OF ANALYSIS

Page 2 of 4

Client: **AECOM Environment**

Client Sample ID: IA 06 CAS Project 1D: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample 1D: P1001028-005

Test Code:

EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Analyst: Wida Ang

Sampling Media:

Test Notes:

Container 1D: AC00884

6.0 L Summa Canister

Initial Pressure (psig):

-3.8

Final Pressure (psig):

3.6

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.68

1.00 Liter(s)

0.10 Liter(s)

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV_	Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.84	ND	0.23	
108-05-4	Vinyl Acetate	ND	8.4	ND	2.4	_
78 - 93-3	2-Butanone (MEK)	ND	8.4	ND	2.8	_
156-59-2	cis-1,2-Dichloroethene	ND	0.84	ND	0.21	
141-78-6	Ethyl Acetate	ND	1.7	ND	0.47	
110-54-3	n-Hexane	3.9	0.84	1.1	0.24	-
67-66-3	Chloroform	ND	0.84	ND	0.17	
109-99-9	Tetrahydrofuran (THF)	ND	0.84	ND	0.28	
107-06-2	1,2-Dichloroethane	ND	0.84	ND	0.21	•
71-55-6	1,1,1-Trichloroethane	ND	0.84	ND	0.15	
71-43-2	Benzene	2.2	0.84	0.70	0.26	
56-23-5	Carbon Tetrachloride	ND	0.84	ND	0.13	•
110-82-7	Cyclohexane	3.0	1.7	0.87	0.49	
78-87-5	1,2-Dichloropropane	ND	0.84	ND	0.18	
75-27-4	Bromodichloromethane	ND	0.84	ND	0.13	
79-01-6	Trichloroethene	ND	0.84	ND	0.16	
123-91-1	1,4-Dioxane	ND	0.84	ND	0.23	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	1.7	0.84	0.36	0.18	-
80-62-6	Methyl Methacrylate	ND	1.7	ND	0.41	_
142-82-5	n-Heptane	1.8	0.84	0.45	0.21	
10061-01-5	cis-1,3-Dichloropropene	ND	0.84	ND	0.19	
108-10-1	4-Methyl-2-pentanone	ND_	0.84	ND	0.21	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:Date:	Verified By:	Date:
-------------------	--------------	-------

P1001028_TO15 (2).xls - Sample (5)

TO15scan xls - NL - PageNo.

RESULTS OF ANALYSIS

Page 3 of 4

Client: **AECOM Environment** CAS Project ID: P1001028 CAS Sample ID: P1001028-005 Client Sample ID: IA 06

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code: nstrument ID:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Sampling Media:

Test Notes:

6.0 L Summa Canister

AC00884 Container ID:

Wida Ang

Initial Pressure (psig): -3.8 Final Pressure (psig): 3.6

Canister Dilution Factor: 1.68

1.00 Liter(s) 0.10 Liter(s)

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Volume(s) Analyzed:

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.84	ND	0.19	
79-00-5	1,1,2-Trichloroethane	ND	0.84	ND	0.15	
108-88-3	Toluene	7.1	0.84	1.9	0.22	
591-78-6	2-Hexanone	ND	0.84	ND	0.21	
124-48-1	Dibromochloromethane	ND	0.84	ND	0.099	
106-93-4	1,2-Dibromoethane	ND	0.84	ND	0.11	_
123-86-4	n-Butyl Acetate	0.93	0.84	0.20	0.18	
111-65-9	n-Octane	ND	0.84	ND	0.18	
127-18-4	Tetrachloroethene	ND	0.84	ND	0.12	
108-90-7	Chlorobenzene	ND	0.84	ND	0.18	
100-41-4	Ethylbenzene	ND	0.84	ND	0.19	_
17 9601-23-1	m,p-Xylenes	2.2	1.7	0.51	0.39	
75-25-2	Bromoform	ND	0.84	ND	0.081	
100-42-5	Styrene	ND	0.84	ND	0.20	
■ 95-47-6	o-Xylene	ND	0.84	ND	0.19	
111-84-2	n-Nonane	ND	0.84	ND	0.16	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.84	ND	0.12	
98-82-8	Cumene	ND	0.84	ND	0.17	
80-56-8	alpha-Pinene	9.9	0.84	1.8	0.15	
103-65-1	n-Propylbenzene	ND	0.84	ND	0.17	
622-96-8	4-Ethyltoluene	ND	0.84	ND	0.17	
108-67-8	1,3,5-Trimethylbenzene	ND ND	0.84	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
	TO15scan xls - NL - PageNo :

P1001028_TO15 (2).xls - Sample (5)

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: IA 06 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample 1D: P1001028-005

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

-3.80

Test Notes:

0.10 Liter(s) Container ID: AC00884

Final Pressure (psig):

Initial Pressure (psig):

Canister Dilution Factor: 1.68

3.60

CAS#	Compound	Result	MRL	Result	MRL	Data
05.62.6	1.2.4 T	μg/m³	μg/m³	ppbV	ppbV	Qualifier
95-63-6	1,2,4-Trimethylbenzene	ND	0.84	ND	0.17	
100-44-7	Benzyl Chloride	ND	0.84	ND	0.16	
541-73-1	1,3-Dichlorobenzene	ND	0.84	ND	0.14	-
106-46-7	1,4-Dichlorobenzene	ND	0.84	ND	0.14	
526-73-8	1,2,3-Trimethylbenzene	ND	0.84	ND	0.17	
95-50-1	1,2-Dichlorobenzene	ND	0.84	ND	0.14	
5989-27-5	d-Limonene	5.8	0.84	1.0	0.15	_
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.84	ND	0.087	
120-82-1	1,2,4-Trichlorobenzene	ND	0.84	ND	0.11	
91-20-3	Naphthalene	1.1	0.84	0.21	0.16	-
87-68-3	Hexachlorobutadiene	ND	0.84	ND	0.079	
78-78-4	2-Methylbutane	21	0.84	7.1	0.28	
79-20-9	Methyl Acetate	ND	0.84	ND	0.28	
107-83-5	2-Methylpentane	3.6	0.84	1.0	0.24	
110-02-1	Thiophene	ND	0.84	ND	0.24	
565-59-3	2,3-Dimethylpentane	ND	0.84	ND	0.21	
108-87-2	Methylcyclohexane	1.3	0.84	0.31	0.21	
496-11-7	Indan	ND	0.84	ND	0.17	
95-13-6	Indene	ND	0.84	ND	0.18	***
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.84	ND	0.15	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.84	ND	0.15	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.84	ND	0.15	-

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P1001028_TO15 (2).xls - Sample (5)

RESULTS OF ANALYSIS

Page 1 of 4

AECOM Environment Client:

EPA TO-15

Client Sample ID: IA 02 CAS Project ID: P1001028

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

CAS Sample ID: P1001028-006

Date Collected: 3/18/10

.nstrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

-Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Test Code:

Container ID: AC01097

> Final Pressure (psig): Initial Pressure (psig): -1.9 3.5

> > Canister Dilution Factor: 1.42

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	1.6	0.71	0.93	0.41	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.71	0.46	0.14	
74-8 7-3	Chloromethane	ND	0.71	ND	0.34	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.71	ND	0.10	
™ 75-01 - 4	Vinyl Chloride	ND	0.71	ND	0.28	
106-99-0	1,3-Butadiene	ND	0.71	ND	0.32	
74-83-9	Bromomethane	ND	0.71	ND	0.18	
75-00-3	Chloroethane	ND	0.71	ND	0.27	
64-17-5	Ethanol	140	7.1	76	3.8	
75-05-8	Acetonitrile	0.85	0.71	0.51	0.42	
107-02-8	Acrolein	ND	2.8	ND	1.2	_
67 - 64-1	Acetone	21	7.1	8.8	3.0	
75-69-4	Trichlorofluoromethane	1.7	0.71	0.31	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	3.0	1.4	1.2	0.58	
107-13-1	Acrylonitrile	ND	0.71	ND	0.33	
75-35-4	1,1-Dichloroethene	ND	0.71	ND	0.18	
75-09-2	Methylene Chloride	ND	0.71	ND	0.20	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.71	ND	0.23	
76-13-1	Trichlorotrifluoroethane	ND	0.71	ND	0.093	
75-15-0	Carbon Disulfide	ND	7.1	ND	2.3	
1 56-60-5	trans-1,2-Dichloroethene	ND	0.71	ND	0.18	
75-34-3	1,1-Dichloroethane	ND_	0.71	ND	0.18	

■ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028_TO15 (2).xls - Sample (6)

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: IA_02 CAS Project ID: P1001028

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample 1D: P1001028-006

Test Code: Instrument ID:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

Analyst: Sampling Media: Wida Ang

6.0 L Summa Canister

Date Analyzed: 3/30/10 Volume(s) Analyzed: 1.0

Date Collected: 3/18/10

1.00 Liter(s)

Test Notes:

Container ID:

AC01097

Initial Pressure (psig):

-1.9

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.42

CAS#	Compound	Result	MRL	Result	MRL	Data
1624.04.4	Malata Para Para	<u>μg/m³</u>	μg/m³	ppbV	ppbV	Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.71	ND	0.20	
108-05-4	Vinyl Acetate	ND	7.1	ND	2.0	-
7 8- 93-3	2-Butanone (MEK)	ND	7.1	ND	2.4	_
156-59-2	cis-1,2-Dichloroethene	ND	0.71	ND	0.18	
141-78-6	Ethyl Acetate	ND	1.4	ND	0.39	
110-54-3	n-Hexane	2.2	0.71	0.63	0.20	
67-66-3	Chloroform	1.4	0.71	0.29	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.71	ND	0.24	
107-06-2	1,2-Dichloroethane	ND	0.71	ND	0.18	•
71-55-6	1,1,1-Trichloroethane	ND	0.71	ND	0.13	
71-43-2	Benzene	1.6	0.71	0.49	0.22	
56-23-5	Carbon Tetrachloride	ND	0.71	ND	0.11	-
110-82-7	Cyclohexane	ND	1.4	ND	0.41	
78-87-5	1,2-Dichloropropane	ND	0.71	ND	0.15	
75-27-4	Bromodichloromethane	ND	0.71	ND	0.11	_
79-01-6	Trichloroethene	ND	0.71	ND	0.13	
123-91-1	1,4-Dioxane	ND	0.71	ND	0.20	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	1.2	0.71	0.26	0.15	
80-62-6	Methyl Methacrylate	ND	1.4	ND	0.35	-
142-82-5	n-Heptane	1.2	0.71	0.30	0.17	
10061-01-5	cis-1,3-Dichloropropene	ND	0.71	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.71	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

RESULTS OF ANALYSIS

Page 3 of 4

Client: **AECOM Environment** CAS Project ID: P1001028 CAS Sample ID: P1001028-006 Client Sample ID: IA 02

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code:

Analyst:

EPA TO-15

nstrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Wida Ang

6.0 L Summa Canister Sampling Media:

Γest Notes:

Container ID:

AC01097

Initial Pressure (psig):

-1.9

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10 Date Analyzed: 3/30/10

Canister Dilution Factor: 1.42

1.00 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.71	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.71	ND	0.13	
108-88-3	Toluene	6.2	0.71	1.6	0.19	
591-78-6	2-Hexanone	ND	0.71	ND	0.17	
124-48-1	Dibromochloromethane	ND	0.71	ND	0.083	
106-93-4	1,2-Dibromoethane	ND	0.71	ND	0.092	
123-86-4	n-Butyl Acetate	ND	0.71	ND	0.15	
111-65-9	n-Octane	ND	0.71	ND	0.15	
127-18-4	Tetrachloroethene	ND	0.71	ND	0.10	
108-90-7	Chlorobenzene	ND	0.71	ND	0.15	
100-41-4	Ethylbenzene	ND	0.71	ND	0.16	
179601-23-1	m,p-Xylenes	2.3	1.4	0.54	0.33	
75-25-2	Bromoform	ND	0.71	ND	0.069	
100-42-5	Styrene	ND	0.71	ND	0.17	
95-47-6	o-Xylene	0.87	0.71	0.20	0.16	
111-84-2	n-Nonane	1.7	0.71	0.33	0.14	_
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.71	ND	0.10	
98-82-8	Cumene	ND	0.71	ND	0.14	
80-56-8	alpha-Pinene	ND	0.71	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.71	ND	0.14	
622-96-8	4-Ethyltoluene	ND	0.71	ND	0.14	
108-67-8	1,3,5-Trimethylbenzene	ND	0.71	ND_	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:	
	TOUS II NI D. NI	

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: IA_02 CAS Project ID: P1001028 CIent Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-006

Test Code:

EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Wida Ang

Sampling Media: 6.0 L Summa Canister

Test Notes:

Container 1D:

AC01097

Initial Pressure (psig):

-1.90

Final Pressure (psig):

3.50

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.42

1.00 Liter(s)

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier##
95-63-6	1,2,4-Trimethylbenzene	1.4	0.71	0.28	0.14	
100-44-7	Benzyl Chloride	ND	0.71	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.71	ND	0.12	w
106-46-7	1,4-Dichlorobenzene	ND	0.71	ND	0.12	
526-73-8	1,2,3-Trimethylbenzene	ND	0.71	ND	0.14	
95-50-1	1,2-Dichlorobenzene	ND	0.71	ND	0.12	
5989-27-5	d-Limonene	1.0	0.71	0.19	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.71	ND	0.073	
120-82-1	1,2,4-Trichlorobenzene	ND	0.71	ND	0.096	***
91-20-3	Naphthalene	1.1	0.71	0.21	0.14	_
87-68-3	Hexachlorobutadiene	ND	0.71	ND	0.067	
78-78-4	2-Methylbutane	6.7	0.71	2.3	0.24	-
79-20-9	Methyl Acetate	ND	0.71	ND	0.23	_
107-83-5	2-Methylpentane	2.1	0.71	0.60	0.20	
110-02-1	Thiophene	ND	0.71	ND	0.21	
565-59-3	2,3-Dimethylpentane	ND	0.71	ND	0.17	
108-87 - 2	Methylcyclohexane	0.85	0.71	0.21	0.18	
496-11-7	Indan	ND	0.71	ND	0.15	
95-13-6	Indene	ND	0.71	ND	0.15	-
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.71	ND	0.13	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.71	ND	0.13	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.71	ND	0.13	***

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2) xls - Sample (6)

RESULTS OF ANALYSIS

Page 1 of 4

Client: AECOM Environment

Client Sample ID: SSV_02 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-007

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Date Analyst: Wida Ang Date Analyzed: 3/30/10

Analyst: Wida Ang Date Analyzed: 3/30/10
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: SC00840

Initial Pressure (psig): -1.9 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.42

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	2.2	0.71	1.3	0.41	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.71	0.47	0.14	
74-87-3	Chloromethane	ND	0.71	ND	0.34	
76.14.2	1,2-Dichloro-1,1,2,2-					
76-14-2	tetrafluoroethane (CFC 114)	ND	0.71	ND	0.10	
■ 75-01-4	Vinyl Chloride	ND	0.71	ND	0.28	
106-99-0	1,3-Butadiene	ND	0.71	ND	0.32	
74-83 - 9	Bromomethane	ND	0.71	ND	0.18	
75-00-3	Chloroethane	ND	0.71	ND	0.27	
64-17-5	Ethanol	38	7.1	20	3.8	
75-05-8	Acetonitrile	ND	0.71	ND	0.42	
107-02-8	Acrolein	ND	2.8	ND	1.2	
67-64-1	Acetone	7.2	7.1	3.0	3.0	
75-69-4	Trichlorofluoromethane	1.4	0.71	0.24	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.4	ND	0.58	
107-13-1	Acrylonitrile	ND	0.71	ND	0.33	
75-35-4	1,1-Dichloroethene	ND	0.71	ND	0.18	
75-09-2	Methylene Chloride	ND	0.71	ND	0.20	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.71	ND	0.23	
76-13-1	Trichlorotrifluoroethane	ND	0.71	ND	0.093	
75-15-0	Carbon Disulfide	ND	7.1	ND	2.3	
156-60-5	trans-1,2-Dichloroethene	ND	0.71	ND	0.18	
75-34-3	1,1-Dichloroethane	ND_	0.71	ND	0.18	

TOTAL = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
		_

P1001028_TQ15 (2).xls - Sample (7)

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: SSV_02 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-007

Test Code: Instrument ID: EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Wida Ang

Sampling Media: 6.0 L Summa Canister

Test Notes:

Container ID:

SC00840

Initial Pressure (psig): -1.9

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.42

1.00 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.71	ND	0.20	
108-05-4	Vinyl Acetate	ND	7.1	ND	2.0	
78-93-3	2-Butanone (MEK)	ND	7.1	ND	2.4	•
156-59-2	cis-1,2-Dichloroethene	ND	0.71	ND	0.18	
141-78-6	Ethyl Acetate	4.0	1.4	1.1	0.39	
110-54-3	n-Hexane	4.3	0.71	1.2	0.20	-
67-66-3	Chloroform	1.1	0.71	0.22	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.71	ND	0.24	
107-06-2	1,2-Dichloroethane	ND	0.71	ND	0.18	-
71-55-6	1,1,1-Trichloroethane	50	0.71	9.1	0.13	
71-43-2	Benzene	11	0.71	3.3	0.22	
56-23-5	Carbon Tetrachloride	ND	0.71	ND	0.11	***
110-82-7	Cyclohexane	ND	1.4	ND	0.41	
78-87-5	1,2-Dichloropropane	ND	0.71	ND	0.15	
75-27 - 4	Bromodichloromethane	ND	0.71	ND	0.11	_
79-01-6	Trichloroethene	0.97	0.71	0.18	0.13	
123-91-1	1,4-Dioxane	ND	0.71	ND	0.20	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	1.3	0.71	0.28	0.15	
80-62-6	Methyl Methacrylate	ND	1.4	ND	0.35	_
142-82-5	n-Heptane	1.2	0.71	0.29	0.17	
10061-01-5	cis-1,3-Dichloropropene	ND	0.71	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.71	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028_TO15 (2) xls - Sample (7)

RESULTS OF ANALYSIS

Page 3 of 4

Client: **AECOM Environment** CAS Project ID: P1001028 Client Sample ID: SSV 02 CAS Sample ID: P1001028-007

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code:

EPA TO-15

Instrument 1D: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Wida Ang Sampling Media: 6.0 L Summa Canister

Test Notes:

Container 1D: SC00840

Initial Pressure (psig):

-1.9

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.42

1.00 Liter(s)

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.71	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.71	ND	0.13	
108-88-3	Toluene	9.2	0.71	2.4	0.19	
591-78-6	2-Hexanone	ND	0.71	ND	0.17	
124-48-1	Dibromochloromethane	ND	0.71	ND	0.083	
106-93-4	1,2-Dibromoethane	ND	0.71	ND	0.092	
123-86-4	n-Butyl Acetate	ND	0.71	ND	0.15	
111-65-9	n-Octane	ND	0.71	ND	0.15	
127-18-4	Tetrachloroethene	14	0.71	2.1	0.10	
108-90-7	Chlorobenzene	ND	0.71	ND	0.15	
100-41-4	Ethylbenzene	0.80	0.71	0.18	0.16	
179601-23-1	m,p-Xylenes	2.7	1.4	0.63	0.33	
75-25-2	Bromoform	ND	0.71	ND	0.069	
100-42-5	Styrene	0.73	0.71	0.17	0.17	
95- 47-6	o-Xylene	0.97	0.71	0.22	0.16	
111-84-2	n-Nonane	ND	0.71	ND	0.14	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.71	ND	0.10	
98-82-8	Cumene	ND	0.71	ND	0.14	
80-56-8	alpha-Pinene	ND	0.71	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.71	ND	0.14	
622-96-8	4-Ethyltoluene	ND	0.71	ND	0.14	
108-67-8	1,3,5-Trimethylbenzene	ND	0.71	ND	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
	TO15scan.xls - NL - PageNo.:

P1001028_TO15 (2) xls - Sample (7)

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: SSV_02 CAS Project ID: P1001028 CAS Sample ID: P1001028-007

Test Code:

EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Wida Ang

Sampling Media: 6.0 L

6.0 L Summa Canister

Test Notes:

Container 1D:

SC00840

Initial Pressure (psig):

-1.90

Final Pressure (psig):

3.50

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.42

1.00 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
95-63-6	1,2,4-Trimethylbenzene	1.6	0.71	0.33	0.14	
100-44-7	Benzyl Chloride	ND	0.71	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.71	ND	0.12	100
106-46-7	1,4-Dichlorobenzene	ND	0.71	ND	0.12	
526-73-8	1,2,3-Trimethylbenzene	ND	0.71	ND	0.14	
95-50-1	1,2-Dichlorobenzene	ND	0.71	ND	0.12	
5989-27-5	d-Limonene	7.8	0.71	1.4	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.71	ND	0.073	
120 -8 2-1	1,2,4-Trichlorobenzene	ND	0.71	ND	0.096	_
91-20-3	Naphthalene	ND	0.71	ND	0.14	•
87-68-3	Hexachlorobutadiene	ND	0.71	ND	0.067	
78-78-4	2-Methylbutane	10	0.71	3.5	0.24	_
79-20 - 9	Methyl Acetate	ND	0.71	ND	0.23	_
107-83-5	2-Methylpentane	3.9	0.71	1.1	0.20	
110-02-1	Thiophene	ND	0.71	ND	0.21	
565-59-3	2,3-Dimethylpentane	ND	0.71	ND	0.17	
108-87-2	Methylcyclohexane	0.91	0.71	0.23	0.18	
496-11-7	Indan	ND	0.71	ND	0.15	
95-13-6	Indene	ND	0.71	ND	0.15	-
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.71	ND	0.13	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.71	ND	0.13	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.71	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2).xls - Sample (7)

RESULTS OF ANALYSIS

Page 1 of 4

Client: AECOM Environment

Client Sample ID: IA_01 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample 1D: P1001028-008

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Wida Ang
Sampling Media: 6.0 L Summa Canister

Test Notes:

instrument ID:

Container ID: AC01351

Initial Pressure (psig): -2.5 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.49

1.00 Liter(s)

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Volume(s) Analyzed:

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
115 - 07-1	Propene	ND	0.75	ND	0.43	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.6	0.75	0.52	0.15	
74-87-3	Chloromethane	ND	0.75	ND	0.36	
76-14-2	1,2-Dichloro-1,1,2,2-					
70-14-2	tetrafluoroethane (CFC 114)	ND	0.75	ND	0.11	
75-01-4	Vinyl Chloride	ND	0.75	ND	0.29	
106-99-0	1,3-Butadiene	ND	0.75	ND	0.34	
74-83-9	Bromomethane	ND	0.75	ND	0.19	
75-00-3	Chloroethane	ND	0.75	ND	0.28	
64-17-5	Ethanol	40	7.5	21	4.0	
75-05-8	Acetonitrile	ND	0.75	ND	0.44	
107-02-8	Acrolein	ND	3.0	ND	1.3	
67-64-1	Acetone	11	7.5	4.4	3.1	
75-69-4	Trichlorofluoromethane	1.2	0.75	0.21	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.5	ND	0.61	
107-13-1	Acrylonitrile	ND	0.75	ND	0.34	
75-35-4	1,1-Dichloroethene	ND	0.75	ND	0.19	
75-09-2	Methylene Chloride	ND	0.75	ND	0.21	
1 07 - 05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.75	ND	0.24	
76-13-1	Trichlorotrifluoroethane	ND	0.75	ND	0.097	
75-15-0	Carbon Disulfide	ND	7.5	ND	2.4	
156-60-5	trans-1,2-Dichloroethene	ND	0.75	ND	0.19	
75-34-3	1,1-Dichloroethane	ND	0.75	ND	0.18	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
•	

P1001028_TO15 (2) xls - Sample (8)

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: IA_01 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-008

Test Code: EPA TO-15 Date Collected: 3/18/10
Instrument 1D: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10
Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container 1D: AC01351

Initial Pressure (psig): -2.5 Final Pressure (psig): 3.5

Canister Dilution Factor: 1.49

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.75	ND	0.21	
108-05-4	Vinyl Acetate	ND	7.5	ND	2.1	
78 - 93-3	2-Butanone (MEK)	ND	7.5	ND	2.5	
156-59-2	cis-1,2-Dichloroethene	ND	0.75	ND	0.19	
141-78-6	Ethyl Acetate	ND	1.5	ND	0.41	
110-54-3	n-Hexane	1.7	0.75	0.49	0.21	
67-66-3	Chloroform	ND	0.75	ND	0.15	
109-99-9	Tetrahydrofuran (THF)	ND	0.75	ND	0.25	
107-06-2	1,2-Dichloroethane	ND	0.75	ND	0.18	-
71-55-6	1,1,1-Trichloroethane	ND	0.75	ND	0.14	
71-43-2	Benzene	0.88	0.75	0.27	0.23	
56-23-5	Carbon Tetrachloride	ND	0.75	ND	0.12	•
110-82-7	Cyclohexane	ND	1.5	ND	0.43	
78-87-5	1,2-Dichloropropane	ND	0.75	ND	0.16	
75-27-4	Bromodichloromethane	ND	0.75	ND	0.11	
79-01-6	Trichloroethene	ND	0.75	ND	0.14	
123-91-1	1,4-Dioxane	ND	0.75	ND	0.21	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	ND	0.75	ND	0.16	-
80-62-6	Methyl Methacrylate	ND	1.5	ND	0.36	_
142-82-5	n-Heptane	ND	0.75	ND	0.18	
10061-01-5	cis-1,3-Dichloropropene	ND	0.75	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.75	ND	0.18	•

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P1001028_TO15 (2) xls - Sample (8)

RESULTS OF ANALYSIS

Page 3 of 4

AECOM Environment Client: CAS Project ID: P1001028 CAS Sample ID: P1001028-008 Client Sample ID: IA 01

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 instrument ID: Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Γest Notes:

Container 1D:

AC01351

Initial Pressure (psig):

-2.5

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.49

1.00 Liter(s)

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.75	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.75	ND	0.14	
108-88-3	Toluene	2.3	0.75	0.62	0.20	
591-78-6	2-Hexanone	ND	0.75	ND	0.18	
124-48-1	Dibromochloromethane	ND	0.75	ND	0.087	
106-93-4	1,2-Dibromoethane	ND	0.75	ND	0.097	
123-86-4	n-Butyl Acetate	ND	0.75	ND	0.16	
111-65-9	n-Octane	ND	0.75	ND	0.16	
127-18-4	Tetrachloroethene	ND	0.75	ND	0.11	
108-90-7	Chlorobenzene	ND	0.75	ND	0.16	
100-41-4	Ethylbenzene	ND	0.75	ND	0.17	
179601-23-1	m,p-Xylenes	ND	1.5	ND	0.34	
75-25-2	Bromoform	ND	0.75	ND	0.072	
100-42-5	Styrene	ND	0.75	ND	0.18	
■ 95-47-6	o-Xylene	ND	0.75	ND	0.17	
111-84-2	n-Nonane	0.78	0.75	0.15	0.14	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.75	ND	0.11	
98-82-8	Cumene	ND	0.75	ND	0.15	
80-56-8	alpha-Pinene	ND	0.75	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.75	ND	0.15	
622-96-8	4-Ethyltoluene	ND	0.75	ND	0.15	
108-67-8	1,3,5-Trimethylbenzene	ND	0.75	ND	0.15	•

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:			
•		 	 	-

P1001028 TO15 (2) xls - Sample (8)

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client:

AECOM Environment

Client Sample ID: IA_01

CAS Project ID: P1001028 CAS Sample ID: P1001028-008

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

EPA TO-15

Test Code: Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 3/18/10 Date Received: 3/23/10

Analyst:

Wida Ang

Date Analyzed: 3/30/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

Test Notes:

Container ID:

AC01351

Initial Pressure (psig):

-2.50

Final Pressure (psig):

3.50

Canister Dilution Factor: 1.49

CAS#	Compound	Result	MRL	Result	MRL ppbV	Data Qualifier [™]
95-63-6	1,2,4-Trimethylbenzene	<u>μg/m³</u> 0.97	μg/m³ 0.75	<u>ppbV</u> 0.20	0.15	Quanner
			0.75		0.13	
100-44-7	Benzyl Chloride	ND		ND		
541-73-1	1,3-Dichlorobenzene	ND	0.75	ND	0.12	•
106-46-7	1,4-Dichlorobenzene	ND	0.75	ND	0.12	
526-73 - 8	1,2,3-Trimethylbenzene	ND	0.75	ND	0.15	
95-50-1	1,2-Dichlorobenzene	ND	0.75	ND	0.12	
5989-27-5	d-Limonene	ND	0.75	ND	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.75	ND	0.077	
120-82-1	1,2,4-Trichlorobenzene	ND	0.75	ND	0.10	-
91-20-3	Naphthalene	1.6	0.75	0.31	0.14	
87-68-3	Hexachlorobutadiene	ND	0.75	ND	0.070	
78-78 - 4	2-Methylbutane	4.1	0.75	1.4	0.25	-
79-20-9	Methyl Acetate	ND	0.75	ND	0.25	
107-83-5	2-Methylpentane	1.4	0.75	0.41	0.21	
110-02-1	Thiophene	ND	0.75	ND	0.22	
565-59-3	2,3-Dimethylpentane	ND	0.75	ND	0.18	
108-87-2	Methylcyclohexane	ND	0.75	ND	0.19	
496-11-7	Indan	ND	0.75	ND	0.15	
95-13-6	Indene	ND	0.75	ND	0.16	-
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.75	ND	0.14	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.75	ND	0.14	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.75	ND_	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2) xls - Sample (8)

RESULTS OF ANALYSIS

Page 1 of 4

AECOM Environment Client:

Client Sample ID: SSV 01 CAS Project ID: P1001028 CAS Sample ID: P1001028-009 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Date Collected: 3/18/10 Test Code: EPA TO-15 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Wida Ang Date Analyzed: 3/30/10 Analyst:

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

SC01071 Container ID:

> Initial Pressure (psig): -2.4 Final Pressure (psig): 3.9

> > Canister Dilution Factor: 1.51

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	μg/III ND	25	ND	15	Quanner
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	25	ND	5.1	
74-87-3	Chloromethane	ND	25	ND	12	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	25	ND	3.6	
75-01-4	Vinyl Chloride	ND	25	ND	9.8	
106-99-0	1,3-Butadiene	ND	25	ND	11	
74-83-9	Bromomethane	ND	25	ND	6.5	
75-00-3	Chloroethane	ND	25	ND	9.5	
64-17-5	Ethanol	ND	250	ND	130	
75-05-8	Acetonitrile	ND	25	ND	15	
107-02-8	Acrolein	ND	100	ND	44	
67-64-1	Acetone	ND	250	ND	110	
75-69-4	Trichlorofluoromethane	ND	25	ND	4.5	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	50	ND	20	
107-13-1	Acrylonitrile	ND	25	ND	12	
75-35-4	1,1-Dichloroethene	ND	25	ND	6.4	
75-09-2	Methylene Chloride	ND	25	ND	7.2	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	25	ND	8.0	
76-13-1	Trichlorotrifluoroethane	ND	25	ND	3.3	
75-15-0	Carbon Disulfide	ND	250	ND	81	
156-60-5	trans-1,2-Dichloroethene	ND	25	ND	6.4	
75-34-3	1,1-Dichloroethane	ND	25	ND	6.2	

EXECUTE: The compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date:

P1001028_TO15 (2) xls - Sample (9)

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: SSV_01 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-009

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

Container ID: SC01071

Initial Pressure (psig): -2.4 Final Pressure (psig): 3.9

Canister Dilution Factor: 1.51

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	25	ND	7.0	
108-05-4	Vinyl Acetate	ND	250	ND	72	_
78-93-3	2-Butanone (MEK)	ND	250	ND	85	_
156-59-2	cis-1,2-Dichloroethene	27	25	6.8	6.4	
141-78-6	Ethyl Acetate	ND	50	ND	14	
110-54-3	n-Hexane	ND	25	ND	7.1	
67-66-3	Chloroform	ND	25	ND	5.2	
109-99 - 9	Tetrahydrofuran (THF)	ND	25	ND	8.5	
107-06-2	1,2-Dichloroethane	ND	25	ND	6.2	-
71-55-6	1,1,1-Trichloroethane	50	25	9.1	4.6	
71-43-2	Benzene	ND	25	ND	7.9	
56-23-5	Carbon Tetrachloride	ND	25	ND	4.0	
110-82-7	Cyclohexane	ND	50	ND	15	
78-87-5	1,2-Dichloropropane	ND	25	ND	5.4	
75-27-4	Bromodichloromethane	ND	25	ND	3.8	-
79-01-6	Trichloroethene	4,400	25	810	4.7	
123-91-1	1,4-Dioxane	ND	25	ND	7.0	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	ND	25	ND	5.4	-
80-62-6	Methyl Methacrylate	ND	50	ND	12	
142-82-5	n-Heptane	ND	25	ND	6.1	
10061-01-5	cis-1,3-Dichloropropene	ND	25	ND	5.5	
108-10-1	4-Methyl-2-pentanone	ND	25	ND	6.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028_TO15 (2).xls - Sample (9)

RESULTS OF ANALYSIS

Page 3 of 4

Client: AECOM Environment CAS Project ID: P1001028
Client Sample ID: SSV 01 CAS Sample ID: P1001028-009

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code: EPA TO-15 Date Collected: 3/18/10 nstrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Date Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister

Γest Notes:

Container ID: SC01071

Initial Pressure (psig): -2.4 Final Pressure (psig): 3.9

Canister Dilution Factor: 1.51

0.030 Liter(s)

Volume(s) Analyzed:

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	25	ND	5.5	
79-00-5	1,1,2-Trichloroethane	ND	25	ND	4.6	
108-88-3	Toluene	ND	25	ND	6.7	
591-78-6	2-Hexanone	ND	25	ND	6.1	
124-48-1	Dibromochloromethane	ND	25	ND	3.0	
106-93-4	1,2-Dibromoethane	ND	25	ND	3.3	
123-86-4	n-Butyl Acetate	ND	25	ND	5.3	
111-65-9	n-Octane	ND	25	ND	5.4	
127-18-4	Tetrachloroethene	68	25	10	3.7	
108-90-7	Chlorobenzene	ND	25	ND	5.5	
100-41-4	Ethylbenzene	ND	25	ND	5.8	
179601-23-1	m,p-Xylenes	ND	50	ND	12	
75-25-2	Bromoform	ND	25	ND	2.4	
100-42-5	Styrene	ND	25	ND	5.9	
95-47-6	o-Xylene	ND	25	ND	5.8	
111-84-2	n-Nonane	ND	25	ND	4.8	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	ND	3.7	
98-82-8	Cumene	ND	25	ND	5.1	
80-56-8	alpha-Pinene	ND	25	ND	4.5	
103-65-1	n-Propylbenzene	ND	25	ND	5.1	
622-96-8	4-Ethyltoluene	ND	25	ND	5.1	
108-67-8	1,3,5-Trimethylbenzene	ND	25	ND	5.1	

__ID = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
· —	TO15scan.xls - NL - PageNo.

P1001028_TO15 (2).xls - Sample (9)

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client:

AECOM Environment

Client Sample ID: SSV 01

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

CAS Project ID: P1001028

CAS Sample ID: P1001028-009

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: 3/18/10

Date Received: 3/23/10

Instrument ID: Analyst:

Wida Ang

Date Analyzed: 3/30/10

Sampling Media: Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

0.030 Liter(s)

Container ID:

SC01071

Initial Pressure (psig):

-2.40

Final Pressure (psig):

3.90

Canister Dilution Factor: 1.51

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
95-63-6	1,2,4-Trimethylbenzene	ND	25	ND	5.1	
100-44-7	Benzyl Chloride	ND	25	ND	4.9	
541-73-1	1,3-Dichlorobenzene	ND	25	ND	4.2	-
106-46-7	1,4-Dichlorobenzene	ND	25	ND	4.2	
526-73-8	1,2,3-Trimethylbenzene	ND	25	ND	5.1	
95-50-1	1,2-Dichlorobenzene	ND	25	ND	4.2	
5989-27-5	d-Limonene	ND	25	ND	4.5	
96-12-8	1,2-Dibromo-3-chloropropane	ND	25	ND	2.6	
120-82-1	1,2,4-Trichlorobenzene	ND	25	ND	3.4	•
91-20-3	Naphthalene	ND	25	ND	4.8	_
87-68-3	Hexachlorobutadiene	ND	25	ND	2.4	
78-78-4	2-Methylbutane	ND	25	ND	8.5	
79-20-9	Methyl Acetate	ND	25	ND	8.3	•
107-83-5	2-Methylpentane	ND	25	ND	7.1	
110-02-1	Thiophene	ND	25	ND	7.3	
565-59-3	2,3-Dimethylpentane	ND	25	ND	6.1	
108-87-2	Methylcyclohexane	ND	25	ND	6.3	
496-11-7	Indan	ND	25	ND	5.2	
95-13-6	Indene	ND	25	ND	5.3	-
95-93-2	1,2,4,5-Tetramethylbenzene	ND	25	ND	4.6	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	25	ND	4.6	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	25	ND	4.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
--------------	-------	--

RESULTS OF ANALYSIS

Page 1 of 4

Client: AECOM Environment

Client Sample ID: SSV_03 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-010

Test Code:

EPA TO-15 Date Collected: 3/18/10

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

_Container 1D: SC00890

Initial Pressure (psig): -2.1 Final Pressure (psig): 3.6

Canister Dilution Factor: 1.45

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	4.0	0.73	2.3	0.42	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.5	0.73	0.50	0.15	
74-87-3	Chloromethane	ND	0.73	ND	0.35	
76-14-2	1,2-Dichloro-1,1,2,2-	ND	0.72	ND	0.10	
	tetrafluoroethane (CFC 114)	ND	0.73	ND	0.10	
75-01-4	Vinyl Chloride	ND_	0.73	ND	0.28	
106-99-0	1,3-Butadiene	ND	0.73	ND	0.33	
74-83-9	Bromomethane	ND	0.73	ND	0.19	
75-00-3	Chloroethane	ND	0.73	ND	0.27	
64-17-5	Ethanol	36	7.3	19	3.8	
75-05-8	Acetonitrile	ND	0.73	ND	0.43	
107-02-8	Acrolein	ND	2.9	ND	1.3	
67-64-1	Acetone	19	7.3	7 .9	3.1	
75-69-4	Trichlorofluoromethane	1.3	0.73	0.22	0.13	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.5	ND	0.59	
107-13-1	Acrylonitrile	ND	0.73	ND	0.33	
75-35-4	1,1-Dichloroethene	ND	0.73	ND	0.18	
75-09-2	Methylene Chloride	ND	0.73	ND	0.21	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.73	ND	0.23	
76-13-1	Trichlorotrifluoroethane	ND	0.73	ND	0.095	
75-15-0	Carbon Disulfide	ND	7.3	ND	2.3	
156-60-5	trans-1,2-Dichloroethene	ND	0.73	ND	0.18	
75-34-3	1,1-Dichloroethane	ND	0.73	ND	0.18	

[■]ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:			
		-	 	

P1001028_TO15 (2) xls - Sample (10)

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: SSV_03 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-010

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973 inert/6890N/MS9 Date Received: 3/23/10
Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container 1D: SC00890

Initial Pressure (psig): -2.1 Final Pressure (psig): 3.6

Canister Dilution Factor: 1.45

Date Collected: 3/18/10

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.73	ND	0.20	
108-05-4	Vinyl Acetate	ND	7.3	ND	2.1	_
78 - 93-3	2-Butanone (MEK)	ND	7.3	ND	2.5	•
156-59-2	cis-1,2-Dichloroethene	ND	0.73	ND	0.18	
141-78-6	Ethyl Acetate	ND	1.5	ND	0.40	
110-54-3	n-Hexane	3.2	0.73	0.92	0.21	
67-66-3	Chloroform	0.91	0.73	0.19	0.15	
109 - 99-9	Tetrahydrofuran (THF)	ND	0.73	ND	0.25	
107-06-2	1,2-Dichloroethane	ND	0.73	ND	0.18	-
71-55-6	1,1,1-Trichloroethane	7.7	0.73	1.4	0.13	
71-43-2	Benzene	2.1	0.73	0.66	0.23	
56-23-5	Carbon Tetrachloride	ND	0.73	ND	0.12	_
110-82-7	Cyclohexane	ND	1.5	ND	0.42	
78-87-5	1,2-Dichloropropane	ND	0.73	ND	0.16	
75-27-4	Bromodichloromethane	ND	0.73	ND	0.11	
79-01-6	Trichloroethene	ND	0.73	ND	0.13	
123-91-1	1,4-Dioxane	ND	0.73	ND	0.20	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	0.99	0.73	0.21	0.16	
80-62-6	Methyl Methacrylate	ND	1.5	ND	0.35	_
142-82-5	n-Heptane	0.90	0.73	0.22	0.18	
10061-01-5	cis-1,3-Dichloropropene	ND	0.73	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.73	ND	0.18	•

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028_TO15 (2) xls - Sample (10)

RESULTS OF ANALYSIS

Page 3 of 4

Client:AECOM EnvironmentCAS Project ID: P1001028Client Sample ID:SSV_03CAS Sample ID: P1001028-010

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Wida Ang

Sampling Media: 6.0 L Summa Canister

Γest Notes:

nstrument ID:

Container ID:

SC00890

Initial Pressure (psig):

-2.1

Final Pressure (psig):

3.6

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10 Date Analyzed: 3/30/10

Canister Dilution Factor: 1.45

1.00 Liter(s)

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.73	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.73	ND	0.13	
108-88-3	Toluene	4.9	0.73	1.3	0.19	
591-78-6	2-Hexanone	ND	0.73	ND	0.18	
124-48-1	Dibromochloromethane	ND	0.73	ND	0.085	
106-93-4	1,2-Dibromoethane	ND	0.73	ND	0.094	
123-86-4	n-Butyl Acetate	ND	0.73	ND	0.15	
111-65-9	n-Octane	ND	0.73	ND	0.16	
127-18-4	Tetrachloroethene	130	0.73	20	0.11	
108-90-7	Chlorobenzene	ND	0.73	ND	0.16	
100-41-4	Ethylbenzene	ND	0.73	ND	0.17	_
179601-23-1	m,p-Xylenes	1.6	1.5	0.36	0.33	
75-25-2	Bromoform	ND	0.73	ND	0.070	
100-42-5	Styrene	ND	0.73	ND	0.17	
95-47-6	o-Xylene	ND	0.73	ND	0.17	
111-84-2	n-Nonane	0.95	0.73	0.18	0.14	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.73	ND	0.11	
98-82-8	Cumene	ND	0.73	ND	0.15	
80-56-8	alpha-Pinene	ND	0.73	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.73	ND	0.15	
622-96-8	4-Ethyltoluene	ND	0.73	ND	0.15	
108-67-8	1,3,5-Trimethylbenzene	ND	0.73	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
vermed by	TO I Scran vis - NI - PageNo :

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: SSV 03 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-010

Test Code:

EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister

Test Notes:

Container ID:

SC00890

Initial Pressure (psig):

-2.10

Final Pressure (psig):

3.60

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.45

1.00 Liter(s)

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
95-63-6	1,2,4-Trimethylbenzene	ND	0.73	ND	0.15	
100-44-7	Benzyl Chloride	ND	0.73	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.73	ND	0.12	-
106-46-7	1,4-Dichlorobenzene	ND	0.73	ND	0.12	
526-73-8	1,2,3-Trimethylbenzene	ND	0.73	ND	0.15	
95-50-1	1,2-Dichlorobenzene	ND	0.73	ND	0.12	
5989-27-5	d-Limonene	ND	0.73	ND	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.73	ND	0.075	
120-82-1	1,2,4-Trichlorobenzene	ND	0.73	ND	0.098	
91-20-3	Naphthalene	ND	0.73	ND	0.14	_
87-68-3	Hexachlorobutadiene	ND	0.73	ND	0.068	
78-78-4	2-Methylbutane	7.1	0.73	2.4	0.25	****
79-20-9	Methyl Acetate	ND	0.73	ND	0.24	-
107 -8 3-5	2-Methylpentane	2.7	0.73	0.77	0.21	
110-02-I	Thiophene	ND	0.73	ND	0.21	
565-59-3	2,3-Dimethylpentane	ND	0.73	ND	0.18	. —
108-87-2	Methylcyclohexane	ND	0.73	ND	0.18	
496-11-7	Indan	ND	0.73	ND	0.15	
95-13-6	Indene	ND	0.73	ND	0.15	-
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.73	ND	0.13	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.73	ND	0.13	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.73	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2) xls - Sample (10)

RESULTS OF ANALYSIS

Page 1 of 4

AECOM Environment Client:

Client Sample ID: IA_03 CAS Project ID: P1001028 CAS Sample ID: P1001028-011 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Date Collected: 3/18/10 Test Code: EPA TO-15 nstrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Date Analyzed: 3/30/10 Analyst: Wida Ang

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01569

> Initial Pressure (psig): -1.4 Final Pressure (psig): 3.5

> > Canister Dilution Factor: 1.37

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.69	ND	0.40	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.69	0.47	0.14	
74-87-3	Chloromethane	ND	0.69	ND	0.33	
76 14 2	1,2-Dichloro-1,1,2,2-					
76-14-2	tetrafluoroethane (CFC 114)	ND	0.69	ND	0.098	
75-01-4	Vinyl Chloride	ND	0.69	ND	0.27	
106-99-0	1,3-Butadiene	ND	0.69	ND	0.31	
74-83-9	Bromomethane	ND	0.69	ND	0.18	
75-00-3	Chloroethane	ND	0.69	ND	0.26	
64-17-5	Ethanol	27	6.9	14	3.6	
75-05-8	Acetonitrile	ND	0.69	ND	0.41	
107-02-8	Acrolein	ND	2.7	ND	1.2	
67-64-1	Acetone	12	6.9	5.1	2.9	
75-69-4	Trichlorofluoromethane	1.2	0.69	0.21	0.12	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.4	ND	0.56	
107-13-1	Acrylonitrile	ND	0.69	ND	0.32	
75-35-4	1,1-Dichloroethene	ND	0.69	ND	0.17	
75-09-2	Methylene Chloride	ND	0.69	ND	0.20	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.69	ND	0.22	
76-13-1	Trichlorotrifluoroethane	ND	0.69	ND	0.089	
75-15-0	Carbon Disulfide	ND	6.9	ND	2.2	
156-60-5	trans-1,2-Dichloroethene	ND	0.69	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.69	ND	0.17	

END = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2).xls - Sample (11)

RESULTS OF ANALYSIS

Page 2 of 4

AECOM Environment Client:

Client Sample ID: IA 03 CAS Project ID: P1001028 Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-011

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01569

> Final Pressure (psig): Initial Pressure (psig): -1.4 3.5

> > Canister Dilution Factor: 1.37

CAS#	Compound	Result	MRL	Result	MRL	Data
1634-04-4	Methyl tert-Butyl Ether	μg/m³ ND	μg/m³ 0.69	ppbV ND	ppbV 0.19	Qualifier
108-05-4	Vinyl Acetate	ND	6.9	ND	1.9	
78-93 - 3	2-Butanone (MEK)	ND ND	6.9	ND ND	2.3	
	· · · · · · · · · · · · · · · · · · ·					
156-59-2	cis-1,2-Dichloroethene	ND	0.69	ND	0.17	
141-78-6	Ethyl Acetate	ND	1.4	ND	0.38	
110-54-3	n-Hexane	1.8	0.69	0.52	0.19	-
67-66-3	Chloroform	ND	0.69	ND	0.14	
109-99-9	Tetrahydrofuran (THF)	ND	0.69	ND	0.23	
107-06-2	1,2-Dichloroethane	ND	0.69	ND	0.17	-
71-55-6	1,1,1-Trichloroethane	ND	0.69	ND	0.13	
71-43-2	Benzene	0.93	0.69	0.29	0.21	
56-23-5	Carbon Tetrachloride	ND	0.69	ND	0.11	-
110-82-7	Cyclohexane	ND	1.4	ND	0.40	
78-87-5	1,2-Dichloropropane	ND	0.69	ND	0.15	
75-27-4	Bromodichloromethane	ND	0.69	ND	0.10	-
79-01-6	Trichloroethene	ND	0.69	ND	0.13	
123-91-1	1,4-Dioxane	ND	0.69	ND	0.19	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	0.89	0.69	0.19	0.15	
80-62-6	Methyl Methacrylate	ND	1.4	ND	0.33	_
142-82-5	n-Heptane	ND	0.69	ND	0.17	
10061-01-5	cis-1,3-Dichloropropene	ND	0.69	ND	0.15	
108-10-1	4-Methyl-2-pentanone	ND_	0.69	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	

P1001028_TO15 (2) xls - Sample (11)

RESULTS OF ANALYSIS

Page 3 of 4

Client: **AECOM Environment** CAS Project ID: P1001028 Client Sample ID: IA 03 CAS Sample ID: P1001028-011

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code:

nstrument ID:

EPA TO-15

Wida Ang

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Sampling Media:

6.0 L Summa Canister

Γest Notes:

Container ID:

AC01569

Initial Pressure (psig):

-1.4

Final Pressure (psig):

3.5

Volume(s) Analyzed:

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

Canister Dilution Factor: 1.37

1.00 Liter(s)

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.69	ND	0.15	
79-00-5	1,1,2-Trichloroethane	ND	0.69	ND	0.13	
108-88-3	Toluene	1.8	0.69	0.47	0.18	
591-78-6	2-Hexanone	ND	0.69	ND	0.17	
124-48-1	Dibromochloromethane	ND	0.69	ND	0.080	
106-93-4	1,2-Dibromoethane	ND	0.69	ND	0.089	
123-86-4	n-Butyl Acetate	ND	0.69	ND	0.14	
111-65-9	n-Octane	ND	0.69	ND	0.15	
127-18-4	Tetrachloroethene	ND	0.69	ND	0.10	
108-90-7	Chlorobenzene	ND	0.69	ND	0.15	
100-41-4	Ethylbenzene	ND	0.69	ND	0.16	
179601-23-1	m,p-Xylenes	ND	1.4	ND	0.32	
75-25-2	Bromoform	ND	0.69	ND	0.066	
100-42-5	Styrene	ND	0.69	ND	0.16	
■ 95-47-6	o-Xylene	ND	0.69	ND	0.16	
111-84-2	n-Nonane	ND	0.69	ND	0.13	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.69	ND	0.10	
■ 98-82-8	Cumene	ND	0.69	ND	0.14	
80-56-8	alpha-Pinene	ND	0.69	ND	0.12	
103-65-1	n-Propylbenzene	ND	0.69	ND	0.14	
622-96-8	4-Ethyltoluene	ND	0.69	ND	0.14	
108-67-8	1,3,5-Trimethylbenzene	ND ND	0.69	ND	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
	TO15scan.xls - NL - PageNo

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS

Page 4 of 4

Client: AECOM Environment

Client Sample ID: IA_03 CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-011

Test Code: EPA TO-15 Date Collected: 3/18/10 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/23/10 Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01569

Initial Pressure (psig): -1.40 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.37

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifieı ≖
95-63-6	1,2,4-Trimethylbenzene	ND	0.69	ND	0.14	
100-44-7	Benzyl Chloride	ND	0.69	ND	0.13	
541-73-1	1,3-Dichlorobenzene	ND	0.69	ND	0.11	
106-46-7	1,4-Dichlorobenzene	ND	0.69	ND	0.11	
526-73-8	1,2,3-Trimethylbenzene	ND	0.69	ND	0.14	
95-50-1	1,2-Dichlorobenzene	ND	0.69	ND	0.11	
5989-27-5	d-Limonene	ND	0.69	ND	0.12	
96-12 -8	1,2-Dibromo-3-chloropropane	ND	0.69	ND	0.071	
120-82-1	1,2,4-Trichlorobenzene	ND	0.69	ND	0.092	***
91-20-3	Naphthalene	ND	0.69	ND	0.13	
87-68-3	Hexachlorobutadiene	ND	0.69	ND	0.064	
78-78-4	2-Methylbutane	5.2	0.69	1.8	0.23	
79-20-9	Methyl Acetate	ND	0.69	ND	0.23	-
107-83-5	2-Methylpentane	1.6	0.69	0.47	0.19	
110-02-1	Thiophene	ND	0.69	ND	0.20	
565-59-3	2,3-Dimethylpentane	ND	0.69	ND	0.17	
108-87-2	Methylcyclohexane	ND	0.69	ND	0.17	
496-11-7	Indan	ND	0.69	ND	0.14	
95-13-6	Indene	ND	0.69	ND	0.14	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.69	ND	0.12	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.69	ND	0.12	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.69	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028_TO15 (2) xis - Sample (11)

RESULTS OF ANALYSIS

Page 1 of 4

AECOM Environment Client:

CAS Project ID: P1001028 Client Sample ID: Method Blank ■Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P100330-MB

Γest Code:

EPA TO-15

nstrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Sampling Media: Fest Notes:

6.0 L Summa Canister

Date Collected: NA Date Received: NA

Date Analyzed: 3/30/10

Volume(s) Analyzed:

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76.14.0	1,2-Dichloro-1,1,2,2-					
76-14-2	tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
1 75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.0	ND	0.41	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	

■ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
Vernica by.	Dutc.

RESULTS OF ANALYSIS

Page 2 of 4

Client: AECOM Environment

Client Sample ID: Method Blank CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P100330-MB

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Wida Ang

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

Date Collected: NA

Date Received: NA

Date Analyzed: 3/30/10

CAS#	Compound	Result µg/m³	MRL μg/m³	Result pbV	MRL ppbV	Data - Qualifier
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	<u>Canada</u>
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	-
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	=
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87- 5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	ND	0.50	ND	0.11	_
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	-
108-10-1	4-Methyl-2-pentanone	_ND_	0.50	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P1001028_TO15 (2).xis - MBlank

RESULTS OF ANALYSIS

Page 3 of 4

Client:

AECOM Environment

CAS Project ID: P1001028

Client Sample ID: Method Blank

CAS Sample 1D: P100330-MB

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code:

EPA TO-15

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Date Collected: NA Date Received: NA

Instrument 1D: Analyst:

Wida Ang

Date Analyzed: 3/30/10

Sampling Media:

6.0 L Summa Canister

Volume(s) Analyzed:

1.00 Liter(s)

est Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
■ 79-00-5	1,1,2-TrichIoroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2).xls - MBlank

RESULTS OF ANALYSIS

Page 4 of 4

Client:AECOM EnvironmentCAS Project ID: P1001028Client Sample ID:Method BlankCAS Sample ID: P100330-MB

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Wi

Wida Ang

Sampling Media: 6.0 L Summa Canister

Test Notes:

Date Collected: NA

Date Received: NA

Date Analyzed: 3/30/10 Volume(s) Analyzed: 1.0

1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	Quanner
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	-
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
526-73-8	1,2,3-Trimethylbenzene	ND	0.50	ND	0.10	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	
78-78-4	2-Methylbutane	ND	0.50	ND	0.17	-
79-20-9	Methyl Acetate	ND	0.50	ND	0.17	_
107-83-5	2-Methylpentane	ND	0.50	ND	0.14	
110-02-1	Thiophene	ND	0.50	ND	0.15	
565-59-3	2,3-Dimethylpentane	ND	0.50	ND	0.12	
108-87-2	Methylcyclohexane	ND	0.50	ND	0.12	
496-11-7	Indan	ND	0.50	ND	0.10	
95-13-6	Indene	ND	0.50	ND	0.11	-
95-93-2	1,2,4,5-Tetramethylbenzene	ND	0.50	ND	0.091	
488-23-3	1,2,3,4-Tetramethylbenzene	ND	0.50	ND	0.091	
527-53-7	1,2,3,5-Tetramethylbenzene	ND	0.50	ND	0.091	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:

P1001028_TO15 (2).xls - MBlank

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

AECOM Environment Client:

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Project ID: P1001028

Fest Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Sampling Media: Wida Ang

6.0 L Summa Canister(s)

Date(s) Received: 3/23/10 Date(s) Analyzed: 3/30/10

Date(s) Collected: 3/18/10

Test Notes:

_		1,2-Dichlor	oethane-d4	Tolue	ne-d8	Bromofluo	robenzene	
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	%	Acceptance	Data
		Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P100330-MB	101	70-130	99	70-130	96	70-130	
Lab Control Sample	P100330-LCS	98	70-130	98	70-130	100	70-130	
1A_05	P1001028-001	100	70-130	99	70-130	9 7	70-130	
CS_01	P1001028-002	101	70-130	100	70-130	96	70-130	
IA_07	P1001028-003	102	70-130	99	70-130	97	70-130	
DUP_1	P1001028-004	101	70-130	99	70-130	96	70-130	
IA_06	P1001028-005	101	70-130	98	70-130	96	70-130	
lA_02	P1001028-006	102	70-130	99	70-130	97	70-130	
SSV 02	P1001028-007	101	70-130	99	70-130	96	70-130	
IA_01	P1001028-008	101	70-130	99	70-130	96	70-130	
SSV_01	P1001028-009	102	70-130	99	70-130	95	70-130	
SSV_01	P1001028-009DUP	101	70-130	100	70-130	95	70-130	
SSV_03	P1001028-010	102	70-130	97	70-130	95	70-130	
IA_03	P1001028-011	101	70-130	99	70-130	95	70-130	

Verified By:	Date:
· -	TO Secon vis - NI - PageNo :

P1001028 TO15 (2).xls - Surrogates

LABORATORY CONTROL SAMPLE SUMMARY Page 1 of 4

Client: AECOM Environment

Client Sample ID: Lab Control Sample CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P100330-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA Liter(s)

Test Notes:

					CAS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier.
115-07-1	Propene	26.3	26.3	100	58-133	
75-71-8	Dichlorodifluoromethane (CFC 12)	26.0	24.2	93	63-114	
74-87 - 3	Chloromethane	25.0	24.6	98	60-130	•
56.14.0	1,2-Dichloro-1,1,2,2-					
76-14-2	tetrafluoroethane (CFC 114)	26.0	24.0	92	63-118	
75-01-4	Vinyl Chloride	25.3	23.9	94	63-123	•
106-99-0	1,3-Butadiene	26.8	27.3	102	63-141	
74-83-9	Bromomethane	25.8	25.9	100	67-133	
75-00-3	Chloroethane	25.5	24.8	9 7	65-122	_
64-17-5	Ethanol	130	130	100	54-137	_
75-05-8	Acetonitrile	26.0	25.3	97	59-128	
107-02-8	Acrolein	26.3	25.1	95	61-131	
67-64-1	Acetone	132	122	92	60-117	•
75-69-4	Trichlorofluoromethane	26.3	23.8	90	62-125	
67-63-0	2-Propanol (Isopropyl Alcohol)	48.0	43.9	91	57-125	
107-13-1	Acrylonitrile	25.8	27.4	106	66-136	-
75-35-4	1,1-Dichloroethene	27.5	27.2	99	71-121	
75-09-2	Methylene Chloride	26.8	24.8	93	67-109	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	27.0	29.6	110	64-145	-
76-13-1	Trichlorotrifluoroethane	27.5	26.3	96	71-124	
75-15-0	Carbon Disulfide	26.0	25.5	98	64-119	
156-60-5	trans-1,2-Dichloroethene	25.5	25.9	102	68-126	-
75-34-3	1,1-Dichloroethane	26.5	26.6	100	67-124	

Verified By:	Date:	_		
-		 	 	

P1001028_TO15 (2).xls - LCS

LABORATORY CONTROL SAMPLE SUMMARY
Page 2 of 4

Client: AECOM Environment

Client Sample ID: Lab Control Sample CAS Project ID: P1001028

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P100330-LCS

Fest Code: EPA TO-15 Date Collected: NA mostrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA Liter(s)

__ Fest Notes:

					CAS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
1634-04-4	Methyl tert-Butyl Ether	26.3	25.3	96	67-124	
108-05-4	Vinyl Acetate	126	169	134	50-171	
78-93-3	2-Butanone (MEK)	26.8	26.9	100	69-136	
156-59-2	cis-1,2-Dichloroethene	27.0	27.3	101	68-123	
141-78-6	Ethyl Acetate	52.0	54.4	105	75-131	
110-54-3	n-Hexane	26.0	26.4	102	63-118	
67-66-3	Chloroform	27.5	26.1	95	66-124	
109-99-9	Tetrahydrofuran (THF)	26.5	26.9	102	66-129	
107-06-2	1,2-Dichloroethane	26.3	25.5	97	64-125	
71-55-6	1,1,1-Trichloroethane	26.0	25.9	100	71-123	
71-43-2	Benzene	25.8	26.6	103	63-112	
56-23-5	Carbon Tetrachloride	26.3	26.8	102	73-129	
110-82-7	Cyclohexane	51.8	52.9	102	68-118	
78-87-5	1,2-Dichloropropane	26.0	26.5	102	74-122	
75-27-4	Bromodichloromethane	26.3	26.8	102	75-125	
79-01-6	Trichloroethene	25.8	25.0	97	66-120	
123-91-1	1,4-Dioxane	26.0	26.1	100	75-127	
540-84-1	2,2,4-Trimethylpentane (Isooctane)	25.8	25.8	100	66-120	
80-62-6	Methyl Methacrylate	52.8	56.5	107	80-130	
142-82-5	n-Heptane	25.8	26.6	103	71-121	
10061-01-5	cis-1,3-Dichloropropene	24.5	26.1	107	77-130	
108-10-I	4-Methyl-2-pentanone	26.8	28.1	105	74-134	

Verified By:	Date:	
	TO15 I NO	

P1001028_TO15 (2) xls - LCS

LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 4

Client: AECOM Environment

Client Sample ID: Lab Control Sample CAS Project ID: P1001028
Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P100330-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA

Analyst: Wida Ang Date Analyzed: 3/30/10
Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA Liter(s)

Test Notes:

CAS#	Compound	Spike Amount	Result _ng	% Recovery	CAS Acceptance Limits	Data Qualifier ^{an}
10061-02-6	trans-1,3-Dichloropropene	27.0	29.5	109	78-134	_
79-00-5	1,1,2-Trichloroethane	26.0	26.6	102	76-122	
108-88-3	Toluene	26.8	26.1	97	66-120	-
591-78-6	2-Hexanone	27.0	25.9	96	72-135	
124-48-1	Dibromochloromethane	28.3	28.5	101	79-136	
106-93-4	1,2-Dibromoethane	26.3	26.7	102	76-129	•
123-86-4	n-Butyl Acetate	27.5	27.1	99	68-138	
111-65-9	n-Octane	26.3	27.0	103	71-122	
127-18-4	Tetrachloroethene	25.3	24.7	98	65-132	
108-90-7	Chlorobenzene	26.5	25.8	97	66-122	
100-41-4	Ethylbenzene	26.3	26.3	100	69-122	
179601-23-1	m,p-Xylenes	51.5	51.9	101	69-122	
75-25-2	Bromoform	26.5	27.0	102	73-150	_
100-42-5	Styrene	26.3	26.9	102	75-130	
95-47-6	o-Xylene	26.0	26.5	102	69-122	
111-84-2	n-Nonane	25.8	26.2	102	68-125	
79-34 - 5	1,1,2,2-Tetrachloroethane	27.0	29.8	110	80-126	
98-82-8	Cumene	25.3	25.3	100	70-123	
80-56-8	alpha-Pinene	24.8	23.9	96	75-128	
103-65-1	n-Propylbenzene	25.3	25.6	101	70-125	
622-96-8	4-Ethyltoluene	26.3	26.5	101	71-129	
108-67-8	1,3,5-Trimethylbenzene	26.5	27.1	102	71-125	

Verified By:	Date:		

P1001028_TO15 (2) xls - LCS

LABORATORY CONTROL SAMPLE SUMMARY

Page 4 of 4

Client: **AECOM Environment**

Client Sample ID: Lab Control Sample CAS Project ID: P1001028 ■Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P100330-LCS

Γest Code: EPA TO-15

Date Collected: NA Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 nstrument ID: Date Received: NA

Analyst: Wida Ang Date Analyzed: 3/30/10

Sampling Media: 6.0 L Summa Canister Volume(s) Analyzed: NA Liter(s)

__Fest Notes:

					CAS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
***		ng	ng		Limits	Qualifier
95-63-6	1,2,4-Trimethylbenzene	25.5	27.3	107	69-132	
100-44-7	Benzyl Chloride	26.8	31.3	117	78-144	
541-73-1	1,3-Dichlorobenzene	26.0	27.6	106	65-132	
106-46-7	1,4-Dichlorobenzene	26.3	26.7	102	66-126	
526-73-8	1,2,3-Trimethylbenzene	26.0	27.4	105	69-132	
95-50-1	1,2-Dichlorobenzene	25.8	27.3	106	67-134	
5989-27-5	d-Limonene	26.5	24.1	91	68-149	
96-12-8	1,2-Dibromo-3-chloropropane	27.0	31.9	118	76-150	
120-82-1	1,2,4-Trichlorobenzene	27.3	29.0	106	66-145	
91-20-3	Naphthalene	25.0	27.1	108	71-147	
87-68-3	Hexachlorobutadiene	26.8	27.5	103	65-140	

Verified By: Date:

P1001028 TO15 (2) xls - LCS

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 4

Client: AECOM Environment

Client Sample ID: SSV_01 CAS Project ID: P1001028

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-009DUP

Test Code:

EPA TO-15

Instrument ID: Analyst:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Wida Ang

Sampling Media:

6.0 L Summa Canister

Test Notes:

Container ID: SC01071

> Initial Pressure (psig): -2.4

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10 Volume(s) Analyzed:

Final Pressure (psig): 3.9

0.030 Liter(s)

Canister Dilution Factor: 1.51

					Canis	ter Dilution	n Factor:	1.51
			Dupli	cate				
Compound	Sample Result		Sample Result		Average	% RPD	RPD	Data
-	$\mu g/m^3$	ppbV	$\mu g/m^3$	ppbV	μg/m³		Limit	Qualifier
Propene	ND	ND	ND	ND	-	-	25	
Dichlorodifluoromethane (CFC 12)	ND	ND	ND	ND	-	-	25	
Chloromethane	ND	ND	ND	ND	-	-	25	461
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	ND	ND	ND	ND	-	-	25	
Vinyl Chloride	ND	ND	ND	ND	-	-	25	
1,3-Butadiene	ND	ND	ND	ND	-	-	25	90
Bromomethane	ND	ND	ND	ND	-	-	25	
Chloroethane	ND	ND	ND	ND	-	-	25	
Ethanol	ND	ND	ND	ND	-	-	25	-
Acetonitrile	ND	ND	ND	ND	-	-	25	_
Acrolein	ND	ND	ND	ND	-	-	25	
Acetone	ND	ND	ND	ND	-	-	25	
Trichlorofluoromethane	ND	ND	ND	ND	-	-	25	-
2-Propanol (Isopropyl Alcohol)	ND	ND	ND	ND	-	-	25	
Acrylonitrile	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
Methylene Chloride	ND	ND	ND	ND	-	-	25	
3-Chloro-1-propene (Allyl Chloride)	ND	ND	ND	ND	-	-	25	
Trichlorotrifluoroethane	ND	ND	ND	ND	-	-	25	91
Carbon Disulfide	ND	ND	ND	ND	-	-	25	
trans-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethane	ND	ND	ND	ND	-		25	-

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
--------------	-------

P1001028_TO15 (2).xls - Dup (9)

LABORATORY DUPLICATE SUMMARY RESULTS

Page 2 of 4

Client: **AECOM Environment**

Client Sample ID: SSV 01 CAS Project ID: P1001028

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-009DUP

Test Code:

EPA TO-15

nstrument ID: -Analyst:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Wida Ang

Sampling Media:

6.0 L Summa Canister

Test Notes:

Container ID:

1,4-Dioxane

n-Heptane

Methyl Methacrylate

■ 4-Methyl-2-pentanone

cis-1,3-Dichloropropene

SC01071

Initial Pressure (psig):

-2.4

Final Pressure (psig): 3.9

Date Collected: 3/18/10

Date Received: 3/23/10

Date Analyzed: 3/30/10

0.030 Liter(s)

Canister Dilution Factor: 1.51

25

25

25

25

25

25

Volume(s) Analyzed:

Duplicate Compound Sample Result Sample Result Average % RPD RPD Data $\mu g/m^3$ $\mu g/m^3$ ppbVQualifier Vdqq $\mu g/m^3$ Limit Methyl tert-Butyl Ether ND ND ND ND 25 Vinyl Acetate ND ND ND ND 25 ND 2-Butanone (MEK) ND ND ND 25 cis-1,2-Dichloroethene 26.8 6.77 25 26.4 6.67 26.6 2 Ethyl Acetate ND ND ND ND 25 n-Hexane ND ND ND ND 25 Chloroform ND ND ND ND 25 Tetrahydrofuran (THF) ND ND ND ND 25 1,2-Dichloroethane ND ND ND ND 25 1,1,1-Trichloroethane 49.7 9.11 48.3 8.86 49 3 25 Benzene ND ND 25 ND ND Carbon Tetrachloride ND ND ND ND 25 Cyclohexane ND ND ND ND 25 1,2-Dichloropropane ND ND ND ND 25 Bromodichloromethane ND ND ND ND 25 Trichloroethene 4,350 811 4,410 820 4380 1 25

ND

_

ND

ND

ND

ND

ND

ND

VD = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
-	TO15scan.xls - NL - PageNo

2,2,4-Trimethylpentane (Isooctane)

LABORATORY DUPLICATE SUMMARY RESULTS

Page 3 of 4

Client:

AECOM Environment

Client Sample ID: SSV_01

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

CAS Project ID: P1001028

CAS Sample ID: P1001028-009DUP

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst: Sampling Media:

Wida Ang

6.0 L Summa Canister

Date Collected: 3/18/10 Date Received: 3/23/10 Date Analyzed: 3/30/10

Volume(s) Analyzed:

0.030 Liter(s)

Test Notes:

Container ID:

SC01071

Initial Pressure (psig):

-2.4

Final Pressure (psig): 3.9

Canister Dilution Factor: 1.51

	Duplicate							
Compound	Sample	Result	Sample	Result A	Average	% RPD	RPD	Data
	μg/m³	ppbV	$\mu g/m^3$	ppbV	$\mu g/m^3$		Limit	Qualifier
trans-1,3-Dichloropropene	ND	ND	ND	ND	-		25	
1,1,2-Trichloroethane	ND	ND	ND	ND	-	-	25	
Toluene	ND	ND	ND	ND	-	-	25	•
2-Hexanone	ND	ND	ND	ND	-	-	25	
Dibromochloromethane	ND	ND	ND	ND	-	-	25	
1,2-Dibromoethane	ND	ND	ND	ND	-	-	25	
n-Butyl Acetate	ND	ND	ND	ND	-	-	25	
n-Octane	ND	ND	ND	ND	-	-	25	
Tetrachloroethene	67.6	9.98	66.1	9.76	66.85	2	25	
Chlorobenzene	ND	ND	ND	ND	-	-	25	
Ethylbenzene	ND	ND	ND	ND	-	-	25	
m,p-Xylenes	ND	ND	ND	ND	-	-	25	
Bromoform	ND	ND	ND	ND	-	-	25	_
Styrene	ND	ND	ND	ND	-	-	25	
o-Xylene	NDND	ND_	ND	ND		-	25	
n-Nonane	ND	ND	ND	ND	-	-	25	_
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	-	-	25	
Cumene	ND	ND	ND	ND	-	-	25	
alpha-Pinene	ND	ND	ND	ND	-	-	25	
n-Propylbenzene	ND	ND	ND	ND		-	25	
4-Ethyltoluene	ND	ND	ND	ND	-	-	25	
1,3,5-Trimethylbenzene	ND	ND_	ND	ND			25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 4 of 4

AECOM Environment Client:

Client Sample ID: SSV 01 CAS Project ID: P1001028

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200 CAS Sample ID: P1001028-009DUP

Test Code:

EPA TO-15 Date Collected: 3/18/10 nstrument ID: Tekmar AUTOCAN/Agilent 5973 inert/6890N/MS9 Date Received: 3/23/10

Analyst: Wida Ang Date Analyzed: 3/30/10 6.0 L Summa Canister Volume(s) Analyzed: 0.030 Liter(s)

Sampling Media: Test Notes:

Container 1D: SC01071

> Final Pressure (psig): 3.9 Initial Pressure (psig): -2.4

> > D....1: - - 4 -

Canister Dilution Factor: 1.51

	Duplicate							
Compound	Sample Result		Sample Result		Average	% RPD	RPD	Data
<u> </u>	μg/m³	ppbV	$\mu g/m^3$	ppbV	μg/m³		Limit	Qualifier
1,2,4-Trimethylbenzene	ND	ND	ND	ND	-	-	25	
Benzyl Chloride	ND	ND	ND	ND	-	-	25	
1,3-Dichlorobenzene	ND	ND	ND	ND	-	-	25	
1,4-Dichlorobenzene	ND	ND	ND	ND	-	-	25	
1,2,3-Trimethylbenzene	ND	ND	ND	ND			25	
1,2-Dichlorobenzene	ND	ND	ND	ND	-	-	25	
d-Limonene	ND	ND	ND	ND	-	-	25	
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	-	-	25	
1,2,4-Trichlorobenzene	ND	ND	ND	ND	-	-	25	
Naphthalene	ND	ND	ND	ND	-	-	25	
Hexachlorobutadiene	ND	ND	ND	ND	-	-	25	
2-Methylbutane	ND	ND	ND	ND	-	-	25	
Methyl Acetate	ND	ND	ND	ND	-	-	25	
2-Methylpentane	ND	ND	ND	ND	-	-	25	
Thiophene	ND	ND	ND	ND	-	-	25	
2,3-Dimethylpentane	ND	ND	ND	ND	-	-	25	
Methylcyclohexane	ND	ND	ND	ND	-	-	25	
Indan	ND	ND	ND	ND	-	-	25	
Indene	ND	ND	ND	ND	-	-	25	
1,2,4,5-Tetramethylbenzene	ND	ND	ND.	ND		-	25	
1,2,3,4-Tetramethylbenzene	ND	ND	ND	ND	-	-	25	
1,2,3,5-Tetramethylbenzene	ND	ND	_ ND	ND		-	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Verified By:	Date:
	TO 15 scan vis - NI - Page No

RESULTS OF ANALYSIS

Page 1 of 1

Client:

AECOM Environment

CAS Project ID: P1001028

Client Project ID:

Pemart Former MGP, Peekskill, NY / 60147-130-200

Method Blank Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Wida Ang

Sampling Media:

6.0 L Summa Canister(s)

Lab File ID: 03301003.D

Date Analyzed: 3/30/10

Time Analyzed: 06:12

Test Notes:

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed		
Lab Control Sample	P100330-LCS	03301005.D	07:52		
SSV_01	P1001028-009	03301006.D	08:34		
SSV_01 (Lab Duplicate)	P1001028-009DUP	03301007.D	09:16		
IA_05	P1001028-001	03301008.D	11:06		
CS_01	P1001028-002	03301009.D	11:47		
1A_07	P1001028-003	03301010.D	12:29		
DUP_1	P1001028-004	03301011.D	13:17		
1A 06	P1001028-005	03301012.D	13:59		
IA_06 (Dilution)	P1001028-005	03301013.D	[4:4]		
IA_02	P1001028-006	03301014.D	15:23		
SSV_02	P1001028-007	03301015.D	16:04		
IA_01	P1001028-008	03301016.D	16:46		
IA 03	P1001028-011	03301019.D	19:12		
SSV_03	P1001028-010	03301022.D	21:17		

Verified By:	Date:
,	TOIS I NI D NI

RESULTS OF ANALYSIS

Page 1 of I

Client: AECOM Environment CAS Project ID: P1001028

Client Project ID: Pemart Former MGP, Peekskill, NY / 60147-130-200

Internal Standard Area and RT Summary

Test Code:

EPA TO-15

Instrument ID:

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Analyst:

Wida Ang

Lab File 1D: 03301002.D Date Analyzed: 3/30/2010

Time Analyzed: 05:31

Sampling Media:

6.0 L Summa Canister(s)

Test Notes:

		IS1 (BCM)			<u> </u>	IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	348553	12.89	1720706	15.85	716650	21.66
	Upper Limit	487974	13.22	2408988	16.18	1003310	21.99
	Lower Limit	209132	12.56	1032424	15.52	429990	21.33
	Client Sample ID						
01	Method Blank	344621	12.88	1696671	15.84	703262	21.65
02	Lab Control Sample	375156	12.90	1803801	15.85	738774	21.66
03	SSV_01	360193	12.89	1767625	15.84	729636	21.66
04	SSV_01 (Lab Duplicate)	351282	12.89	1714517	15.84	714504	21.65
05	IA_05	347691	12.88	1702630	15.84	711202	21.65
06	CS_01	347533	12.88	1720643	15.84	706433	21.66
07	IA 07	344869	12.89	1713129	15.84	713572	21.66
08	DUP_1	365242	12.88	1797300	15.84	746818	21.65
09	1A_06	340380	12.89	1647321	15.84	695146	21.65
10	IA_06 (Dilution)	337270	12.89	1644526	15.84	681934	21.65
11	IA_02	344103	12.89	1703127	15.84	709754	21.65
12	SSV_02	347034	12.89	1715603	15.84	714292	21.65
13	IA_01	345659	12.88	1694015	15.84	694924	21.65
14	IA 03	333200	12.88	1633836	15.84	679343	21.65
15	SSV_03	338872	12.89	1670177	15.84	701989	21.65
16	_						
17							
18							
19							
20							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area

AREA LOWER LIMIT = 60% of internal standard area

RT UPPER LIMIT = 0.33 minutes of internal standard RT

RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an 1.

I = Internal standard not within the speicified limits.

P1001028_TO15 (2) xls - ISS

•
-
440
-
===
=
•
•
-

_
-
•
-
-
-