

March 21, 2025 (REVISED JULY 23, 2025)

Justin Starr

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau C, 12th Floor

625 Broadway

Albany, New York 12233-7012

Attention: Justin Starr

Subject: Pre-Design Investigation Report

Irvington Rugs and Cleaners Site (Site 360175)

Work Assignment # D009809-28

Earth Environment Engineering and Geology, P.C., Project # US-EI

3616216144

Dear Mr. Starr,

Earth Environment Engineering and Geology, P.C. (EEE&G; Formerly MACTEC Engineering and Geology, PC [MACTEC]) is submitting this Pre-Design Investigation Report for the Irvington Rugs and Cleaners Site (Site) (WA Issuance D009809-28).

To help refine FS alternatives and evaluate potential remedial options (i.e., in-situ chemical oxidation and in situ bioremediation), EEE&G conducted the PDI to evaluate:

- the soil oxidant demand at the site in both the source area and background areas,
- current soil and groundwater concentrations below the basement slab at 49 Main Street,
- the ability to inject amendment into the water table below the slab of 49 Main Street, and
- the hydraulic conductivity of the overburden.

Work was conducted per the Field Activities Plan (EEEG, 2024) as described below. Locations are shown on Figure 1. Field data records for boring logs, hydraulic testing, and injection testing are included in Attachment 1. Daily Field Activity Reports are included in Attachment 2.

49 Main Street Basement Sampling.

To evaluate the contaminants of concern, and the ability to inject amendment into the identified contaminant source area, one test point (DP-18) was conducted in the basement of 49 Main Street, in the vicinity of previous sample GW-02-16 (shown on Figure 1). This location was approximately 18 feet east of the brick sump (labeled as "Dry Sump" on Figure 1) and 2 feet west of the step down from the upper height level of the basement.

Well Installation and Sampling:

- 1) Cored an approximate 6-inch hole through the concrete slab at location DP-18.
- 2) Collected one groundwater sample using tubing and a peristaltic pump from just below the slab for analysis of Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260, as well as a sample for inclusion with the Soil Oxidant Demand (SOD) test listed below.
- 3) Collected one soil sample from soil just below the basement slab (estimated at four-inches thick) for analysis of:
 - i. SOD testing in source area (shipped to Evonik for "Klozur® Soil Oxidant Demand Test);
 - ii. VOCs by USEPA Method 8260; and,
 - Gasoline Range Organics and Diesel Range Organics (GRO/DRO) by USEPA Method 8015.
- 4) Completed one soil boring (DP-18) through the cored hole to ten feet below the top of slab (refusal on assumed bedrock). Collected the following additional soil samples:
 - i. Sample from approximately 1-4 feet deep: Submitted for grainsize analysis
 - ii. Sample from 4-feet deep VOCs, DRO, and GRO as per methods above; and
 - iii. Samples from 7 and 9-feet deep VOCs.
- 5) Collected a groundwater sample from the bottom of the boring for analysis of VOCs. The sample was collected by lowering tubing to the bottom of the direct push rods and using a peristaltic pump (water recharging around bottom of rods).

Earth Environment Engineering and Geology, P.C., Project No. US-EI-3616216144

6) The bottom 7 feet of the borehole was filled with soil cuttings, then a water injection/sampling point was installed into the top of the boring to a depth of three feet below top of slab. The three-foot-long point consisted of a one-inch inside diameter PVC pipe with a two-foot screen and one foot riser. Number #0 sand was placed around the well screen to just above the well screen, and bentonite chips and then a hydraulic cement was used to seal the riser within the concrete floor. The well was finished with a six-inch flush mount casing to prevent tripping hazards.

Injection Testing:

Conducted an injection test by gravity feeding potable water into the injection point DP-18. The test was conducted by:

- 1) Mixing 450 gallons in two 275-gallon totes of potable water with approximately one ounce of Bright Dyes® yellow-green fluorescent dye. The totes were located in the back of a box-car truck outside the building.
- 2) Connecting a hose equipped with a flow meter and shut-off valve from the tank to the injection point.
- 3) Gravity feeding the water into DP-18, measuring flow rate and pressure.
- 4) Monitoring during the injection at the following locations:
 - i. The floor for potential leaks of water from hose or upwelling from beneath the slab.
 - ii. The brick sump in the basement for signs of increased water flow and dyed water* ("Dry Sump" on Figure 1) (water in this sump gravity flows to the sewer through a P-trap).
 - iii. The active sump in the basement (DW-02) for signs of dye*.
 - iv. The active sump in the basement of 53 Main Street (Irvington Rugs and Cleaners) (DW-01) for signs of dye*.
 - v. Water levels in DP-05, located in the yard outside the basement.
 - (* = Water in sumps was viewed for visible signs of dye, as well as occasionally with a fluorometer).
- 5) Upon completion of test, basement sumps/covers were resealed with joint sealant.

49 and 53 Main Street Exterior Hydraulic Conductivity Testing.

Hydraulic conductivity testing was conducted in the two microwells in the backyard of 49 Main Street, DP-04 and DP-05 (Figure 1). Testing was conducted using a pressure transducer (recording

NYSDEC - Site No. 360175

Earth Environment Engineering and Geology, P.C., Project No. US-EI-3616216144

at one second intervals) to monitor the well while pumping at multiple rates to evaluate both steady state draw down levels, as well as rebound rates post pumping (i.e., rising head test).

53 Main Street SOD Soil Sampling.

To evaluate background SOD, one soil boring (DP-02A) was completed in the vicinity of DP-02 using direct push technology. Soil cores were observed, and one soil sample was collected from approximately six to eight feet below ground surface for total oxidant demand testing by Evonik. In addition, one liter of water was purged from nearby DP-02 for inclusion in the background SOD test.

Contaminants of Concern Analytical Results.

Soil and groundwater samples (other than SOD testing) were analyzed by Eurofins. The results were reviewed by a chemist and a data usability summary report (DUSR) was completed. The data was found usable as presented in this report (The DUSR and complete results, including geotechnical results are included in Attachment 3).

VOC groundwater results from DP-18 are presented in Table 1. Results are similar to those collected previously, with PCE detected in water just below the slab at 2,590 micrograms per liter (μ g/L) (2,880 μ g/L in the duplicate sample at this location). Concentrations of PCE were an order of magnitude lower (227 μ g/L) in groundwater at 8-feet below the slab, just above apparent bedrock.

VOC soil results are presented in Table 2. Soil results were also similar to those detected previously, with concentrations of PCE detected slightly above the soil cleanup objectives (SCO) for residential use immediately below the slab (max concentration of 8.46 milligrams per kilogram [mg/kg]), and detected at low concentrations (below the SCOs for unrestricted use) at four feet and deeper.

The groundwater and soil VOC results are in line with the conceptual site model that postulates VOC contamination is primarily shallow and did not migrate deeper into the aquifer as a dense non-aqueous phase liquid.

DRO, likely from a historic fuel oil release, were also detected in soil immediately below the slab at a concentration of 366 mg/kg, with lower concentrations of 33.1 mg/kg detected at 4-feet below the slab. Although not a concern from a regulatory perspective, the presence of DRO will increase the

 $report.hw. 360175.2025\hbox{--}3-21. Irvington_PDI_Final$

NYSDEC - Site No. 360175

Earth Environment Engineering and Geology, P.C., Project No. US-EI-3616216144

required quantity of an oxidant if it is chosen for a remedy, and these concentrations can be used for dosing calculations.

SOD Results.

One of the potential remedies being considered is injection of a chemical oxidant into the saturated overburden to oxidize the contaminants. Because introduced oxidants will not just target the contaminants of concern, but will also be consumed to oxidize naturally occurring organic species such as soil organics and reduced metals, it is necessary to determine the background SOD. Most oxidant is typically consumed by the natural SOD, and therefore it is necessary to evaluate the background SOD to properly calculate the oxidant needed to overcome the SOD and the contaminants of concern. In addition, if the SOD is high, in-situ chemical oxidation may not be an applicable remedy due to both the extra cost and the difficulty in overcoming the natural SOD.

Due to the contaminant type and the need to inject below a residential building, an alkaline activated persulfate was deemed an applicable oxidant for this site. Therefore, samples were analyzed by Evonik using their Klozur® activated persulfate, which is an alkaline activated persulfate. The SOD test is referred to as Klozur® Demand Test, or KDT. Testing was also conducted for base buffering capacity (BBC) to evaluate the amount of sodium hydroxide (NaOH) necessary to increase the soil pH to 10.5, which is necessary for the Klozur® activation.

Samples were analyzed from a background location (DP-02A) and a source area location (DP-18). The background KDT test indicated a demand of 0.61 grams sodium persulfate per kilogram of dry soil after 48 hours and 1.29 grams of sodium persulfate per kilogram of dry soil after 168 hours (7 days) and a BBC of 0.93 grams 25 percent NaOH per kilogram of dry soil. As would be expected the KTD for the source area sample was higher (primarily due to the presence of the DRO). The complete Evonik results are included in Attachment 4.

These results are in the low oxidant demand range, indicating that the use of persulfate would be viable at the Site.

report.hw.360175.2025-3-21.Irvington PDI Final

Earth Environment Engineering and Geology, P.C., Project No. US-EI-3616216144

Hydraulic Conductivity Results

Pressure transducer data from DP-02 and DP-05 were uploaded into Aqtesolv, an advanced aquifer test analysis software, for calculation of hydraulic conductivity (K). The rising head tests from the groundwater rebound post pumping were evaluated using Bouwer and Rice and Hvorslev solutions to obtain K values. In addition, the pumping data from DP-02 was evaluated in Aqtesolv using the Cooper-Jacobs and Theis solutions to estimate a transmissivity for the aquifer. The abbreviated pumping test was also analyzed as a two-step drawdown test to evaluate transmissivity using Driscoll equations (Driscoll, 1986). Aqtesolv outputs and hydraulic gradient calculations are included in Attachment 5.

K estimates from Aqtesolv and resulting flow velocities are presented in Table 3 and estimated transmissivity, as well as additional flow velocities are presented in Table 4. Hydraulic conductivity values for DP-02 ranged from 1.2 to 2.8 feet per day, resulting in a flow velocity of approximately 170 to 310 feet per year assuming an effective porosity of 0.2 and a hydraulic gradient of 0.623 feet per foot. Values were lower for DP-05, screened slightly lower than DP-02, with K values ranging from 0.3 to 0.4 feet/day and resulting flow velocities of 40 to 50 feet per year, using the same effective porosity and hydraulic gradient assumptions above. Hydraulic gradient calculations are included in Attachment 5. Transmissivity values for DP-02 ranged from 16.34 to 45 ft squared per day, depending on calculation method used.

Although the saturated overburden consists of primarily sand and gravel (sieve analysis from DP-18 included in Attachment 3 indicated 32.7% gravel and 67.3 % mixed sand), the hydraulic data collected indicates there is some heterogeneity in the formation resulting in variability in hydraulic conductivity across the Site.

Injection Testing

Water was initially injected by gravity feed into DP-18 with flow valves fully open from a water tote located in a box truck on North Dutcher Street. Water flow was approximately 4-gallons per minute (gpm). After approximately 100 gallons had been injected, slight water seepage was observed around cracks in the floor at 49 Main Street and the flow valves were closed. Injections were restarted with valves slightly closed for a flow rate of 2 gpm. The gravity flow rate slowly decreased, possibly from air bubbles in the flow lines and injections were continued at 2 gpm with a pump and a maximum

pressure of 6 pounds per square inch. No additional water breakout was observed in the basement floor. A total of 423 gallons of water were successfully injected into DP-18.

Other observations during injections:

- No observable change in flow (slight trickle before and during injections) into the brick sump, located approximately 18 feet west of DP-18; however, the fluorometer appeared to indicate a slight detection of dye (1.2 parts per billion [ppb]) after 300 gallons had been injected. This is in comparison to 15.1 ppb for the dyed injection water and -0.3 ppb for undyed water. Dye was slightly visible after 365 gallons had been injected (fluorometer reading of 1.9 ppb).
- The active sump DW-02, located approximately 23 feet north (cross gradient) of DP-18, was observed to be pumping intermittently, at a rate comparable to 0.2 gallons per minute, or 7 gallons per hour. Dye was not detected with the fluorometer in DW-02 during the injection test.
- The sump DW-01, located approximately 35 feet east of DP-18 in the basement of 53 Main Street, was not observed to be pumping during the injection test. Dye was also not detected with the fluorometer in DW-01 during the injection test.
- Stormwater catch basins at corner of North Dutcher and Main Street were observed for
 evidence of increased flow or tracer dye; no evidence of water flow or dye were observed
 during the injection test; however, storm drains were approximately six feet deep and
 anticipated to be above the water table.

Conclusions

Key findings of the pre-design investigations include:

- Soil and groundwater Analytical results from below the basement slab of 49 Main Street are
 consistent with the conceptual site model that contamination is primarily in shallow
 overburden and it does not appear that it has migrated deeper down through the overburden
 to bedrock as a DNAPL (highest concentrations of PCE in soil and groundwater were
 detected just below the basement slab at 8.46 mg/kg and 2,880 μg/L (in duplicate sample),
 respectively.
- DRO was also present in shallow sub-slab soil at a maximum concentration of 366 mg/kg.
- The SOD test results for Klozur® by Evonic (KDT) indicated a background demand of 1.29 grams of sodium persulfate per kilogram of dry soil after 7 days and a BBC of 0.93 grams 25 percent NaOH per kilogram of dry soil. These results indicate that the background soil

NYSDEC – Site No. 360175

Earth Environment Engineering and Geology, P.C., Project No. US-EI-3616216144

demand for sodium persulfate is in a low range and that sodium persulfate could be a viable remedial alternative at the Site.

- Hydraulic testing indicated:
 - K values for DP-02 ranged from 1.2 to 2.8 feet per day, resulting in a flow velocity of approximately 170 to 310 feet per year.
 - o K values for DP-05, closer to the source area, ranging from 0.3 to 0.4 feet/day and resulting flow velocities of 40 to 50 feet per year.
 - o Transmissivity values for DP-02 ranged from 16.34 to 45 feet squared per day.
 - Although overburden is primarily sand and gravel, heterogeneity results in variable K values.
- Water can successfully be injected into the overburden below the basement slab at a flow rate of 2 gpm; 427 gallons was injected into DP-18. Due to observations of dye 18 feet away and assumed porosity of 0.2, this injection could have resulted in displacement of groundwater over an approximate area three feet deep, by five feet wide, by 18 feet long.

Please let us know if you have any questions or need any additional information.

Sincerely,

Earth Environment Engineering and Geology, P.C.

Jamie Welch

Project Engineer

Camie Welch

Charles Staples, P.G.

Charles R Staples

Project Manager

Enclosures (13):

Table 1 – Groundwater VOC Results

Table 2 – Soil VOC Results

Table 3 – Hydraulic Conductivity

Table 4 – Hydraulic Transmissivity Calculations

Figure 1 – Sampling Locations

Earth Environment Engineering and Geology, P.C., Project No. US-EI-3616216144

Attachment 1A – FDR Field Boring-Well Log (DP-18)

Attachment 1B – FDR Field Boring Log (DP-02A)

Attachment 1C – FDR Injection Test FDR (DP-18)

Attachment 2 – Daily Inspection Reports

Attachment 3A – Data Usability Summary Report (DUSR) & Analytical Data

Attachment 3B – Geotechnical Data

Attachment 4 – EVONIK Report

Attachment 5 – Aqutesolv Solutions

References:

Driscoll, F.G., 1986, Groundwater and Wells, Second Edition, Published by Johnson Filtration Systems Inc.

Earth Environment Engineering and Geology, PC (EEEG), 2024. Remedial Investigation Field Activities Plan Addendum Four for the Irvington Rugs and Cleaners Site. August 16, 2024.

TABLES

Table 1: Groundwater VOC Results

		Location	DF	P-18	D	P-18	DF	P-18
	Field Sa	ample Date	8/20	8/20/2024		8/20/2024		/2024
	Field	l Sample ID	360175-DP	360175-DP018001-GW		360175-DP018001D-GW		DP018008
	De	Depth (ft tos)		1		1		8
		Qc Code		FS		FD	1	FS
Parameter	GA	GV	Result	Qualifier	Qualifier Result Qualifier		Result	Qualifier
VOCs (ug/L)								
2-Butanone	NS	50	2	U	2	UJ	1.88 J	
Acetone	NS	50	10	U	10 UJ		14.9	
cis-1,2-Dichloroethene	5	NS	22.9		11.6		5.78	
Ethanol	NS	NS	200	U	200	UJ	14	J
Naphthalene	NS	10	2	U	2	UJ	0.874	J
Tetrachloroethene	5	NS	2590		2880		227	
trans-1,2-Dichloroethene	5	NS	0.265 J		1 U		1 U	
Trichloroethene	5	NS	59.6		31		10.9	

Notes:

Results reported in micrograms per liter (µg/L)

VOCs = Volatile Organic Compounds

Samples analyzed by EPA Method SW8260B

Only detected compounds shown

Bold = Compound detected in sample

ft tos = feet below top of slab

QC Code: FS = Field Sample; FD = Field Duplicate

Qualifiers:

U = Not detected greater than the reporting limit

J = Estimated value

GA = Class GA Groundwater Standard

GV = Groundwater Guidance Value

NS = No Standard/Guidance

Highlighted results exceed GA Standard

EEEG, P.C., Project No. 3616216144

Table 2: Soil VOC Results

		I	ocation	DP-	-18	DP	-18	DF	P-18	DF	P-18	D	P-18
		Samı	ole Date	8/20/2	2024	8/20/2024		8/20	/2024	8/20	/2024	8/20	0/2024
	F	ield Sai	mple ID	360175-DP0	360175-DP018001-Soil		360175-DP018001D-Soil		360175-DP018004		360175-DP018007		DP018009
	Sample	Depth	(ft btos)	1	1		1		4	7		9	
	_	QC Code		F	FS		D	F	S	F	FS]	FS
	PGW	RES	COM	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Volatile Orgainic Compounds (mg/Kg)								-					
1,3,5-Trichlorobenzene	8.4	47	190	0.0628	U	0.0573	U	0.044	U	0.0437	U	0.0105	5 J
Bromomethane	NS	NS	NS	0.0588	J	0.115	U	0.0341	J	0.0362	J-	0.0352	2 J
cis-1,2-Dichloroethene	0.25	59	500	0.98		0.784		0.044	U	0.0437	U	0.0419) U
Hexachlorobutadiene	NS	NS	NS	0.0628	U	0.0573	U	0.044	U	0.0437	U	0.0327	7 J
Naphthalene	12	100	500	0.126	UJ	0.115	U	0.088	UJ	0.0874	UJ	0.021	IJ
Tetrachloroethene	1.3	5.5	150	8.46		5.87		0.166		0.0495	U	0.202	2
Trichloroethene	0.47	10	200	1.54	J	0.457	J	0.00824	J	0.0437	U	0.0419) U
Other (mg/Kg)													
Diesel Range Organics	NS	NS	NS	366		NA		33.1		NA		NA	1
Gasoline Range Organics	NS	NS	NS	5	U	NA		5	U	NA		NA	Λ
Percent Solids (Percent)	NS	NS	NS	78.3		77.4		90.8		91.5		90)

Notes:

mg/Kg = milligrams per kilogram

FS = field sample, FD = field duplicate

Part 375 Soil Cleanup Objectives (SCO):

PGW = New York State Protection of Ground Water Standards

RES = New York State Residential Use Standards

COM = New York State Commercial Use Standards

NS = No Standard

Bold result indicates detection

Colored result indicates exceedence of matching SCO.

Qualifier: U = not detected; J = estimated value

Table 3: Hydraulic Conductivity

		Hydrau	lic Conductiv	vity from Aqtesolv		K values		
Well ID	Test Name					Geometric mean	-	(0.1
		(cm/sec)	(cm/sec)	(ft/day)	(ft/day)	(ft/day)	(ft/day)	v (ft/year)
DP-02	RHT #1	4.2E-04	6.1E-04	1.2	1.7	1.5	0.46	170
	RHT #2	4.4E-04	6.4E-04	1.3	1.8			
DP-05	RHT #1	1.2E-04	1.5E-04	0.3	0.4	0.4	0.12	40

Notes:

K=horizontal hydraulic conductivity L/T

FHT = Falling Head Test

K=Hydraulic Conductivity

RHT = Rising Head Test

Q=steady state flow rate (L^3/T)

D=casing diameter

L=screen length

H=steady state drawdown

v=velocity

i=hydraulic gradient (assumed 0.62 - see next page)

n_e=effective porosity (assumed 0.2)

Created by: CRS 10/21/24

Checked by: RO 10/23/24

Table 4: Hydraulic Transmissivity Calculations

Well	Start Depth		Drawdown		Rate	Specific Capacity (gal/min/ft)	Transmissivity	Conductivity	Hydraulic Conductivity (cm/sec)	Calculated Velocity (ft/day)	Calculated Velocity (ft/year)
DP-2	4.29	4.92	0.63	0.5	0.13	0.21	310	2.8	9.7E-04	0.86	310
DP-Z	4.29	5.44	1.15	0.85	0.22	0.20	290	2.6	9.1E-04	0.80	290
DP-5	7.15	10.25	3.1	0.4	0.11	0.03	50	0.4	1.6E-04	0.14	50

Notes:

ft = feet

bgs = below ground surface

L = liters

min = minutes

gal = gallons

gpd = gallons per day

Flow Rate = Ki/n; i = gradient and n = porosity

i (gradient) = 0.062 ft/ft

 $n ext{ (porosity)} = 0.2$

Other Agtesoly Transmissivity Calculations:

Transmissivity from Single well Pump Test at DP-02 using Cooper Jacob = 16.34 ft^2 per day

Transmissivity from Single well Pump Test at DP-02 using Theis = 45 ft² per day

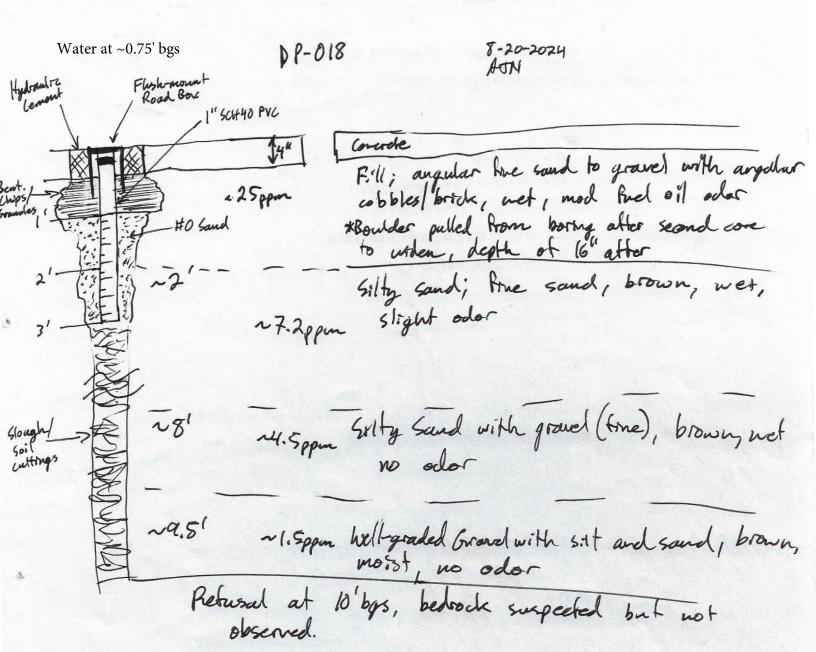

Well	Transmissivity (ft^2/day)	Transmissivity	Conductivity			Calculated Velocity (ft/year)
DP-2	16	122	1.1	3.8E-04	0.34	120
Dr -2	45	337	3.0	1.1E-03	0.93	340

Note: Hydraulic conductivity and flow velocities here are calculated here from the Aqtesolv transmissivity as a check against the hydraulic conductivites in Tables 3 and 4.

^{*} Transmissivity (T) for unconfined aquifer assumes specific capacity times 1500 (Driscoll, 1986)

^{**} Hydraulic conductivity (K) = T/aquifer thickness (assumed 15 ft)

FIGURES



ATTACHMENT 1 FIELD DATA RECORDS

Attachment 1A - FDR Field Boring-Well Log (DP-18)

Attachment 1B - FDR Field Boring Log (DP-02A)

Attachment 1C - DR Injection Test FDR (DP-18)

Mephalt

1.0.0 ppm

Fill, vor. colors (blown, gray, brick red); Williamled gravel with silf/sand, trace coal fragments, cloth debar's at "2", brick material at N25", moith.

3-6' 0.0 ppm 13' - Silfy gravel with sand (F:11?), brown, anywhat gravel/fragments.

15'- Silfy sand, greewish brown, fine sand, moist

6-8'

Target depth addressed

A.M.

Totalizer Reading (gai)	8-21-2024 Time	Injection Pressure (pounds per square inch)	Injection Flow Rate (gallons per minute)	Cumilitive Flow (gallons)			Injection Testing Observations		bservations	DW-01 Ob	servations	Notes/Observations
935957	1135	<	4.5	THE PERSON DESCRIPTION OF THE PARTY.	Slight		same as prior bash	Nonna	cryching/no i	conse No	ols. aydry	No obs. flow into stans drains
936058	1220	<u>در</u> ج(0.0	Perfort	d bu	t no	1110	aw, 460	il don to	leshooting	tt .	No obs. flow into stoom drains slow leaks als in cracks at 49
1	Used Su	mp pun			ates	throng	gh hose, no	debris	ent 6t3	of air	- flown	g Greely after
936101	1325	<(1.8	144	Slight br	idele/40	change	Cyclingino	observed increased	se No	bs. cycling	No flow obs. at storm drains
936129	1400	۱۱		172		(r	F= 0.135	11	F=-1.410		F=-1.136	
136205	1420	41	2,0	209		ti Ii	F=0.629	je li	F=-0.629 F=-0.895	11	F=-1.127	li .
36237	1920	۷. < (0.8	280		tr	F=0.273	11	F=-0.323	14	F=-	16
36260	1520 La Lew	How rate	noted.	303		-(F= 1.212) (F=-1.328	11	F=-0.764	10
		5.0 Etal.	feed - "	o ilmon	remo	dear of	suthis no	had	「日本の日本の日本の日本の日本である。」		tor som	cool painty and then
36266	1530 Start	5.01 Etal.	2.0	309			1 00 .					
136322	1600	5.5	2.0	active 1	due	scholle	2.0 gpm ville F=1.864 F=2.483 F=2.562	lada a la son	malF3-(24)	No cools o	F:	No flow at storm downs
936384	1615	6.0	0.0	398	201	0,0	F=2.433	" " "	F=-1.343	4.	F=-1.533	
	TOTAL		JECT ED	427 6	ALLO	NS -	" F=2,562	.	IF=-1.501	i.	F=-1.426	(Control of the Control of the Contr
3 [
F							A.M.					
						9-21	2024					
3 F						8-21						
F												
										2 - X		

· No observed pump cycles at DW-01; however, constant trickle into surnp from boiler room andensation and constant noise made observation difficult.

* Dw-02 rump pump cycling once every ~12.5 min (pumps for ~3sec), drowing water from 8.5 "level to 4.5" level.

4.2 Injection FDR Dw-02 sump diam = 11.5", average pump diam = 5" Page 1 of 2

ATTACHMENT 2

DAILY INSPECTION REPORTS

Report No. 01 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/19/2024

NYSDEC Division of Environme			OPPORTUNITY	Departm Environn Conserva	nental ation	Contract DEC PM – Consultan	Just	in Starr			
		Condition		Consultant Site Inspector – Adam Norvelle							
General Description	Mostly Cloud		Partly Clou	ıdv	РМ	Adam Nor	vene				
Temperature	67°F	AM	82°F		PM						
Wind	WNW 6 MPH		WNW 7 MI	PH	PM						
Health & Safety If any box below is	checked "Yes	", provide	explanation u	nder "He	ealth &	Safety Co	omm	nents".			
Were there any changes to the Health & Safety Plan? Yes □ No ☒ NA □											
Were there any exceeds	ances of the peri	meter air mo	onitoring reported	on this d	ate?	Yes 🗆		No 🗆	NA 🗵		
Were there any nuisano	e issues reporte	d/observed	on this date?			Yes □		No ⊠	NA 🗆		
Health & Safety Con	nments										
Reviewed Health and S	afety Plan and Jo	ob Hazard A	Analysis with all or	n-site pers	sonnel.						
Summary of Work P	erformed	Arrived a	t site:	1015	De	parted Sit	e:	1600			
PDI drilling and Coordinated pa Completed PD Equipment/Material If any box below is of	PDI drilling and injection work starting tomorrow. Coordinated parking with Police Department for LaBella trucks/trailer arriving tomorrow.										
Were there any vehicles				-		Yes □		No □	NA ⊠		
Were there any vehicles	s which were not	decontamin	nated prior to exiting	ng the wo	rk site?	Yes □		No 🗆	NA 🗵		
Personnel and Equi	pment			1							
Individual		Co	ompany			/ Role					
Adam Norvell Tyler Badge			<u>EEEG</u> EEEG			ogist ogist					
Equipment Descr		<u> </u>	Contractor/Ve	ndor	0001	Quan	tity	U	sed		
Geotech Geopu	ımp		EEEG/Eco-Re			1			'es		
Heron Water Level In-Situ Transdu			EEEG/Eco-Re			1 1			<u>'es</u> 'es		
MiniRAE 3000		_	EEEG/Eco-Re	ntal		1			'es		
Material Description	Imported/D elivered to Site	Exported off Site	Waste Profile Waste Profile (If Applicable	e s	Source or Disposal Daily Weight (tons)*						
		In	vestigation Tracki	ing							
Activity		Total T	his Workday			Total	To D	ate			
Visitors to Site											
Name			Representi	ng		Entere	d Exc	clusion/C	RZ Zone		
						Yes □	No	D			

Report No. 01 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/19/2024

		Γ			٦
				Yes	No □
Site Re	presentatives				
Name			Representing		
Projec	t Schedule Comments				
>	None.				
Issues	Pending/Site Comments				
>	Access to 53 Main St. baseme interaction).	ent pending owner notificati	on request (see	notes bel	ow for property owner
Interac	ction with Public, Property O	wners, Media, etc.			
A A A A	Contacted property management lower door will be provided 8/19 Contacted Village of Irvington Potrucks/trailer; four spaces market Informed employees at rear of 5 Talked to employee at front destowner indicated she was unawat NYSDEC; owner request passections.	through 8/22. blice Department to request sp d/reserved for 8/20 through 8/ 3 Main St building about ongo k for Irvington Rugs and Clean re of planned work and reques	pecial parking ord 22 next to 49 Mai ing work in parkir ers and was put o	er to accor in St. buildi ng/alley are on phone v	mmodate LaBella ing on N. Dutcher St. ea. vith owner (Lisa Kim);

Site Inspector(s): Adam Norvelle	Date: 8/19/24
. , ,	

Report No. 01 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/19/2024

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: None.		

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
3.	Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
4.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
5.	Does the Department and its contractors have your permission to enter the property currently?	Yes ⊠	No □
If Yes to	If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone, or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.	Yes □	No □
Comme None.	ents <u>:</u>		

Report No. 01 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/19/2024

On-Site Waste Storage

Drums, roll offs and piles are staged in secure areas?	Yes □	No □	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No □	N/A⊠
Containers are in good condition or properly overpacked?	Yes □	No □	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No □	N/A⊠
Complying with RCRA 90-day storage limitation for hazardous waste?	Yes □	No □	N/A⊠
Piles are securely covered when not in use?	Yes □	No □	N/A⊠
Containers are closed when not in use.	Yes □	No □	N/A⊠
Staging areas should be inspected periodically, and any issues addressed immediately?	Yes □	No □	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes □	No □	N/A⊠
If any issues noted, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: None.	•	•	•

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No □	N/A⊠
Was noise outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No □	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Was turbidity checked at the outfall(s)?	AM □	РМ□	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No ⊠	N/A□
Was the temporary fabric structure closed at the end of the day?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No □	N/A⊠
If yes, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: None.			

Report No. 01 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/19/2024

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No □	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes ⊠	No □	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes ⊠	No □	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes ⊠	No □	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes □	No □	N/A⊠
Is work being sequenced to avoid double handling?	Yes □	No □	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No ⊠	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No □	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes ⊠	No □	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No □	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No □	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No ⊠	N/A⊠
Comments: None.			

^{*} BART – Best Available Retrofit Technology

Report No. 01 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/19/2024

Site Photographs (Descriptions Below) Hydraulic testing and level datalogging in progress at DP-02.

Report No. 02 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/20/2024

NYSDEC Division of Environme Site Location: Village			OPPORTUNITY E	epartm nvironn onserva	nental ation	al people in the state			
Weather Conditions Consultant Site Inspector – Adam Norvelle							ector –		
General Description	Mostly Cloud		Mostly Cloud	dv	РМ	Adam Norvene			
Temperature	62°F	AM	70°F	,	PM				
Wind	NW 12 MPI		N 15 MPH		PM				
Health & Safety If any box below is checked "Yes", provide explanation under "Health & Safety Comments".									
Were there any changes				<u></u>	<u> </u>		s 🗆	No ⊠	NA □
Were there any exceeda				on this d	ate?	Ye	s \square	No □	NA ⊠
Were there any nuisance						Ye	s 🗆	No ⊠	NA □
Health & Safety Com	•								
Reviewed Health and Sa		Job Hazard A	nalysis with all on	site per	sonnel; t	ailgat	e meeti	ng with dr	illing crew.
Summary of Work Pe	erformed	Arrived a	t site:	0715	De	parte	d Site:	1600)
Work Performed Today:		<u> </u>		<u>.</u>				<u> </u>	
 injection/test point DP-18 with 1-inch PVC screen set at 1-3 feet below slab and flush-mount road box sealed to slab with hydraulic cement. Collected soil samples from DP-18 for analysis of VOCs at depths of 1, 4, 7, and 9 feet below slab. Collected soil samples from DP-18 for analysis of GRO/DRO at depths of 1 and 4 feet below slab. Collected soil sample from DP-18 for analysis of grain size at depths of 1 to 4 feet (composite) below slab. Collected grab groundwater samples from DP-18 for analysis of VOCs at depths of 1 and 8 feet below slab. Collected soil (from a depth of 1 to 4 feet) and groundwater (from a depth of 1 foot) for SOD testing by Evonik. 									
Equipment/Material If any box below is c		", provide	explanation und	der "Ma	terial 1	Γrack	ing Co	omments	s".
Were there any vehicles	which did not o	display prope	r D.O.T numbers a	and place	ards?	Ye	s 🗵	No □	NA □
Were there any vehicles		•					s 🗆	No □	NA ⊠
Were there any vehicles		t decontamin	ated prior to exitin	g the wo	rk site?	Ye	s 🗆	No 🗆	NA ⊠
Personnel and Equip	ment							•	
Individual			ompany		Trade		1		
Adam Norvelle Tyler Badger			EEEG EEEG			ogist ogist			
Mike Dayette			aBella			ller			
Jeff Morgan		L	aBella		Dri	ller			
Equipment Descri	•		Contractor/Ven				Quantit	y	Used
Geotech Geopui Heron Water Level			EEEG/Eco-Ren				<u>1</u> 1		Yes Yes
In-Situ Level Trans							No		
PPBRae PID			EEEG/Eco-Rer	tal			1		Yes
Geoprobe 420I Injection Equipm			<u>LaBella</u> LaBella				<u>1</u> 1		Yes No
injeduon Equipm	CIII.	Da	ily Material Summa	iry		L	<u> </u>	<u> </u>	INO
Material Description	Imported/D elivered to Site	Exported off Site	Waste Profile (If Applicable)	s	Source or cility (If A			Daily Loads	Daily Weight (tons)*

Report No. 02 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/20/2024

Investigation Tracking								
	Activity		Total This Workday		Total To Date			
Visitors	s to Site							
	Name		Representing	9		Entered	Exclusion/CRZ Zone	
						Yes □	No □	
						Yes □	No □	
Site Rep	presentatives							
Name	Rep				presenting			
Justin St	arr			NYSDEC				
Project	Schedule Comments							
>	None.							
Issues	Pending/Site Commer	nts						
Justin Starr (NYSDEC) spoke with property owner of Irvington Rugs and Cleaners and confirmed that access will be provided to the basement during injection testing scheduled for tomorrow.								
Interaction with Public, Property Owners, Media, etc.								
	 Contacted Village of Irvington Police Department, at start of workday, for assistance clearing parked vehicles from special parking area. 							

Site Inspector(s): Adam Norvelle	Date: 8/20/24
----------------------------------	---------------

Report No. 02 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/20/2024

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: None.		

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
3.	Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
4.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
5.	Does the Department and its contractors have your permission to enter the property currently?	Yes ⊠	No □
If Yes to	If it is not critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone, or conduct service without entry. If it is critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.	Yes □	No 🗆
Comme None.	nts:		

Report No. 02 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/20/2024

On-Site Waste Storage

Drums, roll offs and piles are staged in secure areas?	Yes □	No □	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No □	N/A⊠
Containers are in good condition or properly overpacked?	Yes □	No □	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No □	N/A⊠
Complying with RCRA 90-day storage limitation for hazardous waste?	Yes □	No □	N/A⊠
Piles are securely covered when not in use?	Yes □	No □	N/A⊠
Containers are closed when not in use.	Yes □	No □	N/A⊠
Staging areas should be inspected periodically, and any issues addressed immediately?	Yes □	No □	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes □	No □	N/A⊠
If any issues noted, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: None.			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No □	N/A⊠
Was noise outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No □	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Was turbidity checked at the outfall(s)?	AM □	РМ□	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No ⊠	N/A□
Was the temporary fabric structure closed at the end of the day?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No □	N/A⊠
If yes, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: None.			

Report No. 02 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/20/2024

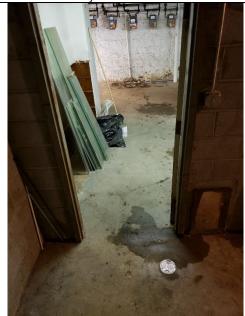
RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No □	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes ⊠	No □	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes ⊠	No □	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes ⊠	No □	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes □	No □	N/A⊠
Is work being sequenced to avoid double handling?	Yes □	No □	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No ⊠	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No □	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes ⊠	No □	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No □	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No □	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No ⊠	N/A⊠
Comments: None.			

^{*} BART – Best Available Retrofit Technology

Report No. 02 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/20/2024

Site Photographs (Descriptions Below)


Boulder removed from approximately 1 foot below the slab after concrete coring at DP-18.

DP-18 riser with plug inside flush-mount road box sealed with hydraulic cement.

Completed DP-18 flush-mount road box with cover.

Completed injection point DP-18 located between step down and lower doorway in basement at 49 Main St.

Report No. 03 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/21/2024

					1				
NYSDEC Division of Environmental Remediation		on E	STATE OF OPPORTUNITY Environmental		Contract No. D009809-28 DEC PM – Justin Starr				
Site Location: Village of Irvington, New York Consultant PM – Chuck Staples								•	
	Weather	Condition				Consultant Si Adam Norvell		or –	
General Description	Fair	AM	Mostly Cloudy/l Rain	₋ight	PM				
Temperature	56°F	AM	70°F		PM				
Wind Health & Safety	NW 10 MPH	AM	WNW 14 MP	Н	PM				
If any box below is	checked "Yes"	', provide	explanation un	der "He	ealth &	Safety Comi	ments".		
Were there any change	s to the Health &	Safety Plan	1?			Yes □	No ⊠	NA □	
Were there any exceed	ances of the perin	neter air mo	onitoring reported o	n this da	ate?	Yes □	No □	NA ⊠	
Were there any nuisano	•	l/observed	on this date?			Yes □	No ⊠	NA 🗆	
Health & Safety Cor	nments								
Tailgate meeting with d	rilling crew.								
Summary of Work P	erformed	Arrived at	t site:	0715	De	eparted Site:	1800		
soil (from a de Setup for inject Preparential Install Ran graces Remore and fl Completed inject conditions/chate condit	il boring DP-02A, a pth of 6 to 8 feet) tion testing at DP- ared injection test e of Bright Dyes Folled ball-valve, flow garden hose from the second sump cover to be second of 427 gallourescence measured in the second flowing at the second flowing at the second flow reduced to 2 gity feed slows to be apped in hose preflow reduced to 2 gity feed slows to be apped to clear line that to injection via a second dispersion of the second flow and not the second flow and not resealed sump coordinates.	and ground 1-18: water with Fluorescent w meter, an LaBella boo ment in buil from DW-02 surements. ons of test w 4 to 4.5 gpt lain St. evented rest gpm via bal ess than 0.5 with pump active pump (brick sum ease in flow observed ir readings) w sin at cornel o dye were over at DW- nt was need	ely 5 feet NNE of Edwater (from adjace approximately 500 FLT Yellow/Green of pressure gauge ax truck (parked on Iding wall at ground 2 and removed drawater into DP-18 over at start of test; so that of gravity feed; Il valve; no leaking 5 gpm with valve fur but no improvement of many and DW-02) and of was observed at an DW-01 and DW-04 as detected in the profound of the start of test; so that of the start of gravity feed; and DW-02 and the profound of the start of Main St and N. observed in the start of the	gallons tracing of at water N. Dutcher appropriate to be additionally of the brick surplements o	potable dye. tank eff her St.) hibly at the eximatel fiter 25 mp to construct after appred in ground hour st. (DV eximatel and and fobserved for catch lant and fobserved for served for se	for SOD testing water (2 x 275- fluent. to DP-18 wellhed brick sump to all by 5 hours with the minutes due to all lear line and read at 2 gpm. broximately 2.5 ravity feed flow ur. W-01) for incread s; fluorescence on of the injection was visually observed and during the distance of transactions during invations during in	ead through low for obsethe following leaks obsethe following leaks obsethe following leaks obsethe following started graves of hours at 20 rate. The session flow was not decon test; increase in flow the servable at the contract of the co	s) and ¾- n conduit ervations g rved in vity feed ggpm; and etected reasing t the end nd est. embly at	
If any box below is		, provide	explanation und	ler "Ma	terial 7	Fracking Con	nments".		

Yes ⊠

Yes □

No □

No □

 $NA \square$

 $NA \boxtimes$

Were there any vehicles which did not display proper D.O.T numbers and placards?

Were there any vehicles which were not tarped?

Report No. 03 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/21/2024

Were there any vehicles w	hich were no	t decontamina	ated prior to exiting	the work site?	Υ	es 🗆	No □	NA 🗵		
Personnel and Equipment										
Individual		Co	mpany	Trade	/ Ro	le				
Adam Norvelle			EEG		logist					
Mike Dayette			aBella		iller					
Jeff Morgan	ion	La	aBella Contractor/Vend		iller	Quantit	h,	Used		
Equipment Descript Geotech Geopump			EEEG/Eco-Ren			Quantit	ıy	Yes		
Heron Water Level Me			EEEG/Eco-Ren			1		Yes		
In-Situ Level Transdu			EEEG/Eco-Rent			1		No		
PPBRae PID			EEEG/Eco-Ren	al		1		Yes		
Geoprobe 420M			LaBella			1		Yes		
Injection Equipmen			LaBella			1		Yes		
AquaFlour Flourome	ter	D-1	EEEG/Pine			11		Yes		
	ſ		ily Material Summa	ry						
Material Description	Imported/D elivered to Site	Exported off Site	Waste Profile (If Applicable)	Source o Facility (If			Daily Loads	Daily Weight (tons)*		
		Inv	vestigation Trackin	g						
Activity		Total Th	is Workday			Total T	o Date	Date		
Visitors to Site										
Name			Representing	9	l	Entered	Exclusion	/CRZ Zone		
Yes			es 🗆 No 🗆							
					Υ	es 🗆	No □			
Site Representatives										
Name				Representing	l					
					<u> </u>					
Project Schedule Com	ments									
None.										
Issues Pending/Site C	omments									
> None.										
Interaction with Public	, Property	Owners, Me	edia, etc.							
 Contacted Village of Irvington Police Department, at start of workday, for assistance clearing parked vehicles from special parking area; unable to find owner for one vehicle but LaBella able to park truck/trailer along Main St and enough parking available on N. Dutcher St. for box truck with injection equipment. Informed property management at 49 Main St. (Andy Lamberti), at end of workday, that work is complete and basement door is locked. Informed employee at front desk for Irvington Rugs and Cleaners, at end of workday, that work is complete and basement access is no longer required. Contacted Village of Irvington Police Department, at end of workday, to notify that work is complete and special parking order is not needed for tomorrow. 										

Site Inspector(s): Adam Norvelle	Date: 8/21/24
----------------------------------	---------------

Report No. 03 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/21/2024

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: None.		

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
3.	Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
4.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
5.	Does the Department and its contractors have your permission to enter the property currently?	Yes ⊠	No □
If Yes to	If it is not critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone, or conduct service without entry. If it is critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.	Yes □	No □
Comme None.	ents:		

Report No. 03 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/21/2024

On-Site Waste Storage

Drums, roll offs and piles are staged in secure areas?	Yes □	No □	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No □	N/A⊠
Containers are in good condition or properly overpacked?	Yes □	No □	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No □	N/A⊠
Complying with RCRA 90-day storage limitation for hazardous waste?	Yes □	No □	N/A⊠
Piles are securely covered when not in use?	Yes □	No □	N/A⊠
Containers are closed when not in use.	Yes □	No □	N/A⊠
Staging areas should be inspected periodically, and any issues addressed immediately?	Yes □	No □	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes □	No □	N/A⊠
If any issues noted, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: None.	•	•	•

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No □	N/A⊠
Was noise outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No □	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Was turbidity checked at the outfall(s)?	AM □	РМ□	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No ⊠	N/A□
Was the temporary fabric structure closed at the end of the day?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No □	N/A⊠
If yes, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: None.			

Report No. 03 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/21/2024

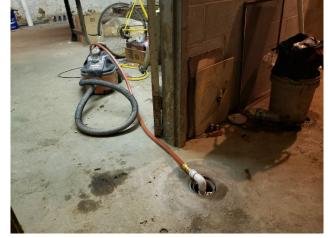
RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No □	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes ⊠	No □	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes ⊠	No □	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes ⊠	No □	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes □	No □	N/A⊠
Is work being sequenced to avoid double handling?	Yes □	No □	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No ⊠	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No □	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes ⊠	No □	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No □	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No □	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No ⊠	N/A⊠
Comments: None.			

^{*} BART – Best Available Retrofit Technology

Report No. 03 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/21/2024

Site Photographs (Descriptions Below)



Completed soil boring DP-02A (center) located NNW of DP-02 (center right)

Flow meter and pressure gauge installed downstream of water tank for injection testing.

Injection equipment staged in LaBella box truck on N. Dutcher St.; hose entering basement through conduit access point at street level.

Injection hose secured to DP-18 wellhead in basement at 59 Main St.

Report No. 03 Irvington Rugs and Cleaners - NYSDEC Site No. 360175 Date: 08/21/2024

Leaking from slab (likely at connection with field stone wall) in utility hallway in basement at 49 Main St.

Leaking from existing cracks in basement slab (see dark area at left end of door) at 49 Main St.

Re-sealed sump cover at DW-02

One-way drain valve (black circle at center) re-installed at brick sump in basement at 49 Main St.

ATTACHMENT 3

Attachment 3A - DATA USABILITY SUMMARY REPORT & ANALYTICAL DATA

Attachment 3B - GEOTECHNICAL DATA

DATA USABILITY SUMMARY REPORT AUGUST 2024 SAMPLING EVENT IRVINGTON RUGS AND CLEANERS IRVINGTON, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in August 2024 at the Irvington Rugs and Cleaners Site in Irvington, New York, and shipped to Eurofins Rhode Island located in North Kingstown, RI, for analysis. Samples were analyzed by the following methods:

- VOCs by USEPA Method 8260C
- Gasoline Range Organics by SW846 8015D
- Diesel Range Organics by SW846 8015D
- General Chemistry by ASTM D422 and

Results were reported in the following sample delivery group (SDG):

620-20506-1

A Data Usability Summary Report (DUSR) review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Qualification Action Summary

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverables as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations as applicable. A table of the project control limits for PFAS is presented in Attachment A. DUSR review checklists and applicable laboratory QC summary forms are included in Attachment B to document QC outliers associated with qualification actions.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- Instrument Calibration (report narrative/lab-qualifier evaluation)
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike/Matrix Spike Duplicates (MS/MSD)

- Surrogate Spikes (if applicable)
- Internal Standards (if applicable)
- Field Duplicates
- Target Analyte Identification and Quantitation
- Raw Data (chromatograms), Calculation Checks and Transcription Verifications
- Reporting Limits
- Electronic Data Qualification and Verification

Data qualification actions were based on general procedures identified in the NYSDEC validation guideline for PFAS (NYSDEC, 2023). The following laboratory or data review qualifiers are used in the final data presentation:

U = target analyte is not detected above the reported detection limit J = concentration is estimated

UJ = target analyte is not detected, value is estimated

J- = concentration is estimated and potentially bias low

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the DUSR review the majority of data meet the data quality objectives; however, the following potential limitations were identified.

VOCs

The results for trichloroethene in samples 360175-DP018008-Soil and 360175-DP018008D-Soil was qualified as estimated with potential bias (J) based on the field duplicate percent difference that were greater than QC limits. The qualified results are included in Table 3 with reason code FD.

The results for 2-butanone, acetone, bromomethane, chloroethane, ethanol, trichlorofluoromethane in sample 360175-DP018007 were qualified as estimated with potential low bias (J-) based on percent recoveries in the associated MS/MSD that were greater than QC limits. The qualified results are included in Table 3 with reason code MSL.

The results for dichlorodifluoromethane in samples 360175-DP018001-GW and 360175-DP018008 were qualified as estimated with potential bias (UJ/J) based on percent recoveries in the associated initial calibration verification (ICV) and continuing calibration verification (CCV) percent differences that were greater than QC limits. The qualified results are included in Table 3 with reason codes ICV%D and CCV%D.

The results for dichlorofluoromethane, chloromethane, ethanol in samples 360175-DP018001-Soil, 360175-DP018004, 360175-DP018007, 360175-DP018009, and 360175-DP018001D-GW were qualified as estimated with potential bias (UJ/J) based percent recoveries in the associated ICV that were greater than QC limits. The qualified results are included in Table 3 with reason code ICV%D.

The results for dichloromethane, ethanol, acetone, tert-butanol, ethyl tert-butyl ether, tetrahydrofuran, 2-butanone, 1, 4-dioxane, 4-methyl-2-pentanone, 2-hexanone, 1, 2-dibromo-3-chloropropane, 1, 2, 4-trichlorobenzene, naphthalene, and 1, 2, 3-trichlorobenzene in sample 360175-DP018001D-GW was qualified as estimate with potential bias (UJ/J) based on percent recoveries in the associated CCV that were greater than QC limits. The qualified results are included in Table 3 with reason code CCV%D.

The results for dichlorodifluoromethane, vinyl chloride, chloroethane, ethane, tert-butanol, 1, 4-dioxane, ethylbenzene, n-propylbenzene, 2-chlorotoluene, 4-chlorotoluene, 1, 3-dichlorobenzene, and naphthalene in samples 360175-DP018001-Soil, 360175-DP018004, 360175-DP018007, and 360175-DP018009 were qualified as estimate with potential bias (UJ/J) based on percent recoveries in the associated CCV that were greater than QC limits. The qualified results are included in Table 3 with reason code CCV%D.

The results for dichlorodifluoromethane in samples 360175-DP018001-GW and 360175-DP018008 were qualified as estimated with potential low bias (UJ/J-) based on percent recoveries in the associated LCS and LCSD that were less than QC limits. The qualified results are included in Table 3 with reason code LCSL.

The results for 2-butanone, 2-hexanone, acetone, and dichlorodifluoromethane in sample 360175-DP018001D-GW were qualified as estimate with potential low bias (UJ/J-) based on percent recoveries in the associated LCS and LCSD that were less than QC limits. The qualified results are included in Table 3 with reason code LCSL.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

There were no additional observations or quality control exceedances not specifically addressed above (Section 2.0).

Reference:

NYSDEC, 2005. "Analytical Services Protocols"; July 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

NYSDEC, 2023. "Data Review Guidelines for Analysis of PFAS in Non-Potable Water and Solids; April 2023.

Data Validator: Tara LePage

October 30, 2024

Reviewed by: Greg Lull

November 4, 2024

Qualification Reason Codes Standard Table Notes:

TB - trip blank

ng/L – nanograms per liter

BL1 - method blank qualifier Sample Type (QC Code)

BL2 - field or trip blank qualifier FS - field sample

CCV – continuing calibration verification recovery outside limits FD – field duplicate

CCV%D – continuing calibration verification percent difference exceeds goal

CCVRRF – continuing calibration relative response factor low

EB - equipment blank CI – chromatographic interference present

FB - field blank DCPD – dual column percent difference exceeds limit

Matrix E - result exceeds calibration range

GW - ground water

EIS - extracted internal standard outside of acceptance criteria BW - blank water

FD - field duplicate precision goal exceeded TW - tap water

FP – false positive interference SV - soil vapor

HT – holding time for prep or analysis exceeded SED - sediment

HTG – holding time for prep or analysis grossly exceeded SW - surface water

ICV – initial calibration verification recovery outside limit S - soil

ICVRRF – initial calibration verification relative response factor low L - water

ICVRSD – initial calibration verification % relative standard deviation exceeds

Units IR – ion ratio was outside of acceptance criteria

mg/L - milligrams per liter ISH – internal standard response greater than limit

ISL – internal standard response less than limit

μg/L – micrograms per liter LCSH - laboratory control sample recovery high

mg/kg - milligrams per kilogram

LCSL - laboratory control sample recovery low μg/kg – micrograms per kilogram

LCSRPD – laboratory control sample/duplicate relative % difference precision μg/m³ – micrograms per cubic meter

goal exceeded

LD - lab duplicate precision goal exceeded

Qualifiers MSH – matrix spike and/or MS duplicate recovery high

U – not detected above quantitation limit MSL – matrix spike and/or MS duplicate recovery low

J – estimated quantity MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J+ - estimated quantity, biased high N – analyte identification is not certain

J- - estimated quantity, biased low PEM – performance evaluation mixture exceeds limit

R – data unusable PM – sample percent moisture exceeds EPA guideline

SD – serial dilution result exceeds percent difference limit

Fraction SP – sample preservation/collection does not meet method requirement

T - total SSH – surrogate recovery high

D - dissolved SSL – surrogate recovery low

N - normal TD – dissolved concentration exceeds total

PAHs – polycyclic aromatic hydrocarbons

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS DATA USABILITY SUMMARY REPORT AUGUST 2024 SAMPLING EVENT IRVINGTON RUGS AND CLEANERS IRVINGTON, NEW YORK

						Lab Id	Eurofins	Eurofins	Eurofins	LANCAST
					Me	ethod Class	VOCs	Moisture	Organic Range	Grain Size
					Analy	sis Method	8260C	Moisture	8015D	D422
						Fraction	N	N	N	N
Lab SDG	Media	Location	Field Sample ID	Sample Date	Lab Sample ID	Qc Code	Parameters	Parameters	Parameters	Parameters
620-20506-1	GW	DP-18	360175-DP018001-GW	8/20/2024	620-20506-7	FS	77			
620-20506-1	GW	DP-18	360175-DP018001D-GW	8/20/2024	620-20506-9	FD	77			
620-20506-1	GW	DP-18	360175-DP018008	8/20/2024	620-20506-8	FS	77			
620-20506-1	BS	QC	360175-TB002	8/21/2024	620-20506-6	TB	77			
620-20506-1	BW	QC	360175-TB001	8/21/2024	620-20506-10	TB	77			
620-20506-1	SOIL	DP-18	360175-DP018001-Soil	8/20/2024	620-20506-1	FS	77	2	2	
620-20506-1	SOIL	DP-18	360175-DP018001D-Soil	8/20/2024	620-20506-4	FD	77	2		
620-20506-1	SOIL	DP-18	360175-DP018004	8/20/2024	620-20506-2	FS	77	2	2	27
620-20506-1	SOIL	DP-18	360175-DP018007	8/20/2024	620-20506-3	FS	77	2		
620-20506-1	SOIL	DP-18	360175-DP018009	8/20/2024	620-20506-5	FS	77	2		

Created by: KLD 10/7/2024 Checked by: TML 10/7/24

					11	RVINGTON, N	IEW YORK								
					Location	DP	-18	DF	P-18	DP-	-18	DF	P-18	DP	-18
				Lab	Sample Delivery Group	620-20	0506-1	620-2	0506-1	620-20	506-1	620-2	20506-1	620-20	0506-1
					Field Sample Date	8/20/	/2024	8/20	8/20/2024 8/20/2024		8/20/2024 8/20/2024		8/20,	/2024	
					Field Sample ID	360175-DP	018001-GW	360175-DF	2018001-Soil	01-Soil 360175-DP018001D-G		360175-DP	018001D-Soil	360175-0	DP018004
					Qc Code	F	S	ı	FS	FI	FD		FD	F	S
Matrix	Method Class	Method	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
L	VOCs	8260C	N	1,1,1,2-Tetrachloroethane	UG/L	1				1					
L	VOCs	8260C	N	1,1,1-Trichloroethane	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/L	0.5	U			0.5	U				
L	VOCs	8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Fred		1				1					
L	VOCs	8260C	N	1,1,2-Trichloroethane	UG/L	1				1	U				
L	VOCs	8260C	N	1,1-Dichloroethane	UG/L	1	U			1	-				
L	VOCs	8260C	N	1,1-Dichloroethene	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,1-Dichloropropene	UG/L	1				1	U				
L	VOCs	8260C	N	1,2,3-Trichlorobenzene	UG/L	1	U			1	UJ				
L	VOCs	8260C	N	1,2,3-Trichloropropane	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,2,4-Trichlorobenzene	UG/L	1	U			1	UJ				
L	VOCs	8260C	N	1,2,4-Trimethylbenzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,2-Dibromo-3-chloropropane	UG/L	2	U			2	UJ				
L	VOCs	8260C	N	1,2-Dibromoethane	UG/L	0.5	U			0.5	U				
L	VOCs	8260C	N	1,2-Dichlorobenzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,2-Dichloroethane	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,2-Dichloropropane	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,3,5-Trichlorobenzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,3,5-Trimethylbenzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,3-Dichlorobenzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,3-Dichloropropane	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,4-Dichlorobenzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	1,4-Dioxane	UG/L	50	U			50	UJ				
L	VOCs	8260C	N	2,2-Dichloropropane	UG/L	1	U			1	U				
L	VOCs	8260C	N	2-Butanone	UG/L	2	U			2	UJ				
L	VOCs	8260C	N	2-Chlorotoluene	UG/L	1	U			1	U				
L	VOCs	8260C	N	2-Hexanone	UG/L	2	U			2	UJ				
L	VOCs	8260C	N	4-Chlorotoluene	UG/L	1	U			1	U				
L	VOCs	8260C	N	4-iso-Propyltoluene	UG/L	1	U			1	U				
L	VOCs	8260C	N	4-Methyl-2-pentanone	UG/L	2	U			2	UJ				
L	VOCs	8260C	N	Acetone	UG/L	10	U			10	UJ				
L	VOCs	8260C	N	Acrylonitrile	UG/L	1	U			1	U				
L	VOCs	8260C	N	Benzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	Bromobenzene	UG/L	1	U			1	U				
L	VOCs	8260C	N	Bromochloromethane	UG/L	1	U			1	U				
L	VOCs	8260C	N	Bromodichloromethane	UG/L	0.5	U			0.5	U				

	IRVINGTON, NEW YORK									
					Location	DP-18	DP-18	DP-18	DP-18	DP-18
					Lab Sample Delivery Group	620-20506-1	620-20506-1	620-20506-1	620-20506-1	620-20506-1
					Field Sample Date	8/20/2024	8/20/2024	8/20/2024	8/20/2024 8/20/2024	
					Field Sample ID	360175-DP018001-GW	360175-DP018001-Soil	360175-DP018001D-GW	360175-DP018001D-Soil	360175-DP018004
					Qc Code	FS	FS	FD	FD	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
L	VOCs	8260C	N	Bromoform	UG/L	1 U		1 U		
L	VOCs	8260C	N	Bromomethane	UG/L	2 U		2 U		
L	VOCs	8260C	N	Butane, 2-methoxy-2-methyl-	UG/L	1 U		1 U		
L	VOCs	8260C	N	Carbon disulfide	UG/L	2 U		2 U		
L	VOCs	8260C	N	Carbon tetrachloride	UG/L	1 U		1 U		
L	VOCs	8260C	N	Chlorobenzene	UG/L	1 U		1 U		
L	VOCs	8260C	N	Chloroethane	UG/L	2 U		2 U		
L	VOCs	8260C	N	Chloroform	UG/L	1 U		1 U		
L	VOCs	8260C	N	Chloromethane	UG/L	2 U		2 UJ		
L	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/L	22.9		11.6		
L	VOCs	8260C	N	cis-1,3-Dichloropropene	UG/L	0.5 U		0.5 U		
L	VOCs	8260C	N	Dibromochloromethane	UG/L	0.5 U		0.5 U		
L	VOCs	8260C	N	Dibromomethane	UG/L	1 U		1 U		
L	VOCs	8260C	N	Dichlorodifluoromethane	UG/L	2 UJ		2 UJ		
L	VOCs	8260C	N	Diethyl ether	UG/L	1 U		1 U		
L	VOCs	8260C	N	Ethanol	UG/L	200 U		200 UJ		
L	VOCs	8260C	N	Ethyl-t-Butyl Ether	UG/L	1 U		1 UJ		
L	VOCs	8260C	N	Ethylbenzene	UG/L	1 U		1 U		
L	VOCs	8260C	N	Hexachlorobutadiene	UG/L	1 U		1 U		
L	VOCs	8260C	N	Isopropyl ether	UG/L	1 U		1 U		
L	VOCs	8260C	N	Isopropylbenzene	UG/L	1 U		1 U		
L	VOCs	8260C	N	Methyl Tertbutyl Ether	UG/L	1 U		1 U		
L	VOCs	8260C	N	Methylene chloride	UG/L	2 U		2 U		
L	VOCs	8260C	N	n-Butylbenzene	UG/L	1 U		1 U		
L	VOCs	8260C	N	Naphthalene	UG/L	2 U		2 UJ		
L	VOCs	8260C	N	Propylbenzene	UG/L	1 U		1 U		
L	VOCs	8260C	N	sec-Butylbenzene	UG/L	1 U		1 U		
L	VOCs	8260C	N	Styrene	UG/L	1 U		1 U		
L	VOCs	8260C	N	t-Butyl alcohol	UG/L	10 U		10 UJ		
L	VOCs	8260C	N	tert-Butylbenzene	UG/L	1 U		1 U		
L	VOCs	8260C	N	Tetrachloroethene	UG/L	2590		2880		
L	VOCs	8260C	N	Tetrahydrofuran	UG/L	2 U		2 UJ		
L	VOCs	8260C	N	Toluene	UG/L	1 U		1 U		
L	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/L	0.265 J		1 U		
L	VOCs	8260C	N	trans-1,3-Dichloropropene	UG/L	0.5 U		0.5 U		
L	VOCs	8260C	N	trans-1,4-Dichloro-2-butene	UG/L	5 U		5 U		

		·			Location	DP-18	DP-18	DP-18	DP-18	DP-18
				Lab Samp	le Delivery Group	620-20506-1	620-20506-1	620-20506-1	620-20506-1	620-20506-1
					Field Sample Date	8/20/2024	8/20/2024	8/20/2024	8/20/2024	8/20/2024
					Field Sample ID	360175-DP018001-GW	360175-DP018001-Soil	360175-DP018001D-GW	360175-DP018001D-Soil	360175-DP018004
					Qc Code	FS	FS	FD	FD	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
L	VOCs	8260C	N	Trichloroethene	UG/L	59.6		31		
L	VOCs	8260C	N	Trichlorofluoromethane	UG/L	1 U		1 U		
L	VOCs	8260C	N	Vinyl chloride	UG/L	1 U		1 U		
L	VOCs	8260C	N	Xylene, o	UG/L	1 U		1 U		
L	VOCs	8260C	N	Xylenes (m&p)	UG/L	1 U		1 U		
S	VOCs	8260C	N	1,1,1,2-Tetrachloroethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,1,1-Trichloroethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,1,2,2-Tetrachloroethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,1,2-Trichloroethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,1-Dichloroethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,1-Dichloroethene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,1-Dichloropropene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2,3-Trichlorobenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2,3-Trichloropropane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2,4-Trichlorobenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2,4-Trimethylbenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2-Dibromo-3-chloropropane	UG/KG		126 U		115 U	88 U
S	VOCs	8260C	N	1,2-Dibromoethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2-Dichlorobenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2-Dichloroethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,2-Dichloropropane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,3,5-Trichlorobenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,3,5-Trimethylbenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,3-Dichlorobenzene	UG/KG		62.8 UJ		57.3 U	44 UJ
S	VOCs	8260C	N	1,3-Dichloropropane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,4-Dichlorobenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	1,4-Dioxane	UG/KG		1260 UJ		1150 U	880 UJ
S	VOCs	8260C	N	2,2-Dichloropropane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	2-Butanone	UG/KG		126 U		115 U	88 U
S	VOCs	8260C	N	2-Chlorotoluene	UG/KG		62.8 UJ		57.3 U	44 UJ
S	VOCs	8260C	N	2-Hexanone	UG/KG		126 U		115 U	88 U
S	VOCs	8260C	N	4-Chlorotoluene	UG/KG		62.8 UJ		57.3 U	44 UJ
S	VOCs	8260C	N	4-iso-Propyltoluene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	4-Methyl-2-pentanone	UG/KG		126 U		115 U	88 U
S	VOCs	8260C	N	Acetone	UG/KG		628 U		573 U	440 U

						RVINGTON, NEW YORK				
					Location	DP-18	DP-18	DP-18	DP-18	DP-18
					Lab Sample Delivery Group		620-20506-1	620-20506-1	620-20506-1	620-20506-1
					Field Sample Date	8/20/2024	8/20/2024	8/20/2024	8/20/2024	8/20/2024
					Field Sample ID	360175-DP018001-GW	360175-DP018001-Soil	360175-DP018001D-GW	360175-DP018001D-Soil	360175-DP018004
					Qc Code	FS	FS	FD	FD	FS
Matrix	Method Class	Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
S	VOCs	8260C	N	Acrylonitrile	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Benzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Bromobenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Bromochloromethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Bromodichloromethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Bromoform	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Bromomethane	UG/KG		58.8 J		115 U	34.1 J
S	VOCs	8260C	N	Butane, 2-methoxy-2-methyl-	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Carbon disulfide	UG/KG		126 U		115 U	88 U
S	VOCs	8260C	N	Carbon tetrachloride	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Chlorobenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Chloroethane	UG/KG		126 UJ		115 U	88 UJ
S	VOCs	8260C	N	Chloroform	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Chloromethane	UG/KG		126 UJ		115 U	88 UJ
S	VOCs	8260C	N	cis-1,2-Dichloroethene	UG/KG		980		784	44 U
S	VOCs	8260C	N	cis-1,3-Dichloropropene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Dibromochloromethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Dibromomethane	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Dichlorodifluoromethane	UG/KG		126 UJ		115 U	88 UJ
S	VOCs	8260C	N	Diethyl ether	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Ethanol	UG/KG		12600 UJ		11500 U	8800 UJ
S	VOCs	8260C	N	Ethyl-t-Butyl Ether	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Ethylbenzene	UG/KG		62.8 UJ		57.3 U	44 UJ
S	VOCs	8260C	N	Hexachlorobutadiene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Isopropyl ether	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Isopropylbenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Methyl Tertbutyl Ether	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Methylene chloride	UG/KG		126 U		115 U	88 U
S	VOCs	8260C	N	n-Butylbenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Naphthalene	UG/KG		126 UJ		115 U	88 UJ
S	VOCs	8260C	N	Propylbenzene	UG/KG		62.8 UJ		57.3 U	44 UJ
S	VOCs	8260C	N	sec-Butylbenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Styrene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	t-Butyl alcohol	UG/KG		1260 UJ		1150 U	880 UJ
S	VOCs	8260C	N	tert-Butylbenzene	UG/KG		62.8 U		57.3 U	44 U
S	VOCs	8260C	N	Tetrachloroethene	UG/KG		8460		5870	166

						RVINGTON, N				•		•			
					Location		-18	DP-18			-18	DP-		DP-	
					Lab Sample Delivery Group	620-2	0506-1	620-20506	5-1	620-2	0506-1	620-20	506-1	620-20	506-1
					Field Sample Date	8/20,	/2024	8/20/202	4	8/20,	/2024	8/20/	2024	8/20/2	2024
					Field Sample ID	360175-DP		360175-DP0180	001-Soil		175-DP018001D-GW 360175-DP018001D-Sc			360175-D	
					Qc Code		S	FS			FD)	FS	
Matrix	Method Class		Fraction	Parameter	Units	Result	Qualifier		ualifier	Result	Qualifier	Result	Qualifier	Result	
S	VOCs	8260C	N	Tetrahydrofuran	UG/KG			126 U				115		88 (J
S	VOCs	8260C	N	Toluene	UG/KG			62.8 U				57.3	U	44 (J
S	VOCs	8260C	N	trans-1,2-Dichloroethene	UG/KG			62.8 U				57.3	U	44 (J
S	VOCs	8260C	N	trans-1,3-Dichloropropene	UG/KG			62.8 U				57.3	U	44 (J
S	VOCs	8260C	N	trans-1,4-Dichloro-2-butene	UG/KG			314 U				287	U	220 (J
S	VOCs	8260C	N	Trichloroethene	UG/KG			1540 J				457 .	J	8.24	
S	VOCs	8260C	N	Trichlorofluoromethane	UG/KG			62.8 U				57.3	U	44 (J
S	VOCs	8260C	N	Vinyl chloride	UG/KG			62.8 UJ				57.3	U	44 (JJ
S	VOCs	8260C	N	Xylene, o	UG/KG			62.8 U				57.3		44 (
S	VOCs	8260C	N	Xylenes (m&p)	UG/KG			62.8 U				57.3	U	44 (J
S	Grain Size	D422	N	0.075mm sieve	% FINER									0	
S	Grain Size	D422	N	0.15mm sieve	% FINER									10.6	
S	Grain Size	D422	N	0.25mm sieve	% FINER									21.5	
S	Grain Size	D422	N	0.425mm sieve	% FINER									35	
S	Grain Size	D422	N	0.85mm sieve	% FINER									47.3	
S	Grain Size	D422	N	2.0mm sieve	% FINER									55.3	
S	Grain Size	D422	N	4.75mm sieve	% FINER									67.3	
S	Grain Size	D422	N	9.5mm sieve	% FINER									80.9	
S	Grain Size	D422	N	Clay	PERCENT									0	
S	Grain Size	D422	N	Coarse Sand	PERCENT									12	
S	Grain Size	D422	N	Fine Sand	PERCENT									35	
S	Grain Size	D422	N	Gravel	PERCENT									32.7	
S	Grain Size	D422	N	Hydrometer Reading 1 - Percent Finer										0	
S	Grain Size	D422	N	Hydrometer Reading 2 - Percent Finer										0	
S	Grain Size	D422	N	Hydrometer Reading 3 - Percent Finer										0	
S	Grain Size	D422	N	Hydrometer Reading 4 - Percent Finer										0	
5	Grain Size	D422	N	Hydrometer Reading 5 - Percent Finer										0	
5	Grain Size	D422	N	Hydrometer Reading 6 - Percent Finer										0	
5	Grain Size	D422	N	Hydrometer Reading 7 - Percent Finer										0	
5	Grain Size	D422	N	Medium Sand	PERCENT									20.3	
S	Grain Size	D422	N	Sand	PERCENT									67.3	
S	Grain Size	D422	N	Sieve Size #80	% FINER									13.2	
5	Grain Size	D422	N	Sieve Size 0.75 inch	% FINER									100	
5	Grain Size	D422	N	Sieve Size 1 inch	% FINER									100	
S	Grain Size	D422 D422	N N	Sieve Size 1.5 inch	% FINER									100	
5	Grain Size			Sieve Size 2 inch	% FINER									100	
5	Grain Size	D422	N	Silt	PERCENT			21.7				22.6		0	
S C	Moisture	Moisture		Percent Moisture	PERCENT			21.7				22.6		9.2	
5	Moisture	Moisture		Percent Solids	PERCENT			78.3				77.4		90.8	
S	Organic Range	8015D	N	Diesel Range Organics	MG/KG			366						33.1	
5	Organic Range	8015D	N	Gasoline Range Organics	MG/KG			5 U						5 (J

	IRVINGTON, NEW YORK									
			Location	DP-18	DP-18	DP-18	QC	QC		
		Lab Sar	nple Delivery Group	620-20506-1	620-20506-1	620-20506-1	620-20506-1	620-20506-1		
			Field Sample Date	8/20/2024	8/20/2024	8/20/2024	8/21/2024	8/21/2024		
			Field Sample ID	360175-DP018007	360175-DP018009	360175-DP018008	360175-TB001	360175-TB002		
			Qc Code	FS	FS	FS	ТВ	ТВ		
Method	Fraction	Parameter	Units	Result Qualifier						
8260C	N	1,1,1,2-Tetrachloroethane	UG/L			1 U	1 U			
8260C	N	1,1,1-Trichloroethane	UG/L			1 U	1 U			
8260C	N	1,1,2,2-Tetrachloroethane	UG/L			0.5 U	0.5 U			
8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 1	13) UG/L			1 U	1 U			
8260C	N	1,1,2-Trichloroethane	UG/L			1 U	1 U			
8260C	N	1,1-Dichloroethane	UG/L			1 U	1 U			
8260C	N	1,1-Dichloroethene	UG/L			1 U	1 U			
8260C	N	1,1-Dichloropropene	UG/L			1 U	1 U			
8260C	N	1,2,3-Trichlorobenzene	UG/L			1 U	1 U			
8260C	N	1,2,3-Trichloropropane	UG/L			1 U	1 U			
8260C	N	1,2,4-Trichlorobenzene	UG/L			1 U	1 U			
8260C	N	1,2,4-Trimethylbenzene	UG/L			1 U	1 U			
8260C	N	1,2-Dibromo-3-chloropropane	UG/L			2 U	2 U			
8260C	N	1,2-Dibromoethane	UG/L			0.5 U	0.5 U			
8260C	N	1,2-Dichlorobenzene	UG/L			1 U	1 U			
8260C	N	1,2-Dichloroethane	UG/L			1 U	1 U			
8260C	N	1,2-Dichloropropane	UG/L			1 U	1 U			
8260C	N	1,3,5-Trichlorobenzene	UG/L			1 U	1 U			
8260C	N	1,3,5-Trimethylbenzene	UG/L			1 U	1 U			
8260C	N	1,3-Dichlorobenzene	UG/L			1 U	1 U			
8260C	N	1,3-Dichloropropane	UG/L			1 U	1 U			
8260C	N	1,4-Dichlorobenzene	UG/L			1 U	1 U			
8260C	N	1,4-Dioxane	UG/L			50 U	50 U			
8260C	N	2,2-Dichloropropane	UG/L			1 U	1 U			
8260C	N	2-Butanone	UG/L			1.88 J	2 U			
8260C	N	2-Chlorotoluene	UG/L			1 U	1 U			
8260C	N	2-Hexanone	UG/L			2 U	2 U			
8260C	N	4-Chlorotoluene	UG/L			1 U	1 U			
8260C	N	4-iso-Propyltoluene	UG/L			1 U	1 U			
8260C	N	4-Methyl-2-pentanone	UG/L			2 U	2 U			
8260C	N	Acetone	UG/L			14.9	3.17 J			
8260C	N	Acrylonitrile	UG/L			1 U	1 U			
8260C	N	Benzene	UG/L			1 U	1 U			
8260C	N	Bromobenzene	UG/L			1 U	1 U			
8260C	N	Bromochloromethane	UG/L			1 U	1 U			
8260C	N	Bromodichloromethane	UG/L			0.5 U	0.5 U			

			IRVINGTON, NEW YORK							
			Location	DP-18	DP-18	DP-18	QC	QC		
			Lab Sample Delivery Group	620-20506-1	620-20506-1	620-20506-1	620-20506-1	620-20506-1		
			Field Sample Date	8/20/2024	8/20/2024	8/20/2024	8/21/2024	8/21/2024		
			Field Sample ID	360175-DP018007	360175-DP018009	360175-DP018008	360175-TB001	360175-TB002		
			Qc Code	FS	FS	FS	ТВ	TB		
Method	Fraction	Parameter	Units	Result Qualifier						
8260C	N	Bromoform	UG/L			1 U	1 U			
8260C	N	Bromomethane	UG/L			2 U	2 U			
8260C	N	Butane, 2-methoxy-2-methyl-	UG/L			1 U	1 U			
8260C	N	Carbon disulfide	UG/L			2 U	2 U			
8260C	N	Carbon tetrachloride	UG/L			1 U	1 U			
8260C	N	Chlorobenzene	UG/L			1 U	1 U			
8260C	N	Chloroethane	UG/L			2 U	2 U			
8260C	N	Chloroform	UG/L			1 U	1 U			
8260C	N	Chloromethane	UG/L			2 U	2 U			
8260C	N	cis-1,2-Dichloroethene	UG/L			5.78	1 U			
8260C	N	cis-1,3-Dichloropropene	UG/L			0.5 U	0.5 U			
8260C	N	Dibromochloromethane	UG/L			0.5 U	0.5 U			
8260C	N	Dibromomethane	UG/L			1 U	1 U			
8260C	N	Dichlorodifluoromethane	UG/L			2 UJ	2 U			
8260C	N	Diethyl ether	UG/L			1 U	1 U			
8260C	N	Ethanol	UG/L			14 J	200 U			
8260C	N	Ethyl-t-Butyl Ether	UG/L			1 U	1 U			
8260C	N	Ethylbenzene	UG/L			1 U	1 U			
8260C	N	Hexachlorobutadiene	UG/L			1 U	1 U			
8260C	N	Isopropyl ether	UG/L			1 U	1 U			
8260C	N	Isopropylbenzene	UG/L			1 U	1 U			
8260C	N	Methyl Tertbutyl Ether	UG/L			1 U	1 U			
8260C	N	Methylene chloride	UG/L			2 U	2 U			
8260C	N	n-Butylbenzene	UG/L			1 U	1 U			
8260C	N	Naphthalene	UG/L			0.874 J	2 U			
8260C	N	Propylbenzene	UG/L			1 U	1 U			
8260C	N	sec-Butylbenzene	UG/L			1 U	1 U			
8260C	N	Styrene	UG/L			1 U	1 U			
8260C	N	t-Butyl alcohol	UG/L			10 U	10 U			
8260C	N	tert-Butylbenzene	UG/L			1 U	1 U			
8260C	N	Tetrachloroethene	UG/L			227	1 U			
8260C	N	Tetrahydrofuran	UG/L			2 U	2 U			
8260C	N	Toluene	UG/L			1 U	1 U			
8260C	N	trans-1,2-Dichloroethene	UG/L			1 U	1 U			
8260C	N	trans-1,3-Dichloropropene	UG/L			0.5 U	0.5 U			
8260C	N	trans-1,4-Dichloro-2-butene	UG/L			5 U	5 U			

					INVINGTON, NEV					
			Location	DP-18	DP-18	DP-18	QC	QC		
	Lab Sample Delivery Grou		Delivery Group	620-20506-1	620-20506-1	620-20506-1	620-20506-1	620-20506-1		
		Fic	eld Sample Date	8/20/2024	8/20/2024	8/20/2024	8/21/2024	8/21/2024		
			Field Sample ID	ID 360175-DP018007 360175-DP018009		360175-DP018008	360175-TB001	360175-TB002		
			Qc Code	FS	FS	FS	ТВ	TB		
Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier		
8260C	N	Trichloroethene	UG/L			10.9	1 U			
8260C	N	Trichlorofluoromethane	UG/L			1 U	1 U			
8260C	N	Vinyl chloride	UG/L			1 U	1 U			
8260C	N	Xylene, o	UG/L			1 U	1 U			
8260C	N	Xylenes (m&p)	UG/L			1 U	1 U			
8260C	N	1,1,1,2-Tetrachloroethane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,1,1-Trichloroethane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,1,2,2-Tetrachloroethane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,1,2-Trichloroethane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,1-Dichloroethane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,1-Dichloroethene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,1-Dichloropropene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2,3-Trichlorobenzene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2,3-Trichloropropane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2,4-Trichlorobenzene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2,4-Trimethylbenzene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2-Dibromo-3-chloropropane	UG/KG	87.4 U	83.8 U			100 U		
8260C	N	1,2-Dibromoethane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2-Dichlorobenzene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2-Dichloroethane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,2-Dichloropropane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,3,5-Trichlorobenzene	UG/KG	43.7 U	10.5 J			50 U		
8260C	N	1,3,5-Trimethylbenzene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,3-Dichlorobenzene	UG/KG	43.7 UJ	41.9 UJ			50 U		
8260C	N	1,3-Dichloropropane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,4-Dichlorobenzene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	1,4-Dioxane	UG/KG	874 UJ	838 UJ			1000 U		
8260C	N	2,2-Dichloropropane	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	2-Butanone	UG/KG	87.4 UJ	83.8 U			100 U		
8260C	N	2-Chlorotoluene	UG/KG	43.7 UJ	41.9 UJ			50 U		
8260C	N	2-Hexanone	UG/KG	87.4 U	83.8 U			100 U		
8260C	N	4-Chlorotoluene	UG/KG	43.7 UJ	41.9 UJ			50 U		
8260C	N	4-iso-Propyltoluene	UG/KG	43.7 U	41.9 U			50 U		
8260C	N	4-Methyl-2-pentanone	UG/KG	87.4 U	83.8 U			100 U		
8260C	N	Acetone	UG/KG	437 UJ	419 U			70.5 J		

					IKVINGTON, NEV	· ronn			
			Location	DP-18	DP-18	DP-18	QC	QC	
			Lab Sample Delivery Group	620-20506-1	620-20506-1	620-20506-1	620-20506-1	620-20506-1	
			Field Sample Date	8/20/2024	8/20/2024	8/20/2024	8/21/2024	8/21/2024	
			Field Sample ID	360175-DP018007	360175-DP018009	360175-DP018008	360175-TB001	360175-TB002	
			Qc Code	FS	FS	FS	ТВ	ТВ	
Method	Fraction	Parameter	Units	Result Qualifier					
8260C	N	Acrylonitrile	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Benzene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Bromobenzene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Bromochloromethane	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Bromodichloromethane	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Bromoform	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Bromomethane	UG/KG	36.2 J-	35.2 J			100 U	
8260C	N	Butane, 2-methoxy-2-methyl-	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Carbon disulfide	UG/KG	87.4 U	83.8 U			100 U	
8260C	N	Carbon tetrachloride	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Chlorobenzene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Chloroethane	UG/KG	87.4 UJ	83.8 UJ			100 U	
8260C	N	Chloroform	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Chloromethane	UG/KG	87.4 UJ	83.8 UJ			100 U	
8260C	N	cis-1,2-Dichloroethene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	cis-1,3-Dichloropropene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Dibromochloromethane	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Dibromomethane	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Dichlorodifluoromethane	UG/KG	87.4 UJ	83.8 UJ			100 U	
8260C	N	Diethyl ether	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Ethanol	UG/KG	8740 UJ	8380 UJ			10000 U	
8260C	N	Ethyl-t-Butyl Ether	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Ethylbenzene	UG/KG	43.7 UJ	41.9 UJ			50 U	
8260C	N	Hexachlorobutadiene	UG/KG	43.7 U	32.7 J			50 U	
8260C	N	Isopropyl ether	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Isopropylbenzene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Methyl Tertbutyl Ether	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Methylene chloride	UG/KG	87.4 U	83.8 U			100 U	
8260C	N	n-Butylbenzene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Naphthalene	UG/KG	87.4 UJ	21 J			100 U	
8260C	N	Propylbenzene	UG/KG	43.7 UJ	41.9 UJ			50 U	
8260C	N	sec-Butylbenzene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Styrene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	t-Butyl alcohol	UG/KG	874 UJ	838 UJ			1000 U	
8260C	N	tert-Butylbenzene	UG/KG	43.7 U	41.9 U			50 U	
8260C	N	Tetrachloroethene	UG/KG	49.5 U	202			50 U	

				IRVINGTON, NEW YORK								
			Location	DP-18	DP-18	DP-18	QC	QC				
			Lab Sample Delivery Group	620-20506-1	620-20506-1	620-20506-1	620-20506-1	620-20506-1				
			Field Sample Date	8/20/2024	8/20/2024	8/20/2024	8/21/2024	8/21/2024				
			Field Sample ID	360175-DP018007	360175-DP018009	360175-DP018008	360175-TB001	360175-TB002				
			Qc Code	FS	FS	FS	ТВ	ТВ				
Method	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier				
8260C	N	Tetrahydrofuran	UG/KG	87.4 U	83.8 U			100 U				
8260C	N	Toluene	UG/KG	43.7 U	41.9 U			50 U				
8260C	N	trans-1,2-Dichloroethene	UG/KG	43.7 U	41.9 U			50 U				
8260C	N	trans-1,3-Dichloropropene	UG/KG	43.7 U	41.9 U			50 U				
8260C	N	trans-1,4-Dichloro-2-butene	UG/KG	218 U	210 U			250 U				
8260C	N	Trichloroethene	UG/KG	43.7 U	41.9 U			50 U				
8260C	N	Trichlorofluoromethane	UG/KG	43.7 UJ	41.9 U			50 U				
8260C	N	Vinyl chloride	UG/KG	43.7 UJ	41.9 UJ			50 U				
8260C	N	Xylene, o	UG/KG	43.7 U	41.9 U			50 U				
8260C	N	Xylenes (m&p)	UG/KG	43.7 U	41.9 U			50 U				
D422	N	0.075mm sieve	% FINER									
D422	N	0.15mm sieve	% FINER									
D422	N	0.25mm sieve	% FINER									
D422	N	0.425mm sieve	% FINER									
D422	N	0.85mm sieve	% FINER									
D422	N	2.0mm sieve	% FINER									
D422	N	4.75mm sieve	% FINER									
D422	N	9.5mm sieve	% FINER									
D422	N	Clay	PERCENT									
D422	N	Coarse Sand	PERCENT									
D422	N	Fine Sand	PERCENT									
D422	N	Gravel	PERCENT									
D422	N	Hydrometer Reading 1 - Percent Finer	% FINER									
D422	N	Hydrometer Reading 2 - Percent Finer	% FINER									
D422	N	Hydrometer Reading 3 - Percent Finer	% FINER									
D422	N	Hydrometer Reading 4 - Percent Finer	% FINER									
D422	N	Hydrometer Reading 5 - Percent Finer	% FINER									
D422	N	Hydrometer Reading 6 - Percent Finer	% FINER									
D422	N	Hydrometer Reading 7 - Percent Finer	% FINER									
D422	N	Medium Sand	PERCENT									
D422	N	Sand	PERCENT									
D422	N	Sieve Size #80	% FINER									
D422	N	Sieve Size 0.75 inch	% FINER									
D422	N	Sieve Size 1 inch	% FINER									
D422	N	Sieve Size 1.5 inch	% FINER									
D422	N	Sieve Size 2 inch	% FINER									
D422	N	Silt	PERCENT									
Moisture		Percent Moisture	PERCENT	8.5	10							
Moisture		Percent Solids	PERCENT	91.5	90							
8015D	N	Diesel Range Organics	MG/KG									
8015D	N	Gasoline Range Organics	MG/KG									

						Lab	Lab	Final	Final			
Lab SDG	Lab Sample ID	Field Sample ID	Method	Fraction	Parameter	Result	Qualifier	Result	Qualifier	Val Reason Code	Units	Lab ID
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Ethylbenzene	62.8	U	62.8	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Dichlorodifluoromethane	126	U	126	UJ	ICV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	t-Butyl alcohol	1260	U *-	1260	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	1,4-Dioxane	1260	U	1260	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	2-Chlorotoluene	62.8	U *+	62.8	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Naphthalene	126	U	126	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Trichloroethene	1540		1540	J	FD	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Chloroethane	126	U	126	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Chloromethane	126	U	126	UJ	ICV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Ethanol	12600	U *-	12600	UJ	ICV%D, CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	1,3-Dichlorobenzene	62.8	U	62.8	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	4-Chlorotoluene	62.8	U *+	62.8	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Propylbenzene	62.8	U *+	62.8	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-1	360175-DP018001-Soil	8260C	N	Vinyl chloride	62.8	U	62.8	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	4-Chlorotoluene	44	U *+	44	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	1,3-Dichlorobenzene	44	U	44	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Ethanol	8800	U *-	8800	UJ	ICV%D, CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Naphthalene	88	U	88	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Vinyl chloride	44	U	44	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	2-Chlorotoluene	44	U *+	44	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Propylbenzene	44	U *+	44	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Chloromethane	88	U	88	UJ	ICV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Ethylbenzene	44	U	44	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	1,4-Dioxane	880	U	880	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Dichlorodifluoromethane	88	U	88	UJ	ICV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	t-Butyl alcohol	880	U *-	880	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-2	360175-DP018004	8260C	N	Chloroethane	88	U	88	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	2-Butanone	87.4	U F1 F2	87.4	UJ	MSL	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	1,4-Dioxane	874	U F1 F2	874	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Chloroethane	87.4	U F1 F2	87.4	UJ	CCV%D, MSL	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Trichlorofluoromethane	43.7	U F1 F2	43.7	UJ	MSL	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	1,3-Dichlorobenzene	43.7	U F2	43.7	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Chloromethane	87.4	U F2	87.4	UJ	ICV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	4-Chlorotoluene	43.7	U *+ F2	43.7	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Vinyl chloride	43.7	U F2	43.7	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	2-Chlorotoluene	43.7	U *+ F2	43.7	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Naphthalene	87.4	U F2	87.4	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Ethanol	8740	U *- F1	8740	UJ	ICV%D, CCV%D, MSL	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Propylbenzene	43.7	U *+	43.7	UJ	CCV%D	UG/KG	Eurofins

Irvington_Aug2024_Tables2-3 Path 11 of 12 Checked by: TML 10/30/2024

						Lab	Lab	Final	Final			
Lab SDG	Lab Sample ID	Field Sample ID	Method	Fraction	Parameter	Result	Qualifier	Result	Qualifier	Val Reason Code	Units	Lab ID
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Bromomethane	36.2	J F1 F2	36.2	J-	MSL	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Dichlorodifluoromethane	87.4	U F2	87.4	UJ	ICV%D, CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Ethylbenzene	43.7	U F2	43.7	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	Acetone	437	U F1 F2	437	UJ	MSL	UG/KG	Eurofins
620-20506-1	620-20506-3	360175-DP018007	8260C	N	t-Butyl alcohol	874	U *- F1 F2	874	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-4	360175-DP018001D-Soil	8260C	N	Trichloroethene	457		457	J	FD	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	1,4-Dioxane	838	U	838	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	2-Chlorotoluene	41.9	U *+	41.9	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Naphthalene	21	J	21	J	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Vinyl chloride	41.9	U	41.9	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Chloromethane	83.8	U	83.8	UJ	ICV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	1,3-Dichlorobenzene	41.9	U	41.9	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	4-Chlorotoluene	41.9	U *+	41.9	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Propylbenzene	41.9	U *+	41.9	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Ethylbenzene	41.9	U	41.9	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	t-Butyl alcohol	838	U *-	838	UJ	CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Chloroethane	83.8	U	83.8	UJ	ICV%D, CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Ethanol	8380	U *-	8380	UJ	ICV%D, CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-5	360175-DP018009	8260C	N	Dichlorodifluoromethane	83.8	U	83.8	UJ	ICV%D, CCV%D	UG/KG	Eurofins
620-20506-1	620-20506-6	360175-TB002	8260C	N	Ethanol	10000	U *-	10000	U	U	UG/KG	Eurofins
620-20506-1	620-20506-6	360175-TB002	8260C	N	Dichlorodifluoromethane	100	U	100	U	U	UG/KG	Eurofins
620-20506-1	620-20506-6	360175-TB002	8260C	N	Chloromethane	100	U	100	U	U	UG/KG	Eurofins
620-20506-1	620-20506-7	360175-DP018001-GW	8260C	N	Dichlorodifluoromethane	2	U	2	UJ	ICV%D, CCV%D, LCSL	UG/L	Eurofins
620-20506-1	620-20506-8	360175-DP018008	8260C	N	Dichlorodifluoromethane	2	U	2	UJ	ICV%D, CCV%D, LCSL	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	1,2-Dibromo-3-chloropropane	2	U	2	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	Tetrahydrofuran	2	U	2	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	1,2,4-Trichlorobenzene	1	U	1	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	Ethanol	200	U	200	UJ	ICV%D, CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	Chloromethane	2	U	2	UJ	ICV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	2-Butanone	2	U	2	UJ	CCV%D, LCSL	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	Naphthalene	2	U	2	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	4-Methyl-2-pentanone	2	U	2	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	1,4-Dioxane	50	U	50	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	2-Hexanone	2	U	2	UJ	CCV%D, LCSL	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	Ethyl-t-Butyl Ether	1	U	1	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	Acetone	1.86	J B	10	UJ	CCV%D, LCSL	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	Dichlorodifluoromethane	2	U	2	UJ	ICV%D, CCV%D LCSL	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	1,2,3-Trichlorobenzene	1	U	1	UJ	CCV%D	UG/L	Eurofins
620-20506-1	620-20506-9	360175-DP018001D-GW	8260C	N	t-Butyl alcohol	10	U	10	UJ	CCV%D	UG/L	Eurofins

Created by: KLD 10/29/2024 Irvington_Aug2024_Tables2-3 Path 12 of 12 Checked by: TML 10/30/2024

Project No. 3616216144

DATA USABILITY SUMMARY REPORT AUGUST 2024 SAMPLING EVENT IRVINGTON RUGS AND CLEANERS IRVINGTON, NEW YORK

ATTACHMENT B

GENERAL CHEMISTRY

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Table 1 (Samples and Analytical Methods)

Project: Irvington Rugs August 2024 Method: D422 Grain Size, Moisture Laboratory: Eurofins Rhode Island **SDG(s):** 620-20506-1 **Date:** 10/11/2024 Reviewer: Tara LePage X NYSDEC DUSR Review Level ☐ USEPA Region II Guideline 1. Case Narrative Review and Data Package Completeness **COMMENTS** Were problems noted? Yes Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Were all samples prepared and analyzed with the method holding time? YES NO ☐ QC Blanks Are method blanks clean? YES NO NA (circle one) Are Initial and continuing calibration blanks clean? YES NO NA (circle one) 4. Instrument Calibration – Data Package Narrative Review Did the laboratory narrative identify analytes that were not within criteria in the initial and/or continuing calibration standards? YES NO Did the laboratory qualify results based on initial/continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 5. Laboratory Control Sample Results Were all results within 80-120% limits? YES NO NA (circle one) 6. Matrix Spike Were MS/MSDs submitted/analyzed? YES NO NA (circle one) Were all results within nominal 75-125% limits? YES NO NA (circle one) 7. \square Duplicates Were Field Duplicates submitted/analyzed? YES NO 360175-DP018001D-Soil Aqueous RPD within limit? (20%) YES NO NA (circle one) Soil RPD within limit? (35%) YES NO NA (circle one) Lab dup RPD <20% for water, 35% for soil values > 5X the CRQL (or \pm CRQL) YES NO NA 8. Were both **Total and Dissolved** parameters reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results YES NO NA (circle one) 9. Percent Solids < 50% for any soil/sediment sample? If yes, use professional judgment 10. Raw Data Review and Calculation Checks 11. Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 12. DUSR Table Review

Table 2 (Analytical Results)
Table 3 (Qualification Actions)
Were all tables produced and reviewed?

d reviewed? YES NO (circle one)

SVOC as **DRO**

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: Irvington Rugs August 2024

Method: 8015D DRO Laboratory: Eurofins Rhode Island **SDG(s):** 620-20506-1 **Date:** 10/11/2024 Reviewer: Tara LePage X NYSDEC DUSR ☐ USEPA Region II Guideline Review Level 1. Case Narrative Review and Data Package Completeness **COMMENTS** Were problems noted? Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) 2. Holding time and Sample Collection Soil: 14 days from collection to extraction; 40 days from extraction to analysis Water: 7 days from collection to extraction; 40 days from extraction to analysis Hold time met for all samples? YES NO (circle one) 3. OC Blanks Are method blanks free of contamination? **YES** NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) 4. Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one) If yes, use professional judgment to evaluate data and qualify results if needed 5. Internal Standards – Data Package Narrative Review (Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL)) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 6. Instrument Calibration – Data Package Narrative Review Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one) Control Limits (USEPA Region 2 HW-22): Initial Calibration %RSD <20, Continuing Calibration %D Average RRF should be ≥ 0.05 (Use professional judgment J/UJ or J/R) Did the laboratory qualify results based on initial or continuing calibration exceedances? YES If yes to above, use professional judgment to evaluate data and qualify results if needed 7. Surrogate Recovery (Nominal water and soil limits for SVOCs: Base/Neutral 50-140%, Acid 30-140%) Were all results within limits? YES NO (circle one) Were any recoveries < 10\%? (Reject fraction compounds if recoveries are < 10\%) 8. Matrix Spike (Nominal water & soil limits for SVOCS: Base/Neutral 50-140%, Acid 30-140%) (RPD soil=35,water=20) Were MS/MSDs submitted/analyzed? YES NO

	Were all results within limits? YES NO NA (circle one)
9.	Duplicates (RPD limits = water:50, soil:100) Were Field Duplicates submitted/analyzed? YES NO
	Were RPDs within criteria? YES NO NA (circle one)
10.	Laboratory Control Sample Results (Nominal water & soil limits for SVOCs: Base/Neutral 50-140% d 30-140%) Were all results within limits? YES NO (circle one)
11.	Raw Data Review and Calculation Checks
12.	Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one)
13.	Tables and TIC Review Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)
	Table 4 (TICs) Did lab report TICs? YES NO (circle one)

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD **Project:** Irvington Rugs August 2024 Method: 8015D (GRO) Laboratory: Eurofins Rhode Island **SDG(s):** 620-20506-1 **Date:** 10/11/2024 Reviewer: Tara LePage X NYSDEC DUSR ☐ USEPA Region II Guideline Review Level ☑ Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? Yes, see backup Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) 2. M Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one) 3. **Ø** QC Blanks Are method blanks free of contamination? YES NO (circle one) See backup, both MB and sample result were less than the reporting limit. Sample result was raised to the reporting limit with a U qualifier as per NFG guidelines. Are Trip blanks free of contamination? YES NO NA (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) ☑ Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO If yes, use professional judgment to evaluate data and qualify results if needed 5. ☑ Instrument Calibration – Data Package Narrative Review Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one) Initial Calibration % RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 6. ☑ Internal Standards – Data Package Narrative Review (Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 7. Z Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%) Were all results within Region II limits? YES NO (circle one)

Were MS/MSDs submitted/analyzed? YES NO

8. Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

See backup.

9.	abla	Duplicates - Region II Limits (water RPD 50, soil RPD 100)
		Were Field Duplicates submitted/analyzed? YES NO Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA
10.		Laboratory Control Sample Results - Region II (Water and soil 70-130%)
		Were all results within Region II control limits? YES NO (circle one)
11.	$ \sqrt{} $	Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one)
12.		Raw Data Review and Calculation Checks
13.	,	Unsure if I should run calc checks for this method; there are no internal standards in the quant report (1228) Does the EDD match the Form Is? VES NO (circle one)
14.		Tables and TIC Review Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)
		Table 4 (TICs) Did lab report TICs? YES NO (circle one)

analytes were biased high/low in the LCSD but recovered within 70-130%. According to 8260C requirements, analytes are allowed to recover outside in-house control limits as long as recovery is within the method limit of 70-130%; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Gasoline Range Organics

Method 8015D_GRO: Surrogate recovery for the following sample was outside control limits: 360175-DP018001 no quals (620-20506-1). Evidence of pattern interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method Moisture: The sample duplicate (DUP) precision for analytical batch 620-38165 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Geotechnical

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Surrogate Summary

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)
DBFM = Dibromofluoromethane (Surr)

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Matrix: Solid Prep Type: Total/NA

_			Percent Surrogate Recovery (Acceptance Limits)
		25DBTf1	
Lab Sample ID	Client Sample ID	(70-130)	
620-20506-1	360175-DP018001	208 S1+	potential high bias,
620-20506-2	360175-DP018004	84	all samples ND,
LCS 620-38385/1-A	Lab Control Sample	95	no quals
LCSD 620-38385/2-A	Lab Control Sample Dup	94	
MB 620-38385/3-A	Method Blank	84	
Surrogate Legend			
25DBTf = 2,5-Dibromo	toluene (fid)		

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		ОТРН	1COD					
Lab Sample ID	Client Sample ID	(40-140)	(40-140)					
620-20506-1	360175-DP018001	68	95					
620-20506-2	360175-DP018004	68	101					
LCS 620-38241/2-A	Lab Control Sample	68	78					
LCSD 620-38241/3-A	Lab Control Sample Dup	75	83					
MB 620-38241/1-A	Method Blank	54	81					

Surrogate Legend

OTPH = o-Terphenyl

1COD = 1-Chlorooctadecane

Job ID: 620-20506-1

QC Sample Results

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ICSD ICSD

Lab Sample ID: LCSD 620-38433/2-A

Matrix: Solid

Analysis Batch: 38400

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 620-20506-1

Prep Batch: 38433

	LUJD	LUJD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
Toluene-d8 (Surr)	100		70 - 130
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	101		70 - 130

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 620-38385/3-A

Matrix: Solid

Analysis Batch: 38363

MB MB

84

Client Sample ID: Method Blank

08/29/24 08:00 08/29/24 14:24

Prep Type: Total/NA

Prep Batch: 38385

Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
C6-C10 blank <rl, samples<rl,<="" th=""><th>0.6654</th><th>J</th><th>5.00</th><th>0.0555 n</th><th>mg/Kg</th><th>_</th><th>08/29/24 08:00</th><th>08/29/24 14:24</th><th>1</th></rl,>	0.6654	J	5.00	0.0555 n	mg/Kg	_	08/29/24 08:00	08/29/24 14:24	1
samples raised to RL with I	U,	440							
no quals		MB							
Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzed	Dil Fac

Lab Sample ID: LCS 620-38385/1-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Total/NA**

70 - 130

Analysis Batch: 38363

2,5-Dibromotoluene (fid)

Prep Batch: 38385 LCS LCS %Rec

Added Result Qualifier Unit %Rec Limits Analyte C6-C10 12.5 12.44 mg/Kg 100 70 - 130

Spike

LCS LCS %Recovery Qualifier Limits Surrogate 2,5-Dibromotoluene (fid) 95 70 - 130

Lab Sample ID: LCSD 620-38385/2-A

Matrix: Solid

Analysis Batch: 38363

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 38385

LCSD LCSD %Rec **RPD** Spike Result Qualifier Analyte Added Unit D %Rec Limits RPD Limit C6-C10 12.5 12.44 mg/Kg 100 70 - 130 0 25

LCSD LCSD %Recovery Qualifier Limits Surrogate 2,5-Dibromotoluene (fid) 70 - 130 94

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 620-38241/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 38342** Prep Batch: 38241 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed C10-C28 ND U 13.3 08/27/24 09:04 08/29/24 10:41 11.8 mg/Kg

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 54 40 - 140 08/27/24 09:04 08/29/24 10:41

Eurofins Rhode Island

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD **Project:** Irvington Rugs August 2024 Method: 8260C Laboratory: Eurofins Rhode Island SDG(s): 620-20506-1 **Date:** 10/7/2024 Reviewer: Tara LePage X NYSDEC DUSR Review Level USEPA Region II Guideline **☑** Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? Yes, see backup Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) All samples were analyzed within the 14 day holding time. YES NO (circle one) 3. 🗹 QC Blanks Are method blanks free of contamination? YES NO (circle one) See backup, both MB and sample result were less than the reporting limit. Sample result was raised to the reporting limit with a U qualifier as per NFG guidelines. Are Trip blanks free of contamination? YES NO (circle one) See backup, TB-01 and TB-02 both had reported results for acetone under the RL. Sample results for the associated TB were raised to the reporting limit with a U qualifier and ND results were not affected as per NFG Guidelines Are Rinse blanks free of contamination? YES NO NA (circle one) 4. ☑ Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one) If yes, use professional judgment to evaluate data and qualify results if needed 5. ☑ Instrument Calibration – Data Package Narrative Review Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% See backup for qualfications Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 6. ☑ Internal Standards – Data Package Narrative Review (Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

7. Zurrogate Recovery - Region II limits (water 80-120%, soil 70-130%)

Were all results within Region II limits? YES NO (circle one)

Were MS/MSDs submitted/analyzed? YES NO 360175-DP18007 was submitted by WSP and analyzed Were all results within the Region II limits? YES NO NA (circle one) See backup; low %Recovery for 2-Butanone, Acetone, Bromomethane, Chloroethane, and Ethanol; RPD greater than 35 for multiple parameters but all results at reporting limits, no qualifications **Duplicates** - Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO 360175-DP018001-GW and 360175-DP018001D-GW 360175-DP018001-SOIL and 360175-DP018001D-SOIL Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA See calculations in backup; trichloroethene RPD 108% for 360175-DP018001-SOIL 10. Laboratory Control Sample Results - Region II (Water and soil 70-130%) Were all results within Region II control limits? YES NO (circle one) See backup for qualifications 11. **Example 1** Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one) Samples were analyzed at a dilution but were not in the reported results. 12. Z Raw Data Review and Calculation Checks 13. Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 14. ☐ **Tables and TIC Review Table 1** (Samples and Analytical Methods) Table 2 (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one) Table 4 (TICs) Did lab report TICs?

YES NO (circle one)

Case Narrative

Client: WSP USA Environment & Infrastructure Inc. Job ID: 620-20506-1

Project: Irvington R&C

Job ID: 620-20506-1 Eurofins Rhode Island

Job Narrative 620-20506-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 8/23/2024 10:35 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C.

Receipt Exceptions

The following samples were received with insufficient time remaining to freeze within 48 hours, as required for samples collected in water preserved TerraCores: 360175-DP018001 (620-20506-1), 360175-DP018004 (620-20506-2), 360175-DP018007 (620-20506-3), 360175-DP018007 (620-20506-3), 360175-DP018007 (620-20506-4), 360175-DP018009 (620-20506-5), 360175-DP018001 (620-20506-6), 360175-DP018001 (620-20506-7), 360175-DP018008 (620-20506-8), 360175-DP018001D (620-20506-9) and 360175-TB001 (620-20506-10). The sample(s) was collected on August 20, 2024. The sample(s) was received on August 23, 2024 at 10:35. Per client, the laboratory is to run the methanol vials only.

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. The analysis listed on the COC is VOC 8260 STARS. Per client, the 8260 should be full list.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 620-38145 recovered outside control limits for the following analyte: Chlorobenzene. This analyte was biased low in the LCS and was not detected in the associated samples. According to 8260C requirements, <10% of analytes are allowed to recover outside control limits; therefore, the data have been reported.

CCV%D. UJ/J

Method 8260C: The continuing calibration verification (CCV) associated with batch 620-38190 exhibited % difference of > 30% for the following analytes: 1,2-Dibromo-3-Chloropropane, 1,2,4-Trichlorobenzene, Tetrahydrofuran and Ethyl tert-butyl ether; however, the results of the LCS were within the CCV acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 20% difference from the initial calibration. According to the laboratory standard operating procedure, the LCS is acceptable if it meets the CCV acceptance criteria.

Method 8260C: The large number of analytes included in the continuing calibration verification (CCV) gives a high probability that one or more analytes will be outside acceptance criteria. As indicated in the reference method, analysis may proceed as long as no more than 20% of the analytes of interest are outside the method-defined %D criteria. Affected analytes (biased low): 2-Methyl-2-propanol, Naphthalene, and 1,2,3-Trichlorobenzene. CCV%D, UJ/J (CCVIS 620-38190/3)

no quals

9/9/2024

Method 8260C: The laboratory control sample duplicate (LCSD) for analytical batch 620-38190 recovered outside control limits for the following analytes: Trichlorofluoromethane (Freon 11). This analyte was biased low in the LCSD and was not detected in the associated samples. According to 8260C requirements, <10% of analytes are allowed to recover outside control limits; therefore, the data have been reported.

Method 8260C: The continuing calibration verification (CCV) associated with batch 620-38227 exhibited % difference of > 20% for the following analytes: Naphthalene, 1,2,3-Trichlorobenzene and tert-Butanol; however, the results of the LCS were within the CCV acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 20% difference from the initial calibration. According to the laboratory standard operating procedure, the LCS is acceptable if it meets the CCV acceptance criteria.

TML 10/10/24

Eurofins Rhode Island

Page 5 of 89

2

3

5

6

8

9

11

13

14

15

وادییه د

Case Narrative

Client: WSP USA Environment & Infrastructure Inc.

Project: Irvington R&C

Job ID: 620-20506-1 (Continued)

Eurofins Rhode Island

Job ID: 620-20506-1

Method 8260C: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch no quals 620-38227 recovered outside control limits for the following analyte: 2-Chlorotoluene. This analyte was biased high in the LCS and was not detected in the associated samples. According to 8260C requirements, <10% of analytes are allowed to recover outside control limits; therefore, the data have been reported.

Method 8260C: The continuing calibration verification (CCV) associated with batch 620-38400 exhibited % difference of > 20% for the following analytes: 1,2-Dibromo-3-Chloropropane, Naphthalene, 1,2,3-Trichlorobenzene, Tetrahydrofuran, tert-Butanol and trans-1,4-Dichloro-2-butene; however, the results of the LCS were within the CCV acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 20% difference from the initial calibration. NO quals According to the laboratory standard operating procedure, the LCS is acceptable if it meets the CCV acceptance criteria.

Method 8260C: The laboratory control sample (LCS) for preparation batch 620-38433 and analytical batch 620-38400 recovered NO QUAIS outside in-house control limits for the following analytes: 1,2-Dibromo-3-Chloropropane, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,2,3-Trichloropropane and tert-Butanol. These analytes were biased low in the LCS, but recovered within 70-130%. According to 8260C requirements, analytes are allowed to recover outside in-house control limits as long as recovery is within the method limit of 70-130%; therefore, the data have been reported.

Method 8260C: The laboratory control sample duplicate (LCSD) for preparation batch 620-38433 and analytical batch 620-38400 no quals recovered outside in-house control limits for the following analytes: 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,2,3-Trichloropropane and tert-Butanol. These analytes were biased low in the LCSD but recovered within 70-130%. According to 8260C requirements, analytes are allowed to recover outside in-house control limits as long as recovery is within the method limit of 70-130%; therefore, the data have been reported.

Method 8260C: The laboratory control sample (LCS) for preparation batch 620-38433 and analytical batch 620-38400 recovered LCSL, UJ/Joutside control limits for the following analyte: Ethanol, which has has been identified as a poor performing analyte when analyzed using this method. According to 8260C requirements, poor performers are allowed to recover within 50-150%; therefore, reextraction/re-analysis was not performed. These results have been reported and qualified.

Method 8260C: The laboratory control sample duplicate (LCSD) for preparation batch 620-38433 and analytical batch 620-38400 LCSL, UJ/Jrecovered outside control limits for the following analytes: 2-Butanone (MEK) and Ethanol, which have been identified as poor performing analytes when analyzed using this method. According to 8260C requirements, poor performers are allowed to recover within 50-150%; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 620-38310 and analytical batch 620-38284 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected MSL, UJ/Jbecause the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8260C: The large number of analytes included in the continuing calibration verification (CCV) gives a high probability that one or more analytes will be outside acceptance criteria. As indicated in the reference method, analysis may proceed as long as no more than 20% of the analytes of interest are outside the method-defined %D criteria. Affected analytes (biased high): Vinyl chloride, 2-Chlorotoluene, and 4-Chlorotoluene. CCV%D, UJ/J (CCVIS 620-38284/3)

Method 8260C: The continuing calibration verification (CCV) associated with batch 620-38284 exhibited % difference of > 20% for the following analytes: 1,3-Dichlorobenzene, Ethylbenzene, Naphthalene, N-Propylbenzene and tert-Butanol; however, the results of the LCS were within the CCV acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 20% difference from the initial calibration. According to the laboratory standard operating procedure, the LCS is acceptable if it meets the CCV acceptance criteria.

Method 8260C: The laboratory control sample (LCS) for preparation batch 620-38310 and analytical batch 620-38284 recovered outside in-house control limits for the following analytes: 2-Chlorotoluene, 4-Chlorotoluene, N-Propylbenzene, tert-Butanol and Ethanol. These analytes were biased high/low in the LCS but recovered within 70-130%. According to 8260C requirements, no quals analytes are allowed to recover outside in-house control limits as long as recovery is within the method limit of 70-130%; therefore, the data have been reported.

Method 8260C: The laboratory control sample duplicate (LCSD) for preparation batch 620-38310 and analytical batch 620-38284 recovered outside in-house control limits for the following analytes: 2-Chlorotoluene and Ethanol. These analytes were biased high/low in the LCSD but recovered within 70-130%. According to 8260C requirements, analytes are allowed to recover outside inhouse control limits as long as recovery is within the method limit of 70-130%; therefore, the data have been reported. no quals

Eurofins Rhode Island

TML 10/10/24 Page 6 of 89 9/9/2024

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Client Sample ID: 360175-DP018009 Lab Sample ID: 620-20506-5

Date Collected: 08/20/24 13:30 **Matrix: Solid** Date Received: 08/23/24 10:35 Percent Solids: 90.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane (Freon 11)	ND	U	41.9	18.9	ug/Kg	<u></u>	08/28/24 12:06	08/28/24 16:59	1
1,2,3-Trichloropropane	ND	U	41.9	19.3	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
1,2,4-Trimethylbenzene	ND	U	41.9	10.6	ug/Kg	₽	08/28/24 12:06	08/28/24 16:59	1
1,3,5-Trimethylbenzene	ND	U	41.9	8.76	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
Vinyl chloride	ND	U	41.9	20.6	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
m,p-Xylene	ND	U	41.9	24.7	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
o-Xylene	ND	U	41.9	12.9	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
Tetrahydrofuran	ND	U	83.8	30.6	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
Ethyl ether	ND	U	41.9	11.4	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
Tert-amyl methyl ether	ND	U	41.9	23.2	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
Ethyl tert-butyl ether	ND	U	41.9	11.6	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
di-Isopropyl ether	ND	U	41.9	13.5	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
tert-Butanol	ND	U *-	838	595	ug/Kg	☼	08/28/24 12:06	08/28/24 16:59	1
1,4-Dioxane	ND	U	838	247	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
trans-1,4-Dichloro-2-butene	ND	U	210	27.7	ug/Kg	≎	08/28/24 12:06	08/28/24 16:59	1
Ethanol	ND	U *-	8380	721	ug/Kg	₩	08/28/24 12:06	08/28/24 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/28/24 12:06	08/28/24 16:59	1
Toluene-d8 (Surr)	98		70 - 130				08/28/24 12:06	08/28/24 16:59	1
1,2-Dichloroethane-d4 (Surr)	89		70 - 130				08/28/24 12:06	08/28/24 16:59	1
Dibromofluoromethane (Surr)	97		70 - 130				08/28/24 12:06	08/28/24 16:59	1

Client Sample ID: 360175-TB002 Lab Sample ID: 620-20506-6

Date Collected: 08/21/24 00:00 **Matrix: Solid** Date Received: 08/23/24 10:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane (Freon 113) blank and sample result < RL;	ND	U	50.0	27.4	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Acetone sample results raised to RL with U	70.5	J	500	63.0	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Acrylonitrile	ND	U	50.0	18.1	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Benzene	ND	U	50.0	8.00	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Bromobenzene	ND	U	50.0	11.3	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Bromochloromethane	ND	U	50.0	7.15	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Bromodichloromethane	ND	U	50.0	12.9	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Bromoform	ND	U	50.0	10.7	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Bromomethane	ND	U	100	24.7	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
2-Butanone (MEK)	ND	U	100	22.9	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
n-Butylbenzene	ND	U	50.0	20.0	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
sec-Butylbenzene	ND	U	50.0	15.4	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
tert-Butylbenzene	ND	U	50.0	20.4	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Carbon disulfide	ND	U	100	18.5	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Carbon tetrachloride	ND	U	50.0	15.0	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Chlorobenzene	ND	U	50.0	6.05	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Chloroethane	ND	U	100	22.3	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Chloroform	ND	U	50.0	5.90	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
Chloromethane	ND	U	100	59.5	ug/Kg		08/28/24 12:06	08/28/24 13:42	1
2-Chlorotoluene	ND	U *+	50.0	12.4	ug/Kg		08/28/24 12:06	08/28/24 13:42	1

Eurofins Rhode Island

TML 10/10/24

Job ID: 620-20506-1

9/9/2024

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Client Sample ID: 360175-DP018001D

Lab Sample ID: 620-20506-9 Date Collected: 08/20/24 10:00

Matrix: Water

Job ID: 620-20506-1

Date Received: 08/23/24 10:35

Method: SW846 8260C - Volatile Organic Compounds by GC/MS (Continued)

	Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	96		70 - 130			08/26/24 21:15	1
	1,2-Dichloroethane-d4 (Surr)	95		70 - 130			08/26/24 21:15	1
İ	Dibromofluoromethane (Surr)	99		70 - 130			08/26/24 21:15	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	2880		100	36.4	ug/L			08/27/24 12:00	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130					08/27/24 12:00	100
Toluene-d8 (Surr)	99		70 - 130					08/27/24 12:00	100
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					08/27/24 12:00	100
Dibromofluoromethane (Surr)	105		70 - 130					08/27/24 12:00	100

Client Sample ID: 360175-TB001 Lab Sample ID: 620-20506-10

Date Collected: 08/21/24 00:00 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane (Freon	ND	U	1.00	0.202	ug/L			08/26/24 13:12	1
113) blank and sample result < RL;			_						
Acetone sample results raised to RL with U	3.17		10.0	0.902				08/26/24 13:12	1
Acrylonitrile sample result> 2xblank ; no qual			1.00	0.356				08/26/24 13:12	1
Benzene	ND		1.00	0.250	•			08/26/24 13:12	1
Bromobenzene	ND	-	1.00	0.403	J			08/26/24 13:12	1
Bromochloromethane	ND	U	1.00	0.391	ug/L			08/26/24 13:12	1
Bromodichloromethane	ND	U	0.500	0.334	ug/L			08/26/24 13:12	1
Bromoform	ND	U	1.00	0.454	ug/L			08/26/24 13:12	1
Bromomethane	ND	U	2.00	0.627	ug/L			08/26/24 13:12	1
2-Butanone (MEK)	ND	U	2.00	0.577	ug/L			08/26/24 13:12	1
n-Butylbenzene	ND	U	1.00	0.450	ug/L			08/26/24 13:12	1
sec-Butylbenzene	ND	U	1.00	0.401	ug/L			08/26/24 13:12	1
tert-Butylbenzene	ND	U	1.00	0.400	ug/L			08/26/24 13:12	1
Carbon disulfide	ND	U	2.00	0.438	ug/L			08/26/24 13:12	1
Carbon tetrachloride	ND	U	1.00	0.246	ug/L			08/26/24 13:12	1
Chlorobenzene	ND	U	1.00	0.417	ug/L			08/26/24 13:12	1
Chloroethane	ND	U	2.00	0.405	ug/L			08/26/24 13:12	1
Chloroform	ND	U	1.00	0.297	ug/L			08/26/24 13:12	1
Chloromethane	ND	U	2.00	0.485	ug/L			08/26/24 13:12	1
2-Chlorotoluene	ND	U	1.00	0.429	ug/L			08/26/24 13:12	1
4-Chlorotoluene	ND	U	1.00	0.416	ug/L			08/26/24 13:12	1
1,2-Dibromo-3-Chloropropane	ND	U	2.00	0.511	ug/L			08/26/24 13:12	1
Dibromochloromethane	ND	U	0.500	0.326	•			08/26/24 13:12	1
1,2-Dibromoethane (EDB)	ND	U	0.500	0.339	ug/L			08/26/24 13:12	1
Dibromomethane	ND	U	1.00	0.364	ug/L			08/26/24 13:12	1
1,2-Dichlorobenzene	ND	U	1.00	0.480	-			08/26/24 13:12	1
1,3-Dichlorobenzene	ND	U	1.00	0.500	_			08/26/24 13:12	1
1,4-Dichlorobenzene	ND	U	1.00	0.487				08/26/24 13:12	1
Dichlorodifluoromethane (Freon 12)	ND		2.00	0.289	-			08/26/24 13:12	1

TML 10/10/24

Eurofins Rhode Island

Page 28 of 89

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 620-38145/5

Matrix: Water

Analysis Batch: 38145

4-Methyl-2-pentanone (MIBK)

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene 1,3,5-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene

Methylene Chloride

N-Propylbenzene

Tetrachloroethene

Naphthalene

Styrene

Toluene

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon disulfide	20.0	23.27		ug/L		116	69 - 150	3	20
Carbon tetrachloride	20.0	19.86		ug/L		99	84 - 123	4	20
Chlorobenzene	20.0	18.33	*_	ug/L		92	93 - 115	1	20
Chloroethane	20.0	15.96		ug/L		80	56 - 155	3	20
Chloroform	20.0	19.78		ug/L		99	84 - 116	3	20
Chloromethane	20.0	15.44		ug/L		77	45 - 138	3	20
2-Chlorotoluene	20.0	18.85		ug/L		94	88 - 116	2	20
4-Chlorotoluene	20.0	18.62		ug/L		93	81 - 128	1	20
1,2-Dibromo-3-Chloropropane	20.0	18.45		ug/L		92	70 - 139	2	20
Dibromochloromethane	20.0	20.12		ug/L		101	83 - 132	4	20
1,2-Dibromoethane (EDB)	20.0	20.31		ug/L		102	82 - 125	3	20
Dibromomethane	20.0	20.05		ug/L		100	80 - 125	2	20
1,2-Dichlorobenzene	20.0	19.72		ug/L		99	84 - 128	1	20
1,3-Dichlorobenzene	20.0	18.61		ug/L		93	85 - 120	1	20
1,4-Dichlorobenzene	20.0	19.34		ug/L		97	86 - 116	1	20
Dichlorodifluoromethane (Freon LCSL, UJ 12)	20.0	13.05		ug/L		65	36 - 131	9	20
1,1-Dichloroethane	20.0	20.10		ug/L		101	81 - 120	1	20
1,2-Dichloroethane	20.0	17.97		ug/L		90	82 - 116	3	20
1,1-Dichloroethene	20.0	20.12		ug/L		101	83 - 120	2	20
cis-1,2-Dichloroethene	20.0	20.19		ug/L		101	81 - 124	0	20
trans-1,2-Dichloroethene	20.0	20.03		ug/L		100	81 - 127	3	20
1,2-Dichloropropane	20.0	19.79		ug/L		99	76 - 132	2	20
1,3-Dichloropropane	20.0	18.91		ug/L		95	74 - 122	2	20
2,2-Dichloropropane	20.0	19.49		ug/L		97	77 - 130	3	20
1,1-Dichloropropene	20.0	18.08		ug/L		90	81 - 115	2	20
cis-1,3-Dichloropropene	20.0	20.82		ug/L		104	74 - 129	2	20
trans-1,3-Dichloropropene	20.0	21.14		ug/L		106	78 - 126	5	20
Ethylbenzene	20.0	18.89		ug/L		94	89 - 117	2	20
Hexachlorobutadiene	20.0	20.84		ug/L		104	77 - 118	2	20
2-Hexanone (MBK)	20.0	18.15		ug/L		91	37 - 123	2	20
Isopropylbenzene	20.0	17.99		ug/L		90	83 - 117	1	20
4-Isopropyltoluene	20.0	20.53		ug/L		103	83 - 124	0	20
Methyl tert-butyl ether	20.0	19.10		ug/L		96	70 - 126	1	20

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

Page 39 of 89

19.69

18.72

21.29

19.61

19.57

19.04

17.81

19.44

19.33

20.07

19.59

20.71

19.63

20.39

18.92

Eurofins Rhode Island

ug/L

98

94

106

98

98

95

89

97

97

100

98

104

98

102

95

59 - 118

75 - 121

67 - 123

84 - 128

78 - 127

91 - 118

77 - 129

85 - 116

88 - 109

67 - 134

78 - 133

77 - 127

83 - 124

84 - 132

74 - 118

2

0

2

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

TML 10/10/24

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 620-38145/5

Matrix: Water

Analysis Batch: 38145

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichlorofluoromethane (Freon	20.0	18.39		ug/L		92	82 - 126	4	20
11)									
1,2,3-Trichloropropane	20.0	17.89		ug/L		89	77 - 124	1	20
1,2,4-Trimethylbenzene	20.0	19.71		ug/L		99	89 - 126	2	20
1,3,5-Trimethylbenzene	20.0	19.65		ug/L		98	89 - 125	2	20
Vinyl chloride	20.0	16.59		ug/L		83	62 - 130	3	20
m,p-Xylene	40.0	39.30		ug/L		98	85 - 123	1	20
o-Xylene	20.0	19.32		ug/L		97	85 - 119	0	20
Tetrahydrofuran	20.0	19.55		ug/L		98	60 - 133	0	20
Ethyl ether	20.0	17.67		ug/L		88	69 - 122	3	20
Tert-amyl methyl ether	20.0	18.46		ug/L		92	50 - 140	4	20
Ethyl tert-butyl ether	20.0	18.64		ug/L		93	60 - 131	2	20
di-Isopropyl ether	20.0	17.94		ug/L		90	67 - 125	3	20
tert-Butanol	200	208.7		ug/L		104	50 - 169	4	20
1,4-Dioxane	200	193.9		ug/L		97	28 - 150	13	20
trans-1,4-Dichloro-2-butene	20.0	22.32		ug/L		112	48 - 153	5	20
Ethanol	400	422.6		ug/L		106	47 - 170	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
Toluene-d8 (Surr)	101		70 - 130
1,2-Dichloroethane-d4 (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130

Lab Sample ID: MB 620-38190/7

Matrix: Water

Analysis Batch: 38190

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch. 30130	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane (Freon	ND	U	1.00	0.202	ug/L			08/26/24 12:18	1
113) Acetone sample <rl, no="" quals<="" td=""><td>2.278</td><td>J</td><td>10.0</td><td>0.902</td><td>ug/L</td><td></td><td></td><td>08/26/24 12:18</td><td>1</td></rl,>	2.278	J	10.0	0.902	ug/L			08/26/24 12:18	1
Acrylonitrile RL <sample regult<="" td=""><td>ND</td><td>U</td><td>1.00</td><td>0.356</td><td>ug/L</td><td></td><td></td><td>08/26/24 12:18</td><td>1</td></sample>	ND	U	1.00	0.356	ug/L			08/26/24 12:18	1
Benzene sample result	ND	U	1.00	0.250	ug/L			08/26/24 12:18	1
Bromobenzene	ND	U	1.00	0.403	ug/L			08/26/24 12:18	1
Bromochloromethane	ND	U	1.00	0.391	ug/L			08/26/24 12:18	1
Bromodichloromethane	ND	U	0.500	0.334	ug/L			08/26/24 12:18	1
Bromoform	ND	U	1.00	0.454	ug/L			08/26/24 12:18	1
Bromomethane	ND	U	2.00	0.627	ug/L			08/26/24 12:18	1
2-Butanone (MEK)	ND	U	2.00	0.577	ug/L			08/26/24 12:18	1
n-Butylbenzene	ND	U	1.00	0.450	ug/L			08/26/24 12:18	1
sec-Butylbenzene	ND	U	1.00	0.401	ug/L			08/26/24 12:18	1
tert-Butylbenzene	ND	U	1.00	0.400	ug/L			08/26/24 12:18	1
Carbon disulfide	ND	U	2.00	0.438	ug/L			08/26/24 12:18	1
Carbon tetrachloride	ND	U	1.00	0.246	ug/L			08/26/24 12:18	1
Chlorobenzene	ND	U	1.00	0.417	ug/L			08/26/24 12:18	1
Chloroethane	ND	U	2.00	0.405	ug/L			08/26/24 12:18	1
Chloroform	ND	U	1.00	0.297	ug/L			08/26/24 12:18	1
Chloromethane	ND	U	2.00	0.485	ug/L			08/26/24 12:18	1

Eurofins Rhode Island

TML 10/10/24

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 620-38190/7

Matrix: Water

Analysis Batch: 38190

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrahydrofuran	ND	U	2.00	0.704	ug/L			08/26/24 12:18	1
Ethyl ether	ND	U	1.00	0.421	ug/L			08/26/24 12:18	1
Tert-amyl methyl ether	ND	U	1.00	0.260	ug/L			08/26/24 12:18	1
Ethyl tert-butyl ether	ND	U	1.00	0.293	ug/L			08/26/24 12:18	1
di-Isopropyl ether	ND	U	1.00	0.260	ug/L			08/26/24 12:18	1
tert-Butanol	ND	U	10.0	8.52	ug/L			08/26/24 12:18	1
1,4-Dioxane	ND	U	50.0	7.43	ug/L			08/26/24 12:18	1
trans-1,4-Dichloro-2-butene	ND	U	5.00	0.806	ug/L			08/26/24 12:18	1
Ethanol	ND	U	200	9.08	ua/l			08/26/24 12:18	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	90		70 - 130		08/26/24 12:18	1	
Toluene-d8 (Surr)	100		70 - 130		08/26/24 12:18	1	
1,2-Dichloroethane-d4 (Surr)	93		70 - 130		08/26/24 12:18	1	
Dibromofluoromethane (Surr)	102		70 - 130		08/26/24 12:18	1	

Lab Sample ID: LCS 620-38190/4

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 38190								71.
7a., 0.10 _0		Spike	LCS	LCS				%Rec
Analyte	Limits: 70-130	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichlorotr	ifluoroethane	20.0	18.97		ug/L		95	85 - 124
(Freon 113)		_					_	
Acetone	LCSL, UJ	20.0	13.33		ug/L		67	14 - 133
Acrylonitrile		20.0	19.70		ug/L		98	62 - 134
Benzene		20.0	21.64		ug/L		108	86 - 111
Bromobenzene		20.0	20.90		ug/L		104	82 - 120
Bromochlorome	ethane	20.0	21.78		ug/L		109	83 - 123
Bromodichloron	nethane	20.0	19.84		ug/L		99	83 - 137
Bromoform		20.0	19.04		ug/L		95	91 - 137
Bromomethane		20.0	19.87		ug/L		99	29 - 148
2-Butanone (ME	EK) LCSL, UJ	20.0	12.39		ug/L		62	10 - 200
n-Butylbenzene		20.0	18.60		ug/L		93	85 ₋ 138
sec-Butylbenze	ne	20.0	20.21		ug/L		101	75 - 118
tert-Butylbenzer	ne	20.0	19.01		ug/L		95	85 - 122
Carbon disulfide	е	20.0	20.44		ug/L		102	69 - 150
Carbon tetrachle	oride	20.0	18.09		ug/L		90	84 - 123
Chlorobenzene		20.0	20.03		ug/L		100	93 - 115
Chloroethane		20.0	21.07		ug/L		105	56 - 155
Chloroform		20.0	20.82		ug/L		104	84 - 116
Chloromethane		20.0	16.81		ug/L		84	45 - 138
2-Chlorotoluene	•	20.0	23.15		ug/L		116	88 - 116
4-Chlorotoluene	•	20.0	22.33		ug/L		112	81 - 128
1,2-Dibromo-3-0	Chloropropane	20.0	15.75		ug/L		79	70 - 139
Dibromochloron	nethane	20.0	17.04		ug/L		85	83 - 132
1,2-Dibromoeth	ane (EDB)	20.0	18.39		ug/L		92	82 - 125
Dibromomethan	ne	20.0	19.12		ug/L		96	80 - 125
1,2-Dichloroben	zene	20.0	21.89		ug/L		109	84 - 128
1,3-Dichloroben	nzene	20.0	22.44		ug/L		112	85 - 120
•					•			

Eurofins Rhode Island

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 620-38190/4

Matrix: Water

Vinyl chloride

Tetrahydrofuran

Tert-amyl methyl ether

Ethyl tert-butyl ether

di-Isopropyl ether

m,p-Xylene

o-Xylene

Ethyl ether

tert-Butanol

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Bate	ch: 38190								
		Spike	LCS	LCS				%Rec	
Analyte	Limits: 70-130	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenze	ene	20.0	22.06		ug/L		110	86 - 116	
Dichlorodifluorom	ethane (Freon	20.0	12 33		ua/L		62	36 131	

Analyte	Limits: 70-130	Added	Result	Qualifier Unit	D %Rec	Limits	
1,4-Dichlorobenzen	ne	20.0	22.06	ug/L		86 - 116	
Dichlorodifluoromet 12)	thane (Freon LCSL, UJ	20.0	12.33	ug/L	62	36 - 131	
1,1-Dichloroethane		20.0	20.80	ug/L	104	81 - 120	
1,2-Dichloroethane		20.0	17.66	ug/L	88	82 - 116	
1,1-Dichloroethene		20.0	20.69	ug/L	103	83 - 120	
cis-1,2-Dichloroethe	ene	20.0	19.94	ug/L	100	81 - 124	
trans-1,2-Dichloroe	thene	20.0	20.31	ug/L	102	81 - 127	
1,2-Dichloropropan	е	20.0	20.78	ug/L	104	76 - 132	
1,3-Dichloropropan	e	20.0	19.42	ug/L	97	74 - 122	
2,2-Dichloropropan	e	20.0	18.79	ug/L	94	77 - 130	
1,1-Dichloropropen	e	20.0	20.69	ug/L	103	81 - 115	
cis-1,3-Dichloropro	pene	20.0	19.17	ug/L	96	74 - 129	
trans-1,3-Dichlorop	ropene	20.0	19.81	ug/L	99	78 - 126	
Ethylbenzene		20.0	22.34	ug/L	112	89 - 117	
Hexachlorobutadier	ne	20.0	18.22	ug/L	91	77 - 118	
2-Hexanone (MBK)	LCSL, UJ	20.0	13.17	ug/L	66	37 - 123	
Isopropylbenzene	2002, 00	20.0	20.62	ug/L	103	83 - 117	
4-Isopropyltoluene		20.0	19.74	ug/L	99	83 - 124	
Methyl tert-butyl eth	ner	20.0	17.64	ug/L	88	70 - 126	
4-Methyl-2-pentano	one (MIBK)	20.0	16.15	ug/L	81	59 ₋ 118	
Methylene Chloride	· · · · · · · · · · · · · · · · · · ·	20.0	21.08	ug/L	105	75 - 121	
Naphthalene		20.0	15.01	ug/L	75	67 - 123	
N-Propylbenzene		20.0	22.46	ug/L	112	84 - 128	
Styrene		20.0	21.27	ug/L	106	78 - 127	
1,1,1,2-Tetrachloroe	ethane	20.0	20.25	ug/L	101	91 - 118	
1,1,2,2-Tetrachloroe	ethane	20.0	19.12	ug/L	96	77 - 129	
Tetrachloroethene		20.0	19.72	ug/L	99	85 - 116	
Toluene		20.0	20.26	ug/L	101	88 - 109	
1,2,3-Trichlorobenz	ene	20.0	15.53	ug/L	78	67 - 134	
1,2,4-Trichlorobenz	ene	20.0	16.94	ug/L	85	78 - 133	
1,3,5-Trichlorobenz	ene	20.0	19.55	ug/L	98	77 - 127	
1,1,1-Trichloroethai	ne	20.0	18.22	ug/L	91	83 - 124	
1,1,2-Trichloroethai	ne	20.0	18.76	ug/L	94	84 - 132	
Trichloroethene		20.0	18.76	ug/L	94	74 - 118	
Trichlorofluorometh	ane (Freon	20.0	17.90	ug/L	90	82 - 126	
11) 1,2,3-Trichloropropa	ane	20.0	18.61	ug/L	93	77 - 124	
1,2,4-Trimethylbenz		20.0	19.74	ug/L	99	89 - 126	
1,3,5-Trimethylbenz		20.0	19.14	ug/L	96	89 ₋ 125	
1,0,0-11111161119106112	Lene	20.0	19.10	ug/L	90	09 - 120	

TML 10/10/24

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Eurofins Rhode Island

9/9/2024

106

102

101

86

95

90

85

91

74

62 - 130

85 - 123

85 - 119

60 - 133

69 - 122

50 - 140

60 - 131

67 - 125

50 - 169

Page 43 of 89

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

200

21.28

20.41

20.12

17.13

19.00

17.93

16.90

18.23

147.6

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 620-38190/4

Matrix: Water

Analysis Batch: 38190

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	200	171.7		ug/L		86	28 - 150	
trans-1,4-Dichloro-2-butene	20.0	17.74		ug/L		89	48 - 153	
Ethanol	400	392.8		ug/L		98	47 - 170	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCSD 620-38190/5

Analysis Batch: 38190							
	Spike	LCSD	LCSD		%Rec		RPD
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	RPD	Limi
1,1,2-Trichlorotrifluoroethane	20.0	17.31	ug/L	87	85 - 124	9	20
(Freon 113) Acetone LCSL,UJ	20.0	13.23	ug/L	66	14 - 133	1	20
Acrylonitrile	20.0	18.28	ug/L	91	62 - 134	7	20
Benzene	20.0	21.41	ug/L	107	86 - 111	<u>.</u> .	20
Bromobenzene	20.0	19.69	ug/L	98	82 - 120	6	20
Bromochloromethane	20.0	20.86	ug/L	104	83 - 123	4	20
Bromodichloromethane	20.0	19.33	ug/L	97	83 - 137	3	20
Bromoform	20.0	18.23	ug/L	91	91 - 137	4	20
Bromomethane	20.0	19.89	ug/L	99	29 - 148	0	20
2-Butanone (MEK) LCSL, UJ	20.0	12.46	ug/L	62	10 - 200	1	20
n-Butylbenzene	20.0	18.56	ug/L	93	85 - 138	0	20
sec-Butylbenzene	20.0	19.57	ug/L	98	75 - 118	3	20
tert-Butylbenzene	20.0	19.05	ug/L	95	85 - 122	0	20
Carbon disulfide	20.0	19.52	ug/L	98	69 - 150	5	20
Carbon tetrachloride	20.0	16.77	ug/L	84	84 - 123	8	20
Chlorobenzene	20.0	19.37	ug/L	97	93 - 115	3	20
Chloroethane	20.0	21.09	ug/L	105	56 - 155	0	20
Chloroform	20.0	20.46	ug/L	102	84 - 116	2	20
Chloromethane	20.0	16.03	ug/L	80	45 - 138	5	20
2-Chlorotoluene	20.0	22.46	ug/L	112	88 - 116	3	20
4-Chlorotoluene	20.0	21.76	ug/L	109	81 - 128	3	20
1,2-Dibromo-3-Chloropropane	20.0	15.93	ug/L	80	70 - 139	1	20
Dibromochloromethane	20.0	16.72	ug/L	84	83 - 132	2	20
1,2-Dibromoethane (EDB)	20.0	18.23	ug/L	91	82 - 125	1	20
Dibromomethane	20.0	18.13	ug/L	91	80 - 125	5	20
1,2-Dichlorobenzene	20.0	21.72	ug/L	109	84 - 128	1	20
1,3-Dichlorobenzene	20.0	21.37	ug/L	107	85 - 120	5	20
1,4-Dichlorobenzene	20.0	21.24	ug/L	106	86 - 116	4	20
Dichlorodifluoromethane (Freon LCSL, UJ 12)	20.0	11.28	ug/L	56	36 - 131	9	20
1,1-Dichloroethane	20.0	20.36	ug/L	102	81 - 120	2	20
1,2-Dichloroethane	20.0	16.87	ug/L	84	82 - 116	5	20
1,1-Dichloroethene	20.0	19.48	ug/L	97	83 - 120	6	20

TML 10/10/24

Eurofins Rhode Island

Page 44 of 89

9/9/2024

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 620-38190/5

Matrix: Water

Ethanol

Analysis Batch: 38190

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Limits: 70-130	Spike Added	LCSD L Result Q		D %Rec	%Rec Limits	RPD	RPD Limit
cis-1,2-Dichloroethene	20.0	19.96	ug/L		81 - 124		20
trans-1,2-Dichloroethene	20.0	19.72	ug/L	99	81 - 127	3	20
1,2-Dichloropropane	20.0	20.91	ug/L	105	76 - 132	1	20
1,3-Dichloropropane	20.0	19.20	ug/L	96	74 - 122	1	20
2,2-Dichloropropane	20.0	18.28	ug/L	91	77 - 130	3	20
1,1-Dichloropropene	20.0	20.61	ug/L	103	81 - 115	0	20
cis-1,3-Dichloropropene	20.0	19.50	ug/L	97	74 - 129	2	20
trans-1,3-Dichloropropene	20.0	19.76	ug/L	99	78 - 126	0	20
Ethylbenzene	20.0	21.90	ug/L	109	89 - 117	2	20
Hexachlorobutadiene	20.0	17.96	ug/L	90	77 - 118	1	20
2-Hexanone (MBK) LCSL, UJ	20.0	13.57	ug/L	68	37 - 123	3	20
Isopropylbenzene	20.0	20.35	ug/L	102	83 - 117	1	20
4-Isopropyltoluene	20.0	19.90	ug/L	99	83 - 124	1	20
Methyl tert-butyl ether	20.0	17.64	ug/L	88	70 - 126	0	20
4-Methyl-2-pentanone (MIBK)	20.0	17.08	ug/L	85	59 - 118	6	20
Methylene Chloride	20.0	21.14	ug/L	106	75 - 121	0	20
Naphthalene	20.0	15.57	ug/L	78	67 - 123	4	20
N-Propylbenzene	20.0	21.79	ug/L	109	84 - 128	3	20
Styrene	20.0	21.25	ug/L	106	78 - 127		20
1,1,1,2-Tetrachloroethane	20.0	19.10	ug/L	95	91 - 118	6	20
1,1,2,2-Tetrachloroethane	20.0	18.35	ug/L	92	77 - 129	4	20
Tetrachloroethene	20.0	19.48	ug/L	97	85 - 116	1	20
Toluene	20.0	19.92	ug/L	100	88 - 109	2	20
1,2,3-Trichlorobenzene	20.0	15.56	ug/L	78	67 - 134	0	20
1,2,4-Trichlorobenzene	20.0	16.48	ug/L	82	78 - 133	3	20
1,3,5-Trichlorobenzene	20.0	19.64	ug/L	98	77 ₋ 127	0	20
1,1,1-Trichloroethane	20.0 20.0	17.60	ug/L	88	83 - 124 84 - 132	3 5	20 20
1,1,2-Trichloroethane Trichloroethene	20.0	17.93 18.07	ug/L ug/L	90	74 - 118	4	20
	20.0	16.07		81	82 ₋ 126	10	20
Trichlorofluoromethane (Freon 11)	20.0	10.19 -	ug/L	01	02 - 120	10	20
1,2,3-Trichloropropane	20.0	17.51	ug/L	88	77 - 124	6	20
1,2,4-Trimethylbenzene	20.0	19.36	ug/L	97	89 - 126	2	20
1,3,5-Trimethylbenzene	20.0	18.59	ug/L	93	89 - 125	3	20
Vinyl chloride	20.0	20.07	ug/L	100	62 - 130	6	20
m,p-Xylene	20.0	20.36	ug/L	102	85 - 123	0	20
o-Xylene	20.0	20.20	ug/L	101	85 - 119	0	20
Tetrahydrofuran	20.0	17.18	ug/L	86	60 - 133	0	20
Ethyl ether	20.0	18.65	ug/L	93	69 - 122	2	20
Tert-amyl methyl ether	20.0	18.01	ug/L	90	50 - 140	0	20
Ethyl tert-butyl ether	20.0	17.27	ug/L	86	60 - 131	2	20
di-Isopropyl ether	20.0	18.82	ug/L	94	67 - 125	3	20
tert-Butanol	200	143.3	ug/L	72	50 - 169	3	20
1,4-Dioxane	200	150.0	ug/L	75	28 - 150	13	20
trans-1,4-Dichloro-2-butene	20.0	17.17	ug/L	86	48 - 153	3	20
E01	400	007.4	/1	00	47 470	4.0	00

TML 10/10/24

327.1

ug/L

Eurofins Rhode Island

9/9/2024

18

20

47 - 170

Page 45 of 89

400

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 620-20506-3 MS

Matrix: Solid

Styrene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Analysis Batch: 38284 Limits: 70-130

Client Sample ID: 360175-DP018007

Prep Typ	e: Total/NA	
Prep Ba	atch: 38310	

7 maryoto Zatom cozo :	Sample	Sample	Spike	MS	MS				%Rec
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits
Bromochloromethane	ND		885	799.6		ug/Kg	— <u>—</u>	90	70 - 130
Bromodichloromethane	ND	U F2	885	701.3		ug/Kg	∴ ‡	79	70 - 130
Bromoform		U F2	885	719.5		ug/Kg	₩	81	70 - 130
Bromomethane	36.2	J F1 F2	885	634.2	F1	ug/Kg	₩	68	70 - 130
2-Butanone (MEK) MSL, UJ/J-	ND	U F1 F2	885	595.2	F1	ug/Kg	∴	67	70 - 130
n-Butylbenzene	ND	U	885	758.2		ug/Kg	☼	86	70 - 130
sec-Butylbenzene	ND	U	885	779.3		ug/Kg	☼	88	70 - 130
tert-Butylbenzene	ND	U	885	775.3		ug/Kg	☼	88	70 - 130
Carbon disulfide	ND	U F2	885	779.5		ug/Kg	≎	88	70 - 130
Carbon tetrachloride	ND	U F2	885	722.3		ug/Kg	≎	82	70 - 130
Chlorobenzene	ND	U F2	885	752.9		ug/Kg	₽	85	70 - 130
Chloroethane MSL, UJ/J-	ND	U F1 F2	885	284.6	F1	ug/Kg	⇔	32	70 - 130
Chloroform	ND	U F2	885	764.9		ug/Kg	☼	86	70 - 130
Chloromethane	ND	U F2	885	717.1		ug/Kg	₽	81	70 - 130
2-Chlorotoluene	ND	U *+ F2	885	872.2		ug/Kg	☼	99	70 - 130
4-Chlorotoluene	ND	U *+ F2	885	832.2		ug/Kg	₽	94	70 - 130
1,2-Dibromo-3-Chloropropane	ND	U F2	885	822.7		ug/Kg	☼	93	70 - 130
Dibromochloromethane	ND	U F2	885	639.7		ug/Kg	₽	72	70 - 130
1,2-Dibromoethane (EDB)	ND	U F2	885	774.5		ug/Kg	≎	87	70 - 130
Dibromomethane	ND	U F2	885	709.6		ug/Kg	₽	80	70 - 130
1,2-Dichlorobenzene	ND	U	885	861.9		ug/Kg	≎	97	70 - 130
1,3-Dichlorobenzene	ND	U F2	885	839.6		ug/Kg	≎	95	70 - 130
1,4-Dichlorobenzene	ND	U F2	885	818.8		ug/Kg	₽	92	70 - 130
Dichlorodifluoromethane (Freon	ND	U F2	885	921.9		ug/Kg	≎	104	70 - 130
12)	ND	11.50	005	774.0		/IV.a.		00	70 120
1,1-Dichloroethane	ND		885	774.9		ug/Kg		88	70 - 130
1,2-Dichloroethane		U F2 U F2	885	655.6		ug/Kg	*	74	70 ₋ 130 70 ₋ 130
1,1-Dichloroethene	ND		885 885	872.5 850.4		ug/Kg	\$	99	70 - 130 70 - 130
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND		885	877.6		ug/Kg	· · · · ·	96	70 - 130
		U F2	885	785.7		ug/Kg	☆	99 89	70 - 130 70 - 130
1,2-Dichloropropane 1,3-Dichloropropane	ND		885	765.7 759.8		ug/Kg ug/Kg	₩ ₩		70 - 130 70 - 130
2,2-Dichloropropane		U F2	885	759.6		ug/Kg ug/Kg	¥ 	86 87	70 - 130
1,1-Dichloropropene	ND		885	880.2		ug/Kg ug/Kg	☆	99	70 - 130 70 - 130
cis-1,3-Dichloropropene	ND ND		885	810.4		ug/Kg ug/Kg	₩ \$	99	70 - 130 70 - 130
trans-1,3-Dichloropropene		U F2	885	788.6		ug/Kg ug/Kg	¥ 	89	70 - 130
Ethylbenzene		U F2	885	856.8		ug/Kg ug/Kg		97	70 - 130 70 - 130
Hexachlorobutadiene	ND		885	756.1		ug/Kg ug/Kg	☆	85	70 - 130 70 - 130
2-Hexanone (MBK)	ND		885	669.8		ug/Kg ug/Kg	 	76	70 - 130
Isopropylbenzene		U F2	885	841.7		ug/Kg ug/Kg	₩ ₩	95	70 - 130 70 - 130
4-Isopropyltoluene	ND ND		885	810.6		ug/Kg ug/Kg	₩	92	70 - 130 70 - 130
Methyl tert-butyl ether		U F2	885	877.2		ug/Kg ug/Kg	 ☆	99	70 - 130
4-Methyl-2-pentanone (MIBK)		U F2	885	809.1		ug/Kg ug/Kg	₩ ₩	91	70 - 130 70 - 130
Methylene Chloride		U F2	885	783.6		ug/Kg ug/Kg	₩	89	70 - 130 70 - 130
Naphthalene		U F2	885	909.4		ug/Kg ug/Kg		103	70 - 130
N-Propylbenzene		U *+	885	834.4		ug/Kg ug/Kg	₩	94	70 - 130 70 - 130
11 Topyiborizorio	140		300	004.4		49,119		27	. 0 - 100

Eurofins Rhode Island

96

85

82

₩

☼

₩

70 - 130

70 - 130

70 - 130

ND UF2

ND UF2

ND UF2

885

885

885

854.0

756.5

722.1

ug/Kg

ug/Kg

ug/Kg

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 620-20506-3 MS

Matrix: Solid

Analysis Batch: 38284

Client Sample ID: 360175-DP018007

Prep Type: Total/NA Prep Batch: 38310

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Tetrachloroethene	49.5	F2	885	981.9		ug/Kg	<u></u>	105	70 - 130
Toluene	ND	U F2	885	781.6		ug/Kg	₩	88	70 - 130
1,2,3-Trichlorobenzene	ND	U F2	885	747.3		ug/Kg	₩	84	70 - 130
1,2,4-Trichlorobenzene	ND	U	885	790.5		ug/Kg	₩	89	70 - 130
1,3,5-Trichlorobenzene	ND	U	885	838.4		ug/Kg	₩	95	70 - 130
1,1,1-Trichloroethane	ND	U F2	885	732.3		ug/Kg	₩	83	70 - 130
1,1,2-Trichloroethane	ND	U F2	885	700.5		ug/Kg	₩	79	70 - 130
Trichloroethene	ND	U F2	885	708.5		ug/Kg	☼	80	70 - 130
Trichlorofluoromethane (Freon	ND	U F1 F2	885	204.6	F1	ug/Kg	₩	23	70 - 130
11)									
1,2,3-Trichloropropane	ND	U F2	885	742.0		ug/Kg	₩	84	70 - 130
1,2,4-Trimethylbenzene	ND	U F2	885	764.5		ug/Kg	☼	86	70 - 130
1,3,5-Trimethylbenzene	ND	U F2	885	738.6		ug/Kg	☼	83	70 - 130
Vinyl chloride	ND	U F2	885	957.1		ug/Kg	₩	108	70 - 130
m,p-Xylene	ND	U F2	885	819.0		ug/Kg	₩	93	70 - 130
o-Xylene	ND	U	885	832.9		ug/Kg	₩	94	70 - 130
Tetrahydrofuran	ND	U F2	885	878.7		ug/Kg	₩	99	70 - 130
Ethyl ether	ND	U F2	885	830.3		ug/Kg	☼	94	70 - 130
Tert-amyl methyl ether	ND	U	885	823.3		ug/Kg	☼	93	70 - 130
Ethyl tert-butyl ether	ND	U	885	793.7		ug/Kg	☼	90	70 - 130
di-Isopropyl ether	ND	U	885	794.6		ug/Kg	₩	90	70 - 130
tert-Butanol	ND	U *- F1 F2	8850	5533	F1	ug/Kg	☼	62	70 - 130
1,4-Dioxane	ND	U F1 F2	8850	3247	F1	ug/Kg	☼	37	70 - 130
trans-1,4-Dichloro-2-butene	ND	U F2	885	697.0		ug/Kg	₩	79	70 - 130
Ethanol MSL, UJ/J-	ND	U *- F1	17700	4168	JF1	ug/Kg	\$	24	70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
Toluene-d8 (Surr)	97		70 - 130
1,2-Dichloroethane-d4 (Surr)	87		70 - 130
Dibromofluoromethane (Surr)	96		70 - 130

Lab Sample ID: 620-20506-3 MSD

Matrix: Solid

Analysis Batch: 38284

%R Limits: 70-130 RPD Limits: >35

Client Sample ID: 360175-DP018007

RPD Limits: >35

Prep Type: Total/NA
all highlighted samples are ND, no quals Prep Batch: 38310

7 that you batom 00204			_	_					op =	Jucoiii (500.0
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2-Trichlorotrifluoroethane	ND	U F2	642	550.6	F2	ug/Kg	#	86	70 - 130	38	30
(Freon 113)								_			
Acetone MSL, UJ/J-	ND	U F1 F2	642	403.9	F1 F2	ug/Kg	**	63	70 - 130	45	30
Acrylonitrile	ND	U F2	642	601.5	F2	ug/Kg	≎	94	70 - 130	35	30
Benzene	ND	U F2	642	641.6	F2	ug/Kg	₩	100	70 - 130	31	30
Bromobenzene	ND	U F2	642	570.8	F2	ug/Kg	₩	89	70 - 130	32	30
Bromochloromethane	ND	U F2	642	571.2	F2	ug/Kg	☼	89	70 - 130	33	30
Bromodichloromethane	ND	U F2	642	511.5	F2	ug/Kg	₽	80	70 - 130	31	30
Bromoform	ND	U F2	642	519.3	F2	ug/Kg	₩	81	70 - 130	32	30
Bromomethane MSL, UJ/J-	36.2	J F1 F2	642	394.0	F1 F2	ug/Kg	\$	56	70 - 130	47	30
2-Butanone (MEK)	ND	U F1 F2	642	410.2	F1 F2	ug/Kg	₩	64	70 - 130	37	30
n-Butylbenzene	ND	U	642	559.5		ug/Kg	≎	87	70 - 130	30	30

Eurofins Rhode Island

TML 10/10/24

2

<u>ی</u>

6

8

10

12

4 4

13

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 620-20506-3 MSD

Matrix: Solid

Client Sample ID: 360175-DP018007

Prep Type: Total/NA

Analysis Batch: 38284			• "	Men	MSD MSD				Prep E	38310	
Analysta	•	Sample	Spike	MSD		11m!4	_	0/ D	%Rec	DDD	RPD
Analyte		Qualifier	Added		Qualifier	Unit	— <u> </u>	%Rec	Limits	RPD	Limit
sec-Butylbenzene	ND	U	642	577.1		ug/Kg	. .	90	70 - 130	30	30
tert-Butylbenzene	ND	U F2	642 642	571.8 550.3	F0	ug/Kg	ψ.	89	70 - 130	30 34	30
Carbon disulfide						ug/Kg	☼	86	70 ₋ 130		30
Carbon tetrachloride		U F2	642	494.3		ug/Kg	₩	77	70 - 130	37	30
Chlorobenzene		U F2	642	539.1		ug/Kg	☼	84	70 ₋ 130	33	30
Chloroethane MSL, UJ/J-		U F1 F2	642		F1 F2	ug/Kg	**	31	70 - 130	35	30
Chloroform	ND	U F2	642	543.8		ug/Kg		85	70 - 130	34	30
Chloromethane		U F2	642	506.8		ug/Kg	‡	79	70 - 130	34	30
2-Chlorotoluene	ND	U *+ F2	642	639.4		ug/Kg	₽	100	70 - 130	31	30
4-Chlorotoluene		U *+ F2	642	610.5		ug/Kg	 	95	70 - 130	31	30
1,2-Dibromo-3-Chloropropane		U F2	642	505.9		ug/Kg	**	79	70 - 130	48	30
Dibromochloromethane		U F2	642	456.1		ug/Kg	☼	71	70 - 130	34	30
1,2-Dibromoethane (EDB)		U F2	642	548.4		ug/Kg	. .	85	70 - 130	34	30
Dibromomethane		U F2	642	511.9	F2	ug/Kg	₩	80	70 - 130	32	30
1,2-Dichlorobenzene	ND	U	642	639.0		ug/Kg	₩	100	70 - 130	30	30
1,3-Dichlorobenzene	ND	U F2	642	605.0		ug/Kg		94	70 - 130	32	30
1,4-Dichlorobenzene	ND	U F2	642	601.6	F2	ug/Kg	☼	94	70 - 130	31	30
Dichlorodifluoromethane (Freon 12)	ND	U F2	642	619.4	F2	ug/Kg	\$	97	70 _ 130	39	30
1,1-Dichloroethane	ND	U F2	642	567.3	F2	ug/Kg	≎	88	70 - 130	31	30
1,2-Dichloroethane	ND	U F2	642	464.5	F2	ug/Kg	₽	72	70 - 130	34	30
1,1-Dichloroethene	ND	U F2	642	634.1	F2	ug/Kg	☼	99	70 - 130	32	30
cis-1,2-Dichloroethene	ND	U F2	642	617.7	F2	ug/Kg	☼	96	70 - 130	32	30
trans-1,2-Dichloroethene	ND	U	642	648.6		ug/Kg	₽	101	70 - 130	30	30
1,2-Dichloropropane	ND	U F2	642	575.2	F2	ug/Kg	₽	90	70 - 130	31	30
1,3-Dichloropropane	ND	U F2	642	549.6	F2	ug/Kg	₽	86	70 - 130	32	30
2,2-Dichloropropane	ND	U F2	642	551.4	F2	ug/Kg	∴ ☆	86	70 - 130	33	30
1,1-Dichloropropene	ND	U	642	654.1		ug/Kg	₽	102	70 - 130	29	30
cis-1,3-Dichloropropene	ND	U	642	606.9		ug/Kg	☼	95	70 - 130	29	30
trans-1,3-Dichloropropene	ND	U F2	642	571.3	F2	ug/Kg	∴	89	70 - 130	32	30
Ethylbenzene	ND	U F2	642	618.7	F2	ug/Kg	☼	96	70 - 130	32	30
Hexachlorobutadiene	ND	U	642	572.3		ug/Kg	☼	89	70 - 130	28	30
2-Hexanone (MBK)	ND		642	505.4		ug/Kg	 ☆	79	70 - 130	28	30
Isopropylbenzene		U F2	642	618.5	F2	ug/Kg	₽	96	70 - 130	31	30
4-Isopropyltoluene	ND		642	596.2		ug/Kg	☆	93	70 - 130	30	30
Methyl tert-butyl ether	ND	U F2	642	638.5	F2	ug/Kg		100	70 - 130	32	30
4-Methyl-2-pentanone (MIBK)		U F2	642	575.6		ug/Kg	₽	90	70 - 130	34	30
Methylene Chloride		U F2	642	574.5		ug/Kg	₽	90	70 - 130	31	30
Naphthalene		U F2	642	662.5		ug/Kg	:'': . ☆	103	70 - 130	31	30
N-Propylbenzene		U *+	642	616.0		ug/Kg	☆	96	70 - 130	30	30
Styrene		U F2	642	610.3		ug/Kg	≎	95	70 - 130	33	30
1,1,1,2-Tetrachloroethane		U F2	642	545.8		ug/Kg		85	70 - 130	32	30
1,1,2,2-Tetrachloroethane		U F2	642	506.1					70 - 130 70 - 130	35	30
Tetrachloroethene	49.5		642	709.7		ug/Kg	≎	79 103	70 - 130 70 - 130	32	30
Toluene						ug/Kg	· · · · ·	103			
		U F2	642	574.6		ug/Kg	‡	90	70 ₋ 130 70 ₋ 130	31	30
1,2,3-Trichlorobenzene		U F2	642	540.8	Γ2	ug/Kg	ψ.	84		32	30
1,2,4-Trichlorobenzene	ND		642	585.7		ug/Kg	· · · · · · ·	91	70 - 130	30	30
1,3,5-Trichlorobenzene	ND		642	634.2		ug/Kg	₽	99	70 - 130	28	30
1,1,1-Trichloroethane	ND	U F2	642	514.0	F2	ug/Kg	₩	80	70 - 130	35	30

Eurofins Rhode Island

TML 10/10/24 Page 65 of 89

Client: WSP USA Environment & Infrastructure Inc.

Job ID: 620-20506-1

Project/Site: Irvington R&C

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 620-20506-3 MSD Matrix: Solid			RPD Limits: >35 RPD Limits: >35 RPD Limits: >35 RPD Limits: >35 RPD Type: Total/NA all highlighted samples are ND, no quals Prep Batch: 38310								
Analysis Batch: 38284		its: 70-130	•	, ,	•	es are r	אט, וו	io qua		Batch: 3	
	•	Sample	Spike	MSD	_		_	~-	%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	ND	U F2	642	503.0	F2	ug/Kg	₩	78	70 - 130	33	30
Trichloroethene	ND	U F2	642	499.8	F2	ug/Kg	₽	78	70 - 130	35	30
Trichlorofluoromethane (Freon 11) MSL, UJ/J-	ND	U F1 F2	642	130.4	F1 F2	ug/Kg	\$	20	70 - 130	44	30
1,2,3-Trichloropropane	ND	U F2	642	516.0	F2	ug/Kg	Þ	80	70 - 130	36	30
1,2,4-Trimethylbenzene	ND	U F2	642	553.5	F2	ug/Kg		86	70 - 130	32	30
1,3,5-Trimethylbenzene	ND	U F2	642	530.9	F2	ug/Kg	₽	83	70 - 130	33	30
Vinyl chloride	ND	U F2	642	655.5	F2	ug/Kg	**	102	70 - 130	37	30
m,p-Xylene	ND	U F2	642	599.2	F2	ug/Kg	☼	93	70 - 130	31	30
o-Xylene	ND	U	642	612.7		ug/Kg	₩	95	70 - 130	30	30
Tetrahydrofuran	ND	U F2	642	613.0	F2	ug/Kg	**	96	70 - 130	36	30
Ethyl ether	ND	U F2	642	584.5	F2	ug/Kg	☼	91	70 - 130	35	30
Tert-amyl methyl ether	ND	U	642	612.2		ug/Kg	₩	95	70 - 130	29	30
Ethyl tert-butyl ether	ND	U	642	588.5		ug/Kg	₽	92	70 - 130	30	30
di-Isopropyl ether	ND	U	642	587.2		ug/Kg	☼	92	70 - 130	30	30
tert-Butanol	ND	U *- F1 F2	6420	3571	F1 F2	ug/Kg	\$	56	70 - 130	43	30
1,4-Dioxane	ND	U F1 F2	6420	5992	F2	ug/Kg	**	93	70 - 130	59	30
trans-1,4-Dichloro-2-butene	ND	U F2	642	479.8	F2	ug/Kg	₩	75	70 - 130	37	30

12800

ND UF1

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
Toluene-d8 (Surr)	98		70 - 130
1,2-Dichloroethane-d4 (Surr)	88		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130

ND U*-F1

Lab Sample ID: MB 620-38433/3-A

Matrix: Solid

Ethanol MSL, UJ/J-

Analysis Batch: 38400

Client Sample ID: Method Blank
Prep Type: Total/NA
Pron Batch: 38433

70 - 130

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane (Freon	ND	U	50.0	27.4	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
113)									
Acetone	ND	U	500	63.0	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Acrylonitrile	ND	U	50.0	18.1	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Benzene	ND	U	50.0	8.00	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Bromobenzene	ND	U	50.0	11.3	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Bromochloromethane	ND	U	50.0	7.15	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Bromodichloromethane	ND	U	50.0	12.9	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Bromoform	ND	U	50.0	10.7	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Bromomethane	ND	U	100	24.7	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
2-Butanone (MEK)	ND	U	100	22.9	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
n-Butylbenzene	ND	U	50.0	20.0	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
sec-Butylbenzene	ND	U	50.0	15.4	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
tert-Butylbenzene	ND	U	50.0	20.4	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Carbon disulfide	ND	U	100	18.5	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Carbon tetrachloride	ND	U	50.0	15.0	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Chlorobenzene	ND	U	50.0	6.05	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Chloroethane	ND	U	100	22.3	ug/Kg		08/30/24 08:00	08/30/24 11:07	1

TML 10/10/24

Eurofins Rhode Island

Page 66 of 89

2

3

5

7

9

11

13

NC

9/9/2024

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 620-38433/3-A

Matrix: Solid

Analysis Batch: 38400

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 38433

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND	U	50.0	29.4	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
o-Xylene	ND	U	50.0	15.4	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Tetrahydrofuran	ND	U	100	36.6	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Ethyl ether	ND	U	50.0	13.6	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Tert-amyl methyl ether	ND	U	50.0	27.7	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Ethyl tert-butyl ether	ND	U	50.0	13.9	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
di-Isopropyl ether	ND	U	50.0	16.2	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
tert-Butanol	ND	U	1000	710	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
1,4-Dioxane	ND	U	1000	295	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
trans-1,4-Dichloro-2-butene	ND	U	250	33.0	ug/Kg		08/30/24 08:00	08/30/24 11:07	1
Ethanol	ND	U	10000	860	ug/Kg		08/30/24 08:00	08/30/24 11:07	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130	08/30/24 08:00	08/30/24 11:07	1
Toluene-d8 (Surr)	99		70 - 130	08/30/24 08:00	08/30/24 11:07	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 130	08/30/24 08:00	08/30/24 11:07	1
Dibromofluoromethane (Surr)	105		70 - 130	08/30/24 08:00	08/30/24 11:07	1

Lab Sample ID: LCS 620-38433/1-A

Matrix: Solid

Analysis Batch: 38400

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 38433

Analysis Batch: 38400 Limits:	70-130						Prep Batch: 38433
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichlorotrifluoroethane	1000	926.6		ug/Kg		93	91 - 125
(Freon 113)							
Acetone	1000	712.1		ug/Kg		71	47 - 157
Acrylonitrile	1000	902.3		ug/Kg		90	79 - 129
Benzene	1000	1048		ug/Kg		105	88 - 130
Bromobenzene	1000	990.8		ug/Kg		99	81 - 125
Bromochloromethane	1000	1036		ug/Kg		104	85 - 139
Bromodichloromethane	1000	991.1		ug/Kg		99	84 - 134
Bromoform	1000	932.2		ug/Kg		93	83 - 131
Bromomethane	1000	1246		ug/Kg		125	63 - 157
2-Butanone (MEK)	1000	589.8		ug/Kg		59	58 - 161
n-Butylbenzene	1000	916.7		ug/Kg		92	83 - 137
sec-Butylbenzene	1000	963.7		ug/Kg		96	79 - 131
tert-Butylbenzene	1000	976.4		ug/Kg		98	82 - 131
Carbon disulfide	1000	991.2		ug/Kg		99	82 - 135
Carbon tetrachloride	1000	940.9		ug/Kg		94	77 - 139
Chlorobenzene	1000	931.1		ug/Kg		93	85 - 121
Chloroethane	1000	1177		ug/Kg		118	61 - 156
Chloroform	1000	1026		ug/Kg		103	89 - 123
Chloromethane	1000	837.8		ug/Kg		84	81 - 130
2-Chlorotoluene	1000	1104		ug/Kg		110	90 - 117
4-Chlorotoluene	1000	1085		ug/Kg		109	88 - 121
1,2-Dibromo-3-Chloropropane	1000	725.4	*_	ug/Kg		73	75 - 142
Dibromochloromethane	1000	855.4		ug/Kg		86	85 - 131
1,2-Dibromoethane (EDB)	1000	914.1		ug/Kg		91	85 - 133
Dibromomethane	1000	926.5		ug/Kg		93	90 - 128

TML 10/10/24

Eurofins Rhode Island

9/9/2024

Page 68 of 89

Spike

LCS LCS

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 620-38433/1-A

Matrix: Solid

1,1,2-Trichloroethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichlorofluoromethane (Freon

Trichloroethene

Vinyl chloride

Tetrahydrofuran

Tert-amyl methyl ether

Ethyl tert-butyl ether

m,p-Xylene

o-Xylene

Ethyl ether

11)

Analysis Batch: 38400

Client Sample ID: Lab Control Sample

90

93

102

86

97

92

118

102

102

87

95

94

89

91 - 129

88 - 131

86 - 130

92 - 126

87 - 126

90 - 125

73 - 145

83 - 122

87 - 122

81 - 134

84 - 144

69 - 151

75 - 128

%Rec

Prep Type: Total/NA Prep Batch: 38433

Linette 70 400	Opino				70.100	
Analyte Limits: 70-130	Added	Result	Qualifier Unit	D %Rec	Limits	
1,2-Dichlorobenzene	1000	1032	ug/Kg	103	88 - 128	
1,3-Dichlorobenzene	1000	1065	ug/Kg	106	78 - 133	
1,4-Dichlorobenzene	1000	1025	ug/Kg	102	88 - 121	
Dichlorodifluoromethane (Freon	1000	984.2	ug/Kg	98	55 - 159	
12)						
1,1-Dichloroethane	1000	985.9	ug/Kg	99	89 - 129	
1,2-Dichloroethane	1000	913.9	ug/Kg	91	82 - 137	
1,1-Dichloroethene	1000	1020	ug/Kg	102	82 - 138	
cis-1,2-Dichloroethene	1000	998.3	ug/Kg	100	79 - 133	
trans-1,2-Dichloroethene	1000	1010	ug/Kg	101	81 - 137	
1,2-Dichloropropane	1000	953.3	ug/Kg	95	89 - 128	
1,3-Dichloropropane	1000	933.0	ug/Kg	93	86 - 133	
2,2-Dichloropropane	1000	997.6	ug/Kg	100	91 - 131	
1,1-Dichloropropene	1000	1042	ug/Kg	104	75 - 137	
cis-1,3-Dichloropropene	1000	967.1	ug/Kg	97	84 - 122	
trans-1,3-Dichloropropene	1000	1000	ug/Kg	100	90 - 121	
Ethylbenzene	1000	1056	ug/Kg	106	89 - 126	
Hexachlorobutadiene	1000	921.0	ug/Kg	92	74 - 131	
2-Hexanone (MBK)	1000	645.1	ug/Kg	65	41 - 167	
Isopropylbenzene	1000	1028	ug/Kg	103	88 - 125	
4-Isopropyltoluene	1000	962.2	ug/Kg	96	86 - 128	
Methyl tert-butyl ether	1000	948.6	ug/Kg	95	74 - 144	
4-Methyl-2-pentanone (MIBK)	1000	819.4	ug/Kg	82	80 - 135	
Methylene Chloride	1000	1018	ug/Kg	102	87 - 119	
Naphthalene	1000	763.9	ug/Kg	76	60 - 145	
N-Propylbenzene	1000	1056	ug/Kg	106	87 - 120	
Styrene	1000	1046	ug/Kg	105	88 - 125	
1,1,1,2-Tetrachloroethane	1000	985.9	ug/Kg	99	81 - 128	
1,1,2,2-Tetrachloroethane	1000	850.8		85	88 - 126	
Tetrachloroethene	1000	1015	ug/Kg	101	81 - 124	
Toluene	1000	980.2	ug/Kg	98	84 - 124	
1,2,3-Trichlorobenzene	1000	767.5	ug/Kg	77	68 - 145	
1,2,4-Trichlorobenzene	1000	860.6	ug/Kg	86	57 - 141	
1,3,5-Trichlorobenzene	1000	981.7	ug/Kg	98	70 - 137	
1,1,1-Trichloroethane	1000	949.9	ug/Kg	95	88 - 131	
.,.,.		0.0.0	~5,9	00	-00.	

1000 TML 10/10/24

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Eurofins Rhode Island

9/9/2024

897.7 *-

855.4 *-

933.1

1024

970.3

924.4

1182

1017

1020

869.5

945.4

940.1

893.6

ug/Kg

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 620-38433/1-A

Lab Sample ID: LCSD 620-38433/2-A

Matrix: Solid

Analysis Batch: 38400

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 38433

Limits: 70-130		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	di-Isopropyl ether	1000	896.0		ug/Kg		90	82 - 131	
	tert-Butanol	10000	7770	*_	ug/Kg		78	85 - 148	
	1,4-Dioxane	10000	7409		ug/Kg		74	10 - 178	
	trans-1,4-Dichloro-2-butene	1000	891.3		ug/Kg		89	74 - 151	
	Ethanol LCSL, UJ/J-	20000	12870	*_	ug/Kg		64	83 - 135	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
Toluene-d8 (Surr)	100		70 - 130
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 38400

1,2-Dibromoethane (EDB)

Prep Type: Total/NA

Prep Batch: 38433

	Spike	LCSD L	CSD				%Rec		RPD
Analyte	Added	Result Q	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2-Trichlorotrifluoroethane	1000	937.9		ug/Kg		94	91 - 125	1	30
(Freon 113) Acetone LCSL, UJ/J-	1000	649.5		ug/Kg		65	47 - 157	9	30

Acetone 1000 649.5 ug/Kg 65 47 - 157 Acrylonitrile 1000 931.6 ug/Kg 93 79 - 129 3 30 Benzene 1000 1058 106 88 - 130 30 ug/Kg Bromobenzene 1000 1029 ug/Kg 103 81 - 125 30 Bromochloromethane 1000 1045 ug/Kg 104 85 - 139 30 Bromodichloromethane 1000 1024 102 30 ug/Kg 84 - 134 972.2 97 30 Bromoform 1000 ug/Kg 83 - 131 1000 1220 122 30 Bromomethane ug/Kg 63 - 1572-Butanone (MEK) 1000 557.6 *-56 58 - 161 30 ug/Kg LCSL, UJ/J-1000 93 2 30 n-Butylbenzene 933.5 ug/Kg 83 - 137sec-Butylbenzene 1000 990.5 ug/Kg 99 79 - 131 30 1000 tert-Butylbenzene 983.6 98 82 - 131 30 ug/Kg

Carbon disulfide 1000 1005 ug/Kg 101 82 - 135 Carbon tetrachloride 1000 962.4 96 77 - 139 2 ug/Kg Chlorobenzene 1000 956.1 ug/Kg 96 85 - 121 Chloroethane 1000 1176 ug/Kg 118 61 - 156 1000 106 Chloroform 1062 ug/Kg 89 - 123 3 Chloromethane 1000 849.6 ug/Kg 85 81 - 130 2-Chlorotoluene 1000 1154 115 90 - 117 ug/Kg 1000 1109 88 - 121 4-Chlorotoluene ug/Kg 111 1000 75 - 142 1,2-Dibromo-3-Chloropropane 824.1 82 13 ug/Kg Dibromochloromethane 1000 899.0 90 85 - 131 ug/Kg

Dibromomethane 1000 958.3 96 90 - 128 30 ug/Kg 1.2-Dichlorobenzene 1000 1099 30 ug/Kg 110 88 - 128 6 1,3-Dichlorobenzene 1000 1091 ug/Kg 109 78 - 133 2 30 1,4-Dichlorobenzene 1000 1072 107 88 - 121 5 30 ug/Kg Dichlorodifluoromethane (Freon 1000 985.9 ug/Kg 99 55 - 159 30 1,1-Dichloroethane 1000 993.6 ug/Kg 99 89 _ 129 30

943.4

1000

Eurofins Rhode Island

85 - 133

94

TML 10/10/24

ug/Kg

30

30

30

30

30

30

30

30

30

30

30

3

Client: WSP USA Environment & Infrastructure Inc.

Project/Site: Irvington R&C

Job ID: 620-20506-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 620-38433/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 38400							Prep E	Batch:	
Limits: 70-130	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	1000	930.6		ug/Kg		93	82 - 137	2	30
1,1-Dichloroethene	1000	1001		ug/Kg		100	82 - 138	2	30
cis-1,2-Dichloroethene	1000	1019		ug/Kg		102	79 - 133	2	30
trans-1,2-Dichloroethene	1000	1062		ug/Kg		106	81 - 137	5	30
1,2-Dichloropropane	1000	1020		ug/Kg		102	89 - 128	7	30
1,3-Dichloropropane	1000	970.2		ug/Kg		97	86 - 133	4	30
2,2-Dichloropropane	1000	995.3		ug/Kg		100	91 - 131	0	30
1,1-Dichloropropene	1000	1085		ug/Kg		108	75 - 137	4	30
cis-1,3-Dichloropropene	1000	1031		ug/Kg		103	84 - 122	6	30
trans-1,3-Dichloropropene	1000	1025		ug/Kg		103	90 - 121	2	30
Ethylbenzene	1000	1093		ug/Kg		109	89 - 126	3	30
Hexachlorobutadiene	1000	970.5		ug/Kg		97	74 - 131	5	30
2-Hexanone (MBK) LCSL, UJ/J-	1000	596.4		ug/Kg		60	41 - 167	8	30
Isopropylbenzene	1000	1045		ug/Kg		104	88 - 125	2	30
4-Isopropyltoluene	1000	1006		ug/Kg		101	86 - 128	4	30
Methyl tert-butyl ether	1000	982.1		ug/Kg		98	74 - 144	3	30
4-Methyl-2-pentanone (MIBK)	1000	808.5		ug/Kg		81	80 - 135	1	30
Methylene Chloride	1000	1033		ug/Kg		103	87 - 119	1	30
Naphthalene	1000	820.1		ug/Kg		82	60 - 145	7	30
N-Propylbenzene	1000	1078		ug/Kg		108	87 - 120	2	30
Styrene	1000	1048		ug/Kg		105	88 - 125	0	30
1,1,1,2-Tetrachloroethane	1000	1004		ug/Kg		100	81 - 128	2	30
1,1,2,2-Tetrachloroethane	1000	868.3	*_	ug/Kg		87	88 - 126	2	30
Tetrachloroethene	1000	1021		ug/Kg		102	81 - 124	1	30
Toluene	1000	999.2		ug/Kg		100	84 - 124	2	30
1,2,3-Trichlorobenzene	1000	803.5		ug/Kg		80	68 - 145	5	30
1,2,4-Trichlorobenzene	1000	894.3		ug/Kg		89	57 - 141	4	30
1,3,5-Trichlorobenzene	1000	1007		ug/Kg		101	70 - 137	3	30
1,1,1-Trichloroethane	1000	951.1		ug/Kg		95	88 - 131	0	30
1,1,2-Trichloroethane	1000	865.5	*_	ug/Kg		87	91 - 129	4	30
Trichloroethene	1000	918.1		ug/Kg		92	88 - 131	2	30
Trichlorofluoromethane (Freon 11)	1000	963.4		ug/Kg		96	86 - 130	6	30
1,2,3-Trichloropropane	1000	867.6	*_	ug/Kg		87	92 - 126		30
1,2,4-Trimethylbenzene	1000	982.0		ug/Kg		98	87 - 126	1	30
1,3,5-Trimethylbenzene	1000	942.9		ug/Kg		94	90 - 125	2	30
Vinyl chloride	1000	1141		ug/Kg		114	73 - 145	4	30
m,p-Xylene	1000	1043		ug/Kg		104	83 - 122	3	30
o-Xylene	1000	1057		ug/Kg		106	87 - 122	4	30
Tetrahydrofuran	1000	863.9		ug/Kg		86	81 - 134		30
Ethyl ether	1000	934.1		ug/Kg		93	84 - 144	1	30
Tert-amyl methyl ether	1000	976.0		ug/Kg		98	69 - 151	4	30
Ethyl tert-butyl ether	1000	934.0		ug/Kg		93	75 - 128	4	30
di-Isopropyl ether	1000	928.4		ug/Kg		93	82 - 131	4	30
tert-Butanol	10000	8255	*-	ug/Kg		83	85 - 148	6	30
1,4-Dioxane	10000	8393		ug/Kg		84	10 - 178	12	30
trans-1,4-Dichloro-2-butene	1000	884.2	_	ug/Kg		88	74 - 151	1	30
Ethanol LCSL, UJ/J-	20000	13770	*_	ug/Kg		69	83 - 135	7	30

Eurofins Rhode Island

5

7

0

10

12

1 /

15

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1

SDG No.:

Lab Sample ID: ICV 620-38019/14 Calibration Date: 08/21/2024 15:09

Instrument ID: HPV4 Calib Start Date: 08/21/2024 09:40

GC Column: DB-VRX ID: 0.18 (mm) Calib End Date: 08/21/2024 13:03

Lab File ID: V4-082124-14.D Conc. Units: ug/L Heated Purge: (Y/N) N

					_	Limit	: <20%	
ANALYTE ICV%D, UJ/J	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane (Freon 12)	Ave	0.1285	0.0913	0.0100	14.2	20.0	-29.0	50.0
Chloromethane	Ave	0.2353	0.2025	0.0500	17.2	20.0	-13.9	20.0
Vinyl chloride	Ave	0.1966	0.1727	0.0500	17.6	20.0	-12.2	20.0
Bromomethane	Lin1		0.1363	0.0100	16.9	20.0	-15.8	50.0
Chloroethane	Ave	0.1423	0.1243	0.0830	17.5	20.0	-12.7	50.0
Ethanol	Ave	0.0031	0.0027	0.0023	348	400	-13.1	20.0
Trichlorofluoromethane (Freon 11)	Ave	0.4605	0.4461	0.0500	19.4	20.0	-3.1	20.0
Acetone	Ave	0.1552	0.1404	0.0870	18.1	20.0	-9.6	50.0
Ethyl ether	Ave	0.2187	0.2012	0.0500	18.4	20.0	-8.0	20.0
1,1-Dichloroethene	Ave	0.2228	0.2458	0.0500	22.1	20.0	10.3	20.0
Iodomethane	Lin1		0.2546	0.0500	17.2	20.0	-14.2	20.0
tert-Butanol	Ave	0.0346	0.0292	0.0080	169	200	-15.5	20.0
Acrylonitrile	Ave	0.1358	0.1253	0.0430	18.5	20.0	-7.7	20.0
Methylene Chloride	Ave	0.2677	0.2818	0.0500	21.1	20.0	5.2	20.0
1,1,2-Trichlorotrifluoroetha ne (Freon 113)	Ave	0.2884	0.2755	0.0500	19.1	20.0	-4.5	20.0
Methyl acetate	Ave	0.2626	0.2183	0.0500	16.6	20.0	-16.8	20.0
Carbon disulfide	Ave	0.6025	0.6881	0.0500	22.8	20.0	14.2	20.0
trans-1,2-Dichloroethene	Ave	0.2360	0.2558	0.0500	21.7	20.0	8.4	20.0
Methyl tert-butyl ether	Ave	0.7091	0.6804	0.0500	19.2	20.0	-4.0	20.0
1,1-Dichloroethane	Ave	0.4758	0.5024	0.0500	21.1	20.0	5.6	20.0
2-Butanone (MEK)	Lin1		0.1124	0.0950	14.1	20.0	-29.6	50.0
di-Isopropyl ether	Ave	0.8830	0.8378	0.0500	19.0	20.0	-5.1	20.0
cis-1,2-Dichloroethene	Ave	0.2657	0.2828	0.0500	21.3	20.0	6.5	20.0
Bromochloromethane	Ave	0.1371	0.1380	0.0900	20.1	20.0	0.6	20.0
Chloroform	Lin1		0.5182	0.0500	20.4	20.0	2.2	20.0
2,2-Dichloropropane	Ave	0.3878	0.4009	0.0500	20.7	20.0	3.4	20.0
Ethyl tert-butyl ether	Ave	0.7910	0.7530	0.0500	19.0	20.0	-4.8	20.0
Tetrahydrofuran	Ave	0.1036	0.0909	0.0290	17.6	20.0	-12.2	20.0
1,2-Dichloroethane	Ave	0.4331	0.3825	0.0500	17.7	20.0	-11.7	20.0
1,1,1-Trichloroethane	Ave	0.4343	0.4346	0.0500	20.0	20.0	0.0	20.0
1,1-Dichloropropene	Ave	0.3554	0.3399	0.0500	19.1	20.0	-4.4	20.0
Cyclohexane	Ave	0.4734	0.4398	0.0500	18.6	20.0	-7.1	20.0
Carbon tetrachloride	Ave	0.3786	0.3869	0.0500	20.4	20.0	2.2	20.0
Benzene	Ave	0.9322	0.9453	0.0500	20.3	20.0	1.4	20.0
Tert-amyl methyl ether	Lin1		0.6321	0.0500	18.6	20.0	-7.1	20.0
Dibromomethane	Ave	0.1675	0.1677	0.1100	20.0	20.0	0.1	20.0
1,2-Dichloropropane	Ave	0.2536	0.2712	0.0500	21.4	20.0	6.9	20.0
Trichloroethene	Ave	0.2850	0.2794	0.0500	19.6	20.0	-2.0	20.0
Bromodichloromethane	Ave	0.3552	0.3416	0.0500	19.2	20.0	-3.8	20.0

Limit: <20%

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1

SDG No.:

Lab Sample ID: CCVIS 620-38145/3 Calibration Date: 08/23/2024 11:06

Instrument ID: HPV4 Calib Start Date: 08/21/2024 09:40

GC Column: DB-VRX ID: 0.18 (mm) Calib End Date: 08/21/2024 13:03

Lab File ID: V4-082324-03.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE CCV%D, UJ/J	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane (Freon 12)	Ave	0.1285	0.0926	0.0100	14.4	20.0	-27.9	50.0
Chloromethane	Ave	0.2353	0.1995	0.0500	17.0	20.0	-15.2	50.0
Vinyl chloride	Ave	0.1966	0.1710	0.0500	17.4	20.0	-13.0	20.0
Bromomethane	Lin1		0.1296	0.0100	16.0	20.0	-20.2	50.0
Chloroethane	Ave	0.1423	0.1186	0.0830	16.7	20.0	-16.6	50.0
Ethanol	Ave	0.0031	0.0033	0.0023	426	400	6.4	50.0
Trichlorofluoromethane (Freon 11)	Ave	0.4605	0.4473	0.0500	19.4	20.0	-2.9	20.0
Acetone	Ave	0.1552	0.1251	0.0870	16.1	20.0	-19.4	50.0
Ethyl ether	Ave	0.2187	0.1939	0.0500	17.7	20.0	-11.3	20.0
1,1-Dichloroethene	Ave	0.2228	0.2263	0.0500	20.3	20.0	1.6	20.0
Iodomethane	Lin1		0.2444	0.0500	16.6	20.0	-17.2	20.0
tert-Butanol	Ave	0.0346	0.0365	0.0080	211	200	5.5	20.0
Acrylonitrile	Ave	0.1358	0.1345	0.0430	19.8	20.0	-0.9	20.0
Methylene Chloride	Ave	0.2677	0.2710	0.0500	20.3	20.0	1.2	20.0
1,1,2-Trichlorotrifluoroetha ne (Freon 113)	Ave	0.2884	0.2606	0.0500	18.1	20.0	-9.6	20.0
Methyl acetate	Ave	0.2626	0.2349	0.0500	17.9	20.0	-10.5	20.0
Carbon disulfide	Ave	0.6025	0.6502	0.0500	21.6	20.0	7.9	20.0
trans-1,2-Dichloroethene	Ave	0.2360	0.2435	0.0500	20.6	20.0	3.2	20.0
Methyl tert-butyl ether	Ave	0.7091	0.6912	0.0500	19.5	20.0	-2.5	20.0
1,1-Dichloroethane	Ave	0.4758	0.4906	0.0500	20.6	20.0	3.1	20.0
2-Butanone (MEK)	Lin1		0.1400	0.0950	17.3	20.0	-13.5	50.0
di-Isopropyl ether	Ave	0.8830	0.8218	0.0500	18.6	20.0	-6.9	20.0
cis-1,2-Dichloroethene	Ave	0.2657	0.2730	0.0500	20.6	20.0	2.8	20.0
Bromochloromethane	Ave	0.1371	0.1421	0.0900	20.7	20.0	3.6	50.0
Chloroform	Lin1		0.5300	0.0500	20.9	20.0	4.6	20.0
2,2-Dichloropropane	Ave	0.3878	0.3965	0.0500	20.5	20.0	2.2	20.0
Ethyl tert-butyl ether	Ave	0.7910	0.7646	0.0500	19.3	20.0	-3.3	20.0
Tetrahydrofuran	Ave	0.1036	0.1047	0.0290	20.2	20.0	1.1	20.0
1,2-Dichloroethane	Ave	0.4331	0.4084	0.0500	18.9	20.0	-5.7	20.0
1,1,1-Trichloroethane	Ave	0.4343	0.4424	0.0500	20.4	20.0	1.9	20.0
1,1-Dichloropropene	Ave	0.3554	0.3288	0.0500	18.5	20.0	-7.5	20.0
Cyclohexane	Ave	0.4734	0.4117	0.0500	17.4	20.0	-13.0	20.0
Carbon tetrachloride	Ave	0.3786	0.3894	0.0500	20.6	20.0	2.9	20.0
Benzene	Ave	0.9322	0.8956	0.0500	19.2	20.0	-3.9	20.0
Tert-amyl methyl ether	Lin1		0.6454	0.0500	19.0	20.0	-5.1	20.0
Dibromomethane	Ave	0.1675	0.1733	0.1100	20.7	20.0	3.5	20.0
1,2-Dichloropropane	Ave	0.2536	0.2601	0.0500	20.5	20.0	2.6	20.0
Trichloroethene	Ave	0.2850	0.2726	0.0500	19.1	20.0	-4.4	20.0
Bromodichloromethane	Ave	0.3552	0.3505	0.0500	19.7	20.0	-1.3	20.0

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1

SDG No.:

Lab Sample ID: ICV 620-36778/15 Calibration Date: 07/18/2024 16:20

Instrument ID: HPV5 Calib Start Date: 07/18/2024 11:15

GC Column: RTX-VMS ID: 0.25(mm) Calib End Date: 07/18/2024 14:38

Lab File ID: V5-071824-17.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane (Freon 12) CV%D U.//	Ave	0.1895	0.1187	0.0100	12.5	20.0	-37.3	50.0
Chloromethane	Ave	0.2389	0.1758	0.0500	14.7	20.0	-26.4*	20.0
Vinyl chloride	Ave	0.1579	0.1350	0.0500	17.1	20.0	-14.5	20.0
Bromomethane	Ave	0.0718	0.0663	0.0100	18.5	20.0	-7.6	50.0
Chloroethane	Ave	0.0837	0.0670*	0.0830	16.0	20.0	-19.9	50.0
Trichlorofluoromethane (Freon 11)	Ave	0.3555	0.3259	0.0500	18.3	20.0	-8.3	20.0
Ethyl ether	Ave	0.1626	0.1682	0.0500	20.7	20.0	3.5	20.0
Ethanol ICV%D, UJ/J	Ave	0.0022	0.0016*	0.0023	286	400	-28.5*	20.0
1,1-Dichloroethene	Ave	0.1522	0.1735	0.0500	22.8	20.0	14.0	20.0
Carbon disulfide	Ave	0.5724	0.5295	0.0500	18.5	20.0	-7.5	20.0
1,1,2-Trichlorotrifluoroetha ne (Freon 113)	Ave	0.1977	0.1828	0.0500	18.5	20.0	-7.5	20.0
Iodomethane	Qua1		0.1589	0.0500	17.6	20.0	-12.0	20.0
Methylene Chloride	Ave	0.1878	0.1891	0.0500	20.1	20.0	0.7	20.0
Acetone	Ave	0.1007	0.0945	0.0870	18.8	20.0	-6.2	50.0
trans-1,2-Dichloroethene	Ave	0.1524	0.1805	0.0500	23.7	20.0	18.4	20.0
Methyl acetate	Ave	0.1446	0.1498	0.0500	20.7	20.0	3.6	20.0
Methyl tert-butyl ether	Ave	0.4486	0.5184	0.0500	23.1	20.0	15.6	20.0
tert-Butanol	Ave	0.0138	0.0155	0.0080	224	200	12.0	20.0
di-Isopropyl ether	Qua1		0.5382	0.0500	20.3	20.0	1.7	20.0
1,1-Dichloroethane	Ave	0.3487	0.3679	0.0500	21.1	20.0	5.5	20.0
Acrylonitrile	Qua1		0.0705	0.0430	22.2	20.0	10.9	20.0
Ethyl tert-butyl ether	Qua1		0.4918	0.0500	20.7	20.0	3.4	20.0
cis-1,2-Dichloroethene	Ave	0.1604	0.1821	0.0500	22.7	20.0	13.6	20.0
2,2-Dichloropropane	Ave	0.3177	0.3282	0.0500	20.7	20.0	3.3	20.0
Bromochloromethane	Ave	0.0956	0.0997	0.0900	20.9	20.0	4.3	20.0
Cyclohexane	Lin1		0.2227	0.0500	19.1	20.0	-4.5	20.0
Chloroform	Lin1		0.4150	0.0500	20.8	20.0	3.9	20.0
Carbon tetrachloride	Ave	0.3314	0.3216	0.0500	19.4	20.0	-2.9	20.0
Tetrahydrofuran	Ave	0.0434	0.0495	0.0290	22.8	20.0	14.0	20.0
1,1,1-Trichloroethane	Ave	0.3847	0.3772	0.0500	19.6	20.0	-2.0	20.0
2-Butanone (MEK)	Ave	0.1300	0.1102	0.0950	17.0	20.0	-15.2	50.0
1,1-Dichloropropene	Ave	0.2183	0.2517	0.0500	23.1	20.0	15.3	20.0
Benzene	Ave	0.6175	0.7107	0.0500	23.0	20.0	15.1	20.0
Tert-amyl methyl ether	Ave	0.3791	0.4143	0.0500	21.9	20.0	9.3	20.0
1,2-Dichloroethane	Ave	0.4053	0.3785	0.0500	18.7	20.0	-6.6	20.0
Methylcyclohexane	Ave	0.1771	0.1875	0.0500	21.2	20.0	5.9	20.0
Trichloroethene	Ave	0.2227	0.2168	0.0500	19.5	20.0	-2.7	20.0
Dibromomethane	Ave	0.1403	0.1449	0.1100	20.6	20.0	3.2	20.0
1,2-Dichloropropane	Ave	0.1674	0.1835	0.0500	21.9	20.0	9.6	20.0

Limit: <20%

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1

SDG No.:

Lab Sample ID: CCVIS 620-38190/3 Calibration Date: 08/26/2024 10:30

Instrument ID: HPV5 Calib Start Date: 07/18/2024 11:15

GC Column: RTX-VMS ID: 0.25(mm) Calib End Date: 07/18/2024 14:38

Lab File ID: V5-082624-03.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane (Freon 12) CCV%D, UJ/J	Ave	0.1895	0.1245	0.0100	13.1	20.0	-34.3	50.0
Chloromethane	Ave	0.2389	0.2052	0.0500	17.2	20.0	-14.1	50.0
Vinyl chloride	Ave	0.1579	0.1693	0.0500	21.5	20.0	7.3	20.0
Bromomethane	Ave	0.0718	0.0691	0.0100	19.3	20.0	-3.7	50.0
Chloroethane	Ave	0.0837	0.0957	0.0830	22.9	20.0	14.4	50.0
Trichlorofluoromethane (Freon 11)	Ave	0.3555	0.3399	0.0500	19.1	20.0	-4.4	20.0
Ethyl ether	Ave	0.1626	0.1429	0.0500	17.6	20.0	-12.1	20.0
Ethanol CCV%D, UJ/J	Ave	0.0022	0.0017*	0.0023	295	400	-26.2	50.0
1,1-Dichloroethene	Ave	0.1522	0.1485	0.0500	19.5	20.0	-2.4	20.0
Carbon disulfide	Ave	0.5724	0.6296	0.0500	22.0	20.0	10.0	20.0
1,1,2-Trichlorotrifluoroetha ne (Freon 113)	Ave	0.1977	0.1942	0.0500	19.7	20.0	-1.8	20.0
Iodomethane	Qua1		0.1553	0.0500	17.2	20.0	-13.8	20.0
Methylene Chloride	Ave	0.1878	0.2014	0.0500	21.4	20.0	7.2	20.0
Acetone CCV%D, UJ/J	Ave	0.1007	0.0683*	0.0870	13.6	20.0	-32.2	50.0
trans-1,2-Dichloroethene	Ave	0.1524	0.1449	0.0500	19.0	20.0	-5.0	20.0
Methyl acetate	Ave	0.1446	0.1196	0.0500	16.5	20.0	-17.3	20.0
Methyl tert-butyl ether	Ave	0.4486	0.3650	0.0500	16.3	20.0	-18.6	20.0
tert-Butanol CCV%D, UJ/J	Ave	0.0138	0.0084	0.0080	122	200	-39.0*	20.0
di-Isopropyl ether	Qua1		0.4471	0.0500	17.1	20.0	-14.5	20.0
1,1-Dichloroethane	Ave	0.3487	0.3650	0.0500	20.9	20.0	4.7	20.0
Acrylonitrile CCV%D, UJ/J	Qua1		0.0578	0.0430	18.4	20.0	-8.0	20.0
Ethyl tert-butyl ether	Qua1		0.3702	0.0500	15.9	20.0	-20.6*	20.0
cis-1,2-Dichloroethene	Ave	0.1604	0.1521	0.0500	19.0	20.0	-5.2	20.0
2,2-Dichloropropane	Ave	0.3177	0.3037	0.0500	19.1	20.0	-4.4	20.0
Bromochloromethane	Ave	0.0956	0.1043	0.0900	21.8	20.0	9.1	50.0
Cyclohexane	Lin1		0.2355	0.0500	20.1	20.0	0.6	20.0
Chloroform	Lin1		0.4283	0.0500	21.5	20.0	7.4	20.0
Carbon tetrachloride	Ave	0.3314	0.3105	0.0500	18.7	20.0	-6.3	20.0
Tetrahydrofuran CCV%D, UJ/J	Ave	0.0434	0.0337	0.0290	15.5	20.0	-22.5*	20.0
1,1,1-Trichloroethane	Ave	0.3847	0.3591	0.0500	18.7	20.0	-6.6	20.0
2-Butanone (MEK) CCV%D, UJ/J	Ave	0.1300	0.0897*	0.0950	13.8	20.0	-31.0	50.0
1,1-Dichloropropene	Ave	0.2183	0.2194	0.0500	20.1	20.0	0.5	20.0
Benzene	Ave	0.6175	0.6800	0.0500	22.0	20.0	10.1	20.0
Tert-amyl methyl ether	Ave	0.3791	0.3233	0.0500	17.1	20.0	-14.7	20.0
1,2-Dichloroethane	Ave	0.4053	0.3665	0.0500	18.1	20.0	-9.6	20.0
Methylcyclohexane	Ave	0.1771	0.1879	0.0500	21.2	20.0	6.1	20.0
Trichloroethene	Ave	0.2227	0.2135	0.0500	19.2	20.0	-4.2	20.0
Dibromomethane	Ave	0.1403	0.1298	0.1100	18.5	20.0	-7.5	20.0
1,2-Dichloropropane	Ave	0.1674	0.1700	0.0500	20.3	20.0	1.6	20.0

Limit: <20%

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1

SDG No.:

Lab Sample ID: CCVIS 620-38190/3 Calibration Date: 08/26/2024 10:30

Instrument ID: HPV5 Calib Start Date: 07/18/2024 11:15

GC Column: RTX-VMS ID: 0.25(mm) Calib End Date: 07/18/2024 14:38

Lab File ID: V5-082624-03.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Bromodichloromethane	Lin1		0.2999	0.0500	20.3	20.0	1.5	20.0
1,4-Dioxane CCV%D, UJ/J	Qua1		0.0009*	0.0010	137	200	-31.6	50.0
cis-1,3-Dichloropropene	Ave	0.2400	0.2199	0.0500	18.3	20.0	-8.4	20.0
Toluene	Ave	0.3970	0.4255	0.0500	21.4	20.0	7.2	20.0
Tetrachloroethene CCV%D, UJ	/.I Ave	0.1901	0.1908	0.0500	20.1	20.0	0.4	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1500	0.1159	0.0990	15.5	20.0	-22.7	50.0
trans-1,3-Dichloropropene	Ave	0.2732	0.2751	0.0500	20.1	20.0	0.7	20.0
1,1,2-Trichloroethane	Ave	0.1590	0.1504	0.0500	18.9	20.0	-5.5	20.0
Dibromochloromethane	Ave	0.2260	0.1920	0.0500	17.0	20.0	-15.0	20.0
1,3-Dichloropropane	Ave	0.2857	0.2703	0.0500	18.9	20.0	-5.4	20.0
1,2-Dibromoethane (EDB)	Ave	0.1799	0.1609	0.0500	17.9	20.0	-10.6	20.0
2-Hexanone (MBK) CCV%D, UJ/J	Ave	0.1013	0.0730*	0.0860	14.4	20.0	-27.9	50.0
Chlorobenzene	Ave	0.6441	0.6461	0.0500	20.1	20.0	0.3	20.0
Ethylbenzene	Ave	0.9726	1.096	0.0500	22.5	20.0	12.7	20.0
1,1,1,2-Tetrachloroethane	Lin1		0.2749	0.0500	20.3	20.0	1.4	20.0
m,p-Xylene	Qua1		0.7585	0.0500	20.3	20.0	1.5	20.0
o-Xylene	Qua1		0.6892	0.0500	19.5	20.0	-2.5	20.0
Styrene	Qua1		0.6206	0.0500	21.2	20.0	5.9	20.0
Bromoform	Ave	0.2186	0.2037	0.0500	18.6	20.0	-6.8	50.0
Isopropylbenzene	Qua1		0.9148	0.0500	20.3	20.0	1.6	20.0
Bromobenzene	Ave	0.3044	0.3139	0.0500	20.6	20.0	3.1	20.0
N-Propylbenzene	Ave	1.048	1.205	0.0500	23.0	20.0	14.9	20.0
1,1,2,2-Tetrachloroethane	Qua1		0.3449	0.0500	19.1	20.0	-4.3	20.0
2-Chlorotoluene	Ave	0.6369	0.7157	0.0500	22.5	20.0	12.4	20.0
1,2,3-Trichloropropane	Ave	0.3277	0.2966	0.0500	18.1	20.0	-9.5	20.0
1,3,5-Trimethylbenzene	Lin1		0.8377	0.0500	19.0	20.0	-4.8	20.0
trans-1,4-Dichloro-2-butene	Ave	0.0594	0.0518*	0.0910	17.4	20.0	-12.9	20.0
4-Chlorotoluene	Ave	0.7126	0.7946	0.0500	22.3	20.0	11.5	20.0
tert-Butylbenzene	Qua1		0.4085	0.0500	19.4	20.0	-3.1	20.0
1,2,4-Trimethylbenzene	Qua1		0.8134	0.0500	20.0	20.0	0.0	20.0
sec-Butylbenzene	Qua1		0.9345	0.0500	20.2	20.0	1.0	20.0
4-Isopropyltoluene	Qua1		1.187	0.0500	18.9	20.0	-5.7	20.0
1,3-Dichlorobenzene	Ave	0.4909	0.5588	0.0500	22.8	20.0	13.9	20.0
1,4-Dichlorobenzene	Lin1		0.9534	0.0500	21.3	20.0	6.6	20.0
n-Butylbenzene	Qua1		0.8871	0.0500	17.8	20.0	-11.3	20.0
1,2-DichlorobenzeneCCV%D, U	J/ Jave	0.7904	0.8322	0.0500	21.1	20.0	5.3	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.1186	0.0854	0.0630	14.4	20.0	-28.0*	20.0
1,3,5-Trichlorobenzene	Ave	0.5169	0.4729	0.0500	18.3	20.0	-8.5	20.0
Hexachlorobutadiene	Ave	0.2724	0.2319	0.0500	17.0	20.0	-14.9	20.0
1,2,4-Trichlorobenzene	Qua1		0.2033	0.0500	15.7	20.0	-21.4*	20.0
Naphthalene	Qua1F		0.5868	0.0500	12.4	20.0	-37.8*	20.0

CCV%D, UJ/J

TML 10/10/24

Limit: <20%

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1

SDG No.:

Lab Sample ID: CCVIS 620-38190/3 Calibration Date: 08/26/2024 10:30

Instrument ID: HPV5 Calib Start Date: 07/18/2024 11:15

GC Column: RTX-VMS ID: 0.25(mm) Calib End Date: 07/18/2024 14:38

Lab File ID: V5-082624-03.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE CCV%D, UJ/J	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,3-Trichlorobenzene	Lin1		0.3676	0.0500	13.9	20.0	-30.4*	20.0
Dibromofluoromethane (Surr)	Ave	0.2969	0.3033	0.0500	51.1	50.0	2.2	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.4383	0.4118	0.0500	47.0	50.0	-6.0	20.0
Toluene-d8 (Surr)	Ave	0.9281	0.9398	0.0500	50.6	50.0	1.3	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5210	0.5052	0.0500	48.5	50.0	-3.0	20.0

Limit: <20%

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1

SDG No.:

Lab Sample ID: CCVIS 620-38284/3 Calibration Date: 08/28/2024 11:20

Instrument ID: HPV5 Calib Start Date: 07/18/2024 11:15

GC Column: RTX-VMS ID: 0.25 (mm) Calib End Date: 07/18/2024 14:38

Lab File ID: V5-082824-03.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
CCV%D, UJ/J								
Dichlorodifluoromethane (Freon 12)	Ave	0.1895	0.2367	0.0100	25.0	20.0	24.9	50.0
Chloromethane	Ave	0.2389	0.2489	0.0500	20.8	20.0	4.2	50.0
Vinyl chloride CCV%D, UJ/J	Ave	0.1579	0.2047	0.0500	25.9	20.0	29.6*	20.0
Bromomethane	Ave	0.0718	0.0785	0.0100	21.9	20.0	9.3	50.0
Chloroethane CCV%D, UJ/J	Ave	0.0837	0.1152	0.0830	27.5	20.0	37.6	50.0
Trichlorofluoromethane (Freon 11)	Ave	0.3555	0.4069	0.0500	22.9	20.0	14.5	20.0
Ethyl ether	Ave	0.1626	0.1549	0.0500	19.1	20.0	-4.7	20.0
Ethanol CCV%D, UJ/J	Ave	0.0022	0.0016*	0.0023	280	400	-30.0	50.0
1,1-Dichloroethene	Ave	0.1522	0.1645	0.0500	21.6	20.0	8.1	20.0
Carbon disulfide	Ave	0.5724	0.6746	0.0500	23.6	20.0	17.8	20.0
1,1,2-Trichlorotrifluoroetha ne (Freon 113)	Ave	0.1977	0.2215	0.0500	22.4	20.0	12.0	20.0
Iodomethane	Qua1		0.1789	0.0500	19.5	20.0	-2.5	20.0
Methylene Chloride	Ave	0.1878	0.2089	0.0500	22.2	20.0	11.2	20.0
Acetone	Ave	0.1007	0.1002	0.0870	19.9	20.0	-0.5	50.0
trans-1,2-Dichloroethene	Ave	0.1524	0.1603	0.0500	21.0	20.0	5.2	20.0
Methyl acetate	Ave	0.1446	0.1400	0.0500	19.4	20.0	-3.2	20.0
Methyl tert-butyl ether	Ave	0.4486	0.4143	0.0500	18.5	20.0	-7.6	20.0
tert-Butanol CCV%D, UJ/J	Ave	0.0138	0.0103	0.0080	149	200	-25.4*	20.0
di-Isopropyl ether	Qua1		0.4546	0.0500	17.4	20.0	-13.2	20.0
1,1-Dichloroethane	Ave	0.3487	0.3830	0.0500	22.0	20.0	9.9	20.0
Acrylonitrile	Qua1		0.0603	0.0430	19.1	20.0	-4.3	20.0
Ethyl tert-butyl ether	Qua1		0.4037	0.0500	17.2	20.0	-13.9	20.0
cis-1,2-Dichloroethene	Ave	0.1604	0.1597	0.0500	19.9	20.0	-0.4	20.0
2,2-Dichloropropane	Ave	0.3177	0.3375	0.0500	21.3	20.0	6.3	20.0
Bromochloromethane	Ave	0.0956	0.1130	0.0900	23.6	20.0	18.2	50.0
Cyclohexane	Lin1		0.2465	0.0500	21.0	20.0	5.1	20.0
Chloroform	Lin1		0.4633	0.0500	23.3	20.0	16.6	20.0
Carbon tetrachloride	Ave	0.3314	0.3602	0.0500	21.7	20.0	8.7	20.0
Tetrahydrofuran	Ave	0.0434	0.0387	0.0290	17.8	20.0	-10.9	20.0
1,1,1-Trichloroethane	Ave	0.3847	0.4096	0.0500	21.3	20.0	6.5	20.0
2-Butanone (MEK)	Ave	0.1300	0.1080	0.0950	16.6	20.0	-16.9	50.0
1,1-Dichloropropene	Ave	0.2183	0.2425	0.0500	22.2	20.0	11.1	20.0
Benzene	Ave	0.6175	0.6930	0.0500	22.4	20.0	12.2	20.0
Tert-amyl methyl ether	Ave	0.3791	0.3627	0.0500	19.1	20.0	-4.3	20.0
1,2-Dichloroethane	Ave	0.4053	0.4149	0.0500	20.5	20.0	2.4	20.0
Methylcyclohexane	Ave	0.1771	0.2035	0.0500	23.0	20.0	14.9	20.0
Trichloroethene	Ave	0.2227	0.2299	0.0500	20.6	20.0	3.2	20.0
Dibromomethane	Ave	0.1403	0.1450	0.1100	20.7	20.0	3.3	20.0
1,2-Dichloropropane	Ave	0.1674	0.1715	0.0500	20.5	20.0	2.4	20.0

TML 10/10/24

Limit: <20%

Lab Name: Eurofins Rhode Island Job No.: $\underline{620-20506-1}$

SDG No.:

Lab Sample ID: CCVIS 620-38284/3 Calibration Date: 08/28/2024 11:20

Instrument ID: HPV5 Calib Start Date: 07/18/2024 11:15

GC Column: RTX-VMS ID: 0.25(mm) Calib End Date: 07/18/2024 14:38

Lab File ID: V5-082824-03.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Bromodichloromethane	Lin1		0.3278	0.0500	22.2	20.0	11.1	20.0
1,4-Dioxane CCV%D, UJ/J	Qua1		0.0009*	0.0010	139	200	-30.7	50.0
cis-1,3-Dichloropropene	Ave	0.2400	0.2269	0.0500	18.9	20.0	-5.5	20.0
Toluene	Ave	0.3970	0.4350	0.0500	21.9	20.0	9.6	20.0
Tetrachloroethene	Ave	0.1901	0.2087	0.0500	22.0	20.0	9.8	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1500	0.1333	0.0990	17.8	20.0	-11.1	50.0
trans-1,3-Dichloropropene	Ave	0.2732	0.2955	0.0500	21.6	20.0	8.2	20.0
1,1,2-Trichloroethane	Ave	0.1590	0.1594	0.0500	20.1	20.0	0.2	20.0
Dibromochloromethane	Ave	0.2260	0.2175	0.0500	19.3	20.0	-3.8	20.0
1,3-Dichloropropane	Ave	0.2857	0.2907	0.0500	20.4	20.0	1.8	20.0
1,2-Dibromoethane (EDB)	Ave	0.1799	0.1796	0.0500	20.0	20.0	-0.2	20.0
2-Hexanone (MBK)	Ave	0.1013	0.0878	0.0860	17.3	20.0	-13.3	50.0
Chlorobenzene	Ave	0.6441	0.6906	0.0500	21.5	20.0	7.2	20.0
Ethylbenzene CCV%D, UJ/J	Ave	0.9726	1.189	0.0500	24.5	20.0	22.2*	20.0
1,1,1,2-Tetrachloroethane	Lin1		0.3098	0.0500	22.9	20.0	14.6	20.0
m,p-Xylene	Qua1		0.8418	0.0500	22.4	20.0	12.0	20.0
o-Xylene	Qua1		0.7678	0.0500	21.6	20.0	7.8	20.0
Styrene	Qua1		0.6900	0.0500	23.4	20.0	16.9	20.0
Bromoform	Ave	0.2186	0.2447	0.0500	22.4	20.0	11.9	50.0
Isopropylbenzene	Qua1		1.033	0.0500	22.8	20.0	13.8	20.0
Bromobenzene	Ave	0.3044	0.3567	0.0500	23.4	20.0	17.2	20.0
N-Propylbenzene CCV%D, UJ/	Ave	1.048	1.307	0.0500	25.0	20.0	24.8*	20.0
1,1,2,2-Tetrachloroethane	Qua1		0.3883	0.0500	21.8	20.0	8.8	20.0
2-Chlorotoluene CCV%D. UJ/J	Ave	0.6369	0.8130	0.0500	25.5	20.0	27.7*	20.0
1,2,3-Trichloropropane	Ave	0.3277	0.3516	0.0500	21.5	20.0	7.3	20.0
1,3,5-Trimethylbenzene	Lin1		0.9661	0.0500	21.8	20.0	9.1	20.0
trans-1,4-Dichloro-2-butene	Ave	0.0594	0.0602*	0.0910	20.3	20.0	1.3	20.0
4-ChlorotolueneCCV%D, UJ/J	Ave	0.7126	0.9055	0.0500	25.4	20.0	27.1*	20.0
tert-Butylbenzene	Qua1		0.4578	0.0500	21.5	20.0	7.7	20.0
1,2,4-Trimethylbenzene	Qua1		0.9246	0.0500	22.6	20.0	12.8	20.0
sec-Butylbenzene	Qua1		1.057	0.0500	22.7	20.0	13.5	20.0
4-Isopropyltoluene CCV%D, UJ	D ua1		1.346	0.0500	21.2	20.0	6.0	20.0
1,3-Dichlorobenzene	Ave	0.4909	0.6216	0.0500	25.3	20.0	26.6*	20.0
1,4-Dichlorobenzene	Lin1		1.050	0.0500	23.5	20.0	17.7	20.0
n-Butylbenzene	Qua1		0.9891	0.0500	19.6	20.0	-2.0	20.0
1,2-Dichlorobenzene	Ave	0.7904	0.8957	0.0500	22.7	20.0	13.3	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.1186	0.1012	0.0630	17.1	20.0	-14.6	20.0
1,3,5-Trichlorobenzene	Ave	0.5169	0.5247	0.0500	20.3	20.0	1.5	20.0
Hexachlorobutadiene	Ave	0.2724	0.2617	0.0500	19.2	20.0	-3.9	20.0
The state of the s								
1,2,4-Trichlorobenzene	Qua1		0.2375	0.0500	18.1	20.0	-9.5	20.0

TML 10/10/24

NYSDEC Irvington Rugs and Cleaners Tara LePage

10/11/2024

Sample ID: 360175-DP018001-GW

TC: Trichloroethene

ICAL Level: 2 Val File Result for TC: 59.6

Ical Calc

					ICAL p560
ICV Quant Report	Area TC	4833	1	0.2954	
p 584	Area IS	824360	2	0.2931	
			3	0.2837	
	Conc TC	1	4	0.2876	
	Conc IS	50	5	0.2882	
			6	0.2843	
	RRF =	0.293136	7	0.2731	
			8	0.2865	
			9	0.2727	
			10		
			Avg RRF =	0.284956	
			Std Dev =	0.007811	
			%RSD =	2.741097	

Sample Calc

sample Quant Report p 415

Area TC	239136	DF	1
Area IS	703795	Initial Vol NA	
		Final Vol NA	
Conc IS	50		
Avg RRF	0.284956		
Conc TC =	59.61996		

Notes:

Green = matched reported value Red = did not match reported value

Run log p1165

Field DUP

	360175-DP018001D-GW	360175-DP018001-GW	
Parameter	Result Qual	Result Qual	
cis-1,2-Dichloroethene	11.6	22.9 -	65.5072
Tetrachloroethene	1770	2220 -	22.5564
Trichloroethene	31	59.6	63.1347
	360175-DP018001D-SOIL	360175-DP018001-SOIL	
Parameter	Result Qual	Result Qual	
cis-1,2-Dichloroethene	784	980 -	22.2222
Tetrachloroethene	8180	12200 -	39.4504
Trichloroethene	457	1540 -	108.463

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins Rhode Island Job No.: 620-20506-1 Analy Batch No.: 38019

SDG No.:

Instrument ID: HPV4 GC Column: DB-VRX ID: 0.18 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 08/21/2024 09:40 Calibration End Date: 08/21/2024 13:03 Calibration ID: 8105

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	# MAX %RSD	R^2	
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			/RSE	/RSE	OR COD	OR COD
1,1-Dichloropropene	0.3395 0.3675	0.3434 0.3553		0.3598 0.3548	0.3661	Ave		0.355			0.0500	3.0	20.0		
Cyclohexane	0.4639 0.4941	0.4653 0.4725		0.4762 0.4569	0.4919	Ave		0.473			0.0500	3.0	20.0		
Carbon tetrachloride	0.3488 0.3997	0.3555 0.3934		0.3713 0.3991	0.3878	Ave		0.378			0.0500	6.3	20.0		
Benzene	0.9818 0.9375	0.9736 0.8967		0.9368 0.8849	0.9354	Ave		0.932			0.0500	3.4	20.0		
Tert-amyl methyl ether	2.0360 0.6811	1.3269 0.6634		0.7649 0.6530	0.6956	Lin1	0.676	0.644			0.0500			1.0000	0.9900
Dibromomethane	0.1641 0.1703	0.1729 0.1662		0.1696 0.1641	0.1684	Ave		0.167			0.1100	1.9	20.0		
1,2-Dichloropropane	0.2532 0.2577	0.2562 0.2498		0.2537 0.2469	0.2567	Ave		0.253			0.0500	1.3	20.0		
Trichloroethene	0.2954	0.2931	0.2837	0.2876 0.2727	0.2882	Ave		0.285			0.0500	2.7	20.0		
Bromodichloromethane	0.4300 0.3494	0.3601 0.3562	0.3284	0.3349	0.3403	Ave		0.355			0.0500	8.4	20.0		
1,4-Dioxane	+++++	0.0029 0.0037		0.0035 0.0038	0.0030	Ave		0.003			0.0010	13.1	20.0		
Methylcyclohexane	0.3909 0.4552	0.4087 0.4410		0.4114	0.4403	Ave		0.425			0.0500	6.2	20.0		
cis-1,3-Dichloropropene	0.3051 0.3952	0.3149		0.3543	0.3724	Ave		0.364			0.0500	12.3	20.0		
4-Methyl-2-pentanone (MIBK)	0.2473 0.3254	0.3144		0.3162 0.3150	0.2819	Ave		0.305			0.0990	8.5	20.0		
trans-1,3-Dichloropropene	0.2630 0.3720	0.2758 0.3822		0.3149	0.3433	Ave		0.334			0.0500	15.9	20.0		
1,1,2-Trichloroethane	0.1860 0.1979	0.1958 0.1943		0.1983 0.1871	0.1971	Ave		0.193			0.0500	2.3	20.0		
Toluene	0.6123 0.6162	0.6284 0.5948		0.6222 0.5782	0.6043	Ave		0.607			0.0500	2.5	20.0		
1,3-Dichloropropane	0.3892 0.3945	0.3979 0.3859		0.4129	0.3918	Ave		0.391			0.0500	2.8	20.0		
Dibromochloromethane	0.2721 0.2612	0.2442	0.2171 0.2718	0.2232	0.2355	Ave		0.251			0.0500	8.9	20.0		

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type. RSD is calculated for Ave curve types. RSE is used for all other types.

Report Date: 26-Aug-2024 15:18:23 Chrom Revision: 2.3 20-Aug-2024 19:34:52

Eurofins Rhode Island
Target Compound Quantitation Report

Data File: \\ChromFS\Spectrum\ChromData\HPV4\20240821-10045.b\V4-082124-04.D

Lims ID: IC L2

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 21-Aug-2024 10:03:30 ALS Bottle#: 2 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: ic I2

Misc. Info.: 620-0010045-004

Operator ID: CLR Instrument ID: HPV4

Sublist: chrom-MSVOA_HPV4*sub1

Method: \ChromFS\Spectrum\ChromData\HPV4\20240821-10045.b\MSVOA_HPV4.m

Limit Group: MSV - 8260C

Last Update:26-Aug-2024 15:18:21Calib Date:21-Aug-2024 13:03:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromFS\Spectrum\ChromData\HPV4\20240821-10045.b\V4-082124-11.D

Column 1: Agilent DB-VRX (0.18 mm) Det: MS SCAN

Process Host: CTX1685

First Level Reviewer: QFC8 Date: 21-Aug-2024 12:38:45

T 113t ECVOTT CVICWOT. QT 00				atc.		21 / lug 202	1 12.00.10		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
1 Dichlorodifluoromethane	85	0.765	0.765	0.000	97	2148	1.00	1.01	
2 Chloromethane	50	0.854	0.849	0.005	98	4255	1.00	1.10	
3 Vinyl chloride	62	0.886	0.886	0.000	97	3762	1.00	1.16	
4 Bromomethane	96	1.022	1.022	0.000	96	4703	1.00	0.7961	M
5 Chloroethane	64	1.074	1.074	0.000	97	2581	1.00	1.10	M
6 Ethanol	45	1.106	1.106	0.000	98	1063	20.0	20.7	
7 Trichlorofluoromethane	101	1.300	1.300	0.000	99	7771	1.00	1.02	
8 Acetone	43	1.368	1.368	0.000	98	3844	1.00	1.50	
9 Ethyl ether	59	1.426	1.426	0.000	93	3628	1.00	1.01	
10 1,1-Dichloroethene	96	1.546	1.551	-0.005	97	3619	1.00	0.9852	
11 lodomethane	142	1.573	1.557	0.016	23	512	1.00	2.11	M
12 2-Methyl-2-propanol	59	1.593	1.599	-0.006	96	6850	10.0	12.0	
13 Acrylonitrile	53	1.609	1.609	0.000	91	2306	1.00	1.03	
14 Methylene Chloride	84	1.641	1.641	0.000	96	4755	1.00	1.08	
15 1,1,2-Trichloro-1,2,2-trifluoroe	101	1.672	1.672	0.000	97	4976	1.00	1.05	
16 Methyl acetate	43	1.693	1.693	0.000	97	4801	1.00	1.11	
17 Carbon disulfide	76	1.709	1.709	0.000	100	9039	1.00	0.9100	
18 trans-1,2-Dichloroethene	96	2.034	2.039	-0.005	96	3942	1.00	1.01	
19 Methyl tert-butyl ether	73	2.144	2.144	0.000	96	11762	1.00	1.01	
20 1,1-Dichloroethane	63	2.212	2.212	0.000	99	8084	1.00	1.03	
22 2-Butanone (MEK)	43	2.632	2.616	0.016	92	2266	1.00	1.78	M
23 Isopropyl ether	45	2.658	2.658	0.000	97	14483	1.00	0.99	
24 cis-1,2-Dichloroethene	96	2.695	2.694	0.001	95	4334	1.00	0.9894	
25 Chlorobromomethane	128	2.831	2.831	0.000	93	2348	1.00	1.04	
26 Chloroform	83	2.899	2.899	0.000	96	15191	1.00	0.9755	
27 2,2-Dichloropropane	77	2.957	2.957	0.000	94	5973	1.00	0.9343	
\$ 28 Dibromofluoromethane (Surr)		3.025	3.025	0.000	97	240151	50.0	49.8	
29 Tert-butyl ethyl ether	59	3.056	3.056	0.000	98	12923	1.00	0.99	
30 Tetrahydrofuran	42	3.245	3.240	0.005	91	1869	1.00	1.09	
\$ 31 1,2-Dichloroethane-d4 (Surr)	65	3.539	3.539	0.000	0	315452	50.0	51.6	
+ 11 1,2 21011101001110110		0.000				J.J.S.			

Data File: **DIt RT** Cal Amt OnCol Amt RT Exp RT Sig (min.) Q Compound (min.) (min.) Response Flags ug/l ug/l 62 97 32 1,2-Dichloroethane 3.638 3.638 0.000 7964 1.00 1.12 97 33 1,1,1-Trichloroethane 3.733 3.733 0.000 95 7189 1.00 1.00 34 1,1-Dichloropropene 75 4.037 4.037 0.000 95 5661 1.00 0.9661 56 4.073 4.079 -0.006 95 1.00 0.9829 35 Cyclohexane 7672 36 Carbon tetrachloride 117 4.236 4.236 0.000 97 5861 1.00 0.9390 78 4.346 4.341 0.005 98 1.00 1.04 37 Benzene 16052 96 4.776 50.0 38 Fluorobenzene 4.776 0.000 98 824360 50.0 39 Tert-amyl methyl ether 73 4.792 4.807 91 -0.01521877 1.00 1.01 5.248 0.005 40 Dibromomethane 93 5.253 95 2851 1.00 1.03 41 1,2-Dichloropropane 63 5.337 5.337 0.000 85 4224 1.00 1.01 42 Trichloroethene 95 5.421 5.421 0.000 98 4833 1.00 1.03 83 0.000 99 43 Dichlorobromomethane 5.489 5.489 5937 1.00 1.01 44 1.4-Dioxane 88 5.772 5.767 0.005 1 479 10.0 8.51 45 Methylcyclohexane 83 6.092 6.097 -0.005 93 6738 1.00 0.9597 75 46 cis-1,3-Dichloropropene 6.511 6.511 0.000 95 5191 1.00 0.8638 47 4-Methyl-2-pentanone (MIBK) 43 6.795 6.789 0.006 99 5183 1.00 1.03 48 trans-1,3-Dichloropropene 75 7.151 7.146 0.005 99 4547 1.00 0.8256 98 49 1,1,2-Trichloroethane 83 7.266 7.266 0.000 3228 1.00 1.01 \$ 50 Toluene-d8 (Surr) 98 7.408 7.408 0.000 99 792803 50.0 49.8 51 Toluene 92 7.492 7.492 0.000 93 10360 1.00 1.04 76 7.586 7.586 0.000 95 6561 1.00 1.02 52 1,3-Dichloropropane 129 7.806 7.806 0.000 98 1.00 53 Chlorodibromomethane 4026 0.9695 54 2-Hexanone 43 7.959 7.948 0.011 91 3621 1.00 0.9098 107 55 Ethylene Dibromide 8.084 8.084 0.000 98 3969 1.00 0.9502 56 Tetrachloroethene 166 8.352 8.346 0.006 97 5511 1.00 1.01 57 1,1,1,2-Tetrachloroethane 131 9.086 9.091 -0.00579 3916 1.00 0.9571 а 87 50.0 58 Chlorobenzene-d5 117 9.123 9.128 -0.006 621980 50.0 112 0.000 97 12003 1.00 59 Chlorobenzene 9.159 9.159 1.08 60 Ethylbenzene 91 9.474 9.474 0.000 99 18047 1.00 0.9867 61 Bromoform 173 9.673 9.673 0.000 94 2374 1.00 0.8987 62 m-Xylene & p-Xylene 91 9.731 9.731 0.000 0 13944 1.00 0.9769 63 Styrene 104 10.082 10.082 0.000 99 9433 1.00 0.8867 64 1,1,2,2-Tetrachloroethane 83 10.145 10.145 0.000 97 6044 1.00 1.14 65 o-Xylene 91 10.150 10.150 0.000 98 14825 1.00 0.9848 66 1,2,3-Trichloropropane 75 10.286 10.286 0.000 96 1.00 5026 1.10 74 67 trans-1,4-Dichloro-2-butene 53 10.397 10.396 0.001 1101 1.00 0.8303 95 10.522 10.522 0.000 93 313583 50.0 51.0 \$ 68 4-Bromofluorobenzene (Surr) 105 10.533 95 1.00 1.06 69 Isopropylbenzene 10.538 -0.005 21422 70 Bromobenzene 156 10.659 10.659 0.000 96 5626 1.00 1.04 71 N-Propylbenzene 91 10.937 10.937 0.001 99 22625 1.00 0.9411 Μ 72 2-Chlorotoluene 126 10.963 10.963 0.000 94 4802 1.00 1.01 11.041 73 4-Chlorotoluene 91 11.041 0.000 99 14250 1.00 1.01 74 1,3,5-Trimethylbenzene 105 11.230 11.230 0.000 93 14524 1.00 0.9420 75 tert-Butylbenzene 119 11.403 11.398 0.005 96 13525 1.00 0.9365 76 1,2,4-Trimethylbenzene 105 11.513 0.000 98 1.00 0.9453 11.513 14303 80 1,3-Dichlorobenzene 146 11.571 11.566 0.005 97 10423 1.00 1.05 77 sec-Butylbenzene 105 11.571 11.571 0.000 98 19634 1.00 1.00 * 79 1,4-Dichlorobenzene-d4 152 11.608 11.608 0.000 95 362726 50.0 50.0 78 1,4-Dichlorobenzene 146 11.623 11.629 -0.00694 10823 1.00 1.05 81 4-Isopropyltoluene 119 11.739 11.739 0.000 98 16564 1.00 0.9267 82 1,2-Dichlorobenzene 146 11.870 11.870 0.000 96 9205 1.00 1.00 83 n-Butylbenzene 91 12.022 12.022 0.000 98 12213 1.00 0.8739

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins Rhode Island	Job No.: 620-20506-1
SDG No.:	
Instrument ID: HPV4	Start Date: 08/23/2024 10:43
Analysis Batch Number: 38145	End Date: 08/23/2024 21:02

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 620-38145/2		08/23/2024 10:43	1	V4-082324-02.D	DB-VRX 0.18 (mm)
CCVIS 620-38145/3		08/23/2024 11:06	1	V4-082324-03.D	DB-VRX 0.18 (mm)
LCS 620-38145/4		08/23/2024 11:29	1	V4-082324-04.D	DB-VRX 0.18 (mm)
LCSD 620-38145/5		08/23/2024 11:52	1	V4-082324-05.D	DB-VRX 0.18 (mm)
MB 620-38145/7		08/23/2024 12:37	1	V4-082324-07.D	DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 13:48	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 14:11	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 14:34	10		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 14:57	10		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 15:20	10		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 15:43	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 16:05	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 16:28	1		DB-VRX 0.18 (mm)
620-20506-7	360175-DP018001	08/23/2024 17:14	1	V4-082324-17.D	DB-VRX 0.18 (mm)
620-20506-8	360175-DP018008	08/23/2024 17:37	1	V4-082324-18.D	DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 18:00	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 18:22	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 18:45	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 19:08	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 19:31	1		DB-VRX 0.18(mm)
ZZZZZ		08/23/2024 20:16	1		DB-VRX 0.18(mm)
ZZZZZ		08/23/2024 20:39	1		DB-VRX 0.18 (mm)
ZZZZZ		08/23/2024 21:02	1		DB-VRX 0.18(mm)

Data File: \\ChromFS\S	oectrui	m\Chrom[Data\HPV4	\2024082	23-100	79.b\V4-0823	24-17.D	
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ug/l	Flags
	447		4.000				ND	
36 Carbon tetrachloride	117		4.236				ND	
37 Benzene	78	4 770	4.341	0.005	00		ND	
* 38 Fluorobenzene	96	4.776	4.771	0.005	98	703795	50.0	
39 Tert-amyl methyl ether	73		4.807 5.248				ND	
40 Dibromomethane	93 63		5.246				ND ND	
41 1,2-Dichloropropane42 Trichloroethene	95	5.421	5.421	0.000	97	239136	59.6	
43 Dichlorobromomethane	83	3.421	5.489	0.000	97		ND	U
44 1,4-Dioxane	88		5.767				ND	U
46 cis-1,3-Dichloropropene	75		6.511				ND	
47 4-Methyl-2-pentanone (MIBK)	43		6.789				ND	
48 trans-1,3-Dichloropropene	75		7.146				ND	
49 1,1,2-Trichloroethane	83		7.266				ND	
\$ 50 Toluene-d8 (Surr)	98	7.408	7.408	0.000	99	678579	49.9	
51 Toluene	92		7.492				ND	
52 1,3-Dichloropropane	76		7.586				ND	
53 Chlorodibromomethane	129		7.806				ND	
54 2-Hexanone	43		7.948				ND	
55 Ethylene Dibromide	107		8.084				ND	
56 Tetrachloroethene	166	8.378	8.346	0.032	99	10384960	2223.1	E
57 1,1,1,2-Tetrachloroethane	131		9.091				ND	
* 58 Chlorobenzene-d5	117	9.128	9.123	0.005	88	531621	50.0	
59 Chlorobenzene	112		9.159				ND	
60 Ethylbenzene	91		9.474				ND	
61 Bromoform	173		9.673				ND	
62 m-Xylene & p-Xylene	91		9.731				ND	
63 Styrene	104		10.082				ND	
64 1,1,2,2-Tetrachloroethane	83		10.145				ND	
65 o-Xylene	91		10.150				ND	
66 1,2,3-Trichloropropane	75		10.286				ND	
67 trans-1,4-Dichloro-2-butene	53		10.396				ND	
\$ 68 4-Bromofluorobenzene (Surr)		10.522	10.522	0.000	93	270741	51.5	
69 Isopropylbenzene	105		10.538				ND	
70 Bromobenzene	156		10.659				ND	
71 N-Propylbenzene	91		10.937				ND	
72 2-Chlorotoluene	126		10.963				ND	
73 4-Chlorotoluene	91 105		11.041 11.230				ND	
74 1,3,5-Trimethylbenzene 75 tert-Butylbenzene	105 119						ND ND	
76 1,2,4-Trimethylbenzene	105		11.398 11.513				ND	U
80 1,3-Dichlorobenzene	146		11.566				ND	U
77 sec-Butylbenzene	105		11.571				ND	
* 79 1,4-Dichlorobenzene-d4	152	11.608	11.608	0.000	95	316475	50.0	
78 1,4-Dichlorobenzene	146	11.006	11.629	0.000	90		ND	U
81 4-Isopropyltoluene	119		11.739				ND	U
82 1,2-Dichlorobenzene	146		11.870				ND	U
83 n-Butylbenzene	91		12.022				ND	U
84 1,2-Dibromo-3-Chloropropane			12.200				ND	
85 1,3,5-Trichlorobenzene	180		12.761				ND	
86 1,2,4-Trichlorobenzene	180		13.091				ND	
87 Naphthalene	128	13.238	13.233	0.005	98	2521	0.1895	
88 Hexachlorobutadiene	225	. 5.255	13.306	0.000			ND	
30 i ioxadilidi obaladiono			. 5.550					

NYSDEC Irvington Rugs and Cleaners Tara LePage

10/11/2024

Sample ID: 360175-DP018001-GW

TC: Trichloroethene

ICAL Level: 2 Val File Result for TC: 59.6

Ical Calc

					ICAL p560
ICV Quant Report	Area TC	4833	1	0.2954	
p 584	Area IS	824360	2	0.2931	
			3	0.2837	
	Conc TC	1	4	0.2876	
	Conc IS	50	5	0.2882	
			6	0.2843	
	RRF =	0.293136	7	0.2731	
			8	0.2865	
			9	0.2727	
			10		
			Avg RRF =	0.284956	
			Std Dev =	0.007811	
			%RSD =	2.741097	

Sample Calc

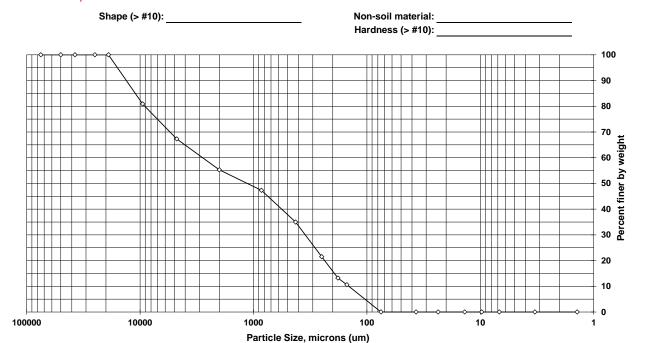
sample Quant Report p 415

Area TC	239136	DF	1
Area IS	703795	Initial Vol NA	
		Final Vol NA	
Conc IS	50		
Avg RRF	0.284956		
Conc TC =	59.61996		

Notes:

Green = matched reported value Red = did not match reported value

Run log p1165


Field DUP

	360175-DP018001D-GW	360175-DP018001-GW
Parameter	Result Qual	Result Qual
cis-1,2-Dichloroethene	11.6	22.9 -65.5072
Tetrachloroethene	1770	2220 -22.5564
Trichloroethene	31	59.6 -63.1347
	360175-DP018001D-SOIL	360175-DP018001-SOIL
Parameter	Result Qual	Result Qual
cis-1,2-Dichloroethene	784	980 -22.2222
Tetrachloroethene	8180	12200 -39.4504
Trichloroethene	457	1540 -108.463

Particle Size of Soils by ASTM D422

Date Received: 1/0/1900 Sample ID: Percent Solids: Start Date: 8/29/2024 Lab ID: 620-20506-H-2 8/31/2024 Specific Gravity: 2.650 End Date:

Field Sample DP-18

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	80.9	19.1
#4	4750	67.3	13.6
#10	2000	55.3	12.0
#20	850	47.3	8.0
#40	425		
_	1	35.0	12.3
#60	250	21.5	13.5
#80	180	13.2	8.3
#100	150	10.6	2.6
#200	75	0.0	10.6
Hyd1	36.8	0.0	0.0
Hyd2	23.5	0.0	0.0
Hyd3	13.7	0.0	0.0
Hyd4	9.7	0.0	0.0
Hyd5	6.8	0.0	0.0
Hyd6	3.3	0.0	0.0
Hyd7	1.4	0.0	0.0

Soil	Percent of
Classification	sample
Gravel	32.7
Sand	67.3
Coarse Sand	12.0
	•
Medium Sand	20.3
Fine Sand	35.0
Silt	0.0
Clay	0.0

Eurofins Lancaster Laboratories Environment Testing, LLC

Sediment Grain Size - D422							
Client					Date Received		
Client Sample ID					Start Date	08/29/2024 9:54	
•	620-20506-1	⊔ ?			End Date	08/29/2024 9:54	
Lab Sample ID	620-20506-1	H-2			End Date	08/31/2024 16:56	
Dry Weight Determination					Non-soil material:		
Tin Weight	0.80	g			Shape (> #10):		
Wet Sample + Tin	6.55	g			Hardness (> #10):		
Dry Sample + Tin	6.00				,		
% Moisture	9.57				Date/Time in oven	08/30/2024 13:19	
70 Moloturo	0.07	70			Date/Time out of oven	08/31/2024 11:55	
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data		
Sample Weight (Wet)	134.51	201.97	67.46		Serial Number	444745	
Sample Weight (Oven Dried)			61		Calib. Date (mm/dd/yyyy)	04/26/2024	
					Low Temp (C)	17.0	
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp	1.0040	
Sample >=#10			27.3		High Temp (C)	23.0	
Sample <#10			33.7		Reading at High Temp	1.0035	
% Passing #10			50		Hydrometer Cal Slope	-8.33333E-05	
3					Hydrometer Cal Intercept	1.005416667	
					Default Soil Gravity	2.6500	
Gravel/Sand Fraction (Sieves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub
3 inch	75000			0.00	9	O Gravel	
2 inch	50000			0.00	g 100.0	O Gravel	
1.5 inch	37500			0.00	g 100.0	O Gravel	
1 inch	25000			0.00	g 100.0	O Gravel	
3/4 inch	19000			0.00	q 100.0) Gravel	
3/8 inch	9500	556.64	568.29	11.65	q 80.9	9 Gravel	
#4	4750	502.85	511.12	8.27		3 Gravel	
#10	2000		458.22			3 Sand	Coa
#20	850		344.86	4.89	0	3 Sand	Med
#40	425		355.01	7.51	9) Sand	Me
#60	250		337.44			5 Sand	Fin
#80	180		330.33		u	2 Sand	Fine
#100	150		318.80	1.56	•	Sand	Fin
					9		Fine
#200	75	308.00	316.21	8.21 0.00	•	9 Sand	LII)
				0.00	9 -2.3	,	
Adherical Heaterman C							
Adjusted Hydrometer Sample Hydrometer Sample Mass (q)	Mass 61						
riyurumeter dampie wass (g)	01						
Silt/Clay Fraction (Hydrometer	Test)						
· · · ·	·	Spec Gravity	Temp C	Particle Size	% Finer Classification	Sub Class	
Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	(Micron)	% Finer Classification	Sub Class	
Hydrometer Test Time (min)	Actual 2	1.0040	22.0	(Micron) 36.8	1.1 Silt	Sub Class	
Hydrometer Test Time (min) 2 5	Actual 2	1.0040 1.0030	22.0 22.0	(Micron) 36.8 23.5	1.1 Silt -1.54 Silt	Sub Class	
Hydrometer Test Time (min) 2 5 15	Actual 2 5 15	1.0040 1.0030 1.0020	22.0 22.0 22.0	(Micron) 36.8 23.5 13.7	1.1 Silt -1.54 Silt -4.17 Silt	Sub Class	
Hydrometer Test Time (min) 2 5 15	Actual 2 5 15 30	1.0040 1.0030 1.0020 1.0020	22.0 22.0 22.0 22.0	(Micron) 36.8 23.5 13.7 9.7	1.1 Silt -1.54 Silt -4.17 Silt -4.17 Silt	Sub Class	
Hydrometer Test Time (min) 2 5 15 30 60	Actual 2 5 15 30 60	1.0040 1.0030 1.0020 1.0020 1.0020	22.0 22.0 22.0 22.0 22.0	(Micron) 36.8 23.5 13.7 9.7 6.8	1.1 Silt -1.54 Silt -4.17 Silt -4.17 Silt -4.17 Silt	Sub Class	
Hydrometer Test Time (min) 2 5 15	Actual 2 5 5 15 30 60 250	1.0040 1.0030 1.0020 1.0020 1.0020 1.0020	22.0 22.0 22.0 22.0	(Micron) 36.8 23.5 13.7 9.7 6.8	1.1 Silt -1.54 Silt -4.17 Silt -4.17 Silt	Sub Class	

Page 32 of 89 9/9/2024

ATTACHMENT 4

EVONIK REPORT

Klozur® Persulfate Demand Test and Base Buffering Capacity test

Client:

WSP

2 Monument Square, Ste. 200 Portland ME, 04101

Charles Staples (207) 910-1109

charles.staples@wsp.com

Performing Lab: Evonik

Tonawanda, New York, 14150

Date September 4, 2024

I. Background

Klozur[®] activated persulfate is a strong oxidant capable of mineralizing a wide range of contaminants, including chlorinated solvents, petroleum hydrocarbons, polyaromatic hydrocarbons, gasoline additives, pesticides, and many others. Activation of the persulfate anion generates the sulfate radical, the primary species that drives the rapid destruction of the contaminants of concern. Activation can be accomplished by several methods¹: heat, transition metals, addition of hydrogen peroxide, or utilizing high pH. Choice of the activation method will depend on the contaminant of concern and site characteristics.

A chemical oxidant is not specific as to what it will oxidize. As a result, activated persulfate will not only mineralize the contaminant of concern, but a portion of the oxidant will be used in oxidizing soil organics, reduced metals, and organic species that are not of concern. In addition, activated persulfate will undergo auto-decomposition, which will be a function of temperature, concentration and activation method. The demand upon the activated persulfate from all of these components is captured in a coarse screening test termed, "Klozur Demand Test". It is dependent upon the site characteristics, such as the organic content of the soil, the mineral loading, and soil type and collectively must be considered for estimating the magnitude of oxidant dosing during field application.

_

¹ Evonik is the owner of licensee under various patents relating to the use of activation chemistries

The Klozur® Persulfate KDT test measures the loss of persulfate in the presence of soil, groundwater and activator over a period of 48 and 168 hours. The resulting KDT values can then be used as a guide to develop appropriate persulfate dosing for subsequent treatability testing and field applications.

When high pH is chosen as a means of activation, a Base Buffering Capacity (BBC) test is recommended. The goal of a BBC test is to determine the amount of sodium hydroxide (NaOH) needed to raise the pH of a soil to pH 10.5, which is necessary for Klozur persulfate activation. This report contains the results and observations from both a KDT and BBC test.

II. Sample Handling

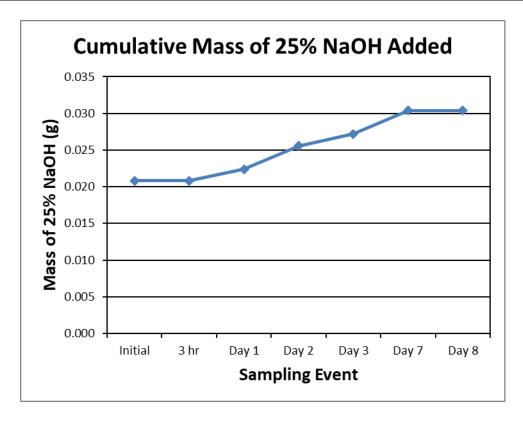
Client Sample Identification

Site Identification: Irvington Rug and Cleaners

Soil ID: 360175-DP018001 GW ID: 8-20-24/1080

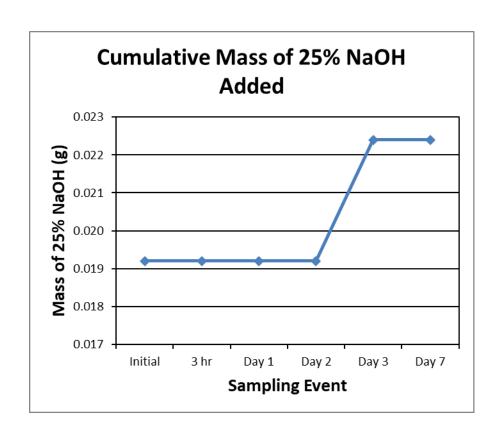
Site Identification: Background Location

Soil ID: 360175-DP02A007 GW ID: 8-21-24/1040


Handling Procedures

- The samples were received on August 26, 2024. Soils were transferred into stainless-steel bowls and mixed well. Soil 360175-DP018001 was a medium brown sandy soil with slight petroleum odor and lots of stones. The corresponding ground water (8-20-24/1080) was cloudy with small particulates. Soil 360175-DP02A007 was a light brown clay/silt soil with no odor. The corresponding ground water (8-21-24/1040) was cloudy with small particulates.
- The remaining soil was put into its original container and stored at ambient lab temperature.
- On August 27, 2024, the tubes were prepared according to the Evonik
 Tonawanda KDT protocol using the provided soil and groundwater. Additional
 tubes were prepared according to the Evonik Tonawanda BBC protocol using
 the provided soil and groundwater.
- The experimental samples were stored at room temperature and each sample was inverted daily.
- The unused soil will be disposed of responsibly after about one month.

III. Results

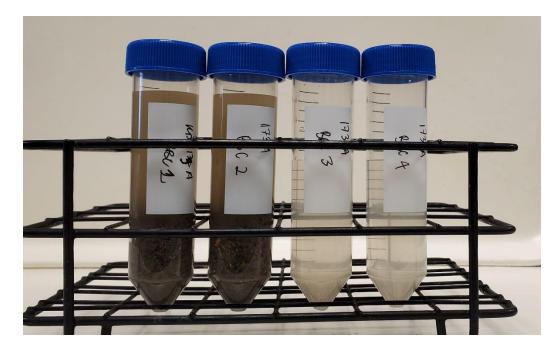

Sample ID	Trial Activator	Soil Wt. (g)	Water Vol. (mL)	Klozur Dosage (g/Kg Soil)	Slurry pH	Klozur Consumption (g persulfate / kg dry soil)	
				t=0 hrs.		t=48hr	t=168 hr
Soil: 360175- DP018001	High pH 25%	10	30	15	12.15	2.30	4.60
GW: 8-20-24/1080	NaOH						

Sample ID	рН	Initial Dosing	8 days	Total mass of 25% NaOH added over 8 days (g)	BBC (g 25% NaOH / kg dry soil)	
Soil: 360175- DP018001	Initial pH	7.39	10.77			
GW: 8-20-24/1080	Final pH	10.87	10.77	0.030	1.23	

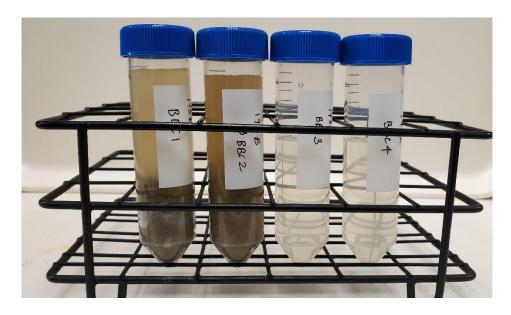
Sample ID	Trial Activator	Soil Wt. (g)	Water Vol. (mL)	Klozur Dosage (g/Kg Soil)	Slurry pH	Consu (g pers	ozur mption sulfate / y soil)
			, ,	t=0 hrs.		t=48hr	t=168 hr
Soil: 360175- DP02A007	High pH 25%	10	30	15	12.12	0.61	1.29
GW: 8-21-24/1040	NaOH						

Sample ID	рН	Initial Dosing	7 days	Total mass of 25% NaOH added over 7 days (g)	BBC (g 25% NaOH / kg dry soil)	
Soil: 360175- DP02A007	Initial pH	7.33	10.53	0.022	0.93	
GW: 8-21-24/1040	Final pH	11.16	10.53	0.022		

IV. Conclusions


The Klozur® Persulfate demand with high pH activation for the 360175-DP018001 sample was 2.30 g sodium persulfate / kg dry soil after 48 hours and 4.60 g sodium persulfate / kg dry soil after 168 hours.

The BBC for the provided soil and groundwater was 1.23 g 25% NaOH / kg dry soil.


The Klozur[®] Persulfate demand with high pH activation for the 360175-DP02A007 sample was 0.61 g sodium persulfate / kg dry soil after 48 hours and 1.29 g sodium persulfate / kg dry soil after 168 hours.

The BBC for the provided soil and groundwater was 0.93 g 25% NaOH / kg dry soil.

V. Photos from BBC test

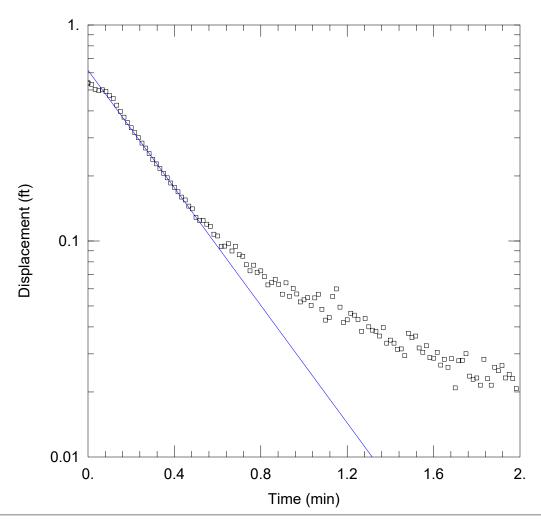

Photo 1: Day 0, before initial dosing for soil 360175-DP018001. From left to right: Tube #1 & #2 Sample soil with GW, #3 and #4 sample GW.

Photo 2: Day 0, before initial dosing for soil 360175-DP02A007. From left to right: left to right: Tube #1 & #2 Sample soil with GW, #3 and #4 sample GW.

Photo 3: Day 7 for soil 360175-DP018001. From left to right: Tube #1& #2 sample soil and GW above 10.5 pH, #3 GW raised above pH 12 and #4 unaltered sample GW

Photo 3: Day 7 for soil 360175-DP02A007. From left to right: Tube #1& #2 sample soil and GW above 10.5 pH, #3 GW raised above pH 12 and #4 unaltered sample GW

VI. Authorizing Signatures


This report contains the results as determined by Evonik laboratory protocol and are accurately represented herein.

Note: 1. Evonik recommends performing suitable treatability testing and field pilot demonstration to determine the effectiveness of Klozur® activated persulfate on the contaminants of concern. KDT testing provides only an indication of the minimum amount of oxidant required to overcome the demands of soil, groundwater and other secondary species that contribute to the usage of the oxidant. The KDT results do not imply a guarantee of efficacy of the activated persulfate in actual field situations. 2. ANY SUCH QUANTITY OR WARRANTY IS EXPRESSLY DISCLAIMED.

Evonik and Klozur are registered trademarks of Evonik. © 2014.

ATTACHMENT 5

AQUTESOLV OUTPUT AND CALCULATIONS

Data Set: C:\...\DP02RHT1.aqt

Date: <u>10/16/24</u> Time: <u>12:57:49</u>

PROJECT INFORMATION

Company: WSP
Client: NYSDEC
Project: 616216144
Location: Irvington, NY
Test Well: DP-02
Test Date: 8/19/24

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-02)

Initial Displacement: 0.54 ft

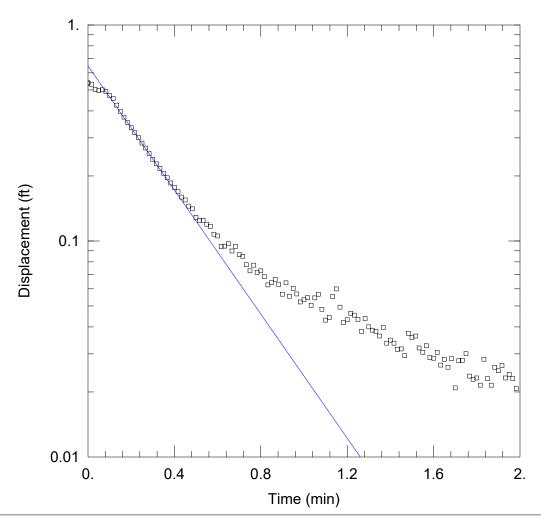
Static Water Column Height: 8.1 ft

Total Well Penetration Depth: 12.15 ft

Screen Length: 10. ft

Casing Radius: 0.042 ft

Well Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 1.192 ft/day

y0 = 0.6168 ft

Data Set: C:\...\DP02RHT1.aqt

Date: 10/16/24 Time: 12:58:35

PROJECT INFORMATION

Company: WSP
Client: NYSDEC
Project: 616216144
Location: Irvington, NY
Test Well: DP-02
Test Date: 8/19/24

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-02)

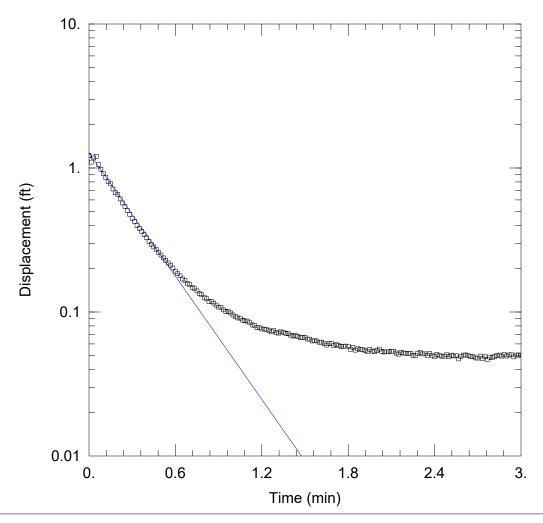
Initial Displacement: 0.54 ft

Static Water Column Height: 8.1 ft

Total Well Penetration Depth: 12.15 ft

Screen Length: 10. ft Well Radius: 0.042 ft

Casing Radius: <u>0.042</u> ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 1.724 ft/day y0 = 0.

y0 = 0.6459 ft

Data Set: C:\...\DP02-RHT2.aqt

Date: 10/16/24 Time: 13:15:31

PROJECT INFORMATION

Company: WSP
Client: NYSDEC
Project: 616216144
Location: Irvington, NY
Test Well: DP-02
Test Date: 8/19/24

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-02)

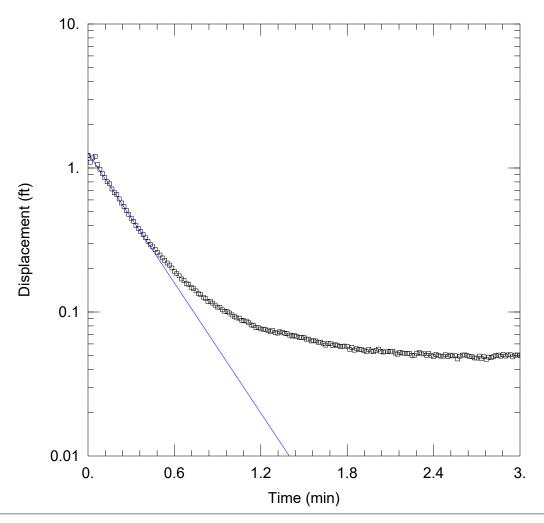
Initial Displacement: 1.22 ft

Static Water Column Height: 8.09 ft

Total Well Penetration Depth: 12.15 ft

Screen Length: 10. ft Well Radius: 0.042 ft

Casing Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 1.25 ft/day

y0 = 1.273 ft

Data Set: C:\...\DP02-RHT2.aqt

Date: 10/16/24 Time: 13:16:05

PROJECT INFORMATION

Company: WSP
Client: NYSDEC
Project: 616216144
Location: Irvington, NY
Test Well: DP-02
Test Date: 8/19/24

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-02)

Initial Displacement: 1.22 ft

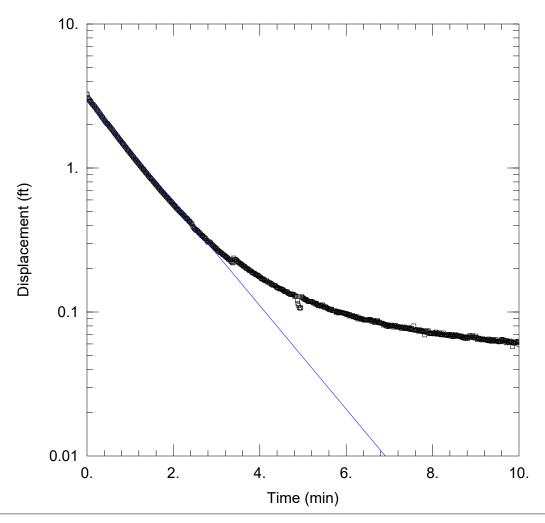
Static Water Column Height: 8.09 ft

Total Well Penetration Depth: 12.15 ft

Screen Length: 10. ft

Casing Radius: 0.042 ft

Well Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 1.807 ft/day

y0 = 1.273 ft

Data Set: C:\...\DP05RHT.aqt

Date: 10/16/24 Time: 11:43:33

PROJECT INFORMATION

Company: WSP
Client: NYSDEC
Project: 616216144
Location: Irvington, NY
Test Well: DP-05
Test Date: 8/19/24

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

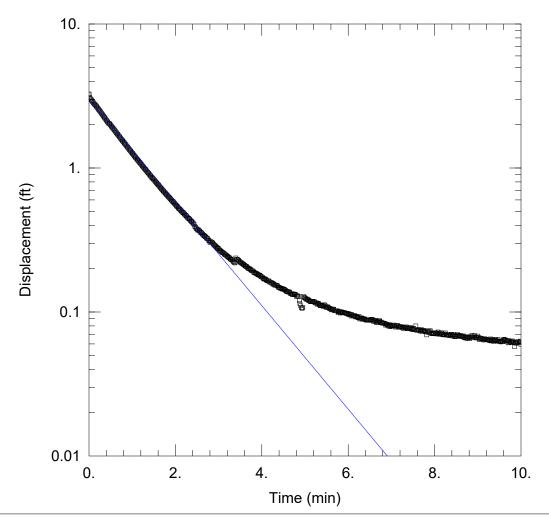
WELL DATA (DP-05)

Initial Displacement: 3.26 ft

Total Well Penetration Depth: 15.63 ft

Casing Radius: 0.042 ft

Static Water Column Height: 8.48 ft


Screen Length: 10. ft Well Radius: 0.042 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.3298 ft/day y0 = 3.021 ft

Data Set: C:\...\DP05RHT.aqt

Date: 10/16/24 Time: 11:43:04

PROJECT INFORMATION

Company: WSP
Client: NYSDEC
Project: 616216144
Location: Irvington, NY
Test Well: DP-05
Test Date: 8/19/24

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-05)

Initial Displacement: 3.26 ft

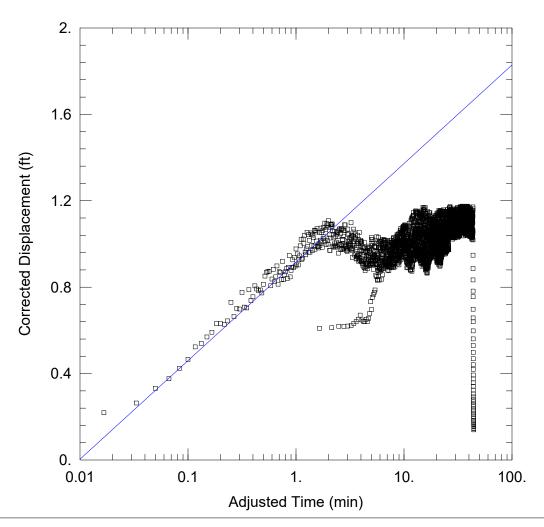
Static Water Column Height: 8.48 ft

Total Well Penetration Depth: 15.63 ft

Screen Length: 10. ft

Casing Radius: 0.042 ft

Well Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 0.431 ft/day

y0 = 3.021 ft

DP-02 SINGLE WELL PUMP TEST

Data Set: X:\...\DP-02 VRT 10-23-24.aqt

Date: 10/23/24 Time: 11:57:59

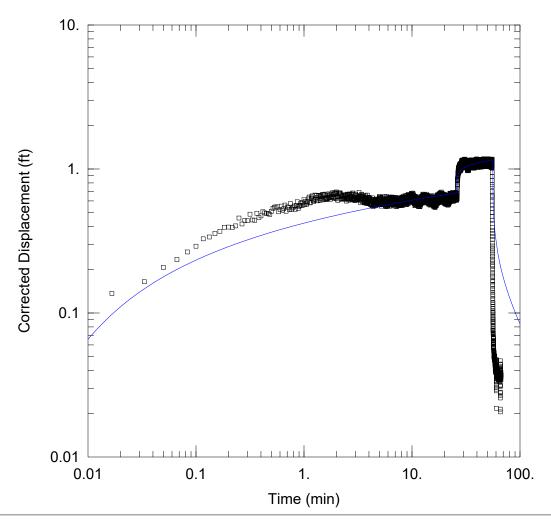
PROJECT INFORMATION

Company: WSP Client: NYSDEC Project: 616216144 Location: Irvington, NY Test Well: DP-02 Test Date: 8/19/24

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 0.3

WELL DATA


Pumping Wells			Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
DP-02	0	0	□ DP-02	0	0	

SOLUTION

Solution Method: Cooper-Jacob

Aquifer Model: Unconfined

 $T = 16.34 \text{ ft}^2/\text{day}$ S = 0.142

DP-02 SINGLE WELL PUMP TEST

Data Set: X:\...\DP-02 VRT 10-23-24.aqt

Date: 10/23/24 Time: 11:51:59

PROJECT INFORMATION

Company: WSP
Client: NYSDEC
Project: 616216144
Location: Irvington, NY
Test Well: DP-02
Test Date: 8/19/24

WELL DATA

Pump	ing Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)	
DP-02	0	0	□ DP-02	0	0	

SOLUTION

Aquifer Model: Unconfined

Solution Method: Theis

 $T = 45. \text{ ft}^2/\text{day}$ Kz/Kr = 0.3

S = 0.25b = 15. ft