

SIBERIA AREA LANDFARMING PILOT STUDY

Siberia Area Landfarming Pilot Study

- Pilot Study conducted from August 2000 to October 2001
- 1,600 cu.yds soil from burn pit combined with
 1,600 cu.yds of in situ soil
- Two active treatment (mixing) periods separated by 8-months MNA
- Added 500 cubic yards wood chips and 1200 lbs fertilizer
- Goals: Reduce initial PAHs by 75%
 Reduce initial TPH by 75%

Vermeer 955 Mixer

Pilot Study PAH Results - Plot A

Pilot Study PAH Results - Plot B

Plot A - PAH Percent Reduction

	Avg. Sept.'00	Avg. Aug.'01	Plot A
	ConcPlot A	ConcPlot A	% Reduction
	(mg/kg)	(mg/kg)	
Naphthalene	1.111	0.162	85%
Acenapthene	0.948	0.110	88%
Acenapthylene	0.023	0.050	N/C
Anthracene	1.942	0.223	89%
Fluorene	1.636	0.175	89%
Phenanthrene	6.497	0.843	87%
Benzo(a)anthracene	2.548	0.602	76%
Chrysene	3.095	0.658	79%
Fluoranthene	5.520	1.117	80%
Pyrene	6.246	1.483	76%
Benzo(a)pyrene	1.917	0.615	68%
Benzo(b) fluoranthene	2.051	0.783	62%
Benzo(k) fluoranthene	1.953	0.337	83%
Dibenzo(a,h)anthracene	0.100	0.173	N/C
Benzo(g,h,i,)perylene	1.352	0.500	63%
Indeno(1,2,3-cd)pyrene	1.487	0.443	70%

N/A = Not Applicable
N/C = Not Calculated (most results were ND)

78% Avg. PAH Reduction

Plot A - Pilot Study TPH Results

PLFA Analyses

- Phospholipid Fatty Acid Analysis:
 - Viable biomass
 - Community structure
 - Metabolic activity
- Microbial communities primarily Gram negative bacteria - use wide range of carbon sources
- Gram negative communities had low ratios of trans/cis fatty acids

PLFA Analyses

Biomass Changes over Time for Area A

PLFA Analyses

Environmentally Acceptable Endpoints (EAEs)

- EAE Concept The longer chemicals remain in soil:
 - Less readily removed by solvents (including water)
 - Less available to microbes (i.e., less bioavailable)
 - Lower toxicity to higher organisms (e.g., earthworms)
- EAE is reached when:
 - Chemicals remaining have no adverse effect on human health and environment
 - Chemicals that are slowly released from soil are managed by natural assimilation in soil
- EAE concept leads to development of less stringent CAOs

SIBERIA AREA SOILS CORRECTIVE ACTION OBJECTIVES

CAO Development History

CMS Screening Report (August, 1999)

- Risk-based Site-Specific Target Levels
- Adjusted TAGMs (based on site TOC)
- Soil Saturation Concentrations (ensure that no free product remains)

Practical/Achievable CAOs

- Technology based
- Variability in contaminant concentrations
- Heterogeneity in soil types
- Environmentally Acceptable Endpoints (EAEs)

Proposed CAOs for PAHs

TABLE 1 - PROPOSED CORRECTIVE ACTION OBJECTIVES (CAOs) FOR THE SIBERIA AREA SOILS

	NYSDEC TAGM	RFI-Adjusted	On-Site Surface	All On-Site	Avg. Sept.'00	Avg. Aug.'01	Proposed
	4046 Value	TAGM Value ¹	Soil SSTL	Soil SSTL	ConcPlot A	ConcPlot A	CAO's
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Naphthalene	13	50	N/C	N/C	1.111	0.162	50
Acenapthene	50	N/A	>SSC	>SSC	0.948	0.110	50
Acenapthylene	41	50	N/C	N/C	0.023	0.050	50
Anthracene	50	N/A	>SSC	>SSC	1.942	0.223	50
Fluorene	50	N/A	>SSC	>SSC	1.636	0.175	50
Phenanthrene	50	N/A	N/C	N/C	6.497	0.843	50
Benzo(a)anthracene	0.224 or MDL	N/A	3.15	46.27	2.548	0.602	1.0
Chrysene	0.4	3.2	>SSC	>SSC	3.095	0.658	3.2
Fluoranthene	50	N/A	>SSC	>SSC	5.520	1.117	50
Pyrene	50	N/A	>SSC	>SSC	6.246	1.483	50
Benzo(a)pyrene	0.061 or MDL	N/A	0.31	4.63	1.917	0.615	1.0
Benzo(b) fluoranthene	0.220 or MDL	N/A	3.15	46.27	2.051	0.783	1.0
Benzo(k) fluoranthene	0.220 or MDL	N/A	31.49	>SSC	1.953	0.337	1.0
Dibenzo(a,h)anthracene	0.014 or MDL	N/A	0.31	4.63	0.100	0.173	1.0
Benzo(g,h,i,)perylene	50	N/A	N/C	N/C	1.352	0.500	50
Indeno(1,2,3-cd)pyrene	3.2	25.6	>SSC	>SSC	1.487	0.443	25.6

Note 1 = Adjusted TAGM values based on soil organic carbon content of 8%, as presented in the

RCRA Facility Investigation Report, Siberia Watervliet Arsenal, Watervliet, NY. Malcolm Pirnie, Inc. December 1997

TAGMs derived from USEPA Health-Based Criteria or the generic criteria for individual semi-volatile compounds (50mg/kg) were not adjusted.

N/A = Not Applicable

N/C = Not Calculated

>SSC = SSTL is greater than the soil saturation concentration

Proposed CAOs that deviate from the TAGM values

SIBERIA AREA SOILS REMEDIAL DESIGN

STI® Treatability Study

- STI[®] is a proprietary calcium-oxide based powder
- Acts as catalyst to cleave hydrocarbon bonds
- Enhances bioremediation by indigenous microbes
- Study goals:
 - Evaluate whether STI® reduces soils treatment time
 - Determine appropriate dosage for full-scale application

STI® Treatability Study

- Utilizes soils from two areas:
 - Southeast Quadrant Representative of site contamination; 2 test cells
 - SubStation Area Heavily contaminated; 5 test cells
- 0 to 10 pounds STI® /ton soil added to test cells containing 1 cu.yd. soil
- Mixed and sampled every week for four weeks
- Results will be available mid-May

STI® Treatability Study

STI® Test Cell Construction

Test Pit Excavation

Soil Screening

Siberia Soils Remedial Design

Treatment Area Summary								
Area	Quadrant	Treatment Area	Treatment Depth	Approximate Volume		Proposed Treatment		
ID		(square feet)	(feet)	(cubic feet)	(cubic yards)			
1	SW	11,400	4	45,600	1,700	Tilling or Disposal		
2	SW	30,400	4	121,600	4,500	Screening/Ex Stu Tilling		
3	SW	31,400	4	125,600	4,700	Capping ⁽¹⁾		
4	SE	82,000	4	328,000	12,200	Screening/In Stu Tilling		
5	NE	16,000	2	32,000	1,200	Screening/In Stu Tilling		
6	NE	113,500	1	113,500	4,200	Screening/In Stu Tilling		
7	NW	39,600	1	39,600	1,500	Capping		
8	NW	11,900	4	47,600	1,800	Capping		
9	NW	18,200	1	18,200	700	Screening/Ex Stu Tilling		
10	SW	22,000	4	88,000	3,300	Ineccessible		
11	NW	3,300	2	6,600	250	Screening/Ex Stu Tilling		
(1) Contaminated material along the edge of Area 3 may be excavated and treated								

Siberia Area Soils Design - General Concepts

- PAH-contaminated soils will be excavated, screened (2-inch), and oversize material processed and re-used or disposed.
- Treatment will occur either in place, or soils will be moved to the existing landfarming plot and mixed
- Fertilizer and/or STI[®] will be added
- Treatment times governed by approved CAOs
- Anticipated time frame: 2 3 years

Siberia Area Soils Design - Preliminary Phasing Plan

Year 1:

- Excavate soils from Areas 9 (drainage ditch) and 11; bring on site for treatment or off-site disposal (depending on metals CAOs)
- Excavate Areas 1 and 2 Screen soils and move to existing plot for treatment. Process oversize materials for reuse
- Backfill Areas 1 and 2 with treated pilot soils

Year 2:

- If required, continue treatment from previous year
- Excavate areas 4, 5, and 6 screen the soils, backfill the excavations, and till/treat in place

Year 3:

Cap Areas 3, 7, and 8