

Long-Term Monitoring Data Summary Report May/November 2002

Watervliet Arsenal Watervliet, New York

Baltimore Corps of Engineers Baltimore, Maryland

Prepared by:

Malcolm Pirnie, Inc. 15 Cornell Rd. Latham, NY 12110

September 2003 0285911

DEPARTMENT OF THE ARMY WATERVLIET ARSENAL 1 Buffington Street WATERVLIET, NY 12189-4000

Facilities Engineering Division

December 12, 2003

Mr. Raymond Basso U.S. Environmental Protection Agency Chief – RCRA Programs Branch 290 Broadway, 22nd Floor New York, New York 10007

Re: Long-Term Monitoring Data Summary Report May 2003 Monitoring Event Watervliet Arsenal, Watervliet, New York

Dear Mr. Basso:

Enclosed please find one copy of the *Long Term Monitoring Data Summary Report: May 2003* for the Watervliet Arsenal, Watervliet, New York

Please contact Ms. JoAnn Kellogg at (518) 266-5286 or Mr. Grant Anderson at (410) 962-6645 if you have any questions concerning this Report.

THOMAS E. POND Acting Chief, Facility Engineering

Attachments

Copies Furnished:

Tony R. Perry (Environmental Scientist) U.S.Army Environmental Center Environmental Restoration Division (ERD), Bldg 4480 Aberdeen Proving Ground

Mr. Raymond Basso USEPA

Aberdeen, Maryland 21010-5401 (1 copy)

New York State Department of Health Bureau Of Environmental Exposure Investigation 547 River Street-Flanagan Square, Troy, New York 12180 ATTN: Ms. Charlotte M. Bethoney (1 copy)

U.S. Environmental Protection Agency 290 Broadway, New York, New York, 1007-1866 ATTN: Jim Reidy (1 copy)

Commander, U.S. Army Corps of Engineers, Baltimore District 10 South Howard Street, Baltimore, MD 21201 ATTN: Mr. Grant Anderson (2 copies)

New York State Department of Environmental Conservation Bureau of Radiation & Hazardous Site Managment-8th Floor 625 Broadway, Albany, N.Y. 12233-7050 ATTN: Mr. Larry Rosenmann (1 copy)

New York State Department of Environmental Conservation Bureau of Radiation & Hazardous Site Managment-8th Floor 625 Broadway, Albany, N.Y. 12233-7050 ATTN: Mr. Victor Valaitis (1 copy)

Mr. Cliff VanGelder Regional Hazardous Substances Engineer New York State Department of Environmental Conservation Region IV 1150 North Westcott Road Schenectady, NY 12306 (1 copy) Mr. Raymond Basso USEPA December 12, 2003 Page 3 of 3

TABLE OF CONTENTS

1.0	INTR	ODUCTION1-1
	1.1	PURPOSE1-1
	1.2	FACILITY DESCRIPTION1-1
	1.3	PREVIOUS AND ONGOING STUDIES1-1
		1.3.1 Main Manufacturing Area1-1
		1.3.2 Siberia Area1-2
	1.4	GENERALIZED SITE GEOLOGY AND HYDROGEOLOGY1-2
		1.4.1 Main Manufacturing Area1-2
		1.4.2 Siberia Area1-3
2.0	FIEL	D SAMPLING2-1
	2.1	SAMPLING DATES AND METHODS2-1
	2.2	SAMPLING SUMMARY
3.0	DAT	A VALIDATION
	3.1	VOCs
	3.2	SVOCs
4.0	SAM	PLING RESULTS
	4.1	GROUNDWATER FLOW4-1
		4.1.1 Main Manufacturing Area4-1
		4.1.2 Siberia Area
	4.2	MAIN MANUFACTURING AREA ANALYTICAL RESULTS4-2
		4.2.1 VOCs and SVOCs
		4.2.2 Data Trends
	4.3	SIBERIA AREA ANALYTICAL RESULTS4-4
		4.3.1 VOCs and SVOCs4-4
		4.3.2 Reactive Wall Sampling4-5
		4.3.3 Data Trends4-5
5.0	CON	CLUSIONS AND RECOMMENDATIONS
	5.1	CONCLUSIONS
	5.2	RECOMMENDATIONS

LIST OF FIGURES

Figure	Description
1-1	Site Location
1-2	Site Map
4-1	Groundwater Elevation in Perimeter Overburden Monitoring Wells - Main
	Manufacturing Area
4-2	Groundwater Elevation in Perimeter Bedrock Monitoring Wells – Main
	Manufacturing Area

TABLE OF CONTENTS (Continued)

LIST OF FIGURES (Continued)

Figure	Description
4-3	Groundwater Elevation in Perimeter Overburden Monitoring Wells -
	Siberia Area
4-4	Groundwater Elevation in Bedrock Monitoring Wells – Main Manufacturing
	Area
4-5	Trends in Total VOC Concentrations in Areas of Concern – Main
	Manufacturing Area
4-6	Trends in Total SVOC Concentrations in Areas of Concern – Main
	Manufacturing Area
4-7	Total Chlorinated Volatile Organic Compounds in Permeable Reactive Wall
	"A" Monitoring Wells
4-8	Total Chlorinated Volatile Organic Compounds in Permeable Reactive Wall
	"A" Monitoring Wells
4-9	Trends in Total SVOC Concentrations in Areas of Concern – Siberia Area

LIST OF TABLES

Table	Description
2-1	Summary of Incomplete Sampling Locations – May/November 2002
	Monitoring Event
4-1	Summary of Groundwater Elevations
4-2	Summary of Exceedences of NYSDEC Class GA Standards – Main
	Manufacturing Area Groundwater Samples
4-3	Summary of VOC and SVOC Detections – MMA Groundwater Samples
4-4	Summary of Exceedences of NYSDEC Class GA Standards – Siberia Area
	Groundwater Samples
4-5	Summary of VOC and SVOC Detections – Siberia Area Groundwater
	Samples

TABLE OF CONTENTS (Continued)

LIST OF TABLES (Continued)

Table	Description
4-6	Comparison of Analytical Results for Low-Flow Purge Samples and Passive
	Diffusion Bag Samples – Permeable Iron Reactive Wall Monitoring Wells

LIST OF APPENDICES

Appendix	Description				
А	Field Purge Log Forms				
В	Data Validation Report				
С	Potentiometric Contour Maps				
D	Summary Tables and Disk Containing WVA Groundwater Monitoring				
	Database in Microsoft Access Format				

1.0 INTRODUCTION

1.1 PURPOSE

Malcolm Pirnie, Inc. (Malcolm Pirnie) has been retained by the Baltimore District of the US Army Corps of Engineers (USACE) to implement the approved Long-Term Monitoring Plan (LTM Plan) for the Watervliet Arsenal (WVA) in Watervliet, New York, dated May 1999. Long-term monitoring is being conducted at the WVA in support of various RCRA Facility Investigations (RFIs), Corrective Measures Studies (CMSs), and Interim Corrective Measures (ICMs) that have been conducted at the WVA under a United States Environmental Protection Agency (USEPA) Administrative Order on Consent (Docket No. II RCRA-3008(h)-93-0210). In accordance with the LTM Plan, the purpose of this report is to summarize the data collected during the May/November 2002 monitoring event at the WVA.

1.2 FACILITY DESCRIPTION

The Watervliet Arsenal encompasses approximately 140 acres in and around the City of Watervliet, New York, approximately 3.5 miles northeast of the City of Albany boundary (Figure 1-1). To the east of WVA, Broadway Street and six-lane interstate highway (I-787) separate the WVA from the Hudson River. To the west, WVA extends beyond the limits of the City of Watervliet into the Town of Colonie. Residential areas border WVA to the north and south.

The WVA consists of two primary areas: (1) The "Main Manufacturing Area" (MMA), where manufacturing and administrative operations occur, comprises about 125 acres, and, (2) The "Siberia Area" (SA), which is chiefly used for the storage of raw and hazardous materials, comprises about 15 acres. These areas are shown on Figure 1-2.

1.3 PREVIOUS AND ONGOING STUDIES

1.3.1 Main Manufacturing Area

Several environmental studies have been conducted at the MMA. The most comprehensive investigation, an RFI, was conducted by MPI and Louis Berger &

Associates, Inc. from 1995 to 1998. Previous investigations are summarized in the final MMA RFI dated August 1999. Two ICMs involving in-situ groundwater remedial techniques are currently being conducted at the MMA in the area of Buildings 25 and 40.

1.3.2 Siberia Area

An RFI, was conducted by Malcolm Pirnie at the Siberia Area from 1994 to 1995. Additional investigations were completed as part of a Corrective Measures Study (CMS) completed by Malcolm Pirnie in 1998. Previous investigations are summarized in the Final SA RFI dated December 1997. There are three ICMs (a full-scale landfarming pilot study, full-scale permeable reactive wall pilot study, and bedrock chemical oxidation pilot study) currently underway at the SA.

1.4 GENERALIZED SITE GEOLOGY AND HYDROGEOLOGY

1.4.1 Main Manufacturing Area

The major overburden unit identified in the Main Manufacturing Area has been described as fill, consisting of brown or dark gray silty sand with angular gravel. The fill material is the only unit consistently found throughout the site, with the thickest amount of fill being in the eastern portion of the MMA. Underlying the fill are the following native overburden units: a fine grained alluvium, a coarser alluvium, and glacial till. These units are not present in all areas of the site.

The bedrock underlying the site is a black, medium-hard laminated shale, showing some characteristics of minor metamorphism. This shale has been identified as part of the Snake Hill Formation. The bedrock can be described in three ways based on the degree of weathering observed. The first is an extremely weathered zone approximately four feet thick. This extremely weathered bedrock unit was encountered at depths ranging from near ground surface to approximately 20 feet below ground surface (bgs). Beneath this extremely weathered bedrock is a zone of less weathered shale showing minimal competency. Competent bedrock is generally encountered at depths ranging from approximately 1.5 feet bgs to 18 feet bgs.

The majority of the MMA is relatively impervious to rainfall except at the residential and recreational areas of the northeastern portion of the WVA. Due to the

shallow depth of bedrock and the limited amount of overburden in several areas of WVA, groundwater is encountered within different geologic units (overburden, weathered bedrock, or bedrock) depending on the location. For instance, groundwater is encountered in the bedrock at the western end of WVA (topographic high and local recharge area); progressing eastward towards the Hudson River, groundwater is encountered in the weathered bedrock and then in the overburden deposits.

Groundwater flow in bedrock in the MMA is primarily controlled by the degree of fracturing within the bedrock itself and in the local recharge area which is coincident with a topographic high along a bedrock ridge in the central portion of the facility. The most prominent feature on the potentiometric surface is a groundwater divide trending approximately north to south through Buildings 135 and 130. This feature appears to mirror the bedrock ridge. The primary discharge area for groundwater from the Main Manufacturing Area is the Hudson River which is located to the east of WVA. For the area surrounding Building 25, groundwater in each of the hydrostratigraphic units flows from west to east towards the Hudson River, with a component of flow to the northeast. West of the groundwater divide, shallow groundwater flow discharges towards the Kromma Kill.

1.4.2 Siberia Area

According to the "Surficial Geologic Map of New York - Hudson-Mohawk Sheet, 1987", a majority of the SA is underlain by recent alluvial deposits. These are defined as fine sand and gravel deposits overlain by silt. The SA, which is at a lower elevation than the main manufacturing area of the WVA located to the east, is generally underlain by a layer of fill (sand, shale fragments, slag, cinders, brick, wire, wood and concrete). Alluvium, lenses of peat, and lacustrine clay deposits were encountered beneath the layer of fill material. Bedrock beneath the SA is the Snake Hill Formation, which is comprised mainly of dark gray shale. During the SA investigation, highly weathered shale was encountered from approximately 3.5 feet bgs to 31 feet bgs. In general, competent bedrock was encountered at approximately 12 feet bgs. The upper portion of the competent bedrock was found to be fissile and highly fractured with 45 to 60 degree bedding planes.

Groundwater flows generally to the north-northwest in the NE Quadrant of the SA, and generally to the west across the remainder of the SA. The water table responds quickly to recharge events, and during times of low precipitation the water table may be present in the shale bedrock over portions of the SA. However, on the average, the water table is encountered in the overburden. Surface water in the SA that does not infiltrate is generally directed into the existing storm sewers. The storm sewer is connected to the City of Watervliet storm sewer network.

2.0 FIELD SAMPLING

2.1 SAMPLING DATES AND METHODS

Monitoring of all wells included in the LTM Plan, with the exception of reactive wall monitoring wells SA-MW-45 through SA-MW-77, was conducted at the WVA from May 13, 2002 through May 30, 2002. Sampling of the reactive wall monitoring wells was conducted from November 5, 2002 through November 25, 2002. With the exception of the reactive wall monitoring wells, groundwater sampling was conducted according to the USEPA protocol for Low Stress (Low Flow) Purging and Sampling (USEPA, 1998) using dedicated, permanent, bladder pumps installed in each of the wells included in the LTM Plan. In accordance with the USEPA letter dated September 20, 2002 (USEPA, 2002), the reactive wall monitoring wells were sampled using Passive Diffusion Bag (PDB) samplers. Water levels were measured in all wells (including those not included in the LTM Plan) at the site prior to groundwater sampling. In accordance with the LTM Plan, and with the exception of the above mentioned reactive wall wells, groundwater samples collected from all locations were analyzed by Severn Trent Laboratories (STL), a New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP)-certified laboratory, for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), dissolved sulfide, dissolved organic carbon (DOC), and dissolved gases. Samples collected from reactive wall wells were analyzed for VOCs only. Additional laboratory analyses, including RCRA-listed metals, were also performed at select locations listed in the LTM Plan. Field parameters, consisting of temperature, pH, specific conductivity, dissolved oxygen, oxidation-reduction potential, and turbidity were measured during purging using a Horiba U22 water quality meter equipped with a flow-through cell. Additional field parameters, consisting of ferrous iron, nitrate, nitrite, sulfate, chloride, and alkalinity, were analyzed at each location (excluding reactive wall wells) using Hach[®]-brand field analysis kits. Sampling methods, specific analytical methods, and sampling locations are discussed in detail in the LTM Plan. Field purge log forms for the May/November 2002 monitoring event are presented in Appendix A.

2.2 SAMPLING SUMMARY

In accordance with the LTM Plan, a total of 53 MMA wells and 59 SA wells (including four sewer monitoring points) were scheduled for sampling during the 2002 monitoring event. However, due to insufficient water in the well at the time of sampling and/or insufficient recharge within 24-hours after purging to dryness, several wells either were not sampled or were sampled for limited analytical parameters during the monitoring event. Table 2-1 summarizes the monitoring wells that were not sampled for all or some parameters during the May/November 2002 monitoring event. As shown in Table 2-1, a total of five monitoring wells in the MMA and five wells in the SA were either not sampled, or not sampled for all parameters, during the May/November 2002 monitoring event. Four sewer bedding monitoring points (WVA-SA-STS-3, WVA-SA-STS-5, WVA-SA-STS-6, and WVA-SA-SNS-6) were scheduled to be sampled concurrently with the reactive wall monitoring wells in November 2002. However, these points were inaccessible during the time of sampling due to snow/ice coverage and material from soil remediation activities. The sewer bedding monitoring points will be sampled during the next monitoring event. Monitoring well MW-GTI-1 was covered by gravel and could not be located during the sampling event. This well will be uncovered and sampled during the next monitoring event. As noted in the table, monitoring wells AW-MW-34 and AW-MW-59, which are located in the Building 40 potassium permanganate chemical oxidation pilot area, contained potassium permanganate (KMnO₄) at the time of sampling. As such these wells were sampled only for VOCs. In accordance with the Work Plan for the Building 25 and Building 40 Pilot Studies (Malcolm Pirnie, 2002), these samples were quenched with sodium bisulfite solution to consume the permanganate prior to analysis.

3.0 DATA VALIDATION

In accordance with the LTM Plan, data validation was performed for 10 percent of the samples collected during the May/November 2002 LTM event. All data were classified as usable after review in accordance with the methodologies specified in the NYSDEC Guidance for the Development of Data Usability Summary Reports (6/99). The data validation report is contained in Appendix B.

3.1 VOCs

All sample holding times were met for each of the five sample delivery groups (SDGs). Methylene chloride and methyl ethyl ketone (MEK) were detected in method blanks from three of the five SDGs. These are common laboratory contaminants and, since none of the concentrations in the samples exceeded ten times that in the blank, all associated data were qualified as not detected, "U". Tetrachloroethene was also detected in method blanks for one of the SDGs. None of these samples contained concentrations of tetrachloroethene greater than five times of that in the blank, and thus, all associated data was qualified as non-detect, "U". Several compounds were qualified as estimated, "J".

3.2 SVOCs

All sample holding times were met for each of the five SDGs. No compounds were detected in any of the method blanks included with the SDGs. Several target compounds were qualified as estimated, "J".

4.0 SAMPLING RESULTS

4.1 GROUNDWATER FLOW

Groundwater elevations measured prior to sampling in May 2002 are presented in Table 4-1. Groundwater elevations measured during previous LTM events are also summarized in Table 3-1.

4.1.1 Main Manufacturing Area

A potentiometric contour map for the first water bearing unit at the MMA in May 2002 is presented in Appendix C. As shown in Appendix C, groundwater flow patterns at the MMA in May 2002 are similar to those documented during the MMA RFI and previous LTM events. Figures 4-1 and 4-2 present hydrographs summarizing groundwater elevations in overburden and bedrock monitoring wells located around the perimeter of the MMA during the LTM events conducted to date. As shown in these figures, groundwater levels at the MMA do not vary significantly from season to season. These data are also consistent with that documented during the MMA RFI.

4.1.2 Siberia Area

Potentiometric contour maps for the overburden and bedrock units at the SA in May 2002 are also presented in Appendix C. As shown on the maps, groundwater flow patterns in both the overburden and bedrock were similar to those observed during previous monitoring events. The influence of the permeable reactive walls on the overburden potentiometric surface is evident on the overburden potentiometric contour map. Although the reactive walls cause local anomalies, the groundwater flow paths are generally perpendicular to the permeable reactive walls, indicating that groundwater is being directed through both reactive walls. Groundwater hydrographs for the overburden monitoring wells located along the perimeter of the SA and all the bedrock groundwater monitoring wells in the SA are presented on Figures 4-3 and 4-4, respectively. Figure 4-3 shows that, consistent with the information presented in the SA RFI, overburden groundwater elevations in many wells vary from season to season. As discussed in previous reports, the increased groundwater elevation in bedrock monitoring well MW-

GTI-4 is likely the result of groundwater mounding in the area of the landfarming pilot plot.

4.2 MAIN MANUFACTURING AREA ANALYTICAL RESULTS

Analytical results for MMA long-term monitoring groundwater samples are summarized in Table 4-2 and 4-3. Analytical results for monitoring wells sampled during the MMA RFI are also included in Table 4-2 for comparison. Summary tables presenting results for each MMA well are presented in Appendix D.

4.2.1 VOCs and SVOCs

Table 4-2 summarizes exceedences of NYSDEC Class GA standards for groundwater samples collected from the MMA LTM monitoring wells. As shown in Table 4-2, NYSDEC Class GA standards for VOCs were exceeded in 16 of the 53 MMA LTM monitoring wells during the May 2002 monitoring event. NYSDEC Class GA standards for SVOCs were not exceeded in any of the samples collected from the 53 MMA long-term monitoring wells during the May 2002 monitoring event. Consistent with results from previous monitoring events, VOC concentrations in MMA groundwater samples exceeded Class GA standards in four general areas:

- East of Building 40;
- East of Building 25;
- In the central portion of the MMA in the area of Building 121; and
- East of Building 20.

Table 4-3 shows that the VOCs most frequently detected (greater than 15 percent detections) in MMA groundwater samples consisted of the following compounds.

- cis-1,2-dichloroethene;
- trichloroethene;
- tetrachloroethene;
- vinyl chloride; and
- 2-butanone.

Methylene chloride, which was the most frequently detected VOC in MMA groundwater samples (approximately 56 percent of all samples), is a common laboratory contaminant.

Analytical results for methylene chloride were "B"-qualified (i.e., also detected in laboratory blank) for many of the samples.

The most frequently detected SVOCs in MMA groundwater samples consisted of the following compounds.

- bis (2-ethylhexyl) phthalate;
- di-n-butyl phthalate;
- diethylphthalate; and
- di-n-octylphthalate.

4.2.2 Data Trends

Due to the spatial separation between the areas of concern in the MMA long-term monitoring program, analysis of trends in concentrations of parameters over the entire MMA is not feasible. However, trends in total contaminant concentrations in samples collected from representative monitoring wells in the areas of concern discussed above have been utilized to evaluate variations in groundwater conditions. Figure 4-5 presents trends in total VOC concentrations in groundwater samples collected from the following representative wells located in the listed areas of concern.

- AW-MW-34 and AW-MW-51: Building 40 Area
- 86EM-SP-1A and 25-MW-3: Building 25 Area
- MW-121N and MW-121S: Building 121 Area
- AW-MW-35: Building 20 Area

As shown on Figure 45, generally decreasing trends in total VOC concentrations are evident in samples collected from monitoring wells 86EM-SP-1A, WVA-25-MW-3, WVA-AW-MW-35, and WVA-MW-121S. The decrease at 86EM-SP-1A and WVA-25-MW-3 may be associated with the Hydrogen-Release Compound (HRC[©]) pilot study at Building 25. The decrease in total VOC concentrations in the sample collected from WVA-AW-MW-34 in May 2002 is due to the presence of potassium permanganate in the well at the time of sampling. Total VOC concentrations in samples collected from monitoring well WVA-AW-MW-51 have been variable throughout long-term monitoring; however, the VOC concentration detected in the May 2002 sample was the highest detected at this location during long-term monitoring. As shown on Figure 4-6,

SVOC concentrations in samples collected from representative MMA monitoring wells have remained stable at low concentrations throughout long-term monitoring.

4.3 SIBERIA AREA ANALYTICAL RESULTS

4.3.1 VOCs and SVOCs

Table 4-4 summarizes exceedences of NYSDEC Class GA standards for groundwater samples collected from SA monitoring wells during the LTM. Analytical results for monitoring wells sampled during the Siberia RFI are also included in Table 4-4 for comparison. As shown in Table 3-4, NYSDEC Class GA standards for VOCs were exceeded in groundwater samples from eight of the 55 SA long-term monitoring wells during the May/November 2002 monitoring event. NYSDEC Class GA standards for SVOCs were not exceeded in groundwater samples collected from any of the 55 SA long-term monitoring wells during the May 2002 event. Consistent with results from previous monitoring events, VOC concentrations in SA groundwater samples generally exceeded Class GA standards only in the area of the former burn pit and in monitoring wells upgradient of the current reactive walls (northeast quadrant).

As shown in Table 4-5, the VOCs most frequently detected (greater than 15 percent detections) in SA groundwater samples consisted of the following compounds.

- cis-1,2-dichloroethene;
- vinyl chloride; and
- 2-butanone.

Similar to the results for MMA samples, methylene chloride was the most frequently detected VOC in SA groundwater samples (approximately 46 percent of all samples). However, as discussed previously, analytical results for methylene chloride were "B"-qualified (i.e., also detected in laboratory blank) for many of the samples.

The most frequently detected SVOCs in SA groundwater samples consisted of the following compounds.

- bis (2-ethylhexyl) phthalate;
- di-n-butyl phthalate;
- diethylphthalate; and
- di-n-octylphthalate.

4.3.2 Reactive Wall Sampling

As discussed in Section 2.1, the reactive wall monitoring wells (SA-MW-45 through –77) were sampled using PDB samplers in accordance with the USEPA letter dated September 20, 2002. The use of the PDB samplers was requested by the WVA due to sampling difficulties resulting from lack of recharge in the reactive wall monitoring wells. Table 3-6 compares the results for samples collected the reactive wall monitoring wells using the PDB samplers in November 2002 to samples collected from the reactive wall monitoring wells using bladder pumps in May 2001. As shown in Table 4-6, total VOC concentrations in the samples collected using the PDB samplers were similar to those obtained using bladder pumps.

4.3.3 Data Trends

Figures 4-7 and 4-8 present total chlorinated VOC concentrations in upgradient and downgradient reactive wall monitoring wells located around the two reactive walls located in the northeast quadrant of the SA. As shown in these figures, total chlorinated VOC concentrations in both upgradient and downgradient reactive wall monitoring wells have decreased since the beginning of long-term monitoring. These trends indicate that the ICMs at the former burn pit and the reactive wall are successfully reducing total chlorinated VOC concentrations upgradient and downgradient of the reactive wall, respectively.

Total SVOC concentrations in monitoring well GTI-1 (Figure 4-9) have remained at low or non-detectable concentrations. Total SVOC concentrations in monitoring well SA-MW-32 have decreased significantly since the beginning of LTM. The likely reason for the reduction in SVOC concentrations at this well is twofold: 1) SA-MW-32 was located in the former burn pit area and was removed and relocated during excavation of the burn pit, and 2) the removal of the material in the burn pit, which contained high concentrations of both VOCs and SVOCs, has likely caused a reduction in the total SVOC concentration in the vicinity of the former burn pit.

5.0 CONCLUSIONS AND RECOMMENDATIONS

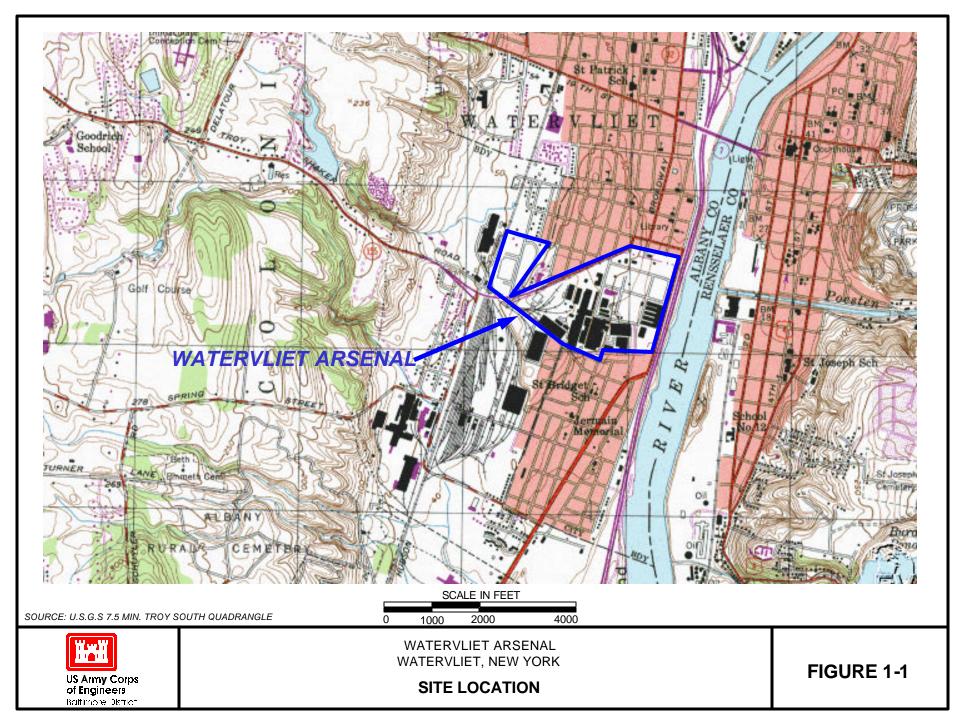
5.1 CONCLUSIONS

The following conclusions can be drawn based on the data generated during the five long-term monitoring events conducted to date.

- Groundwater flow in the MMA is consistent with that documented during previous monitoring events and the MMA RFI. Overall groundwater flow in the SA is consistent with that documented during previous LTM events and, although affected by the construction of the landfarming pilot plot, is similar to that documented in the SA RFI.
- 2. In general, VOC concentrations in groundwater in the MMA at buildings 25, 121, and 20 are stable or decreasing. VOC concentrations in groundwater at buildings 25 and 40 are variable. VOC concentrations in groundwater in the area of the former burn pit and current permeable reactive walls in the SA are decreasing. SVOC concentrations have not exceeded NYSDEC Class GA standards in samples collected from any of the monitoring wells sampled during the last two monitoring events.
- 3. Analytical results for samples collected from the Siberia reactive wall monitoring wells in November 2002 using PDB samplers were, in general similar to those for samples collected from the same wells during the May 2001 event using bladder pumps and low-flow purging techniques. These data indicate that the PDB samplers are suitable for monitoring VOCs in the reactive wall area.

5.2 RECOMMENDATIONS

The following recommendations are made based on the results of the long-term monitoring from August 1999 through November 2002.


- Based on the results of the November 2002 monitoring, the use of PDB samplers for monitoring of the reactive wall monitoring wells should be continued.
- As shown in Table 3-2, SVOCs have not been detected at concentrations greater than NYSDEC Class GA standards in most of the MMA LTM monitoring wells since sampling began in September 1995. Given this, it is

recommended that sampling for SVOCs be discontinued at all MMA LTM monitoring wells with the exception of the following monitoring wells:

- WVA-MMA-MW-23
- WVA-MMA-MW-24
- WVA-MMA-MW-43
- WVA-MMA-35-MW-8
- WVA-MMA-135-MW-4
- WVA-MMA-PW-1
- WVA-MMA-110
- WVA-MMA-EM-SP-13

These wells were selected since they fit one or more of the following criteria:

- 1. Monitoring wells where Light Non-Aqueous Phase Liquids (LNAPL) or sheens are/have been present.
- 2. Monitoring wells located in an area where lubricating oils are contaminants of concern.
- Monitoring wells where SVOCs have consistently been detected at concentrations greater than NYSDEC Class GA standards in the past.

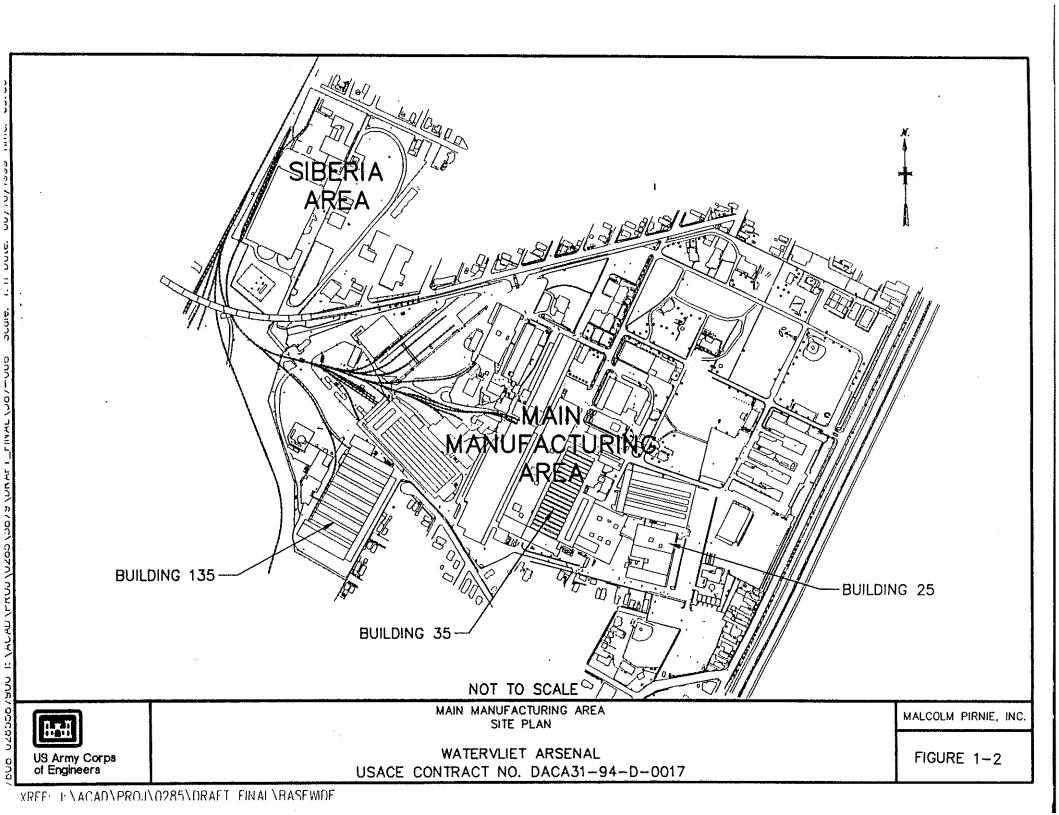
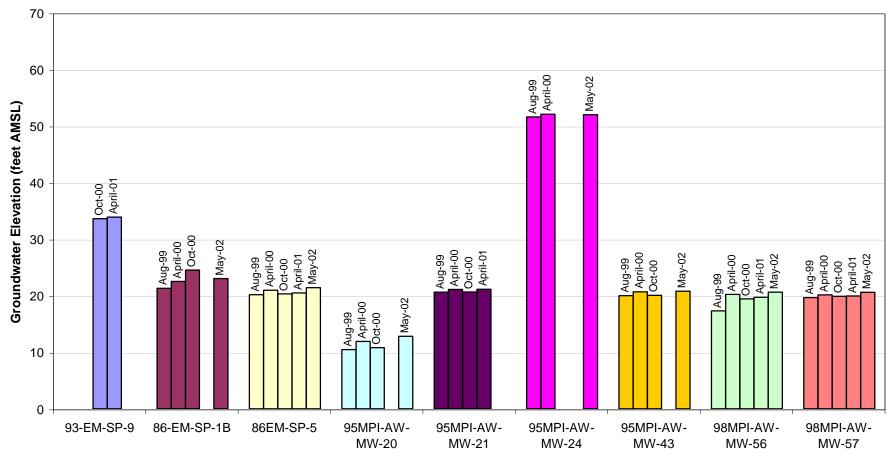



Figure 4-1 Groundwater Elevation in Perimeter Overburden Monitoring Wells Long Term Monitoring Main Manufacturing Area Watervliet Arsenal, Watervliet, New York

Note: Blank space indicates well was dry at time of measurement

Figure 4-2 Groundwater Elevation in Perimeter Bedrock Monitoring Wells Long Term Monitoring Main Manufacturing Area Watervliet Arsenal, Watervliet, New York

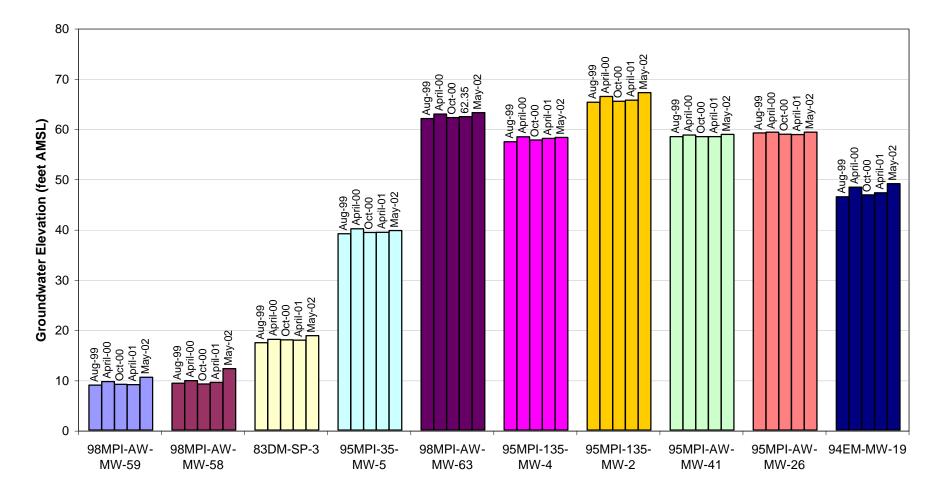
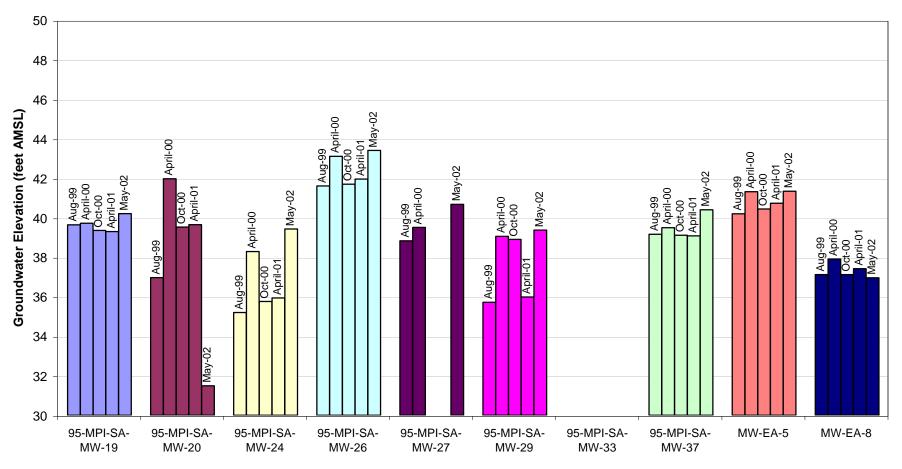
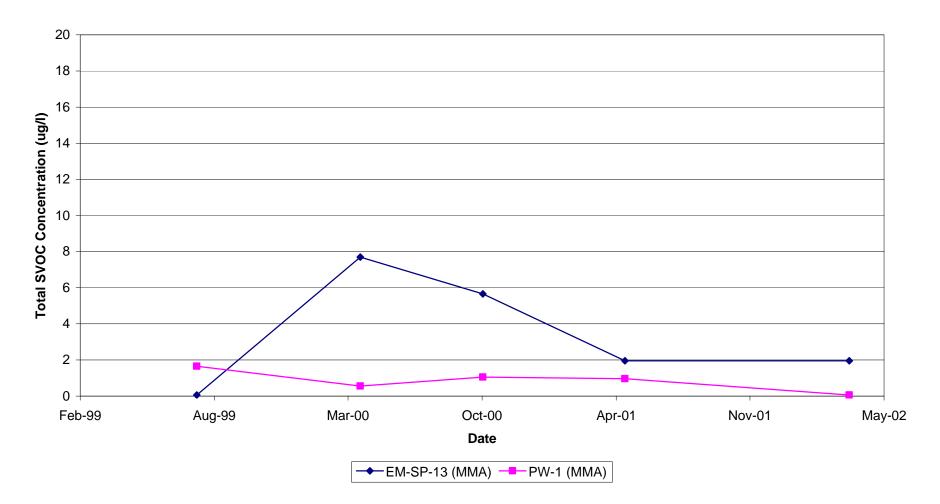
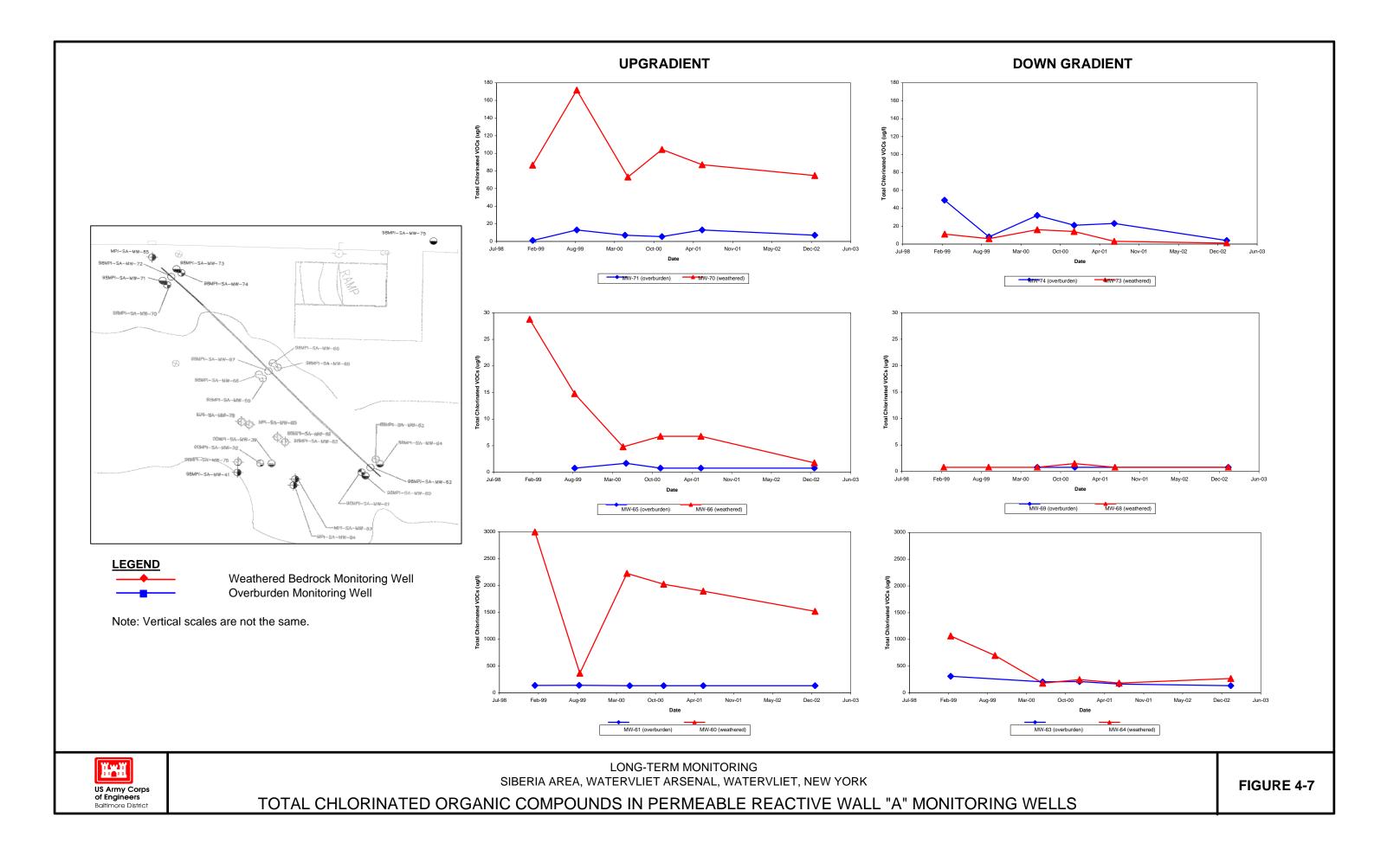




Figure 4-3 Groundwater Elevation in Perimeter Overburden Monitoring Wells Long Term Monitoring Siberia Area Watervliet Arsenal, Watervliet, New York

Note: Blank space indicates well was dry at time of measurement

Figure 4-4 Groundwater Elevation in Bedrock Monitoring Wells Long Term Monitoring Siberia Area Watervliet Arsenal, Watervliet, New York




Note: Blank space indicates well was dry at time of measurement

500 70000 450 60000 400 50000 350 Total VOCs (ug/l) 25-MW-3, MW-121S, MW-35, 86EM-SP-1A Total VOCs (ug/l) MW-34, MW-51 300 -25-MW-3 MW-121S AW-MW-35 250 86EM-SP-1A -AW-MW-34 -AW-MW-51 200 150 20000 100 10000 ж 50 0 0 Nov-01 Feb-99 Aug-99 Mar-00 Oct-00 Apr-01 May-02 Date

Figure 4-5 Trends in Total VOC Concentration in Areas of Concern Main Manufacturing Area Watervliet Arsenal, Watervliet, New York

Figure 4-6 Trends in Total SVOC Concentration in Areas of Concern Main Manufacturing Area Long-Term Monitoring Watervliet Arsenal, Watervliet, New York

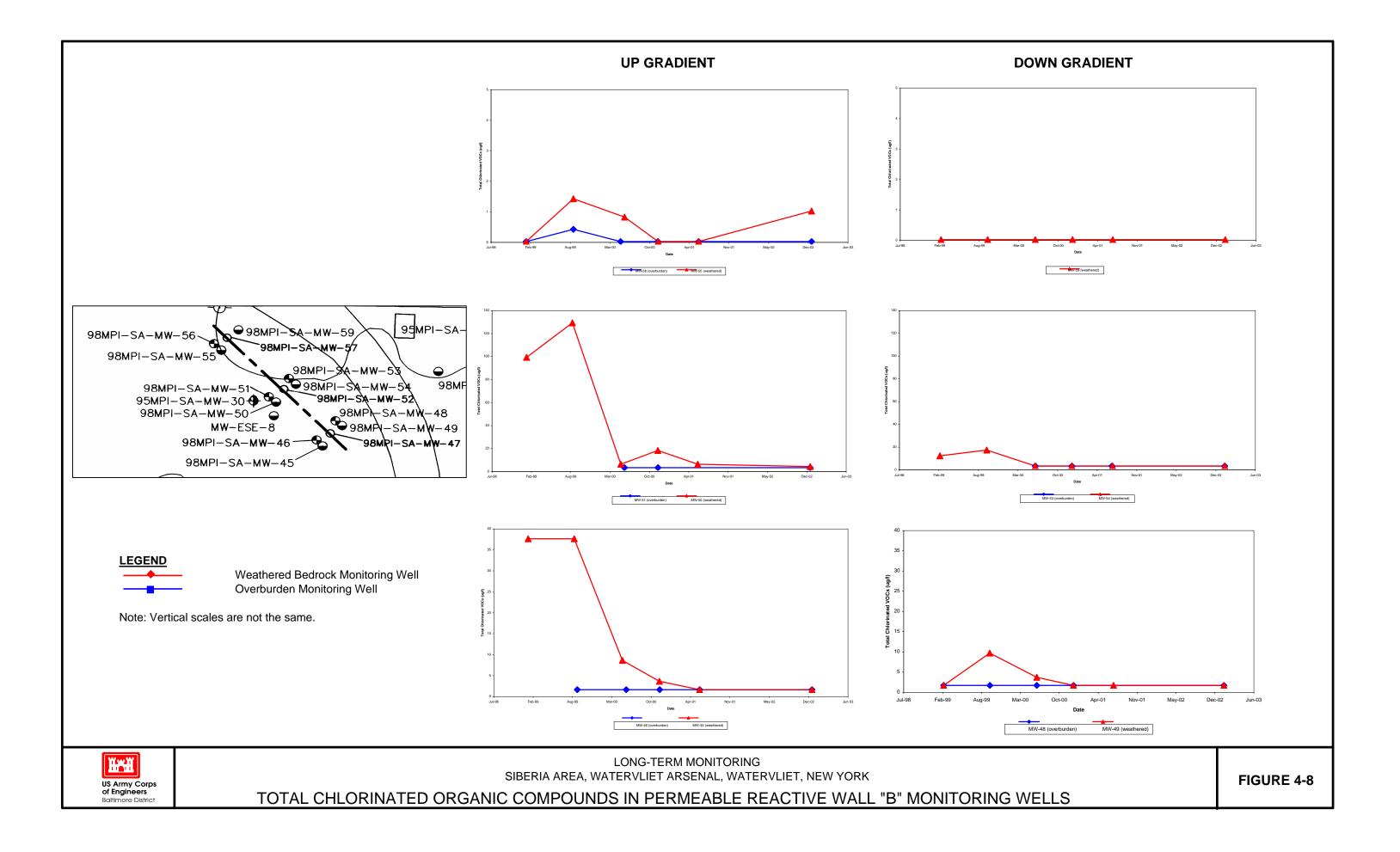
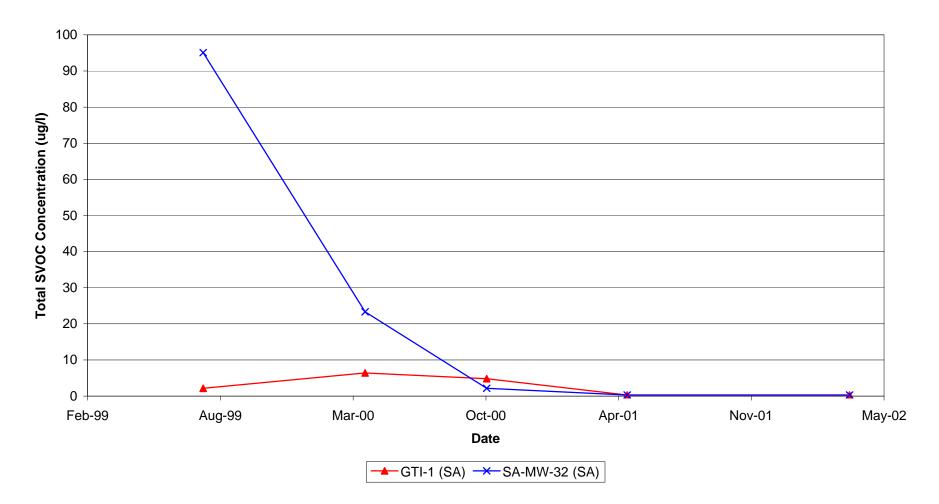



Figure 4-9 Trends in Total SVOC Concentration in Areas of Concern Siberia Area Long-Term Monitoring Watervliet Arsenal, Watervliet, New York

Table 2-1Summary of Incomplete Sampling LocationsMay/November 2002 Long Term Monitoring EventWatervliet Arsenal, Watervliet, New York

Monitoring Well	May/November 2002			
Main Manufacturing Area				
93EM-SP-9	No sample collected - insufficient water.			
95MPI-AW-MW-33	Insufficient recharge - only sampled VOCs.			
95MPI-AW-MW-34	Water contained KMNO ₄ only sampled VOCs.			
98MPI-AW-MW-59	Water contained KMNO ₄ only sampled VOCs.			
98MPI-AW-MW-61	No sample collected - insufficient water.			
Siberia Area				
MW-GTI-1	Could not locate well.			
WVA-SA-STS-3	Inaccessible at time of sampling.			
WVA-SA-STS-5	Inaccessible at time of sampling.			
WVA-SA-STS-6	Inaccessible at time of sampling.			
WVA-SA-SNS-6	Inaccessible at time of sampling.			

Table 4-1 Summary of Groundwater Elevations Long Term Monitoring Watervliet Arsenal Watervliet, New York

Well	8/2/1999	4/3/2000	10/4/2000	4/30/2001	5/14/2002
Main Manufacturing Area					
83DM-SP-1	23.44	24.44	23.74	24.13	24.79
83DM-SP-3	17.37	18.05	17.97	17.90	18.77
83DM-SP-4	17.73	18.29	18.31	18.18	19.15
86-EM-SP-1A	25.16	25.45	25.34	25.39	25.89
86-EM-SP-1B	21.29	22.50	24.52		23.02
86EM-SP-5	20.16	20.97	20.30	20.48	21.40
86EM-SP-6	20.10	20.74	20.37	20.47	21.03
87GTI-MW-1BP	61.18	64.20	61.60	61.68	64.41
87GTI-MW-2BP	60.82	64.19	61.12	61.59	64.32
87GTI-MW-3BP	60.81	63.66	61.03	61.49	62.66
87GTI-MW-4BP	60.04	64.10	60.22	60.85	62.65
92EM-SP-7	19.16	19.97	19.80	19.65	20.76
92EM-SP-8	17.78	20.84	20.13	20.15	21.00
93-EM-RW-2	61.72	60.73	57.78	57.76	60.62
93-EM-SP-11	25.89	27.22	26.33	26.80	28.39
93-EM-SP-12	28.99	29.48	29.26	29.48	26.83
93-EM-SP-13	62.18	62.29	62.18	62.24	62.54
93-EM-SP-14	62.88	62.88	62.85	62.78	63.18
93-EM-SP-15	58.85	59.90	59.14	59.52	60.10
93-EM-SP-9			33.59	33.87	
94EM-MW-19	46.43	48.33	46.81	47.21	49.03
94EM-MW-20	43.25	45.76	43.30	40.33	46.01
94EM-MW-21	46.31	46.98	46.32	45.91	47.86
95MPI-135-MW-1	16.93	18.00	17.33	18.52	
95MPI-135-MW-2	65.23	66.37	65.43	65.64	67.13
95MPI-135-MW-3	61.94	65.47	62.12	62.02	63.29
95MPI-135-MW-4	57.37	58.35	57.72	58.03	58.24
95MPI-25-MW-1	29.52	30.04	30.01	30.36	34.02
95MPI-25-MW-2	21.77	22.55	21.91	22.21	23.41
95MPI-25-MW-3	23.12	23.84	23.23	23.69	24.34
95MPI-25-MW-4	20.20	20.82	21.90	20.70	21.20
95MPI-25-MW-5	19.38	19.58	19.33	19.38	22.28
95MPI-25-MW-6	24.37	25.16	24.84	25.06	25.64
95MPI-35-MW-5	39.07	40.05	39.30	39.35	39.71
95MPI-35-MW-6	31.65	30.77	30.34	31.97	32.02
95MPI-35-MW-7	43.67	44.14	43.71	44.05	44.21
95MPI-35-MW-8	50.17	49.60	51.50	49.92	49.85
95MPI-AW-MW-20	10.46	11.92	10.79	+3.3Z	12.80
95MPI-AW-MW-20	20.63	21.11	20.64	21.14	12.00
95MPI-AW-MW-22	40.89	41.28	41.15	41.13	41.64
95MPI-AW-MW-22	40.89	52.34	41.13	48.55	51.04
95MPI-AW-MW-23	51.58	52.07	+0.70	+0.00	51.99
95MPI-AW-MW-24	54.92	56.21	55.10	55.46	56.77
95MPI-AW-MW-26	59.13	59.28	58.85	58.80	59.29
95MPI-AW-MW-27	59.13	53.17	51.64	51.90	53.85
95MPI-AW-MW-27	60.21	60.71	60.19	60.22	60.67
95MPI-AW-MW-28	60.49	60.61	60.19	60.53	60.78
95MPI-AW-MW-30	62.27	63.09	62.28	62.79	63.30
95MPI-AW-MW-30	22.48	22.72	22.34	22.74	23.16
95MPI-AW-MW-31	14.69			15.64	
95MPI-AW-MW-32		15.95	15.44	13.04	16.11
	8.06	9.31	8.14	0.00	
95MPI-AW-MW-34	8.55	9.00	8.62	8.86	00.40
95MPI-AW-MW-35	20.47	21.19	20.66	21.22	22.18
95MPI-AW-MW-36	20.57	21.26	20.80	47.00	40.45
95MPI-AW-MW-37	47.55	48.66	47.39	47.23	48.45

Table 4-1 Summary of Groundwater Elevations Long Term Monitoring Watervliet Arsenal Watervliet, New York

Well	8/2/1999	4/3/2000	10/4/2000	4/30/2001	5/14/2002
95MPI-AW-MW-38	45.89	49.72	45.94	45.53	46.39
95MPI-AW-MW-39	63.44	64.54	63.59	63.66	64.86
95MPI-AW-MW-40	64.57	65.58	64.67	64.71	66.53
95MPI-AW-MW-41	58.40	58.70	58.39	58.37	58.83
95MPI-AW-MW-42	59.53	58.85	59.61	59.81	60.21
95MPI-AW-MW-43	19.99	20.68	20.05		20.79
95MPI-AW-MW-44	19.72	20.55	19.84		20.69
97MPI-AW-MW-45	52.95	53.03	53.03	52.83	53.48
97MPI-AW-MW-46	18.03	20.77	20.50	20.89	20.76
97MPI-AW-MW-47	20.80	21.58	20.95	20.98	22.20
97MPI-AW-MW-49	22.22	23.24	22.53	22.89	23.24
97MPI-AW-MW-50	52.80	63.98	53.81	54.54	53.00
97MPI-AW-MW-51	8.97	9.32	12.55	9.24	
97MPI-AW-MW-55	66.08	67.03	66.74	66.77	66.78
98MPI-AW-MW-56	17.32	20.22	19.42	19.71	20.61
98MPI-AW-MW-57	19.65	20.15	19.87	19.95	20.60
98MPI-AW-MW-58	9.34	9.83	9.17	9.48	12.24
98MPI-AW-MW-59	8.95	9.65	9.11	9.04	10.51
98MPI-AW-MW-60	17.39	18.22	17.53	19.21	17.63
98MPI-AW-MW-62	14.33	14.78	14.59	13.93	14.67
98MPI-AW-MW-63	61.98	62.88	62.17	62.35	63.17
98MPI-AW-MW-64	59.38	59.83	58.99	58.81	60.00
MPI-P-1	54.43	54.76	54.53	54.71	56.19
MPI-P-2	45.96	47.27	46.48	46.87	1.37
MPI-P-3	43.29	42.92	42.70	44.30	45.25
MPI-P-4	47.53	45.44	44.99	45.09	47.53
PW-1	48.38	49.09	48.62	49.60	49.60
RW-1	10.00	27.49	25.32	25.60	27.21
Siberia Area		27.45	20.02	20.00	21.21
95-MPI-SA-MW-19	39.64	39.72	39.36	39.30	40.21
95-MPI-SA-MW-20	36.97	41.97	39.53	39.65	31.49
95-MPI-SA-MW-21	32.33	38.66	38.39	38.41	34.59
95-MPI-SA-MW-22	32.81	33.51	32.56	32.81	38.79
95-MPI-SA-MW-23	39.33	41.15	39.64	40.37	40.68
95-MPI-SA-MW-24	35.20	38.29	35.76	35.94	39.43
95-MPI-SA-MW-25	39.04	00.20	39.44	39.53	40.88
95-MPI-SA-MW-26	41.61	43.11	41.70	41.96	43.41
95-MPI-SA-MW-27	38.83	39.51	41.70	41.50	40.68
95-MPI-SA-MW-28	07.70	38.18	38.02	37.88	38.67
95-MPI-SA-MW-29	37.78	39.06	38.02	35.99	39.37
95-MPI-SA-MW-30	34.04	39.00	34.04	55.33	34.94
95-MPI-SA-MW-30	36.79	36.75	36.64	36.60	37.34
95-MPI-SA-MW-31	36.79	40.47	38.92	41.70	41.70
95-MPI-SA-MW-32	57.00	40.47	30.92	+1.70	41.70
95-MPI-SA-MW-34	32.06	32.25	32.00	32.01	32.58
95-MPI-SA-MW-34	32.06	40.50	41.83	40.01	40.18
95-MPI-SA-MW-35		36.89			40.18 34.77
95-MPI-SA-MW-36	31.64		32.23 39.11	32.51	
95-MPI-SA-MW-37 95-MPI-SA-MW-38	39.16 32.31	39.49		39.08 32.71	40.40
97-MPI-SA-MW-38	32.31	31.98	32.59		33.13
	24.07	26.00	37.51	41.81	41.81
98 MPI-SA-MW-45	34.07	36.23	33.62	34.01	38.77
98 MPI-SA-MW-46	34.9	37.19	35.12	36.07	39.9
98 MPI-SA-MW-47	34.01	36.17	33.57	33.87	33.91
98 MPI-SA-MW-48	33.98	36.59	33.8	34.04	35.6
98 MPI-SA-MW-49	33.78	35.73	33.58	33.89	30.09
98 MPI-SA-MW-50	34.1	36.63	33.86	34.41	36.09

Table 4-1 Summary of Groundwater Elevations Long Term Monitoring Watervliet Arsenal Watervliet, New York

Well	8/2/1999	4/3/2000	10/4/2000	4/30/2001	5/14/2002
98 MPI-SA-MW-51	35.64	37.53	35.69	36.56	36.91
98 MPI-SA-MW-52	34.02	36.27	33.68	34.06	39.32
98 MPI-SA-MW-53	35.28	38.98	35.59	37.32	36.68
98 MPI-SA-MW-54	33.9	36.16	33.64	33.99	39.4
98 MPI-SA-MW-55	34.35	37.04	34.25	34.69	37.42
98 MPI-SA-MW-56	34.71	36.92	34.91	35.11	39.61
98 MPI-SA-MW-57	34.07	36.37	33.87	34.35	39.07
98 MPI-SA-MW-59	33.46	35	33.42	33.77	39.06
98 MPI-SA-MW-60	37.41	38.85	37.77	38.38	38.32
98 MPI-SA-MW-61	37.77	38.65	37.73	38.46	37.83
98 MPI-SA-MW-62	37.36	38.79	37.67	38.26	38.25
98 MPI-SA-MW-63	37.49	38.91	38.25	38.71	38.46
98 MPI-SA-MW-64	37.38	38.83	37.7	38.29	38.28
98 MPI-SA-MW-65	37.63	39.95	38.83	38.48	38.23
98 MPI-SA-MW-66	36.99	39.15	37.65	38.69	38.29
98 MPI-SA-MW-67	37.01	39.08	37.76	38.66	38.46
98 MPI-SA-MW-68	36.81	38.95	37.42	38.43	38.01
98 MPI-SA-MW-69	37.81	39.05	37.91	39.06	38.33
98 MPI-SA-MW-70	38.19	39.88	38.22	39.49	40.49
98 MPI-SA-MW-71	36.66	38.97	37.33	38.61	39.66
98 MPI-SA-MW-72	36.76	39.31	37.41	38.71	38.86
98 MPI-SA-MW-73	36.71	38	37.39	38.76	38.8
98 MPI-SA-MW-74	36.54	39.26	37.21	38.84	38.59
98 MPI-SA-MW-75	32.87	33.14	32.97	32.96	33.50
98 MPI-SA-MW-76	32.6	32.71	32.59	32.6	
98 MPI-SA-MW-77	33.24	34.41	33.32	33.57	
SA-MW-85					
98-MPI-SA-MW-40	39.17	40.45	39.66	40.11	41.01
98-MPI-SA-MW-41	33.42	34.89	38.99	40.13	41.88
DEC-1	8.55	12.20	14.45	16.81	1.65
DEC-2	35.50	36.53	35.82	36.21	36.36
DEC-3	36.73	37.87	36.89	37.38	37.50
MW-EA-5	40.20	41.32	40.44	40.73	41.34
MW-EA-6	39.33	40.62	40.52		
MW-EA-7	40.58	41.37	40.77	40.97	38.13
MW-EA-8	37.12	37.91	37.12	37.42	36.96
MW-ESE-1	38.19	38.71	38.52	38.40	39.16
MW-ESE-2	40.73	42.58	41.05	41.48	43.11
MW-ESE-3	33.11	34.58	33.75	33.94	41.67
MW-ESE-4	30.50	32.38	30.12	31.36	44.05
MW-ESE-5	40.03	40.83	40.27	40.40	41.57
MW-ESE-6	31.09	32.98	31.71	31.94	34.41
MW-ESE-7	33.21	33.38	33.12	33.17	33.43
MW-ESE-8	33.97	36.33	33.83	34.40	36.12
MW-ESE-9					
MW-GTI-1	38.18	40.23	38.33	39.23	
MW-GTI-2	39.30	41.55	39.29	44.76	45.04
MW-GTI-3	34.18	34.79	34.18	34.50	
MW-GTI-4	38.92	40.58	38.41	44.69	45.14

Table 4-2Summary of Exceedences of NYSDEC Class GA StandardsMain Manufacturing Area Groundwater SamplesLong Term MonitoringWatervliet Arsenal, Watervliet, New York

Well		SVOCs	Detected a	t Greater t	han GA Sta	andards		Total Number of Sampling Events with GA Standard		VOCs	Detected at	t Greater th	nan GA Sta	ndards		Total Number of Sampling Events with GA Standard Exceedences
	Sep-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	Exceedences	Sep-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	Exocedences
WVA-MMA-110		no	no	no	no	no	no	0		no	no	no	no	no	no	0
WVA-MMA-121-N		no	no	no	no	no	no	0		yes	yes	yes	yes	no	yes	5
WVA-MMA-121-S		no	no	no	no	no	no	0		yes	yes	yes	yes	yes	yes	6
WVA-MMA-135-MW-1	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-135-MW-2	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-135-MW-4	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-25-MW-1	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-25-MW-2	no	no	no	no	no	no	no	0	yes	yes	yes	yes	yes	yes	yes	7
WVA-MMA-25-MW-3	no	no	no	no	no	no	no	0	yes	yes	yes	yes	yes	yes	yes	7
WVA-MMA-25-MW-5	no	no	no	yes	no	no	no	1	no	no	no	no	no	no	no	0
WVA-MMA-25-MW-6 WVA-MMA-35-MW-5	no	no	no	no	no	no	no	0	yes	yes	yes	yes	yes	yes	yes	7
WVA-MMA-35-MW-5	no ves	no	no no	no no	no ves	no	no no	3	no no	no no	no no	no	no no	yes no	no no	0
WVA-MMA-83DM-SP-1	no	yes no	no	no	no	no	no	0	yes	yes	yes	yes	yes	yes	yes	7
WVA-MMA-86EM-SP-1A	no	no	no	no	no	no	no	0	ves	ves	ves	ves	ves	ves	ves	7
WVA-MMA-86EM-SP-1B	no	no	no	no	no	no	no	0	Ves	no	no	no	no	no	no	1
WVA-MMA-86EM-SP-5	no	no	no	no	no	no	no	0	yes	yes	no	no	no	no	no	2
WVA-MMA-86EM-SP-6	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-92EM-SP-7	no	ves	no	no	no	no	no	1	yes	no	no	no	no	no	no	1
WVA-MMA-92EM-SP-8	no	no	no	no	no	no	no	0	ves	no	no	no	no	no	no	1
WVA-MMA-93EM-RW-2	yes	no	no	no	no	no	no	1	yes	yes	no	yes	yes	yes	yes	6
WVA-MMA-93EM-SP-11	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-93EM-SP-9	no	no	no	no	no	no	no	0	no	yes	no	no	no	no	no	1
WVA-MMA-DM-SP-3	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-EM-SP-13	yes	no	no	yes	yes	no	no	3	no	no	no	no	no	no	no	0
WVA-MMA-MW-19			no	no	no	no		0			no	no	no	no		0
WVA-MMA-MW-20		no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-MW-21	no	no	no	no	no	no		0	no	no	no	no	no	no		0
WVA-MMA-MW-22	no	no	no	yes	no	no	no	1	no	no	no	no	no	no	no	0
WVA-MMA-MW-23	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-MW-24	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-MW-26	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-MW-27	no	no	no	no	no	no	no	0	yes	yes	no	no	no	no	yes	3
WVA-MMA-MW-29	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-MW-30 WVA-MMA-MW-32	no no	no no	no no	no no	no no	no no	no no	0	no no	no no	no no	no	no no	no no	no no	0
WVA-MMA-MW-32	no	no	no	no	no	no	no	0	no	no	no	yes no	no	no	no	0
WVA-MMA-MW-33	no	no	no	no	no	no	no	0	Ves	yes	yes	yes	yes	yes	yes	7
WVA-MMA-MW-35	no	no	no	no	no	no	no	0	no	ves	yes	yes	yes	yes	yes	7
WVA-MMA-MW-36	110	no	no	no	no	no	no	0	ves	ves	no	ves	ves	ves	yes	6
WVA-MMA-MW-38	ves	no	no	no	no	no	no	1	no	no	no	no	no	no	no	0

Table 4-2Summary of Exceedences of NYSDEC Class GA StandardsMain Manufacturing Area Groundwater SamplesLong Term MonitoringWatervliet Arsenal, Watervliet, New York

Well		SVOCs Detected at Greater than GA Standards						Total Number of Sampling Events with GA Standard			Total Number of Sampling Events with GA Standard Exceedences					
	Sep-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	Exceedences	Sep-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	
WVA-MMA-MW-41	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-MMA-MW-43	no	no	no	yes	no	no	no	1	yes	yes	no	yes	yes	yes	no	5
WVA-MMA-MW-44	no	no	no	yes	no	no	no	1	yes	yes	no	no	no	no	no	2
WVA-MMA-MW-47			no	no	no	no	no	0			no	yes	yes	yes	yes	4
WVA-MMA-MW-51			no	yes	no	no	no	1			yes	yes	yes	yes	yes	5
WVA-MMA-MW-52			no	no	no	no	no	0			no	no	no	no	no	0
WVA-MMA-MW-58			no	no	no	no	no	0			no	no	no	no	no	0
WVA-MMA-MW-59			no	no	no	no	no	0			yes	yes	yes	yes	yes	5
WVA-MMA-MW-61				no	yes			1				yes	yes			2
WVA-MMA-MW-64			no	yes	no	no	no	1			no	yes	yes	yes	yes	4
WVA-MMA-PW-1			yes	no	no	no	no	1			no	no	no	no	no	0
WVA-MMA-SP-4	no	no	no	yes	no	no	no	1	no	no	no	no	no	no	no	0

Notes:

Blank Cell - Monitoring well not sampled or not installed.

Table 4-3 Summary of VOC and SVOC Detections MMA Groundwater Samples Long Term Monitoring (8/99 - 5/02) Watervliet Arsenal, Watervliet, New York

Analyte	Number of	Number of	Percent
-	Detections	Samples	Detections
Volatile Organic Compounds			
Methylene chloride	145	257	56.4%
cis-1,2-Dichloroethene	74	205	36.1%
Trichloroethene	71	257	27.6%
Tetrachloroethene	53	257	20.6%
Vinyl chloride	52	257	20.2%
2-Butanone	44	257	17.1%
Chloroform	37	257	14.4%
trans-1,2-Dichloroethene	31	257	12.1%
1,1-Dichloroethane	30	257	11.7%
1,1,1-Trichloroethane	24	257	9.3%
Carbon disulfide	21	257	8.2%
1,1-Dichloroethene	16	257	6.2%
Toluene	10	257	3.9%
Benzene	9	257	3.5%
Chloromethane	9	257	3.5%
1,1,2,2-Tetrachloroethane	8	257	3.1%
4-Methyl-2-Pentanone	6	257	2.3%
Bromodichloromethane	6	257	2.3%
Chlorobenzene	5	257	1.9%
Xylene	4	257	1.6%
Carbon tetrachloride	2	257	0.8%
Ethylbenzene	2	257	0.8%
Bromomethane	2	257	0.8%
Chloroethane	1	257	0.4%
2-Chloroethylvinylether	1	257	0.4%
Trichlorofluoromethane	1	257	0.4%
Dibromochloromethane	1	257	0.4%

Table 4-3 Summary of VOC and SVOC Detections MMA Groundwater Samples Long Term Monitoring (8/99 - 5/02) Watervliet Arsenal, Watervliet, New York

Analyte	Number of	Number of	Percent
-	Detections	Samples	Detections
Semi-Volatile Organic Compounds			
bis(2-Ethylhexyl)phthalate	146	244	59.8%
Di-n-butylphthalate	89	244	36.5%
Diethylphthalate	55	244	22.5%
Di-n-octylphthalate	41	244	16.8%
Butylbenzylphthalate	33	244	13.5%
Pyrene	22	244	9.0%
Fluoranthene	20	244	8.2%
Phenol	20	244	8.2%
4-Chloro-3-methylphenol	17	244	7.0%
Naphthalene	14	244	5.7%
Acenaphthene	14	244	5.7%
Fluorene	10	244	4.1%
Phenanthrene	3	244	1.2%
Anthracene	2	244	0.8%
Benzo(b)fluoranthene	2	244	0.8%
Benzo(k)flouranthene	2	244	0.8%
Chrysene	2	244	0.8%
Benzo(a)pyrene	1	244	0.4%
2,4-Dimethylphenol	1	244	0.4%
Pentachlorophenol	1	244	0.4%

Table 4-4 Summary of Exceedences of NYSDEC Class GA Standards Siberia Area Groundwater Samples Long Term Monitoring Watervliet Arsenal, Watervliet, New York

Well			Detected a		han GA Sta			Total Number of Sampling Events with GA Standard		VOCs	Detected a					Total Number of Sampling Events with GA Standard
	Jun-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	Exceedances	Jun-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	Exceedances
WVA-SA-MW-19	yes	no	no	no	no	no	no	0	yes	no	no	no	no	no	no	0
WVA-SA-MW-20	no	no	no	no	no	no	no	0	yes	yes	yes	no	no	no	no	1
WVA-SA-MW-22	no	no	no	no	no	no		0	no	no	no	no	no	no		0
WVA-SA-MW-23	no	yes	no	no	no	no	no	0	no	no	no	yes	no	no	no	1
WVA-SA-MW-26	yes	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-SA-MW-27	no	no	no	no	no	no	no	0	no	no	no	yes	no	no	no	1
WVA-SA-MW-28	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-SA-MW-29	no	no	no	no	no	no	no	0	no	no	yes	no	no	no	no	1
WVA-SA-MW-32	no	yes	yes	yes	no	no	no	2	yes	yes	yes	yes	yes	yes	no	4
WVA-SA-MW-33	no		no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-SA-MW-34	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-SA-MW-38	no	no	no	no	no	no	no	0	no	no	yes	no	no	no	no	1
WVA-SA-MW-39			no	no	no	no	no	0			no	no	yes	yes	yes	3
WVA-SA-MW-41			no	no	no	no	no	0			yes	yes	yes	yes	no	4
WVA-SA-MW-45			no	yes	no	no	no	1			yes	yes	yes	no	no	3
WVA-SA-MW-46			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-47			no	yes	no	no	no	1			no	no	no	no	no	0
WVA-SA-MW-48			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-49			no	no	no	no	no	0			yes	yes	no	no	no	2
WVA-SA-MW-50			no	no	no	no	no	0			yes	yes	yes	yes	no	4
WVA-SA-MW-51			no	no	no	no	no	0			no	yes	no	no	no	1
WVA-SA-MW-52			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-53			no	yes	no	no	no	1			no	no	no	no	no	0
WVA-SA-MW-54			no	yes	no	no	no	1			yes	yes	no	no	no	2
WVA-SA-MW-55			no	no	no	no	no	0			yes	yes	no	no	no	2
WVA-SA-MW-56			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-57			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-58			no	no	no	no		0			no	no	no	no		0
WVA-SA-MW-59			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-60			no	no	no	no	no	0			yes	yes	yes	yes	yes	5
WVA-SA-MW-61			no	no	no	no	no	0			yes	yes	no	no	no	2
WVA-SA-MW-62			no	no	yes	no	no	1			no	no	no	no	no	0
WVA-SA-MW-63			no	no	no	no	no	0			no	yes	no	yes	no	2
WVA-SA-MW-64			no	no	no	no	no	0			yes	yes	yes	yes	yes	5
WVA-SA-MW-65			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-66			no	no	no	no	no	0			yes	no	no	yes	no	2
WVA-SA-MW-67			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-68			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-69			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-70			no	no	no	no	no	0			yes	yes	yes	yes	yes	5

Table 4-4 Summary of Exceedences of NYSDEC Class GA Standards Siberia Area Groundwater Samples Long Term Monitoring Watervliet Arsenal, Watervliet, New York

Well			Detected a					Total Number of Sampling Events with GA Standard			Detected a		Total Number of Sampling Events with GA Standard			
	Jun-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	Exceedances	Jun-95	May-96	Aug-99	Apr-00	Oct-00	May-01	May-02	Exceedances
WVA-SA-MW-71			no	yes	no	no	no	1			yes	yes	no	yes	yes	4
WVA-SA-MW-72			no	no	no	no	no	0			yes	yes	yes	yes	no	4
WVA-SA-MW-73			no	no	no	no	no	0			no	yes	yes	no	no	2
WVA-SA-MW-74			no	no	no	no	no	0			yes	yes	yes	yes	no	4
WVA-SA-MW-75			no	no	no	no	no	0			no	no	no	no	yes	1
WVA-SA-MW-76			no	no	no	no	no	0			no	no	no	no	no	0
WVA-SA-MW-77			no	no	no	no	no	0			no	yes	no	no	no	1
WVA-SA-MW-EA-6	no	no	no	no	no	no	no	0	no	yes	yes	yes	no	no	yes	3
WVA-SA-MW-ESE-1	no	no	no	no	no	no	no	0	no	no	no	no	yes	no	no	1
WVA-SA-MW-ESE-2	no	no	no	no	no	no	no	0	no	no	yes	no	no	no	no	1
WVA-SA-MW-ESE-3	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-SA-MW-ESE-6	no	no	no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-SA-MW-ESE-8	no	no	no	no	no	no	no	0	yes	yes	yes	yes	yes	yes	yes	5
WVA-SA-MW-GTI-1	no	no	no	yes	yes	no	no	2	no	no	no	no	no	no	no	0
WVA-SA-MW-GTI-3	yes		no	no	no	no	no	0	no	no	no	no	no	no	no	0
WVA-SA-MW-SNS-6		no	no	no	no	no		0		yes	yes	yes	yes	no		3
WVA-SA-MW-STS-3			no	no	no	no		0			no	no	no	no		0
WVA-SA-MW-STS-5			no	no	no	no		0			no	yes	yes	no		2
WVA-SA-MW-STS-6			no	no	no	no		0			yes	no	yes	yes		3

Notes:

- Reactive wall monitoring wells

Blank space - Monitoring well not sampled or not installed.

Analyte	Number of	Number of	Percent
-	Detections	Samples	Detections
Volatile Organic Compounds			
Methylene chloride	128	280	45.7%
cis-1,2-Dichloroethene	94	280	33.6%
Vinyl chloride	84	280	30.0%
2-Butanone	66	280	23.6%
Benzene	31	280	11.1%
Carbon disulfide	19	280	6.8%
Tetrachloroethene	19	280	6.8%
Bromodichloromethane	17	280	6.1%
Toluene	12	280	4.3%
trans-1,2-Dichloroethene	12	280	4.3%
Chlorobenzene	11	280	3.9%
4-Methyl-2-Pentanone	9	280	3.2%
Xylene	7	280	2.5%
Chloroform	6	280	2.1%
Ethylbenzene	5	280	1.8%
1,1,2,2-Tetrachloroethane	5	280	1.8%
Bromomethane	3	280	1.1%
Trichloroethene	3	280	1.1%
Bromoform	2	280	0.7%
Carbon tetrachloride	2	280	0.7%
Dibromochloromethane	2	280	0.7%
1,1,2-Trichloroethane	2	280	0.7%
Trichlorofluoromethane	2	280	0.7%
1,1-Dichloroethene	2	280	0.7%
Chloroethane	1	280	0.4%
2-Chloroethylvinylether	1	280	0.4%
1,2-Dichloroethane	1	280	0.4%
trans-1,3-Dichloropropene	1	280	0.4%
1,1,1-Trichloroethane	1	280	0.4%

Analyte	Number of	Number of	Percent
	Detections	Samples	Detections
Semi-Volatile Organic Compounds			
bis(2-Ethylhexyl)phthalate	102	270	37.8%
Di-n-butylphthalate	90	270	33.3%
Diethylphthalate	56	270	20.7%
Di-n-octylphthalate	52	270	19.3%
Butylbenzylphthalate	32	270	11.9%
Pyrene	16	270	5.9%
Phenol	15	270	5.6%
4-Chloro-3-methylphenol	14	270	5.2%
Fluoranthene	14	270	5.2%
Benzo(a)pyrene	10	270	3.7%
Phenanthrene	9	270	3.3%
Anthracene	8	270	3.0%
Benzo(a)anthracene	8	270	3.0%
Chrysene	8	270	3.0%
Acenaphtylene	6	270	2.2%
Benzo(b)fluoranthene	6	270	2.2%
Benzo(k)fluoranthene	6	270	2.2%
Naphthalene	6	270	2.2%
Acenaphthene	5	270	1.9%
Benzo(g,h,I)perylene	4	270	1.5%
1,4-Dichlorobenzene	4	270	1.5%
Fluorene	4	270	1.5%
Indeno(1,2,3-cd)pyrene	4	270	1.5%
1,2-Dichlorobenzene	3	270	1.1%
2-Methylnapthalene	3	270	1.1%
2,4-Dimethylphenol	2	270	0.7%
1,2,4-Trichlorobenzene	2	270	0.7%
N-Nitrodiphenylamine (1)	1	270	0.4%
Pentachlorophenol	1	270	0.4%

Table 4-6

Comparison of Analytical Results for Low-Flow Purge Samples and Passive Diffusion Bag Samples Permeable Iron Reactive Wall Monitoring Wells Siberia Area Watervliet Arsenal, Watervliet, New York

.

Monitoring Well	Total VOCs (826	0B list) (ug/l)
	May 2001	November 2002
	(low flow sampling w/bladder pump)	(sampled w/ diffusion bags)
WVA-SA-MW-45	5	ND
WVA-SA-MW-46	2	ND
WVA-SA-MW-47	1	ND
WVA-SA-MW-48	ND	ND
WVA-SA-MW-49	ND	ND
WVA-SA-MW-50	3.4	1
WVA-SA-MW-51	ND	ND
WVA-SA-MW-52	ND	ND
WVA-SA-MW-53	3	ND
WVA-SA-MW-54	0.6	0.7
WVA-SA-MW-55	ND	1
WVA-SA-MW-56	0.6	ND
WVA-SA-MW-57	0.5	1
WVA-SA-MW-59	ND	ND
WVA-SA-MW-60	1773	1388
WVA-SA-MW-61	1.3	0.4
WVA-SA-MW-62	ND	1.4
WVA-SA-MW-63	31	ND
WVA-SA-MW-64	51.4	138
WVA-SA-MW-65	ND	ND
WVA-SA-MW-66	6	5
WVA-SA-MW-67	0.2	ND
WVA-SA-MW-68	2.4	ND
WVA-SA-MW-69	ND	ND
WVA-SA-MW-70	86.6	73.7
WVA-SA-MW-71	13	6
WVA-SA-MW-72	34.5	5
WVA-SA-MW-73	4	ND
WVA-SA-MW-74	22	3
WVA-SA-MW-75	ND	7
WVA-SA-MW-76	ND	ND
WVA-SA-MW-77	0.5	ND

APPENDIX A

Field Purge Log Forms

· •	М	onitorinț	g Weil Pu	irging/Sa	mpling I	Jog	W	eli No. 🛛	NVA-	Aw-	MU-5
PROJECT NAME: PROJECT LOCATION: PROJECT NUMBER: DATE: SAMPLER(S):	0285771 5/1	g Term M , NY A / O		g Plan					<u> </u>	<u>MS</u> [<u>></u>
A Total Casing and B Casing Internal D C Water Level Belo D Volume of Water)iameter (in.) w Top of Ca	asing (ft.)		gal.)	4" \$4!	7					•
	<u> </u>			ACCUI	MULATI	ED VOL	UME PU	RGED			
PARAMETER						r	r			T	
Date Liters						12.20	1825	1330			
Time	1255	1300	12-5	1310		-156	-156			<u> </u>	11
Redox potential	-104	-154	-157	-157	-156			8.75		1	11
Conductivity (mohm/cm)	8.85	8.96	8.88		8.87		2.36				
Dissolved Oxygen (ppm)	10.50	2.98	1.45	272	11.1	1408	14.09	14.09			
pH (S.U.s)	14.02	14.07	14.06	17.07	1901	15.53	15.85	15.87			
	117 7/0	177 173	1 17 75	111.67	173.50	11 2 10					

11.6

5.6

83:95

0.49 0.49

11.3

5.6

85.2

12.1

0.49

\$5.73

3-15.6 5.6

13.7

0.49

85.7

12.3

5.6

86.70 \$7.0

0.49

12.2

5.6

0.41

12.7

5.6

86.45

0.49 0.49

12.7

16.30

5.6

FIELD ANALYSIS CONCENTRATION ANALYTE O. OMMy Nitrate (mg/l) J/gm 397 01 Nitrite (mg/l) SAL Sulfate (mg/l) 40 mg/L Chloride (mgl) 1350 Ng/L Alkalinity (mg/l) (Limit) 30 mg/L з. Ferrous Iron (mg/l)

ър. (C)

TDS

Salinity

Turbidity (NTUs)

Depth to Water (ft)

175 milmin Port Brain 1 -24 1745= COMMENTS: Kin 110 20 ovra Q 11

Well No. WVA- Aw- MW-36

PROJECT NAME: WVA Long Term Monitoring Plan				
PROJECT LOCATION: Watervliet, NY				
PROJECT NUMBER: 0285771				
DATE: 5/23/02				
SAMPLER(S): χ , S, A , T			· · · · · · · · · · · · · · · · · · ·	-
A Total Casing and Screen Length (ft.)	<u> </u>			
I Diamatan (in)	⊃″			
B Casing Internal Diameter (in.)				
C Water Level Below Top of Casing (ft.)	Belia	TOP	of Pump	•
D Volume of Water in Casing - includes annulus (gal.)				
			•	

PARAMETER				ACCU	MULAT	ED VOLUM	E PURGEI)		
Date		·····		<u> </u>		· · · ·			-1	<u> </u>
Liters						4-2-42				+
Time	1500	1515	1220	1525						
Redox potential	228	187	129	175		174				
Conductivity (mohm/cm)	3.12	3,77	3.74	3.71	3.71	3.69				
Dissolved Oxygen (ppm)	5.04	1	307	304	2.87	2.81				
		7.50	7.45	7.1/2	7.40	7.41				
pH (S.U.s)	20.0		18.93	18.91	18.81	18.74				
p. (C)	-1.7	37.0		41.3	46.4	45.1				
Turbidity (NTUs)	24	2.4	5.4	2.4	2.4	2.4				
TDS	0.19	0,19	0.19	0.19	0.19	0.19				
Salinity		001		1	1					
Depth to Water (ft)		L	<u></u>		<u> </u>					- -

FIELD ANALYSIS					
ANALYTE	CONCENTRATION				
Nitrate (mg/l)					
Nitrite (mg/l)					
Sulfate (mg/l)					
Chloride (mgl)	· · ·				
Alkalinity (mg/l)					
Ferrous Iron (mg/l)					

Pont ъF Se/ow 100 COMMENTS: 1500 min 1535-101 0N 0 0 SAME Rre 24 7-0 16 502

Well No. WIA - Aw- MW- 51

PROJECT NAME: WVA Long Term Monitoring Plan			
PROJECT LOCATION: Watervliet, NY			
PROJECT NUMBER: 02857/1			
DATE: 5/23/01			
SAMPLER(S): K.S. A.T.	<u></u>		
1 Garage Longth (ft.)			
A Total Casing and Screen Length (ft.)			
The set Diameter (in)	4		
B Casing Internal Diameter (in.)	and the second descent		
C Water Level Below Top of Casing (ft.)	12.1		•
C Water Level Below 10p of Cusing (1)			
D Volume of Water in Casing - includes annulus (gal.)			
D volume of which in outing		·	

PARAMETER				ACCUI			UME PURGE	· -	
te	·	1			1				
ers	850	855	200	905	911	915	920		
ne		140	-3	-78	- 104	-129	-40		
lox potential	278	1.95	1.91	1.89	1.90	1.40	1.90		ļ
nductivity (mohm/cm)	3.49					0.58	0.51		
solved Oxygen (ppm)			the second s		the second s		9.02		↓ ↓
(S.U.s)	8.61		14.20			14.17	14.19		<u> </u>
р. (C)	14.42	1.				22.5	23.0		<u> </u>
bidity (NTUs)	3.8	0.0	1.2	12	1.2	1.2	1.2		
s	<u> </u>	1.3		0.09	0.09	0.09	0.09		
inity pth to Water (ft)	0.09		12.95		13.7	13.9	14.0		

FIELD ANALYSIS

	FIELD AT THE P
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.04 mg/L
Nitrite (mg/l)	0.081 ~216
Sulfate (mg/l)	8 mg/6
Chloride (mgl)	SIngle
Alkalinity (mg/l)	259 mg/L
Ferrous Iron (mg/l)	0.03mg/L

@ ~ 175 al lain ß'n 850 COMMENTS: 920 1 24 0 av 7 0 R 925-Andr 0 940 S

Well No. WVA-Aw-Mw-33

	PROJECT NAME:	WVA Long Term Monitoring Plan		 		
	PROJECT LOCATION:	Watervliet, NY		 		
	PROJECT NUMBER:	0285771	······	 	<u> </u>	
)	DATE:	5/22/02		 -		-
	SAMPLER(S): _					
•						
	A Total Casing and S	Screen Length (fL)	····			
			γ'	<u>.</u>		
	B Casing Internal Di	ameter (in.)				
	C Water Level Below	w Top of Casing (ic.)	······································			
	D Volume of Water	in Casing - includes annulus (gal.)				

PARAMETER	ACCUMULATED VOLUME PURGED									
Date	 	T						· · ·		[
Liters	 									
Time	 									
Redox potential	 									<u> </u>
Conductivity (mohm/cm)	 									
Dissolved Oxygen (ppm)	 									1
pH (S.U.s)	 									
np. (C)	 									1
Turbidity (NTUs)	 									
TDS	 			<u> </u>					1	1
Salinity	 <u> </u>									1
Depth to Water (ft)	 <u> </u>	<u> </u>		<u> </u>		<u>l</u>	L	 .		·

FI	ELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	
Nitrite (mg/l)	
Sulfate (mg/l)	
Chloride (mgl)	· · · · · · · · · · · · · · · · · · ·
Alkalinity (mg/l)	
Ferrous Iron (mg/l)	

175 m//min O <u>~</u> 1430-COMMENTS: dr Purging 54 5/23/02 10-32 0250 200 -5-2 ONLY X

Well No. WVA - AW-MW- 54

PROJECT NAME:	WVA Long Term Monitoring Plan
PROJECT LOCATION:	Watervliet, NY
PROTECT NUMBER:	0285771
DATE:	5123102
SAMPLER(S):	K.S., A.T.

A Total Casing and Screen Length (ft.)

B Casing Internal Diameter (in.)

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED									
Date		1	1							
iters	1055	1100	1105	2172	1115	1120	1125	113 •		
Time	53	1	-68	-55	-51	-47	-45	-43		
Redox potential		0.245	0.754	0.739	0.727		0.728			
Conductivity (mohm/cm)	10.71	7.61	5.24	5.01	4.79	4.75	4.73			
Dissolved Oxygen (ppm)	7.86	11.61	12:02	11.92				11.63		
H (S.U.s)	19.63		15.46	15.36	15.24			15.23		
<u>ир. (C)</u>	5.1	6.7	7.1	5.2	4.1	5.1	3.8	4.1		
Furbidity (NTUs)		0.48	0.41	6.47		0.47		0.47		
rDS	0.03	0.03	50.0	0.03	_		the second s	0.03		
Salinity Depth to Water (ft)	11.35	11.61	11.80	11.95	12.1	10,15	12.25	12.35		

FIELD ANALYSIS

AND A NOTE	CONCENTRATION
ANALYTE	a 15 inoch-
Nitrate (mg/l)	0,13 / 11
Nitrite (mg/l)	0.15 mg/2 0.022 mg/L
Sulfate (mg/l)	15 mg/k
Chloride (mgl)	201 MAL
Alkalinity (mg/l)	Ongle
Ferrous Iron (mg/l)	0,02 mg/L

175 allain 1030-14. COMMENTS: 1130 -90 n d TMO 140 -

Well No. 93EM-5P-11

PROJECT NAME: WVA Long Term Monitoring Plan	
PROJECT LOCATION: Watervliet, NY	
PROJECT NUMBER: 0285771	
DATE: 5/22/02	
SAMPLER(S): X5 A.T.	
A Total Casing and Screen Length (ft.)	
B Casing Internal Diameter (in.)	<u>4"</u>
C Water Level Below Top of Casing (ft.)	8.1
D Volume of Water in Casing - includes annulus (gal.)	

PARAMETER		ACCUMULATED VOLUME PURGED								
Date		T	<u>,</u>	1	1	T		· · ·	Γ	
liters	855	900	905	910	915	920	925			· · ·
ime	-4	-24	-35	-8>	- 38	-37	-36			· ·
Redox potential Conductivity (mohm/cm)	1.49	1.62	1.64	1.64	1.64		1.63		<u> </u>	
Dissolved Oxygen (ppm)	9.13	1.98	0.86	0.76	0.72	0.70	0.69	. 		
H (S.U.s)	7.68	7.21	7.14	7.13	7.13	7.13	7.13			
p. (C)	12.53	13.13	13.33	13.28		13-42	33.0			
urbidity (NTUs)	102.0	142	1.6	1.0	1.0	1.0	1.0			
DS			0.08	0.08	0.08	0.08			4	
Depth to Water (ft)	8.35		8.50	8.60	8.70	8.51	\$.87	<u> </u>		

FIELD ANALYSIS					
ANALYTE	CONCENTRATION				
Nitrate (mg/l)	OISmill				
Nitrite (mg/l)	0,006 mg/2				
Sulfate (mg/l)	80 mg/L				
Chloride (mgl)	139 mg/L				
Alkalinity (mg/l)	137mg/L				
Ferrous Iron (mg/l)	1.84 mg/L				

92

1000

COMMENTS:

C & 175 al/min Pore 1 cm avro SAAD (rotrol

Well No. WVA-Aw-35-MW-5

PROJECT NAME:	WVA Long Term Monitoring Plan	
PROTECT LOCATION:	Watervliet, NY	
PROJECT NUMBER:	0285771	
DATE	5/22/02	
SAMPLER(S):		
	•	

13.80

A Total Casing and Screen Length (ft.)

B Casing Internal Diameter (in.)

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED									
TANAMETER										
ate										<u></u>
iters	1030	1025	1040	1045	1050	1055				_
ime	-186	-219	-219	-145	-170	-168				_
edox potential	4 -77	0.714	0.711	0.710	0.708	1.70				
onductivity (mohm/cm)	1.43	0.87	0.68	0.68	0.67	0.69				
issolved Oxygen (ppm)	9.72	9.25	9.412	9.39	938	9.39				
H (S.U.s)	15.70	15.68	15.88	15.83	15.77	15.80				
p. (C)	0	0	0	0	0	0				
urbidity (NTUs)	0.47	0.46	0.45	0.45	0.45	0.45			<u>_</u>	
DS	2		50.2	0.02	0.03	0.03				+
alinity Depth to Water (ft)	13.90	14.22	14.70	14.95	15.20	15.35				<u> </u>

FIELD ANALYSIS

	1 (L/L/D) -
ANALYTE	CONCENTRATION
Nitrate (mg/l)	O, 6H mg/L
Nitrite (mg/l)	0.058-1-
Sulfate (mg/l)	26 mgl
Chloride (mgl)	78 mg/L
Alkalinity (mg/l)	108 mg/L
Ferrous Iron (mg/l)	0,13 mg/L

COMMENTS:

al/min 1025 105 Cq. AME 1120 -

Well No. WVA - Aw - MW-38

·

PARAMETER	ACCUMULATED VOLUME PURGED										
Date		<u> </u>	-	1	r						T
Liters											
Time					ļ						<u> </u>
Redox potential				<u> </u>							
Conductivity (mohm/cm)	i										
Dissolved Oxygen (ppm)						· · · · · · · · · · · · · · · · · · ·					
pH (S.U.s)						╂					
р. (С)					<u> </u>					1	+
Turbidity (NTUs)		<u> </u>				-					<u> </u>
TDS		_							<u> </u>		
Salinity					<u> </u>		1			+	+
Depth to Water (ft)					<u> </u>	L	<u> </u>	1			4

FIELD ANALYSIS

	TERE T
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.05 Mg/L
Nitrite (mg/l)	0,141~516
Sulfate (mg/l)	Ongh
Chloride (mgl)	123mg/L
Alkalinity (mg/l)	48mg/L
Ferrous Iron (mg/l)	0,05mg/L

thick 223 rober COMMENTS: 3 AM 25 132 \sim ça

Well No. UVA-AW- ML - 34

PROJECT NAME: WVA Long	g Term Monitoring Plan	
PROJECT LOCATION: Watervliet,	NY	
PROJECT LOCATION PROJECT NUMBER: 0285771		
DATE: 5/2	2/02	
SAMPLER(S):	· / •	
SAMPLER(5).		

A Total Casing and Screen Length (ft.)	
B Casing Internal Diameter (in.)	<u> </u>
C Water Level Below Top of Casing (ft.)	

D Volume of Water in Casing - includes annulus (gal.)

	ACCUMULATED VOLUME PURGED										
PARAMETER											
Date			T								
iters											
Time											
Redox potential											ļ
Conductivity (mohm/cm)											
Dissolved Oxygen (ppm)								•		L	
bH (S.U.s)										·	
p. (C)	<u> </u>									·	
Turbidity (NTUs)	⊦										
IDS	↓		····-								<u> </u>
Salinity											<u> </u>
Depth to Water (ft)					<u>L</u>						

FIELD ANALYSIS

	CONCENTRATION
ANALYTE	CONCENTING
Nitrate (mg/l)	
Nitrite (mg/l)	
Sulfate (mg/l)	
Chloride (mgl)	
Alkalinity (mg/l)	
Ferrous Iron (mg/l)	

1535-

C.

COMMENTS:

MNOS 1500 -VOC 1=c7 1. ₹., Qu. Voc odium owh

		WVA-AW-MW-59
WVA Long Term Monitoring Plan		
Watervliet, NY		
0285771		
5122/02	· · · · · · · · · · · · · · · · · · ·	
tis AT.		
×.		
Screen Length (ft.)		
iameter (in.)	<u> </u>	
w Top of Casing (ft.)		
in Casing - includes annulus (gal.)		
	Watervliet, NY 0285771 37/22/02	0285771 5/22/a2 t.s. AT. Screen Length (ft.) iameter (in.) 4'' w Top of Casing (ft.)

Well No. 400- 835- Con-

PARAMETER			ACCUI	MULAT	ED VOL	UME PL	RGED			
Date	 					·	I.		Г	
Liters							<u> </u>	<u> </u>		<u> </u>
Time	 									
Redox potential	 									<u> </u>
Conductivity (mohm/cm)	 								1	
Dissolved Oxygen (ppm)						<u> </u>	1			<u> </u>
pH (S.U.s)		<u> </u>	<u>.</u>				<u> </u>			<u> </u>
p. (C)								<u> </u>	<u> </u>	
Turbidity (NTUs)	 							I		
TDS										<u> </u>
Salinity	 			<u> </u>		<u> </u>		<u> </u>	<u> </u>	
Depth to Water (ft)				L		1	<u> </u>	<u> </u>	<u>I</u>	<u>L</u> ,

FIELD ANALYSIS							
ANALYTE	CONCENTRATION						
Nitrate (mg/l)							
Nitrite (mg/l)							
Sulfate (mg/l)							
Chloride (mgl)	· · · · · · · · · · · · · · · · · · ·						
Alkalinity (mg/l)							
Ferrous Iron (mg/l)							

COMMENTS:

KANO 1550 i۲ ne: For 20 Bisulfate. ÖN porum <u>loc</u> σ Collect 1620coller Voc 4-c ent be

6.0 8 0.00 0.00 0.00		j v10	nitoi mg	ү т с п т с.		10	-	We	all No. 🔰	<u>36 E M</u>	<u>1-59</u> -	5
B Casing Internal Diameter (in.) $2^{1/2}$ C Water Level Below Top of Casing (ft.) 7.2 D Volume of Water in Casing - includes annulus (gal.) $PARAMETER$ ateatetersedox $parametric85.590090591091.592092.590090591091.5910920$	PROJECT LOCATION: PROJECT NUMBER: DATE:	Watervliet, 285771 572	NY 1/02	onitoring		Тэмр	tius		M	5 M:	s D	
PARAMETER ate ate ate $sters$ $$S 5 900 905 910 915 920 925 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.$	B Casing Internal Dian C Water Level Below	meter (in.) Top of Ca	sing (ft.)	unnulus (g	gal.)	7.2						
ate $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	DADAMETED				ACCUN	NULATE	D VOLU	JME PUI	RGED			
ters855900905910915920925925ime57 -131 $-13r$ -143 167 169 -170 100edox potential57 -181 $-13r$ -143 167 169 -170 100onductivity (mohm/cm)1.86L171.16 1.14 1.15 1.75 1.75 100issolved Oxygen (ppm) 7.35 7.32 7.32 7.37 7.30 7.27 7.30 H (S.U.s) 7.78 7.32 7.32 7.27 7.30 7.27 7.30 p. (C) 11.83 2.62 2.57 2.60 12.60 12.60 urbidity (NTUs) 7999 $L64$ 163 759 6.7 0.7 DS 1.1 0.7 6.7 0.7 6.7 0.7												
ime 83.3 760 763 1.0 1.0 1.70 edox potential 57 -181 -135 -143 167 169 170					<u> </u>	0.5	a),	975				
edox potential S7 -181 1.22 1.02 1.15 </td <td></td> <td>855</td> <td></td> <td></td> <td></td> <td>the state of the s</td> <td>the second se</td> <td></td> <td></td> <td></td> <td></td> <td></td>		855				the state of the s	the second se					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						and the second se		the second se				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Conductivity (mohm/cm)				the second s	the second s		and the second se				
H (S.U.s) 1.73 1.62 1.62 1.60 12.60 12.60 12.60 p. (C) 11.83 12.62 12.60 12.60 12.60 12.60 p. (C) 7999 164 163 159 $14C$ 136 139 urbidity (NTUs) 7999 164 163 759 6.7 6.7 0.7 DS 6.08 0.05 0.05 0.5 0.5 0.5 0.5	Dissolved Oxygen (ppm)				<u> </u>	the second design of the secon	*	7.39				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
urbidity (NTUs) 7747 C67 6.7 6.7 6.7 0.7 DS 1.1 0.7 6.7 0.7 6.7 0.7 0.7												
DS 0.08 0.05 0.05 .05 .05		7997	64				and the second data was a second data w					
6.0 8 0.00 0.00 0.00	TDS	1.1		0.1				1			<u> </u>	_
	Salinity	0.00	7 19	2.21	7.20	7.21		7.15				

FIELD ANALYSIS CONCENTRATION ANALYTE 0.31 mg/L Nitrate (mg/l) 12 07 Nitrite (mg/l) 0 Sulfate (mg/l) 52 Mg Chloride (mgl) 137 mg/2 Alkalinity (mg/l) 12 1,65 Ng Ferrous Iron (mg/l)

Depth to Water (ft)

7.21

7.19

7.

21

7.20

175 allaid Pare 850 COMMENTS: 9 2 40 N 9 our 930 Rug 1042 \boldsymbol{a} Tector Ca

PROJECT LOCATION: PROJECT NUMBER:	0285771 5/21/02	2n	······································	
				·
A Total Casing and	Screen Length (ft.)			
B Casing Internal D	iameter (in.)	2"		
C Water Level Below	w Top of Casing (ft.)	10.2		

Well No. WA-AW-25-MW-5

77

PARAMETER				ACCU	MULAT	ED VOL	UME PU	RGED	
Date				T		1	<u> </u>		 Т
Liters					11//0	1100	1150	1155	
Time	1120	1125	1130	135	1140	1145	1/120	2	
Redox potential	-43	-95	0.626			0.814	0.947		
Conductivity (mohm/cm)	4.58		2.33	the second s	3.08			1.87	
Dissolved Oxygen (ppm)	7.88	7.99		Y.32	7.98	7.76	7.74	7.78	
bH (S.U.s)	15.16	14.81	14.38	14.30	14.52	14.99	14.98		
p. (C) Turbidity (NTUs)	233	208	124	964	734	49.3		46.5	
rds	1.8	1.4	0.4	0.26			6.55		 _
Salinity	0.14	0.1					0.04		
Depth to Water (ft)	10.85	10.65	11.30	11.6	11.55	11.60	11.60	11.60	

F	ELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.03 mg/L
Nitrite (mg/l)	0.118 mg/L
Sulfate (mg/l)	14 mg/L
Chloride (mgl)	103 mg/L
Alkalinity (mg/l)	77 mg/l
Ferrous Iron (mg/l)	0.00 - 2/2

D Volume of Water in Casing - includes annulus (gal.)

@ 2 175 al laid COMMENTS: 120 1135 Scal (DIN C 1230-207

Well No. 83DM-SP-1

PROJECT NAME:WVA Long Term Monitoring PlanPROJECT LOCATION:Watervliet, NYPROJECT NUMBER:0285771DATE:S(21 (02))SAMPLER(S):/<.5.	
A Total Casing and Screen Length (ft.)	
B Casing Internal Diameter (in.)	2
C Water Level Below Top of Casing (ft.)	13 .4
D Volume of Water in Casing - includes annulus (gal.)	

	ACCUMULATED VOLUME PURGED										
PARAMETER											
Date							·				
Liters	1250	1255	13.00	1305	1310	1315		· .			
Time		-261	-275		-290	-295					
Redox potential	1.51	1.61	1.65	1.67	66	1.66					
Conductivity (mohm/cm)	2.42	1.04	0.68	6.64	0.63	041					
Dissolved Oxygen (ppm)	6.99	1.59	1.87	6.87	6.87	6.89				+	
oH (S.U.s)	15.31	14.98	14.87	14.84	15.02	15.01				-	
p. (C)	24.6	34.7	34.8	32.2	30.0	31.0					
Turbidity (NTUs)	1.0	1.0	1.1	1.1	1.1				_		
TDS	0.07			the second s	0.08	0.08					
Salinity Depth to Water (ft)	19.6	14.1	14.5	14.5	14.63	14.65		L	L		

FIELD ANALYSIS CONCENTRATION ANALYTE 0.00 mg/L Nitrate (mg/l) 0000 14 Nitrite (mg/l) Ľ 000 Sulfate (mg/l) Chloride (mgl) 14 3. Alkalinity (mg/l) 10 30 \mathcal{O} Ferrous Iron (mg/l)

5-

1320

COMMENTS:

@ 2 175 ml /min

Ng

Ô

SAAP)

NC

Well No. 86 EM- SP-1A

WVA Long Term Monitoring Plan PROJECT NAME: Watervliet, NY PROJECT LOCATION: PROJECT NUMBER: 0285771 5 102 DATE: 2 SAMPLER(S): ΚS A Total Casing and Screen Length (ft.) B Casing Internal Diameter (in.) C Water Level Below Top of Casing (ft.) 7 D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED										
Date			T		1	1					
Liters								<u> </u>			
Time	1440	1445	1450	1455	1500			· · ·			_
Redox potential	-36	-30	-24	-17	-6	-4					
Conductivity (mohm/cm)	1.74	0.545	0.475	0.451							
Dissolved Oxygen (ppm)	7.84	5.92	5.60		4.74						
pH (S.U.s)	7.61	7.67	7.58			7.45					
ip. (C)	17,36	18.52	15.58	18.59	18.60	18.59					
Turbidity (NTUs)	0	0	0.4	0	0	0	۲				
TDS	1.1	0.84	0.31	0.29	0.29	0.29					
Salinity	0.08	0.02	0.02	.02	.02	0.02					
Depth to Water (ft)	9.73	9.75		9.75	9.75	9.75					

FIELD ANALYSIS

CONCENTRATION
0.43mg/L
0.011 mg/6
Gorge
22mg/L
68 mg/6
0.00 mg/6

195 m1/min 144 COMMENTS: 150 1.5 70

Well No. WVA-Aw-25-MW-1

		a Tarm N	Aonitorin	o Plan							
PROJECT NA	ME: WVA Lon	NY	101110111								
PROJECT LOCATI		, 141									
PROJECT NUME	ATE: 512	1102									
SAMPLEI			AT								
			•								
A Total Casin	g and Screen Leng	;th (ft.)									
B Casing Inter	rnal Diameter (in.))			5.6	с. Л					
	l Below Top of C				3,6						•
D Volume of	Water in Casing -	includes	annulus (j	gal.)	<u></u>	•					
PARAMETER	<u> </u>	-		ACCU	MULATI	ED VOL	UME PU	RGED			
			_				· · · · · · · · · · · · · · · · · · ·				- <u>1</u>
te									<u> </u>	_	
ers	1605	1610	1615	1620	1625	1630	1685		<u> </u>		_
ne	- 20	-57	-62	-73	-75	-75	-77				
lox potential	0.599	6.313	170.0	0.301	0.302	0.302	0.301		L		
nductivity (mohm/cm)	9.02	205	1.5 1	0.87	6.27	0.27	0.37	ļ	<u> </u>		
ssolved Oxygen (ppm)	7.53	16.42	10.46	10.53	10.53	10.51	10.49	ļ	· .		
(S.U.s)	14.68	14 26	14.05	13.43	14.0	14.01	15.76				
p. (C)	9.0	12.6	153.0		225.0	220.0	219.0		<u> </u>		
rbidity (NTUs)	0.38		6.18	0.2		0.2	0.2				
S	0.03		001	0.01	0.07	0.01	0.02		<u> </u>		
linity	6.25		7.15	7.15	7.2	7.15	7.1		<u> </u>		
pth to Water (ft)	(v) = 0	11.10	771.4		<u> </u>						
•	. *										
FIELD -	ANALYSIS										
NALYTE	CONCENTRA	TION		_							
	0.00 mg										
trate (mg/l)	Q. 013Mg/										
trite (mg/l)	15 mgk										
lfate (mg/l)	25 mg/6										
	10 mg/4										
	0.08 -21	IL I									
errous Iron (mg/l)				-							
COMMENTS: 11.05	- Bra	is F	<u>Jorgie</u>	<u></u>	<u>e</u>	<u>~</u>	'> 5	m/	mi	J	
1635	- ENO	For 5	<u></u>	1.5	-					•	
	U										
1637	- Kemores	SAA	م الح	1	5						

Well No. WM-AW-HW-44

PROJECT NAME:	WVA Long Term Monitoring Plan				
PROJECT LOCATION:	Watervliet, NY				<u> </u>
PROJECT NUMBER:	0285771				
	5/20/02				
SAMPLER(S):					
A Total Casing and	Screen Length (ft.)				
B Casing Internal Di	ameter (in.)			·	
C Water Level Below	w Top of Casing (ft.)	4'		•	
D Volume of Water	in Casing - includes annulus (gal.)		· .		

ACCUMULATED VOLUME PURGED PARAMETER 57200 Date Liters 095 0905 0910 0900 Time -24 -24 -23 ~9 Redox potential 1.74 173 2.01 1.72 Conductivity (mohm/cm) . 79 .88 .81 2.37 Dissolved Oxygen (ppm) 7.21 2.28 7.902 7.29 pH (S.U.s) 15.92 5.75 16.00 15.20 .<u>p. (C)</u> 6.0 7.8 6.5 6.8 Turbidity (NTUs) 1.1 1.1 1.1 1.3 TDS .00 -,08 - 08 .09 Salinity 1.00 9.02 4.02 L, 4.02 Depth to Water (ft)

FIELD ANALYSIS						
ANALYTE	CONCENTRATION					
Nitrate (mg/l)	0.30mg/2					
Nitrite (mg/l)	0.007 mg/l					
Sulfate (mg/l)	30mg/c					
Chloride (mgl)	75 mg/L					
Alkalinity (mg/l)	105 mg/16					
Ferrous Iron (mg/l)	0.37th ng/l					

COMMENTS:

1900 IniTINTE luga @ aloo jul/min. 0915 - Collected Sample.

Dlam

Well No. WVA - AW-MW-58

PROJECT NAME: PROJECT LOCATION: PROJECT NUMBER:	0285771		
DATE: SAMPLER(S):	El20/02 Hap HT		
A Total Casing and			
B Casing Internal D C Water Level Belo	piameter (in.) ow Top of Casing (ft.)	10.35	
	in Casing - includes annulus (gal.)		

THEFT		ACCUMULATED VOLUME PURGED									
PARAMETER	-17	20	04								
ate			500	1000	1500	7.000			╂────┤		<u> </u>
ters	126	D	1205	210	1215	1220					
me	89		97	93	11	99			+		
edox potential		v	.52	.44	.43	.43					┟
onductivity (mohm/cm)	5.0		4.8	4.77	4.01	4.79					┟────
issolved Oxygen (ppm)		N	2.61		7.30	7.30		_			+
H (S.U.s)	14,		14.15	14.70	14.08	14.00			<u> </u>		╁───
p. (C)			D	0	0	D				<u> </u>	<u></u>
urbidity (NTUs)		87	.35	.21	.28	. 27					┼──
DS	and the second se	8	.02	02	the second se	.02				<u> </u>	┼──
alinity	the second se	55	1111	11.60	12.10						1

<u>j.</u>	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.56 mg/L 0.009 mg/L
Nitrite (mg/l)	0.009 mg 12
Sulfate (mg/l)	4 mg/L
Chloride (mgl)	45mg96
Alkalinity (mg/l)	Omall
Ferrous Iron (mg/l)	0.01 ml

12

COMMENTS:

fuge a se too culfarte . 1205- facuoso For fore

p- Collegred somple

Well N

HH

Н

		WVA-AW-MW-35
PROJECT NAME: WVA Long Term Monitoring Plan		
PROJECT LOCATION: Watervliet, NY		
PROJECT NUMBER: 0285771		
DATE: 5 20 02		
SAMPLER(S):	·	
·		
·		
A Total Casing and Screen Length (ft.)		
B Casing Internal Diameter (in.)		
	8.26	
C Water Level Below Top of Casing (ft.)	0.40	
D Volume of Water in Casing - includes annulus (gal.)	i	
D volume of water in casing " included and a (gain)		

PARAMETER		ACCUMULATED VOLUME PURGED							
Date	5 20	or						<u></u>	
Liters	0	500	1000	1500	2000				
Time	1400	1405	1410	145	1420				
Redox potential	35	9	-8	-12	-10				
Conductivity (mohm/cm)	2.49	2.64	2.70	270	2.70				
Dissolved Oxygen (ppm)	2.74	1.28	.73	.71	.70				
p <u>H</u> (S.U.s)	7.53			254	1.54				
p. (C)	15.40	15.57	15.54	15.50	1550				
Turbidity (NTUs)	0	0	D	0	Ð				
TDS	1.6	1.7	1.7	1.7	1.7				
Salinity	.12	·12	.13	13	•13	·			
Depth to Water (ft)	8.26	8.34	8.36	8.36	8.36				

FIELD ANALYSIS						
ANALYTE	CONCENTRATION					
Nitrate (mg/l)	0.02 mg/L					
Nitrite (mg/l)	0.030 mall					
Sulfate (mg/l)	ROmale					
Chloride (mgl)	170 M/2					
Alkalinity (mg/l)	129 math					
Ferrous Iron (mg/l)	- 0.14 mall					

COMMENTS:

2 & 100 ul prin - TUT ium. 14 DD Co! roted source. 1 0

-25-MW-6 Well No.

PROJECT NAME:	WVA Long Term Monitoring Plan	—
DRAINCT I OCATION:	Watervliet, NY	-
NDO TROT NUMBER:	0285771	
DATE:	52002	
DATE: SAMPLER(S):	PEN AT	

1.20

A Total Casing and Screen Length (ft.)

B Casing Internal Diameter (in.)

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED									
	6/20	des						· ·	T	
ate		1500	1000	500	2000		_			
iters	1505	1510	1515	1520	1525					
ime	103	98	94	11	90					
edox potential	5.79		5.08	5.88	5.68				_	_
onductivity (mohm/cm)	3,98			1.54	1.49					
Dissolved Oxygen (ppm)	7.66			7.63	7.63					
H (S.U.s)	15.01		15.16	15.22	15.22					<u> </u>
p. (C)	P	D	0	0	•				_	
urbidity (NTUs)	3.7	3.1	3.7	3.7	3.7					
DS	.00	.31	.31	.31	.31			_ _		
alinity Depth to Water (ft)		9.86	10.80	11.0	1.06					

FI	ELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	2.43 mg/L
Nitrite (mg/l)	0.010 mg/L
Sulfate (mg/l)	80-3/2
Chloride (mgl)	363 mg/c
Alkalinity (mg/l)	1319/16
Ferrous Iron (mg/l)	U.D Mall

COMMENTS:

Minte lunge & x100 millain. 1515 - Reduced flow to 2 75 ml/ win.

PROJECT NAME: WVA Long Term Monitorin	ig Plan	WVA-AW-	25-MW-2
PROJECT NAME: WVA Long Term Monitoria	<u> </u>		
PROJECT LOCATION: Watervliet, NY			
PROJECT NUMBER: 0285771			
DATE: 5 17 02		· · ·	
SAMPLER(S): For 02			
· · · ·		,	
A Total Casing and Screen Length (ft.)			
B Casing Internal Diameter (in.)			:
D Cusing more			
C Water Level Below Top of Casing (ft.)	11.45		
C water react perow rob of emma (m)			

Well No. 🌉

ţ

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED							
	510	5117102						
Date	D	500	1000	1500	2000			
Liters	1925	0130	0135	0940	0945		· · ·	
Time Redox potential	-201		-257		-268			<u> </u>
Conductivity (mohm/cm)	1.27	1.22	1.22	1.22	1.21			
Dissolved Oxygen (ppm)	2.24	.67	.54	.52	.53			
pH (S.U.s)	5.79	6.24	626	6.24	4.27			
	15.96	15,87	15.69	15.68	15.68			
Turbidity (NTUs)	5.3	5.8	3.3	3.7	4.4			
TDS	.8	.8	.8	.8	<u>.</u> B ·			
Salinity	.06	.05	.05	.05	.05			
Depth to Water (ft)	11.45	11.96	12.10	12.22	12.30			

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	101
Nitrite (mg/l)	7
Sulfate (mg/l)	11
Chloride (mgl)	107
Alkalinity (mg/l)	13
Ferrous Iron (mg/l)	1 2-09

ect2D

<u>04</u>

COMMENTS:

WARRY SMGUS LIKE SUPPOR 2 100 million

Pane 1

Well No. WVA- AN- 25- MW-3

PROJECT NAME: _	WVA Long Term Monitoring Plan	······································	·····	
PROJECT LOCATION:	Watervliet, NY	·		<u> </u>
PROJECT NUMBER:	0285771			
DATE:	51702	-		
SAMPLER(S):	Par DZ			· · · · · · · · · · · · · · · · · · ·
A Total Casing and S	Screen Length (ft.)			
B Casing Internal Di	iameter (in.)			
		10		
C Water Level Below	w Top of Casing (ft.)	10.21		
D Volume of Water	in Casing - includes annulus (gal.)			

PARAMETER	ACCUMULATED VOLUME PURGED										
	5117	12						-1		T	-T
ate		500	1000	1500	2000			ļ.		<u> </u>	
iters	1015	1020		1030						<u> </u>	_
ime	- 153	-201	-214	-216	-218	12			<u> </u>		
edox potential	1.53	1.41	1.61	1.67	11.68			<u> </u>			
onductivity (mohm/cm)	4.23	.47	.71	.67	65						
bissolved Oxygen (ppm)		7.34	1.31								
H (S.U.s)		_	14.40		14.83						
p. (C)		14.04 23.8			6.6					T	
urbidity (NTUs)		13.0	-		1.1				<u> </u>	1	T
DS	1.0	••9	1.0	110	1.00			1		1	
alinity	.07	.07	.07	08	.08			1		+	1
Depth to Water (ft)	10.21	11.0	102	1 11.02	11.02	1					

F I	ELD ANALYSIS
ANALYTE	CONCENTRATION
litrate (mg/l)	0.02
Nitrite (mg/l)	0.003
Sulfate (mg/l)	80 LIMIT
Chloride (mgl)	11-
Alkalinity (mg/l)	240
Ferrous Iron (mg/l)	1.76

COMMENTS:

1015 - INITIATE Purpe @ 3 100 ml/min. 1040 - Collected Satyple

PROJECT NAME: PROJECT LOCATION: PROJECT NUMBER: DATE: SAMPLER(S):	0285771	1	
A Total Casing and B Casing Internal D			
C Water Level Belo	w Top of Casing (ft.)	4.51	

Well Not SP-8

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	·	ACCUMULATED VOLUME PURGED								
Date	5/17/	or								
Liters	D	500	1000	1500	2000	1500	3000			ļ
Time	1310	1315	1320	1325	1350	1335	1340	· · ·		
Redox potential	32	21	17	14	21	15	14			ļ
Conductivity (mohm/cm)	2.81	2.84	2.84	2.83	2.85	2.84	2.84			
Dissolved Oxygen (ppm)	6.42			1.65	2.10	2.14	2.14			
pH (S.U.s)	7.83	7.56	7.54	1.55	7.56	7.56	7.56			ļ
))) (C)		16.04	15.9	15.84	15.89	16.00	16.11			·····
Turbidity (NTUs)	290	319	2.05	247	13	9.2	1.0			
TDS	1.6	1.8	1.8	1.8	1.8	1.8	1.8	•		
Salinity	.14	0.14	.14	.14	.14	114	.14			
Depth to Water (ft)	4.51	4.57	4.62	4.65	4.65	4.65	4.65			<u> </u>

FIELD ANALYSIS							
ANALYTE	CONCENTRATION						
Nitrate (mg/l)	0.10						
Nitrite (mg/l)	0.000 0.004						
Sulfate (mg/l)	80 limit						
Chloride (mgl)	248						
Alkalinity (mg/l)	157						
Ferrous Iron (mg/l)	0.00						

COMMENTS:

1310 - TUTIATE Purge @ ALIED Rul ain 1340 - collected somple.

	Monitoring Well Purging/S	Sampling Log	Well No.				
		"XNer	wid-dw-ma	-43 ~			
PROJECT NAME:	WVA Long Term Monitoring Plan						
PROJECT LOCATION:	Watervliet, NY						
PROJECT NUMBER:	0285771						
DATE:							
SAMPLER(S):	132 02						
	•						
A Total Casing and	Screen Length (ft.)						
B Casing Internal D	viameter (in.)						

C Water Level Below Top of Casing (ft.)

84.02 4.02

D Volume of Water in Casing - includes annulus (gal.)

DADAMETED	ACCUMULATED VOLUME PURGED					
PARAMETER	5/17/02					
Date	0 500 1000 1500 2000 2500					
iters	1539 158 1545 1555 1600 1605					
ime	-110 -134 -154 -160 -162 -163					
edox potential	1.91 1.64 1.67 1.60 1.66 1.66					
onductivity (mohm/cm)	102 4.00 1.02 0.81 .78 .80					
bissolved Oxygen (ppm)	1.35 7.30 7.27 7.27 7.27 7.27					
H (S.U.s)	16.276 16.65 16.14 16.19 16.37 16.41					
p. (C)	220 7 8.1 5.7 6.4 5.6					
urbidity (NTUs)	$\frac{12}{12} \frac{11}{12} 11$					
TDS	19 08 08 08 08 08					
alinity Depth to Water (ft)	24.02 24.42 \$4.45 4.48 4.51 4.59					

FI	ELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.03
Nitrite (mg/l)	0.013
Sulfate (mg/l)	4
	73
Chloride (mgl)	222
Alkalinity (mg/l)	105
Ferrous Iron (mg/l)	

COMMENTS:

1530- turnaré funge & = 100 mil (min. 1605 - Collected sample.

Well No. 83DHSP-4

PROJECT NAME:	WVA Long Term Monitoring Plar	1		
PROJECT LOCATION:		······································		······································
PROJECT NUMBER:	0285771			
DATE:	5/16/02	TOMEKINS		
SAMPLER(S):	K. Stable, A.	10 Martinos	······	
A Total Casing and	Screen Length (ft.)			
	innutar (in)	2"		
B Casing Internal D	lameter (m.)			
C Water Level Belo	w Top of Casing (ft.)	5.9		•
	· .			
D Volume of Water	in Casing - includes annulus (gal.)	· ·	•	
				·
	ACC	UMULATED VOLUM	ME PURGED	

PARAMETER		<u> </u>		ACCU	MULAI						
Date		1	1	<u> </u>	1	ſ					· · · · · ·
Liters	1000	1005	1010	1015	1220	1025	1030	1035	1040	1045	1050
Time Redox potential	290	186	152	123	92	52	25	7	-4	- 5	- 4
Conductivity (mohm/cm)	2.21	2.20	2.20	2.23	<u>2.24</u>			2.30			
Dissolved Oxygen (ppm)	3.2(1.61	7.46	1.30	1.29	0.93	771	0.92 7.25	0.93 7 21	0.73 7.20	0.92 7.20
pH (S.U.s)	7.49	7.46	11.07	11.05			11.07	11.10	11.11	11.19	
p. (C) Turbidity (NTUs)	17.4	7.2	2.8		4.0	3.9	4.4	4.5	4.7		4.9
TDS	1.4	1.4	1.4	1.4	1.4	1.5	1.5	1.5	1.5	1.5	1.5
Salinity	6.1	0.1	0.1	0.7		0.1	0.1	0.1	0.1	0.1	0.1
Depth to Water (ft)	6.	618	6.20	6.30	6.70	6.90	0.015	12.47		10.77	- 19

FIELD ANALYSIS				
ANALYTE	CONCENTRATION			
Nitrate (mg/l)	0.07			
Nitrite (mg/l)	0,012 mg/L			
Sulfate (mg/l)	80mg/L			
Chloride (mgl)	42 mg/L			
Alkalinity (mg/l)	56 mg/L			
Ferrous Iron (mg/l)	2.84			

~ 150 al / m.w COMMENTS: 99/ **A**) **A** 1051 NC 10-

Well No. 8304-5P-3

PROJECT NAME: WVA Long Term Monitoring Plan PROJECT LOCATION: Watervliet, NY PROJECT NUMBER: 0285771 DATE: 57/16/02 SAMPLER(S): K. Stalle, A. Tor	
SAMPLER(S): K. Stalle, A. Tor	
A Total Casing and Screen Length (ft.)	2"
B Casing Internal Diameter (in.)	7.6
C Water Level Below Top of Casing (ft.)	<u></u>
D Volume of Water in Casing - includes annulus (gal.)	

				ACCUI	MULATI	D VOLU	JME PU	RGED		
PARAMETER										 1
ate		· · · · · · ·			I			1		
iters		845	850	855	900	905	910	915	920	
ime	840	599	532	486	406	376	330	307	305	 <u> </u>
edox potential		the second s		2.02	209	2.10			2.14	 <u></u>
conductivity (mohm/cm)	<u> </u>	2.03	1.76	1.29	6.88	0.11	0.76	0.75	0.75	
Dissolved Oxygen (ppm)	5.77	3.74	7.49		7.35	7.33	7.30	7.30	7.30	 <u> </u>
H (S.U.s)	7.60				10.88	11.0	11,8	11.05	11.07	 <u></u>
p. (C)				708	702	511	760	77/	768	 <u> </u>
Turbidity (NTUs)		685.0	1/00	1.3	1.3	1.4	1.4	1.4	1.4	
TDS	1.3	11.3	1.2	-	0.1	0.1	0.1	0.1	0.1	
Salinity		0.09	0.09	8.70		9.0	9.1	9.1	9.15	
Depth to Water (ft)	7.9	8.05	10.90	0.70	lart.		1			

FIELD ANALYSIS

	FIELD AIMES D
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.15 mg/c
Nitrite (mg/l)	0.011 Mg/2 80 mg/2
Sulfate (mg/l)	
Chloride (mgl)	43 mg/L
Alkalinity (mg/l)	77 mall
Ferrous Iron (mg/l)	0.07 mg/c

Q A 175 ml/min Rate 840-Kιa COMMENTS: 855cinase 920 -0, **16** 6.4 (mayea ANDIN Risin 925. ----Apphu t<u>a</u>

Well No. 92EM-5P-7

MS/MGD WVA Long Term Monitoring Plan PROJECT NAME: Watervliet, NY PROJECT LOCATION: 0285771 PROJECT NUMBER: 5/16/02 . Stable DATE: A. Tompkins. K. SAMPLER(S): A Total Casing and Screen Length (ft.) B Casing Internal Diameter (in.) 6.95 C Water Level Below Top of Casing (ft.) D Volume of Water in Casing - includes annulus (gal.) ACCUMULATED VOLUME PURGED PARAMETER

		1	1				1 1	1		
Liters			11172	11110	1150	1145	1200			
Time	RO		1140	1145	1100	1127	400			
Redox potential	111	93	75	72	23	73	72			
Conductivity (mohm/cm)	2.36	2.42	2.44	2.42	2.42	2.43	2.1/3			
	8.17	4.03	3.39	3.26	3.11	3.04	203			
Dissolved Oxygen (ppm)	8.20				1.01	8.01	8.0			
pH (S.U.s)	16.83	15.73	15.47	15.40	15.42	15.49	15.50	· ·		
р. (C)	51.0	1111	7 25	376	342	3.9	33.9			•
Turbidity (NTUs)		1. /	37.0	1 1	16	10	1.6			
rds	1.5	1.6	1.10	1.6	1.0	1.3			<u> </u>	
Salinity	p.12	0.12	0.12				0.12			
Depth to Water (ft)	7.03	7.02	7.08	7.01	7.06	7.02	7.06			

F	TELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.23-5/6
Nitrite (mg/l)	0.003 mill
Sulfate (mg/l)	ONGIL
Chloride (mgl)	35 mg/L
Alkalinity (mg/l)	143 1976
Ferrous Iron (mg/l)	0.03 mg/6
	(*

Date

150 mllmin **COMMENTS:** .5 ष र 120

Well No. 94 EM - MW - 20

PROJECT NAME: WVA Long Term Monitoring Plan		
PROJECT LOCATION: Watervliet, NY		
PROJECT NUMBER: 0285771		
DATE: 5/30/02		· · · · · · · · · · · · · · · · · · ·
SAMPLER(S): K.S. S.C.		
SAMPLER(D)		
	. •	
A Total Casing and Screen Length (ft.)	/ 11	
B Casing Internal Diameter (in.)	<u>_6</u>	
C Water Level Below Top of Casing (ft.)	6.50	

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER				ACCOL	10	ED VOL				
Date			[-		
iters		1005	1010	1015	1020	1025	1030	1035		
ime	1000	422		1	59	6	-35	-74	-78	
edox potential							3.89			
onductivity (mohm/cm)		1.11		0.95		0.13	0.87	0.88	0.88	
bissolved Oxygen (ppm)	7.49	011	1.01	1	6.12	the second se		6.58	6.59	
H (S.U.s)	4.23			5.93				15.11	15.07	
<u>ир. (C)</u>		1		199	164	146	139	132	31	
urbidity (NTUs)	177.0	14 4	218		3.4	31	2.7	25	2.5	
DS	5.1		9.7	4.0	0.28			0.19	019	
alinity	0.44	0.50	0.40	0.30		7.09	_	7.26	727	
Depth to Water (ft)	6.55	6.67	6.05	6.	17.00					· · ·

FD	ELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	1.88
	3.004
Nitrite (mg/l)	15
Sulfate (mg/l)	993
Chloride (mgl)	64
Alkalinity (mg/l)	> 3.30 LIMIT

955-

1120 -

COMMENTS:

17- 1r

100

2 150 m/1min

Well No. 94-EM-MW-19

PROJECT NAME:	WVA Long Term Monitoring	Plan	 ······································
PROJECT LOCATION:	Watervliet, NY	·····	·····
PROJECT NUMBER:	0285771	·	 ·····
DATE:	05/30/02		
SAMPLER(S):	s.c. K.s.		
A Total Casing and	Screen Length (fl.)		- -
B Casing Internal D	iameter (in.)	4.0	

C Water Level Below Top of Casing (ft.) 5.34

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER				ACCUI	MULATI	ED VOL	UME PURGED		
Date		· · ·	r		1				
Liters	8:37	8:42	8:47	8:52	8:57	9102	9:07		
'ime Redox potential	240	380	212	140	84	52	20		
Conductivity (mohm/cm)	0,938	0.918	0.902	0.895	0.84	0.84	0.894		
Dissolved Oxygen (ppm) hH (S.U.s)	7.53	7.48	7.48	7.48	7.4 1	7.48	7.47		
ир. (C)	13.55	13.27	13.22	13.28		13.21	13.27 969.0	++	
urbidity (NTUs)	999.0 0.40	0.58			0.57	0.17	0.57		
DS	0.4	0.04	0.04	0.04		0.04	0.04		
Depth to Water (ft)	5.51	5.61	5.71	5.B1	5.88	5.96	6.05		

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0
Nitrite (mg/l)	0
Sulfate (mg/l)	30
Chloride (mgl)	164
Alkalinity (mg/l)	167
Ferrous Iron (mg/l)	0.06

:32 @ rate of \$ 175 ml min ? COMMENTS: VER 945-AM

Well No. 94EM - MW - 21

	WVA Long Tern	n Monitorin	g Plan					 	
PROJECT LOCATION:	Watervliet, NY							 	
PROJECT NUMBER:	0285771							 	
DATE:	5/30/02								
SAMPLER(S):	S.C. K.	<u>S.</u>							
A Total Casing and So	reen Length (ft.))	-						-
				11 m ¹¹					
B Casing Internal Dia	meter (in.)		-	<u>4.0"</u>					
•								-	
C Water Level Below	Top of Casing (ft.)	÷	6.24	-				
			~~1 \						
D Volume of Water in	a Casing - includ	es annulus (gar.)						
			ACCID	MULATI		IME PU	RGED		
PARAMETER			AUUU	TOPATE					_
							· · · · · · · · · · · · · · · · · · ·		
		1						1	

14:05 14:10 14:15 14:20 14:25 14:30 14:35

87

15.48 15.69 15.23 15.34 15.29

1.8

0.14

7.14

3 85.0 304.0 221.0 170.0 170.0 172.0

140

1.8

0.14

8.96

1.77 1.05

7.77 7.81

2.67 2.85 2.82 2.82 2.83 2.84

247

1.8

0.14

6.70

417

5.50

7.68

16.97

1.7

0.13

6.44

376.0

70

0.72 0.84 D.83

1.8

0.14

7.35

7.83 7.83 7.84 7.84

62

2.83

0.82

15.24

1.8

0.14

٠,

7.53

64

1.8

0.14

7.41

Salinity Depth to Water (ft)

bate

Liters Time

edox potential

H (S.U.s)

DS.

нр. (C)

Turbidity (NTUs)

Conductivity (mohm/cm)

Dissolved Oxygen (ppm)

FIELD ANALYSIS CONCENTRATION ANALYTE LIMIT 2.93 Nitrate (mg/l) LIMIT 0.375 Nitrite (mg/l) limit 80 Sulfate (mg/l) 28 Chioride (mgl) 146 Alkalinity (mg/l) . 0.15 Ferrous Iron (mg/l)

Began

COMMENTS:

SAMPLE Collector

Pane 1

Well No. WVA-AW-MW-32

PROJECT LOCATION: Wa	tervliet, NY	· · ·	
PROJECT NUMBER: 028	5771		
DATE:	5/15/02		
SAMPLER(S):	K. Stable, A.	TOMPKINS.	
A Total Casing and Scree	n Length (ft.)		
A Total Casing and Scree			
A Total Casing and Scree B Casing Internal Diamet		2'	
B Casing Internal Diamet	er (in.)	2"	·
	er (in.)	2'' 10.13	

PARAMETER		ACCUMULATED VOLUME PURGED							
Date			1	1	r			II	
Liters				1	1.00	1.00	1-7.5-	10714	
Time	1505	1510	1515	1520	1525		1535	1	
Redox potential	148	145	134	134	135	136	136	136	
Conductivity (mohm/cm)	5.49	5.01	4.12	3.69	3.65	3.61	3.43	3.62	
Dissolved Oxygen (ppm)	2.54	1.67	1.37	2.18	2.31	2.42	2.31	240	· · · ·
		7.07	7.07	7.11	7.11	7.1/	7.11	7.11	
nH (S.U.s)		15.01	14.91	14.67	14.65	14.57	14.59	14.59	
ap. (C) Turbidity (NTUs)	0	1.2	0.6	7.8	9.7	9.9	9.0	9.1	
	3.5	3.3	2.6	2.4	2.3	2.3	2.3	2.3	
TDS	0.29	0.27			0.18	0.18	0.18	0.18	
Salinity Depth to Water (ft)	10.0	10.05			10.2	10.2	(0.2	10.25	

FIELD ANALYSIS CONCENTRATION ANALYTE 0.07 mg/L Nitrate (mg/l) Mg/L 145 <u></u>. Nitrite (mg/l) my 46 12 Sulfate (mg/l) 200 mg/6 Chloride (mgl) 138 mg Alkalinity (mg/l) 0. Ferrous Iron (mg/l)

175 ml/mind D X 1500-Urains **COMMENTS:** 15 UD Post 5 AL O ** AND 130-

Well No. 86 EM - SP-18

PROJECT NAME: WVA Long Term Monitorin	g Plan	
PROJECT LOCATION: Watervliet, NY		 · · · · · · · · · · · · · · · · · · ·
PROJECT NUMBER: 02857/1		
DATE: 3//3/04	Tempkins.	
SAMPLER(S): K. Stahle,	I MPRIM.	
	·	
A Total Casing and Screen Length (ft.)		
	2	
B Casing Internal Diameter (in.)	<u> </u>	
· ·	/ 9	
C Water Level Below Top of Casing (ft.)	<u>6.</u>	

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER			••	ACCU	MULATI				
ate		T		I					<u> </u>
iters	940	945	950	955	1000	1005	1010	1015	 <u> </u>
ime	503	462	427	415	374	372		370	 <u> </u>
edox potential		0.595	1		6.587	0.602	0.602	0.603	
conductivity (mohm/cm)	0.674		3.58	-	3.33	-	3.13	3.12	 <u> </u>
issolved Oxygen (ppm)	5.77	7.24	7.25	7.27	7.28	7.29	7.27	7.29	
H (S.U.s)	2.19		14.54	14.71		14.92	14.77	14.50	
ip. (C)	13.91		45.9	18.4		11.9	11.7	11.4	
urbidity (NTUs)	<u> </u>	69.0	.36	:34	.38	.39	.39	.39	
DS	.41	1.37	.01	.02	1	.03	.03	.03	
alinity Depth to Water (ft)	.03	1.25	7.3		7.30		7.25	7.25	

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.07 mg/L
Nitrite (mg/l)	0.098 mg/4
Sulfate (mg/l)	6.0 mg/L
Chloride (mgl)	47 mg/L
Alkalinity (mg/l)	159 mg/L
Ferrous Iron (mg/l)	0.01-9/6
	<i>U</i> '

2 175 ml/min COMMENTS: <u>935-</u> هراه 1015 Ωn 3 1 5.4 a area a pling ß 1105-Amplida

Well No. WVA - Aw - Mw - 412

PROJECT NAME:	WVA Long Term Monitoring Plar		
PROJECT LOCATION:	Watervliet, NY	· · · · · · · · · · · · · · · · · · ·	
PROJECT NUMBER:	0285771		
DATE:	5/15/02		
SAMPLER(S):	X. Stable, A	. Tampkws	A construction of the second
A Total Casing and	Screen Length (ft.)		
		γ'	
B Casing Internal D	iameter (in.)		
C Water Level Belo	w Top of Casing (ft.)	4.>	
C Water Level Belo	w top of Casing (it.)		
D Volume of Water	in Casing - includes annulus (gal.)		
D Columb C2	-		

PARAMETER				ACCUI	MULATI	ED VOL	UME PU	RGED	
Date			1	T	I			l i	
Liters			14.5		113 9	1140	1145	1150	1155
l'ime	1115	1120	÷	1130					
Redox potential	-42	-73	-112	-132		-167	-172		-173
Conductivity (mohm/cm)	1.37	0.95	1.08	1.24	1.38	1.49	1.53	<u>['</u>	1.53
Dissolved Oxygen (ppm)		5.22	3.99	2.93	2.10	1.31	1.19	0.96	
	7.94		7.72	7.71	7.72	7.76	7.73	272	7.73
oH (S.U.s)	13.84	13.93			13.86	13.76	13.03	13.88	13.84
p. (C)	767			186	995		263	7999	> 799
Turbidity (NTUs)				0.8	0.9	1.0	1.0	1.0	20
TDS						.07	.57	.07	.07
Salinity	.05	.04	.05	06	.06		And the second se		
Depth to Water (ft)	5.35	5.95	6.35	6.50	6.60	6.80	K. 80	16.75	6.70

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.01 mg/6
Nitrite (mg/l)	0.203 mg/L
Sulfate (mg/l)	1.0 male
Chloride (mgl)	34 MATC
Alkalinity (mg/l)	152 mg/L
Ferrous Iron (mg/l)	1.85

Qæ Ba 1115-COMMENTS: in. 1120-May <u>Ar</u> Treding t TURBILITY Por water <u>Clear</u> -Necconti 1200-Burging Eno 2gg/ z ---Ring <u>e~</u>[1 Ampling 1220-

Well No.

	86EM-SP-6
PROJECT NAME: WVA Long Term Monitoring Plan	
PROJECT LOCATION: Watervliet, NY	
NDO IECT NIMBER: 0285771	
	Tompkins.
A Total Casing and Screen Length (ft.)	
A Total Casing and Science Lengen (14)	
B Casing Internal Diameter (in.)	
C Water Level Below Top of Casing (ft.)	9.45
D Volume of Water in Casing - includes annulus (gal.)	

TANANG TED	ACCUMULATED VOLUME PURGED										
PARAMETER											
ate		· · · · · · · · · · · · · · · · · · ·		Γ						∔	
ters	1320	1275	1330	1335	1340	1345	1350		ļ		_
me		77	61	57	50	51	50			_	
edox potential	106	3.10			3.10	3.09	3.10				_
onductivity (mohm/cm)		1.55	1.14	1.01	1.03		1.07				
issolved Oxygen (ppm)	6.28	<u> </u>	7.25	7.25	the second s	7.25	7.25				
H (S.U.s)		7.25				13.2)	13-24				
ъ. (C)		13.57	38.5		11.3	11.7	11.6				
urbidity (NTUs)	<u> </u>	67.3	2.0	2.0	2.0	2.0	2.0				·
DS	1.9	2.0	0.15	the second s							
alinity	0.14	6.15	9 10	9 70	19.70						
Depth to Water (ft)	7.33	1.03	1								

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
litrate (mg/l)	0,57 mg/2
Nitrite (mg/l)	0.071 mg/L
Sulfate (mg/l)	80 mg/K
Chloride (mgl)	36 My/L
Alkalinity (mg/l)	186 mg/2
Ferrous Iron (mg/l)	0.01 mg/L
	0.

175 m/ /min Ø Purging 2 1320 COMMENTS: 2 rging 1350 -1.5 a ou'T Prmone ~ Ding C A 1445 AJ 4 **a** ... SAMPLE tote

Well No. WVA - AW-MN- 29

PROJECT NAME:	WVA Long Term Monitoring Plan			
PROJECT LOCATION:	Watervliet, NY			
PROJECT NUMBER:	0285771	· · · · · · · · · · · · · · · · · · ·		
DATE:	5-24-02			
SAMPLER(S):	DEROSFIE	······		
A Total Casing and		·		•
B Casing Internal Di	ameter (in.)	A		
C Water Level Below	w Top of Casing (ft.)	10.44	•	. •
D Volume of Water	in Casing - includes annulus (gal.)			
		· .		
PARAMETER	ACC	UMULATED VOLUMI	E PURGED	

	·	-				1	· · ·	·	
.5	1.0	1.5	2.0						<u> </u>
1200	1205	1210	1215					<u> </u>	ļ
181	53	49	49						ļ
4.38	4.40	4.39	4.31					<u></u>	
3.83	1.09	1.08	1.04						<u> </u>
6.59	6.97	4:81	6.94						<u> </u>
the second se									
	ø	ø	6		·			·	<u> </u>
2.8	2.8	2.8	2.8	•					
0.2	0.2	0.2	0.2						<u> </u>
10.71	10.99	1.12	11.15			·			<u> </u>
· · · · ·	81 4.38 5.83 6.59 18.30 0.8 2.8 0.2	1200 1205 81 53 4.38 4.40 3.83 1.09 6.59 6.97 18.30 18.26 0.8 \$ 2.8 2.8 0.2 0.2	1200 1205 1210 81 53 49 4.38 4.40 4.39 3.83 1.09 1.08 6.59 6.97 6.81 18.30 18.76 18.73 0.8 \$\$\$\$ 2.8 2.8 2.8 0.2 0.2 0.2	1200 1205 1210 1215 1205 1210 1215 1205 1210 1215 1205 1210 1215 1205 1210 1215 1205 1210 1215 1205 1210 1215 1205 1205 1210 1205 1205 1215 1205 1205 1215 1205 1.04 1.04 1205 18.26 18.25 18.30 18.26 18.23 18.30 18.26 18.23 18.26 18.26 18.24 0.8 18.26 18.23 2.8 2.8 2.8 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$12 \circ \circ$ 81 53 49 49 43 4.38 4.40 4.39 4.33 3.83 1.97 1.08 1.04 5.83 1.97 1.08 1.04 6.59 6.97 4.81 6.94 18.30 18.76 18.73 18.74 0.8 8 8 6 2.8 2.8 2.8 2.8 2.8 0.72 0.72 0.72 0.72 0.72	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.55
Nitrite (mg/l)	0.006
Sulfate (mg/l)	80.1
Chloride (mgl)	955.0
Alkalinity (mg/l)	116.0
Ferrous Iron (mg/l)	0.00

ת1

12

B

COMMENTS:

1200 Start

nal a

Well No.	WVA-AW-B5	- MN-4	+

PROJECT NAME:	WVA Long Term Monitoring Plan
PROJECT LOCATION:	Watervliet, NY
PROJECT NUMBER:	0285771
DATE:	5-24-02
SAMPLER(S):	DEKOSKIE

12.15

A Total Casing and Screen Length (ft.)

B Casing Internal Diameter (in.)

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

		ACCUMULATED VOLUME PURGED									
PARAMETER											
ate 5-24-02			1.5	20							
iters	-5			0950							
ime	09350	990			┉┼┈┈╌╴┼╴						
	129	03	104	103							
edox potential	1.75	1.63	1.63	1.63							
onductivity (mohm/cm)	2.65	0.69	0.63	0.62							
issolved Oxygen (ppm)		129	7.27	7.25				<u></u>			
H (S.U.s)	6.97	n 14		17.62				<u></u>			
ар. <u>(C)</u>			~	Ø					ļ		
urbidity (NTUs)		P	<u> </u>	1.0	- I .						
DS	1.1	1.0	1.0								
	0.1		0.1	0.1							
alinity Depth to Water (ft)	12.30 (2.35	12.39	12.42		<u> </u>			<u> </u>		

0930

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	72.43
Nitrite (mg/l)	0.016
Sulfate (mg/l)	().0
Chloride (mgl)	293.0
Alkalinity (mg/l)	10
Ferrous Iron (mg/l)	0.00

COMMENTS:

Hart and Q=100. Me/min

MSD

MS

A1.50

Page 1

MW. Z Well No.

PROJECT NAME:	WVA Long Term Monitoring Plan	
PROJECT LOCATION:	Watervliet, NY	÷
PROJECT NUMBER:	0285771	
DATE:	5-21-02	
SAMPLER(S):	Dekoskie, Pabileau	

A Total Casing and Screen Length (ft.)

B Casing Internal Diameter (in.)

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER		ACCUMULATED VOLUME PURGED							
Date 5-21-02								- I - T	
Liters	Þ							4	
Time	1325	1330	1335	DRY					
Redox potential	'41	105	110	<u> </u>					
Conductivity (mohm/cm)	4.60	.430	,40						
Dissolved Oxygen (ppm)	7.99	5.75	4.26						
pH (S.U.s)	5.95		5.39					_	
. (C)	15.3	16.6	168						
Turbidity (NTUs)	860 8,60		1000						
TDS	.29	.27	2					┥	
Salinity	0.0	0.0	0						
Depth to Water (ft)	1.45	7.45	1.45						

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	2.43 4mH
Nitrite (mg/l)	· 08
Sulfate (mg/l)	1, BO LIMIT
Chloride (mgl)	87
Alkalinity (mg/l)	106
Ferrous Iron (mg/l)	. 8

ати »

(b

6

1.681

\$

0400

2820

COMMENTS:

100 ml . Als W=

90

۲M

s.

Not

VOLGI GARG, NOP.

earch vo

Well No. WUA-Aw-MW-30

PROJECT NAME: WVA Long Term Monitoring	MS, MSD
PROJECT LOCATION: Watervliet, NY	
PROJECT NUMBER: 0285771	
DATE: 5/28/02	
$SAMPLER(S): \underbrace{K.S.}_{S.C}$	
A Total Casing and Screen Length (ft.)	
B Casing Internal Diameter (in.)	2
C Water Level Below Top of Casing (ft.)	<u>(e.75</u>

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER		ACCUMULATED VOLUME PURGED								
Date				<u> </u>						
iters	9:45	7:53	9:58	10:03	10108	10:13	10:18	10:23	10:28	
Time	337	244	235	218	176	149	136	132	122	
edox potential	7.94				7.12	4-38	6.01	6.13	4.35	
onductivity (mohm/cm)	2.49				-	1.33	1.68		1.52	
Dissolved Oxygen (ppm)	7.29	7.13					7.10	7.09	7.05	
H (S.U.s)	14.14			15.37			15.56	15.63	and the second design of the	
.p. (C)	73.0	33.0			35.5		37.6	39.6	41.0	
Furbidity (NTUs)	4.9		4.6	4.6	4.4	3.9	3.0	3.9	4.0	
DS			0.74	0.29	0.33	0.73	0.32		0.34	
alinity Depth to Water (ft)	7.54		7.91	2.02	8.09	8.20	8.32	8.47	8.54	

ETEL D ANALYSIS

	FIELD ANALISIS
ANALYTE	CONCENTRATION
Vitrate (mg/l)	>2.43 dimit
Nitrite (mg/l)	0.047
Sulfate (mg/l)	280 Zimit
Chloride (mgl)	824
Alkalinity (mg/l)	104
Ferrous Iron (mg/l)	0

rate of purge = 130 ml/min. 43 COMMENTS: Beg 50 60

Well No. WVA-Aw-MW-23

PROJECT NAME: WVA Long Term Monitoring Plan	
PROJECT LOCATION: Watervliet, NY	
PROJECT NUMBER: 0285771	
DATE: 5/28/02	
SAMPLER(S): KS. S.C.	
	·
	in st
A Total Casing and Screen Length (ft.)	12.5
	\sim 1'
B Casing Internal Diameter (in.)	<u>_2''</u>
C Water Level Below Top of Casing (ft.)	7.73
D Volume of Water in Casing - includes annulus (gal.)	

PARAMETER		ACCUMULATED VOLUME PURGED							
Date				1	1			<u> </u>	
Liters			12.00	1305	1310	1315	1320		
Time	I	1255							
Redox potential	593	258	112	157	126	139	135		
Conductivity (mohm/cm)	0.261	0.247	0.237		5,229	<u>۲.278</u>	6.227		
	6.74	3.82	2.12	2.51	2.12	1.91	1.81		
Dissolved Oxygen (ppm)	7.89	7.49		7.34	7.30	7.31	7.30		
pH (S.U.s)	19.01	17.52		17.25	12.36	17.56	17.60		
<u>ир. (C)</u>	80.0	f	84.1	92.4	83.7	82.1	\$2.5		
Turbidity (NTUs)	0.17		0.15	0.15	0.15	0.15	0.15		
TDS	6.01	-	10.0	0.01	0.01	0.01	0,01		
Salinity Depth to Water (ft)	8.2	8.35	1.35	8.45	8.55	8.55	8.60		

F	IELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.51
Nitrite (mg/l)	0.036
Sulfate (mg/l)	29
Chloride (mgl)	0.0
Alkalinity (mg/l)	## 49
Ferrous Iron (mg/l)	0.0

1430

COMMENTS:

1.5 qa -ene B-a <u>Amplian</u>

Da 175 m/lain

Well No. WVA-Aw-MW-24

PROJECT NAME:	VA Long Term Monitoring Plan	<u> </u>		
PROJECT LOCATION: W	/atervliet, NY			
PROJECT NUMBER: 0	285771			
DATE:	5/28/02			
SAMPLER(S):	K.S. , S.C.			
	•			
A Total Casing and Scr	een Length (ft.)			
		つ ″		
B Casing Internal Diam	eter (in.)	<u> </u>		
		3.4	NTP	
C Water Level Below 7	op of Casing (ft.)	<u> </u>		•
D Volume of Water in (Casing - includes annulus (gal.)		-	

PARAMETER	ACCUMULATED VOLUME PURGED							
ate				Ī		· .		T
iters Fime	1955 -			- 1525				<u> </u>
edox potential onductivity (mohm/cm)								<u> </u>
Dissolved Oxygen (ppm)								
H (S.U.s) pp. (C)								
urbidity (NTUs) DS	-							
alinity Depth to Water (ft)	B P							

FIELD ANALYSIS

ANALYTE	CONCENTRATION
litrate (mg/l)	6.13
Nitrite (mg/l)	0
Sulfate (mg/l)	0
Chloride (mgl)	61
Alkalinity (mg/l)	375
Ferrous Iron (mg/l)	0.35

low 1455 ENC COMMENTS: TAKAN Øi \ Field Well End ••• Ta 100 A 🖝 1525-Purs e Sc. HAN 76-20 SVOC ster For

1 (* 1) WVA Long Term Monitoring Plan PROJECT NAME: Watervliet, NY PROJECT LOCATION: 0285771 PROJECT NUMBER: 5/24/02 DATE: <u>K.S.</u> SAMPLER(S): S.c A Total Casing and Screen Length (ft.) 6.0 B Casing Internal Diameter (in.) 8.57 C Water Level Below Top of Casing (ft.) D Volume of Water in Casing - includes annulus (gal.)

Well No. WUA-835- Pw-1

				ACCUN	IULATE	D VOLU	ME PU	RGED			
PARAMETER	5/24/02										
ate		<u> </u>									
ters	1320	1325	1330	1335	1340	1345					<u> </u>
me	-237	-272	-283	- 291	-296	-301	• •		<u> </u>		
dox potential		1.87	1.86	1.85	1.85	1.84			<u> </u>		
nductivity (mohm/cm)	0.85	0.70	0.48	0.67	0.66	0.66					
ssolved Oxygen (ppm)		7.97	7.97	7.97	7.94	7.96		 		+	
(S.U.s) p. (C)	17.48	17.30	17.36	17.30	17.42	17.43		<u> </u>			+
p. (C) rbidity (NTUs)	> 119	42.0	38.6	39.7	39.3	40.1	, .			-	
DS			1.2	1.2		1.2				1	1
linity	0.09	0.09	0.09	0.09	0.04	9.52		1			
epth to Water (ft)	8.84	4.00	9.16	M.27	7.91			_L			

FIELD ANALYSIS									
NALYTE	CONCENTRATION								
Nitrate (mg/l)	0.05								
Nitrite (mg/l)	0.013								
Sulfate (mg/l)	2								
Chloride (mgl)	83								
Alkalinity (mg/l)	289								
Ferrous Iron (mg/l)	6								

Т

150 4 @ 1310 FRR COMMENTS: DRI BA 1CA 1 MA Leur 325 CL. readian norm Turbidit ending 6. ... QVY Visible 5

DDO IECT NA ME.	WVA Long Term Monitoring Plan		MMA
	Watervliet, NY		
PROJECT LOCATION:	0285771		······································
PROJECT NUMBER: _ DATE:	3-124102		
SAMPLER(S):	K.S. S.S.		
· · ·			
A Total Casing and S	creen Length (ft.)		
B Casing Internal Di	ameter (in.)	<u>4"</u>	
C Water Level Below	v Top of Casing (ft.)	2.6	- -

Well No. 93EM - RW-2

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED										
Date		- 1		1	F		1		1		
Liters			ļ			A a a	0.00				
Time	<u>955</u>	900	905	910	915	920	925	930	935		
Redox potential	352	255	11	140	31		-46		-105		
Conductivity (mohm/cm)	1.33	0.99	0.729	0.706	0.700	0.696	0.695	0.694	0.694		
Dissolved Oxygen (ppm)	6.06	1.98	0.95	0.75	17.0	0.68	0.68	0.67	0.66		
oH (S.U.s)	7.77	7.62	7.55	7.53	7.54	7.54	7.54	7.53	7.53		
	13.99	13.38	13.00	12.93	12.8B	12.88	12.88	12.91	12.90		
p. (C) Turbidity (NTUs)	17.4		20.09				19.8				
TDS	6.8	0.6			0.45		0.44	0.44	0.44		
Salinity	0.06	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03		
Depth to Water (ft)	12.09		12.35								

IELD ANALYSIS
CONCENTRATION
0.03
0.004
33
116
156
0.26

85

0

COMMENTS:

75 m laid a 0

Well No. WVA-Aw-35-MW-8

PROJECT NAME: WVA Long Term Monitoring Plan	
PROJECT LOCATION: Watervliet, NY	
PROJECT NUMBER: 0285771	
DATE: 5/29/02	
SAMPLER(S): S.C. K.S.	
A Total Casing and Screen Length (ft.)	·
B Casing Internal Diameter (in.)	4.0
C Water Level Below Top of Casing (ft.)	7.45
D Volume of Water in Casing - includes annulus (gal.)	

	THE NEW YORK AND A STREET										
PARAMETER	ACCUMULATED VOLUME PURGED										
ate			,			•					
iters	1120	1175	130	1135	1140	1145	1150	1155			
Time	189	477	-21	-44	- 56	-53	-50	-51			
edox potential				3.35	2.35	3.34	3.35	3.36			
onductivity (mohm/cm)	and the second se			0.73		0.72	0.72	0.73			
Dissolved Oxygen (ppm)	8.32	a 29		8.29		the second s		8.30			
H (S.U.s)	17.31	14.53	1.37	16.35	16.33				· ·		
p. (C)			98.5	91.9	93.1	95.4	227	227			
furbidity (NTUs)			2.1	2.1		7.2	2.1	2.1			
DS				0.17		0.17	0.17	0.17			
alinity	<i>D.16</i> 7.70	8.0P	8.29	8.60				9.45			
Depth to Water (ft)	11.10										

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
litrate (mg/l)	0.03
Nitrite (mg/l)	0.004
Sulfate (mg/l)	8
Chloride (mgl)	476
Alkalinity (mg/l)	68
Ferrous Iron (mg/l)	

MI

Connered

2nd

SCAL

COMMENTS: Bu 730

18. Initiated purge @ 175 ml/min

WVA Long Term Monitoring Plan PROJECT NAME: PROJECT LOCATION: Watervliet, NY 0285771 PROJECT NUMBER: 52 an DATE: SAMPLER(S):

Well No. WM-AW-MW-22

- A Total Casing and Screen Length (ft.)
- B Casing Internal Diameter (in.)

C Water Level Below Top of Casing (ft.)

8,04

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED										
Date 5-22-02							. <u></u>			1	1
Liters							 	<u> </u>	<u> </u>		
Time	405	1410	1415	1420	14-25		1				
Redox potential	108	96	86	85	<u>B1</u>			ļ			<u> </u>
Conductivity (mohm/cm)	2.05	208	2.08	2.07	2.06						<u> </u>
Dissolved Oxygen (ppm)	3.48	1.25	1.22	1.23	1.21			ļ	<u> </u>		<u> </u>
pH (S.U.s)	6.71	16.71	6.72		6.73				<u> </u>	_	
ıр. (C)	13.82	13.80	13.20	13.20	13.20						
Turbidity (NTUs)	1.0	(.D	1,0	1.0	(, D		<u> </u>		ļ		
TDS	1.3	1.3	1.3	1.3	1.3						ļ
Salinity	0.10	0,10	0.1	0.1	. /		ļ	ļ			
Depth to Water (ft)	8.30	8.56	B.60	8.60	8.60					<u> </u>	<u> </u>

FIELD ANALYSIS									
ANALYTE	CONCENTRATION								
Nitrate (mg/l)	. 43								
Nitrite (mg/l)	,019								
Sulfate (mg/l)	54								
Chloride (mgl)	354								
Alkalinity (mg/l)	188								
Ferrous Iron (mg/l)	.02								

142

COMMENTS:

mal OD W

Well No. WVA-AW-MW- 41

PROJECT LOCATION:	WVA Long Watervliet, 0285771	NY	onitoring	Plan					 	
A Total Casing and S	creen Leng	th (fl.)		-				•		
B Casing Internal Dia	meter (in.)			•		,				
C Water Level Below				4	3.75	ſ				
D Volume of Water i	n Casing - i	includes a	innulus (g	al.)			,	•		
	. * .				Í				 	
PARAMETER				ACCUN	IULATE	D VOLU	ME PU	KGLD	 	
Date 5-22-02									 [
iters	D.S	1.0	1.5	2.0	2.5				 	
Time	1505	1510		1520					 · · · · · · · · · · · · · · · · · · ·	
kedox potential	70	39	16	10	16				 İ	· · · ·
Conductivity (mohm/cm)	1.32	1.33	1.28	1,32	1.31				 	
Dissolved Oxygen (ppm)	3.65	0.62	0.60	0.59	4				<u> </u>	†
H (S.U.s)	6.07	6.36	654	6.59	6,61					
мр. (С)	15:87		<u>14.88</u>	14.75	14.71				1	
Turbidity (NTUs)	ø	ø N R	p D Q	0.8	0.8					
	1 . 14	1 7 34							 And in case of the local division of the loc	

0.1

Oil

862

0.1

8.62

o i

8.41

0.1

8.65 8.68

FIELD ANALYSIS CONCENTRATION ANALYTE 1 Nitrate (mg/l) Nitrite (mg/l) Ø 56 Sulfate (mg/l) 194 Chloride (mgl) 140 Alkalinity (mg/l) 6 Ferrous Iron (mg/l)

COMMENTS:

Time

TDS

Salinity

Depth to Water (ft)

1977 Payo Q. 2100 N / 2 Sun. 500- TAN 1530 -

Well No. 93EM - SP-13

PROJECT NAME: WVA Long Term Monitoring Plan	······································
PROJECT LOCATION: Watervliet, NY	
PROJECT NUMBER: 0285771	
DATE: 5 23 02	
SAMPLER(S): PSP TD	
A Total Casing and Screen Length (ft.)	
A Total Casing and Sciech Lengur (in)	
I Discuster (in)	
B Casing Internal Diameter (in.)	
$\frac{1}{8.60} \text{ DTP} = 8.25$	

8.60

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

ACCUMULATED VOLUME PURGED									
.5	1	1.725							
1515	1520	1532							
-149	-153	-156						_ 	- <u> </u>
.627	.623	.629	.624						
4.3B	5.35	1.01	. 97				_		
1.98	5.35	5.52	5.61	5.61				_	
16.94	16.01	15.9B	15.83	15.18					
ø	ø	ø	ø	Ø				_	_
0.41	,40	0.40	0.40		·				<u> </u>
0.0	0.0	0.0	0.0	0.0					
							<u> </u>	ļ	
	-149 .627 4.38 1.98 16.94 Ø 0.41	-149 -153 .627 .623 4.38 5.35 1.98 5.35 16.94 16.01 Ø Ø 0.41 .40	1515 1520 1530 -149 -153 -156 .627 .623 .629 4.38 5.35 1.01 1.98 5.35 5.52 16.94 16.01 15.98 Ø Ø Ø 0.41 40 0.40 0.0 0.0 0.0	1515 1520 1530 1530 -149 -153 -156 -158 .627 .623 .629 .624 4.38 5.35 1.01 .97 1.98 5.35 5.52 5.61 16.94 16.01 15.98 15.83 Ø Ø Ø 0.41 .40 0.40 0.40 0.0 0.0 0.0 0.0	1515 1520 1532 1530 1535 -149 -153 -156 -158 -159 .627 .623 .629 .624 .624 4.38 5.35 1.01 .97 .98 1.98 5.35 5.52 5.61 5.61 16.94 16.01 15.98 15.83 (5.8 Ø Ø Ø Ø 0.41 40 0.40 0.40 0.40 0.0 0.0 0.0 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

0,0.

FIELD ANALYSIS							
ANALYTE	CONCENTRATION						
Nitrate (mg/l)	.03						
Nitrite (mg/l)	.005						
Sulfate (mg/l)	8						
Chloride (mgl)	83						
Alkalinity (mg/l)	164						
Ferrous Iron (mg/l)	, 0(

COMMENTS:

June = 100 wellaum Comple

Well No. WA- AW-MW-27

PROJECT NAM		+ NY		g Plan							
PROJECT LOCATIO	and the second se	öl, 141									
PROJECT NUMBE	TE: 723	100.									
SAMPLER(
SAIVIPLEN	"-m-	50-									
A Total Casing a	and Screen Len	igth (ft.)									
B Casing Interna	al Diameter (in)						Λ.			
B Casing Interna		.,			N 11	100	0-6	for p)			
C Water Level I	Below Top of C	asing (ft.))		4.11	(70)	r = 1	1.47		•	•
D Volume of W	oter in Casing	- includes	annulus (j	gal.)							
D Voluino oz	ater in cusing										
	ater in cusing										
D volume of a	attr in Outing					· .					
• •						D VOLI	IME PU	RGED			
PARAMETER					MULATE	D VOLU	UME PU	RGED	- 		
PARAMETER	9 23	pr		ACCU		D VOLU	UME PU	RGED	-		
PARAMETER	9 23	97	1.2		2.1	D VOLU	UME PU	RGED			
PARAMETER e	9 23	pr		ACCU	2.1	D VOLU	J <mark>ME PU</mark>	RGED			· · ·
PARAMETER e ITS IC	9 23	97	1.2	ACCU	2.1 1000 -67	D VOLU	UME PU	RGED			
PARAMETER e rrs le lox potential	9 23 ,4- 09 40	•8 •8 •945 -64 1,73	1.2 095» -65 1.65	ACCUI 1.6 0955 -66 1.64	2.1 1000 -67 1.67	D VOLU	UME PU	RGED			
PARAMETER e ms ne lox potential nductivity (mohm/cm)	9 23 ,4- 09 40	•8 6945 -64 1.73 1.32	1.2 095» -65 1.65 209	1.6 0955 -66 1.64 2.00	2.1 1000 -67 1.67 2.02	DVOLU	JME PU	RGED			
PARAMETER e ers ne dox potential nductivity (mohm/cm) solved Oxygen (ppm)	9 23 14 09 40 -65 1.96	1,73 5.79	1.2 095» -65 1.65 1.09 6.30	1.6 0955 -66 1.64 2.00 6.29	2.1 1000 -67 1.67 2.02 10:31	D VOLU	UME PU				
PARAMETER e ms ne lox potential nductivity (mohm/cm) solved Oxygen (ppm) (S.U.s)	9 23 ,4 09 40 -65 1.96 1.39	•8 •8 -64 1.73 1.32 5.79 •13.99	1.2 095» -65 1.65 209	ACCUI 1.6 0955 -66 1.64 2.00 6.29 14,20	2.1 1000 -67 1.67 2.02 6.31 14.22	DVOLU					
PARAMETER e ms ne lox potential nductivity (mohm/cm) solved Oxygen (ppm) (S.U.s) mp. (C)	9 23 74 09 40 -65 1.96 1.39 5.55	B2 -8 -64 1.73 1.32 5.79	1.2 095» -65 1.65 1.65 1.09 6.30 14.22 Ø	1.6 0955 -66 1.64 2.00 6.29	2.1 1000 -67 1.67 2.02 6.31 14.22 0						
PARAMETER e ers ne dox potential nductivity (mohm/cm) solved Oxygen (ppm) (S.U.s) mp. (C) bidity (NTUs)	9 23 74 09 40 -65 1.96 1.39 5.55	1.73 1.73 1.73 1.32 5.79 13.99 2.12 1.1	1.2 095» -65 1.65 1.09 6.30 14.22 0 1.0	ACCUI 1.6 0955 -66 1.64 2.00 6.29 14,20	2.1 1000 -67 1.67 2.02 6.31 14.22 8 1.1						
PARAMETER e ms ne lox potential nductivity (mohm/cm) solved Oxygen (ppm) (S.U.s) mp. (C) bidity (NTUs) S	9 23 ,4 09 40 -65 1.96 1.39 5.55 14.70 Ø	€2 •8 •945 -64 1.73 1.32 5.79 •13.99 2.1 1.1 0.1	1.2 095, -65 1.65 1.65 1.65 1.09 6.30 14.22 0.1	ACCUI 1.6 0955 -66 1.64 2.00 6.29 14.20 8 1.1 0.1	2.1 1000 -67 1.67 2.02 6:31 14.22 0 1.1 0.1	· · · · · · · · · · · · · · · · · · ·					
PARAMETER e ms le lox potential inductivity (mohm/cm) solved Oxygen (ppm) (S.U.s) np. (C) bidity (NTUs)	9 23 14 09 40 -65 1.96 1.39 5.55 14.70 Ø 1.2	1.73 1.73 1.73 1.32 5.79 13.99 2.12 1.1	1.2 095, -65 1.65 1.65 1.65 1.09 6.30 14.22 0.1	ACCUI 1.6 0.955 -66 1.64 2.00 6.29 14.20 8 1.1	2.1 1000 -67 1.67 2.02 6:31 14.22 0 1.1 0.1	· · · · · · · · · · · · · · · · · · ·					

FIELD ANALISIS								
ANALYTE	CONCENTRATION							
litrate (mg/l)	. 21							
Nitrite (mg/l)	. 60]							
Sulfate (mg/l)								
Chloride (mgl)	3.8							
Alkalinity (mg/l)	192							
Ferrous Iron (mg/l)	1.72							

0930-I

1000

COMMENTS:

2 100 wel win . volo

85 400

Well No. WVA-AW-135-MW-2

PROJECT NAME:	WVA Long Term Monitoring	g Plan			
PROJECT LOCATION:	Watervliet, NY	-	······································		
PROJECT NUMBER:	0285771				
	6 -21 -62	· · · · · · · · · · · · · · · · · · ·			
SAMPLER(S):	DEKOSKIE, K	A loide a V			
A Total Casing and	Screen Length (ft.)				
B Casing Internal D	iameter (m.)	-	,		
C Water Level Belo	w Top of Casing (ft.)	4.20		•	

D Volume of Water in Casing - includes annulus (gal.)

		ACCUMULATED VOLUME PURGED								
								<u> </u>		
.5	11	1/10	1415	1420	1415	14-30	A35	1440		
	1405	1910	20		21	28	27	26		
- 4-1					. 794	.896	.890	.895		
					4.90		4.80	4.81		
			the second se			5.22	5.21	5.2		
11 27						14.59	14,50	14,40		
	999	999		404-	172	170	168	163		
		0.29		46	:51	.55	155	155		
	<u> </u>		the second s	0.0	0.0	0,0	0	0		
1	610	6.15	6.25	6,25	6.25	625	6.25	6.25		
	1400 49 1,51 5.23 6,44 16,37 606 1.0 0.1	1400 1405 49.23 1.51 .629 5.23 6.44 4.31 16.37 14.62 606 949 1.0 0.40 0.1 0.0	1400 1405 1410 49 23 24 1,51 .629 ,616 5.23 5.39 6,44 4.31 4.33 16,37 14.62 14.66 606 949 949 1.0 0.40 0.39 0.1 0.0 0.0	1400 1405 1410 1415 49 23 24 32 1,51 .629 .616 .662 5.23 5.39 4.87 6.44 4.31 4.33 4.93 16,37 14.62 14.66 14.63 606 949 999 766 1.0 0.40 0.39 .42 0.1 0.0 0.0 0.0	1400 1405 1410 1415 1420 4.9. 23 24 32 30 1.51 .629 .616 .662 .714 5.23 5.39 4.87 4.85 6.44 4.31 4.33 4.93 5.31 16.37 14.62 14.66 14.63 14.93 606 999 999 766 409 1.0 0.40 0.39 .42 .46 0.1 0.0 0.0 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

	FIELD ANALYSIS					
ANALYTE CONCENTRATION						
Nitrate (mg/l)	1.26					
Nitrite (mg/l)	.065					
Sulfate (mg/l)	9					
Chloride (mgl)	233					
Alkalinity (mg/l)	58					
Ferrous Iron (mg/l)	1.01					

COMMENTS:

Juge @ 2 100 ml/ain 1400 - Tui

Well No. WH-AW-MW-26

PROJECT NAME:	WVA Long Term Monitoring Plan			
PROJECT LOCATION:	Watervliet, NY			
PROJECT NUMBER:	0285771			
DATE:	7/22/02			
SAMPLER(S):	024		·····	
	TOD .			
	•			
A Total Casing and	Screen Length (ft.)			
B Casing Internal D	iameter (in.)			
		10.65		
C Water Level Belo	w Top of Casing (ft.)	Vie		
D Volume of Water	in Casing - includes annulus (gal.)			

				ACCU	JULATE	D VOLUM	E PURGE	D	
PARAMETER				1000.					
ate		1	1.5	2	25		· ·		
ters	.5			1145	1150			-	
ime	130	1135	1140		58				
edox potential	76	270	60		2.40				
onductivity (mohm/cm)	2:4	2,39	1.46	100	1,43				
Dissolved Oxygen (ppm)	3.11	2.02	5.40	540	5.39				
H (S.U.s)	6.50	6.56		13,52					
лр. (C)	<u> </u>	╉┸┻╌╍╍	12,51	13,50	5.7.				
urbidity (NTUs)	1.5	1.0	1.5	1.5	1.5	·			
DS	0.1	0.1	0.1	0,1	0.1				
alinity		+	<u> </u>	+					
Depth to Water (ft)			L	<u> </u>	L				

FIELD ANALYSIS

	T. L.	
NALYTE	CONCENTRATION	
litrate (mg/l)	.28	
Nitrite (mg/l)	.020	
Sulfate (mg/l)	6	
Chloride (mgl)	550	
Alkalinity (mg/l)	13	
Ferrous Iron (mg/l)	17	

COMMENTS:

- INTIATS Purpe @ 2100 Wel - collected Gauge plus duplicate ST

. M

Well No. WVA-Aw-MW-BID-119

PROJECT NAME:	WVA Long Term Monitor	ring Plan		
PROJECT LOCATION:	Watervliet, NY			
PROJECT NUMBER:	0285771			
DATE	5/29/02			
SAMPLER(S):	S.C. K.S.			
A Total Casing and	Screen Length (ft.)			
B Casing Internal Di	iameter (in.)	8.0	ŧ.	
C Water Level Below	w Top of Casing (ft.)	(.91		• .

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED									
Date	5/2	7/02					-			
Liters										
Time	830	8:35	8:40	8:45	8:50	8:55	9:00	9:05		
Redox potential	327	214	123	דו	-50	- 19	-100	-114		
Conductivity (mohm/cm)	1.36	1.37	1.37	1.37	1.37	1.37	1.37	1.37		
Dissolved Oxygen (ppm)	7.21			6.38		5.58	5.19	4.83		
	7.56	7.57	7.58	1.57	7.59	7.59	1.40		<u> </u>	
pH (S.U.s)	20.81	20.81	20.82	20.82	20.83	20.83	20.84	20.83		
p. (C)	999	38.7	38.2	37.7	37.2	37.1	37.0	36.8		
Turbidity (NTUs)	0.9	0.9		0.9	0.9	0.9	0.9	0.9		
TDS	0.04		0.04	0.04	0.04	0.04	0.04	0.04		
Salinity Depth to Water (ft)	6.91	6.91	6.91	6.91	6.91	6.91	6.11	4.91		

FIELD ANALYSIS							
ANALYTE	CONCENTRATION						
Nitrate (mg/l)	0						
Nitrite (mg/l)	0.002						
Sulfate (mg/l)	0						
Chloride (mgl)	20						
Alkalinity (mg/l)	548						
Ferrous Iron (mg/l)	0.57						

= 175 ml/nin Purge ŧe 10 COMMENTS: Began (999.0 NTV was incorre Initial Turbidity alla 000-Collect Dup

Well No. B-121-5

PROTECT NAME:	WVA Long Term Monitoring Plan	······	
PROJECT LOCATION:	Watervliet, NY	·	-
PROJECT NUMBER:			
DATE:	5/29/02		
SAMPLER(S):	K.S. S.C.		-
A Total Casing and	Screen Length (ft.)		
		X ″	
- · · · · · · · · · · · · · · · · · · ·	inmator (in)	0	

7.45

B Casing Internal Diameter (in.)

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

				ACCUI	MULAT	ED VOL	UME PURGE	D	
PARAMETER									
ite		Τ	Γ	1	[
ters	1	1000	1035	1040	1045	1050	105.5		
ne	1025	1080	36		-120	-178	-185		
dox potential	3.51		3.64		3.65	3.64	3.64		
nductivity (mohm/cm)	8.86			1		0.61	0.60		
ssolved Oxygen (ppm)	6.71	7.39	7.86	7.94	8.08	8.12	8.12	·	
(S.U.s)	18.85	18.34		A contract of the second se		19.11	17.10		
p. (C)	69.0	51.8	42.1	45.3	47.5	57.6	53.2		
rbidity (NTUs)	2.3	2.3	2.3	2.3	2.3	2.3	2.3	·	
DS		0.17	0.18	0.18	0.18	810	0.18		
linity	7.45	7.47	7.49	7.50	7.51	7.52	7.52		<u> </u>

Depth to Water (ft)

LD ANALYSIS
CONCENTRATION
0.0
0.0
> BO LIMIT
819
80
> 3.30 LIMIT

150 ml /min Purge Q N COMMENTS: 10 لم 1145-3 10 -

PROJECT LOCATION: PROJECT NUMBER:	0285771 5/29/02	ng Plan			
A Total Casing and	Screen Length (ft.)				
B Casing Internal D	iameter (in.)	(e.D"			
C Water Level Belo	w Top of Casing (ft.)	7.81			

Well No. <u>B-121-N</u>

l

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED									
Date	512910	2								
Liters	13:15									
Time	13:15	13:20				13:40	13:45	13:20		
Redox potential	348	91	-19	-87	-131	108	-189			
Conductivity (mohm/cm)	0.795	D.784	0.780	0.780	0.778	777.0	0.77B	0.779		
Dissolved Oxygen (ppm)	5.42	1.09	0.79	0.74	0.70	0.73	0.72	0.12		
	7.92	8.14	8.17	8.19	8.20	8.20	8.20	8.20		
pH (S.U.s)	11. 7.5	15.96	14.82	15.85	15.85	15.92	15.95	15.96		
p. (C)	499.0	545.0	375.0	343.0	325.0	623.0	631.0	637.0		
Turbidity (NTUs)	0.51	0.50	0.50	0.50	0.50	D.SD	0.50	0.50		
TDS	0.03			-	0.03	0.03	0.03	0.03		
Salinity Depth to Water (ft)	7.83	7.88	7.83			7.83	7.83	7.83		

FIELD ANALYSIS							
ANALYTE	CONCENTRATION						
Nitrate (mg/l)	0.02						
Nitrite (mg/l)	0						
Sulfate (mg/l)	25						
Chloride (mgl)	128						
Alkalinity (mg/l)	176						
Ferrous Iron (mg/l)	6.18						

175 ml/min Q 13:10 54 Q COMMENTS: Began QUE start of purge prior te bettery Horiba In Ch initialy e 641 Water VEry Collecto *)6*

Well No. WVA-Aw- 35-MW-1

	WVA Long Term Monitoring Plan			
PROJECT LOCATION:	Watervliet, NY			
PROJECT NUMBER:	0285771			
DATE:	5/29/02			
SAMPLER(S):	K.S. S.C.			
			· · · ·	·
A Total Casing and B Casing Internal D		4"		
		< 1 7A		
C Water Level Belo		52.70		
D Volume of Water	in Casing - includes annulus (gal.)			

PARAMETER				ACCU	MULATI				
ate		<u> </u>		I	1				
ters	1455	1500	1505	1510	1515	1520	1525	1530	1535
me		162	-43		-101	-128	-127	-125	-123
dox potential	275	0.876				0.844	0.843	0.843	0.943
onductivity (mohm/cm)	<u>0.901</u> 4.98			1.12			091	0.99	
ssolved Oxygen (ppm)	9.20	9.86		10.02	9.98	9.95	9.87	9.32	9.84
I (S.U.s)		19.52			19.12	19.15	19.16	19.18	19.19
р. (C)	29.7	-		59.8	46.4	46.6	195		285
rbidity (NTUs)				0.54	0.54	0.54	0.54		0.54
DS				10 -11	0.44	0.04	0.04	0.04	0.04
alinity epth to Water (ft)	53.0	53.17	53.65	53.85	5%.0	54.35	54.95	\$5.0	55.15

🖷 F	IELD ANALYSIS
ANALYTE	CONCENTRATION
litrate (mg/l)	0.09
Nitrite (mg/l)	0.011
Sulfate (mg/l)	• 9,0
Chloride (mgl)	127
Alkalinity (mg/l)	244
Ferrous Iron (mg/l)	0.01

1450

COMMENTS:

Ca 150 m//min

Well No. WUA - SA-MW - 27

PROJECT NAME: WVA Long Term Me	Ionitoring Plan	
PROJECT LOCATION: Watervliet, NY		
PROJECT NUMBER: 0285771		
DATE: 5-17-02		
SAMPLER(S): DEKOSKAE)	, FERGUSON	
A Total Casing and Screen Length (ft.)	· · · · · · · · · · · · · · · · · · ·	
B Casing Internal Diameter (in.)		
C Water Level Below Top of Casing (ft.)	1.60	•
D Volume of Water in Casing - includes an	nnulus (gal.)	

PARAMETER				ACCUI	MULATE	D VOLU	ME PU	RGED			
Date 5-17-02									· .		
Liters	0	05	1	1.5	2						
Time	0945	0950	10 60	1005					<u> </u>		
Redox potential	70		69	69	69				ļ		
Conductivity (mohm/cm)	2.19	2.09		2.09	2.09				ļ		_
Dissolved Oxygen (ppm)		638	5.85	5.83					I		
nH (S.U.s)	6.76	6.85	6.87	6.87	6.87				<u> </u>		
ф. (C)	13.85	14.12	14.19	14.20							
Turbidity (NTUs)	29.5	27.6	19.8	19.5	19.1				ļ		
TDS	1.4	1.3	1.3	(.5	1.3			<u> </u>	<u> </u>	-	
Salinity	0,1	0.1	0.1	01	0.1				<u> </u>	<u> </u>	
Depth to Water (ft)	2.18	2.30	2.24	2.24	224			l	<u> </u>		

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	1.55
Nitrite (mg/l)	0.000
Sulfate (mg/l)	780.0
Chloride (mgl)	405.0
Alkalinity (mg/l)	170.0
Ferrous Iron (mg/l)	0.03

0945

an

COMMENTS:

le 1010

1_R

ann

0905

PROJECT NAME:	WVA Long Term Monitoring	g Plan	 	
PROJECT LOCATION:	Watervliet, NY		 ····	
PROJECT NUMBER:	0285771		 	
DATE:	5-17-02		 	
SAMPLER(S):	DEPOSILE, FER	GUSON	 	······································
A Total Casing and	Screen Length (ft.)			
B Casing Internal D)iameter (in.)			
C Water Level Belo	ow Top of Casing (ft.)	0.08		

D Volume of Water in Casing - includes annulus (gal.)

TADAR ETTER				ACCUI	MULATI	ED VOLU	ME PU	RGED			
PARAMETER											
	8	0,5	1	1.5	1.0	2.5					
iters	0840	845	250	0655	0900	0905					
lime Redox potential		-109	-117	-125	-126	-126					
conductivity (mohm/cm)		2.37	2,38	2.38	2.39	2.39					
Dissolved Oxygen (ppm)	2.40	1.04		0.45	0.40	0,39					
94 (S.U.s)	7.26	6.81	6.78		6.75	6.13				-	1
ир. (C)	12.21			53.4	28.4				1		
Turbidity (NTUs)	421	284	1.5	7.00	1.5	$\frac{2}{1.5}$			1		
DS		$\frac{1.5}{0.1}$		0-1	0.1	0.1					
alinity	0.68		0.1			0.70					
Depth to Water (ft)	0.00	0.00		$\overline{\mathcal{O}}$		<u>.</u>					

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Vitrate (mg/l)	0.00
Nitrite (mg/l)	0,003
Sulfate (mg/l)	580.0
Chloride (mgl)	450.0
Alkalinity (mg/l)	212.0
Ferrous Iron (mg/l)	2,24

Start

was

.

pme

over

COMMENTS:

M

te

5

im.t.

Or

detection

Well No. WVA-SA-MWS-ESE-2

	PROJECT NAME: WVA Long Term Monitoring Pla	an
	PROJECT LOCATION: Watervliet, NY	
	PROJECT NUMBER: 0285771	
)	DATE: 5-6-07	
	SAMPLER(S): DECESTIE FR	1guson
		O
	A Total Casing and Screen Length (ft.)	
	Dispeter (in)	
	B Casing Internal Diameter (in.)	
	Taria I and Bolow Top of Casing (ft.)	2.33
	C Water Level Below Top of Casing (ft.)	
	D Volume of Water in Casing - includes annulus (gal.))

PARAMETER				ACCUN	IULATI	ED VOL	UME PU	RGED			
Date 9-16-02									т. Т	T	<u> </u>
Liters	0	0.5	1.0	1.5	2.0	25	3.0	-	<u> </u>		╂
Time	1500	1505	1510	1515	1520	1525	1520		<u></u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
Redox potential	79	-6	-10	-62	-91	-96	-97		<u> </u>	<u> </u>	
Conductivity (mohm/cm)	2.05	2.03	2.01	2.01	2.05	2.06	207			<u> </u>	
Dissolved Oxygen (ppm)	7.31	4.91	3.47	2.91	1.61		1.57			<u> </u>	
	6.21	6.62	6.93	6.92	6.88	6.86	6.85			<u> </u>	
pH (S.U.s)	12.12	0.71	11.42	11.81	11.94	11.92	11.91			<u> </u>	
	113	51.0	M.8	26.4	21.B		22.5				
Turbidity (NTUs)	1.3	1.3	1.3	1.3	1.3	1.3	1.3			ļ	_
TDS	0.1	0.1	0.1	Øl	Que -	.0.1	0.1				<u></u>
Salinity Depth to Water (ft)	2.41	3.69	5.03	5.33	5.49	5.54	5.61			<u></u>	

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.08
Nitrite (mg/l)	0.015
Sulfate (mg/l)	32
Chloride (mgl)	358
Alkalinity (mg/l)	128
Ferrous Iron (mg/l)	3.29

Start 1455

COMMENTS:

Well No. WVA-SA-MW-ESE-B

PROJECT NAME:	WVA Long Term Monitoring Pla	<u>n</u>	 	
PROJECT LOCATION:	Watervliet, NY			
BROTECT NUMBER:	0285771		 	
DATE:	5-10-02			
SAMPLER(S):	DeKoskie, Fels	jusen		
)		
A Total Casing and	Screen Length (ft.)			
B Casing Internal D	iameter (in.)			
C Water Level Belo	w Top of Casing (ft.)	5.43	•	
D Volume of Water	in Casing - includes annulus (gal.)	·		

PARAMETER				ACCUN	JULATE	D VOLU	IME PUI	RGED	 	
								7-1	 	· · · · · · · · · · · · · · · · · · ·
	Ø	.5	(1.5	2	2.5	3.0	3.5	 	
iters	0925 0	930	0935	0940	0945		0955	10 00	 	
ime		21		-49	-51	-60	-61	-60	 	
edox potential	<u> </u>		The second s	2.14	2.14	2.13	2.15	2.15		
onductivity (mohm/cm)			4.29	3.88	3.40	2.36	2.30	2.29		
Dissolved Oxygen (ppm)		6.59	6,64	6.71	6.91	6.94	6.96	6.97	 	
H (S.U.s)			12.20		11.99	1191	11.86	11.80		
p. (C)		2.35	23.5	171	15 1	13.8	15.1	14.2		
furbidity (NTUs)		621	14	11.6	1.4	1.4	1.4	1.4		
TDS	2.67	61_		0.10	0.10	0.10	6,10	0.10		
Salinity		0.10					6.66	-		
Depth to Water (ft)	5.43 5	5.90	6.22	6:36	6.49	6.97	10.00			,

FIELD	ANALYSIS	
-------	----------	--

	THE PERSON AND A P
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.09
Nitrite (mg/l)	0.01
Sulfate (mg/l)	
Chloride (mgl)	320
Alkalinity (mg/l)	273
Ferrous Iron (mg/l)	1.12

6920 Start Pungs

COMMENTS:

Sample 1000

	Monitoring Well Purging	g	Well No.	793		
			38	-	SA-MW-38	
PROJECT NAME:	WVA Long Term Monitoring Plan	1				
PROJECT LOCATION:	Watervliet, NY		· · · · · · · · · · · · · · · · · · ·	······································		
PROJECT NUMBER:	0285771					
DATE:	5-15-02					
SAMPLER(S):	DEKOSKIE, FRIQUEON					
A Total Casing and	Screen Length (ft.)					
B Casing Internal Di	iameter (in.)					
C Water Level Below	w Top of Casing (ft.)	7.93			•	
D Volume of Water	in Casing - includes annulus (gal.)			· · · · ·		

ACCUMULATED VOLUME PURGED PARAMETER -02 5-15 Date 7 Þ Liters 150 15AC 1554 5 1550 Õ Time 59 59 68 89 68 Redox potential ,830 .830 P17 831 ,770 Conductivity (mohm/cm) 0.70 0.72 1.33 0.73 4.0B Dissolved Oxygen (ppm) 6.60 6 6.50 6.61 SD 6 pH (S.U.s) 12.0312,05 i2.06 12.12 12 AL hp. (C) 102 10.5 11,7 12 il .lo 10 Turbidity (NTUs) 0.53 0.53 0.53 0.52 わ TDS 0,0 0.0 0.0 Ð. \mathcal{O} 0.0 Salinity 8,0 8.03 8.03 σz G. 03 Depth to Water (ft)

FIELD ANALYSIS						
ANALYTE	CONCENTRATION					
Nitrate (mg/l)	0.02					
Nitrite (mg/l)	0.012					
Sulfate (mg/l)	63					
Chloride (mgl)	69					
Alkalinity (mg/l)	189					
Ferrous Iron (mg/l)	0.01					

Start print @ 1435

OMMENTS:

Page 1

Sample

Well No. WVA - SA - MW-33

	ECT NAME:	WVA Long Term	Monitoring I	Pian						
μροιές 📕	LOCATION:	Watervliet, NY								······
PROJECT	T NUMBER:	0285771								
	DATE: 4	5 - 15 - 0 2	1							
s	AMPLER(S):	EKOSKIE/FE	REUSON							
- -										
8										
- . T	otal Casing and S	creen Length (ft.)								
)					
ВС	asing Internal Dia	ameter (in.)								
			۱		* BL	ICKAGE A	tr ~2	.4 BG	S.	
С Ж	ater Level Below	V Top OI Casing (I								
	olume of Water i	n Casing - include	es annulus (ga	ul.)			÷			
ע ע	olume of whether									
	· · · · · · · · · · · · · · · · · · ·			1 COUNTI	ATED V	OLUME PU	RGED			
PARAME	TER	<u> </u>		ACCUMU	UNIEDY					
ate	51502		·						4	
Liters										
Time		1415	_							
edox potential		78								
Conductivity (mohm/cr	n)	.4-89								
Dissolved Oxygen (ppr	n)	9.49								
H (S.U.s)		7.04								
. (C)		15.bA								
Turbidity (NTUs)		637								
DS		0.32								
Salinity		0.0								
Depth to Water (ft)									•	
					•					
	FIELD ANAL	VSIS								
	FIELD ACA	NCENTRATION								
NALYTE	0.01	10.0.1								
Nitrate (mg/l)	0.000									
Nitrite (mg/l)	0.000									
Sulfate (mg/l)		0				14. 1				
Chloride (mgl)	30 mg	1		1						
Alkalinity (mg/l)	139 mg									
Ferrous Iron (mg/l)	0,29			-			_			
	Δ.	OP 1	→ F.K	10		DRI	ω_{j}	142	Ś	
COMMENTS:	Vinge	Start (0 4	10		and -				
UIVIIVIEIVED			<u>a 2</u>	<u>,</u>	An	IPLE				
	116 0-	2()	5 3		LY Y					
		· · · ·								

34 Well No. WVA - SA - MW-34

PROJECT NA	ME: WVA Long Term Monitoring Plan	
PROJECT LOCAT	ON: Watervliet, NY	
PROJECT NUM	3ER: 0285771	
D	ATE: 5.15.0Z	
SAMPLE	R(S): DEKOSKIE/FERBUSON	
A Total Casir	g and Screen Length (ft.)	
B Casing Inte	rnal Diameter (in.)	
C Water Lev	Below Top of Casing (ft.)	
D Volume of	Water in Casing - includes annulus (gal.)	
PARAMETER	ACCUMULATED VOLUME PURGED	
Date 5-15-02	0.5 1 1.5 2 2.5	
Liters		
Time	1230 1235 1240 1745 1250 1255	
Redox potential	-103-163-177-182-183-184	
Conductivity (mohm/cm)	1.34 1.50 1.50 1.50 1.51 1.51	
Dissolved Oxygen (ppm)	5:33 1.13 0.66 0.53 0.51 0.50	
pH (S.U.s)		
р. (C)	13.39 12.12 11.97 11.95 11.95 11.93	
Turbidity (NTUs)	24.6 11.7 13.5 13.5 13.4 13.4	·
TDS	0.9 1.0 1.0 1.0 1.0	
Salinity	0.1 0.1 0.1 0.1 0.1 0.1	
Depth to Water (ft)	8.25 8.25 8.27 8.29 8.30 8.31	
FIELD	ANALYSIS	
ANALYTE	CONCENTRATION	
Nitrate (mg/l) 0.0	t ng/l	
Nitrite (mg/l) 0, t	25	
Sulfate (mg/l)		
Chloride (mgl)	5	
Alkalinity (mg/l) 21	5	
Ferrous Iron (mg/l)	9 my/R	
COMMENTS: 22	o Start Proger 1300 SAMPLE	

Well NoxUNA -SA-MW-EA-6

PROJECT NAME:	WVA Long Term Monitoring Plan
PROJECT LOCATION:	Watervliet, NY
PROJECT NUMBER:	0285771
DATE:	5.15.02 DEKOSEIE/KEREUSON
SAMPLER(S):	DEROSE 12 / TEREASON

2_

- A Total Casing and Screen Length (ft.)
- B Casing Internal Diameter (in.)
- C Water Level Below Top of Casing (fl.) <u>4.46</u>

D Volume of Water in Casing - includes annulus (gal.)

PARAMETER	ACCUMULATED VOLUME PURGED									
- 1										
	\$ 0,5 1.0 1.5 2									
ters	1055 1100 1105 11 10 1115									
me	149 156 158 158 158									
edox potential onductivity (mohm/cm)	1.36 1.35 1.34 1.35 1.35									
issolved Oxygen (ppm)	12.08 1.98 1.30 1.30 1.29									
	6.19 6.11 6.18 6.20 6.21									
H (S.U.s)	12.66 12.58 12.6 12.6 12.7									
ap. (C) urbidity (NTUs)	25.1 25.7 21.0 20.8 20.7									
	0.6 0.9 0.9 0.9 0.9									
DS	0.00 Deig 0,1 0,1 0,1									
alinity epth to Water (ft)	4.46 4A6 4.46 4.46 4.46 4.46									

FIELD ANALYSIS

ANALYTE	CONCENTRATION
Vitrate (mg/l)	:006 mg/l
Nitrite (mg/l)	0.022 mg/2
Sulfate (mg/l)	68 mg/l
Chloride (mgl)	248
Alkalinity (mg/l)	93mg/2
Ferrous Iron (mg/l)	0.03 mg/L

Start Purge @

COMMENTS:

Sample @ 1125 Ċ

Well No. WUA-SA. MW. 23

PROJECT NAME:	WVA Long Term Monitoring Plan				
PROJECT LOCATION:	Watervliet, NY				
PROJECT NUMBER:	0285771				
DATE:	5.15.02				
SAMPLER(S):	DEKOSKIE/FERGUSON				
	, , , , , , , , , , , , , , , , , , ,				
A Total Casing and	Screen Length (ft.)			NITAL Z = 4	55 '
B Casing Internal D	iameter (in.)	4	5		
C Water Level Belo	w Top of Casing (ft.)	<u>455</u>	4		•
D Volume of Water	in Casing - includes annulus (gal.)				

PARAMETER				ACCU	IULATE	D VOLU	JME PUF	RGED			
	5.15.	o 2					- 4 - 1		r	1	1
Date	~ . 5	ک		1.5	2	2.5	5			<u> </u>	
Liters	0936	0945	0950	0955	1000	1005	1010			· ·	
Time	167	- 11	- 35	-39	-45	-48					
Redox potential		1.45	1.46	1.46	1.47	1.48	1.48				1
Conductivity (mohm/cm)	1.43		0.58		0.60	0.58	0.62				T
Dissolved Oxygen (ppm)	3.01	0.73				6.72					1
pH (S.U.s)	6.74	6.67	6.70	6.71						1	1. St. 1.
p. (C)	//:38	11.14	11.41	11.46	11.51	11.41	11.60				
Turbidity (NTUs)	66.1	39.5	34.0	33.5	32.1		31.3				
	0.9	0.9	0.91	0.9	0.9	0.9	1.0				
TDS	0,1	0.1	0.1	0.1	D.L	0.1	0.1				
Salinity	5.15		6.26	· · · · · · · · · · · · · · · · ·	5.52	5.46	5.28				
Depth to Water (ft)	2.43	6.13	19.20								

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	.08
Nitrite (mg/l)	0,000 Mg/l
Sulfate (mg/l)	-0-08 mark - 21:3/
Chloride (mgl)	381
Alkalinity (mg/l)	\$ 68
Ferrous Iron (mg/l)	.40

PURGE @ 1 \$00 ml per Minute

COMMENTS:

Sample 1020

Well No. WUA-SA-MW-77

20

a

Samm

PROJECT NAME:	WVA Long Term Monitoring Plan	1		
PROJECT LOCATION:	Watervliet, NY			
PROJECT NUMBER:	0285771			
DATE	5-16-02			
SAMPLER(S):	Defospic Eng	mon		
	<i>L</i>			
A Total Casing and	Screen Length (ft.)			
A Total Cashig und				
B Casing Internal D	iameter (in.)			
C Water Level Belo	w Top of Casing (ft.)	4.13		
D Volume of Water	in Casing - includes annulus (gal.)		•	

PARAMETER	ACCUMULATED VOLUME PURGED										
Date 5/16/02									1		Т
iters (Ø			1110	11 16	il 70					
ime	1055		1105	1110 99	11 15 90	90	·····				
edox potential	80	83	86		.482	,483					
onductivity (mohm/cm)	4.66	4.83			the second s	6.30					
Dissolved Oxygen (ppm)	6:37	6.30	6.26	6.19	6.31	6.30				<u> </u>	<u> </u>
H (S.U.s)	14,73	13.47	13.45	13,45	13.43	(3.59			_	. <u> </u>	
up. (C) urbidity (NTUs)	31.5	43.7	47.4	منسبك المريسية	38.2	36.4				+	
DS	6.7	0.48	0.34		0.19	0.27				-	
alinity	0,0	0.0	0.0	0.0	0.0		······				
Depth to Water (ft)	4.13	4.38	4.52	4,60	-1107	1-1.01		1			-

FIELD ANALYSIS	
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.12
Nitrite (mg/l)	D.009
Sulfate (mg/l)	60
Chloride (mgl)	15
Alkalinity (mg/l)	132
Ferrous Iron (mg/l)	0,15

Aart Punge @ 1050

COMMENTS:

Well No. WVA-SA-MW -76

PROJECT NAME	WVA Long Term Monitoring Plan		
PROJECT LOCATION	Watervliet, NY		
PROJECT NUMBER	: 0285771		-
DATE	5-16-02		
SAMPLER(S)	Dekoskic , Ferg	MON	
	-		
	C C		
A Total Casing an	d Screen Length (ft.)		
B Casing Internal	Diameter (in.)		
		1.15	
C Water Level Be	ow Top of Casing (ft.)	<u>0. 0</u>	`
		-	
D Volume of Wate	er in Casing - includes annulus (gal.)		
	·	THE WOLLDER DIRCED	
PARAMETER	ACC	UMULATED VOLUME PURGED	· · · · · · · · · · · · · · · · · · ·
C-110-D2			

Date 5-14-02	
	1320 1325 1330 1335 1340 1345 1350
Liters Time	
Time L	
Redox potential	-69 -61 -56 - 76 - 71 - 71 - 71 - 71 - 71 - 71 - 7
	1.67 1.51 1.49 1.47 1.46 1.46 1.46
Conductivity (mohm/cm)	5.18 4.91 3.25 1.29 1.19 1.14 1.13
Dissolved Oxygen (ppm)	7.59 7.53 7.48 6.99 6.98 6.98
pH (S.U.s)	1.91 - 77 - 6
.p. (С)	A.55 1.0 17.0 11. 11.0 A. 1405
Turbidity (NTUs)	
	1.0 1.0 1.0 1.0 1.0 1.0 1.0
TDS	
Salinity	
Depth to Water (ft)	6.30 6.33 6.33 6.33 6.33 6.33 6.33

FIELD ANALYSIS

	FIELD ANNO IDE
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0,00
Nitrite (mg/l)	0,000
Sulfate (mg/l)	80.0
Chloride (mgl)	110
Alkalinity (mg/l)	270
Ferrous Iron (mg/l)	0.05

IMal (a

COMMENTS:

1315

1350

Tample

Date

1240-

1300-

Y . . Collected Gample

Well No. WVA-SA-MW-20

					wen No.	NUR DI	_ ~ ~ 0
PROJECT NAM	IE: WVA Long Term N	Aonitoring Pl	an				
PROJECT LOCATIC		Watervliet, NY					
DDO IECT NIMRI	CR. 0285771						<u></u>
DAI	ГЕ: Сород 5	-21-0	2 1	- K - i - i	~		
SAMPLER((S): P. Rabide	and y	<u>J.</u> <u>N</u>	Kosk's		<u></u>	<u></u>
A Tradel Casing	and Screen Length (ft.)						
			<u></u>				
B Casing Intern	al Diameter (in.)						
C Water Level I	Below Top of Casing (ft.)		1.45	•			
D Volume of W	ater in Casing - includes	annulus (gal.)					
PARAMETER		A(CUMULAT	ED VOLUME	PURGED		
Date $5 - \mathcal{V} - \mathcal{O}\mathcal{V}$							
Liters	0.5 1	1.5					
	1349 1354	1356					
Time	82 85						
Redox potential Conductivity (mohm/cm)	.350 .320						· ·
Dissolved Oxygen (ppm)	6.80 7.89						
bH (S.U.s)	6.44 6.50						
np. (C)	12.104 13.00						
arbidity (NTUs)	110 .70						
rDS	0.22 0.22						
Salinity	0.0 0.0	J					
Depth to Water (ft)	NIA	DEV					
	Gelow pump	- 1					
FIELD AN	ALYSIS						
ANALYTE	CONCENTRATION						
Nitrate (mg/l)		<u> </u>					
Nitrite (mg/l)							
Sulfate (mg/l)							
Chloride (mgl)							
Alkalinity (mg/l)	<u> </u>						
Ferrous Iron (mg/l)						~	
COMMENTS: 345-	Instate lun	pe Q.	2 450	ulfrim.	135	6 Dr	<u>Y.</u>
61102							
• 1							

Sampling Log	Well No. JVA-100-GTI-3

PROJECT NAME: PROJECT LOCATION: PROJECT NUMBER: DATE: SAMPLER(S):	Watervliet, NY 0285771 5-21-02	Plan n dean		
JAIN 22-(1)				
A Total Casing and	Screen Length (ft.)			
B Casing Internal D	iameter (in.)			
C Water Level Belo	w Top of Casing (ft.)	7.25		•
D Volume of Water	in Casing - includes annulus (ga	d.)	· ·	

PARAMETER	ACCUMULATED VOLUME PURGED	
Date 5-21-02		
Liters	05 1.0 1.5 2.0	
Time	1413 1418 1923 1925	
Redox potential	100 91 85	
Conductivity (mohm/cm)		
Dissolved Oxygen (ppm)	2.13 1.66 0.72	
pH (S.U.s)	678 620 626	
p. (C)	11.29 11.20 11.34	
Turbidity (NTUs)		
TDS		
Salinity	0.100.10 D.10 V 10.54 13.12 14.62 END	
Depth to Water (ft)		

Too much drawdown.

FIELD ANALYSIS					
ANALYTE	CONCENTRATION				
Nitrate (mg/l)	.04				
Nitrite (mg/l)	.015				
Sulfate (mg/l)	32				
Chloride (mgl)	82				
Alkalinity (mg/l)	270				
Ferrous Iron (mg/l)	0				

Jean a **COMMENTS:** 40 There FL 62 t 5/22/02 DTW . 1000 in

Well No. 54-MW-24

e:

	m Marth T	Plan		
PROJECT NAM	TE: WVA Long Term Monitoring			
PROJECT LOCATIC	DN: Watervliet, NY			
PROJECT NUMBE	ER: 0285771 TE: <u>5-7.1-02</u>			
SAMPLER	(3):	······································		
A Total Coring				
A Total Casing	and Screen Length (ft.)			
	al Diameter (in.)			
_	Below Top of Casing (ft.)	6.74		•
D Volume of W	/ater in Casing - includes annulus (g	al.)		
		ACCUMULATED VOL	UME PURGED	
PARAMETER				
Date 5-21-02				
iters	1435 1440			
Time				
Redox potential	92 94			
onductivity (mohm/cm)	1290,289			
Dissolved Oxygen (ppm)	9,49 8.53			
nH (S.U.s)	6,45 6.45			
ар. (С)	12.26 12.36			
Turbidity (NTUs)	219 14,7			
TDS	0.19 0.19			
alinity	0.0 0.0			
Depth to Water (ft)	8.57 MA			
FIELD A		2 -		
ANALYTE	CONCENTRATION		· · ·	
litrate (mg/l) 55	LIMIT			
Vitrite (mg/l) 017				
Sulfate (mg/l) 32	· · · · · · · · · · · · · · · · · · ·	<i>,</i>	•	
Chloride (mgl) 39				
Alkalinity (mg/l) 82	·		*	
Ferrous Iron (mg/l)		· · · ·		0
comments:	33 Start pm	1	Dry Stay	2 long
522	1145 : MW -	6.83.		
	1200 : 00/21	ted somple.		

Well No. WVA-SA-MW -4-1

PROJECT NAME:	WVA Long Term Monitoring Plan			· · · ·
PROJECT LOCATION:	Watervliet, NY	······································		· · · · · · · · · · · · · · · · · · ·
DROTECT NIIMBER:	0285771		······································	·····
m A TE:	5-126-02			
SAMPLER(S):	Dettersine Rabie	lean		<u>,</u>
	• •			
A Total Casing and	Screen Length (ft.)	Annual 1997		
B Casing Internal D	iameter (in.)	<u> </u>		
C Water Level Belo	w Top of Casing (ft.)	0,50		• •
D Volume of Water	in Casing - includes annulus (gal.)			

PARAMETER	· [ACCUI	IULATE	D VOLU	ME PU	JRGED			
Date 5-22-02	đ										
Liters	0758	0803	0808	0813	0818						
Time 0755	95	84	11	72	69						
Redox potential	,384	,388	.385	1387	,389						ļ
Conductivity (mohm/cm)	4.11	3.86		3,06	3.00					<u> </u>	
Dissolved Oxygen (ppm)	0.21 5.89	6.99	6.68	6.70	6.73						
pH (S.U.S)	10.72	1.72	11.89	12.02	12.01						
<u>пр. (C)</u>	-9,1	5.9	5.0	4.9	4,8						ļ
Turbidity (NTUs)	0.26		0.15	0.25	25	•					ļ
TDS	0.0	0.0	0.0	0.0	0.0				_	<u> </u>	ļ
Salinity Depth to Water (ft)	0.50	0.90		1.59	1.59	1.59					<u> </u>

FIELD ANALYSIS				
ANALYTE	CONCENTRATION			
Nitrate (mg/l)	.55			
Nitrite (mg/l)	,007			
Sulfate (mg/l)	76			
Chloride (mgl)	69			
Alkalinity (mg/l)	6			
Ferrous Iron (mg/l)	.18			

07

COMMENTS:

100 ml mins. 55 Ø タ Olo -64

Well No. WVA-SA- MW-19

WVA Long Term Monitoring Plan PROJECT NAME: _ Watervliet, NY PROJECT LOCATION: 0285771 PROJECT NUMBER: 5-20-02 DATE: SAMPLER(S): DEFOSFIE KOTA A Total Casing and Screen Length (ft.) B Casing Internal Diameter (in.) C Water Level Below Top of Casing (ft.) D Volume of Water in Casing - includes annulus (gal.) ACCUMULATED VOLUME PURGED PARAMETER 5 0.02 ate

iters	1720	1720	1240	1705	1250			1			
Time	1230		KI	-50	1 1		1				
edox potential	.719	62		.705		1					
onductivity (mohm/cm)	. 11-1	1.27	141	1.54							<u> </u>
Dissolved Oxygen (ppm)	6.41	636	6.39					_			<u> </u>
H (S.U.s)	10.91	11.05	11.71	11.83						<u> </u>	
p. (C) Turbidity (NTUs)	51.6	8.4	6.1	12.6							<u> </u>
	0.47	0.46	0.45	0.44	 	·					
DSalinity	0.0	0.0	0.0	0.0							+
Depth to Water (ft)	2.90	<u> </u>	<u> </u>		DRY			_ <u> </u>	1		_

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.05
Nitrite (mg/l)	0.007
Sulfate (mg/l)	19.0
Chloride (mgl)	12.0
Alkalinity (mg/l)	302
Ferrous Iron (mg/l)	0.00

1250 DRVIN STARY PURGE 1230 COMMENTS: RAIN odor atd LION $\mathcal{O}\mathcal{V}_{\mathcal{S}}$ NOTE 10 7.AM ά ₽ Q Q 30 11 (oll amel

dening Diam

Well No. WVA - 54 - MW. 32

Sample @

15C

PROJECT NAM	E: WVALO		vionnorm	ig i iau							
PROJECT LOCATIO	N: Watervlie	t, NY									
PROJECT NUMBE	R: 0285771										
DAT	E: 5210	ア									
SAMPLER(S	5): Jul. 1	Sen_									
		V ^U V									
	10										
A Total Casing a	nd Screen Len	gm (11.)			·						
B Casing Interna	1 Diameter (in	1									
B Casing Interna	u Diameter (m.) ·		•							
C Water Level B	elow Top of C	asing (ft.)	· ·		1" Be	av Ti	oc				
				1)							
D Volume of Wa	ater in Casing -	includes	annulus (gai.)							
								÷			
: 	<u>,</u>			ACCII	ULATI	D VOL	IIME PI	RGED		and the second is	
PARAMETER	-1			ACCO	1012711	<u></u>					
Date	- 3m	or_					T	T	Ī	ſ	
Liters	0	375	750	11-22	1500			<u> </u>			<u> </u>
Time	1030	1035	1040	1045	050			<u> </u>		 	<u> </u> i
Redox potential	30	32	18	U	26					Į	
Conductivity (mohm/cm)	1.29	1.31	1.34	1.35	1.36			ļ		ļ	ļ
	4.93	4.78	5.01	5.10	5.17					<u> </u>	
Dissolved Oxygen (ppm)	6.4	1.47	6.50	6.51							
pH (S.U.s)		12 70		12.92							
p. (C)	2.89	12.2	1071	1 Kar		I		1	1		

Ð

.9

69

, I

0

1

l

1.02

4.3

.9

86

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.24
Nitrite (mg/l)	0.005
Sulfate (mg/l)	34.0
Chloride (mgl)	278.0
Alkalinity (mg/l)	93.0
Ferrous Iron (mg/l)	0.00

COMMENTS:

Turbidity (NTUs)

Depth to Water (ft)

TDS

Salinity

1030- Turner Ange C. n 25 wellin

21.3

.8

.

.82

76

•

B

1" Mar

Well No. WVA-SA-MW - 39

PROJECT NAME	: WVA Long	g Term M	onitoring	Plan						. ·	
PROJECT LOCATION	: Watervliet,	NY				-					
PROJECT NUMBER	PROJECT NUMBER: 02857/1										
DATE			- 0	LOID	EAV		· ·····				
SAMPLER(S)	· DEKOS	FIE.		<u> </u>							
A Total Casing an	d Screen Leng	th (ft.)									
B Casing Internal	Diameter (in.)							815			
		-! (A)			260	>		37	5	• 5 ⁰	
C Water Level Be	low Top of Ca	sing (IL)		• •	<u></u>			1	5	575	•
D Volume of Wat	er in Casing - i	ncludes a	nnulus (g	al.)				. 51	1	-59	5
				12				16	15	23-	
									<u>9</u>	. <u> </u>	
PARAMETER				ACCUN	NULATE	D VOLU	JME PUI	GED			
	5/21/0	2	875	1240						 .	
Date	0	500	1000	500	1615	1980	2355	•		╀────┼	
iters	09.00	0905	die	0915	0920		03-				
Time	-24	-23	-23	-24_	-23	-70	- 19			╂╼───┩	
Redox potential	1.09	1.13	1.17	1.19	1.22	1.20	1.19				:
conductivity (mohm/cm)	2.99	135	1.59	1.05	1.6	1.52	1.48		<u> </u>		
Dissolved Oxygen (ppm)	6.22	6.29	6.31	6.24	635		6.28		<u> </u>	<u></u>	
H (S.U.s)	11.96	12/12	12.50	12.0	13.25	12.80	12.82		<u> </u>		
p. (C)	1000	1000	840	62	330	223	243		<u> </u>		
Turbidity (NTUs)	.1	.1	.8	. 8	.8	.8	.9				
TDS	0	.,	1	• [.1	.(
alinity		3.04	1.04	2 dk	2.04	204	3.04				
Depth to Water (ft)	2.60	2.00		- 7.0 -	17						
					. *						
FIELD ANA	LYSIS			1 [.]							

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	6.00
Nitrite (mg/l)	0.021
Sulfate (mg/l)	45.0
Chloride (mgl)	202.0- 189.0
Alkalinity (mg/l)	202.0
Ferrous Iron (mg/l)	1.11

0400- Instrate lunge @ 2 100 ml/min. 0905-Reported Flow to COMMENTS: Sample 09 50

WVA -SA - MW-

Well No. ESE-1

1105 Sample

PROJECT LOCATION: PROJECT NUMBER: DATE:	5-20-0			•
SAMPLER(S):	DEKOSKIE, KOTA			
	Screen Lenoth (ft)			
A Total Casing and				
B Casing Internal D C Water Level Belo		7.85	· · ·	
D Volume of Water	in Casing - includes annulus (gal.)		• .	

DADANETED		ACCUMULATED VOLUME PURGED								
PARAMETER	<u> </u>									
ate 5.20-01	.5	1	1.5	2	2.5		·			
ters	1040	1045	1050	1955	1100					
me	- 116	-179	- 194	-195	-196					··
edox potential	1.43		1.42	1.42	1.42					┥───
onductivity (mohm/cm)	2.30	6.11	0.87	0.89	0. BB				<u> </u>	
issolved Oxygen (ppm)	1.35	7.87	7.97	7.91	8.01					
H (S.U.s)	11.72	11.40	11.43	11.45	11.46					
p. (C)	0.4	5.5	4.2	3.1	1.4					<u> </u>
urbidity (NTUs)	0.9	0.9	0.9	6.1	0.9					
DS	0.1	0.1	0,1	0.1	0.(
alinity Depth to Water (ft)	7.94-	7.99	5.01	8.01	8.01			<u> </u>		<u> </u>

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.24
Nitrite (mg/l)	0.008
Sulfate (mg/l)	0.0
Chloride (mgl)	16
Alkalinity (mg/l)	506.0
Ferrous Iron (mg/l)	0.14

1035 Start Purge,

COMMENTS:

Page 1

Well No. WVA-SA-MW - ESE - 6

PROJECT LOCATION: _ PROJECT NUMBER: _	WVA Long Term Monitoring Plan Watervliet, NY 0285771 5.20-02 Fork, Dekosky	۹		
A Total Casing and	Screen Length (fl.)			
B Casing Internal Di	ameter (in.)			
C Water Level Below	w Top of Casing (ft.)	<u>10.23</u>		•
D Volume of Water	in Casing - includes annulus (gal.)		. •	

PARAMETER				ACCUN	IULATED VC	LUME PUR	GED		
Date 5-20-01						<u> </u>		·	
iters	1308	1313	1318	1323	1328				
ime edox potential		- 140		-149	- 149				
onductivity (mohm/cm)		729	.731	and the second	0.53				
bissolved Oxygen (ppm)	3.62	1.04		651	6.51				
H (S.U.s) p. (C)	10.98	11.32	11.37	11.29	11.28				
urbidity (NTUs)	0.4	$\frac{10}{0.41}$	041	1.0	0.46				
DS	0.0	0.0	0.0	0.0	0.0				
alinity Depth to Water (ft)	10.26	10.26	10.20	10.26	10.26			I	

	FIELD ANALYSIS
ANALYTE	CONCENTRATION
Nitrate (mg/l)	0.07
Nitrite (mg/l)	0.004
Sulfate (mg/l)	0.0
Chloride (mgl)	15.0
Alkalinity (mg/l)	301.0
Ferrous Iron (mg/l)	2.26

1305 Start purge

COMMENTS:

1330 Sample

Page 1

D1 ----

Well No. WVA-SA-MW-ESE-3

PROJECT NAME:	WVA Long Term Monitoring Plan		
PROJECT LOCATION:	Watervliet, NY		
PROJECT NUMBER:	0285771		
DATE:	5-20-02		
SAMPLER(S):	FOTA, DEKOSKIE	<u></u>	
A Total Casing and	Screen Length (ft.)		•
B Casing Internal D	iameter (in.)		
C Water Level Belo	w Top of Casing (ft.)	6.70	•
D Volume of Water	in Casing - includes annulus (gal.)	<u>مىنىپ بوت بوت بىر</u>	

PARAMETER	ACCUMULATED VOLUME PURGED									
5-20-02						TT		T		
7450	.5	.D	1.5	2.0						
iters	1430	1435	1440	1445						
ime	-50	96	-93	-94-						
edox potential	.548		.515	.578						
Conductivity (mohm/cm)	3.19	1.21		1. 1B						
Dissolved Oxygen (ppm)	6.32	6.33	6.40	6.40						
H (S.U.s)	11 19		11.01	11.03						
р. (C)	141.D	571		19.1		1				
urbidity (NTUs)	0.35	0.36		0.37	· ·					
DS		0.0		0.0						
Salinity	6.0	-		675						
Depth to Water (ft)	10.11	10.10	4.10							

FIELD ANALYSIS

ANALYTE	CONCENTRATION			
Nitrate (mg/l)	0.00			
Nitrite (mg/l)	0.00	-		
Sulfate (mg/l)	57.0	- ·		
Chloride (mgl)	21.0	-		
Alkalinity (mg/l)	203.0	-		
Ferrous Iron (mg/l)	1.90			
		100	Sample	1/
	Start prize a	18 1430	Junyon	17
COMMENTS:				

COMMENTS:

Well No. WVA-SA-MW- 29

PROJECT NAME:	WVA Long Term Monitoring Plan
PROJECT LOCATION:	Watervliet, NY
PROTECT NUMBER:	0285771
DATE:	SII7.02 DEVOSEIE/FEEGUSON
SAMPLER(S):	DEVOSKIE/FEEGUSON

A Total Casing and Screen Length (ft.)

B Casing Internal Diameter (in.)

<u>2</u> 5.08

C Water Level Below Top of Casing (ft.)

D Volume of Water in Casing - includes annulus (gal.)

	ACCUMULATED VOLUME PURGED											
PARAMETER												
Pate 5-17-02			1	1.5	7-	2.5	3					
iters	1240		250	1285	1300		1310					
Time	1270	1245	-31	-37	-32		-29					
Redox potential	0.293	0 244	1 236	0.225			0.214					
Conductivity (mohm/cm)	4.30	4.28	3.41	1.56	1.28	1.20	1.22					
Dissolved Oxygen (ppm)	7.79	7.51	7,27	7.19	7.04	7.03	2.01					
oH (S.U.s)	<u> </u>	13.45		13.35	BR4	13.25	13.22					
р. (C)	13.44	92.5	76.2	35.6	30.0	31.1	30.5					
lurbidity (NTUs)	0.18	0.16	DIC	0.15	0.14	0.14	0.14					
rDS	0.0	6.0	0.0	0.0	0.0	0.0	U.D					
Salinity	5.30	C.45		5.55	Below-	L					<u> </u>	
Depth to Water (ft)	10 00	12 110	1.0.10	19	Top of							

pump

	FIELD ANALYSIS	
ANALYTE	CONCENTRATION	
Nitrate (mg/l)	0.00	
Nitrite (mg/l)	0.004	
Sulfate (mg/l)	23.0	
Chloride (mgl)	18	
Alkalinity (mg/l)	85	
Ferrous Iron (mg/l)	0.29	

PHIEF 1240

COMMENTS:

Sample 1310

Well No. WY A-SA, MW - 28

	PROJECT NAME: WVA Long Term Monitoring Plan		 	
	PROJECT LOCATION: Watervliet, NY		 	
	PROJECT NUMBER: 0285771		 	
	DATE: 5.17.02			
•	SAMPLER(S): DELOSKIE FOR 615 ON		 	
	A Total Casing and Screen Length (ft.)			
	B Casing Internal Diameter (in.)	4		
	C Water Level Below Top of Casing (ft.)	5.57		•
	D Volume of Water in Casing - includes annulus (gal.)			

PARAMETER	ACCUMULATED VOLUME PURGED										
Date <u>5.12.02</u>						T				<u> </u>	T
Liters	1030	1035	1040	10-15	1050	1055					
<u> Time</u>	13	-17	-47	-48	-48	the second s	_				<u> </u>
Redox potential Conductivity (mohm/cm)	2.07	1.96	(.80	1.78	1.77	1,77					<u> </u>
Dissolved Oxygen (ppm)	2.51	1.75	0,93	0.63	0.61	0.60		┨			
pH (S.U.s)	7.04	7.31	7.58	7,60	7.60	7.60	-				+
p. (C)	12.53	12.40	12.32	150	153	14.9		+			
Turbidity (NTUs)	<u>18.0</u> 1.3	$\frac{1}{1}$	1.1	1.1	1.1	1.1					
TDS	0.1	0.1	0.1	0.1	0.1	0.1		<u> </u>	_		_
Salinity Depth to Water (ft)	3.75	3.87	4.15	4.18	4.18	4.19		<u> </u>			<u> </u>

FIELD	ANALYSIS

ANALYTE	CONCENTRATION						
	>2.43						
Nitrate (mg/l)							
Nitrite (mg/l)	0.037						
Sulfate (mg/l)	1.0						
Chloride (mgl)	370.0						
Alkalinity (mg/l)	11.0						
Ferrous Iron (mg/l)	0.04						

Start Purse 1030.

COMMENTS:

Sample at 1100.

APPENDIX B

Data Validation Report

MALCOLM PIRNIE

INTEROFFICE CORRESPONDENCE

To: Andy Vitolins

Date: June 2003

Copy: File: 0285911

- **From:** David Lewitt Data Validator
- Re: Watervliet Arsenal May/November 2002 Long Term Monitoring Data Validation Summary

A total of 95 groundwater samples, including eight trip blanks and five matrix spike/matrix spike duplicate (MS/MSD) samples, were collected from monitoring wells at the Watervliet Arsenal on May 15 – 30, 2002. The samples were divided into five sample delivery groups (SDG) numbered 201074, 201086, 201096, 201114, and 201129 and analyzed for Volatile Organic Compounds (VOC) by EPA Method 8260 and Semi-Volatile Organic Compounds (SVOC) by EPA Method 8270. An additional 33 groundwater samples and one trip blank were collected from the reactive wall wells in August and November of 2002. These samples were divided into three SDGs numbered 201618, 202607, and 202608 and analyzed for VOCs by EPA Method 8260. The analyses were subcontracted to Severn Trent Laboratories, Inc. (STL) of Shelton, CT.

The data were reviewed for contractual compliance in accordance with the requested methodologies, and qualifications were applied as specified in the <u>NYSDEC Guidance</u> for the Development of Data Usability Summary Reports (6/99). Data validation was conducted at a rate of ten percent including at least one sample from each SDG. The following quality control indicators, where applicable, were used to evaluate the usability of the sample results: sample integrity, holding times, blank contamination, calibration information, instrument performance checks (tuning), system monitoring compounds (surrogates), internal standards, laboratory control samples (LCS), MS/MSD analysis, dilutions performed, chromatogram evaluation, and calculations.

LABORATORY ANALYSIS

SDGs 201074, 201086, 201096, 201114, and 201129:

The samples were collected between May 15 and May 30 of 2002 and arrived at STL Connecticut on ice in coolers. The temperature inside most of the coolers was within the required range of 4.0° C +/- 2.0° C. Some coolers in SDG 201074 had temperatures outside (greater than) the required range. The temperature exceedence, however, was not excessive (8°C - 9°C) and the samples were all analyzed within two to three days of sample collection. Therefore, no qualifications were assigned to samples from these coolers.

Volatile Organic Compounds: All sample holding times were met for each of the SDGs. Methylene chloride and methyl ethyl ketone (MEK) were found in method blanks for SDGs 201086, 201096, and 201129. All associated data were qualified as non-detect, "U", since these are common laboratory contaminants and none of the concentrations in the samples exceeded 10X that in the blank. Tetrachloroethene was detected in method blanks for SDG 201114. Tetrachloroethene is a non-common laboratory contaminant. The associated data was gualified as non-detect since none of the concentrations in the samples exceeded 5X that in the blank. The bromofluorobenzene (BFB) tuning criteria for ion abundance and 12 hour clock window were met for all of the SDGs. The initial calibration data met established criteria for percent relative standard deviation (RSD) and minimum response factors (RF) for all calibration check compounds (CCC) and system performance check compounds (SPCC), respectively. In SDG 201114, the %RSD was above acceptable criteria limits for bromomethane in the initial calibration. A11 bromomethane data run under this initial calibration was qualified as estimated, "J". Other compounds in all SDGs had %RSDs and average RFs outside established criteria but were not qualified since they were not listed as target compounds. The continuing calibration data met established criteria for percent difference (D) and minimum RFs, for CCCs and SPCCs, respectively. Several compounds in all SDGs had %Ds and RFs outside of acceptable criteria limits. All corresponding target compounds were qualified as estimated, "J". All internal standard criteria for control limits were met. All surrogate recovery criteria were met except for one surrogate (1, 2 - dichloroethane) in sample WVA-AW-MW-34 (SDG 201096) that had a low recovery. All detected and non-detected data for each compound in this sample were qualified as estimated, "J". Several compounds in the MS/MSD samples for each of the five SDGs showed percent recoveries outside of established criteria. All associated compounds in each SDG were qualified as estimated "J". There were no other data qualifications assigned to these samples.

Semi-Volatile Organic Compounds: All sample holding times for extraction and analysis were met for each of the SDGs. No compounds were detected in any method blanks for all SDGs. The decafluorotriphenylphosphine (DFTPP) tuning criteria for ion abundance and 12 hour clock window were met for all SDGs. The initial calibration data met established criteria for %RSD and minimum RFs for all CCCs and SPCCs, respectively. Benzoic acid in three initial calibrations showed %RSDs above established criteria (SDGs 201086, 201114, and 201129). No qualifications were assigned, as benzoic acid is not a target compound. The continuing calibration data met established criteria for %D and minimum RFs for all CCCs and SPCCs, respectively. Several target compounds in the continuing calibrations showed %Ds outside acceptable limits. For each SDG, these compounds were qualified as estimated, "J", in all samples run under the corresponding continuing calibration. All internal standard criteria for control limits were met except for one internal standard in sample 86-EM-SP-5 (SDG 201086) that was low. All compounds in this sample that were quantitated with this internal standard were qualified as estimated, "J". All surrogate recovery criteria were met except one surrogate (2,4,6 – tribromophenol) in sample WVA-AW-MW-38 (SDG 201096) that was high. No qualifications were assigned to this sample since two or more surrogates per acid/base

fraction are required to be out for action to be taken. One compound (1,4-dichlorobenzene) was outside spike recovery limits for the MS/MSD sample in SDG 201086. All associated data was qualified as estimated, "J", for that SDG. There were no other data qualifications assigned to these samples.

SDGs 201618, 202607, and 202608 (Reactive Wall Wells):

The samples were collected on August 12 and November 25 of 2002. They arrived at STL Connecticut in iced coolers with all cooler temperatures within the required range of 4.0° C +/- 2.0° C.

Volatile Organic Compounds: All holding times were met with each of the SDGs. Methylene chloride was found in the method blanks for SDGs 201618 and 202608. All associated data was qualified as non-detect, "U". BFB tuning criteria for ion abundance and 12 hour clock window were met for all of the SDGs. The initial calibration data met established criteria for %RSD and minimum RF for all CCCs and SPCCs, respectively. In all SDGs, several %RSDs were above criteria limits and in SDG 201618 three RFs were below criteria. In SDG 201618, all target compounds associated with the outlying %RSD data were qualified as estimated, "J". No qualifications were made on any other data since none of the discrepancies were associated with target compounds. The continuing calibration data met established criteria for %D and minimum RFs for CCCs and SPCCs, respectively. Several RFs and %Ds were outside criteria limits in all three SDGs. Target compounds in SDGs 202607 and 202608 were qualified as estimated, "J", based on the outlying %D data. The discrepancies did not affect any other target compounds. All internal standards and surrogates were within criteria limits for upper and lower controls and recovery, respectively. All MS/MSD data was acceptable. No other data qualifications were assigned to any samples in these SDGs.

F:\PROJECT\0285911\FILE\Data Validation\dv0502.doc

APPENDIX C

Potentiometric Contour Maps

APPENDIX D

Summary Tables and Disk containing Groundwater Monitoring Database in Microsoft Access®

Watervliet Arsenal - Long Term Monitoring

ell ID: 83DM-SP-1

METHOD: NAT

An	alyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
	alinity	mg/L	192		210		199			354	
Ch	loride	mg/L	480		640		244			58	
Cone	ductivity	mohm/cm								1.66	
Dissolv	ed Oxygen	mg/L	1.38		4.50		0.00			0.61	
C	000	mg/L	4.65		4.34		5.36				
DOC Ave	rage Quads	mg/L		· ·						82	
Ferro	ous Iron	mg/L	0.02		0.01		0			0.3	
Me	thane	ug/L								20	
N	trate	mg/L	0.06		1.11		0.26			0	
N	itrite	mg/L	0.016		0.028		0.004			0	
	pН		6.76		7.08		7.37			6.89	
Re	edox	mV	64.1		216		250			-295	
Sı	Ilfate	mg/L	80		80		76			0	
Sı	llfide	mg/L			1		1			5	
Tem	perature	С								15.01	
Tu	bidity	NTUs							• •	31	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		0.8 (JB)		0.2 (JB)		0.2 (J)		
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	0.6 (JB)		0.1 (J)						
Di-n-octylphthalate	ug/L	0.2 (JB)		0.1 (J)						
Phenol	ug/L								0.9 (J)	

Well ID: 83DM-SP-1

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1 1-Trichloroethane	ug/L								27	
1 1-Dichloroethane	ug/L								6	
1 1-Dichloroethene	ug/L								1 (J)	
1,1,1-Trichloroethane	ug/L	1 (J)		7				9		
1,1,2,2-Tetrachloroethane	ug/L	0.6 (J)				0.4 (J)				
1,1-Dichloroethane	ug/L	0.5 (J)								
2-Butanone	ug/L	2 (J)								
2-Butanone (MEK)	ug/L								15 (B)	
4-Methyl-2-Pentanone	ug/L					1 (J)				
Bromodichloromethane	ug/L	5								
Carbon Disulfide	ug/L					1 (J)			4 (J)	
cis-1,2-Dichloroethene	ug/L	3 (J)		2 (J)		2 (J)		3 (J)		
Methylene Chloride	ug/L							0.5 (JB)	0.5 (J)	
Tetrachloroethene	ug/L	1 (J)		0.9 (J)		1 (J)		0.6 (J)		
trans-1 2-Dichloroethene	ug/L			1 A		-			0.6 (J)	
Trichloroethene	ug/L	12		31		11		42	10	

ell ID: 83DM-SP-3

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	<i>Oct-00</i>	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	245		243		214		285	77	
Carbon Dioxide	ug/L				3700					
Chloride	mg/L	120		80		52		113	43	
Conductivity	mohm/cm							2.01	2.14	
Dissolved Oxygen	mg/L	0.55		1.80		0.58		0.0	0.75	
DOC	mg/L			2.92		3.88		4.3		
DOC Average Quads	mg/L								4.2	
Ferrous Iron	mg/L	0.74		0.58		0.6		0.12	0.09	
Methane	ug/L				67	90		26	9.2	
Nitrate	mg/L	0.08		0		0.03		0.05	0.15	
Nitrite	mg/L	0.047		0.045		0		0.022	0.011	
pН		6.25		7.00		7.06		6.91	7.3	
Redox	mV	50		14		31		328	305	
Salinity								0.1		
Sulfate	mg/L	80		80		80		80	80	•
Sulfide	mg/L			1		1				
TDS								1.3		
Temperature	С								11.07	
Temperature	•.							9.78 (C)		
 Turbidity	NTUs							57.0	768	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			5 (JB)				0.4 (J)		
Butylbenzylphthalate	ug/L			0.4 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.3 (JB)						
Di-n-octylphthalate	ug/L			0.2 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					6 (J)				
Carbon Disulfide	ug/L					0.6 (J)			3 (J)	
Methylene Chloride	ug/L		[2 (J)		0.6 (JB)	2 (J)	

Well ID: 83DM-SP-4

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Ałkalinity	mg/L	240		204		273		180	56	
Carbon Dioxide	ug/L				2600					
Carbon Dioxide (Dup)	ug/L				4100					
Chloride	mg/L	137		203		35		196	42	
Conductivity	mohm/cm							2.1	2.29	
Dissolved Oxygen	mg/L	0.21		2.00		0.00		1.79	0.92	
DOC	mg/L	3.96		6.63		16.8		5.56		
DOC (Dup)	mg/L			9.53						
DOC Average Quads	mg/L								2.6	
Ferrous Iron	mg/L	>80		1.97		2.41		2.31	2.87	
Methane	PPB	160								
Methane	ug/L				98	120		29	15	
Methane (Dup)	ug/L				75					
Nitrate	mg/L	0.04		8.42		0.01		0.09	0.07	
Nitrite	mg/L	0.39	[0		0.028		0.013	0.012	
pН		6.20		6.90		7.05		6.64	7.2	
Redox	mV	1.1		41		-21		-14	-4	
Salinity								0.1		
Sulfate	mg/L	80		80		80		80	80	
Sulfide	mg/L			1		1				
Sulfide (Dup)	mg/L			1						
TDS								1.3		
Temperature	С							12.65	11.2	
Turbidity	NTUs							21.6	4.9	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.4 (JB)		6 (JB)				0.2 (JB)		
bis(2-Ethylhexyl)phthalate (Dup)	ug/L			5 (JB)						
Butylbenzylphthalate	ug/L			0.6 (JB)						
Butylbenzylphthalate (Dup)	ug/L			0.3 (JB)						
Diethylphthalate	ug/L			0.08 (JB)						
Diethylphthalate (Dup)	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L	0.7 (JB)		0.2 (JB)				0.1 (JB)		
Di-n-butylphthalate (Dup)	ug/L			0.3 (JB)						
Di-n-octylphthalate	ug/L			0.3 (JB)				0.2 (J)		
Di-n-octylphthalate (Dup)	ug/L			0.1 (JB)						
Naphthalene	ug/L			0.05 (JB)						
Naphthalene (Dup)	ug/L			0.05 (JB)						
Phenol	ug/L	•		0.04 (JB)						
Phenol (Dup)	ug/L			0.04 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					6 (J)				
Methylene chloride	ug/L					2 (J)		0.6 (JB)	2 (J)	

Friday, February 21, 2003

ell ID: 86EM-SP-1A

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	1909-02
Alkalinity	mg/L	209		2330		101		51	68	
Chloride	mg/L	14		160		28		351	22	
Conductivity	mohm/cm							1.52	0.451	
Dissolved Oxygen	mg/L	2.08		5.46		1.30		0.25	4.73	
DOC	mg/L	1.01		2.17		3.37		264		
DOC Average Quads	mg/L								1.5	
Ferrous Iron	mg/L	0.01		0		0		0.0	0	
Methane	PPB	3.5								
Methane	ug/L	•						12		
Nitrate	mg/L	0.16		1.89		0.55		0.5	0.43	
Nitrite	mg/L	0.016		0.57		0.09		0.013	0.011	
pН		6.21		6.74		6.93		6.8	7.45	
Redox	mV	96.3		238		275		250	-4	
Salinity								0.1		
Sulfate	mg/L	46		57		32		80	60	
Sulfide	mg/L					1				
TDS								1.0		
Temperature	с								18.59	
Temperature						·		17.54		
Turbidity	NTUs							19.3	0	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		0.3 (JB)				0.6 (J)		
Butylbenzylphthalate	ug/L			0.2 (J)						
Diethylphthalate	ug/L	0.2 (JB)		0.2 (JB)					·	
Di-n-butylphthalate	ug/L	0.6 (JB)		0.3 (JB)						
Di-n-octyiphthalate	ug/L	0.1 (JB)								

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	<u>×</u>				4 (JB)				
Chloroform	ug/L					0.5 (J)			0.6 (J)	
cis-1.2-Dichloroethene	ug/L			2 (J)		1 (J)		2 (J)		
Methylene Chloride	ug/L			0.9 (J)		0.6 (JB)				
Tetrachloroethene	ug/L	7								
Trichloroethene	ug/L	12		11		11		9	11	
Trichlorofluoromethane	ug/L	5								

Well ID: 86EM-SP-1B

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	310		176		260			159	
Carbon Dioxide	PPB	3800								
Chloride	mg/L	238		174		13			47	
Conductivity	mohm/cm							0.842	0.603	
Dissolved Oxygen	mg/L	1.12		· 4.60		0.71		8.1	3.12	
DOC	mg/L			1.46		7.49				
DOC Average Quads	mg/L								3.1	
Ferrous Iron	mg/L	0.01		0.27		0			0.01	
Methane	PPB	3000 (D)								
Nitrate	mg/L	0.2	ſ	0.46		0.14			0.07	
Nitrite	mg/L	0.124		0	Ì	0.05			0.098	
рН		6.22		7.10		7.10		7.33	7.29	
Redox	mV	22.9		178		138	j	279	370	
Salinity			1			Ţ	l	0.0	1	
Sulfate	mg/L			0		14			6	
Sulfide	mg/L			1						
TDS								0.54		
Temperature	С							20.28	14.8	
Turbidity	NTUs							41.6	11.9	

METHOD: SVOC

	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
l	bis(2-Ethylhexyl)phthalate	ug/L			2 (JB)		0.7 (JB)		0.4 (JB)		
	Di-n-butylphthalate	ug/L			0.3 (JB)				0.08 (J)		

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
cis-1,2-Dichloroethene	ug/L			(J) 8.0		0.5 (J)				
Methylene Chloride	ug/L			0.4 (JB)		2 (JB)			1 (JB)	
Trichloroethene	ug/L			3 (J)		2 (J)			3 (J)	

.

ell ID: 86EM-SP-5

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00		Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	288		400		295		204	137	
Carbon Dioxide	ug/L			3900		6300()			5500	
Carbon Dioxide (Dup)	ug/L			3900						
Chloride	mg/L	768		1130		114	·	489	52	
Conductivity	mohm/cm							2.33	1.15	
Dissolved Oxygen	mg/L	0.62		3.21		0.00		0.0	0.79	
DOC	mg/L			14.3		19.3		10.3		
DOC (Dup)	mg/L			13.9						
DOC Average Quads	mg/L								10	
Ethane	ug/L								140	
Ethene	ug/L								140	
Ferrous Iron	mg/L	3.06		3.3		2.46		3.24	1.65	
Methane	ug/L			44.9		11		190	130	
Methane (Dup)	ug/L			34.3						
Nitrate	mg/L	0.14		0.12		0.02		0.03	0.31	
Nitrite	mg/L	0.051		0.007		0.12		0.028	0.02	
pH		6.25		6.61		6.86		6.86	7.29	
Redox	mV	-89.3		-56		-60		-49	-170	
Salinity					·			0.1		
Sulfate	mg/L	115		80		80		36	80	
TDS								1.5		
Temperature								12.99 (C)		
Temperature	С								12.6	
Turbidity	NTUs			······································				48.8	134	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
4-Chloro-3-methylphenol	ug/L			120		180			86	
4-Chloro-3-methylphenol (Dup)	ug/L			120						· · · · · · · · · · · · · · · · · · ·
bis(2-Ethylhexyl)phthalate	ug/L			0.4 (JB)				0.4 (J)		
bis(2-Ethylhexyl)phthalate (Dup)	ug/L			0.4 (JB)						
Butylbenzylphthalate	ug/L			0.6 (J)						
Butylbenzylphthalate (Dup)	ug/L			0.7 (J)						
Di-n-butylphthalate	ug/L			0.5 (JB)				0.1 (J)		
Di-n-butylphthalate (Dup)	ug/L			0.6 (JB)						
Fluoranthene	ug/L			0.3 (J)			·	0.1 (J)		
Fluoranthene (Dup)	ug/L			0.3 (J)						
Pyrene	ug/L							0.1 (J)		

Well ID: 86EM-SP-5

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1-Dichloroethane	ug/L								1 (J)	
1,1-Dichloroethane	ug/L			3 (J)		3 (J)		1 (J)		
1,1-Dichloroethane (Dup)	ug/L			3 (J)						
2-Butanone	ug/L			2 (JB)		6 (J)				
2-Butanone (Dup)	ug/L			2 (JB)						
Carbon Disulfide	ug/L					0.8 (J)			0.3 (J)	
Chloromethane	ug/L		·			1 (J)				
Methylene Chloride	ug/L			4 (J)		3 (JB)		0.7 (JB)	0.5 (JB)	

ell ID: 86EM-SP-6

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	<i>Nov-02</i>
Alkalinity	mg/L	426		435		212		259	186	
Carbon Dioxide	PPB	390								
Chloride	mg/L	212		137		38		84	36	
Conductivity	mohm/cm							1.99	3.1	
Dissolved Oxygen	mg/L	0.48		8.5		0.95		0.0	1.07	
DOC	mg/L	6.67		12.4		10.6		4.64		
DOC Average Quads	mg/L								8	
DOC Average Quads (Dup)	mg/L								7.7	
Ferrous Iron	mg/L			0		0.02		0.06	0.01	
Methane	ug/L			25.3		17				
Methane (Dup)	ug/L		Ī						4.1	
Nitrate	mg/L	0.08		0.28		0.19		1.87	0.57	
Nitrite	mg/L	0.029		0.375		0.097		0.024	0.071	
pH		6.37		6.90		7.00		6.83	7.25	
Redox	mV	119.7		172		130		292	50	
Salinity								0.1		
Sulfate	mg/L	80		80		80		80	80	
Sulfide	mg/L			1		1		3.3		
TDS							<u> </u>	1.3		<u> </u>
Temperature	С							13.13	13.24	<u> </u>
Turbidity	NTUs							0.0	11.6	l

ETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.4 (JB)		2 (JB)		0.5 (J)		0.2 (JB)		
Butylbenzylphthalate	ug/L			0.5 (J)						
Diethyl phthalate	ug/L								0.4 (JM)	
Diethyl phthalate (Dup)	ug/L								0.4 (J)	
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	0.5 (JB)		0.3 (J)				0.1 (JB)		
Di-n-octylphthalate	ug/L	0.2 (JB)			1					

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1-Dichloroethane	ug/L								2 (J)	
		1							2 (J)	
1 1-Dichloroethane (Dup)	ug/L	<u> </u>								
1,1-Dichloroethane	ug/L	1 (J)	2 (J)	1 (J)		<u> </u>				
2-Butanone	ug/L					6 (J)				
Chloromethane	ug/L	1				0.6 (J)				
cis-1,2-Dichloroethene	ug/L					0.4 (J)				
Methylene Chloride	ug/L		<u></u>	2 (J)		2 (J)				
Trichloroethene	ug/L	0.5 (J)				0.3 (J)				
Vinyl Chloride	ug/L	+				0.3 (J)			0.5 (J)	

Well ID: 92EM-SP-7

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	219		324		315		178	143	
Carbon Dioxide	ug/L								6100	
Chloride	mg/L	241		395		31		325	35	
Conductivity	mohm/cm							2.28	2.43	
Dissolved Oxygen	mg/L	0.11		3.70		0.00		0.0	3.03	
DOC	mg/L			3.62		8.45		5.32		
DOC Average Quads	mg/L								2.2	
Ethane	ug/L				ĺ				130	
Ethene	ug/L								100	
Ferrous Iron	mg/L	0.06		0.02		0.06		2.0	0.03	
Methane	ug/L					2.3		2.1 ()	72	
Nitrate	mg/L	0.05		0.32		0.06		0.18	0.23	
Nitrite	mg/L	0.027		0		0.026		0.021	0.003	
pН		6.59		7.40		7.68		7.44	8.01	
Redox	mV	53.8		96		39		185	72	
Salinity								0.1		
Sulfate	mg/L	80		80		78		80	0	
Sulfide	mg/L			1		1				
TDS								1.5		
Temperature								15.34 (C)		
Temperature	С								15.5	
Turbidity	NTUs							166	33.9	·

METHOD: SVOC

Analyte	Units	Aug-99 Sep	nt-99 Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L		1 (JB)				0.2 (J)		
Butylbenzylphthalate	ug/L		0.2 (JB)						
Diethylphthalate	ug/L		0.1 (JB)						
Di-n-butylphthalate	ug/L		0.2 (JB)						
Naphthalene	ug/L		0.08 (JB)						
Phenol	ug/L		0.04 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1-Dichloroethane	ug/L					(L) 8.0				
2-Butanone	ug/L					6 (J)				
Chloromethane	ug/L	1				0.7 (J)				
Methylene Chloride	ug/L					0.9 (J)		0.6 (JB)		

ell ID: 92EM-SP-8

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	232		183		249		173	157	
Chloride	mg/L	203		696	-	32		313	248	
Conductivity	mohm/cm							2.7	2.84	
Dissolved Oxygen	mg/L	0.03		2.40		0.00		0.0	2.14	
DOC	mg/L			7.37		9.35		7.32		
DOC Average Quads	mg/L								4.1	
Ferrous Iron	mg/L	0.67		0		1,19		1.41	0	
Methane	ug/L				10	39		18		
Nitrate	mg/L	0.07		0.26		0		0.03	0.1	
Nitrite	mg/L	0.05		0.018		0		0.012	0.004	
pН		6.83		7.20		7.47		7.34	7.56	
Redox	mV	-91		123		-89		-109	14	
Salinity								0.1		
Sulfate	mg/L	80		80		80		80	80	
Sulfide	mg/L			1						
TDS								1.7		
Temperature								14.99 (C)		
Temperature	С								16.11	
Turbidity	NTUs							119	7	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
4-Chloro-3-methylphenol	ug/L	1		0.6 (J)		3		3		
bis(2-Ethylhexyl)phthalate	ug/L	1		0.5 (JB)		0.6 (JB)		0.2 (J)		
Butylbenzylphthalate	ug/L	<u> </u>		0.2 (JB)						
Diethylphthalate	ug/L	1		0.1 (JB)		0.1 (J)				
Di-n-butylphthalate	ug/L		-	0.2 (JB)		0.1 (J)				
Naphthalene	ug/L			0.08 (JB)						
Phenol	ug/L	1		0.04 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1-Dichloroethane	ug/L	<u>_</u>				2 (J)		1 (J)		
Chloromethane	ug/L					0.8 (J)				
cis-1.2-Dichloroethene	ug/L					3 (J)				
Methylene Chloride	ug/L					0.6 (JB)		0.8 (JB)		
Vinyl Chloride	ug/L					1 (J)				

Well ID: 93EM-RW-2

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	124		605		230		173	156	
Chloride	mg/L	86		76		102		264	116	
Conductivity	mohm/cm							1.35	0.694	
Dissolved Oxygen	mg/L	0.80		5.80		0.00		0.0	0.66	
DOC	mg/L			4.53		7.12		5.62		
DOC Average Quads	mg/L								4.4	
Ethane	ug/L							4.1		
Ethene	ug/L		1					15		
Ferrous Iron	mg/L	0.06				0.59	0	1.56	0.26	
Methane	PPB	27								
Methane	ug/L						[840		
Nitrate	mg/L	0.04		0.18		0.044		0.05	0.03	
Nitrite	mg/L	0.01		0.007		0.039		0.021	0.004	
рН		7.05		6.90				7.35	7.53]
Redox	mV	-10		204		-93		-134	-105	
Salinity					•			0.1		
Sulfate	mg/L	23		25		0.14		0.0	33	
Sulfide	mg/L					. 1				
TDS						. [0.9		
Temperature	С							12.46	12.9	
Turbidity	NTUs							44.2	18.8	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthene	ug/L					0.1 (J)		0.5 (J)		
bis(2-Ethylhexyl)phthalate	ug/L		[0.6 (JB)				0.3 (J)		
Butylbenzylphthalate	ug/L			0.09 (J)						
Diethylphthalate	ug/L			0.09 (JB)						· · · ·
Di-n-butylphthalate	ug/L			0.2 (JB)		0.1 (J)		0.2 (J)		
Di-n-octylphthalate	ug/L			0.05 (J)						
Fluorene	ug/L							0.3 (J)		

ell ID: 93EM-RW-2

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					4 (J)				
Benzene	ug/L					0.7				
Bromodichloromethane	ug/L			4 (J)						
Bromodichloromethane (BS)	ug/L			4.4 (J)						
Carbon Disulfide	ug/L					1 (J)				
Chioroform	ug/L			40		1 (J)				
Chloroform (BS)	ug/L			46						
cis-1,2-Dichloroethene	ug/L					20		39		
Methylene Chloride	ug/L			0.8 (J)		2 (J)		1 (JB)		
Tetrachloroethene	ug/L					1 (J)			8 (B)	
trans-1,2-Dichloroethene	ug/L	<u> </u>				1 (J)				
Trichloroethene	ug/L			1 (J)		4 (J)			20	
Vinyl Chloride	ug/L					13		81	5	

Well ID: 93EM-SP-11

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	172		240		206		162	137	
Chloride	mg/L	288		570		246		285	139	
Conductivity	mohm/cm							1.40	1.63	
Dissolved Oxygen	mg/L	0.59		0.67		0.00		0.0	0.69	
DOC	mg/L			1.74		7.08		267		
DOC Average Quads	mg/L								2.5	
Ferrous Iron	mg/L	0.44	·	0.46		1.93		195	1.84	
Methane	PPB	55								
Methane	ug/L			3.1						
Nitrate	mg/L	116		0.12		0	_	0.0	0.15	
Nitrite	mg/L	0.019		0.036		0.019	f	0.016	0.006	
pH '		6.43		6.87		7.04		6.67	7.13	
Redox	mV	34	·	68		-36		-21	-36	
Salinity								0.1		
Sulfate	mg/L	0.14	[54		80	· /	80.0	80	
Sulfide	mg/L					1				
TDS								0.9		
Temperature	C ·							13.0	13.41	
Turbidity	NTUs							117.0	33	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.3 (JB)		0.1 (JB)						
Diethylphthalate	ug/L			0.06 (JB)						
Di-n-butylphthalate	ug/L	0.7 (JB)		0.07 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	1 (J)				4 (J)				
Methylene Chloride	ug/L	0.3 (J)		0.4 (J)				0.7 (JB)	0.3 (J)	

ell ID: 93EM-SP-13

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01		Nov-02
Alkalinity	mg/L	230		2150		224		199	164	
Chloride	mg/L	140		113.6		68		110	83	
Conductivity	mohm/cm							0.815	0.624	
Dissolved Oxygen	mg/L	0.69		0.00		0.00		0.0	0.95	
DOC	mg/L			1		6.27		2.83		
DOC (Dup)	mg/L					6.33				
DOC Average Quads	mg/L								4.5	
Ferrous Iron	mg/L	0.11		0		0.01		0.05	0.01	
Methane	PPB	1300 (D)								
Methane	ug/L				1200			1900 (D)	190	
Methane (Dup)	ug/L					40				
Nitrate	mg/L	0.05		0.33		0.05		0.17	0.03	
Nitrite	mg/L	0.027		0.045		0.026		0.035	0.005	
рН		7.20		7.33		7.55		7.54	5.69	
Redox	mV	-276		-174		-171		-236	-159	
Salinity								0.0		
Sulfate	mg/L	30		41		1		7	8	
Sulfide	mg/L			1		1				
Sulfide (Dup)	mg/L					1				
TDS -								0.52		
Temperature	С								15.78	
Temperature								14.16 (C)		
Turbidity	NTUs			,				13.5	0	

Well ID: 93EM-SP-13

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2,4-Dimethylphenol	ug/L					0.2 (J)				
Acenaphthene	ug/L			0.2 (J)		0.3 (J)			0.5 (J)	
Acenaphthene (Dup)	ug/L					0.4 (J)				
Benzo(a)pyrene	ug/L					0.1 (J)				
Benzo(b)fluoranthene	ug/L			0.09 (J)		0.1 (J)				
Benzo(k)fluoranthene	ug/L			0.06 (J)		0.1 (J)				
bis(2-Ethylhexyl)phthalate	ug/L			5 (JB)		0.5 (JB)		0.6 (JB)		
bis(2-Ethylhexyl)phthalate (Dup)	ug/L					0.5 (JB)				
Butyl benzyl phthalate	ug/L								0.5 (J)	
Butylbenzylphthalate	ug/L			0.8 (JB)		0.2 (J)		0.4 (J)		
Butylbenzylphthalate (Dup)	ug/L					0.3 (J)				
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.5 (JB)		0.2 (J)				
Di-n-butylphthalate (Dup)	ug/L					0.2 (J)				
Di-n-octylphthalate	ug/L			0.1 (JB)						
Fluoranthene	ug/L			0.2 (J)		0.3 (J)		0.2 (J)		
Fluoranthene (Dup)	ug/L					0.3 (J)				
Fluorene	ug/L			0.09 (J)		0.4 (J)		0.3 (J)	0.9 (J)	
Fluorene (Dup)	ug/L					0.4 (J)				
Pyrene	ug/L			0.5 (J)		0.5 (J)		0.4 (J)	<u>.</u>	
Pyrene (Dup)	ug/L					0.6 (J)				

METHOD: VOC

•

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					5 (J)				
cis-1,2-Dichloroethene	ug/L			0.3 (J)						
Methylene Chloride	ug/L			1 (JB)		2 (J)				
Methylene Chloride (Dup)	ug/L				Í	2 (J)				
Tetrachloroethene	ug/L								0.6 (J)	

/ell ID: 93EM-SP-9

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	0	-					578		
Chloride	mg/L							4252		
Conductivity	mohm/cm							19.1		
Dissolved Oxygen	mg/L					2.81		0.0		
DOC	mg/L							200		
Ferrous Iron	mg/L							0.21		
Methane	ug/L							3.3		
Nitrate	mg/L							0.0		
Nitrite	mg/L							0.0		
pH						7.92		7.11		
Redox	mV					58		100		
Salinity								1.3		
Sulfate	mg/L		L					80		
TDS								13		
Temperature	c							14.22		•
Turbidity	NTUs	1		<u> </u>				783		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L							.4 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Chloroform	ug/L					0.8 (J)		1 (J)		
Methylene Chloride	ug/L					3 (JB)		1 (JB)		

Well ID: 94EM-MW-19

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	165		195		207		277	167	
Chloride	mg/L	227		363		56		239	164	
Conductivity	mohm/cm							1.10	0.896	
Dissolved Oxygen	mg/L	0.09		3.00		0.00		0.0	0.84	
DOC	mg/L	1.15		2.24		1.39		1.96		
DOC (Dup)	mg/L							1.52		
DOC Average Quads	mg/L								2.3	
Ferrous Iron	mg/L	0.82		0.36		1.53		0.34	0.06	
Methane	PPB	74								
Methane	ug/L							4.6		
Methane (Dup)	ug/L							3.1		
Nitrate	mg/L	0.02		0.15		0.04		0.0	0	
Nitrite	mg/L	0.022		0		0		0.140	0	
pH		6.14		6.90		7.00		6.95	7.47	
Redox	mV	5.2		59		-33		13	20	
Salinity								0.0		
Sulfate	mg/L	69		48		34		53	30	
Sulfide	mg/L			1		1				
TDS								0.7		
Temperature	С							12.11	13.27	
Turbidity	NTUs							539	969	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			. 2 (JB)		2 (JB)				
bis(2-Ethylhexyl)phthalate (Dup)	ug/L							.7 (J)		
Butylbenzylphthalate	ug/L			0.4 (J)						
Diethylphthalate	ug/L							0.4 (J)		
Di-n-butylphthalate	ug/L			0.3 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					3 (J)				
Methylene Chloride	ug/L			1 (J)		0.8 (J)				

ell ID: 94EM-MW-20

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	76		45		100		123	64	
Chloride	mg/L	1530				3400		2113	993	
Conductivity	mohm/cm							9.71	3.83	
Dissolved Oxygen	mg/L	1.23		2.50		0.00		0.0	0.88	
DOC	mg/L	1.61		3.48		1.21		1.56		
DOC Average Quads	mg/L								1.5	
Ferrous Iron	mg/L	3.3		3.3		3.3		3.3	3.3	
Methane	PPB	. 24								
Methane	ug/L					6.6		8.9		
Nitrate	mg/L	0.06		0.49		0		0.0	1.88	
Nitrite	mg/L	0.016		0.013		0		0.002	0.004	
pН		5.61		6.30		6.21		6.1	6.59	
Redox	mV	-75		27		-8		-45	-78	
Salinity								0.5		
Sulfate	mg/L	45		39		25		23	15	
Sulfide	mg/L			1		1				
TDS								6.0		
Temperature	C							13.78		
Temperature	С								15.07	
Turbidity	NTUs	l						107.0	131	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			3 (JB)		1 (JB)		0.3 (JB)		
Diethylphthalate	ug/L	0.2 (JB)		0.5 (J)				0.3 (J)		
Di-n-butylphthalate	ug/L	0.4 (JB)		0.2 (J)				0.1 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					3 (J)				
Methylene Chloride	ug/L	0.5 (J)				0.8 (J)		0.6 (JB)		
Toluene	ug/L	0.2 (J)							l,	

Well ID: 94EM-MW-21

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	139		107		214		171	146	
Chloride	mg/L	1125		835		580		279	528	
Conductivity	mohm/cm							1.82	2.83	
Dissolved Oxygen	mg/L	0.46		6.90		0.00		0.0	0.82	
DOC	mg/L	2.58		4.31		3.23		4.05		
DOC Average Quads	mg/L					·			2.3	
Ferrous Iron	mg/L			0		0.03		0.0	0.15	
Methane	ug/L							4.1		
Methane	PPB	2.9								
Nitrate	mg/L	0.55		2.43		0		0.42	2.43	
Nitrite	mg/L	0.375		0		0.05		0.069	0.375	
рН		6.44		6.70		7.41		7.16	7.84	
Redox	mV	-12.2		110		-49		-4	62	
Salinity								0.1		
Sulfate	mg/L	80		0.65		80		80	80	
Sulfide	mg/L			1		1				
TDS								1.2		
Temperature	С							13.24	15.24	
Turbidity	NTUs							158	172	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		2 (JB)				0.3 (JB)		
Diethylphthalate	ug/L	0.3 (JB)								
Di-n-butylphthalate	ug/L	0.6 (JB)		0.2 (J)				0.1 (J)		
Di-n-octylphthalate	ug/L							0.4 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	2 (JB)				3 (J)				
4-Methyl-2-Pentanone	ug/L	0.6 (JB)		· · · · · · · · · · · · · · · · · · ·						
Methylene Chloride	ug/L			3 (J)		0.4 (J)		0.6 (JB)		

ell ID: B121-N

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	1000-02
Alkalinity	mg/L	269		165		188		117	. 176	
Chloride	mg/L	353		180		34		152	128	
Conductivity	mohm/cm	· .						0.716	0.779	
Dissolved Oxygen	mg/L	0.44		0.40		0.00		0.0	0.72	
DOC	mg/L	3.95		4.11		3.96		6.38		
DOC Average Quads	mg/L								3.3	
Ethane	PPB	200							L	
Ethane	ug/L			31.9		12				
Ethene	ug/L			43.7		9.0			L	
Ethene	PPB	200								
Ferrous Iron	mg/L	1.52		3.3		0.44		0.07	0.18	
Methane	ug/L			1460		280		28	160	
Methane	PPB	3400 (D)								
Nitrate	mg/L			0.31		0.04		0.02	0.02	
Nitrite	mg/L	0.003		0.027		0		0.006	0	
pН		7.67		7.80		7.79		8.08	8.2	
Redox	mV	-199		-206		-217		-231	-205	
Salinity								0.0		l
Sulfate	mg/L	13		80		2		1.0	25	
Sulfide	mg/L			1						· · ·
TDS								0.46		<u> </u>
Temperature	С							15.04	15.96	
Turbidity	NTUs					1		447	637	

IETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthene	ug/L	1 (J)		1 (J)		2 (J)		0.6 (J)	2 (J)	
bis(2-Ethylhexyl)phthalate	ug/L	0.3 (JB)		0.7 (JB)				2 (J)		
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	0.6 (JB)						0.3 (J)		
Di-n-octylphthalate	ug/L	0.1 (JB)								
Fluoranthene	ug/L	1						0.2 (J)		
Fluorene	ug/L	1				0.2 (J)				
Pyrene	ug/L	0.1 (J)		0.2 (JB)				0.7 (J)		L

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzene	ug/L			0.5 (J)		0.7				
cis-1,2-Dichloroethene	ug/L	110		80		36				
Methylene Chloride	ug/L			2 (JB)		0.6 (J)				
Tetrachloroethene	ug/L		1					1 (J)		
trans-1 2-Dichloroethene	ug/L	1							2 (J)	
trans-1,2-Dichloroethene	ug/L	3 (J)		2 (J)		2 (J)			<u> </u>	
Trichloroethene	ug/L		Í			0.5 (J)				
Vinyl chloride	ug/L	260	1	110		130			90	

Friday, February 21, 2003

Well ID: B121-S

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	100		106		37		15	80	
Chloride	mg/L	1204		985		478		877	819	
Conductivity	mohm/cm							3.13	3.64	
Dissolved Oxygen	mg/L	0.46		0.30		0.00		0.0	0.6	
DOC	mg/L	2.32		2.42		1.35		2.69		
DOC Average Quads	mg/L								3.7	
DOC Average Quads (Dup)	mg/L								1.8	
Ethane	ug/L							16		
Ferrous Iron	mg/L	8.96		3.3		2.01		3.3	3.3	
Methane	ug/L			1470		390		3100 (D)	400 (E)	
Methane (Dup)	ug/L								390 (E)	
Nitrate	mg/L	>80		0		0		0.0	0	
Nitrite	mg/L	>80		0		0		0.0	0	
pH		6.95		7.70		7.78		7.31	8.12	
Redox	mV	-215		-283		-305		-270	-185	
Salinity								0.2		
Sulfate	mg/L	305		80		80		80	80	
Sulfide	mg/L			1						
TDS								2.0		
Temperature	С							17.15	18.1	
Turbidity	NTUs							85.8	53.2	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.2 (JB)		0.1 (JB)				0.3 (J)		
Diethylphthalate	ug/L	0.2 (JB)		0.07 (JB)		0.2 (J)				
Di-n-butylphthalate	ug/L	0.8 (JB)		0.09 (JB)						
Di-n-octylphthalate	ug/L	0.1 (JB)		0.04 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
cis-1,2-Dichloroethene	ug/L	77		44		59		33		
Methylene Chloride	ug/L			2 (JB)		0.6 (J)		0.9 (JB)		
trans-1,2-Dichloroethene	ug/L			0.4 (J)		I				
Trichloroethene	ug/L	0.6 (J)								
Vinyl chloride	ug/L	28		22		25		32	27	
Vinyl chloride (Dup)	ug/L								27	

Vell ID: WVA-AW-135-MW-1

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	228		192		199		81	244	
Chloride	mg/L	180		193		196		53	127	
Conductivity	mohm/cm							0.884	0.843	
Dissolved Oxygen	mg/L	0.72		0.30		0.00		0.0	0.87	
DOC	mg/L			48.4		1.79				
DOC Average Quads	mg/L								5.3	
Ferrous Iron	mg/L	0.07		0.04		0.01		0.0	0.01	
Methane	PPB	5600 (D)								
Methane	ug/L			1420				4300 (E)	740 (E)	
Nitrate	mg/L	4.08		0.57		0.21		0.04	0.09	
Nitrite	mg/L	0.008		0.036		0.004		0.010	0.011	
pH		8.46		8.50		8.47		9.22	9.84	
Redox	mV	109		26		94		145	-123	
Salinity								0.0		
Sulfate	mg/L	16		24		29		6	9	
TDS .								0.56		
Temperature								18.94 (C)		
Temperature	с								19.19	
Turbidity	NTUs							28.8	285	

METHOD: SVOC

Analvte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.7 (JB)				0.4 (J)				
Butylbenzylphthalate	ug/L			0.3 (J)						
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	0.5 (JB)		0.2 (JB)		0.1 (J)				

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,1-Trichloroethane	ug/L			0.5 (J)						
2-Butanone	ug/L					6 (J)				
Methylene Chloride	ug/L			0.7 (JB)		1 (JB)		.8 (JB)		
Toluene	ug/L	0.6 (J)				. <u> </u>				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	14		39		53		46	58	
Chloride	mg/L	558		195		418		526	233	
Conductivity	mohm/cm							1.79	0.865	
Dissolved Oxygen	mg/L	2.18		5.20		1.14		0.0	4.81	
DOC	mg/L			2.49		2.98				
DOC Average Quads	mg/L								0.52 (B)	
Ferrous Iron	mg/L	0.21		0.29		0.05		0.02	1.01	
Methane	ug/L		-			2.4				
Nitrate	mg/L	0.49		0.49		0.37		0.2	1.26	
Nitrite	mg/L	0.027		0.45		0.259		0.015	0.65	
pН		10.23		10.8		9.21		8.77	5.2	
Redox	mV	39		32		149		200	26	
Salinity								0.1		
Sulfate	mg/L	72		329		80		30	9	
Sulfide	mg/L					1				
TDS								1.1		
Temperature								10.95		
Temperature	С								14.4	
Turbidity	NTUs							34.2	163	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	.4 (JB)		0.5 (JB)		0.4 (JB)		.2 (JB)	-	
Diethylphthalate	ug/L	0.3 (JB)		0.1 (JB)						
Di-n-butylphthalate	ug/L	3 (JB)		0.3 (JB)						
Di-n-octylphthalate	ug/L	0.2 (JB)								
Naphthalene	ug/L					0.2 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Methylene Chloride	ug/L	0.9 (J)		2 (J)		3 (JB)		.9 (JB)		
Tetrachloroethene	ug/L								0.8 (J)	
Toluene	ug/L	0.1 (J)		:						

ell ID: WVA-AW-135-MW-4

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01			Nov-02
Alkalinity	mg/L	136		905		170		92	110	
Chloride	mg/L	740		807		597		466	293	
Conductivity	mohm/cm							1.88	1.63	
Dissolved Oxygen	mg/L	0.68		0.60		0.00		0.0	0.62	
DOC	mg/L			1.08		3.35				
DOC Average Quads	mg/L								0.41 (B)	
Ethane	ug/L								140	
Ethene	ug/L					•	·		140	
Ferrous Iron	mg/L	0.03	r	0		0		0.01	0	
Methane	PPB	3.6								
Methane	ug/L					2.3			75	
Nitrate	mg/L	0.55		1.44		0.55		0.55	2.43	
Nitrite	mg/L	0.015		0.14		0.048		0.008	0.016	
pН		7.31		7.4		7.68		7.5	7.25	
Redox	mV	158		28		190		248	103	
Salinity								0.1		
Sulfate	mg/L	14		19		24		18	11	
Sulfide	mg/L	,				1				
TDS								1.2		
Temperature	С								17.62	
Temperature								16.61 (C)		
Turbidity	NTUs							25.5	0	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	.5 (JB)		0.2 (JB)		0.2 (JB)		.3 (JB)		
Diethylphthalate	ug/L	0.3 (JB)								
Di-n-butylphthalate	ug/L	3 (JB)		0.07 (JB)						
Di-n-octylphthalate	ug/L	0.2 (JB)								

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	3 (JB)								
2-Chloroethylvinylether	ug/L	5								
Carbon Tetrachloride	ug/L	5								
Chloroethane	ug/L	5								
Methylene Chloride	ug/L	0.9 (J)		5		3 (JB)		.7 (JB)		
Tetrachloroethene	ug/L			1 (J)					1 (JB)	
Trichloroethene	ug/L			1 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	164		270		170		114	90	
Chloride	mg/L	506		740		223		116	125	
Conductivity	mohm/cm							0.911	0.301	
Dissolved Oxygen	mg/L	0.27		1.22		0.00		0.0	0.89	
DOC	mg/L	4.73		3.62		4.76		236		
DOC Average Quads	mg/L								3.3	
Ferrous Iron	mg/L	0.05		0.15		0.17		0.02	0.08	
Methane	PPB	260								
Methane	ug/L			96.7				120	7.9	
Nitrate	mg/L	0.06		0.33		0.01		0.09	0	
Nitrite	mg/L	0.029		0.147		0.042			0.013	
pH		8.11		11.68		8.59		9.81	10.49	
Redox	mV	-16.6		-36		68		122	-77	
Salinity								0.0		
Sulfate	mg/L	80		80		80		54.0	15	
Sulfide	mg/L					1				
TDS								0.62		
Temperature	С							13.15	13.96	
Turbidity	NTUs							166	219	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		0.3 (JB)		0.5 (J)		1 (J)		
Di-n-butylphthalate	ug/L	0.6 (JB)		0.07 (JB)						
Di-n-octylphthalate	ug/L	0.1 (JB)								
Fluoranthene	ug/L			0.1 (J)		0.1 (J)		.5 (J)		
Naphthalene	ug/L	0.2 (J)								
Phenanthrene	ug/L			0.06 (J)				.3 (J)		
Phenol	ug/L	0.8 (J)		0.3 (J)						
Pyrene	ug/L			0.1 (J)		0.07 (J)		.3 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					3 (J)				
2-Butanone (MEK)	ug/L								7 (JB)	
Carbon Disulfide	ug/L					(L) 8.0				
Methylene Chloride	ug/L			0.4 (J)		2 (J)		.7 (JB)		
Tetrachloroethene	ug/L			3 (J)						
Toluene	ug/L	0.2 (J)								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99		May-00	Oct-00	Apr-01	May-01		Nov-02
Alkalinity	mg/L	189		380		190		227	173	
Chloride	mg/L	341		290		278		250	107	
Conductivity	mohm/cm							1.27	1.21	
Dissolved Oxygen	mg/L	0.34		0.57		0.00		0.0	0.53	
DOC	mg/L					1.54		1.46		
DOC Average Quads	mg/L								320	
Ferrous Iron	mg/L	0.02		0		0.14		0.0	2.09	
Methane	ug/L			12.8		5.2		10	5.2	
Methane	PPB	130								
Nitrate	mg/L	0.04		0.33		1.41		0.38	0.01	
Nitrite	mg/L	0.019		0.047		0.004		0.0	0	
рН		6.38		6.87		7.09		7.00	6.27	
Redox	mV	84.6		191		205		241	-268	
Salinity								0.1		
Sulfate	mg/L	80		80		71		80	11	
Sulfide	mg/L					1		1	8	
TDS								0.8		
Temperature								16.86 (C)		
Temperature	С								15.68	
Turbidity	NTUs							23.9	4.4	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.7 (JB)		0.3 (JB)		0.1 (JB)		,		
Butylbenzylphthalate	ug/L			0.2 (J)						
Diethylphthalate	ug/L	0.2 (JB)		0.2 (JB)						
Di-n-butylphthalate	ug/L	0.7 (JB)		0.3 (JB)						
Di-n-octylphthalate	ug/L	0.1 (JB)		0.03 (J)						
Phenol	ug/L	1								

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1 1-Trichloroethane	ug/L								26	
1 1-Dichloroethane	ug/L								4 (J)	
1 1-Dichloroethene	ug/L								1 (J)	
1,1,1-Trichloroethane	ug/L	49		51		51		43		
1,1-Dichloroethane	ug/L	3 (J)		4 (J)		3 (J)		3 (J)		
1,1-Dichloroethene	ug/L	2 (J)		2 (J)		2 (J)		2 (J)		
2-Butanone	ug/L					4 (JB)				
Bromomethane	ug/L								2 (J)	
Carbon Disulfide	ug/L					0.8 (J)				
Chloroform	ug/L	2 (J)				1 (J)		.8 (J)	0.4 (J)	
cis-1,2-Dichloroethene	ug/L	11		13		12		13		
Methylene chloride	ug/L			0.6 (J)		0.5 (JB)			0.4 (J)	
Tetrachloroethene	ug/L			2 (J)						
trans-1 2-Dichloroethene	ug/L								0.3 (J)	
trans-1,2-Dichloroethene	ug/L					1 (J)	-			
Trichloroethene	ug/L	120		170		170		160	45	
Vinyl Chloride	ug/L					0.6 (J)				

Vell ID: WVA-AW-25-MW-3

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	186		190		178		168	240	
Chloride	mg/L	409		400		380		396	114	
Conductivity	mohm/cm							1.81	1.68	
Dissolved Oxygen	rng/L	1.27		0.87		0.00		0.0	0.65	
DOC	mg/L	2.36		3.62		1.86		3.65		
DOC (Dup)	mg/L					2.02		4.49		
DOC Average Quads	mg/L								3.6	
Ferrous Iron	mg/L	0.03		0		0		0.05	1.76	
Methane	PPB	310							<u> </u>	
Methane	ug/L			7.9		32		6.4	8.3	
Methane (Dup)	ug/L					72		6.2		
Nitrate	mg/L	0.2		0.21		0.78		0.74	0.02	<u> </u>
Nitrite	mg/L	0.028		0.02		0.013		0.067	0.003	
pH		6.36		6.85		7.17		6.96	7.37	
Redox	mV	83		125		63	L	301	-213	
Salinity								0.1		
Sulfate	mg/L	80		80		80		80	80	
Sulfide	mg/L					1			<u> </u>	
Sulfide (Dup)	mg/L					1				
TDS								1.2		
Temperature								13.9 (C)		
Temperature	С								14.83	
Turbidity	NTUs							50.6	6.6	

Analvte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		0.3 (JB)		0.1 (JB)		0.3 (JB)		
bis(2-Ethylhexyl)phthalate (Dup)	ug/L					0.2 (JB)				
Diethylphthalate	ug/L	0.2 (JB)		0.1 (JB)						
Di-n-butylphthalate	ug/L	0.7 (JB)		0.2 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1 1-Trichloroethane	ug/L			-					43	
1 1-Dichloroethane	ug/L								6 (J)	
1 1-Dichloroethene	ug/L								2 (J)	
1,1,1-Trichloroethane	ug/L	49		51		47		41		
1,1,1-Trichloroethane (Dup)	ug/L					41		36		
1,1-Dichloroethane	ug/L	· 6 (J)		4 (J)		5 (J)		4 (J)		
1,1-Dichloroethane (Dup)	ug/L					2 (J)		3 (J)		
1,1-Dichloroethene	ug/L	2 (J)		3 (J)				2 (J)		
1,1-Dichloroethene (Dup)	ug/L					2 (J)	······			
2-Butanone	ug/L					15 (J)				
2-Butanone (Dup)	ug/L					4 (J)				
Carbon Disulfide (Dup)	ug/L					2 (J)				
Chloroform	ug/L	2 (J)				1 (J)		0.9 (J)		
Chloroform (Dup)	ug/L					0.9 (J)	-	.6 (J)		
cis-1,2-Dichloroethene	ug/L	28		22		25		17		
cis-1,2-Dichloroethene (Dup)	ug/L					10		14		
Methylene Chloride	ug/L	1 (J)		5 (J)		3 (J)		3 (JB)		
Methylene Chloride (Dup)	ug/L							2 (JB)		
Tetrachloroethene	ug/L	0.7 (J)								
trans-1,2-Dichloroethene	ug/L				-	3 (J)				
trans-1,2-Dichloroethene (Dup)	ug/L					0.8 (J)				
Trichloroethene	ug/L	280		330		330		290	220	
Trichloroethene (Dup)	ug/L					140		250		
Vinyl Chloride	ug/L	3 (J)	•						3 (J)	
Vinyl Chloride (Dup)	ug/L					0.9 (J)				

Vell ID: WVA-AW-25-MW-5

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	245		208		234		176	77	
Carbon Dioxide	PPB	3600						-		
Chloride	mg/L	1049		1043		486			103	
Conductivity	mohm/cm							2.75	0.947	
Dissolved Oxygen	mg/L	0.34		1.40		0.00		0.0	1.57	
DOC	mg/L	6.34		7.41		8.36		6.4		
DOC Average Quads	mg/L								3.6	
Ferrous Iron	mg/L	3.3		0.04		1.54		2.56	0	
Methane	PPB	91								
Methane	ug/L				180			110		
Nitrate	mg/L	0.04		0.41		0.04		0.06	0.03	
Nitrite	mg/L	0.007	-	0.48		0.072		0.002	0.118	
pН		6.41		6.90		7.14		6.99	7.78	
Redox	mV	-36.3		-24		-58		-79	2	
Salinity								0.2		
Sulfate	mg/L			80		32		35	14	
Sulfide	mg/L			1		1				
TDS								1.7		
Temperature	С								15	
Turbidity	NTUs							640	46.5	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
4-Chloro-3-methylphenol	ug/L	<u> </u>						110		
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		6 (JB)		2 (JB)		.4 (J)		
Butylbenzylphthalate	ug/L			0.8 (JB)				-		
Diethyl phthalate	ug/L								3 (J)	
Diethylphthalate	ug/L	0.2 (J)		0.1 (JB)						
Di-n-butylphthalate	ug/L	0.6 (JB)		0.2 (JB)				.4 (J)		
Di-n-octylphthalate	ug/L			0.5 (JB)						
Fluoranthene	ug/L			0.06 (J)				.2 (J)		

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1-Dichloroethane	ug/L	1 (J)		0.6 (J)		0.6 (J)				
2-Butanone	ug/L					3 (J)				
cis-1,2-Dichloroethene	ug/L	1 (J)		0.6 (J)		0.8 (J)				
Methylene Chloride	ug/L			0.6 (JB)		1 (JB)		.6 (JB)		
Trichloroethene	ug/L					0.2 (J)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			1730		158		154	13	
Chloride	mg/L			1064		1250		1372	363	
Conductivity	mohm/cm							5.30	5.88	
Dissolved Oxygen	mg/L	0.63		1.57				0.52	1.49	
DOC	mg/L							2.1		
DOC Average Quads	mg/L								1.6	
Ferrous Iron	mg/L			0.09		0.41		0.00	0	
Nitrate	mg/L			2.3		0.01		0.55	2.43	
Nitrite	mg/L			0.131		0.133		0.017	0.01	
рН		6.63		7.10				7.2	7.63	
Redox	mV	110.4		177				226	90	
Salinity								0.3		
Sulfate	mg/L			80		80		80	80	
TDS								3.3		
Temperature								14.56 (C)		
Temperature	С								15.22	
Turbidity	NTUs							43.9	0	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L					0.4 (J)		.6 (JB)		
Butylbenzylphthalate	ug/L			· · · · · · · · · · · · · · · · · · ·				.2 (J)		
Di-n-butylphthalate	ug/L							.2 (J)		
Di-n-octylphthalate	ug/L							.2 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1 1-Trichloroethane	ug/L								6 (J)	
1,1,1-Trichloroethane	ug/L					6		5 (J)		
1,1-Dichloroethane	ug/L					0.5 (J)				
2-Butanone	ug/L					4 (JB)				
Carbon Disulfide	ug/L					2 (J)				
Chloroform	ug/L					0.5 (J)			0.4 (J)	
cis-1,2-Dichloroethene	ug/L					(L) e.0				
Methylene Chloride	ug/L					3 (JB)		4 (JB)		
Trichloroethene	ug/L					160		190	210	

/ell ID: WVA-AW-35-MW-5

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	104		210		144		137	108	
Chloride	mg/L	168		290		50		134	78	
Conductivity	mohm/cm							0.797	0.709	
Dissolved Oxygen	mg/L	0.34		9.75		0.00		0.0	0.68	
DOC	mg/L		·	1.32		2.68		4.33		
DOC Average Quads	mg/L								0.74 (B)	
Ferrous Iron	mg/L			0.02		0.07		0.0	0.13	
Methane	PPB	1300								
Methane	ug/L							230		
Nitrate	mg/L	0.18		0.2		0.04		0.03	0.64	
Nitrite	mg/L	0.014		0.024		0.043		0.005	0.058	
pН		8.76		8.54		9.00		8.74	9.39	
Redox	mV	-11		93		36		149	-168	
Salinity	mg/L							0.0		
Sulfate	mg/L	56		31		14		40	26	
Sulfide	mg/L					1				
TDS								0.51		
Temperature	С							14.69	15.8	
Turbidity	NTUs							327.0	0	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.4 (JB)		0.3 (JB)						
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	.6 (JB)								
Di-n-octylphthalate	ug/L	0.2 (JB)							· .	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,2,2-Tetrachloroethane	ug/L	1 (J)								
2-Butanone	ug/L	[4 (J)				
4-Methyl-2-Pentanone	ug/L	0.6 (JB)								
Methylene chloride	ug/L			1 (J)				6	0.2 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	147				89		92	68	
Chloride	mg/L	506				96		813	476	
Conductivity	mohm/cm							2.85	3.36	
Dissolved Oxygen	mg/L	0.65		6.00		0.00		0.0	0.73	
DOC	mg/L			4.61		7.5		5.02		
DOC Average Quads	mg/L								4.3	
Ferrous Iron	mg/L					0.1		0.04	0	
Methane	ug/L			223		13				
Nitrate	mg/L	0.09				0.06		0.02	0.03	
Nitrite	mg/L	0.017				0.033		0.003	0.004	
pН		7.93		7.70		8.77		7.88	8.3	
Redox	mV	-149		30		-105		155	-51	
Salinity								0.1		
Sulfate	mg/L	68				20		17	8	
Sulfide	mg/L					1				
TDS								1.8		
Temperature	С							14.65	16.34	
Turbidity	NTUs							31.5	227	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.5 (JB)		0.8 (J)		.6 (J)		
Chrysene	ug/L					0.2 (J)				
Diethylphthalate	ug/L	-				0.3 (J)				
Di-n-butylphthalate	ug/L					0.6 (J)				
Fluoranthene	ug/L					1 (J)				
Pentachlorophenol	ug/L	1				3 (J)				
Pyrene	ug/L			0.2 (J)		0.2 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					4 (J)				
Carbon Disulfide	ug/L					22				
Ethylbenzene	ug/L			0.4 (J)						
Methylene Chloride	ug/L			0.7 (J)		2 (J)		.6 (JB)		
Toluene	ug/L			2 (J)						
Xylene (total)	ug/L	1		2 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			1930		580			106	
Chloride	mg/L			1379.2		204		· · · · · · · · · · · · · · · · · · ·	84	
Conductivity	mohm/cm							2.03		
Dissolved Oxygen	mg/L			5.79		1.77		4.31		
DOC	mg/L			3.62						
Ferrous Iron	mg/L			0.1		0.28			0.18	
Methane	ug/L			102						
Nitrate	mg/L			2.43		0.06			2.43	
Nitrite	mg/L			0.039		0.017			0.08	
pH				6.51		6.81		7.12		
Redox	mV			189		339		137		
Salinity								0.1		
Sulfate	mg/L			21		12			80	
TDS								1.3		
Temperature	С							10.58		
Turbidity	NTUs							27.8		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.2 (JB)						
Butylbenzylphthalate	ug/L			0.2 (J)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.2 (JB)						
Di-n-octylphthalate	ug/L			0.04 (J)						

IETHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01		May-02	Nov-02
cis-1,2-Dichloroethene	ug/L							.9 (J)		
Methylene Chloride	ug/L					2 (JB)				
Tetrachloroethene	ug/L							.8 (J)	0.4 (J)	

/

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	286		1930		177		199	188	
Chloride	mg/L	367		363.6		423		456	354	
Conductivity	mohm/cm							2.06	2.06	
Dissolved Oxygen	mg/L	1.00		2.61		0		0.0	1.21	
DOC	mg/L			3.87		2.8		2.18		
DOC Average Quads	mg/L								2.1	
Ferrous Iron	mg/L	0.02		0.02		0.11		0.0	0.02	
Methane	PPB	2.1								
Methane	ug/L				46					
Nitrate	mg/L	6.52		1.96		0.05		0.05	0.43	
Nitrite	mg/L	0.011		0.051		0.038		0.014	0.19	
рН		7.18		7.79		7.46		7.25	6.73	
Redox	mV	140		219		132		256	81	
Salinity								0.1		
Sulfate	mg/L	31		29		19		16	54	<u>. </u>
Sulfide	mg/L			1		1				
TDS								1.3		
Temperature	С							11.83	13.2	
Turbidity	NTUs							79.0	1	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.7 (JB)		6 (JB)						
Butylbenzylphthalate	ug/L			0.5 (JB)						
Diethylphthalate	ug/L			0.09 (JB)						
Di-n-butylphthalate	ug/L	0.5 (JB)		0.3 (JB)						
Di-n-octylphthalate	ug/L			0.1 (JB)						
Phenol	ug/L			0.07 (JB)						
Pyrene	ug/L			0.04 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					4 (J)				
Benzene	ug/L	1				;				
Carbon disulfide	ug/L					0.7 (J)			0.4 (J)	
Chloromethane	ug/L	2 (J)								
Methylene Chloride	ug/L							5	0.4 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	85		670				75	49	
Chloride	mg/L	20		32.8				30	0	
Conductivity	mohm/cm							0.211	0.227	
Dissolved Oxygen	mg/L	0.74		3.63		0.12		0.0	1.81	
DOC	mg/L	1.16	· · · · ·	6.51				1.55		
DOC Average Quads	mg/L								0.82 (B)	
Ferrous Iron	mg/L	0.17		0				0.0	0	
Methane	ug/L			20.1				40()		
Methane	PPB	16								
Nitrate	mg/L	0.34		0.92				0.06	0.51	
Nitrite	mg/L	0.016		0.125				0.016	0.036	
рН		6.59		6.57		6.8		7.05	7.3	
Redox	mV	74		357		55		311	135	
Salinity								0.0		
Sulfate	mg/L	15		32				20	29	
TDS		-						0.14		
Temperature								13.94 (C)		
Temperature	С								17.6	
Turbidity	NTUs							74.8	82.5	

METHOD: SVOC

R	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Ľ	bis(2-Ethylhexyl)phthalate	ug/L	0.7 (JB)		0.4 (J)				.3 (JB)		
	Diethylphthalate	ug/L	0.2 (JB)								
E	Di-n-butylphthalate	ug/L	0.3 (JB)		0.2 (JB)				.1 (J)		
	Di-n-octylphthalate	ug/L	0.2 (JB)						.2 (J)		

TETHOD: VOC

þ

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Chlorobenzene	ug/L	3 (J)								
cis-1,2-Dichloroethene	ug/L	0.6 (J)								
Methylene Chloride	ug/L	0.8 (JB)		0.4 (J)		1 (J)				
Trichloroethene	ug/L	0.3 (J)								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	390		2420					375	
Carbon Dioxide	PPB	370								
Chloride	mg/L	126		299.2					61	
Conductivity	mohm/cm							2.47		
Dissolved Oxygen	mg/L	2.17				1.97		5.96		
DOC	mg/L	47.8								
DOC Average Quads	mg/L								8.3	
Ferrous Iron	mg/L	0.45		0.37					0.35	
Methane	PPB	3600								
Methane	ug/L			9.4				270 ()		
Nitrate	mg/L	0.31		0.35					0.13	
Nitrite	mg/L	0.024		0.008					0	
рН		6.73				7.00		7.23		
Redox	mV	-51				-129	-	-34		
Salinity								0.1		
Sulfate	mg/L			41					0	
TDS								1.4		
Temperature								17.61 (C)		
Turbidity	NTUs							166		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Bis(2-ethylhexyl)phthalate	ug/L	0.8 (JB)		1 (JB)					0.8 (J)	
Di-n-butylphthalate	ug/L	0.5 (JB)								
Di-n-octylphthalate	ug/L	0.4 (JB)								
Fluoranthene	ug/L	0.1 (J)		0.1 (J)						
Pyrene	ug/L	0.1 (J)		0.3 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,2,2-Tetrachloroethane	ug/L			0.6 (J)		0.8 (J)				
2-Butanone	ug/L	7 (JB)		2 (J)		5 (J)				
4-Methyl-2-Pentanone	ug/L	0.9 (JB)		1 (J)						
Benzene	ug/L	0.7								
Chlorobenzene	ug/L					0.2 (J)				
Methylene Chloride	ug/L			3 (J)		(J) 0.9		.7 (JB)		
Toluene	ug/L			0.2 (J)						
Trichloroethene	ug/L					0.5 (J)				
Xylene (total)	ug/L					0.4 (J)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	104		1005		115		88	113	
Chloride	mg/L	497		593.2		700		475	550	
Conductivity	mohm/cm							1.87	2.4	
Dissolved Oxygen	mg/L	0.69		0.00		2.10		0.0	1.43	
DOC	mg/L			5.53		1				
DOC Average Quads	mg/L								1.4	
DOC Average Quads (Dup)	mg/L								1.6	
Ferrous Iron	mg/L	0.01		0.13		1.55		0.0	0.17	
Methane	PPB	350								
Methane	ug/L			1450		590		2.7		
Methane (Dup)	ug/L							6.9		
Nitrate	mg/L	0.11		0.16		0.13		0.05	0.28	
Nitrite	mg/L	0.016		0.015		0.042		0.030	0.02	
pН		7.36		7.89		7.37		7.52	5.39	
Redox	mV	141		-71		-119		108	58	
Salinity								0.1		
Sulfate	mg/L	48		12		31		43	6	
Sulfide	mg/L			1		1				
TDS								1.2		
Temperature								10.79 (C)		
Temperature	С								13.51	
Turbidity	NTUs							27.1	0	

METHOD: SVOC

4

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			2 (JB)				.3 (J)		
bis(2-Ethylhexyl)phthalate (Dup)	ug/L							.5 (J)		

METHOD: VOC

Analvte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Methylene Chloride	ug/L			1 (JB)		2 (J)		1 (JB)		
Methylene Chloride (Dup)	ug/L							.5 (JB)		
Tetrachloroethene	ug/L								2 (J)	
Tetrachloroethene (Dup)	ug/L					:			1 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	205		143		194		190	192	
Carbon Dioxide	PPB	6400								
Chloride	mg/L			168		368		646	3.8	
Conductivity	mohm/cm							2.42	1.67	
Dissolved Oxygen	mg/L	0.74		0.50		1.89		0.0	2.02	
DOC	mg/L			15.5		20.2		14.9		
DOC Average Quads	mg/L								7.5	
Ferrous Iron	mg/L	3.11		1.02		2.58		2.84	1.72	
Methane	PPB	130		:					1	
Methane	ug/L							42	25	
Nitrate	mg/L	0.06		0.23		0.26		0.05	0.21	
Nitrite	mg/L	0.014		0.022		0.047		0.032	0.001	
pН		6.26		9.00		6.49		6.49	6.31	
Redox	mν	28		-42		-36	÷	-47	-67	
Salinity			-					0.1		
Sulfate	mg/L			23		11		23	1	
Sulfide	mg/L			1						
TDS								1.6		
Temperature								14.51 (C)		
Temperature	С								14.22	
Turbidity	NTUs							47.2	0	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L					0.5 (J)		.5 (J)		
Di-n-butylphthalate	ug/L					0.2 (J)		.3 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L.					5 (J)				
Chloroform	ug/L					1 (J)				
cis-1,2-Dichloroethene	ug/L			1 (J)		2 (J)		.9 (J)		
Methylene Chloride	ug/L			4 (J)		2 (JB)		.6 (JB)		
Tetrachloroethene	ug/L								3 (J)	
Vinyl Chloride	ug/L			2		2		2	3 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	82		550		118		108	116	
Chloride	mg/L	930		1035.2		1306		965	935	
Conductivity	mohm/cm					•		3.93	4.39	
Dissolved Oxygen	mg/L	0.49	<u>.</u>	1.34		0.00		0.0	1.04	
DOC	mg/L			1		1.59		1.4		
DOC Average Quads	mg/L								0.52 (B)	
Ferrous Iron	mg/L	1.26		0.06		1.37		0.01	0	
Methane	PPB	220								
Methane	ug/L				150					
Nitrate	mg/L	0.26	l	0.51		0.02		0.35	0.55	
Nitrite	mg/L	0.005		0.043		0.079		0.019	0.006	
рН		6.87		7.02		7.36		7.16	6.84	
Redox	mV	-29		148		-71		158	49	
Salinity								0.2		
Sulfate	mg/L	80		2		80		80	80	
Sulfide	mg/L			1		1				
TDS								2.5		L
Temperature	С							15.62	18.21	
Turbidity	NTUs			Ī				54.2	0	L

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	<u> </u>		0.3 (JB)		0.5 (J)		.5 (J)		
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.3 (JB)				.3 (J)		
Di-n-octylphthalate	ug/L			0.03 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					4 (J)				
Methylene Chloride	ug/L							.6 (JB)		
Tetrachloroethene	ug/L							.6 (J)		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	124		610		120		78	104	
Carbon Dioxide	ug/L				2200				5500	
Carbon Dioxide	PPB	3100								
Chloride	mg/L	985		600		2269		2413	1324	
Conductivity	mohm/cm							8.81	6.35	
Dissolved Oxygen	mg/L	0.66		0.00		0.00		0.0	1.52	
DOC	mg/L			1		5.98				
DOC Average Quads	mg/L								2.6	
Ethane	ug/L								100	
Ethene	ug/L								110	
Ferrous Iron	mg/L	0.09		0.11		0.03		0.05	0	
Methane	ug/L				14				46	
Nitrate	mg/L	0.4		1.82		0.55		0.24	2.43	
Nitrite	mg/L	0.035		0.052		0.065		0.02	0.047	
pН		5.70		6.10		6.55		6.31	7.05	
Redox	mV	208		239		170		221	132	
Salinity				-				0.5		
Sulfate	mg/L	80		80		80		80	80	
Sulfide	mg/L			1		1				
TDS				·				5.5		
Temperature	C ·							13.28	15.61	
Turbidity	NTUs							49.0	41	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.3 (JB)		0.2 (JB)		.3 (J)		
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L			0.2 (JB)						
Di-n-butylphthalate	ug/L			0.2 (JB)						
Di-n-octylphthalate	ug/L			0.08 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Methylene Chloride	ug/L					3 (JB)		.8 (JB)		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	295	-	2.5		317		293	138	
Carbon Dioxide	ug/L				5200					
Chloride	mg/L	1252		784		966		1070	200	
Conductivity	mohm/cm							3.81	3.62	
Dissolved Oxygen	mg/L	4.00	-	6.30		0.00		0.99	2.4	
DOC	mg/L			2.42		8.34				
DOC Average Quads	mg/L								5.6	
Ferrous Iron	mg/L	0.05		0.01		0		60	0.01	
Nitrate	mg/L	0.03		0.39		0.06		0.31	0.07	
Nitrite	mg/L	0.033		0.024		0.002		0.038	0.145	
pH		6.17		6.80		6.86		6.69	7.11	
Redox	mV	120		187		240		303	136	
Salinity								0.2		
Sulfate	mg/L	51		39		49		80	46	
Sulfide	mg/L			1						-
TDS								2.4		
Temperature	C							13.69	14.59	
Turbidity	NTUs		<u> </u>					31.1	9.1	

1ETHOD: SVOC

	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
	bis(2-Ethylhexyl)phthalate	ug/L			2 (JB)		0.7 (JB)		.3 (JB)		
Ì	Di-n-butylphthalate	ug/L			0.3 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					- 5 (J)		_		
Methylene Chloride	ug/L			7 (B)		0.9 (J)		2 (J)		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			350						
Chloride	mg/L			44.8				<u> </u>		
Conductivity	mohm/cm							2.346		
Dissolved Oxygen	mg/L							15.22		
Ferrous Iron	mg/L			0						
Nitrate	mg/L			2.19						
Nitrite	mg/L			0.08	·					
pН						6.8		7.52		
Redox	mV					341				
Salinity								0.0		
Sulfate	mg/L			63						
TDS								0.26		
Temperature	С							13.13		
Turbidity	NTUs							5.2		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Chioroform	ug/L			0.2 (J)						
Methylene Chloride	ug/L			2 (J)		0.6 (JB)		.9 (J)		
Tetrachloroethene	ug/L			0.9 (J)		0.8 (J)		1 (J)	1 (J)	
Trichloroethene	ug/L			0.3 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	195		1320		141		132		
Chloride	mg/L	204		237.6		21.		181		
Conductivity	mohm/cm							1.12		
Dissolved Oxygen	mg/L	0.57		0.82		0		1.75		
DOC	mg/L	1.44		3.43		2.11		1.75		
Ethene	ug/L			10.6						
Ferrous Iron	mg/L	0.72		0.21		0.29		0.16		
Methane	PPB	850								
Methane	ug/L			120				26		-
Nitrate	mg/L	0.24		0.42		0.01		0.009		
Nitrite	mg/L	0.021		0.041		0.018				
pН		7.03		7.27		7.49		7.41		
Redox	mV	-63		12		-80		-78		
Salinity								0.0		
Sulfate	mg/L	26		95		31		21		
TDS								0.2		
Temperature	С							14.23		
Turbidity	NTUs							12.4		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00		Apr-01		May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.5 (JB)		0.2 (J)		0.4 (J)		.5 (JB)		
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	0.8 (JB)		0.1 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,1-Trichloroethane	ug/L			11 (J)						
1,1,2,2-Tetrachloroethane	ug/L			4 (J)						
1,1-Dichloroethene	ug/L	4 (J)		7 (J)						
Chloroform	ug/L			3 (J)					2 (J)	
cis-1,2-Dichloroethene	ug/L	1,300		1400		830		1400		
Methylene Chloride	ug/L	5 (J)		10 (J)		17 (J)		29 (J)		
Tetrachloroethene	ug/L	370 (B)		170		190		1600	9 (J)	
trans-1 2-Dichloroethene	ug/L	1							1 (J)	
trans-1,2-Dichloroethene	ug/L	11 (J)		19 (J)		7 (J)				
Trichloroethene	ug/L	190		150		100		460		
Vinyl Chloride	ug/L	67		54		33		58		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	175		2520		168		226	129	
Chloride	mg/L	417		408		469		514	170	
Conductivity	mohm/cm							2.31	2.7	
Dissolved Oxygen	mg/L	0.54		0.67		0.60		0.0	0.7	
DOC	mg/L	1.27		2.3		3.48		5.43		
DOC Average Quads	mg/L								1.5	
Ethene	PPB	6.1								
Ferrous Iron	mg/L	0.16		0		0.04		0.07	0.14	
Methane	PPB	12								
Methane	ug/L			27.0		2.0			2.8	
Nitrate	mg/L	0.05		0.32		0.09		0.86	0.02	
Nitrite	mg/L	0.028		0.053		0.046		0.120	0.03	
pН		6.59		7.06		7.40		7.18	7.54	
Redox	mV	80.4		77		169		116	-10	
Salinity								0.1		<u>,</u>
Sulfate	mg/L	80		80		80		80	80	
Sulfide	mg/L					1				
TDS								1.5		
Temperature								15.27 (C)		
Temperature	С								15.5	
Turbidity	NTUs							47.1	0	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.4 (JB)		0.7 (JB)		0.3 (J)		.1 (J)		
Diethylphthalate	ug/L	0.1 (JB)								
Di-n-butylphthalate	ug/L	0.5 (JB)								
Di-n-octylphthalate	ug/L	0.2 (JB)								

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1-Dichloroethene	ug/L			0.4 (J)						
2-Butanone	ug/L					5 (J)				
cis-1,2-Dichloroethene	ug/L	18		17		12		12		
Methylene Chloride	ug/L			2 (J)						
Tetrachloroethene	ug/L	4 (J)								
trans-1 2-Dichloroethene	ug/L								1 (J)	
trans-1,2-Dichloroethene	ug/L	2 (J)		1 (J)		2 (J)		1 (J)		
Trichloroethene	ug/L	82		74		81		64	52	
Vinyl Chloride	ug/L	2		2		2			4 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			1130						
Chloride	mg/L			668						
Conductivity	mohm/cm								3.69	
Dissolved Oxygen	mg/L	3.91		7.88					2.89	
DOC	mg/L			2.67						
DOC Average Quads	mg/L								3.5	
Ferrous Iron	mg/L			0						
Nitrate	mg/L			0.23						
Nitrite	mg/L			0.46						
рН		6.32		7.07					7.41	
Redox	mV	-1		171					174	
Sulfate	mg/L			76						
Temperature	С								18.74	
Turbidity	NTUs								45.1	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)						
Di-n-butylphthalate	ug/L			0.3 (J)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	Nov-02
1,1,2,2-Tetrachloroethane	ug/L			0.6 (J)						
2-Butanone	ug/L					4 (J)				
4-Methyl-2-Pentanone	ug/L			0.5 (J)						
Chlorobenzene	ug/L			0.2 (J)						
cis-1,2-Dichloroethene	ug/L			17		180		78		
Methylene Chloride	ug/L			0.3 (JB)						
Tetrachloroethene	ug/L			0.6 (J)					2 (JB)	
trans-1 2-Dichloroethene	ug/L								3 (J)	
trans-1,2-Dichloroethene	ug/L			1 (J)		6		2 (J)		
Trichloroethene	ug/L			13		20		17	30	
Vinyl chloride	ug/L					0.8 (J)			2 (J)	
Xylene (total)	ug/L			0.3 (J)	1	r				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	88		230		90		28	48	
Chloride	mg/L	432		150		10		240	123	
Conductivity	mohm/cm							1.05		
Dissolved Oxygen	mg/L	1.16		5.23		0.00		4.21		
DOC	mg/L	1.06		1.23		1		280		
DOC Average Quads	mg/L								2.5	
Ferrous Iron	mg/L			0.09		0		0.00	0.05	
Methane	PPB	62								
Methane	ug/L							7.3	81 (D)	
Nitrate	mg/L	2.76		1.84		0.27		0.55	0.05	
Nitrite	mg/L	0.012		0.033		0.001		0.008	0.141	
рН		8.92		10.32		9.06		9.57		
Redox	mV	101		98		101		147		
Salinity								0.0		
Sulfate	mg/L	21		26		61		18.0	0	
Sulfide	mg/L					1				
TDS				Ĩ				0.7		
Temperature								12.15 (C)		
Turbidity	NTUs							34.8		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthene	ug/L								0.6 (J)	
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		0.5 (JB)				.4 (J)		
Butyl benzyl phthalate	ug/L								0.4 (J)	
Butylbenzylphthalate	ug/L			0.08 (J)						
Diethylphthalate	ug/L	0.2 (JB)		0.1 (JB)						
Di-n-butylphthalate	ug/L	0.8 (JB)		0.2 (JB)						
Di-n-octylphthalate	ug/L	0.3 (JB)		0.04 (J)						
Fluorene	ug/L								1 (J)	
Pyrene	ug/L								0.5 (J)	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	May-01	May-02	Nov-02
2-Butanone	ug/L					4 (J)			
Methylene chloride	ug/L	0.6 (J)					.7 (JB)	0.3 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01		May-02	Nov-02
Alkalinity	mg/L	189		1715		211		166	140	
Chloride	mg/L	188		255.6		257		240	194	
Conductivity	mohm/cm							1.26	1.31	
Dissolved Oxygen	mg/L	2.51		0.90		2.40		0.0	0.56	
DOC	mg/L			1						
DOC (Dup)	mg/L			1.41						
DOC Average Quads	mg/L								2.3	
Ferrous Iron	mg/L	0.04		0		0.02		0.0	0.16	
Methane	PPB	2.6	•							
Methane	ug/L					3.4		22		
Nitrate	mg/L	0.05		0.34		0		0.02	0.11	
Nitrite	mg/L	0.005		0.008		0		0.002	0	
pН		8.35		7.98		6.70		7.86	6.61	
Redox	mV	27		137		129		-35	16	
Salinity								0.1		
Sulfate	mg/L	53		73		52		44	56	
Sulfide	mg/L			1						
Sulfide (Dup)	mg/L			1						
TDS								0.8		
Temperature	С							12.85	14.71	
Turbidity	NTUs]				35.4	0	

TETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			2 (JB)		0.4 (J)		.9 (J)		
bis(2-Ethylhexyl)phthalate (Dup)	ug/L			1 (JB)		•				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					2 (J)				<u> </u>
cis-1,2-Dichloroethene	ug/L			2 (J)						
Methylene Chloride	ug/L			2 (J)		0.6 (J)			0.3 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	337		263		347		270	222	
Carbon Dioxide	ug/L				4900	5500()			-	
Chloride	mg/L	948		877		130		618	73	
Conductivity	mohm/cm							3.03	1.66	
Dissolved Oxygen	mg/L	0.53		0.50		0.00		2.03	0.8	
DOC	mg/L			21.7		2.22		14.6]
DOC Average Quads	mg/L								9.8	
Ferrous Iron	mg/L	2.16		0.5		2.71		2.43	1.05	
Methane	ug/L				310	300()		370	52	
Nitrate	mg/L	0.22		0		0.08		0.14	0.03	
Nitrite	mg/L	0.052		0		0.036		0.071	0.013	
pН		6.27		6.70		6.86		6.65	7.27	
Redox	mV	-65.2		-40		-54		-76	-163	
Salinity								0.1		
Sulfate	mg/L	40	· ·	76		4		31	41	
Sulfide	mg/L			1						
TDS								1.9		
Temperature	С							17.24	16.41	
Turbidity	NTUs							16.2	5.6	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
4-Chloro-3-methylphenol	ug/L			66		130		84	43	
bis(2-Ethylhexyl)phthalate	ug/L			6 (JB)		······································		.4 (JB)		
Butylbenzylphthalate	ug/L			1 (JB)		0.6 (J)		.9 (J)		
Di-n-butylphthalate	ug/L			0.7 (JB)		0.4 (J)		.4 (JB)		
Di-n-octylphthalate	ug/L			0.1 (JB)						
Fluoranthene	ug/L			0.2 (J)				.2 (J)		
Naphthalene	ug/L							.5 (JB)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1-Dichloroethane	ug/L								3 (J)	
1,1-Dichloroethane	ug/L			6		8		5		
2-Butanone	ug/L					10				
Chloromethane	ug/L					4 (J)				
Methylene Chloride	ug/L			0.9 (JB)		3 (JB)		2 (J)	0.2 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	349		314		456		200	105	
Carbon Dioxide	PPB	420							ļ	
Carbon Dioxide	ug/L				6200	2400()				
Chloride	mg/L	990		733		696	 	450	75	
Conductivity	mohm/cm							2.49	1.74	
Dissolved Oxygen	mg/L	0.86		1.20		0.00		2.4	0.79	
DOC	mg/L	13.5		60.8		16.8		14.4		
DOC Average Quads	mg/L								8.6	ļ <u></u>
Ferrous Iron	mg/L	2.2		0.87		1.09		0.54	0.37	
Methane	ug/L				190			220	7.2	
Methane	PPB	810								
Nitrate	mg/L	0.07		0.96		0.06		0.12	0.3	
Nitrite	mg/L	0.029		0		0.183			0.007	
pH		6.26		6.60		6.87		6.66	7.21	
Redox	mV	-45.2		9		-18		-21	-24	
Salinity								0.1		
Sulfate	mg/L	80		71		43		30	30	
Sulfide	mg/L	1		1						
TDS								1.5		
Temperature	C C							15.05	16	<u> </u>
Turbidity	NTUs		1					11.3	8	·

IETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
4-Chloro-3-methylphenol	ug/L	37		18		5		31	18 (M)	
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		6 (JB)		0.4 (JB)		.2 (JB)		
Butylbenzylphthalate	ug/L			0.9 (JB)						
Diethylphthalate	ug/L	0.2 (JB)					<u>.</u>			
Di-n-butylphthalate	ug/L	0.9 (JB)		0.3 (JB)				.2 (JB)		
Di-n-octylphthalate	ug/L	0.3 (JB)		0.4 (JB)				.2 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1-Dichloroethane	ug/L	8							2 (J)	
1,1-Dichloroethane	ug/L	5		3 (J)		3 (J)		2 (J)		
1,1-Dichloroethene	ug/L	0.5 (J)								
2-Butanone	ug/L	3 (J)				6 (J)	ļ			
Bromomethane	ug/L	0.5 (J)								
Carbon Disulfide	ug/L					4 (J)			<u> </u>	
Methylene Chloride	ug/L	1		0.6 (JB)		3 (JB)]	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	351		307		274		299	152	
Chloride	mg/L	241		172		43		71	34	
Conductivity	mohm/cm							1.51	1.53	
Dissolved Oxygen	mg/L	0.28		0.60		0.00		0.0	0.97	
DOC	mg/L			5.48		4.78		3.03		
DOC Average Quads	mg/L								4.6	
Ethene	PPB	14								
Ferrous Iron	mg/L	1.91		1.04		1.45		2.03	1.85	
Methane	PPB	3400 (D)								
Methane	ug/L				7400	670()		2600 (D)	1800 (D)	
Nitrate	mg/L	0.25		0		0.09		0.09	0.01	
Nitrite	mg/L	0.49		0	·	0.034		0.019	0.203	
pН		6.72		7.10		7.50		7.22	7.73	
Redox	mV	-115.2		-89		-116		-128	-173	
Salinity			<u> </u>					0.1		
Sulfate	mg/L	24		0		31		13	1	
Sulfide	mg/L			1				1		
TDS								1.0		
Temperature								14.29 (C)		
Temperature	С								13.84	
Turbidity	NTUs							34.5	999	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Anthracene	ug/L			0.02 (J)						
bis(2-Ethylhexyl)phthalate	ug/L			0.7 (JB)		0.5 (JB)				
Butylbenzylphthalate	ug/L			0.3 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.3 (JB)						
Di-n-octylphthalate	ug/L	l		0.08 (JB)						
Naphthalene	ug/L			0.06 (JB)						
Phenanthrene	ug/L			0.04 (JB)						
Pyrene	ug/L			0.04 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Chloromethane	ug/L							1 (J)		
cis-1,2-Dichloroethene	ug/L			34		17		15		
Methylene chloride	ug/L					2 (JB)			1 (JB)	
trans-1 2-Dichloroethene	ug/L								0.5 (J)	
Vinyl chloride	ug/L			14		13		10	18	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	INOV-02
Alkalinity	mg/L	313		310		323		134	259	
Chloride	mg/L	270		260		310		270	51	
Conductivity	mohm/cm							1.77	1.9	
Dissolved Oxygen	mg/L	3.50		0.55		2.07		1.59	0.59	
DOC	mg/L	3.55		13.2		8.54		5.78		
DOC Average Quads	mg/L								20	
Ethane	PPB	78								
Ethane	ug/L			32.6		39		27 (D)	82 (D)	<u> </u>
Ethene	ug/L	1		180		13		12	1200 (E)	
Ethene	PPB	37								
Ferrous Iron	mg/L	0.02	[0.04		0.12		0.06	0.03	
Methane	PPB	2200 (D)								
Methane	ug/L			1300		2400 (D)		3800 (E)	2400 (D)	
Nitrate	mg/L	0.21		0.38		0.1		0.017	0.04	
Nitrite	mg/L	0.017		0.046		0.112			0.081	
pН		9.13		9.54		9.35		9.13	9.02	
Redox	mV	78		40		18		-17	-140	
Salinity								0.1	<u> </u>	
Sulfate	mg/L	5		4		2		3	8	
Sulfide	mg/L					1		<u> </u>	0.5 (B)	· · · · ·
TDS								1.1		
Temperature	С							15.63	14.19	
Turbidity	NTUs	1						0.7	23	<u> </u>

ETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Anthracene	ug/L	10								
bis(2-Ethylhexyl)phthalate	ug/L	0.4 (JB)		14 (B)		3 (JB)		.7 (JB)		
Diethylphthalate	ug/L	0.2 (JB)		0.3 (JB)						
Di-n-butylphthalate	ug/L	0.7 (JB)		0.3 (JB)						
Di-n-octylphthalate	ug/L	0.1 (JB)								
Naphthalene	ug/L	0.2 (J)		0.06 (J)						<u> </u>
Phenol	ug/L					0.9 (J)		.8 (J)	0.6 (J)	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
								47 (J)		
Benzene	ug/L	<u> </u>			 	44000	[12000		
cis-1,2-Dichloroethene	ug/L	16,000		11000		11000				
Methylene Chloride	ug/L	180 (J)		1400		260 (J)		310 (J)		
	ug/L	28.000		27000		12000		13000	42000 (B)	
Tetrachloroethene				4000		7200		8300	15000	
Trichloroethene	ug/L	2,300		1900						
Vinyl chloride	ug/L	280 (J)		220 (J)		280		350	8300	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	NR		10000		1800		1693	1350	
Chloride	mg/L	28		20.8		38		45	40	
Conductivity	mohm/cm							8.11	8.75	
Dissolved Oxygen	mg/L	5.41		4.68		1.29		0.73	2.34	
DOC	mg/L			5.53		4.38		4.55		
DOC Average Quads	mg/L								2.6	
Ethane	ug/L								1300	
Ethene	ug/L								1300	
Ferrous Iron	mg/L	2.16		0.58		3.11		1.17	3.3	
Methane	PPB	2000 (D)								
Methane	ug/L				4200	1500 (D)		2600 (E)	1400	
Nitrate	mg/L	0.01		0.15		0.04		0.23	0.09	
Nitrite	mg/L	0.007		0.178		0.044		1.64	0.397	
рН		12.43		13.19		13.16		12.94	14.09	
Redox	mV	52		-112		-97		-117	-156	
Salinity								0.4		
Sulfate	mg/L			14		5		1.0	0	
Sulfide	mg/L			1		1				
TDS								5.1		
Temperature	С							13.99	15.89	·]
Turbidity	NTUs							40.6	12.3	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.5 (JB)				.7 (JB)		
Butylbenzylphthalate	ug/L			0.08 (JB)				.1 (J)		
Diethylphthalate	ug/L			0.05 (JB)				.09 (J)		
Di-n-butylphthalate	ug/L]		0.08 (JB)				.2 (JB)		
Di-n-octylphthalate	ug/L			0.06 (JB)						
Naphthalène	ug/L			0.08 (JB)						
Phenol	ug/L			0.5 (JB)		0.4 (J)		.3 (J)	0.5 (J)	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone (MEK)	ug/L								5 (J)	
Carbon disulfide	ug/L								0.4 (J)	
Chlorobenzene	ug/L								0.5 (J)	
Chloromethane	ug/L							2 (J)		
cis-1,2-Dichloroethene	ug/L			2 (J)		4 (J)		2 (J)		
Methylene Chloride	ug/L			1 (JB)		2 (JB)		2 (JB)	0.7 (J)	
Tetrachloroethene	ug/L			1 (J)		3 (J)		5	5 (J)	
Toluene	ug/L			1 (JB)		(J) 8.0		(J) 8.	0.7 (J)	
Trichloroethene	ug/L			2 (J)		3 (J)		3 (J)	3 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			1720		295		320	0	
Chloride	mg/L			1239.2		1220		744	45	
Conductivity	mohm/cm							3.32	0.43	
Dissolved Oxygen	mg/L	0.83		0.38		1.87		0.0	4.79	
DOC	mg/L			5.1		3.4				
DOC Average Quads	mg/L		-						2	
Ferrous Iron	mg/L			0.03		0.7		0.0	0.01	
Methane	ug/L	<u> </u>		542				2700 (E)		
Nitrate	mg/L			0.32		0.13		0.0	0.56	
Nitrite	mg/L			0.012		0.042		0.0	0.009	
pH		7.12		7,78		7.71		7.44	7.3	
Redox	mV	-145		-113		-169		-140	98	
Salinity								0.2		
Sulfate	mg/L			80		11		4.0	4	
Sulfide	mg/L					1				
TDS								2.1		
Temperature	С							14.62	14	
Turbidity	NTUs							3.7	0	

ETHOD: SVOC

Analyte	Units	Aug-99	Sept-99		May-00	Oct-00	Apr-01		May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.3 (J)				.3 (JB)		
Diethylphthalate	ug/L			0.2 (J)						
Di-n-butylphthalate	ug/L			0.2 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Chloroform	ug/L								0.3 (J)	
cis-1,2-Dichloroethene	ug/L					0.4 (J)				
Methylene Chloride	ug/L			3 (JB)		0.4 (J)		.5 (J)		
Tetrachioroethene	ug/L								0.4 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01		May-02	Nov-02
Alkalinity	mg/L	140		2250		142		111.0		
Chloride	mg/L	464		355.2		150		72		
Conductivity	mohm/cm							0.765		
Dissolved Oxygen	mg/L	0.76		0.66		1.94		1.11		
DOC	mg/L	1.10		2.04		5.51		2.52		
Ethane	ug/L			14.5						
Ethene	ug/L			9.4						
Ferrous Iron	mg/L	0.01		0.06		0.16		0.04		
Methane	PPB	2700								
Methane	ug/L			5250 (D)		58		100		
Nitrate	mg/L	0.2		0.88		1.08		0.128		
Nitrite	mg/L	0.013		0.057		0.333				
pН		10.15		10.65		10.72		10.0		
Redox	mV	-78		-183		27		112		
Salinity	[0.0		
Sulfate	mg/L			9		22		-26		
Sulfide	mg/L					1		·		
TDS								0.49		
Temperature	С							13.67		
Turbidity	NTUs							1.3		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.7 (JB)		1 (JB)		2 (JB)				
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	0.6 (JB)								
Phenol	ug/L			0.2 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,2,2-Tetrachloroethane	ug/L			3 (J)						
1,1-Dichloroethene	ug/L	1 (J)		2 (J)						
2-Butanone	ug/L			12 (J)						
4-Methyl-2-Pentanone	ug/L			8 (J)				1		
Benzene	ug/L			1 (J)						
Bromodichloromethane	ug/L					2 (J)		2 (J)	5 (J)	
Carbon Disulfide	ug/L	8 (J)		12 (J)					1	
Chlorobenzene	ug/L			1 (J)						
Chloroform	ug/L	1 (J)		3 (J)		23		14	18	
cis-1,2-Dichloroethene	ug/L	700		490		210		150		
Dibromochloromethane	ug/L								1 (J)	
Ethylbenzene	ug/L			1 (J)			L			
Methylene chloride	ug/L	3 (J)		16 (J)		4 (J)		.7 (J)	0.8 (JB)	
Tetrachloroethene	ug/L	2 (JB)						<u> </u>		
Toluene	ug/L			2 (J)						
trans-1,2-Dichloroethene	ug/L	3 (J)		3 (J)		1 (J)		1 (J)		
Trichloroethene	ug/L			2 (J)		0.5 (J)				1
Vinyl Chloride	ug/L	37	T	31		6		5		
Xylene (total)	ug/L			2 (J)			<u> </u>			<u> </u>

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L					1100				
Chloride	mg/L					80				
Dissolved Oxygen -	mg/L					6.57				
DOC	mg/L					36.5				
DOC (Dup)	mg/L					28.4				
Ethene	ug/L					10()				
Ethene (Dup)	ug/L					7.8				
Ferrous Iron	mg/L.					0				
Methane	ug/L					3400 (D)				
Methane (Dup)	ug/L					2200 (D)				
Nitrate	mg/L					0.09				
Nitrite	mg/L					0.043	÷.			
рН						12.90				
Redox	mV					-95				
Sulfate	mg/L					0				
Sulfide	mg/L					1		· .		
Sulfide (Dup)	mg/L					1				

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L					8 (JB)				
bis(2-Ethylhexyl)phthalate (Dup)	ug/L					8 (JB)				
Phenol	ug/L					3				
Phenol (Dup)	ug/L					3				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Carbon Disulfide	ug/L					2 (J)				
Carbon Disulfide (Dup)	ug/L					3 (J)				
Chloroform	ug/L					0.3 (J)				
Chloroform (Dup)	ug/L					0.2 (J)				
cis-1,2-Dichloroethene	ug/L					82				
cis-1,2-Dichloroethene (Dup)	ug/L					78				
Methylene Chloride	ug/L					0.8 (JB)				
Methylene Chloride (Dup)	ug/L					0.7 (JB)				
Tetrachloroethene	ug/L					4 (J)				
Tetrachloroethene (Dup)	ug/L					3 (J)				
Trichloroethene	ug/L					1 (J)				
Trichloroethene (Dup)	ug/L					(L) e.0				
Vinyl Chloride	ug/L					0.4 (J)				
Vinyl Chloride (BS)	ug/L			2.1 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	155		1060		81		49	0	
Chloride	mg/L	304		190.8		130		134	204	
Conductivity	mohm/cm							0.667	0.73	
Dissolved Oxygen	mg/L	0.63		2.76		0.70		3.99	4.74	
DOC	mg/L			8.71		7.78		3.12		
DOC Average Quads	mg/L								3.6	
Ethane	PPB	12								
Ethane	ug/L				12	8.5		6.6		
Ethene	PPB	18								
Ethene	ug/L				40	8.3		7.2		
Ferrous Iron	mg/L	0.02		0		0.19		0.0	0.02	
Methane	PPB	3200 (D)								
Methane	ug/L				1500	870		800	250	
Nitrate	mg/L	0.05		0.03		0		0.06	0.15	
Nitrite	mg/L	0.013		0.015		0.047		0.032	0.022	
рН		8.80		11.00		10.65		11.23	11.63	
Redox	mV	67		-8		24		-14	-43	
Salinity								0.0		
Sulfate	mg/L	18		12		11		11.0	15	
Sulfide	mg/L			1		1				
TDS								0.43		
Temperature	С							12.94	15.23	
Turbidity	NTUs							42.1	4.1	

IETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			6 (JB)				.3 (J)		
Butylbenzylphthalate	ug/L			0.4 (JB)						
Diethylphthalate	ug/L			0.07 (JB)						
Di-n-butyiphthalate	ug/L			0.2 (JB)						
Di-n-octylphthalate	ug/L			0.2 (JB)						
Naphthalene	ug/L			0.08 (JB)						
Phenol	ug/L			0.04 (JB)		1				

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Chloroform	ug/L			22 (JB)		32 (J)		16 (J)		
Chloromethane	ug/L							42 (J)		
cis-1,2-Dichloroethene	ug/L]		2300		1000		1000		
Methylene Chloride	ug/L			170 (JB)		40 (J)		46 (JB)		
Tetrachloroethene	ug/L			9100		2600		2800	7300	
trans-1,2-Dichloroethene	ug/L			80 (J)		35 (J)				
Trichloroethene	ug/L			2500		840		900	1800	
Vinyl chloride	ug/L			270		120		140	430	

Well ID: WVA-AW-MW-BLD-110

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	560		534		576		481	548	
Chloride	mg/L	10		33		6		1	20	
Conductivity	mohm/cm							1.28	1.37	
Dissolved Oxygen	mg/L	0.68		0.50		0.00		0.0	4.83	
DOC	mg/L	45.3		48.6		48.9		268		
DOC Average Quads	mg/L								56	
DOC Average Quads (Dup)	mg/L								48	
Ferrous Iron	mg/L	1.4		0.12		0.67		0.88	0.57	
Methane	PPB	14000 (D)								
Methane	ug/L			1140		1200		2200 (E)	570 (E)	
Methane (Dup)	ug/L								540 (E)	
Nitrate	mg/L	0.02		0.44		0.03		0.01	0	
Nitrite	mg/L	0.012		0.03		0		0.017	0.002	
рН		7.09		7.10		7.34		7.13	7.6	
Redox	mV	-106		-80		-69		-104	-114	
Salinity								0.1		
Sulfate	mg/L			80		0		0.0	0	
TDS								0.8		
Temperature								20.38 (C)		
Temperature	С								20.83	
Turbidity	NTUs							134	36.8	·

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthene	ug/L					0.3 (J)				
bis(2-Ethylhexyl)phthalate	ug/L					0.5 (JB)∙		.4 (J)		
Di-n-butylphthalate	ug/L	0.8 (JB)								
Fluorene	ug/L	0.6 (J)				0.5 (J <u>)</u>				
Naphthalene	ug/L	0.3 (J)				0.2 (J)				
Pyrene	ug/L					0.2 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	.8 (J)								
Benzene	ug/L			0.3 (J)		0.3 (J)				
Chloromethane	ug/L	· ·				0.5 (J)				
Methylene Chloride	ug/L	1		0.6 (JB)		1 (JB)		.9 (JB)		

ell ID: WVA-B35-PW-1

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	306		2688		306		250	289	
Chloride	mg/L	422		6.58		488		439	83	
Conductivity	mohm/cm							2.13	1.84	
Dissolved Oxygen	mg/L	0.66		0.40		0.00		0.0	0.66	
DOC	mg/L	8.81		9.72		17.8		14.8		
DOC Average Quads	mg/L								6.6	
Ferrous Iron	mg/L	0.08		0.06		0		0.05	0	
Methane	PPB	1600 (D)								
Methane	ug/L			1050		770 (D)		870 (D)	590 (E)	
Nitrate	mg/L	0.42		0.62		0.04		0.1	0.05	
Nitrite	mg/L	0.027		0.02		0.024		0.031	0.013	
pН		7.70		7.70		7.89		7.63	7.96	
Redox	mV	-181		-230		-269		-281	-301	
Salinity								0.1		
Sulfate	mg/L	2		2		0		0.0	2	
Sulfide	mg/L			1.6		1			2.2	
TDS								1.4		
Temperature	C ·							15.8	17.43	
Turbidity	NTUs							34.4	40.7	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthene	ug/L							.3 (J)		
bis(2-Ethylhexyl)phthalate	ug/L			0.2 (JB)		0.5 (J)		.4 (J)		
Chrysene	ug/L	0.5 (J)								
Diethylphthalate	ug/L	0.1 (JB)				0.3 (J)				
Di-n-butylphthalate	ug/L	0.6 (JB)				0.1 (J)		.2 (J)		
Fluoranthene	ug/L	0.1 (J)	<u> </u>	0.1 (J)						
Pyrene	ug/L	0.3 (J)		0.2 (J)		0.09 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	2 (JB)				5 (J)				
Carbon Disulfide	ug/L	.6								
Carbon Tetrachloride	ug/L	5						<u> </u>		
Methylene Chloride	ug/L	0.9 (J)		2 (J)						

Well ID: WVA-SA-GTI-1

METHOD: NAT

	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01		May-02	Nov-02
	Alkalinity	mg/L	250		100				171		
	Chloride	mg/L	18		190				144		
	Conductivity	mohm/cm							0.664		
	Dissolved Oxygen	mg/L	1.00		10.4		3.77		5.69		
	DOC	mg/L	4.30		1				2.19		
	Ethene	ug/L					3.0 ()		·		
	Ferrous Iron	mg/L	2.21		0				0.27		
	Methane	PPB	610								
	Nitrate	mg/L	0		0.66				0.0		
	Nitrite	mg/L	-		0				0.006		
	рН		7.17		7.33		7.23		7.49		
	Redox	mV	105		370		141		64		
	Salinity								0.42		
	Sulfate	mg/L	4		46				21		
	Sulfide	mg/L			1				1		
	TDS								0.0		
	Temperature	С							14.89		
	Turbidity	NTUs							999		
METH	HOD: SVOC										
	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
	Benzo(a)anthracene	ug/L			0.4 (J)		0.2 (J)				
	Benzo(a)pyrene	ug/L			0.2 (J)		0.2 (J)				
	Benzo(b)fluoranthene	ug/L			0.3 (J)		0.3 (J)				
	Benzo(k)fluoranthene	ug/L			0.3 (J)		0.3 (J)				
	bis(2-Ethylhexyl)phthalate	ug/L	0.8 (JB)		2 (JB)		0.9 (J)				
	Butylbenzylphthalate	ug/L			0.3 (J)		0.3 (J)				
	Chrysene	ug/L			0.3 (J)	:	0.3 (J)			_	
	Diethylphthalate	ug/L					0.4 (J)				
	Di-n-butylphthalate	ug/L	0.8 (JB)		0.2 (J)		0.4 (J)				
	Di-n-octylphthalate	ug/L	0.3 (JB)		0.4 (J)		0.2 (JB)			1	

METHOD: VOC

Fluoranthene

Phenanthrene

Pyrene

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Methylene Chloride	ug/L			2 (J)		0.5 (JB)		1 (JB)		

0.7 (J)

0.4 (J)

0.6 (J)

ug/L

ug/L

ug/L

0.4 (J)

0.2 (J)

0.4 (J)

ell ID: WVA-SA-GTI-3

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	330		2860				261	270	
Carbon Dioxide	PPB	2600								
Chloride	mg/L	64		109.2				72.0	82	
Conductivity	mohm/cm							1.07		
Dissolved Oxygen	mg/L	0.92	•	6.57		7.77		7.00		
DOC	mg/L	2.68		5.3		6.47		8.55		
DOC Average Quads	mg/L								4.6	
Ferrous Iron	mg/L	0.02		0				0.01	0	
Methane	PPB	38								
Methane	ug/L			3.4		3.2		3.1		
Nitrate	mg/L	0.05		0.06				0.05	0.04	
Nitrite	mg/L	0.023		0.093				0.024	0.015	
pН		7.08		7.64		7.08		7.47		
Redox	mV	64		184		132		45		
Salinity								0.0		
Sulfate	mg/L	41		35				18.0	32	
Sulfide	mg/L			1				1.2		
TDS								0.70		
Temperature	С							12.6		
Turbidity	NTUs							59.2		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	1 (JB)		1 (JB)		0.6 (J)				
Di-n-butylphthalate	ug/L	0.7 (JB)								
Di-n-octylphthalate	ug/L	0.3 (JB)				_				

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	1 (JB)								
Carbon Disulfide	ug/L	0.5 (J)								
Chloromethane	ug/L	2 (J)								
Methylene Chloride	ug/L	2 (J)		3 (J)		1 (JB)				
Xylene (total)	ug/L	0.9 (J)				!				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			333					302	
Carbon Dioxide	PPB	7500								
Carbon Dioxide	ug/L			2900						
Chloride	mg/L			21					12	
Conductivity	mohm/cm							0.78	0.705	
Dissolved Oxygen	mg/L	1.05		0.90		0.64		0.0	1.54	
DOC	mg/L			9.01		7.21		1.53		
DOC Average Quads	mg/L								7.8	
Ferrous Iron	mg/L			0.03					0	
Methane	ug/L					4700 (D)				
Nitrate	mg/L			0.18					0.05	
Nitrite	mg/L			0					0.007	
pН		6.38		6.90		6.99		6.73	6.41	
Redox	mV	-50.5		60		-34		285	-58	
Salinity								0.0		
Sulfate	mg/L			42					19	
Sulfide	mg/L			1				1		
TDS								0.48		
Temperature	С	Ī						11.99	11.83	
Turbidity	NTUs		T					33.2	12.6	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.9 (JB)		2 (JB)						
Di-n-butylphthalate	ug/L	0.4 (JB)		0.4 (JB)					•	
Di-n-octylphthalate	ug/L	0.2 (JB)								

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	3 (JB)				7 (J)				
Methylene Chloride	ug/L	0.9 (J)		4 (J)		3 (J)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	Nov-0.
Alkalinity	mg/L			119				198	111	
Chloride	mg/L			7				16.0	7	
Conductivity	mohm/cm							0.388		
Dissolved Oxygen	mg/L	1.05		10.4		1.35		2.25		
DOC	mg/L			1	[3.19		4.24		
DOC Average Quads	mg/L								1.8	
Ferrous Iron	mg/L			0.01				0.02	0	
Methane	PPB	6.6								
Methane	ug/L					2.3				
Nitrate	mg/L			0		·		0.08	0.16	
Nitrite	mg/L			0				0.0	0	
pН		6.48		7.60		7.47		7.56		
Redox	mV	69.4		145		136		229		
Salinity								0.0		
Sulfate	mg/L			24				48.0	43	
Sulfide	mg/L			1				1		
TDS							-	0.25		
Temperature	С							15.47		
Turbidity	NTUs							62.2		L

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.5 (JB)		0.6 (JB)						
Butylbenzylphthalate	ug/L		·	0.2 (JB)						
Diethylphthalate	ug/L	0.4 (JB)		0.09 (JB)						
Di-n-butylphthalate	ug/L	1 (JB)		0.1 (JB)						
Di-n-octylphthalate	ug/L	0.1 (J)		0.05 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					2 (J)				
Chlorobenzene	ug/L	0.8 (J)								
cis-1,2-Dichloroethene	ug/L	12				3 (J)		4 (J)		
Ethylbenzene	ug/L	0.1 (J)								
Methylene Chloride	ug/L			0.3 (J)		0.5 (J)				
Vinyl Chloride	ug/L	1 (J)								
Xylene (total)	ug/L	0.5 (J)							i	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	94						130	68	
Chloride	mg/L	296]	250	381	
Conductivity	mohm/cm							1.16	1.48	
Dissolved Oxygen	mg/L	0.47				2.83		0.0	0.62	
DOC	mg/L			1				1		
DOC Average Quads	mg/L								0.96 (B)	
Ferrous Iron	mg/L	0.57						0.02	0.4	
Methane	ug/L			7.2					26	
Methane	PPB	28								
Nitrate	mg/L	0.06						2.43	0.08	
Nitrite	mg/L	0.013						0.028	0.008	
рН		6.45				7.03	-	7.87	6.68	
Redox	mV	16.8				11		263	-48	
Salinity								0.1		
Sulfate	mg/L	29						23	29	
Sulfide	mg/L			1				1		
TDS								0.7		
Temperature	С							10.39	11.6	
Turbidity	NTUs							4.7	31.3	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.8 (JB)		1 (JB)						
Butylbenzylphthalate	ug/L			0.4 (JB)						
Diethylphthalate	ug/L	0.2 (JB)		0.1 (JB)						
Di-n-butylphthalate	ug/L	1 (JB)		0.4 (JB)						
Di-n-octylphthalate	ug/L	0.2 (JB)		0.1 (JB)						
Naphthalene	ug/L			0.2 (J)						

			4 (J)			
1			4 (J)			
	0.4 (J)					
	9		0.5 (J)		1 (JB)	
		0.4 (J) 9	0.4 (J) 9			

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			4484				59	82	
Carbon Dioxide	PPB	2400								
Chloride	mg/L			8				1.0	39	
Conductivity	 mohm/cm							0.296		
Dissolved Oxygen	mg/L	1.740		17.29		3.21		7.04		
DOC	mg/L			2.09				1.94		
DOC Average Quads	mg/L								2.4	
Ferrous Iron	mg/L			0.15				0.10	0	
Methane	PPB	68								
Nitrate	mg/L			0				0.07	55	
Nitrite	mg/L			0				0.008	0.017	
pH		6.01		7.61		7.15		6.96		
Redox	 mV	74.2		117		113		89		
Salinity								0.0		
Sulfate	mg/L	ĺ		6				22.0	32	·
Sulfide	mg/L		· ·	1						
TDS								0.19		
Temperature	С				:			12.15		
Turbidity	NTUs							90		

METHOD: SVOC

Analvte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			2 (JB)				.3 (JB)		
Di-n-butylphthalate	ug/L	1 (JB)								

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00		Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					5 (J)				
Methylene Chloride	ug/L					0.6 (J)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	265		108				190	212	
Carbon Dioxide	PPB	2200								
Chloride	mg/L	508		420				425	450	
Conductivity	mohm/cm							1.91	2.39	
Dissolved Oxygen	mg/L	0.93		0.40		9.33		0.0	0.39	
DOC	mg/L	2.62		1		4.13		2.68		
DOC Average Quads	mg/L								2.9	
Ferrous Iron	mg/L	1.76		2.57				3.30	2.24	
Methane	PPB	440						· · · · · · · · · · · · · · · · · · ·		
Methane	ug/L			145				2.4		
Nitrate	mg/L	>80		0				0.0	0	
Nitrite	mg/L			0				0.027	0.003	
pН		6.90		6.90		7.11		7.01	6.75	
Redox	mV	-121		-62		-106	<u> </u>	-110	-126	
Salinity								0.1		
Sulfate	mg/L	26		80				80	80	
Sulfide	mg/L			1				1.1		
TDS								1.2		
Temperature	С							16.51	12.17	
Turbidity	NTUs							468	34.1	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzo(a)pyrene	ug/L			0.04 (J)						
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		0.4 (JB)						
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L	0.2 (JB)		0.08 (JB)						
Di-n-butylphthalate	ug/L	1 (JB)		0.1 (JB)						
Di-n-octylphthalate	ug/L	0.9 (JB)		0.05 (JB)						
Fluoranthene	ug/L	0.1 (J)		0.1 (J)						
Pyrene	ug/L	0.1 (J)		(L) 60.0						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					2 (J)				
Methylene Chloride	ug/L					0.9 (J)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-0.
Alkalinity	mg/L	300		124				127	170	
Carbon Dioxide	PPB	5300	1							
Chloride	mg/L	374		216				373	405	
Conductivity	mohm/cm							1.59	2.09	
Dissolved Oxygen	mg/L	0.83		6.00		5.11		2.88	5.8	
DOC	mg/L	9.34		5.36		2.22		4.58		
DOC Average Quads	mg/L								2.3	
Ferrous Iron	mg/L	3.3		0				1.61	0.03	
Methane	PPB	2900 (D)								
Methane	ug/L					16				
Nitrate	mg/L	>80		0.31				0.29	1.55	
Nitrite	mg/L	>80		0.003				0.002	0	
pH		6.66		7.50		7.27		6.8	6.87	
Redox	mV	105		160		-86		42	69	
Salinity								0.1		
Sulfate	mg/L	26		30				25.0	80	
Sulfide	mg/L			1						ļ
TDS								1.0		
Temperature	C	<u></u>						16.29	14.22	
Turbidity	NTUs							1.9	19.1	

IETHOD: SVOC

Analvte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.2 (JB)	-	0.4 (JB)		0.8 (J)		.4 (JB)		
Butylbenzylphthalate	ug/L	1		0.2 (JB)						
Diethylphthalate	ug/L	0.2 (JB)				0.8 (J)				
Di-n-butylphthalate	ug/L	1 (JB)		0.2 (JB)		0.2 (J)				
Di-n-octylphthalate	ug/L	0.2 (J)		0.05 (JB)				.1 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Carbon Disulfide	ug/L			0.3 (J)						
Methylene Chloride	ug/L	1		12		1 (J)		1 (J)		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	20		79				49.0	11	
Carbon Dioxide	ug/L			1600						
Chloride	mg/L	475		526				526	370	
Conductivity	mohm/cm							2.11	1.77	
Dissolved Oxygen	mg/L	1.37		1.00		3.02		1.38	0.6	
DOC	mg/L			1.34			•	1.66		
DOC Average Quads	mg/L								1.3	
Ferrous Iron	mg/L	0.04	·	0				0.00	0.04	
Methane	PPB	2000 (D)								
Methane	ug/L			1330		1700		1500	83	
Nitrate	mg/L	0.23		2.43				0.10	2.43	
Nitrite	mg/L	0.184		0.375				0.031	0.037	
рН		6.75		8.90		11.20		8.85	7.6	
Redox	mV	-5.0		91		30		6	-48	
Salinity								0.1		
Sulfate	mg/L			3				1.0	1	
Sulfide	mg/L			1				1		
TDS								1.3		
Temperature	С							13.14	12.15	
Turbidity	NTUs							0.0	14.9	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.3 (JB)		0.3 (J)				
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	1 (JB)		0.3 (JB)						
Phenol	ug/L		•		· .	0.2 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,1-Trichloroethane	ug/L	0.2 (J)								
1,1,2,2-Tetrachloroethane	ug/L	0.6 (J)								
2-Butanone	ug/L	1 (JB)				3 (J)				
Bromoform	ug/L	0.1 (J)								
Carbon Disulfide	ug/L	0.3 (J)				3 (J)				
Ethylbenzene	ug/L	0.2 (J)						:		
Methylene Chloride	ug/L			4 (J)		2 (J)				
Tetrachloroethene	ug/L	0.3 (J)								
Toluene	ug/L	0.3 (J)								
Xylene (total)	ug/L	0.8 (J)								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	274		1230				67	85	
Chloride	mg/L	19		10.8				5.0	18	
Conductivity	mohm/cm	· · · · · · · · · · · · · · · · · · ·						0.278	0.214	
Dissolved Oxygen	mg/L	0.60				4.95		1.85	1.22	
DOC	mg/L	21.8		7.4		7.85		8.2		
DOC Average Quads	mg/L	<u> </u>							4.3	
Ferrous Iron	mg/L	3.1		0.48	ĺ			0.72	0.29	
Methane	PPB	4000 (D)								
Methane	ug/L.			721		650		800		
Nitrate	mg/L	>80		0.15				0.0	0	
Nitrite	mg/L	>80		0.001				0.009	0.004	<u> </u>
pН		6.80				6.97		6.97	7.01	
Redox	mV	-127	<u> </u>			-88		-63	-29	
Salinity								0.0		
Sulfate	mg/L	7		80				4.0	23	
Sulfide	mg/L			1				1		
TDS								0.18		
Temperature	с							16.37	13.22	
Turbidity	NTUs	1	1]				30.5	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthene	ug/L	0.5 (J)							<u> </u>	
Anthracene	ug/L	0.3 (J)								
bis(2-Ethylhexyl)phthalate	ug/L	1 (JB)		2 (JB)		0.5 (J)	<u> </u>			
Diethylphthalate	ug/L	0.2 (J)								
Di-n-butylphthalate	ug/L	0.6 (JB)				0.2 (J)				
Fluoranthene	ug/L	0.3 (J)							1	
Fluorene	ug/L	0.6 (J)								
Phenanthrene	ug/L	0.2 (J)								
Pyrene	ug/L	0.3 (J)								

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					3 (J)				
Carbon Disulfide	ug/L	 				0.7 (J)				
cis-1,2-Dichloroethene	ug/L	4 (J)								
Methylene Chloride	ug/L			3 (J)		2 (J)				
Toluene	ug/L	0.2 (J)			ļ			<u> </u>		
Vinyl Chloride	ug/L	7								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			187				198	93	
Chloride	mg/L			121				93	278	
Conductivity	mohm/cm							0.93	1,36	
Dissolved Oxygen	mg/L			0.70		6.24		1.89	5.17	
DOC	mg/L			7.74		16.7		2.8		
DOC (Dup)	mg/L			8.67						
DOC Average Quads	mg/L								4	
Ethane	ug/L			19.5		5.6 ()		34		
Ethane (Dup)	ug/L			42.7						
Ethene	ug/L			105		5.9 ()		57		
Ethene (Dup)	ug/L			135 (D)						
Ferrous Iron	mg/L			1.36				1.37	0	
Methane	ug/L			5880 (D)		220		2400 (E)		
Methane (Dup)	ug/L			6540 (E)						
Nitrate	mg/L			0.42				0.0	0.24	
Nitrite	mg/L			0.016				0.0	0.005	
рН				7.00		6.97		6.74	6.52	
Redox	mV			-111		-90		-18	26	
Salinity								0.0		
Sulfate	mg/L			4				66	34	
Sulfide	mg/L			1.5				1.2		
Sulfide (Dup)	mg/L			1.5						
TDS								0.6		
Temperature	C							15.24	12.92	
Turbidity	NTUs							50.2	0	

Analyte	Units		Sept-99		May-00	Uct-00	Apr-01	1 v1uy-01	1 *1uy-02	1107-02
1,2,4-Trichlorobenzene	ug/L	0.6 (J)		0.1 (J)					<u> </u>	
1,2-Dichlorobenzene	ug/L	0.8 (J)		0.3 (J)						1
1,2-Dichlorobenzene (Dup)	ug/L			0.3 (J)						
1,4-Dichlorobenzene	ug/L	1 (J)		0.2 (J)		0.3 (J)				
1,4-Dichlorobenzene (Dup)	ug/L			0.2 (J)						
2,4-Dimethylphenol	ug/L	0.8 (J)		0.2 (J)						
2-Methylnaphthalene	ug/L	3 (J)		0.5 (J)			L			
2-Methylnaphthalene (Dup)	ug/L			0.6 (J)						
Acenaphthene	ug/L	5 (J)		1 (J)		0.8 (J)				
Acenaphthene (Dup)	ug/L			0.8 (J)					<u> </u>	
Anthracene	ug/L	2 (J)		0.3 (J)						<u>.</u>
Anthracene (Dup)	ug/L			0.3 (J)						
Benzo(a)anthracene	ug/L	2		0.2 (J)						
Benzo(a)anthracene (Dup)	ug/L			0.3 (J)						
Benzo(a)pyrene (Dup)	ug/L			0.3 (J)						
Benzo(b)fluoranthene (Dup)	ug/L			0.3 (J)						
Benzo(g,h,i)perylene	ug/L			0.1 (J)						
Benzo(g,h,i)perylene (Dup)	ug/L			0.2 (J)						
Benzo(k)fluoranthene (Dup)	ug/L			0.2 (J)						
bis(2-Ethylhexyl)phthalate	ug/L	5 (JB)		0.5 (JB)		0.6 (J)				
bis(2-Ethylhexyl)phthalate (Dup)	ug/L			0.6 (JB)						<u> </u>
Chrysene	ug/L	3		0.3 (J)						<u> </u>
Chrysene (Dup)	ug/L			0.4 (J)						
Di-n-butylphthalate	ug/L	0.6 (JB)		0.1 (J)		0.2 (J)				<u> </u>
Di-n-butylphthalate (Dup)	ug/L			0.09 (J)					· · ·	
Di-n-octylphthalate (Dup)	ug/L			0.1 (JB)						<u> </u>
Fluoranthene	ug/L	(L) 8		0.6 (J)						
Fluoranthene (Dup)	ug/L		T	0.8 (J)						
Fluorene	ug/L	7 (J)		1 (J)						<u> </u>
Fluorene (Dup)	ug/L			0.8 (J)					ļ	<u> </u>
Indeno(1,2,3-cd)pyrene	ug/L			0.09 (J)						<u> </u>
Indeno(1,2,3-cd)pyrene (Dup)	ug/L			0.1 (J)						
Naphthalene	ug/L	19		4 (J)		1				
Naphthalene (Dup)	ug/L			4 (J)					1	
Phenanthrene	ug/L	12		0.5 (J)						
Phenanthrene (Dup)	ug/L			0.5 (J)						
Phenol	ug/L			0.06 (J)						
Phenol (Dup)	ug/L			0.08 (J)						
Pyrene	ug/L	25		1 (J)						
Pyrene (Dup)	ug/L	+		1 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,2,2-Tetrachloroethane	ug/L	12 (J)								
1,1,2-Trichloroethane	ug/L	4 (J)								
1,1-Dichloroethene	ug/L					0.7 (J)				
2-Butanone	ug/L					4 (J)				
4-Methyl-2-Pentanone	ug/L	52 (JB)								
Benzene	ug/L	8		0.8 (J)		3		2		
Carbon disulfide	ug/L	[0.8 (J)	
Chlorobenzene	ug/L		-			3 (J)		2 (J)		
Chloroform (Dup)	ug/L			6 (JB)						
cis-1,2-Dichloroethene	ug/L	530		290		100		77		
cis-1,2-Dichloroethene (Dup)	ug/L			890						
Ethylbenzene	ug/L	6 (J)					·.			
Methylene chloride	ug/L	3 (J)		2 (JB)		0.5 (J)			0.2 (JB)	
Methylene Chloride (Dup)	ug/L			8 (JB)						
Tetrachloroethene	ug/L					180	-	28	0.8 (J)	
Toluene	ug/L	6 (J)								
trans-1,2-Dichloroethene	ug/L	3 (J)				2 (J)		.5 (J)		
Trichloroethene	ug/L	7 (J)		1 (J)		54		24		
Vinyl Chloride	ug/L	300		110		72		41		
Vinyl Chloride (Dup)	ug/L			330						
Xylene (total)	ug/L	34								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			182			· .		139	
Chloride	mg/L			14.8					30	
Dissolved Oxygen	mg/L			5.92						
DOC Average Quads	mg/L	1							4.9	
Ferrous Iron	mg/L			0.11					0.29	
Methane	ug/L			5.3						
Nitrate	mg/L			0.02						
Nitrite	mg/L			0.014					0	
рН		1		7.22						
Redox	mV			123						·
Sulfate	mg/L			25					17	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.3 (JB)						
Butylbenzylphthalate	ug/L			0.1 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.1 (J)						
Di-n-octylphthalate	ug/L			0.1 (JB)					L	
Naphthalene	ug/L			0.07 (J)						
Phenol	ug/L			0.09 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Methylene chloride	ug/L								0.3 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	306		286				240	215	
Carbon Dioxide	PPB	4000								
Chloride	mg/L	170		264.8				138	165	
Conductivity	mohm/cm							1.10	1.51	
Dissolved Oxygen	mg/L	0.77		5.80		0.00		0.51	0.5	
DOC	mg/L	6.19		4.24		3.51		6.23		
DOC Average Quads	mg/L								1.6	
Ferrous Iron	mg/L	0.13		0.03				0.02	0.09	
Methane	PPB	5200 (D)								
Methane	ug/L			5470				2300 (D)	1000 (D)	
Nitrate	mg/L	0.11		0.05				0.10	0.04	
Nitrite	mg/L	0.09		0.028				0.035	0.025	
pН		6.61		7.26		7.68		7.2	6.83	
Redox	mV	-122		36		-71		-139	-184	
Salinity								0.0		
Sulfate	mg/L			0				0.0	0	
Sulfide	mg/L							1.2		
TDS								0.7	-	
Temperature	С							11.44	11.93	
Turbidity	NTUs							38.2	13.4	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		0.2 (JB)						
Butylbenzylphthalate	ug/L			0.1 (JB)						
Diethylphthalate	ug/L	0.2 (JB)		0.1 (J)						
Di-n-butylphthalate	ug/L	1 (JB)		0.1 (JB)						
Di-n-octylphthalate	ug/L			0.07 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	111119 01	May-02	Nov-02
Methylene Chloride	ug/L					0.7 (J)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	289		234		205		83	189	
Carbon Dioxide	PPB	6600								
Chloride	mg/L	106		154		15		40	69	
Conductivity	mohm/cm							0.665	0.83	
Dissolved Oxygen	mg/L	0.96		0.37		0.68		2.67	0.7	
DOC	mg/L	6.29		5.25				3.45		
DOC Average Quads	mg/L								0.54 (B)	
Ferrous Iron	mg/L	0.01		0		0		0.02	0.01	
Methane	PPB	750								
Methane	ug/L			54.8		11		220	11	
Nitrate	mg/L	0.07		0.03		0.04		0.11	0.02	
Nitrite	mg/L	0.2		0.019		0.007		0.03	0.012	
pH		6.32	1	6.65	T	6.96		6.67	6.68	
Redox	mV	195		185		227		59	59	
Salinity			1					0.0		
Sulfate	mg/L	59		71		53		50	63	
Sulfide	mg/L			1				1		
TDS								0.43		
Temperature	- c							14.9	12.05	
Turbidity	NTUs		1					15.5	10.2	l

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.8 (JB)		0.2 (JB)						
Butylbenzylphthalate	ug/L			0.06 (JB)						
Diethylphthalate	ug/L	0.2 (JB)		0.06 (JB)						
Di-n-butylphthalate	ug/L	1 (JB)	1	(L) 60.0						
Di-n-octylphthalate	ug/L	0.2 (JB)		0.04 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,2,2-Tetrachloroethane	ug/L	2 (J)							 	
1,1,2-Trichloroethane	ug/L	1 (J)				i				
1,2-Dichloroethane	ug/L	0.5 (J)				:				
2-Butanone	ug/L	3 (JB)	1			2 (JB)				
4-Methyl-2-Pentanone	ug/L	2 (JB)								
Bromoform	ug/L	2 (J)								
Dibromochloromethane	ug/L	0.6 (J)							1	
Methylene Chloride	ug/L					0.5 (J)			ļ	<u> </u>
trans-1,3-Dichloropropene	ug/L	0.5 (J)								
Trichloroethene	ug/L	0.8 (J)						1		<u> </u>
Vinyl Chloride	ug/L	2				<u> </u>	<u> </u>			

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L							230	202	
Chloride	mg/L							95	189	
Conductivity	mohm/cm							1.36	1.19	
Dissolved Oxygen	mg/L	6.08				0.59		0.0	1.48	
DOC	mg/L					12.7		8.18		
DOC Average Quads	mg/L								9.7	
Ethane	ug/L					430		190	46	
Ethene	ug/L					260 (D)		150	31	
Ferrous Iron	mg/L							3.3	1.71	
Methane	ug/L					5900 (E)		5200	1000 (E)	
Nitrate	mg/L							0.0	0	
Nitrite	mg/L							0.0	0.021	
рН		11.19				6.45		6.46	6.28	
Redox	mV	-118				16		-3	-19	
Salinity								0.1		
Sulfate	mg/L							0.0	45	
Sulfide	mg/L					1		1		
TDS								0.9		
Temperature	С							10.38	12.82	
Turbidity	NTUs							456.0	243	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Anthracene	ug/L					0.2 (J)				
bis(2-Ethylhexyl)phthalate	ug/L					0.9 (JB)				
Diethylphthalate	ug/L					0.1 (J)				
Di-n-butylphthalate	ug/L					0.2 (JB)			_	

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1-Dichloroethene	ug/L								14	
2-Butanone	ug/L					99 (JB)				
Benzene	ug/L							22	31	
cis-1,2-Dichloroethene	ug/L					4700		4000		
Methylene chloride	ug/L					200 (JB)		56 (JB)	13 (JB)	
Tetrachloroethene	ug/L					160 (J)		240	520 (A)	
Toluene	ug/L								3 (J)	
trans-1 2-Dichloroethene	ug/L								26 (J)	
Trichloroethene	ug/L					560		600	1000 (A)	
Vinyl chloride	ug/L					2300		2100	1500	

METHOD: NAT

Analyte	Units		Sept-99		May-00	Oct-00	Apr-01	May-01	May-02	Nov-
Alkalinity	mg/L	455		460				180	69	
Chloride	mg/L	47		419				68	64	
Conductivity	mohm/cm							1.21	0.389	
Dissolved Oxygen	mg/L	0.14		0.30		4.21		2.34	3	
DOC	mg/L	1.57		2.06		8.12		4.56		
DOC (Dup)	mg/L							3.57		
DOC Average Quads	mg/L								2	
DOC Average Quads (Dup)	mg/L								0.86 (B)	
Ethane	PPB	7.6								
Ethane	ug/L			20.8		31		11 (D)		
Ethane (Dup)	ug/L							13 (D)		
Ethene	ug/L			26.1		13		5.2		
Ethene	PPB	9.9								
Ethene (Dup)	ug/L							7.3		
Ferrous Iron	mg/L	0.01		0.01				0.01	0.18	
Methane	PPB	25000 (D)								
Methane	ug/L			8380 (E)		6700 (E)		2400 (E)		
Methane (Dup)	ug/L							2500 (E)		
Nitrate	mg/L	0.06		0.17				1.44	0.55	
Nitrite	mg/L	0.031		0.011				0.360	0.009	
рH		8.27		9.60		10.96		11.01	6.73	
Redox	mV	-90.1		-181		-55		19	69	
Salinity								0.1		
Sulfate	mg/L			2				9.0	76	
Sulfide	mg/L			1.5		1		1		
Sulfide (Dup)	mg/L							1		
TDS								0.8		
Temperature	С							12.12	12.01	
Turbidity	NTUs							26.7	4.8	

METHOD: SVOC

1000

Sec. 1

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.9 (JB)		0.2 (JB)		0.6 (JB)				
Butylbenzylphthalate	ug/L			0.1 (JB)						
Diethylphthalate	ug/L	0.3 (J)		0.1 (JB)						
Di-n-butylphthalate	ug/L	0.5 (JB)		0.2 (J)		0.2 (JB)				
Di-n-octylphthalate	ug/L	0.2 (JB)		0.06 (JB)						
Naphthalene	ug/L			0.05 (J)						
Phenol	ug/L			0.6 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	3 (JB)				4 (JB)				
Carbon Disulfide	ug/L	2 (J)		30		3 (J)				
Chlorobenzene	ug/L	2 (J)								
Chloroform	ug/L			0.7 (JB)						
cis-1,2-Dichloroethene	ug/L	4 (J)		8		16		10		
cis-1,2-Dichloroethene (Dup)	ug/L							10		
Methylene Chloride	ug/L	0.3 (J)		1 (JB)						
Toluene	ug/L	0.2 (J)								
Vinyl Chloride	ug/L	7		18		31		19		
Vinyl Chloride (Dup)	ug/L							19		
Xylene (total)	ug/L	0.5 (J)								

METHOD: VOC

	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
	Bromodichloromethane	ug/L	5								
Ĺ	Bromomethane	ug/L							3 (J)		
	Carbon Disulfide	ug/L	0.3 (JB)								
	Chloromethane	ug/L							2 (J)		
-	cis-1,2-Dichloroethene	ug/L			1 (J)						
	Methylene Chloride	ug/L					0.7 (JB)				
	Trichlorofluoromethane	ug/L					0.2 (JB)				
	Vinyl Chloride	ug/L	36		6		2				

Well ID: WVA-SA-MW-46

ETHOD: NAT

	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
	Alkalinity	mg/L			310				71		
		mg/L			580				85		
	Chloride								0.300		
	Conductivity	mohm/cm					0.70		0.57	<u> </u>	
	Dissolved Oxygen	mg/L			3.87	<u> </u>	8.76		0.57		
	DOC	mg/L			9.74						
	Ferrous Iron	mg/L			0.01				0.12		
	Nitrate	mg/L			0.26				0.63		
	Nitrite	 mg/L			0.075				0.054		
[6.45		6.64		6.24		
	pН		 		149		108		268		
	Redox	mV			143	1			0.0	<u> </u>	
	Salinity									1	<u>j</u> T
	Silica	· mg/L			7.57		ļ			<u> </u>	
[Sulfate	mg/L			31				18	ļ	
	Sulfide	mg/L			1.2						
	TDS		1						0.2		
		c		1			1	1	20.58		
	Temperature		1	1			<u> </u>	<u> </u>	193	1	T
	Turbidity	NTUs			<u> </u>						<u> </u>

IETHOD: SVOC

Analyte	Units	Aug-99	Sept-99		May-00	Oct-00	Apr-01	May-01	May-02	Nov-02	
bis(2-Ethylhexyl)phthalate	ug/L			0.6 (JB)							
Di-n-butylphthalate	ug/L			0.1 (J)		i					

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	2 (JB)				2 (JB)				
Carbon Disulfide	ug/L	0.8 (J)								
Chloromethane	ug/L	0.6 (J)						2 (J)		
Methylene Chloride	ug/L	0.6 (J)		0.4 (J)		1 (JB)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	336		150				118		
Chloride	mg/L	252		180				50		
Conductivity	mohm/cm							0.352		
Dissolved Oxygen	mg/L	0.55		3.00		3.50	-	0.0		
DOC	mg/L			10.4		39.6		5.47		
Ethane	ug/L			30.9						· · · · · · · · · · · · · · · · · · ·
Ethene	ug/L			53.6						
Ferrous Iron	mg/L	2.81		0				0.22		
Methane	ug/L			5810 (D)		2.0		37		
Nitrate	mg/L	0.07		0.3				0.14		
Nitrite	mg/L	0.007		0.005				0.0		
рН		6.43		6.50		6.92		6.89		
Redox	mV			263		-31		182		
Salinity					ſ			0.0		
Silica	mg/L	22.5		11.1		12.7		5.28		
Sulfate	mg/L	27		35				10		
Sulfide	mg/L					1		1		
TDS								0.24		
TDS	mg/L	809								
Temperature	С							11.81		
Turbidity	NTUs							62.6		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthylene	ug/L			0.4 (J)						
Anthracene	ug/L			0.1 (JB)						
Benzo(a)anthracene	ug/L			0.1 (JB)						
Benzo(a)pyrene	ug/L			0.1 (JB)						
Benzo(b)fluoranthene	ug/L			0.1 (JB)						
Benzo(g,h,i)perylene	ug/L			0.1 (J)						
Benzo(k)fluoranthene	ug/L			0.1 (JB)						
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)						
Butylbenzylphthalate	ug/L			0.1 (JB)						
Chrysene	ug/L			0.1 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.2 (JB)						
Di-n-octylphthalate	ug/L			0.1 (JB)				.1 (J)		
Fluoranthene	ug/L			0.2 (JB)						
Indeno(1,2,3-cd)pyrene	ug/L			0.08 (JB)						
Phenanthrene	ug/L			0.1 (JB)						
Pyrene	ug/L			0.2 (JB)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	<i>Nov-02</i>
Alkalinity	mg/L	14		220				60		
Chloride	mg/L	157		100				54		
Conductivity	mV							0.283		L
Dissolved Oxygen	mohm/cm							0.0		
Dissolved Oxygen	mg/L	0.58		8.24		2.55				
DOC	mg/L			9.14		11.3		6.55		
Ferrous Iron	mg/L	0.01		0.07				0.0		
Methane	ug/L							1400		
Nitrate	mg/L	0.04		0.2				0.02		
Nitrite	mg/L	0.008		0				0.00		
pН		10.03		7.55		7.50				
pН	mg/L							7.41		
Redox	mg/L							1555		
Redox	mV	-340		171		-77				
Salinity								0.0		
Silica	mg/L			7.53		2.7		4.75		
Sulfate	mg/L	11		36				15		
Sulfide	mg/L	*		1		1		1		
TDS	NTUs							0.18		
Temperature								13.64		
Turbidity	С				1			37.7		

HETHOD: SVOC

1

ŀ

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzo(a)anthracene	ug/L			0.2 (J)						
Benzo(a)pyrene	ug/L			0.2 (J)						
Benzo(b)fluoranthene	ug/L			0.2 (J)						
Benzo(k)fluoranthene	ug/L			0.3 (J)						
bis(2-Ethylhexyl)phthalate	ug/L			0.7 (JB)		0.7 (JB)				
Chrysene	ug/L			0.2 (J)						
Di-n-butylphthalate	ug/L			0.09 (J)		0.2 (J)				
Di-n-octylphthalate	ug/L							.6 (J)		
Fluoranthene	ug/L	<u></u>		0.2 (J)		1				
Pyrene	ug/L			0.3 (J)						

	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
-	2-Butanone	ug/L	5 (JB)				2 (JB)				
<u> </u>	4-Methyl-2-Pentanone	ug/L	4 (JB)		·						
	Benzene	ug/L	0.8								
	Bromomethane	ug/L	1 (JB)								
	Chloromethane	ug/L	0.7 (J)						1 (J)		
	Methylene Chloride	ug/L	0.6 (JB)		0.4 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			64						
Chloride	mg/L			108				60		
Conductivity	mohm/cm							0.245		
Dissolved Oxygen	mg/L			6.40		9.42		3.87		
DOC	mg/L			6.27						
Ferrous Iron	mg/L			0.15						
Methane	ug/L					2.0				
Nitrate	mg/L			1.91						
Nitrite	mg/L			0.011						
pH				6.60		6.84		6.96		
Redox	mV			304		110		249		
Salinity								0.0		·
Silica	mg/L			6.06						
Sulfate	mg/L			40			-			
Sulfide	mg/L			1.5						
TDS								0.16		
Temperature	С							15.32		
Turbidity	NTUs							259		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.3 (JB)						
Butylbenzylphthalate	ug/L			0.1 (JB)						
Diethylphthalate	ug/L			0.1 (J)]		
Di-n-butylphthalate	ug/L			0.1 (JB)						
Fluoranthene	ug/L		-	0.08 (J)						
Pyrene	ug/L			0.07 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Methylene Chloride	ug/L	0.8 (J)								
Toluene	ug/L	0.4 (J)								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	227		166				116		
Chloride	mg/L	226		200				60		
Conductivity	mohm/cm							0.398		
Dissolved Oxygen	mg/L	0.94		1.80		5.99		0.0		
DOC	mg/L	19.4		6.5				3.45		
Ferrous Iron	mg/L	1.38		0.1				0.02		
Nitrate	mg/L	0.04		0.11				0.59		
Nitrite	mg/L	0.021		0.008				0.032		
pН		6.50		6.70		6.87		6.9		
Redox	mV	-17		280		144		303		
Salinity								0.0		
Silica	mg/L			10.8				6.15		
Sulfate	mg/L	67		76				50		
Sulfide	mg/L	*		3.1				1		
TDS								0.25		
Temperature	С							10.77		
Turbidity	NTUs							53.1		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.2 (JB)						
Butylbenzylphthalate	ug/L			0.1 (JB)						
Diethylphthalate	ug/L			0.06 (J)						
Di-n-butylphthalate	ug/L			0.1 (JB)						
Di-n-octylphthalate	ug/L			0.07 (J)	1					

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	1 (JB)				2 (JB)				
Methylene Chloride	ug/L	0.9 (JB)								
Vinyl Chloride	ug/L	8		2						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	126		159				162		
Chloride	mg/L	418		325				1.0		
Conductivity	mohm/cm							1.32		
Dissolved Oxygen	mg/L	0.91		0.50		1.35		0.20		
DOC	mg/L			15.9		7.32		7.68		
Ferrous Iron	mg/L	1.72						0.06		
Methane	ug/L			79.6				4.6		
Nitrate	mg/L	0.05		0.1				0.04		
Nitrite	mg/L	0.013		0.004				0.022		
рН		6.30		7.60		6.90		6.61		
Redox	mV	77		220		-33		117		
Salinity								0.1		
Silica	mg/L	17.6		5.71		12.6		8.03		
Sulfate	mg/L	1		15				56		
Sulfide	mg/L					. 1		1		
TDS								0.8		_
TDS	mg/L	994								
Temperature	С							13.69		
Turbidity	NTUs							2.3		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthylene	ug/L			0.06 (J)						
bis(2-Ethylhexyl)phthalate	ug/L			0.8 (JB)		0.7 (JB)				
Butylbenzylphthalate	ug/L			0.4 (JB)						
Diethylphthalate	ug/L			0.1 (J)						
Di-n-butylphthalate	ug/L	1		0.2 (JB)		0.2 (JB)				
Di-n-octylphthalate	ug/L			0.2 (J)						
Phenol	ug/L			0.09 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					2 (JB)				
Bromodichloromethane	ug/L	5				1				
cis-1,2-Dichloroethene	ug/L	6				1 (J)				
Methylene Chloride	ug/L	0.3 (J)						.4 (JB)		
Methylene chloride (BS)	ug/L									1 (J)
Toluene	ug/L	0.2 (JB)								
Vinyl Chloride	ug/L	120		3		14	·	3		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			170						
Chloride	mg/L			970						
Conductivity	mohm/cm							0,99		
Dissolved Oxygen	mg/L			3.68		2.10		4.44		
DOC	mg/L			5.31						
Ferrous Iron	mg/L			0.11						
Nitrate	mg/L			0.91						
Nitrite	mg/L			0.048						
pН				6.45		7.14		6.64		
Redox	mV			174		685		124		
Salinity								0.0		
Silica	mg/L			16.4						
Sulfate	mg/L			62						
Sulfide	mg/L			1						
TDS								0.6		
Temperature	с							14.0		
Turbidity	NTUs							41.4		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.7 (JB)						
Diethylphthalate	ug/L			0.1 (J)					L	
Di-n-butylphthalate	ug/L			0.1 (J)						
Di-n-octylphthalate	ug/L			0.5 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					3 (JB)				
cis-1,2-Dichloroethene (BS)	ug/L			11000						
Tetrachloroethene (BS)	ug/L			21000						
Trichloroethene (BS)	ug/L			1800					· · ·	
Vinyl Chloride (BS)	ug/L			150 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	13		200				57		
Chloride	mg/L	120		120				29		
Conductivity	mohm/cm							0.210		
		0.39	1 <u></u>	3.70		1.02		2.13		
Dissolved Oxygen	mg/L	0.59			l	4.81				
DOC	mg/L			7.6		4.01		0.40	<u> </u>	
Ferrous Iron	mg/L			0				0.19	1	
Methane	ug/L			730				2.8		
Nitrate	mg/L	0.11		0				0.0		
Nitrite	mg/L	0.037		0				0.70		
pH		9.31		8.92		7.16		7.23		
Redox	mV	-223.1	<u> </u>	33		57		22		
								0.0		
Salinity						3.68		1	[. <u></u>
Silica	mg/L			2.46		3,00		· · · · · · · · · · · · · · · · · · ·		
Sulfate	mg/L	58		14	<u> </u>			5		
Sulfide	mg/L			1		1			1	
TDS								0.14		
TDS	mg/L	320								
Temperature	C							16.77		
Turbidity	NTUs				· ·			101		

METHOD: SVOC

					······································				20 00	37 00
Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.9 (JB)		0.6 (JB)				
Di-n-butylphthalate	ug/L			0.3 (JB)		0.3 (J)				

Analyte	Units	Aug-99 Sept-99	Apr-00	May-00		Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L				2 (JB)	<u> </u>			لا

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			104				80		
Chloride	mg/L			55.2				26		
Conductivity	mohm/cm							0.252		
Dissolved Oxygen	mg/L			9.22		6.80		6.18		
DOC	mg/L			1.94						
Ferrous Iron	mg/L			0.39				1.98		
Nitrate	mg/L			0				12.0		
Nitrite	mg/L			0				0.145		
pН				7.84		7.43		7.38		
Redox	mV			189		221		124		
Salinity								0.0		
Silica	mg/L			3.93						
Sulfate	mg/L			7				2.0		
Sulfide	mg/L			1						
TDS								2.16		•
Temperature	С							18.48		
Turbidity	NTUs							199		

METHOD: SVOC

all and the second

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzo(a)anthracene	ug/L			0.07 (J)						
Benzo(a)pyrene	ug/L			0.1 (J)						
Benzo(b)fluoranthene	ug/L			0.1 (J)						
Benzo(g,h,i)perylene	ug/L			0.08 (J)						
Benzo(k)fluoranthene	ug/L			0.09 (J)						
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)						
Butylbenzylphthalate	ug/L			0.2 (JB)						
Chrysene	ug/L			0.08 (J)						
Diethylphthalate	ug/L			0.4 (JB)						
Di-n-butylphthalate	ug/L			0.2 (JB)						
Di-n-octylphthalate	ug/L			0.1 (JB)						
Fluoranthene	ug/L			0.1 (J)						
Indeno(1,2,3-cd)pyrene	ug/L			0.07 (J)						
Pyrene	ug/L			0.09 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					2 (JB)				
Chloromethane	ug/L							3 (J)		
Methylene Chloride	ug/L			0.9 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	360		96				83		
Chloride	mg/L	160		97.6				7.0		
Conductivity	mohm/cm							0.588		
Dissolved Oxygen	mg/L	1.18		15.05		0.96		2.84		
DOC	mg/L	19.2		2.86		5.68		6.19		
Ferrous Iron	mg/L	0.11		0.01				0.04		
Methane	ug/L			16.8				2.4		
Nitrate	mg/L	0.08		0				0.16		
Nitrite	mg/L	0.033	1	0				0.0		
pН		6.48		7.61		6.54		6.71		
Redox	m∨	100.9		168		62		53		
Salinity								0.0		
Silica	mg/L			3.93		4.04		5.76		
Sulfate	mg/L	80		17			·	80		
Sulfide	mg/L	*		1	[1		1.4		
TDS								0.14		
Temperature	С							11.84		
Turbidity	NTUs				I			55.3		
SVOC						I	ſ			
Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02

<i>)C</i>
ſ

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzo(a)anthracene	ug/L			0.08 (J)						
Benzo(a)pyrene	ug/L			0.1 (J)						
Benzo(b)fluoranthene	ug/L			0.1 (J)						
Benzo(g,h,i)perylene	ug/L			0.09 (J)						
Benzo(k)fluoranthene	ug/L			0.1 (J)						
bis(2-Ethylhexyl)phthalate	ug/L			0.7 (JB)		0.6 (JB)				
Butylbenzylphthalate	ug/L			0.2 (JB)						
Chrysene	ug/L			(L) 60.0						
Diethylphthalate	ug/L			0.2 (JB)		2 (J)				
Di-n-butylphthalate	ug/L			0.3 (JB)		0.2 (JB)				
Di-n-octylphthalate	ug/L			0.1 (JB)						
Fluoranthene	ug/L			0.1 (J)						
Indeno(1,2,3-cd)pyrene	ug/L			0.08 (J)	T					
Pyrene	ug/L		Í	0.1 (J)		0.2 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1 1 2 2-Tetrachloroethane (BS)	ug/L		<u> </u>							0.7 (J)
2-Butanone	ug/L	2 (JB)			-	2 (JB)		-		
4-Methyl-2-Pentanone	ug/L	2 (JB)								
Bromodichloromethane	ug/L	5								
Bromomethane	ug/L	0.9 (JB)								
Chloromethane	ug/L	(J) 0.9								
cis-1,2-Dichloroethene	ug/L	1 (J)						-		
Methylene Chloride	ug/L			9				.6 (JB)	1	
Vinyl Chloride	ug/L	13						<u> </u>		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			150				71		
Chloride	mg/L			60				30		
Conductivity	mohm/cm							0.99		
Dissolved Oxygen	mg/L	1.46		4.73		0.88		0.50		
DOC	mg/L	26.1		11		7.53				
Ferrous Iron	mg/L			0.22				0.0		
Methane	ug/L					4.1				
Nitrate	mg/L			0.99				0.17		
Nitrite	mg/L			0				0.013		
рН		6.30		7.54		7.06		6.8		
Redox	mV	61.5		150		20		172		
Salinity								0.0		
Silica	mg/L			5.49		10.9				
Sulfate	mg/L.		-	80				80		
Sulfide	mg/L	2,430				1				
TDS								2.4		
Temperature	С							10.8		
Turbidity	NTUs							312		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthylene	ug/L			0.3 (J)						
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)		0.6 (JB)				
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.2 (JB)		0.2 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	3 (JB)				2 (JB)				
4-Methyl-2-Pentanone	ug/L	0.7 (J)		•						
cis-1,2-Dichloroethene	ug/L	0.4 (J)								
Methylene Chloride	ug/L			7						
Methylene chloride (BS)	ug/L									1 (J)
Trichloroethene	ug/L			0.8 (J)						
Vinyl Chloride	ug/L	1 (J)								
Xylene (total)	ug/L	0.2 (J)								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	<u>Nov-02</u>
Alkalinity	mg/L	225	-	145				27		
Carbon Dioxide	ug/L			3000						
Chloride	mg/L	675						39		
Conductivity	mohm/cm							0.689		
Dissolved Oxygen	mg/L	3.17	'	6.45		2.34		4.27		
DOC	mg/L			3.89		5.09				
Ferrous Iron	mg/L	0.02		0				0.03		
Methane	ug/L			54.6		5.1				
Nitrate	mg/L	0.35		0.55				0.18		
Nitrite	mg/L	0.098		0				0.004		
pН		6.54		6.09		6.33		6.06		
Redox	mV	108		199		199		212		
Salinity								0.0		
Silica	mg/L			11.2		12.7				
Sulfate	mg/L	80		80				80		
Sulfide	mg/L					1				
TDS								0.44		
Temperature	С							10.96		
Turbidity	NTUs							0.0		L

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthylene	ug/L	<u> </u>		0.1 (J)						
bis(2-Ethylhexyl)phthalate	ug/L			0.5 (JB)						
Butylbenzylphthalate	ug/L			0.3 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.1 (JB)						
Di-n-octylphthalate	ug/L	1	[0.1 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	3 (JB)								
4-Methyl-2-Pentanone	ug/L	0.6 (J)								1
Benzene	ug/L					0.9				
Methylene Chloride	ug/L	0.3 (J)				4 (JB)		.6 (JB)		
Tetrachloroethene	ug/L	0.2 (J)							<u> </u>	
Toluene	ug/L	0.1 (J)								
Trichloroethene	ug/L	0.2 (J)								
Xylene (total)	ug/L	.3 (J)							<u> </u>	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	41		131						
Chloride	mg/L	26		189						
Conductivity	mohm/cm							0.209		
Dissolved Oxygen	mg/L	1.08		1.40		1.25		3.39		
DOC	mg/L			6.42						
Ferrous Iron	mg/L			2.1				•		
Methane	ug/L			1590 (E)						
Nitrate	mg/L	0.07		0.2						
Nitrite	mg/L	0.26		0.014						
pH		9.37		9.30		7.42		7.56		
Redox	mV	-170.3		-42		156		15		
Salinity								0.0		
Silica	mg/L			3.31						
Sulfate	mg/L	10		4						
TDS								0.13		
Temperature	С							17.03		
Turbidity	NTUs							150		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.4 (J)		·····				
Diethylphthalate	ug/L			0.2 (J)						
Di-n-butylphthalate	ug/L			0.3 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	6 (J)				3 (JB)				
Benzene	ug/L	0.4 (J)								
Carbon Disulfide	ug/L	4 (J)								
Methylene Chloride	ug/L			2 (J)				.5 (JB)		
Methylene chloride (BS)	ug/L									1 (J)

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			104						
Chloride	mg/L			122						
Dissolved Oxygen	mg/L	1.71		6.16		6.73	i			
DOC	mg/L	15.1		3.51						
Ferrous Iron	mg/L			0.24						
Methane	ug/L	1				11		2.7		
Nitrate	mg/L			0.2						
Nitrite	mg/L			0.035						
 рН	_	6.05		6.82		6.85				
Redox	mV	82.7		249		47				
Silica	mg/L	1		7.04						
Sulfate	mg/L			80						
Sulfide	mg/L	+		1						

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.2 (JB)						
Butylbenzylphthalate	ug/L			0.1 (JB)						
Diethylphthalate	ug/L			0.07 (J)						
Di-n-octylphthalate	ug/L			0.06 (J)						

				T	·····	T			36 07	15 00	37
ſ	Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	INOV-02
F	2-Butanone	ug/L	2 (JB)				2 (JB)				
ľ	Chlorobenzene	ug/L	4 (J)				·····				
ſ	Chloromethane	ug/L	0.5 (J)								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	104		144				148		
Carbon Dioxide	ug/L			4200						
Chloride	mg/L	201		167				238		
Conductivity	mohm/cm							1.05		
Dissolved Oxygen	mg/L	2.43		0.00		0.00		0.0		
DOC	mg/L			6.85		13.6		5.38		
Ethane	ug/L			6.8		27		22		
Ethene	ug/L			5.4 (J)		160		130		
Ferrous Iron	mg/L	3.3		0				3.3		
Methane	ug/L			117		780		1000		
Nitrate	mg/L	0.06		0				0.09	<u> </u>	
Nitrite	mg/L	0.031	[0.002				0.0		
pН		5.49		5.77		5.98		6.03		
Redox	mV	75.5		117		69		123		
Salinity						-		0.0		
Silica	mg/L	18.7		14.5		16.8		9.46		
Sulfate	mg/L	42		39				33		
Sulfide	mg/L					1		1		
TDS								0.7		
TDS	mg/L	583								
Temperature	С							11.81		
Turbidity	NTUs							21.9		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	13 (J)				42 (J)				
Benzene (BS)	ug/L									5 (J)
Bromodichloromethane	ug/L	5								
cis-1 2-Dichloroethene (BS)	ug/L									180 (H)
cis-1,2-Dichloroethene	ug/L	230		190		190		160		
Methylene Chloride	ug/L	10 (J)		64 (JB)		33 (J)		13 (JB)		
Methylene chloride (BS)	ug/L	İ								3 (J)
Vinyl Chloride	ug/L	2,100		1900		1700		1600		
Vinyl chloride (BS)	ug/L	-								1200

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-U.
Alkalinity	mg/L	278		35				30		
Chloride	mg/L	171		546				267		
Conductivity	mohm/cm							0.920		
Dissolved Oxygen	mg/L	0.28		0.40		0.00		0.0		<u> </u>
DOC	mg/L			6.01		13.8		3.66		<u> </u>
Ethane	ug/L	 		21.3						
	ug/L	1		143				12		
Ethene	mg/L	3.3	1	3.3				0.32		
Ferrous Iron	ug/L	0.0		8860 (E)		810		4000 (E)		
Methane		>80		0.15				0.0		
Nitrate	mg/L	-00	1	0.008			<u> </u>	0.014		
Nitrite	mg/L			7.00		6.86		6.7		1
pH		6.25			<u> </u>	-117	<u></u>	-66		Ī
Redox	mV	-103.9	<u> </u>	-110			1	0.0		<u> </u>
Salinity		<u> </u>				11.3		2.31		<u> </u>
Silica	mg/L	18.1			<u> </u>	11.3		2.0	l <u> </u>	
Sulfate	mg/L	3		0		<u> </u>		1		1
Sulfide	mg/L				<u> </u>	1	<u> </u>	0.59		+
TDS					<u> </u> =			0.59	1	
TDS	mg/L	607				<u> </u>		44.00	<u> </u>	<u> </u>
Temperature	С						<u> </u>	14.36	 	
Turbidity	NTUs							0.0		

ETHOD: SVOC

Aughta	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Analyte bis(2-Ethylhexyl)phthalate	ug/L	nng :-		1 (JB)						
Butylbenzylphthalate	ug/L			0.3 (J)					·	
Diethylphthalate	ug/L			0.2 (J)						
Di-n-butylphthalate	ug/L			0.4 (J)					 	
Phenol	ug/L			0.7 (J)						

TETHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	1 (JB)	^			3 (J)				
Benzene	ug/L	5				0.8		.4 (J)		
Bromodichloromethane	ug/L	5						 	<u> </u>	
Chlorobenzene	ug/L	1 (J)								
cis-1,2-Dichloroethene	ug/L	1 (J)					 	.6 (J)		l
cis-1,2-Dichloroethene (BS)	ug/L			140			L			1
Methylene Chloride	ug/L						<u> </u>	.3 (JB)		0.4 (J)
Methylene chloride (BS)	ug/L					1				0.4 (5)
Trichloroethene (BS)	ug/L			1.1 (J)						r <u> </u>
Vinyl Chloride	ug/L	7		2.4 (J)			<u> </u>			
Vinyl Chloride (BS)	ug/L			1.0 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	29		128				122		
Chloride	mg/L	158		713				88		
Conductivity	mohm/cm							0.842		
Dissolved Oxygen	mg/L	0.28		0.10		0.00		0.0		
DOC	mg/L			8.6		17.1		4.31		
Ethane	ug/L			41.9		44		32		
Ethene	ug/L			175		86 (D)		67		
Ferrous Iron	mg/L	0.01		0				0.01		
Methane	ug/L			13300 (D)	•	7200 (D)		6800 (E)		
Nitrate	mg/L	0.17		0.31				0.04		
Nitrite	mg/L	0.044		0.028				0.019		
рН		9.52		9.90		10.52		10.53		
Redox	mV	-176		-281		-421		-384		
Salinity								0.0		
Silica	mg/L			3.26		3.09		2		
Sulfate	mg/L	2		2				7.0		
Sulfide	mg/L					1		1		
TDS								0.54		
TDS	mg/L	330								
Temperature	C							12.19		
Turbidity	NTUs							25.8		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)		1 (J)				
Di-n-butylphthalate	ug/L			0.2 (J)						
Phenol	ug/L			1		2				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzene	ug/L	1				0.5 (J)				
Benzene (BS)	ug/L									1 (J)
Bromodichloromethane	ug/L	5								
Chlorobenzene	ug/L	1 (J)								
Toluene (BS)	ug/L									0.4 (J)

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	313		169				409		
Carbon Dioxide	ug/L			3900						
Chloride	mg/L	77	•	387				138		
Conductivity	mohm/cm							1.7		
Dissolved Oxygen	mg/L	6.83				3.02		0.0		
DOC	mg/L			16.6		36.9		32.8		
Ethane	ug/L					6.5				
Ethene	ug/L					28		10		
Ferrous Iron	mg/L	3.3		3.3				3.3		
Methane	ug/L			3.5	1	7600 (E)		3600 (D)		
Nitrate	mg/L	0.09	<u> </u>	0.03				0.02		
	mg/L	0.074		0.003				0.021		
Nitrite		6.00		6.26		6.40		6.59		
pH	mV	-16		3		-58		-94		
Redox		1 -10						0.1	1	
Salinity		23.5		7.22		2		9.24		
Silica	mg/L	57				<u></u>		0.0		
Sulfate	mg/L	<u> </u>		1		1	1	1	1	
Sulfide	mg/L	<u> </u>		<u> </u>		<u> </u>		1.1		
TDS			<u> </u>	 		Ļ			+	
TDS	mg/L	725		<u></u>		 	<u> </u>	12.45		
Temperature	<u> </u>					1	1	157.0	1	
Turbidity	NTUs					<u> </u>	<u> </u>	107.0	<u> </u>	I

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthylene	ug/L			0.2 (J)			i <u> </u>			
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)				.2 (J)		
Butylbenzylphthalate	ug/L	1		0.3 (JB)						
Diethylphthalate	ug/L			0.2 (JĖ)						
Di-n-butylphthalate	ug/L			0.3 (JB)						
Di-n-octylphthalate	ug/L			0.08 (JB)				.2 (J)		
Pyrene	ug/L			0.05 (JB)			<u> </u>			

Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
			3 (J)		4 (J)		1 (J)	l	l
					4 (JB)				
					0.5 (J)				
	<u>_</u>		69		73		30		
	Units ug/L ug/L ug/L	ug/L ug/L ug/L	ug/L ug/L ug/L	ug/L 3 (J) ug/L	ug/L 3 (J) ug/L	ug/L 3 (J) 4 (J) ug/L 4 (JB) 4 (JB) ug/L 0.5 (J) 73	ug/L 3 (J) 4 (J) ug/L 4 (JB) ug/L 0.5 (J)	ug/L 3 (J) 4 (J) 1 (J) ug/L 4 (JB) 1 1 ug/L 0.5 (J) 1 30	ug/L 3 (3) 1 (3) 1 (3) ug/L 4 (JB)

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	108		186				78		
Chloride	mg/L	238		148				79		
Conductivity	mohm/cm							0.439		
Dissolved Oxygen	mg/L	0.45		0.00		2.93		0.0		
DOC	mg/L			7.39		7.23		3.64		
Ethane	ug/L					270		14		
Ethene	ug/L			7.0		36 (D)		8.6		
Ferrous Iron	mg/L	3.3		0.07				0.22		
Methane	ug/L			3480 (E)		5600 (E)		990		
Nitrate	mg/L	0.02		0				0.0		
Nitrite	mg/L	0.016		0.001				0.009		
рН		6.46		7.99		7.23		7.36		
Redox	mV	-81.7		11		-121		-82		
Salinity								0.0		
Silica	mg/L	15.0		4.77		12.9		5.82		
Sulfate	mg/L			16				7.0	.	
Sulfide	mg/L			1.6		1		1		
TDS								0.29		
TDS	mg/L	508								
Temperature	С							12.59	1	
Turbidity	NTUs							41.7		·

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			2 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	6 (JB)								
Benzene (BS)	ug/L									2 (J)
Bromodichloromethane	ug/L	5								
Chloromethane	ug/L							2 (J)		
cis-1 2-Dichloroethene (BS)	ug/L									5
cis-1,2-Dichloroethene	ug/L	16 (J)		2 (J)		4 (J)		1 (J)		
Ethylbenzene	ug/L	3 (J)								
Methylene Chloride	ug/L					0.4 (J)		.4 (JB)		
Methylene chloride (BS)	ug/L								[1 (J)
Vinyl Chloride	ug/L	550		45		110		48		
Vinyl chloride (BS)	ug/L									130

.

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			129				222		
Chloride	mg/L			56				56		
Conductivity	mohm/cm							0.975		
Dissolved Oxygen	mg/L	3.00		3.5		2.95		0.0		
DOC	mg/L			2.81		8.24		9.86		
Ferrous Iron	mg/L			0.52				3.30		
Methane	ug/L			174		5.8				
Nitrate	mg/L			0.87				0.03		
Nitrite	mg/L			0.02				0.30		
рH		6.20		6.50		6.78		6.76		
Redox	mV	20.8		68		-23		-82		
Salinity								0.0		
Silica	mg/L			8.24		11.8		5.91		
Sulfate	mg/L			48				2.20		
Sulfide	mg/L.					1		1		
TDS								0.62		
Temperature	С							16.14		
Turbidity	NTUs	·····						14.0		

IETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.5 (J)						
Diethylphthalate	ug/L			0.4 (J)						
Di-n-butylphthalate	ug/L	1		0.4 (JB)				.2 (J)		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	2 (J)				2 (J)				
Bromodichloromethane	ug/L	5								
Methylene Chloride	ug/L			2 (J)		0.9 (JB)				
Tetrachloroethene	ug/L			0.9 (J)						

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	380		255				307		
Chloride	mg/L	179		158				73		
Conductivity	mohm/cm							1.36		
Dissolved Oxygen	.mg/L	2.13		10.12		2.93		0.0		
DOC	mg/L			23.3		6.73		8.12		
Ethene	ug/L					4.0				
Ferrous Iron	mg/L	1.89		0.12				0.93		
Methane	ug/L					500		330		
Nitrate	mg/L	0.03		0.02	ł			0.20]
Nitrite	mg/L	0.026		0.013				0.030		
рН		6.34		6.93		6.79		7.04		
Redox	mV	43.6		89		-97		141		
Salinity								0.1		
Silica	mg/L	26.4		13.6		17.5		13		
Sulfate	mg/L	4		3				4.0		
Sulfide	mg/L					1		1		
TDS								0.9		
TDS	mg/L	752								
Temperature	С							13.3		
Turbidity	NTUs							42.2		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)						
Butylbenzylphthalate	ug/L			0.3 (JB)						
Diethylphthalate	ug/L			0.2 (JB)						
Di-n-butylphthalate	ug/L			0.3 (JB)						
Di-n-octylphthalate	ug/L			0.1 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Bromodichloromethane	ug/L	5								
Carbon Disulfide	ug/L	0.8 (J)								
Chlorobenzene	ug/L	2 (J)								
Chlorobenzene (BS)	ug/L									4 (J)
cis-1 2-Dichloroethene (BS)	ug/L	1								1 (J)
cis-1,2-Dichloroethene	ug/L	8 (J)		4 (J)		4 (J)		3 (J)		
Methylene Chloride	ug/L					0.7 (JB)				
Trichlorofluoromethane	ug/L					0.2 (JB)				
Vinyl Chloride	ug/L	6				2		3		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	18		127				88		
Chloride	mg/L	140		102				130		
Conductivity	mohm/cm							0.529		
Dissolved Oxygen	mg/L	0.58		0.20		2.73		0.0		
DOC	mg/L			3.63		3.31		2.37		
Ethane	ug/L							5.4		
Ethene	ug/L			5.1				8.5		
Ferrous Iron	mg/L	0.01		0.05				0.02		
Methane	ug/L			752				3600 (E)		
Nitrate	mg/L	0.02		0.35				0.08		
Nitrite	mg/L	0.009		0.011		,		0.002		
pН		9.78		9.10		9.68		10.23		
Redox	mV	-408		-214		-174		-132		
Salinity								0.0		
Silica	mg/L					2		6.72		
Sulfate	mg/L			12				0.90		
Sulfide	mg/L					1		1		
TDS								0.33		
TDS	mg/L	220								
Temperature	C							12.81		
Turbidity	NTUs							89.7		

ETHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	0ct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			2 (JB)					L	
Phenol	ug/L			0.2 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	4 (JB)								····
Bromodichloromethane	ug/L	5								
Methylene Chloride	ug/L					4 (JB)		.2 (JB)		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	435		37				179		
Chloride	mg/L	258		596				228		
Conductivity	mohm/cm							0.815		
Dissolved Oxygen	mg/L	0.78				2.93		0.0		
DOC	mg/L			2.39		7.6		3.47		
Ethene	ug/L							16		
Ferrous Iron	mg/L			3.07				0.51		
Methane	ug/L			427		770		1600 (D)		
Nitrate	mg/L	0.15		0.2				0.07		
Nitrite	mg/L	0.041		0.011				0.008		
рН		6.55		7.07		7.38		7.31		
Redox	mV	-70		-118		-37		-98		
Salinity								0.0		
Silica	mg/L	12.4		8.33		13.6		4.99		
Sulfate	mg/L	73		7				4.0		
Sulfide	mg/L					1		1		
TDS								0.52		
TDS	mg/L	695							T	
Temperature	C							12.3		
Turbidity	NTUs							11.4		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)						
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L			0.3 (JB)						
Di-n-octylphthalate	ug/L			0.1 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Bromodichloromethane	ug/L	5								
Bromomethane	ug/L	0.5 (J)								
Methylene Chloride	ug/L	0.3 (J)				4 (JB)		.4 (JB)		
Vinyl Chloride	ug/L					0.7 (J)				

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			43				89		
Carbon Dioxide	ug/L			2500						
Chloride	mg/L			178				190		
Conductivity	mohm/cm							0.793		
Dissolved Oxygen	mg/L	1.19				7.79		0.0		
DOC	mg/L			20.2						
Ethene	ug/L			78.9						
Ferrous Iron	mg/L			0.09				0.33		
Methane	ug/L			7550 (D)				2.1		
Nitrate	mg/L			2.43				2.43		
Nitrite	mg/L			0.077				0.126		
pН		6.40		6.06		6.57		5.79		
Redox	mV	61		187		-11		261		
Salinity								0.0		
Silica	mg/L			15.4						
Sulfate	mg/L			49				80		
TDS								0.51		
Temperature	С							11.09		
Turbidity	NTUs							24.2		

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L					2 (JB)				
Chloromethane	ug/L							2 (J)		
Methylene Chloride	ug/L			0.8 (JB)				.3 (JB)		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	236		231				149		
Carbon Dioxide	ug/L			35000						
Chloride	mg/L	346		464				36		
Conductivity	mohm/cm							1.42		
Dissolved Oxygen	mg/L	2.44		0.40		2.91		0.0		
DOC	mg/L			3.06		6.42		4.5		
Ethane	ug/L			7.2				11		
Ethene	ug/L			17.6	:			23		
Ferrous Iron	mg/L	0.16		0.34				1.09		
Methane	ug/L			383				840		
Nitrate	mg/L	0.12		0.3				0.09		
Nitrite	mg/L	0.091		0.015				0.030		
рН		6.60		6.70		6.83		6.59		
Redox	mV	67		19		28		5		
Salinity								0.1		
Silica	mg/L	18.0		9.17		16		8.44		
Sulfate	mg/L	29		72				80		
Sulfide	mg/L		-			1		1	·	
TDS								0.9		
TDS	mg/L	946								
Temperature	C							13.96		
Turbidity	NTUs							0.0		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.4 (J)		0.8 (J)				
Diethylphthalate	ug/L			0.5 (J)						
N-Nitrosodiphenylamine (1)	ug/L			0.3 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	0.8 (JB)								
Bromodichloromethane	ug/L	5								
Carbon Disulfide	ug/L			0.2 (J)						
cis-1 2-Dichloroethene (BS)	ug/L									54
cis-1,2-Dichloroethene	ug/L	150		53		81		56		
cis-1,2-Dichloroethene (BS)	ug/L			66						
Methylene Chloride	ug/L			1 (J)		4 (JB)		.6 (JB)		
Methylene chloride (BS)	ug/L									0.3 (J)
trans-1 2-Dichloroethene (BS)	ug/L									0.4 (J)
trans-1,2-Dichloroethene	ug/L	1 (J)		0.6 (J)		1 (J)				
Trichloroethene	ug/L	0.8 (J)		0.4 (J)		0.3 (J)				
Vinyl Chloride	ug/L	19		18		21		30		
Vinyl chloride (BS)	ug/L			26						19

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	25		52						
Chloride	mg/L	262		765						
Dissolved Oxygen	mg/L	0.74		2.72		2.67				
DOC	mg/L					3.44		3.44		
Ethane	ug/L							8.6		
Ethene	ug/L		-	14.4				14		
Ferrous Iron	mg/L			0.33						
Methane	ug/L			6500 (D)				2000 (D)		
Nitrate	mg/L	0.1		0.05						
Nitrite	mg/L	0.085		0.017						
pH		7.63		7.74		7.75				
Redox	mV	-237		247		-61				
Silica	mg/L	4.37		6.51		5.63		5.95		
Sulfate	mg/L	4		40						
Sulfide	mg/L					1		1		
TDS	mg/L	558								

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzo(a)pyrene	ug/L			0.04 (JB)				l		
bis(2-Ethylhexyl)phthalate	ug/L	1		0.9 (JB)				.6 (J)		
Butylbenzylphthalate	ug/L	Ī		0.2 (JB)						
Diethylphthalate	ug/L			0.2 (JB)						
Di-n-butylphthalate	ug/L			0.3 (JB)						
Di-n-octylphthalate	ug/L			0.07 (JB)						
Fluoranthene	ug/L			0.06 (JB)						
Phenol	ug/L			0.1 (JB)						
Pyrene	ug/L			0.04 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	4 (JB)								
Benzene	ug/L	0.3 (J)				: .				
Bromodichloromethane	ug/L	5				:				
cis-1 2-Dichloroethene (BS)	ug/L									6
cis-1,2-Dichloroethene	ug/L	10		6		4 (J)		9		
Methylene Chloride	ug/L	0.3 (J)				0.7 (JB)		1 (JB)		
Vinyl Chloride	ug/L	2				0.4 (J)		3		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	31		37				64		
Carbon Dioxide (Dup)	ug/L			34000				[
Chloride	mg/L	358		637				57		
Conductivity	mohm/cm							1.22		
Dissolved Oxygen	mg/L	0.58		0.30		0.00		0.0		
DOC	mg/L		-	2.32		4.09		4.73		
DOC (Dup)	mg/L			4.53		5.78		6.17		
Ethane	ug/L			34.3		5.9		19		
Ethane (Dup)	ug/L		i i	35.3		7.6		20		
Ethene	ug/L			33.7		19		28	1	
Ethene (Dup)	ug/L			34.9		21		30		
Ferrous Iron	mg/L	0.02		0				0.0		
Methane	ug/L			10900 (D)		6300 (E)		6000 (E)		
Methane (Dup)	ug/L			4970 (D)		6700 (E)		6000 (E)	Í	
Nitrate	mg/L	0.04		0.23				0.10		1
Nitrite	mg/L	0.008		0.12				0.003		
рН		9.20		9.80		9.68		8.27		
Redox	mV	-348	j	-124		-54		-220		
Salinity			I					0.1		
Silica	mg/L					3.08		2		
Silica (Dup)	mg/L					2		2		
Sulfate	mg/L			0.53				23.0		
Sulfide	mg/L					1		1		
Sulfide (Dup)	mg/L					1		1		
TĎS	mg/L	612								
TDS								0.9		
Temperature	С							13.32		
Turbidity	NTUs							2.2		

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate (Dup)	ug/L					1 (J)		.4 (J)		
Di-n-butylphthalate	ug/L			0.2 (JB)		······				
Di-n-butylphthalate (Dup)	ug/L			0.2 (JB)						
Phenol	ug/L			0.9 (J)						
Phenol (Dup)	ug/L			1						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	0.5 (JB)		2 (J)		3 (J)				
2-Butanone (Dup)	ug/L			2 (J)		3 (J)				
Benzene	ug/L	0.5 (J)		0.3 (J)		0.5 (J)				
Benzene (Dup)	ug/L			0.3 (J)		0.5 (J)				
Bromodichloromethane	ug/L	5								
cis-1 2-Dichloroethene (BS)	ug/L									3 (J)
cis-1,2-Dichloroethene	ug/L	30		11		18		22		
cis-1,2-Dichloroethene (BS)	ug/L			6.6						•
cis-1,2-Dichloroethene (Dup)	ug/L			11		19		21		
Methylene Chloride	ug/L			2 (J)		0.5 (J)		1 (JB)		
Methylene Chloride (Dup)	ug/L			2 (J)		2 (J)		.5 (JB)		
Vinyl Chloride	ug/L	6		4		12		13		
Vinyl chloride (BS)	ug/L			2.4 (J)						2 (J)
Vinyl Chloride (Dup)	ug/L			4		12		13		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	41		67				6		
Chloride	mg/L	357		284				44		
Conductivity	mohm/cm							0.932		
Dissolved Oxygen	mg/L	99.5		0.13		0.00		0.0		
DOC	mg/L			4.62		3.28		4.33		
Ethene	ug/L					4.2				
Ferrous Iron	mg/L			0.51				0.06		
Methane	ug/L					5000 (E)		670		
Nitrate	mg/L	0.04		0.05				0.08		
Nitrite	mg/L	0.023		0.033				0.058		
рН		6.36		8.45		7.81		7.86		
Redox	mV	-96		-213		-96		70		
Salinity		:						0.0		
Silica	mg/L	3.82		3.4		3.4		4.66		
Sulfate	mg/L		· · · · · · · · · · · · · · · · · · ·	16				16		
Sulfide	mg/L					1		1		
TDS								0.6		
TDS	mg/L	639								
Temperature	C							12.16		
Turbidity	NTUs							22.2		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthylene	ug/L			0.2 (J)						
Anthracene	ug/L			0.04 (JB)						
bis(2-Ethylhexyl)phthalate	ug/L			0.4 (JB)		1 (J)				
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L			0.08 (JB)						
Di-n-butylphthalate	ug/L			0.2 (JB)						
Di-n-octylphthalate	ug/L			0.1 (JB)				.3 (J)		
Phenol	ug/L	Ì		0.6 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	2 (JB)					1			
Benzene	ug/L	0.3 (J)								
Bromodichloromethane	ug/L	5								
cis-1,2-Dichloroethene	ug/L	4 (J)		11		11		2 (J)		
Ethylbenzene	ug/L	0.1 (JB)								
Methylene Chloride	ug/L					0.5 (JB)				
Toluene	ug/L	0.4 (JB)								
Trichlorofluoromethane	ug/L					0.2 (JB)				
Vinyl Chloride	ug/L	1 (J)		4		2				

Page 110 of 121

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	49		1.9				200		
Chloride	mg/L	400		875				24		
Conductivity	mohm/cm							0.97		
Dissolved Oxygen	mg/L	0.66		9.27		0.00		0.0		
DOC	mg/L			4.18		7.44		3.39		
Ethane	ug/L			15.1				6.5		
Ethene	ug/L			37.9		4.0		13		
Ferrous Iron	mg/L	2.43		0.26				0.68		
Methane	ug/L			10100 (D)		6100 (E)		5600 (E)		·
Nitrate	mg/L	0.03		0				0.10		
Nitrite	mg/L	0.021		8.01				0.05		
pН		6.40		3.50		6.95		7.29		
Redox	mV	-99.7		-199		-11		-135		
Salinity								0.0		
Silica	mg/L	6.04		2.46		4.89		2.5		
Sulfate	mg/L			9				12.0		
Sulfide	mg/L					1		1		
TDS								0.62		
TDS	mg/L	757								
Temperature	С							13.5		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Acenaphthylene	ug/L			0.3 (J)						
Anthracene	ug/L			0.06 (JB)						
bis(2-Ethylhexyl)phthalate	ug/L			1 (JB)						
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L			0.08 (JB)						
Di-n-butylphthalate	ug/L			0.2 (JB)						
Di-n-octylphthalate	ug/L			0.2 (JB)				.3 (J)		
Phenol	ug/L			0.5 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	9 (JB)				3 (J)				
Benzene	ug/L	0.4 (J)				0.4 (J)				
Bromodichloromethane	ug/L	5								
cis-1 2-Dichloroethene (BS)	ug/L									3 (J)
cis-1,2-Dichloroethene	ug/L	4 (J)		21		17		16		
Methylene Chloride	ug/L	0.3 (J)				3 (JB)				
Vinyl Chloride	ug/L	3		10		3		6		

1.11.1

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			347				308		
Chloride	mg/L			700				155		
Conductivity	mohm/cm							1.41		
Dissolved Oxygen	mg/L	1.00		1.20		0.00		2.65		
DOC	mg/L	4.55		4.51						
Ferrous Iron	mg/L			0.12				0.0		
Methane	PPB	970								
Methane	ug/L			569		130 ()				
Nitrate	mg/L			0.11				0.06		
Nitrite	mg/L			0.005				0.044		
рH		7.07		7.30		7.42		7.32		
Redox	mV	119		-9		-118		-92		
Salinity								0.1		
Sulfate	mg/L			80				1.0		
Sulfide	mg/L			1						
TDS								0.9		
Temperature	С							17.9		
Turbidity	NTUs							12.0		

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	1 (JB)		0.4 (JB)						
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L	0.9 (JB)		0.1 (JB)						
Di-n-butylphthalate	ug/L	1 (JB)		0.2 (J)						
Di-n-octylphthalate	ug/L	0.1 (JB)		0.09 (JB)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Carbon Disulfide	ug/L					2 (J)				
cis-1 2-Dichloroethene	ug/L									1 (J)
cis-1,2-Dichloroethene	ug/L					0.9 (J)				
Methylene Chloride	ug/L					3 (J)				
Vinyl chloride	ug/L					1 (J)				6

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01		Nov-02
Alkalinity	mg/L	409		399				200	270	
Carbon Dioxide	PPB	4600								
Chloride	mg/L	18		250				102	110	
Conductivity	mohm/cm							1.13	1.46	
Dissolved Oxygen	mg/L	0.83		0.80		0.00		1.78	1.13	
DOC	mg/L	7.60		6.38		9.67		8.64		
DOC Average Quads	mg/L								4.5	
Ferrous Iron	mg/L	1.64		1.76				2.39	0.05	
Methane	PPB	340								
Methane	ug/L			7.0		2.0		110		
Nitrate	mg/L	0.01		0.16				0.00	0	
Nitrite	mg/L	0.29		0.002		•		0.012	0	
pH		6.60		6.70		7.08		6.82	6.98	
Redox	mV	76		15		-72		-59	-57	
Salinity								0.1		
Sulfate	mg/L	17		80				80.0	80	
Sulfide	mg/L			1				1.6		
TDS								0.7		
Temperature	С							17.52	19.4	
Turbidity	NTUs							45.9	49.5	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.6 (JB)		2 (JB)		0.3 (J)				
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L	0.2 (JB)		0.1 (JB)						
Di-n-butylphthalate	ug/L	2 (JB)		0.1 (J)						
Di-n-octylphthalate	ug/L			0.1 (JB)						

METHOD: VOC

(U)-----

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
4-Methyl-2-Pentanone	ug/L					0.9 (JB)				
Carbon disulfide	ug/L								6	
Methylene chloride	ug/L		`			(L) e.0			2 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	257		323				211	132	
Carbon Dioxide	PPB	5200								
Carbon Dioxide	ug/L					1200				:
Chloride	mg/L	158		33				100	15	
Conductivity	mohm/cm							0.921	0.483	
Dissolved Oxygen	mg/L	1.05		6.40		3.09		235	6.3	
DOC	mg/L	6.88		4.36		4.41		6.45		
DOC (Dup)	mg/L					3.65				
DOC Average Quads	mg/L								3.6	
Ferrous Iron	mg/L	0.12		0				0.02	0.15	
Methane	PPB	250								
Methane	ug/L					5.2				
Nitrate	mg/L	0.2		1.54				0.17	0.12	·
Nitrite	mg/L	0.76		0.026				0.043	0.009	
рН		6.32		6.60		6.90		6.93	6.3	
Redox	mV	84.1		262		198		123	90	
Salinity								0.0		
Sulfate	mg/L	80		80				80	50	
Sulfide	mg/L			2.3				1.2		
TDS								0.58		
Temperature	С							14.17	13.39	
Turbidity	NTUs							12.6	36.4	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.7 (JB)		0.2 (JB)						
Butylbenzylphthalate	ug/L			0.1 (JB)						
Diethylphthalate	ug/L	0.3 (JB)		0.08 (J)						
Di-n-butylphthalate	ug/L	1 (JB)		0.1 (JB)						
Di-n-octylphthalate	ug/L	0.2 (JB)		0.05 (J)						
Phenanthrene	ug/L			0.05 (J)						

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	2 (JB)								
4-Methyl-2-Pentanone	ug/L	1 (JB)								
cis-1,2-Dichloroethene	ug/L			8						
Methylene Chloride	ug/L							.5 (JB)		

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L			116				66	93	
Carbon Dioxide	PPB	3600						-		
Chloride	mg/L			214.2				246	248	
Conductivity	mohm/cm							1.11	1.35	
Dissolved Oxygen	mg/L			0		2.65		0.0	1.29	
DOC	mg/L			3.15		13		3.63		
DOC Average Quads	mg/L								2.8	
Ferrous Iron	mg/L			0.01				0.0	0.03	
Methane	ug/L			110		5.1			2.5	
Nitrate	mg/L			1.83				1.7	0.006	
Nitrite	mg/L			0				0.026	0.022	
рН				6.08		6.15		6.21	6.21	
Redox	mV			231		157		306	158	
Salinity	-							0.0		
Sulfate	mg/L			50				55	68	
Sulfide	mg/L			1				1		
TDS								0.7		
Temperature	С							11.66	12.7	
Turbidity	NTUs							64.9	20.7	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzo(a)pyrene	ug/L			0.04 (J)						
bis(2-Ethylhexyl)phthalate	ug/L	1 (JB)		1 (JB)						
Butylbenzylphthalate	ug/L			0.5 (JB)						
Diethylphthalate	ug/L			0.2 (JB)						
Di-n-butylphthalate	ug/L	0.6 (JB)		0.4 (JB)						
Di-n-octylphthalate	ug/L	0.1 (JB)		0.2 (JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
1,1,2,2-Tetrachloroethane	ug/L			0.3 (JB)						
2-Butanone	ug/L					4 (J)				
Chlorobenzene	ug/L	4 (J)								
cis-1,2-Dichloroethene	ug/L	0.8 (J)		0.6 (J)		1 (J)		.5 (J)		
Methylene chloride	ug/L	0.4 (J)		0.7 (J)		0.7 (J)		.5 (JB)	2 (JB)	
Toluene	ug/L			0.1 (J)						
Trichloroethene	ug/L	5		7		3 (J)			8	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	550		582				436	506	
Chloride	mg/L	27		95.2				8.0	16	
Conductivity	mohm/cm							1.32	1.42	
Dissolved Oxygen	mg/L	1.17		0.00		8.33		1.03	0.88	
DOC	mg/L	3.13		21		10		2.73		
DOC Average Quads	mg/L								8.2	
Ethene	ug/L			8.9				6.1		
Ferrous Iron	mg/L			0				0.0	0.14	
Methane	PPB	30000 (DE)								
Methane	ug/L			27300 (D)		4800		18000 (D)	3700 (D)	
Nitrate	mg/L	0.09		0.5				0.06	0.24	
Nitrite	mg/L	0.023		4				0.019	0.008	
рН		8.00		8.19		8.25		8.15	8.01	
Redox	mV	196		-168		-159		-192	-196	
Salinity								0.1		
Sulfate	mg/L			0				0.0	0	
Sulfide	mg/L			1				1		
TDS								0.8		
Temperature	С							12.83	11.46	
Turbidity	NTUs							63.5	1.4	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L			0.3 (JB)		0.4 (J)				
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	1 (JB)		0.3 (JB)		0.2 (J)				
Phenanthrene	ug/L					0.2 (J)				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
cis-1,2-Dichloroethene	ug/L					1 (J)				
Methylene Chloride	ug/L	0.3 (J)		4 (J)		2 (J)				
Trichloroethene	ug/L					0.4 (J)				
Vinyl Chloride	ug/L	[3				

Vell ID: WVA-SA-MW-ESE-2

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	220		210				202	128	
Chloride	mg/L	387		402				423	358	
Conductivity	mohm/cm							1.73	2.07	
Dissolved Oxygen	mg/L	1.12		0.50		3.14		0.0	1.57	
DOC	mg/L	1.25		2.93		2.86		2.42		
DOC Average Quads	mg/L								0.4 (B)	
Ferrous Iron	mg/L	2.59		3.3				2.18	3.29	
Methane	PPB	850								
Methane	ug/L			1500		58		6.5	2.2	
Nitrate	mg/L	0.02		0				0.07	0.08	
Nitrite	mg/L	0.001		0				0.0	0.015	
pН		6.81		6.80		6.93		6.88	6.85	
Redox	mV	107		-78		-69		197	-97	
Salinity								0.1		
Sulfate	mg/L	26		21				31	32	
Sulfide	mg/L			1				1		
TDS								1.1		
Temperature	С							12.8	11.91	
Turbidity	NTUs							24.5	22.5	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99 Apr	-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzo(a)pyrene	ug/L		0.03	3 (J)						
bis(2-Ethylhexyl)phthalate	ug/L	1 (JB)	0.4	(JB)						
Butylbenzylphthalate	ug/L		0.1	(JB)						
Diethylphthalate	ug/L	0.3 (J)	0.1	(JB)						
Di-n-butylphthalate	ug/L	0.6 (JB)	0.1	(JB)						
Di-n-octylphthalate	ug/L		0.06	(JB)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Benzene	ug/L	4								
Carbon disulfide	ug/L								9	
Chloromethane	ug/L	.8 (J)								
Methylene chloride	ug/L	0.9 (J)		0.4 (J)		0.7 (J)			0.6 (J)	

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	199		3948				153	203	
Carbon Dioxide	PPB	4000								
Carbon Dioxide	ug/L			2500						
Chloride	mg/L	50		936				25	21	
Conductivity	mohm/cm							0.633	0.578	
Dissolved Oxygen	mg/L	0.22		1.55		0.00		1.45	1.18	
DOC	mg/L	1.75		6.81		2.29		2.24		
DOC Average Quads	mg/L								4.2	
Ferrous Iron	mg/L	3.3		3.2				3.30	1.9	
Methane	PPB	46								
Methane	ug/L			82.0				30	7.4	
Nitrate	mg/L	0.02		0.11				0.0	0	
Nitrite	mg/L	0.014		0.006				0.003	0.001	
pН		6.18		6.71		6.86		6.57	6.4	
Redox	mV	-55.4		-58		-80		-78	-94	
Salinity								0.0		
Sulfate	mg/L	46		57				47	57	
Sulfide	mg/L			1						
TDS						·		0.41		
Temperature	С							10.01	11.03	
Turbidity	NTUs							10.2	19.1	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	0.4 (JB)		0.3 (JB)		0.08 (J)		.4 (JB)		
Diethylphthalate	ug/L	0.2 (JB)								
Di-n-butylphthalate	ug/L	1 (JB)						.1 (JB)		
Di-n-octylphthalate	ug/L			0.3 (J)		-				

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L			8 (J)		6 (J)				
4-Methyl-2-Pentanone	ug/L			5 (J)						
Chloromethane	ug/L					1 (J)				
Methylene Chloride	ug/L			4 (J)		1 (J)		.6 (J)		

ell ID: WVA-SA-MW-ESE-6

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01		Nov-02
Alkalinity	mg/L	360		338				369	301	
Carbon Dioxide	PPB	3300								
Chloride	mg/L	47		20				45	15	
Conductivity	mohm/cm							0.754	0.729	
Dissolved Oxygen	mg/L	0.17		0.50		0.00		0.0	0.53	
DOC	mg/L	7.23		12.2		10.7		1		
DOC (Dup)	mg/L					11.5				
DOC Average Quads	mg/L								8.6	
Ferrous Iron	mg/L	0.62		2.5				3.3	2.26	
Methane	PPB	16000 (D)								
Methane	ug/L			12600		5200 (E)		6600	2500 (D)	
Methane (Dup)	ug/L					4500 (E)				
Nitrate	mg/L	0.03		0				0.14	0.07	
Nitrite	mg/L			0				0.0	0.004	
pH		6.50		7.10		7.19		7.11	6.51	
Redox	mV	-96.1		-72		-123		-129	-149	
Salinity								0.0		
Sulfate	mg/L			0				0.0	0	
Sulfide	mg/L			1				1		
TDS								0.49		
Temperature	С							12.35	11.28	
Turbidity	NTUs							0.0	1	

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
bis(2-Ethylhexyl)phthalate	ug/L	1 (JB)		0.6 (JB)						
Butylbenzylphthalate	ug/L			0.2 (JB)						
Diethylphthalate	ug/L			0.1 (JB)						
Di-n-butylphthalate	ug/L	0.6 (JB)		0.2 (JB)						
Di-n-octylphthalate	ug/L	1		0.09 (JB)	1					

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	2 (JB)		5 (JB)		6 (J)				L
2-Butanone (Dup)	ug/L					6 (J)				
Benzene	ug/L	0.5 (J)								
Carbon Disulfide	ug/L					0.6 (J)				
Chlorobenzene	ug/L	0.6 (J)								
Chloromethane	ug/L	.5 (J)				0.9 (J)				
Chloromethane (Dup)	ug/L					1 (J)				
Methylene Chloride	ug/L	0.4 (J)		0.3 (J)		0.8 (J)				
Methylene Chloride (Dup)	ug/L					1 (J)				
Trichloroethene	ug/L	0.6 (J)								

METHOD: NAT

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Alkalinity	mg/L	464.0		384				366	273	
Carbon Dioxide	ug/L			7300						
Carbon Dioxide	PPB	9000								
Carbon Dioxide (Dup)	ug/L			7800						
Chloride	mg/L	263.0		669				100	320	
Conductivity	mohm/cm							1.67	2.15	
Dissolved Oxygen	mg/L	1.80		1.40		5.04		5.30	2.29	
DOC	mg/L	7.66		6.27		11.3		11.1		
DOC (Dup)	mg/L			18.3						
DOC Average Quads	mg/L.						· · · · · · · · · · · · · · · · · · ·		6.4	
Ethane	PPB	130								
Ethane	ug/L			12.5		110		78 (D)		
Ethane (Dup)	ug/L			15.9						
Ethene	PPB	74								
Ethene	ug/L			26.1		56 (D)		29		
Ethene (Dup)	ug/L			30.2			·····			
Ferrous Iron	mg/L	0.77		2				1.31	1.12	
Methane	ug/L			992		2800 (E)		3400 (D)	13	
Methane	PPB	7900 (D)				l				
Methane (Dup)	ug/L			1210				<u> </u>		
Nitrate	mg/L	0.11		0			Ĩ	0.17	0.09	
Nitrite	mg/L	0.032		0				0.064	0.022	
pH		6.40		6.30		6.69		6.59	6.97	
Redox	mV	5.00	-	30		4.00		-27	-60	
Salinity							•	0.1		
Sulfate	mg/L	15.0		44				3.0		
Sulfide	mg/L			Í		1		1	Ţ	
TDS								1.1		
Temperature	С							15.15	11.8	
Turbidity	NTUs					T		5.7	14.2	

.

ell ID: WVA-SA-MW-ESE-8

METHOD: SVOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
Anthracene (Dup)	ug/L			0.04 (J)						
bis(2-Ethylhexyl)phthalate	ug/L	0.7 (JB)		0.3 (JB)		0.6 (JB)				
bis(2-Ethylhexyl)phthalate (Dup)	ug/L			0.2 (JB)						
Butylbenzylphthalate	ug/L			0.2 (JB)						
Butylbenzylphthalate (Dup)	ug/L			0.1 (JB)						
Diethylphthalate	ug/L	0.3 (JB)		0.08 (J)						
Diethylphthalate (Dup)	ug/L			0.1 (J)						
Di-n-butylphthalate	ug/L	2 (JB)		0.1 (JB)		0.2 (J)				
Di-n-butylphthalate (Dup)	ug/L			0.1 (JB)						
Di-n-octylphthalate	ug/L	0.1 (JB)		0.08 (J)						
Di-n-octylphthalate (Dup)	ug/L			0.07 (J)						
Fluoranthene (Dup)	ug/L			0.04 (J)						
Phenanthrene (Dup)	ug/L			0.03 (J)						
Pyrene (Dup)	ug/L			0.04 (J)						

METHOD: VOC

Analyte	Units	Aug-99	Sept-99	Apr-00	May-00	Oct-00	Apr-01	May-01	May-02	Nov-02
2-Butanone	ug/L	44 (JB)								
Chloroform	ug/L			3 (JB)						
Chloroform (Dup)	ug/L			5 (JB)						
cis-1,2-Dichloroethene	ug/L	3,100		850		4900		3900		
cis-1,2-Dichloroethene (Dup)	ug/L			810						
Dibromochloromethane	ug/L	9 (J)								
Methylene Chloride	ug/L	45 (J)		7 (JB)		93 (JB)		54 (JB)		
Methylene Chloride (Dup)	ug/L			14 (JB)						
Tetrachloroethene	ug/L	8 (JB)								
trans-1 2-Dichloroethene	ug/L								1 (J)	
trans-1,2-Dichloroethene	ug/L	11 (J)		5 (J)						
Trichloroethene	ug/L	9 (J)								
Vinyl chloride	ug/L	530		250		870		730	150	
Vinyl Chloride (Dup)	ug/L			240						