MONITORING REPORT (April 2000 Sampling Event)

For

The Vatrano Road Site Albany, New York

(New York State Department of Environmental Conservation) Inactive Hazardous Waste Site Number 401036

May 2000

Prepared For:

Dawn Varacchi

The General Electric Company 2 Mount Royal Avenue Suite 200 Marlboro, MA 01752

Prepared By:

Clough, Harbour & Associates LLP III Winners Circle Albany, New York 12205 (518) 453-4500

CHA Project # 7899.07.00

h:\7899\4-2000rep.doc

MONITORING REPORT For The Vatrano Road Site Albany, New York (New York State Department of Environmental Conservation Inactive Hazardous Waste Site Number – 401036)

TABLE OF CONTENTS

Section

1.0	INTRODUCTION								
2.0	SITE	DESCRIPTION	2						
	2.1	History	2						
	2.2	Regional Geology & Hydrogeology	3						
	2.3	Site Soils & Hydrogeology	3						
	2.4	Monitoring Well Network	4						
	2.5	Site Groundwater and Aquifer Characteristics	4						
	2.6	Preremediation Groundwater Sampling	4						
	2.7	Post-Remediation Groundwater Quality Characterization	5						
3.0	APR	APRIL 2000 SAMPLING EVENT							
	3.1	Current Site Conditions	6						
	3.2	Procedures	6						
	3.3	Laboratory Analysis and Quality Control	7						
	3.4	Laboratory Analysis Discussion	7						
4.0	SUM	IMARY	8						

LIST OF TABLES

<u>Table #</u>

- 1 Groundwater Monitoring Well Data and Groundwater Elevations
- 2 Groundwater Analysis Summary Table

LIST OF FIGURES

Figure

- 1 Site Location Map
- 2 Site Plan
- 3 April 5, 2000 Water Table Contour Map

i

PHOTOGRAPHS

Photograph

- 1
- 2
- 3 4

APPENDICES

- APPENDIX A MONITORING WELL DIAGRAMS
- APPENDIX B GROUNDWATER LABORATORY ANALYSIS DATA
- APPENDIX C GROUNDWATER WELL FIELD SAMPLING FORMS
- APPENDIX D CHAIN OF CUSTODY

1.0 INTRODUCTION

This is the last Semi-Annual Monitoring Report for the former General Electric Vatrano Road Service Center prepared by Clough, Harbour, & Associates LLP (CHA), Albany, New York. In keeping with the reporting requirements outlined in the December 1998 *Operations, Maintenance and Monitoring Plan*, sampling will be accomplished on an **annual** basis for the next three years. After the three annual sampling events, a review of the data collected since the remediation took place will be conducted to determine what if any further actions are necessary. This plan was approved by the New York Department of Environmental Conservation (NYSDEC) in a letter dated February 1, 1999.

The location of the subject site is illustrated by Figure 1. A site plan, which illustrates the portion of the property that was remediated in the fall of 1997 including the groundwater well monitoring network, is shown on Figure 2.

The purpose of this report is to describe the laboratory results for the groundwater samples collected from the site's groundwater monitoring wells.

Copies of this report are forwarded to the following:

Mr. Gerald J. Rider Operation & Maintenance Section Division of Environmental Remediation New York State Department of Environmental Conservation 50 Wolf Road, Room 260A Albany, New York 12233-7010

and

Mr. Eric Hamilton RHWRE NYS Department of Environmental Conservation-Region 4 1150 N. Wescott Road Schenectady, New York 12306

and

Dawn Varacchi General Electric, EHS 2 Mount Royal Avenue Suite 200 Marlboro, MA 01752

2.0 SITE DESCRIPTION

As illustrated by Figures 1 and 2, the subject site is located on Vatrano Road in the City of Albany, New York, just east of Central Avenue near the Town of Colonie border. A series of railroad tracks owned and operated by Consolidated Rail forms the southern boundary of the site, with Interstate 90 located further to the south. The site consists of a vacant lot within the Vatrano Commercial Park, and is less than two acres in size. During the spring of 1998, a chain link fence was placed near the rear of the site. The area in front of this fence was paved with asphalt and is currently used as a parking lot. The surrounding area is occupied by commercial and light industrial facilities, with the nearest residential properties located immediately to the north of the Vatrano Road Commercial Park.

2.1 HISTORY

From 1956 through 1981, the General Electric Company leased what is now known as 14 Vatrano Road, the structure immediately to the west of the subject site. This facility was used as an apparatus repair shop by General Electric, where electric motors and transformers containing polychlorinated biphenyls (PCBs) were serviced.

The results of a series of preliminary investigations indicated that the subject site's soils were contaminated with PCBs. As a result, the NYSDEC identified the property as an inactive hazardous waste disposal site that constituted a significant threat to the environment. In 1990, the NYSDEC and General Electric entered into an order on consent, which required General Electric to conduct a Remedial Investigation/Feasibility Study (RI/FS) of the site. This study identified the nature and extent of the contamination on the property, and identified and evaluated remedial alternatives that General Electric could use to meet the goal of the remedial program. The objective of the remedial program was to restore the site to predisposal conditions, to the extent feasible, and authorized by law, while eliminating or mitigating all significant threats to public health and the environment.

In early 1997 the property owner asked General Electric to expedite the remediation of the site. General Electric reevaluated the stabilization/solidification remedy and the contingent remedy (the excavation and off site disposal of contaminated soils) and found that remediation could be completed in 1997 if the contingent remedy (excavation with off-site disposal) was chosen. Since both the selected remedy and the contingent remedy would achieve the cited remedial objective, the NYSDEC approved the implementation of the contingent remedy.

From October through December of 1997, the site was remediated by Four Seasons Environmental under the supervision of Clough, Harbour and Associates, LLP (CHA). A full description of the remediation can be found in the December 1998, *Remediation Engineering Certification Report* prepared by CHA.

2.2 REGIONAL GEOLOGY & HYDROGEOLOGY

The geology of the region consists of Ordovician age bedrock overlain by unconsolidated glacial till and outwash deposits and/or glacial lake deposits. The Ordovician bedrock is comprised predominantly of dark-gray to black argillaceous shales with occasional layers of limestone and localized chert.

Overlying the bedrock are glacial tills, glacial outwash deposits, and lacustrine (lake) deposits. The tills are comprised of poorly sorted fine to coarse grain sized materials and are generally found in lateral moraines which were deposited by advancing glaciers along the sides of the valleys. The outwash deposits are clean, well sorted sands and gravels found generally throughout the valley floor, having been deposited by streams originating from the melting glaciers during glacier retreats. The lacustrine deposits are comprised of silts and clays deposited in lakes formed during the temporary halts in advancements or retreats of the glaciers and are locally known as the Lake Albany Deposits. The glacial deposits are discontinuous laterally and vary in thickness throughout, thereby producing a complex geologic and hydrogeologic setting.

The regional hydrogeologic feature controlling this area is the Hudson River, which is approximately four miles east of the site. Therefore, groundwater flow in the region is thought to be southeastward, toward the Hudson River.

2.3 SITE SOILS & HYDROGEOLOGY

Borings advanced on site encountered two to ten feet of ash and cinder fill over natural soil. The fill contained wood, brick, cinder blocks, asphalt and metal debris in sand, silt, cinders and ash. Natural soil underlying the fill and debris consists of approximately ten feet of silty sand, with 30 feet of clayey silt below the silty sand. Depth to bedrock is unknown.

The Patroon Creek flows easterly and passes the site approximately 200 feet to the south. This feature exerts local hydrologic control over the site's groundwater flow direction, with groundwater flowing to the south toward the Patroon Creek.

The New York State Bedrock Geologic Map shows the site is underlain with the Ordovician Normanskill Formation which has a relatively low permeability resulting in significantly lower water production rates than those associated with the glacial deposits. Permeability within the bedrock is directly related to the extent of fracturing and joints within the rock. Moderate levels of groundwater production may occur in portions of the bedrock where jointing and fracturing are significant. Random beds of limestone within the bedrock have been known to yield significant quantities of water. The extent of bedrock joints and fracturing beneath the Vatrano Road site has not been determined.

2.4 MONITORING WELL NETWORK

There are nine groundwater-monitoring wells associated with the Vatrano Road site groundwater monitoring network. Wells MW-6, 7 and 8 are located off site just to the north of Patroon Creek. The remaining wells (MW-1,2,3,4,5 & 9) are located on the site. During the remediation of the site conducted in October, November, and December of 1997, the six on site groundwater monitoring wells (MW-1 through MW-5 and MW-9) were removed and replaced with six new wells. The current location of the wells are illustrated by Figure 2. The new wells were installed in similar locations and to similar depths as the original wells, however, some changes were made based on contamination discovered during the remediation. Well data and groundwater elevations from the last four monitoring events (April 1998, October 1998, April 1999 and October 1999) are shown in Table 1. Appendix A contains copies of monitoring well diagrams for all nine of the groundwater monitoring wells in the monitoring network.

2.5 SITE GROUNDWATER FLOW AND AQUIFER CHARACTERISTICS

Based on the latest water level measurements, groundwater flow is determined to be to the south towards Patroon Creek. The hydraulic gradient across the site is calculated at approximately 0.010 feet per foot. The gradient steepens to 0.024 feet per foot at the southern end of the site reflecting the influence of Patroon Creek and the local topography. This data indicates that the shallow overburden aquifer discharges to Patroon Creek. Figure 3 shows the groundwater contours based on the water levels measured on April 5, 2000. The boring logs for the wells included as Appendix A indicate that the aquifer in the unconsolidated silty sands and clayey silts is unconfined.

2.6 PREREMEDIATION GROUNDWATER SAMPLING

Two partial rounds of groundwater sampling were conducted by CHA during the summer of 1997 prior to the start of remediation. During a July 8th 1997 sampling event, groundwater-monitoring wells MW-2, MW-3 and MW-9 were sampled, previous investigations indicated the presence of tetrachloroethene in this area. The wells were analyzed for purgeable halocarbons by EPA Method 601, as well as for Polychlorinated Biphenyls (PCB's) by EPA Method 8080.

On July 10 and 11, 1997 groundwater samples were collected from monitoring wells MW-2, MW-7, MW-8 and MW-9. In addition, surface water samples from Patroon Creek were collected upstream and downstream of the site (Sample Numbers SW-1 and SW-2, respectively). The samples were analyzed for PCB's via EPA method 8080, volatile organics via EPA Method 624, and semi-volatile organics via EPA method 625. The PCB analysis performed on the samples were completed on both unfiltered and filtered duplicate samples (0.45 micron glass) to determine if PCB's were present in the dissolved state, or if they were associated with the sediment in the sample. The results of the filtered versus unfiltered data clearly showed that the PCB were not dissolved in the groundwater. The only organic compound detected during this event was tetrachloroethene at 20 ppb in the sample from well MW-2. Table 2 summarizes the results of all groundwater sampling rounds.

2.7 POST REMEDIATION GROUNDWATER QUALITY CHARACTERIZATION

In April of 1998, a qualified Clough Harbour Scientist sampled the six on-site and three off-site wells for the purpose of establishing baseline post remediation groundwater quality. The samples from this post remediation sampling were analyzed for the U.S. EPA Target Compound List of chemicals including total cyanide. Again, Table 2 includes the summary of results for this sampling event. The results of this baseline post remediation sampling event are discussed in the December, 1998 Operations, Maintenance, and Monitoring Plan.

3.0 APRIL 2000 SAMPLING EVENT

On April 5 and 6, 2000 a qualified CHA scientist measured groundwater levels and collected groundwater samples from all nine groundwater monitoring wells. The procedures used are described below.

3.1 CURRENT SITE CONDITIONS

Prior to collecting groundwater samples, an overall site inspection was completed. Access to monitoring wells MW-5, MW-4, MW-3, MW-2 and MW-9 is gained through a gate located at the extreme eastern end of the Vatrano Road Complex of buildings. The gravel road to this area has become cluttered with some wooden debris that appears to be from the adjacent railroad.

The parking area between Buildings 14 and 16 is paved with asphalt. There is also a six foot high chain link fence that runs from the southeast corner of Building 14 to the southwest corner of Building 16. In general the fence is in good condition. All on site monitoring wells were in good shape and locked. It was also noted that one of the four metal bollards protecting MW-1 is bent slightly. Monitoring well MW-1, however, was not affected by this condition.

Photographs 1-4 show the site conditions as of April 2000.

3.2 **PROCEDURES**

Prior to sampling, the water level of each well was measured to the nearest one hundredth of a foot using an electronic water level meter. This data was used to develop a groundwater contour map (Figure 3).

Dedicated plastic Waterra tubing and footvalves are installed in all nine wells. This tubing prevents cross contamination. A portable Waterra pump powered by a generator was used to purge and sample each well. Purge water from the wells on site was placed in a properly labeled drum and removed and properly disposed of by Clean Harbors Environmental Services, Inc. of Glenmont, New York.

Approximately three well volumes of water were purged from each well prior to sampling. Field parameters such as turbidity, temperature, pH and Eh were measured and recorded on the sampling sheets (Appendix C).

For QA/QC purposes, a blind duplicate sample (MW-10), and trip blanks (one for each sampling day) were submitted for analysis.

The samples were labeled, stored in a cooler with ice to maintain proper temperature, and were delivered to Adirondack Environmental Services of Albany, NY with the appropriate chain of custody documents (Appendix D).

3.3 LABORATORY ANALYSIS AND QUALTITY CONTROL

Each groundwater sample was analyzed for the presence of volatile organics via EPA Method 625, PCBs via EPA Method 8080, lead via EPA Method 234.2, and Mercury via EPA Method 245.1.

Analytical procedures were performed by Adirondack Laboratories of Albany, NY which holds current NYSDEC certifications to perform the required analyses as per the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP). All analytical QA/QC and laboratory procedures were consistent with the requirements contained in EPA SW-846.

3.4 LABORATORY ANALYSIS DISCUSSION

Table 2 summarizes the important chemical concentrations found in the groundwater including the latest analytical results. The complete data package from the April 2000 sampling event is found in Appendix B. The chain of custody is found in Appendix D.

Data shown on Table 2 that is shaded indicates a concentration greater than the New York State Groundwater Standard(6NYCRR 703). Of the nine monitoring wells, only in wells MW-2 and MW-5, were concentrations of PCB's found. The average concentration of PCBs after the remediation (April 98-April 00) in MW-2 (0.71 ug/l) is significantly less than the average before the remediation (August 91-July 97) (4.2 ug/l). MW-5 had no preremediation concentrations of PCBs and an initial spike of 17 ug/l in April of 1998 has decreased by over 29 times to a concentration of 0.57 ug/l in April 2000.

Lead and mercury concentrations were analyzed during the last four sampling rounds. Previously, filtered metals samples were sent to the lab and the results indicated that the metals were bound to the soil particles and not dissolved in the groundwater. As per the Operations and Maintenance Plan for Vatrano Road, filtered mercury and lead groundwater samples were taken whenever the turbidity of the groundwater was greater than 50 NTUs. Mercury was not detected in any monitoring wells this quarter.

Total lead was detected in samples from three of the monitoring wells, however, all concentrations are consistent with historical levels. The concentration in MW-4 decreased to its lowest historical level while the total lead concentrations in MW-6 and MW-7 increased. All filtered groundwater samples contained dissolved lead concentrations below the groundwater standards indicating the lead is bound in with the sediment found in these samples.

All of the VOCs concentrations above groundwater standards are shaded in Table 2. As seen in Table 2, MW-2 remains the monitoring well most impacted by VOCs. The April 2000 concentrations of VOCs in MW-2 are in the range of the previous post remediation sampling events. The last four sampling events have indicated a decreasing trend in the concentrations of these VOCs however. The VOCs concentrations in MW-4 have remained relatively stable with time, however this sampling events concentration was the lowest level detected to date. The 1,2 dichloroethene

concentrations found in MW-7 have remained relatively constant over the last four sampling events.

4.0 SUMMARY

The laboratory results of the groundwater samples taken from the monitoring well network associated with the site indicate that PCB's were detected in only two (MW-2 and MW-5) of the nine monitoring wells. The concentration of PCB's in wells MW-2 and MW-5 continue to show a decreasing trend since the April 1999 sampling event.

Total mercury was not found in any of the nine monitoring wells and dissolved lead concentrations were below the groundwater standard for lead.

The VOCs in the groundwater in MW-2 show a decreasing trend over the last four sampling events while VOC's in other impacted wells have remained relatively stable.

The site will continue to be monitored with the next sampling event scheduled for April 2001.

FIGURES

5

TABLE 1

GROUNDWATER MONITORING WELL DATA & WATER ELEVATIONS For the Vatrano Road Site, Albany, NY

#TEM	Ground Elevation (ft MSE)	Elevation of Screened Interval (ft MSL)	PVC Stickup from ground (f)	4/13/98 Water Elev (ft MSL)	10/28/98 Water Elev. (ft.MSL)	4/7/99 Water Elev, f(t MSL)	10/25/99 Water Elev. (ft MSL)	4/5/00 Water Elev. (ft MSE)
MW-1	215.23	200.23-210.23	2.42	210.21	209.17	210.15	210.00	209.69
MW-2	216.20	198.70-208.70	2.65	207.91	206.87	207.98	208.10	208.69
MW-3	215.53	198.03-208.03	2.24	207.85	206.57	207.93	208.00	208.59
MW-4	214.58	198.08-208.08	2.46	207.79	206.82	207.86	207.93	208.53
MW-5	214.54	197.54-207.54	2.46	207.64	206.78	207.72	207.79	208.39
9-WM	201.86	186.86-196.86	2.27	200.22	198.43	200.77	200.38	201.01
7-WM	204.03	189.03-199.03	1.83	201.56	200.86	201.14	202.15	202.63
MW-8	206.29	191.29-201.29	1.80	202.61	201.89	202.63	202.69	203.05
9-WM	215.95	164.95-169.95	1.33	205.08	204.48	205.14	205.08	205.44

H:\7899\table1.xls

				TABLE	2			
GROU	ND\	NA.	TER	ANALYS	S	SUMM	ARY T	ABLE
	_							

For the Vatrano Road Site, Albany, NY

Parameter (ug/l) [*]					WELL N	NUMBER				
Date Sampled	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10**
Trichloroethene [5]										t than the the second sec
Aug-91	ND	24	ND	ND	ND	ND	ND	ND	ND	ND
Jul-97	NA	ND	ND	NA	NA	NĂ	ND	ND	ND	ND
Apr-98	ND	23	ND	ND	ND	ND	ND	ND	ND	ND
Oct-98	ND	89	ND	ND	ND	ND	3J	ND	ND	ND
Apr-99	ND	47	ND	ND	ND	ND	ND	ND	ND	ND
Oct-99	ND	36	ND	ND	ND	ND	2J	ND	ND	ND
Apr-00	ND	22	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene [5]					-					
Aug-91	ND	56	ND	ND	ND	ND	ND	ND	ND	ND
Jul-97	NA	20	ND	NA	- NA	NA	ND	ND	ND	ND
Apr-98	ND	270	ND	ND	ND	ND	ND	ND	ND	ND
Oct-98	ND	460	ND	ND	ND	ND	3J	ND	ND	ND
Apr-99	ND	160	ND	ND	ND	ND	ND	ND	ND	ND
Oct-99	ND	150 🕷	ND	ND	ND	ND	ND	ND	ND	ND
Apr-00	ND	120	ND	ND	ND ND	ND	ND	ND	ND	ND
Total PCB's [0.09]										
Aug-91		5.18	1.2	ND	ND	ND	ND	ND	ND	ND
Jul-97		3.19	0.68	NA	NA	NA	ND	ND	ND	ND
Apr-98		0.383	ND	ND	and 17 offers	ND	ND	ND	ND	ND
Oct-98		0.3J	ND	ND	1.2	ND	ND	ND	ND	ND
Apr-99		1.39	ND	ND	4.8	ND	ND	ND	ND	ND
Oct-99		0.85	ND	ND	2.0	ND	ND	ND	ND	ND
Apr-00		0.61	ND	ND	0.57	ND	ND	ND	ND	ND
1,2 Dichloroethene [5]	ND				ND	ND		ND	NB	
Aug-91			4J				2J	ND	ND	ND
Jui-97		70						ND		
Apr-96		250		10						ND
<u> </u>		220	4J	- 10 			40			12
Apr-99		130	5	9			5			Contraction of the second
0		130 H		51			S Contraction			5.2
Chlorobenzene [5]		Net sour 2 Source and	NB	V.1			V		ND	1.5 April 1.5
Aug-91	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ΝΔ	ND	ND	NA	NA	NA	ND			
0		ND	ND				ND			
Api-30										
0				40						4J
Apr-99								ND		ND
Oct-99	ND	2J	ND	2J	ND	ND	ND	ND	ND	3J
Apr-00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iotal Mercury [0.7]	N A	NIA	NIA	NA	NIA.	NIA .	NIA I			
Aug-91		NA	NA	NA	NA	NA		NA	NA	NA
Jui-9/			NA EE		NA		NA		NA	
Apr-90	ND		ND						J.I	
001-30	ND	ND	0.33	0.28	0.20	0.32	ND		0.33	
<u></u>	0.20	0.198	0.55	0.098	0.188	0.32	0178	0.178	0.33	0.20
Apr-00	ND	ND	ND	ND	ND	ND	ND			ND
Total Lead [25]										
Aug-91	NA	NA	NA	NA	NA	NA	NA	NA	NΔ	NΔ
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
0	ND	9	566	143	12	ND	ND	ND	ND	164
Oct-98	13	17	271	794	32.5	11.5	3.8	1.3	ND	20.5
Apr-99	ND	2.7.1	170	34.6.1	9.6.1	41.1	ND	ND	16 4.1	32 31
Oct-99	ND	ND	49.2	109	8.4	23.2	ND	ND	13.9	133
Apr-00	ND	ND	ND	21	ND	30	7	ND	ND	22

[*] Groundwater Standard Guidance Value

Guidance Value Shaded Values Are Above The Standard B= Less Than Contract Detection Limits

ND= Below Detection Limits

NA: Not Analyzed J=Semi-qualitative value, Conc. Below CRQCL ** MW-10 is duplicate of MW-4

H:\7899\vattable2.xls

Photograph # 1 Looking West. MW-1 in foreground.

Photograph #2 Looking Northwest across site. Notice MW-5 in foreground.

Photograph #3 Looking Northeast. Monitoring Well MW-4 in Foreground and MW-5 to the East.

Photograph #4 Looking west at monitoring wells MW-3, MW-9 and MW-2. Picture shows post remediation grass, gutter downspouts and deck (between wells MW-9 and MW-2)

WELL CONSTRUCTION	LUG	Vatrano Roa	ad Remediat	ion 6	429.07.30	MW-1	DER
SITE C Vatrano Road Albany, NY	OORDINATES	G	215 23 IT MSI	Surveyed		CASING S	TICK
		Steel Protect	tive Locking			2.42 ft	
		Cover	3	89. 2			
				ŀ			
Soil Boring Cross-Reference MW-1							
Town and City						ground.	Surf
County and State <u>Albany, NY</u>							Ř
		Cement/Grou	t Ground Seal —	——→ 3			\bigotimes
Installation Date (s) <u>12/19/97</u>							×
		2" Schedule 4 Riser	40 Blank PVC —			2.0	X
Drilling Method <u>4.25" Hollow Ste</u>	em Augers	- Bentonite Chi	ip Plug	>			
Drilling Contractor							Ř
		Fine Sand (#	400) Choke	>		3.5	\bigotimes
						4.0	×
Development Technique (s) / Dates						5.0	×
Developed well by Air Surgin	ng and					5.0	×
Pumping on 12/22/97.		(7.94 ft TOR	Level: 5.52 ft —) on 12/29/97				×
							×
Fluid Loss During Drilling (gals)	-1-)						X
So gal over 25 bours - 1	als) 2/22/97						
	-/ /						
Static Depth to Water Date 12/22/5	97	#0 Filter San	d Pack ———				
Static Depth to Water (feet) 8.04	ft TOR						
Well Purpose PCB and Solvent N	Monitoring						
		2" Continuous	Wrap (10 Slot) -				
		PVC (SCREE)	N)				
Remarks TOD 7.5 ft of soil is a	lean fine						
sand backfill. Well took seve	eral hours	;					
to clean up. Appears to be	below 50						
NTU's.							100
Prepared By S. Pidgeon		Bottom Cap -				15.0	
Date Prepared		-					Ĩ
				2000		16.0	Ш

WELL CONSTRUCTIO	N LOG	Vatrano Road Remediation	6429.07.30	MW-2
SITE Vatrano Road Albany, NY	COORDINATES /	216.20 ft MSL Surv	eyed Estimated	CASING STIC 2.65 ft
	-	Steel Protective Locking	→	
Soil Boring Cross-Reference <u>MW-</u> Town and City <u>Albany</u> County and State <u>Albany, NY</u>	2	Cement/Grout Ground Seal		ground su
Drilling Method <u>4.25" Hollow S</u> Drilling Contractor <u>SMT</u> Drilling Fluid <u>None</u>	tem Augers	- 2" Schedule 40 Blank PVC - Riser Bentonite Chip Plug		3.0
Development Technique (s) / Dates Developed well by Air Sur Pumping on 12/4/97, 9.25	ging and NTU's after	Fine Sand (#00) Choke ————	→	5.0 5.5
Fluid Loss During Drilling (gals) Water Removed During Development 	(gals) 2/4/97	Static Water Level: 8.76 ft		7.5
Static Depth to Water Date <u>12/4</u> Static Depth to Water (feet) <u>10.7</u> Well Purpose <u>PCB and Solven</u>	/97 1 ft TOR t Monitoring	#0 Filter Sand Pack —————		
Remarks <u>Top 6 ft of soil is a</u>	clean fine	2" Continuous Wrap (10 Slot) —— PVC (SCREEN)		
is a black/brown sand fill From 8–18 ft is a fine-me natural sand. From 18–18. gray clayey silt.	with cinders d. grained 5 ft is			
Prepared By <u>S. Pidgeon</u> Date Prepared <u>1/2/98</u>		Bottom Cap		17.5 18.5

SITE Vatrano Road Alba Vatrano Road Alba Soil Boring Cross- Town and City County and State Installation Date (Drilling Method Drilling Method Drilling Fluid Drilling Fluid Development Tech <u>Developed w</u> <u>Pumping on 1</u> <u>1 hour of pun</u> Fluid Loss During [-Reference_ MW-3 Albany Albany (s) <u>12/2/97</u> 4.25'' Hollow St SMT ne	COORDINATES / 	GROUND SL 215.53 f Steel Protective Lock Cover Cement/Grout Ground	JRFACE ELEVATION t MSL Surveyed ing	Estimated	CASING STI 2.24 ft . ground st
Soil Boring Cross- Town and City County and State Installation Date (Drilling Method4 Drilling Contractor Drilling Fluid Development Tech <u>Developed w</u> <u>Pumping on 1</u> . <u>1 hour of pun</u>	-Reference <u>MW-3</u> <u>Albany</u> (s) <u>12/2/97</u> 4.25" Hollow St <u>SMT</u> ne	em Augers	Steel Protective Lock Cover Cement/Grout Ground	Seal		_ 2.24 ft
Soil Boring Cross- Town and City County and State Installation Date (Drilling Method Drilling Contractor Drilling Fluid Development Tech <u>Developed w</u> <u>Pumping on 1</u> . <u>1 hour of pun</u>	-Reference_ MW-3 Albany Albany, NY (s) <u>12/2/97</u> (s) <u>12/2/97</u> (s) <u>SMT</u> ne	3 	Steel Protective Lock Cover Cover	Seal		. ground si
Soil Boring Cross- Town and City County and State Installation Date (Drilling Method Drilling Contractor Drilling Fluid Development Tech <u>Development Tech</u> <u>Development Tech</u> <u>Developed w</u> <u>Pumping on 1</u> <u>1 hour of pun</u>	-Reference <u>MW-3</u> <u>Albany</u> <u>Albany, NY</u> (s) <u>12/2/97</u> (s) <u>12/2/97</u> (s) <u>SMT</u> ne	3 :em Augers	Cement/Grout Ground	Seal		ground s
Installation Date (Drilling Method _4 Drilling Contractor Drilling Fluid _ <u>Not</u> Development Tech <u>Developed w</u> <u>Pumping on 1</u> <u>1 hour of pun</u>	(s) <u>12/2/97</u> 4.25" Hollow St <u>SMT</u> ne	tem Augers	Cement/Grout Ground	Seal>	素繁	
Drilling Method Drilling Contractor Drilling Fluid Development Tech <u>Developed w</u> <u>Pumping on 1.</u> <u>1 hour of pun</u>	4.25" Hollow S 	tem Augers				
Drilling Fluid <u>Non</u> Development Tech <u>Developed w</u> <u>Pumping on 1</u> <u>1 hour of pun</u> Fluid Loss During D	ne		- 2" Schedule 40 Blank Riser	PVC	-	3.0
Development Tech Developed w Pumping on 1. 1 hour of pun			Bentonite Chip Plug —	>		5.0
Fluid Loss During (nnique (s) / Dates vell by Air Surg 12/4/97. 3.4 N mping.	<u>jing and</u> TU's after	Fine Sand (#00) Chol	(e>		5.5
Water Removed Du 20 gal. over	Drilling (gals) uring Development r <u>1 hour 12</u> ,	(gals) / 4/97	Static Water Level: 8. (10.37 ft TOR) on 12/2	13 ft 29/97		7.5
Static Depth to Wa Static Depth to Wa	ater Date <u>12/4/</u> ater (feet) <u>10.4</u>	97 4 ft <u>T</u> OR	#0 Filter Sand Pack -			
Well Purpose <u>PC</u>	B and Solvent	Monitoring	7			
Bezerke TOP 3		lean fine	2" Continuous Wrap (1 PVC (SCREEN)	0 Slot)		
sand backfill grade is a bl cinders. From	I. From 3-10 ft lack/brown sa m 10-15 ft is a	below nd fill with fine-med.				
<u>grained natu</u> is gray claye	irai sand. Fron ey silt.	<u>1 15–18.5 ft</u>				
Prepared By <u>S.</u> Date Prepared <u>1</u>	Pidgeon 1/2/98		Bottom Cap			17.5 18.5

		Vatrano Road Remediation	6429.07.30	MW-4		
SITE Catrano Road Albany, NY	OORDINATES	GROUND SURFACE ELEVA	Veved DEstimated	CASING ST		
	·			2.40 10		
		Steel Protective Locking Cover		s • •		
Soil Boring Cross-Reference MW-4			<u>इट्</u> स टका −	ground s		
Town and City <u>Albany</u> NY						
County and State						
Installation Date (s) <u>12/19/97</u>		Cement/Grout Ground Seal				
Drilling Method Hollow Ste	em Augers	- 2" Schedule 40 Blank PVC				
Drilling Contractor <u>SMT</u>		Riser		0.0		
Drilling Fluid <u>None</u>		Bentonite Chip Plug	→			
				4.5		
		⊢ine Sand (#00) Choke ————		5.0		
Development Technique (s) / Dates	na and					
Pumping on 12/22/97 Appe	ared to	1				
be less than 50 NTU upon of	completion.			6.5		
Fluid Loss During Drilling (gals)		(9.68 ft TOR) on 12/29/97				
Water Removed During Development (g	als)					
50 gal. over 2.0 hours - 1	2/22/97					
		#U Filter Sand Pack				
Static Depth to Water Date	97					
Static Depth to Water (feet) 9.76	ft <u>TOR</u>					
Well Purpose <u>PCB and Solvent 1</u>	Monitoring					
		2" Continuous Wrap (10 Slot)				
		PVC (SCREEN)				
Remarks Top 2 ft of soil is cle	ean fine					
sand backfill. From 2-7 ft b	elow grad	¢				
is a black/brown sand fill wi	th <u>cinder</u> s					
From 7-17.5 ft is a fine-med	d. grained					
natural sand.						
Prepared By S. Pidaeon						
Date Prepared 1/2/98		Bottom Cap ———————————————————————————————————				
				17.5		

CLOUGH HARBOUR and ASSOCIATES

-

WELL CONSTRUCTIO	N LOG	Vatrano Road Remediation	6429.07.30	WELL NUMBER
SITE Vatrano Road Albany, NY	COORDINATES	GROUND SURFACE ELEVA	veyed DEstimated	CASING STICK 2.46 ft
		Steel Protective Locking Cover		
Soil Boring Cross-Reference_ MW- Town and City <u>Albany</u> County and State <u>Albany, NY</u>	5	-		ground surf
Installation Date (s) <u>12/19/97</u>		Cement/Grout Ground Seal		
Drilling Method <u>4.25" Hollow S</u> Drilling Contractor <u>SMT</u>	tem Augers	2" Schedule 40 Blank PVC Riser		3.0
Drilling Fluid		- Bentonite Chip Plug	→	
Development Technique (s) / Dates Developed well by Air Sur Pumping on 12/22/97.	ging and	Fine Sand (#00) Choke		
Fluid Loss During Drilling (gals) Water Removed During Development 70 gal. over 2.0 hours —	(gals) 12/22/97	Static Water Level: 7.32 ft (9.78 ft TOR) on 12/29/97 		- 7.0
Static Depth to Water Date <u>12/22</u> Static Depth to Water (feet) <u>9.81</u>	2/97 ft TOR			
Well Purpose <u>PCB and Solven</u>	t Monitoring	2" Continuous Wrap (10 Slot) —— PVC (SCREEN)		
Remarks <u>Top 8 ft of soil is l</u> sand fill with cinders and Turbidity appears below 5 after two hours of pumpin	black/brow ash. 50 NTU's g.			
Prepared By <u>S. Pidgeon</u> Date Prepared <u>1/2/98</u>		Bottom Cap		17.0

CLOUGH HARBOUR and ASSOCIATES LLP

ERM-Northeast

501 New Kamer Road, Suite 7, Albany NY 12205 (518) 452-4291

CONSTRUCTION OF MONITORING WELL: MW-6

Project Name & Location	P	roject No.	Water Level(s)			Site Elevation Datum
GE Vatrano Road, Albany, NY		380.011	(ft below	v PVC casing)		Mean Sea Level
illing Company	Foreman		Date	Time	Leveks)	Ground Elevation
LS Borings	Leo Charbon	neau Sr.	8/13/91		5.71	202.38
Surveyor						Top of Protective Steel Cap Elevation
* 3D Surveyors			-			
te and Time of Completion	Inspector					Top of Riser Pipe Elevation
7dly 29, 1991 14:20	Matt Bell					204.13
GENERALIZED SOIL DESCRIPTION	ELEVATIONS	DEPTHS	_		CONSTR	UCTION DETAILS
	(ft above					
	Mean Sea	ground,			an orte or	
	Leva)	to scale)			- FROIEC	INE SIELL CAP WITH LOCK
Г				<u> </u>		
	204.13	-1.75		I	FYPANS	ION CAP
	202.38	0.0				GROUND SURFACE
	F 7		///			
					PROTEC	TIVE STEEL CASING CEMENTED IN PLACE
	┝╶┥	- 1.0 -				
			00000	00000		
		3.0		00000	BENION	ITE SEAL
Brown Sand & Silt	┝╶┥	- 3.0 -	00000	00000		
Biown Salid & Sur					.7" DIAM	FTER SCHEDUI E 40 PVC RISER
1		5.0			2 01/042	
	F 1					
				II	2" DIAM	ETER SCHEDULE 40 PVC
					MANUFA	CTURED .010 SLOT WELL SCREEN
			=====			
1						
				:::::<	SAND PA	C K
	1					
mray-brown Silt & Clay						
1		15.0]	BOTTOM	(CAP (PVC)
		_ 17.5 _				
					воттом	OF BOREHOLE
71 / 4 73 / / 9						
EMARKS						
				_		
				-	•	
				_		

ERM-Northeast

501 New Kamer Road, Suite 7, Albany NY 12205 (518) 452-4291

CONSTRUCTION OF MONITORING WELL: MW-7

Project Name & Location	P	roject No.		r Level(s)		Site Elevation Datum	
GE Vatrano Road, Albany, NY		380.011	() 1	elow.	PVC casi	ng)	Mean Sea Level
Drilling Company	Foreman		Date		Time	Level	t) Ground Elevation
H&S Borings	Leo Charbon	neau Sr.	8/13/91			7.00	204.59
Surveyor							Top of Protective Steel Cap Elevation
ABD Surveyors							
Date and Time of Completion	Inspector						Top of Riser Pipe Elevation
July 30, 1991 11:10	Matt Beil						206.54
GENERALIZED SOIL DESCRIPTION	ELEVATIONS (ft above Mean Sea Level)	DEPTHS (ft below ground, not to scale)	-				TRUCTION DETAILS
	- 20034 -	1.95 -	┥┃┡	<u> </u>		<i>E</i> AFA	SION CAP
	204.60	0.0					
	- 24.39 -	- 0.0 -	////				
		1.0				PROTE	CTIVE STEEL CASING CEMENTED IN PLACE
						< BENTY	
		2.0			00000	< BENIC	INITE SEAL
Room Sand & Silt		- 3.0 -	00000		00000		
Brown Sand & Sut							
				<		2º DIA	METER SCHEDULE 40 PVC RISER
		- 5.0 -	┥ │┉┉┉╠-				
				<		2 ⁻ DIA	METER SCHEDULE 40 PVC
			[]======[-			MANU	FACTURED DIO SLOT WELL SCREEN
	ĺ						
]====================================				
					>	SAND	PACK
			-				
			-				
Gray Clayey Silt & Sand							
		- 15.0 -		<			IM CAP (PYC)
		_ 1/3 _					
						BOIN	IM OF BOREHOLE
DENADER							
KEMAKAJ							
-							
				_			
	_			_			

IJ

501 New Kamer Road, Suite 7, Albany NY 12205 (518) 452-4291

CONSTRUCTION OF MONITORING WELL: MW-8

Project Name & Location	P	roject No.		Wat	er Level(s)		Site Elevation Datum
GE Vatrano Road, Albany, NY		380.011		(ft below	PVC caring)	Mean Sea Levei
Driläng Company	Foreman			Daue	Time	Loveks)	Ground Elevation
H&S Borings	Leo Charbon	neau Sr.	1	8/13/91		6.82	206.92
Surveyor							Top of Protective Steel Cap Elevation
ABD Surveyors			4				
Date and Time of Completion	Inspector						Top of River Pipe Elevation
July 30, 1991 14:45	Matt Beil						208.72
GENERALIZED SOIL DESCRIPTION	ELEVATIONS	DEPTHN				CONSTR	UCTION DETAILS
	(ft above	(ft below					
	Mean Sea	ground,	-				
	Level)	not	1				TIVE STEEL CAP WITH LOCK
		to scale)					
			.				
	208.72	1.80 _	-	<		EXPANS	ION CAP
	206.92	0.0					GROUND SURFACE
			///\				
							•
						- PROTEC	TIVE STEEL CASING CEMENTED IN PLACE
		- 1.0 -	┥╞				
				00000	00000		
				00000	>00000	- BENTON	ITE SEAL
		- 3.0 -	4 14	00000	00000		
					:::::::::::::::::::::::::::::::::::::::		
				>	-	2" DLAM	ETER SCHEDULE 40 PYC RISER
			4				
Dener ford & Claure Sile							
Brown Sand & Clayey Sit				>	1	- 2 DIAM	ETER SCREDULE 40 PYC
						MANUF	ACTURED DIO SLOT WELL SCREEN
							ICT.
						- anno Pi	
		15.0			 _	- воттов	A CAP (PVC)
		17.5					
	_					BOTTOM	OF BOREHOLE
REMARKS							
			_				

WELL CONSTRUCTION	IN LUG	Vatrano Ro	ad Remediatio	on 64	29.07.30	MW-9
SITE Vatrano Road Albany, NY	COORDINATES /		215.95 ft MSL	EVATION Surveyed	Estimated	CASING STI 1.33 ft
		Steel Prote Cover	ctive Locking]_	
Soil Boring Cross-Reference Town and City	9				व्या विकास	ground s
County and State _ <u>Albany, NY</u>		Concrete G	round Seal ———			<u> </u>
Installation Date (s) <u>12/3/97</u>		Cement/Be	ntonite Grout			
Drilling Method <u>4.25" Hollow S</u>	tem Augers	⁻ 2" Schedule	e 40 Blank PVC ——		•	
Drilling Contractor <u>SMT</u> Drilling Fluid <u>None</u>		Static Wate (12.41 ft TC 12/29/97	er Level at 11.08 ft – DR) Measured on			
Development Technique (s) / Dates						
Developed well by Air Sur Pumping on 12/4/97. Lowe	ging and st NTU valu	e				
Fluid Loss During Drilling (gals) Water Removed During Development	(gais)					
85 gal. over 4.25 hours	12/4/9/_					
Static Depth to Water Date $\frac{12/4}{17.5}$ Static Depth to Water (feet) $\frac{17.5}{17.5}$	/97 0 ft TOR					
Well Purpose <u>PCB and Solven</u>	t <u>Monitoring</u>					
Remarks <u>Top 4 ft of soil is (</u> sand backfill. From <u>4-10 f</u>	clean fine t below gra	đe				
is a black/brown sand fill From 10–15 ft is a fine-me	with cinders d. grained	5.				40.0
natural sand. From 15-52 clayey Silt with trace-litt	ft is gray le f. sand.	Bentonite C	hip Plug			43 E
Broosted By S. Pidgeon		Fine Sand	(#00) Choke			
Date Prepared <u>1/2/98</u>		2" Continuo PVC (SCRE	us Wrap (10 Slot) — EN)			40.U
		Bottom Cap				

CLOUGH HARBOUR and ASSOCIATES LLP

-

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

LABORATORY REPORT

for

Clough, Harbour & Assoc. LLP 3 Winners Circle PO Box 5269 Albany, NY 12205 5269

Attention: Rogina Camilli

Purchase Order #: 7899.07.00

APR 2 4 2000

ELAP ID#: 10709

Clough, Harbour & Associates LLP

Report date: 04/20/00 Number of samples analyzed: 9 AES Project ID: 000406BG Invoice #: 211767

> AIHA ID#: 7866 Page

1

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-1 AES sample #: 000406BG01	soc. LLP Samples taken by MATRIX: Ground	Dat Dat y: D. Ward d Water	e Sample e sample Loc gra	ed: 04, e received: 04, sation: Vatran ub	/06/00 /06/00 no Rd.
_	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
-	Lead	EPA-200.7	<0.005	mg/l	KH-I-3C-29	04/18/00
-	Mercury	EPA-245.1	<0.0004	mg/l	MW-PSO-123	04/10/00
	Lead-Filtered	EPA-200.7	<0.005	mg/l	KH-1-3C-29	04/13/00
	Mercury-Filtered	EPA 245.1	<0.0004	mg/l	MW-PSO-123	04/10/00
	Chloromethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Bromomethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Carbon Disulfide	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloroethene Total	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
ų	Carbon Tetrachloride	EPA-624	<5	ug/1	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-BV-15	04/10/00

-

-

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

-	CLIENT: Clough, Harbour & Ass CLIENT'S SAMPLE ID: MW-1 AES sample #: 000406BG01	soc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Water	te Sampled te sample Loca grai	d: 04, received: 04, ation: Vatram b	/06/00 /06/00 no Rd.
	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
_	Bromodichloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2-Dichloropropane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Trichloroethene	EPA-624	<5	ug/I	JF-BV-15	04/10/00
-	Dibromochloromethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
_	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	cis-1,3-Dichloropropene	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-EV-15	04/10/00
	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Tetrachloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1,2,2-Tetrachloroethane	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	Toluene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Chlorobenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Ethylbenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	ylenes,Total	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	TB-1016	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-1 AES sample #: 000406BG01	soc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Mater	e Sampled: e sample r Locat grab	04/ received: 04/ lion: Vatrar	(06/00 (06/00 no Rd.
	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	PCB-1221	EPA-608	<0.065	ug/l	KF-PCEAF14	04/07/00
**	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1242	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1248	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
مدن	PCB-1254	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
_	PCB-1260	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

Page 4

.

Experience is the solution

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-2 AES sample #: 000406BG02	soc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Vater	te Sample te sample Loc gra	d: 04, received: 04, ation: Vatran b	/06/00 /06/00 no Rd.
	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
-	Lead	EPA-200.7	<0.005	mg/l	KH-I-3C-29	04/18/00
	Mercury	EPA-245.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Chloromethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Bromomethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV- 15	04/10/00
	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Carbon Disulfide	EPA-624	<5	ug/1	JF-BV-15	04/10/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-BV-1.5	04/10/00
	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2-Dichloroethene Total	EPA-624	73	ug/l	JF-BV-15	04/10/00
	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
•	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-BV-15	04/10/00
•	Bromodichloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloropropane	EPA-624	<5	ug/l	JF-BV-15	04/10/00

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-2	soc. LLP	Dat Dat	Date Sampled: 04/06/00 Date sample received: 04/06/00			
	AES sample #: 000406BG02	Samples taken by: MATRIX: Ground	: D. Ward Water	Loca	ation: Vatrai b	no Rd.	
	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE	
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
-	Trichloroethene	EPA-624	22	ug/l	JF-BV-15	04/10/00	
	Dibromochloromethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00	
	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
-	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
_	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
-	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-EV-15	04/10/00	
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00	
	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00	
	Tetrachloroethene	EPA-624	120	ug/l	JF-BV-15	04/10/00	
-	1,1,2,2-Tetrachloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
	Toluene	EPA-624	<5	ug/l	JF-EV-15	04/10/00	
-	Chlorobenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
	Ethylbenzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00	
	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
	Xylenes,Total	EPA-624	<5	ug/l	JF-BV-15	04/10/00	
	PCB-1016	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00	
ن نار	PCB-1221	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00	
	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00	

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-2 AES sample #: 000406BG02	Samples taken by: MATRIX: Ground	Dat Dat D. Ward Water	e Sampled e sample Loca grab	: 04, received: 04, tion: Vatrar	/06/00 /06/00 no Rd.
-	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	PCB-1242	EPA-608	0.349	ug/l	KF-PCBAF14	04/07/00
-	PCB-1248	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1254	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1260	EPA-608	0.258	ug/l	KF-PCBAF14	04/07/00

Page 7

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-3 AES sample #: 000406BG03	soc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Vater	te Sample te sample Loc gra	d: 04, received: 04, ation: Vatran b	/06/00 /06/00 no Rd.
	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
_	Lead	EPA-200.7	<0.005	mg/l	KH-I-3C-29	04/13/00
i.	Mercury	EPA-245.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Chloromethane	EPA-524	<10	ug/l	JF-BV-15	04/10/00
	Bromomethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
_	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Carbon Disulfide	EPA-624	<5	ug/l	JF-BV-15	04/10/00
_	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
-	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2-Dichloroethene Total	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Chloroform	EPA-524	<5	ug/l	JF-BV-15	04/10/00
۱.	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Bromodichloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloropropane	EPA-624	<5	ug/l	JF-EV-15	04/10/00

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-3 AES sample #: 000406BG03	soc. LLP Samples taken by: MATRIX: Ground	Da Da D. Ward Water	te Sample te sample Loc grai	d: 04, received: 04, ation: Vatram b	/06/00 /06/00 no Rd.
	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Dibromochloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1,2-Trichloroethane	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	cis-1,3-Dichloropropene	EPA-524	<5	ug/l	JF-BV-15	04/10/00
-	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Tetrachloroethene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
-	1,1,2,2-Tetrachloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Toluene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Chlorobenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Ethylbenzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
-	Styrene	EPA-524	<5	ug/l	JF-BV-15	04/10/00
-	Xylenes,Total	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	PCB-1016	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
-	PCB-1221	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

	CLIENT: Clough, Harbour & . CLIENT'S SAMPLE ID: MW-3 AES sample #: 000406BG03	Assoc. LLP Samples taken by: MATRIX: Ground	Dat Dat D. Ward Water	e Sampled e sample i Loca grab	: 04/ received: 04/ tion: Vatrar	706/00 706/00 no Rd.
	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	PCB-1242	EPA-608	<0.065	ug/1	KF-PCBAF14	04/07/00
***	PCB-1248	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1254	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1260	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-4 AES sample #: 000406BG04	soc. LLP Samples t MATRIX:	aken by: D Ground Wat	Da Da . Ward er	te Sampled te sample : Loca grab	: 04, received: 04, tion: Vatran	/06/00 /06/00 no Rd.
-	PARAMETTER PERFORMED	METHO	<u>ם(</u>	RESULT	UNITS	NOTEBK REF	TEST DATE
_	Lead	EPA-20	0.7	0.021	mg/l	KH-I-3C-29	04/13/00
*	Mercury	EPA-24	5.1	<0.0004	mg/l	MW-PSO-123	04/10/00
	Chloromethane	EPA-62	24	<10	ug/l	JF-BV-15	04/10/00
	Bromomethane	EPA-62	24	<10	ug/l	JF-EV-15	04/10/00
innt	Vinyl Chloride	EPA-62	24	<10	ug/l	JF-BV-15	04/10/00
-	Chloroethane	EPA-62	4	<10	ug/l	JF-BV-15	04/10/00
#	Methylene Chloride	EPA-62	24	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-62	24	<10	ug/l	JF-EV-15	04/10/00
	Carbon Disulfide	EPA-62	24	<5	ug/l	JF-BV-15	04/10/00
متعذ	1,1-Dichloroethene	EPA-62	24	<5	ug/l	JF-EV-15	04/10/00
-	1,1-Dichloroethane	EPA-62	24	<5	ug/l	JF-BV-15	04/10/00
-	1,2-Dichloroethene Total	EPA-62	24	5.1	ug/l	JF-EV-15	04/10/00
	Chloroform	EPA-62	24	<5	ug/l	JF-BV-15	04/10/00
*	1,2 Dichloroethane	EPA-62	4	<5	ug/l	JF-EV-15	04/10/00
_	2-Butanone	EPA-62	24	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-62	4	<5	ug/l	JF-BV-15	04/10/00
-	Carbon Tetrachloride	EPA-62	4	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-62	4	<10	ug/l	JF-BV-15	04/10/00
	Bromodichloromethane	EPA-62	4	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloropropane	EPA-62	4	<5	ug/l	JF-BV-15	04/10/00

-

, iii	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-4 AES sample #: 000406EG04	soc. LLP Samples taken by: MATRIX: Ground	Dar Da D. Ward Water	te Sample te sample Loc grai	d: 04, received: 04, ation: Vatran b	/06/00 /06/00 no Rd.
	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Dibromochloromethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Benzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
_	Tetrachloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1,2,2-Tetrachloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Toluene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Chlorobenzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Ethylbenzene	EPA-624	<5	ug/l	JE-BV-15	04/10/00
-	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
1	Xylenes,Total	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	PCB-1016	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1221	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

)	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-4 AES sample #: 000406BG04	soc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Nater	e Sampled: e sample i Locat grab	: 04/ received: 04/ tion: Vatran	06/00 06/00 10 Rd.
	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	PCB-1242	EPA-608	<0.065	ug/l	KF-PCEAF14	04/07/00
-	PCB-1248	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1254	EPA-608	<0.065	ug/l	KF-PCEAF14	04/07/00
-	PCB-1260	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

Page 13

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-5 AES sample #: 000406BG05	soc. LLP Samples MATRIX:	taken by: E Ground Wat	Dat Dat . Ward .er	e Sampled e sample n Loca grab	: 04, received: 04, tion: Vatran	/06/00 /06/00 10 Rd.
	PARAMETER PERFORMED	METH	<u>IOD</u>	RESULT	UNITS	NOTEBK REF	TEST DATE
	Lead	EPA-2	00.7	<0.005	mg/l	KH-I-3C-29	04/18/00
	Mercury	EPA-2	45.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Chloromethane	EPA-6	24	<10	ug/l	JF-BV-15	04/10/00
-	Bromomethane	EPA-6	24	<10	ug/l	JF-EV-15	04/10/00
_	Vinyl Chloride	EPA-6	24	<10	ug/l	JF-BV-15	04/10/00
_	Chloroethane	EPA-6	24	<10	ug/l	JF-BV-15	04/10/00
	Methylene Chloride	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-6	24	<10	ug/l	JF-BV-15	04/10/00
	Carbon Disulfide	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
	1,1-Dichloroethene	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
-	1,1-Dichloroethane	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
***	1,2-Dichloroethene Total	EPA-6	24	<5	ug/l	JF-EV-15	04/10/00
	Chloroform	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
	1,2 Dichloroethane	EPA-6	24	<5	ug/l	JF-EV-15	04/10/00
	2-Butanone	EPA-6	24	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
	Carbon Tetrachloride	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-6	24	<10	ug/l	JF-EV-15	04/10/00
	Bromodichloromethane	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloropropane	EPA-6	24	<5	ug/l	JF-BV-15	04/10/00

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-5 AES sample #: 000406EG05	soc. LLP Samples taken by MATRIX: Ground	Dat Dat : D. Ward Water	te Sample te sample Loc grai	d: 04, received: 04, ation: Vatran b	/06/00 /06/00 no Rd.
-	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Dibromochloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-EV-15	04/10/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-EV-15	04/10/00
	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Tetrachloroethene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,1,2,2-Tetrachloroethane	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	Toluene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Chlorobenzene	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	Ethylbenzene	EPA-624	-<5	ug/l	JF-BV-15	04/10/00
-	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Xylenes,Total	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	PCB-1016	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1221	EPA-608	<0.065	ug/l	KF-PCEAF14	04/07/00
	PCB-1232	EPA-508	<0.065	ug/l	KF-PCEAF14	04/07/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

-	CLIENT: Clough, Harbour & A CLIENT'S SAMPLE ID: MW-5 AES sample #: 000406BG05	Samples taken by: MATRIX: Ground	Dat Dat D. Ward Water	e Sampled: e sample : Locat grab	e 04, received: 04, tion: Vatran	/06/00 /06/00 no Rd.
-	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	PCB-1242	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
-	PCB-1248	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1254	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1260	EPA-608	0.567	ug/l	KF-PCBAF14	04/07/00

Page 16

	CLIENT: Clough, Harbour & Ass CLIENT'S SAMPLE ID: MW-6 AES sample #: 000405AY01	oc. LLP Samples tal MATRIX: (ken by: D. Ground Water	Date Date Ward Jr.	Sampled: sample re Locat: grab	04/0 eceived: 04/0 lon: Vatrand	05/00 05/00 5 Road
-	PARAMETER PERFORMED	METHOD	<u>R</u>	ESULT	UNITS	NOTEBK REF	TEST DATE
	Lead	EPA-200	.7 0	.030	mg/l	KH-I-3C-28	04/17/00
	Mercury	EPA-245	.1 <	0.0004	mg/l	KH-PSO-122	04/07/00
	Lead-Filtered	EPA-200	.7 0	.008	mg/l	KH-I-3C-28	04/17/00
	Mercury-Filtered	EPA 245	.1 <	0.0004	mg/l	KH-PSO-122	04/07/00
-	Chloromethane	EPA-624	<	10	ug/l	JF-BV-15	04/07/00
	Bromomethane	EPA-624	<	:10	ug/l	JF-BV-15	04/07/00
100	Vinyl Chloride	EPA-624	<	:10	ug/l	JF-BV-15	04/07/00
	Chloroethane	EPA-624	<	:10	ug/l	JF-BV-15	04/07/00
1	Methylene Chloride	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
-	Acetone	EPA-624	<	:10	ug/l	JF-BV-15	04/07/00
-	Carbon Disulfide	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
-	1,1-Dichloroethene	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
	1,1-Dichloroethane	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
	1,2-Dichloroethene Total	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
	Chloroform	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
-	1,2 Dichloroethane	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
	2-Butanone	EPA-624	<	:10	ug/l	JF-BV-15	04/07/00
	1,1,1-Trichloroethane	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
***	Carbon Tetrachloride	EPA-624	<	:5	ug/l	JF-BV-15	04/07/00
	Vinyl Acetate	EPA-624	<	:10	ug/l	JF-BV-15	04/07/00

4	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-6 AES sample #: 000405AY01	soc. LLP Samples ta MATRIX:	aken by: D. Ward Ground Water	Date Sample Date sample Jr. Loca grad	d: 04, received: 04, ation: Vatran b	(05/00 (05/00 no Road
	continued: PARAMETER PERFORMED	METHOL	<u>RESUL</u>	<u>r units</u>	NOTEBK REF	TEST DATE
	Bromodichloromethane	EPA-624	4 <5	ug/1	JF-BV-15	04/07/00
-	1,2-Dichloropropane	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	trans-1,3-Dichloropropene	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	Trichloroethene	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
-	Dibromochloromethane	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	1,1,2-Trichloroethane	EPA-624	₽ <5	ug/l	JF-BV-15	04/07/00
	Benzene	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	cis-1,3-Dichloropropene	EPA-624	4 <5	ug/1	JF-BV-15	04/07/00
-	2-Chloroethylvinylether	EPA-624	4 <10	ug/l	JF-BV-15	04/07/00
-	Bromoform	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	4-Methy1-2-pentanone	EPA-624	4 <10	ug/l	JF-BV-15	04/07/00
-	2-Hexanone	EPA-624	4 <10	ug/l	JF-BV-15	04/07/00
	Tetrachloroethene	EPA-624	4 <5	ug/1	JF-BV-15	04/07/00
-	1,1,2,2-Tetrachloroethane	EPA-624	4 <5	ug/1	JF-BV-15	04/07/00
	Toluene	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	Chlorobenzene	EPA-624	₽ <5	ug/l	JF-BV-15	04/07/00
	Ethylbenzene	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	Styrene	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	Xylenes,Total	EPA-624	4 <5	ug/l	JF-BV-15	04/07/00
	PCB-1016	EPA-608	3 <0.06	5 ug/l	KF-PCBAF14	04/06/00

	CLIENT: Clough, Harbour & A CLIENT'S SAMPLE ID: MW-6 AES sample #: 000405AY01	ssoc. LLP Samples taken by:	Date Date D. Ward Jr.	e Sampled: e sample rec Location	04/ eived: 04/ n: Vatran	05/00 05/00 o Road
		MATRIX: Ground W	Mater	grab		
100	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS NO	TEBK REF	TEST DATE
	PCB-1221	EPA-608	<0.065	ug/l K	F-PCBAF14	04/06/00
*	PCB-1232	EPA-608	<0.065	ug/l K	F-PCBAF14	04/06/00
	PCB-1242	EPA-608	<0.065	ug/l K	F-PCBAF14	04/06/00
	PCB-1248	EPA-608	<0.065	ug/l K	F-PCBAF14	04/06/00
	PCB-1254	EPA-608	<0.065	ug/l K	F-PCBAF14	04/06/00
	PCB-1260	EPA-608	<0.065	ug/l K	F-PCBAF14	04/06/00

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-7 AES sample #: 000405AY02	soc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Jr. Vater	e Sample e sample Loc gra	d: 04, received: 04, ation: Vatrar b	/05/00 /05/00 10 Road
-	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Lead	EPA-200.7	0.007	mg/l	KH-I-3C-28	04/17/00
-	Mercury	EPA-245.1	<0.0004	mg/l	KH-PSO-122	04/07/00
	Lead-Filtered	EPA-200.7	0.006	mg/l	KH-I-3C-28	04/17/00
	Mercury-Filtered	EPA 245.1	<0.0004	mg/l	KH-PS0-122	04/07/00
-	Chloromethane	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Bromomethane	EPA-624	<10	ug/l	JF-BV-15	04/07/00
-	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	Acetone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Carbon Disulfide	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,2-Dichloroethene Total	EPA-624	6.0	ug/l	JF-BV-15	04/07/00
_	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-BV-15	04/07/00

_	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-7	soc. LLP	Da Da	te Sample te sample	d: 04 received: 04	/05/00 /05/00
-	AES sample #: 000405AY02	Samples taken by: MATRIX: Ground W	D. Ward Jr Nater	. Loca gral	ation: Vatra b	no Road
	continued: PARAMETER PERFORMED	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	<u>TEST</u> DATE
	Bromodichloromethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	1,2-Dichloropropane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Dibromochloromethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/07/00
_	4-Methy1-2-pentanone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
-	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Tetrachloroethene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,1,2,2-Tetrachloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	Toluene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
_	Chlorobenzene	EPA-624	<5	ug/l	JF-BV- 15	04/07/00
	Ethylbenzene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Styrene	EPA-624	<5	ug/1	JF-BV-15	04/07/00
***	Xylenes,Total	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	PCB-1016	EPA-608	<0.065	ug/1	KF-PCBAF14	04/06/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-7 AES sample #: 000405AY02	soc. LLP Samples taken by: MATRIX: Ground Wa	Dat Dat D. Ward Jr. ater	e Sampled e sample r Loca grab	: 04, received: 04, tion: Vatrar	/05/00 /05/00 no Road
-	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	PCB-1221	EPA-608	<0.065	ug/l	KF-PCBAF14	04/06/00
-	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/06/00
	PCB-1242	EPA-608	<0.065	ug/l	KF-PCBAF14	04/06/00
	PCB-1248	EPA-608	<0.065	ug/l	KF-PCBAF14	04/06/00
-	PCB-1254	EPA-608	<0.065	ug/l	KF-PCBAF14	04/06/00
	PCB-1260	EPA-608	<0.065	ug/l	KF-PCBAF14	04/06/00

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-8	soc. LLP	Dat Dat	te Sample te sample	d: 04, received: 04,	/06/00 /06/00
	AES sample #: 000406BG06	Samples taken by: MATRIX: Ground W	D. Ward Water	Loc gra	ation: Vatran b	no Ra.
	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Lead	EPA-200.7	<0.005	mg/l	KH-I-3C-29	04/13/00
-	Mercury	EPA-245.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Lead-Filtered	EPA-200.7	<0.005	mg/l	KH-I-3C-29	04/18/00
(Mercury-Filtered	EPA 245.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Chloromethane	EPA-524	<10	ug/l	JF-BV-15	04/10/00
	Bromomethane	EPA-624	<10	ug/l	JF-EV-15	04/10/00
	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Chloroethane	EPA-624	<10	ug/l	JF-EV-15	04/10/00
	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	Carbon Disulfide	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,2-Dichloroethene Total	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
****	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-BV-15	04/10/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-8 AES sample #: 000406BG06	soc. LLP Samples taken by: MATRIX: Ground	Da [.] Da [.] D. Ward Water	te Sample te sample Loc grai	d: 04, received: 04, ation: Vatran b	/06/00 /06/00 no Rd.
	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Bromodichloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2-Dichloropropane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
-	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Dibromochloromethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	4-Methyl-2-pentanone	EFA-624	<10	ug/l	JF-EV-15	04/10/00
-	2-Hexanone	EPA-624	<10	ug/l	JF-BV~15	04/10/00
	Tetrachloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,1,2,2-Tetrachloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Toluene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
-	Chlorobenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Ethylbenzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Xylenes, Total	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	PCB-1016	EPA-608	<0.065	ug/l	KF-PCEAF14	04/07/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & A CLIENT'S SAMPLE ID: MW-8 AES sample #: 000406BG06	Samples taken by: MATRIX: Ground	Dat Dat D. Ward Water	e Sampled e sample Loca grab	: C4/ received: O4/ tion: Vatrar	(06/00 (06/00 10 Rd.
	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	<u>units</u>	NOTEBK REF	TEST DATE
	PCB-1221	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
-	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1242	EPA-608	<0.065	ug/l	KF-FCBAF14	04/07/00
	PCB-1248	EPA-508	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1254	EFA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1260	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

يبي

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-9 AES sample #: 000406BG07	soc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Water	te Sample te sample Loc gra	d: 04, received: 04, ation: Vatran b	/06/00 /06/00 no Rd.
	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Lead	EPA-200.7	<0.005	mg/l	KH-I-3C-29	04/18/00
	Mercury	EPA-245.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Lead-Filtered	EPA-200.7	<0.005	mg/l	KH-I-3C-29	04/13/00
	Mercury-Filtered	EPA 245.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Chloromethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Bromomethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Carbon Disulfide	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloroethene Total	EFA-624	<5	ug/l	JF-EV-15	04/10/00
	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-BV-15	04/10/00

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: Trip Bla AES sample #: 000405AY03	ssoc. LLP ank Samples taken by: MATRIX: Water	Da Da D. Ward Jr	te Sample te sample . Loc gra	d: 04 received: 04 ation: Vatra b	/05/00 /05/00 no Road
	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Chloromethane	EPA-624	<10	ug/l	JF-BV-15	04/07/00
-	Bromomethane	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Acetone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Carbon Disulfide	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,2-Dichloroethene Total	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
-	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-BV-15	04/07/00
-	Bromodichloromethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,2-Dichloropropane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/07/00

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: Trip Bla	soc. LLP	Da Da	te Sample te sample	d: 04 received: 04	/05/00 /05/00
	AES sample #: 000405AY03	Samples taken by: MATRIX: Water	D. Ward Jr	. Loc gra	ation: Vatra b	no Road
	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE
	Dibromochloromethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	4-Methy1-2-pentanone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/07/00
	Tetrachloroethene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	1,1,2,2-Tetrachloroethane	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Toluene	EPA-624	<5	ug/l	JF-BV- 15	04/07/00
-	Chlorobenzene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Ethylbenzene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
-	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/07/00
	Xylenes,Total	EPA-624	<5	ug/l	JF-BV-15	04/07/00

and No APPROVED BY:

Report date: 04/19/00

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-9 AES sample #: 000406BG07	soc. LLP Samples taken by: MATRIX: Ground	Dat Dat : D. Ward Water	e Sample e sample Loc gra	d: 04, received:04, ation: Vatrar b	(06/00 (06/00 no Rd.
	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Bromodichloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloropropane	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	trans-1,3-Dichleropropene	EPA-624	<5	ug∕l	JF-EV-15	04/10/00
	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Dibromochloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Benzene	EPA-624	<5	ן/b	JF-BV-15	04/10/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
_	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Tetrachloroethene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,1,2,2-Tetrachloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Toluene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
_	Chlorobenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Ethylbenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Xylenes,Total	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	PCB-1016	EPA-603	<0.055	ug/l	KF-PCBAF14	04/07/00

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-9 AES sample #: 000406BG07	soc. LLP Samples taken by: MATRIX: Ground	Dat Dat : D. Ward Water	e Sampled e sample Loca grak	l: 04, received: 04, tion: Vatrar	(06/00 (06/00 10 Rd.
	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
-	PCB-1221	EFA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
***	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1242	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
-	PCB-1248	EPA-603	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1254	EFA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
-	PCB-1260	EPA-608	<0.055	ug/l	KF-PCBAF14	04/07/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & Ass CLIENT'S SAMPLE ID: MW-10 AES sample #: 000406EG08	soc. LLP Samples taken by:	Dat Dat D. Ward	te Sample te sample Loc	d: 04/ received: 04/ ation: Vatrar	(06/00 (06/00 no Rd.
		MATRIX: Ground	Water	gra	b	
-	PARAMETER PERFORMED	METHOD	RESULT	<u>UNITS</u>	NOTEBK REF	TEST DATE
	Lead	EPA-200.7	0.022	mg/l	KH-I-3C-29	04/18/00
***	Mercury	EPA-245.1	<0.0004	mg/l	MW-PS0-123	04/10/00
	Lead-Filtered	EPA-200.7	0.009	mg/l	KH-I-3C-29	04/13/00
	Mercury-Filtered	EPA 245.1	<0.0004	mg/l	KH-PSP-3	04/19/00
	Chloromethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Bromomethane	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	Vinyl Chloride	EPA-524	<10	ug/l	JF-BV-15	04/10/00
	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Acetone	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	Carbon Disulfide	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloroethene Total	EPA-624	5.3	ug/l	JF-EV-15	04/10/00
	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-EV-15	04/10/00

1

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: MW-10 AES sample #: 000406EG08	soc. LLP Samples taken by: MATRIX: Ground	Da Da D. Ward Water	te Sample te sample Loc grai	d: 04 received: 04 ation: Vatram b	/06/00 /06/00 no Rd.
	continued: PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Bromodichloromethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
-	1,2-Dichloropropane	EPA-524	<5	ug/l	JF-EV-15	04/10/00
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-EV-15	C4/10/00
	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
_	Dibromochloromethane	EPA-624	<5	ug/l	JF-EV-15	04/10/00
_	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Benzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	Tetrachloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1,2,2-Tetrachloroethane	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	Toluene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Chlorobenzene	EPA-524	<5	ug/l	JF-BV-15	04/10/00
-	Ethylbenzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Styrene	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	Xylenes,Total	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	PCB-1016	EPA-608	<0.055	ug/l	KF-PCBAF14	04/07/00

-	CLIENT: Clough, Harbour & CLIENT'S SAMPLE ID: MW-10 AES sample #: 000406BG08	Assoc. LLP Samples taken by: MATRIX: Ground W	Dat Dat D. Ward Vater	e Sampled: e sample 1 Locat grab	: 04/ received: 04/ tion: Vatrar	06/00 06/00 no Rd.
-	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	PCB-1221	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1232	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
_	PCB-1242	EPA-608	<0.065	ug/1	KF-PCBAF14	04/07/00
_	PCB-1248	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00
	PCB-1254	EPA-608	<0.065	ug/l	KF-PCEAF14	04/07/00
	PCB-1260	EPA-608	<0.065	ug/l	KF-PCBAF14	04/07/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

-	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: Trip Bla AES sample #: 000406BG09	ssoc. LLP ank Samples taken by: MATRIX: Water	Da Da D. Ward	te Sample te sample Loc gra	d: 04 received: 04 ation: Vatra b	/06/00 /06/00 no Rd.
	PARAMETER PERFORMED	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
_	Chloromethane	EPA-624	<10	ug/l	JE-EV-15	04/10/00
-	Bromomethane	EPA-624	<10	ug/l	JF-EV-15	04/10/00
	Vinyl Chloride	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Chloroethane	EPA-624	<10	ug/l	JF-BV-15	04/10/00
_	Methylene Chloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
_	Acetone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
-	Carbon Disulfide	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	1,1-Dichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,1-Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloroethene Total	EPA-624	<5	ug∕l	JF-EV-15	04/10/00
-	Chloroform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,2 Dichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Butanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
تتلت	1,1,1-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Carbon Tetrachloride	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Vinyl Acetate	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	Bromodichloromethane	EPA-524	<5	ug/l	JF-BV-15	04/10/00
	1,2-Dichloropropane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	trans-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Trichloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00

314 North Pearl Street • Albany, New York 12207 • 800-848-4983 • (518) 434-4546 • Fax (518) 434-0891

	CLIENT: Clough, Harbour & As CLIENT'S SAMPLE ID: Trip Bla	soc. LLP nk	Da Da	te Sample te sample	d: 04 received: 04	/06/00
-	AES sample #: 000406EG09	Samples taken by: MATRIX: Water	D. Ward	Loc	ation: Vatra b	no Rd.
-	continued: <u>PARAMETER</u> <u>PERFORMED</u>	METHOD	RESULT	UNITS	NOTEBK REF	TEST DATE
	Dibromochloromethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	1,1,2-Trichloroethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Benzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	cis-1,3-Dichloropropene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	2-Chloroethylvinylether	EPA-624	<10	ug/l	JF-EV-15	04/10/00
-	Bromoform	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	4-Methyl-2-pentanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
	2-Hexanone	EPA-624	<10	ug/l	JF-BV-15	04/10/00
•••	Tetrachloroethene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	1,1,2,2-Tetrachlorcethane	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Toluene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
-	Chlorobenzene	EPA-624	<5	ug/l	JF-EV-15	04/10/00
	Ethylbenzene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
-	Styrene	EPA-624	<5	ug/l	JF-BV-15	04/10/00
	Xylenes, Total	EPA-624	<5	ug/l	JF-BV-15	04/10/00

1/4 ara APPROVED BY:

Report date: 04/20/00

APPENDIX C

FIELD SAMPLING DATA SHEETS

Clough,	Harbour & Well Samp	k Associat	es LLP		Sample Designation	:N	1W-1	
Project Name:	VATRA	JO KO			Project No:	7,89	9.07.00	
Project Location: _	AL_(2)	<u>n ny</u> n			Date: Screen Len	gth:	10'	
Purge Information:								· · · · ·
(1) Depth to Botton (from TOR)	n of Well:	17. 30	<u>)</u>	(2) De (epth to Wate from TOR)	er: <u>7</u> .	96'	ft
(3) Column of Wate (#1 - #2)	er:	<u> </u>		(4) Ca	ising Diame	ter:	2	in
(5) Volume Conver	sion:	0.163	gal/ft	(6) 1	vol. of Well:	/	52	: gal
Method of Purging	WaTerral	Bailer/Subr	ersible/Otl	her:				:
					·			
Volume Conversion)		• :					
2" = 0.163	4" :	= 0.653	6" =	1.469	8" = 2.6	11	10" = 4.08	
Field Analysis:	Beg	- Pur	<u>100 (9)</u>	. 4:051	m []		T	
Vol Purged (gal)	0.9	4.21	1.2	1.6	2.0	•		
	-70	-70	-70	7.36	7.95		 	
	/ 29	6.57	14	6 77	$\frac{-10}{1}$.*		
	968	959	951	958	967			
	145	985	823	80.3	138			
Temp. (°C)	11.4	11.3	//./	11.Z	11.0			
Total Volume Purge	ed:	3	· · ·	gal T	otal Purge	Time:	Somin	
Sampling Info:								
Sample Method:	RAG / INIA	TER F			_	5		
Sample Time:	<u> </u>	5Pm		No. of Bot	les:			
Sample Analyses:	TCL	VOCS	, PCB	8080	Tota	1+1	Filfered	Pb+
Comments: Beck	the by	An Arra	at a	desi	iale a	and -	high	1. 46
violle mote	2				kee	<u> </u>		<u>.</u>
WEILS WUT	/ (1.1.1	<u>ensis 1</u>			Xe 1	<u> 111</u>		State and
	1	, /						
F Had to low	er tyb	e don	<u>in @ 1</u>	.6 ga /1	ns as	, the	wei	<u>//s Co</u> /
of water	40 <i>5 1</i> 0	wer o	i Na	<u>y (1)</u>	Ja: L	elsi per d	out.	
NIT NIT								

* Employ as Enclosely many * Vend 1 Pillo,.

. .

Sheet / of /

Clough, \	Harbour & Nell Samp	Associat	ies LLP		Sample Designation	n:	MW-J)
Project Name: Project Location:	VATRAN	BANT, N.	<u>/</u>		Project No Date: Screen Lei	:78 <u>4/6/00</u> n gth :	199.07.0	20
Purge Information:						•		
(1) Depth to Bottom (from TOR)	of Well: _	/9, 1	94'	(2) De	epth to Wat from TOR)	er:	10.16	ft
Clough, Harbour & Associates LLP Sample $MW - 2$ Project Name: $VArrAuo$ R_0 . Project No: $7899.07.00$ Project Location: $ArrAuo$ R_0 . Project No: $7899.07.00$ Purge Information: $ArrAuo$ R_0 . Project No: $7899.07.00$ Purge Information: $ArrAuo$ R_0 . Screen Length: o (1) Depth to Bottom of Well: $19: 94'$ (2) Depth to Water: $10.16'$ a (3) Column of Water: $9:78'$ (4) Casing Diameter: a a a (5) Volume Conversion: 0.163 galft (6) 1 Vol. of Well: 1.66 ga Wethod of Purging: Waterra/Bailer/Submersible/Other: a a a a Volume Conversion: 2.0 1.0 1.5 2.0 a a Volume Conversion: $a^* = 0.663$ $6^* = 1.469$ $8^* = 2.611$ $10^* = 4.08$ Field Analysis: $Beg.s.$								
Clough, Harbour & Associates LLP Weil Sampling LogSample Designation: $MW - 2$ Project Name: $VATRAUS RS.$ Project No: $7899.07.00$ Project Location: $H \cdot BATT HIX$ Date: $Y/E/CO$ Screen Length: O' O' Purge Information:(1) Depth to Bottom of Welt: $19.94''$ (2) Depth to Water: $10.16'$ (1) Depth to Bottom of Welt: $9.78'$ (4) Casing Diameter: $0.16'$ n(3) Column of Weter: $9.78'$ (4) Casing Diameter: 2 (5) Volume Conversion: 0.163 gal/R(6) 1 Vol. of Welt: 1.6 gal $2^* = 0.653$ $6^* = 1.469$ $8^* = 2.611$ $10^* = 4.08$ Field Analystic: $Begee$ $Begee$ $Bristing O'$ 0.20 Volume Conversion: 2.0 1.5 2.0 1.6 $2^* = 0.163$ $4^* = 0.653$ $6^* = 1.469$ $8^* = 2.611$ $10^* = 4.08$ Field Analystic: $Begee$ $Begee$ $Bristing O'$ 0.20 1.6 Volume Conversion: 2.0 1.5 2.0 1.6 $2^* = 0.163$ $4^* = 0.653$ $6^* = 1.469$ $8^* = 2.611$ $10^* = 4.08$ Field Analystic: $Begee$ $Begee$ $Bristing O'$ 1.6 $2^* = 0.163$ $4^* = 0.653$ $6^* = 1.469$ $8^* = 2.611$ $10^* = 4.08$ Field Analystic: $Begee$ $Begee$ $Bristing O'$ 1.6 1.6 ORP/EH (MV) 130.1 1.5 2.0 1.5 2.0 Diff (Ga) 0.5								
Method of Purging:	WaTerra/E	Bailer/Subn	nersible/Otl	ner:				
Volume Conversion:		<u> </u>						
2" = 0.163	. 4" :	= 0.653	6" =	1.469	8" = 2.6	611	10" = 4.0	08
Field Analysis:		Begar R	nging@ /	O do Alu	1			
Clough, Harbour & Associates LLP Well Sampling LogSample Designation: MW_{-2} Project Name: $VArtAub fb$.Project No: 7899.07 .Project Location: $ArtAub fb$.Project No: 7899.07 .Date: $Y/4/200$ Screen Length: 10^{-1} Purge Information:(1) Depth to Bottom of Well: $19.94'$ (2) Depth to Water: 10.16 (1) Depth to Bottom of Well: $19.94'$ (2) Depth to Water: 10.16 (1) Depth to Bottom of Well: $19.78'$ (4) Casing Diameter: 2 (3) Column of Water: $9.78'$ (4) Casing Diameter: 2 (5) Volume Conversion: 0.163 gal/R(6) 1 Vol. of Well: 1.6 Method of Purging:WaTera/Bailer/Submersible/Other: 10^{-1} 10^{-1} Volume Conversion: 2.0 1.6 2.0 10^{-1} $2^{-1} = 0.163$ $4^{-1} = 0.653$ $6^{-1} = 1.469$ $8^{-1} = 2.611$ $10^{-1} = 4$ Field Analysis: $beges. Ning g@ 10.20 Ait10^{-1} = 4Volume Conversion:2.01.52.010^{-1} = 4Volume Conversion:0.51.01.52.010^{-1} = 4Field Analysis:beges. Ning g@ 10.20 Ait10^{-1} = 410^{-1} = 4Field Analysis:beges. Ning g@ 10.20 Ait10^{-1} = 4Field Analysis:0.571.01.52.0Time10.290.53 Ait10.55110^{-1} = 4Field Analysis:10^{-1} = 410^{-1}$								
Time	10:28	10:35	10:43	10:51				
ORP/EH (MV)	130	110	110	110				
pH	7.60	7.54	7.52	7.55				
Cond. (US or mS)	421	448	447	452				
Turb. (NTU)	30.2	20.5	19.5	15.3				
Temp. (°C)	7.6	7.8	7.8	7.7				
Project Name: $\sqrt{hTRAJ_0} h_0$. Project Not: $7899.07.00$ Project Location: $\frac{h^2 B h^2 f_1 M t_2}{h^2 h_1 t_2}$ Project Not: $7899.07.00$ Purge Information: (1) Depth to Bottom of Welt: $\frac{19}{2}.94'$ (2) Depth to Water: $\frac{10.16'}{10}$ (1) Depth to Bottom of Welt: $\frac{19}{2}.94'$ (2) Depth to Water: $\frac{10.16'}{10}$ 10' (3) Column of Water: $9.78'$ (4) Casing Diameter: $\frac{2}{16}$ (3) Colume Conversion: 0.163 gal/ft (6) 1 Vol. of Welt: 1.6 ga Method of Purging: WaTerpl/Bailer/Submersible/Other: $\frac{10}{10}$ $\frac{10^{\circ}}{2.0}$ $\frac{10^{\circ}}{2.40}$ $\frac{10^{\circ}}{2.40}$ Volume Conversion: $2^{\circ} 0.153$ $6^{\circ} = 1.469$ $8^{\circ} = 2.611$ $10^{\circ} = 4.08$ Field Anatystis: $8_{0.90}^{\circ}$, $N_{0.90}^{\circ} 0.0.20$ $A_{0.10}^{\circ}$ $10^{\circ} 1.00$ $10^{$								
Sampling Info: Sample Method:	Clough, Harbour & Associates LLP Sample Designation: $MW - 2$ Name: $MTPAdo_D$ Project No: $7899.07.00$ Location: $HCRANT_HT$ Date: $YL_{1/2}$ Information: the Bottom of Well: $19: 94'$ (2) Depth to Water: $10.16'$ information: the Bottom of Well: $19: 94'$ (2) Depth to Water: $10.16'$ ft (fform TOR) $9: 78'$ (4) Casing Diameter: 2 in (fform TOR) 0.163 gal/ft (6) 1 Vol. of Well: 1.6 gal of Purging: WaTern/Bailer/Submersible/Other: 2 in 1.6 gal conversion: 0.55 1.0 1.5 2.0 $10^{\circ} = 4.08$ taysis: $begosting (9)$ 0.200 M/M $10^{\circ} = 4.08$ $10^{\circ} = 4.08$ taysis: $begosting (9)$ 0.200 M/M $10^{\circ} = 4.08$ $10^{\circ} = 4.08$ taysis: $begosting (9)$ 0.200 M/M $10^{\circ} = 4.08$ $10^{\circ} = 4.08$ taysis: $begosting (9)$ 0.200 M/M $10^{\circ} = 1.469$ $8^{\circ} = 2.611$ $10^{\circ} = 4.08$ </td							
Sample Time:	11:00	AM						
Sample Analyses:	TCL	VOC's	ABS de	280, 7	sem P	6 + 14	9	
Comments: <u>Baga</u> the well's	Wate	proj. r Coll	imn t	a sh o fry	one ray	c an keip	d his durbid	ty down
	/			· · · · · · · · · · · · · · · · · · ·			<u> </u>	

1.1

Clough,	Harbour & Well Sam	& Associat		Sample Designation: <u>MW-3</u>					
Project Name: Project Location:	VALBAN ALBAN	IY, MY			Project No: Date: <u> </u>	7 / 6/00 igth:	899.01. 101-	,00	
Purge Information:						- *			
(1) Depth to Botton (from TOR)	n of Well: _	20	. <u>.</u>	(2) D (epth to Wate from TOR)	er: <u> </u>	.18'	ft	
(3) Column of Wate (#1 - #2)	er:	10.8		(4) C	asing Diame	eter:	2	in	
(5) Volume Convers	sion:	0.16.3	gal/ft	(6) 1	Vol. of Well:		76	gal	
Method of Purging:	WaTerral	Bailer/Subn	nersible/Oth	ner:	•				
Volume Conversion	•		х.						
2" = 0.163)	4" :	= 0.653	6" = 1	1.469	8" = 2.6	11 🕔	10" = 4.08		
Field Analysis:	Begn	Purgina	 12:4 	OPM			;		
Vol Purged (gal)	0.5	1	1.4	1.8	2.2	2.6	3.0	3.5	
Time	12:48	12:56	1:03	1:10	1:16	1:23	1:30	1:36	
ORP/EH (MV)	55	55	45	40	35	35	35	30	
рН	7.81	7.69	7.56	7.6	7.63	7.57	7.51	7.57	
Cond. (US or mS)	624	619	612	617	616	614	608	612	
Turb. (NTU)	699	488	272 .	190	130	97.7	68.0	40.2	
Temp. (°C)	10.0	10.4	10.3	10.5	<u> </u>	11.6	11.4	11.5	
Total Volume Purge	d:	<u> 4.5</u>	-	gal	fotal Purge	Time:	he 5m:	<u>+n</u>	
Sampling Info: Sample Method:	1:45 P	Work	<u>///</u>	No. of Bot	tles:	4	·		
Sample Time:				0					
Sample Analyses:	IL U	Cs H	OS DA	o, 7	mplan Pl	<u>, 1/17</u>			
Comments: <u>Kino</u>	n by	praira Unin	to try	Stops 10	tend I koo	high high	hidity	Cour	
				135,5					
	/								
Logged By: 100									

1.4

`

Clough, Harbour & Associates LLP Well Sampling Log	5	Sample Designation:	MW	-4 (MW	(a-1
Project Name:		Project No: Date: Screen Leng	///7. //6/00 ith:	10'	p
Purge Information:			•		
(1) Depth to Bottom of Well:	(2) Dep (fr	oth to Wate om TOR)	r:	8.51	ft
(3) Column of Water:(7, 3/ (#1 - #2)	(4) Cas	ing Diame	ier:	<u>2</u>	in
(5) Volume Conversion:, /6.3gal/ft	(6) 1 V	ol. of Well:	/.	68	gal
Method of Purging: WaTerra/Bailer/Submersible/Othe	er				
Volume Conversion:					
(2" = 0.163) 4" = 0.653 6" = 1.	.469	8" = 2.6	11	10" = 4.08	
Field Analysis: Began Purging &	3 7:15	PM		T	:
Vol Purged (gal) 0.5 / 1.40	1.8				
Time $2:24 2:33 2:41$	2:48			· · · ·	
ORP/EH (MV) 100 90 90	85				
рн 7.39 7.13 7.34	7.40			· · · · ·	
Cond. ((us or ms) 549 560 56/	564				1
Turb. (NTU) 56.9 37.2 29.3	24.8				2 - 1 1
Temp. (°C) /2.9 /2./ /2.0	11.8			1	
Total Volume Purged: g	Clough, Harbour & Associates LLP Weil Sampling LogSample Designation: $MW-4(MW-b)$ cd Name: $VA: 4A_0, Io Pb$ Project No: $f 7899, 07, 00$ cd Name: $VA: 4A_0, Io Pb$ Project No: $f 7899, 07, 00$ cd Location: $II: CARL T, MT$ Screen Length: IoT cd Information:ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2">ispan="2"is				
Sample Method: 6248/Withering	o. of Bottl	es:	4		
Sample Time:					
Sample Analyses: TCL VOCS PCBS	8050,	TATAL	Pb.	+ 119	
Comments: Began by purging at a	slow	, rate	and	high	lin
the well's water column to try a	and ke	<u>ec.p. 1</u>	orbid	ty do	6.4 d 1
+ TOOR DURLICATE (MUT-10) <u>A</u>	161	t tr	le: 6	
Logged By: $\mathcal{D}\mathcal{W}$					

96. S

i

-

.....

Project Name: $VATAMD$ P_{D} Project Location: $ALAMMI$ M' Project Location: $ALAMMI$ M' Date: $HI400$ Screen Length: 10 Project Nor: 10° Projec	Clough, Harbour & Associates LLP Sample Well Sampling Log Designation: <u>MW-5</u>									
Purge Information: 1) Depth to Bottom of Well: $\underline{/2.36'}$ (2) Depth to Water: $\underline{8.61'}$ ft (from TOR) (from TOR) 3) Column of Water: $\underline{/0.75'}$ (4) Casing Diameter: $\underline{2}$ in (#1 - #2) 5) Volume Conversion: $\underline{0.163}$ gal/ft (6) 1 Vol. of Welt: $\underline{1.75}$ gal Aethod of Purging: WaTerraBailer/Submersible/Other: $$	roject Name: //AT #AND //BD Project No: 7899.07.00 roject Location: ACBANY, NY Date: 4/6/00 Screen Length: 10'									
1) Depth to Bottom of Well: $19.36'$ (2) Depth to Water: $8.61'$ ft (from TOR) (2) Depth to Water: $10.75'$ (4) Casing Diameter: 2 in (#1 - #2) (4) Casing Diameter: $1.75'$ gal Aethod of Purging: WaTerra/Bailer/Submersible/Other: 2 = 0.163 (4 = 0.853 6" = 1.469 8" = 2.611 10" = 4.08 Tol Purged (gal) 0.5 1.0 $1.4'$ 1.8 2.2 $10"$ Time $3:18$ $3:26$ $3:33$ $3:40'$ $3:46'$ $10"$ = 4.08 Time $3:18$ $3:26$ $3:33$ $3:40'$ $3:46'$ $10"$ = 4.08 Time $3:18$ $3:26$ $3:33$ $3:40'$ $3:46'$ $10"$ = 4.08 DRP/EH (MV) $95'$ $90'$ $90'$ $90'$ $85'$ $100'$ $90'$ $90'$ $85'$ $100'$ $10'$ $90'$ $90'$ $85'$ $100'$ $10'$ $10'$ $10''$ $10''$ $10''$ $10''$ $10''$ $10''$ $10'''$ $10'''$ $10''''$ $10''''''''''''''''''''''''''''''''''''$	urge Information:	٦								
3) Column of Water: $10.75'$ (4) Casing Diameter: in (#1 - #2) 5) Volume Conversion: 0.163 gal/ft (6) 1 Vol. of Well: 1.75 gal Method of Purging: WaTerra/Bailer/Submersible/Other:	(from TOR) (from TOR) (2) Depth to Water: 8.6/	t ·								
5) Volume Conversion: 0.163 gaVft (6) 1 Vol. of Welt: 1.75 gal Method of Purging: WaTerraBailer/Submersible/Other:	3) Column of Water:/0,75' (4) Casing Diameter:i (#1 - #2)	n								
Wethod of Purging: WaTerra/Bailer/Submersible/Other: /olume Conversion: $2^{*} = 0.653$ $6^{*} = 1.469$ $8^{*} = 2.611$ $10^{*} = 4.08$ Time $3:10^{*}$ 6^{*} 9.5^{*} 10^{*} 4.08 Time $3:18$ $3:26$ $3:33$ $3:40$ $3:46$ $3:46$ $3:46$ Time $3:18$ $3:26$ $3:88$ 589 597 $3:40$ 3	i) Volume Conversion:0,163_gal/ft (6) 1 Vol. of Well:1.75ga									
Volume Conversion: 2" = 0.163 4" = 0.653 6" = 1.469 8" = 2.611 10" = 4.08 Tield Analysis: Bogn Provide @ 3:/OPM (al Purged (gal) 0.5 1.0 1.4 1.8 2.2 Time 3:18 3:26 3:33 3.*40 3:46 DRP/EH (MV) 95 90 90 90 8.5 H 7.28 7.34 7.22 7.32 7.36 Cond. (uS pr ms) 569 580 588 589 597 Sound. (uS pr ms) 569 580 588 589 597 Cond. (uS pr ms) 569 580 588 589 597 Sound. (uS pr ms) 569 580 588 589 597 Cond. (uS pr ms) 569 580 588 589 597 Sound (uS pr ms) 569 580 588 589 597 Cond. (uS pr ms) 569 580 589 597 State 32.9 32.4 12.4 7.19 Sample Method: Grad / Mar. MA <thn< td=""><td colspan="10">Method of Purging: WaTerra/Bailer/Submersible/Other.</td></thn<>	Method of Purging: WaTerra/Bailer/Submersible/Other.									
$2^{n} = 0.183'$ $4^{n} = 0.653$ $6^{n} = 1.469$ $8^{n} = 2.611$ $10^{n} = 4.08$ Field Analysis: Bogn Proving @ 3:/OPM /ol Purged (gal) 0.5 1.0 $1.4'$ $1.8'$ 2.2 Imme $3:1/8$ $3:26$ $3:33$ $3:4'0$ $3:4'6$ SRP/EH (MV) 95 90 90 90 85 IH 7.28 $7.34'$ 7.22 7.36 10^{n} Ond. (INS pr mS) 569 580 588 589 597 Sub. (NTU) 25.9 $21.0'$ $10.8'$ $8.4'4'$ 7.19 'urb. (NTU) 25.9 $21.0'$ $10.8'$ $8.4'4'$ 7.19 'urb. (NTU) 25.9 $21.0'$ $10.8'$ $8.4'4'$ 7.19 'urb. (NTU) 25.9 $21.0'$ $10.8'$ $8.4'4'$ $7.19'$ 'urb. (NTU) 25.9 $21.0'$ $10.8'$ $8.4'4'$ $7.19'$ 'ample function $3.5'5.9'$ $3.5'5.9'$ $3.5'5.9'''''''''''''''''''''''''''''''''$	olume Conversion:									
Time Degn Priving 3:10 Pm Ime 3:18 3:26 3:33 3:40 3:46 DRP/EH (MV) Q5 90 90 90 85 H 7.28 7.34 7.22 7.32 7.36 H 7.28 7.34 7.22 7.32 7.36 Att 7.28 7.34 7.22 7.32 7.36 Sond. (us) or ms) 569 580 588 589 597 State 12.4 12.4 12.3 12.4 12.4 State 3.5 540 5.5 9.6 7.79 Sample Method: (Attal March A No. of Bottles: 4 Sample Analyses: TCL Voc's PCB's SOSO Tornic Pb, 4 19 Sample Analyses: Degan by punging at a Shar inte a d	<u>2" = 0.163</u> <u>4" = 0.653</u> <u>6" = 1.469</u> <u>8" = 2.611</u> <u>10" = 4.08</u>	_								
Imaged (gal) 0.5 1.0 1.4 1.8 2.2 Imaged (gal) 9.18 3:26 3:33 3:40 3:46 ORP/EH (MV) 95 90 90 85 1.1 IH 7.28 7.34 7.22 7.32 7.36 IH 7.28 7.34 7.22 7.32 7.36 Inth 7.28 7.34 7.22 7.32 7.36 Inth 7.28 7.34 7.22 7.32 7.36 Inth 7.39 21.0 10.8 8.44 7.19 1.1 Inth 13.4 12.8 12.4 12.3 12.2 1.2 1.2 Sampling Info: 3:55Am No. of Bottles:	eld Analysis: Degn Pireging @ 3:10Pm	·								
Time 3:18 3:26 3:33 3:40 3:46 DRP/EH (MV) 95 90 90 90 85 DRP/EH (MV) 95 90 90 90 85 DRP/EH (MV) 95 90 90 90 85 DRP/EH (MV) 95 90 58 7.22 DRP/EH (MV) 95 90 90 90 85 DRP/EH (MV) 95 97 Dr. 28 7.32 7.36 DRP/EH (MV) 95 90 90 85 DRP/EH (MV) 95 90 90 85 DRP/EH (MV) 95 90 90 85 DRP/EH (MV) 95 97 DRP/EH (MV) 95 90 90 85 DRP/EH (MV) 95 97 DRP/EH (MV) 95 90 90 85 DRP/EH (MV) 95 97 DRP/EH (MV) 96 90 85 DRP/EH (MV) 96 DRP/EH (MV) 96	ol Purged (gal) 0.5 1.0 1.4 1.8 2.2									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	me 3:18 3:26 3:33 3:40 3:46									
7.28 7.34 7.22 7.32 7.36 Cond. (us or ms) 569 580 588 589 597 Curb. (NTU) 25.9 21.0 10.8 8.44 7.19 Turb. (NTU) 25.9 21.9 12.4 12.3 12.2 Total Volume Purged: 3 $gal Total Purge Time: 40.4 Sample Info: 3.55.5 9.5.5.5 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.7.16 7.$	RP/EH (MV) 95 90 90 90 85	÷.,								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H 7.28 7.34 7.22 7.32 7.36									
Purb. (NTU) 25.9 21.0 10.8 8.44 7.19 Temp. (°C) 13.4 12.8 12.4 12.3 12.2 Total Volume Purged:	ond. (us or ms) 569 580 588 589 597									
Temp. (°C) 13.4 12.8 12.4 12.3 12.2 Total Volume Purged:	urb. (NTU) 25.9 21.0 10.8 8.44 7.19	÷.								
Total Volume Purged: 3 gal Total Purge Time: 45 nin Sampling Info: Sample Method: 6 6 6 6 6 Sample Method: 6 6 6 6 6 6 6 Sample Method: 6 6 6 6 6 6 6 Sample Method: 6 7 8 7 7 7 7 Sample Time: 3:55 pm 8 80 pm 7 7 7 7 Sample Analyses: TCL VOC's PCB's 80 pm 7 7 7 7 Sample Analyses: TCL VOC's PCB's 80 pm 7 7 7 7 Sample Analyses: TCL VOC's PCB's 80 pm 7 7 7 7 7 Sample Analyses: TCL VOC's PCB's 80 pm 7 7 7 7 7 Sample Analyses: TCL VOC's PCB's 80 pm 7 7 7 7 7 Sample Analyses: M M M 1 1 1 1 1 Sample Analyses: M M M 1 1 1	emp. (°C) 13.4 12.8 12.4 12.3 12.2									
Sampling Info: Sample Method: <u>GRNB/MAMA</u> Sample Time: <u>3:55pm</u> Sample Analyses: <u>TCL VOC's PCB's SOSO</u> , <u>TOTAL PB + 119</u> Sample Analyses: <u>TCL VOC's PCB's SOSO</u> , <u>TOTAL PB + 119</u> Somments: <u>Began by purging at a Show rate a d high</u> in the well's water column to try a d bogs to build its wa	otal Volume Purged:3 gal Total Purge Time:	_								
Sample Time: <u>J.S.O.M.</u> Sample Analyses: <u>TCL VOC's PCB's 8080</u> , Torric PB + Hg comments: <u>Began by purging at a show rate and high</u> in the well's water column to try and bogs to billy chun	Sample Method: <u>GRAB/WMARAA</u> No. of Bottles: <u>4</u>									
Sample Analyses: <u>ICC VOC's PCB's JOJO, TOTAL PB + Hg</u> comments: <u>Began by purging at a show rate and high</u> in the well's water column to try and loops to build them										
comments: Began by purging at a show rate a d high in the well's water column to try and loops to build them	ample Analyses: <u>ICC VOCs</u> <u>FCBs</u> <u>JOSO</u> <u>ISTAC</u> <u>FB</u> + <u>Hg</u>	_								
in the well's water column to try and loops to build them	omments: Began by purging at a show rate a d high	-								
	in the well's water column to try and togs to buildy the	1								
		-								
		-								
$\int J(a)$	Γ	-								

÷

e 51-
Clo ugh , H W	arbour & Associ ell Sampling Log	ates LLP		Samp le Designation:	MW-	-6						
Project Name: Project Location:	VATRANO K. ALBANY	D N.Y		Project No: <u>7899,07.00</u> Date: <u>4/5/00</u> Screen Length: <u>10</u>								
Purge Information:					•		·					
(1) Depth to Bottom (from TOR)	of Well:	,0' 	(2) De (fi	pth to Wate rom TOR)	r	3.12	ft					
(3) Column of Water: (#1 #2)		8	(4) Ca	Casing Diameter: A in								
(5) Volume Conversio	on: <u>0.163</u>	<u> </u>	(6) 1 V	ol. of Well:		.2	gai					
Method of Purging; V	VaTerra/Bailer/Sub	mersible/Oth	ner:									
		· · · · · · · · · · · · · · · · · · ·										
Volume Conversion:		2 5		•								
2" = 0.163)	4" = 0.653	6" = 1	1.469	8" = 2.61	11	10" = 4.08	3					
Field Analysis: Ba	goin Purgin	g @ !:	30PM	}.	/							
/ol Purged (gal)	0.5 1.1	1.6	2.2	2.5								
Time /	1:38 1:47	1:55	2:01	z:07			•					
ORP/EH (MV)	-55 -60	- 60	-55	-65	. /							
	33 6.57	7.04	7.10	7.07								
Cond. (US or mS)	534 626	641	643	638		-						
Turb. (NTU)	20001 < 0001	>1000	>1000	2,790			·					
Гетр. (°С)	8.3 8.1	8.2	8.4	8.4								
Total Volume Purged	3.5		gal To	otal Purge	Fime: <u>4</u>	Smin						
Sampling Info: Sample Method:	RAIS/Ware	IPA N	ia, of Bottl	es:	5		·					
Sample Time:	1:15 pm											
Sample Analyses:	TCL VOC'S	, PCB's	8080	TOTAL	+ Fa	SERED	Pb+Hg					
Comments:	by purque	rg at	a stow	1 inte	and	hinh						
the will's	column or	t water	.to.	try and	1 peop	Jark	bid ty					
* for	torned a "	Sprial 1	ilution	for	1.4	n bidit	ready					
* Used	1 6.14	er										
$\lambda = \Lambda I_{1}I_{1}$												

U:\GEO\FORMS\WELLSAMP.LOG~

...

Clough,	Harbour & Well Samj	Associat	tes LLP		Sample Designatior	n:M	W-7	
Project Name:	VATIAND	Ro			Project No:		7899.0	07.00
Project Location: _	HERRY	N.			Date:	<u>4/5/60</u>		· · · · · · · · · · · · · · · · · · ·
Purge Information:								
		16.4	10'			3	13	
(1) Depth to Botton (from TOR)	n of Well: _	7041		(2) De (f	pth to Wate from TOR)	er:	0.5	ft
(3) Column of Wate	er.	13.17	7	(4) Ca	sing Diame	ster	2	in
(#1 - #2)				(1) 00				
(5) Volume Conver	sion:	0.163	gal/ft	(6) 1	Vol. of Well	:	.15	gal
Method of Purging:	WaTerra	Bailer/Subr	nersible/Oth	ner:				
·					•			
Volume Conversion	:		·.					
2" = 0.163/	4":	= 0.653	6* = *	1.469	8" = 2.6	511	10" = 4.0	8
Field Analysis:	proga	m Kurgs	rg 3 0	30 Pr	1.			
Vol Purged (gal)	0.5	1,0	1.3	1.6	1.9	2.2	2.5	4.0
Time	2.39	2:48	2.53	2:59	3:05	3:12	3:18	3:33
ORP/EH (MV)	35	45	60 0	60	60	65	65	70
pH	7.47	1.12	1.08	1.25	1.34	1.32	1.35	1.9
Cond. ((uS)or mS)	592	421	435	745	179	468	485	472
Turb. (NTU)	~1000	<1000 0 F	718	818		216	120	110
Tetal Volume Burge	<u>/7</u>	8.5	1.7			Lõ.I	0.2	1.7
						1ime:	<u>nr</u>	*** <u>3</u>
Sampling Into:	An-	Marche	4					
	3:5514	, ,	<u>, , ,</u> ,	No. of Bott	les:	3		· · · · · · · · · · · · · · · · · · ·
Sample Time:	771	16-1	Depi	50				Dr.
Sample Analyses:	100	VUCS,	PCBS	<u>2010 -</u>			· ····································	A PD+
Comments: frega	by	Pring	<u>()</u> ()	/ /	<u>i code</u> i	(md	1.91	<u>in</u>
the wells h	later (own	10 11	101.	keep!	" a pel	11 day	<u></u>
The flow	stopped	twic	ϵ of	ar sound	2 96	1.1	111	the pu
rote had to	s be it	11 1 50 7	sed to	act	flow of	aried	a agin	
+ Could not see	em to	get	turbidit	1 10	dico	octon	Tough	11 100
Logged By: DW		0	•					
GEOVEORMS/WEI)6~						
1 If the 200	(, (d))	wist.	Sy G *	y ia) Mr. ICP	+ - (12 T	NE LAND
F						1		

Clough,	Harbour & Well Samj	& Associat	es LLP		Sample Designation	: <u>MW</u>	-8						
Project Name: Project Location:	VATRANO ACLERA	Ro NY			Project No: 7899.07.00 Date:/6/00 Screen Length:0'								
Purge Information:						•	<u></u>						
(1) Depth to Bottom (from TOR)	of Well:	15.90	<u><u><u> </u></u></u>	(2) Dej (fr	oth to Wate om TOR)	er:	5.04	ft					
(3) Column of Wate (#1 - #2)	r	10.95	?'	(4) Ca:	sing Diame	ter:	2	in					
(5) Volume Convers	sion:	D.163	gal/ft	(6) 1 V	oi. of Well:	1.7	8	gai					
Method of Purging:	WaTerra/	ailer/Subn	nersible/Oth	ner:		·							
Volume Conversion:													
2" = 0.163	4"	= 0.653	6 " = 1	1.469	8" = 2.6	11	10" = 4.08						
Field Analysis:	Bey an	Purjing	0 8:4	5 Ani				,8	,				
Vol Purged (gal)	0.5	0.9	1.4	1.8	2.2	2.6	3.0	3.5	4.0				
Time	8:53	9:00	9:08	9:15	9:22	9:29	9:35	9:43	9:51				
ORP/EH (MV)	160	155	150 0	150	140	145	140	135	130				
рН	7.73	7.50	7.65	7.64	7.58	7.68	7.73	7.71	7.69				
Cond. (US or mS)	654	727	785	794	784	798	804	812	817				
Turb. (NTU)	219	112	73.3	60:3	53.1	59.1	65.8	72.0	76.0				
Temp. (°C)	6.2	6.4	6.5	6.5	6.4	6.6	6.6	6.6	6.6				
Total Volume Purge	ed:	5	· · · · · · · · · · · · · · · · · · ·	gal To	otal Purge	Time:	hr 15n	1 . 11	40 L				
Sampling Info: Sample Method:	SPIRE/W	and appl	:	No. of Bottl	es:	5							
Sample Time:	10:00	AM						:					
Sample Analyses:	TCL	VOCS	, PCB's	£0,80,		6 + F.E	TERED 1	3+H					
Comments: Began	by	purgine	i at	a stor	rate	and 1	high :	n the					
well's water	r colo	ις 1997 - Γ. Γ.	for the	1 mid	Lecu	I_{h}	611	y train					
+ Could not	get	turb	dity	below	50 NT	Uan	1 Sam	abod					
il ila La	chil's	ly has		- <u>10</u>		•		<u></u>					
as the rol	DIGIT	<u>y nego</u>	· <u>·</u> ··································	1.50		<u>SA12</u>							
Nul													

U:\GEO\FORMS\WELLSAMP.LOG~

* Used 1 filter

Clough,	Harbour & Well Samp	Associat		Sample Designation: <u>MW-9</u>								
Project Name: Project Location:	VATRAN ALB	IO PB ANY, NY.			Project No:							
Purge Information:						•						
(1) Depth to Bottom (from TOR)	of Well: _	52.1	70'	(2) De (1	pth to Wate rom TOR)	er://。	.84	ft				
(3) Column of Wate (#1 - #2)	r	41.00	(4) Ca	ising Diame	eter:	<u> </u>	in					
(5) Volume Convers	sion:	0.16_	<u>gal/ft</u>	(6) 1	vol. of Well	<u>.</u> 6.	7	gal				
Method of Purging	WaTerra/F) Sailer/Subr	nersible/Oth	er:								
Volume Conversion:			÷		۲.							
2" = 0.163	4 " :	= 0.653	6" = 1	.469	8" = 2.6	511	10" = 4.08					
Field Analysis:	Beg	la- Puigii	3011	15 Am				·				
Vol Purged (gal)	2	4	5.5	6	6.5	7	Post					
Time	11:31	11:46	11:58	12:05	12:12	12:19	FILTRATION					
ORP/EH (MV)	65	50	10	-10	-10	- 15		ž.				
рН	8.34	8.45	8.64	8.92	9.01	9.03		:				
Cond. (US)or mS)	296	30	297	30.5	307	310		$\epsilon = \Lambda \epsilon$				
Turb. (NTU)	192	71000	>1000	0001 <	71000	23,000	(199)	1				
Temp. (°C)	9.0	9.9	11.7	11.8	11.3	11.5						
Total Volume Purge	d:	8		gal T	otal Purge	Time:	1kr 15.	n.m_				
Sampling Info: Sample Method:(GARE /	Nocie	<u>//</u>	No. of Bot	les:							
Sample Time:	12:300	24										
Sample Analyses:	TCL	Vocs	PCBS	8080	, . TOT	AL + Fa	TERED 1	28+1kg				
Comments: Bega	by	Purging	i at	a sk	new route	e nod	ligh	1.10				
te well's a	jater .	colony) ⁶ ,	typan	1 korp	torb	Klify .	lower				
+ Turbidiy	ly wa	5 64	111 1	99 NJ7	U en	or after	er filte	ring				
the water	Using	an	in-li	ne fi	Her	_	· · · · · · · · · · · · · · · · · · ·					
Logged By: DW			、									

U:\GEO\FORMS\WELLSAMP.LOG~

+ Used 1 filter

APPENDIX D

CHAIN OF CUSTODY

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

	LIENT NAME CHA			20	SAMPLERS: (Names)							
I W	C RELT	PO NUMBER 7899.07.00			SAMPLERS: (Signiture)						ke i	. S.I
AES SAMPLE NUMBER	ANY 17 JC CLIENT CLIENT SAMPLE IDENTIFICATION & LO		DATE LOCATION SAMPLED		TIME A≑a.m P≖p.m		SAMPLE	TYP	GRAB T	UMBER OF CONT'S		ANALYSIS REQUIRED
406 6601	MW-1		4/	6/00	4:55	л Э	GW	\rangle	X	5	TC	L VOLATILE
B602	MW-2			ĺ	11:00	B P			K	4	PC	B 3 8080 7
B603	MW-3	•	1. e		1:45	A P			X	4	jVl=	THES (SOME
B604	MW-Y		· · · · · · · · · · · · · · · · · · ·		3:00	• •			X	4	N,	TH FILTER
BGOS	MW-5				3:55	A (P)			X	4	M;	THES AND
6606	MW-8				k:w	A P			X	5	$\mathcal{S}_{\mathcal{O}_{i}}$	ME LU THOU
B607	MW-9	A previo	15 page		12:30	Â		1	X	5		UTERF D
B608	MW-10)			11:30	۵ Р	L		X	5		ME TALS)
B609	TRIP B.	1JK				А Р	Here	\rangle	\langle	/	TCI	VOLATILÉS
						A P						
(Sangles with	(5) total	be thes			A P					<u>*)</u> (netal kryupste
	needs filh	red meta	ls only	*	}	A P					ec 1	Lottles: Pb/Hg
		· · · · · · · · · · · · · · · · · · ·				A P						(MYL)
Turnaround Time	Normal Pr	20 TOLAL	(News - 1	15P)	Lab	ora	tory A	ppr	ova	al:		
Relinquished by:	(signature) Hara)].	Receive	d by: (s	ignature))					_	Date/Time 4/400 5:25
Relinguished by:	(Signeture)	1	Receive	d by: (s	ignature))						Date/Time
Relinquished by:	(Signeture)		Receive	d by: (s	ignatura))			_			Date/Time
Dispatched by: (Sig	gneture)	Date	>/Time Received for Laboratory by:									Date/Time
Method of Shipme	enț:		Send Rep	ort To:		/		+	_			Client Phone No.:

The Laboratory reserves the right to return hazardous samples to the client or may levy an appropriate fee per container for disposal.

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

Adirondack Environmental Services, Inc.

CLIENT NAME LIOUEN Marbour un	d Associates I I P Phole	PROJECT NAME (Lo	cation) itrano Roi	ad	SAMPL	DON WARD JR.							0
Abbress Abbress	A.5669, NY 12205 8769		PO NUMBER 7809.07.00			ERS	: (Signatur	()	lan				
AES SAMPLE NUMBER	SAMPLE IDENT	CLIENT IFICATION & LOCATION		DATE SAMPLED	THM A=a. P=p.	E m. m.	SAMPLE	TYP	aras m	NUMBER OF CONT'S		ANALYSIS REC	JUIRED
	JAN'S					A P	_ <u></u> GW		G_	~2.[TCL 	. Volatiles. 1 & Filteret	PCB's 8080 Pb and He
		$\langle \rangle$				A P	1		G	, , , , , , , , , , , , , , , , , , ,		SAM	
	MIN'3	\searrow	\sim	\leq	\wedge	A	G14/-		G	(.,		SAM	
1/2	MWA				71	- 4	GW-		G	5		SAM	Ľ
MAM	DO TO	MM	N	N	12	A R	945-	7	G	A	M	- Contraction of the second se	4
04105 AYOI	MW-6		4/	5/00	2:30	* P	GW		G	5			<u>t — </u>
AYOZ	MW-7		4/	-100	3:55	A (P)	GW		G	5		SAM	E
MANA	MERA	ann	1	1/		A P	GW	1	G	4	4	- Contra	$\overline{\mathcal{T}}$
AA	MINAP	V		à		2	GN'		G 			SAM	
MA	1140-10				\square	A P/	GW		1	1.7	1		ti
АY	Trip Blank					A P	WA		G	ž		- <u></u>	
						A P							
						A P							_
Turnaround Time	: <u>Nerma</u>	i Protocol (Nen	<u>ASP</u>)		Lab	ora	tory A	pp	rov	al:			
Relinquished by	(Signature)		Receive	ed by: (s	l Signeture;)						Date 4/s/op	/Time 5:00/
Relinquished by:		Received by: (Signature)									Date	/Time	
Relinquished by:		Receive	ed by: (s	Signeture)							Date	/Time	
Dispatched by: (si	Date/	e/Time Received for Laboratory by:						Date/Time					
Method of Shipm	ent:	s	end Rep	ort To:		R	ogina C	am	illi	<u> </u>	_	Cilent P	hone No.:

A full service analytical research laboratory offering solutions to environmental concerns CHAIN OF CUSTODY RECORD

The Laboratory reserves the right to return hazardous samples to the client or may levy an appropriate fee per container for disposal.

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

Adirondack Environmental Services, Inc.