

June 5, 2008

Mr. Gerald Rider Operation & Maintenance Section Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7014

RE: Vatrano Road 2008 Annual Monitoring Report CHA Project No. 7899.1000.1102

Dear Mr. Rider:

Enclosed please find one copy of the 2008 Annual Groundwater Monitoring Report for the Vatrano Road Site.

As stated in Section 5.0 of the report, with the continued detected presence of PCBs and VOCs and the first time detection of vinyl chloride (a break down product of chlorinated VOCs), CHA recommends that an additional round of groundwater sampling be performed at the Vatrano Road site in 2009. If the results of the 2009 sampling event are consistent with those of 2008, CHA will petition NYSDEC to discontinue the monitoring program.

In addition, CHA requests that the analyses for lead and mercury be eliminated from the site's analytical program. Mercury was last detected at the site in October 1999 and lead was last detected in April of 2004. In the event that there is no response to this request prior to the April 2009 sampling event, CHA will contact your office to verify your agency's approval of the request to remove lead and mercury from the list of analytes.

Please do not hesitate to contact the undersigned with any questions or comments regarding this submission.

Very truly yours,

CLOUGH HARBOUR & ASSOCIATES LLP

Keith Ziobron Associate

KZ/sdn

cc: Eric Hamilton-DEC w/ enclosure Dawn Varacchi-Ives, GE w/ enclosure

M:\7899\Vatrano Rd Reports\2008 Report\2008 Cover Letter.doc

The Vatrano Road Site Albany, New York

New York State Department of Environmental Conservation Inactive Hazardous Waste Site Number: 401036

CHA Project No.: 7899.1001.1102

Prepared for:

GE Energy GE International, Inc. 621 Main Street Fitchburg, MA 01420

Prepared by:

III Winners Circle Albany, New York, 12205 (518) 453-4500

TABLE OF CONTENTS

•	. •
SAC	tion
\mathbf{y}	uou

1.0	INTRODUCTION							
2.0	SITE	E DESCRIPTION	3					
	2.1	History	3					
	2.2	Regional Geology & Hydrogeology						
	2.3	Site Soils & Hydrogeology						
	2.4	Monitoring Well Network						
	2.5	Site Groundwater and Aquifer Characteristics						
	2.6	Pre-Remediation Groundwater Sampling	7					
	2.7	Post-Remediation Groundwater Quality Characterization	8					
3.0	APR	IL 2006 SAMPLING EVENT	9					
	3.1	Current Site Conditions	9					
	3.2	Procedures						
	3.3	Laboratory Analysis and Quality Control	11					
	3.4	Laboratory Analysis Discussion						
	3	3.41 Groundwater Data						
	3	3.42 QA/QC Data						
4.0	SUM	1MARY	15					
5.0	REC	OMMENDATIONS	17					

LIST OF FIGURES

Figure

- 1 Site Location Map
- 2 Site Plan
- 3 April 2008 Groundwater Piezometric Map

LIST OF TABLES

Table

- 1 Groundwater Monitoring Well Data and Groundwater Elevations
- 2 Groundwater Analysis Summary Table

APPENDICES

APPENDIX A	SITE PHOTOGRAPHS
APPENDIX B	GROUNDWATER WELL FIELD SAMPLING SUMMARY
APPENDIX C	PURGE WATER DISPOSAL MANIFESTS
APPENDIX D	GROUNDWATER LABORATORY ANALYTICAL DATA
A DDENIDIV E	CHAIN OF CUSTODY

1.0 INTRODUCTION

This is the eighth Annual Monitoring Report, following seven previous Annual Reports and two series of Semi-Annual Reports, for the former General Electric Vatrano Road Service Center. The 2003 report was scheduled to be the final Annual Monitoring Report; however, due to the persistent detection of PCBs and VOCs in some of the monitoring wells, additional rounds of annual monitoring events were conducted in 2004, 2005, 2006, 2007 and 2008 to further evaluate PCB and VOC concentrations at the site. This report has been prepared and the associated monitoring performed by Clough, Harbour, & Associates LLP (CHA), Albany, New York.

In keeping with the reporting requirements outlined in the December 1998 *Operations, Maintenance and Monitoring Plan*, sampling was to be conducted on a semi-annual basis beginning in October of 1998 and continuing for two years, and on an annual basis beginning in 2001 and continuing for three years. The plan was approved by the New York State Department of Environmental Conservation (NYSDEC) in a letter dated February 1, 1999. As part of this report, a review of the data collected since the remediation took place has been conducted to determine what, if any, further actions are necessary.

In March 2006, monitoring well MW-1 was replaced because of damage to the riser that prevented water level readings and samples from being collected. This well is considered to be the up gradient well and representative of the site's natural groundwater chemistry. It should be noted that results from this well are compared to the results from the down gradient wells to ensure that concentrations of PCBs and VOCs are not influenced from an off-site source of contamination. The replacement well was installed as a flush mount well to protect it from future traffic damage in the parking lot where it is located. Information detailing the installation of the new monitoring well MW-1 was presented in the July 2006 report.

The location of the subject site is illustrated by Figure 1. A site plan, which illustrates the portion of the property that was remediated in the fall of 1997, together with the groundwater monitoring network, is provided as Figure 2.

The purpose of this report is to describe the laboratory results for the groundwater samples collected from the site's groundwater monitoring wells during the April 2008 annual sampling event, as well as to discuss the data that has been collected since active remediation of the site was completed.

This report consists of the following sections. Section 1.0 is this Introduction. Section 2.0 provides a site description, which gives a brief history of the site, subsurface geologic and hydrogeologic conditions, a description of the monitoring well network, and pre-remediation groundwater sampling. Section 3.0 presents and discusses the conditions of the April 2008 sampling procedures and the laboratory data. Section 4.0 is the Summary of the findings of the current sampling event relative to all of the post-remediation sampling events. Lastly, Section 5.0 presents CHA's recommendations for the site.

Copies of this report have been forwarded to the following:

Mr. Gerald J. Rider
Operation & Maintenance Section
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, New York 12233-7014

Mr. Eric Hamilton RHWRE NYS Department of Environmental Conservation-Region 4 1150 N. Westcott Road Schenectady, New York 12306

and

Dawn Varacchi-Ives GE Energy GE International, Inc. 621 Main Street Fitchburg, MA 01420

2.0 SITE DESCRIPTION

As illustrated by Figures 1 and 2, the subject site is located on Vatrano Road in the City of Albany, New York, just east of Central Avenue near the Town of Colonie border. A series of railroad tracks owned and operated by Consolidated Rail forms the southern boundary of the site, with Interstate 90 located further to the south. The site consists of a vacant lot within the Vatrano Commercial Park, and is less than two acres in size. During the spring of 1998, a chain link fence was placed near the rear of the site. The area in front of this fence was paved with asphalt and is currently used as a parking lot. The surrounding area is occupied by commercial and light industrial facilities, with the nearest residential properties located immediately to the north of the Vatrano Road Commercial Park.

2.1 HISTORY

From 1956 through 1981, the General Electric Company leased what is now known as 14 Vatrano Road, the structure immediately to the west of the subject site. This facility was used as an apparatus repair shop by General Electric, where electric motors and transformers containing polychlorinated biphenyls (PCBs) were serviced.

The results of a series of preliminary investigations indicated that the subject site's soils were contaminated with PCBs. As a result, the NYSDEC identified the property as an inactive hazardous waste disposal site that represented a significant threat to the environment. In 1990, the NYSDEC and General Electric entered into an order on consent, which required General Electric to conduct a Remedial Investigation/Feasibility Study (RI/FS) for the site. This study identified the nature and extent of the contamination on the property, and identified and evaluated remedial alternatives that General Electric could use to meet the goal of the remedial program. The objective of the remedial program was to restore the site to predisposal conditions, to the extent feasible, and authorized by law, while eliminating or mitigating all significant threats to public health and the environment.

In early 1997, the property owner asked General Electric to expedite the remediation of the site. General Electric reevaluated the stabilization/solidification remedy and the contingent remedy (the excavation and off-site disposal of contaminated soils) and found that remediation could be completed in 1997 if the contingent remedy (excavation with off-site disposal) was chosen. Since both the selected remedy and the contingent remedy would achieve the cited remedial objective, the NYSDEC approved the implementation of the contingent remedy.

From October through December of 1997, the site was remediated by Four Seasons Environmental under the supervision of CHA. A full description of the remediation can be found in the December 1998, *Remediation Engineering Certification Report*, also prepared by CHA.

2.2 REGIONAL GEOLOGY & HYDROGEOLOGY

The geology of the region consists of Ordovician age bedrock overlain by unconsolidated glacial till and outwash deposits and/or glacial lake deposits. The Ordovician bedrock is comprised predominantly of dark-gray to black argillaceous shales with occasional layers of limestone and localized chert.

Overlying the bedrock are glacial tills, glacial outwash deposits, and lacustrine (lake) deposits. The tills are comprised of poorly sorted fine to coarse grain sized materials and are generally found in lateral moraines which were deposited by advancing glaciers along the sides of the valleys. The outwash deposits are clean, well sorted sands and gravels found generally throughout the valley floor, having been deposited by streams originating from the melting glaciers during glacier retreats. The lacustrine deposits are comprised of silts and clays deposited in lakes formed during the temporary halts in advancements or retreats of the glaciers and are locally known as the Lake Albany Deposits.

The glacial deposits are reportedly up to three hundred and fifty feet thick in some areas. All of the glacial deposits are discontinuous laterally and vary in thickness throughout, thereby producing a

complex geologic and hydrogeologic setting.

The regional hydrogeologic feature controlling this area is the Hudson River, which is located between three and four miles east of the site.

2.3 SITE SOILS & HYDROGEOLOGY

Borings advanced on site encountered two to ten feet of ash and cinder fill over natural soil. The fill contained wood, brick, cinder blocks, asphalt and metal debris in sand, silt, cinders and ash. Natural soil underlying the fill and debris consists of approximately ten feet of silty sand, with 30 feet of clayey silt below the silty sand. Depth to bedrock is unknown.

The Patroon Creek flows easterly and passes the site approximately 200 feet to the south. This feature exerts local hydrologic control over the site's groundwater flow direction, with groundwater flowing to the south toward the Patroon Creek.

The New York State Bedrock Geologic Map indicates that the site is underlain with the Ordovician Normanskill Formation, which has a relatively low permeability resulting in significantly lower water production rates than those associated with the glacial deposits. Permeability within the bedrock is directly related to the extent of fracturing and joints within the rock. Moderate levels of groundwater production may occur in portions of the bedrock where jointing and fracturing are significant, as random beds of limestone within the bedrock have been known to yield significant quantities of water. The extent of bedrock joints and fracturing beneath the Vatrano Road site has not been determined.

2.4 MONITORING WELL NETWORK

There are nine groundwater-monitoring wells associated with the Vatrano Road site monitoring network. Wells MW-6, MW-7 and MW-8 are located off-site just to the north of Patroon Creek.

The remaining wells (MW- 1 through MW-5 and MW-9) are located on the site. During the remediation of the site conducted in October through December of 1997, the six on-site groundwater monitoring wells (MW-1 through MW-5 and MW-9) were removed and replaced with six new wells. As discussed in the Introduction (Section 1.0), monitoring well MW-1 was again replaced in 2006 due to damage that ultimately resulted in the destruction of the previous MW-1. The location of the new monitoring MW-1 is approximately 6 feet northeast of the prior monitoring well MW-1.

The current locations of the wells are illustrated by Figure 2. The new wells were installed in similar locations and to similar depths as the original wells; however, some changes were made based on contamination levels discovered during the remediation. Well data and groundwater elevations from the last thirteen (13) monitoring events (April 1998, October 1998, April 1999, October 1999, April 2000, March 2001, March 2002, March 2003, April 2004, April 2005, April 2006, April 2007 and April 2008) are presented in Table 1.

2.5 SITE GROUNDWATER FLOW AND AQUIFER CHARACTERISTICS

Based on the latest water level measurements, groundwater flow is determined to be to the south towards Patroon Creek. The hydraulic gradient across the northern portion of the site for the April 2008 monitoring event was observed to be generally consistent with previous monitoring events, and groundwater follows the expected direction that the topography suggests toward Patroon Creek.

The gradient across the site was calculated to be 0.04 feet per foot; however, it should be noted that a steeper gradient is apparent in the southeastern portion of the site (Figure 3). These results are generally consistent with historical data. Typically, water level data obtained during previous monitoring events indicate that the gradient at the southern end of the site is generally steeper than that of the northern portion, thus reflecting the influence of Patroon Creek and the local topography.

These data indicate that the shallow overburden aquifer likely discharges to Patroon Creek. Figure 3 shows the groundwater contours based on the water levels measured on April 15, 2008 in the wells

installed within the shallow aquifer. Well MW-9 is installed deeper in the aquifer; therefore, the water levels from monitoring well MW-9 were not used in developing the groundwater contour map.

When compared to adjacent monitoring wells that are installed in the shallow aquifer, historical water level data from MW-9 has typically indicated a vertically downward component of flow. Although soil boring data at the time monitoring well MW-9 was installed did not necessarily indicate the presence of a confining layer, the difference in water level could be evidence that the water bearing zone or aquifer monitored by MW-9 is confined.

2.6 PRE-REMEDIATION GROUNDWATER SAMPLING

Two partial rounds of groundwater sampling were conducted by CHA during the summer of 1997 prior to the start of remediation. During a July 8, 1997 sampling event, groundwater-monitoring wells MW-2, MW-3 and MW-9 were sampled. These wells are located in an area where previous investigations indicated the presence of tetrachloroethene. The wells were analyzed for purgeable halocarbons by EPA Method 601, as well as for polychlorinated biphenyls (PCBs) by EPA Method 8080.

On July 10 and 11, 1997 groundwater samples were collected from monitoring wells MW-2, MW-7, MW-8 and MW-9. In addition, surface water samples from Patroon Creek were collected upstream and downstream of the site (Sample Numbers SW-1 and SW-2, respectively). The samples were analyzed for PCBs via EPA method 8080, volatile organics via EPA Method 624, and semi-volatile organics via EPA method 625. The PCB analyses performed on the samples were completed on both unfiltered and filtered duplicate samples (0.45 micron glass) to determine if PCBs were present in the dissolved state or if they were associated with the sediment in the sample. The results of the filtered versus unfiltered data clearly showed that the PCBs were not dissolved in the groundwater. The only organic compound detected during this event was tetrachloroethene at 20 ppb in the sample from well MW-2. Table 2 summarizes the results of all groundwater sampling rounds.

2.7 POST-REMEDIATION GROUNDWATER QUALITY CHARACTERIZATION

In April of 1998, a qualified Clough Harbour Scientist sampled the six on-site and three off-site wells for the purpose of establishing baseline post-remediation groundwater quality. The samples from this post-remediation sampling event were analyzed for the U.S. EPA Target Compound List of chemicals including total cyanide. Again, Table 2 includes the summary of results for this sampling event. The results of this baseline post-remediation sampling event are discussed in the December, 1998 Operations, Maintenance, and Monitoring Plan.

3.0 APRIL 2008 SAMPLING EVENT

On April 15 and 16, 2008, a team of qualified CHA scientists measured groundwater levels and collected groundwater samples from all nine groundwater monitoring wells. The procedures used as well as the current site conditions are described in the following sections.

3.1 CURRENT SITE CONDITIONS

Prior to collecting groundwater samples, an overall site inspection was completed. Photographs taken during this site inspection are included as Appendix A.

Access to monitoring wells MW-5, MW-4, MW-3, MW-2 and MW-9 is gained through a gate located at the extreme eastern end of the Vatrano Road Complex of buildings. Debris was noted during the 2004 and 2005 monitoring events to be in the right-of-way to the wells behind the gate discussed above; however, this pile of debris was removed prior to the time of the April 2006 sampling event. This area remained debris-free at the time of the April 2008 sampling event.

At the time of the April 2006 sampling event, the access gate was observed to have been damaged. The bottom left section of the gate had the mesh fencing removed from it and the frame section on the bottom right section was bent. The gate was observed to be in the same condition and was found to be opened and unlocked during the April 2008 sampling event. A picture of the damaged gate is included as Photograph 1 in Appendix A.

The parking area between Buildings 14 and 16 is paved with asphalt with the surface in good condition. The flush-mount monitoring well MW-1 is located at the northern corner of this area. The well is located approximately 6 feet northeast of the former (above ground) MW-1 and is approximately 44 feet from the northeast corner of building #14. The cover to the well is constructed of steel and is attached to the ground for the protection of the well below. A picture of this area and the location of MW-1 is included as Photograph 2 in Appendix A.

There is a six foot high chain link fence that runs from the southeast corner of Building 14 to the southwest corner of Building 16. During previous sampling events, the fence has been observed in various stages of disrepair. However, during the 2007 sampling event, the fence was found to be intact and secure. This fence can be observed in Photograph 5 of Appendix A.

All on-site monitoring wells were in good condition and were locked at the time of this sampling event. Photographs of the site's monitoring wells are included as Photographs 3 through 8 in Appendix A.

The unpaved area located south of Buildings 14 and 16 was generally in good condition. There was no evidence of significant erosion noted at the time of this sampling event.

3.2 PROCEDURES

A photoioniozation detector (PID) was utilized to check the headspace of each well for organic vapors immediately upon opening each well cap. Readings of 0.0 ppm was registered on the PID meter after testing each of the nine wells in the monitoring network for the site. Therefore, no organic vapors were detected in any of the monitoring wells. The observed organic vapor levels are recorded on the Groundwater Well Field Sampling Summary (Table B.1) included as Appendix B.

Prior to sampling, the water level in each well was measured to the nearest one hundredth of a foot using an electronic water level meter. The water level meter was thoroughly decontaminated between monitoring wells using accepted protocols. A summary of the elevations of the groundwater in each of the monitoring wells is included as Table 1. This data was used to develop the groundwater piezometric map presented as Figure 3.

As previously recommended by CHA and utilized since the 2005 monitoring event, sampling during the April 2008 event was conducted by utilizing an accepted Low-Flow Purging and Sampling Method. Dedicated 3/8-inch High Density Polyethylene (HDPE) tubing was installed in each well

during the April 2005 sampling event and utilized for the purposes of purging and sampling during monitoring events. The use of dedicated tubing in each well reduces the potential for cross contamination. Purge water from the on-site wells was placed in a properly labeled drum and was removed for proper disposal by Clean Harbors Environmental Services, Inc. of Glenmont, New York. A copy of the manifest for the disposal of the purge water is included as Appendix C. A photograph of the drum containing the purged water from the wells is included as Photograph 9 in Appendix A.

Water was extracted from each well at a rate ranging from 150 to 250 ml/min via the installed dedicated tubing utilizing a combination of a submersible pump and a low-flow controller. As water was extracted from each well, field parameters including turbidity, temperature, pH, conductivity and Eh were obtained and recorded at five-minute time intervals. These parameters were recorded on field sampling logs and are summarized in Table B.1, included as Appendix B. When each well achieved three consecutive sets of field parameter readings within accepted Low-Flow Sampling Standards, water samples were collected. For QA/QC purposes, a blind duplicate sample (MW-10) and a trip blank were submitted for analysis. The duplicate sample was collected from monitoring well MW-5.

The use of the Low-Flow Purging and Sampling Method was successful as demonstrated by the fact that the turbidity levels for all of the monitoring wells at the time of sampling was below 50 NTUs and, therefore, no field filtering was necessary.

The samples were labeled, stored in a cooler with ice to maintain proper temperature, and delivered to Adirondack Environmental Services of Albany, NY with the appropriate chain of custody documents. A copy of the Chain of Custody is included as Appendix E.

3.3 LABORATORY ANALYSIS AND QUALITY CONTROL

Each groundwater sample was analyzed for the presence of volatile organics via EPA Method 8260,

PCBs via EPA Method 608, lead via EPA Method 200.7, and mercury via EPA Method 245.1.

Analytical procedures were performed by Adirondack Environmental Services of Albany, NY, which holds current NYSDEC certifications to perform the required analyses as per the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP). All analytical QA/QC and laboratory procedures were consistent with EPA SW-846.

3.4 LABORATORY ANALYSIS DISCUSSION

3.4.1 Groundwater Data

A summary of the groundwater quality data (detected parameters only) is presented in Table 2, where it is compared to data generated from previous monitoring events and to applicable standards. Shaded values indicate a concentration greater than the New York State Groundwater Standards (6NYCRR 703). The complete data package and chain of custody information from the April 2008 sampling event are included as Appendix D and Appendix E, respectively.

As illustrated by Table 2, PCBs were detected in samples from wells MW-2 and MW-9 during the 2008 sampling event. The total PCB concentration in both wells was above the groundwater standard guidance value. PCBs have been consistently detected in MW-2. Although concentrations in MW-2 increased slightly from the previous monitoring event in 2007, concentrations in this well have decreased since monitoring began in 1991. This is the second consecutive monitoring event that PCBs were detected in MW-9 since monitoring began in 1991. However, total PCB concentrations measured during this monitoring event were lower than those measured during the 2007 monitoring event.

Consistent with results from the April 2007 monitoring event, total lead or mercury was not detected in any of the monitoring wells during this sampling event. These metals have not been detected in samples since the April 2004 sampling event, in which the detected levels of lead were below the groundwater standard guidance value of 25 μ g/L in all wells detected. In addition, filtered

groundwater samples have generally not been collected as the turbidity levels have been less than 50 NTU during sample collection. No samples required filtering or dissolved metals analysis during this monitoring event.

In general, a decreasing trend has been noted relative to the concentration of lead since post-remediation sampling was first initiated in October 1998. It should also be noted that lead has not been detected in MW-5 or MW-6 since March 2001. Total and dissolved mercury have not been detected in samples from any of the monitoring wells since October 1999.

Relative to current and historical VOC levels on-site, MW-2 continues to be the monitoring well most impacted by VOCs. During the April 2008 sampling event, concentrations of trichloroethene (51 μ g/L), 1,2-dichloroethene (130 μ g/L) and tetrachloroethene (180 μ g/L) were detected in the sample collected from this well. The detected levels exceed the established NYSDEC standards of 5 μ g/L for each of these parameters.

Of note is the detection of vinyl chloride (33 μ g/L) in monitoring well MW-2. This is the first time that vinyl chloride has been detected at the site. The detected concentration of vinyl chloride in MW-2 exceeds the established NYSDEC standard of 2 μ g/L for this compound. However, it is noted that vinyl chloride is a break-down product of tetrachloroethene, trichloroethene, and 1,2-dichloroethene. This detection suggests that natural degradation may be occurring at the site. This will continue to be evaluated during future monitoring events.

1,2-Dichloroethene was detected in the sample from monitoring well MW-7. The detected level was 5.5 μ g/L. This value has decreased relative to the April 2007 monitoring event, and was within the range of previously detected concentrations in this well. The current concentration of 1,2-dichloroethene was slightly above the groundwater standard guidance value of 5.0 μ g/L.

PCBs were not detected in any of the off-site wells (MW-6, MW-7, and MW-8) during the 2008 monitoring event. PCBs were detected in the monitoring well MW-6 sample during the April 2005

monitoring event. This result is thought to be an anomaly as no other concentrations of PCBs have been detected in this well.

PCBs were detected for the first time in well MW-9 during the 2007 monitoring event. While it was thought that this detection may have been an anomaly, PCBs were again detected during the 2008 monitoring event. However, concentrations were significantly lower. PCB concentrations in MW-9 will continue to be monitored for any increasing trend.

It is noted that a number of samples contained estimated concentrations of methylene chloride and acetone, both of which are common laboratory contaminants. A review of QA/QC data indicates that these compounds were also detected in the associated trip blanks. As such, these detections are considered to be an artifact of laboratory contamination and do not represent real detections.

3.4.2 QA/QC Data

A review of the available QA/QC data indicates that the quality of the analytical results is acceptable. The laboratory data package did not contain any qualified data including estimated (J values) or rejected (R values) data. The only QA/QC issues identified are those associated with the detections of methylene chloride and acetone in the trip blanks and some associated samples, as discussed in Section 3.4.1.

The results from the primary sample collected from monitoring well MW-5 are consistent with the field duplicate (sample MW-10). No parameters were detected in either of these samples.

4.0 SUMMARY

The site was observed to be in overall good condition during the sampling event with the exception of the damaged access gate on the eastern end of site, which has missing fencing on the lower left hand side of the gate (see Photo Log). Previously reported debris piles were not present. The flushmount replacement of monitoring well MW-1 was found to have been undisturbed, and the remaining monitoring wells associated with the site were locked and were not damaged at the time of the April 2008 monitoring event.

During the April 2008 sampling event, samples were collected utilizing a low flow procedure. At the time of sampling, turbidity levels were all less than 50 NTU and field filtering of samples was not required. All of the collected samples were analyzed as totals, and no dissolved analyses were performed.

The laboratory results for the groundwater samples collected from the monitoring well network associated with the site in April 2008 indicate that PCBs were detected in two of the nine monitoring wells (MW-2 and MW-9). In samples from MW-2, PCB concentrations were below the groundwater standards during the April 2007 monitoring round. The results of the April 2008 sampling show that the detected level of PCBs increased to a value which was above the standard. However, PCB concentrations in this well have steadily decreased since 2003.

PCBs were not detected in the sample from MW-5 or its duplicate sample (MW-10). In April 2007, PCBs were detected in MW-5 at levels above the standard, but none were detected in the duplicate sample. Historically, concentrations of PCBs have been detected in MW-5 at levels considerably greater than the standard.

PCBs were detected for the second consecutive monitoring event in MW-9. PCBs were first detected in this well during the April 2007 monitoring event and at that time, the detection was thought to have been an anomaly since PCBs had not been previously detected in this well. PCBs

were detected at concentrations exceeding ground water standards during both the April 2007 and April 2008 sampling events. However, PCB concentrations decreased from the April 2007 to the April 2008 event.

The VOC levels detected in the groundwater samples in well MW-2 during the April 2008 sampling event exhibited an increase relative to the levels detected during the April 2007 event. However, VOC concentrations in this well have generally decreased or remained stable since monitoring began.

Trichloroethene and tetrachloroethene continue to be detected at concentrations in exceedance of groundwater standards in MW-2. Detected levels of these compounds have increased from those encountered during the April 2007 monitoring event, but remain with in the historical ranges for these compounds. No other wells contained a presence of these VOCs.

Vinyl chloride was detected for the first time at the Site. It was detected in monitoring well MW-2 and was found to be at a level which exceeds the established NYSDEC standard for this compound. Since vinyl chloride is a break-down product of tetrachloroethene, trichloroethene, and 1,2-dichloroethene, its detection indicates that natural degradation may be occurring.

Chlorobenzene, mercury and lead were not detected above the method detection limits in any of the nine monitoring wells during the April 2008 monitoring event.

As stated in Section 3.4.1, PCBs were not detected in any of the off-site wells (MW-6, MW-7, and MW-8) during the April 2008 monitoring event.

A majority of samples contained estimated concentrations of methylene chloride and acetone. These compounds were also detected in the associated trip blanks. Since both of these compounds are common laboratory contaminants, these detections are considered to be an artifact of laboratory contamination and do not represent real detections in the corresponding monitoring well samples.

5.0 RECOMMENDATIONS

The March 2003 Annual Monitoring event was scheduled to be the third, and final, of three annual monitoring events for the site as specified in the March 1998 Post-closure Monitoring and Maintenance Operations Manual. However, due to levels of PCBs and VOCs detected in the monitoring wells during the 2003 sampling event, CHA recommended that the annual monitoring program continue for an additional year so that any increase or decrease in PCB and VOC concentrations could be observed. However, during each event since 2003, a limited number of the parameters of concern have exceeded applicable groundwater standards.

As a result of the continued detection of VOCs and PCBs above the groundwater standards, the annual monitoring program has been continually extended for an additional year after each subsequent monitoring event. In an overall review of the historical data, levels of parameters analyzed have either stabilized or are generally decreasing over time, and many parameters are present at levels that are less than the method detection limits. However, as with the 2007 monitoring data, the 2008 monitoring results continue to indicate PCB and VOC levels with some concentrations remaining above standards. As a result, CHA recommends that an additional round of sampling be performed in 2009, particularly given the detection of vinyl chloride for the first time. If the 2009 data is consistent with the 2008 data, CHA recommends that the NYSDEC be petitioned for permission to discontinue the monitoring program.

Since the presence of mercury was last detected at the site in October 1999 and lead was last detected in April 2004, CHA recommends, with approval from the NYSDEC, that the analysis for these two compounds be discontinued.

CHA also recommends that low-flow sampling procedures continue to be utilized in sample collection because turbidity levels in the samples collected for analyses have been below 50 NTU (with the exception of MW-6 during the 2007 sampling event) and the field filtration of samples has not been necessary.

FIGURES

TABLES

TABLE 1

GROUNDWATER MONITORING WELL DATA & WATER ELEVATIONS

2008 Annual Monitoring Report Vatrano Road Albany, NY

WELL#	Ground Elevation (ft MSL)	Elevation of Screened interval (ft MSL)	4/13/1998 Water Elev. (ft MSL.)	16/26/1998 Water Elev. (ft MSL)	4/7/1999 Water Eley. (ft MSL)	10/25/1999 Water Elev. (ft MSL)	4/5/2000 Water Elev. (ft MSL)	3/23/2901 Water Elev. (ft MSL)	3/21/2002 Water Elev. (ft M\$L.)	3/19/2003 Water Elev. (ft MSL)	4/27/2004 Water Elev. (ft MSL)	4/4/2005 Water Elev. (ft MSL)	4/27/2006 Water Elev. (ft MSL)	4/25/2007 Water Elev. (ft MSL)	4/15/2008 Water Elev. (ft MSL)
MW-1	215.23	200.23-210.23	210.21	209.17	210.15	210.00	213.47	210.71	209.81	210.54	210.53	NA	210.89	211.48	211.05
MW-2	216.20	198.70-208.70	207.91	206.87	207.98	208.10	208.45	208.73	207.47	208.23	208.58	209.51	205.98	206.80	208.45
MW-3	215.53	198.03-208 03	207.85	206.57	207.93	208.00	208.35	208.61	207.36	208.12	208.45	209.22	206.31	206.73	208.35
MW-4	214.58	198.08-208.08	207.79	206.82	207.86	207.93	208.24	208.54	207.26	208.07	208.37	209.31	205 94	207.08	208.24
MW-5	214.54	197.54-207.54	207.64	206.78	207.72	207.79	208.10	208.46	207.20	207.90	208.20	209.18	205 99	206.97	208.10
MW-6	201.86	186.86-196.86	200.22	198.43	200.77	200.38	200.98	201.15	198.72	201.28	201.18	200.33	198.56	199.21	200.98
MW-7	204.03	189.03-199.03	201.56	200.86	201.14	202 15	202.96	202.81	202.50	202.81	202.78	203 00	201.08	201.33	202.96
MW-8	206.29	191.29-201.29	202.61	201.89	202.63	202.69	203.61	203.44	204.77	203.44	203.38	203.65	201.43	202.36	203.61
MW-9	215.95	164.95-169.95	205.08	204.48	205.14	205.08	205.60	205.39	204.67	205.20	205.48	205.78	204.11	204.55	205 60

Note: On 3/20/06, the existing, damaged MW-1 was abandoned and replaced with a flush mount well.

TABLE 2

GROUNDWATER ANALYSIS SUMMARY TABLE 2008 Annual Monitoring Report

Vatrano Road Albany, NY

					NY					
Parameter (ug/i) [*] Date Sampled	MW-1	MW-2	MW-3	MW-4	WELL MW-5	MW-6	MW-7	8-WM	MW-9	MW-10
Total PCB's (9.99)								_	_	•
Aug-91 Jul-97	ND NA	5.180 3.190	1,200	ND NA	ND NA	ND NA	ND ND	ND ND	ND ND	ND ND
Apr-98	ND	0.383	ND	ND	17.000	ND	ND ND	ND ND	ND ND	ND ND
Oct-98 Apr-99	ND ND	0.3J	ND ND	ND ND	1.200 4.800	ND ND	ND ND	ND	ND	ND
Oct-99 Apr-00	ND ND	0.850	ND ND	ND ND	2.000 9.570	ND ND	ND ND	ND ND	ND ND	ND ND
Mar-01 Mar-02	ND ND	1.011	ND ND	ND ND	9.720	ND ND	ND ND	ND ND	ND ND	ND 0.220
Mar-03	ND	1.820	_ ND	ND	6.270	ND ND	ND ND	ND ND	ND ND	10.30
Apr-04 Apr-05	ND NA	0.910 0.530E	ND _	ND ND	12.300 0.138E	0.103	ND	ND	ND	0.088
Apr-06 Apr-07	ND ND	9.341 0.066	ND ND	ND ND	ND 2.68	ND ND	ND ND	ND ND	ND 0.561	0.071 ND
Apr-08	ND	0,526	ND	ND	ND	ND	ND	ND	0,152	ND
Trichioroethene [5] Aug-91	ND	24	ND	ND	ND	ND	ND	ND	ND	ND
Jul-97 Apr-98	NA ND	ND 23	ND ND	NA ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND
Oct-98 Apr-99	ND ND	80 47	ND ND	ND ND	ND ND	ND ND	3	ND ON	ND ND	ND ND
Oct-99	ND	36	ND	ND	ND	ND	2J_	ND	ND	ND
Apr-00 Mar-01	ND ND	17	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Mar-02 Mar-03	ND ND	37 20	ND ND	ND ND	ND ND	ND ND	ND DD	ND ND	ND ND	ND ND
Apr-04 Apr-05	ND NA	37	ND ND	ND ND	ND ND	ND ND	ND D	ND DA	ND ND	ND ND
Apr-06 Apr-07	ND ND	23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Apr-08	ND	51	ND	ND	ND	ND	ND _	ND	ND	ND
Tetrachloroethene [5]	, AID	84	ND	ND	ND	ND	ND	ND I	ND	NIC
Aug-91 Jul-97	ND NA	20	ND ND	ND NA	ND NA	NA	ND ND	ND	ND	ND ND
Apr-98 Oct-98	ND ND	270 460	ND ND	ND ND	ND ND	ND ND	ND 3J	ND ND	ND ND	ND ND
Apr-99 Oct-99	ND ND	160 150	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND DN	ND ND
Apr-00	ND ND	120	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Mar-01 Mar-02	ND	220	ND	ND	ND	ND	5 ND	ND	ND	ND
Mar-03 Apr-04	ND ND	160	ND ND	ND ND	ND ND	ND ND	6.2 5.3	ND ND	ND ND	ND ND
Apr-05 Apr-06	NA ND	160 170	DN QN	ND ND	ND ND	200	ND ON	ND DN	ND ND	ND ND
Apr-07 Apr-08	ND ND	120 180	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
1,2 Dichloroethene [5]										
Aug-91	ND	74	4J	. 7	ND	ND	2J	ND	ND	ND
Jul-97 Apr-98	NA ND	ND 78	ND ND	NA ND	NA ND	NA ND	ND ND	ND ND	ND	ND ND
Oct-98 Apr-99	ND ND	350 230	4J ND	10 7	ND ND	ND ND	4J 5	ND ND	ND ND	12
Oct-99 Apr-00	ND ND	130 73	5 ND	8 5.1	ND ND	ND ND	5 6	ND ND	ND ND	9 5.3
Mar-01 Mar-02	ND ND	57 180	9 ND	5 ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Mar-03	ND	62	7.5	ND	ND	ND	11	ND	ND	ND
Apr-04 Apr-05	ND NA	129 63	9.5 ND	9.1 5.4	ND	ND ND	12 6.3	ND ND	ND ND	ND ND
Apr-06 Apr-07	ND ND	ND 64	ND ND	5.3 ND	ND ND	ND ND	5.6 6.6	ND ND	ND ND	ND ND
Apr-08	ND	130	ND	ND	ND	ND	5.5	ND	ND	ND
Chlorobenzene [5] Aug-91	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Jul-97	NA NA	ND ND	ND	NA	NA NA	NA NA	ND	ND	ND	ND
Apr-98 Oct-98	ND ND	ND ND	ND ND	ND 4J	ND ND	ND ND	ND ND	ND ND	ND ND	ND 43
Apr-99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Oct-99 Apr-00	ND ND	2J ND	ND ND	2J ND	ND ND	ND ND	ND ND	ND ND	ND ND	3J ND
Mar-01 Mar-02	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Mar-03 Apr-04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Apr-05	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Apr-06 Apr-07	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Apr-08	ND	ND	ND	ND	ND	ND [ND	ND	ND	ND
Tatal Mercury [0.7] Aug-91	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-97 Apr-98	NA 4.8	NA ND	NA 5.5	NA ND	NA ND	NA ND	NA ND	NA ND	NA 3.7	NA ND
Oct-98	ND ND	ND	ND	1.0	ND 0.20	ND 0.32	ND ND	ND ND	ND 0.33	ND ND
		KII'	0.32			₩.34	IND		0.33	0.20
Apr-99 Oct-99	0.20	0.19B	0.33 0.16B	0.28 0.09B	0.18B	0.19B	0.17B	0.17B		
Apr-99 Oct-99 Apr-00 Mar-01	0.20 ND ND	0.19B ND ND	ND ND	ND ND	0.18B ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03	0.20 ND	0.19B ND	0.16B ND ND ND ND	ND ND ND ND ND	0.18B ND	0.19B ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04	0.20 ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	0.18B ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06	0.20 ND ND ND ND ND ND ND	O.19B ND ND ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND ND ND ND	0.18B ND	ND N	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05	0.20 ND ND ND ND ND ND	0.19B ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND	0.18B ND ND ND ND ND	0.19B ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [25]	0.20 ND ND ND ND ND ND ND NA ND NA	0.19B ND ND ND ND ND ND ND ND ND ND	ND N	O.09B ND	O.18B ND	0.19B ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [26] Aug-91 Jul-97	0.20 ND ND ND ND ND ND ND	0.19B ND	ND N	O.09B ND	0.18B ND ND ND ND ND ND ND ND	O.19B ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [26] Aug-91 Jul-97 Apr-98	0.20 ND ND ND ND ND ND ND NA ND ND NA	0.19B ND	O.16B ND	0.09B ND	O.18B ND	O.19B ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [26] Aug-91 Jul-97 Apr-98 Oct-98 Apr-99	0.20 ND	0.19B ND	0.16B ND	0.09B ND	0.18B ND	0.19B ND	ND N	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [26] Aug-91 Jul-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00	0.20 ND	0.19B ND	0.16B ND	0.098 ND	0.18B ND	0.19B ND	ND N	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [26] Aug-91 Jul-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00 Mar-01 Mar-02	0.20 ND	0.19B ND	0.16B ND	0.09B ND	0.18B ND	0.19B ND	ND N	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [26] Aug-91 Jul-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00 Mar-01	0.20 ND	0.19B ND	0.16B ND	0.09B ND	0.18B ND	0.19B ND	ND N	ND N	ND N	ND N
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [25] Aug-91 Jul-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05	0.20 ND	0.19B ND	0.16B ND	0.098 ND	0.18B ND	0.19B ND	ND N	ND N	ND N	ND N
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [25] Aug-91 Jul-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-06 Apr-06 Apr-06	0.20 ND	0.19B ND	0.16B ND	0.098 ND	0.18B ND	0.19B ND	ND N	ND N	ND N	ND N
Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06 Apr-07 Apr-08 Total Lead [26] Aug-91 Jul-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00 Mar-01 Mar-02 Mar-03 Apr-04 Apr-05 Apr-06	0.20 ND	0.19B ND	0.16B ND	0.098 ND	0.18B ND	0.19B ND	ND N	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N

[*] Groundwater Standard Guidance Value Shaded Values Are Above The Standard

B= Less Than Contract Detection Limits

ND= Below Detection Limits NA: Not Analyzed J=Semi-qualitative value, Conc. Below CRQCL

D= Filtered sample was non-detect for lead ** Field Duplicate Sample

E= Filtered sample was non-detect for PCBs

APPENDIX A SITE PHOTOGRAPHS

Photograph 1. Damaged access gate on east end of site with missing fencing on the lower left hand side of the gate.

Photograph 2. Flush-mount MW-1 located at northwestern corner of the paved parking area between Buildings 14 and 16.

Photograph 3. Monitoring Wells #2 and #9 located at the west end of the site, north of the rail road tracks.

Photograph 4. Monitoring Well #3 located at the west end of the site, north of the rail road tracks.

Photograph 5. Monitoring Wells #4 and #5 located at the east end of the site, north of the rail road tracks.

Photograph 6. Monitoring Well #6 located at the east end of the site, south of the rail road tracks.

Photograph 7. Monitoring Well #7 located in the center of the site, south side of the rail road tracks.

Photograph 8. Monitoring Well #8 located at the west end of the site, south side of the rail road tracks.

Photograph 9. Labeled drum for purged monitoring well water.

APPENDIX B GROUNDWATER WELL FIELD SAMPLING SUMMARY

TABLE B.1

GROUNDWATER WELL FIELD SAMPLING SUMMARY APRIL 2008 - ANNUAL MONITORING EVENT HISTORIC VATRANO ROAD SERVICE CENTER ALBANY, NEW YORK

Well I.D.	Date	Purge Rate (ml/min)	Purge Amount (Minutes)	Time Elapsed (Minutes)	Temperature (°C)	рН	Conductivity (µ\$/cm)	ORP/EH (MV)	Turbidity (NTU)	Water Quality
MW-1	15-Apr-08	150 - 200	60	0.00	10.23	6.88 6.49	971 993	16.1 28.6	1000 1000	
				5.00 10.00	10.1 10.13	6.31	1017	40.9	879	
				15.00	10.28	6.25	1035	38.9	498	0.0 PPM Head Space.
				20.00	10.55	6.25	1048	34.9	398	Water was turbid, cloudy orange in color at beginning of
				25.00 30.00	10.67 10.81	6.25 6.28	1057 1058	34.7 32.9	237 183	purging, then slowly cleared during purging. Water had no odor, no sheen and no effervescence.
				35.00	10.88	6.25	1060	34.8	116	Turbidity after sampling was 18.3 NTU's.
				40.00	11.15	6.27	1064	34.8	104	to the sampling that to the sampling that to the sampling that to the sampling that the sampling the sampling that the s
				45.00	11.29	6.27	1060	35.2	72.5	
				50.00 55.00	10.91 10.68	6.28 6.27	1065 1065	35.6 37.1	53.9 42. 2	
				60.00	10.7	6.25	1061	37.9	24.6	
MW-2	16-Apr-08	200	30	0.00 5.00	12.51 12.38	7.02 6.82	753 765	75.5 80.6	129 73.3	0.0 PPM Head Space.
				10.00	12.03	6.74	799	85.5	34.2	Water was slightly turbid, slightly tan/pale in color at beginning
				15.00	11.83	6.7	807	91	19.4	of purging, then slowly cleared during purging.
				20.00	12.18	6.68	802	91.3	12.3	Water had no odor, no sheen and no effervescence.
				25.00 30.00	12.03 11.8	6.68 6.66	799 797	89 89.4	7.88 5. 5 4	Turbidity after sampling was 2.44 NTU's.
MW-3	16-Apr-08	150 - 200	40	0.00	9.94	6.77	702	45.0	536	
				5.00 10.00	10.17 10.06	6.77 6.71	693 615	31.4 28.7	510 442	0.0 PPM Head Space.
				15.00	9.95	6.69	554	29.5	308	Water was turbid and cloudy with a rusty orange tint at beginnin
				20.00	9.83	6.67	507	29.7	154	of purging, then slowly cleared during purging.
				25.00	9.65	6.63	497	33.8	75.2	Water had no odor, no sheen and no effervescence.
				30.00 35.00	9.56 9.66	6.63 6.60	490 484	36.8 42.1	38.7 24.2	Turbidity after sampling was 9.78 NTU's.
				40.00	9.61	6.61	481	42.3	18.3	
	16-Apr-08	150 - 200	40	0.00	12.77	6.99	643	57.30	115	
1111	TO Apr 00	100 - 200	40	5.00	13.13	6.82	652	54.80	100	
				10.00	13.02	6.75	714	51.70	72.3	0.0 PPM Head Space.
				15.00	12.76	6.58	808	52.60	33.6	Water was slightly turbid and slightly and slightly orange/yellow
				20.00	12.57	6.51	851	56.00	16.6	color at beginning of purging, then slowly cleared during purging
				25.00	12.51 13.16	6.44 6.41	892	54.00	9.48	Water had no odor, no sheen and no effervescence.
				30.00 35.00	13.27	6.41	913 919	55.20 55.70	7.3 7 6.31	Turbidity after sampling was 2.79 NTU's.
				40.00	13.31	6.41	920	56.00	5.32	
MW-5	16-Apr-08	200 - 250	30	0.00 5.00	13.7 13.46	7.1 6.8	896 896	53.2 68.5	29.7 17.4	0.0 PPM Head Space.
				10.00	13.28	6.67	897	70.4	12.1	Water was relatively clear and colorless with some black
				15.00	13.23	6.6	897	70.3	5.95	suspended particles.
				20.00	13.22	6.57	895	70.8	3.7	Water had no odor, no sheen and no effervescence.
				25.00 30.00	13.2 13.08	6.55 6.53	894 892	72.8 72.3	3.14 2.42	Turbidity after sampling was 0.87 NTU's. Duplicate sample MW-10 was collected from this well.
MW-6	15-Apr-08	200	35	0.00 5.00	9.56 9.84	6.54 6.33	810 807	25.4	624 356	
				10.00	9.93	6.33	812	-14.5	220	0.0 PPM Head Space.
				15.00	10.03	6.33	814	-22.6	145	Water was turbid and cloudy orange in color at beginning of
				20.00	10.12	6.33	814	-28	101	purging, then slowly cleared during purging.
				25.00	10.39	6.34	815	-34.1	70.7	Water had no odor, no sheen and no effervescence.
				30.00 35.00	10.43 10.38	6.35 6.35	816 818	-38.5 -41.7	46.3 35.00	Turbidity after sampling was 36.2 NTU's.
MW-7	15-Apr-08	150	50	0.00	10.68	6.75	581	25.1	>1000	
	,			5.00	10.78	6.43	581	42.4	315	
				10.00	10.78	6.37	583	54.5	119	0.0 0004144 0
				15.00 20.00	10.86 10.99	6.35 6.35	581 581	60.5 65	66 47.5	0.0 PPM Head Space. Water was very turbid and cloudy dull orange in color with many
				25.00	10.8	6.35	580	66.7	124	large orange particles at beginning of purging.
				30.00	10.9	6.32	591	70.9	96.8	Water cleared during purging.
				35.00	10.97	6.32	592	72.4	44.8	Water had no odor, no sheen and no effervescence.
				40.00 45.00	11.00 11.05	6.31 6.31	593 596	74.00 75.9	32.3 22.3	Turbidity after sampling was 36.2 NTU's.
1414.0	45.400	4.00		50.00	10.99	6.3	599	77.1	15.4	
MW-8	15-Apr-08	150	45	0.00 5.00	9.2 9.64	7.22 6.97	613 614	47.3 47.7	116 111	
				10.00	9.68	6.86	617	46.3	103	
				15.00	9.73	6.84 6.78	621 635	45.9 46.9	88.5 76.2	0.0 PPM Head Space. Water was slightly turbid and cloudy dark brown in color with all
				20.00 25.00	9.85 9.97	6.78 6.75	635 657	46.9 48.0	76.2 56.9	Water was slightly turbid and cloudy dark brown in color with silt at beginning of purging, then slowly cleared during purging.
				30.00	10.08	6.80	673	44.7	44.6	Water had no odor, no sheen and no effervescence.
				35.00	9.98	6.74	694	45.6	34.5	Turbidity after sampling was 14.2 NTU's.
				40.00 45.00	10.51 10.67	6.71 6.72	697 709	45.4 44.0	28.2 25.5	
MW-9	16-Apr-08	150	30	0.00	12.89	7.66	332	88.1	17.8	
				5.00 10.00	12.54 12.58	7.58 7.61	336 336	91.6 93.6	15.6 15.6	0.0 PPM Headspace
				15.00	12.01	7.63	338	93.6	15.5	Water was clear and colorless with no odor, no sheen and no
				20.00	12.29	7.64	337	93.9	13.7	effervescence.
				25.00	12.49	7.68	337	93.4	12.6	Turbidity after sampling was 22.8 NTU's.
				30.00	12.07	7.80	340	89.1	17.6	

APPENDIX C PURGEWATER DISPOSAL MANIFESTS

STRAIGHT BILL OF LADING

TRANSPORTER EPA ID #	R1		4165	11 1 (vil)	- (r) (·	VEHICLE ID TRANS. 1 PH	# HONE	· · · · · · · · · · · · · · · · · · ·
TRANSPORTER EPA ID #	R 2						# HONE	
DESIGNATED				1 <u></u>	SHIPPER EPA	<u>. 10. (. 1) .</u>	1 :	s wif
ADDRESS	<u>) </u>	::	- 1		ADDRESS	<u> </u>		
				1. 1.2%			artina de la compansión d La compansión de la compa	
CITY		i	STATE	ZIP	CITY	1. \	STATE 2	ZIP
CONTAINERS NO. & SIZE		НМ		DESCRIPTIO	N OF MATERIALS		TOTAL QUANTITY	UNIT WT/VOL
1/55	014		A. 1. July 12.	1 - 1821 de - 1841 (N. 1882 de 1842 de 1844	N OF MATERIALS	in wint	150	P
			В.			,		
			C.					
			D.	<u> </u>				
			E.					
-			F.					
			G.					
			H.					
SPECIAL HAN	IDLING INS	TRUCT	IONS				,	4
14. 1 . 1	2120	· (**.)) } 		
					_			<u></u>

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

OLUBBER	PRINT	SIGN	DATE
SHIPPER	James K Hotpick III	1. 1 Proposed 111	2/2/218
	PRINT	SIGN?	DATE / /
TRANSPORTER 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	potential and a second	19-1 3
	PRINT	SIGN	DATE
TRANSPORTER 2			
	PRINT	SIGN	DATE
RECEIVED BY			

APPENDIX D GROUNDWATER LABORATORY ANALYTICAL DATA Vatrano Road Clough, Harbour & Associates LLP

Annual Monitoring Report

Experience is the solution

314 North Pearl Street • Albany, New York 12207 (800) 848-4983 • (518) 434-4546 • Fax (518) 434-0891

April 25, 2008

Robert Hall
Clough Harbour & Associates
3 Winners Circle
PO Box 5269

Albany, NY 12205-0307

TEL: (518) 453-8702

FAX: (518) 453-4773

RE: Vatrano Road

Dear Robert Hall:

Adirondack Environmental Services, Inc received 5 samples on 4/15/2008 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Tara Daniels

Laboratory Manager

ELAP#: 10709 AIHA#: 100307

Work Order No: 080415048

Project#: 7899.1000.1102

And the state of t

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 1 of 11

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Client Sample ID: MW-1

Work Order:

080415048

Collection Date: 4/15/2008

Reference:

Vatrano Road /

Lab Sample ID: 080415048-001

PO#:

Matrix: GROUNDWATER

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYL	S E608				Analyst: KF
(Prep: E608 -	4/15/2008)				•
Aroclor 1016	< 0.064	0.064	µg/L	1	4/15/2008 7:41:02 PM
Aroclor 1221	< 0.064	0.064	μg/L	1	4/15/2008 7:41:02 PM
Aroclor 1232	< 0.064	0.064	μg/L	1	4/15/2008 7:41:02 PM
Aroclor 1242	< 0.064	0.064	μg/L	1	4/15/2008 7:41:02 PM
Aroclor 1248	< 0.064	0.064	μg/L	1	4/15/2008 7:41:02 PM
Aroclor 1254	< 0.064	0.064	μg/L	1	4/15/2008 7:41:02 PM
Aroclor 1260	< 0.064	0.064	μg/L	1	4/15/2008 7:41:02 PM
CP METALS E200.7					Analyst: WB
(Prep: SW3010A -	4/16/2008)				
Lead	< 0.005	0.005	mg/L	1	4/18/2008 4:08:00 PM
MERCURY E245.1					Analyst: SM
(Prep: E245.1 -	4/16/2008)				
Mercury	< 0.0002	0.0002	mg/L	1	4/16/2008
OLATILE ORGANICS SW826	0B				Analyst: ML
Chloromethane	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Bromomethane	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Vinyl chloride	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Chloroethane	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Methylene chloride	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
Acetone	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
Chloroform	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
2-Butanone	< 10	10	μ g /L	1	4/21/2008 3:46:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	µg/L	. 1	4/21/2008 3:46:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	. 1	4/21/2008 3:46:00 PM
Bromodichloromethane	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 3;46:00 PM
Qualifiers: ND - Not Detected a	t the Reporting Limit		S - Spike Recove	ry outside acce	epted recovery limits
J - Analyte detected i	below quanititation limits		R - RPD outside	accepted recov	ery limits
B - Analyte detected	in the associated Method	Blank	T - Tentitively Id	entified Comp	ound-Estimated Conc.
X - Value exceeds M	aximum Contaminant Lev	rel	E - Value above	quantitation rai	nge Page 2 o

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080415048

Reference:

Vatrano Road /

PO#:

Project#: 7899.1000.1102

Client Sample ID: MW-1

Collection Date: 4/15/2008

Lab Sample ID: 080415048-001

Matrix: GROUNDWATER

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B		-			Analyst: ML
Dibromochloromethane	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Benzene	< 5.0	5.0	μ g /L	1	4/21/2008 3:46:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
4-Methyl-2-pentanone	< 10	10	μ g /L	1	4/21/2008 3:46:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Tetrachloroethene	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Styrene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Methyl tert-butyl ether	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
Cyclohexane	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
1,2-Dibromoethane	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μ g/L	1	4/21/2008 3:46:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 3:46:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	4/21/2008 3:46:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 3:46:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 3 of 11

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Client Sample ID: MW-6

Work Order:

080415048

Collection Date: 4/15/2008

Reference:

Vatrano Road /

Lab Sample ID: 080415048-002

PO#:

Matrix: GROUNDWATER

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS E608					Analyst: KF
(Prep: E608 - 4/15/2008	3)				
Aroclor 1016	< 0.064	0.064	μg/L	1	4/15/2008 8:00:51 PM
Aroclor 1221	< 0.064	0.064	µg/L	1	4/15/2008 8:00:51 PM
Aroclor 1232	< 0.064	0.064	μg/L	1	4/15/2008 8:00:51 PM
Aroclor 1242	< 0.064	0.064	μg/L	1	4/15/2008 8:00:51 PM
Arocior 1248	< 0.064	0.064	μg/L	1	4/15/2008 8:00:51 PM
Aroclor 1254	< 0.064	0.064	μg/L	1	4/15/2008 8:00:51 PM
Aroclor 1260	< 0.064	0.064	μg/L	1	4/15/2008 8:00:51 PM
CP METALS E200.7					Analyst: WB
(Prep: SW3010A - 4/16/2008	3)				•
Lead	< 0.005	0.005	mg/L	1	4/18/2008 4:13:00 PM
MERCURY E245.1					Analyst: SM
(Prep: E245.1 - 4/16/2008	3)				
Mercury	< 0.0002	0.0002	mg/L	1	4/16/2008
OLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	4/21/2008 4:16:00 PM
Bromomethane	< 10	10	μg/L	1	4/21/2008 4:16:00 PM
Vinyl chloride	< 10	10	μg/L	1	4/21/2008 4:16:00 PM
Chloroethane	< 10	10	μg/L	1	4/21/2008 4:16:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Acetone	< 10	10	μg/L	1	4/21/2008 4:16:00 PM
Carbon disulfide	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
1,1-Dichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Chloroform	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
2-Butanone	< 10	10	µg/L	1	4/21/2008 4:16:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Bromodichloromethane	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Trichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
Qualifiers: ND - Not Detected at the Report	ing Limit		S - Spike Recove	ery outside acco	epted recovery limits
J - Analyte detected below quani	titation limits		R - RPD outside	accepted recov	very limits
B - Analyte detected in the assoc	riated Method	Blank	T - Tentitively lo	lentitied Comp	ound-Estimated Conc.
X - Value exceeds Maximum Co	ntaminant Le	vel	E - Value above	quantitation ra	nge Page 4 o

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080415048

Reference:

PO#:

Vatrano Road /

Client Sample ID: MW-6

Lab Sample ID: 080415048-002

Collection Date: 4/15/2008

Matrix: GROUNDWATER

Project#: 7899.1000.1102

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B	**************************************			_	Analyst: ML
Dibromochloromethane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Benzene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	4/21/2008 4:16:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 4:16:00 PM
Tetrachloroethene	< 5.0	5.0	μ g /L	1	4/21/2008 4:16:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Ethylbenzene	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
Styrene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
m.p-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μ g /L	1	4/21/2008 4:16:00 PM
Dichlorodifluoromethane	< 10	10	µg/L	1	4/21/2008 4:16:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
Cyclohexane	< 10	10	µg/L	1	4/21/2008 4:16:00 PM
Trichlorofluoromethane	< 5.0	5.0	μ g /L	1	4/21/2008 4:16:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 4:16:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	µg/L	1	4/21/2008 4:16:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:16:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 5 of 11

Clough Harbour & Associates CLIENT:

Work Order: 080415048 Reference:

PO#:

Vatrano Road /

Project#: 7899.1000.1102

Date: 25-Apr-08

Client Sample ID: MW-7 Collection Date: 4/15/2008

Lab Sample ID: 080415048-003

Matrix: GROUNDWATER

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENY	/LS E608				Analyst: KF
(Prep: E608 -	4/15/2008)				
Aroclor 1016	< 0.064	0.064	μg/L	1	4/15/2008 8:20:42 PM
Aroclor 1221	< 0.064	0.064	μg/L	1	4/15/2008 8:20:42 PM
Aroclor 1232	< 0.064	0.064	µg/L	1	4/15/2008 8:20:42 PM
Aroclor 1242	< 0.064	0.064	µg/L	1	4/15/2008 8:20:42 PM
Aroclor 1248	< 0.064	0.064	μg/L	1	4/15/2008 8:20:42 PM
Aroclor 1254	< 0.064	0.064	μ g /L	1	4/15/2008 8:20:42 PM
Aroclor 1260	< 0.064	0.064	μg/L	1	4/15/2008 8:20:42 PM
CP METALS E200.7					Analyst: KH
(Prep: SW3010A -	4/16/2008)				
Lead	< 0.005	0.005	mg/L	1	4/24/2008 3:02:00 PM
MERCURY E245.1					Analyst: SM
(Prep: E245.1 -	•				
Mercury	< 0.0002	0.0002	mg/L	1	4/16/2008
OLATILE ORGANICS SW82	60B				Analyst: ML
Chloromethane	< 10	10	µg/L	1	4/21/2008 4:44:00 PM
Bromomethane	< 10	10	μg/L	1	4/21/2008 4:44:00 PM
Vinyl chloride	< 10	10	μg/L	1	4/21/2008 4:44:00 PM
Chloroethane	< 10	10	μg/L	1	4/21/2008 4:44:00 PM
Methylene chloride	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Acetone	< 10	10	µg/L	1	4/21/2008 4:44:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
1,1-Dichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 4:44:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μ g /L	1	4/21/2008 4:44:00 PM
cis-1,2-Dichloroethene	5.5 •	5.0	μg/L	1	4/21/2008 4:44:00 PM
Chloroform	< 5.0	. 5.0	μg/L	1	4/21/2008 4:44:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
2-Butanone	< 10	10	μg/L	1	4/21/2008 4:44:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Carbon tetrachloride	< 5.0	5.0	μ g /L	1	4/21/2008 4:44:00 PM
Bromodichloromethane	< 5.0	5.0	µg/L	1	4/21/2008 4:44:00 PM
1,2-Dichloropropane	< 5.0	5.0	µg/L	1	4/21/2008 4:44:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Trichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 4:44:00 PM
oualifiers: ND - Not Detected	at the Reporting Limit		S - Spike Recove	ry outside acce	epted recovery limits
J - Analyte detected	below quanititation limits		R - RPD outside	accepted recov	ery limits
B - Analyte detected	d in the associated Method I	Blank	T - Tentitively Id	entified Comp	ound-Estimated Conc.
X - Value exceeds ?	Maximum Contaminant Leve	el	E - Value above	quantitation rai	Page 6 o

CLIENT: Clough Harbour & Associates

Work Order: 080415048 Reference:

PO#:

Vatrano Road /

Project#: 7899.1000.1102

Date: 25-Apr-08

Client Sample ID: MW-7

Collection Date: 4/15/2008

Lab Sample ID: 080415048-003

Matrix: GROUNDWATER

Analyses	Result	PQL Qu	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Dibromochloromethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Benzene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	4/21/2008 4:44:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 4:44:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Chlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 4:44:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Styrene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	4/21/2008 4:44:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Cyclohexane	< 10	10	μg/L	· 1	4/21/2008 4:44:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
1,2-Dibromoethane	< 5.0	5.0	μ g /L	1	4/21/2008 4:44:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 4:44:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 4:44:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	µg/L	1	4/21/2008 4:44:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μ g/L	1	4/21/2008 4:44:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 7 of 11

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Client Sample ID: MW-8

Work Order:

080415048

Collection Date: 4/15/2008

Reference:

Vatrano Road /

Lab Sample ID: 080415048-004

PO#:

Matrix: GROUNDWATER

Prep: E608 - 4/15/2008 Aroclor 1016	Analyses		Result	PQL Q	Qual Units	DF	Date Analyzed	
Aroclor 1016	POLYCHLORIN	ATED BIPHENYLS	E608				Analyst: KF	
Aroclor 1221		(Prep: E608 - 4/1	5/2008)					
Arcclor 1232	Aroclor 1016		< 0.064	0.064	μ g /L	1	4/15/2008 8:40:31 PM	
Arciclor 1242	Aroclor 1221		< 0.064	0.064	μg/L	1	4/15/2008 8:40:31 PM	
Arcelor 1248	Aroclor 1232		< 0.064	0.064	μg/L	1	4/15/2008 8:40:31 PM	
Arcelor 1248	Aroclor 1242		< 0.064	0.064	μg/L	1	4/15/2008 8:40:31 PM	
Aroclor 1260	Aroclor 1248		< 0.064	0.064		1	4/15/2008 8:40:31 PM	
CP METALS E200.7	Aroclor 1254		< 0.064	0.064	μg/L	1	4/15/2008 8:40:31 PM	
Carbon disulfide	Aroclor 1260		< 0.064	0.064	µg/L	1	4/15/2008 8:40:31 PM	
MERCURY E245.1	ICP METALS	E200.7					Analyst: KH	
MERCURY E245.1 (Prep: E245.1 - 4/16/2008) Mercury < 0.0002 0.0002 mg/L 1 4/16/2008 VOLATILE ORGANICS SW8260B Chloromethane	(Pr	ep: SW3010A - 4/1	6/2008)					
Prep: E245.1 - 4/16/2008 Nercury < 0.0002 0.0002 mg/L 1 4/16/2008	Lead		< 0.005	0.005	mg/L	1	4/24/2008 3:08:00 PM	
Mercury	MERCURY E	245.1					Analyst: SM	
Chloromethane	(Prep: E245.1 - 4/1	6/2008)					
Chloromethane	Mercu ry		< 0.0002	0.0002	mg/L	1	4/16/2008	
Bromomethane	VOLATILE ORG	GANICS SW8260B					Analyst: ML	
Bromomethane	Chloromethane		< 10	10	μg/L	1	4/21/2008 5:12:00 PN	
Chloroethane < 10 10 µg/L 1 4/21/2008 5:12:00 l Methylene chloride	Bromomethane		< 10	10		1	4/21/2008 5:12:00 PM	
Chloroethane			< 10	10		1	4/21/2008 5:12:00 PM	
Acetone < 10 10 μg/L 1 4/21/2008 5:12:00 L μg/L	Chloroethane		< 10	10	μg/L	1	4/21/2008 5:12:00 PM	
Carbon disulfide	Methylene chlor	ide	5.0 •	5.0	µg/L	1	4/21/2008 5:12:00 PM	
1,1-Dichloroethene < 5.0	Acetone		< 10	10	μg/L	1	4/21/2008 5:12:00 PM	
1,1-Dichloroethane	Carbon disulfide	1	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM	
trans-1,2-Dichloroethene	1,1-Dichloroethe	ene	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM	
cis-1,2-Dichloroethene < 5.0	1,1-Dichloroetha	ane	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM	
Chloroform < 5.0	trans-1,2-Dichlo	roethene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM	
1,2-Dichloroethane < 5.0	cis-1,2-Dichloro	ethene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM	
2-Butanone < 10 10 μg/L 1 4/21/2008 5:12:00 for the straight of the straight	Chloroform		< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM	
1,1,1-Trichloroethane < 5.0	1,2-Dichloroetha	ne	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM	
Carbon tetrachloride < 5.0 5.0 µg/L 1 4/21/2008 5:12:00 I Bromodichloromethane < 5.0	2-Buta none		< 10	10	µg/L	1	4/21/2008 5:12:00 PM	
Bromodichloromethane < 5.0 5.0 µg/L 1 4/21/2008 5:12:00 for the control of the co	1,1,1-Trichloroe	thane	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM	
1,2-Dichloropropane < 5.0 5.0 µg/L 1 4/21/2008 5:12:00 l cis-1,3-Dichloropropene < 5.0 5.0 µg/L 1 4/21/2008 5:12:00 l l g/L 1 4/21/2008 5:12:0	Carbon tetrachic	oride	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM	
cis-1,3-Dichloropropene < 5.0 5.0 µg/L 1 4/21/2008 5:12:00 II Trichloroethene < 5.0 5.0 µg/L 1 4/21/2008 5:12:00 II Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits B - Analyte detected in the associated Method Blank T - Tentitively Identified Compound-Estimated Conc.	Bromodichlorom	ethane	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM	
Trichloroethene < 5.0 5.0 pg/L 1 4/21/2008 5:12:00 I Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits B - Analyte detected in the associated Method Blank T - Tentitively Identified Compound-Estimated Conc.	1,2-Dichloroprop	oane	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM	
Qualifiers: ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits B - Analyte detected in the associated Method Blank T - Tentitively Identified Compound-Estimated Conc.	cis-1,3-Dichloro	propene	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM	
J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits B - Analyte detected in the associated Method Blank T - Tentitively Identified Compound-Estimated Conc.	Trichloroethene		< 5.0	5.0	μ g /L	1	4/21/2008 5:12:00 PM	
B - Analyte detected in the associated Method Blank T - Tentitively Identified Compound-Estimated Conc.	Qualifiers:	ND - Not Detected at the	Reporting Limit		S - Spike Recovery outside accepted recovery limits			
		J - Analyte detected belo	w quanititation limits		R - RPD outside	accepted reco	very limits	
X - Value exceeds Maximum Contaminant Level E - Value above quantitation range Page		B - Analyte detected in t	he associated Method	Blank	T - Tentitively I	dentified Comp	ound-Estimated Conc.	
		X - Value exceeds Maxii	num Contaminant Lev	el	E - Value above	quantitation ra	nge Page 8	

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080415048

Reference:

Vatrano Road /

PO#:

Project#: 7899.1000.1102

Client Sample ID: MW-8 Collection Date: 4/15/2008

Lab Sample ID: 080415048-004

Matrix: GROUNDWATER

Analyses	Result	PQL Qu	ual Units	DF	Date Analyzed
OLATILE ORGANICS SW8260B					Analyst: ML
Dibromochloromethane	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
Benzene	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
4-Methyl-2-pentanone	< 10	10	µg/L	1	4/21/2008 5:12:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 5:12:00 PM
Tetrachloroethene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
Toluene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
Chlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
Ethylbenzene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
Styrene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
m,p-Xylene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
Dichlorodifluoromethane	< 10	10	µg/L	1	4/21/2008 5:12:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
Cyclohexane	< 10	10	μg/L	1	4/21/2008 5:12:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
1,2-Dibromoethane	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
Isopropylbenzene	< 5.0	5.0	µg/L	1	4/21/2008 5:12:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	µg/L	1	4/21/2008 5:12:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 5:12:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 9 of 11

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080415048

Reference:

PO#:

Vatrano Road /

Lab Sample ID: 080415048-005 Matrix: WATER

Collection Date: 4/15/2008

Client Sample ID: Trip Blank

analyses	Result	PQL Q	ual Units	DF	Date Analyzed
OLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
Bromomethane	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
Vinyl chloride	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
Chloroethane	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
Methylene chloride	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
Acetone	11 •	10	µg/L	1	4/21/2008 5:40:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,1-Dichloroethane	< 5.0	5.0	ha\ŗ	1	4/21/2008 5:40:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Chloroform	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
2-Butanone	< 10	10	µg/L	1	4/21/2008 5:40:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,2-Dichloropropane	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
Trichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Dibromochloromethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
Benzene	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Bromoform	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
4-Methyi-2-pentanone	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Chlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Styrene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
o-Xylene	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
Methyl Acetate	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
Qualifiers: ND - Not Detected at the Rep	orting Limit		S - Spike Recov	ery outside acc	epted recovery limits
J - Analyte detected below qu	anititation limits		R - RPD outside	accepted reco	very limits
B - Analyte detected in the as	sociated Method F	Blank	T - Tentitively le	dentified Comp	oound-Estimated Conc.
X - Value exceeds Maximum	Contaminant Leve	:1	E - Value above	quantitation ra	ange Page 10 o

Date: 25-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080415048

Reference:

Vatrano Road /

PO#:

Client Sample ID: Trip Blank
Collection Date: 4/15/2008

Lab Sample ID: 080415048-005

Matrix: WATER

Project#: 7899.1000.1102

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Cyclohexane	< 10	10	μ g /L	1	4/21/2008 5:40:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μ g /L	1	4/21/2008 5:40:00 PM
Isopropylbenzene	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
1,2-Dichiorobenzene	< 5.0	5.0	μ g /L	1	4/21/2008 5:40:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 5:40:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	4/21/2008 5:40:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 5:40:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

F - Value above quantitation range

Page 11 of 11

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

AES Work Order #

080415-01-3

Experience is the solution

A full service analytical research laboratory offering solutions to environmental concerns

Experience is ti							,					viionnemar concerns
Clent Name:	1 /		Address:		» ا · سم	. ,						
	To, book		1 1 10/1	MAN	Circle D	160	2/	N	<u> </u>	17	2 60	′ {
Send Report To:	1+							Sam	piers:	(Nar	mes)	1
R.G. + Ha	<u> </u>		Vatra.					-4	j. jl.	برسواره	//) in Aterry
Client Phone No:		Client Fax No:	*	ļ.	lumber:			Sam	plers:	(Sig	nature) / Am
518 1935	8702	5181477-	41175	1	899.1000	_			1.5	18.		4/ my
AES		Client			Date	Tir A≃a	ne .m.	Samp	e Type	_ N	lumber of	
Sample Number	Samp	le Identification (Location		Sampled	Р≃р		Matrix	3	<u></u> (Cont's	Analysis Required
001		w - 1			4/15/08	10:2	P	(w		×	4	TIL VOC (8240)
Caro.	ml	v-6						6 W		Χ΄	4	PCB (GC8)
003	M	w-7				国分	Ô	GW	\vdash	Υ.	4	P6 (200.7)
204		w.8_				a	¢	60		K	4	Hg (245.1)
005	7.4	Blank					P	L. W		Х	į	(Fer = 1 spangles)
							P				-	
							A P					Com Die land
							Á			+ -	-	Spe Dischool
			,				A			+		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
						 	P	e,	-			
						-	P			+		
							P	in Landanianing at a galaxies as he				
							P					
							A					:
						,	A		-			the second of th
							P				ĺ	
Shipment Arrived FedEx UPS Turnaround Time I 1 Day 2 Day	Client AES O	ther:		CC Report	To / Special Inst	rection	ns/Re	marks:				
Relinquished by: (6 Z		F	Received by: (Signature) Date/Time				Date/Time				
	17 17											}
Relinquished by: (Signature)		F	Received by: (Signature) Date/Time					Date/Time			
Relinquished by: (Signature)		. A	Received for Laboratory by: Date/Time				Date/Time				
	TEMPERATURE			Prop	RLY PRESERVED					Ri	ECEIVED	WITHIN HOLDING TIMES
Amb	ient or Chill	ed	Notes:	Y	N		Transaction of the state of the		Not	es:		Y . N
			And the second name of the second						-			

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the **Adirondack Environmental Services, Inc**. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services, Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.
- (g) Payments by credit card are subject to a 3% additional charge.

Experience is the solution

314 North Pearl Street ◆ Albany, New York 12207 (800) 848-4983 ◆ (518) 434-4546 ◆ Fax (518) 434-0891

April 28, 2008

Robert Hall
Clough Harbour & Associates
3 Winners Circle
PO Box 5269

Albany, NY 12205-0307

TEL: (518) 453-8702 FAX: (518) 453-4773

RE: Vatrano Road

Dear Robert Hall:

Adirondack Environmental Services, Inc received 7 samples on 4/16/2008 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Christopher Hess

QA Manager

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

Work Order No: 080416049

Project#: 7899.1000.1102

ELAP#: 10709

AIHA#: 100307

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 1 of 15

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

PO#:

Vatrano Road /

Lab Sample ID: 080416049-001

Matrix: GROUNDWATER

Collection Date: 4/16/2008

Client Sample ID: MW-2

TO THE PROPERTY OF THE					
POLYCHLORINATED BIPHENYLS E6	808				Analyst: KF
(Prep: E608 - 4/16/20	008)				
Aroclor 1016	< 0.064	0.064	μg/L	1	4/16/2008 10:49:42 PM
Aroclor 1221	< 0.064	0.064	μg/L	1	4/16/2008 10:49:42 PM
Aroclor 1232	< 0.064	0.064	μg/L	1	4/16/2008 10:49:42 PM
Aroclor 1242	< 0.064	0.064	μg/L	1	4/16/2008 10:49:42 PM
Aroclor 1248	< 0.064	0.064	µg/L	1	4/16/2008 10:49:42 PM
Aroclor 1254	. 0.526 .	0.064	μg/L	1	4/16/2008 10:49:42 PN
Aroclor 1260	< 0.064	0.064	μg/L	1	4/16/2008 10:49:42 PM
CP METALS E200.7					Analyst: KH
(Prep: SW3010A - 4/17/20	008)				
Lead	< 0.005	0.005	mg/L	1	4/25/2008 2:35:00 PM
MERCURY E245.1					Analyst: SM
(Prep: E245.1 - 4/18/20	008)				
Mercury	< 0.0002	0.0002	mg/L	1	4/18/2008
VOLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	μg/L	1	4/21/2008 6:37:00 PM
Bromomethane	< 10	10	μg/L	1	4/21/2008 6:37:00 PM
Vinyl chloride	33 ·	10	μg/L	1	4/21/2008 6:37:00 PM
Chloroethane	< 10	10	μg/L 	1	4/21/2008 6:37:00 PM
Methylene chloride	11 ·	5.0	μg/L 	1	4/21/2008 6:37:00 PM
Acetone	< 10	10	μg/L "	1	4/21/2008 6:37:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1 1	4/21/2008 6:37:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM 4/21/2008 6:37:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
cis-1,2-Dichloroethene	130 · < 5.0	5.0 5.0	μg/L μα/l	1	4/21/2008 6:37:00 PM
Chloroform	< 5.0 < 5.0	5.0	μ g/L μ g /L	1	4/21/2008 6:37:00 PM
1,2-Dichloroethane	< 10	10	μg/L μg/L	1	4/21/2008 6:37:00 PM
2-Butanone	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Bromodichloromethane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
cis-1,3-Dichloropropene Trichloroethene	51 •	5.0	μg/L	1	4/21/2008 6:37:00 PM
Oualifiers: ND - Not Detected at the Rep	porting Limit			ery outside acc	epted recovery limits
J - Analyte detected below qu			R - RPD outside	accepted reco	very limits
B - Analyte detected in the as		Blank	T - Tentitively k	dentified Comp	oound-Estimated Conc.
X - Value exceeds Maximum	Contaminant Le	vel	E - Value above	quantitation ra	inge Page 2 c

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

Vatrano Road /

PO#:

080410049

Matrix: GROUNDWATER

Lab Sample ID: 080416049-001

Client Sample ID: MW-2 Collection Date: 4/16/2008

Project#: 7899.1000.1102

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Dibromochloromethane	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Benzene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	4/21/2008 6:37:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 6:37:00 PM
Tetrachioroethene	180 •	5.0	μg/L	1	4/21/2008 6:37:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Styrene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	4/21/2008 6:37:00 PM
Methyl Acetate	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
Cyclohexane	< 10	10	μ g /L	1	4/21/2008 6:37:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
1,2-Dibromoethane	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
Isopropylbenzene	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 6:37:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	µg/L	1	4/21/2008 6:37:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 6:37:00 PM

Qualifiers:

ND - Not Detected at the Reporting I imit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 3 of 15

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Client Sample ID: MW-3

Work Order:

080416049

Collection Date: 4/16/2008

Reference:

Vatrano Road /

Lab Sample ID: 080416049-002

PO#:

Matrix: GROUNDWATER

Project#: 7899.1000.1102

Analyses		Result	PQL (Qual Units	DF	Date Analyzed
POLYCHLORINA	ATED BIPHENYL	S E608				Analyst: KF
(Prep: E608 - 4	1/16/2008)				•
Aroclor 1016		< 0.064	. 0.064	μg/L	1	4/16/2008 11:09:40 PM
Aroclor 1221		< 0.064	0.064	μg/L	1	4/16/2008 11:09:40 PM
Aroclor 1232		< 0.064	0.064	μg/L	1	4/16/2008 11:09:40 PM
Aroclor 1242		< 0.064	0.064	μg/L	1	4/16/2008 11:09:40 PM
Aroclor 1248		< 0.064	0.064	μg/L	1	4/16/2008 11:09:40 PM
Aroclor 1254		< 0.064	0.064	μg/L	1	4/16/2008 11:09:40 PM
Aroclor 1260		< 0.064	0.064	µg/L	1	4/16/2008 11:09:40 PM
CP METALS E	200.7					Analyst: KH
(Pre	p: SW 3010A - 4	/17/2008)				
Lead		< 0.005	0.005	mg/L	1	4/25/2008 2:46:00 PM
MERCURY E24	45.1					Analyst: SM
(F	Prep: E245.1 - 4	/18/2008)				-
Mercury		< 0.0002	0.0002	mg/L	1	4/18/2008
VOLATILE ORGA	ANICS SW8260	В				Analyst: ML
Chloromethane		< 10	10	μg/L	1	4/21/2008 7:06:00 PM
Bromomethane		< 10	10	μg/L	1	4/21/2008 7:06:00 PM
Vinyl chloride		< 10	10	μg/L	1	4/21/2008 7:06:00 PM
Chloroethane		< 10	10	μg/L	1	4/21/2008 7:06:00 PM
Methylene chlorid	е	12	5.0	μg/L	1	4/21/2008 7:06:00 PM
Acetone		< 10	10	μg/L	1	4/21/2008 7:06:00 PM
Carbon disulfide		< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
1,1-Dichloroethen	e	< 5.0	5.0	µg/L	1	4/21/2008 7:06:00 PM
1,1-Dichloroethan	е	< 5.0	5.0	µg/L	1	4/21/2008 7:06:00 PM
trans-1,2-Dichloro	ethene	< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
cis-1,2-Dichloroet	hene	< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
Chloroform		< 5.0	5.0	µg/L	1	4/21/2008 7:06:00 PM
1,2-Dichloroethan	e	< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
2-Butanone		< 10	10	μg/L	1	4/21/2008 7:06:00 PM
1,1,1-Trichloroeth	ane	< 5.0	5.0	µg/L	1	4/21/2008 7:06:00 PM
Carbon tetrachlori	de	< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
Bromodichiorome	thane	< 5.0	5.0	µg/L	1	4/21/2008 7:06:00 PM
1,2-Dichloropropa	ne	< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
cis-1,3-Dichloropre	opene	< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
Trichloroethene		< 5.0	5.0	μg/L	1	4/21/2008 7:06:00 PM
Qualifiers:	ND - Not Detected at	the Reporting Limit		S - Spike Recove	ry outside acce	pted recovery limits
	J - Analyte detected be	low quanititation limits		R - RPD outside	accepted recov	ery limits
	B - Analyte detected in	the associated Method E	Blank	T - Tentitively Id	entified Compo	ound-Estimated Conc.
	X - Value exceeds Ma	ximum Contaminant Leve	el	h - Value above o	quantitation rai	nge Page 4 of

Page 4 of 15

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Client Sample ID: MW-3

Work Order:

080416049

Collection Date: 4/16/2008

Reference:

Vatrano Road /

Lab Sample ID: 080416049-002

PO#:

Matrix: GROUNDWATER

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B						Analyst: ML
Dibromochloromethane	< 5.0	5.0	,	μg/L	1	4/21/2008 7:06:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	1	µg/L	1	4/21/2008 7:06:00 PM
Benzene	< 5.0	5.0	ı	µg/L	1	4/21/2008 7:06:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	ı	µg/L	1	4/21/2008 7:06:00 PM
Bromoform	< 5.0	5.0	ı	µg/L	1	4/21/2008 7:06:00 PM
4-Methyl-2-pentanone	< 10	10	1	µg/L	1	4/21/2008 7:06:00 PM
2-Hexanone	< 10	10		μg/L	1	4/21/2008 7:06:00 PM
Tetrachloroethene	< 5.0	5.0	1	μg/L	1	4/21/2008 7:06:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	١	µg/L	1	4/21/2008 7:06:00 PM
Toluene	< 5.0	5.0	ı	µg/L	1	4/21/2008 7:06:00 PM
Chlorobenzene	< 5.0	5.0	ı	µg/L	1	4/21/2008 7:06:00 PM
Ethylbenzene	< 5.0	5.0	J	µg/L	1	4/21/2008 7:06:00 PM
Styrene	< 5.0	5.0	1	µg/L	1	4/21/2008 7:06:00 PM
m,p-Xylene	< 5.0	5.0	4	µg/L	1	4/21/2008 7:06:00 PM
o-Xylene	< 5.0	5.0	1	μg/L	1	4/21/2008 7:06:00 PM
Methyl tert-butyl ether	< 5.0	5.0	1	μg/L	1	4/21/2008 7:06:00 PM
Dichlorodifluoromethane	< 10	10	1	μg/L	1	4/21/2008 7:06:00 PM
Methyl Acetate	< 5.0	5.0	1	μg/L	1	4/21/2008 7:06:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	1	µg/L	1	4/21/2008 7:06:00 PM
Cyclohexane	< 10	10	1	µg/L	1	4/21/2008 7:06:00 PM
Trichlorofluoromethane	< 5.0	5.0	1	µg/L	1	4/21/2008 7:06:00 PM
Methyl Cyclohexane	< 5.0	5.0		µg/L	1	4/21/2008 7:06:00 PM
1,2-Dibromoethane	< 5.0	5.0	1	µg/L	1	4/21/2008 7:06:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	ı	µg/L	1	4/21/2008 7:06:00 PM
Isopropylbenzene	< 5.0	5.0		µg/L	1	4/21/2008 7:06:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	i	µg/L	1	4/21/2008 7:06:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	1	μg/L	1	4/21/2008 7:06:00 PM
1,2-Dibromo-3-chloropropane	< 10	10		μg/L	1	4/21/2008 7:06:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0		µg/L	1	4/21/2008 7:06:00 PM

ſ	'n	19	li	ſڼ	

- ND Not Detected at the Reporting Limit
- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- X Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.
- E Value above quantitation range

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Client Sample ID: MW-4

Reference:

Vatrano Road /

Collection Date: 4/16/2008

PO#:

Lab Sample ID: 080416049-003

Matrix: GROUNDWATER

			DOT -		***	Data A and and
Analyses		Result	PQL (Qual Units	DF	Date Analyzed
POLYCHLOR	RINATED BIPHENY					Analyst: KF
	(Prep: E608 -	4/16/2008)				
Aroclor 1016		< 0.064	0.064	μg/L	1	4/16/2008 11:29:24 PM
Aroclor 1221		< 0.064	0.064	μg/L	1	4/16/2008 11:29:24 PM
Aroclor 1232		< 0.064	0.064	µg/L	1	4/16/2008 11:29:24 PM
Aroclor 1242		< 0.064	0.064	μg/L	1	4/16/2008 11:29:24 PM
Aroclor 1248		< 0.064	0.064	μg/L	1	4/16/2008 11:29:24 PM
Aroclor 1254		< 0.064	0.064	μg/L	1	4/16/2008 11:29:24 PM
Aroclor 1260		< 0.064	0.064	μg/L	1	4/16/2008 11:29:24 PM
CP METALS	E200.7					Analyst: KH
()	Prep: SW3010A -	4/17/2008)				
Lead		< 0.005	0.005	mg/L	1	4/25/2008 3:15:00 PM
MERCURY	E245.1					Analyst: SM
	(Prep: E245.1 -	4/18/2008)				
Mercury		< 0.0002	0.0002	mg/L	1	4/18/2008
VOLATILE O	RGANICS SW826	0B				Analyst: ML
Chlorometha	ne	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Bromometha	ne	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Vinyl chloride	:	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Chloroethane	•	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Methylene ch	loride	13 ·	5.0	µg/L	1	4/21/2008 7:33:00 PM
Acetone		< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Carbon disulf	ide	< 5.0	5.0	µg/L	1	4/21/2008 7:33:00 PM
1,1-Dichloroe	thene	< 5.0	5.0	µg/L	1	4/21/2008 7:33:00 PM
1,1-Dichloroe	thane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
trans-1,2-Dicl	hloroethene	< 5.0	5.0	μ g /L	1	4/21/2008 7:33:00 PM
cis-1,2-Dichlo	proethene	< 5.0	5.0	μ g /L	1	4/21/2008 7:33:00 PM
Chloroform		< 5.0	5.0	μ g /L	1	4/21/2008 7:33:00 PM
1,2-Dichloroe	thane	< 5.0	5.0	µg/L	1	4/21/2008 7:33:00 PM
2-Butanone		< 10	10	µg/L	1	4/21/2008 7:33:00 PM
1,1,1-Trichlor	oethane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Carbon tetrac		< 5.0	5.0	µg/L	1	4/21/2008 7:33:00 PM
Bromodichlor	omethane	< 5.0	5.0	µg/L	1	4/21/2008 7:33:00 PM
1,2-Dichlorop		< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
cis-1,3-Dichlo	·	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Trichloroether		< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Qualifiers:	ND - Not Detected :	at the Reporting Limit		S - Spike Recov	ery outside acc	epted recovery limits
	J - Analyte detected	below quantitation limits		R - RPD outside	accepted reco	very limits
	B - Analyte detected	In the associated Method	Blank	T - Tentitively k	lentified Comp	oound-Estimated Conc.
	X - Value exceeds N	Maximum Contaminant Lev	/el	E - Value above	quantitation ra	ange Page 6 c
						~

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

Vatrano Road /

PO#:

Collection Date: 4/16/2008

Lab Sample ID: 080416049-003

Client Sample ID: MW-4

Matrix: GROUNDWATER

Project#: 7899.1000.1102

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Dibromochloromethane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Benzene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
4-Methyl-2-pentanone	< 10	10	µg/L	1	4/21/2008 7:33:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Ethylbenzene	< 5.0	5.0	µg/L	1	4/21/2008 7:33:00 PM
Styrene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Methyl Acetate	< 5.0	5.0	µg/L	1	4/21/2008 7:33:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Cyclohexane	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	4/21/2008 7:33:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 7:33:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 7 of 15

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

PO#:

Vatrano Road /

Lab Sample ID: 080416049-004 Matrix: GROUNDWATER

Client Sample ID: MW-5

Collection Date: 4/16/2008

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS E	608				Analyst: KF
(Prep: E608 - 4/16/2	(800				
Aroclor 1016	< 0.064	0.064	μg/L	1	4/16/2008 11:49:12 PM
Aroclor 1221	< 0. 064	0.064	μg/L	1	4/16/2008 11:49:12 PM
Aroclor 1232	< 0.064	0.064	μg/L	1	4/16/2008 11:49:12 PN
Aroclor 1242	< 0.064	0.064	μg/L	1	4/16/2008 11:49:12 PN
Aroclor 1248	< 0.064	0.064	µg/L	1	4/16/2008 11:49:12 PM
Aroclor 1254	< 0.064	0.064	μg/L	1	4/16/2008 11:49:12 PM
Aroclor 1260	< 0.064	0.064	μg/L	1	4/16/2008 11:49:12 PM
CP METALS E200.7					Analyst: KH
(Prep: SW3010A - 4/17/2	(800				
Lead	< 0.005	0.005	mg/L	1	4/25/2008 3:21:00 PM
MERCURY E245.1					Analyst: SM
(Prep: E245.1 - 4/18/2	008)				
Mercury	< 0.0002	0.0002	mg/L	1	4/18/2008
OLATILE ORGANICS SW8260B					Analyst: ML
Chloromethane	< 10	10	µg/L	1	4/21/2008 8:01:00 PM
Bromomethane	< 10	10	µg/L	1	4/21/2008 8:01:00 PM
Vinyl chloride	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
Chloroethane	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
Methylene chloride	11 *	5.0	μg/L	1	4/21/2008 8:01:00 PM
Acetone	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
Carbon disulfide	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Chloroform	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
2-Butanone	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Carbon tetrachloride	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Bromodichloromethane	< 5.0	5.0	µg/L	1	4/21/2008 8:01:00 PM
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Trichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 8:01:00 PM
Qualifiers: ND - Not Detected at the Re	porting Limit		S - Spike Reco	overy outside acc	epted recovery limits
J - Analyte detected below q	uanititation limits		R - RPD outsi	de accepted reco	very limits
B - Analyte detected in the a	issociated Method	Blank	T - Tentitively	Identified Comp	ound-Estimated Conc.
X - Value exceeds Maximur	n Contaminant Lev	vel	E - Value abov	ve quantitation ra	ange Page 8 c

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

Vatrano Road /

PO#:

Lab Sample ID: 080416049-004 Matrix: GROUNDWATER

Client Sample ID: MW-5

Collection Date: 4/16/2008

Project#: 7899.1000.1102

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
Dibromochloromethane	< 5.0	5.0	µg/L	1	4/21/2008 8:01:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Benzene	< 5.0	5.0	µg/L	1	4/21/2008 8:01:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
2-Hexanone	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Chiorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Styrene	< 5.0	5.0	µg/∟	1	4/21/2008 8:01:00 PM
m,p-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
o-Xylene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Cyclohexane	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,2-Dibromoethane	< 5.0	5.0	µg/L	1	4/21/2008 8:01:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:01:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	4/21/2008 8:01:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 8:01:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

F. - Value above quantitation range

Page 9 of 15

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Client Sample ID: MW-9

Work Order:

080416049

Collection Date: 4/16/2008

Reference:

Vatrano Road /

Lab Sample ID: 080416049-005

PO#:

Matrix: GROUNDWATER

Analyses	Result	PQL	Qual Units	DF	Date Analyzed		
POLYCHLORINATED BIPHENYL	S E608				Analyst: KF		
(Prep: E608 - 4	1/16/2008)						
Aroclor 1016	< 0.064	0.064	μg/L	1	4/17/2008 12:08:56 AM		
Aroclor 1221	< 0.064	0.064	µg/L	1	4/17/2008 12:08:56 AM		
Aroclor 1232	< 0.064	0.064	µg/L	1	4/17/2008 12:08:56 AM		
Aroclor 1242	< 0.064	0.064	μ g /L	1	4/17/2008 12:08:56 AM		
Aroclor 1248	< 0.064	0.064	μg/L	1	4/17/2008 12:08:56 AM		
Aroclor 1254	< 0.064	0.064	μ g /L	1	4/17/2008 12:08:56 AM		
Aroclor 1260	0.152 -	0.064	µg/L	1	4/17/2008 12:08:56 AM		
ICP METALS E200.7					Analyst: KH		
(Prep: SW3010A - 4	/17/2008)						
Lead	< 0.005	0.005	mg/L	1	4/25/2008 3:25:00 PM		
MERCURY E245.1					Analyst: SM		
(Prep: E245.1 - 4	/18/2008)						
Mercury	< 0.0002	0.0002	mg/L	1	4/18/2008		
VOLATILE ORGANICS SW8260	В				Analyst: ML		
Chloromethane	< 10	10	μg/L	1	4/21/2008 8:29:00 PM		
Bromomethane	< 10	10	µg/L	1	4/21/2008 8:29:00 PM		
Vinyl chloride	< 10	10	μg/L	1	4/21/2008 8:29:00 PM		
Chloroethane	< 10	10	µg/L	1	4/21/2008 8:29:00 PM		
Methylene chloride	11 .	5.0	μg/L	1	4/21/2008 8:29:00 PM		
Acetone	< 10	10	μg/L	1	4/21/2008 8:29:00 PM		
Carbon disulfide	< 5.0	5.0	μg/L	1	4/21/2008 8:29:00 PM		
1,1-Dichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 8:29:00 PM		
1,1-Dichloroethane	< 5.0	5.0	µg/L	1	4/21/2008 8:29:00 PM		
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:29:00 PM		
cis-1,2-Dichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 8:29:00 PM		
Chloroform	< 5.0	5.0	μg/L	1	4/21/2008 8:29:00 PM		
1,2-Dichloroethane	< 5.0	5.0	µg/L	1	4/21/2008 8:29:00 PM		
2-Butanone	< 10	10	µg/L	1	4/21/2008 8:29:00 PM		
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:29:00 PM		
Carbon tetrachloride	< 5.0	5.0	μg/L	1	4/21/2008 8:29:00 PM		
Bromodichloromethane	< 5.0	5.0	μg/L	1	4/21/2008 8:29:00 PM		
1,2-Dichloropropane	< 5.0	5.0	µg/L	1	4/21/2008 8:29:00 PM		
cis-1,3-Dichloropropene Trichloroethene	< 5.0 < 5.0	5.0 5.0	µg/L µg/L	1 1	4/21/2008 8:29:00 PM 4/21/2008 8:29:00 PM		
Qualifiers: ND - Not Detected at					epted recovery limits		
	elow quantitation limits		R - RPD outside	•			
	n the associated Method	Blank		•	ound-Estimated Conc.		
•	ximum Contaminant Lev		E - Value above				

Date: 28-Apr-08.

CLIENT:

Clough Harbour & Associates

Client Sample ID: MW-9

Work Order:

080416049

Collection Date: 4/16/2008

Reference:

Vatrano Road /

Lab Sample ID: 080416049-005

PO#:

Matrix: GROUNDWATER

Project#: 7899.1000.1102

Dibromochloromethane	d	Date Analyzed	DF	Units	Qual	PQL	Result	Analyses
1,1,2-Trichloroethane	lyst: ML	Analyst		_				VOLATILE ORGANICS SW8260B
Benzene < 5.0 5.0 μg/L 1 4/21/2008 8:2 trans-1,3-Dichloropropene < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Dibromochloromethane
trans-1,3-Dichloropropene < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	1,1,2-Trichloroethane
Bromoform < 5.0 5.0 μg/L 1 4/21/2008 8:2 4-Methyl-2-pentanone < 10	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Benzene
4-Methyl-2-pentanone < 10	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	trans-1,3-Dichloropropene
2-Hexanone < 10 10 µg/L 1 4/21/2008 8:2 Tetrachloroethene < 5.0 5.0 µg/L 1 4/21/2008 8:2 1,1,2,2-Tetrachloroethane < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Toluene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Toluene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Chlorobenzene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Ethylbenzene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Styrene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 m,p-Xylene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 m,p-Xylene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 O-Xylene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 O-Xylene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Dichlorodifluoromethane < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Dichlorodifluoromethane < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 1,1,2-Trichloro-1,2,2-trifluoroethane < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Cyclohexane < 10 10 µg/L 1 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 Dichlorobenzene < 5.0 5.0 µg/L 1 1 4/21/2008 8:2 I,2-Dibromoethane < 5.0 5.0 µg/L 1 1 1 4/21/2008 8:2 I,3-Dichlorobenzene < 5.0 5.0 µg/L 1 1 1 4/21/2008 8:2 I,3-Dichlorobenzene < 5.0 5.0 0.0 µg/L 1 1 1 4/21/2008 8:2 I,3-Dichlorobenzene < 5.0 5.0 0.0 µg/L	29:00 PM	4/21/2008 8:29:0	1	µg/L		5.0	< 5.0	Bromoform
Tetrachloroethene	29:00 PM	4/21/2008 8:29:0	1	μg/L		10	< 10	4-Methyl-2-pentanone
1,1,2,2-Tetrachloroethane	29:00 PM	4/21/2008 8:29:0	1	μg/L		10	< 10	2-Hexanone
Toluene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Chlorobenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Ethylbenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Ethylbenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Styrene < 5.0 5.0 µg/L 1 4/21/2008 8:2 m,p-Xylene < 5.0 5.0 µg/L 1 4/21/2008 8:2 o-Xylene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Methyl tert-butyl ether < 5.0 5.0 µg/L 1 4/21/2008 8:2 Dichlorodifluoromethane < 10 10 µg/L 1 4/21/2008 8:2 Methyl Acetate < 5.0 5.0 µg/L 1 4/21/2008 8:2 I,1,2-Trichloro-1,2,2-trifluoroethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 Cyclohexane < 10 10 µg/L 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 I,2-Dibromoethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 I,3-Dichlorobenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Isopropylbenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Tetrachloroethene
Chlorobenzene < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	1,1,2,2-Tetrachloroethane
Ethylbenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Styrene < 5.0 5.0 µg/L 1 4/21/2008 8:2 m.p-Xylene < 5.0 5.0 µg/L 1 4/21/2008 8:2 o-Xylene < 5.0 5.0 µg/L 1 4/21/2008 8:2 O-Xylene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Methyl tert-butyl ether < 5.0 5.0 µg/L 1 4/21/2008 8:2 Dichlorodifluoromethane < 10 10 µg/L 1 4/21/2008 8:2 Methyl Acetate < 5.0 5.0 µg/L 1 4/21/2008 8:2 1,1,2-Trichloro-1,2,2-trifluoroethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 Cyclohexane < 10 10 µg/L 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 Trichlorofluoromethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 1,2-Dibromoethane < 5.0 5.0 µg/L 1 4/21/2008 8:2 1,3-Dichlorobenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Isopropylbenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2 Isopropylbenzene	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Toluene
Styrene < 5.0 5.0 μg/L 1 4/21/2008 8:2 m.p-Xylene < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Chlorobenzene
m,p-Xylene < 5.0	29:00 PM	4/21/2008 8:29:0	1	μ g/L		5.0	< 5.0	Ethylbenzene
o-Xylene < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Styrene
Methyl tert-butyl ether < 5.0 5.0 μg/L 1 4/21/2008 8:2 Dichlorodifluoromethane < 10	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	m,p-Xylene
Dichlorodiffluoromethane < 10 10 μg/L 1 4/21/2008 8:2 Methyl Acetate < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	o-Xylene
Methyl Acetate < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Methyl tert-butyl ether
1,1,2-Trichloro-1,2,2-trifluoroethane < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		10	< 10	Dichlorodifluoromethane
Cyclohexane < 10	29:00 PM	4/21/2008 8:29:0	1	μ g/L		5.0	< 5.0	Methyl Acetate
Trichlorofluoromethane < 5.0	29:00 PM	4/21/2008 8:29:0	1	µg/L		5.0	< 5.0	1,1,2-Trichloro-1,2,2-trifluoroethane
Methyl Cyclohexane < 5.0	29:00 PM	4/21/2008 8:29:0	1	μg/L		10	< 10	Cyclohexane
1,2-Dibromoethane < 5.0 5.0 μ g/L 1 $4/21/2008$ 8:2 1,3-Dichlorobenzene < 5.0 5.0 μ g/L 1 $4/21/2008$ 8:2 Isopropylbenzene < 5.0 5.0 μ g/L 1 $4/21/2008$ 8:2	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Trichlorofluoromethane
1,2-Dibromoethane < 5.0 5.0 μ g/L 1 $4/21/2008$ 8:2 1,3-Dichlorobenzene < 5.0 5.0 μ g/L 1 $4/21/2008$ 8:2 Isopropylbenzene < 5.0 5.0 μ g/L 1 $4/21/2008$ 8:2	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	Methyl Cyclohexane
Isopropylbenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	-
	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	1,3-Dichlorobenzene
• • • • • • • • • • • • • • • • • • • •	29:00 PM	4/21/2008 8:29:0	1	. •		5.0	< 5.0	
1,2-Dichlorobenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2	29:00 PM	4/21/2008 8:29:0	1	μg/L		5.0	< 5.0	
1,4-Dichlorobenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2	29:00 PM	4/21/2008 8:29:0	1	µg/L		5.0	< 5.0	1,4-Dichlorobenzene
1,2-Dibromo-3-chloropropane < 10 10 µg/L 1 4/21/2008 8:2	29:00 PM	4/21/2008 8:29:0	1	µg/L		10	< 10	1,2-Dibromo-3-chloropropane
1,2,4-Trichlorobenzene < 5.0 5.0 µg/L 1 4/21/2008 8:2	29:00 PM	4/21/2008 8:29:0	1	µg/L		5.0	< 5.0	1,2,4-Trichlorobenzene

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 11 of 15

Date: 28-Apr-08

Client Sample ID: MW-10

CLIENT:

Clough Harbour & Associates

Work Order: Reference:

Vatrano Road /

PO#:

Collection Date: 4/16/2008 080416049 Lab Sample ID: 080416049-006

Matrix: GROUNDWATER

Analyses	Result	PQL (Qual Units	DF	Date Analyzed	
POLYCHLORINATED BIPHE	NYLS E608		_		Analyst: KF	
(Prep: E60	3 - 4/16/2008)					
Aroclor 1016	< 0.064	0.064	μg/L	1	4/17/2008 12:48:23 AM	
Aroclor 1221	< 0.064	0.064	μg/L	1	4/17/2008 12:48:23 AN	
Aroclor 1232	< 0.064	0.064	μg/L	1	4/17/2008 12:48:23 AN	
Aroclor 1242	< 0.064	0.064	µg/L	1	4/17/2008 12:48:23 AN	
Aroclor 1248	< 0.064	0.064	μg/L	1	4/17/2008 12:48:23 AN	
Aroclor 1254	< 0.064	0.064	µg/L	1	4/17/2008 12:48:23 AN	
Aroclor 1260	< 0.064	0.064	µg/L	1	4/17/2008 12:48:23 AM	
ICP METALS E200.7					Analyst: KH	
(Prep: SW3010A	A - 4/17/2008)					
Lead	< 0.005	0.005	mg/L	1	4/25/2008 3:29:00 PM	
MERCURY E245.1					Analyst: SM	
(Prep: E245.1	- 4/18/2008)		,			
Mercury	< 0.0002	0.0002	mg/L	1	4/18/2008	
VOLATILE ORGANICS SW	8260B				Analyst: ML	
Chloromethane	< 10	10	μg/L	1	4/21/2008 8:57:00 PM	
Bromomethane	< 10	10	μg/L	1	4/21/2008 8:57:00 PM	
Vinyl chloride	< 10	10	μg/L	1	4/21/2008 8:57:00 PM	
Chloroethane	< 10	10	μg/L	1	4/21/2008 8:57:00 PM	
Methylene chloride	11 ·	5.0	μg/L	1	4/21/2008 8:57:00 PM	
Acetone	12 -	10	μg/L	1	4/21/2008 8:57:00 PM	
Carbon disulfide	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
1,1-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
1,1-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
trans-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
cis-1,2-Dichloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
Chloroform	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
1,2-Dichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
2-Butanone	< 10	10	μg/L	1	4/21/2008 8:57:00 PM	
1,1,1-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
Carbon tetrachloride	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
Bromodichloromethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
1,2-Dichloropropane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
cis-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM	
Trichloroethene	< 5.0	5.0	µg/L	1	4/21/2008 8:57:00 PM	
Qualifiers: ND - Not Detec	ted at the Reporting Limit		S - Spike Recove	ry outside acc	repted recovery limits	
J - Analyte dete	cted below quanititation limits		R - RPD outside	accepted reco	very limits	
B - Analyte det	ected in the associated Method	Blank	T - Tentitively Identified Compound-Estimated Conc.			
X - Value excee	eds Maximum Contaminant Lev	el	E - Value above	quantitation ra	nge Page 12 o	

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

PO#:

Vatrano Road /

Lab Sample ID: 080416049-006 Matrix: GROUNDWATER

Client Sample ID: MW-10 Collection Date: 4/16/2008

Project#: 7899.1000.1102

VOLATILE ORGANICS SW8260B					Analyst: ML
					Analyst. WE
Dibromochloromethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
1,1,2-Trichloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Benzene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
trans-1,3-Dichloropropene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Bromoform	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
4-Methyl-2-pentanone	< 10	10	μg/L	1	4/21/2008 8:57:00 PM
2-Hexanone	< 10	10	µg/L	1	4/21/2008 8:57:00 PM
Tetrachloroethene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
1,1,2,2-Tetrachloroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Toluene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Chlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Ethylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Styrene	< 5.0	5.0	µg/L	1	4/21/2008 8:57:00 PM
m,p-Xylene	< 5.0	5.0	µg/L	1	4/21/2008 8:57:00 PM
o-Xylene	< 5.0	5.0	µg/L	1	4/21/2008 8:57:00 PM
Methyl tert-butyl ether	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Dichlorodifluoromethane	< 10	10	μg/L	1	4/21/2008 8:57:00 PM
Methyl Acetate	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Cyclohexane	< 10	10	μg/L	1	4/21/2008 8:57:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 8:57:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	4/21/2008 8:57:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 8:57:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 13 of 15

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

Vatrano Road /

PO#:

Collection Date: 4/16/2008

Lab Sample ID: 080416049-007

Client Sample ID: Trip Blanks

E - Value above quantitation range

Page 14 of 15

Matrix: WATER

Project#: 7899.1000.1102

X - Value exceeds Maximum Contaminant Level

Analyses		Result	PQL (Qual Units	DF	Date Analyzed		
VOLATILE O	PRGANICS SW8260B					Analyst: ML		
Chlorometha	ne	< 10	10	μg/L	1	4/21/2008 9:26:00 PM		
Bromometha	ine	< 10	10	µg/L	1	4/21/2008 9:26:00 PM		
Vinyl chloride	e	< 10	10	μg/L	1	4/21/2008 9:26:00 PM		
Chloroethane	e	< 10	10	μg/L	1	4/21/2008 9:26:00 PM		
Methylene ch	nloride	11 :	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Acetone		12 *	10	μg/L	1	4/21/2008 9:26:00 PM		
Carbon disul	fide	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
1,1-Dichloroe	ethene	< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
1,1-Dichloroe	ethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
trans-1,2-Dic	hloroethene	< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
cis-1,2-Dichle	oroethene	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Chloroform		< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
1,2-Dichloroe	ethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
2-Butanone		< 10	10	µg/L	1	4/21/2008 9:26:00 PM		
1,1,1-Trichlor	roethane	< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
Carbon tetrad	chloride	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Bromodichlor	romethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
1,2-Dichlorop	propane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
cis-1,3-Dichlo	oropropene	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Trichloroethe	ene	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Dibromochlo	romethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
1,1,2-Trichlor	roethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Benzene		< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
trans-1,3-Dic	hloropropene	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Bromoform		< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
4-Methyl-2-pe	entanone	< 10	10	µg/L	1	4/21/2008 9:26:00 PM		
2-Hexanone		< 10	10	µg/∟	1	4/21/2008 9:26:00 PM		
Tetrachloroet	thene	< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
1,1,2,2-Tetra	chloroethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Toluene		< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
Chlorobenzer	ne	< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
Ethylbenzene	e	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Styrene		< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
m,p-Xylene		< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM		
o-Xylene		< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Methyl tert-bu	•	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Dichlorodifluo	promethane	< 10	10	μg/L	1	4/21/2008 9:26:00 PM		
Methyl Acetal	te	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM		
Qualifiers:	ND - Not Detected at the Re			•	•	epted recovery limits		
	J - Analyte detected below qu			R - RPD outside	-	-		
	B - Analyte detected in the a	ssociated Method I	Blank	T - Tentitively Identified Compound-Estimated Conc.				

Date: 28-Apr-08

CLIENT:

Clough Harbour & Associates

Work Order:

080416049

Reference:

Vatrano Road /

PO#:

Collection Date: 4/16/2008

Lab Sample ID: 080416049-007

Matrix: WATER

Project#: 7899.1000.1102

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS SW8260B					Analyst: ML
1,1,2-Trichloro-1,2,2-trifluoroethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM
Cyclohexane	< 10	10	μg/L	1	4/21/2008 9:26:00 PM
Trichlorofluoromethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM
Methyl Cyclohexane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM
1,2-Dibromoethane	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM
1,3-Dichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM
Isopropylbenzene	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM
1,2-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM
1,4-Dichlorobenzene	< 5.0	5.0	μg/L	1	4/21/2008 9:26:00 PM
1,2-Dibromo-3-chloropropane	< 10	10	μg/L	1	4/21/2008 9:26:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0	µg/L	1	4/21/2008 9:26:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 15 of 15

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

AES Work Order #

08.411-049

Experience	is	the	80	luti	ion
------------	----	-----	----	------	-----

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:			Address:	_										
Charl	Harbour	A SSOC.	THE h	ringer	Cuch	A16	ny.	1	1%	•				
Send Report To:			Project Name	e (Location)		Sam	plers	s: (N	lames)				
Rido	Hailou 1 1 Hall		44114	no R.	cz/		12.	He	40	11	1.2	fin.		
Client Phone No	:	Client Fax No:		PO N	lumber:		Sam	plers	: (S	ignature) , .		7	
15/8 453	1-8702	(518) 4:	53-477	73 7899./coc.//c2				15	1/	17	14	9:00	Se.	
AES Sample Number		Client ple Identification (Date Sampled	Time A=a.m. P=p.m.	Samp Matrix	e Typ	e gap	Number of Cont's	1		Required	-
1 N	Muc	-2			4/16/08	a 25 (P)	60		λ	4	766	1001		<u>6</u> 0)
	mw	- 3			1	/0.45 P			Ä	4/	Pro	Mr.	ŧ≠\$	
1.05	nie.	4				11:55 P			*	4	PE	(270	1 % 7)
	Min	5				1:20 (0)	-		ڔٚ	4			(a) 1/1.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mw.	9			7	7 30 P	1		Ÿ	4	100		· ·	(, ,)
i sai.		-/0				(2) * (P)	Ų.		4	4			and the second of the second	
1.7	7.15	Blooks			¥	P	£ 47	-	,×.	2	77.	ř ,	1. 1.	· ·
				-		P		+			<i>?</i>	<u> </u>	1.0.	
	····			_		P		_	+			-		
						P		_ <u> </u>	_			· -		
						P			\dashv					
						P A		+						
						A			+				<i>y</i> , . — ·	
Shipment Arrive	d Via:			CC Report	To / Special Inst		marks:							
FedEx UPS	Client AES O	ther:			5.	a Maria		/	. ,	į.				
Turnaround Time 1 Day 2 Day		Normal				A CONTRACT OF THE PROPERTY OF	y, material control of the control o							ļ
Relinquished by:	(Signature)			Received b	y: (Signature)							Date/	Time	
Relinquished by:	(Signature)			Received b	y: (Signature)			•				Date/	Time	
Relinquished by:	(Signature)			Received fo	er Laboratory by		-	•			. 7	Date/	Time	
	TEMPERATURE			Prope	RLY PRESERVED				Ī	RECEIVED	WITHIN	HOLDING	TIMES	
Ami Notes:	nient or Chill	ed	Notes:	Y	N			No	te		Y	Ñ.		
-							-	_		-				

WHITE - Lab Copy

YELLOW - Sampler Copy

P (- Generator Copy

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the **Adirondack Environmental Services, Inc.** are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the Adirondack Environmental Services, Inc. report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and arc for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall **Adirondack Environmental Services, Inc.**, its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services, Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and Adirondack Environmental Services, Inc. is not responsible for the accuracy of this information.
- (g) Payments by credit card are subject to a 3% additional charge.

APPENDIX E
CHAIN OF CUSTODY

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

AES Work Order #

	20					2.
r X	04	110		1	1	7
. ()	10 -4	1) '		1	14

Experience	is ti	he sn	antion
CADELIGING	13 M	IPG JU	JUUVII

A full service analytical research laboratory offering solutions to environmental concerns

Client Name:	<i>y</i>	Address:		- 1 n	11			,	15.16) ~	
Send Report To:	170,0606	Project Name ((Location)	Such p	1600.		Same	/ olers: (Names)	/ <u>}</u>	
Rilat He	11	Vallan					A. Keril / Dia Miller				
Client Phone No:	Client Fax No	:	PO N	umber:			Samp	olers: (Signature) / ^	
518 1453	- 8702 518145	3-4773	78	199,1000	.1163)	,	1.5.	Hend	#/ my	
AES Sample Number	Client Sample Identificatio	n & Location		Date Sampled	Time A=a.m. P=p.m.	, M	atrix	e Type	Number of Cont's	Analysis Required	
001	mw-1			4/15/08	10.25	A) P	اربعا"	×		TIL VOC (8260)	
000	mw-6				11.72	A) P G	w	×	4	EAA	
003	MW-7				#3 C	-	$\overline{}$	×	4	PCB (608) P6 (250.7)	
204	mw-8				ã :0 g		: w	Ą.	4	149 (2 45.1)	
695	Trip Block					A P &	. lar	×	- 1	(Fee all spages)	
	, 					P					
						P				(New Disselved	
						A P				module on FCB's	
		·			l	P				1	
					L -	A P				and the second	
					I -	A P					
					⊢	A P					
					l —	A P					
						A P					
Shipment Arrive	d Via:	С	C Report	To / Special Inst	ructions/	Rema	rks:				
FedEx UPS/	Client AES Other:										
Turnaround Time											
1 Day 2 Day	3 Day */ Normal 5 Day	1								İ	
Relinquished by:		R	eceived b	y: (Signature)						Date/Time	
,- ,- ,-	The ATT										
Relinquished by:	(Signature)	R	eceived b	y: (Signature)						Date/Time	
Relinquished by:	(Signature)	R	eceived (c	or Laboratory by	(), (i)		4. 2			Date/Time	
	TEMPERATURE	ļ		RLY PRESERVED					RECEIVE	D WITHIN HOLDING TIMES	
	bient or Chilled	1	Y	N						Y N	
Notes:		Notes: _						Note	s:		

WHITE - Lab Copy

YELLOW - Sampler Copy

PINK - Generator Copy

314 North Pearl Street Albany, New York 12207 518-434-4546/434-0891 FAX

CHAIN OF CUSTODY RECORD

AES Work

der#					
	· Section	Sec. 1 .		. () ;	
	11.	. 1 :	1	Y	4

A full service analytical research laboratory offering solution

Experience is	the solution	Toll Scr vice arial	y trout research lax	oratory on	ening s	SOIGHO	115 10 61	nvironmental concerns
Client Name:		Address:		4			,	
Clough	Haibers + Assoc.	HK Win	ner Click	Alla	10.	NI	<i></i> .	
Send Report To:	Hailbert Assoc.	Project Name (Lo	(Cation)		Sam	plers: (1	Names)	
Redu	. , 7 i.; , 1 (CHOOLES - MO	19119no	Kel		1.	Hen	<u> </u>	Jim Many
Client Phone No	chem rax no	: 160 i	PU Number:		Sam	piers: (Signature	/ 4 0
15/8/45	7 6702 (518)	133-4275	1399.1000	1/102		15 K	1.17	1927
AES	Client	,	Date	Time A≃a.m.	Sampi	E lype	Number	1 /
Sample Number	Sample Identification	n & Location	Sampled		Matrix	3 5	Cont's	Analysis Required
6.7.7	MW-2		4/16/03		Fler	X	4	Tel merce 8260)
	mw-3		:	(A) P		*	4	Pre (1722 608)
1.03	1-14- Y			!/:55 P	Ì	7	4	Ph (F/x 227)
()	m4-5			120 P		۲,	4	11. (Can 200.1)
1,12,14,	mw-9			7 30 P		۶	4	(1/2 1 1 1/2)
<i>21</i>	MW-10			(2 3° P)	4	ر <u>ا</u> حا	4	· · · · · · · · · · · · · · · · · · ·
)	Tip Blacks			 	[10]	1	2	The Broke His
	*			A P				Committee of the
				A P				*
				P		-		
				P				
				A P			ļ ļ	
				A P		\perp		
				P				
Shipment Arrive	ed Via:	CC	Report To / Special Ins	structions/Rer	narks:			
FedEx UPS Turnaround Time 1 Day 2 Day	Client AES Other:			65/64 / 62	الدورو المحمد الدورورورورورورورورورورورورورورورورورورور	n il n Tre	I .	
Relinquished by:		Rec	eived by: (Signature)					Date/Time
11. 1	K. J. 111						į	i
Relinguished by:	(Signature)	Reco	eived by: (Signature)		_	-		Date/Time
Relinquished by:	(Signature)	Rece	eived for Laboratory b	y: ~ · · · ·				Date/Time
	Temperature	<u> </u>	PROPERLY PRESERVED	·)			RECEIVE	D WITHIN HOLDING TIMES
	bient or Chilled	Notes	Y , N			Note		Y N
Notes:		Notes:				14016		

WHITE - Lab Copy

YELLOW - Sampler Copy

P (- Generator Copy