Final Feasibility Study Report for Former Adirondack Steel Site Operable Unit OU-3 Town of Colonie Albany County, New York

Site Number 4-01-039

May 2014

Prepared for: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway Albany, New York 12233

> Prepared by: ECOLOGY AND ENVIRONMENT ENGINEERING, P.C. 368 Pleasant View Drive Lancaster, New York 14086

©2014 Ecology and Environment Engineering, P.C.

Final Feasibility Study Report for Former Adirondack Steel Site Operable Unit OU-3 Town of Colonie Albany County, New York

Site Number 4-01-039

May 2014

Prepared for: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway Albany, New York 12233

> Prepared by: ECOLOGY AND ENVIRONMENT ENGINEERING, P.C. 368 Pleasant View Drive Lancaster, New York 14086

I, Gerald A. Strobel, certify that I am currently a NYS registered professional engineer and that this Feasibility Study was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that activities were performed in accordance with the DER-approved *scope of work* and any DER-approved modifications.

able of Contents

Section

Page

1	Intr	roduction1	-1
	1.1	Purpose and Organization	
	1.2	Background Information	
		1.2.1 Site Description and Surrounding Land Uses	
		1.2.2 Site History	
		1.2.3 Site Geology and Hydrology	
		1.2.4 Nature and Extent of Contamination	
		1.2.5 Contamination Fate and Transport	
		1.2.6 Qualitative Human Health Risk Evaluation	
2	lde	entification of Standards, Criteria, and Guidelines and	
-		medial Action Objectives	2-1
	2.1	Introduction	
	2.2	Potentially Applicable Standards, Criteria, and Guidelines (SCGs) and	
		Other Criteria	2-2
		2.2.1 Chemical-Specific SCGs	
		2.2.2 Location-Specific SCGs	
		2.2.3 Action-Specific SCGs	2-2
	2.3	Remedial Action Objectives	
	2.4	Cleanup Objectives and Volume of Impacted Material	2-2
		2.4.1 Selection of Soil Cleanup Objectives	-12
		2.4.2 Selection of Contaminants of Concern	-15
		2.4.3 Determination of Contaminated Soil Volumes	-15
3	lde	entification and Screening of Remedial Technologies3	3-1
•	3.1	Introduction	
	3.2	General Response Actions	
	•	3.2.1 Criteria for Preliminary Screening	
	3.3	Identification of Remedial Technologies	
		3.3.1 No Action	
		3.3.2 Institutional Controls (ICs) and Long-Term Monitoring (LTM)	
		3.3.3 On- and Off-Site Disposal	
		3.3.3.1 On-Site Disposal	
		3.3.3.2 Off-Site Disposal	
		3.3.4 In Situ Treatment.	
		3.3.4.1 Thermal Treatment	

Section

Page

			3.3.4.2 Physical/Chemical Treatment	3-11
			3.3.4.3 Biological Treatment	
		3.3.5	Ex Situ Treatment	3-14
			3.3.5.1 Thermal Treatment	3-14
			3.3.5.2 Physical/Chemical Treatment	3-17
4	lde	ntifica	ation of Alternatives	4-1
-	4.1		native No. 1: No Action	
	4.2		native No. 2: No Further Action with Site Management	
	4.3		hative No. 3: Excavation and Off-Site Disposal	
	4.4		hative No. 4: Excavation and On-Site Treatment by High	
			erature Thermal Desorption	4-1
	4.5		native 5: In Situ Solidification	
	4.6		native 6: Excavation and Off-Site Disposal of PCB-Contaminated	
			ediment Exceeding Restricted-Industrial SCOs	4-2
F	Def		Analysis of Alternatives	E 4
5	Det 5.1		Analysis of Alternatives	
	5.1 5.2		dial Alternatives for OU-3	
	5.2	5.2.1		
		J.2.1	5.2.1.1 Detailed Description	
			5.2.1.2 Detailed Evaluation of Criteria	
		5.2.2	Alternative No. 2: No Further Action with Site Management	
		5.2.2	5.2.2.1 Detailed Description	
			5.2.2.2 Detailed Evaluation of Criteria	
		5.2.3	Alternative No. 3: Excavation and Off-Site Disposal	
		0.2.0	5.2.3.1 Detailed Description	
			5.2.3.2 Detailed Evaluation of Criteria	
		5.2.4	Alternative No. 4: Excavation and On-Site Treatment by High	
			Temperature Thermal Desorption	5-12
			5.2.4.1 Detailed Description	
			5.2.4.2 Detailed Evaluation of Criteria	
		5.2.5	Alternative No. 5: In Situ Solidification/Stabilization	
			5.2.5.1 Detailed Description	5-17
			5.2.5.2 Detailed Evaluation of Criteria	
		5.2.6	Alternative 6: Excavation and Off-Site Disposal of PCB-	
			Contaminated Soil/Sediment Based on Restricted-Industrial	
			SCOs	5-22
			5.2.6.1 Detailed Description	5-22
			5.2.6.2 Detailed Evaluation of Criteria	5-26
	5.3	Comp	arative Evaluation of Alternatives	5-28
6	Ref	erenc	es	6-1

ist of Tables

Table		Page
2-1	Location-Specific SCGs, Adirondack Steel OU-3, Colonie, New York	2-3
2-2	Action-Specific SCGs, Adirondack Steel OU-3, Colonie, New York	2-5
2-3	Selected Cleanup Goals for Soils/Sediment – Adirondack Steel OU-3, Colonie, New York	2-13
3-1	Screening Summary of Soil Remedial Technologies	3-3
5-1	Cost Estimate for Alternative 2 – Institutional Controls with Long- Term Management.	5-31
5-2a	Cost Estimate for Excavation and Off-Site Disposal, Alternative 3, Part 375 Restricted-Commercial SCOs	5-32
5-2b	Cost Estimate for Excavation and Off-Site Disposal, Alternative 3, CP-51 Restricted-Commercial SCOs	5-34
5-3a	Cost Estimate for Excavation and On-Site Thermal Treatment, Alternative 4, Part 375 Restricted-Commercial SCOs	5-36
5-3b	Cost Estimate for Excavation and On-Site Thermal Treatment, Alternative 4, CP-51 Restricted-Commercial SCOs	5-39
5-4a	Cost Estimate for Alternative 5 – In Situ PCB Solidification, Off-Site Disposal of TSCA Waste, Part 375 Restricted-Commercial SCOs	5-42
5-4b	Cost Estimate for Alternative 5 – In Situ PCB Solidification, Off-Site Disposal of TSCA Waste, CP-51 Restricted-Commercial SCOs	5-44
5-5	Cost Estimate for Excavation and Off-Site Disposal, Alternative 6, Part 375 Restricted-Industrial SCOs	5-46
5-6	Summary of Total Present Values of Remedial Alternatives at Adirondack Steel OU-3 North Drainageway under the Two Proposed Soil Cleanup Objectives for PCBs	5-48
	-	

ist of Figures

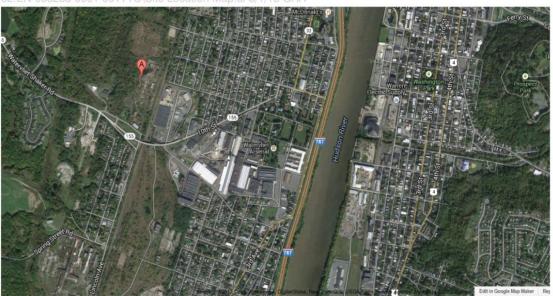
Figure		Page
1-1	Site Location Map, Adirondack Steel OU-3, Colonie, New York	1-2
1-2	Operable Units, Former Adirondack Steel Site Feasibility Study, Colonie, New York	1-3
1-3	PCB Concentrations in and Adjacent to Drainageways, Adirondack Steel OU- 3, Colonie, New York	1-11
5-1	Excavation and Off-site Disposal, Adirondack Steel OU-3, Former Adirondack Steel Site, Colonie, New York	5-7
5-2	Excavation and High Temperature Thermal Desorption, Adirondack Steel OU-3, Former Adirondack Steel Site, Colonie, New York	5-13
5-3	In Situ Solidification/Stabilization, Adirondack Steel OU-3, Former Adirondack Steel Site, Colonie, New York	5-19
5-4	Excavation and Off-site Disposal of PCB-Contaminated Soils to Restricted- Industrial SCOs, Former Adirondack Steel Site, Colonie, New York	5-23

ist of Abbreviations and Acronyms

APEG	alkaline polyethylene glycol
amsl	above mean sea level
BCD	base-catalyzed decomposition
BEST	basic extractive sludge treatment
bgs	below ground surface
BUD	beneficial use determination
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
cm/sec	centimeters per second
COC	contaminant of concern
COPC	chemicals of potential concern
cy	cubic yards
DER	(New York State) Division of Environmental Remediation
EC	engineering control
EEEPC	Ecology and Environment Engineering, P.C.
EPA	United States Environmental Protection Agency
ERA	ecological risk assessment
ESMI	Environmental Soil Management, Inc.
FS	Feasibility Study
HTTD	high-temperature thermal desorption
IC	institutional control
IRM	interim remedial measure
ISTD	in situ thermal desorption
ISV	in situ vitrification
LTM	long-term monitoring
LTTD	low-temperature thermal desorption
mg/kg	milligrams per kilogram
NCP	National Contingency Plan

List of Abbreviations and Acronyms (cont.)

NFESC	Naval Facilities Engineering Service Center
NYCRR	New York Codes, Rules, and Regulations
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
O&M	operation and monitoring
OM&M	operation, monitoring, and maintenance
OSHA	Occupational Safety and Health Administration/Act
OU	operable unit
РАН	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PCE	perchloroethylene
PPE	personal protective equipment
ppm	parts per million
RAO	remedial action objective
RCC	Resource Conservation Company
RCRA	Resource Conservation and Recovery Act
RI	remedial investigation
ROD	Record of Decision
ROW	right-of way
SCG	standards, criteria, and guidelines
SITE	Superfund Innovative Technology Evaluation
SPDES	state pollutant discharge elimination system
SVE	soil vapor extraction
SVOC	semi-volatile organic compound
TAGM	Technical Administrative Guidance Memorandum
TCE	trichloroethylene
TCLP	toxicity characteristic leaching procedure
TOGS	Technical and Operational Guidance Series
TSCA	Toxic Substance Control Act
U.S.C.	United States Code
VOC	volatile organic compound


1

Introduction

1.1 Purpose and Organization

Ecology and Environment Engineering, P.C. (EEEPC) has prepared this Feasibility Study (FS) at the Former Adirondack Steel Site (NYSDEC Site 4-01-039) for the Division of Environmental Remediation (DER) in the New York State Department of Environmental Conservation (NYSDEC). This FS was conducted under the State Superfund Standby Contract Work Assignment No. D007617-24. The project site is located in the Town of Colonie, Albany County, NY, at 191, 225, 227, and 229 Watervliet-Shaker Road at the corner of Lincoln Avenue and Watervliet-Shaker Road (see Figure 1-1). It is the location of an abandoned steel mill called the "Adirondack Steel Casting Co. Inc." This FS was developed based on information in the United States Environmental Protection Agency's (EPA) Guidance for conducting Remedial Investigations and Feasibility Studies under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) (EPA 540/G-89/004); NYSDEC's Final Commissioner Policy No. 51 (CP-51), NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) 4030 – Selection of Remedial Actions at Inactive Hazardous Waste Sites; NYSDEC's DER-10 - Technical Guidance for Site Investigation and Remediation; and 6 New York State Codes, Rules, and Regulations (NYCRR) Part 375 - Environmental Remediation Programs.

The site contains three operable units: OU-1 (0.4 acres on-site), OU-2 (2.1 acres off-site), and OU-3 (3.8 acres on-site) (see Figure 1-2). A remedial investigation (RI) was completed during three field efforts by EEEPC from 2005 to 2007 for OU-1 and OU-3. The RI characterized the nature and extent of contamination at the Former Adirondack Steel site, as described in the *Final Remedial Investiga-tion Report for the Former Adirondack Steel Site, Colonie, New York* (EEEPC 2008a). In 2008, EEEPC further assessed the lateral extent of polychlorinated biphenyls (PCB) contamination in sediment that was identified during the RI. Based on results of these assessments, an interim remedial measure (IRM) was conducted to excavate PCB-contaminated soil in OU-1 and OU-3, as described in the *Final Interim Remedial Measure Report for the Former Adirondack Steel Site, Colonie, New York* (EEEPC 2010b). In March 2010, NYSDEC completed the Record of Decision (ROD) for OU-1 (NYSDEC 2010b).

2:EN-003285-0001-001TTO\Site Location Map.ai-8/1/13-GRA

SOURCE: Google 2013

Figure 1-1 Site Location Map, Adirondack Steel OU-3, Colonie, New York

Additional sampling in 2008 was also performed to evaluate the extent of PCB contamination in the OU-2 railroad ditch and presented in the *Draft Remedial Investigation Addendum for April 2008 Fieldwork, Former Adirondack Steel Site, Colonie, New York* (EEEPC 2008a). In November and December 2009, EEEPC completed RI supplemental sediment and soil sampling field activities for the OU-2 railroad ditch and OU-3 north drainageway (see Figure 1-2). Results of the investigation indicated that PCBs were pervasive throughout the drainageways in subsurface soils (EEEPC 2010a).

In July and August 2011, the EPA conducted additional PCB delineation sampling in the drainageways of OU-2 and OU-3. In September 2013, a supplemental RI was conducted to supplement previous soil data collected within OU-3 to determine if data gaps existed for potential soil contamination, to better define the nature and extent of existing soil contamination in OU-3, and to remove and dispose of the debris pile located in OU-3 and collect confirmation soil samples beneath it.

This FS describes the technologies proposed and evaluated in order to address the soil and sediment contamination identified for OU-3 on-site in the 2008 RI and for the OU-3 North Drainageway in the RI Investigation Report for Supplemental Sediment and Soil Sampling completed at the Former Adirondack Steel site (EEEPC 2008a, 2010a) and in the Supplemental RI (2014).

SOURCE: NYSDEC 2013

New York State Department of Environmental Conservation

Division of **Environmental Remediation**

> Former Adirondack Steel

DEC Site No.: 4-01-039

Map Details

Created in ArcMap 10.1 Date of Last Revision: 01.23.2013

UNAUTHORIZED DUPLICATION IS A VIOLATION OF APPLICABLE LAWS

North American Datum 1983 UTM Zone 18

Figure 1-2 **Operable Units** Former Adirondack Steel Site Feasibility Study Colonie, New York This FS report is divided into six sections.

- <u>Section 1</u> describes the purpose of the study and presents site background information.
- Section 2 presents the process used to identify the appropriate standards, criteria, and guidelines (SCG) values applicable to contaminants found at the site and provides insight into the development of appropriate remedial action objectives (RAOs) for the protection of human health and the environment.
- <u>Section 3</u> evaluates selected remedial technologies deemed applicable to the remediation of contaminants present at the site and the development of remedial alternatives to address that contamination.
- <u>Section 4</u> discusses the combination of various remedial technologies to form appropriate remedial alternatives and provides a detailed description of each of the proposed alternatives.
- Section 5 presents a detailed and comparative analysis of proposed remedial alternatives along with the supporting rationale and preliminary cost estimates for each proposed remedy.
- <u>Section 6</u> lists the references cited in this report.

1.2 Background Information

1.2.1 Site Description and Surrounding Land Uses

The 39-acre Adirondack Steel property is located in a mixed industrial-residential area bounded on the south by Watervliet-Shaker Road, Carioto Fruit Co., Passonno Corporation, and Benben, Inc.; on the east by Canadian Pacific (CP) Railroad and Enterprise Venture Management; and on the north and west by undeveloped and residential properties (see Figure 1-1).

The northeast end of the property consists of an approximately 9-acre landfill. Just south of the landfill is the former main operation and manufacturing area of Adirondack Steel. At present, all of the large buildings have been demolished, with about 0.4-acres of demolition debris (OU-1) remaining on the site.

Running along the eastern boundary of the main site (off-site) is a drainage ditch immediately west of the CP Railway right-of-way (ROW) (OU-2) consisting of a concrete- and rip-rap-lined swale extending the full length of the site. For remedial purposes, the ditch begins at a point to the southeast of Lincoln Avenue/Watervliet Shaker Road and flows south at this point. The water in the ditch is stagnant at some locations but generally flows north starting at the confluence of the stream with the railroad ditch (at the cement plastered rip-rap structure). From this point, it, drains in a northerly direction to where it extends below Barker Lane, then to a point east of a residential area near Early Drive where it turns east, crossing below the CP ROW. The ditch contains PCB- contaminated sediments, with higher levels at its intersection with a natural creek type drainageway west of the tracks, and is approximately 2.1 acres in size. The balance of the site (OU-3) comprises building foundations and debris, a clean fill area, a recyclable material stockpile, and brownfield areas with the previously noted a natural creek type drainageway, which also contains PCB-contaminated sediment.

1.2.2 Site History

The Adirondack Steel site operated as a steel casting foundry from 1918 until 1987. The majority of the site buildings were in place by the early 1950s, which is the date of the earliest available historical documentation, with the following exceptions: the garage on the west side of the property was built between 1951 and 1955; the northern section of the westernmost pattern storage building near the site entrance was built between 1955 and 1962; the building to the west of the fuel oil tanks on the east-central side of the site was constructed between 1974 and 1986; and the south x-ray building was constructed between 1986 and 1995.

Based on historical aerial photos, most of the site to the west of the landfill and main manufacturing areas had been used for agriculture or was forested, except for Carioto Fruit (constructed sometime between 1952 and 1974 and Passonno Corporation (constructed in approximately 1969). Through the 1990s, the Adirondack Steel property was also known as the Adirondack Industrial Park. Various buildings and parcels were leased to businesses including asphalt paving companies, auto repair facilities, solid waste haulers, and scrap dealers. In addition to the disposal of significant quantities of construction and demolition debris at the site, there was significant potential for the disposal of hazardous wastes as a result of some of these companies' operations.

The 9-acre landfill on the northeast end of the property received approximately 12,400 tons per year (from 1918 to 1988, for an approximate total of 868,000 tons) of spent foundry and core sands, furnace slag and refractories, and dust collected during furnace and slagging operations. These foundry and core sands comprise the majority (about 80%) of the yearly tonnage of material disposed of at the landfill. Some hazardous materials were alleged to have been disposed of at the landfill, although significant amounts of hazardous substances have not been found.

Most, if not all, of the transformers in the outdoor substations were insulated with PCB-containing dielectric fluids. The interior substation transformers, which also contained PCB-contaminated dielectric fluid, were removed from the site in 1988.

Sometime after the end of foundry operations, approximately 3,000 gallons of dielectric fluid containing PCBs were drained from electrical transformers onto the ground around the North and South Power Stations. These releases resulted in contaminating the soils in three locations, totaling less than 0.5 acres. Sediments and soil samples collected along the banks of the railroad ditch to the east of the Adirondack Steel property (OU-2) indicate that the ditch soil is contaminated with

PCBs (up to 4.2 parts per million [ppm]) originally released from OU-1(EDR 2005).

NYSDEC listed the site as an inactive hazardous waste disposal site in 1994 and defined the 0.5-acre north switch yard at the location of the northernmost transformer as Class 2: causing or presenting a significant threat to the public health or environment and requiring action.

1.2.3 Site Geology and Hydrology

The site lies in the late Ordovician-age Snake Hill Formation, which consists primarily of shales folded and faulted, steeply dipping, and highly fractured. The shales are black and gray, with smaller masses of reddish, purplish, or greenish shales. Occurring in the shales are occasional thinner innerbeds of highly fractured sandstone, siltstone, and/or limestone (Fickies 1982).

The thickness of the overburden/fill across the area of the site varies greatly from east to west. In the former main manufacturing area, the overburden/fill is thickest on the east side of the site up to 28 feet thick. On the west side of the site, the overburden is as little as 0.4 feet thick. Fill materials are found across the site but are most predominant and thickest in the northeast corner of the main manufacturing area (potentially up to 13.5 feet thick). The fill materials were typically dark brown or black fine sands but also contained orange, yellow, and tan stains; tan and yellow fine sand size material; tan, orange, and yellow brick fragments; and a green homogenous solid. Native materials underlying the fill typically consist of gray or brown clays and fine sands. Bedrock consists of dark gray shale. The top of bedrock elevation varies across the site, ranging from up to 57 feet above mean sea level (amsl) on the western side of the main manufacturing area to down to 17 feet amsl on the eastern side of the site (EEEPC 2008a).

Site groundwater sampling was conducted on December 13, 2005 and April 3, 2006. The groundwater table was present in OU-3 wells at depths ranging from 3 to 7 feet below ground surface (bgs). Groundwater contour patterns were similar in both rounds, so only one round was contoured. Groundwater at the site generally flows toward the east or east-northeast in the direction of the Hudson River. The horizontal gradient was 0.02 to 0.04 (shallower wells) feet per foot in December 2005 (EEEPC 2008a). On the eastern side of the site, the vertical gradients were downward at moderate to high gradients (23% to 48%). This indicates movement of groundwater from the overburden down into the bedrock. On the western side of the site, vertical gradients are slightly upward, indicating upward flow at a very low gradient between the bedrock and overburden (or overburden/bedrock transition) (EEEPC 2010b).

Calculated hydraulic conductivities ranged from 3.8×10^{-4} centimeters per second (cm/sec) to 3.70×10^{-2} cm/sec. Generally, the wells on the west side of the site had lower hydraulic conductivities than the wells on the east side of the site. The hydraulic conductivities calculated for the bedrock wells are higher than the typi-

cal values for shale, which probably reflects the weathered and/or fractured nature of the shale. The overburden/interface wells are set in sands, clays, and weathered shales. The calculated hydraulic conductivities are typical of sands and gravels (Domenico and Schwartz 1990).

Terrain within OU-3 is characterized by east-west trending hills and valleys, with some of the valleys serving as intermittent surface water drainage. One of these drainages flows more consistently. This natural stream-type drainageway flowing along the south edge of the landfill discharges into a north-south railroad ditch (OU-2) at the eastern Adirondack Steel property boundary. Surface runoff from the site enters the ditch adjacent to the rail line along its length. A cement plastered rip-rap structure is at the confluence of the stream with the railroad ditch. Water in this ditch is stagnant at some locations but generally flows north from this point. At Watervliet-Shaker Road, the ditch flows south.

1.2.4 Nature and Extent of Contamination

This FS focuses on alternatives for the remediation of PCB-contaminated soils and sediments located in OU-3, which includes the northern drainageway. The results of analyses of samples of surface water, surface soil, drainageway soils, subsurface soil, and groundwater collected during the remedial investigations at the site (EEEPC 2008a, 2010a, 2014) identified dielectric fluid containing PCBs drained from electrical transformers onto the ground around the northern transformer pad and sections of the floor of the foundry building as the on-site source area for PCB contamination. The predominant Aroclor detected in ditch sediment samples was Aroclor 1260, with Aroclor 1242 present in a limited area.

The Supplemental RI preliminarily compared sample analytical results with screening criteria based on New York State Department of Environmental Conservation, 6 NYCRR 375-6.8(b), Restricted Use Soil Cleanup Objectives. Soil Cleanup Objectives are addressed in Section 2. Analytical results that exceeded their respective screening criteria are included in the Supplemental RI (EEEPC 2014) and are summarized below:

- Total PCB concentrations exceeded the screening criteria in 21 samples from 13 locations. Two of these locations (SB-10 and SB-11) had three samples that also exceeded the Toxic Substances Control Act (TSCA) hazardous waste level of 50 milligrams per kilogram (mg/kg). SB-10 and SB-11 are located in the northeast portion of OU-3, south of the drainageway (see Figure 1-3).
- Seven locations (SB-2, SB-11, SB-13, SB-15, SB-16, SB-17, and SS-3) contained two inorganics (barium and cadmium) that were detected in eight samples at concentrations exceeding the screening criteria (see Figure 1-3).
- Seven locations (SB-2, SB-7, SB-8, SB-10, SB-13, SB-17, and SS-2) contained SVOC (benzo[a]pyrene) that were detected in 10 samples at concentrations exceeding the screening criteria (see Figure 1-3).

• Three locations (SB-11, SB-17, and SS-2) contained a pesticide (dieldrin) at a concentration exceeding the screening criteria (see Figure 1-3).

PCBs also were detected in several surface water samples collected during the RI; however, groundwater monitoring data demonstrate that groundwater is not being significantly impacted by this site. Two rounds of groundwater samples were collected from five groundwater monitoring wells installed across the site, and PCBs were not detected in the groundwater samples. As a result, groundwater remediation is not addressed in this FS. Because the RI does note Aroclor 1260 was detected above laboratory reporting limits in surface water samples SW-9 and SW-10, which are located in the ditch adjacent to the rail line, surface water collected during the remedial effort will be treated as PCB-contaminated waste and will be pumped to an on-site water treatment system for disposal.

Total PCBs are considered the primary contaminant of concern (COC) at the site because most of the detected contamination at the site was PCBs. This FS will focus on PCB remediation.

1.2.5 Contamination Fate and Transport

PCBs in soil/sediment can be transported by surface water flow. The site drainageways collect runoff during storm events, and runoff from the landfill accumulates in areas in the northwestern and northern edges of the landfill (OU-1 and OU-3). The north drainageway discharges to the railroad ditch (OU-2), which, in turn discharges to the storm sewer system. The detection of site-related contaminants in site surface water and downgradient surface water by previous investigations (EEEPC 2008a) indicates contaminants may have migrated off-site into these waterways. PCBs are pervasive throughout the drainageways in subsurface soil samples. The highest concentrations were mostly found at the intersection of the north drainageway and the railroad drainageway (EEEPC 2010a). To a lesser extent, PCBs in soil can be transported by construction activity.

1.2.6 Qualitative Human Health Risk Evaluation

The former Adirondack Steel site is located in an industrial area bounded by industrial properties on the south and east and undeveloped or residential properties on the north and west. The only buildings apparently in current use are on the southern end of the property, where several tenants occupy site buildings for industrial use. The town of Colonie's Department of Public Works, Division of Latham Water, which obtains its water from the Mohawk River, the Stony Creek Reservoir, and five wells on Onderdonk Avenue, provides the water supply for the town of Colonie. All of these water sources are more than 4 miles from the site. Future use of the site is expected to change to commercial uses for perpetuity.

A qualitative human health exposure/risk evaluation was conducted for the RI prepared by EEEPC in 2008 and during the IRM in 2010 to identify areas of concern and compounds of concern, evaluate actual or potential exposure pathways

and receptors, and identify how exposure pathways might be eliminated or mitigated in accordance with the *DER-10 Technical Guidance for Site Investigation and Remediation* (NYSDEC 2010c). The RI presented results of extensive surface soil, subsurface soil, sediment, surface water, and groundwater investigations and evaluations of NYSDEC standards developed to be protective of human and ecological receptors. As a result, the evaluations and recommendations contained in the RI are considered to be supplemental to the scope of this FS and are therefore not reproduced herein in substantial detail.

In summary, the RI found that site contamination poses a potential health risk to human receptors when a complete exposure pathway exists and when the magnitude of exposure is sufficient to cause adverse health effects. At the Adirondack Steel site, the major chemicals of potential concern (COPCs) identified in the sampled environmental media were polycyclic aromatic hydrocarbons (PAHs), PCBs, and metals. Under existing site conditions, site workers could potentially be exposed to contaminants through direct contact with soil and sediment contaminants. While current potential exposure to contaminants in soils and sediment are expected to be relatively brief and may be mitigated by appropriate monitoring and engineering controls, all site workers will be required to wear appropriate levels of personal protective equipment (PPE) to protect them against health impacts associated with handling of contaminated materials. Trespassers also could be exposed to contaminants through direct contact with soil and sediment contaminants. Institutional and engineering controls may be required to mitigate the potential for exposure. Exposure to contaminated surface water will be minimal and would not significantly contribute to the overall health risk posed to workers or visitors at the site. The groundwater exposure pathway is incomplete and does not pose a threat to users.

USEPA PCB Exceedances

SB-001-0012-001	SB-015-2436-001	SB-040-0012-001	SB-053-0012-001	SB-065-0012-001	SB-085-0012-001	SB-114-0012-001	Dup-SB-129-0012-001*	SB-138-1224-001	SB-149-0012-001		SB-17-OU3-2 to 4
2.06 mg/kg	4 mg/kg	145 mg/kg	1.27 mg/kg	55.5 mg/kg	2.08 mg/kg	4.13 mg/kg	57.9 mg/kg	6.64 mg/kg	1,590 mg/kg		23 mg/kg
SB-001-1224-001	SB-015-3648-001	SB-040-2436-001	1.27 Hig/kg	SB-065-1224-001	SB-085-1224-001	4.15 mg/kg	57.9 Hig/kg	0.04 1119/Kg	SB-149-1224-001		SB-17-OU3-4 to 8
1.59 mg/kg	1.74 mg/kg	119 mg/kg	SB-054-0012-001	218 mg/kg	5.59 mg/kg	SB-115-0012-001	SB-130-0012-001	SB-139-0012-001	37.4 mg/kg		3.6 mg/kg
1.09 Hig/kg	1.74 mg/kg	SB-040-3648-001	24.1 mg/kg	SB-065-2436-001	5.59 mg/kg	9.5 mg/kg	30.3 mg/kg	5.07 mg/kg	57.4 mg/kg	1	5.0 mg/kg
SB-002-0012-001	SB-018-0012-001	31.2 mg/kg	SB-054-2436-001	145 mg/kg	SB-086-0012-001			SB-139-1224-001	SB-150-2436-001	40	SS-3-0U3-1
3.83 mg/kg	1.54 mg/kg	SB-040-4860-001	15.6 mg/kg	SB-065-3648-001	8.28 mg/kg	SB-116-0012-001	SB-131-0012-001	15.2 mg/kg	1.93 mg/kg	1	1.8 mg/kg
SB-002-1224-001		1.6 mg/kg	SB-054-3648-001	16.7 mg/kg		14.6 mg/kg	36 mg/kg	SB-139-2436-001			
2.69 mg/kg	SB-019-1224-001	1.0 mg/kg	18.5 mg/kg	TO.7 Hig/kg	SB-087-0012-001	SB-117-0012-001	SB-132-0012-001	4.66 mg/kg	SB-151-0012-001		SS-2-OU3-1
	5.58 mg/kg	SB-043-0012-001		SB-068-0012-001	19 mg/kg	4.01 mg/kg	13.1 mg/kg	SB-139-3648-001	40.3 mg/kg		23 mg/kg
SB-0SB-003-0012-001	SB-020-1224-001	2.24 mg/kg	Dup-SB-055-0012-001*	1.3 mg/kg	SB-088-0012-001	1002012-0210-022	CONTRACTOR DESCRIPTION	2.27 mg/kg	SB-152-0012-001		SB-13-OU3-0.6
1.14 mg/kg	1.07 mg/kg	SP 044 4004 004	130 mg/kg	CD 070 2040 004	16.9 mg/kg	SB-118-0012-001	SB-133-2436-001	CD 440 0040 004	8.98 mg/kg		3.9 mg/kg
SB-003-1224-001		SB-044-1224-001	SB-055-1224-001	SB-070-3648-001		21.2 mg/kg	9.59 mg/kg	SB-140-0012-001			SB-13-OU3-2 to 4
3.02 mg/kg	SB-025-0012-001	2.37 mg/kg	186 mg/kg	5.05 mg/kg	SB-089-0012-001	SB-119-0012-001	SB-133-3648-001	4.35 mg/kg	SB-155-0012-001		18 mg/kg
SB-004-0012-001	1.44 mg/kg	SB-044-2436-001	SB-055-2436-001	SB-074-0012-001	33.8 mg/kg	18.5 mg/kg	10.9 mg/kg	SB-140-1224-001	1.88 mg/kg		SB-13-OU3-4 to 8
1.28 mg/kg	SB-025-2436-001	11.6 mg/kg SB-044-3648-001	99.4 mg/kg	2.04 mg/kg	SB-089-1224-001	10.0 mg/kg	SB-134-0012-001	1.5 mg/kg	SB-155-1224-001		3.8 mg/kg
SB-004-3648-001	1.44 mg/kg		SB-055-3648-001	the second second	12.7 mg/kg	SB-120-0012-001	20.4 mg/kg	SB-142-0012-001	1.53 mg/kg		
2.07 mg/kg	SB-026-3648-001	1.63 mg/kg	21.7 mg/kg	SB-075-3648-001	SB-089-2436-001	14.5 mg/kg	SB-134-1224-001	1.79 mg/kg	SB-156-2436-001		SB-12-OU3-0.6
	1.31 mg/kg	SB-045-2436-001	SB-059-2436-001	13.3 mg/kg	40.7 mg/kg	SB-121-0012-001	19.7 mg/kg		20 mg/kg		34 mg/kg
SB-005-0012-001		78.6 mg/kg	12.9 mg/kg	SB-078-0012-001	SB-089-3648-001		SB-134-2436-001	SB-143-1224-001	SB-156-3648-001		SB-12-OU3-2 to 4
5.11 mg/kg	SB-030-3648-001	SB-045-3648-001	SB-059-3648-001	33.8 mg/kg	2.21 mg/kg	43.1 mg/kg	8.15 mg/kg	1.98 mg/kg	19.7 mg/kg		2.2 mg/kg
SB-005-1224-001	7.04 mg/kg	15.3 mg/kg	4.09 mg/kg	CONTRACTOR OF THE OWNER	SB-090-0012-001	SB-122-0012-001	SB-134-3648-001	SB-144-0012-001			SB-11-OU3-0.6
4.68 mg/kg	SB-033-0012-001	SB-048-0012-001		SB-080-0012-001	10.2 mg/kg	37.6 mg/kg	7.87 mg/kg	1.08 mg/kg	SB-157-0012-001		530 mg/kg
SB-007-0012-001	8.99 mg/kg		SB-060-0012-001	2.09 mg/kg	SB-090-1224-001		100124	SB-144-1224-001	16.7 mg/kg		SB-11-OU3-2 to 4
1.01 mg/kg	0.00 mg/kg	2.25 mg/kg	51.6 mg/kg SB-060-1224-001	SB-080-1224-001	54.2 mg/kg	SB-123-0012-001	SB-135-0012-001	43.7 mg/kg	SB-157-1224-001		2,400 mg/kg
SB-007-1224-001	SB-035-0012-001	SB-049-0012-001	140 mg/kg	7.07 mg/kg	SB-090-2436-001	1.71 mg/kg	12.3 mg/kg	SB-144-3648-001	205 mg/kg		
1.14 mg/kg	458 mg/kg	30.7 mg/kg	SB-060-2436-001	SB-081-0012-001	87.8 mg/kg	SB-124-0012-001	SB-135-1224-001	9.08 mg/kg	SB-157-2436-001		
	SB-035-1224-001	SB-049-1224-001	78.5 mg/kg	1.82 mg/kg	SB-090-3648-001	2.57 mg/kg	3.87 mg/kg		4.29 mg/kg		
SB-009-0012-001	49.9 mg/kg	4.3 mg/kg	SB-060-3648-001		6.74 mg/kg	LI FI TRACK	SB-135-2436-001	SB-145-0012-001	SB-159-2436-001	1.1.1	
20.9 mg/kg	SB-035-2436-001	SB-049-2436-001	989 mg/kg	SB-083-0012-001		SB-125-0012-001	1.16 mg/kg	1.8 mg/kg	2.8 mg/kg		
SB-010-0012-001	5.5 mg/kg	2.49 mg/kg	505 hig/kg	6.08 mg/kg	SB-108-0012-001	9.94 mg/kg	SB-136-0012-001	SB-145-2436-001			
1.81 mg/kg	SB-039-0012-001	SP 050 0040 004	SB-063-0012-001	SB-083-1224-001	1.05 mg/kg	SB-126-0012-001	3.25 mg/kg	2.51 mg/kg	SB-162-0012-001		
SB-010-1224-001	37.3 mg/kg	SB-050-0012-001	38.6 mg/kg	535 mg/kg	SB-111-0012-001	7.02 mg/kg	1 100 0	SB-146-3648-001	4.88 mg/kg		and the second se
3.64 mg/kg	SB-039-1224-001	49.2 mg/kg SB-050-1224-001	SB-064-1224-001	SB-083-2436-001	1.34 mg/kg		SB-137-2436-001	7.53 mg/kg	SB-163-0012-001	1015	
	125 mg/kg		1.12 mg/kg	70.6 mg/kg		SB-127-0012-001	2.11 mg/kg		16.6 mg/kg	1 54	
SB-014-0012-001	SB-039-2436-001	46.1 mg/kg SB-050-2436-001	SB-064-2436-001	SB-083-3648-001	SB-113-0012-001	8.59 mg/kg	SB-137-3648-001	SB-148-0012-001			
6.89 mg/kg	5.31 mg/kg	191 mg/kg	3.18 mg/kg	1,470 mg/kg	1.9 mg/kg	SB-128-0012-001	180 mg/kg	4.94 mg/kg	SB-164-0012-001	15	
0		SB-050-3648-001	0.10 119/109			11.9 mg/kg	19		13 mg/kg		
		5.98 mg/kg									100
- No - No -	100	oloo nighty	and the second	1 Carton			Contraction of the second s			r	
	2.2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second second	and the second second second	A DAY AND A	1000 million (1110	And and a second se				

EEEPC Non-PCB Exceedances SS-2-OU3-1 SB-2-OU3-0.6 SB-7-OU3-0.3 SB-10-OU3-0.6 SB-11-OU3-0.6 SB-15-OU3-0.6 SB-17-OU3-0.6 SD-01 SD-08 3enzo(a)pyrene 1,300 mg/kg Benzo(a)pyrene 1,300 mg/kg Benzo(a)pyrene 1,100 mg/kg Benzo(a)pyrene 3,500 mg/kg Dieldrin 20,000 mg/kg Barium 450 mg/kg Barium 530 mg/kg Cadmium 2.1 mg/kg Benzo(a)pyrene 0.00007 mg/kg Dieldrin 1,500 mg/kg SB-2-OU3-2 to 4 SB-7-OU3-2 to 4 SB-10-OU3-2 to 4 SB-11-OU3-2 to 4 SB-17-OU3-2 to 4 Chromium 33.1 mg/kg nzo(b)fluoranthene 0.000084 mg/k SB-16-OU3-0.6 Cadmium 19 mg/kg Cadmium 100 mg/kg Benzo(a)pyrene 1,200 mg/kg Benzo(a)pyrene 1,900 mg/kg Benzo(a)pyrene 1,600 mg/kg Copper 28.6 mg/kg Antimony 3.3 mg/kg SS-3-OU3-1 Barium 520 mg/kg Benzo(a)pyrene 1,100 mg/kg SB-10-OU3-4 to 8D Dieldrin 1,500 mg/kg Iron 21,100 mg/kg Arsenic 11.5 mg/kg SB-8-OU3-2 to 4 SB-13-OU3-0.6 Cadmium 12 mg/kg SB-2-OU3-4 to 8 Benzo(a)pyrene 1,300 mg/kg Lead 51.4 mg/kg Chromium 50.5 mg/kg Benzo(a)pyrene 1,300 mg/kg Cadmium 27 mg/kg Cadmium 56 mg/kg Manganese 1,050 mg/kg Copper 132 mg/kg SB-13-OU3-2 to 4 Iron 33,900 mg/kg Nickel 26.3 mg/kg Benzo(a)pyrene 1,500 mg/kg Zinc 162 mg/kg Lead 122 mg/kg Manganese 754 mg/kg Nickel 58.7 mg/kg Zinc 330 mg/kg

Highlighted PCB concentration

1 to 10 mg/kg

≥50 mg/kg

11 to 49 mg/kg

EEEPC Sampling Locations (collected by EEEPC in September 2013)

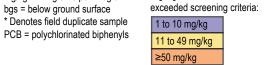
SB = Soil Boring Location
 SS = Surface Soil Sample Location

Depth Samples Collected at:

SB-13-OU3-0.6 = sample collected at 0.6 inches bgs. SB-13-OU3-2 to 4 = sample collected at 2 to 4 feet bgs. SB-13-OU3-4 to 8 = sample collected at 4 to 8 feet bgs.

SB = Soil Boring Location
Depth Samples Collected at:

USEPA Delineation Sampling Locations (collected by USEPA in July 2011)


SB-001-0012-001 = sample collected at 0 to 12 inches bgs. SB-001-1224-001 = sample collected at 12 to 24 inches bgs. SB-001-2436-001 = sample collected at 24 to 36 inches bgs. SB-001-3648-001 = sample collected at 38 to 48 inches bgs. SB-001-4860-001 = sample collected at 48 to 60 inches bgs.

mg/kg = milligrams per kilogram bgs = below ground surface * Denotes field duplicate sample SD = surface sediment sampling location collected by EEEPC in 2005 Debris Pile Boundary

 \triangle

Soil Mound Boundary

Drainage Way

Highlighted Non-PCB concentration 1) Each PCB location is shaded the color of the highest PCB exceedance exceeded screening criteria: from that location.

2) Non-detect locations are not listed in the exceedance text boxes and

are not shaded any color. Analytical results were compared to New York State Department of Environmental Conservation, 6 NYCRR 375-6.8(b), Restricted Use Soil Cleanup Objectives.

PCB Concentrations in and Adjacent to Drainageways Adirondack Steel OU-3 50 100 Colonie, New York Feet

Figure 1-3

EEEPC PCB Exceedances

Mercury 0.85 mg/kg

SB-14-OU3-0.6

15 mg/kg

SB-9-OU3-0.6

2.1 mg/kg

SB-10-OU3-4 to 8D*

72 mg/kg

SB-1-OU3-0.6

2.0 mg/kg

SB-1-OU3-2 to 4

4.6 mg/kg

SB-2-OU3-0.6

1.9 mg/kg

SB-2-OU3-2 to 4

1.2 mg/kg

SB-4-OU3-0.6

2.7 mg/kg

SB-8-OU3-2 to 4 27 mg/kg

SB-8-OU3-4 to 8

1.1 mg/kg

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community Date: 2/5/2014

2

Identification of Standards, Criteria, and Guidelines *and* Remedial Action Objectives

This section identifies the site contaminants of concern (COCs) and media of interest and establishes proposed cleanup goals and specific RAOs for contaminated on-site media.

2.1 Introduction

PCBs were identified as the primary COC in OU-3 in the 2008 Adirondack Steel RI, the 2008 RI Addendum, the RI for Supplemental Sediment and Soil Sampling in the OU-2 and OU-3 drainageways, and the 2014 Draft Supplemental RI (EEEPC 2008a, 2008b, 2010a, 2014).

Surface water samples collected at this site during the RI were obtained from low depression areas and drainage ditches, which are not representative of streams and are not flooded for a sufficient duration of the year to support aquatic life. Site soils appear to be the source of contamination in surface water. Therefore, since active remediation of site soils is assumed to occur, remediation of site surface water is not addressed in this FS.

RAOs were developed (see Section 2.3) to reduce or eliminate these potential risks by eliminating these routes of exposure or reducing the contaminant concentrations in impacted media to meet applicable chemical-specific standards at the site. Chemical-specific cleanup goals were developed for all media at the site to evaluate the area or volume of each medium that must be addressed to meet the RAOs.

SCGs are used at inactive hazardous waste sites to establish the locations where remedial actions are warranted and to establish cleanup goals. SCGs include state requirements. The following sections present potentially applicable SCGs and other standards and establish proposed cleanup goals and specific RAOs for contaminated on-site media.

2.2 Potentially Applicable Standards, Criteria, and Guidelines (SCGs) and Other Criteria

The remedy must conform to officially promulgated standards and criteria that are directly applicable or that are relevant or appropriate. The selection of a remedy must also take into consideration guidance as appropriate. The following sections present the three categories of SCGs: chemical-specific, location-specific, and action-specific.

2.2.1 Chemical-Specific SCGs

Chemical-specific SCGs are typically technology or health-risk-based numerical limitations on the contaminant concentrations in the environment. They are used to assess the extent of remedial action required and to establish cleanup goals for a site. Chemical-specific SCGs may be directly used as actual cleanup goals or as a basis for establishing appropriate cleanup goals for COCs at a site.

2.2.2 Location-Specific SCGs

Location-specific SCGs are either site- or activity-specific. Examples of locationspecific SCGs include building code requirements and zoning requirements. Location-specific SCGs are commonly associated with features such as wetlands, floodplains, sensitive ecosystems, or historic buildings that are located on or close to the site. Location-specific SCGs for the site are presented in Table 2-1.

2.2.3 Action-Specific SCGs

Action-specific SCGs are usually administrative or activity-based limitations that guide how components of remedial actions are conducted. These may include record-keeping and reporting requirements; permitting requirements; design and performance standards for remedial actions; and treatment, storage, and disposal requirements. Action-specific SCGs for this site are presented in Table 2-2.

2.3 Remedial Action Objectives

The RAOs for on-site remedial actions are developed based on information contained in the RI, the draft RI addendum, and Final IRM Report (EEEPC 2008a, 2008b, 2010a, 2014). On-site RAOs for this site are as follows:

- Prevent migration of contaminants that would result in groundwater or surface water contamination;
- Reduce the potential for human contact with contaminated soil by reducing contamination levels and/or migration of site soils; and
- Prevent direct contact with contaminated sediments.

2.4 Cleanup Objectives and Volume of Impacted Material

The following sections describe the process used to select numeric cleanup objectives and estimate the volume of impacted material.

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
Local Location-Sp	ecific SCGs				
Town Code	Noise	Chapter 135	Restricts unnecessary noise and construction equipment noise within the town during certain time frames	Potentially Applicable	
	Solid waste	Chapter 112	Restricts the use of land as a refuse disposal area or landfill site.	Potentially Applicable	
	Vehicles and traffic	Chapter 181	Weight limitations on cer- tain town roads during portions of the year	Potentially Applicable	
	Zoning and Land Use Article 14, Stormwater Management and Erosion and Sediment Control	Chapter 190-74	Establishes minimum storm water management requirements and controls.	Potentially Applicable	
State Location-Sp	ecific SCGs	1			
Environmental Conservation Law	Endangered and threatened species	6 NYCRR 182	Lists endangered and threatened species and species of special interest	Potentially Applicable	
	Freshwater wetlands	6 NYCRR 663-665	Establishes permit re- quirement regulations, wetland maps, and classi- fications	Potentially Applicable	
	Floodplains	6 NYCRR 502	Contains floodplain man- agement criterion for state projects	Potentially Applicable	

2-3

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
Federal Location-S	Specific SCGs				
National Historical Preservation Act (NHPA) 16 U.S. Code [U.S.C.] Section 469	Preservation of archaeologi- cal and historical data	36 CFR Part 65	Action to recover and pre- serve artifacts	Potentially Applicable	
National Historic Preservation Act Section 106 (16 U.S.C. 470)	Historic project owned or controlled by a federal agen- cy	36 CFR Part 880	Preserve historic property, minimize harm to National Historic Landmarks	Potentially Applicable	
Endangered Spe- cies Act (ESA) of 1973 16 U.S.C. 1531, 661	Endangered and threatened species	50 CFR Part 200, 402 33 CFR Parts 320- 330	Determine presence and conservation of endan- gered species	Potentially Applicable	
Clean Water Act (CWA) Section 404	Protect wetlands	40 CFR Parts 230 33 CFR Parts 320- 330	Action to prohibit dis- charge into wetlands	Potentially Applicable	
Clean Water Act (CWA) Part 6 Appendix A	Wetland protection	40 CFR Part 6 Appendix A, section 4	Avoid adverse effects, minimize potential harm, preserve and enhance wet- lands	Potentially Applicable	
Floodplain Man- agement	Executive Order No. 11988	40 CFR 6.302 (b) (2005)	Regulates activities in a floodplain	Potentially Applicable	

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
State Action-Speci	ific SCGs				
New York State Vehicle and Traffic Law, Article 386; Environmental Conservation Law Articles 3 and 19.		6 NYCRR 450	Defines maximum ac- ceptable noise levels	Potentially Applicable	Marginally applica- ble; appears to apply to over-the-road ve- hicles, not construc- tion equipment
Environmental Conservation Law, Articles 3 and 19.	Prevention and control of air contaminants and air pollu- tion	6 NYCRR 200 - 202	Establishes general provi- sions and requires con- struction and operation permits for emission of air pollutants	Potentially Applicable	
Environmental Conservation Law, Article 15; also Public Health Law Articles 1271 and 1276 (Part 288 on- ly)	Air quality classifications and standards	6 NYCRR 256, 257	Part 256: NY Ambient Air Quality Classification Sys- tem Part 257: Air quality stand- ards for various pollutants including particulates and non-methane hydrocarbons	Potentially Applicable	Applicable to reme- diation activities at the site that include a controlled air emission source
Environmental Conservation Law, Articles 1, 3, 8, 19, 23, 27, 52, 54, and 70.	Solid waste management fa- cilities	6 NYCRR 360	360-1: General provisions; includes identification of "beneficial use" potentially applicable to non- hazardous oily waste/soil (360-1.15). 360-2: Regu- lates construction and op- eration of landfills, includ- ing construction and demo- lition (C&D) debris land- fills	Potentially Applicable	May be applicable for establishing off- site treatment and disposal options for excavated contami- nated non-hazardous soil and debris

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
New York Waste	Permitting regulations, re-	6 NYCRR 364	The collection, transport,	Potentially	Applicable if site's
Transport Permit	quirements, and standards for		and delivery of regulated	Applicable	wastes fall into regu-
Regulations	transport		waste, originating or termi-		lated categories
			nating at a location within		
			New York, will be gov-		
			erned in accordance with		
			Part 364		
Environmental	Hazardous waste manage-	6 NYCRR 370	Provides definition of	Potentially	
Conservation Law,	ment system - general		terms and general stand-	Applicable	
Articles 3, 19, 23,			ards applicable to 6		
27, and 70			NYCRR 370 - 374, 376		
	Identification and listing of	6 NYCRR 371	Identifies characteristic	Potentially	Applies to transpor-
	hazardous waste		hazardous waste (PCBs)	Applicable	tation and all other
			and lists specific wastes		hazardous waste
					management prac-
					tices in NYS. Appli-
					cable if hazardous
					waste (PCBs > 50
					ppm) is generated
					during remediation
	Hazardous waste manifest	6 NYCRR 372	Establishes manifest sys-	Potentially	Relevant to transpor-
	system and related standards		tem and record keeping	Applicable	tation of hazardous
			standards for generators		material off-site for
			and transporters of hazard-		disposal
			ous waste and for treat-		
			ment, storage, and disposal		
			facilities		
	Hazardous waste treatment,	6 NYCRR 373	Regulates treatment, stor-	Potentially	Relevant to off-site
	storage, and disposal facility		age, and disposal of haz-	Applicable	treatment/disposal of
	permitting requirements		ardous waste		hazardous waste

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
	Standards for the manage-	6 NYCRR 374	Subpart 374-1 establishes	Potentially	
	ment of specific hazardous		standards for the manage-	Applicable	
	wastes and specific types of		ment of specific hazardous		
	hazardous waste management		wastes. (Subpart 374-2 es-		
	facilities		tablishes standards for the		
			management of used oil.)		
Environmental	Inactive hazardous waste dis-	6 NYCRR 375	Identifies process for in-	Applicable	
Conservation Law,	posal site		vestigation and remedial		
Articles 1, 3, 27,			action at state-funded reg-		
and 52; Adminis-			istry site; provides excep-		
trative Procedures			tion from NYSDEC per-		
Act Articles 301			mits.		
and 305.			Part 375-6.8: Provides soil		
			cleanup goals used for this		
			report		
Environmental	Land disposal restrictions	6 NYCRR 376	Identifies hazardous wastes	Potentially	To be considered if
Conservation Law,			that are restricted from land	Applicable	on-site solidification
Articles 3 and 27.			disposal. Defines treat-		is chosen as the re-
			ment standards for hazard-		medial alternative
			ous waste.		
New York Envi-		6 NYCRR Part 617	Implements provisions of	Potentially	
ronmental Quality			State Environmental Quali-	Applicable	
Review Regula-			ty Review Act (SEQR)		
tions					
Implementation of	General permit for storm wa-	6 NYCRR 750 – 758	Regulates permitted releas-	Potentially	
the State Pollutant	ter		es into waters of the state	Applicable	
Discharge Elimina-					
tion System					
(SPDES) Program					
in New York					

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
Primary and Prin-		NYSDEC Technical	Provides guidance on de-	Not Appli-	Drinking water sup-
cipal Aquifer De-		and Operational	termining water supply aq-	cable	plied by the local
terminations (5/87)		Guidance Series	uifers in upstate New York		drinking water sup-
		(TOGS) 2.1.3			ply system by the
					town of Colonie De-
					partment of Public
					Works, Division of
					Latham Water
Environmental Jus-	Environmental justice	Commissioner Policy	Policy incorporates envi-	Potentially	Relevant to actions
tice and Permitting		(CP) 29	ronmental justice concerns	Applicable	that involve dis-
			into NYSDEC's public		charges to surface
			participation provisions		water, sol-
					id/hazardous waste
					disposal or siting an
					industrial hazardous
Fadaval Astisus On					waste facility
Federal Action-Spe	1	40 CED 200 C 1 /		D ((11	
Comprehensive	National Contingency Plan	40 CFR 300, Subpart	Outlines procedures for	Potentially	
Environmental Re-	(NCP)	E	remedial actions and for	Applicable	
sponse, Compensa-			planning and implementing off-site removal actions		
tion, and Liability Act of 1980 and			on-site removal actions		
Superfund					
Amendments and					
Reauthorization					
Act of 1986					
(SARA)					
(SAKA)					

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
Occupational Safe-	Worker protection	29 CFR 1904, 1910,	Specifies minimum re-	Potentially	Under 40 CFR
ty and Health Act		and 1926	quirements to maintain	Applicable	300.38, require-
(OSHA)			worker health and safety		ments of OSHA ap-
			during hazardous waste		ply to all activities
			operations. Includes train-		that fall under the
			ing requirements and con-		jurisdiction of the
			struction safety require-		National Contingen-
			ments		cy Plan
Executive Order	Delegation of authority	Executive Order	Delegates authority over	Potentially	
(EO)		12316 and Coordina-	remedial actions to federal	Applicable	
		tion with Other	agencies		
		Agencies		D 11	
Clean Air	National Primary and Sec-	40 CFR 50	Establishes emission limits	Potentially	
Act(CAA)	ondary Ambient Air Quality		for six pollutants (SO ₂ , \mathbf{D})	Applicable	
	Standards (NAAQS)		PM_{10} , CO, O ₃ , NO ₂ , and		
	National Emission Standards	40 CFR 61	Pb) Provides emission stand-	Detentially	
	for Hazardous Air Pollutants	40 CFK 01	ards for 8 contaminants.	Potentially	
	(NESHAPS)		Identifies 25 additional	Applicable	
	(NESTIALS)		contaminants, including		
			perchloroethylene (PCE)		
			and trichloroethylene		
			(TCE), as having serious		
			health effects but does not		
			provide emission standards		
			for these contaminants		
Toxic Substances	Rules for controlling PCBs	40 CFR 761	Provides guidance on stor-	Potentially	
Control Act			age and disposal of PCB-	Applicable	
(TSCA)			contaminated materials		

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
Resource Conser-	Criteria for municipal solid	40 CFR 258	Establishes minimum na-	Potentially	Applicable to reme-
vation and Recov-	waste landfills		tional criteria for manage-	Applicable	dial alternatives that
ery Act (RCRA)			ment of non-hazardous		involve generation
			waste		of non-hazardous
					waste. Non-
					hazardous waste
					must be hauled and
					disposed of in ac-
					cordance with
				D	RCRA.
	Hazardous waste manage-	40 CFR 260	Provides definition of	Potentially	Applicable to reme-
	ment system - general		terms and general stand-	Applicable	dial alternatives that
			ards applicable to 40 CFR		involve generation
			260 - 265, 268		of a hazardous waste
					(e.g., contaminated soil). Hazardous
					waste must be han-
					dled and disposed of
					in accordance with
					RCRA.
	Identification and listing of	40 CFR 261	Identifies solid wastes that	Potentially	
	hazardous waste		are subject to regulation as	Applicable	
			hazardous wastes	11	
	Standards applicable to gen-	40 CFR 262	Establishes requirements	Potentially	
	erators of hazardous waste		(e.g., EPA ID numbers and	Applicable	
			manifests) for generators of		
			hazardous waste		
	Standards applicable to	40 CFR 263	Establishes standards that	Potentially	
	transporters of hazardous		apply to persons transport-	Applicable	
	waste		ing manifested hazardous		
			waste within the United		
			States		

Act/Authority	Criteria/Issues	Citation	Brief Description	Status	Comments
	Standards applicable to own-	40 CFR 264	Establishes the minimum	Potentially	
	ers and operators of treat-		national standards that de-	Applicable	
	ment, storage, and disposal		fine acceptable manage-		
	facilities		ment of hazardous waste		
	Standards for owners of haz-	40 CFR 265	Establishes interim status	Potentially	
	ardous waste facilities		standards for owners and	Applicable	
			operators of hazardous	11	
			waste treatment, storage,		
			and disposal facilities		
	Land disposal restrictions	40 CFR 268	*	Potentially	
	1 I		that are restricted from land	Applicable	
			disposal		
	Hazardous waste permit pro-	40 CFR 270, 124	EPA administers hazardous	Potentially	
	gram		waste permit program for	Applicable	
	-		CERCLA/Superfund Sites.		
			Covers basic permitting,		
			application, monitoring,		
			and reporting requirements		
			for off-site hazardous		
			waste management facili-		
			ties		
	EPA pretreatment standards	40 CFR 403	Establishes responsibilities	Not Appli-	
	-		of federal, state, and local	cable	
			government to implement		
			national pretreatment		
			standards to control pollu-		
			tants that pass through to a		
			publically owned treatment		
			works		

2.4.1 Selection of Soil Cleanup Objectives

Standards

Numeric cleanup objectives identified for drainageway spoils at the OU-3 site are contained in 6 NYCRR Part 375-6.8 (NYSDEC 2006a). This regulation presents soil cleanup goals for protection of ecological resources, groundwater, and public health. The soil cleanup goals for the protection of public health are based on land use criteria, which include the following:

- Unrestricted use is a use without imposed restrictions, such as environmental easements or other land use controls.
- Restricted use is a use with imposed restrictions, such as environmental easements, which as part of the remedy selected for the site require a site management plan that relies on institutional controls or engineering controls to manage exposure to contamination remaining at a site. Restricted use is separated into four different categories:
 - 1. **Residential use** is a land use category that allows a site to be used for any use other than raising livestock or producing animal products for human consumption. Restrictions on the use of groundwater are allowed, but no other institutional or engineering controls relative to the residential soil cleanup goals, such as a site management plan, would be allowed. This land use category will be considered for single-family housing.
 - 2. **Restricted-residential use** is a land use category that shall only be considered when there is common ownership or a single owner/managing entity of the site. Restricted-residential use shall, at a minimum, include restrictions which prohibit any vegetable gardens on a site, although community vegetable gardens may be considered with NYSDEC's approval and single-family housing. Active recreational uses, which are public uses with a reasonable potential for soil contact, such as parks, are also included under this category.
 - 3. **Restricted-commercial use** is a land use category for the primary purpose of buying, selling, or trading merchandise or services. Commercial use includes passive recreational uses, which are public uses with limited potential for soil contact.
 - 4. **Restricted-industrial use** is a land use category for the primary purpose of manufacturing, production, fabrication or assembly process and ancillary services. Industrial uses do not include any recreational component.

Town of Colonie zoning maps (Town of Colonie 2007) show that the site is zoned as industrial. Based on discussions with NYSDEC, it is anticipated that site land use will change to commercial in perpetuity. Therefore, for protection of public health at this site the 6 NYCRR Part 375-6.8 SCGs selected are those for restrict-ed-commercial use.

SCGs presented in 6 NYCRR Subpart 375-6.8 for the protection of groundwater and ecological resources should generally be considered where applicable. CP-51 Soil Cleanup Guidance sections V.C and V.D summarize the method for determining the applicability of SCGs for the protection of groundwater and ecological resources; these SCGs are incorporated into the unrestricted use SCG in the 6 NYCRR Part 375-6.8 SCGs. Since no threat of impact on groundwater (see Section 1.2.4) or ecological resources has been identified, and the restrictedcommercial SCGs have been selected for the site, cleanup goals for the protection of groundwater and ecological resources will not be considered.

The cleanup goals for the contaminants detected at this site are presented in Table 2-3.

Criteria and Guidance Values

Guidance values identified for soils are contained in NYSDEC CP-51 (2010a). Guidance values for sediment are contained in NYSDEC Technical Guidance for Screening Contaminated Sediments (1999). Criteria and guidance values for the contaminants detected at this site are presented in Table 2-3.

Background

Background soil sample data are used as cleanup objectives when standards and guidance values are not available. Site background samples were collected for inorganic analytes at the Adirondack Steel Site (EEEPC 2008a). For analytes with no site-specific background data, published soil background values from the New York State Brownfield cleanup program (NYSDEC 2006a) and eastern United States background levels (Shacklette et al. 1984) were used as background values.

New York						
Analyte	Protection of Public Health: <u>Restricted Commercial</u> NYSDEC Part 375 Cleanup NYSDEC Goals ^a CP-51 ^b		Background New York State ^c	Number of Detections	Maximum Result OU-3 ^d	Proposed Cleanup Goal
Soil Samples – Summary of Detected Analytes						
Total PCBs	1	$1/10^{e}$	< 0.018	173	2,400	TBD ^g
1,2-Dichlorobenzene	500	NA	NA	1	0.076 JN	None
1,3-Dichlorobenzene	280	NA	NA	1	0.089 JN	None
Barium	400	NA	165	3	530	400
Benzo(a)pyrene	1.0	NA	0.120	11	3.5	1.0
Cadmium	9.3	NA	2.4	5	100	9.3
Dieldrin	1.4	NA	NA	3	20 JN	1.4
Naphthalene	500	NA	0.019	1	0.021 J	None

Table 2-3 Selected Cleanup Goals for Soils/Sediment – Adirondack Steel OU-3, Colonie, New York

New York						
	Protection of Public Health: <u>Restricted Commercial</u> NYSDEC Part 375 Cleanup NYSDEC		Background New York	Number of	Maximum	Proposed Cleanup
Analyte	Goals ^a	CP-51 ^b	State ^c	Detections	Result OU-3 ^d	Goal
Sediment Samples – S	ummary of Det	ected Analy	/tes			
Total PCBs	1	1/10 ^e	< 0.018	1	0.17	None
Cadmium	0.6 ^f	NA	2.4	1	2.1	None
Chromium	26 ^f	NA	20	1	33.1	26 ^f
Copper	16 ^f	NA	32	1	28.6	None
Iron	$20,000^{\rm f}$	NA	25,600	1	21,100	None
Lead	31 ^f	NA	72	1	51.4	None
Manganese	460^{f}	NA	1,610	1	1,050	None
Nickel	16 ^f	NA	25	1	26.3	25
Zinc	120 ^f	NA	140	1	162	140

Table 2-3 Selected Cleanup Goals for Soils/Sediment – Adirondack Steel OU-3, Colonie, New York

Notes:

All values are in parts per million (ppm).

^a Cleanup goals obtained from 6 NYCRR Part 375-6.8(a) Soil Cleanup Objective Tables (NYSDEC December 14, 2006)

^b NYSDEC Final Commissioner Policy #51 (CP-51) (October 2010) Soil Cleanup Guidance.

^c Background values obtained from NYS background (95th percentile), Source-Distant Data Set from NYS Brownfield Cleanup Program, Technical Support Document, Appendix D, (NYSDEC September 2006).

- ^d Concentration listed is the maximum detected value from surface soil, subsurface soil, or drainageway sediment samples collected in OU-3 during the Adirondack Steel RI in 2005 (EEEPC 2008a), the supplemental sediment and soil sampling at OU-3 (EEEPC 2010a, 2014), and samples collected by the Environmental Protection Agency, which were provided to EEEPC by the NYSDEC on January 9, 2014.
- ^e Per CP-51, the PCB SCG for industrial sites is 1 ppm in surface soils up to 1 foot deep and 10 ppm in subsurface soils, typically from 1 foot deep to 15 feet deep or the top of bedrock, whichever is shallower.

^f Actual screening criteria are from the NYSDEC Technical Guidance for Screening Contaminated Sediments, January 1999.

^g Two soil cleanup goals have been provided for PCBs: 6 NYCRR Part 375 restricted-commercial and CP-51 restrictedcommercial. The actual cleanup goal will be selected in the Record of Decision.

Key:

J = Estimated value

N = Identification not confirmed (tentatively identified compound)

EEEPC = Ecology and Environment Engineering, P.C.

NA = Not applicable.

NYSDEC = New York State Department of Environmental Conservation

- OU = Operable unit.
- PCB = Polychlorinated biphenyl.

TBD = To be determined.

Selection Process

The selected cleanup goals for soils and sediments are presented in Table 2-3. These values are used later in this FS to calculate remedial volumes and the subsequent cost estimates. The following logical basis was used to select the preliminary cleanup values:

- Detections of PCBs in site soils were screened against:
 - 1. The 6 NYCRR Part 375-6.8 restricted-commercial-use soil cleanup standards (public health), and

- 2. The NYSDEC CP-51 Soil Cleanup Guidance values for PCBs for restricted commercial use.
- Detections of other analytes in site soils were screened against the 6 NYCRR Part 375-6.8 restricted-commercial-use soil cleanup standards (public health) to determine which compounds require cleanup.
- Detections of other analytes in sediments were screened against the NYSDEC Technical Guidance for Screening Contaminated Sediments (1999) to determine which compounds require cleanup.
- If neither cleanup standards nor guidance were available, NYS background values were used as the cleanup goals (NYSDEC 2006b).
- Finally, the contaminants identified for cleanup were reviewed to determine whether they are site-related (and not background) and whether cleanup is warranted.

2.4.2 Selection of Contaminants of Concern

Based on the cleanup objectives selected above and historical release of PCBs from on-site transformers, it was determined that PCBs are the primary soil contaminants of concern at the site. Table 2-3 presents those analytes that were detected above the 6 NYCRR Part 375 and CP-51 soil cleanup objectives. The alternatives presented in Section 5 will address the removal and or treatment of PCBs and the other contaminants in the site sediment and soil. However, since the majority of the detected contamination at the site were PCBs, total PCBs will be considered the primary COC at the site. The screening of remedial technologies and the identification and evaluation of alternatives will focus on PCB remediation.

2.4.3 Determination of Contaminated Soil Volumes

Two potential cleanup goals for soils were proposed: 1) cleanup to less than 1 ppm for PCBs and 2) cleanup to CP-51 levels of 1 ppm or less at the surface and 10 ppm or less below surface. For restricted-commercial soil cleanup objectives (SCOs), CP-51 defines surface as 0 to 1 feet bgs.

The volume of contaminated soils/sediments at the site was estimated using AutoCAD as well as property surveys and depth/concentration sample data. The volume of soil contaminated with PCB concentrations that exceed the TSCA limit of 50 ppm, which are considered contaminated under TSCA, was similarly estimated.

A handful of samples with detected contamination above SCOs were scattered across the site; these samples were too far from the drainageway to be included in the larger extent of contamination and the AutoCAD volume estimates. The volume of contamination at each of these soil boring locations was hand-calculated. Excavation and treatment volumes are presented with each applicable Alternative in Section 5.

Identification and Screening of Remedial Technologies

3.1 Introduction

This section presents the results of the preliminary screening of remedial actions that may be used to achieve the RAOs. Potential remedial actions, including general response actions and remedial technologies, are evaluated during the preliminary screening on the basis of effectiveness, implementability, and relative cost. Past performance (e.g., demonstrated technology) and operating reliability were also considered in identifying and screening applicable technologies. Technologies that were not initially considered effective and/or technically or administratively feasible were eliminated from further consideration.

The purpose of the preliminary screening is to eliminate remedial actions that may not be effective, based on anticipated on-site conditions, or cannot be implemented at the site. The general response actions considered herein include those actions that are most appropriate for the site and, therefore, are not exhaustive.

3.2 General Response Actions

Based on the information presented in the remedial investigations of the site (EEEPC 2008a, 2008b, 2010a, 2014) and the RAOs established in Section 2, this section identifies general response actions, or classes of responses for contaminated soils. General response actions describe classes of technologies that can be used to meet the remediation objectives for contaminated site soils and sediment. As previously discussed, PCB contamination in soil is the focus of remedial actions addressed by this FS.

General response actions identified for the contaminated soils are as follows:

- No action
- Institutional controls
- Containment
- In situ treatment
- Ex situ treatment
- On- and off-site disposal.

3 Identification and Screening of Remedial Technologies

3.2.1 Criteria for Preliminary Screening

In accordance with guidance documents issued by NYSDEC (CP-51) and the EPA (Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA [October 1988]), the criteria used for preliminary screening of general response actions and remedial technologies include the following.

- Effectiveness. The effectiveness evaluation focuses on the degree to which a remedial action protects human health and the environment. An assessment is made of the extent to which an action (1) reduces the mobility, toxicity, and volume of contamination at the site; (2) meets the remediation goals identified in the RAOs; (3) effectively handles the estimated areas and volumes of contaminated media; (4) reduces impacts on human health and the environment in the short-term during the construction and implementation phase; and (5) has been proven or shown to be reliable in the long-term with respect to the contaminants and conditions at the site. Alternatives that do not adequately protect human health and the environment are eliminated from further consideration.
- Implementability. The implementability evaluation focuses on the technical and administrative feasibility of a remedial action. Technical feasibility refers to the ability to construct and operate a remedial action for the specific conditions at the site and the availability of necessary equipment and technical specialists. Technical feasibility also includes the future maintenance, replacement, and monitoring that may be required for a remedial action. Administrative feasibility refers to compliance with applicable rules, regulations, statutes, and the ability to obtain permits or approvals from other government agencies or offices and the availability of adequate capacity at permitted treatment, storage, and disposal facilities and related services. Remedial actions that do not appear to be technically or administratively feasible or that would require equipment, specialists, or facilities that are not available within a reasonable period of time are eliminated from further consideration.
- Relative Cost. In the preliminary screening of remedial actions, relative costs are considered rather than detailed cost estimates. The capital costs and operation and maintenance (O&M) costs of the remedial actions are compared on the basis of engineering judgment, where each action is evaluated as to whether the costs are high, moderate, or low relative to other remedial actions based on knowledge of site conditions. A remedial action is eliminated during preliminary screening on the basis of cost if other remedial actions are comparably effective and can be implemented at a much lower cost.

The results of the preliminary screening are summarized below.

3.3 Identification of Remedial Technologies

This section identifies the potential remedial action technologies that may be applicable to remediation of soils at OU-3. Table 3-1 summarizes the results of the screening of remedial technologies.

General Response Actions and Remedial Technology	Brief Description	Preliminary Screening Evaluation	Passes Screening?
No Action			
	No further action to remedy soil conditions at the site.	Ineffective for the protection of human health and the environment.	Yes
Institutional Controls and Long	g-Term Monitoring		•
	Include public notification, deed restrictions, fenc- ing, and signs.	Does not reduce contamination levels but can re- duce potential exposure to the contaminated me- dia.	Yes
Containment			
Capping	1		
Bituminous Concrete Cover (Asphalt)	Selective excavation and/or standard asphalt cover system including layer of stone, asphalt binder course, and final wearing course.	Does not reduce contamination levels but can re- duce potential exposure to the contaminated me- dia.	No
Soil Cover	Selective excavation and/or clay cap system	Does not reduce contamination levels but can re- duce potential exposure to the contaminated me- dia.	No
6 NYCRR Part 360 Cap	Selective excavation and/or non-RCRA cap typi- cally used to close municipal solid waste landfills.	Does not reduce contamination levels but can re- duce potential exposure to the contaminated me- dia.	No
6 NYCRR Part 373 (RCRA) Cap	Selective excavation and/or RCRA cap typically required at Hazardous Waste Sites.	Does not reduce contamination levels but can re- duce potential exposure to the contaminated me- dia.	No
On- and Off-Site Disposal			
On-Site Disposal	Requires construction of a secure landfill that meets RCRA and state requirements.	Migration of soil contamination into groundwater is not a significant transport mechanism, and con- tainment of the waste material in an on-site land- fill is not necessary.	No
Off-Site Disposal	Involves the excavation and hauling of contami- nated material to appropriate commercially li- censed disposal facilities. The non-hazardous spoils would go to a non-haz/solid waste facility while the hazardous spoils would go to a RCRA- permitted facility.	Excavation and disposal of contaminated soil at a permitted landfill is an effective method of reduc- ing potential for direct contact with contaminated soils and future contamination of the groundwater. Backfill materials would need to be imported to fill the site.	Yes

Table 3-1 Screening Summary of Soil Remedial Technologies

ა -ა

General Response Actions			Passes
and Remedial Technology	Brief Description	Preliminary Screening Evaluation	Screening?
In Situ Treatment			
Thermal			N.
Thermally Enhanced Soil Vapor Extraction (SVE)	Uses electrical resistance/electromagnetic/radio frequency heating or hot-air steam injection to facilitate volatilization and extraction of the con- taminant vapors.	SVE is not effective in removing non-volatile or- ganics such as PCBs.	No
Thermal Desorption (thermal blankets and wells)	Thermal blankets and thermal wells are placed on contaminated ground surface. A majority of con- taminants are vaporized out by thermal conduc- tion. Vapors are drawn out by vacuum system, oxidized, cooled, and passed through activated carbon beds.	More expensive than other established remedial technologies, especially for the required volume to be treated.	No
In Situ Vitrification (ISV)	Contaminated soils are melted at extremely high temperatures using probes inserted into the ground delivering an electric current. The soil is heated to extremely high temperatures and is cooled to form a stable, glassy crystalline mass.	Only a few commercial applications of this tech- nology exist. Treatability studies are generally required to determine the effectiveness of ISV as a remediation technology at a given site. End prod- uct of the technology may hinder future site use, and there is a relatively high implementation cost.	No
Physical/Chemical			
Solidification/stabilization	Solidification/stabilization treatment systems, sometimes referred to as fixation systems, seek to trap or immobilize contaminants in their "host" medium using chemical reactions instead of re- moving them through chemical or physical treat- ment.	Stabilization technologies have not been success- fully demonstrated on a full-scale basis for treat- ing organics. Solidified material may hinder fu- ture site use. Treatability studies would be re- quired prior to implementing this technology.	Yes
Soil Flushing	An extraction process by which organic and inor- ganic contaminants are washed from contaminat- ed soils through the injection of an aqueous solu- tion into the area of contamination, and the con- taminant elutriate is pumped to the surface and removed from the site.	Capture of the impacted solution is critical to the effectiveness of this technology. PCBs strong tendency to adhere to soil particles and soil condi- tions may limit this technology's effectiveness.	No
Biological Treatment	Uses indigenous or selectively cultured microor- ganisms to reduce hazardous organic compounds into water, carbon dioxide, and chlorinated hydro- gen chloride.	Biological treatment technologies for PCBs have not been well demonstrated. This technology also involves a relatively longer remediation period compared with other treatment technologies.	No

Table 3-1 Screening Summary of Soil Remedial Technologies

3-4

General Response Actions and Remedial Technology	Brief Description	Preliminary Screening Evaluation	Passes Screening?
Ex Situ Treatment			
Thermal			
High Temperature Thermal De- sorption (HTTD)	A physical separation process that uses heat to volatilize organic wastes, which are collected and treated in a gas treatment system.	Moderate cost, full-scale technology that has been successfully demonstrated in the field to treat PCB-contaminated soils. HTTD units are permit- ted as incinerators.	Yes
Incineration	Uses high temperatures to volatilize and destroy organic contaminants and wastes.	A moderate cost technology that has a demon- strated success; however, the public is generally adverse to this technology.	No
Vitrification	Thermally vitrifies and destroys PCBs at high temperatures using a gas/oxygen power source. Soils are excavated and stockpiled, and a fluxing agent is introduced to aid in the melting process.	Medium-to-high cost technology that is successful in destroying PCBs. The inert glass aggregate byproduct can be returned to the site for backfill or can be sold as a construction aggregate. How- ever, full-scale demonstration of this technology for remediation purposes has not been performed.	No
Physical/Chemical			•
Dehalogenation	A chemical process that is achieved either by re- placement of the halogen molecule of the organic compound or decomposition and partial volatiliza- tion of the contaminant through adding and mix- ing specific reagents.	Although the EPA has been developing this tech- nology since 1990, it has not yet been successfully demonstrated in a commercial application.	No
Solvent Extraction	A chemical extraction process whereby the target contaminant is physically separated from the soil using an appropriate organic solvent to dissolve PCBs.	This technology has not been commercially im- plemented and may require multiple extractions so that solvent-contaminated soils are not returned to the site.	No
Soil Washing	A volume-reduction technology that segregates the fine solid fractions from the coarser soils through an aqueous washing process and washing water treatment system.	There is not a high level of confidence in the ef- fectiveness of soil washing of PCB-contaminated soil, and the costs of constructing and operating an on-site processing facility are high.	No

Table 3-1 Screening Summary of Soil Remedial Technologies

3.3.1 No Action

The no action alternative involves taking no further action to remedy the condition of contaminated soils. NYSDEC and EPA guidance set forth in the CERCLA National Contingency Plan (NCP), requires that the no action alternative automatically pass through the preliminary screening and be compared with other alternatives in the detailed analysis of alternatives.

3.3.2 Institutional Controls (ICs) and Long-Term Monitoring (LTM)

ICs are meant to be non-physical means of enforcing a restriction on the use of real property that limits human and environmental exposure, restricts the use of groundwater, provides notice to potential owners, operators, or members of the public, or prevents actions that would interfere with the effectiveness of the remedial program or with the effectiveness and/or integrity of operation, maintenance, and/or monitoring activities at or pertaining to a remedial site. They typically include easements, deed restrictions, and covenants, well drilling prohibitions, zoning restrictions, and building or excavation permits (EPA-OSWER 2000).

ICs are meant to supplement engineering controls (ECs) during all phases of cleanup and may be a necessary component of the completed remedy. ECs are defined as any physical barriers or methods employed to actively or passively contain, stabilize, or monitor contamination, restrict the movement of contamination to ensure the long-term effectiveness of a remedial program, or eliminate potential exposure pathways to contamination. ECs include, but are not limited to pavement, caps, covers, subsurface barriers, vapor barriers, slurry walls, building ventilation systems, fences, groundwater monitoring wells, provision of alternative water supplies via connection to an existing public water supply, adding treatment technologies to such water supplies, and installing filtration devices on private water supplies.

ICs are not generally expected to be the sole remedial action unless active response measures are determined to be impracticable. For this site, ICs will be considered in conjunction with other engineering alternatives to achieve RAOs.

Long-term monitoring (LTM) is not an IC or an EC, but a part of site operation, monitoring, and maintenance (OM&M). LTM can be used in multiple environmental media but is most applicable to groundwater. LTM in groundwater generally uses an array of monitoring wells that are regularly sampled and tested by an analytical laboratory for COCs. These wells are placed such that they would detect migration toward potential receptors. Similarly, sampling of surface water (or drainage ditch, at this site) would detect migration of contamination toward potential receptors or other water bodies. LTM will not actively reduce contamination levels; it can be useful in demonstrating that exposures do not occur. Migration of soil contamination into groundwater is not a significant transport mechanism; however, LTM of surface water will be further considered.

3.3.3 On- and Off-Site Disposal

Land disposal of contaminated wastes has historically been the most common remedial action for hazardous waste sites. The two disposal options are on-site disposal in a constructed landfill or off-site disposal in a commercial facility.

3.3.3.1 On-Site Disposal

On-site disposal of material classified as hazardous waste by NYS Hazardous Waste Regulations and TSCA requires constructing a secure landfill that meets RCRA and state requirements. These requirements include the following:

- 1. The landfill must be designed so that the local groundwater table will not be in contact with the landfill.
- 2. The landfill must be lined with natural and synthetic material of low permeability to inhibit leachate migration.
- 3. A low permeability cover must be employed to limit infiltration and leachate production.
- 4. Periodic monitoring of surface water, groundwater, and soils adjacent to the facility must be periodically monitored to confirm the integrity of the liner and leachate collection system.
- Effectiveness. Construction of an on-site landfill would be an effective technology because it would limit the direct contact with and mobility of the contaminated material.
- Implementability. The implementability of this option is limited by the shallow groundwater table, the high volume of contaminated soil at the site, and the anticipated difficulty in meeting permit requirements.
- **Cost.** The costs involved in the construction of an on-site landfill are high.

In summary, migration of soil contamination into groundwater is not a significant transport mechanism and containment of the waste material could be achieved by capping. Therefore, construction of an on-site landfill is not warranted. On-site disposal of contaminated materials has not been retained as an applicable technology.

3.3.3.2 Off-Site Disposal

Off-site disposal of contaminated soils and sediments involves hauling excavated materials to an appropriate commercially licensed disposal facility. The type of disposal facility depends on whether the waste is considered hazardous or non-hazardous. Waste material classified as hazardous waste may be disposed of only in a RCRA-permitted facility. In accordance with New York State Hazardous Waste Regulations and TSCA, materials containing PCBs at or above 50 ppm (if excavated and removed from the site) are subject to regulation as both hazardous waste and TSCA waste. Contaminated waste materials containing less than 50

ppm of PCBs are considered non-hazardous waste and can be disposed of in a non-hazardous/solid waste facility.

- Effectiveness. Excavation and disposal of contaminated soil at a permitted landfill is an effective method of reducing potential for direct contact with contaminated soils. In addition, this action reduces the potential for future contamination of groundwater.
- Implementability. Contractors and disposal facilities are available to implement both disposal options.
- Cost. The cost for disposal of contaminated soils ranges between \$100 and \$150 per cubic yard (cy) for hazardous soils. For purposes of this FS, a distinction is made between hazardous TSCA and non-TSCA, non-hazardous PCB-contaminated soils. It is presumed that non-hazardous and hazardous soil will be transported and disposed of at different landfills. The cost of transporting and disposing TSCA hazardous soil will be more than that for non-hazardous contaminated soil because of a longer transport distance to a Subtitle C disposal facility and a higher tipping fee.

In summary, off-site disposal of contaminated materials in an off-site permitted disposal facility is a demonstrated alternative that effectively reduces exposure risks and provides long-term protection of human health and the environment. For these reasons, off-site disposal has been retained as an applicable alternative.

3.3.4 In Situ Treatment

In situ treatment technologies for soil remediation typically fall in the following three categories:

- Thermal treatment
- Physical/chemical treatment
- Biological treatment.

The following sections present a discussion of applicable soil remediation technologies under each general response category described above.

3.3.4.1 Thermal Treatment

Thermal treatment processes generally involve applying heat to contaminated material to vaporize the contaminants into a gas stream (i.e., physically separate from the host medium) and then treating the gas stream prior to discharge into the atmosphere. Various gas treatment technologies can be used to collect, condense, or destroy the volatilized gases. The three common types of in situ thermal treatment technologies are in situ thermal desorption using thermal blankets and thermal wells, vitrification using electrodes, and enhanced soil vapor extraction (SVE).

Thermally enhanced SVE is a full-scale technology that uses electrical resistance/electromagnetic/radio frequency heating or hot-air steam injection to facilitate volatilization and extraction of the contaminated vapors. The process is otherwise similar to SVE. However, since SVE does not remove PCBs and heavy hydrocarbons (only applicable to volatile organic compounds [VOCs] and semivolatile organic compounds [SVOCs] with Henry's constant greater than 0.01), it has not been retained for further consideration.

In Situ Thermal Desorption (ISTD) - Thermal Blankets and Thermal Wells

This type of technology was developed in Shell Research laboratories over the last 25 years as part of its enhanced oil recovery efforts and has been one of the few in situ forms of thermal desorption technologies that has been demonstrated to work effectively on a commercial scale. Thermal blankets and thermal wells are proprietary technologies of TerraTherm, Inc. (TerraTherm), an affiliate of Shell Oil Company. The thermal blanket system consists of electric heating "blankets" approximately 8 feet by 20 feet that are placed on top of the contaminated ground surface. The blankets can be heated to 1,800° Fahrenheit (F), and by thermal conduction are able to vaporize most contaminants down to about 3 feet. Vapors are drawn out of the soil and through the blanket system by a vacuum system. The contaminated vapors are then oxidized at high temperature in a thermal oxidizer near the treatment area and then cooled and passed through activated carbon beds to collect any trace levels of organics not oxidized prior to discharge to the atmosphere.

Thermal wells use the same process as thermal blankets, except that heating elements are placed in well boreholes drilled at an average spacing of 7 feet to 10 feet. Similar to the blanket modules, the vacuum is drawn on the manifold so that extracted vapors are collected and destroyed. Estimated in situ thermal desorption (ISTD) treatment costs obtained from TerraTherm range from \$140/cy for large and deep SVOC sites to more expensive per unit volume for shallow and small sites (TerraTherm, Inc. 2013). A laboratory treatability test for thermal desorption may cost between \$15,000 and \$50,000, depending on the number of samples and the complexity of testing (TerraTherm Inc. 2013).

ISTD using thermal wells and blankets has been successfully demonstrated by TerraTherm for a number of PCB-contaminated sites. PCB reduction of 99.9% was achieved from initial concentrations as high as 20,000 ppm at a contaminated site in Missouri. Contamination depth varied between 6 to 18 inches for blankets and up to 12 feet with thermal wells for these demonstrations. ISTD is a more appropriate technology for volumes of contamination up to 10,000 cy (Naval Facilities Engineering Service Center 1998). A treatability study is generally recommended to determine the effectiveness of thermal treatment as a remediation technology at a site.

- Effectiveness. Thermal treatment has demonstrated its effectiveness in treating PCB-contaminated soil at depths less than 12 feet. As the OU-3 contamination generally occurs at depths up to 8 feet or more (samples were taken during the RI as deep as 8 feet), this technology could be effective in treating the contaminants at the site.
- Implementability. Contractors and treatment facilities are available to implement this technology. However, the presence of on-site drainageways and surface water would limit the implementation of this technology. A treatability study should be performed to evaluate the effectiveness of the type of thermal treatment needed to treat the soil at the site to acceptable levels.
- Cost. The cost of an in situ treatment is high but comparable to other in situ treatment technologies, considering the treatment and O&M costs of other technologies.

In summary, in situ thermal desorption is not considered feasible when based on implementability and cost. This technology has not been retained for further analysis.

In Situ Vitrification

In situ vitrification (ISV) uses electrical power to heat and melt soil contaminated with organics, inorganics, and metal-bearing wastes. The molten material cools to form a hard, monolithic, chemically inert, stable glass and crystalline product that incorporates the inorganic compounds and heavy metals in the hazardous waste. The organic contaminants in the waste are vaporized or pyrolyzed and migrate to the surface of the vitrified zone, where they are oxidized under a collection hood. Residual emissions are captured in an off-gas treatment system.

ISV uses electrodes that are inserted into the ground to the desired treatment depth. Electrical power is charged to the electrodes that heat the surrounding soil to 2,000°C, which is above the initial melting temperature of typical soils. With favorable site conditions, it is estimated that a processing depth of up to 30 feet can be achieved.

Although ISV has been tested for a range of organic and inorganic contaminants, including PCBs, and has been operated for demonstration purposes at the pilot scale, few full-scale applications of this technology exist. Treatability studies are generally required to determine the effectiveness of ISV as a remediation technology at a site. Once vitrified, the original volume of soil would decrease by approximately 20% to 50%, requiring backfilling with clean material, grading, and restoring.

Effectiveness. ISV requires that sufficient glass-forming materials (e.g., silicon and aluminum oxides) be present within the contaminated soil to form and support a high-temperature melt. If the natural soil does not contain enough of these materials, then a fluxing agent, such as sodium carbonate, can be add-

ed. If metals of high concentrations and/or large dimensions are present in the soil to be treated, the electrodes may short circuit.

ISV can treat soils saturated with water; however, additional power is required to dry the soil prior to melting. The presence of large inclusions in the area to be treated can limit the effectiveness of the ISV process. Inclusions are highly concentrated contaminant layers, void volumes, containers, metal scrap, general refuse, demolition debris, rock, or other heterogeneous materials within the soil treatment volume.

- Implementability. ISV is considered an emerging technology. The only vendor currently supplying commercial systems for in situ vitrification of hazardous wastes is Kurion, Inc. Four units ranging from bench-scale to commercial-scale were in operation. A large-scale test on mixed radioactive and chemical wastes that contained chromium was conducted at Hanford, Washington. A fire involving the protective hooding occurred during the test. Materials of construction (e.g., for the collection hood) and electrode-feeding mechanisms are still being tested and developed. Another project completed in 1996 in Spokane, Washington, demonstrated the ability of the technology to destroy and remove TSCA-level PCB contamination. The project demonstrated more than 99.9999% PCB destruction and removal efficiency.
- Cost. Two studies conducted on the West Coast and in the Midwest estimated ISV costs between \$267 and \$850 per cy of contaminated soil (FRTR 2013). Factors that influence the cost of remediation by ISV are the moisture content of the soil, the amount of additives required to create the required "recipe," the amount of site preparation required, the specific properties of the waste soil, the depth of processing, and the unit price of electricity.

In summary, few full-scale applications of this technology exist and this technology has relatively high implementation costs. Pilot tests have proved to be effective at removal of PCB contamination; however, treatability studies are required to determine the effectiveness of vitrification at a site. In situ vitrification has a relatively high implementation cost compared with the other technologies screened in this section and, therefore, in situ vitrification has not been retained for further analysis.

3.3.4.2 Physical/Chemical Treatment

A number of in situ physical/chemical treatment processes for soil have been developed to chemically convert, separate, or contain waste constituents. These include solidification/stabilization and soil flushing.

In Situ Solidification/Stabilization

Solidification/stabilization treatment systems, sometimes referred to as fixation systems, trap or immobilize contaminants in their "host" medium instead of removing them through chemical or physical treatment. Solidification is a process whereby contaminants are physically bound or enclosed within a stabilized mass. Stabilization is a process where chemical reactions are induced between the stabi-

lizing agent and contaminants to either neutralize or detoxify the wastes, thus reducing their mobility.

Solidification/stabilization methods used for chemical soil consolidation can immobilize contaminants. Most techniques involve a thorough mixing of the solidifying agent and the waste. Solidification of wastes produces a monolithic block. The contaminants do not necessarily interact chemically with the solidification reagents but are mechanically locked in the solidified matrix. Solidification/stabilization systems have generally targeted inorganics (i.e., heavy metals) and radionuclides. Stabilization methods usually involve the addition of materials, such as molten bitumen, asphalt emulsion, and portland cement that limit the solubility or mobility of waste constituents even though the physical handling characteristics of the waste may not be improved. Remedial actions involving combinations of solidification and stabilization techniques are often used to yield a product or material for land disposal or, in other cases, can be applied to beneficial use. Auger/caisson systems and injector head systems are techniques used in soil solidification/stabilization systems.

- Effectiveness. In situ solidification/stabilization systems have demonstrated effectiveness in treating PCBs, and the fixed treatment end point can be reached relatively quickly. The auger/caisson and reagent/injector head systems have limited effectiveness in treating organics.
- Implementability. Treatability studies are generally required to assess compatibility of waste material and the reagent used. This technology can be readily implemented with available equipment and materials.
- Cost. In situ solidification/stabilization costs vary widely according to the materials and reagents used, their availability, project size, and the chemical nature of contaminants. The in situ costs average \$40 to \$60 per cy for shallow applications and \$150 to \$250 per cy for deeper applications (FRTR 2013). Treatability studies would be required to better determine the cost of this alternative in a full-scale operation.

In summary, this technology has successfully demonstrated full-scale treatment of PCB-contaminated soil and this technology has been retained for further consideration.

In Situ Soil Flushing

Soil flushing is an extraction process by which organic and inorganic contaminants are washed from contaminated soils. An aqueous solution is injected into the area of contamination, and the contaminated elutriate is pumped to the surface for removal, re-circulation, or on-site treatment, and re-injection. During elutriation, sorbed contaminants are mobilized into solution because of solubility, and form an emulsion, or chemical reaction, with the flushing solution. An in situ soil-flushing system includes extraction wells installed in the area of contamination, injection wells installed upgradient of the contaminated soil areas, and a wastewater treatment system for treatment of recovered fluids. Co-solvent flushing is another type of soil flushing that involves injecting a solvent mixture (e.g., water plus a miscible organic solvent such as alcohol) into the vadose zone, saturated zone, or both to extract organic contaminants. Co-solvent flushing can be applied to soils to dissolve either the source of contamination or the contaminant plume emanating from it.

- Effectiveness. The effectiveness of this technology decreases in heterogeneous/poorly drained soils similar to those found at OU-3.
- Implementability. In situ soil flushing has had very limited commercial success. This technology can be used only in areas where flushed contaminants and soil flushing fluid can be contained or recaptured. Typically, treatability studies must be performed under site-specific conditions before this technology can be selected.
- Cost. In situ soil flushing is a low-cost technology with costs ranging from \$32 to \$49 per cy (FRTR 2013) for small sites. Treatability studies would needed to estimate the cost of installing a full-scale system. Also, the aboveground separation and treatment of recovered fluids can drive the cost of the whole process.

In summary, it is believed that in situ soil flushing would not be effective in heterogeneous/poorly drained soils found at this site (typically fine sands and clays). Due to its limited success and difficulty in ensuring effectiveness in situ, this technology has not been considered.

3.3.4.3 Biological Treatment

Biological treatment processes use indigenous or selectively cultured microorganisms to reduce hazardous organic compounds into water, carbon dioxide, and chlorinated hydrogen chloride. Available in situ biological treatment technologies include bioventing, enhanced biodegradation (aerobic and anaerobic), natural attenuation, and phytoremediation. Factors that affect the rate of biodegradation include the type of contaminants present and their concentrations, oxygen, nutrients, moisture, pH, and temperature. Treatability studies are typically conducted to determine the effectiveness of bioremediation in a given situation. A review of completed remediation projects and demonstration projects where biological treatment technologies were used for soil remediation indicates that these technologies have primarily been used for soils contaminated with petroleum hydrocarbons, VOCs (e.g., trichloroethylene [TCE] and perchloroethylene [PCE]), pesticides, and wood preservatives. Because PCBs have relatively higher chlorine content, they are more persistent in the environment and are less susceptible to biodegradation.

Effectiveness. Bioremediation of PCB-contaminated soil is not very effective because the microbial degradability of PCBs is very low. In addition, the length of time required to achieve satisfactory results with highly contaminated soils can be prohibitive.

- Implementability. Vendors and organisms to biologically treat contaminated soil are readily available.
- **Cost.** Costs vary based on the type of technology used and can range from \$20 to \$80 per cy (FRTR 2013).

Since biological treatment of PCBs have not been well demonstrated and because of the relatively longer remediation periods, these technologies have not been retained for further consideration.

3.3.5 Ex Situ Treatment

Ex situ treatment requires soil to be excavated before treatment. Ex situ treatment allows for greater flexibility in establishing the physical, chemical, or biological conditions or any combination of these conditions that are required to remove or destroy the contaminant. Available ex situ treatment technologies that would be applicable at the site include thermal desorption, incineration, vitrification (thermal treatment processes), dehalogenation, solvent extraction (chemical processes), and soil washing (physical process).

3.3.5.1 Thermal Treatment

Thermal treatment generally involves the application of heat to physically separate, destroy, or immobilize the contaminant. Some of the ex situ thermal treatment technologies that treat a range of contaminants include high-temperature and low-temperature thermal desorption, hot gas decontamination, open burning/open detonation, pyrolysis, and incineration. This section focuses on high-temperature thermal desorption, incineration, and vitrification because the other technologies are either not applicable to PCB contamination (hot gas decontamination, open burning/open detonation, low-temperature thermal desorption) or have not been successfully demonstrated on a full-scale basis for sites contaminated with PCBs (pyrolysis). High-temperature thermal desorption, incineration, and vitrification are described below.

High-Temperature Thermal Desorption

Thermal desorption is a physical separation process that uses heat to volatilize organic wastes, which are subsequently collected and treated in a gas treatment system. Thermal desorption differs from incineration because the decomposition or destruction of organic material is not the desired result, although some decomposition may occur. Varieties of gas treatment technologies are used to collect, condense, or destroy the volatilized gases. A vacuum system is typically used to transport volatilized water and organics to the treatment system. Thermal desorption (HTTD) and low-temperature thermal desorption (LTTD) systems. LTTD is primarily used for non-halogenated VOCs and SVOCs with low boiling points (i.e., below 600°F), and is not considered an applicable technology for PCB contamination.

HTTD systems heat materials to temperatures in the range of 600°F to 1,200°F and target SVOCs, PAHs, and PCBs. In general, thermal systems can be differentiated by the method used to transfer heat to the contaminated material and by the gas treatment system. Direct-contact or direct-fired systems (i.e., rotary dryer) apply heat directly by radiation from a combustion flame. Indirect-contact or indirect-fired systems (i.e., thermal screw conveyor) apply heat indirectly by transferring it from the source (combustion or hot oil) through a physical barrier that separates the heat source from the contaminated material.

Of the several vendors working in the thermal treatment industry, Environmental Soil Management, Inc. (ESMI) owns and operates two fixed location thermal treatment facilities in the northeast region, one in New York and one in New Hampshire (2013). In addition, ESMI owns a portable thermal treatment unit that can be transported as needed based on site-specific conditions. Depending on the material volume to be treated and chemical concentrations, material may be more appropriately sent to one facility rather than another.

HTTD is a full-scale technology that has been successfully demonstrated in the field for treatment of PCB-contaminated soils. Typically, systems that have been used for PCB contamination consist of a rotary dryer (primary chamber) to volatilize the contaminated material and an afterburner (secondary chamber) where the off-gas is oxidized at temperatures in the range of 1,400°F to 1,800°F. The off-gas is then cooled, or quenched, and passed through a bag house to remove any trace organics not oxidized before being discharged into the atmosphere. HTTD units are considered to be incinerators and must meet RCRA incinerator emission requirements (40 CFR Parts 264 and 265, Subpart O).

- Effectiveness. HTTD technology is effective in treating PCB contamination and the treated soils can be returned to the site as backfill.
- Implementability. This technology can be implemented fairly quickly. The equipment can be set up on-site or it may be a mobile unit that could be moved from site to site.
- Cost. HTTD is a moderate cost technology with costs typically ranging from \$300 to \$500 per cy, depending on the volume of contaminated soils (FRTR 2013).

In summary, HTTD is a demonstrated technology that could be implemented effectively at this site and, therefore, has been retained for further consideration.

Incineration

Incineration uses high temperatures (1,600°F to 2,200°F) to volatilize and destroy organic contaminants and wastes. A typical incineration system consists of the primary combustion chamber into which contaminated material is fed and initial destruction takes place, and a secondary combustion chamber where combustion byproducts (products of incomplete combustion) are oxidized and destroyed. From the secondary chamber, the off-gases are drawn under negative pressure in-

to an air pollution control system that may include a variety of units, depending on the contaminants and site-specific requirements.

The two primary types of incinerators are rotary kiln and liquid injection incinerators. The rotary kiln is a refractory-lined, slightly inclined, rotating cylinder that serves as the primary combustion chamber and operates at temperatures up to 1,800°F. The kilns can range in size from 6 feet to 14 feet in diameter. The liquid injection incinerators are used to treat combustible liquid, sludge, and slurries. Liquid injectors would not be appropriate to use for the contamination at OU-3 because liquid waste is not present at the site.

Ex situ on-site incineration is a demonstrated treatment technology for PCBcontaminated soils. Incineration is considered an effective technology, achieving the greater than 99% PCB reduction requirement and dioxins concentrations in soil, thus providing long-term protection. Incinerators burning hazardous wastes must meet the RCRA incinerator regulations (40 CFR Parts 264 and 265, Subpart O) as well as state and local regulations. Furthermore, on-site incinerators used to treat PCB-contaminated material with concentrations greater than 50 ppm may also be subject to the requirements under TSCA set forth in 40 CFR Part 761.

- Effectiveness. Incineration is an effective, demonstrated technology that can treat PCB-contaminated soils.
- Implementability. Incineration can be implemented at this site since the equipment may be used for multiple sites. However, permitting an incinerator may prove to be a significant effort as the public may mount an effort to keep it out of their community.
- Cost. Ex situ incineration is a high-cost technology with costs ranging from \$796 to \$1,171 per cy for smaller sites (FRTR 2013).

In summary, because the effectiveness of incineration to remediate site contaminated soil would be similar to HTTD, but at a much higher cost, incineration was not retained for further consideration.

Vitrification

Thermal vitrification of contaminated material uses a natural gas and oxygenenhanced power source or an electrical power source to treat PCB-impacted soil and produce a glass-like material. Natural gas-fired vitrification is less costly than the electric-powered system. Soils must be excavated, segregated, and stockpiled before treatment using an on-site glass furnace. This alternative may require the soils to be "dried" so that the soils entering the system contain less than 15% moisture.

The glass furnace is a "melter" constructed of refractory brick. A series of oxyfuel burners combine natural gas and oxygen, which raises the temperature of the melter to 2,900°F. PCBs are destroyed and the soil melts and flows out of the system as molten glass. Molten glass then flows into a water-filled quench tank

that hardens the molten glass into glass aggregate that makes it inert. Water is continuously added to the quench tank as the molten glass causes the water to evaporate. The glass aggregate can be beneficially reused as backfill in the original excavation or can be sold for use as a loose-grain abrasive, as highway aggregate, or in a number of other applications.

A pilot-scale ex situ vitrification process using glass furnace technology was demonstrated to treat PCB-contaminated river sediment at Minergy Glass Pack Test Center, Wisconsin, and is documented in the EPA's Superfund Innovative Technology Evaluation (SITE) Program in *Minergy Corporation Glass Furnace Technology Evaluation* (EPA 2004). The process attained greater than 99% total PCBs removal or destruction, and the glass aggregate met the state of Wisconsin's requirements for beneficial reuse. Other vitrification technologies that historically converted waste materials to glass aggregate have been applied in NYS, and the resulting materials met NYSDEC's beneficial use determination (BUD) requirements.

Bench-scale testing would be required to establish design parameters for full-scale implementation of this technology.

- Effectiveness. Ex situ vitrification of soils is an effective method of treating PCB-contaminated soils. In addition, this action reduces/eliminates the potential for future contamination of groundwater from soil contamination.
- Implementability. Contractors are available to implement this technology. The system would be set up at a location central to the site and the soil would be transported to it. A bench-scale study would be necessary before implementing this technology.
- Cost. Estimated costs for vitrification obtained from Minergy range from \$50 to \$475 per cy (Minergy Corporation 2007, 2003). Compared with other exsitu treatment technologies, vitrification has a much greater up-front capital cost. There are some financial risks associated with this technology as a major cost factor is the price of natural gas, which can fluctuate significantly over the life of the operation.

In summary, ex situ vitrification is a moderate cost technology with proven effectiveness to remediate PCB contamination. However, since full-scale demonstration of this technology for remediation purposes has not been performed, vitrification has not been retained for further consideration.

3.3.5.2 Physical/Chemical Treatment

A number of ex situ physical/chemical treatment processes for soils have been developed to chemically convert, separate, or contain waste constituents. These include dehalogenation (or dechlorination), soil washing, and solvent extraction as discussed below.

Dehalogenation

Dehalogenation is a chemical process that is achieved either by replacing the halogen molecule of the organic compound or decomposition and partial volatilization of the contaminant through adding and mixing specific reagents. This technology typically consists of excavating, screening, and crushing the contaminated soils; mixing the soils with the reagent in a heated reactor; and then treating the wastewater or the volatilized contaminants. Two types of dehalogenation technologies exist: base-catalyzed decomposition (BCD) and glycolate/alkaline polyethylene glycol (APEG).

Glycolate technology replaces halogen molecules in the organic contaminant by mixing the contaminant with an APEG-type reagent (commonly potassium polyethylene glycol [KPEG]) in a heated reactor. The byproducts of the reaction include glycol ether and/or hydroxylated compound and an alkali metal, which are all water soluble. Typically, treatment and disposal of wastewater generated by the process is required. The APEG process for cleanup of contaminated soils containing PCBs ranging between 2 ppm and 45,000 ppm has been successfully used and demonstrated.

- Effectiveness. This technology has been approved by EPA's Office of Toxic Substances under TSCA for PCB treatment and has been selected for cleanup at three Superfund sites.
- Implementability. EPA has been developing the BCD technology since 1990, in cooperation with the Naval Facilities Engineering Service Center (NFESC), as a remedial technology specifically for soils contaminated with chlorinated organic compounds such as PCBs. This technology has been approved by EPA's Office of Toxic Substances under TSCA for PCB treatment and has been used extensively in the U.S. on Superfund sites. Most notably it has been used in the cleanup of 10,000 tons of PCB-contaminated soil in Guam in 1997 and to treat 40,000 tons of PCB-contaminated soil in Warren County, North Carolina.
- Cost. Ex situ dehalogenation is a high-cost technology with costs ranging from \$440 to \$1,100 per cy (FRTR 2013). Excavation and material handling cost would be higher with this alternative compared with more established technologies.

In summary, since dehalogenation has not been commercially implemented on a large scale and is moderately expensive, this technology was not further considered.

Solvent Extraction

Solvent extraction is a chemical process whereby the target contaminant is physically separated from its medium (soil) using an appropriate organic solvent. This technology does not destroy the waste, but reduces the volume of material that must be treated. Solvent extraction is typically accomplished by homogeneously mixing the soil, flooding it with the solvent, then mixing thoroughly again to al-

low the waste to come in contact with the solution. Once mixing is complete, the solvent is drawn off by gravity, vacuum filtration, or some other conventional dewatering process. The solids are then rinsed with a neutralizing agent (if needed), dried, and placed back on site or otherwise treated/disposed. Solvents and rinse water are processed through an on-site treatment system and recycled for further use. Solvent extraction has been shown to be effective in treating sediments, sludges, and soils containing primarily organic contaminants such as PCBs, VOCs, halogenated solvents, and petroleum wastes.

- Effectiveness. An on-site demonstration of the solvent extraction technology was completed in 2000 at a similar site contaminated with PCBs. Although analytical results from the demonstration showed on average a greater than 99% total PCB removal, operational problems were encountered during start-up, and multiple extractions were needed to achieve the required cleanup criteria.
- Implementability. This technology was demonstrated successfully at a number of Superfund sites for PCB-contaminated soils and sediments. The performance data currently available are mostly from the Resource Conservation Company's (RCC's) full-scale basic extractive sludge treatment (BEST) process. However, full-scale application of the technology has been limited. Additional concerns with this technology include the potential for presence of solvent in the treated soil and regeneration and reuse of the spent solvent.
- **Cost.** The costs involved in implementing this technology would typically range between \$275 to \$1,300 per cy depending on site-specific conditions and volume of treated material (FRTR 2013).

In summary, solvent extraction has not been commercially implemented but is costly compared with other ex situ treatment technologies. For these reasons, solvent extraction has not been retained for further consideration.

Soil Washing

Soil washing segregates the fine solid fractions from the coarser soils through an aqueous washing process and uses a wash water treatment system. Typically, soil washing has been used to remediate SVOCs, fuels, and heavy metals in soils, with limited success in remediating PCB-contaminated soils. This technology is based on the observation that the majority of contaminants are adsorbed into the fine soils (typically silt and clay-size particles) due to their greater specific surface ar-ea. The finer, contaminated fraction of soils would require further treatment/disposal. The coarser soils (expected to be relatively free of contamination) would be backfilled on-site once site cleanup goals have been achieved, which might require the soil to pass through the soil washing process multiple times. This alternative, on average, returns 80% to 90% of the treated soil or sediment back to its source. Commercially available surfactants are commonly used in the aqueous washing solution to transfer contaminants from the soil matrix to the liquid phase. Bench-scale studies are generally required prior to implementation of

a full-scale soil washing operation to determine site-specific parameters and selection of surfactant(s).

- Effectiveness. Soil washing offers the ability to clean a wide range of contaminants from coarse-grained soils. However, the effectiveness of the technology decreases with complex waste mixtures, which make choosing the washing fluid difficult. However, because contaminated site soils are primarily glacial deposits that consist of unsorted glacial till and lacustrine deposits of gravel, sand, silt, and clay as opposed to exclusively finer soils, soil washing is expected to be effective in reducing the volume of contaminated on-site soils.
- Implementability. Bench-scale studies are generally required prior to implementation of a full-scale soil washing operation to determine site-specific parameters and selection of surfactant(s). The equipment for this process would be fairly inexpensive, readily available, and mobile.
- Cost. Ex situ soil washing is a moderate cost technology with costs ranging between \$53 to \$142 per cy depending on the site conditions, target waste quantity, and concentration (FRTR 2013).

In summary, there is not a high level of confidence in the effectiveness of washing PCB-contaminated soil. Furthermore, since the cost of constructing an on-site processing facility and the cost of operating the facility for the contaminated volume are high, ex situ soil washing is not feasible at this site. Therefore, ex situ soil washing has not been retained for further consideration.

Identification of Alternatives

This section combines the technologies selected in Section 3 into alternatives. As directed by NYSDEC, alternatives have been identified for the OU-3 site. A detailed description and evaluation of the alternatives is presented in Section 5.

4.1 Alternative No. 1: No Action

The no action alternative was carried through the FS for comparison purposes, as required by the NCP. This alternative would be acceptable only if it is demonstrated that the contamination at the site is below the RAOs or that natural processes will reduce the contamination to acceptable levels.

4.2 Alternative No. 2: No Further Action with Site Management

This alternative consists of using ECs such as fencing and signs to further restrict human contact with site soils/sediments. ICs such as restrictions on subsurface excavation of the project area and monitoring would also be implemented to protect human health and the environment.

4.3 Alternative No. 3: Excavation and Off-Site Disposal

This alternative consists of excavation and off-site disposal of contaminated soils/sediments that exceed the site cleanup goals. The excavated material would be stockpiled, sampled, and disposed of accordingly. As maximum PCB concentrations in soil at the site were detected above 50 ppm, some of the contaminated soils would be disposed of at hazardous waste facilities and some of them and would be disposed of in a permitted NYSDEC-approved non-hazardous/solid waste facility.

4.4 Alternative No. 4: Excavation and On-Site Treatment by High Temperature Thermal Desorption

This alternative consists of excavation and thermal treatment of contaminated soils/sediments from OU-3 that exceed the site cleanup goals. An on-site mobile HTTD system was selected to thermally treat the contaminated soils. This process applies heat to the contaminated material and volatilizes the contaminants (i.e., physical separation process). The resulting gas stream is then collected and treated separately. An air pollution control system would also be included as part of the treatment system to ensure that the air emissions meet regulatory criteria prior to discharge into the atmosphere.

4.5 Alternative 5: In Situ Solidification

This alternative consists of in situ treatment and demobilization of contaminated soils/sediments that exceed that site cleanup goals. Prior to treatment, a treatability study would have to be conducted in order to determine how well this system would treat the PCB contamination at OU-3.

4.6 Alternative 6: Excavation and Off-Site Disposal of PCB-Contaminated Soil/Sediment Exceeding Restricted-Industrial SCOs

This alternative consists of excavation and off-site disposal of contaminated soils/sediments exceeding the Part 375 Restricted-Industrial SCO for PCBs of 25 ppm. The excavated material would be stockpiled, sampled, and disposed of accordingly. Because maximum PCB concentrations in soil at the site were detected above 50 ppm, some of the contaminated soils would be disposed of at hazard-ous waste facilities and some of them and would be disposed of in a permitted NYSDEC-approved non-hazardous/solid waste facility.

5

Detailed Analysis of Alternatives

5.1 Introduction

The purpose of the detailed analysis of remedial action alternatives is to present the relevant information for selecting a remedy for the site. In this analysis, the alternatives established in Section 4 are described in detail and evaluated on the basis of environmental benefits and costs using criteria established by NYSDEC in CP-51, DER-10, and 6 NYCRR Part 375. This approach is intended to provide needed information to compare the merits of each alternative and select an appropriate remedy that satisfies the site RAOs. This section first presents a summary of 10 evaluation criteria that were used to evaluate the alternatives.

Overall Protection of Human Health and the Environment

This criterion provides an overall assessment of protection of human health and the environment and is based on a composite of factors assessed under the evaluation criteria, especially short-term effectiveness, long-term effectiveness and performance, and compliance with cleanup goals.

Compliance with SCGs

This criterion is used to evaluate the extent to which each alternative may achieve the proposed cleanup goals. The proposed cleanup goals were developed based on SCGs presented in Section 2.

Short-Term Impacts and Effectiveness

This criterion addresses the impacts of the alternative during the construction and implementation phase until the RAOs are met. Factors to be evaluated include protection of the community during the remedial actions; protection of workers during the remedial actions; and the time required to achieve the RAOs. Several alternatives described in the following sections may not be effective in meeting RAOs in less than 30 years. Therefore, references to short-term impacts and effectiveness may include discussions of impacts/effectiveness over a period of 30 years.

Long-Term Effectiveness and Permanence

This criterion addresses the long-term protection of human health and the environment after completing the remedial action. The effectiveness of the remedial action in managing the risk posed by untreated wastes and/or the residual contamination remaining after treatment and the long-term reliability of the remedial action is assessed.

Reduction of Toxicity, Mobility, and Volume through Treatment

This criterion addresses NYSDEC's preference for selecting "remedial technologies that permanently and significantly reduce the toxicity, mobility, and volume" of the COCs at the site. This evaluation consists of assessing the extent to which the treatment technology destroys toxic contaminants, reduces mobility of the contaminants using irreversible treatment processes, and/or reduces the total volume of contaminated media.

Implementability

This criterion addresses the technical and administrative feasibility of implementing an alternative and the availability of services and materials required during implementation. Technical feasibility refers to the ability to construct and operate a remedial action for the specific conditions at the site and the availability of necessary equipment and technical specialists. Technical feasibility also considers construction and O&M difficulties, reliability, ease of undertaking additional remedial action (if required), and the ability to monitor effectiveness. Administrative feasibility refers to compliance with applicable rules, regulations, and statutes and the ability to obtain permits or approvals from government agencies or offices.

Cost

The estimated capital costs, long-term O&M costs, and environmental monitoring costs are evaluated. The estimates included herein (unless otherwise noted) assume engineering and administrative costs would equal 10% of the capital costs and contingency costs would equal 15% of the capital costs. A present-worth analysis is made to compare the remedial alternatives on the basis of a single dollar amount for the base year. For the present-worth analysis, assumptions are made regarding the interest rate applicable to borrowed funds and the average inflation rate. According to the *Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA*, the Superfund program recommends that a discount rate of 5% before taxes and after inflation be assumed. Also, the CERCLA guidance states that, in general, the period of performance for costing purposes should not exceed 30 years for the purpose of the detailed analysis. Therefore, the following detailed analysis of remedial alternatives will follow this guidance. The comparative cost estimates are intended to reflect actual costs with an accuracy of +50% to -30%.

Two cost estimates are provided for each excavation or treatment alternative because two potential SCOs for PCBs have been proposed; the actual PCB SCO is expected to be selected in the Record of Decision (ROD) for the site.

State Acceptance

This assessment evaluates the technical and administrative issues and concerns the state may have regarding each alternative. This criterion will be addressed in the ROD after comments are received on the proposed plan. Therefore, state acceptance is not discussed further in this report.

Community Acceptance

This assessment evaluates the issues and concerns the public may have regarding each alternative. This criterion will be addressed in the ROD once comments on the proposed plan have been received. Therefore, community acceptance is not discussed further in this report.

Land Use

The land use criterion evaluates the issues and concerns regarding the current, intended, and reasonably anticipated future land uses of the site. Other considerations include the sites' surroundings, compatibility with applicable zoning laws, compatibility with comprehensive community master plans , proximity to incompatible property near the site, accessibility to existing infrastructure, and a number of other concerns as identified in 6 NYCRR Part 375-1.

A detailed description of the alternatives listed in Section 4 and evaluation criteria are described below. Cost estimates for each alternative are presented in Tables 5-1 through 5-5. Table 5-6 presents a summary of costs for all alternatives.

5.2 Remedial Alternatives for OU-3

5.2.1 Alternative No. 1: No Action

5.2.1.1 Detailed Description

The no action alternative involves taking no further action to remedy site conditions. The NCP at 40 CFR §300.430(e) (6) provides that the no action alternative be considered at every site as a baseline for comparison with other alternatives. This alternative does not include remedial action, institutional or engineering controls, or long-term monitoring.

5.2.1.2 Detailed Evaluation of Criteria

Overall Protection of Human Health and the Environment

This alternative is not protective of human health and the environment because the site would remain in its present condition. Soils contamination exceeding target risk levels and regulatory levels will continue to exist at the site and will be available for potential future exposure. Uncontrolled excavations could lead to PCB exposure and, therefore, risk to human health. In addition, direct contact and ingestion exposure of contaminated soil by certain wildlife may be a risk.

Compliance with SCGs

The primary contaminants of concern (PCBs) are resistant compounds by nature and are not expected to decrease appreciably over time. Therefore, this alternative would not comply with the chemical-specific SCGs for the site.

5 Detailed Analysis of Alternatives

Short-Term Impacts and Effectiveness

No short-term impacts are anticipated during the implementation of this alternative since there are no remedial activities involved. However, short-term impacts may result from the existing site conditions.

This alternative does not include source removal or treatment of the drainageway material within the OU-3 area and would not meet the RAOs (as defined in Section 2.3) in a reasonable or predictable timeframe.

Long-Term Effectiveness and Permanence

Because this alternative does not involve removal or treatment of the contaminated soil, the volume of contamination, risks associated with direct contact and ingestion with the soil and migration of contaminants to groundwater will essentially remain the same. This alternative is, therefore, not effective in the long-term.

Reduction of Toxicity, Mobility, and Volume through Treatment

This alternative does not involve removal or treatment of contaminated soil and, therefore, the toxicity, mobility, and volume of contamination will not be reduced.

Implementability

There are no actions to implement under this alternative.

Cost

There are no costs associated with this alternative for OU-3.

Land Use

The site comprises just one property parcel that is owned by Albany County. Based on the town of Colonie zoning map (Town of Colonie 2007), the site is zoned as industrial. NYSDEC indicated that the future use of the site will change to be limited to commercial activities. Implementation of this alternative would limit the future uses at this site to commercial activities.

5.2.2 Alternative No. 2: No Further Action with Site Management 5.2.2.1 Detailed Description

Site management would primarily include ICs with some ECs and OM&M. ICs would consist of access/use and deed restrictions at the site to limit the potential for human exposure to contaminated site soils. Some ECs such as fencing or signs would be used as a physical barrier and as a warning to further restrict human contact with site soils. OM&M for this alternative would primarily include maintaining the existing conditions at the site and long-term monitoring of PCB concentrations in storm water runoff.

Under CERCLA 121 (c) five-year reviews should be conducted for sites that implement remedial actions that, upon completion, would leave hazardous substances, pollutants, or contaminants on-site above levels that allow for unlimited use and unrestricted exposure. Since the implementation of this alternative would re-

5 Detailed Analysis of Alternatives

sult in PCB concentrations above the 6 NYCRR Part 375 unrestricted use cleanup objective of 0.1 ppm, five-year reviews would be required at the site.

5.2.2.2 Detailed Evaluation of Criteria

Overall Protection of Human Health and the Environment

Although contamination will remain on site, this alternative will be protective of human health because the ICs and ECs will reduce the potential for direct human and wildlife exposure. However, this alternative is not designed to reduce the potential for migration of the contaminants in the saturated zone.

Compliance with SCGs

The contaminant levels in soil are not expected to decrease appreciably over time. Therefore, this alternative would not comply with the chemical-specific SCGs for the site. Action-specific and location-specific SCGs (e.g., safety regulations) would be included in the institutional controls and complied with for site activities.

Short-Term Impacts and Effectiveness

No short-term impacts (other than those existing) are anticipated during the implementation of this alternative since there are no remedial activities involved.

Provided that the OM&M, ECs, and ICs are enforced, this alternative would meet the RAO to "prevent migration of contaminants that would result in groundwater or surface water contamination."

Long-Term Effectiveness and Permanence

This alternative would not be effective in the long term (in terms of protecting human health and the environment) because this alternative does not involve removal or treatment of contaminated soil. In addition, the potential for contaminant migration via erosion, while reduced, would still remain. Deed or other restrictions would be effective in the long term as long as they are interpreted correctly, unchanged by future site users, and enforced.

Reduction of Toxicity, Mobility, and Volume through Treatment

This alternative does not involve removal or treatment of contaminated soil and, therefore, the toxicity, mobility, and volume of contamination would not be reduced.

Implementability

This alternative can be readily implemented using standard construction means and methods.

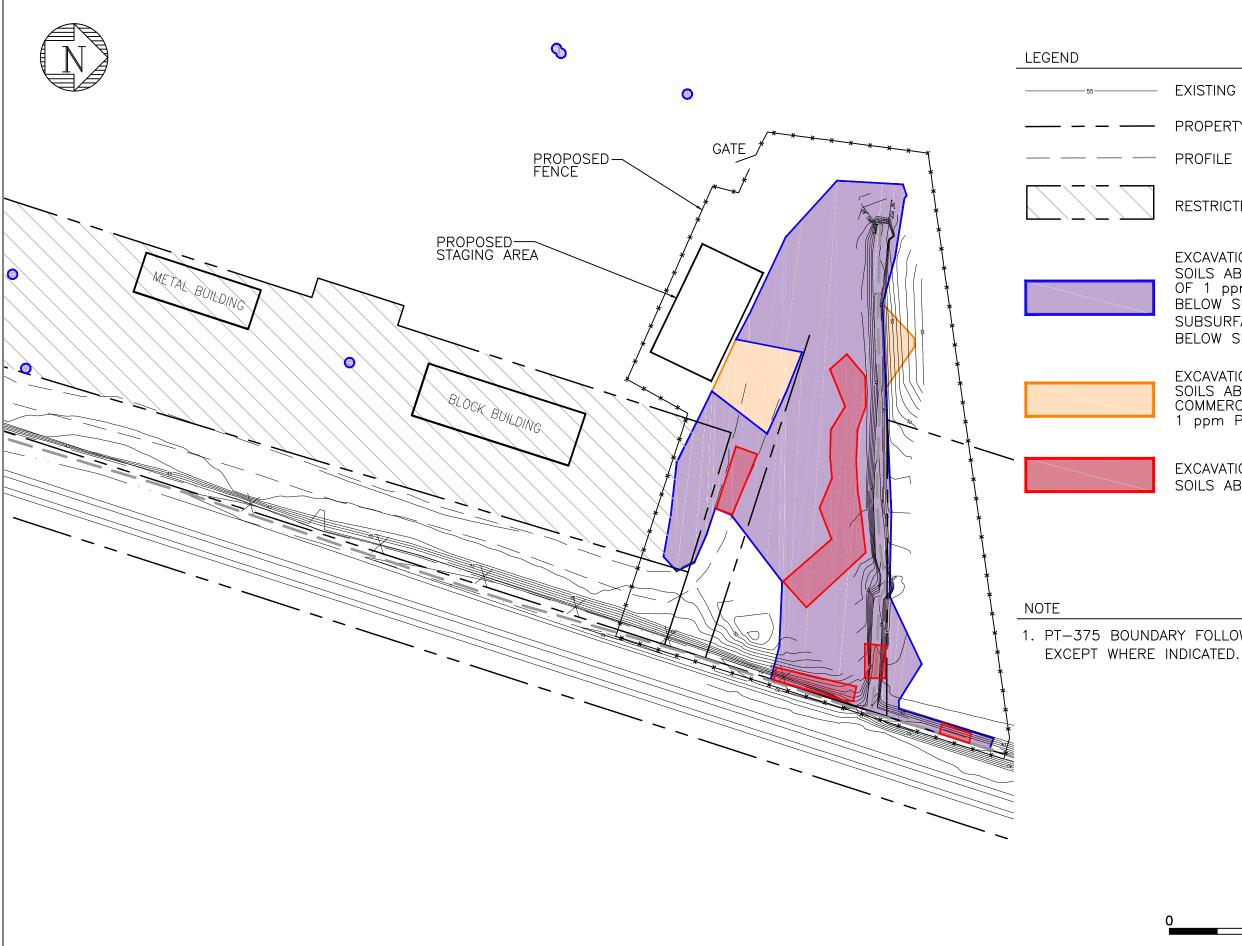
Cost

The 2014 total present value cost of this alternative for the OU-3 site, based on a 30-year period, is \$204,000. Table 5-1 presents the quantities, unit costs, and sub-total cost for the various work items in Alternative 2.

Land Use

Land use at the OU-3 site is described in Section 5.2.1.2. Based on current zoning, implementation of this alternative would limit future uses at this site.

5.2.3 Alternative No. 3: Excavation and Off-Site Disposal


5.2.3.1 Detailed Description

This alternative involves excavation and off-site disposal of contaminated soils/sediments that exceed the site cleanup goals. The contaminated soil would be excavated, stockpiled, characterized, and properly disposed of at an off-site NYSDEC-permitted facility. As described in Section 3.3.3.2, TSCA soils, or soil containing PCBs at concentrations greater than or equal to 50 ppm, are considered hazardous, while those with PCB concentrations less than 50 ppm are considered non-hazardous. Figure 5-1 shows the extent of TSCA and non-TSCA excavations at the OU-3 site of both CP-51 and Part 375 restricted-commercial SCOs.

Prior to excavation activities, an environmental assessment of the project area shall be completed to identify existing habitat and wildlife that may be protected by the potentially applicable SCGs described in Section 2. During excavation, care shall be taken through the installation of silt fences to protect existing habitat and wildlife within the project area.

The contaminated soil would be excavated using conventional construction equipment, primarily limited to a hydraulic excavator. During the excavation process, PCB field screening tests would be performed in accordance with 40 CFR 761.61. NYSDEC's construction oversight inspector would use the results of the field screening tests to verify contamination levels. A sampling grid would be developed over the excavation area for the NYSDEC construction oversight inspector's approval. The maximum depth of excavation in the excavation area would be at least 8 feet bgs, based on contaminated sample depths; however, excavation would continue until confirmatory sampling reveals that SCGs have been met.

While direct loading of transport trucks is the preferred methodology, temporary facilities could be needed for on-site storage of contaminated material after excavation, depending on the contractor's methods of operation. Excavated soils that are contaminated and not directly loaded on to trucks could be stockpiled on plastic liners on-site for characterization in accordance with disposal facility requirements. The contractor would be responsible for the characterization sampling, which would be conducted at a NYSDOH-certified laboratory.

EXISTING TOPOGRAPHIC CONTOUR

PROPERTY LINE

PROFILE

RESTRICTED USE AREA

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE CP-51 SOIL CLEANUP OBJECTIVES OF 1 ppm PCBs IN SURFACE SOILS (0-1 ft BELOW SURFACE) AND 10 ppm PCBs IN SUBSURFACE SOILS (GREATER THAN 1 ft BELOW SURFACE)

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE 6 NYCRR PART 375 RESTRICTED -COMMERCIAL SOIL CLEANUP OBJECTIVES OF 1 ppm PCBs

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE TSCA LEVELS OF 50 ppm PCBs

1. PT-375 BOUNDARY FOLLOWS THE CP-51 BOUNDARY

SCALE IN FEET

80 160 240

5 Detailed Analysis of Alternatives

After the results of the characterization sampling are received, the soil would be cleared for disposal by the NYSDEC construction oversight inspector. Trucks would be manifested then weighed with an empty load. The soil would be loaded onto the trucks then weighed again to determine the approximate loaded weight of the vehicle. The trucks would then transport the soil to the appropriate disposal facility. The final tipping weight of each truck would be recorded on the Hazard-ous Waste Manifest and retained for EPA and NYSDEC reporting purposes.

TSCA soil would be disposed of at a NYSDEC-approved RCRA Subtitle C landfill. According to the United States Army Corps of Engineers Hazardous, Toxic, and Radioactive Waste Center of Expertise Information, five hazardous waste landfill facilities operating in the United States are permitted to accept these soils. Of those five, only one of the facilities is located east of the Mississippi River, Chemical Waste Management (CWM) in Model City, New York. The CWM facility in Model City, Niagara County, New York, is the closest facility to the site and, therefore, the likely destination for the TSCA-level PCB-contaminated soils from the site.

A number of disposal locations are available for non-hazardous soils. For example, Clinton County landfill operated by Casella is relatively close to the site and accepts soil with PCBs less than 50 ppm. Unit costs from the CWM facility at Model City near Niagara Falls, NY have been used for costing purposes with the understanding that landfill(s) closer to the site may be identified at the design stage.

Based on the groundwater elevations collected during the RI (EEEPC 2008a), dewatering may be necessary in portions of the site. Means and methods of dewatering would be determined by the contractor's approach to the site work. EEEPC assumed temporary water treatment system would be established on-site. Treated water would be appropriately discharged off-site.

Following excavation and removal of designated soil from the site, imported clean fill would be placed and compacted in the excavation area to restore the site grades and to reconstruct the drainage ditch. Six inches of topsoil would be placed and graded across the entire excavation area. Erosion protection, if required to comply with local storm water management codes, would be installed as part of the reconstruction of the northern drainageway. Once backfill operations are completed, the site would be restored to pre-construction conditions to include seeding and tree planting.

As stated above, two SCOs for PCBs have been proposed for the site: cleanup to 6 NYRCR Part 375 restricted-commercial SCOs or CP-51 SCOs. The soil volume estimated to be excavated to the proposed Part 375 SCOs in OU-3 comprises approximately 4,860 cy of non-TSCA soil and 1,277 cy of TSCA soil. The soil volume estimated to be excavated to the proposed CP-51 SCOs for PCBs and restricted-commercial SCOs for non-PCBs comprise approximately 3,781 cy of

non-TSCA soil and 1,277 cy of TSCA soil. These volumes comprise drainageway soils (sediments), surface soil, and subsurface soils contamination, and cutbacks.

A cutback of the excavation or other means of safe access and egress must be provided in trench excavations 4 feet or deeper to ensure safe working conditions in the excavation and to meet Occupational Safety and Health Administration (OSHA) requirements. Cutback volumes were calculated based on the average excavation depth, the excavation perimeter, a 3-horizontal: 1-vertical slope, and a triangular cross-section.

Under CERCLA 121 (c), five-year reviews should be conducted for sites that implement remedial actions that, upon completion, would leave hazardous substances, pollutants, or contaminants on-site above levels that allow for unlimited use and unrestricted exposure. Since the implementation of this alternative would result in PCB concentrations above the 6 NYCRR Part 375 unrestricted use cleanup objective of 0.1 ppm, five-year reviews would be required.

5.2.3.2 Detailed Evaluation of Criteria

Overall Protection of Human Health and the Environment

This alternative is protective of human health and the environment because contaminated soils would be removed from the site and properly disposed of in an NYSDEC-permitted facility. Because the contaminants would be removed from the site, exposure risks associated with soil contamination would be reduced to levels acceptable for restricted-commercial use.

Compliance with SCGs

This alternative complies with SCGs since contaminated soils would be removed from OU-3 and the site and properly disposed of in an environmentally acceptable facility. Off-site disposal would comply with all applicable land disposal restrictions and analytical requirements. Action- and location-specific SCGs, including noise limitations, wetlands permits (as required), and OSHA regulations, would be complied with during implementation of this alternative or included and enforced with institutional controls.

Short-Term Impacts and Effectiveness

Several short-term impacts on the community and workers may arise during excavation of contaminated soil at the site, including dust, noise, and potential spills during handling and transportation of contaminants. To minimize short-term impacts, site access would be restricted during construction and remediation activities. Health and safety measures, including air monitoring, using appropriate PPE, and decontaminating equipment leaving the site, would be in place to protect the workers and surrounding residents and community. Action levels would be set prior to any intrusive activities, and an appropriate corrective action would be implemented if these action levels are exceeded.

5 Detailed Analysis of Alternatives

A licensed hauler would provide off-site transportation of contaminated soil to the disposal facility. While there is a risk of spills due to accidents, this risk would be limited by using closed and lined containers for transport.

Because this alternative involves removal of the contaminated soil from the site and replacement with clean fill, site RAOs would be achieved at the completion of this work. The time to complete this alternative is estimated to be approximately three to six months.

Long-Term Effectiveness and Permanence

Removal and off-site disposal is considered to be an adequate and effective remedy in the long-term since the remaining soil would meet site cleanup criteria. Therefore, human health and environmental risks would be reduced to levels appropriate for restricted-commercial site use.

Reduction of Toxicity, Mobility, and Volume through Treatment

This alternative does not reduce the toxicity, mobility, or volume of contaminated soil through treatment. However, excavation and off-site disposal of contaminated soils would eliminate concerns associated with toxicity and mobility of the contaminants at the site. Since the hazardous soil would be disposed of in an engineered permitted facility, the mobility of the contaminants would be within acceptable limits and would therefore be reduced.

Implementability

This alternative is readily implemented using standard construction means and methods. Contaminated soil would be excavated, tested, and disposed of at a nonhazardous waste facility. Several facilities that can accept the contaminated soil from the site have been identified. No capacity or availability problems have been identified. Finally, no delay in obtaining the necessary approvals from the state and local agencies for implementation of this alternative is expected.

Cost

The 2014 total present-value cost of achieving Part 375 SCOs under this alternative is approximately \$1,586,000. The 2014 total present-value cost of achieving CP-51 SCOs under this alternative is approximately \$1,364,000. Tables 5-2a and 5-2b present the respective quantities, unit costs, and subtotal costs for the various work items in Alternative 3.

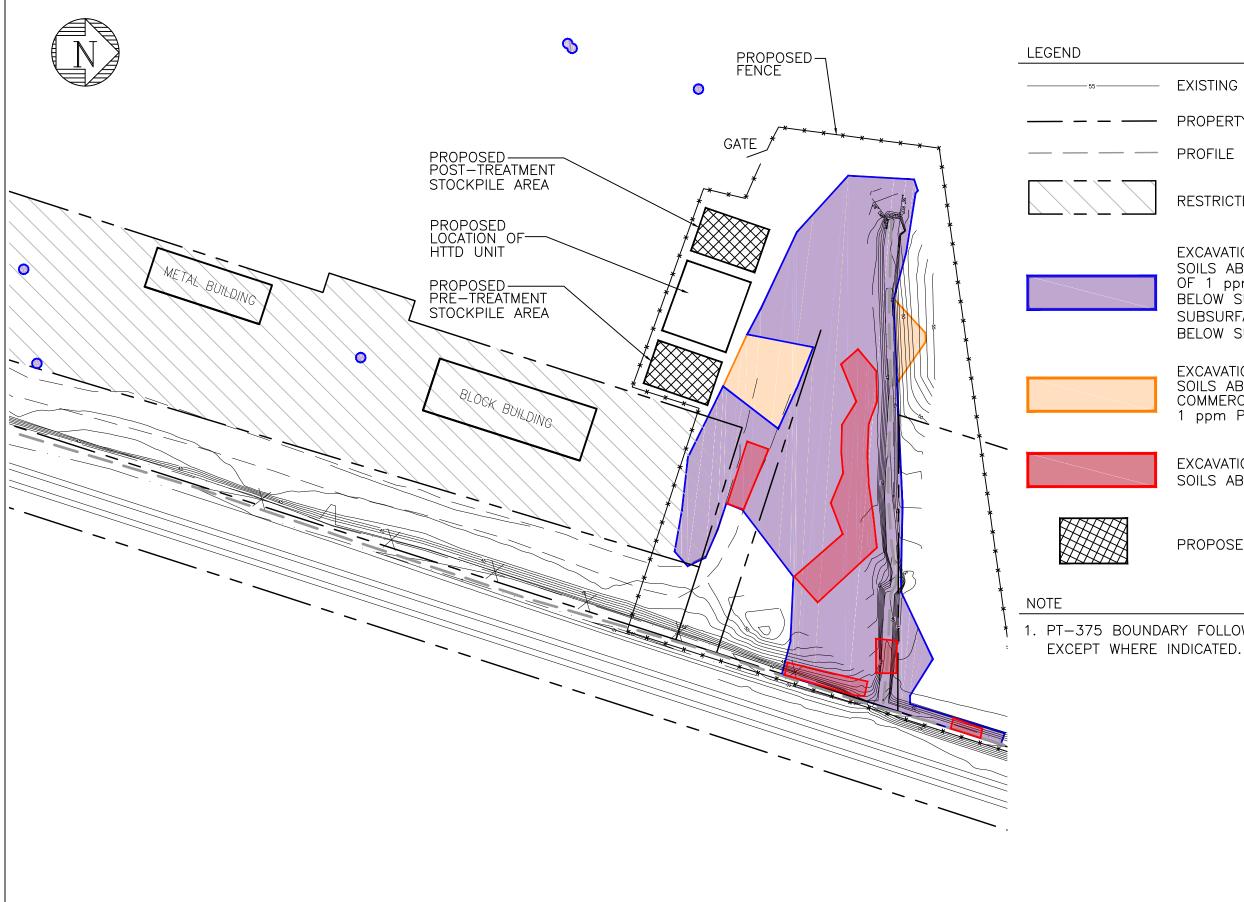
Land Use

Land use at the Adirondack Steel OU-3 site is described in Section 5.2.1.2. Based on current zoning, implementation of this alternative would not limit future uses at this site.

5.2.4 Alternative No. 4: Excavation and On-Site Treatment by High Temperature Thermal Desorption

5.2.4.1 Detailed Description

This alternative involves excavation and on-site thermal treatment of contaminated soils to site cleanup goals Soil would be excavated from the site and hauled to a mobile HTTD unit for on-site treatment. Figure 5-2 shows the extent of TSCA and non-TSCA excavation at the OU-3 site for both CP-51 and Part 375 restricted-commercial SCOs.


The contaminated soil would be excavated using conventional construction equipment, primarily limited to a hydraulic excavator and bulldozers. During the excavation process, PCB field screening tests and dewatering would be conducted, as described in Section 5.2.3.1. The maximum depth of excavation in the excavation area would be at least 8 feet bgs, based on contaminated sample depths; however, excavation would continue deeper until confirmatory sampling reveals that SCGs have been met.

Excavated TSCA soil would be disposed of at a RCRA Subtitle C facility, as described in Section 5.2.3.1. Excavated non-TSCA soil would be placed in storage piles near the mobile treatment unit. While awaiting treatment, the storage piles would be mechanically mixed (typically a front-end loader) and screened or crushed such that the material is 3 inches or smaller in the stockpile. For costing purposes, it is assumed that the material would contain 85% solids or greater and dewatering (or drying) of this material would not be required. The HTTD unit is assumed to work continuously (24 hours per day, 6 days a week) to limit the thermal stress on the unit. Periodically, the HTTD unit would be shut down one day per week for regular maintenance.

The mobile treatment unit provided by ESMI (ESMI 2013) will be able to treat at a rate of 30 tons to 45 tons per hour. The treatment plant would need a storage area for the storage piles that would provide the feed to the system as well as a discharge area for the treated soil. Approximately three-quarters of an acre would be needed for the plant and the storage piles and treatment piles.

Soils would be thermally treated using direct-fired technology, i.e., fire is directly applied to the surface of the contaminated soil. Typically, soils would reach a maximum temperature of 950°F within the unit. The relatively low temperatures used to vaporize soil contaminants do not affect the physical and mineral characteristics of the soil. The mobile treatment unit would discharge the treated material into a treated-soil stockpile.

Several on-site facilities would be needed to operate the HTTD unit. Based on the past use of the site as an industrial park, it is anticipated that water, natural gas, and electrical utility connections are available in the vicinity of the site.

EXISTING TOPOGRAPHIC CONTOUR

PROPERTY LINE

PROFILE

RESTRICTED USE AREA

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE CP-51 SOIL CLEANUP OBJECTIVES OF 1 ppm PCBs IN SURFACE SOILS (0-1 ft BELOW SURFACE) AND 10 ppm PCBs IN SUBSURFACE SOILS (GREATER THAN 1 ft BELOW SURFACE)

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE 6 NYCRR PART 375 RESTRICTED -COMMERCIAL SOIL CLEANUP OBJECTIVES OF 1 ppm PCBs

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE TSCA LEVELS OF 50 ppm PCBs

PROPOSED STOCKPILE AREA

1. PT-375 BOUNDARY FOLLOWS THE CP-51 BOUNDARY

SCALE IN FEET 80 160 240

5 Detailed Analysis of Alternatives

Prior to the implementation of this alternative, a permit equivalency would be required for operating the on-site mobile treatment systems. As part of the permit equivalency, the mobile treatment unit would be tested to verify the destruction removal efficiency of contaminants, particulate matter emissions, etc. (ESMI 2013).

Prior to backfilling, water would be sprayed over the treated soil to allow cooling and to reduce wind dispersion. Contractor specifications indicate negligible soil loss is anticipated through the treatment process. Additional backfill may be imported to the site up to the volume of TSCA soil disposed off-site. Six inches of topsoil would be placed and graded across the entire excavation area. Erosion protection, if required to comply with local storm water management codes, would be installed as part of the reconstruction of the northern drainageway. Once backfill operations are completed, the site would be restored to pre-construction conditions, and would include seeding and tree planting.

As stated in the beginning of Section 5, two SCOs for PCBs have been proposed for the site: cleanup to 6 NYRCR Part 375 restricted-commercial SCOs or CP-51 SCOs. The soil volume estimated to be excavated and treated to the proposed Part 375 SCOs in OU-3 comprises approximately 4,860 cy of non-TSCA soil and 1,277 cy of TSCA soil. The soil volumes estimated to be excavated and treated to the proposed CP-51 SCOs for PCBs and restricted-commercial SCOs for non-PCBs comprise approximately 3,781 cy of non-TSCA soil and 1,277 cy of TSCA soil. These volumes comprise drainageway soils (sediments), surface soil, subsurface soil, and cutbacks. Cutbacks were calculated in the same manner as described in Section 5.2.3.1.

Under CERCLA 121(c), five-year reviews should be conducted at sites that implement remedial actions that, upon completion, would leave hazardous substances, pollutants, or contaminants on-site above levels that allow for unlimited use and unrestricted exposure. Since the implementation of this alternative would result in PCB concentrations above the 6 NYCRR Part 375 unrestricted use cleanup objective of 0.1 ppm, five-year reviews would be required at the site.

5.2.4.2 Detailed Evaluation of Criteria

Overall Protection of Human Health and the Environment

This alternative is considered protective of human health and the environment because the contaminated material would be excavated and thermally treated on-site to meet site cleanup levels. Because the contaminants would be treated and destroyed, exposure risks associated with soil contamination would be reduced to levels acceptable for restricted-commercial use.

Compliance with SCGs

This alternative would meet SCGs because the PCB contamination in site soils would be effectively treated to meet cleanup goals at the site. Applicable action-

and location-specific SCGs, including air discharge permits and requirements, noise limitations, wetland permits (as required), storm water requirements, and OSHA regulations, would be met during implementation of the alternative or with inclusion and enforcement of site institutional controls.

Short-Term Impacts and Effectiveness

Several short-term impacts on the community and workers may arise during excavation of contaminated soil from the site. With this alternative, the risk to workers from the equipment used to excavate the soil is increased due to possible exposure to the contaminated soil or dust. Community impacts include dust and noise from equipment operation. Continuous operation of the HTTD system (24hour) and construction equipment may increase noise impacts on the surrounding community. These noise impacts can be reduced through engineering controls such as noise barriers and mufflers attached to the HTTD unit. To minimize other short-term impacts, site access would be restricted during excavation and remediation activities. Health and safety measures, including air monitoring, use of appropriate PPE, and decontamination of equipment leaving the site would be in place to protect the workers and surrounding community. Action levels for the site would be set prior to any intrusive activities, and an appropriate correction action would be implemented if these action levels are exceeded.

This alternative involves treating contaminated soil at the site, so the RAOs would be achieved at the completion of this work. Excavation and thermal treatment of the contaminated soil is estimated to achieve site RAOs in approximately three to six months.

Long-Term Effectiveness and Permanence

This alternative is considered to be an effective remedy in the long term because contaminants in site soils would be destroyed using thermal treatment. Treated soil would meet site cleanup criteria, and thus human health and environmental risks would be reduced to levels appropriate for restricted-commercial site use.

Reduction of Toxicity, Mobility, and Volume through Treatment

The volume of contamination would be reduced at the site because this alternative actively treats PCB contamination in site soils. Consequently, the toxicity and mobility of the contaminants would also be reduced.

Implementability

This alternative can be readily implemented using standard construction means and methods. A contractor specializing in thermal treatment systems would likely be employed to mobilize and operate the thermal treatment system. Although start-up problems and periodic downtime may be encountered due to mechanical complexity, thermal treatment could reliably meet cleanup goals. Because of the variability of the PCBs and other parameter concentrations (e.g., metals, debris) operational parameters may be have to be adjusted to treat this material. However, this should not affect the performance or implementability of the alternative. The HTTD system would be monitored and sampled during the treatment phase to ensure that site cleanup criteria are met and air discharge standards are not exceeded.

Cost

The 2014 total present-value cost of achieving Part 375 SCOs under this alternative for the OU-3 site, based on a 30-year period, is \$2,925,000. The 2014 total present-value cost of achieving CP-51 SCOs under this alternative is approximately \$2,548,000. Tables 5-3a and 5-3b present the respective quantities, unit costs, and subtotal costs for the various work items in this alternative. Technology-specific costs were obtained from ESMI of New York; other cost estimate information was obtained from RS Means Cost Data series and engineering judgment. No long-term O&M costs are anticipated with this alternative.

Land Use

Land use at the Adirondack Steel OU-3 site is described in Section 5.2.1.2. Based on current zoning, implementation of this alternative would not limit future uses of the site to restricted-commercial uses.

5.2.5 Alternative No. 5: In Situ Solidification/Stabilization 5.2.5.1 Detailed Description

This alternative involves in situ mechanical mixing of the contaminated soils with a binder material to solidify the soil. Non-TSCA soil would be stablized and solidified. TSCA soil will be excavated and disposed of off-site. Excavation, confirmatory sampling, dewatering, and off-site disposal of TSCA soils will be as described in Section 5.2.3.1. Figure 5-3 shows the extent of TSCA excavations the treatment/stabilization area at the OU-3 site to both CP-51 and Part 375 restricted-commercial SCOs.

Non-TSCA soil would be mixed in situ by a track-mounted soil auger system and stabilized/solidified with cement. The appropriate binder material would be selected during a comprehensive test system, in which the effects of various binders on the unconfined compressive strength, shearing strength, and leachability of contaminants would be evaluated. Cement is the most common binder material used for most applications (Ramboll Norge AS 2009). Test samples for leachate and diffusion would be analyzed at a NYSDOH-certified laboratory.

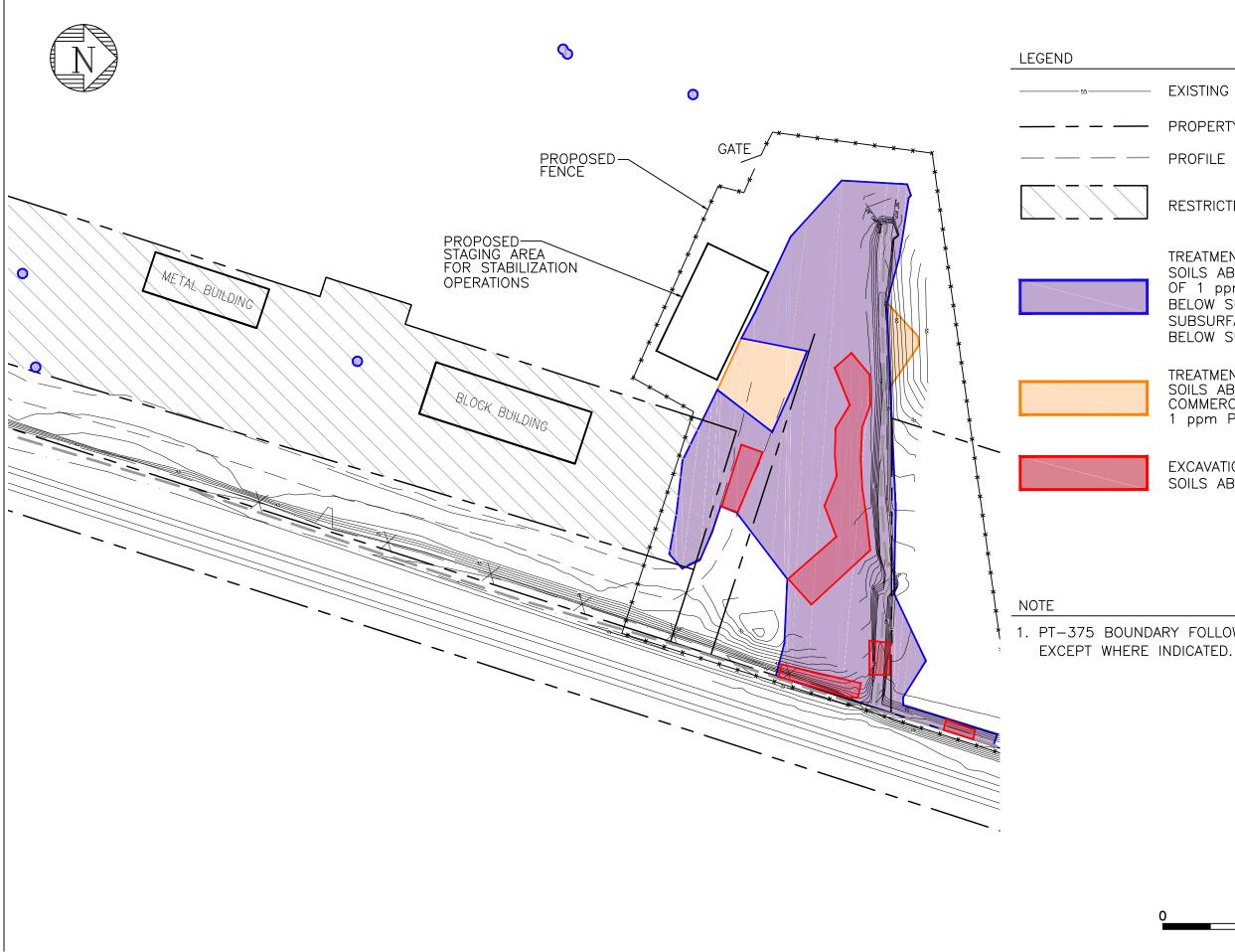
Stabilization and solidification of non-TSCA soils will create a monolithic block in place of the existing soil. To accommodate the additional volume of the monolithic block created by stabilization/solidification and the need to maintain the elevation of the invert from the drainageway to the railroad ditch, all excess non-TSCA soil generated during the solidification process will be landfilled on-site. Non-contaminated site soil removed during landfilling operations will be stockpiled and reused as soil cover. All excavated soil will be sampled to confirm residual levels of PCB contamination.

5 Detailed Analysis of Alternatives

Following stabilization/solidification of contaminated soils, the excavated and equipment staging areas will be restored to pre-construction conditions to include seeding. Six inches of topsoil would be placed and graded across the entire excavation area. Erosion protection, if required to comply with local storm water management codes, would be installed as part of the reconstruction of the northern drainageway.

As noted above, two SCOs for PCBs have been proposed for the site: cleanup to 6 NYRCR Part 375 restricted-commercial SCOs or CP-51 SCOs. The volume to be solidified in situ that represents soil with PCBs above the proposed Part 375 SCOs in OU-3 comprises approximately 4,259 cy of non-TSCA soil. The volume to be solidified in situ and representing soil with PCBs above the proposed CP-51 SCOs and non-PCB contamination above the Part 375 SCOs in OU-3 comprises approximately 3,396 cy of non-TSCA soil. An additional 1,277 CY of "TSCA" soil would be excavated and disposed of off-site. These volumes comprise drainageway soils (sediments), surface soil, and subsurface soils contamination and 3:1 horizontal: vertical cutbacks for excavations.

Under CERCLA 121(c) five-year reviews should be conducted at sites that implement remedial actions that, upon completion, would leave hazardous substances, pollutants, or contaminants on-site above levels that allow for unlimited use and unrestricted exposure. Since the implementation of this alternative would result in PCB concentrations above the 6 NYCRR Part 375 unrestricted use cleanup objective of 0.1 ppm, five-year reviews would be required at the site.


5.2.5.2 Detailed Evaluation of Criteria

Overall Protection of Human Health and the Environment

This alternative is protective of human health and the environment, since contamination in OU-3 soils would be physically bound or enclosed within a stabilized mass. Because contaminant mobility would be reduced, exposure risks associated with soil contamination would be reduced to levels acceptable for restricted-commercial use.

Compliance with SCGs

This alternative complies with SCGs since contaminated soils would be stabilized/solidified; as such it is often considered non-hazardous. Leachate from stabilized/solidified material would be analyzed during the comprehensive system test to demonstrate that contamination is successfully bound in the binder material and that migration is reduced. Action- and location-specific SCGs, including noise limitations, wetlands permits (as required), storm water requirements, and OSHA regulations, would be in compliance during implementation of this alternative or included and enforced with institutional controls.

EXISTING TOPOGRAPHIC CONTOUR

PROPERTY LINE

PROFILE

RESTRICTED USE AREA

TREATMENT BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE CP-51 SOIL CLEANUP OBJECTIVES OF 1 ppm PCBs IN SURFACE SOILS (0-1 ft $\,$ BELOW SURFACE) AND 10 ppm PCBs IN SUBSURFACE SOILS (GREATER THAN 1 ft BELOW SURFACE)

TREATMENT BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE 6 NYCRR PART 375 RESTRICTED -COMMERCIAL SOIL CLEANUP OBJECTIVES OF 1 ppm PCBs

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE TSCA LEVELS OF 50 ppm PCBs

1. PT-375 BOUNDARY FOLLOWS THE CP-51 BOUNDARY

SCALE IN FEET 80 160

240

5 Detailed Analysis of Alternatives

Short-Term Impacts and Effectiveness

Several short-term impacts on the community and workers may arise during excavation of contaminated soil at OU-3, including dust, noise, and potential spills during handling and transportation of contaminants. To minimize short-term impacts, site access would be restricted during construction and remediation activities. Health and safety measures, including air monitoring, using appropriate PPE, and decontaminating equipment leaving the site, would be in place to protect the workers and surrounding residence and community. Action levels would be set prior to any intrusive activities and an appropriate correction action would be implemented if these action levels are exceeded.

Because this alternative involves the transformation of the contaminated soil to a stabilized/solidified non-hazardous block, site RAOs would be achieved at the completion of this work. The time to complete this alternative is estimated to be approximately three to six months.

Long-Term Effectiveness and Permanence

Because this alternative involves stabilizing the contaminated soil, the risks associated with direct contact with and ingestion of the soil and migration of contaminants to groundwater will be reduced. As this alternative includes ICs and ECs, this alternative will be effective in the long-term. Unstabilized soil would meet site cleanup criteria, and therefore human health and environmental risks would be reduced to restricted-commercial-use levels.

Reduction of Toxicity, Mobility, and Volume through Treatment

The volume of contamination would be reduced at the site because this alternative stabilizes PCB contamination currently in site soils into a solid monolithic block. The PCBs would be physically encased and bound in the binder material. Consequently, the toxicity and mobility of the contaminants would also be reduced.

Implementability

This alternative can be readily implemented using standard construction means and methods. A contractor specializing in soil stabilization/solidification systems would likely be employed to mobilize and operate the thermal treatment system. Although start-up problems may be encountered and periodic downtime due to mechanical complexity, soil stabilization/solidification could reliably meet cleanup goals. Because the PCBs and other parameter concentrations are variable, operational parameters may have to be adjusted to stabilize this material. However, this should not affect the performance or implementability of this alternative. After stabilization the solidified material would be leachate-tested to ensure that site cleanup criteria are met.

Cost

The 2014 total present-value cost of achieving Part 375 SCOs under this alternative for the OU-3 site is approximately \$2,484,000. The 2014 total present-value cost of achieving CP-51 SCOs under this alternative is approximately \$2,149,000.

5 Detailed Analysis of Alternatives

Tables 5-4a and 5-4b present the respective quantities, unit costs, and subtotal costs for the various work items in this alternative. In situ solidification costs were obtained from a 1988EPA Test Study and pro-rated to a 2013 cost. Other cost estimating information was obtained from RS Means Cost Data series and engineering judgment. No long-term OM&M costs are anticipated with this alternative.

Land Use

Land use at the Adirondack Steel OU-3 site is described in Section 5.2.1.2. Based on current zoning, implementation of this alternative would not limit future uses at this site.

5.2.6 Alternative 6: Excavation and Off-Site Disposal of PCB-Contaminated Soil/Sediment Based on Restricted-Industrial SCOs

5.2.6.1 Detailed Description

The Adirondack Steel OU-3 is zoned for industrial uses. Soil cleanup objectives in this FS were evaluated based on the indication by NYSDEC that the future use of the site will change from being zoned for industrial uses to be commercial activities. Alternative 6 involves the excavation and off-site disposal of PCB contaminated soil and sediment based on SCOs reflecting the site's current use. The Restricted-Industrial SCO for PCBs is 25 ppm.

This alternative involves excavation and off-site disposal of contaminated soils and sediments that exceed the 25 ppb site cleanup goal. The contaminated materials would be excavated, stockpiled, characterized, and properly disposed of at an off-site NYSDEC-permitted facility. TSCA soils, or soil containing PCBs at concentrations greater than or equal to 50 ppm, are considered hazardous, while those with PCB concentrations less than 50 ppm are considered non-hazardous. Figure 5-4 shows the extent of TSCA and non-TSCA excavations at the OU-3 site of both CP-51 and Part 375 restricted-commercial SCOs.

Before excavation an assessment of the project area shall be completed to identify existing habitat and wildlife that may be protected by the potentially applicable SCGs described in Section 2. During excavation, care shall be taken through the installation of silt fences to protect existing habitat and wildlife within the project area.

The contaminated materials would be excavated using conventional construction equipment, primarily a hydraulic excavator. During the excavation process, PCB field screening tests would be performed in accordance with 40 CFR 761.61. NYSDEC's construction oversight observer would use the results of the field screening tests to verify contamination levels. A sampling grid over the excavation area would be developed for the NYSDEC construction oversight observer's approval. The maximum depth of excavation in the excavation areas would be at

EXISTING TOPOGRAPHIC CONTOUR

PROPERTY LINE

PROFILE

RESTRICTED USE AREA

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE TSCA LEVELS OF 50 ppm PCBs

EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS BETWEEN 25 ppm TO TSCA LEVELS OF 50 ppm

1. AREAS A, B, AND C SHOWN FOLLOW THE EXCAVATION BOUNDARY FOR PCB-CONTAMINATED SOILS ABOVE TSCA LEVELS OF 50 ppm PCBs.

SCALE IN FEET

80 160 240

FIGURE 5-4: EXCAVATION AND OFF-SITE DISPOSAL OF PCB-CONTAMINATED SOILS TO RESTRICTED - INDUSTRIAL SCOS, ADIRONDACK STEEL OU-3 FORMER ADIRONDACK STEEL SITE COLONIE, NEW YORK

least 8 feet bgs, based on contaminated sample depths; however, excavation would continue at the direction of NYSDEC until confirmatory sampling reveals that the SCGs have been met.

While directly loading transport trucks is preferred, temporary facilities could be needed for on-site storage of contaminated material after excavation, depending on the contractor's methods of operation. Excavated materials that are contaminated and not directly loaded on to trucks would be stockpiled on plastic liners or containment pads on-site for characterization, in accordance with disposal facility requirements. The contractor would be responsible for characterization sampling, which would be conducted at a NYSDOH-certified laboratory.

After the results of the characterization sampling are received, the soil would be cleared for disposal by the NYSDEC construction oversight observer. Trucks would be manifested then weighed with an empty load. The soil would be loaded onto the trucks then weighed again to determine the approximate loaded weight of the vehicle. The trucks would then transport the soil to the appropriate disposal facility. The final tipping weight of each truck would be recorded on the Hazard-ous Waste Manifest or Non-Hazardous Waste Manifest and retained for EPA and NYSDEC reporting purposes.

TSCA materials would be disposed of at a NYSDEC-approved RCRA Subtitle C landfill. According to the United States Army Corps of Engineers Hazardous, Toxic, and Radioactive Waste Center of Expertise Information, five hazardous waste landfill facilities operating in the United States are permitted to accept these soils. Of those five, only one of the facilities is located east of the Mississippi River, Chemical Waste Management (CWM) in Model City, New York. The CWM facility in Model City, Niagara County, New York, is the closest facility to the site and, therefore, the likely destination for the TSCA-level PCBcontaminated soils from the site.

A number of disposal locations are available for non-hazardous materials. For example, the Clinton County landfill, operated by Casella, is relatively close to the site and accepts soil/sediments and stone with PCBs less than 50 ppm. Unit costs from the CWM facility at Model City near Niagara Falls, New York, have been used for costing purposes, with the understanding that landfills closer to the site may be identified at the design stage.

Based on the groundwater elevations data collected during the RI (EEEPC 2008a), dewatering may be necessary in portions of the site. Means and methods of dewatering would be determined by the contractor's approach to the site work. EEEPC assumed a temporary water treatment system would be established on-site and that the contractor would employ a series of earth dikes and bypass pumps to move water in ditch areas not under excavation around established exclusion zones. Treated water would be discharged, as appropriate, off-site.

5 Detailed Analysis of Alternatives

Following excavation and removal of designated materials from the site, a uniform invert elevation at the ditch centerline would be restored to promote positive drainage. Imported clean fill would be placed and compacted in the excavation areas to restore grades and to reconstruct the ditch. Six inches of topsoil would be placed and graded across the entire excavation area. After backfill and ditch reconstruction operations are complete, the surrounding site would be restored using hydroseeding.

The soil volume estimated to be excavated to the proposed Part 375 Restricted-Industrial SCOs in OU-3 comprises approximately 292 cy of non-TSCA soil and 1,277 cy of TSCA soil. These volumes are composed of contaminated drainageway soils (sediments), surface soil, and subsurface soils, and cutbacks.

A cutback of the excavation or other means of safe access and exit must be provided in trench excavations 4 feet or deeper to ensure safe working conditions in the excavation and to meet OSHA requirements. Cutback volumes were calculated based on the average excavation depth, the excavation perimeter, a 3horizontal: 1-vertical slope, and a triangular cross-section.

Under CERCLA 121 (c), five-year reviews should be conducted for sites that implement remedial actions that, upon completion, would leave hazardous substances, pollutants, or contaminants on-site above levels that allow for unlimited use and unrestricted exposure. Since the implementation of this alternative would result in PCB concentrations above the 6 NYCRR Part 375 unrestricted use cleanup objective of 0.1 ppm, five-year reviews would be required.

5.2.6.2 Detailed Evaluation of Criteria

Overall Protection of Human Health and the Environment

This alternative is protective of human health and the environment because contaminated soils would be removed from the site and properly disposed of in a NYSDEC-permitted facility. Because the contaminants would be removed from the site, exposure risks associated with soil contamination would be reduced to levels acceptable for restricted-industrial use.

Compliance with SCGs

This alternative complies with restricted-industrial SCGs since contaminated soils would be removed from OU-3 and the site and properly disposed of in an environmentally acceptable facility. Off-site disposal would comply with all applicable land disposal restrictions and analytical requirements. Action- and location-specific SCGs, including noise limitations, wetlands permits (as required), and OSHA regulations, would be complied with during implementation of this alternative or included and enforced with institutional controls.

5 Detailed Analysis of Alternatives

Short-Term Impacts and Effectiveness

Several short-term impacts on the community and workers may arise during excavation of contaminated soil at the site, including dust, noise, and potential spills during handling and transportation of contaminants. To minimize short-term impacts, site access would be restricted during construction and remediation activities. Health and safety measures, including air monitoring, using appropriate PPE, and using decontaminating equipment when leaving the site, would be in place to protect the workers and surrounding residents and community. Action levels would be set prior to any intrusive activities, and an appropriate corrective action would be implemented if these action levels are exceeded.

A licensed hauler would provide off-site transportation of contaminated soil to the disposal facility. While there is a risk of spills due to accidents, this risk would be limited by using closed and lined containers for transport.

Because this alternative involves removal of the contaminated soil from the site and replacement with clean fill, site RAOs would be achieved at the completion of this work. The time to complete this alternative is estimated to be approximately three to six months.

Long-Term Effectiveness and Permanence

Removal and off-site disposal is considered to be an adequate and effective remedy in the long-term since the remaining soil would meet site cleanup criteria. Therefore, human health and environmental risks would be reduced to levels appropriate for restricted-industrial site use.

Reduction of Toxicity, Mobility, and Volume through Treatment

This alternative does not reduce the toxicity, mobility, or volume of contaminated soil through treatment. However, excavation and off-site disposal of contaminated soils would mitigate concerns associated with toxicity and mobility of the contaminants at the site. Since the hazardous soil would be disposed of in an engineered permitted facility, the mobility of the contaminants would be within acceptable limits and would therefore be reduced.

Implementability

This alternative is readily implemented using standard construction means and methods. Contaminated soil would be excavated, tested, and disposed of at a nonhazardous waste facility. Several facilities that can accept the contaminated soil from the site have been identified. No capacity or availability problems have been identified. Finally, no delay in obtaining the necessary approvals from the state and local agencies for implementation of this alternative is expected.

Cost

The 2014 total present-value cost of achieving Part 375 Restricted-Industrial SCOs under this alternative is approximately \$678,000. Table 5-5 presents the

respective quantities, unit costs, and subtotal costs for the various work items in Alternative 6.

Land Use

The site comprises just one property parcel that is owned by Albany County. The town of Colonie zoning map (Town of Colonie 2007) shows that the site is zoned as industrial. Implementation of this alternative would limit the future uses at this site to industrial activities in line with current zoning.

5.3 Comparative Evaluation of Alternatives

Overall Protection of Human Health and the Environment

Since Alternative 1 employs no action, contaminated soils in OU-3 would remain on-site, providing no protection for potential future exposure. Alternative 2 will provide some limited protection of human health and the environment because the ICs and ECs will reduce the potential for direct human and wildlife exposure. Alternatives 3 through 6 would provide a higher level of protection than Alternative 2, because the contamination is either removed, treated, or stabilized. Alternative 5 would be protective of human health because stabilization/ solidification would reduce the potential for direct human and wildlife exposure. However, Alternatives 3 and 4 would provide a higher level of protection than Alternative 5, in which the potential for migration of PCBs by diffusion would remain. Alternatives 3 through 5 would provide a higher level of protection than Alternative 6, which would limit site uses to industrial instead of commercial uses.

Compliance with SCGs

PCBs are recalcitrant compounds by nature and, therefore, their levels in the soil are not expected to decrease over time. Alternatives 1 and 2 do not comply with SCGs because the contaminated soils would remain on-site. Alternatives 3, 4, and 5 comply with SCGs because soil contamination would be either treated or properly disposed of off-site. However, approval from the town must be obtained in order to process contaminated soils on-site before implementing Alternatives 4 or 5. Alternative 6 complies with the restricted-industrial SCGs instead of restrict-ed-commercial SCGs, which are considered in the remainder of the report.

Short-Term Impacts and Effectiveness

Short-term impacts are not anticipated for Alternatives 1 and 2 as no remediation activities would take place. Several similar short-term impacts may affect the community during remedial activities for Alternatives 3, 4, and 6, e.g., dust and noise due to the excavation of the contaminated soil and, to a lesser extent, Alternative 5 during excavation of uncontaminated soil to re-shape the drainage ditch. A continuous influx of dump trucks would be needed on a daily basis, and spills of contaminated soils under Alternative 3 during the off-site transport of soils by trucks is possible. Noise impacts are inherent with excavation and soil stabilization activities, and therefore are inherent in Alternatives 3, 4, and 5. Alternative 4

could have an increased noise impact due to the combination of excavation activities and operation of the HTTD system.

Long-Term Effectiveness and Permanence

Since Alternative 1 employs no action, contaminated soil would remain on-site providing no protection for potential future exposure. Alternative 2 is not effective in the long-term because the contaminated soil is neither removed nor treated. Removal and treatment of contaminants in Alternatives 3 and 4 are both considered adequate and effective remedies in the long-term since the human health and/or ecological risks would be reduced to levels acceptable for restricted-commercial uses. Alternative 5 provides a similar long-term effectiveness at reducing the risk of direct exposure of humans and wildlife to contaminants; however, its permanent effectiveness is less than that of Alternatives 3 and 4 because PCBs can still migrate by diffusion. The effectiveness of Alternative 6 is less than Alternatives 3, 4, and 5.

Reduction in Toxicity, Mobility, or Volume through Treatment

Alternatives 1 and 2 would not treat contaminated soils and thus reduction in toxicity, mobility, or volume would not take place. Alternative 3 would essentially eliminate concerns of toxicity, mobility, and the volume of contaminated soil at the site through off-site disposal of contaminated soils at a permitted disposal facility. Reduction in mobility and volume would be achieved through treatment in Alternative 4. Depending on the degree of mixing, Alternative 5 would achieve some reduction in toxicity, and solidification would reduce mobility. However, Alternative 5 would not reduce the volume of PCBs on-site. Alternative 6 achieves less reduction in toxicity, mobility, or volume than Alternatives 3, 4, and 5.

Implementability

There are no actions to implement for Alternative 1. Alternatives 2 through 6 can be readily implemented using standard construction means and methods. Due to their complexity, initial problems may be encountered during the start-up phases of the on-site HTTD or soil stabilization systems in Alternatives 4 and 5; however, technical difficulties are not anticipated once the systems are fully operational.

Cost

Table 5-6 summarizes the costs for all alternatives.

Alternate 1 calls for no action and thus incurs no costs.

Alternate 2 has a significantly lower total present value than Alternatives 3, 4, and 5because the main activity is site management.

Alternate 3 is the most cost-effective remedial strategy, but it is invasive and would require preparing design drawings and specifications for public bid.

5 Detailed Analysis of Alternatives

Alternate 4 carries the highest remedial cost over all, primarily due to the initial capital cost needed for the on-site HTTD unit, and shares much of the document preparation and coordination requirements of Alternate 3. In addition, a staging area for setup and operation of the HTTD process would be needed.

Alternate 5 is more expensive than Alternatives 1 through 4; however, it is considered a realistic alternative to off-site disposal since this strategy combines in situ stabilization with off-site disposal of TSCA-level contamination.

Alternative 6 is the least-cost alternative because it considers remediation to a higher SCO for PCBs (25 ppm) and would restrict future land use to industrial uses only.

Land Use

As contaminated soil with PCB concentrations above the CP-51 soil cleanup guidelines would be left in place for Alternatives 1 and 2, future uses at the site would be limited, based on current and anticipated future zoning. As Alternatives 3, 4, and 5 are designed to remove contaminated soil to levels acceptable for restricted-commercial uses, and the anticipated future zoning of the property is commercial, future uses at the site would not be limited. Because Alternative 6 would remove contaminated soil to levels acceptable for restricted-industrial uses, the anticipated future zoning of the property would be limited.

Table 5-1 Cost Estimate for Alternative 2 - Institutional Controls with Long-Term Site Management

Comment	Unit	Quantity	Unit Cost	Cost
Deed Restrictions Commercial/Industrial	Each	1	\$6,000	\$6,000
				\$6,000
Reflectorized 24" x 24" sign mounted to fence	Each	4	\$196.37	\$785
				\$785
		Capital C	Cost Subtotal:	\$6,785
Adjusted Capital Cost Subtotal for A	Albany, New Y	ork Location F	actor (0.982):	\$6,663
10% Legal, administrative, eng	gineering fees	, construction r	nanagement:	\$666
		15% C	ontingencies:	\$1,099
		Total (Capital Cost:	\$9,000
2-people @ \$100/hr; 8 hr/day; total of 10 samples	Day	1	\$1,936.00	\$1,936
Includes TCL PCBs	Each	10	\$100.00	\$1,000
	HR	32	\$100.00	\$3,200
				\$6,136
		Annual C	Cost Subtotal:	\$6,136
				\$6,026
10	% Legal, adm			\$603
				\$994
				\$7,622
3	80-Year Prese	ent Worth of A	nnual Costs:	\$118,000
	LF	166	\$30.21	\$5,000
Maintain/update documentation				\$7,500
	Hr	80	\$120.00	\$9,600
				\$22,100
				\$22,100
				\$21,702
10	% Legal, adm	inistrative, engi		\$2,170
			ontingencies:	\$3,581
	00 V D		5-Year Total:	\$27,453
	30-Year Pres		5-Year Total:	
	Reflectorized 24" x 24" sign mounted to fence Adjusted Capital Cost Subtotal for / 10% Legal, administrative, en 2-people @ \$100/hr; 8 hr/day; total of 10 samples Includes TCL PCBs Adjusted Capital Cost Subtotal for / 10 Adjusted Capital Cost Subtotal for / 10 Chain link industrial, 6' high, 6 gauge wire with 3 strands barb wire Maintain/update documentation	Reflectorized 24" x 24" sign mounted to fence Each Adjusted Capital Cost Subtotal for Albany, New Y 10% Legal, administrative, engineering fees 2-people @ \$100/hr; 8 hr/day; total of 10 samples Day Includes TCL PCBs Each HR Adjusted Capital Cost Subtotal for Albany, New Y Adjusted Capital Cost Subtotal for Albany, New Y 10% Legal, administrative, engineering fees Strands TCL PCBs Each HR HR Adjusted Capital Cost Subtotal for Albany, New Y 10% Legal, adm Strands barb wire Maintain/update documentation Each Hr	Reflectorized 24" x 24" sign mounted to fence Each 4 Capital C Adjusted Capital Cost Subtotal for Albany, New York Location F 10% Legal, administrative, engineering fees, construction r 10% Legal, administrative, engineering fees, construction r 15% C Total C 2-people @ \$100/hr; 8 hr/day; total of 10 samples Day 1 Includes TCL PCBs Each Annual C Adjusted Capital Cost Subtotal for Albany, New York Location F 10% Legal, administrative, eng 10% Legal, administrative, eng Adjusted Capital Cost Subtotal for Albany, New York Location F 10% Legal, administrative, eng Annual C Adjusted Capital Cost Subtotal for Albany, New York Location F Organ administrative, eng Annual C Annua	Reflectorized 24" x 24" sign mounted to fence Each 4 \$196.37 Capital Cost Subtotal: Adjusted Capital Cost Subtotal for Albany, New York Location Factor (0.982): 10% Legal, administrative, engineering fees, construction management: 15% Contingencies: Total Capital Cost Z-people @ \$100/hr; 8 hr/day; total of 10 samples Day 1 \$1,936.00 Includes TCL PCBs Each 10 \$100.00 Annual Cost Subtotal for Albany, New York Location Factor (0.982): Adjusted Capital Cost Subtotal for Albany, New York Location Factor (0.982): 10% Legal, administrative, engineering fees: 10% Legal, administrative, engineering fees: 15% Contingencies: Annual Cost Subtotal for Albany, New York Location Factor (0.982): 15% Contingencies: 10% Legal, administrative, engineering fees: 15% Contingencies: 15% Contingencies: 15% Contingencies: Annual Cost Total: 30-Year Present Worth of Annual Costs: Chain link industrial, 6' high, 6 gauge wire with 3 LF 166 \$30.21 Maintain/update documentation

Key: HR = hour LF = linear foot LS = lump sum

Table 5-2a Cost Estimate for Excavation and Off-Site Disposal, Alternative 3, Part 375 Restricted-Commercial SCOs

Item Description Capital Costs	Comment	Unit	Quantity	Unit Cost	Cost
Construction Management (2.5% of total capital cost)	Includes submittals, reporting, meetings over 95 day duration	LS	1	\$30,472.28	\$30,47
Subtotal					\$30,47
Site Preparation	1				
Surveying Crew	1-person crew @ \$100/hr, 8hr/day; assume 30% of project duration	Day	36	\$800.00	\$28,80
ALTA Survey	For Easement and DEC Compliance	LS	1	\$20,000.00	\$20,00
nstall Construction Fence	Chain link fence rental, 6' high, encompass Exclusion Zone		1,600	\$7.05	\$11,27
Site Services	NYSDEC Field Office 120 Day Duration	DAY	120	\$500.00	\$60,00
Construct Decontamination Pad & Containment	For Haz trucks exiting EZ	EA	1	\$7,000.00	\$7,00
Clearing and Grubbing	Estimated surface area 7,709 SY including cutbacks.	SY	7,709	\$1.84	\$14,20
Subtotal Health and Safety					\$134,28
Health and Safety	HSO, CAMP and Security Reporting	DAY	120	\$950.00	\$114,00
Subtotal		1			\$114,00
Excavation		CN	1.075	A15 00	¢10.17
Excavation - TSCA Soil PCB Contaminated Soil Disposal	As depicted on FS figures with 3:1 cutback TSCA soils-bulk disposal Subtitle C Facility	CY TON	1,277	\$15.00 \$109.77	\$19,15 \$170,31
Special Transport Fee	Albany NY to Model City & Return	Load	52	\$109.77	\$170,31
Excavation - Non-TSCA Soil	Non-TSCA soils-bulk disposal - Selective Excavation		4,979	\$15.00	\$74,68
	based on Sampling Results		.,		
PCB Contaminated Soil Disposal	Non-TSCA soils-bulk disposal	TON	6,049	\$30.30	\$183,31
Special Transport Fee	Albany NY to Model City & Return	Load	202	\$500.00	\$101,00
Dewatering	Methodology to be determined by Contractor; unit cost presumed as 2-4" pumps operating 24 hr/day	Day	120	\$936.56	\$112,38
PCB Wastewater Treatment during Remediation of Drainageway Sediments	Incl. 2,280 GPD Packaged WWTP, 40,000 Gal Baker Tank for Surge Capacity, 50 GPM Carbon Adsorption Tank 1,050 Fill and 3" Portable Trash	LS	1	\$27,653.00	\$27,65
Waste Characterization Sampling	Pump 300 GPM As req'd to satisfy off-site Landfill Requirements	Each	7	\$206.00	\$1,44
Confirmation/Documentation Sampling - EPA SW- 846, Method SW-8082	DEC Spec Section 01425; includes bottom and sidewall testing @ 1 per 500 ft ² and establish	Each	139	\$206.00	\$28,63
Subtotal	excavation limits beyond TSCA soil				\$744,58
Reconstruction					φ144,50
Common Fill	Restore drainageway invert; includes 95% Compaction	СҮ	6,256	\$19.41	\$121,42
Erosion and Soil Control Blankets	Biodegradable to temporarily stabilize stream channel/invert until natural growth is established	SY	1,067	\$6.60	\$7,03
Medium Rip Rap	To armor invert undi natural growth is established To armor invert near intersection with OU-2; Includes trucking and Installation	TON	24	\$68.43	\$1,64
Subtotal			I		\$130,10
Site Restoration					φ130,10
Topsoil	0.5 ft thick over entire excavation area, swell at 7%	LCY	1,375	\$39.88	\$54,83
Hydroseeding	Native Steep Slope Mix with Annual Rye Grass mix incl. mulch and fertilizer for total topsoil area	SY	7,709	\$1.49	\$11,49
Plantings	Sandbar Willow/Red Osier Dogwood/Northern Bayberry/Catskill Sand Cherry - 20% of hydroseeded area	SY	1,542	\$15.95	\$24,59
Demobilization		LS	1	\$5,000.00	\$5,00
Subtotal	•	1	• •	al Cost Subtotal:	\$95,91 \$1,249,36
	Adjusted Capital Cost Subtotal for	Albany. Ne			\$1,249,30
				ngineering fees:	\$122,68
				Contingencies:	\$202,43 \$1,552,00
Annual Costs Not Applicable				\$0.00	\$
Subtotal			-		\$
		Albert		al Cost Subtotal:	\$
	Adjusted Capital Cost Subtotal for			. ,	\$
	1	u ⁄₀ ∟egai, a		ngineering fees:	\$
			Anr	ual Cost Total:	\$

Table 5-2a Cost Estimate for Excavation and Off-Site Disposal, Alternative 3, Part 375 Restricted-Commercial SCOs

Item Description	Comment	Unit	Quantity	Unit Cost	Cost
5-Year Costs (Periodic Costs)					
5-year CERCLA reviews		Hr	80	\$120.00	\$9,600
Subtotal					\$9,600
			5-Ye	ar Cost Subtotal:	\$9,600
Adjusted Annual Cost Subtotal for Albany, New York Location Factor (0.982):				on Factor (0.982):	\$9,427
		10% Legal, a	dministrative,	engineering fees:	\$943
			159	% Contingencies:	\$1,555
				5-Year Total:	\$11,925
		30-Year P	resent Worth	of 5-Year Costs:	\$34,000
		20	014 Total Pres	ent Worth Cost:	\$1,586,000

Key:

ALTA = American Land Title Association BGS = below ground surface CAMP = Community Air Monitoring Program CF = cubic feet CY = Cubic Yard DEC = (New York State) Department of Environmental Conservation EA = eachEPA = Environmental Protection Agency EZ = exclusion zone ft = feetGal = gallons GPD = gallons per day GPM = gallons per minute H = height HP = horsepower Hr=hourHSO = Health and Safety Officer LCY = loose cubic yards LF = linear foot LS = lump sum MSF = thousand square feet NY = New York OU = operable unit PCB = Poly chlorinated biphenyl RCRA = Resource Conservation and Recovery Act SF = square feet SW = solid waste SY = square yardTSCA = Toxic Substances Control Act W = width $WWTP = waste \; water \; treatment \; plant$

Item Description Capital Costs					
Construction Management (2.5% of total capital cost)	Includes submittals, reporting, meetings over 95 day duration	LS	1	\$26,102.35	\$26,10
Subtotal					\$26,10
Site Preparation		-		* 222.22	
Surveying Crew	1-person crew @ \$100/hr, 8hr/day; assume 30% of project duration	Day	32	\$800.00	\$25,60
ALTA Survey	For Easement and DEC Compliance	LS	1 (00)	\$20,000.00	\$20,00
nstall Construction Fence	Chain link fence rental, 6' high, encompass Exclusion Zone		1,600	\$7.05	\$11,2
Site Services	NYSDEC Field Office 120 Day Duration	DAY	105	\$500.00	\$52,50
Construct Decontamination Pad & Containment Clearing and Grubbing	For Haz trucks exiting EZ Estimated surface area including cutbacks.	EA SY	1	\$7,000.00	\$7,0
Subtotal	Estimated surface area including culbacks.	51	6,882	\$1.84	\$12,68 \$122,00
lealth and Safety					ψ122,00
Health and Safety	HSO, CAMP and Security Reporting	DAY	105	\$950.00	\$99,7
Subtotal					\$99,7
Excavation		GV	1.077	¢15.00	¢10.1
Excavation - TSCA Soil	As depicted on FS figures with 3:1 cutback	CY	1,277	\$15.00	\$19,15
PCB Contaminated Soil Disposal	TSCA soils-bulk disposal Subtitle C Facility	TON	1,552 52	\$109.77	\$170,3
Special Transport Fee Excavation - Non-TSCA Soil	Albany NY to Model City & Return Non-TSCA soils-bulk disposal - Selective Excavation	Load	3,781	\$500.00 \$15.00	\$26,0
Excavation - 19011-15CA 5011	Non-ISCA soils-bulk disposal - Selective Excavation based on Sampling Results		3,781	\$12.00	\$56,7
PCB Contaminated Soil Disposal	Non-TSCA soils-bulk disposal	TON	4,594	\$30.30	\$139,2
Special Transport Fee	Albany NY to Model City & Return	Load	154	\$500.00	\$77,0
<u> </u>					
Dewatering	Methodology to be determined by Contractor; unit cost presumed as 2-4" pumps operating 24 hr/day	Day	105	\$936.56	\$98,3
PCB Wastewater Treatment during Remediation of Drainageway Sediments	Incl. 2,280 GPD Packaged WWTP, 40,000 Gal Baker Tank for Surge Capacity, 50 GPM Carbon Adsorption Tank 1,050 Fill and 3" Portable Trash	LS	1	\$27,653.00	\$27,6
Waste Characterization Sampling	Pump 300 GPM As req'd to satisfy off-site Landfill Requirements	Each	6	\$206.00	\$1,2
Confirmation /Decomposite Controling EDA CW	DEC Sara Sartian 01425, includes bettern and	Eh	12	\$206.00	¢0 (*
Confirmation/Documentation Sampling - EPA SW- 846, Method SW-8082	DEC Spec Section 01425; includes bottom and sidewall testing @ 1 per 500 ft ² and establish excavation limits beyond TSCA soil	Each	13	\$206.00	\$2,6
Subtotal	lexeavation mints bevolid TSEA son				\$618,29
Reconstruction					
Common Fill	Restore drainageway invert; includes 95% Compaction	CY	5,058	\$19.41	\$98,1
Erosion and Soil Control Blankets	Biodegradable to temporarily stabilize stream channel/invert until natural growth is established	SY	1,067	\$6.60	\$7,0
Medium Rip Rap	To armor invert near intersection with OU-2; Includes trucking and Installation	TON	24	\$68.43	\$1,6
Subtotal					\$106,85
Site Restoration					
Fopsoil Hydroseeding	Native Steep Slope Mix with Annual Rye Grass mix	LCY SY	1,227 6,882	\$39.88 \$1.49	\$48,94 \$10,23
Plantings	incl. mulch and fertilizer for total topsoil area Sandbar Willow/Red Osier Dogwood/Northern Bayberry/Catskill Sand Cherry - 30% of hydroseeded	SY	2,065	\$15.95	\$32,93
	area				
Demobilization		LS	1	\$5,000.00	\$5,0
Subtotal					\$97,1
	Adjusted Capital Cost Subtotal for			al Cost Subtotal:	\$1,070,1 \$1,050,9
				ngineering fees:	\$105,0
		Loyal, au	,	6 Contingencies:	\$173,4
				al Capital Cost:	\$1,330,0
Annual Costs Not Applicable				\$0.00	
Subtotal			٨٥٢٠٠	al Cost Subtatal	
Annual Cost Subtotal: Adjusted Capital Cost Subtotal for Albany, New York Location Factor (0.982):					
				$1 + a_{U}(U) + (U, 30Z).$	
	· · ·				
	· · ·		ninistrative, e	ngineering fees:	
	· · ·		ninistrative, e 15%	ngineering fees:	

Table 5-2b Cost Estimate for Excavation and Off-Site Disposal, Alternative 3, CP-51 Restricted-Commercial SCOs

Item Description	Comment	Unit	Quantity	Unit Cost	Cost
5-Year Costs (Periodic Costs)					
5-year CERCLA reviews		Hr	80	\$120.00	\$9,600
Subtotal					\$9,600
			5-Ye	ar Cost Subtotal:	\$9,600
	Adjusted Annual Cost Subtotal	for Albany, Ne	w York Locatio	n Factor (0.982):	\$9,427
		10% Legal, a	administrative, e	engineering fees:	\$943
			15%	6 Contingencies:	\$1,555
				5-Year Total:	\$11,925
		30-Year P	resent Worth	of 5-Year Costs:	\$34,000
		2	014 Total Pres	ent Worth Cost:	\$1,364,000

Key:

ALTA = American Land Title Association BGS = below ground surface CAMP = Community Air Monitoring Program CF = cubic feet $\mathbf{C}\mathbf{Y} = \mathbf{C}\mathbf{u}\mathbf{b}\mathbf{i}\mathbf{c}$ Yard DEC = (New York State) Department of Environmental Conservation EA = eachEPA = Environmental Protection Agency EZ = exclusion zone ft = feet Gal = gallonsGPD = gallons per day GPM = gallons per minute H = height HP = horsepowerHr = hourHSO = Health and Safety Officer LCY = loose cubic yards LF = linear foot LS = lump sum MSF = thousand square feet NY = New York OU = operable unit PCB = Poly chlorinated biphenyl RCRA = Resource Conservation and Recovery Act $SF = square \ feet$ SW = solid waste SY = square yard TSCA = Toxic Substances Control Act W = widthWWTP = waste water treatment plant

Table 5-3a Cost Estimate for Excavation and On-Site 1	Thermal Treatment, A	Alternative 4, Part 375	Restricted-Commercial SCOs

Item Description <u>Capital Costs</u>	Comment	Unit	Quantity	Unit Cost	Cost
Construction Management (2.5% of total capital cost)	Includes submittals, reporting, meetings over 130 day duration	LS	1	\$57,903.64	\$57,904
Institutional Controls		Each	1	\$5,700.00	\$5,700
Subtotal Site Preparation					\$63,604
Surveying Crew	1-person crew @ \$100/hr., 8hr/day; assume	Day	45	\$800.00	\$36,000
Surveying even	30% of project duration	Duy	10	000000	\$20,000
ALTA Survey	For Easement and DEC Compliance	LS	1	\$20,000.00	\$20,000
Install Construction Fence	Chain link fence rental, 6' high, encompass Exclusion Zone	LF	1,600	\$7.05	\$11,279
Site Services	NYSDEC Field Office 150 Day Duration	DAY	150	\$500.00	\$75,000
Temporary Utility tie in for HTTD unit	80 GPM non-potable and 3 phase/480V/1200 amp (Generator is available through EMSI)	LS	1	\$6,000.00	\$6,000
Construct Decontamination Pad & Containment	For equipment & personnel	Setups SY	2	\$7,000.00	\$14,000
Clearing and Grubbing	Estimated surface area 7,709 SY including cutbacks.	51	7,709	\$1.84	\$14,207
RCRA Permit for HTTD Unit	Verify destruction removal efficiency of contaminants and particulate emissions, etc.	Each	1	\$100,000.00	\$100,000
Subtotal					\$276,486
Health and Safety					
Health and Safety Subtotal	HSO, CAMP and Security Reporting	DAY	150	\$950.00	\$142,500 \$142,500
Excavation					φ142,50C
Excavation - TSCA Soil	5 areas as depicted on FS figures with 3:1	BCY	1,277	\$15.00	\$19,155
	cutback		,		,
PCB Contaminated Soil Disposal	TSCA soils-bulk disposal Subtitle C Facility	TON	1,552	\$109.77	\$170,314
Special Transport Fee	Albany NY to Model City & Return	Load	1	\$500.00	\$500
Excavation - Non TSCA Soil	non TSCA soil quantities estimated under bulk	BCY	4,860	\$15.00	\$72,900
	treatment scenario - Selective Excavation based on Sampling Results to be implemented in the				. ,
	field	DOV	1.0.00	¢1.71	#0.00
Stockpiling (prior to treatment) Stockpiling (after treatment)	300 Horsepower Bulldozer w/ 50' haul 300 Horsepower Bulldozer w/ 50' haul	BCY BCY	4,860 4,860	\$1.71 \$1.71	\$8,320 \$8,320
Dewatering	Methodology to be determined by Contractor; unit cost presumed as 2-4" pumps operating 24 hr./day	Day	110	\$930.00	\$102,300
PCB Wastewater Treatment during Remediation of Drainageway Sediment	Incl. 2,280 GPD Packaged WWTP, 40,000 Gal Baker Tank for Surge Capacity, 50 GPM Carbon Adsorption Tank 1,050 Fill and 3" Portable Trash Pump 300 GPM	LS	1	\$27,653.00	\$27,653
Waste Characterization Sampling	As req'd to satisfy off-site Landfill Requirements for TSCA soil disposal	Each	2	\$206.00	\$412
Confirmation/Documentation Sampling - EPA SW- 846, Method SW-8082	DEC Spec Section 01425; includes bottom and sidewall testing @ 1 per 500 ft ² and establish excavation limits beyond TSCA soil	Each	139	\$206.00	\$28,634
Subtotal					\$438,509
High Temperature Thermal Desorption	1			I	
HTTD (Installation)	Includes mob/demob, equipment, labor, permitting (if necessary)	LS	1	\$107,120.81	\$107,121
HTTD (Treatment)	Includes equipment, labor, maintenance, utilities	Ton	5,905	\$142.81	\$843,285
Soil Testing (influent)	Includes TCL PCBs (Engineers Allowance for operational days)	Each	50	\$206.00	\$10,300
Soil Testing (effluent)	Includes TCL PCBs (Engineers Allowance for operational days)	Each	50	\$206.00	\$10,300
Subtotal					\$971,006
Utilities					
Electrical Electric Utility Pole	Wooden pole, 40' high	Each	1	\$1,586.10	\$1,586
Wiring to Electric Service	3 - 1/0 Wires	Each CLF	0	\$1,586.10	\$1,586 \$(
Wiring Connections to treatment facility	200 amp w/ 18 branch breakers, includes main breaker, meter, socket, panel board, ground rod	EA	4	\$2,844.91	\$11,380
<u> </u>	(20' avg runs, #14/2 wiring)	-			-
Switchboard Transformer	1200 amp Dry type transformer, 3 Phase, 500 kVA	EA EA	1	\$7,200.40 \$14,904.33	<u>\$7,200</u> \$14,904
	Diy type transformer, 5 Pliase, 500 KVA		1		
Electrical Connection Fee Install Electrical Connections/Testing	0.25 Electrician Foreman, 1 electrician, 2	LS Day	5	\$2,900.00 \$1,675.33	\$2,900 \$8,377
Electric Meter Water	laborers AC recording ammeter	Each	1	\$8,534.74	\$8,535
Pump Station	10' x 10' x 10' Fiberglass (insulated)	Each	1	\$23,000.00	\$23,000
Foundation	12' x 12' x 12" thick	Each	1	\$1,283.99	\$1,284
Treatment	6' Diameter Electric Automatic Pressure Filter Unit, 140 GPM	Each	1	\$36,879.35	\$36,879

02:EN-003286-0001-02-B3994 Alt 6 Adk Stl OU-3 FS Cost Estimate 041814.xlsx-5-3a Exc & OnSite Thermal Treat-5/6/2014

Item Description	Comment	Unit	Quantity	Unit Cost	Cost
Pump	125 GPM, 150' Head, 10 HP, Centrifugal Pump	Each	1	\$3,911.61	\$3,91
Pump Station Heater	1500 watt wall type, with blower	Each	1	\$347.43	\$34
Trenching	4'-6' Deep, 1/2 CY excavator	BCY	0	\$9.01	
Pipe	4" PVC	LF	0	\$8.61	5
Pipe Bedding	Sand	LCY	0	\$32.23	5
Compaction	Sund	BCY	0	\$5.29	
Backfill	4'-6' Deep, 1/2 CY excavator	BCY	0	\$7.30	
Water meter		Each	1	\$2,900.00	\$2,90
Administrative Costs	Permitting	Lach	1	\$5,700.00	\$5,70
Subtotal	[] Crimiting		1	\$5,700.00	\$128,90
Backfilling					φ120,00
Common Fill	Restore drainageway invert; includes 95%	CY	1,277	\$19.41	\$24,78
Placement/grading of Clean Backfill-offsite source	Compaction 300 Horsepower Bulldozer w/ 50' haul	BCY	1,277	\$4.89	\$6,24
Placement/grading of Treated Backfill-onsite source	From HTTD Stockpile - 300 Horsepower	BCY	4.860	\$4.89	\$23.76
	Bulldozer w/ 50' haul		,		,
Subtotal					\$54,79
Reconstruction					
Treated Backfill	Restore drainageway invert; includes 95% Compaction	CY	4,860	\$19.41	\$94,33
Erosion and Soil Control Blankets	Biodegradable to temporarily stabilize stream channel/invert until natural growth is	SY	1,067	\$6.55	\$6,98
Medium Rip Rap	To armor invert near intersection with OU-2;	TON	24	\$75.50	\$1,81
Medium Rip Rap	Includes trucking and Installation	ION	24	\$75.50	\$1,81
Subtotal					\$103,13
Site Restoration					
Topsoil	0.5 ft thick layer over entire excavation extent	LCY	1,375	\$39.88	\$54,83
Hydroseeding	Native Steep Slope Mix with Annual Rye Grass mix incl. mulch and fertilizer for total topsoil area	SY	7,709	\$1.49	\$11,49
Plantings	Sandbar Willow/Red Osier Dogwood/Northern Bayberry/Catskill Sand Cherry - 20% of hydroseeded area	SY	1,542	\$15.95	\$24,59
Demobilization		LS	1	\$5,000.00	\$5.00
Subtotal			1	\$3,000.00	\$95,00
Physical Barriers/Warnings					ψ00,01
Fence at HTTD Unit	Chain link industrial, 6' H, 6 gauge wire with 3 strands barb wire	LF	1,600	\$30.21	\$48,33
Gate	Double swing gates, incl posts with 12' opening	Each	3	\$1,107.75	\$3,32
Signs	Reflectorized 24"x24" sign mounted to fence	Each	4	\$196.37	\$78
Subtotal	Reflectoffized 24 x24 sign mounted to fence	Lacii	4	\$190.37	\$52,44
Subiolar			Car	oital Cost Subtotal:	\$2,327,30
	Adjusted Capital Cost Subto	tal for Alban			\$2,327,30
	Adjusted Capital Cost Subto			, engineering fees:	\$2,265,4
		10 /0 LE		5% Contingencies:	\$220,54
				otal Capital Cost:	\$2,892,00
Annual Costs				60 1	
Not applicable				\$0.00	\$
Subtotal					
	Adjusted Costal Cast Culta	tol for Albert		nual Cost Subtotal:	
	Adjusted Capital Cost Subto				5
		10% Le		, engineering fees: 5% Contingencies:	
				nnual Cost Total:	s S
		20 V-	ar Present Worth		

Table 5-3a Cost Estimate for Excavation and On-Site Thermal Treatment, Alternative 4, Part 375 Restricted-Commercial SCOs

Item Description	Comment	Unit	Quantity	Unit Cost	Cost
5-Year Costs					
5-year CERCLA reviews		Hr	80	\$120.00	\$9,600
Subtotal					\$9,600
			5-	Year Cost Subtotal:	\$9,600
	Adjusted Annual Cost Su				\$9,427
		10% Le	gal, administrative	e, engineering fees:	\$943
			1	5% Contingencies:	\$1,555
				5-Year Total:	\$11,925
		30-Y	ear Present Wort	h of 5-Year Costs:	\$34,000
			2014 Total Pr	esent Worth Cost:	\$2,926,000

Key:

ALTA = American Land Title Association BGS = below ground surface CAMP = Community Air Monitoring Program CF = cubic feet CLF = current limiting fuse CY = Cubic Yard DEC = (New York State) Department of Environmental Conservation EA = eachEPA = Environmental Protection Agency EZ = exclusion zone ft = feet Gal = gallonsGPD = gallons per day GPM = gallons per minute H = height HP = horsepower Hr = hourHSO = Health and Safety Officer LCY = loose cubic yards LF = linear foot LS = lump sum $MSF = thousand \ square \ feet$ NY = New York OU = operable unit PCB = Poly chlorinated biphenyl RCRA = Resource Conservation and Recovery Act SF = square feet SW = solid waste SY = square yard TSCA = Toxic Substances Control Act W = widthWWTP = waste water treatment plant

Table 5-3b Cost Estimate for Excavation and On-Site T	hermal Treatment, Alternative 4, CP-51 Restricted-Commercial SCOs

Item Description <u>Capital Costs</u>	Comment	Unit	Quantity	Unit Cost	Cost
Construction Management (2.5% of total capital cost)	Includes submittals, reporting, meetings over 130 day duration	LS	1	\$50,496.24	\$50,496
Institutional Controls		Each	1	\$5,700.00	\$5,700
Subtotal					\$56,196
Site Preparation Surveying Crew	1-person crew @ \$100/hr., 8hr/day; assume	Day	41	\$800.00	\$32,400
	30% of project duration		41		
ALTA Survey	For Easement and DEC Compliance	LS	1	\$20,000.00	\$20,000
Install Construction Fence	Chain link fence rental, 6' high, encompass Exclusion Zone	LF	1,600	\$7.05	\$11,279
Site Services	NYSDEC Field Office 150 Day Duration	DAY	135	\$500.00	\$67,500
Temporary Utility tie in for HTTD unit	80 GPM non-potable and 3 phase/480V/1200	LS	1	\$6,000.00	\$6,000
Construct Decontamination Pad & Containment	amp (Generator is available through EMSI) For equipment & personnel	Setups	2	\$7,000.00	\$14,000
Clearing and Grubbing	Estimated surface area 7,709 SY including	SY	6,882	\$1.84	\$12,683
	cutbacks. Verify destruction removal efficiency of	Each	1	¢100.000.00	
RCRA Permit for HTTD Unit	contaminants and particulate emissions, etc.	Each	1	\$100,000.00	\$100,000
Subtotal Health and Safety					\$263,862
Health and Safety	HSO, CAMP and Security Reporting	DAY	135	\$950.00	\$128,250
Subtotal					\$128,250
Excavation					
Excavation - TSCA Soil	5 areas as depicted on FS figures with 3:1 cutback	BCY	1,277	\$15.00	\$19,155
PCB Contaminated Soil Disposal	TSCA soils-bulk disposal Subtitle C Facility	TON	1,552	\$109.77	\$170,314
Special Transport Fee	Albany NY to Model City & Return	Load	1	\$500.00	\$500
Excavation - Non TSCA Soil	non TSCA soil quantities estimated under bulk treatment scenario - Selective Excavation based on Sampling Results to be implemented in the field	ВСҮ	3,781	\$15.00	\$56,715
Stockpiling (prior to treatment)	300 Horsepower Bulldozer w/ 50' haul	BCY	3,781	\$1.71	\$6,473
Stockpiling (after treatment)	300 Horsepower Bulldozer w/ 50' haul	BCY	3,781	\$1.71	\$6,473
Dewatering	Methodology to be determined by Contractor; unit cost presumed as 2-4" pumps operating 24 hr./day	Day	100	\$930.00	\$93,000
PCB Wastewater Treatment during Remediation of Drainageway Sediment	Incl. 2,280 GPD Packaged WWTP, 40,000 Gal Baker Tank for Surge Capacity, 50 GPM Carbon Adsorption Tank 1,050 Fill and 3" Portable Trash Pump 300 GPM	LS	1	\$27,653.00	\$27,653
Waste Characterization Sampling	As req'd to satisfy off-site Landfill	Each	2	\$206.00	\$412
Confirmation/Documentation Sampling - EPA SW- 846. Method SW-8082	Requirements for TSCA soil disposal DEC Spec Section 01425; includes bottom and sidewall testing @ 1 per 500 ft ² and establish	Each	13	\$206.00	\$2,678
	excavation limits beyond TSCA soil				
Subtotal					\$383,373
High Temperature Thermal Desorption	T 1 1 1/1 1 · · · · 11	10	1	¢107.120.01	¢107.101
HTTD (Installation)	Includes mob/demob, equipment, labor, permitting (if necessary)	LS	1	\$107,120.81	\$107,121
HTTD (Treatment)	Includes equipment, labor, maintenance, utilities	Ton	4,594	\$142.81	\$656,062
Soil Testing (influent)	Includes TCL PCBs (Engineers Allowance for operational days)	Each	45	\$206.00	\$9,270
Soil Testing (effluent)	Includes TCL PCBs (Engineers Allowance for operational days)	Each	45	\$206.00	\$9,270
Subtotal	of company and and a	1 1			\$781,722
Utilities					<i></i>
Electrical					
Electric Utility Pole	Wooden pole, 40' high	Each	1	\$1,586.10	\$1,586
Wiring to Electric Service	3 - 1/0 Wires	CLF	0	\$468.28	\$0
Wiring Connections to treatment facility	200 amp w/ 18 branch breakers, includes main breaker, meter, socket, panel board, ground rod (20' avg runs, #14/2 wiring)	EA	4	\$2,844.91	\$11,380
Switchboard	1200 amp	EA	1	\$7,200.40	\$7,200
Transformer	Dry type transformer, 3 Phase, 500 kVA	EA	1	\$14,904.33	\$14,904
Electrical Connection Fee Install Electrical Connections/Testing	0.25 Electrician Foreman, 1 electrician, 2	LS Day	1 5	\$2,900.00 \$1,675.33	\$2,900 \$8,377
2	laborers AC recording ammeter	-	1		
Electric Meter Water		Each		\$8,534.74	\$8,535
Pump Station	10' x 10' x 10' Fiberglass (insulated)	Each	1	\$23,000.00	\$23,000
Foundation	12' x 12' x 12" thick	Each	1	\$1,283.99	\$1,284
Treatment	6' Diameter Electric Automatic Pressure Filter Unit, 140 GPM	Each	1	\$36,879.35	\$36,879
	125 GPM, 150' Head, 10 HP, Centrifugal Pump	Each			\$3,912

02:EN-003286-0001-02-B3994 Alt 6 Adk Stl OU-3 FS Cost Estimate 041814.xlsx-5-3b Exc & OnSite Thermal Treat-5/6/2014

Table 5-3b Cost Estimate for Excavation and	On-Site Thermal Treatment, Alternat	ive 4, CP-51 Restricted-Commercial SCOs

Table 5-3b Cost Estimate for Excavation and Item Description	Comment	Unit	Quantity	Unit Cost	Cost
Pump Station Heater	1500 watt wall type, with blower	Each	1	\$347.43	\$34
Trenching	4'-6' Deep, 1/2 CY excavator	BCY	0	\$9.01	\$
Pipe	4" PVC	LF	0	\$8.61	\$
Pipe Bedding	Sand	LCY	0	\$32.23	\$
Compaction		BCY	0	\$5.29	\$
Backfill	4'-6' Deep, 1/2 CY excavator	BCY	0	\$7.30	\$
Water meter		Each	1	\$2,900.00	\$2,90
Administrative Costs	Permitting	Lach	1	\$5,700.00	\$5,70
Subtotal	remitting	110	1 1	\$5,700.00	\$128,90
Backfilling					<i><i><i>ϕ</i>.20,00</i></i>
Common Fill	Restore drainageway invert; includes 95% Compaction	СҮ	1,277	\$19.41	\$24,78
Placement/grading of Clean Backfill-offsite source	300 Horsepower Bulldozer w/ 50' haul	BCY	1,277	\$4.89	\$6,24
Placement/grading of Treated Backfill-onsite source	e From HTTD Stockpile - 300 Horsepower Bulldozer w/ 50' haul	BCY	3,781	\$4.89	\$18,48
Subtotal			· · · ·		\$49,520
Reconstruction					
Treated Backfill	Restore drainageway invert; includes 95% Compaction	СҮ	3,781	\$19.41	\$73,38
Erosion and Soil Control Blankets	Biodegradable to temporarily stabilize stream channel/invert until natural growth is established	SY	1,067	\$6.55	\$6,98
Medium Rip Rap	To armor invert near intersection with OU-2; Includes trucking and Installation	TON	24	\$75.50	\$1,812
Subtotal					\$82,19
Site Restoration					
Topsoil	0.5 ft thick layer over entire excavation extent	LCY	1,227	\$39.88	\$48,943
Hydroseeding	Native Steep Slope Mix with Annual Rye Grass mix incl. mulch and fertilizer for total topsoil area	SY	6,882	\$1.49	\$10,257
Plantings	Sandbar Willow/Red Osier Dogwood/Northern Bayberry/Catskill Sand Cherry - 30% of hydroseeded area	SY	2,065	\$15.95	\$32,93
Demobilization		LS	1	\$5,000.00	\$5,00
Subtotal	-	1240		00,000100	\$97,134
Physical Barriers/Warnings					•••,•
Fence at HTTD Unit	Chain link industrial, 6' H, 6 gauge wire with 3 strands barb wire	LF	1,600	\$30.21	\$48,33
Gate	Double swing gates, incl posts with 12' opening	Each	3	\$1,107.75	\$3,32
Signs	Reflectorized 24"x24" sign mounted to fence	Each	4	\$196.37	\$78
5	remeterined 21 x21 sign mounted to renee	Lucii		φ170.57	\$52,44
Subtotal			0-	pital Cost Subtotal:	\$52,44
	Adjusted Capital Cost Subto	tal for Alber			\$2,023,59
	Aujusieu Capital Cost Subto			e, engineering fees:	\$1,987,17
		10 % LE		5% Contingencies:	\$327,88
				Fotal Capital Cost:	\$2,514,00
Annual Costs				etai oupitai oost.	<i>~</i> 2,517,00
				\$0.00	\$
		1	1	.00 .00	<u>ې</u> \$
Not applicable Subtotal					
Not applicable				nual Cost Subtotal:	\$
Not applicable	Adjusted Capital Cost Subto		y, New York Loca	tion Factor (0.982):	\$ \$
Not applicable	Adjusted Capital Cost Subto		y, New York Loca gal, administrative	tion Factor (0.982): e, engineering fees:	\$ \$ \$
Not applicable	Adjusted Capital Cost Subto		y, New York Loca gal, administrative 1	tion Factor (0.982):	• \$ \$ \$ \$ \$

Table 5-3b Cost Estimate for Excavation and On-Site Thermal Treatment, Alternative 4, CP-51 Restricted-Commercial SCOs

Comment	Unit	Quantity	Unit Cost	Cost
	Hr	80	\$120.00	\$9,600
				\$9,600
		5-	Year Cost Subtotal:	\$9,600 \$9,427
Adjusted Annual Cost Subtotal for Albany, New York Location Factor (0.982):				
	10% Le	gal, administrative	e, engineering fees:	\$943
		1	5% Contingencies:	\$1,555
			5-Year Total:	\$11,925
	30-Y	ear Present Wort	h of 5-Year Costs:	\$34,000
		2014 Total Pr	esent Worth Cost:	\$2,548,000
		Hr Adjusted Annual Cost Subtotal for Alban 10% Le	Hr 80 5- Adjusted Annual Cost Subtotal for Albany, New York Loca 10% Legal, administrative 1 30-Year Present Wort	Hr 80 \$120.00 5-Year Cost Subtotal: Adjusted Annual Cost Subtotal for Albany, New York Location Factor (0.982): 10% Legal, administrative, engineering fees: 15% Contingencies:

Key:

ALTA = American Land Title Association BGS = below ground surface CAMP = Community Air Monitoring Program CF = cubic feet CLF = current limiting fuse CY = Cubic Yard DEC = (New York State) Department of Environmental Conservation EA = each EPA = Environmental Protection Agency EZ = exclusion zone $\mathbf{ft} = \mathbf{feet}$ Gal = gallons GPD = gallons per day GPM = gallons per minute H = height HP = horsepower Hr = hour HSO = Health and Safety Officer LCY = loose cubic yards LF = linear foot LS = lump sum MSF = thousand square feet NY = New York OU = operable unit PCB = Poly chlorinated biphenyl RCRA = Resource Conservation and Recovery Act SF = square feet SW = solid waste $\mathbf{S}\mathbf{Y} = \mathbf{s}\mathbf{q}\mathbf{u}\mathbf{a}\mathbf{r}\mathbf{e}$ yard TSCA = Toxic Substances Control Act W = widthWWTP = waste water treatment plant

Table 5-4a Cost Estimate for Alternate 5 - In Situ PCB Solidification, Off-Site Disposal of TSCA Waste, Part 375 Restricted-
Commercial SCOs

Commercial SCOs Item Description	Comment	Unit	Quantity	Unit Cost	Cost
Capital Costs			- adamity	-onn cost	
	Includes submittals, reporting, meetings over 90 day duration	LS	1	\$47,880.98	\$47,881
Treatability Study		LS	1	\$50,000.00	\$50,000
Institutional Controls		Each	1	\$5,700.00	\$5,700
Subtotal		·			\$103,581
Site Preparation		1			
Surveying Crew	1-person crew @ \$100/hr., 8hr/day; assume 30% of project duration	-	36	\$800.00	\$28,800
ALTA Survey	For Easement and DEC Compliance	LS	1	\$20,000.00	\$20,000
Install Construction Fence	Chain link fence rental, 6' high, encompass Exclusion Zone	LF	1,600	\$7.05	\$11,279
Site Services	NYSDEC Field Office 120 Day Duration	DAY	120	\$500.00	\$60,000
Clearing and Grubbing	Estimated surface area of TSCA level PCBs at 1774 SY including cutbacks.	SY	7,707	\$1.84	\$14,203
Construct Decontamination Pad & Containment		Setups	2	\$7,000.00	\$14,000
Health and Safety	<u>.</u>	!	!!	Į	
Health and Safety	HSO, CAMP and Security Reporting	DAY	120	\$2,333.00	\$279,960
Subtotal					\$428,242
Excavation	-				
Dewatering	Methodology to be determined by Contractor; unit cost presumed as 2-4" pumps operating 24 hr./day	Day	80	\$936.56	\$74,924
PCB Wastewater Treatment during	Incl. 2,280 GPD Packaged WWTP, 40,000 Gal	LS	1	\$27,653.00	\$27,653
Remediation of Drainageway and Sediments	Baker Tank for Surge Capacity, 50 GPM Carbon	LS	1	\$27,035.00	\$27,055
until solidification and restoration are is	Adsorption Tank 1,050 Fill and 3" Portable Trash				
complete	Pump 300 GPM				
Excavation - TSCA Soil	5 areas as depicted on FS figures with 3:1 cutback	BCY	1,277	\$15.00	\$19,155
TSCA Level PCB Contaminated Soil Disposal	TSCA soils-bulk disposal Subtitle C Facility	TON	1,552	\$109.00	\$169,119
Special Transport Fee	Albany NY to Model City & Return	Load	52	\$500.00	\$26,000
Waste Characterization Sampling	As req'd to satisfy off-site Landfill Requirements for TSCA soil disposal	Each	2	\$206.00	\$412
Confirmation Sampling - EPA SW-846,	DEC Spec Section 01425; includes bottom and	Each	32	\$125.16	\$3,997
Method SW-8082	sidewall testing @ 1 per 500 ft ²				
Excavate Landfill Area for excess solidified	stockpile clean soil and topsoil for cover 85' x 85' x	CY	2,397	\$15.00	\$35,955
PCB soil	8' dp		_,	+	
Subtotal					\$321,261
In Situ Stabilization and Solidification	1		,		
Soil Augering and Amendment	Geo-Con Excavator Mounted Auger w/ pressure feed mobile Mixer	СҮ	4,259	\$250.00	\$1,064,750
Subtotal					\$1,064,750
Site Restoration					
Topsoil	0.5 ft thick layer over excavation extent at 7% swell		317	\$39.60	\$12,542
Restore Drainageway Invert	Includes 95% Compaction	CY	296	\$19.41	\$5,745
Erosion and Soil Control Blanket	Biodegradable blankets to temporarily stabilize invert and slopes until natural growth is established	SY	1,556	\$6.55	\$10,192
Medium Rip Rap	To armor invert near intersection with OU-2; Includes trucking and Installation	TON	24	\$75.50	\$1,812
Backfill Landfill Area	includes redistribution and compaction of clean soil for Cap	СҮ	2,397	\$19.41	\$46,526
Hydroseeding	Native Steep Slope Mix with Annual Rye Grass mix incl. mulch and fertilizer	SY	1,775	\$1.48	\$2,627
Hydroseed Cap	Native Steep Slope Mix with Annual Rye Grass mix incl. mulch and fertilizer	SY	802	\$1.48	\$1,187
Plantings	Sandbar Willow/Red Osier Dogwood/Northern Bayberry/Catskill Sand Cherry, in 40% of	SY	710	\$15.84	\$11,246
Demobilization	hvdroseeded area	LS	1	\$5,000.00	\$5,000
Subtotal	· · · · · · · · · · · · · · · · · · ·		· · · ·	÷2,000.00	\$96,877
Gate	Double swing gates, incl posts with 12' opening	Each	3	\$1,107.75	\$3,323
Signs	Reflectorized 24"x24" sign mounted to fence	Each	4	\$196.37	\$785
Subtotal				+=>0.07	\$4,109
			Capital C	Cost Subtotal:	\$2,021,447
	Adjusted Capital Cost Subtotal for	Albany, New Y			\$1,985,061
	10% Legal, administrative, en	gineering fees			\$198,506
				ontingencies:	\$327,535
			Total	Capital Cost:	\$2,512,000

Table 5-4a Cost Estimate for Alternate 5 - In Situ PCB Solidification, Off-Site Disposal of TSCA Waste, Part 375 Restricted-Commercial SCOs

Item Description	Comment	Unit	Quantity	Unit Cost	Cost	
Annual Costs						
Not Applicable				\$0.00	\$0	
Subtotal					\$0	
			Annual	Cost Subtotal:	\$0	
	Adjusted Capital Cost Subtotal for	Albany, New	York Location	Factor (0.982):	\$0	
	10	0% Legal, adm	ninistrative, eng	gineering fees:	\$0	
			15% (Contingencies:	\$0	
			Annu	al Cost Total:	\$0	
	:	30-Year Pres	ent Worth of A	Annual Costs:	\$0	
5-Year Costs (Periodic Costs)						
5-year CERCLA reviews		Hr	80	\$120.00	\$9,600	
Subtotal					\$9,600	
			5-Year	Cost Subtotal:	\$9,600	
	Adjusted Annual Cost Subtotal for	Albany, New	York Location	Factor (0.982):	\$9,427	
	10% Legal, administrative, engineering fees:					
			15% (Contingencies:	\$1,555	
				5-Year Total:	\$11,925	
		30-Year Pres	ent Worth of	5-Year Costs:	\$34,000	
		2014	Total Presen	t Worth Cost:	\$2,546,000	

Key:

ALTA = American Land Title Association BGS = below ground surface CAMP = Community Air Monitoring Program CF = cubic feet CLF = current limiting fuse $\mathbf{C}\mathbf{Y} = \mathbf{C}\mathbf{u}\mathbf{b}\mathbf{i}\mathbf{c}$ Yard DEC = (New York State) Department of Environmental Conservation EA = eachEPA = Environmental Protection Agency EZ = exclusion zone ft = feet Gal = gallonsGPD = gallons per day GPM = gallons per minute H = heightHP = horsepower Hr = hourHSO = Health and Safety Officer LCY = loose cubic yards LF = linear foot LS = lump sum MSF = thousand square feet NY = New York OU = operable unit PCB = Poly chlorinated biphenyl RCRA = Resource Conservation and Recovery Act SF = square feet SW = solid waste SY = square yard TSCA = Toxic Substances Control Act W = widthWWTP = waste water treatment plant

SCOs Item Description	Comment	Unit	Quantity	Unit Cost	Cost
Capital Costs Construction Management (2.5% of total ca	pital Includes submittals, reporting, meetings over 90	LS	1	\$41,055.59	\$41,050
cost)	day duration	Lo	1	\$41,055.59	\$41,05
Treatability Study		LS	1	\$50,000.00	\$50.00
Institutional Controls		Each	1		\$5,700
Subtotal		•	•		\$96,756
Site Preparation	1				
Surveying Crew	1-person crew @ \$100/hr., 8hr/day; assume 30% of project duration	Day	32	\$800.00	\$25,200
ALTA Survey	For Easement and DEC Compliance	LS	1	\$20,000.00	\$20,000
Install Construction Fence	Chain link fence rental, 6' high, encompass Exclusion Zone	LF	1,600	\$7.05	\$11,279
Site Services	NYSDEC Field Office 120 Day Duration	DAY	105	\$500.00	\$52,500
Clearing and Grubbing	Estimated surface area of TSCA level PCBs at 1774 SY including cutbacks.	SY	6,882	\$1.84	\$12,683
Construct Decontamination Pad & Containn	nent For equipment & personnel	Setups	2	\$7,000.00	\$14,000
Health and Safety					
Health and Safety	HSO, CAMP and Security Reporting	DAY	105	\$2,333.00	\$244,965
Subtotal					\$380,627
Excavation	Methodology to be determined by Contractor; unit	Day	80	\$936.56	074.00
Dewatering	cost presumed as 2-4" pumps operating 24 hr./day	Day	80	\$930.30	\$74,924
PCB Wastewater Treatment during	Incl. 2,280 GPD Packaged WWTP, 40,000 Gal	LS	1	\$27,653.00	\$27,653
Remediation of Drainageway and Sediments		Lo	1	\$27,035.00	\$27,053
until solidification and restoration are is	Adsorption Tank 1,050 Fill and 3" Portable Trash				
complete	Pump 300 GPM				
Excavation - TSCA Soil	5 areas as depicted on FS figures with 3:1 cutback	BCY	1,277	\$15.00	\$19,155
TSCA Level PCB Contaminated Soil Dispo		TON	1,552	\$109.00	\$169,119
Special Transport Fee	Albany NY to Model City & Return	Load	52	\$500.00	\$26,000
Waste Characterization Sampling	As req'd to satisfy off-site Landfill Requirements for TSCA soil disposal	Each	2	\$206.00	\$412
Confirmation Sampling - EPA SW-846,	DEC Spec Section 01425; includes bottom and	Each	32	\$125.16	\$3,997
Method SW-8082	sidewall testing @ 1 per 500 ft^2				
		СҮ	2,397	\$15.00	\$35,955
Subtotal	A C UP	1			\$321,26 ²
In Situ Stabilization and Solidification					
Soil Augering and Amendment	Geo-Con Excavator Mounted Auger w/ pressure feed mobile Mixer	CY	3,396	\$250.00	\$849,000
Subtotal					\$849,000
Site Restoration					
Topsoil	0.5 ft thick layer over excavation extent at 7% swell	LCY	317	\$39.60	\$12,542
Restore Drainageway Invert	Includes 95% Compaction	CY	296	\$19.41	\$5,745
Erosion and Soil Control Blanket	Biodegradable blankets to temporarily stabilize invert and slopes until natural growth is established	SY	1,556	\$6.55	\$10,192
Medium Rip Rap	To armor invert near intersection with OU-2;	TON	24	\$75.50	\$1,812
Backfill Landfill Area	Includes trucking and Installation includes redistribution and compaction of clean soil	СҮ	1,912	\$19.41	\$37,112
Hydroseeding	for Cap Native Steep Slope Mix with Annual Rye Grass	SY	1,775	\$1.48	\$2,627
Hydroseed Cap	mix incl. mulch and fertilizer Native Steep Slope Mix with Annual Rye Grass	SY	642	\$1.48	\$950
Plantings	mix incl. mulch and fertilizer Sandbar Willow/Red Osier Dogwood/Northern	SY	710	\$15.84	\$11,246
	Bayberry/Catskill Sand Cherry, in 40% of hydroseeded area				
Demobilization Subtotal		LS	1	\$5,000.00	\$5,000 \$87,227
Gate	Double swing gates, incl posts with 12' opening	Each	3	\$1,107.75	\$3,323
Signs	Reflectorized 24"x24" sign mounted to fence	Each	4	\$1,107.73	\$785
Signs	Increation 24 x24 sign mounted to rence	Lacii	4	φ190.37	\$783
Gunioidi			Canital (Cost Subtotal:	\$1,741,606
	Adjusted Capital Cost Subtotal for	Albany, New			\$1,741,600
	10% Legal, administrative, en				\$171,020
				contingencies:	\$282,192
			Total	Capital Cost:	\$2,164,00

Table 5-4b Cost Estimate for Alternate 5 - In Situ PCB Solidification, Off-Site Disposal of TSCA Waste, CP-51 Restricted-Commercial

Table 5-4b Cost Estimate for Alternate 5 - In Situ PCB Solidification, Off-Site Disposal of TSCA Waste, CP-51 Restricted-Commercial SCOs

Item Description	Comment	Unit	Quantity	Unit Cost	Cost
Annual Costs					
Not Applicable				\$0.00	\$0
Subtotal					\$0
			Annual	Cost Subtotal:	\$0
	Adjusted Capital Cost Subtotal for	Albany, New Y	ork Location	Factor (0.982):	\$0
	10	% Legal, adm	, ,	gineering fees:	\$0
				Contingencies:	\$0
				al Cost Total:	\$0
	3	80-Year Prese	ent Worth of A	Annual Costs:	\$0
5-Year Costs (Periodic Costs)					
5-year CERCLA reviews		Hr	80	\$120.00	\$9,600
Subtotal					\$9,600
				Cost Subtotal:	\$9,600
	Adjusted Annual Cost Subtotal for			· · · ·	\$9,427 \$943
10% Legal, administrative, engineering fees:					
15% Contingencies:					
				5-Year Total:	\$11,925
	:	30-Year Pres	ent Worth of	5-Year Costs:	\$34,000
		2014	Total Presen	t Worth Cost:	\$2,198,000

Key: ALTA = American Land Title Association BGS = below ground surface CAMP = Community Air Monitoring Program CF = cubic feet CLF = current limiting fuse CY = Cubic Yard DEC = (New York State) Department of Environmental Conservation EA = eachEPA = Environmental Protection Agency EZ = exclusion zone ft = feetGal = gallons GPD = gallons per day GPM = gallons per minute H = height HP = horsepowerHr = hourHSO = Health and Safety Officer LCY = loose cubic yards LF = linear foot LS = lump sum MSF = thousand square feetNY = New York OU = operable unit PCB = Poly chlorinated biphenyl RCRA = Resource Conservation and Recovery Act SF = square feet SW = solid waste SY = square yard TSCA = Toxic Substances Control Act W = widthWWTP = waste water treatment plant

Table 5-5 Cost Estimate for Excavation and Off-Site Disposal, Alternative 6, Part 375 Restricted-Industrial SCOs

Item Description Capital Costs	Comment	Unit (Quantity	Unit Cost	Cost
Construction Management (2.5% of total capital cost)	Includes submittals, reporting, meetings over 95 day duration	LS	1	\$12,632.88	\$12,63
Subtotal					\$12,63
Site Preparation					
Surveying Crew	1-person crew @ \$100/hr, 8hr/day; assume 30% of project duration	Day	12	\$800.00	\$9,60
ALTA Survey	For Easement and DEC Compliance	LS	1	\$20,000.00	\$20,00
Install Construction Fence	Chain link fence rental, 6' high, encompass Exclusion Zone	LF	1,600	\$7.05	\$11,27
Site Services	NYSDEC Field Office 120 Day Duration	DAY	40	\$500.00	\$20,00
Construct Decontamination Pad & Containment	For Haz trucks exiting EZ	EA	1	\$7,000.00	\$7,00
Clearing and Grubbing	Estimated surface area including cutbacks.	SY	2,313	\$1.84	\$4,26
Subtotal					\$65,14
lealth and Safety	1				
Health and Safety	HSO, CAMP and Security Reporting	DAY	40	\$950.00	\$38,00
Subtotal					\$38,00
Excavation					
Excavation - TSCA Soil	As depicted on FS figures with 3:1 cutback	CY	1,277	\$15.00	\$19,15
PCB Contaminated Soil Disposal	TSCA soils-bulk disposal Subtitle C Facility	TON	1,552	\$109.77	\$170,3
Special Transport Fee	Albany NY to Model City & Return	Load	52	\$500.00	\$26,0
Excavation - Non-TSCA Soil	Non-TSCA soils-bulk disposal - Selective Excavation	CY	292	\$15.00	\$4,3
	based on Sampling Results	TON		<u> </u>	¢10 =
PCB Contaminated Soil Disposal	Non-TSCA soils-bulk disposal	TON	355	\$30.30	\$10,75
Special Transport Fee	Albany NY to Model City & Return	Load	12	\$500.00	\$6,00
Dewatering	Methodology to be determined by Contractor; unit	Day	40	\$936.56	\$37,40
	cost presumed as 2-4" pumps operating 24 hr/day			\$27.652.00	¢07 -
PCB Wastewater Treatment during Remediation of	Incl. 2,280 GPD Packaged WWTP, 40,000 Gal Baker	LS	1	\$27,653.00	\$27,63
Drainageway Sediments	Tank for Surge Capacity, 50 GPM Carbon				
	Adsorption Tank 1,050 Fill and 3" Portable Trash				
	Pump 300 GPM			** *	.
Waste Characterization Sampling	As req'd to satisfy off-site Landfill Requirements	Each	2	\$206.00	\$4
Confirmation/Documentation Sampling - EPA SW-	DEC Spec Section 01425; includes bottom and	Each	139	\$206.00	\$28,63
846, Method SW-8082	sidewall testing @ 1 per 500 ft ² and establish				
	excavation limits beyond TSCA soil				
Subtotal					\$330,75
Reconstruction					
Common Fill	Restore drainageway invert; includes 95% Compaction	CY	1,569	\$19.41	\$30,45
Erosion and Soil Control Blankets	Biodegradable to temporarily stabilize stream channel/invert until natural growth is established	SY	1,067	\$6.60	\$7,03
Medium Rip Rap	To armor invert near intersection with OU-2; Includes trucking and Installation	TON	24	\$68.43	\$1,64
Subtotal					\$39,13
Site Restoration					
Topsoil	0.5 ft thick over entire excavation area, swell at 7%	LCY	413	\$39.88	\$16,45
Hydroseeding	Native Steep Slope Mix with Annual Rye Grass mix	SY	2,313	\$1.49	\$3,44
	incl. mulch and fertilizer for total topsoil area				
Plantings	Sandbar Willow/Red Osier Dogwood/Northern	SY	463	\$15.95	\$7,38
	Bayberry/Catskill Sand Cherry - 20% of hydroseeded area				
Demobilization		LS	1	\$5,000.00	\$5,00
Subtotal	•				\$32,28
			Capita	al Cost Subtotal:	\$517,94
	Adjusted Capital Cost Subtotal for	Albany, New Y			\$508,6
				ngineering fees:	\$50,8
				Contingencies:	\$83,9
			Tota	al Capital Cost:	\$644,0
Annual Costs					
				\$0.00	
Not Applicable					9
Not Applicable					
Not Applicable				al Cost Subtotal:	
Not Applicable	Adjusted Capital Cost Subtotal for		York Location	n Factor (0.982):	:
Not Applicable	· · ·		York Location	n Factor (0.982): ngineering fees:	
Not Applicable Subtotal	· · ·		York Location iinistrative, e 15%	n Factor (0.982):	9 9 9 9 9 9

Table 5-5 Cost Estimate for Excavation and Off-Site Disposal, Alternative 6, Part 375 Restricted-Industrial SCOs

Item Description	Comment	Unit	Quantity	Unit Cost	Cost
5-Year Costs (Periodic Costs)					
5-year CERCLA reviews		Hr	80	\$120.00	\$9,600
Subtotal					\$9,600
			5-Ye	ar Cost Subtotal:	\$9,600
Adjusted Annual Cost Subtotal for Albany, New York Location Factor (0.982):					\$9,427
		10% Legal, a	dministrative,	engineering fees:	\$943
			159	% Contingencies:	\$1,555
				5-Year Total:	\$11,925
		30-Year P	resent Worth	of 5-Year Costs:	\$34,000
		20	014 Total Pres	ent Worth Cost:	\$678,000

Key:

ALTA = American Land Title Association BGS = below ground surface CAMP = Community Air Monitoring Program CF = cubic feet CY = Cubic Yard DEC = (New York State) Department of Environmental Conservation EA = eachEPA = Environmental Protection Agency EZ = exclusion zone ft = feetGal = gallonsGPD = gallons per day GPM = gallons per minute H = height HP = horsepower Hr = hourHSO = Health and Safety Officer LCY = loose cubic yards LF = linear foot LS = lump sum MSF = thousand square feet NY = New York OU = operable unit PCB = Poly chlorinated biphenyl RCRA = Resource Conservation and Recovery Act SF = square feet SW = solid waste SY = square yard TSCA = Toxic Substances Control Act W = widthWWTP = waste water treatment plant

Table 5-6 Summary of Total Present Values of Remedial Alternatives at Adirondack Steel

OU-3 North Drainageway under the Two Proposed Soil Cleanup Objectives for PCBs^{1,2}

	Alternative 1	Alternative 2	Altern	ative 3	Altern	ative 4	Altern	ative 5	Alternative 6
			Excavation	and Off-Site	Excavation	and On-Site			Excavation and Off-Site
		No Further	Dispo	sal ^{1,2}		by HTTD ^{1,2}	In-Situ Solio	dification ^{1,2}	Disposal ⁹
		Action with	PART 375	07.54	PART 375	00 T/	PART 375	00 T/	PART 375
Description	No Action	Site Management	Commercial PCB SCOs	CP-51 PCB SCOs	Commercial PCB SCOs	CP-51 PCB SCOs	Commercial PCB SCOs	CP-51 PCB SCOs	Industrial PCB SCOs
	NO ACTION								
Estimated Total Project Duration ³	0	30 Years	4 Months	3.5 Months	5 Months	4.5 Months	4 Months	3.5 Months	1-2 Months
Capital Cost	\$0	\$9,000	\$1,552,000	\$1,330,000	\$2,892,000	\$2,514,000	\$2,512,000	\$2,164,000	\$644,000
Annual O&M ^{4,5}	\$0	\$118,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Periodic O&M ^{4,6,8}	\$0	\$77,000	\$34,000	\$34,000	\$34,000	\$34,000	\$34,000	\$34,000	\$34,000
2014 Total Present Value ⁷	\$0	\$204,000	\$1,586,000	\$1,364,000	\$2,926,000	\$2,548,000	\$2,546,000	\$2,198,000	\$678,000

Key:

HTTD = High-temperature thermal desorption

NYCRR = New York Code of Rules and Regulations

O&M = Operations and Maintenance

OU = Operable Unit

PCB = Polychlorinated biphenyl

ppm = part per million

SCO = Soil Cleanup Objective

Notes:

1 - Soil Cleanup Objective for PCB's under 6 NYCRR Part 375-Restricted Use-Commercial Table 375-6.8 (b) is 1 ppm in surface and subsurface soils.

2 - Soil Cleanup Objective for PCB's under NYSDEC CP-51 Restricted Use-Commercial is 1 ppm in surface (0-1 feet below ground surface) and 10 ppm subsurface soils.

3 - Durations based on Engineers Estimate of NYSDEC Div. of Environmental Remediation Construction Observation Projects through Substantial Completion

4 - Project duration after installation of engineering control includes 30 years of OM&M and periodic costs

5 - Annual costs would typically include groundwater monitoring and reporting.

6 - Periodic costs would typically include maintaining/updating institutional controls and partial fence replacement.

7 - The Total Present Value of Alternative represents the estimated present value of the capital costs and 30 years of annual and periodic costs.

8 - Under CERCLA 121 (c) five-year reviews should be conducted for sites that implement remedial actions that, upon completion, would leave hazardous substances, pollutants, or contaminants on site above levels that allow for unlimited use and unrestricted exposure.

9 - Soil Cleanup Objective for PCB's under 6 NYCRR Part 375-Restricted Use-Industrial Table 375-6.8 (b) is 25 ppm in surface and subsurface soils.

References

Domenico, P.A., and F.W. Schwartz. 1990. *Physical and Chemical Hydrogeology*. New York, NY: John Wiley & Sons.

Ecology and Environment Engineering, Inc. (EEEPC). 2008a. *Final Remedial Investigation Report for the Former Adirondack Steel Site, Colonie, New York.* Prepared for the New York State Department of Environmental Conservation. August 2008.

. 2008b. Draft Remedial Investigation Addendum for April 2008 Fieldwork, Former Adirondack Steel Site, Colonie, New York, Site No. 4-01-039. Prepared for the New York State Department of Environmental Conservation. July 2008.

. 2010a. Draft Remedial Investigation Report for Supplemental Sediment and Soil Sampling, Former Adirondack Steel Site, Colonie, New York. Prepared for the New York State Department of Environmental Conservation. March 2010.

. 2010b. *Final Interim Remedial Measure Report for the Former Adirondack Steel Site, Colonie, New York.* Prepared for the New York State Department of Environmental Conservation. February 2010.

. 2014. Draft Supplemental Remedial Investigation Report for the Former Adirondack Steel Site, Colonie, New York, Site No. 4-01-036. Prepared for the New York State Department of Environmental Conservation. January 2014.

EPA-OSWER. 2000. Institutional Controls: A Site Manager's Guide to Identifying, Evaluating and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups. September 2000. OSWER 9355.0-7-4FS-P, EPA 540-F-00-005,

ESMI. 2013. On-Site Treatment System Project Evaluation <u>http://esmicompanies.com/assets/pdf_files/On-</u> <u>Site%20Treatment%20Evaluation%20Guide.pdf</u> Accessed August 2, 2013. Federal Remediation Technologies Roundtable (FRTR). 2013. Remediation Technologies Screening Matrix and Reference Guide, 4th Edition, U.S. Army Environmental Center. <u>http://www.frtr.gov/matrix2/top_page.html</u> Accessed July 26, 2013.

Fickies, R.H. 1982. Generalized Bedrock Geology of Albany County, New York.

Minergy Corporation. 2003. *Revised Unit Cost Study for Commercial-Scale Sediment Melter Facility, Glass Furnace Technology*, Prepared for: Wisconsin Department of Natural Resources. May 30, 2003.

. 2006. Letter Report from Mr. Robert Paulson of Minergy to Mr. Preetam R. Kuchikulla of Ecology and Environment Inc. September 5, 2006.

. 2007. www.minergy.com Accessed March 20, 2007.

- Naval Facilities Engineering Service Center. 1998. Overview of Thermal Desorption Technology, (Contract Report CR98.008-ENV). Port Hueneme, California.
- New York State Department of Environmental Conservation (NYSDEC). 1990. Technical and Administrative Guidance Memorandum (TAGM) No. 4030. Selection of Remedial Actions at Inactive Hazardous Waste Sites. Albany, New York.

. 1994. Technical and Administrative Guidance Memorandum (TAGM) No. 4046, *Determination of Soil Cleanup Objectives and Cleanup Levels*. Albany, New York.

_____. 1999. Technical Guidance for Screening Contaminated Sediments. January 25, 1999.

. 2006a. Remedial Program Soil Cleanup Objectives, 6 NYCRR Subpart 375-6.8. December 14, 2006.

. 2006b. Source-Distant Data Set from NYS Brownfield Cleanup Program, Technical Support Document, Appendix D. September 2006.

. 2010a. CP-51 Soil Cleanup Guidance. October 21, 2010.

. 2010b. Record of Decision, Former Adirondack Steel, Operable Unit No. 1, State Superfund Project, Colonie, Albany County New York, Site No. 401039. March 2010.

. 2010c. DER-10, Technical Guidance for Site Investigation and Remediation, Albany, New York. May 3, 2010.

- Ramboll Norge AS. 2009. Cement Stabilization and Solidification STSO Review of Techniques and Methods. January 28, 2009
- Shacklette, H. T. and J. G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Continuous United States. United States Geological Survey Professional Paper 1270.
- TerraTherm, Inc. 2013. FAQ Section, <u>www.terratherm.com</u> Accessed on 8/1/2013.
- Town of Colonie. 2007. Town of Colonie, Zoning District Map. Adopted January 4, 2007 by Local Law #1 of 2007.

_____. 2004. *Minergy Corporation Glass Furnace Technology Evaluation*, EPA/540/R-03/500. March 2004.

_____October 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA. Washington, D.C.