

Phase I Supplemental Investigation Summary Report Former Damshire Cleaners (4-01-059) Albany, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

> July 2011 Revision: DRAFT EA Project No. 14368.46

Phase I Supplemental Investigation Summary Report Former Damshire Cleaners (4-01-059) Albany, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

Christopher J. Canonica, P.E., Program Manager EA Engineering, P.C.

Date

Judy Graham, Project Manager EA Science and Technology

Date

July 2011 Revision: DRAFT EA Project No. 14368.46

CONTENTS

LIST OF FIGURES LIST OF TABLES

		<u>]</u>	<u>Page</u>
1.	INT	RODUCTION AND PROJECT OVERVIEW	1
	1.1 1.2 1.3	Site History Purpose and Scope Background 1.3.1 Site Location 1.3.2 Site Geology 1.3.3 Site Hydrogeology	2
2.	SIT	E CHARACTERIZATION INVESTIGATION	3
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Field Activities Soil Boring Installation Soil Sampling Monitoring Well Installation Well Development Groundwater Sampling Sample Analysis Data Validation Site Survey	3 4 5 5 6
3.	FIE	LD INVESTIGATION RESULTS	7
	3.1	Soil Sampling Analytical Results	
		3.1.1 Volatile Organic Compound Results	7
	3.2	Groundwater Sampling Analytical Results	7
		3.2.1 Volatile Organic Compounds Results	7
	3.3 3.4	Investigative Derived Waste	
4	COI	NCLUSIONS AND RECOMMENDATIONS	9

Project No.: 14368.46 Revision: DRAFT Contents, Page 2 of 2

EA Engineering, P.C. and Its Affiliate EA Science and Technology

July 2011

4.1	Summa	rry of Impacts	9
		Compounds in Subsurface Soils	
		Compounds in Groundwater	
		mendations	
APPEN	DIX A:	SOIL BORING LOGS	
APPEN	DIX B:	WASTE MANIFESTS	
APPEN	DIX C:	M.J. ENGINEERING SURVEY	
APPEN	DIX D:	MONITORING WELL DEVELOPMENT LOGS AND	
		PURGING/SAMPLING FORMS	
APPEN	DIX E:	ANALYTICAL RESULTS	
APPEN	DIX F:	DATA USABILITY SUMMARY REPORT	

Revision: DRAFT List of Figures, Page 1 of 1 July 2011

LIST OF FIGURES

<u>No.</u>	<u>Title</u>
1	Site map.
2	Monitoring well locations.
3	Contaminant concentrations.
4	Groundwater contours.

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Project No.: 14368.46 Revision: DRAFT List of Tables, Page 1 of 1 July 2011

LIST OF TABLES

No.	<u>Title</u>
-----	--------------

- 1 Volatile organic compound detections in subsurface soil.
- 2 Volatile organic compounds in groundwater.

1. INTRODUCTION AND PROJECT OVERVIEW

The New York State Department of Environmental Conservation (NYSDEC) issued EA Engineering, P.C. and its affiliate EA Science and Technology (EA) a Work Assignment to perform a site characterization (SC) at the Former Damshire Cleaners site (NYSDEC Site No. 4-01-059). The 0.39-acre site is located at 1205 Central Avenue in the city of Albany, Albany County, New York (Figure 1).

The first phase of the SC was conducted in January 2011 by completing a limited Geoprobe[®] investigation in the right-of-ways surrounding the subject property. A Phase II was completed in May 2011 by completing additional Geoprobe[®] investigation in downgradient areas of the site. This report has been prepared to summarize field activities and analytical results of the second phase of the investigation.

1.1 SITE HISTORY

In October 2001, a limited soil boring and soil vapor sample investigation was completed by DW Solutions on behalf of the former property owner as a result of a reported fuel oil spill. As summarized in a brief letter report dated 29 October 2001, DW Solutions indicated that chlorinated volatile organic compound (CVOC) tetrachloroethene (PCE) was detected in soil samples collected onsite in concentrations ranging from 0.039 parts per million (ppm) to 0.8 ppm. Vapor samples were collected using carbon tubes and were detected at concentrations below the method detection limits.

In January 2010, CT Male conducted a limited soil vapor intrusion investigation on behalf of the current property owner. The result of the investigation indicated that soil vapors were impacted by volatile organic compounds (VOCs) and CVOCs at concentrations up to $130,000~\mu g/m^3$ of trichloroethene (TCE) in sub-slab soil vapor indicating that further investigation was warranted. Based on the information in the report, the NYSDEC notified the owner that the site will be designated as a potential hazardous waste disposal site and indicated that the NYSDEC, as required by law, intended to investigate the site.

In January 2011, EA completed a Geoprobe[®] investigation immediately downgradient of the site. The investigation included installing five soil borings and converting those borings into groundwater monitoring wells. Groundwater flow direction was determined to flow southwest across the site. Soil and groundwater samples were collected and analyzed for VOCs. The analytical results indicated that CVOC concentrations in soil and groundwater were greater than established standards, criteria and guidance values and are impacting soil and groundwater immediately downgradient of the site. Impacts appear to be originating from a source located on the Damshire Cleaners site. A Phase II Investigation was requested by the NYSDEC to

determine further downgradient impacts. A Phase I Summary Report was competed and submitted to NYSDEC in May 2011¹.

1.2 PURPOSE AND SCOPE

The purpose of the Phase II investigation was to further determine the direction of groundwater flow in the area, and to collect additional soil and groundwater data from areas located adjacent to downgradient of the site.

1.3 BACKGROUND

The following section provides a brief discussion of the site background for the Former Damshire Cleaners site.

1.3.1 Site Location

The site is a vacant commercial drycleaners property formerly known as Damshire Cleaners located at 1205 Central Avenue, Albany, Albany County, New York. The site consists of a vacant building on a 0.39 acre property located in a mixed residential and commercial area in the town of Colonie (Tax Map No.: 53.06-06-35.1). The site is bordered by Roessleville Presbyterian Church to the southeast, Greens Appliances to the northwest, residential areas to the northeast, and commercial (Hollywood Video) and residential areas to the southwest. Dry cleaning operations were previously conducted in the now vacant concrete block building.

1.3.2 Site Geology

A review of the geologic map of New York, Hudson Sheet published by the University of the State of New York, the State Education Department, dated 1970, indicates that bedrock in this area is made up of units of the Lorraine, Trenton, and Black River Groups including Utica Shale, Canajoharie Shale, and Normanskill Shale. These units consist of stratified units of sedimentary bedrock from the upper to middle Ordivican and can be up to 4,500-ft thick.

Soil boring logs generated during previous investigations and this Phase I investigation indicate that the overburden in the area consists of silty-fine sand with clay lenses.

1.3.3 Site Hydrogeology

Groundwater measured in monitoring wells installed at the site during the Phase I Investigation¹ ranged between 4.3 and 5.5 ft below ground surface (bgs), and flows in a southwesterly direction across the site.

^{1.} EA. 2011. Phase I Investigation Summary Report, Former Damshire Cleaners (4-01-059), Albany, New York. May.

2. SITE CHARACTERIZATION INVESTIGATION

Field investigation activities were conducted in accordance with the approved SC Work Plan (EA 2010²). In accordance with the site-specific Health and Safety Plan (HASP) (Appendix C of SC Work Plan²), health and safety officer responsibilities were assigned to one of the team members throughout the field program to ensure that the personnel were protected from both physical and chemical health hazards. Appropriate protective clothing was worn by all field personnel while performing all intrusive activities for protection against contamination, and to prevent cross-contamination between sample locations and matrices.

2.1 FIELD ACTIVITIES

The following field activities were completed as part of the Phase II site investigation portion of the Work Assignment:

- Geoprobe drilling program
- Soil sampling
- Well installation program
- Well development
- Groundwater sampling
- Site surveying.

2.2 SOIL BORING INSTALLATION

A soil boring program was implemented as part of this investigation to evaluate the shallow overburden downgradient and adjacent to the site. Prior to completion of intrusive subsurface activities, a utility mark-out was completed by the drilling subcontractor (NYEG Drilling, LLC). Permits to work in the highway right-of-way were obtained from the town of Colonie. Because of the multiple utilities in the area, each soil boring was hand cleared to 5 ft prior to drilling.

NYEG and EA mobilized to the site on 16 May 2011. NYEG completed six subsurface soil borings from 0 to 30 ft bgs using Geoprobe[®] drilling technology and macro-core sampling (Figure 2). The SC Work Plan² proposed to install several soil borings/monitoring wells along the southern side of Central Avenue; however, drilling in the right-of-ways along some portions of Central Avenue was not feasible at some of the proposed locations due to underground utilities in these areas. Those soil borings were re-located along Highland Avenue.

Soil samples were characterized according to the Unified Soil Classification System. Soil boring logs can be found in Appendix A.

^{2.} EA. 2010. Site Characterization Work Plan. Former Damshire Cleaners Site (4-01-059), Albany, Albany County, New York. December.

NYEG decontaminated drill rods between each boring location using Alconox and potable water. All decontamination fluids were collected and stored in 55-gal drums. Wastewater was containerized in 55-gal drums and was disposed of offsite by EPS Environmental. Waste manifests can be found in Appendix B.

2.3 SOIL SAMPLING

Subsurface soil samples were collected based on photoionization detector (PID) (ppb Rae) screening, and visual and olfactory observations of the soil. Continuous macro-core samples were collected from 0 to 30 ft bgs. A soil sample collected every 1 ft was placed in sealed plastic bags labeled with boring number, sampling interval, and recovery data; and allowed to equilibrate before PID measurements were collected. Once the soil sample was selected for analysis, the sample was immediately placed in proper laboratory containers using clean nitrile gloves. Soil sample containers were placed in ice-filled coolers.

Up to two soil samples were collected in each soil boring for analysis. If organic compounds were detected above and below the water table, then one soil sample from both above and below the water table was collected from the interval with the highest PID measurement and sent for laboratory analysis of VOCs by United States Environmental Protection Agency (USEPA) Method 8260B. If VOCs were not detected in samples, soil samples were collected from just above the water table for analysis (1-3 ft bgs).

Samples were shipped to the analytical laboratory within USEPA Method 8260B holding time. The samples were labeled, handled, and packaged following the procedures described in the Generic Quality Assurance Project Plan (QAPP) and QAPP Addendum (Appendix B of SC Work Plan²). Quality assurance (QA)/quality control (QC) samples were collected at the frequency detailed in the Generic QAPP and QAPP Addendum Table 1². All soil cuttings generated during the investigation were collected and stored in 55-gal drums for disposal.

2.4 MONITORING WELL INSTALLATION

Six small diameter monitoring wells (MW-06, MW-07, MW-08, MW-09, MW-10, and MW-11) were installed from 16 to 18 May 2011 (Figure 2). The wells were installed to a depth of approximately 30 ft bgs. The monitoring wells were constructed of 1-in. polyvinyl chloride (PVC) riser and 0.010-slot screen. The wells were screened from 10 to 30 ft bgs (20-ft screens). A sand pack was installed around the screen up to 2-ft above the top of the screen. A 2-ft bentonite seal was placed above the sand pack and the remaining annular space was filled with bentonite pellets to approximately 0.5 ft below the surface. Flush-mount well covers and concrete pads were installed on each well. Soil boring logs and well construction diagrams can be found in Appendix A.

Each well and soil boring location was surveyed by MJ Engineering on 25 May 2011 (Appendix C). Elevation data for monitoring wells and groundwater collected during the May sampling event are summarized below.

	DEPTH TO	TOP OF PVC	GROUNDWATER	SCREENED
	GROUNDWATER	ELEVATION	ELEVATION	INTERVAL
WELL ID	(FT BTOC)	(AMSL)	(AMSL)	ELEVATIONS (AMSL)
MW-01	2.78	248.29	245.51	238.47 – 228.47
MW-02	4.50	247.73	243.23	237.73 – 227.73
MW-03	3.38	245.99	242.61	235.99 – 225.99
MW-04	3.47	245.97	242.50	235.97 – 225.97
MW-05	4.96	246.46	242.39	231.35 – 221.35
MW-06	5.11	245.48	240.37	245.76 - 215.76
MW-07	6.11	245.03	238.92	235.32 - 215.32
MW-08	7.67	244.26	236.59	234.79 - 214.79
MW-09	5.06	246.13	241.07	236.57 – 216.57
MW-10	4.11	245.97	241.86	236.24 – 216.24
MW-11	3.17	245.39	244.22	235.57 – 215.57
NOTE: BTO		-		

2.5 WELL DEVELOPMENT

The six newly installed monitoring wells were developed 24 hours following installation. The wells were developed using a whale pump and dedicated polyethylene tubing. Well development was considered complete when temperature, conductivity, and pH had stabilized. Because of well design and limited thickness of the sand pack, turbidity values did not diminish during development. Development water was collected and stored in 55-gal drums for disposal. No odors or sheen were observed in monitoring wells. Between each location, EA decontaminated equipment and tools using Alconox and potable water. Decontamination water and purge water was disposed of by a regulated hauler as hazardous waste. Monitoring well development logs are provided in Appendix D.

2.6 GROUNDWATER SAMPLING

Eleven groundwater samples were collected from monitoring wells on 25 May 2011. Figure 2 illustrates the monitoring locations sampled during the groundwater sampling events. Groundwater samples were sent to Hampton Clarke Veritech (HCV) to be analyzed for VOCs by USEPA Method 8260.

Prior to groundwater sampling events, water level measurements were collected from each monitoring location to prepare a groundwater contour map and evaluate groundwater flow patterns. Groundwater sampling was completed using low-flow sampling techniques according to the approved Work Plan². During sampling, purge water was collected and stored in 55-gal drums and disposed of offsite by EPS Environmental. Waste manifests can be found in Appendix B.

Field logbook, sample log sheets, labels, and chain-of-custody forms were completed after sampling at each monitoring well location. Monitoring location gauging, purging, and sampling forms are provided in Appendix D. Groundwater samples were placed in appropriate sample containers, sealed, and submitted to the laboratory for analysis. The samples were labeled,

handled, and packaged following the procedures described in Generic QAPP and QAPP Addendum². QA/QC samples were collected at the frequency detailed in the Generic QAPP and QAPP Addendum².

2.7 SAMPLE ANALYSIS

Groundwater and soil samples analyses were performed by HCV. Each sample was analyzed for VOCs by USEPA Method 8260. HCV followed the QA/QC holding time and reporting requirements as defined in the NYSDEC Analytical Services Protocol (ASP) of June 2000. Laboratory analytical data were reported using Category B deliverables and the standard electronic data deliverables. Analytical data can be found in Appendix E. Detected groundwater concentrations are shown on Figure 3.

2.8 DATA VALIDATION

Analytical data collected for the SC were validated by Environmental Data Services, Inc. (EDS). Analytical data were reviewed for completeness, field and laboratory QC sample results were evaluated, significant laboratory control problems were assessed, and data qualifiers were assigned. A Data Usability Summary Report was provided by EDS and can be found in Appendix F.

2.9 SITE SURVEY

Upon completion of the Phase II site investigation, new monitoring wells, soil borings, buildings, edges of pavement, and other relevant site features including certified property boundaries and right-of-way boundaries were surveyed by MJ Engineering of Clifton Park, New York (a New York State licensed surveyor) on 25 May 2011. The elevations for each new location were established for both land surface and for the top of casing at a measuring point notch. Vertical measurements were referenced to the National Geodetic Vertical Datum of 1988. A copy of the survey map is provided in Appendix C.

Horizontal control was established by traverse runs to establish location with respect to the New York State planar horizontal coordinate grid system and provided in New York State Plane NAD83/CORS96. Horizontal traverses were tied into established permanent benchmarks. Horizontal traverse runs were tied back to initial control points as a check for closure and error of closure was recorded. The elevation of the wells was reported to within 0.01 ft. A groundwater contour map was generated based on survey information (Figure 4).

3. FIELD INVESTIGATION RESULTS

This section presents the findings of the field sampling activities conducted during the SC.

3.1 SOIL SAMPLING ANALYTICAL RESULTS

A total of 10 soil samples were collected and sent to HCV for VOC analysis by USEPA Method 8260B (Appendix E). The 6 New York Codes, Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs Groundwater Protection Soil Cleanup Objectives (SCOs) were used to evaluate the subsurface soil sample results.

3.1.1 Volatile Organic Compound Results

A summary of VOC analytical results for the subsurface soil samples is provided in Table 1. Low-level concentrations (less than their SCO) of acetone, 2-butanone, *cis*-1,2-dichloroethene (DCE), PCE, and TCE were detected at MW-06, MW-07, MW-08, and MW-11 locations. No concentrations of VOCs were detected in soil samples collected from MW-09 and MW-10 soil borings.

3.2 GROUNDWATER SAMPLING ANALYTICAL RESULTS

This section presents a summary of the results for chemical analyses performed on groundwater samples collected from the six newly installed monitoring wells and the previous five wells installed in January 2011. Groundwater results were compared to NYSDEC Ambient Water Quality Standards (AWQS) for Class GA water. The groundwater samples were analyzed for VOCs using USEPA Method 8260B (Appendix E).

3.2.1 Volatile Organic Compounds Results

A summary of the detected VOC concentrations for groundwater samples are presented in Table 2. PCE, TCE, and DCE were identified at concentrations greater than its AWQS at MW-02, MW-03, MW-04, MW-05, and MW-07 (up to $48,000~\mu g/L$). VOCs were not detected in MW-01, MW-08, MW-09, MW-10, or MW-11. Figure 3 shows concentrations of compounds detected in groundwater samples collected during this Phase I supplemental investigation. Xylenes were detected in MW-07 at a concentration of $1.3~\mu g/L$ and 1,1-dichloroethene was detected in MW-02 at a concentration of $1.1~\mu g/L$ and did not exceed AWQS.

3.3 INVESTIGATIVE DERIVED WASTE

Investigative derived waste (IDW) (one 55-gal drum of soil and two 55-gal drums of groundwater) were generated during field activities. Permission to store the drums onsite was not granted; therefore, the drums were disposed of offsite each day by Environmental Products and Services of Vermont, Inc. (EPS). Due to the expedited process of waste disposal, waste characterization samples were not collected from the soil and groundwater for disposal purposes,

and the IDW drums were classified as hazardous waste. The waste manifests are provided in Appendix B.

3.4 DATA VALIDATION

The analytical data results were submitted to EDS, Inc. for validation. This validation included a review of pertinent QA/QC data, such as sample extraction and analysis, holding times, calibration, a review of laboratory blanks and QA/QC sample results, and a review of the analytical case narrative. A Data Usability Summary Report was prepared which includes a compliance chart, a list of samples included in each sample delivery group, and recalculations of sample results. Nonconforming QA/QC results were evaluated with respect to their implications for data reliability and usability, and data results were flagged accordingly on the results sheets. These qualifiers were entered into the site-specific database and appear in the summary tables presented in this report. Data summary and usability reports for the analytical data packages are provided in Appendix F.

4. CONCLUSIONS AND RECOMMENDATIONS

The section provides a summary of the off-site conditions upgradient and downgradient of the Former Damshire Cleaners site, as determined by the completion of the Phase I site investigation work. This section also presents recommendations for further investigation of the Former Damshire Cleaners site.

4.1 SUMMARY OF IMPACTS

The following sections briefly summarize the environmental impacts observed during the Supplemental Investigation at the Former Damshire Cleaners site.

4.2 VOC COMPOUNDS IN SUBSURFACE SOILS

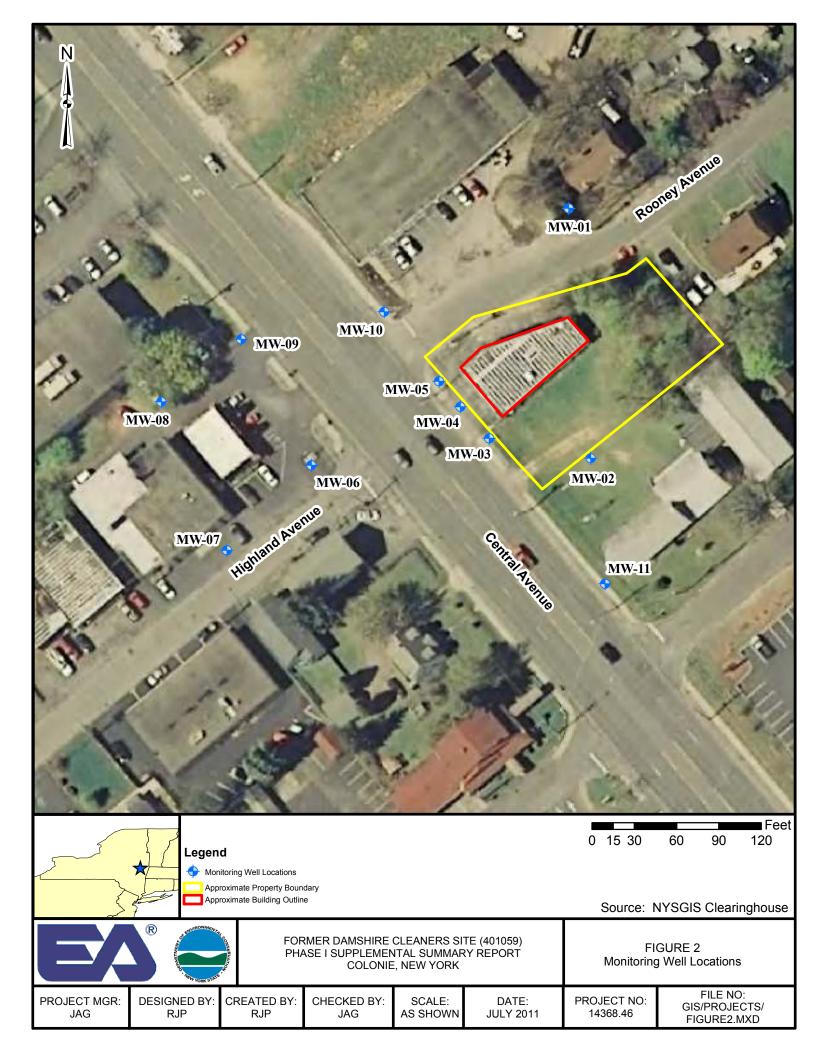
 Analytical results for subsurface soil samples indicate that concentrations of DCE, PCE, and TCE were less than SCOs. Acetone and 2-butonone were detected in MW-08 at levels below SCOs.

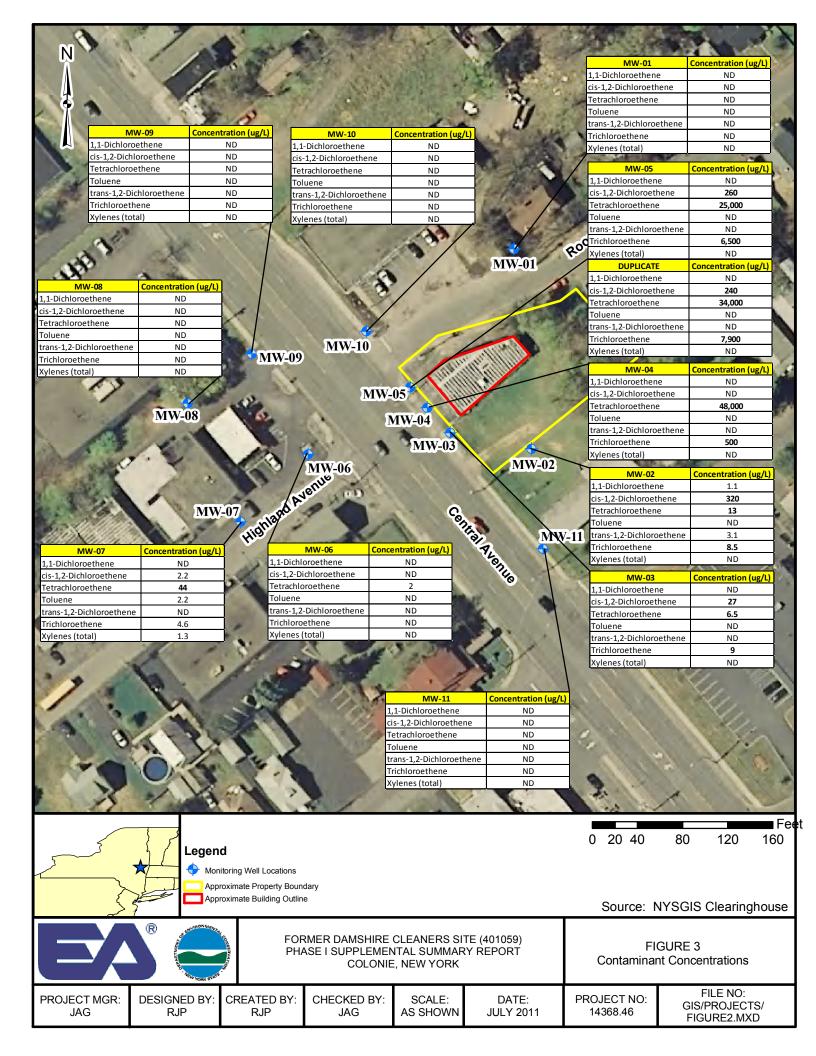
4.3 VOC COMPOUNDS IN GROUNDWATER

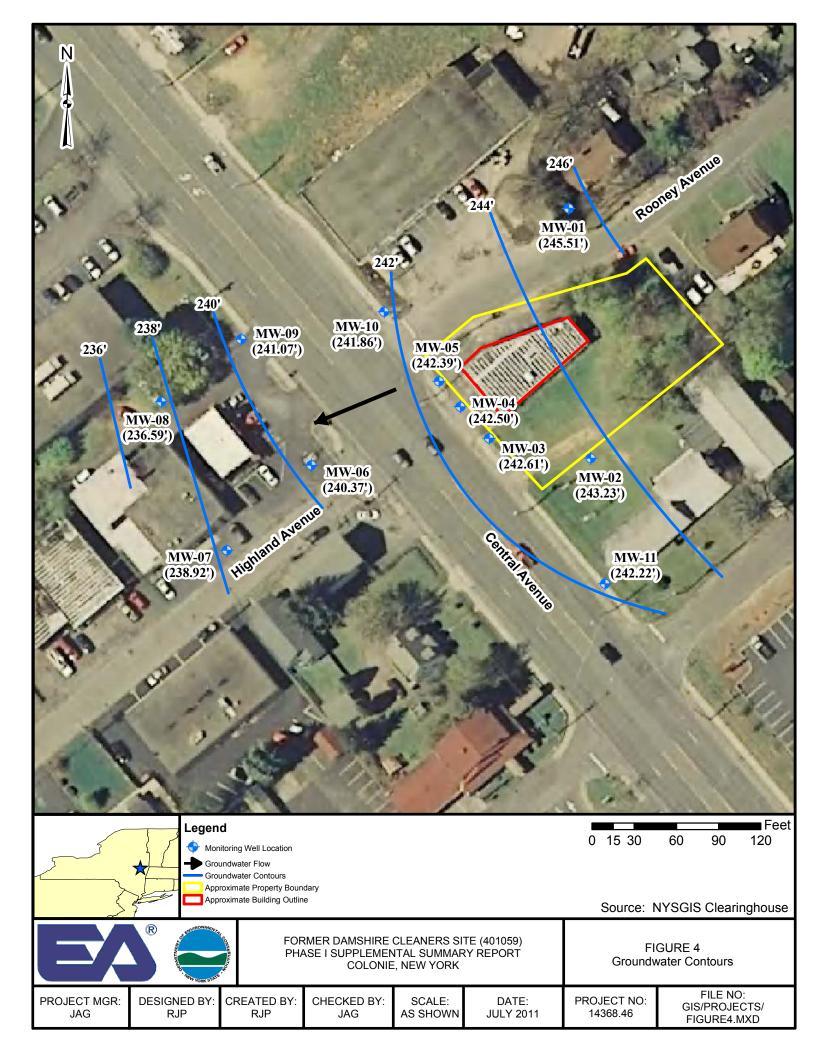
Analytical results indicate that concentrations of DCE, PCE, and TCE detected in groundwater samples were greater than AWQS (5 μg/L). All three contaminants exceeding their respective AWQS were found in MW-02, MW-03, MW-04, MW-05, and MW-07. DCE concentrations detected in monitoring wells ranged from 2.2 μg/L to 320 μg/L. PCE concentrations ranged from 2.0 μg/L to 48,000 μg/L. TCE concentrations ranged from 4.6 μg/L to 7,900 μg/L.

4.4 **RECOMMENDATIONS**

Based on the data, the following conclusions and recommendations are offered:


- Soil and groundwater samples were collected in right-of-way areas upgradient and downgradient of the site. The upgradient areas investigated do not appear to be affected by chlorinated solvent impacts.
- Soil and groundwater samples collected directly downgradient from the building including MW-02, MW-3, MW-4, and MW-5 appear to be impacted by CVOCs.
 Groundwater samples collected downgradient of the site across Central Avenue including MW-6 and MW-7 contain concentrations of CVOCs including PCE in concentrations greater than AWQS. These data indicate that impacts detected at the site in 2001 and 2009 still exist on the property and are impacting groundwater that is migrating offsite.
- On-site sampling is recommended to confirm source area location.


Project No. 14368.46 Revision: DRAFT Page 10 of 10 July 2011


EA Engineering, P.C. and its Affiliate EA Science and Technology

• Groundwater samples collected in down gradient locations contained concentrations of CVOCs. Further investigation to determine the downgradient edge of the plume is recommended for the next phase of the investigation.

EA Project No.: 14368.46 Revision: DRAFT Table 1, Page 1 of 1 July 2011

TABLE 1 VOLATILE ORGANIC COMPOUND DETECTIONS IN SUBSURFACE SOIL

Parameter List USEPA Method 8260B	Sample Location Sample Date Sample Depth (ft bgs)	5/16/20	MW-06 5/16/2011 4' - 5' U		6 11 1'	MW-0 5/16/20 6' - 7'	11	MW-0 5/16/20 14' - 1:	11	MW-0 5/17/20 11' - 1:	11	MW-09 5/17/2011 5' - 6'		MW-09 5/17/20 6' - 7'	11	Groundwater Protection Part 375 Soil Cleanup Objectives (mg/kg)
Acetone	mg/kg		U		UJ		U		UJ	0.21			U		U	0.05
2-Butanone	mg/kg		U		U		U		U	0.048			U		U	
cis-1,2-Dichloroethene	mg/kg		U		U		U	0.018		0.043			U		U	0.25
Tetrachloroethene	mg/kg	0.041		0.7		0.085		0.67			U		U		U	1.3
Trichloroethene	e mg/kg		U	0.043	J	0.011		0.056	J	0.01			U		U	0.47
Parameter List USEPA Method 8260B	Sample Location Sample Date Sample Depth (ft bgs)		MW-10 5/18/2011 7' - 8'		MW-11 5/18/2011 5' - 6'		MW-11 5/18/2011 13' - 14'		Duplicate ^(a) 5/18/2011 13' - 14'							Groundwater Protection Part 375 Soil Cleanup Objectives (mg/kg)
Acetone	mg/kg		U		U		UJ		UJ							0.05
2-Butanone	mg/kg		U		U		U		U							
cis-1,2-Dichloroethene	mg/kg		U		U		U		U							0.25
Tetrachloroethene	mg/kg		U	0.0047			U		U							1.3
Trichloroethene	mg/kg		U		U		UJ		UJ							0.47

(a) Duplicate sample was collected from MW-10 (7-8)

NOTE: USEPA = United States Environmental Protection Agency

bgs = Below ground surface mg/kg = Milligrams per kilogram

U = Indicates the compounds was analyzed but was not detected.

--- = No applicable standard

Standards taken from Groundwater Protection Part 375 Soil Cleanup Objectives

EA Project No.: 14368.46 Revision: DRAFT Table 2, Page 1 of 1 July 2011

TABLE 2 VOLATILE ORGANIC COMPOUND DETECTIONS IN GROUNDWATER

Parameter List USEPA Method 8260B 1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene Toluene trans-1,2-Dichloroethene Trichloroethene Xylenes (total)	Sample Location Sample Date Sample Type µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	MW-(5/25/20 Grab	11	MW-0 5/25/20 Grab 1.1 320 13 3.1 8.5		MW-(5/25/20 Grab 27 6.5)11	MW-0 5/25/20 Grab 48,000	11	MW-0 5/25/20 Grab 260 25,000 6,500)11	NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 5 5 5 5 5 5 5 5 5 5 5 5
Parameter List	μg/L Sample Location Sample Date	MW-0 5/25/20 Grab)6)11	MW-0 5/25/20 Grab	7	MW-0 5/25/20 Grab)8)11	MW-0 5/25/20 Grab	9	MW-1 5/25/20 Grab	.0	NYSDEC Ambient Water Quality Standard
USEPA Method 8260B 1.1-Dichloroethene	Sample Type μg/L	Grac	U	Grab	U	U		Grab		Grab		Class GA (µg/L) 5
cis-1.2-Dichloroethene	μg/L μg/L	II.		2.2	0		U		U		U	5
Tetrachloroethene	μg/L	2.0		44			U		U		U	5
Toluene	μg/L		U	2.2			U		U		U	5
trans-1,2-Dichloroethene	μg/L		U		U		U		U		U	5
Trichloroethene	μg/L		U	4.6			U		U		U	5
Xylenes (total)	μg/L			1.3			U		U		U	5
Parameter List USEPA Method 8260B	Sample Location Sample Date Sample Type	MW-1 5/25/20 Grab	11	DUPLICA 5/25/20 Grab	11							NYSDEC Ambient Water Quality Standard Class GA (µg/L)
1,1-Dichloroethene	μg/L		U		U							5
cis-1,2-Dichloroethene	μg/L		U	240								5
Tetrachloroethene	μg/L		U	34,000								5
Toluene	μg/L		U		U							5
trans-1,2-Dichloroethene	μg/L		U		U							5
Trichloroethene	μg/L		U	7,900								5
Xylenes (total)	μg/L		U		U							5

NOTE: USEPA = United States Environmental Protection Agency

NYSDEC = New York State Department of Environmental Conservation

 μ g/L = Micrograms per liter

U = Indicates the compound was analyzed for but was not detected.

J = Indicates an estimated value.

UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.

--- = No applicable standard

Bold values indicate exceedence of standard

Standards taken from Part 375 Unrestricted Soil Cleanup Objectives

Standards taken from NYSDEC Part 703

Duplicate sample collected at MW-05.

Appendix A Soil Boring Logs

	R			·			-	Client:			Location:							
		EA En	gineer	ing, P.C	2.		1436846	NY DEC			Former Damshire Cleaners							
			_	nd Tecl		v	Drilling Me	ethod:				Soil Borin	g Number:					
						,,		Geoprobe					V-06					
		LOG OF SOI	L BORI	NG			Sampling N											
Coordi								5-ft Macroco	re			Sheet	1 of 2					
	Elevatio	nn·						5 1t 111uc10c0.				Drilling						
	Below St						Water Lev.					Start	Finish					
	ice Eleva	-					Time											
	ice Eleva ice Descr	_										5/16/2011	5/16/2011					
	,											0910	13:30					
Blow	Feet			PID	Depth		Surface Cor	nditions:	Asphalt	ı.		<u> </u>						
	Drvn/Ft.	Well Dia	agram	(ppm)	in		Weather:		Overcast / rain									
(140-lb)	Recvrd			HNu	Feet		Temperatu	re:	54 degrees F									
					0		0-1.5 ft: Cored through asphalt around 1-inch thick. Hand cleared through subbase around 1.5 ft thick.											
		1886 I			1		Hand cleared	to 5 ft		-	-		-					
		1888 I																
	5/5			815	2		2-3 ft: Dry bro	wn fine to mediu	ım SAND, trace (GRAVEL. Loose	e, non-cohesive.							
	,																	
				481	3		3-4 ft: Brown f	tine to medium S	AND, trace coars	se GRAVEL. Lo	ose, non-cohesive	e, moist.						
							4 E 0: E' :		C	CDAVET I	1 .	t						
				1,031	4		4-5 ft: Fine to i	meaium SAND, t	trace fine to coars	se GKAVEL. Lo	ose, non-cohesive	e, wet.						
					5		5-6 ft: Fine to	medium SANID	some GRAVEL.	Loose non cobo	sive wet							
				272	3		5-0 m. rme to 1	meurum <i>se</i> and, s	SOME GIVAVEL.	Loose, Hort-cone	orve, WEL.							
					6		6-7 ft: Fine to	6-7 ft. Fine to medium SAND same GRAVEL. Loose non-cohesive wat										
				314	- 3		6-7 ft: Fine to medium SAND, some GRAVEL. Loose, non-cohesive, wet.											
	0.75			1 1 2 2 -	7		7-8 ft: Brown f	fine to medium S	AND. Loose, no	n-cohesive, wet.								
	3/5			1,125					,	.,								
				NR	8		8-10 ft: No rec	overy.										
				INK														
				NR	9													
				1 117								-						
				11,000	10		10-10.2 ft: Brown fine SAND. Loose, non-cohesive, wet.											
				,			10.2-10.5 ft: Grey fine GRAVEL, some SAND. Loose, non-cohesive, wet. 10.5-11 ft: Grey coarse GRAVEL. Loose, non-cohesive, wet.											
				276	11													
							11-13.5 ft: Bro	wn fine to very fi	ine SAND and SI	LT. Tight, semi-	cohesive, wet.							
	4/5			170	12													
					13		13 5-14: C	SII T and your 6:-	ne SAND. Tight,	comi-cohosissa -	wat							
				128	13		13.3-14. Grey S	oner and very fin	ie oznad. Tight,	semi-conesive, v	vet.							
					14		14-15 ft: No re	coverv										
				NR	11		-1 10 10 10 10											
				45:	15		15-20 ft: Grev	very fine SAND.	Tight, non-cohe	sive, wet.								
				174				,	0 ,									
				238	16													
				238														
	5/5			162	17													
	3/3			102														
				132	18													
				253	19													
		1111																
				128	20													
<u> </u>																		
Logged	by:	-	A Bub	oltz / H l	Lockwo	od		Date:	5/16,	/2011	<u>-</u>							
Drilling																		
Diming	rilling Contractor: Paragon Driller: Doug																	
۱۸/	FII SPE	ECIFICATIONS	S.															
	f casing:		1	Screen			10-30 ft	Sand pack:				0-1 ft						
BOH:		30 ft		Riser In	nterval:		0-10 ft	Bentonite:	1-3 ft		Cover:	steel flush mount						
SOIL SA	AMPLE (COLLECTED	YES															

Sample Depth: 4-5 feet Sample Depth: 10-11 feet

Sample Time: 1230 Sample Date: 5/16/2011 Sample Time: 1230 Sample Date: 5/16/2011

	A R		Engineer Science			3y	Job. No. 1436846 Drilling Me	Client: NY DEC ethod:		Location: Former Damshire Cleaners Soil Boring Number:				
						,,		Geoprobe					V-06	
		LOG OF S	OIL BOR	ING			Sampling N					Sheet	2 of 2	
Coordi								5-ft Macroco	ore					
	Elevati						TA7 . T	1				Drilling		
	Below S ice Eleva						Water Lev. Time					Start	Finish	
	ice Eleva						Time					5/16/2011 0910	5/16/2011 13:30	
Blow	Feet			PID	Depth		Surface Co	nditions:	Asphalt					
Counts	Drvn/Ft.	Well		(ppm)	in		Weather:		Overcast / rain					
(140-lb)	Recvrd			HNu	Feet		Temperatu		54 degrees F					
				128	20		20-22 ft: Grey v	very fine SAND.	Tight, non-cohesi	ve, wet.				
				121	21									
		8 i -		121										
	5/5			163	22		22-25 ft: Grey v	very fine SAND,	SILT, and some C	LAY. Tight, sen	ni-cohesive to col	hesive, wet.		
				83	23									
				204	24									
				204	25		25 20 ft. Cross		and SILT. Tight, n	on solvesive vi	.4			
				405	23		25-30 It. Grey	very fille SAIND a	and Silli. Tight, h	on-conesive, we	zt.			
			= ::::::::::::::::::::::::::::::::::::	363	26									
	5/5			557	27									
	-, -		= ::::::::::::::::::::::::::::::::::::		28									
				473										
			-	477	29									
					30		End of hole at	30 ft bgs. Set 1.5	-inch diameter we	ll, 20 ft screen, 1	0 ft riser			
					31									
					32									
					33									
					34									
					35									
					36									
					37									
					38									
					39									
					40									
					40									
Logged	by:		A Bub	ooltz / H	Lockwo	od	-	Date:	5/16/	2011	-			
Drilling	Contrac	etor:		Parago	on		-	Driller:	Do	ug	-			
W	ELL SPI	ECIFICATIO	DNS:											
	f casing	1.5-ir			n Interval		10-30 ft	Sand pack:				0-1 ft		
BOH: 30 ft Riser Interval: 0-10 ft Bentonite: 1-3 ft											Cover:	steel flush mount		

SOIL SAMPLE COLLECTED YES
Samples Collected for VOC

Sample Depth: 4-5 feet Sample Time: 1230 Sample Date: 5/16/2011 Sample Depth: 10-11 feet Sample Time: 1230 Sample Date: 5/16/2011

Д	A ®			ring, P.C and Tecl		zy	Job. No. 1436846 Drilling Me	Client: NY DEC thod:		Location: Former Damshire Cleaners Soil Boring Number:					
						,,	_	Geoprobe					V-07		
		LOG OF SOI	L BORI	NG			Sampling M					Sheet	1 of 2		
Coordin	nates: Elevatio	_						5-ft Macroco	re			Drilling			
	Below S	_					Water Lev.	1	ı	l		Start Finish			
	ice Eleva						Time								
	ice Descr											5/16/2011 1345	5/16/2011 1630		
Blow	Feet			PID	Depth		Surface Cor	nditions:	Asphalt						
Counts	Drvn/Ft.	Well Dia		(ppm)	in		Weather:		Overcast / rain						
(140-lb)	Recvrd			HNu	Feet		Temperatur		around 50 degre						
					0		Hand cleared	0-5 ft. Asphalt a	round 1.5 inches	thick, subbase	to 2 ft.				
		555 B	9000		1										
		XXX	w		1										
	F /F	988 Y			2		2-5 ft: Brown f	ine to medium S	AND. Loose, no	n-cohesive, dry					
	5/5	XXX	***						· · · · · · · · · · · · · · · · · · ·						
				595	3										
				879	4										
					5		5 10 ft: Brown	yory fine CAND	and SILT. Tight	non cohocivo	rurat around 5.2	f4			
				398			5-10 It. DIOWII	very line SAND	and Sill. Tight,	non-conesive,	wet around 5.5	it.			
				1.070	6										
				1,072											
	5/5			2,558	7										
	3/3														
				2,346	- 8										
					9										
				3,430	9										
				1 200	10										
				1,209											
				5,163	11										
				-,											
	5/5			5,363	12										
					13										
				3,252	10										
				8,980	14										
				0,900											
				0	15		15-18.5 ft: Gre	y very fine SANI	D. Tight, non-col	esive, wet.					
				0	16										
	,_	13			17										
	3.5/5			79											
				0	18										
				NR	19		19-20 ft: No re	covery.							
					20										
					20										
I	l		4.5.	1, /**			•	Date	= /: -	/0014					
Logged	ogged by: A Buboltz / H Lockwood Date: 5/16/2011														
Drilling	Prilling Contractor: Paragon Driller: Doug														
			_												
W	ELL SPE	CIFICATIONS	S:												
	f casing:	1.5-inch	1	Screen			10-30 ft	Sand pack:			_ Grout:	0-1 ft			
BOH:		30 ft		Riser Ir	nterval:		0-10 ft	Bentonite:	1-3 ft		_ Cover:	steel flush mount			

SOIL SAMPLE COLLECTED YES

Samples Collected for VOC

Sample Depth: 6-7 feet Sample Time: 1520 Sample Date: 5/16/2011 Sample Depth: 14-15 feet Sample Time: 1520 Sample Date: 5/16/2011

	A [®]		Enginee			Job. N 143684			Location: Former Damshire Cleaners			
		EA	Science	and Tec	hnology	Drilling	Method:			g Number:		
							Geoprobe				MV	V-07
		LOG OF	SOIL BOR	ING		Samplin	ıg Method:				Sheet	2 of 2
Coordi							5-ft Macroc	ore				
	Elevation											lling
	Below S					Water L	ev.				Start	Finish
	nce Eleva					Time					5/16/2011	5/16/2011
Referer	nce Desc	ription:				_		-			1345	1630
	le .	_		PID	Danth	Combass	C 1:1:	Asphalt				
Blow Counts	Feet Drvn/Ft.	Well	Diagram		Depth in	Weather	Conditions:					
(140-lb)	Recvrd	vven	Diagrain	(ppm) HNu	Feet	Tempera		Overcast / rain around 50 degr				
	Recviu	1 1 1 1	0.010		20		rey very fine SANI	ű				
	ł	: ::—	– ∷ ∷	0	20	20-23 It. G	rey very line 3AINI	7. Tigitt, Hori-corie	sive, wet.			
	i	: ::—	-8.8	1	21							
	i			0								
	- /-	: ::—	– ∷ ∷	•	22							
	5/5	: :: 	-3 8	0								
]			0	23						<u> </u>	
]	: ::	- ∄ ∷				<u> </u>		-			
			<u> </u>	0	24							
	ļ			<u> </u>	\bot							
		: ::—	-8 8	0	25	25-30 ft: G	rey very fine SANI	D. Tight, non-cohe	esive, wet.			
			- 3 8	<u> </u>	 							
				0	26							
		: ::—	-8 3] 	27	+						
	3/5	: : <u>-</u>	-3.8	0	27							
				}	28							
	i	: ::—	– ∄ ∄	NR	20							
				<u> </u>	29							
	1			NR								
					30	End of ho	le at 30 ft bgs. Set 1	.5-inch diameter w	vell, 20 ft scree	en, 10 ft riser		
	1											
					31							
					32							
					33							
					-							
					34	+						
	ł				35							
	l				33							
					36							
	1											
]				37							
					38							
				ļ	1 1							
					39							
					40							
					40							
Logged	by:	<u> </u>	A Bu	boltz / H	Lockwoo	d	Date:	5/16	/2011			
			-			_				_		
	Contrac			Parag	on		Driller:	Do	oug	<u> </u>		
W	ELL SPI	ECIFICATI	ONS:									
Diam. o	f casing	: 1.5-	inch	Screer	n Interval:	10-30 ft	Sand pack	: 3-30 ft		Grout:	0-1 ft	
BOH: 30 ft Riser Interval:							Bentonite:			Cover:	steel flush mount	
												·

SOIL SAMPLE COLLECTED YES
Samples Collected for VOC

Sample Depth: 6-7 feet Sample Time: 1520 Sample Date: 5/16/2011 Sample Depth: 14-15 feet Sample Time: 1520 Sample Date: 5/16/2011

	R	ЕЛІ	Engineer	ring DC	,		Job. No. 1436846	Client: NY DEC			Location: Former Damshire Cleaners			
			_	_		<u> </u>								
		EAS	Science a	ınu 1ech	inoiog	y 1	Orilling Me	thod: Geoprobe					g Number: V-08	
		LOG OF SO	OIL BORT	NG		c	Sampling M	•						
Coordi	nates:	20001	JIL DOM				amping iv	5-ft Macroco	re			Sheet	1 of 2	
	Elevatio	on:	-									Dri	lling	
Casing	Below S	urface:				Ī	Water Lev.					Start Finish		
Referer	nce Eleva	tion:					Гіте					5/17/2011	5/17/2011	
Referer	nce Desci	ription:										0700	1230	
DI	Feet		1	PID	Depth	C	Surface Cor	ditions:	Asphalt					
Blow Counts	Drvn/Ft.	Well	Diagram	(ppm)	in		Weather:	iaitions.	Overcast / rain					
	Recvrd			HNu	Feet		Temperatui	re:	around 55 degre	es				
				5/17/2011	0	_			nd 2 inches thick,	hand cleared to	4.5 ft through su	ıbbase and fill (brown	fine to medium SAND,	
				.,, 2011		_		some coarse GR	AVEL and COBE	BLES. Dry, non-	cohesive, loose.	Bricks and concrete in	fill.	
	ŀ	1888	1888	26	1	\dashv								
	 	1888			2	-								
	5/5			41	1	\dashv								
					3									
				500	4	$-\parallel$								
					5	5	5-10 ft: only or	ne foot of recover	v due to stone in	bottom of macr	ocore. SAND ar	nd GRAVEL fill. Loose	e, non-cohesive moist)	
				NR		\dashv	. 10 1t. Offiny Of	1001 01 1000 001	, auc to storie III	CHOIN OF HIRCH	ornan al	StarvEL III. LOUSE	.,o.i concorve, moist)	
				NR	6									
]			1 11/	\Box	1								
	1/5			NR	7	#								
					8	-#								
	1			NR	8	\dashv								
				NR	9	_								
				NK										
				144	10	1	011.5 ft: Bro	wn saturated fin	e to coarse SANI	and fine to coa	rse GRAVEL. L	oose, non-cohesive.		
					11	1	1 5_12 ft. Dl	b vary fine CANT	Dand CII T	CIAV Ticke	emi_cohocisso -	rat		
	1			208	11		. 1.J-1J II; DIAC	k very mie SAIN	D and SILT, some	CLAI. Hgilt,	semii-conesive, W	et.		
	3/5			22	12									
	3/3													
				NR	13	1	3-15 ft: No re	covery.						
			- 11 11		14	-								
	1			NR	14	\dashv								
				0	15	1	5-17 ft: Brown	n saturated fine t	o very fine SANI	O, trace fine GRA	AVEL and coarse	SAND. Loose, non-co	ohesive.	
				0		1	_							
				0	16	_								
					17	1	7-18 ft. Recover	n caturated fire	o very fine SANI) and SILT Loo	sea non-sobosiss	<u> </u>		
	5/5		= :: :: ::	0	17		., -10 It. DIUWI	ii saturateu iiile t	o very mie SAMI	- ana 51L1. L00	oc, non-conesive			
				0	18	1	8-20 ft: Brown	n to greenish gra	y brown very fine	e SAND and SIL	T. Tight, non-co	hesive to semi-cohesiv	ve, wet.	
				U						,				
			- 11 11	0	19	_								
					20	\dashv								
	1				20	\dashv								
Logga	bu:		A D. 1	14 / 177	a al	1		Date	F /4 F	/2011				
Logged	-		A But	ooltz / H I		<u>va</u>		Date:	5/17/		•			
Drilling	Contrac	tor:		Parago	n			Driller:	Do	ug				
144	IELL OD!		MC.											
	WELL SPECIFICATIONS:													
	f casing:				Interval		0-30 ft	Sand pack:				0-1 ft steel flush mount		
BOH: 30 ft Riser Interval: 0-10 ft Bentonite: 1-3 ft											Cover:	Stoer nustri mount		

SOIL SAMPLE COLLECTED YES

Samples Collected for VOC

Sample Depth: 11-12 feet Sample Time: 1100 Sample Date: 5/17/2011

			Enginee Science			v	Job. No. 1436846 Drilling Me	Client: NY DEC ethod:		Location: Former Damshire Cleaners Soil Boring Number:				
		2.1	Science	100),	211111111111111111111111111111111111111	Geoprobe					V-08	
		LOG OF	SOIL BOR	ING			Sampling N					Sheet 2 of 2		
Coordi								5-ft Macroco	ore					
	Elevation							1					lling	
	Below S						Water Lev.				1	Start	Finish	
	nce Eleva						Time		1	1	1	5/17/2011	5/17/2011	
Keierei	nce Descr	ipuon:								1		0700	1230	
Blow	Feet			PID	Depth		Surface Cor	nditions:	Asphalt	1	1			
Counts	Drvn/Ft.	Well	Diagram	(ppm)	in		Weather:		Overcast / rain					
(140-lb)	Recvrd			HNu	Feet		Temperatu	re:	around 55 degre	ees				
		Щ		0	20		20-22 ft: Grey	CLAY and SILT	, some very fine S	AND. Tight, c	ohesive, wet.			
		: ii—	-3 3		24									
				0	21									
	- ·-) ii—	-8.8	<u> </u>	22		22-25 ft: No re	coverv.						
	2/5		1 6	NR										
]			NR	23									
			= 3 5	.,,,										
			-: ::	NR	24									
			=::::::::::::::::::::::::::::::::::::::	1	25		25-30 ft: Grey	very fine SAND	with SILT. Tight,	. non-cohesive	. wet.			
	1			0	2.5		20-00 H. Grey	· cry mic omito		, mon-concave,	,			
	1		<u> </u>	0	26									
				U										
	5/5	: ::—	- ;∷;	0	27						-			
	'			}	20									
	1	: i-	- : :::	0	28									
	1			1	29									
			- ::::::::::::::::::::::::::::::::::::	0										
					30		End of hole at	30 ft bgs. Set 1.	5-inch diameter w	ell, 20 ft screer	n, 10 ft riser			
	.				31									
	1				32									
	1													
]				33									
	.				34									
					25									
	1				35									
	1				36									
]													
					37									
	.				20									
	1				38									
	1				39									
	1													
]				40									
Logged	by:		A Bul	boltz / H I	Lockwoo	od		Date:	5/17,	/2011	_			
Drilling	g Contrac	tor:		Parago	n			Driller:	Do	oug	_			
W	ELL SPE	CIFICATION	ONS:											
	of casing:			Screen	Interval		10-30 ft	Sand pack:	3-30 ft		Grout:	0-1 ft		
BOH:	n odoniy.	30 f		Riser Ir			0-10 ft	Bentonite:			Cover:	steel flush mount		
				-		-		-			_			

SOIL SAMPLE COLLECTED YES

Samples Collected for VOC

Sample Depth: 11-12 feet Sample Time: 1100 Sample Date: 5/17/2011

	N _®	EA E	ingineer	ring, P.C	Ξ.		Job. No. 1436846	Client: NY DEC					ation: shire Cleaners
			cience a	_		y	Drilling Me	ethod:				Soil Borin	ng Number:
						,,		Geoprobe					N-09
		LOG OF SC	OIL BORI	NG			Sampling N	Лethod:				Choot	1 of 2
Coordi	nates:							5-ft Macroco	ore	Sneet	1 01 2		
Surface	Elevatio	n:										Dri	illing
	Below S						Water Lev.					Start	Finish
	nce Eleva						Time					5/17/2011	5/17/2011
Referer	nce Descr	ription:										1300	1430
	I		1	IDID	[D :1]		0 (0	1	<u> </u>				
Blow Counts	Feet Drvn/Ft.	Well I)ia awam	PID	Depth in		Surface Cor Weather:	naitions:	Asphalt Overcast				
(140-lb)		vven L	Diagram	(ppm) HNu	Feet		Temperatur	re·	around 55 degre	200			
, ,	Recevita			11114	0		_				h auger through	n brown fine to medium	SAND Loose
							our cut throu	non-cohesive, o		Turiu creur Witi	ruuger unoug	. Drown mie to mediam	STITUS: Ecococy
	1	777	7000		1								
	5/5	***		0	2								
	0,0												
				0	3								
					4								
				0	4								
					5		5-6.2 ft: Brown	n fine to medium	SAND. Looste,	non-cohesive, c	drv.		
	1			1,861						,	J.		
	1			57	6		6.2-7 ft: Grayis	sh brown very fi	ne SAND and SII	T. Tight, non-	cohesive, moist		
				- 57									
	2/5			NR	7		7-10 ft: No rec	overy.					
	_, -												
				NR	- 8								
					9								
				NR	9								
			- ::		10		10-12 ft: Brow	n to gray fine SA	ND. Semi-tight,	non-cohesive,	wet.		
				0				0 ,					
			- :: ::	3	11								
	4.5/5		- :: ::	0	12		12-14.5 ft: Gra	y fine SAND an	d SILT. Tight, no	n-cohesive, wet	t.		
					13								
			- 11 11	0	13								
					14								
				0									
			- :: ::	3	15		15-17 ft: Satur	rated brown fine	to very fine SAN	D. Tight, non-	cohesive.		
				3									
			- 11 11	7	16								
					45		45.00 C D 1	1 0 .					
	5/5		- :: ::	7	17		17-20 ft: Dark	brown fine to ve	ery fine SAND. T	ight, non-cohes	ive, wet.		
					18								
	1		- :: ::	7	10								
	1			45	19								
	1			15									
					20		***PID reading	gs from 15-20 are	likely from plas	tic bags. Readii	ngs in empty ba	ng ranged from 0ppb to 1	1ppb
Logged	by:		A Buł	ooltz / H	Lockwo	od		Date:	5/17	/2011			
-	•	Lau.				-	•				_		
Drilling	Contrac	tor:		Parago	on		•	Driller:	Do	oug	=		
WELL SPECIFICATIONS:													
	of casing:		ch	•	Interval	l: <u>.</u>	10-30 ft	Sand pack:			_ Grout:	0-1 ft	
BOH:		30 ft		Kiser li	nterval:	-	0-10 ft	Bentonite:	1-3 ft		_ Cover:	steel flush mount	

SOIL SAMPLE COLLECTED YES
Samples Collected for VOC

Sample Depth: 5-6 feet Sample Time: 1345 Sample Date: 5/17/2011 Sample Depth: 6-7 feet Sample Time: 1400 Sample Date: 5/17/2011

	R	TAT			,	_	Job. No.	Client:		Location: Former Damshire Cleaners				
				ring, P.C			1436846	NY DEC						
		EA So	cience a	and Tecl	hnolog	y	Drilling Me					Soil Boring Number:		
								Geoprobe				MV	V-09	
		LOG OF SO	IL BOR	ING			Sampling M					Sheet 2 of 2		
Coordi								5-ft Macroco	re					
	Elevatio							1	,	Drilling				
	Below S						Water Lev.					Start	Finish	
	ice Eleva						Time					5/17/2011	5/17/2011	
keteren	ice Desci	ription:										1300	1430	
D!	Feet		1	PID	Depth		Surface Cor	l ditions:	Asphalt			1		
Blow Counts	Drvn/Ft.	Well D	iagram	(ppm)	in		Weather:	10110115.	Overcast					
	Recvrd	,,,,,,		HNu	Feet		Temperatui	re:	around 55 degre	es				
		10 pt	1. 1.	0	20				fine to very fine S		on-cohesive, we	et.		
				0										
				0	21					-	-			
		: : :			<u> </u>									
	5/5			0	22									
		: ::			23									
			6 6	0	23									
				_	24									
		: i 		0										
				0	25		25-30 ft: Dark	brown fine to ve	ry fine SAND. Tig	ght, non-cohesiv	ve, wet.			
		: ::—		U								<u> </u>		
			3 3	0	26									
	5/5	: i:—	13 13	0	27									
					28									
		: ::—		0	20									
			6 6		29									
				0										
					30		End of hole at	30 ft bgs. Set 1.5	i-inch diameter w	ell, 20 ft screen,	10 ft riser			
							_							
					31									
					32									
					33									
					33	_								
					34									
					35									
					36									
					37									
					3/	_								
					38									
					39									
											<u> </u>			
					40									
Loggod	by:		A Rul	ooltz / H I	l ockwa	nd		Date:	5/17/	2011				
Logged by: A Buboltz / H Lockwood							-	Date:	3/1//	<u></u>	-			
Drilling Contractor: Paragor								Driller:	Do	ug				
							-			O	-			
\//	FII SDI	ECIFICATION	ıs.											
							40.00 "		0.00.0			0.4.6		
	f casing:	1.5-inc 30 ft	n	Screen Riser Ir	Interval		10-30 ft 0-10 ft	Sand pack: Bentonite:	3-30 ft 1-3 ft		Grout: Cover:	0-1 ft steel flush mount		
вон:		30 11		Kiser II	nerval:		0-10 IL	Denionite:	1-011		Cover:	areer man mount		

SOIL SAMPLE COLLECTED YES

Samples Collected for VOC

Sample Depth: 5-6 feet Sample Time: 1345 Sample Date: 5/17/2011 Sample Depth: 6-7 feet Sample Time: 1400 Sample Date: 5/17/2011

	A ®			_	ring, P.C			Job. No. 1436846	Client: NY DEC				Former Dams	ation: shire Cleaners
									ethod: Geoprobe		Soil Boring Number: MW-10			
		LOG	OF SOII	I. BORI	NG		Sa	ampling N						
Coordi	nates:	LOG	01 501	LDOIG				ampining i	5-ft Macroco	re	Sheet 1 of 2			
	e Elevatio		_								Drilling			
	Below S		e: <u>-</u>				_	ater Lev.					Start	Finish
	nce Eleva nce Descr		- -				11	ime					5/18/2011	5/18/2011
Kererei	ice Desci	прио	-				-						0900	1230
Blow	Feet				PID	Depth		urface Co	nditions:	Asphalt		•		
Counts (140-lb)	Drvn/Ft.	Wel	1 Dia	agram	(ppm)	in		/eather:		Overcast / rain				
(140-10)	Recvrd				HNu	Feet		emperatu		around 60 degr		yound 1 ft Hand	d cleared to 5 ft bgs	
	1		1 1			0	Sa	w cut tilrot	ign aspnan aroui	id 2.5 menes tille	.k. Subbase to at	ound I II. Flanc	r cleared to 5 ft bgs	
	1	886	8 6	888		1	1-3	5 ft: Brown	fine to medium S	SAND. Loose, no	on-cohesive, dry.			
		188	9 t	999										
	5/5	130	}	80	0	2								
	1		1 1			3	╫							
	1		!		0									
	1		1		0	4								
	1]			-	-	(F (t. P	n fine to medium	CAND I		-1		
	1		:		0	5	3-0	b.5 II: Drow	n fine to mealum	SAND. Loose,	non-conesive, we	et.		
	1		:		0	6	6.5	5-8 ft: Gray	to dark brown v	ery fine SAND, S	SILT, and CLAY.	Tight, cohesive	, wet.	
	1]		-									
	3/5	13]		60	7	-							
	1		1			8	8-:	10 ft: No rec	coverv.					
	1		!		NR									
			1		NR	9								
	1		<u> </u>			10	10	10 5 (1. 6		C CAND	CILT 1 CLAY	/ T:-l-t	L:	
	1		늘		18	10	10	-10.5 It: Gra	y to dark brown	very line SAND	, SIL1, and CLA	1. 11gm, non-co	nesive, wet.	
	1				41	11	10	.5-12 ft: Sat	urated yellowish	brown very fine	flowing SAND.	Tight, non-cohe	esive.	
	4						-							
	5/5				0	12	12	-15 ft: Gray	very fine SAND.	Tight, non-coh	esive, wet.			
	1					13	╫							
]		==		7									
	4	13	}——		0	14	-							
	1		=			15	15	-20 ft: Grav	ish brown very fi	ine SAND Tight	t. non-cohesive. v	wet		
	1	13			7	10	1	2011. 014)			ty more concervely			
]				0	16								
	1					17	-							
	5/5				0	17	╫							
	1				0	18								
	1				0									
	-		=		0	19	-							
			:			20	-							
Logged	by:		_	A Bul	ooltz / H	Lockwoo	d	_	Date:	5/18	/2011			
Drilling	Contrac	tor:	_		Parago	on			Driller:	De	oug	- -		
W	ELL SPI	ECIFI	CATIONS	 S:			_							
Diam. c	of casing:		1.5-inch 30 ft	1	Screen Riser In	Interval:		0-30 ft 10 ft	Sand pack: Bentonite:	3-30 ft 1-3 ft		Grout: Cover:	0-1 ft steel flush mount	
5011.					14361 11	vai.	<u> </u>		_ Donitonito.			- 00161.		

SOIL SAMPLE COLLECTED YES

Samples Collected for VOC Duplicate

Sample Depth: 7-8 feet Sample Time: 1045 Sample Date: 5/18/2011

	N [®]	EA	Enginee	ring, P.C			Job. No. 1436846	Client: NY DEC		Location: Former Damshire Cleaners				
				and Tecl		y	Drilling Me					Soil Boring Number: MW-10		
		LOG OF S	OII ROP	ING			Sampling N	Geoprobe						
Coordi		LOG OF 3	OIL DOK	1110			Janiping IV	5-ft Macroco	re			Sheet	2 of 2	
	Elevatio	n:	-									Dri	lling	
	Below St						Water Lev.					Start	Finish	
	nce Eleva				-		Time					5/18/2011	5/18/2011	
Keterer	nce Descr	ription:							1			0900	1230	
Blow	Feet			PID	Depth		Surface Cor	nditions:	Asphalt					
Counts	Drvn/Ft.	Well	Diagram	(ppm)	in		Weather:		Overcast / rain					
(140-lb)	Recvrd			HNu	Feet		Temperatu		around 60 degre					
				11	20		20-25 ft: Gray	to brown fine to	medium SAND.	Tight, non-cohe	sive, wet.			
					21									
	1		= :: ::	7										
	5/5			0	22				•					
	-, 5		- :: ::	-										
				0	23									
					24									
				0										
				0	25		25-30 ft: Brown	n to grayish brov	vn fine to mediu	m SAND. Tight,	non-cohesive, v	vet.		
					26									
				0	20									
	5/5			0	27									
	5,5		- : :			_								
				0	28									
					29									
				0										
					30		End of hole at	30 ft bgs. Set 1.5	5-inch diameter w	vell, 20 ft screen,	10 ft riser			
					31									
					- 31									
					32									
					33									
					34									
					35									
					36									
					36									
					37									
						\dashv								
					38									
					39									
					40									
Logged	by:		A Bu	boltz / H	Lockwo	od		Date:	5/18,	/2011				
Drilling Contractor: Paragon								Driller:	Do	oug				
\//	FII SPE	CIFICATIO	ONS:											
WELL SPECIFICATIONS: Diam of oscing: 1.5-inch Serson Interval: 10								Cond n = -1	3-30 ft		Craud:	0-1 ft		
Diam. of casing: 1.5-inch Screen Interval: BOH: Screen Interval: Riser Interval:							10-30 ft 0-10 ft	Sand pack: Bentonite:				0-1 ft steel flush mount		
				''		•		-			-			

SOIL SAMPLE COLLECTED YES

Samples Collected for VOC Duplicate

Sample Depth: 7-8 feet Sample Time: 1045 Sample Date: 5/18/2011

	®	EA E	nginee	ring, P.C	- •		Job. No. 1436846	Client: NY DEC					ation: shire Cleaners
			_	and Tec		3 y	Drilling Me						g Number:
								Geoprobe				MV	V-11
		LOG OF SC	DIL BORI	ING			Sampling N			Sheet 1 of 2			
Coordi								5-ft Macroco	ore				
	Elevatio										lling		
	Below St						Water Lev.					Start	Finish
	nce Eleva						Time					5/18/2011	5/18/2011
Referer	nce Descr	ription:										1330	1600
				IDID	ID d		0 (0	1					
	Feet	TA7 11 E	· ·	PID	Depth		Surface Con	nditions:	Grass				
Counts (140-lb)	Drvn/Ft.	Well D	Diagram	(ppm)	in		Weather:		Overcast				
(140-10)	Recvrd			HNu	Feet		Temperatu:		around 55 deg	grees			
				26	0			and SILT organi	cs / topsoil				
			- barrera		1		0.5-1 ft: Stone		D 1				
		000	10000	34	1		1-2 ft: SAND 8	and GRAVEL fill	. brown, loose	, moist.			
		888	10000	1	2		2 E & No #000	******					
	2/5	1988		NR			2-5 ft: No reco	very.					
	1				3								
	1			NR	3		1						
	1				4								
	1			NR			1						
					5		5-6.2 ft: SAND	and GRAVEL f	ill. Brown, loos	se, moist to wet			
	1			90					, , , , , , , , , , , , , , , , , , , ,	,			
					6		6.2-8 ft: Orang	ge-brown (rusted) very fine SAN	ID and SILT, so	ome CLAY. Tight,	, semi-cohesive, wet.	
				7			,	,	/				
	2/5		4.5	18	7								
	3/5			10									
				NR	8		8-10 ft: No rec	overy.					
				INIX									
				NR	9								
				INIX									
				0	10		10-12 ft: orang	ge-brown very fii	ne SAND. Satu	rated, loose, no	n-cohesive.		
			- 15 1	0	11								
	4.5/5		- 11 1	0	12		12-14.5 ft: Gra	y very fine SAN	D. Tight, non-c	ohesive, wet.			
			1.50										
				22	13								
			- 11 1		1.4		14 F 1F (), NI-						
	1			37	14		14.5-15 ft: No	recovery.					
					15		15-17 ft: Grav	flowing very fin	e SAND Tight	non-cohesive	wet		
	1			0	13		-0 17 It. Gray		- Jan viz. 11gill	, сопсотус,			
	1				16		1						
	1		- ::::::	0	10								
	2		- :: :	,	17		17-20 ft: No re	covery.					
	2/5			NR				- /:					
	1		- 11111	NID	18		Ĭ						
	1		- :: :	NR									
]			NR	19								
			- ::::::	1/1/									
					20								
				<u> </u>									
Logged	by:		Δ R1	ooltz / H	Lockwa			Date:	E /1	8/2011			
			A DUI	JUILZ / FI	LUCKWO	ou	=		5/1	8/2011	<u> </u>		
Drilling	Contrac	tor:		Parago	on		_	Driller:	I	Doug			
					-								
W	ELL SPE	CIFICATION	NS:										
Diam o	of casing:	1.5-ind	ch	Screen	Interva	ŀ	10-30 ft	Sand pack:	3-30 ft		Grout:	0-1 ft	
BOH:	oasiiig.	30 ft			nterval:		0-10 ft	Bentonite:			Cover:	steel flush mount	
SOIL S	AMPLE (COLLECTED	YES										

Samples Collected for VOC MS/MSD (13-14 ft)

> Sample Depth: 5-6 feet Sample Depth: 13-14 feet Sample Time: 1453 Sample Date: 5/18/2011 Sample Time: 1453 Sample Date: 5/16/2011

MS/MSD

	R	ΕΛ	Enginos	uima D.C	7		Job. No.	Client:					ation:	
			Enginee				1436846	NY DEC				Former Damshire Cleaners Soil Boring Number:		
		EA	Science	and Tec	nnolog	y,	Drilling Me							
		LOG OF S	OIL BOD	INC			Sampling N	Geoprobe					V-11	
Coordi	nates:	LOG OF 3	OIL DOK	ING			Samping N	5-ft Macroco	ire	Sheet 2 of 2				
	Elevation	on:								Drilling				
Casing	Below S	urface:					Water Lev.					Start Finish		
	ice Eleva						Time					5/18/2011	5/18/2011	
Referer	ice Desc	ription:										1330	1600	
Plane	Feet			PID	Depth		Surface Co	nditions:	Grass					
Blow Counts	Drvn/Ft.	Well		(ppm)	in		Weather:	ilattions.	Overcast					
	Recvrd		0	HNu	Feet		Temperatu	re:	around 55 degree	es				
				79	20		20-25 ft: Gray	very fine SAND a	and SILT. Tight, n	on-cohesive, we	et.			
			- ::::::::::::::::::::::::::::::::::::											
				0	21									
	F /F		- ::	0	22									
	5/5			0										
			-8 8	0	23									
					24									
		:::: 	-8 8	0	24									
				0	25		25-30 ft: Gray	very fine SAND a	and SILT. Tight, n	on-cohesive, we	et.			
		: ::—	-8 8	U										
				0	26									
		:: : 	- is is		27									
	5/5			7	27									
				3	28									
				3										
			- (5 (5	30	29									
		11111			30		End of holo at	20 ft has Cat 1 E	in als diamenton succ	11 20 th saussen 1	O ft min om			
					30		End of note at	50 It bgs. 5et 1.5	-inch diameter we	ii, 20 it screen, i	o it riser			
					31									
					32									
					33									
					33									
					34									
					35									
					36									
					- 50									
					37									
					38									
					39									
					40									
		<u> </u>												
Logged	by:		A Buk	ooltz / H	Lockwo	od	-	Date:	5/18/	2011				
Drilling	Contrac	etor:		Parago	n		-	Driller:	Dor	ug	•			
W	ELL SPI	ECIFICATIO	DNS:											
Diam. o				Screen	Interval	:	10-30 ft	Sand pack:	3-30 ft		Grout:	0-1 ft		
вон:	. 3	30 ft		Riser Ir			0-10 ft		1-3 ft			steel flush mount	-	
SOII S/	MDI E	COLLECTE	D VES											

SOIL SAMPLE COLLECTED YES Samples Collected for

Samples Collected for VOC MS/MSD (13-14 ft)

Sample Depth: 5-6 feet Sample Time: 1453 Sample Date: 5/18/2011
Sample Depth: 13-14 feet Sample Time: 1453 Sample Date: 5/16/2011

MS/MSD

Appendix B Waste Manifest / Bill of Lading

Pie	ase pri	int or type. (Form design		pitch) typewriter.) 447	that a	(Elitine II	1151	1 1474	2.79	-0.755	Approved.	OMR No. 2	2050-0039
1	UNII	FORM HAZARDOUS	1. Generator ID Number	TABLET		2. Page 1		gency Respons		4. Manifest	Tracking Nu	mber	Ma .	m6la III
П		ASTE MANIFEST	NYD9810	80112	olo gami	1	800	-577-6	1557	00.	354	3026)	LE
	5. Ge	enerator's Name and Mailin	n Address	100 ISUADA MICO	14 m	-	Generato	r's Site Address	s (if different the	an mailing addres		Or als have a		
П		YSDEC - leggor = 8	es (including HG					CENTRA		g =====				
П	1'	160 WESTCOTT	ROAD					MIE, NY						
П		CHENECTADY					The Park Bas No	ar b ra b dover y . At a	1 80005-10000	*				
П	Gene	erator's Phone: 518	357-2348				pri							
П	6. Tra	erator's Phone: 518 ensporter 1 Company Name	e e	music adaptique t	×					U.S. EPA ID I	Number			
П			L PROD & SVCS	OF WY INK	IND IS					IMVDO	00011	5722		
П	-			OF VI, NAC	<i>'</i> .							0100		
П	7. 118	ansporter 2 Company Name	el guantity of warre. Rou							U.S. EPA ID N	Number			
П	Chevi									1				
П	8. De	signated Facility Name and	d Site Address	nds of measure	u olain ara a					U.S. EPA ID I	Number			
П	C	YCLE CHEM, IN	Cam I with an heard a											
П	5	50 INDUSTRIAL	DR remained be							17 A 5%	40700	0000		
П	1	EWISBERRY PA								PADI	06709	0022		
П	Facili	ty's Phone: (717)	938-4700	and only onyone b	olania.									
П	9a.	9b. U.S. DOT Descriptio	n (including Proper Shipping	g Name, Hazard C	lass, ID Number,			10. Conta	iners	11. Total	12. Unit			
Ш	НМ	and Packing Group (if ar	ny))	I IAAT				No.	Туре	Quantity	Wt./Vol.	13. V	Vaste Code:	6
		100 HAZADOO	US WASTE LIQU	MOR					1,7,40			0039	F002	
兴						1			ONA		G	aranap	1 604	
Ĕ	_	(TETRACHLOR	ROETHYLENE),9	III,S8087III,	N)	3,14-11		W 111		Compression (all the compression of the compression	Maria de la companya		o prantisti de la como como como como como como como com
2		A Culture V audit	- V /ol											
GENERATOR		RQ HAZARDO	US WASTE SOLI	D.N.O.S.								D039	F002	
3	101		ROETHYLENE),9		pugl= 0		Olimor I		DM		O			*****
1		Limital more	A Carlon & F & F & C Sea Bear & Main July	,0143077,111				1	0.5551 100000	43	-044,104			
Ш								,		11 113 12 13 15	10 200			
П	- 11	3.										GNan		
П	7	95% W 28 no									ļ-		********	**********
	11.7	ote is a term					177		2011 1177					
		4.												
		1000												
	56	a my 1					9/lw 11/11					ne sue a meno a monte a fan	verseproneur de la	OOTH OUTHER RESIDENCE
		L					6							
			and Additional Information		44000 DAM	4 17 (AA)								
	1	719010-6-YVN3 -	ERG#171 - X	GAL - JOHN	aszed Plasm	10031								
			RG#171X	GAL										
	3.													
	15. (CENEDATORICIOEEROS	R'S CERTIFICATION: I her		10m 12 :				9 1 1				.6 1 1	
			ded, and are in all respects i											
	F	Exporter, I certify that the co	ontents of this consignment	conform to the ter	ms of the attached	EPA Ackn	owledgment of	of Consent.	donar governin	critai regulations.	ii export siii	micht and ra	in the r mine	·· y
			mization statement identified	d in 40 CFR 262.23	7(a) (if I am a large	quantity g	enerator) or (b) (if I am a sm	all quantity ger	erator) is true.				
	Gener	rator's/Offeror's Printed/Typ	ed Name			,	Signature					Mont	h Day	Year
	A	manda Beden	14	- NY I	homonos la la la	I	26 year 20 may - 8 may	1	and I want	,e.a.u		25	17	1 1
V .		ternational Shipments	3 - 7000 11111 (1	or IVI	Jens Javawon		and State of the	ACS CALIFORNIA DE					1 5	1.1
INT'L	10. 111	ternational oripinents	Import to U.S.		e estados de la	Export fro	m U.S.	Port of e	ntry/exit:					
	Trans	sporter signature (for export	s only):	Total Control	A STREETHED C	1 112031.		Date leav	ing U.S.:	4000				
TR ANSPORTER	17. Tra	ansporter Acknowledgment	of Receipt of Materials			_								
RT	Transp	porter 1 Printed/Typed Nam	ne		La la consta de la constante		Signature					Mont	h Day	Year
0	1		W Carrot			- 1	1			and the same		es,		1
S	Transi	porter 2 Printed/Typed Nam			and of the		Signature	1.0	1			Mont	h Day	Year
A	Trails	porter 2 i finted/Typed Nam	10			ı i	Signature					ı	ı Day	ı
R			Little-		- adhres					10/11/21/21	-	I IIV Bici	22V 10"	
	18. Di	screpancy								- Andrews				
	18а Г	Discrepancy Indication Space	ce 🔲 -		(1110)2/100				Augusta				7	
			Quantity		Type		ol ali etam	Residue		Partial Rej	ection	L	_ Full Reje	ction
												118		
		200			palitae		Ma	nifest Reference	e Number:					
\subseteq	18b. A	Alternate Facility (or Genera	itor)							U.S. EPA ID N	lumber			
등														
FΑ	Eacility	y's Phone:								1				
Ω.		g's Fhorie. Bignature of Alternate Facilit	ty (or Generator)									Mon	th Day	Year
Ħ		3	, (0. 00)									1	ı Du,	1
NS.			- ia											
DESIGNATED FACILITY	19. Ha	azardous Waste Report Mai	nagement Method Codes (i.	.e., codes for haza	rdous waste treatn	nent, dispo	sal, and recy	cling systems)						
DE	1.		2.		7 197	3				4.				
ī														
	20 De	esignated Facility Owner or	Operator: Certification of re	ceint of hazardous	materials coveres	hy the ma	anifest except	as noted in the	m 18a					
		d/Typed Name	Operator, Octunication of re	ocipi oi nazardous	materials covered		Signature	as noted in ite	III IOd			Mon	th Day	Voor
	rinte	и турей тапте				,	Signature					Mon	th Day	Year
+													*	1

Cycle Chem, Inc.

217 South First St. Elizabeth, NJ 07206 Phone: (908) 355-5800 Fax: (908) 355-0562 550 Industrial Drive Lewisberry, PA 17339 Phone: (717) 938-4700 Fax: (717) 938-3301

General Chemical Corporation

133-138 Leland Avenue Framingham, MA 01702 Phone: (508) 827-5000 Fax: (508) 875-5271

LAND DISPOSAL RESTRICTION NOTIFICATION AND CERTIFICATION FORM

Generator Name:

NYSDEC

Generator EPA ID #:

NYD 981080 112

Manifest #:

003543026FLE

This land disposal restriction (LDR) notification must be submitted with the initial shipment of all new waste streams. Due to revised LDR notification requirements effective after August 23, 1998, previously approved waste streams will require re-notification on this form with the first shipment after that date. Subsequent notification is not required unless the waste stream changes.

(1) WASTE STREAM INFORMATION

Box A:

Check this box if this LDR certification has been supplied with a previous shipment. Additional

information and certification is not required on this form.

Box B:

Indicate if waste stream is a wastewater (WW) or non-wastewater (NWW) (aqueous waste streams containing < 1% total organic carbon (TOC) and < 1% total suspended solids (TSS)

are wastewaters. All other streams are non-wastewaters).

Box C:

List all EPA waste codes and subcategory reference letters (if applicable). Alternatively, attach and reference additional pages (e.g. profiles or lab pack slips) containing required information.

	A	В	C
Line#	Previously shipped LDR on file	NWW/WW	EPA Waste Codes and subcategory reference letter (if applicable
Α	. Yes	NWW	
В	Yes	NWW .	1000
C .		1000	7039 Fon2
D	Commission of the contract of		

Subcategory Reference Letters (EPA codes not listed here do not have subcategories)

D001	Α	Ignitable characteristic wastes, except high TOC ignitable liquids subcategory
D001	В	High TOC (> 10%) ignitable liquid subcategory
D003	A	Reactive sulfide subcategory
D003	В	Reactive cyanide subcategory
D003	С	Water reactive subcategory
D003	D	Other reactive subcategory
D006	Α	Cadmium non-battery subcategory
D006	B	Cadmium containing batteries subcategory
D008	Ä	Lead non-battery subcategory
D008	В	Lead acid batteries subcategory
D009	A	High mercury organic subcategory (> 260 PPM Total Mercury)
D009	В	High mercury inorganic subcategory (> 260 PPM Total Mercury)
D009	, C	Low mercury subcategory (< 260 PPm Total Mercury)
D009	D	Mercury wastewater subcategory

(2) 3	SPENT SOL	VEVT W	ASTE CONST	TTUENTS	:					
	ircle applica odes F001-f		e code(s) and	constituent	(s) for each	manifest line	item containing	g EPA spent :	solvent waste	
AB	C DF	D01	(A/B)CD_X	_F002	ABCD_	F003	ABCD_	F004	ABCD	F005
ABC)	-acetor	ne	ABC	D	ethyl ethe	r			
ABCE		_benze				methanol				
ABCE			l alcohol	ABC	D	 methylene	chloride			
ABC			tyl alcohol	ABC	D	methyl ett	nyl ketone			
ABCE		carbor	n disulfide	ABC	D	methyl isc	butyl ketone			
ABCD		carbor	tetrachioride	ABC	D	nitrobenze	ene			
ABCE		chloro	benzene	ABC		pyridine			_	
ABCD		m-cres	sol .	<i>(</i> }\ (€/C	D	tetrachlor	pethylene			
ABCD		o-cres	ol	ĂВС		toluene				
ABCD		p-cres		ABC		1,1,1-trich				
ABCD		cresyli		ABC		1,1,2-trich				
				ABC	<u> </u>	trichloroet	hylene			
ABCD			orobenzene	ABC	D	trichlorom	onofluoromethai	n e		
ABCD		ethyl a					loro-1,2,2-trifluo	roemane		
ABCD		ethyl b	enzene	ABC	D	xylenes				
(3) UI	IDERLYING	G HAZA	RDOUS CONS	STITUENTS	•	•	•			
con star	stituents as idards listed	defined d in 40 C	in 40 CFR 268 FR 268,48 (FC	3(2)(i) that a 001-F005 co	ire present a onstituents i	at concentrati dentified in se	please list all un ons exceeding t action (2) and sp in this section).	he universal t	reatment	
	Α.							None P	resent	
								Nоле Р	resent	
								None P		
	Α.							None P	resent	
(4) HO	W MUST T	HESE V	ASTE STREA	ams be m	ANAGED?					
For e	ach manifes	t line iten	n, <u>circle</u> applica	ible treatmer	nt/requiremen	nt. For contain	ninated soil, circle	applicable ch	oice as indicated.	
ABCD_	_ This waste	e is non-h	nazardous per 4	0 CFR 261,	and is not re	stricted from la	and disposal unde	er 40 CFR sub	part D.	-
						•		•		
(AB)C D_			ardous waste tr int standard set				ous debris. Wast disposal.	e mast be nea	164 10 1116	
ABCD_	_This is a h	azardous	debris (> 60m	m/2.36 inch)	and is subje	ect to the alten	native treatment s	standards of 40	O CFR 268.45.	
ABCD	This is a b		umata aantami	noted coil T	hin aantamir	ated eall done	does not (circle o	^{ne)} contain liste	đ	
ABCU_	_ mis is a m	azaiuous wactoe s	waste contanti	not (dicie one)	expipit a upa	ractoristic of t	nazardous waste	and is subject	•	
							.49(c) or the unit		at '	
	standards.		file son	ileatilletit str	itinaine ae hi		.43(c) of the Billi	reisal treattie	т.	
ARCD	This is on	EDA boso	rdoue unete th	at moste all	annliaahla fra	atment stand:	ards set forth in 4	n CER 268 su	hnart D	
ABCD_							w that I have per			
							edge of the waste			
			_	•	_		in 40 CFR Part			
			•				i). I believe that			
		•					cant penalties for			
			ng the possibility				·			
(5) CERTI	FICATION									
		mation o	on this and al	l associate	d documen	ts is comple	ete and accurat	te to the best	t of my	
knowledge										

Signature:__

Printed Name:__

Title:_

Date:_

int or type. (Form designed for use on elit	te (12-nitch) typewriter.)					1 011113	Approved. C		
FORM HAZARDOUS 1. Generator ID Nur	mber	2. Page 1 of	3. Emergency Response \$(3() - 5 7 / - 4	Phone 5.6.7	4. Manifest T	racking Nur	02	7 =	LE
MASTE MANIFEST MYD98	1080112		Generator's Site Address		n mailing addres	<u>a} </u>	J. N. M. Ass. L		<u></u>
enerator's Name and Mailing Address		1	205 GENTRA	I., 74M (C.	Trinaming	,			
ISOWESTOOT ROAD		C	XOLONIE NA	12205					
CHARAGETAIN MY 1920G		1							
erator's Phone: 518 357-2348 ansporter 1 Company Name					U.S. EPA ID N				
NVIRONMENTAL PROIDS 5	SUMS MENT INC				INYRO	0011	6733		
ansporter 2 Company Name	TROO CH. 183,015 St.				U.S. EPA ID N	umber			
Susponer 2 dompany home							<u> </u>		
esignated Facility Name and Site Address					U.S. EPA ID N	lumber			
YOLE CHEM, INC.					55 A FS 4	0000	8822		
60 INDUSTRIAL DR EWISBERRY PA 17339					ያሰያዊ ሲንዲ -	1 (1 1 K) (1	1000		
ity's Phone: (717) 938-4739				 1		10.11.7			
9b. U.S. DOT Description (including Proper	r Shipping Name, Hazard Class, ID Nu	ımber,	10. Conta	Type	11. Total Quantity	12. Unit Wt./Val.	13.1	Naste Cod∈	S
and Packing Group (if any))			No.	Турс		 	6039	F602	
RO HAZARDOUS MASTE	SOLDANS			DM	11	13	and the second second	a, i njago spago seniri i nimet eti	
(TETRACHLOROETHYLE	RETATINGON CIR.		" '						
2.								_	
£-·			1				And the Property of the State o	ocean commission exerci-	and and arrangement of the second
									
3.							\	gapen pero sense des del con	
			ļ ^p		[1			1
					ļ <u> </u>	+	 		 -
4.							es a constitution		ļ
l l									1
Special Handling Instructions and Additional In 1. 手程的IG-A-SSM 一包记录171一。 2.	X (M) - 4CH: MANAGE						and are ele	accified nat	kaneri
2. 3. 4. TEGHOLA SISM - ETC#171 GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in all Exporter, I certify that the contents of this coll certify that the waste minimization stateme	TION: Thereby declare that the content	its of this consignment port according to apple attached EPA Acknow am a large quantity ge	wledgment of Consent. nerator) or (b) (if I am a s	small quantity g	enerator) is true.			assified, pad I am the Pri	
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in a' Exporter, I certify that the contents of this co I certify that the waste minimization statemenerator's/Offeror's Printed/Typed Name	FION: Thereby declare that the content if respects in proper condition for transponsignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I a	ats of this consignment sport according to app attached EPA Acknow am a large quantity ge	wledgment of Consent. nerator) or (b) (if I am a s	small quantity g	enerator) is true.		— М		iy Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this contently that the waste minimization statementarior's/Offeror's Printed/Typed Name	FION: Thereby declare that the content if respects in proper condition for transponsignment conform to the terms of the ant identified in 40 CFR 262.27(a) (if I are	its of this consignment port according to apple attached EPA Acknow am a large quantity ge S	wledgment of Consent. nerator) or (b) (if I am a s gnature	small quantity g	enerator) is true.		— М	onth Da	iy Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in a' Exporter, 1 certify that the contents of this co I certify that the waste minimization statement terator's/Offeror's Printed/Typed Name International Shipments	FION: Thereby declare that the content if respects in proper condition for transponsignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I a	ats of this consignment sport according to app attached EPA Acknow am a large quantity ge	wledgment of Consent. nerator) or (b) (if I am a s gnature	small quantity g	enerator) is true.		— М	onth Da	iy Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in a Exporter, I certify that the contents of this co I certify that the waste minimization statemenerator's/Offeror's Printed/Typed Name International Shipments Important Im	FION: Thereby declare that the content if respects in proper condition for transponsignment conform to the terms of the ant identified in 40 CFR 262.27(a) (if I a content to U.S.	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature I U.S. Port o Date Is	small quantity g	enerator) is true.		M	onth Da	y Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, 1 certify that the contents of this co 1 certify that the waste minimization statementarior's/Offeror's Printed/Typed Name International Shipments Important signature (for exports only): Transporter Acknowledgment of Receipt of Mansporter 1 Printed/Typed Name	FION: Thereby declare that the content of the special in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S.	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature I.U.S. Port o Date Is	small quantity g	enerator) is true.		M	onth Da	iy Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in all Exporter, I certify that the contents of this conference of the certify that the waste minimization statementator's/Offeror's Printed/Typed Name International Shipments Important Importan	FION: Thereby declare that the content of the special in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S.	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature 1 U.S. Port o Date Is	small quantity g	enerator) is true.		M-	onth Da	y Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this co I certify that the waste minimization stateme nerator's/Offeror's Printed/Typed Name International Shipments Impo ansporter signature (for exports only): Transporter Acknowledgment of Receipt of Ma nsporter 1 Printed/Typed Name	FION: Thereby declare that the content of the special in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S.	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature I.U.S. Port o Date Is	small quantity g	enerator) is true.		M-	onth Da	y Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in all Exporter, I certify that the contents of this conference of the certify that the waste minimization statementator's/Offeror's Printed/Typed Name International Shipments Important Importan	FION: Thereby declare that the content of the special in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S.	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature 1 U.S. Port o Date Is	small quantity g	enerator) is true.		M-	onth Da	y Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in a' Exporter, 1 certify that the contents of this co Learning that the waste minimization statementations/Offeror's Printed/Typed Name International Shipments Important Important Acknowledgment of Receipt of Mansporter 1 Printed/Typed Name Insporter 2 Printed/Typed Name Discrepancy	FION: Thereby declare that the content of the sense of th	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature IU.S. Port o Date Is gnature	small quantity g	enerator) is true.	200	M-	onth Da	ay Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this con I certify that the waste minimization statementerator's/Offeror's Printed/Typed Name International Shipments Important of Receipt of Manaporter signature (for exports only): Transporter Acknowledgment of Receipt of Manaporter 1 Printed/Typed Name Insporter 2 Printed/Typed Name Discrepancy	FION: Thereby declare that the content of the sense of th	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature 1 U.S. Port o Date Is	small quantity g	enerator) is true.		M-	onth Da	y Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this collication of the contents of this collication of the contents of this collication of the contents of the contents of this collication of the contents of the cont	FION: Thereby declare that the content the respects in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S. alterials	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature IU.S. Port o Date Is gnature	small quantity g	enerator) is true.	Rejection	M-	onth Da	ay Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this collication statement in the contents of this collication in the contents of this collication in the contents of the contents of this collication in the contents of the contents o	FION: Thereby declare that the content the respects in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S. alterials	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wedgment of Consent. nerator) or (b) (if I am a s gnature I U.S. Port o Date le gnature Residue	small quantity g	enerator) is true.	200	M-	onth Da	ay Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this collicertify that the waste minimization statemenerator's/Offeror's Printed/Typed Name International Shipments Important Important Acknowledgment of Receipt of Mainsporter Acknowledgment of Receipt of Mainsporter 1 Printed/Typed Name Discrepancy Discrepancy Indication Space Original Printed/Typed Name	FION: Thereby declare that the content the respects in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S. alterials	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wedgment of Consent. nerator) or (b) (if I am a s gnature I U.S. Port o Date le gnature Residue	small quantity g	enerator) is true.	Rejection	M-	onth Da	ay Year
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this co I certify that the waste minimization stateme nerator's/Offeror's Printed/Typed Name International Shipments Important Impo	FION: Thereby declare that the content the respects in proper condition for transposignment conform to the terms of the antidentified in 40 CFR 262.27(a) (if I are to U.S. alterials	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wedgment of Consent. nerator) or (b) (if I am a s gnature I U.S. Port o Date le gnature Residue	small quantity g	enerator) is true.	Rejection	M	enth Da	ay Year ay Year ay Year Aejection
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this contents of the certify that the waste minimization statements of the contents of this contents of the con	FION: Thereby declare that the content if respects in proper condition for transposignment conform to the terms of the ant identified in 40 CFR 262.27(a) (if I are to U.S. alerials	its of this consignment port according to apply attached EPA Acknown a large quantity general Export from	wedgment of Consent. nerator) or (b) (if I am a s gnature I U.S. Port o Date le gnature Residue	small quantity g	enerator) is true.	Rejection	M	onth Da	ay Year ay Year ay Year Rejection
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in a Exporter, I certify that the contents of this co I certify that the waste minimization statemenerator's/Offeror's Printed/Typed Name International Shipments Important Im	FION: Thereby declare that the content if respects in proper condition for transponsignment conform to the terms of the ant identified in 40 CFR 262.27(a) (if I a content to U.S. alterials	ats of this consignment port according to apply attached EPA Acknown and a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature U.S. Port o Date Is gnature Residue Manifest Refer	ence Number:	enerator) is true.	Rejection	M	enth Da	ay Year ay Year ay Year Aejection
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in a Exporter, I certify that the contents of this co I certify that the waste minimization statemenerator's/Offeror's Printed/Typed Name International Shipments Important of Receipt of Manapporter signature (for exports only): Transporter Acknowledgment of Receipt of Manapporter 1 Printed/Typed Name Ansporter 2 Printed/Typed Name Discrepancy a. Discrepancy Indication Space Observatory b. Alternate Facility (or Generator) acility's Phone: Co. Signature of Alternate Facility (or Generator)	FION: I hereby declare that the content if respects in proper condition for transposignment conform to the terms of the ant identified in 40 CFR 262.27(a) (if I a content to U.S. alterials I v v v Thou Codes (i.e., codes for hazardous virial co	ats of this consignment port according to apply attached EPA Acknown and a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature U.S. Port o Date Is gnature Residue Manifest Refer	ence Number:	enerator) is true. Partial U.S. EPA	Rejection	M	enth Da	ay Year ay Year ay Year Aejection
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, 1 certify that the contents of this co 1 certify that the waste minimization statements of the contents of this contents of the content	FION: Thereby declare that the content if respects in proper condition for transponsignment conform to the terms of the ant identified in 40 CFR 262.27(a) (if I a content to U.S. alterials	ats of this consignment port according to apply attached EPA Acknown and a large quantity general Export from	wledgment of Consent. nerator) or (b) (if I am a s gnature U.S. Port o Date Is gnature Residue Manifest Refer	ence Number:	enerator) is true.	Rejection	M	enth Da	ay Year ay Year ay Yea
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in at Exporter, 1 certify that the contents of this co I certify that the waste minimization stateme terator's/Offeror's Printed/Typed Name International Shipments Importer signature (for exports only): Transporter Acknowledgment of Receipt of Mansporter 1 Printed/Typed Name Insporter 2 Printed/Typed Name Insporter 3 Printed/Typed Name Insporter 4 Printed/Typed Name Insporter 5 Printed/Typed Name Insporter 6 Printed/Typed Name Insporter 7 Printed/Typed Name Insporter 8 Printed/Typed Name Insporter 9 Printed/Typed	FION: I hereby declare that the content if respects in proper condition for transpositions and identified in 40 CFR 262.27(a) (if I are to U.S. alterials If it is a content to the terms of the content identified in 40 CFR 262.27(a) (if I are to U.S. alterials If it is a content to U.S. alterials are to U.S. alterials If it is a content to U.S. alterials are to U.S. alt	ts of this consignment port according to apply attached EPA Acknown a large quantity general Export from S	wedgment of Consent. herator) or (b) (if I am a signature) U.S. Port of Date In Granture Residue Manifest References and recycling systems).	ence Number:	enerator) is true. Partial U.S. EPA	Rejection	M	enth Da	ay Year ay Year ay Yea
GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in al Exporter, I certify that the contents of this collicertify that the waste minimization statemenerator's/Offeror's Printed/Typed Name International Shipments Important I	FION: I hereby declare that the content if respects in proper condition for transpositions and identified in 40 CFR 262.27(a) (if I are to U.S. alterials If it is a content to the terms of the content identified in 40 CFR 262.27(a) (if I are to U.S. alterials If it is a content to U.S. alterials are to U.S. alterials If it is a content to U.S. alterials are to U.S. alt	ts of this consignment port according to apply attached EPA Acknown a large quantity general Export from S	wedgment of Consent. herator) or (b) (if I am a signature) U.S. Port of Date In Granture Residue Manifest References and recycling systems).	ence Number:	enerator) is true. Partial U.S. EPA	Rejection	M	onth Da	ay Year ay Year ay Year Aejection

UNUU

217 South First St. Eizabeth, NJ 07206 Phone: (908) 355-5800 Fax: (908) 355-0562 550 Industrial Drive Lewisberry, PA 17339 Phone: (717) 938-4700 Fax: (717) 938-3301

General Chemical Corporation

133-138 Leland Avenue Framingham, MA 01702 Phone: (508) 827-5000 Fax: (508) 875-5271

LAND DISPOSAL RESTRICTION NOTIFICATION AND CERTIFICATION FORM

Generator Name:	NYSDEC	0.8 A 0.80s	estigned ///	
Generator EPA ID #:	NY D981080112	108A	Manifest # :	003543027FLE

This land disposal restriction (LDR) notification must be submitted with the initial shipment of all new waste streams. Due to revised LDR notification requirements effective after August 23, 1998, previously approved waste streams will require re-notification on this form with the first shipment after that date. Subsequent notification is not required unless the waste stream changes.

(1) WASTE STREAM INFORMATION

Box A:

Check this box if this LDR certification has been supplied with a previous shipment. Additional

information and certification is not required on this form.

Box B:

Indicate if waste stream is a wastewater (WW) or non-wastewater (NWW) (aqueous waste streams containing < 1% total organic carbon (TOC) and < 1% total suspended solids (TSS)

are wastewaters. All other streams are non-wastewaters).

Box C:

List all EPA waste codes and subcategory reference letters (if applicable). Alternatively, attach and reference additional pages (e.g. profiles or lab pack slips) containing required information.

position and the second	A	В	C
Line #	Previously shipped LDR on file	NWW/WW	EPA Waste Codes and subcategory reference letter (if applicable
Α	Ves	NWW	0039 F002
В	i nejug		9057, 1002
C .			
D	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	140 000 00 000	

Subcategory Reference Letters (EPA codes not listed here do not have subcategories)

D001	A	Ignitable characteristic wastes, except high TOC ignitable liquids subcategory
D001	В	High TOC (> 10%) ignitable liquid subcategory
D003	A	Reactive sulfide subcategory
D003	В	Reactive cyanide subcategory
D003	С	Water reactive subcategory
D003	D	Other reactive subcategory
D006	A	Cadmium non-battery subcategory
D006	В	Cadmium containing batteries subcategory
D008	A	Lead non-battery subcategory
D008	В	Lead acid batteries subcategory
D009	Α	High mercury organic subcategory (> 260 PPM Total Mercury)
D009	В	High mercury inorganic subcategory (> 260 PPM Total Mercury)
D009	, C	Low mercury subcategory (< 260 PPm Total Mercury)
D009	D	Mercury wastewater subcategory

SPENT SOLVENT WASTE CONSTITUENTS Circle applicable waste code(s) and constituent(s) for each manifest line item containing EPA spent solvent waste codes F001-F005. (A)BCD X_F002 ABCD____F004 ABCD____F003 A B C D _____F001 ABCD____F005 ABCD ABCD -acetone ABCD -benzene ABCD ABCD _-n-butyl alcohol ABCD -methylene chloride -methyl ethyl ketone ABCD -iso-butyl alcohol ABCD -methyl isobutyl ketone ABCD -carbon disulfide ABCD ABCD -carbon tetrachloride ABCD -nitrobenzene _-pyridine ABCD -chiorobenzene ABCD ABCD (A)BCD -tetrachioroethylene -m-cresol ÁBCD ABCD -o-cresol -toluene _-p-cresol _-1,1,1-trichloroethane ABCD ABCD ABCD -1,1,2-trichloroethane ABCD _-cresylic acid ABCD -trichloroethylene ABCD _-cyclohexanone ABCD -trichloromonofluoromethane ABCD -o-dichlorobenzene ABCD_ -ethyl acetate ABCD -1,1,2-trichloro-1,2,2-trifluoroethane ABCD -ethyl benzene ABCD -xylenes UNDERLYING HAZARDOUS CONSTITUENTS For characteristically hazardous waste streams (EPA codes D001-D043), please list all underlying hazardous constituents as defined in 40 CFR 268(2)(i) that are present at concentrations exceeding the universal treatment standards listed in 40 CFR 268.48 (F001-F005 constituents identified in section (2) and specific constituents for EPA U-, P-, and D004-D043 codes listed in section (1) do not need to be listed in this section). X None Present None Present None Present None Present HOW MUST THESE WASTE STREAMS BE MANAGED? For each manifest line item, <u>circle</u> applicable treatment/requirement. For contaminated soil, circle applicable choice as indicated. A B C D__ This waste is non-hazardous per 40 CFR 261, and is not restricted from land disposal under 40 CFR subpart D. ₿ C D_ This is an EPA hazardous waste that is not a contaminated soil or hazardous debris. Waste must be treated to the appropriate treatment standard set forth in 40 CFR subpart D prior to land disposal, A B C D___ This is a hazardous debris (> 60mm/2.36 inch) and is subject to the atternative treatment standards of 40 CFR 268.45. A)B C D___This is a hazardous waste contaminated soil. This contaminated soil (foet/does not (circle ros) contain listed hazardous wastes and does does not (aircle one) exhibit a characteristic of hazardous waste and (s subject to/complies with (circle one) the soil treatment standards as provided by 268,49(c) or the universal treatment A B C D__ This is an EPA hazardous waste that meets all applicable treatment standards set forth in 40 CFR 268 subpart D, and can be landfilled without further treatment. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or thorough knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA section 3004(d). I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment. (5) CERTIFICATION I certify that all information on this and all associated documents is complete and accurate to the best of my

knowledge. Signature:_______Title:_______

Date:__

Printed Name:_

	· · · · · · · · · · · · · · · · · · ·	d for use on elite (12-pitch) typewriter.)	10.0	1105	-	1		Approved.	OMB No. 2	2050-003
	WASTE MANIFEST	Generator ID Number 118A1 NY D 9 8 1 0 8 0 1 1 2 allolo again		3. Emergency Response 800 - 577 - 4	557	00	Tracking Nu	3021	8 F	EF
1 5	 Generator's Name and Mailing A NYSDEC 	Address		Generator's Site Address 1205 CENTRA	(if different that	an mailing addre	ss)			107 A 93
Ш	1160 WESTCOTT F	CAO		COLONIE, NY						
	SCHENECTADY N	Y 12306		1	- may - 24 may 14					
6	Generator's Phone: 518 3 Transporter 1 Company Name	67-2348				U.S. EPA ID	Number			0.305 (40)
		PROD & SVCS OF VT,INC.				•	00011	K722		
1 -	. Transporter 2 Company Name	PRODUCTION.				U.S. EPA ID		0100		-
							Tumber			
8	. Designated Facility Name and S	Site Address	200			U.S. EPA ID	Number			
11	CYCLE CHEM, INC									
	550 INDUSTRIAL LEWISBERRY PA					PAD	06709	8822		
F	acility's Phone: (717) 9	38-4700		state obseits						
9	a. 9b. U.S. DOT Description	(including Proper Shipping Name, Hazard Class, ID N	lumber,	10. Contai	ners	11. Total	12. Unit	12 \	Vaste Codes	
H	and Packing Group (if any)			No.	Туре	Quantity	Wt./Vol.			8 115
8		S WASTE LIQUID,N.O.S.			DM		G	D039	F002	
GENERATOR	(TETRACHLORG	OETHYLENE),9,UN3082,III		A	F7 151	50	0	***************************************	*********	************
찄	2.					March Fort				
	un afresas			1	to to yattle			-	-	
ī	egner				GE mudjum					***************************************
\parallel	3.							-		
11.	parli field means wear.			11.10						******
П	" a dissource of his - h						F VELOVIE			
11	4.									

Ш	The state of the s									
1	marked and labeled/placarded	S CERTIFICATION: I hereby declare that the content d, and are in all respects in proper condition for transp	port according to app	olicable international and nati	scribed above onal governme	by the proper shental regulations	ipping name, . If export ship	and are clas	sified, packa	aged,
e di	Exporter, I certify that the cont I certify that the waste minimize	tents of this consignment conform to the terms of the zation statement identified in 40 CFR 262.27(a) (if I ar	attached EPA Ackno m a large quantity ge	owledgment of Consent. enerator) or (b) (if I am a sma	ıll quantity gen	erator) is true.				
G	enerator's/Offeror's Printed/Typed	Name	5	Signature				Mon	th Day	Year
\downarrow	Amonda Bub	othe or behalf of M	150EC,	Commercial	The same	A STATE OF THE PARTY OF THE PAR	7	X=	5 119	11
1	6. International Shipments	Import to U.S.	Export from		try/exit:	and the same of th	,		*	
	ransporter signature (for exports			Date leavi		D. Market		12		
治 1	7. Transporter Acknowledgment of									
TR ANSPORTER	ransporter 1 Printed/Typed Name		S	ignature				Mont	h Day	Year
S -	with the year	Confront A 108 Inventorial		4/16	100			marine	19	1//
Z '	ransporter 2 Printed/Typed Name		1	Signature / /				Mont	th Day	Year
	0 Diaman									
1 ⊢	8. Discrepancy									
11'	8a. Discrepancy Indication Space	L Quantity Ty	/pe	Residue		Partial Rej	ection	L	Full Reje	ction
				Marifact Deference	Nousban			1.63.6		
<u> </u>	Bb. Alternate Facility (or Generator	r)		Manifest Reference	ivumber:	U.S. EPA ID I	Number			
3	i - digital	1 11 11 11								
Ž F	acility's Phone:					1				
3 1	Bc. Signature of Alternate Facility ((or Generator)						Mor	nth Day	Year
DESIGNALED FACILITY										1
2 1	3. Hazardous Waste Report Mana	gement Method Codes (i.e., codes for hazardous was	ste treatment, dispos	sal, and recycling systems)						
1	8	2.	3.			4.				
ıL										lla ii bi
		perator: Certification of receipt of hazardous materials			n 18a			8		
P	rinted/Typed Name		8	Signature				Mon	th Day	Year
V										100

217 South First St. Elizabeth, NJ 07208 Phone: (908) 355-5800

Fax: (908) 355-0562

550 Industrial Drive Lewisberry, PA 17339 Phone: (717) 938-4700

Fax: (717) 938-3301

General Chemical Corporation

133-138 Leiand Avenue Framingham, MA 01702 Phone: (508) 827-5000 Fax: (508) 875-5271

LAND DISPOSAL RESTRICTION NOTIFICATION AND CERTIFICATION FORM

Generator Name:	NYSDEC	ABGE	annsneelosses toomasses	1384
Generator EPA ID #:	NYD 98 1080112	ABCD	Manifest#:	003543028 FLE

This land disposal restriction (LDR) notification must be submitted with the initial shipment of all new waste streams. Due to revised LDR notification requirements effective after August 23, 1998, previously approved waste streams will require re-notification on this form with the first shipment after that date. Subsequent notification is not required unless the waste stream changes.

(1) WASTE STREAM INFORMATION

Box A:

Check this box if this LDR certification has been supplied with a previous shipment. Additional

information and certification is not required on this form.

Box B:

Indicate if waste stream is a wastewater (WW) or non-wastewater (NWW) (aqueous waste

streams containing < 1% total organic carbon (TOC) and < 1% total suspended solids (TSS)

are wastewaters. All other streams are non-wastewaters).

Box C:

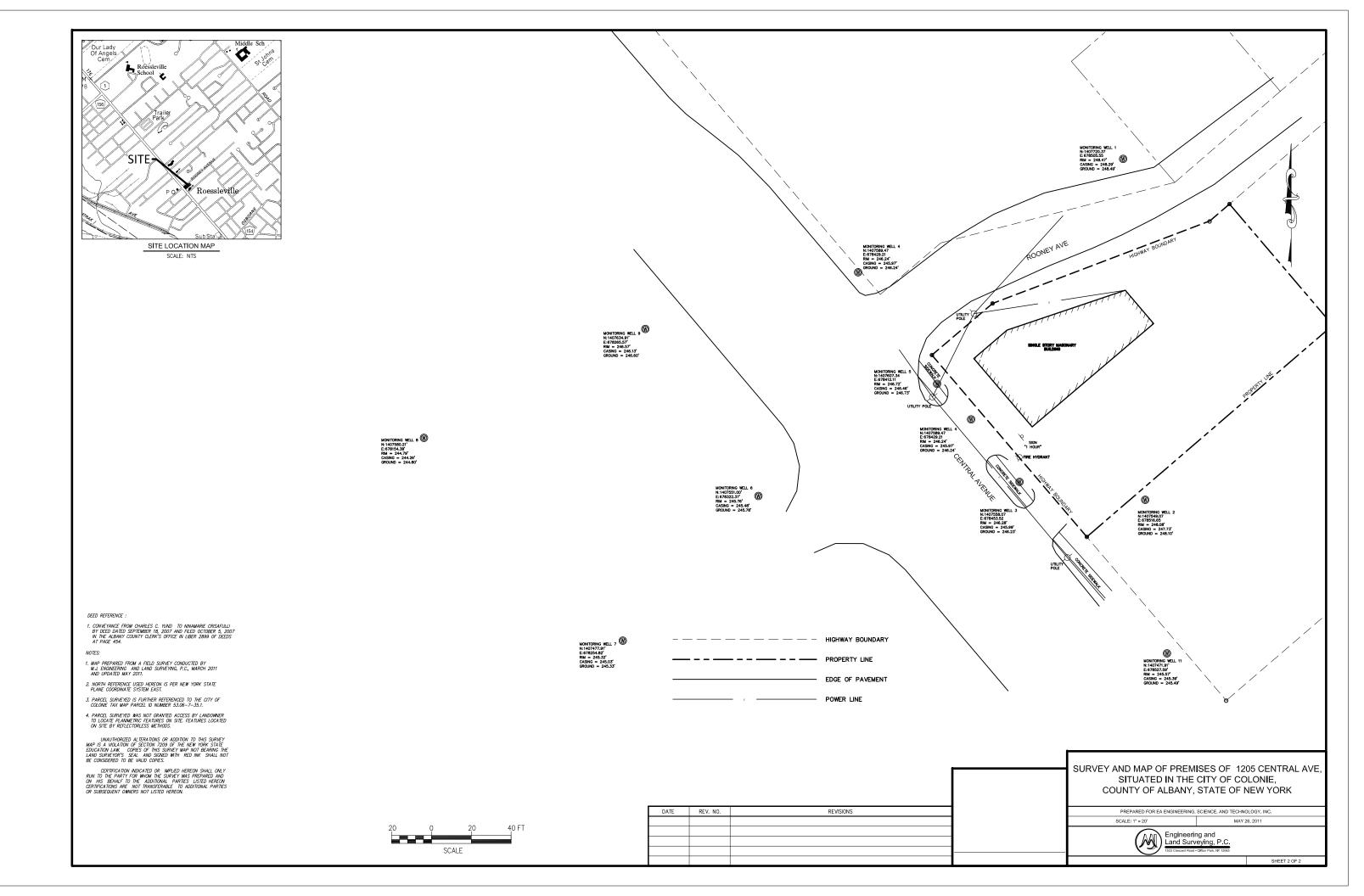
List all EPA waste codes and subcategory reference letters (if applicable). Alternatively, attach and reference additional pages (e.g. profiles or lab pack slips) containing required information.

	A	В	C
Line#	Previously shipped LDR on file	Nww/ww	EPA Waste Codes and subcategory reference letter (if applicable
Α	Yes	Nww	DO34, Foo2
В		a ever es torre, e a s	0037,12002
С			
D			

Subcategory Reference Letters (EPA codes not listed here do not have subcategories)

D001	A	Ignitable characteristic wastes, except high TOC ignitable liquids subcategory
D001	В	High TOC (> 10%) ignitable liquid subcategory
D003	Α	Reactive sulfide subcategory
D003	В	Reactive cyanide subcategory
D003	С	Water reactive subcategory
D003	D	Other reactive subcategory
D006	Α	Cadmium non-battery subcategory
D006	В	Cadmium containing batteries subcategory
D008	A	Lead non-battery subcategory
D008	В	Lead acid batteries subcategory
D009	A	High mercury organic subcategory (> 260 PPM Total Mercury)
D009	В	High mercury inorganic subcategory (> 260 PPM Total Mercury)
D009	, C	Low mercury subcategory (< 260 PPm Total Mercury)
D009	D	Mercury wastewater subcategory

SPENT SOLVENT WASTE CONSTITUENTS Circle applicable waste code(s) and constituent(s) for each manifest line item containing EPA spent solvent waste codes F001-F005. ABCD___F004 ABCD F003 ABCD____F005 ABCD____F001 ABCD ABCD -ethyl ether -acetone ABCD _-methanol ABCD. ___-benzene ABCD _-methylene chloride ABCD _-n-butyl alcohol ABCD -methyl ethyl ketone ABCD _-iso-butyl alcohol -methyl isobutyl ketone ABCD ABCD -carbon disulfide ABCD -nitrobenzene ABCD _-carbon tetrachloride ABCD _-pyridine ABCD _-chlorobenzene (A)BCD _tetrachloroethylene ABCD _-m-cresol ABCD A B C D _-toluene _-o-cresol -1,1,1-trichiorcethane ABCD __-p-cresol ABCD _-1,1,2-trichloroethane ABCD ABCD -cresylic acid ABCD -trichloroethylene ABCD -cyclohexanone ABCD -trichloromonofluoromethane ABCD -o-dichlorobenzene -1.1.2-trichloro-1,2,2-trifluoroethane ABCD -ethyl acetate A B C D A B C D _xylenes ABCD -ethyl benzene UNDERLYING HAZARDOUS CONSTITUENTS For characteristically hazardous waste streams (EPA codes D001-D043), please list all underlying hazardous constituents as defined in 40 CFR 268(2)(i) that are present at concentrations exceeding the universal treatment standards listed in 40 CFR 268,48 (F001-F005 constituents identified in section (2) and specific constituents for EPA U-, P-, and D004-D043 codes listed in section (1) do not need to be listed in this section). ∠None Present None Present None Present None Present HOW MUST THESE WASTE STREAMS BE MANAGED? For each manifest line item, circle applicable treatment/requirement. For contaminated soil, circle applicable choice as indicated. A B C D__ This waste is non-hazardous per 40 CFR 261, and is not restricted from land disposal under 40 CFR subpart D. A)B C D__ This is an EPA hazardous waste that is not a contaminated soil or hazardous debris. Waste must be treated to the appropriate treatment standard set forth in 40 CFR subpart D prior to land disposal. A B C D__ This is a hazardous debris (> 60mm/2.36 inch) and is subject to the alternative treatment standards of 40 CFR 268.45. A B C D__ This is a hazardous waste contaminated soil. This contaminated soil does/does not (circle one) contain listed hazardous wastes and does/does not (direle one) exhibit a characteristic of hazardous waste and is subject to/complies with (dride one) the soil treatment standards as provided by 268.49(c) or the universal treatment standards. A B C D__ This is an EPA hazardous waste that meets all applicable treatment standards set forth in 40 CFR 268 subpart D, and can be landfilled without further treatment. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or thorough knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 263 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA section 3004(d). I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.


(5) CERTIFICATION

I certify that all Information on this and all associated documents is complete and accurate to the best of my knowledge.

Signature:	Title:
Printed Name:	Date:

Appendix C

M.J. Engineering Survey

Appendix D

Monitoring Well Development Logs and Purging/Sampling Forms

Well I.D.: EA Personnel: MW-01 A Buboltz / R Peterson						Client:						
Location:			Well Condi			Weather:	141 DEO					
	mshire Clear	ers	Well Collai	Good			nny ~50 degrees F					
Sounding M	lethod:		Gauge Date):		Measurement Ref:						
Solin	st Interface F	Probe		25-May-11			Top of casing					
Stick Up/Do	wn (ft):		Gauge Time			Well Diameter (in):						
	Down			7:25			1 inch					
Purge Date:	!				Purge Time:							
	25-May-11					7	:30					
Purge Meth					Field Tech							
	Low Flow					A Buboltz / R Peterson						
					Well Vo	olume						
A. Well Dep	th (ft):		D. Well Vol	ume (ft):		Depth/Height of Top of PV	C:					
	10.74			0.0976839								
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*	D):): Pump Type:						
	2.78			0.7306755		Parastaltic						
C. Liquid Do	epth (ft) (A-E	3):	F. Five Wel	l Volumes (g	gal) (E3):	Pump Designation:						
	7.96			3.6533777		Geopump						
				Wat	er Quality	Parameters						
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity			
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)			
7:38	n/a	0.21	0.07	6.85	-48	15.93	0.589	0.00	>800			
7:41	n/a	0.42	0.07	6.98	-103	13.43	0.719	0.00	>800			
7:44	n/a	0.63	0.07	6.98	-107	13.56	0.781	0.00	>800			
7:47	n/a	0.84	0.07	7.05	-115	13.85	0.908	0.00	>800			
7:50	n/a	1.05	0.07	7.15	-86	13.89	1.390	0.00	>800			
7:53	n/a	1.26	0.07	7.27	-82	13.91	0.919	10.92	>800			
7:57	n/a	1.54	0.07	7.22	-80	13.60	1.130	11.41	>800			
8:00	n/a	1.75	0.07	7.15	-79	12.93	1.240	11 44	>800			
8:03	n/a	1.96	0.07	7.21	-79	15.18	0.959	10.53	>800			
8:06	n/a	2.17	0.07	7.27	-78	13.32	1.020	9.89	>800			
T-1-1 0	:£ \M-1	D (/		0		O		0.45				
	ity of Water	Removed (gaı):	~2	•	Sampling Time:	=	8:45				
Samplers:				AB/RP	-	Split Sample With:	-		n/a			
Sampling D	ale:			25-May-11	-	Sample Type:	_	GW				
COMMENTS	S AND OBSE	DVATIONS		Could not a	auge welle e	luring purge due to small diam	eter of well tubing					
	to collect V		-			dining purge due to small diam	ietei oi well, tubilig					
Danca Well	IO CONGUL V	oo sample	, tarbialty III	giriir sairipi								

			_									
Well I.D.:	MW-02		EA Personi A Buboltz /			Client:	NY DEC					
	19199-02		Well Condi			Manufacture.	INT DEC					
Location:	mshire Clear	iers	Well Condi	Good		Weather:	Sunny					
Sounding M		1010	Gauge Date			Measurement Ref:	Curiny					
	st Interface F	Probe	Gauge Date	25-May-11		weasurement Ner.	Top of casing					
Stick Up/Do			Gauge Tim			Well Diameter (in):						
	Down			10:50		,	1.5 inches					
Purge Date					Purge Tim	e:						
	25-May-11				10:55							
Purge Meth	od:				Field Tech	nician:						
	Low Flow				A Buboltz / R Peterson							
					Well V	olume						
A. Well Dep	th (ft):		D. Well Vol	ume (ft):		Depth/Height of Top of PV	C:					
	13.8			0.1141282								
B. Depth to			E. Well Vol	ume (gal) C'								
	4.5			0.8536787		Parastaltic						
C. Liquid D	epth (ft) (A-E	3):	F. Five Wel	l Volumes (Pump Designation:						
	9.3			4.2683936		Geopump						
				Mot	or Ouglity	Doromotoro						
Time	DTW	Volume	Dete	1	ORP	Parameters	Conductivity		Touchiditor			
Time (hrs)	(ft btoc)	(gallons)	Rate (gpm)	pH (pH units)	(mV)	Temperature (oC)	Conductivity (mS/cm)	DO (ug/L)	Turbidity (ntu)			
10:58	n/a	0.3	0.1	7.43	-29	16.53	0.707	10.96	>800			
11:01	n/a	0.6	0.1	7.43	-29	16.51	0.647	11.12	>800			
11:04	n/a	0.9	0.1	7.20	-45	16.26	0.588	10.49	>800			
11:07	n/a	1.2	0.1	7.23	-50	15.96	0.559	10.44	>800			
11:10	n/a	1.5	0.1	7.16	-62	16.64	0.578	9.86	>800			
11:13	n/a	1.8	0.1	7.12	-64	16.83	0.581	9.93	>800			
11:16	n/a	2.1	0.1	7.10	-68	16.80	0.613	9.73	>800			
11:19	n/a	2.4	0.1	7.13	-69	15.62	0.580	10.14	>800			
11:22	n/a	2.7	0.1	7.12	-70	14.95	0.582	10.38	>800			
11:25	n/a	3	0.1	7.11	-71	15.10	0.580	10.27	>800			
	ity of Water	Removed (gal):	~3	_	Sampling Time:	_	1310				
Samplers:				AB/RP	=	Split Sample With:	_		n/a			
Sampling D	ate:			25-May-11	-	Sample Type:	-	GW				
COMMENTS	S AND OBSE	PVATIONS		Could not a	عيامه سماله م	luring purge due to small dian	neter of well tubing					
			: e; turbidity hi			idining punge due to sinian dian	ietei oi well, tubilig					
Danoa Woll	to dolloot v	o o oumpio	, tarbiaity in	g iii oaiiipi								

Well I.D.: EA Personnel: MW-03 A Buboltz / R Peterso						Client:	NV DEC				
	IVI VV-U3					100	NY DEC				
Location:	mshire Clear	ore	Well Condi	Good		Weather:	Sunny				
		1013	Gauge Date			Management Dafe	Suring				
Sounding N Solin	ι eτnoα: st Interface f	Probe	Gauge Date	25-May-11		Measurement Ref:	Top of casing				
Stick Up/Do			Gauge Time			Well Diameter (in):	rep or comming				
	Down		ounge im	9:45		(,	1.5 inches				
Purge Date:					Purge Time						
	25-May-11						:46				
Purge Meth					Field Tech						
	Low Flow					A Buboltz / R Peterson					
					Well Vo	aluma					
			T=		well ve						
A. Well Dep	oth (ft): 9.48		D. Well Vol	ume (ft): 0.0748583		Depth/Height of Top of PVC:					
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*	D):	Pump Type:					
	3.38			0.5599398		Parastaltic					
C. Liquid D	epth (ft) (A-E	3):	F. Five Wel	l Volumes (લ્		Pump Designation:					
	6.1			2.799699		Geopump					
	T	T	ı			Parameters			ī		
Time	DTW	Volume	Rate	pH	ORP	Temperature	Conductivity	DO	Turbidity		
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)		
9:49	n/a	0.3	0.1	8.01	38	15.53	0.510	10.17	>800		
9:52	n/a	0.6	0.1	7.52	-13	15.88	0.313	10.27	>800		
9:55	n/a	0.9	0.1	7.55	-14	15.15	0.325	9.42	>800		
9:58	n/a	1.2	0.1	7.40	-30	14.99	0.345	10.15	>800		
10:01	n/a	1.5	0.1	7.42	-32	14.85	0.368	10.64	>800		
10:04	n/a	1.8	0.1	7.40	-38	14.73	0.391	11.28	>800		
10:07	n/a	2.1	0.1	7.40	-37	14.71	0.445	10.78	>800		
10:10	n/a	2.4	0.1	7.37	-40	14.56	0.477	10.79	>800		
10:13	n/a	2.7	0.1	7.40	-37	14.54	0.470	11.32	>800		
Total Quant	ity of Water	Removed (gal):	~3		Sampling Time:		1120)		
Samplers:			,	AB/RP	=	Split Sample With:	-				
Sampling Date: 25-May-11					•	Sample Type:	-	GW			
					•		-				
	S AND OBSE					luring purge due to small diam	neter of well, tubing				
Bailed well	to collect V	OC sample	; turbidity hi	gh in sampl	es						

						-						
Well I.D.:	MW-04		EA Personi			Client:	NV DEC					
l t'	IVI VV -U4		A Buboltz /			Weether	NY DEC					
Location:	mohiro Class	orc	Well Condi			Weather:	Cupper					
	mshire Clear	ieis	0	Good		M	Sunny					
Sounding N	/lethod: ist Interface f	Probo	Gauge Date	25-May-11		Measurement Ref:	Top of casing					
Stick Up/Do		TODE	Gauge Time			Well Diameter (in):	Top or casing					
Stick Op/Do	Down		Gauge Tilli	 10:18		Well Diameter (III).	1.5 inches					
	Down		<u>I</u>	10.10		<u> </u>	1.0 1101100					
Purge Date					Purge Time:							
	25-May-11				10:20							
Purge Meth	od:				Field Tech	Field Technician:						
	Low Flow					A Buboltz / R Peterson						
					Well Vo	olume						
A. Well Dep	oth (ft):		D. Well Vol	ume (ft):		Depth/Height of Top of PVC:						
	14.52			0.1356039								
B. Depth to			E. Well Vol	ume (gal) C*	-	Pump Type:						
	3.47			1.0143172		Parastaltic						
C. Liquid D	epth (ft) (A-E	3):	F. Five Wel	l Volumes (g		Pump Designation:						
	11.05			5.0715859		Geopump						
				Wate	er Quality	Parameters						
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity			
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)			
10:23	n/a	0.3	0.1	7.72	-82	15.04	0.778	10.60	>800			
10:26	n/a	0.6	0.1	7.46	-100	15.16	0.780	11.12	>800			
10:29	n/a	0.9	0.1	7.49	-101	14.69	0.789	11.36	>800			
10:32	n/a	1.2	0.1	7.40	-100	14.65	0.766	10.77	>800			
10:35	n/a	1.5	0.1	7.47	-102	14.62	0.777	11.10	>800			
10:38	n/a	1.8	0.1	7.41	-111	14.57	0.781	11.55	>800			
10:41	n/a	2.1	0.1	7.47	-110	14.51	0.785	10.42	>800			
10:44	n/a	2.4	0.1	7.40	-113	14.32	0.786	10.78	>800			
10:47	n/a	2.7	0.1	7.39	-116	14.15	0.790	11.35	>800			
				<u> </u>		<u> </u>			<u> </u>			
Total Quant	tity of Water	Removed (gal):	~3		Sampling Time:		11:15				
Samplers:	,	(,	J,-	AB/RP	•	Split Sample With:	=					
Sampling D	ate:			25-May-11	•	Sample Type:	-	GW				
				•	-	· ••	_					
	S AND OBSE					uring purge due to small diam	eter of well, tubing					
Bailed well	to collect V	OC sample	; turbidity hi	gh in sampl	es							

Well I.D.: EA Personnel: MW-05 A Buboltz / R Peterson						Client:	NV DEC					
	IVI VV-US						NY DEC					
Location:	mshire Clear	ore	Well Condi	tion: Good		Weather:	Sunny					
		1013	Cours Date			Management Date	Suring					
Sounding N Solin	netnoa: ist Interface I	Probe	Gauge Date	e: 25-May-11		Measurement Ref:	Top of casing					
Stick Up/Do		.020	Gauge Tim			Well Diameter (in):						
	Down			9:05		Tron Diameter (m).	1.5 inches					
			•									
Purge Date	:				Purge Tim	e:						
	25-May-11				9:10							
Purge Meth					Field Technician:							
	Low Flow				A Buboltz / R Peterson							
					Well V							
A. Well Dep			D. Well Vol	` ,	Depth/Height of Top of PVC:							
	11.42			0.0903208								
B. Depth to			E. Well Vol	ume (gal) C		Pump Type:						
C Limited D	4.06		E Eive Wel	0.6755995		Parastaltic						
C. Liquid D	epth (ft) (A-E 7.36	•	r. rive wei	! Volumes () 3.3779975		Pump Designation: Geopump						
	7.50		<u> </u>	0.0119910		Осоратр						
				Wat	er Quality	/ Parameters						
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity			
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)			
9:13	n/a	0.3	0.1	7.58	-29	15.12	0.677	11.19	>800			
9:16	n/a	0.6	0.1	7.30	84	14.81	0.727	11.51	>800			
9:19	n/a	0.9	0.1	7.43	94	14.62	0.754	10.05	>800			
9:22	n/a	1.2	0.1	7.41	94	14.53	0.844	10.05	>800			
9:25	n/a	1.5	0.1	7.42	-101	14.39	0.889	9.86	>800			
9:28	n/a	1.8	0.1	7.44	-101	14.46	0.956	9.62	>800			
9:31	n/a	2.1	0.1	7.35	-103	14.12	1.020	11.02	>800			
9:34	n/a	2.4	0.1	7.34	-105	14.25	1.080	10.99	>800			
9:37	n/a	2.7	0.1	7.41	-101	14.05	1.140	10.44	>800			
Total Quant	tity of Water	Removed (nal)·	~3		Sampling Time:		1030)			
Samplers:	iny or maior	110111011011	gu.,.	AB/RP	-	Split Sample With:	-		licate			
Sampling D	ate:			25-May-11	_	Sample Type:	=	GW				
. 3-					-		-					
	S AND OBSI					during purge due to small diar	meter of well, tubing					
Bailed well	to collect V	OC sample	; turbidity h	igh in samp	les							

Well I.D.:	MW-06		EA Personi			Client:	NV DEO			
:	IVI VV -UO		A Buboltz /			144 41	NY DEC			
Location:	mahira Claan	oro	Well Condi			Weather:	Cummu			
	mshire Clean	ieis		Good		1	Sunny			
Sounding N	letnoa: st Interface F	Probo	Gauge Date	25-May-11		Measurement Ref:	Top of casing			
Stick Up/Do		TODE	Gauge Time			Well Diameter (in):	Top or casing			
Stick Op/Do	Down		Gauge IIII	12:15		Well Diameter (III).	1.5 inches			
	20		<u> </u>	.20						
Purge Date					Purge Tim	e:				
	25-May-11						2:18			
Purge Meth	od:				Field Tech	nician:				
	Low Flow					A Buboltz / R Peterson				
					Well V	olume				
A. Well Dep	th (ft):		D. Well Vol	ume (ft):		Depth/Height of Top of PV	'C:			
	22.21			0.2098486						
B. Depth to	` ,		E. Well Vol	ume (gal) C*	•	Pump Type:				
	5.11			1.5696673		Parastaltic				
C. Liquid D	epth (ft) (A-E 17.1	3):	F. Five Wei	7.8483366		Pump Designation: Geopump				
17.1						Сеорипр				
				Wat	er Quality	/ Parameters				
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)	
12:21	5.29	0.3	0.1	7.74	-116	18.19	0.659	11.20	>800	
12:27	5.6	0.6	0.1	7.74	-104	18.78	0.705	10.45	>800	
12:30	5.55	0.9	0.1	7.67	-114	17.28	0.712	10.56	>800	
12:33	5.52	1.2	0.1	7.62	-119	17.07	0.714	11.28	>800	
12:36	5.5	1.5	0.1	7.6	-119	16.25	0.708	10.38	>800	
12:39	5.49	1.8	0.1	7.58	-120	15.85	0.711	10.45	>800	
12:42	5.47	2.1	0.1	7.57	-122	15.71	0.707	10.82	>800	
12:45	5.47	2.4	0.1	7.55	-124	15.85	0.714	9.67	>800	
12:48	5.47	2.7	0.1	7.53	-126	15.88	0.715	10.43	>800	
12:51	5.47	3	0.1	7.53	-124	16.33	0.713	10.49	619	
12:54	5.47	3.3	0.1	7.58	-124	16.26	0.714	9.67	447	
12:57	5.47	3.6	0.1	7.52	-129	16.79	0.715	1.48	385	
	ity of Water	Removed (gal):	~3.5	-	Sampling Time:	-	1335		
Samplers: AB/RP					-	Split Sample With:	-		n/a	
Sampling Date: 25-May-11				-	Sample Type:	-	GW			
COMMENTS	S AND OBSE	PVATIONS		Tubing clos	and with sa	diment at 12:23, stopped pur	uning to replace tubir	na.		
				gh in sampl		ament at 12.23, Stopped pull	iping to replace tubil	9		
Danca Well	IO CONGUL V	oo sample	, turbiuity III	giriii sairipi						

						Client:					
MW-07 A Buboltz / R Peterson Location: Well Condition:							NY DEC				
			Well Cond	ition:		Weather:					
	mshire Clear	ners		Good			Sunny				
Sounding N	Method:		Gauge Dat	e:		Measurement Ref:					
	nst Interface I	Probe		25-May-11			Top of casing				
Stick Up/Do	` ,		Gauge Tim			Well Diameter (in):					
	Down			13:07			1.5 inches				
Purge Date					Purge Tim						
	25-May-11						:09				
Purge Meth					Field Tech						
	Low Flow					A Buboltz / R Peterson					
					Well V						
A. Well De	` ,		D. Well Vo	` '		Depth/Height of Top of PV	C:				
	24.85			0.2299744							
B. Depth to	` ,		E. Well Vo	lume (gal) C*		Pump Type:					
	6.11			1.7202085		Parastaltic					
C. Liquid D	epth (ft) (A-l	•	F. Five We	II Volumes (g		Pump Designation:					
	18.74			8.6010425		Geopump					
				Wat	er Quality	y Parameters					
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity		
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)		
13:12	6.46	0.12	0.04	7.68	-112	18.95	0.647	10.93	>800		
13:15	6.46	0.24	0.04	7.68	-122	18.53	0.628	11.25	>800		
13:18	6.46	0.36	0.04	7.60	-135	17.71	0.624	10.09	>800		
13:21	6.46	0.48	0.04	7.58	-135	17.70	0.620	10.34	>800		
13:24	6.46	0.6	0.04	7.57	-135	17.75	0.619	9.46	>800		
13:27	6.46	0.72	0.04	7.54	-137	17.73	0.620	9.44	>800		
13:30	6.46	0.84	0.04	7.57	-132	17.70	0.622	9.45	>800		
12:33	6.46	0.96	0.04	7.53	-132	17.72	0.621	9.44	>800		
Total Ouan	tity of Wator	Pomovod (nal\.	1		Sampling Time:		1350	1		
Samplers:	tity of Water	Kelliovea (gai).	~1 AB/RP	_	Split Sample With:			n/a		
Sampling D	lata:			25-May-11	_	Sample Type:		GW			
Sampling L	Jale.			20-111ay-11	-	Sample Type.	•	GW			
COMMENT	S AND OBSI	ERVATIONS	:								
			=	igh in sampl	les						
			,	J							

						01:						
Well I.D.:	MW-08		EA Personi			Client:	NV DEC					
Location:	IVI VV -UO		A Buboltz / Well Condi			Weather:	NY DEC					
	mshire Clear	ners	well Condi	Good		weather:	Sunny					
Sounding N		1013	Gauge Date			Measurement Ref:	Suring					
	ist Interface F	Probe	Gauge Date	25-May-11		weasurement Ker.	Top of casing					
Stick Up/Do		.000	Gauge Time			Well Diameter (in):	. op er edemig					
	Down			13:40		,	1.5 inches					
			•			•						
Purge Date	:				Purge Time:							
	25-May-11					1	3:45					
Purge Meth	od:				Field Tech	nician:						
	Low Flow				A Buboltz / R Peterson							
					Well V	olume						
A. Well Dep	th (ft):		D. Well Vol	ume (ft):		Depth/Height of Top of P\	/C:					
	27			0.2372148								
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*	D):	Pump Type:						
	7.67			1.7743666		Parastaltic						
C. Liquid D		3):	F. Five Wel	l Volumes (g	gal) (E3):	Pump Designation:						
	19.33			8.8718331		Geopump						
İ												
	T	T	T _	7		Parameters	1		T			
Time	DTW	Volume	Rate	pH	ORP	Temperature	Conductivity	DO (v.=/L)	Turbidity			
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)			
13:48 13:51	8.08 8.08	0.3 0.6	0.1 0.1	8.01 7.82	-112 -123	16.95 16.17	0.363 0.357	11.81 9.67	256 58=98			
13:54	8.1	0.0	0.1	7.73	-123	15.77	0.357	10.75	>800			
13:57	8.08	1.2	0.1	7.68	-125	15.56	0.358	10.70	609			
14:00	7.99	1.5	0.1	7.65	-121	15.29	0.359	11.06	560			
14:03	7.99	1.8	0.1	7.62	-123	15.06	0.360	9.98	556			
14:06	7.92	2.1	0.1	7.61	-125	14.81	0.360	9.77	440			
14:09	7.88	2.4	0.1	7.60	-123	14.77	0.363	10.39	419			
14:12	7.85	2.7	0.1	7.58	-120	14.80	0.362	9.23	581			
14:15	7.84	3	0.1	7.59	-120	14.73	0.360	9.20	499			
T				•		o " - "		4.405				
Samplers:	tity of Water	Removed (gai):	AB/RP	-	Sampling Time:	-	1425	/MSD			
Samplers:	lato:			25-May-11	-	Split Sample With: Sample Type:	-	GW				
Sampling D	ale.		-	25-111ay-11	=	Sample Type.	-	GVV				
COMMENTS	S AND OBSE	ERVATIONS										
				gh in sampl	les							
			•	•								

Well I.D.:			EA Person	nel:		Client:					
	MW-09		A Buboltz /	R Peterson			NY DEC				
Location:			Well Condi	ition:		Weather:					
Dar	mshire Clear	ners		Good			Sunny				
Sounding N	lethod:		Gauge Date	e:		Measurement Ref:					
Solin	st Interface I	Probe		25-May-11			Top of casing				
Stick Up/Do	wn (ft):		Gauge Tim	e:		Well Diameter (in):					
	Down			14:19			1.5 inches				
Purge Date:					Purge Tim	e:					
	25-May-11						4:21				
Purge Meth					Field Tech						
	Low Flow					A Buboltz / R Peterson					
					Well V						
A. Well Dep	th (ft):		D. Well Vo	lume (ft):		Depth/Height of Top of P\	/C:				
	25.03			0.2450688							
B. Depth to			E. Well Vol	ume (gal) C*		Pump Type:					
	5.06			1.8331144		Parastaltic					
C. Liquid De		3):	F. Five We	ll Volumes (ç		Pump Designation:					
	19.97			9.165572		Geopump					
				Wat	er Quality	y Parameters					
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity		
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)		
14:24	5.31	0.24	0.08	7.48	-89	17.86	0.562	9.05	>800		
14:27	5.31	0.48	0.08	7.52	-101	17.26	0.561	10.33	>800		
14:30	5.31	0.72	0.08	7.54	-101	16.74	0.551	9.70	>800		
14:33	5.31	0.96	0.08	7.53	-105	16.77	0.551	9.25	>800		
14:36	5.31	1.2	0.08	7.52	-110	16.62	0.551	9.72	>800		
14:39	5.31	1.44	0.08	7.52	-109	16.49	0.554	9.85	615		
14:42	5.31	1.68	0.08	7.53	-107	16.41	0.556	9.45	551		
14:45	5.31	1.92	0.08	7.51	-107	16.26	0.561	9.21	438		
				-							
Total Quant	ity of Water	Removed (nal\.	~2		Sampling Time:		1450	1		
Samplers:	ity or water	Kellioved (yaı).	AB/RP	•	Split Sample With:	-		n/a		
•	ato.				-	Sample Type:	=	GW			
Sampling Date: 25-May-11				-	oampie Type.	-	GVV				
COMMENTS	S AND OBSI	ERVATIONS									
				igh in sampl	es						
		- 3p10	, 	J							

Well I.D.: EA Personnel: MW-10 A Buboltz / R Peterson						Client:						
Location:	IVIVV-1U		Well Condi			Weather:	NY DEC					
	mshire Clear	ners	Well Collai	Good		weather.	Sunny					
Sounding N		1010	Gauge Date			Measurement Ref:	Curiny					
_	nst Interface I	Probe	ouugo Dui	25-May-11		inoacaromont iton	Top of casing					
Stick Up/Do			Gauge Tim			Well Diameter (in):						
_	Down			8:20		, ,	1.5 inches					
Purge Date	:				Purge Tim	e:						
	25-May-11						:25					
Purge Meth					Field Tech							
	Low Flow					A Buboltz / R Peterson						
					VA7 - 11 V 7	.1						
					Well V							
A. Well Dep			D. Well Vol	` ,	Depth/Height of Top of PVC:							
B. Depth to	23.95		E Wall Val	0.2434734 ume (gal) C*		: Pump Type:						
B. Depth to	4.11		E. Well voi	1.8211813		Parastaltic						
C. Liquid D	epth (ft) (A-E	3):	F. Five We	Il Volumes (g		Pump Designation:						
	19.84			9.1059063		Geopump						
			•			<u> </u>						
				Wate	er Quality	Parameters			<u></u>			
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity			
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)			
8:30	4.52	0.375	0.125	7.66	-79	14.31	0.711	11.42	>800			
8:33	4.51	0.75	0.125	7.57	-102	14.18	0.720	10.47	>800			
8:36	4.53	1.125	0.125	7.53	-116	14.05	0.726	10.67	>800			
8:39	4.53	1.5	0.125	7.58	-109	13.94	0.727	11.18	>800			
8:42 8:45	4.53 4.53	1.875 2.25	0.125 0.125	7.54 7.55	-108 -112	14.27 14.05	0.724 0.730	10.93 11.18	>800 >800			
8:48	4.53	2.625	0.125	7.54	-112	13.90	0.731	11.20	>800			
8:51	4.53	3	0.125	7.53	-118	13.88	0.726	11.16	>800			
		,										
Samplers:	tity of Water	Removed (gal):	~3 AB/RP	•	Sampling Time: Split Sample With:	-	950) n/a			
Sampling D)ato.			25-May-11	•	Sample Type:	-	GW				
Jamping L	rais.			20-11/1ay-11	-	oumple Type.	_	344				
COMMENT	S AND OBSI	ERVATIONS	:									
Bailed well	to collect V	OC sample	; turbidity h	igh in sampl	es							

Well I.D.:	NNN 44		EA Person			Client:	AN/ DEO					
	MW-11		A Buboltz /				NY DEC					
Location:	mahira Clasr		Well Condi			Weather:	0					
	mshire Clear	ners		Good		100	Sunny					
Sounding N	lethod: st Interface I	Probo	Gauge Date	e: 25-May-11		Measurement Ref:	Top of cooling					
Stick Up/Do		robe	Gauge Tim			Top of casing Well Diameter (in):						
Stick Op/Do	Down		Gauge IIIII	11:30		Well Diameter (III).	1.5 inches					
	Down			11.00		L	1.0 1101100					
Purge Date:					Purge Tim	e:						
	25-May-11				11:35							
Purge Meth					Field Tech	nician:						
	Low Flow				A Buboltz / R Peterson							
					Well Vo	olume						
A. Well Dep	th (ft):		D. Well Vol	ume (ft):	Depth/Height of Top of PVC:							
	23.15			0.2451915								
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C'	-	Pump Type:						
	3.17			1.8340323		Parastaltic						
C. Liquid D	epth (ft) (A-E	•	F. Five Wel	l Volumes (Pump Designation:						
	19.98			9.1701617		Geopump						
				101.4	0 114	<u> </u>						
		T				Parameters	T					
Time	DTW	Volume	Rate	pH	ORP	Temperature	Conductivity	DO (v.=/L)	Turbidity			
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(mS/cm)	(ug/L)	(ntu)			
11:38 11:41	3.56 3.59	0.33 0.66	0.11 0.11	7.56 7.53	-156 -107	16.75 16.10	0.549 -0.669	10.50 9.96	>800 >800			
11:44	3.59	0.88	0.11	7.55	-107	15.59	-0.681	10.02	>800			
11:47	3.59	1.32	0.11	7.54	-113	15.53	0.686	10.67	>800			
11:50	3.6	1.65	0.11	7.54	-116	15.53	0.686	10.07	>800			
11:53	3.61	1.98	0.11	7.53	-121	15.51	0.689	10.16	>800			
11:56	3.6	2.31	0.11	7.52	-117	15.49	0.690	10.92	>800			
11:59	3.64	2.64	0.11	7.52	-118	15.44	0.688	10.88	>800			
12:02	3.61	2.97	0.11	7.52	-118	15.41	0.688	10.97	>800			
		_										
	ity of Water	Removed (gal):	~3	-	Sampling Time:	_	1320				
Samplers:	4			AB/RP	-	Split Sample With:	=		n/a			
Sampling D	ate:			25-May-11	-	Sample Type:	-	GW				
COMMENTS	S AND OBSI	ERVATIONS	:									
				igh in samp	les							
			,	<u> </u>								

Well I.D.:	MW-06		EA Person			Client:	NIV DEC					
	IVI VV -UO		A Buboltz / I			Wd	NY DEC					
Location: Da	mshire Clean	ners	Well Condi	Good								
Sounding Method: Gauge Date:					<u> </u>							
_	t Water Leve	l Meter	J	19-May-11		NY DEC Weather: Overcast to cloudy Measurement Ref: Top of casing Well Diameter (in): 1.5 inches rge Time: 728 Pld Technician: A Buboltz / H Lockwood Well Volume Depth/Height of Top of PVC: Pump Type: Submersible						
Stick Up/Do	wn (ft):		Gauge Time	9:		Well Diameter (in):						
-	Down			0:00		, ,	1.5 inches					
Purge Date					Purge Time	e:						
	19-May-11					7	28					
Purge Meth	od:				Field Tech	nician:						
	High Flow					A Buboltz / H Lockwood						
					Well Vo	olume						
A. Well Dep	oth (ft): 22.88		D. Well Vol	ume (ft): 0.218807		Depth/Height of Top of PVC:						
B. Depth to			F Well Vol	ume (gal) C*	D).	Pump Type:						
Di Bopiii to	5.05			1.6366765	•							
C. Liquid Depth (ft) (A-B): F. Five Well Volui												
	17.83	,										
				Wate	er Quality	Parameters						
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity			
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)			
7:39	7.00	5.5	0.5	6.57	-95	16.43	0.381	0.00	>999			
7:42	5.66	7	0.5	6.7	-113	16.38	0.306	0.00	>800			
7:47	n/a	9.5	0.5	6.71	-35	16.38	0.42	2.82	>800			
<u> </u>	<u>I</u>	<u>I</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>			
Total Quant	ity of Water	Removed (gal):	10		Sampling Time:		N/A				
Samplers:	,		,	AB/HL			•	N	I/A			
Sampling D	ate:			N/A	-	•	•	N/A				
					•		•					
COMMENTS	S AND OBSE	ERVATIONS		Purged 5 ga	allons from w	ell prior to collecting paramete	ers. Turbidity rema	ined high.				
Purged dark	brown / gray	water with a	lot of sand f	ine sand.		Horiba filling with sand while	collecting paramet	ers				

Well I.D.:						Client:	NIV DEO			
	MW-07						NY DEC			
Location: Da	mshire Clear	ners	Well Condi	tion: Good		Weather:	ercast to cloudy			
Sounding N	/lethod:		Gauge Date	9:		Measurement Ref:	-			
_	t Water Leve	l Meter		19-May-11			Top of casing			
Stick Up/Do			Gauge Tim			Well Diameter (in):	,			
	Down			0:00		, ,	1.5 inches			
Purge Date	:				Purge Tim	e:				
	19-May-11						10			
Purge Meth	od:				Field Tech	nician:				
	High Flow					A Buboltz / H Lockwood				
					Well Vo	olume				
A. Well Dep	oth (ft):		D. Well Vol	ume (ft):		Depth/Height of Top of PVC	:			
	24.57			0.225802						
B. Depth to Water (ft):			E. Well Vol	ume (gal) C	D):	Pump Type:				
6.17				1.6889988		Submersible				
C. Liquid Depth (ft) (A-B): F. Five Well Volumes			l Volumes (gal) (E3):	· · · · · · · · · · · · · · · · · · ·					
	18.4			8.4449938	ı	Whaler				
				Wat	er Quality	Parameters				
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)	
8:20	7.10	5	0.5	6.81	-88	16.67	0.406	0.00	>800	
8:23	7.02	6.5	0.5	6.85	-81	16.22	0.394	0.21	>800	
8:26	6.72	8	0.5	6.84	-31	16.18	0.36	0.73	>800	
									<u> </u>	
									<u> </u>	
Total Over	.: af \Matau	Damayad (IV.	0		Compline Time.		NI/A		
Samplers:	tity of Water	Kemovea (gai):	AB/HL	=	Sampling Time: Split Sample With:	-	N/A	\ <u>\</u> \/A	
-	lata.			N/A	=	•	-	N/A		
Sampling D	aie.			IN/A	-	Sample Type:	-	IN/A	1	
COMMENT	S AND OBSE	ERVATIONS		Purged 5 gs	allons from w	vell prior to collecting paramete	ers. Turbidity rema	ined high		
	brown / gray				2110110 11 0111 V	Horiba filling with sand while	•			
. sigua aan	o , graj	,					g paramot			

			1							
Well I.D.:	MW-08		EA Personi			Client:	NV DEC			
Location:	IVI VV-U8		Well Condi	H Lockwood		Wasthan	NY DEC			
	mshire Clear	ners	well Condi	Good			vercast to cloudy			
Sounding Method: Gauge Date:						vercast to cloudy				
	t Water Leve	l Meter	Gauge Date	19-May-11		Measurement iter.	Top of casing			
Stick Up/Do			Gauge Tim							
	Down			0:00		,	1.5 inches			
1										
Purge Date	:				Purge Tim	e:				
	19-May-11					8	50			
Purge Meth	nod:				Field Tech	nician:				
	High Flow					A Buboltz / H Lockwood				
					Well Vo	olume				
A. Well De	oth (ft):		D. Well Vol	ume (ft):		Depth/Height of Top of PVO):			
	27.12			0.2320606						
B. Depth to Water (ft): E. Well Volume				-						
<u> </u>			1.7358134		rge Time: 850 Ild Technician: A Buboltz / H Lockwood Well Volume Depth/Height of Top of PVC: Pump Type: Submersible					
C. Liquid Depth (ft) (A-B): F. Five Well Volumes				gal) (E3):						
	18.91			8.6790669		wnaier				
				Wat	er Quality	Parameters				
Time	DTW	Volume	Rate	рН			Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)		-			1	
8:59	8.65	5	0.5	7.69	- ` 	` '			<u> </u>	
9:02	8.95	6.5	0.5	7.63						
9:05	8.64	8	0.5	7.50						
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	
Total Quan	tity of Water	Removed (gal):	8		Sampling Time:		N/A		
Samplers:			5 ,	AB/HL	•	. •	•			
Sampling D	Date:			N/A	-	•	•	N/A	\	
					_		•			
	S AND OBSI				allons from v					
Purged dark	k brown / gray	water with a	a lot of sand	ine sand.		Horiba filling with sand while	collecting paramet	ers		

Well I.D.: EA Personn MW-09 A Buboltz / H				Client:	NV DEC					
	IVIVV-U9					\\\ 4\	NY DEC			
Location: Da	mshire Clear	ners	Well Condi	Good			ercast to cloudy			
Sounding N	lethod:		Gauge Date	1:			,			
_	t Water Leve	l Meter	Cango Zano	19-May-11		NY DEC Veather: Overcast to cloudy Measurement Ref: Top of casing Vell Diameter (in): 1.5 inches 9:28 cian: Buboltz / H Lockwood				
Stick Up/Do			Gauge Time			Well Diameter (in):	<u> </u>			
	Down			9:25		,	1.5 inches			
			•			•				
Purge Date	:				Purge Time	e:				
J 3	19-May-11				J 32		28			
Purge Meth					Field Tech	nician:				
	High Flow					A Buboltz / H Lockwood				
					Well Vo	olume				
A. Well Depth (ft): D. Well Volume (ft):				ume (ft):		Depth/Height of Top of PVC	:			
22.75				0.2172117						
B. Depth to Water (ft): E. Well Volum: 5.05			ιο ,	•						
				1.6247434						
C. Liquid Depth (ft) (A-B): F. Five Well Volumes					gal) (E3):					
	17.7			8.1237168		vvnaier				
				Wat	ar Quality	Parameters				
Time	DTW	Volume	Rate	pH	ORP	1	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	•			-	
9:33	n/a	5	0.7	7.46	-24	, ,			_ ` _	
9:36	8.35	7.1	0.7	7.40	-64					
9:39	8.41	9.2	0.7	7.31	-53		_		+	
0.00	0.11	0.2	0.7	7.01	- 00	10.00	0.00		7000	
	tity of Water	Removed (gal):	9.2	-	Sampling Time:		N/A		
Samplers:				AB/HL		Split Sample With:	,		I/A	
Sampling Date: N/A Sample Type: N/A								1		
COMMENT	S AND OBSE	-RVATIONS		Purged 5 as	allons from w	vell prior to collecting paramete	ars Turhidity rema	ained high		
			a lot of sand f		aions nom W	Horiba filling with sand while				
i digod dalk	Siowii / gia	, water with c	a iot oi saila i	nio ounu.		Honba ming with saila wille	concoming paramet	0.0		

Well I.D.:		EA Person			Client:	NIV DEC				
	MW-10		A Buboltz /				NY DEC			
Location: Damshire Cleaners		Well Condi	tion: Good		Weather:	ercast to cloudy				
Sounding N	lethod:		Gauge Dat	e:		Measurement Ref:				
Solins	t Water Leve	l Meter		19-May-11			Top of casing			
Stick Up/Do	wn (ft):		Gauge Tim	e:		Well Diameter (in):				
	Down			9:54			1.5 inches			
Purge Date	:				Purge Time	e :				
	19-May-11					9:	56			
Purge Meth	od:				Field Tech	nician:				
	High Flow					A Buboltz / H Lockwood				
					Well Vo	olume				
A. Well Dep	th (ft):		D. Well Vo	lume (ft):		Depth/Height of Top of PVC	:			
	22.07			0.2200342						
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*	D):	Pump Type:				
4.14 C. Liquid Depth (ft) (A-B):			1.6458558		Submersible					
C. Liquid Depth (ft) (A-B):		F. Five We	ll Volumes (g	gal) (E3):	Pump Designation:	ersible Designation: er				
	17.93	17.93 8.2292792 Whaler								
				Wat	er Quality	Parameters				
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity	
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)	
10:06	6.80	5	0.7	7.47	-101	17.64	0.422	0.00	>800	
10:09	6.3	7.1	0.7	7.24	-99	16.83	0.593	0.00	>800	
10:12	5.09	9.2	0.7	7.15	-89	16.74	0.68	0	>800	
				ļ						
				-						
				+						
				+						
				+						
				 						
				<u> </u>		<u> </u>	<u> </u>			
Total Quant	tity of Water	Removed (gal):	9		Sampling Time:		N/A		
Samplers:	,	(,	J/-	AB/HL	-	Split Sample With:	•		I/A	
Sampling D	ate:			N/A		Sample Type:	•	N/A		
					-		•			
COMMENT	S AND OBSI	ERVATIONS	:	Purged 5 ga	allons from w	ell prior to collecting paramete	rs. Turbidity rema	ined high.		
Purged dark	brown / gray	water with a	a lot of sand	fine sand.		Horiba filling with sand while	collecting paramet	ers		

		EA Personi			Client:	NV DEC			
	IVIVV-II			H Lockwood		\A/ 41	NY DEC		
Location: Da	mshire Clear	ners	Well Condi	Good		Weather:	ercast to cloudy		
Sounding N	lethod:		Gauge Date			Measurement Ref:	<u> </u>		
_	t Water Leve	l Meter		19-May-11			Top of casing		
Stick Up/Do			Gauge Time			Well Diameter (in):			
	Down			10:32		,	1.5 inches		
Purge Date	•				Purge Time	e:			
J 3	19-May-11					10:	34		
Purge Meth					Field Tech		-		
	High Flow					A Buboltz / H Lockwood			
					-				
					Well Vo	olume			
A. Well Depth (ft): D. Well Volume (ft):					Depth/Height of Top of PVC	:			
21.55				0.2251884					
B. Depth to Water (ft): E. We			E. Well Vol	ume (gal) C*	D):	Pump Type:			
3.2				1.6844091		Submersible			
C. Liquid Depth (ft) (A-B): F. Five Well Volumes				gal) (E3):	Pump Designation:				
	18.35			8.4220454		Whaler			
				T		Parameters			
Time	DTW	Volume	Rate	pН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(gallons)	(gpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
10:46	4.95	5	0.5	7.44	-125	17.41	0.405	0.00	>800
10:49	4.9	6.5	0.5	7.25	-99	16.97	0.603	0.00	>800
10:52	4.95	8	0.5	7.06	-82	16.3	0.67	0	>800
								ļ 	
									
									+
									+
									+
									+
									+
			<u> </u>	<u> </u>	<u> </u>				
Total Quant	tity of Water	Removed (nal).	8		Sampling Time:		N/A	
Samplers:	inty or trutor	110111011011	gu.,.	AB/HL	-	Split Sample With:	•		V/A
Sampling D	ate:			N/A	-	Sample Type:	•	N/A	
pg 5				,, .	=		•		
COMMENT	S AND OBSE	ERVATIONS	:	Purged 5 ga	allons from w	vell prior to collecting paramete	rs. Turbidity rema	ained high.	
Purged dark	brown / gray	water with a	a lot of sand f			Horiba filling with sand while			

Appendix E Analytical Results

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770

FAX: 973-244-9787

WWW.HCVLAB.COM

Project: Former Damshire Cleaners

Client PO: 1436846

Report To: EA Engineering, Science & Technology

6712 Brooklawn Pkwy.

Suite 104

Syracuse, NY 13211

Attn: J.Graham

Received Date: 5/20/2011

Report Date: 6/16/2011

Deliverables: NYDOH-CatB

Lab ID: AC59221

Lab Project No: 1052009

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC Institute standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Jeri Rossi - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

(07071 and 07069)

NY (ELAP11408 and 11939)

CT (PH-0671)

USACE

TABLE OF CONTENTS

HC·V LABORATORY RESULTS	PAGE NOS.
SDG Narrative	1-4
Reporting Limit Definitions	5-6
Data Package Summary Forms	7-35
Chain of Custody Forms	36-40
GC/MS Volatiles Data	41-246
Wet Chemistry Data	247-250

SDG Narrative

HCV Case Narrative/Conformance Summary

EA Engineering, Science & Technology

HCV Project: 1052009

Project: Former Damshire Cleaners

Hampton-Clarke/Veritech (HC·V) received the following samples on May 20, 2011:

Client ID	HCV Sample ID	<u>Matrix</u>	Analysis
MW-06 4-5	AC59221-001	Soil	VO (8260B)
MW-06 10-11	AC59221-002	Soil	VO (8260B)
MW-07 6-7	AC59221-003	Soil	VO (8260B)
MW-07 14-15	AC59221-004	Soil	VO (8260B)
MW-08 11-12	AC59221-005	Soil	VO (8260B)
MW-09 5-6	AC59221-006	Soil	VO (8260B)
MW-09 6-7	AC59221-007	Soil	VO (8260B)
MW-10 7-8	AC59221-008	Soil	VO (8260B)
MW-11 5-6	AC59221-009	Soil	VO (8260B)
MW-11 13-14	AC59221-010	Soil	VO (8260B)
MW-11 13-14 MS	AC59221-011	Soil	VO (8260B)
MW-11 13-14 MSD	AC59221-012	Soil	VO (8260B)
Duplicate	AC59221-013	Soil	VO (8260B)

Volatile Organic Analysis:

The recovery of 1,4-Dihlorobenzene is biased low, outside QC limits in the Matrix Spike in batch 9703. Also the MS/MSD RPD of several compounds is outside QC limits. All QC criteria were met in the Laboratory Control Sample (MBS).

In sample AC59221-010 the recovery of Toluene-d8 surrogates is biased high, outside QC limits. Also the area of internal standards Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 is biased low, outside +100% / -50% window from most recent calibration verification standard. The sample was reanalyzed confirming high surrogate recovery and low internal standard area counts due to matrix interference. The initial analysis is reported.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

œu Rossi			6/16/11
	Or	Stanley Gilewicz	Date
Quality Assurance Director		Laboratory Director	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

FORM S-I

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

NIVODEO	1 -1	Analytical Requirements					
NYSDEC Sample ID/Code	Laboratory Sample ID/Code	VOA GC/MS	BNA GC/MS	VOA GC	Pest PCBs	Metals	Other
ID/Code	ID/Code	(Method #)	(Method #)	(Method #)	(Method #)	(Method #)	(Method #)
MW-06 4-5	AC59221-001	8260B					
MW-06 10-11	AC59221-002	8260B					
MW-07 6-7	AC59221-003	8260B					
MW-07 14-15	AC59221-004	8260B					
MW-08 11-12	AC59221-005	8260B					
MW-09 5-6	AC59221-006	8260B					
MW-09 6-7	AC59221-007	8260B					
MW-10 7-8	AC59221-008	8260B					
MW-11 5-6	AC59221-009	8260B					
MW-11 13-14	AC59221-010	8260B					
MW-11 13-14 MS	AC59221-011	8260B					
MW-11 13-14 MSD	AC59221-012	8260B					
Duplicate	AC59221-013	8260B					

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

FORM S-IIb

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory Sample ID	Matrix	Date Collected	Date Rec'd at Lab	Date Extracted	Date Analyzed
AC59221-001	Soil	5/16/11	5/20/11	NA	5/26/11
AC59221-002	Soil	5/16/11	5/20/11	NA	5/27/11
AC59221-003	Soil	5/16/11	5/20/11	NA	5/26/11
AC59221-004	Soil	5/16/11	5/20/11	NA	5/27/11
AC59221-005	Soil	5/17/11	5/20/11	NA	5/27/11
AC59221-006	Soil	5/17/11	5/20/11	NA	5/26/11
AC59221-007	Soil	5/17/11	5/20/11	NA	5/26/11
AC59221-008	Soil	5/18/11	5/20/11	NA	5/26/11
AC59221-009	Soil	5/18/11	5/20/11	NA	5/26/11
AC59221-010	Soil	5/18/11	5/20/11	NA	5/26,27/11
AC59221-011	Soil	5/18/11	5/20/11	NA	5/27/11
AC59221-012	Soil	5/18/11	5/20/11	NA	5/27/11
AC59221-013	Soil	5/18/11	5/20/11	NA	5/27/11

Reporting Limit Definitions

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL = Reporting Limit *

RT = Retention Time

NA = Not Applicable

ND = Not Detected

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the concentration is below the Reporting Limit (RL) but above the MDL (Method Detection Limit). The concentration reported is an estimate.

^{*}For Clean Water Act and SW846 Organic Methods and Metals Methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve.

^{*}For Clean Water Act and SW846 Wet Chemistry methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve. For most gravimetric methods the Reporting Limit is defined as a value 3 to 5 times the MDL.

_	_	_	_
-	$^{-}$	$^{-}$	7

Data Package Summary Forms

HCV Report Of Analysis

Client: EA Engineering, Science & Technology

Project: Former Damshire Cleaners

HCV Project #: 1052009

Sample ID: MW-06 4-5

Lab#: AC59221-001

Matrix: Soil

Collection Date: 5/16/2011

Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		87	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.988	mg/kg	0.0023	ND
1,1,2,2-Tetrachloroethane	0.988	mg/kg	0.0057	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.988	mg/kg	0.0023	ND
1,1,2-Trichloroethane	0.988	mg/kg	0.0023	ND
1,1-Dichloroethane	0,988	mg/kg	0,0023	ND
1,1-Dichloroethene	0.988	mg/kg	0.0023	ND
1,2,4-Trichlorobenzene	0.988	mg/kg	0.0023	ND
1,2-Dibromo-3-chloropropane	0.988	mg/kg	0.0023	ND
1,2-Dibromoethane	0.988	mg/kg	0.0023	ND
1,2-Dichlorobenzene	0.988	mg/kg	0.0023	ND
1,2-Dichloroethane	0.988	mg/kg	0.0023	ND
1,2-Dichloropropane	0.988	mg/kg	0.0023	ND
1,3-Dichlorobenzene	0.988	mg/kg	0.0023	ND
1,4-Dichlorobenzene	0.988	mg/kg	0.0023	ND
2-Butanone	0.988	mg/kg	0.0057	ND
2-Hexanone	0.988	mg/kg	0.0023	ND
4-Methyl-2-pentanone	0.988	mg/kg	0.0023	ND
Acetone	0.988	mg/kg	0.028	ND
Benzene	0.988	mg/kg	0.0011	ND
Bromodichloromethane	0.988	mg/kg	0.0023	ND
Bromoform	0.988	mg/kg	0.0023	ND
Bromomethane	0.988	mg/kg	0.0023	ND
Carbon disulfide	0.988	mg/kg	0.0023	ND
Carbon tetrachloride	0.988	mg/kg	0.0023	ND
Chlorobenzene	0.988	mg/kg	0.0023	ND
Chloroethane	0.988	mg/kg	0.0023	ND
Chloroform	0.988	mg/kg	0.0023	ND
Chloromethane	0.988	mg/kg	0.0023	ND
cis-1,2-Dichloroethene	0.988	mg/kg	0.0023	ND
cis-1,3-Dichloropropene	0.988	mg/kg	0.0057	ND
Cyclohexane	0.988	mg/kg	0.0023	ND
Dibromochloromethane	0.988	mg/kg	0.0057	ND
Dichlorodifluoromethane	0.988	mg/kg	0.0023	ND
Ethylbenzene	0.988	mg/kg	0.0011	ND
Isopropylbenzene	0.988	mg/kg	0.0011	ND
m&p-Xylenes	0.988	mg/kg	0.0011	ND
Methyl Acetate	0.988	mg/kg	0.0023	ND
Methylcyclohexane	0.988	mg/kg	0.0023	ND
Methylene chloride	0.988	mg/kg	0.0023	ND
Methyl-t-butyl ether	0.988	mg/kg	0.00057	ND
o-Xylene	0.988	mg/kg	0.0011	ND
Styrene	0.988	mg/kg	0.0023	ND
Tetrachloroethene	0.988	mg/kg	0.0023	0.041
Toluene	0.988	mg/kg	0.0011	ND
trans-1,2-Dichloroethene	0.988	mg/kg	0.0023	ND
trans-1,3-Dichloropropene	0.988	mg/kg	0.0057	ND
Trichloroethene	0.988	mg/kg	0.0023	ND
Trichlorofluoromethane	0.988	mg/kg	0.0023	ND
Vinyl chloride	0.988	mg/kg	0.0023	ND
Xylenes (Total)	0.988	mg/kg	0.0023	ND

Sample ID: MW-06 10-11 Lab#: AC59221-002

Matrix: Soil

Collection Date: 5/16/2011 Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		85	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	4.85	mg/kg	0.011	ND
1,1,2,2-Tetrachloroethane	4.85	mg/kg	0.029	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	4.85	mg/kg	0.011	ND
1,1,2-Trichloroethane	4.85	mg/kg	0.011	ND
1,1-Dichloroethane	4.85	mg/kg	0.011	ND
1,1-Dichloroethene	4.85	mg/kg	0.011	ND
1,2,4-Trichlorobenzene	4.85	mg/kg	0.011	ND
1,2-Dibromo-3-chloropropane	4.85	mg/kg	0.011	ND
1,2-Dibromoethane	4.85	mg/kg	0.011	ND
1,2-Dichlorobenzene	4.85	mg/kg	0.011	ND
1,2-Dichloroethane	4.85	mg/kg	0.011	ND
1,2-Dichloropropane	4.85	mg/kg	0.011	ND
1,3-Dichlorobenzene	4.85	mg/kg	0.011	ND
1.4-Dichlorobenzene	4.85	mg/kg	0.011	ND
2-Butanone	4.85	mg/kg	0.029	ND
2-Hexanone	4.85	m g/k g	0.011	ND
4-Methyl-2-pentanone	4.85	mg/kg	0.011	ND
Acetone	4.85	mg/kg	0.14	ND
Benzene	4.85	mg/kg	0.0057	ND
Bromodichloromethane	4.85	mg/kg	0.011	ND ND
Bromoform	4.85		0.011	ND ND
	4.85	mg/kg	0.011	ND ND
Bromomethane		mg/kg	0.011	ND ND
Carbon disulfide	4.85	mg/kg		
Carbon tetrachloride	4.85	mg/kg	0.011	ND ND
Chlorobenzene	4.85	mg/kg	0.011	ND ND
Chloroethane	4.85	mg/kg	0.011	ND
Chloroform	4.85	mg/kg	0.011	ND
Chloromethane	4.85	mg/kg	0.011	ND
cis-1,2-Dichloroethene	4.85	mg/kg	0.011	ND
cis-1,3-Dichloropropene	4.85	mg/kg	0.029	ND
Cyclohexane	4,85	mg/kg	0.011	ND
Dibromochloromethane	4.85	mg/kg	0.029	ND
Dichlorodifluoromethane	4.85	mg/kg	0.011	ND
Ethylbenzene	4.85	mg/kg	0.0057	ND
Isopropylbenzene	4.85	mg/kg	0.0057	ND
m&p-Xylenes	4.85	mg/kg	0.0057	ND
Methyl Acetate	4.85	mg/kg	0.011	ND
Methylcyclohexane	4.85	mg/kg	0.011	ND
Methylene chloride	4.85	mg/kg	0.011	ND
Methyl-t-butyl ether	4.85	mg/kg	0.0029	ND
o-Xylene	4.85	mg/kg	0.0057	ND
Styrene	4.85	mg/kg	0.011	ND
Tetrachloroethene	4.85	mg/kg	0.011	0.70
Toluene	4.85	mg/kg	0.0057	ND
trans-1,2-Dichloroethene	4.85	mg/kg	0.011	ND
trans-1,3-Dichloropropene	4.85	mg/kg	0.029	ND
Trichloroethene	4.85	mg/kg	0.011	0.043
Trichlorofluoromethane	4.85	mg/kg	0.011	ND
Vinyl chloride	4.85	mg/kg	0.011	ND
Xylenes (Total)	4.85	mg/kg	0.0057	ND

Sample ID: MW-07 6-7 Lab#: AC59221-003

Matrix: Soil

Collection Date: 5/16/2011 Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		81	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1.01	mg/kg	0.0025	ND
1,1,2,2-Tetrachloroethane	1.01	mg/kg	0.0062	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1.01	mg/kg	0.0025	ND
1,1,2-Trichloroethane	1.01	mg/kg	0.0025	ND
1,1-Dichloroethane	1.01	mg/kg	0.0025	ND
1,1-Dichloroethene	1.01	mg/kg	0.0025	ND
1,2,4-Trichlorobenzene	1.01	mg/kg	0.0025	ND
1,2-Dibromo-3-chloropropane	1.01	mg/kg	0.0025	ND
1,2-Dibromoethane	1,01	mg/kg	0.0025	ND
1,2-Dichlorobenzene	1.01	mg/kg	0.0025	ND
1,2-Dichloroethane	1.01	mg/kg	0.0025	ND
1,2-Dichloropropane	1.01	mg/kg	0.0025	ND
1,3-Dichlorobenzene	1.01	mg/kg	0.0025	ND
1,4-Dichlorobenzene	1.01	mg/kg	0.0025	ND
2-Butanone	1.01	mg/kg	0.0062	ND
2-Hexanone	1.01	mg/kg	0.0025	ND
4-Methyl-2-pentanone	1.01	mg/kg	0.0025	ND
Acetone	1.01	mg/kg	0.031	ND
Benzene	1.01	mg/kg	0.0012	ND
Bromodichloromethane	1.01	mg/kg	0.0025	ND
Bromoform	1.01	mg/kg	0.0025	ND ND
Bromomethane	1.01	mg/kg	0.0025	ND
Carbon disulfide	1.01	mg/kg	0.0025	ND
Carbon tetrachloride	1.01		0.0025	ND
Chlorobenzene	1.01	mg/kg mg/kg	0.0025	ND .
	1.01		0.0025	ND
Chloroform	1.01	mg/kg	0.0025	ND
Chloroform	1.01	mg/kg mg/kg	0.0025	ND
Chloromethane	1.01		0.0025	ND ND
cis-1,2-Dichloroethene		mg/kg	0.0062	ND
cis-1,3-Dichloropropene	1.01 1.01	mg/kg	0.0062	ND
Cyclohexane		mg/kg		
Dibromochloromethane	1.01	mg/kg	0.0062	ND ND
Dichlorodifluoromethane	1.01	mg/kg	0.0025	
Ethylbenzene	1.01	mg/kg	0.0012	ND
Isopropylbenzene	1.01	mg/kg	0.0012	ND
m&p-Xylenes	1.01	mg/kg	0.0012	ND
Methyl Acetate	1.01	mg/kg	0.0025	ND
Methylcyclohexane	1.01	mg/kg	0.0025	ND
Methylene chloride	1.01	mg/kg	0.0025	ND
Methyl-t-butyl ether	1.01	mg/kg	0.00062	ND
o-Xylene	1.01	mg/kg	0.0012	ND
Styrene	1.01	mg/kg	0.0025	ND
Tetrachloroethene	1.01	mg/kg	0.0025	0.085
Toluene	1.01	mg/kg	0.0012	ND
trans-1,2-Dichloroethene	1.01	m g/kg	0.0025	ND
trans-1,3-Dichloropropene	1.01	m g /kg	0.0062	ND
Trichloroethene	1.01	mg/kg	0.0025	0.011
Trichlorofluoromethane	1.01	mg/kg	0.0025	ND
Vinyl chloride	1.01	mg/kg	0.0025	ND
Xylenes (Total)	1.01	mg/kg	0.0012	ND

Sample ID: MW-07 14-15 Lab#: AC59221-004

Matrix: Soil

Collection Date: 5/16/2011 Receipt Date: 5/20/2011

Result

RL

% Solids SM2540G

Analyte

Methylene chloride

Methyl-t-butyl ether

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes (Total)

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

o-Xylene

Styrene

Toluene

Volatile Organics (no search) 8260

Analyte	DF	Units	RL	Result	
% Solids	1	percent		78	

Units

DF

Analyte	DI	Ullita	IXE.	Nesuit
1,1,1-Trichloroethane	4.81	mg/kg	0.012	ND
1,1,2,2-Tetrachloroethane	4.81	mg/kg	0.031	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	4.81	mg/kg	0.012	ND
1,1,2-Trichloroethane	4.81	mg/kg	0.012	ND
1,1-Dichloroethane	4.81	mg/kg	0.012	ND
1,1-Dichloroethene	4.81	mg/kg	0.012	ND
1,2,4-Trichlorobenzene	4.81	mg/kg	0.012	ND
1,2-Dibromo-3-chloropropane	4.81	mg/kg	0.012	ND
1,2-Dibromoethane	4.81	mg/kg	0.012	ND
1,2-Dichlorobenzene	4.81	mg/kg	0.012	ND
1,2-Dichloroethane	4.81	mg/kg	0.012	ND
1,2-Dichloropropane	4.81	mg/kg	0.012	ND
1,3-Dichlorobenzene	4.81	mg/kg	0.012	ND
1,4-Dichlorobenzene	4.81	m g/ kg	0.012	ND
2-Butanone	4.81	mg/kg	0.031	ND
2-Hexanone	4.81	mg/kg	0.012	ND
4-Methyl-2-pentanone	4.81	mg/kg	0.012	ND
Acetone	4.81	mg/kg	0.15	ND
Benzene	4.81	mg/kg	0.0062	ND
Bromodichloromethane	4.81	mg/kg	0.012	ND
Bromoform	4.81	mg/kg	0.012	ND
Bromomethane	4.81	mg/kg	0.012	ND
Carbon disulfide	4.81	mg/kg	0.012	ND
Carbon tetrachloride	4.81	mg/kg	0.012	ND
Chlorobenzene	4.81	mg/kg	0.012	ND
Chloroethane	4.81	mg/kg	0.012	ND
Chloroform	4.81	mg/kg	0.012	ND
Chloromethane	4.81	mg/kg	0.012	ND
cis-1,2-Dichloroethene	4.81	mg/kg	0.012	0.018
cis-1,3-Dichloropropene	4.81	mg/kg	0.031	ND
Cyclohexane	4.81	mg/kg	0.012	ND
Dibromochloromethane	4.81	mg/kg	0.031	ND
Dichlorodifluoromethane	4.81	mg/kg	0.012	ND
Ethylbenzene	4.81	mg/kg	0.0062	ND
Isopropylbenzene	4.81	mg/kg	0.0062	ND
m&p-Xylenes	4.81	mg/kg	0.0062	ND
Methyl Acetate	4.81	mg/kg	0.012	ND
Methylcyclohexane	4.81	mg/kg	0.012	ND

4.81

4.81

4.81

4.81

4.81

4.81

4.81

4.81

4.81

4.81

4.81

4.81

mg/kg

0.012 0.0031

0.0062

0.012

0.012

0.0062

0.012

0.031

0.012

0.012

0.012

0.0062

ND

ND

ND ND

0.67

ND

ND

ND

ND

ND

ND

0.056

Sample ID: MW-08 11-12 Lab#: AC59221-005

Matrix: Soil

Collection Date: 5/17/2011

Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		64	

volatile	Organics	(no search) 8260	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1.02	mg/kg	0.0032	ND
1,1,2,2-Tetrachloroethane	1.02	mg/kg	0.0079	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1.02	mg/kg	0.0032	ND
1,1,2-Trichloroethane	1.02	mg/kg	0.0032	ND
1,1-Dichloroethane	1.02	mg/kg	0.0032	ND
1,1-Dichloroethene	1.02	mg/kg	0.0032	ND
1,2.4-Trichlorobenzene	1.02	mg/kg	0.0032	ND
1,2-Dibromo-3-chloropropane	1.02	mg/kg	0.0032	ND
1,2-Dibromoethane	1.02	mg/kg	0.0032	ND
1,2-Dichlorobenzene	1.02	mg/kg	0.0032	ND
1,2-Dichloroethane	1.02	mg/kg	0.0032	ND
1,2-Dichloropropane	1.02	mg/kg	0.0032	ND
1,3-Dichlorobenzene	1.02	mg/kg	0.0032	ND
1,4-Dichlorobenzene	1.02	mg/kg	0.0032	ND
2-Butanone	1.02	mg/kg	0.0079	0.048
2-Hexanone	1.02	mg/kg	0.0032	ND
4-Methyl-2-pentanone	1.02	mg/kg	0.0032	ND
Acetone	1.02	mg/kg	0.040	0.21
Benzene	1.02	mg/kg	0.0016	ND
Bromodichloromethane	1.02	mg/kg	0.0032	ND
Bromoform	1.02	mg/kg	0.0032	ND
Bromomethane	1.02	mg/kg	0.0032	ND
Carbon disulfide	1.02	mg/kg	0.0032	ND
Carbon tetrachloride	1.02	mg/kg	0.0032	ND
Chlorobenzene	1.02	mg/kg	0.0032	ND ND
Chloroethane	1.02	mg/kg	0.0032	ND
Chloroform	1.02	mg/kg	0.0032	ND
Chloromethane	1.02	mg/kg	0.0032	ND
cis-1,2-Dichloroethene	1.02	mg/kg	0.0032	0.043
· ·	1.02	mg/kg	0.0079	ND
cis-1,3-Dichloropropene	1.02		0.0079	ND
Cyclohexane Dibromochloromethane	1.02	mg/kg mg/kg	0.0032	ND
Dichlorodifluoromethane	1.02		0.0079	ND ND
	1.02	mg/kg	0.0032	ND
Ethylbenzene	1.02	mg/kg	0.0016	ND
Isopropylbenzene	1.02	mg/kg	0.0016	ND
m&p-Xylenes	1.02	mg/kg	0.0016	ND ND
Methyl Acetate		mg/kg	0.0032	ND ND
Methylcyclohexane	1.02	mg/kg		
Methylene chloride	1.02	mg/kg	0.0032	ND
Methyl-t-butyl ether	1.02	mg/kg	0.00079	ND
o-Xylene	1.02	mg/kg	0.0016	ND
Styrene	1.02	mg/kg	0.0032	ND
Tetrachloroethene	1.02	mg/kg	0.0032	ND ND
Toluene	1.02	mg/kg	0.0016	ND
trans-1,2-Dichloroethene	1.02	mg/kg	0.0032	ND
trans-1,3-Dichloropropene	1.02	mg/kg	0.0079	ND
Trichloroethene	1.02	mg/kg	0.0032	0.010
Trichlorofluoromethane	1.02	mg/kg	0.0032	ND
Vinyl chloride	1.02	mg/kg	0.0032	ND

Sample ID: MW-09 5-6 Lab#: AC59221-006

Matrix: Soil

Collection Date: 5/17/2011 Receipt Date: 5/20/2011

% Solids SM2540G

Analyte DF Units RL Result
% Solids 1 percent 81

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.996	mg/kg	0.0025	ND
1,1,2,2-Tetrachloroethane	0.996	mg/kg	0.0061	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.996	mg/kg	0.0025	ND
1,1,2-Trichloroethane	0.996	mg/kg	0.0025	ND
1,1-Dichloroethane	0.996	mg/kg	0.0025	ND
1,1-Dichloroethene	0.996	mg/kg	0.0025	ND
1,2,4-Trichlorobenzene	0.996	mg/kg	0.0025	ND
1,2-Dibromo-3-chloropropane	0.996	mg/kg	0.0025	ND
1,2-Dibromoethane	0.996	mg/kg	0.0025	ND
1,2-Dichlorobenzene	0.996	mg/kg	0.0025	ND
1,2-Dichloroethane	0.996	mg/kg	0.0025	ND
1,2-Dichloropropane	0.996	mg/kg	0.0025	ND
1,3-Dichlorobenzene	0.996	mg/kg	0.0025	ND
1,4-Dichlorobenzene	0.996	mg/kg	0.0025	ND
2-Butanone	0.996	mg/kg	0.0061	ND
2-Hexanone	0.996	mg/kg	0.0025	ND
4-Methyl-2-pentanone	0.996	mg/kg	0.0025	ND
Acetone	0.996	mg/kg	0.031	ND
Benzene	0.996	mg/kg	0.0012	ND
Bromodichloromethane	0.996	mg/kg	0.0025	ND
Bromoform	0.996	mg/kg	0.0025	ND
Bromomethane	0.996	mg/kg	0.0025	ND
Carbon disulfide	0.996	mg/kg	0.0025	ND
	0.996	mg/kg	0.0025	ND
Carbon tetrachloride Chlorobenzene	0.996	mg/kg	0.0025	ND ND
	0.996		0.0025	ND
Chloroethane	0.996	mg/kg	0.0025	ND
Chloroform	0.996	mg/kg	0.0025	ND ND
Chloromethane	0.996	mg/kg	0.0025	ND ND
cis-1,2-Dichloroethene	0.996	mg/kg	0.0023	ND ND
cis-1,3-Dichloropropene		mg/kg		ND ND
Cyclohexane	0.996	mg/kg	0.0025	
Dibromochloromethane	0.996	mg/kg	0.0061	ND ND
Dichlorodifluoromethane	0.996	mg/kg	0.0025	
Ethylbenzene	0.996	mg/kg	0.0012	ND
Isopropylbenzene	0.996	mg/kg	0.0012	ND
m&p-Xylenes	0.996	mg/kg	0.0012	ND
Methyl Acetate	0.996	mg/kg	0.0025	ND
Methylcyclohexane	0.996	mg/kg	0.0025	ND
Methylene chloride	0.996	mg/kg	0.0025	ND
Methyl-t-butyl ether	0.996	mg/kg	0.00061	ND
o-Xylene	0.996	mg/kg	0.0012	ND
Styrene	0,996	mg/kg	0.0025	ND
Tetrachloroethene	0.996	mg/kg	0.0025	ND
Toluene	0.996	mg/kg	0.0012	ND
trans-1,2-Dichloroethene	0.996	mg/kg	0.0025	ND
trans-1,3-Dichloropropene	0.996	mg/kg	0.0061	ND
Trichloroethene	0.996	mg/kg	0.0025	ND
Trichlorofluoromethane	0.996	mg/kg	0.0025	ND
Vinyl chloride	0.996	mg/kg	0.0025	ND

Sample ID: MW-09 6-7

Lab#: AC59221-007

Matrix: Soil

Collection Date: 5/17/2011 Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		83

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.98	mg/kg	0.0024	ND
1,1,2,2-Tetrachloroethane	0.98	mg/kg	0.0059	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.98	mg/kg	0.0024	ND
1,1,2-Trichloroethane	0.98	mg/kg	0.0024	ND
1,1-Dichloroethane	0.98	mg/kg	0.0024	ND
1,1-Dichloroethene	0.98	mg/kg	0.0024	ND
1,2,4-Trichlorobenzene	0.98	mg/kg	0.0024	ND
1,2-Dibromo-3-chloropropane	0.98	mg/kg	0.0024	ND
1,2-Dibromoethane	0.98	mg/kg	0.0024	ND
1,2-Dichlorobenzene	0.98	mg/kg	0.0024	ND
1,2-Dichloroethane	0.98	mg/kg	0.0024	ND
1,2-Dichloropropane	0.98	mg/kg	0.0024	ND
1,3-Dichlorobenzene	0.98	mg/kg	0.0024	ND
1,4-Dichlorobenzene	0.98	mg/kg	0.0024	ND
2-Butanone	0.98	mg/kg	0.0059	ND
2-Hexanone	0.98	mg/kg	0.0024	ND
4-Methyl-2-pentanone	0.98	mg/kg	0.0024	ND
Acetone	0.98	mg/kg	0.030	ND
Benzene	0.98	mg/kg	0.0012	ND
Bromodichloromethane	0.98	mg/kg	0.0024	ND
Bromoform	0.98	mg/kg	0.0024	ND
Bromomethane	0.98	mg/kg	0.0024	ND
Carbon disulfide	0.98	mg/kg	0.0024	ND
Carbon tetrachloride	0.98	mg/kg	0.0024	ND
Chlorobenzene	0.98	mg/kg	0.0024	ND ND
Chloroethane	0.98	mg/kg	0.0024	ND
Chloroform	0.98	mg/kg	0.0024	ND
Chloromethane	0.98	mg/kg	0.0024	ND
cis-1,2-Dichloroethene	0.98	mg/kg	0.0024	ND
cis-1,3-Dichloropropene	0.98	mg/kg	0.0059	ND
	0.98	mg/kg	0.0039	ND
Cyclohexane Dibromochloromethane	0.98		0.0059	ND
	0.98	mg/kg	0.0039	ND ND
Dichlorodifluoromethane	0.98	mg/kg		
Ethylbenzene		mg/kg	0.0012	ND ND
Isopropylbenzene	0.98	mg/kg	0.0012	
m&p-Xylenes	0.98	mg/kg	0.0012	ND
Methyl Acetate	0.98	mg/kg	0.0024	ND
Methylcyclohexane	0.98	mg/kg	0.0024	ND
Methylene chloride	0.98	mg/kg	0.0024	ND
Methyl-t-butyl ether	0.98	mg/kg	0.00059	ND
o-Xylene	0.98	mg/kg 	0.0012	ND
Styrene	0.98	mg/kg	0.0024	ND
Tetrachloroethene	0.98	mg/kg	0.0024	ND
Toluene	0.98	mg/kg	0.0012	ND
trans-1,2-Dichloroethene	0.98	mg/kg	0.0024	ND
trans-1,3-Dichloropropene	0.98	mg/kg	0.0059	ND
Trichloroethene	0.98	mg/kg	0.0024	ND
Trichlorofluoromethane	0.98	mg/kg	0.0024	ND
Vinyl chloride	0.98	mg/kg	0.0024	ND

Sample ID: MW-10 7-8 Lab#: AC59221-008

Matrix: Soil

Collection Date: 5/18/2011 Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		75	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.99	mg/kg	0.0026	ND
1,1,2,2-Tetrachloroethane	0.99	mg/kg	0.0066	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.99	mg/kg	0.0026	ND
1,1,2-Trichloroethane	0.99	mg/kg	0.0026	ND
1,1-Dichloroethane	0.99	mg/kg	0.0026	ND
1,1-Dichloroethene	0,99	mg/kg	0.0026	ND
1,2,4-Trichlorobenzene	0,99	mg/kg	0.0026	ND
1,2-Dibromo-3-chloropropane	0.99	mg/kg	0.0026	ND
1,2-Dibromoethane	0.99	mg/kg	0.0026	ND
1,2-Dichlorobenzene	0.99	mg/kg	0.0026	ND
1,2-Dichloroethane	0.99	mg/kg	0.0026	ND
1,2-Dichloropropane	0.99	mg/kg	0.0026	ND
1,3-Dichlorobenzene	0.99	mg/kg	0.0026	ND
1,4-Dichlorobenzene	0.99	mg/kg	0.0026	ND
2-Butanone	0.99	mg/kg	0.0066	ND
2-Hexanone	0.99	mg/kg	0.0026	ND
4-Methyl-2-pentanone	0.99	mg/kg	0.0026	ND
Acetone	0.99	mg/kg	0.033	ND
Benzene	0.99	mg/kg	0.0013	ND
Bromodichloromethane	0.99	mg/kg	0.0026	ND
Bromoform	0.99	mg/kg	0.0026	ND
Bromomethane	0.99	mg/kg	0.0026	ND
Carbon disulfide	0.99	mg/kg	0.0026	ND
Carbon tetrachloride	0.99	mg/kg	0.0026	ND
Chlorobenzene	0.99	mg/kg	0.0026	ND
Chloroethane	0.99	mg/kg	0.0026	ND
Chloroform	0.99	mg/kg	0.0026	ND
Chloromethane	0.99	mg/kg	0.0026	ND
	0.99	mg/kg	0.0026	ND
cis-1,2-Dichloroethene	0.99		0.0066	ND
cis-1,3-Dichloropropene	0.99	mg/kg mg/kg	0.0026	ND
Cyclohexane	0.99		0.0026	ND
Dibromochloromethane	0.99	mg/kg	0.0026	ND ND
Dichlorodifluoromethane		mg/kg	0.0028	ND
Ethylbenzene	0.99	mg/kg	0.0013	ND
Isopropylbenzene	0.99	mg/kg		
m&p-Xylenes	0.99	mg/kg	0.0013	ND ND
Methyl Acetate	0.99	mg/kg	0.0026	ND ND
Methylcyclohexane	0.99	mg/kg	0.0026	
Methylene chloride	0.99	mg/kg	0.0026	ND
Methyl-t-butyl ether	0.99	mg/kg	0.00066	ND
o-Xylene	0.99	mg/kg	0.0013	ND
Styrene	0.99	mg/kg	0.0026	ND
Tetrachloroethene 	0.99	mg/kg	0.0026	ND
Toluene	0.99	mg/kg	0.0013	ND
trans-1,2-Dichloroethene	0.99	mg/kg	0.0026	ND
trans-1,3-Dichloropropene	0.99	mg/kg	0.0066	ND
Trichloroethene	0.99	mg/kg	0.0026	ND
Trichlorofluoromethane	0.99	mg/kg	0.0026	ND

Sample ID: MW-11 5-6 Lab#: AC59221-009

Matrix: Soil

Collection Date: 5/18/2011 Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		90

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.984	mg/kg	0.0022	ND
1,1,2,2-Tetrachloroethane	0.984	mg/kg	0.0055	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.984	mg/kg	0.0022	ND
1,1,2-Trichloroethane	0.984	mg/kg	0.0022	ND
1,1-Dichloroethane	0.984	mg/kg	0.0022	ND
1,1-Dichloroethene	0.984	mg/kg	0.0022	ND
1,2,4-Trichlorobenzene	0.984	mg/kg	0.0022	ND
1,2-Dibromo-3-chloropropane	0.984	mg/kg	0.0022	ND
1,2-Dibromoethane	0.984	mg/kg	0.0022	ND
1,2-Dichlorobenzene	0.984	mg/kg	0.0022	ND
1,2-Dichloroethane	0.984	mg/kg	0.0022	ND
1,2-Dichloropropane	0.984	mg/kg	0.0022	ND
1,3-Dichlorobenzene	0.984	mg/kg	0.0022	ND
1,4-Dichlorobenzene	0.984	mg/kg	0.0022	ND
2-Butanone	0.984	mg/kg	0.0055	ND
2-Hexanone	0.984	mg/kg	0.0022	ND
4-Methyl-2-pentanone	0.984	mg/kg	0.0022	ND
Acetone	0.984	mg/kg	0.027	ND
Benzene	0.984	mg/kg	0.0011	ND
Bromodichloromethane	0.984	mg/kg	0.0022	ND
Bromoform	0.984	mg/kg	0.0022	ND ND
Bromomethane	0.984	mg/kg	0.0022	ND
Carbon disulfide	0.984	mg/kg	0.0022	ND
Carbon tetrachloride	0.984	mg/kg	0.0022	ND
Chlorobenzene	0.984	mg/kg	0.0022	ND ND
Chloroethane	0.984	mg/kg	0.0022	ND
Chloroform	0.984	mg/kg	0.0022	ND
Chloromethane	0.984	mg/kg	0.0022	ND
cis-1,2-Dichloroethene	0.984	mg/kg	0.0022	ND ND
cis-1,3-Dichloropropene	0.984	mg/kg	0.0055	ND
Cyclohexane	0.984	mg/kg	0.0022	ND
Dibromochloromethane	0.984	mg/kg	0.0022	ND
Dichlorodifluoromethane	0.984	mg/kg	0.0022	ND
Ethylbenzene	0.984	mg/kg	0.0022	ND
Isopropylbenzene	0.984	mg/kg	0.0011	ND
m&p-Xylenes	0.984	mg/kg	0.0011	ND
Methyl Acetate	0.984	mg/kg	0.0022	ND
Methylcyclohexane	0.984	mg/kg	0.0022	ND
Methylene chloride	0.984	mg/kg	0.0022	ND
Methylete chloride Methyl-t-butyl ether	0.984	mg/kg	0.0022	ND ND
o-Xylene	0.984	mg/kg	0.00033	ND ND
Styrene	0.984	mg/kg	0.0022	ND
Tetrachloroethene	0.984	mg/kg	0.0022	0.0047
Tetrachioroethene Toluene	0.984	mg/kg	0.0022	0.0047 ND
trans-1,2-Dichloroethene	0.984	mg/kg	0.0022	ND ND
	0.984	= -	0.0022	ND ND
trans-1,3-Dichloropropene Trichloroethene	0.984	mg/kg mg/kg	0.0055	ND ND
	0.984		0.0022	ND ND
Trichlorofluoromethane		mg/kg		
Vinyl chloride	0.984	mg/kg	0.0022	ND
Xylenes (Total)	0.984	mg/kg	0.0011	ND

Sample ID: MW-11 13-14 Lab#: AC59221-010

Matrix: Soil

Collection Date: 5/18/2011

Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		76	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.992	mg/kg	0.0026	ND
1,1,2,2-Tetrachloroethane	0.992	mg/kg	0.0065	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.992	mg/kg	0.0026	ND
1,1,2-Trichloroethane	0.992	rng/kg	0.0026	ND
1,1-Dichloroethane	0.992	mg/kg	0.0026	ND
1,1-Dichloroethene	0.992	mg/kg	0.0026	ND
1,2,4-Trichlorobenzene	0.992	mg/kg	0.0026	ND
1,2-Dibromo-3-chloropropane	0.992	mg/kg	0.0026	ND
1,2-Dibromoethane	0.992	mg/kg	0.0026	ND
1,2-Dichlorobenzene	0.992	mg/kg	0.0026	ND
1,2-Dichloroethane	0.992	mg/kg	0.0026	ND
1,2-Dichloropropane	0.992	mg/kg	0.0026	ND
1,3-Dichlorobenzene	0.992	mg/kg	0.0026	ND
1,4-Dichlorobenzene	0.992	mg/kg	0.0026	ND
2-Butanone	0.992	mg/kg	0.0065	ND
2-Hexanone	0.992	mg/kg	0.0026	ND
4-Methyl-2-pentanone	0.992	mg/kg	0.0026	ND
Acetone	0.992	mg/kg	0.033	ND
Benzene	0.992	mg/kg	0.0013	ND
Bromodichloromethane	0.992	mg/kg	0.0026	ND
Bromoform	0.992	mg/kg	0.0026	ND
Bromomethane	0.992	mg/kg	0.0026	ND
Carbon disulfide	0.992	mg/kg	0.0026	ND
Carbon tetrachloride	0.992	mg/kg	0.0026	ND
Chlorobenzene	0.992	mg/kg	0.0026	ND
Chloroethane	0.992	mg/kg	0.0026	ND
Chloroform	0.992	mg/kg	0.0026	ND
Chloromethane	0.992	mg/kg	0.0026	ND
cis-1,2-Dichloroethene	0.992	mg/kg	0.0026	ND
cis-1,3-Dichloropropene	0.992	mg/kg	0.0065	ND
Cyclohexane	0.992	mg/kg	0.0026	ND
Dibromochloromethane	0.992	mg/kg	0.0065	ND
Dichlorodifluoromethane	0.992	mg/kg	0.0026	ND
Ethylbenzene	0.992	mg/kg	0.0013	ND
Isopropylbenzene	0.992	mg/kg	0.0013	ND
m&p-Xylenes	0.992	mg/kg	0.0013	ND
Methyl Acetate	0.992	mg/kg	0.0026	ND .
Methylcyclohexane	0.992	mg/kg	0.0026	ND
Methylene chloride	0.992	mg/kg	0.0026	ND
Methyl-t-butyl ether	0.992	mg/kg	0.00065	ND
o-Xylene	0.992	mg/kg	0.0013	ND
Styrene	0.992	mg/kg	0.0026	ND
Tetrachloroethene	0.992	mg/kg	0.0026	ND
Toluene	0.992	mg/kg	0.0020	ND
trans-1,2-Dichloroethene	0.992	mg/kg	0.0013	ND ND
,	0.992	mg/kg	0.0026	ND ND
trans-1,3-Dichloropropene Trichloroethene	0.992	mg/kg mg/kg	0.0026	ND ND
Trichloroetnene Trichlorofluoromethane	0.992	mg/kg	0.0026	ND
Vinyl chloride	0.992	mg/kg	0.0026	ND
		HILLIAG	U.UUZD	(AD

Sample ID: MW-11 13-14 MS

Lab#: AC59221-011

Matrix: Soil

Collection Date: 5/18/2011

Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		86
				•

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.96	mg/kg	0.0022	0.037
1,1,2,2-Tetrachloroethane	0.96	mg/kg	0.0056	0.039
1,1,2-Trichloro-1,2,2-trifluoroethane	0.96	mg/kg	0.0022	0.041
1,1,2-Trichloroethane	0.96	mg/kg	0.0022	0.033
1,1-Dichloroethane	0.96	mg/kg	0.0022	0.031
1,1-Dichloroethene	0.96	mg/kg	0.0022	0.027
1,2,4-Trichlorobenzene	0.96	mg/kg	0.0022	0.0032
1,2-Dibromo-3-chloropropane	0.96	mg/kg	0.0022	0.019
1,2-Dibromoethane	0.96	mg/kg	0.0022	0.018
1,2-Dichlorobenzene	0.96	mg/kg	0.0022	0.010
1,2-Dichloroethane	0.96	mg/kg	0.0022	0.028
1,2-Dichloropropane	0.96	mg/kg	0.0022	0.030
1,3-Dichlorobenzene	0.96	mg/kg	0.0022	0.0084
1,4-Dichlorobenzene	0.96	mg/kg	0.0022	0.0071
2-Butanone	0.96	mg/kg	0.0056	0.043
2-Hexanone	0.96	mg/kg	0.0022	0.021
4-Methyl-2-pentanone	0.96	mg/kg	0.0022	0.040
Acetone	0.96	mg/kg	0.028	0.21
Benzene	0.96	mg/kg	0.0011	0.030
Bromodichloromethane	0.96	mg/kg	0.0022	0.025
Bromoform	0.96	mg/kg	0.0022	0.029
Bromomethane	0.96	mg/kg	0.0022	0.035
Carbon disulfide	0.96	mg/kg	0.0022	0.022
Carbon tetrachloride	0.96	mg/kg	0.0022	0.037
Chlorobenzene	0.96	mg/kg	0.0022	0.016
Chloroethane	0.96	mg/kg	0.0022	0.034
Chloroform	0.96	mg/kg	0.0022	0.033
Chloromethane	0.96	mg/kg	0.0022	0.028
cis-1,2-Dichloroethene	0.96	mg/kg	0.0022	0.028
cis-1,3-Dichloropropene	0.96	mg/kg	0.0056	0.018
Cyclohexane	0.96	mg/kg	0.0022	0.033
Dibromochloromethane	0.96	mg/kg	0.0056	0.028
Dichlorodifluoromethane	0.96	mg/kg	0.0022	0.022
Ethylbenzene	0.96	mg/kg	0.0011	0.025
Isopropylbenzene	0.96	mg/kg	0.0011	0.029
	0.96	mg/kg	0.0011	0.045
m&p-Xylenes Methyl Acetate	0.96	mg/kg	0.0022	0.032
•	0.96	mg/kg	0.0022	0.032
Methylcyclohexane	0.96		0.0022	0.033
Methylene chloride	0.96	mg/kg	0.0022	0.035
Methyl-t-butyl ether	0.96	mg/kg	0.00056	0.035
o-Xylene		mg/kg		
Styrene	0.96	mg/kg	0.0022	0.013
Tetrachloroethene	0.96	mg/kg	0.0022	0.024
Toluene	0.96	mg/kg	0.0011	0.024
trans-1,2-Dichloroethene	0.96	mg/kg	0.0022	0.024
trans-1,3-Dichloropropene	0.96	mg/kg	0.0056	0.011
Trichloroethene	0.96	mg/kg	0.0022	0.019
Trichlorofluoromethane Vinyl chloride	0.96	mg/kg	0.0022	0.033
	0.96	mg/kg	0.0022	0.033

Sample ID: MW-11 13-14 MSD

Lab#: AC59221-012

Matrix: Soil

Collection Date: 5/18/2011

Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		84	
Volatile Organics (no search) 8260					
Analyte	DF	Units	RL	Result	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	mg/kg	0.0024	0.047
1,1,2,2-Tetrachloroethane	1	mg/kg	0.0060	0.056
1,1,2-Trichloro-1,2,2-trifluoroethane	1	mg/kg	0.0024	0.050
1,1,2-Trichloroethane	1	mg/kg	0.0024	0.054
1,1-Dichloroethane	1	mg/kg	0.0024	0.043
1,1-Dichloroethene	1	mg/kg	0.0024	0.040
1,2,4-Trichlorobenzene	1	mg/kg	0.0024	0.0070
1,2-Dibromo-3-chloropropane	1	mg/kg	0.0024	0.038
1,2-Dibromoethane	1	mg/kg	0.0024	0.039
1,2-Dichlorobenzene	1	mg/kg	0.0024	0.021
1,2-Dichloroethane	1	mg/kg	0.0024	0.043
1,2-Dichloropropane	1	mg/kg	0.0024	0.042
1,3-Dichlorobenzene	1	mg/kg	0.0024	0,016
1.4-Dichlorobenzene	1	mg/kg	0.0024	0.015
2-Butanone	1	mg/kg	0,0060	0,058
2-Hexanone	1	mg/kg	0,0024	0,048
4-Methyl-2-pentanone	1	mg/kg	0.0024	0.063
Acetone	1	mg/kg	0.030	0.29
Benzene	1	mg/kg	0.0012	0.042
Bromodichloromethane	1	mg/kg	0.0012	0.036
Bromoform	1	mg/kg	0.0024	0.045
Bromomethane	1		0.0024	0.044
Carbon disulfide	1	mg/kg	0.0024	0.034
	1	mg/kg		
Carbon tetrachloride		mg/kg	0.0024	0.046
Chlorobenzene	1	mg/kg	0.0024	0.032
Chloroethane	1	mg/kg 	0.0024	0.046
Chloroform	1	mg/kg 	0.0024	0.043
Chloromethane	1	mg/kg	0.0024	0.035
cis-1,2-Dichloroethene	1	mg/kg	0,0024	0,044
cis-1,3-Dichloropropene	1	mg/kg	0.0060	0.033
Cyclohexane	1	mg/kg	0.0024	0.043
Dibromochloromethane	1	mg/kg	0.0060	0.046
Dichlorodifluoromethane	1	mg/kg	0.0024	0.028
Ethylbenzene	1	mg/kg	0.0012	0.038
Isopropylbenzene	1	mg/kg	0.0012	0.041
m&p-Xylenes	11	mg/kg	0.0012	0.071
Methyl Acetate	1	mg/kg	0.0024	0.042
Methylcyclohexane	1	mg/kg	0.0024	0.043
Methylene chloride	1	mg/kg	0.0024	0.046
Methyl-t-butyl ether	1	mg/kg	0.00060	0.046
o-Xylene	1	mg/kg	0.0012	0.041
Styrene	1	mg/kg	0.0024	0.025
Tetrachloroethene	1	mg/kg	0.0024	0.043
Toluene	1	mg/kg	0.0012	0.042
trans-1,2-Dichloroethene	1	mg/kg	0.0024	0.037
trans-1,3-Dichloropropene	1	mg/kg	0.0060	0.025
Trichloroethene	1	mg/kg	0.0024	0.033
Trichlorofluoromethane	1	mg/kg	0.0024	0.041
Vinyl chloride	1	mg/kg	0.0024	0.045
Xylenes (Total)	1	mg/kg	0.0012	0.112

Sample ID: Duplicate Lab#: AC59221-013

Matrix: Soil

Collection Date: 5/18/2011 Receipt Date: 5/20/2011

% Solids SM2540G

Analyte	DF		RL	Result
% Solids	1	percent		87

Volat	ile Or	ganics	(no search	า) 8260
-------	--------	--------	------------	---------

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.938	mg/kg	0.0022	ND
1,1,2,2-Tetrachloroethane	0.938	mg/kg	0.0054	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.938	mg/kg	0.0022	ND
1,1,2-Trichloroethane	0.938	mg/kg	0.0022	ND
1,1-Dichloroethane	0.938	mg/kg	0.0022	ND
1,1-Dichloroethene	0.938	mg/kg	0.0022	ND
1,2,4-Trichlorobenzene	0.938	mg/kg	0.0022	ND
1,2-Dibromo-3-chloropropane	0.938	mg/kg	0.0022	ND
1,2-Dibromoethane	0.938	mg/kg	0.0022	ND
1,2-Dichlorobenzene	0.938	mg/kg	0.0022	ND
1,2-Dichloroethane	0.938	mg/kg	0.0022	ND
1,2-Dichloropropane	0.938	mg/kg	0.0022	ND
1,3-Dichlorobenzene	0.938	mg/kg	0.0022	ND
1,4-Dichlorobenzene	0.938	mg/kg	0.0022	ND
2-Butanone	0.938	mg/kg	0.0054	ND
2-Hexanone	0.938	mg/kg	0.0022	ND
4-Methyl-2-pentanone	0.938	mg/kg	0.0022	ND
Acetone	0.938	mg/kg	0.027	ND
Benzene	0.938	mg/kg	0.0011	ND
Bromodichloromethane	0.938	mg/kg	0.0022	ND
Bromoform	0.938	mg/kg	0.0022	ND ND
Bromomethane	0.938	mg/kg	0.0022	ND
Carbon disulfide	0.938		0.0022	ND ND
Carbon disullide Carbon tetrachloride	0.938	mg/kg	0.0022	ND
	0.938	mg/kg	0.0022	ND
Chlorobenzene		mg/kg		
Chloroethane	0.938	mg/kg	0.0022	ND
Chloroform	0.938	mg/kg	0.0022	ND
Chloromethane	0.938	mg/kg	0.0022	ND ND
cis-1,2-Dichloroethene	0.938	mg/kg	0.0022	ND
cis-1,3-Dichloropropene	0.938	mg/kg	0.0054	ND
Cyclohexane	0.938	mg/kg	0.0022	ND
Dibromochloromethane	0.938	mg/kg	0.0054	ND
Dichlorodifluoromethane	0.938	mg/kg	0.0022	ND
Ethylbenzene	0.938	mg/kg	0.0011	ND
Isopropylbenzene	0.938	mg/kg	0.0011	ND
m&p-Xylenes	0.938	mg/kg	0.0011	ND
Methyl Acetate	0.938	mg/kg	0.0022	ND
Methylcyclohexane	0,938	mg/kg	0.0022	ND
Methylene chloride	0.938	mg/kg	0.0022	ND
Methyl-t-butyl ether	0.938	mg/kg	0.00054	ND
o-Xylene	0.938	mg/kg	0.0011	ND
Styrene	0.938	mg/kg	0.0022	ND
Tetrachloroethene	0.938	mg/kg	0.0022	ND
Toluene	0.938	mg/kg	0.0011	ND
trans-1,2-Dichloroethene	0.938	mg/kg	0.0022	ND
trans-1,3-Dichloropropene	0.938	mg/kg	0.0054	ND
Trichloroethene	0.938	mg/kg	0.0022	ND
Trichlorofluoromethane	0.938	mg/kg	0.0022	ND
Vinyl chloride	0.938	mg/kg	0.0022	ND
Xylenes (Total)	0.938	mg/kg	0.0011	ND

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-001

Client Id: MW-06 4-5 Data File: 1M68777.D

Analysis Date: 05/26/11 17:10 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.06g Final Vol: NA

Dilution: 0.988

Solids: 87

Units: mg/Kg

			• • • • • • • • • • • • • • • • • • • •				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0023	U	75-00-3	Chloroethane	0.0023	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0057	U	67-66-3	Chloroform	0.0023	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0023	U	74-87-3	Chloromethane	0.0023	U
79-00-5	1,1,2-Trichloroethane	0.0023	U	156-59-2	cis-1,2-Dichloroethene	0.0023	U
75-34-3	1,1-Dichloroethane	0.0023	U	10061-01-5	cis-1,3-Dichloropropene	0.0057	U
75-35-4	1,1-Dichloroethene	0.0023	U	110-82-7	Cyclohexane	0.0023	U
120-82-1	1,2,4-Trichlorobenzene	0.0023	U	124-48-1	Dibromochloromethane	0.0057	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0023	U	75-71-8	Dichlorodifluoromethane	0.0023	U
106-93-4	1,2-Dibromoethane	0.0023	U	100-41-4	Ethylbenzene	0.0011	U
95-50-1	1,2-Dichlorobenzene	0.0023	U	98-82-8	Isopropylbenzene	0.0011	U
107-06-2	1,2-Dichloroethane	0.0023	U	136777612	m&p-Xylenes	0.0011	U
78-87-5	1,2-Dichloropropane	0.0023	U	79-20-9	Methyl Acetate	0.0023	U
541-73-1	1,3-Dichlorobenzene	0.0023	U	108-87-2	Methylcyclohexane	0.0023	U
106-46-7	1,4-Dichlorobenzene	0.0023	U	75-09-2	Methylene Chloride	0.0023	U
78-93-3	2-Butanone	0.0057	U	1634-04-4	Methyl-t-butyl ether	0.00057	U
591-78-6	2-Hexanone	0.0023	U	95-47-6	o-Xylene	0.0011	U
108-10-1	4-Methyl-2-Pentanone	0.0023	U	100-42-5	Styrene	0.0023	U
67-64-1	Acetone	0.028	U	127-18-4	Tetrachloroethene	0.0023	0.041
71-43-2	Benzene	0.0011	U	108-88-3	Toluene	0.0011	U
75-27-4	Bromodichloromethane	0.0023	U	156-60-5	trans-1,2-Dichloroethene	0.0023	U
75-25-2	Bromoform	0.0023	U	10061-02-6	trans-1,3-Dichloropropene	0.0057	U
74-83-9	Bromomethane	0.0023	U	79-01-6	Trichloroethene	0.0023	U
75-15-0	Carbon Disulfide	0.0023	U	75-69-4	Trichlorofluoromethane	0.0023	U
56-23-5	Carbon Tetrachloride	0.0023	U	75-01-4	Vinyl Chloride	0.0023	U
108-90-7	Chlorobenzene	0.0023	U	1330-20-7	Xylenes (Total)	0.0011	U
				t .			

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0.041

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-002(5X)

Client Id: MW-06 10-11 Data File: 1M68825.D

Analysis Date: 05/27/11 10:38 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 1.03g Final Vol: NA

Dilution: 4.85 Solids: 85

Units: mg/Kg

	Units: ing/kg									
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	0.011	U	75-00-3	Chloroethane	0.011	U			
79-34-5	1,1,2,2-Tetrachloroethane	0.029	U	67-66-3	Chloroform	0.011	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.011	U	74-87-3	Chloromethane	0.011	U			
79-00-5	1,1,2-Trichloroethane	0.011	U	156-59-2	cis-1,2-Dichloroethene	0.011	U			
75-34-3	1,1-Dichloroethane	0.011	U	10061-01-5	cis-1,3-Dichloropropene	0.029	U			
75-35-4	1,1-Dichloroethene	0.011	U	110-82-7	Cyclohexane	0.011	U			
120-82-1	1,2,4-Trichlorobenzene	0.011	U	124-48-1	Dibromochloromethane	0.029	U			
96-12-8	1,2-Dibromo-3-Chloropropa	0.011	U	75-71-8	Dichlorodifluoromethane	0.011	U			
106-93-4	1,2-Dibromoethane	0.011	U	100-41-4	Ethylbenzene	0.0057	U			
95-50-1	1,2-Dichlorobenzene	0.011	U	98-82-8	Isopropylbenzene	0.0057	U			
107-06-2	1,2-Dichloroethane	0.011	U	136777612	m&p-Xylenes	0.0057	U			
78-87-5	1,2-Dichloropropane	0.011	U	79-20-9	Methyl Acetate	0.011	U			
541-73-1	1,3-Dichlorobenzene	0.011	U	108-87-2	Methylcyclohexane	0.011	U			
106-46-7	1,4-Dichlorobenzene	0.011	U	75-09-2	Methylene Chloride	0.011	U			
78-93-3	2-Butanone	0.029	U	1634-04-4	Methyl-t-butyl ether	0.0029	U			
591-78-6	2-Hexanone	0.011	U	95-47-6	o-Xylene	0.0057	U			
108-10-1	4-Methyl-2-Pentanone	0.011	U	100-42-5	Styrene	0.011	U			
67-64-1	Acetone	0.14	U	127-18-4	Tetrachloroethene	0.011	0.70			
71-43-2	Benzene	0.0057	U	108-88-3	Toluene	0.0057	U			
75-27-4	Bromodichloromethane	0.011	U	156-60-5	trans-1,2-Dichloroethene	0.011	U			
75-25-2	Bromoform	0.011	U	10061-02-6	trans-1,3-Dichloropropene	0.029	U			
74-83-9	Bromomethane	0.011	U	79-01-6	Trichloroethene	0.011	0.043			
75-15-0	Carbon Disulfide	0.011	U	75-69-4	Trichlorofluoromethane	0.011	U			
56-23-5	Carbon Tetrachloride	0.011	·U	75-01-4	Vinyl Chloride	0.011	U			
108-90-7	Chlorobenzene	0.011	U	1330-20-7	Xylenes (Total)	0.0057	U			

Worksheet #: 192369

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

^{0.74}R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-003

Client Id: MW-07 6-7 Data File: 1M68779.D

Analysis Date: 05/26/11 17:44

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 4.96g

Final Vol: NA

Dilution: 1.01

Solids: 81

Units: mg/Kg

			Ullits. II	ig/Ng			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0025	U	75-00-3	Chloroethane	0.0025	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0062	U	67 - 66-3	Chloroform	0.0025	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025	U	74-87-3	Chloromethane	0.0025	U
79-00-5	1,1,2-Trichloroethane	0.0025	U	156-59-2	cis-1,2-Dichloroethene	0.0025	U
75-34-3	1,1-Dichloroethane	0.0025	U	10061-01-5	cis-1,3-Dichloropropene	0.0062	U
75-35-4	1,1-Dichloroethene	0.0025	U	110-82-7	Cyclohexane	0.0025	U
120-82-1	1,2,4-Trichlorobenzene	0.0025	U	124-48-1	Dibromochloromethane	0.0062	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025	U	75-71-8	Dichlorodifluoromethane	0.0025	U
106-93-4	1,2-Dibromoethane	0.0025	U	100-41-4	Ethylbenzene	0.0012	U
95-50-1	1,2-Dichlorobenzene	0.0025	U	98-82-8	Isopropylbenzene	0.0012	U
107-06-2	1,2-Dichloroethane	0.0025	U	136777612	m&p-Xylenes	0.0012	U
78-87-5	1,2-Dichloropropane	0.0025	U	79-20-9	Methyl Acetate	0.0025	U
541-73-1	1,3-Dichlorobenzene	0.0025	U	108-87-2	Methylcyclohexane	0.0025	U
106-46-7	1,4-Dichlorobenzene	0.0025	U	75-09-2	Methylene Chloride	0.0025	U
78-93-3	2-Butanone	0.0062	U	1634-04-4	Methyl-t-butyl ether	0.00062	U
59178-6	2-Hexanone	0.0025	U	95-47-6	o-Xylene	0.0012	U
108-10-1	4-Methyl-2-Pentanone	0.0025	U	100-42-5	Styrene	0.0025	U
67-64-1	Acetone	0.031	U	127-18-4	Tetrachloroethene	0.0025	0.085
71-43-2	Benzene	0.0012	U	108-88-3	Toluene	0.0012	U
75-27-4	Bromodichloromethane	0.0025	U	156-60-5	trans-1,2-Dichloroethene	0.0025	U
75-25-2	Bromoform	0.0025	U	10061-02-6	trans-1,3-Dichloropropene	0.0062	U
74-83-9	Bromomethane	0.0025	U	79-01-6	Trichloroethene	0.0025	0.011
75-15-0	Carbon Disulfide	0.0025	U	75-69-4	Trichlorofluoromethane	0.0025	U
56-23-5	Carbon Tetrachloride	0.0025	U	75-01-4	Vinyl Chloride	0.0025	U
108-90-7	Chlorobenzene	0.0025	U	1330-20-7	Xylenes (Total)	0.0012	U
74-83-9 75-15-0 56-23-5	Bromomethane Carbon Disulfide Carbon Tetrachloride	0.0025 0.0025 0.0025	U U	79-01-6 75-69-4 75-01-4	Trichloroethene Trichlorofluoromethane Vinyl Chloride	0.0025 0.0025 0.0025	

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0.096

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $[\]it J$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-004(5X)

Client Id: MW-07 14-15 Data File: 1M68826.D Analysis Date: 05/27/11 10:55

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 1.04g Final Vol: NA

Dilution: 4.81 Solids: 78

Units: ma/Ka

			Units. I	iig/iNg			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.012	U	75-00-3	Chloroethane	0.012	U
79-34-5	1,1,2,2-Tetrachloroethane	0.031	U	67-66-3	Chloroform	0.012	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.012	υ	74-87-3	Chloromethane	0.012	U
79-00-5	1,1,2-Trichloroethane	0.012	υ	156-59-2	cis-1,2-Dichloroethene	0.012	0.018
75-34-3	1,1-Dichloroethane	0.012	υ	10061-01-5	cis-1,3-Dichloropropene	0.031	U
75-35-4	1,1-Dichloroethene	0.012	U	110-82-7	Cyclohexane	0.012	U
120-82-1	1,2,4-Trichlorobenzene	0.012	U	124-48-1	Dibromochloromethane	0.031	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.012	U	75-71-8	Dichlorodifluoromethane	0.012	U
106-93-4	1,2-Dibromoethane	0.012	U	100-41-4	Ethylbenzene	0.0062	U
95-50-1	1,2-Dichlorobenzene	0.012	U	98-82-8	Isopropylbenzene	0.0062	U
107-06-2	1,2-Dichloroethane	0.012	U	136777612	m&p-Xylenes	0.0062	U
78-87-5	1,2-Dichloropropane	0.012	U	79-20-9	Methyl Acetate	0.012	U
541-73-1	1,3-Dichlorobenzene	0.012	U	108-87-2	Methylcyclohexane	0.012	U
106-46-7	1,4-Dichlorobenzene	0.012	U	75-09-2	Methylene Chloride	0.012	U
78-93-3	2-Butanone	0.031	U	1634-04-4	Methyl-t-butyl ether	0.0031	U
591-78-6	2-Hexanone	0.012	U	95-47-6	o-Xylene	0.0062	U
108-10-1	4-Methyl-2-Pentanone	0.012	U	100-42-5	Styrene	0.012	U
67-64-1	Acetone	0.15	U	127-18-4	Tetrachloroethene	0.012	0.67
71-43-2	Benzene	0.0062	U	108-88-3	Toluene	0.0062	U
75-27 -4	Bromodichloromethane	0.012	U	156-60-5	trans-1,2-Dichloroethene	0.012	U
7 5-25-2	Bromoform	0.012	U	10061-02-6	trans-1,3-Dichloropropene	0.031	U
74-83-9	Bromomethane	0.012	U	79-01-6	Trichloroethene	0.012	0.056
75-15-0	Carbon Disulfide	0.012	U	75-69-4	Trichlorofluoromethane	0.012	Ü
56-23-5	Carbon Tetrachloride	0.012	U	75-01-4	Vinyl Chloride	0.012	Ū
108-90-7	Chlorobenzene	0.012	υ		Xylenes (Total)	0.0062	Ū
108-90-7	Chlorobenzene	0.012	_		-		

Worksheet #: 192369

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

^{0.74}

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-005

Client Id: MW-08 11-12 Data File: 1M68802.D

Analysis Date: 05/27/11 00:05 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 4.92g Final Vol: NA Dilution: 1.02

Solids: 64

i iiim Soilas. o

Units: mg/Kg

			0	פיישיי			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0032	υ	75-00-3	Chloroethane	0.0032	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0079	υ	67-66-3	Chloroform	0.0032	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0032	υ	74-87-3	Chloromethane	0.0032	υ
79-00-5	1,1,2-Trichloroethane	0.0032	υ	156-59-2	cis-1,2-Dichloroethene	0.0032	0.043
75-34-3	1,1-Dichloroethane	0.0032	υ	10061-01-5	cis-1,3-Dichloropropene	0.0079	υ
75-35-4	1,1-Dichloroethene	0.0032	. U	110-82-7	Cyclohexane	0.0032	υ
120-82-1	1,2,4-Trichlorobenzene	0.0032	υ	124-48-1	Dibromochloromethane	0.0079	υ
96-12-8	1,2-Dibromo-3-Chloropropa	0.0032	υ	75-71-8	Dichlorodifluoromethane	0.0032	υ
106-93-4	1,2-Dibromoethane	0.0032	υ	100-41-4	Ethylbenzene	0.0016	υ
95-50-1	1,2-Dichlorobenzene	0.0032	U	98-82-8	Isopropylbenzene	0.0016	υ
107-06-2	1,2-Dichloroethane	0.0032	υ	136777612	m&p-Xylenes	0.0016	U
78-87-5	1,2-Dichloropropane	0.0032	υ	79-20-9	Methyl Acetate	0.0032	U
541-73-1	1,3-Dichlorobenzene	0.0032	υ	108-87-2	Methylcyclohexane	0.0032	U
106-46-7	1,4-Dichlorobenzene	0.0032	U	75-09-2	Methylene Chloride	0.0032	U
78-93-3	2-Butanone	0.0079	0.048	1634-04-4	Methyl-t-butyl ether	0.00079	υ
591- 7 8-6	2-Hexanone	0.0032	υ	95-47-6	o-Xylene	0.0016	U
108-10-1	4-Methyl-2-Pentanone	0.0032	υ	100-42-5	Styrene	0.0032	υ
67-64-1	Acetone	0.040	0.21	127-18-4	Tetrachloroethene	0.0032	U
71-43-2	Benzene	0.0016	υ	108-88-3	Toluene	0.0016	U
75-27-4	Bromodichloromethane	0.0032	υ	156-60-5	trans-1,2-Dichloroethene	0.0032	υ
75-25-2	Bromoform	0.0032	U	10061-02-6	trans-1,3-Dichloropropene	0.0079	υ
74-83-9	Bromomethane	0.0032	U	79-01-6	Trichloroethene	0.0032	0.010
75-15-0	Carbon Disulfide	0.0032	U	75-69-4	Trichlorofluoromethane	0.0032	υ
56-23-5	Carbon Tetrachloride	0.0032	U	75-01-4	Vinyl Chloride	0.0032	U
108-90-7	Chlorobenzene	0.0032	U	1330-20-7	Xylenes (Total)	0.0016	υ

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

^{0.31}R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-006

Client Id: MW-09 5-6 Data File: 1M68781.D

Analysis Date: 05/26/11 18:17

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.02g Final Vol: NA

Dilution: 0.996

Solids: 81

Units: mg/Kg

			Ollita. 1	iig/iNg			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0025	U	75-00-3	Chloroethane	0.0025	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0061	U	67-66-3	Chloroform	0.0025	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025	U	74-87-3	Chloromethane	0.0025	U
79-00-5	1,1,2-Trichloroethane	0.0025	U	156-59-2	cis-1,2-Dichloroethene	0.0025	U
75-34-3	1,1-Dichloroethane	0.0025	U	10061-01-5	cis-1,3-Dichloropropene	0.0061	U
75-35-4	1,1-Dichloroethene	0.0025	U	110-82-7	Cyclohexane	0.0025	U
120-82-1	1,2,4-Trichlorobenzene	0.0025	U	124-48-1	Dibromochloromethane	0.0061	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025	U	75-71-8	Dichlorodifluoromethane	0.0025	U
106-93-4	1,2-Dibromoethane	0.0025	U	100-41-4	Ethylbenzene	0.0012	U
95-50-1	1,2-Dichlorobenzene	0.0025	U	98-82-8	Isopropylbenzene	0.0012	U
107-06-2	1,2-Dichloroethane	0.0025	U	136777612	m&p-Xylenes	0.0012	U
78-87-5	1,2-Dichloropropane	0.0025	U	79-20-9	Methyl Acetate	0.0025	U
541-73-1	1,3-Dichlorobenzene	0.0025	U	108-87-2	Methylcyclohexane	0.0025	U
106-46-7	1,4-Dichlorobenzene	0.0025	U	75-09-2	Methylene Chloride	0.0025	U
78-93-3	2-Butanone	0.0061	U	1634-04-4	Methyl-t-butyl ether	0.00061	U
591-78-6	2-Hexanone	0.0025	U	95-47-6	o-Xylene	0.0012	U
108-10-1	4-Methyl-2-Pentanone	0.0025	U	100-42-5	Styrene	0.0025	U
67-64-1	Acetone	0.031	U	127-18-4	Tetrachloroethene	0.0025	U
71-43-2	Benzene	0.0012	U	108-88-3	Toluene	0.0012	U
75-27-4	Bromodichloromethane	0.0025	U	156-60-5	trans-1,2-Dichloroethene	0.0025	U
75-25-2	Bromoform	0.0025	U	10061-02-6	trans-1,3-Dichloropropene	0.0061	U
74-83-9	Bromomethane	0.0025	U	79-01-6	Trichloroethene	0.0025	U
75-15-0	Carbon Disulfide	0.0025	U	75-69-4	Trichlorofluoromethane	0.0025	U
56-23-5	Carbon Tetrachloride	0.0025	U	75-01-4	Vinyl Chloride	0.0025	U
108-90-7	Chlorobenzene	0.0025	U	1330-20-7	Xylenes (Total)	0.0012	U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-007

Client Id: MW-09 6-7 Data File: 1M68782.D

Analysis Date: 05/26/11 18:34 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.1g

Final Vol: NA

Dilution: 0.980

Solids: 83

Units: mg/Kg

				פיישיי			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0024	U	75-00-3	Chloroethane	0.0024	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0059	U	67-66-3	Chloroform	0.0024	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0024	U	74-87-3	Chloromethane	0.0024	U
79-00-5	1,1,2-Trichloroethane	0.0024	U	156-59-2	cis-1,2-Dichloroethene	0.0024	U
75-34-3	1,1-Dichloroethane	0.0024	U	10061-01-5	cis-1,3-Dichloropropene	0.0059	U
75-35-4	1,1-Dichloroethene	0.0024	U	110-82-7	Cyclohexane	0.0024	U
120-82-1	1,2,4-Trichlorobenzene	0.0024	U	124-48-1	Dibromochloromethane	0.0059	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0024	U	75-71-8	Dichlorodifluoromethane	0.0024	U
106-93-4	1,2-Dibromoethane	0.0024	U	100-41-4	Ethylbenzene	0.0012	U
95-50-1	1,2-Dichlorobenzene	0.0024	U	98-82-8	Isopropylbenzene	0.0012	U
107-06-2	1,2-Dichloroethane	0.0024	U	136777612	m&p-Xylenes	0.0012	U
78-87-5	1,2-Dichloropropane	0.0024	U	79-20-9	Methyl Acetate	0.0024	U
541-73-1	1,3-Dichlorobenzene	0.0024	U	108-87-2	Methylcyclohexane	0.0024	U
106-46-7	1,4-Dichlorobenzene	0.0024	U	75-09-2	Methylene Chloride	0.0024	U
78-93-3	2-Butanone	0.0059	U	1634-04-4	Methyl-t-butyl ether	0.00059	U
591-78-6	2-Hexanone	0.0024	U	95-47-6	o-Xylene	0.0012	U
108-10-1	4-Methyl-2-Pentanone	0.0024	U	100-42-5	Styrene	0.0024	U
67-64-1	Acetone	0.030	U	127-18-4	Tetrachloroethene	0.0024	U
71-43-2	Benzene	0.0012	U	108-88-3	Toluene	0.0012	U
75-27-4	Bromodichloromethane	0.0024	U	156-60-5	trans-1,2-Dichloroethene	0.0024	U
75-25-2	Bromoform	0.0024	U	10061-02-6	trans-1,3-Dichloropropene	0.0059	U
74-83-9	Bromomethane	0.0024	U	79-01-6	Trichloroethene	0.0024	U
75-15-0	Carbon Disulfide	0.0024	U	75-69-4	Trichlorofluoromethane	0.0024	U
56-23-5	Carbon Tetrachloride	0.0024	U	75-01-4	Vinyl Chloride	0.0024	U
108-90-7	Chlorobenzene	0.0024	U	1330-20-7	Xylenes (Total)	0.0012	U

Worksheet #: 192369

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-008

Client Id: MW-10 7-8 Data File: 1M68783.D

Analysis Date: 05/26/11 18:50 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.05g

Final Vol: NA

Dilution: 0.990

Solids: 75

Units: mg/Kg

			•	99			
Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0026	U	75-00-3	Chloroethane	0.0026	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0066	U	67-66-3	Chloroform	0.0026	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0026	U	74-87-3	Chloromethane	0.0026	U
79-00-5	1,1,2-Trichloroethane	0.0026	U	156-59-2	cis-1,2-Dichloroethene	0.0026	U
75-34-3	1,1-Dichloroethane	0.0026	U	10061-01-5	cis-1,3-Dichloropropene	0.0066	U
75-35-4	1,1-Dichloroethene	0.0026	U	110-82-7	Cyclohexane	0.0026	U
120-82-1	1,2,4-Trichlorobenzene	0.0026	U	124-48-1	Dibromochloromethane	0.0066	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0026	U	75-71-8	Dichlorodifluoromethane	0.0026	U
106-93-4	1,2-Dibromoethane	0.0026	U	100-41-4	Ethylbenzene	0.0013	U
95-50-1	1,2-Dichlorobenzene	0.0026	U	98-82-8	Isopropylbenzene	0.0013	U
107-06-2	1,2-Dichloroethane	0.0026	U	136777612	m&p-Xylenes	0.0013	U
78-87-5	1,2-Dichloropropane	0.0026	U	79-20-9	Methyl Acetate	0.0026	U
541-73-1	1,3-Dichlorobenzene	0.0026	U	108-87-2	Methylcyclohexane	0.0026	U
106-46-7	1,4-Dichlorobenzene	0.0026	U	75-09-2	Methylene Chloride	0.0026	U
78-93-3	2-Butanone	0.0066	U	1634-04-4	Methyl-t-butyl ether	0.00066	U
591-78-6	2-Hexanone	0.0026	U	95-47-6	o-Xylene	0.0013	U
108-10-1	4-Methyl-2-Pentanone	0.0026	U	100-42-5	Styrene	0.0026	U
67-64-1	Acetone	0.033	U	127-18-4	Tetrachloroethene	0.0026	U
71-43-2	Benzene	0.0013	U	108-88-3	Toluene	0.0013	U
75-27-4	Bromodichloromethane	0.0026	U	156-60-5	trans-1,2-Dichloroethene	0.0026	U
75-25-2	Bromoform	0.0026	U	10061-02-6	trans-1,3-Dichloropropene	0.0066	U
74-83-9	Bromomethane	0.0026	U	79-01-6	Trichloroethene	0.0026	U
75-15-0	Carbon Disulfide	0.0026	U	75-69-4	Trichlorofluoromethane	0.0026	U
56-23-5	Carbon Tetrachloride	0.0026	U	75-01-4	Vinyl Chloride	0.0026	U
108-90-7	Chlorobenzene	0.0026	U	1330-20-7	Xylenes (Total)	0.0013	U
					· ·		

Worksheet #: 192369

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-009

Client Id: MW-11 5-6 Data File: 1M68784.D

Analysis Date: 05/26/11 19:07 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.08g Final Vol: NA

Dilution: 0.984

Solids: 90

Units: mg/Kg

			Onits. I	איישיי			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0022	U	75-00-3	Chloroethane	0.0022	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0055	U	67-66-3	Chloroform	0.0022	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0022	U	74-87-3	Chloromethane	0.0022	U
79-00-5	1,1,2-Trichloroethane	0.0022	U	156-59-2	cis-1,2-Dichloroethene	0.0022	U
75-34-3	1,1-Dichloroethane	0.0022	U	10061-01-5	cis-1,3-Dichloropropene	0.0055	U
75-35-4	1,1-Dichloroethene	0.0022	U	110-82-7	Cyclohexane	0.0022	U
120-82-1	1,2,4-Trichlorobenzene	0.0022	U	124-48-1	Dibromochloromethane	0.0055	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0022	U	75-71-8	Dichlorodifluoromethane	0.0022	U
106-93-4	1,2-Dibromoethane	0.0022	U	100-41-4	Ethylbenzene	0.0011	U
95-50-1	1,2-Dichlorobenzene	0.0022	U	98-82-8	Isopropylbenzene	0.0011	U
107-06-2	1,2-Dichloroethane	0.0022	U	136777612	m&p-Xylenes	0.0011	U
78-87-5	1,2-Dichloropropane	0.0022	U	79-20-9	Methyl Acetate	0.0022	U
541-73-1	1,3-Dichlorobenzene	0.0022	U	108-87-2	Methylcyclohexane	0.0022	U
106-46-7	1,4-Dichlorobenzene	0.0022	U	75-09-2	Methylene Chloride	0.0022	U
78-93-3	2-Butanone	0.0055	U	1634-04-4	Methyl-t-butyl ether	0.00055	U
591-78-6	2-Hexanone	0.0022	U	95-47-6	o-Xylene	0.0011	U
108-10-1	4-Methyl-2-Pentanone	0.0022	U	100-42-5	Styrene	0.0022	U
67-64-1	Acetone	0.027	U	127-18-4	Tetrachloroethene	0.0022	0.0047
71-43-2	Benzene	0.0011	U	108-88-3	Toluene	0.0011	U
75-27-4	Bromodichloromethane	0.0022	U	156-60-5	trans-1,2-Dichloroethene	0.0022	U
75-25-2	Bromoform	0.0022	U	10061-02-6	trans-1,3-Dichloropropene	0.0055	U
74-83-9	Bromomethane	0.0022	U	79-01-6	Trichloroethene	0.0022	U
75-15-0	Carbon Disulfide	0.0022	U	75-69-4	Trichlorofluoromethane	0.0022	U
56-23-5	Carbon Tetrachloride	0.0022	U	75-01-4	Vinyl Chloride	0.0022	U
108-90-7	Chlorobenzene	0.0022	U	1330-20-7	Xylenes (Total)	0.0011	U

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

0.0047

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-010

Client Id: MW-11 13-14 Data File: 1M68785.D Analysis Date: 05/26/11 19:23

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.04g Final Vol: NA Dilution: 0.992

Solids: 76

Units: mg/Kg

			• · · · · · · · · · · · · · · · · · · ·	פיישי			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0026	U	75-00-3	Chloroethane	0.0026	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0065	U	67-66-3	Chloroform	0.0026	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0026	U	74-87-3	Chloromethane	0.0026	U
79-00-5	1,1,2-Trichloroethane	0.0026	U	156-59-2	cis-1,2-Dichloroethene	0.0026	U
75-34-3	1,1-Dichloroethane	0.0026	U	10061-01-5	cis-1,3-Dichloropropene	0.0065	U
75-35-4	1,1-Dichloroethene	0.0026	U	110-82-7	Cyclohexane	0.0026	U
120-82-1	1,2,4-Trichlorobenzene	0.0026	U	124-48-1	Dibromochloromethane	0.0065	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0026	U	75-71-8	Dichlorodifluoromethane	0.0026	U
106-93-4	1,2-Dibromoethane	0.0026	U	100-41-4	Ethylbenzene	0.0013	U
95-50-1	1,2-Dichlorobenzene	0.0026	U	98-82-8	Isopropylbenzene	0.0013	U
107-06-2	1,2-Dichloroethane	0.0026	U	136777612	m&p-Xylenes	0.0013	U
78-87-5	1,2-Dichloropropane	0.0026	U	79-20-9	Methyl Acetate	0.0026	U
541-73-1	1,3-Dichlorobenzene	0.0026	U	108-87-2	Methylcyclohexane	0.0026	U
106-46-7	1,4-Dichlorobenzene	0.0026	U	75-09-2	Methylene Chloride	0.0026	U
78-93-3	2-Butanone	0.0065	U	1634-04-4	Methyl-t-butyl ether	0.00065	U
591-78-6	2-Hexanone	0.0026	U	95-47-6	o-Xylene	0.0013	U
108-10-1	4-Methyl-2-Pentanone	0.0026	U	100-42-5	Styrene	0.0026	U
67-64-1	Acetone	0.033	U	127-18-4	Tetrachloroethene	0.0026	U
71-43-2	Benzene	0.0013	U	108-88-3	Toluene	0.0013	U
75-27-4	Bromodichloromethane	0.0026	U	156-60-5	trans-1,2-Dichloroethene	0.0026	U
75-25-2	Bromoform	0.0026	U	10061-02-6	trans-1,3-Dichloropropene	0.0065	U
74-83-9	Bromomethane	0.0026	U	79-01-6	Trichloroethene	0.0026	U
75-15-0	Carbon Disulfide	0.0026	U	75-69-4	Trichlorofluoromethane	0.0026	U
56-23-5	Carbon Tetrachloride	0.0026	U	75-01-4	Vinyl Chloride	0.0026	U
108-90-7	Chlorobenzene	0.0026	U	1330-20-7	Xylenes (Total)	0.0013	U
					• •		

Worksheet #: 192369

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-010

Client Id: MW-11 13-14 Data File: 1M68821.D

Analysis Date: 05/27/11 09:32 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.32g Final Vol: NA

Dilution: 0.940 Solids: 76

Units: mg/Kg

			Omto. i	פיישיי			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0025	U	75-00-3	Chloroethane	0.0025	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0062	U	67-66-3	Chloroform	0.0025	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025	U	74-87-3	Chloromethane	0.0025	U
79-00-5	1,1,2-Trichloroethane	0.0025	U	156-59-2	cis-1,2-Dichloroethene	0.0025	U
75-34-3	1,1-Dichloroethane	0.0025	U	10061-01-5	cis-1,3-Dichloropropene	0.0062	U
75-35-4	1,1-Dichloroethene	0.0025	U	110-82-7	Cyclohexane	0.0025	U
120-82-1	1,2,4-Trichlorobenzene	0.0025	U	124-48-1	Dibromochloromethane	0.0062	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025	U	75-71-8	Dichlorodifluoromethane	0.0025	Ū
106-93-4	1,2-Dibromoethane	0.0025	U	100-41-4	Ethylbenzene	0.0012	U
95-50-1	1,2-Dichlorobenzene	0.0025	U	98-82-8	Isopropylbenzene	0.0012	U
107-06-2	1,2-Dichloroethane	0.0025	U	136777612	m&p-Xylenes	0.0012	U
78-87-5	1,2-Dichloropropane	0.0025	U	79-20-9	Methyl Acetate	0.0025	U
541-73-1	1,3-Dichlorobenzene	0.0025	U	108-87-2	Methylcyclohexane	0.0025	U
106-46-7	1,4-Dichlorobenzene	0.0025	U	75-09-2	Methylene Chloride	0.0025	U
78-93-3	2-Butanone	0.0062	U	1634-04-4	Methyl-t-butyl ether	0.00062	U
591-78-6	2-Hexanone	0.0025	U	95-47-6	o-Xylene	0.0012	U
108-10-1	4-Methyl-2-Pentanone	0.0025	U	100-42-5	Styrene	0.0025	U
67-64-1	Acetone	0.031	U	127-18-4	Tetrachloroethene	0.0025	U
71-43-2	Benzene	0.0012	U	108-88-3	Toluene	0.0012	U
75-27-4	Bromodichloromethane	0.0025	U	156-60-5	trans-1,2-Dichloroethene	0.0025	U
75-25-2	Bromoform	0.0025	U	10061-02-6	trans-1,3-Dichloropropene	0.0062	U
74-83-9	Bromomethane	0.0025	U	79-01-6	Trichloroethene	0.0025	U
75-15-0	Carbon Disulfide	0.0025	U	75-69-4	Trichlorofluoromethane	0.0025	U
56-23-5	Carbon Tetrachloride	0.0025	U	75-01-4	Vinyl Chloride	0.0025	U
108-90-7	Chlorobenzene	0.0025	U	1330-20-7	Xylenes (Total)	0.0012	U

Worksheet #: 192366

Total Target Concentration

 $[\]it U$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-011(MS:AC59

Client Id: MW-11 13-14 MS

Data File: 1M68822.D Analysis Date: 05/27/11 09:48

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.21g Final Vol: NA

Dilution: 0.960

Solids: 86

Units: mg/Kg

			Units. i	iig/r\g			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0022	0.037	75-00-3	Chloroethane	0.0022	0.034
79-34-5	1,1,2,2-Tetrachloroethane	0.0056	0.039	67-66-3	Chloroform	0.0022	0.033
76-13-1	1,1,2-Trichloro-1,2,2-triflu	0.0022	0.041	74-87-3	Chloromethane	0.0022	0.028
79-00-5	1,1,2-Trichloroethane	0.0022	0.033	156-59-2	cis-1,2-Dichloroethene	0.0022	0.028
75-34-3	1,1-Dichloroethane	0.0022	0.031	10061-01-5	cis-1,3-Dichloropropene	0.0056	0.018
75-35-4	1,1-Dichloroethene	0.0022	0.027	110-82-7	Cyclohexane	0.0022	0.033
120-82-1	1,2,4-Trichlorobenzene	0.0022	0.0032	124-48-1	Dibromochloromethane	0.0056	0.028
96-12-8	1,2-Dibromo-3-Chloroprop	0.0022	0.019	75-71-8	Dichlorodifluoromethane	0.0022	0.022
106-93-4	1,2-Dibromoethane	0.0022	0.018	100-41-4	Ethylbenzene	0.0011	0.025
95-50-1	1,2-Dichlorobenzene	0.0022	0.010	98-82-8	Isopropyibenzene	0.0011	0.029
107-06-2	1,2-Dichloroethane	0.0022	0.028	136777612	m&p-Xylenes	0.0011	0.045
78-87-5	1,2-Dichloropropane	0.0022	0.030	79-20-9	Methyl Acetate	0.0022	0.032
541-73-1	1,3-Dichlorobenzene	0.0022	0.0084	108-87-2	Methylcyclohexane	0.0022	0.031
106-46-7	1,4-Dichlorobenzene	0.0022	0.0071	75-09-2	Methylene Chloride	0.0022	0.033
78-93-3	2-Butanone	0.0056	0.043	1634-04-4	Methyl-t-butyl ether	0.00056	0.035
591-78-6	2-Hexanone	0.0022	0.021	95-47-6	o-Xylene	0.0011	0.028
108-10-1	4-Methyl-2-Pentanone	0.0022	0.040	100-42-5	Styrene	0.0022	0.013
67-64-1	Acetone	0.028	0.21	127-18-4	Tetrachloroethene	0.0022	0.024
71-43-2	Benzene	0.0011	0.030	108-88-3	Toluene	0.0011	0.024
75-27-4	Bromodichloromethane	0.0022	0.025	156-60-5	trans-1,2-Dichloroethene	0.0022	0.024
75-25-2	Bromoform	0.0022	0.029	10061-02-6	trans-1,3-Dichloropropene	0.0056	0.011
74-83-9	Bromomethane	0.0022	0.035	79-01-6	Trichloroethene	0.0022	0.019
75-15-0	Carbon Disulfide	0.0022	0.022	75-69-4	Trichlorofluoromethane	0.0022	0.033
56-23-5	Carbon Tetrachloride	0.0022	0.037	75-01-4	Vinyl Chloride	0.0022	0.033
108-90-7	Chlorobenzene	0.0022	0.016		Xylenes (Total)	0.0011	0.073

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

1.5

 $[\]it U$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-012(MSD:AC

Client Id: MW-11 13-14 MSD

Data File: 1M68823.D

Analysis Date: 05/27/11 10:05 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 4.98g

Final Vol: NA

Dilution: 1.00

Solids: 84

Units: mg/Kg

			Units: r	ng/Ng			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0024	0.047	75-00-3	Chloroethane	0.0024	0.046
79-34-5	1,1,2,2-Tetrachioroethane	0.0060	0.056	67-66-3	Chloroform	0.0024	0.043
76-13-1	1,1,2-Trichloro-1,2,2-triflu	0.0024	0.050	74-87-3	Chloromethane	0.0024	0.035
79-00-5	1,1,2-Trichloroethane	0.0024	0.054	156-59-2	cis-1,2-Dichloroethene	0.0024	0.044
75-34-3	1,1-Dichloroethane	0.0024	0.043	10061-01-5	cis-1,3-Dichloropropene	0.0060	0.033
75-35-4	1,1-Dichloroethene	0.0024	0.040	110-82-7	Cyclohexane	0.0024	0.043
120-82-1	1,2,4-Trichlorobenzene	0.0024	0.0070	124-48-1	Dibromochloromethane	0.0060	0.046
96-12-8	1,2-Dibromo-3-Chloroprop	0.0024	0.038	75-71-8	Dichlorodifluoromethane	0.0024	0.028
106-93-4	1,2-Dibromoethane	0.0024	0.039	100-41-4	Ethylbenzene	0.0012	0.038
95-50-1	1,2-Dichlorobenzene	0.0024	0.021	98-82-8	Isopropylbenzene	0.0012	0.041
107-06-2	1,2-Dichloroethane	0.0024	0.043	136777612	m&p-Xylenes	0.0012	0.071
78-87-5	1,2-Dichloropropane	0.0024	0.042	79-20-9	Methyl Acetate	0.0024	0.042
541-73-1	1,3-Dichlorobenzene	0.0024	0.016	108-87-2	Methylcyclohexane	0.0024	0.043
106-46-7	1,4-Dichlorobenzene	0.0024	0.015	75-09-2	Methylene Chloride	0.0024	0.046
78-93-3	2-Butanone	0.0060	0.058	1634-04-4	Methyl-t-butyl ether	0.00060	0.046
591-78-6	2-Hexanone	0.0024	0.048	95-47-6	o-Xylene	0.0012	0.041
108-10-1	4-Methyl-2-Pentanone	0.0024	0.063	100-42-5	Styrene	0.0024	0.025
6764-1	Acetone	0.030	0.29	127-18-4	Tetrachloroethene	0.0024	0.043
71-43-2	Benzene	0.0012	0.042	108-88-3	Toluene	0.0012	0.042
75-27-4	Bromodichloromethane	0.0024	0.036	156-60-5	trans-1,2-Dichloroethene	0.0024	0.037
75-25-2	Bromoform	0.0024	0.045	10061-02-6	trans-1,3-Dichloropropene	0.0060	0.025
74-83-9	Bromomethane	0.0024	0.044	79-01-6	Trichloroethene	0.0024	0.033
75-15-0	Carbon Disulfide	0.0024	0.034	75-69-4	Trichlorofluoromethane	0.0024	0.041
56-23-5	Carbon Tetrachloride	0.0024	0.046	75-01-4	Vinyl Chloride	0.0024	0.045
108-90-7	Chlorobenzene	0.0024	0.032	1330-20-7	Xylenes (Total)	0.0012	0.112
				,			

2.2

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

ORGANICS VOLATILE REPORT

Sample Number: AC59221-013

Client Id: Duplicate
Data File: 1M68824.D

Analysis Date: 05/27/11 10:22 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.33g

Final Vol: NA Dilution: 0.938

Solids: 87

Units: mg/Kg

			Oilles. II	ng/Ng			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0022	U	75-00-3	Chloroethane	0.0022	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0054	U	67-66-3	Chloroform	0.0022	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0022	U	74-87-3	Chloromethane	0.0022	U
79-00-5	1,1,2-Trichloroethane	0.0022	U	156-59-2	cis-1,2-Dichloroethene	0.0022	U
75-34-3	1,1-Dichloroethane	0.0022	U	10061-01-5	cis-1,3-Dichloropropene	0.0054	U
75-35-4	1,1-Dichloroethene	0.0022	U	110-82-7	Cyclohexane	0.0022	U
120-82-1	1,2,4-Trichlorobenzene	0.0022	U	124-48-1	Dibromochloromethane	0.0054	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0022	U	75-71-8	Dichlorodifluoromethane	0.0022	U
106-93-4	1,2-Dibromoethane	0.0022	U	100-41-4	Ethylbenzene	0.0011	U
95-50-1	1,2-Dichlorobenzene	0.0022	U	98-82-8	Isopropylbenzene	0.0011	U
107-06-2	1,2-Dichloroethane	0.0022	U	136777612	m&p-Xylenes	0.0011	U
78-87-5	1,2-Dichloropropane	0.0022	U	79-20-9	Methyl Acetate	0.0022	U
541-73-1	1,3-Dichlorobenzene	0.0022	U	108-87-2	Methylcyclohexane	0.0022	U
106-46-7	1,4-Dichlorobenzene	0.0022	U	75-09-2	Methylene Chloride	0.0022	U
78-93-3	2-Butanone	0.0054	U	1634-04-4	Methyl-t-butyl ether	0.00054	U
591-78-6	2-Hexanone	0.0022	U	95-47-6	o-Xylene	0.0011	U
108-10-1	4-Methyl-2-Pentanone	0.0022	U	100-42-5	Styrene	0.0022	U
67-64-1	Acetone	0.027	U	127-18-4	Tetrachloroethene	0.0022	U
71-43-2	Benzene	0.0011	U	108-88-3	Toluene	0.0011	U
75-27-4	Bromodichloromethane	0.0022	U	156-60-5	trans-1,2-Dichloroethene	0.0022	U
75-25-2	Bromoform	0.0022	U	10061-02-6	trans-1,3-Dichloropropene	0.0054	U
74-83-9	Bromomethane	0.0022	U	79-01-6	Trichloroethene	0.0022	U
75-15-0	Carbon Disulfide	0.0022	U	75-69-4	Trichlorofluoromethane	0.0022	Ū
56-23-5	Carbon Tetrachloride	0.0022	U	75-01-4	Vinyl Chloride	0.0022	U
108-90-7	Chlorobenzene	0.0022	U	1330-20-7	Xylenes (Total)	0.0011	Ü

Worksheet #: 192369

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

VERITECH Wet Chem Form1 Analysis Summary % Solids

TestGroupName: % Solids SM2540G

TestGroup: %SOLIDS

Project #: 1052009

Lab#	Client SampleID	Matrix	Dilution:	Result	Units:	RL	Prep Date	Analysis Date	Received Date	Collect Date
AC59221-001	MW-06 4-5	Soil	1	87	Percent			05/23/11	05/20/11	05/16/11
AC59221-002	MW-06 10-11	Soil	1	85	Percent			05/23/11	05/20/11	05/16/11
AC59221-003	MW-07 6-7	Soil	1	81	Percent			05/23/11	05/20/11	05/16/11
AC59221-004	MW-07 14-15	Soil	1	78	Percent			05/23/11	05/20/11	05/16/11
AC59221-005	MW-08 11-12	Soil	1	64	Percent			05/23/11	05/20/11	05/17/11
AC59221-006	MW-09 5-6	Soil	1	81	Percent		-	05/23/11	05/20/11	05/17/11
AC59221-007	MW-09 6-7	Soil	1	83	Percent			05/23/11	05/20/11	05/17/11
AC59221-008	MW-10 7-8	Soil	1	75	Percent			05/23/11	05/20/11	05/18/11
AC59221-009	MW-11 5-6	Soil	1	90	Percent			05/23/11	05/20/11	05/18/11
AC59221-010	MW-11 13-14	Soil	1	76	Percent			05/23/11	05/20/11	05/18/11
AC59221-011	MW-11 13-14 MS	Soil	1	86	Percent			05/24/11	05/20/11	05/18/11
AC59221-012	MW-11 13-14 MS	Soil	1	84	Percent			05/24/11	05/20/11	05/18/11
AC59221-013	Duplicate	Soil	1	87	Percent			05/24/11	05/20/11	05/18/11

Chain of Custody Forms

-	be delayed. nalysis	ical work may wated for any an	your analyti	Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should emple not be activated for any analysis	D items. If I	nple will be as:	Please note A fee of \$5/san								
Cooler Imp	Date: 5/19/11	Date:	1			NĒ.	11) Sampler								
											(-
								10 CD	20/11 1/02	S		1	0	lés	t/
								53	19/1	12'	Hed be	B	H		1
	s, HAZARDS	Special Requirements,	pecial Re	mments, Notes, S	Comment			Time	Date		Accepted By	Ac	7	hed By:	10) Relinquished
			<u>6</u>					66	1453	5/18//11	S	13-14 (MSIMSO)		11-MM-8	1000
		~	ีย					ら と の	1453	5/18/11	S	5-6			8
		2	2					8	1045	5/18/11 1	S	7-8		3	de de
		, ,	2					62	8	5/17/11	S	6-7		60-MW fac-	700
		11.	2					5 2	1345	5/17/11	S	5-6			-006
		2	ಖ			<u> </u>		8	8	5/17/11	S	11-12	1 80-MM		2005
			r)					62	520	-		14-15			-bo4
			ນ					62	520	5/16/11	S	6-7	MW-07 6		2005
		N.	<u></u>					<u>の</u>	1330	5/16/11	S	0-11		 	-002
		~	ย					<u>ල</u> ව	1230	5/16/11	S	4-5	MW-06 '	-	-001
	NaOH HCI H2SO4 HNO3	MeOH Encor	None				/ Kg/	Grat	ime	6) Sample	5) Matrix		4) Customer Sample ID		Lab Sample#
Comments	Bottles	e #±			\	\	**************************************		posite	Ot-Other	StSludge O-Oil		GW-Ground Water WW-Waste Water		H5122
(If applicable)	9		\	<u> </u>	\	\	360/	_	e(C)	A-Air	odes:	Matrix Codes: er S-Soil	DW-Dnnking Water	2	▼ Batch#
9) Methanol			_	\	\	_	2		Sample Type						ONLY
ntingent	<===Check if Contingent				H			nt===>	Check if Contingent===>	Check if					FOR LAB
				Request	ysis	7) Ana									
check with lab)!	Expedited TAT Not always available (Please check with lab)!	TAT Not alway	Expedited 1						-	s so han @ enst con	Scope	Graham i	July Go		1d) Send Report To:
Other:	Other:	J ∂∂∂	Clandard	34.	14368 46	Quote#/PO# (If Applicable):	O# (If Ap	l) Quote#/	3. (or 2d)	Jasaham (Jeach. Car	tacana	braham	Justy bo	1 .	1C) Send Invoice To:
Excel-PAActil	Full/Cat-B	25%)	1-Week(25%)		3	Mony	City/State): ∠	2c) Location (City/State): All coy		3	-	1 1	315-431-4610	I I	1b) Email/Cell/Fax/Ph:
Excel-NJCC	Red-NJ/NY/PA	(50%)	72-Hour (50%)	3	raham	Jey Gra	nager:	2b) Project Manager:	10 Y 2t	Y.	tor way	316		Address: 6712	Addres
Hazsite/Csv DEC	Data Sum	100%)	24-Hour(100%)		C,	c Cleans	Project: Danshire		2a)	2	-		ممامد		1a) Customer: EA
Electronic Deliv	Report type	Turnaround Time	Turnaro		ation	Project Information	1 1				nation	Customer Information	Cust		
lease circle)	3) Reporting Requirements(please circle)	porting Re	3) Re			0124	353 KY# 90124	4409 WV#	68-463/68-0	11939 PA#	P# 11408/	371 NY/ELA	ONELAC/NJ# 07071/07069 CT# PH-0671 NY/ELAP# 11408/11939 PA# 68-463/68-04409 WV# 353	7071/0706	ELAC/NJ# 0
Page 1 of 2	use only)	Project#(Lab	26-9992 39-1458	CHAIN OF CUSTODY RECORD Ph: 800-426-9992 Fax: 973-439-1458	RECO	YOUSE	N OF CL	CHAI lew Jersey 07	or, Fairfield, N	East, 1st Floo	'ke 18 Route 46)ton-Clar 9y 07004 & 19	Veritech/Division of Hampton-Clarke CHAIN (Division West, Fair	/eritech/l 75 US Hwy 46
				;		7577	2					2			

	teo full	10) Relinquished By:					0/8 Duplicate		DatCh# DW-Drinking Water GW-Ground Water Water Water		ONLY	FOR LAB		1d) Send Report To: Judy &	1C) Send Invoice To: 1 May	Email/Cell/Fax/Ph:	Address: 10712 Brook	EA Engin	0	OVELAC/NJ# 07071/07069 CT# PH	Veritech/Division of Hampton-Clarke Only 175 US Hwy 46 West, Fairfield, New Jersey 07004 & 198 R
	Healisk Shall	Accepted By Date					 5/18/11	ner 5) 6) Sample Natrix Date Time	Vater S-Soil A-Air Vater SL-Sludge Ot-Other ater O-Oil	Matrix Codes:		Check if Contingent===>		Judy Graham jgraham@earstron	JASY CIRSUS JANSON ENGERI, CON	31- 4101	Brooklawn Parkway Skire 104	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Customer Information	(`) ○\VELAC/NJ# 07071/07069 CT# PH-0671 NY/ELAP# 11408/11939 PA# 68-463/68-04409 WV# 353 KY# 90124	Veritech/Division of Hampton-Clarke CHAIN C O175 US Hwy 46 West, Fairfield, New Jersey 07004 & 198 Route 46 East, 1st Floor, Fairfield, New Jersey 07004
A P 1 1	(/ (8cc)	Time					6	Com	posite(Sample	tingent==>		-	۶	2C) Location (City/State):	2b)	2a) Project: Dowshile		33/68-04409 WV# 35	CHAIN irfield, New Jersey 0700
11) Sampler: Date: 5/19/1) Please note NUMBERED items. If not completed year analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis		Comments								*	6///	11111	7) Analysis Re		2d) Quote#/PO# (If Applicable): 14368.	y/State): Albany, NY	4	owshire Cleaner	Project Information	3 KY# 90124	CHAIN OF CUSTODY RECORD ersey 07004
D: Leampleted your analytical wor ge should some not be activated for		mments, Notes, Special Requirements,					ນ	None MeOH			/////		Request	Expedited TAT Not	46 Standard	1-Week(25%)	72-Hour (50%)	24-Hour(100%)	Turnaround Time	 Reportin 	Ph: 800-426-9992 Fax: 973-439-1458
Date: 5/19/1) ork may be delayed. for any analysis		ments, HAZARDS						Encore NaOH HCI H2SO4 HNO3 Other:	8) # Of Bottles			// <===Check if Contingent		Expedited TAT Not always available (Please check with lab)!	Other:	FullCat-B	Red-NJ/NY/PA		me Report type	Rèporting Requirements(please circle)	Project#(Lab Use Only) Page
Cooler Tmp									Comments	Bottle Numbers	9) Methanol	tingent		heck with lab)!	Other:	Excel-PAActil	Excel-NJCC DEC	Hazsite/Csv	Electronic Deliv	ase circle)	ge 2 of 2

CONDITION UPON RECEIPT

Batch Number AC59221

Entered By: fRANTZ

Date Entered 5/20/2011 11:36:00 AM

1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 3.1
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify item number and corrective action taken).

Internal Chain of Custody

		Loc							Loc			
		or	Bot	A/					or	Bot	1	
Lab#:	DateTime:	User	Nu	М	Analysis	Lab#:		DateTime:	User	Nu	M	Analysis
AC59221-001	05/20/11 10:00	FRAN	0	М	Received	AC59221		05/20/11 16:27	SDL	1	Α	MIXING
AC59221-001	05/20/11 11:36	FRAN	0	M	Login	AC59221		05/20/11 17:40	R12	1	Α	NONE
AC59221-001	05/20/11 16:27	SDL	1	Α	MIXING	AC59221		05/23/11 15:50	R12	1	Α	NONE
AC59221-001	05/20/11 17:40	R12	1	Α	NONE	AC59221		05/23/11 09:13	R21	2	Α	NONE
AC59221-001	05/23/11 15:50	R12	1	Α	NONE	AC59221		05/26/11 13:25	WP	2	Α	VOA
AC59221-001	05/24/11 11:04	JU	1	Α	TDSI-HG	AC59221		05/26/11 14:17	R21	2	Α	NONE
AC59221-001	05/24/11 15:40	R12	1	Α	NONE	AC59221		05/20/11 10:00	FRAN	0	М	Received
AC59221-001	05/23/11 09:13	1	2	Α	NONE	AC59221		05/20/11 11:36	FRAN	1	M	Login
AC59221-001	05/26/11 13:25	1	2	Α	VOA	AC59221		05/20/11 16:27	SDL	1	A	MIXING
AC59221-001	05/26/11 14:17	R21	2	Α	NONE	AC59221		05/20/11 17:40	R12	1	Α	NONE
AC59221-002	05/20/11 10:00	FRAN	0	М	Received	AC59221		05/23/11 15:50	R12	1	Α	NONE
AC59221-002	05/20/11 11:36	FRAN	0	М	Login	AC59221		05/23/11 09:13	R21	2	Α	NONE
AC59221-002	05/20/11 16:27	SDL	1	Α	MIXING	AC59221		05/26/11 13:25	WP	2	Α	VOA
AC59221-002	05/20/11 17:40	R12	1	Α	NONE	AC59221		05/26/11 14:17	R21	2	Α	NONE
AC59221-002	05/23/11 15:50	R12	1	Α	NONE	AC59221		05/27/11 09:08	SG	2	Α	VOA
AC59221-002	05/23/11 09:13	R21	2	Α	NONE	AC59221		05/27/11 09:17	R21	2	Α	NONE
AC59221-002	05/26/11 13:25	WP	2	Α	VOA	AC59221		05/20/11 10:00	FRAN	1	М	Received
AC59221-002	05/26/11 14:17	R21	2	Α	NONE	AC59221	-011	05/20/11 11:36	FRAN	0	М	Login
AC59221-002	05/26/11 14:30	R21	4	Α	NONE	AC59221		05/23/11 09:13	R21	1	Α	NONE
AC59221-002	05/27/11 09:41	SG	4	Α	VOA	AC59221	-011	05/26/11 13:25	WP	1	Α	VOA
AC59221-002	05/27/11 09:45	R21	4	Α	NONE	AC59221		05/26/11 14:17	R21	1	Α	NONE
AC59221-003	05/20/11 10:00	FRAN	0	М	Received	AC59221		05/27/11 09:08	SG	1	Α	VOA
AC59221-003	05/20/11 11:36	FRAN	0	М	Login	AC59221		05/27/11 09:17	R21	1	Α	NONE
AC59221-003	05/20/11 16:27	SDL	1	Α	MIXING	AC59221		05/20/11 16:27	SDL	2	Α	MIXING
AC59221-003	05/20/11 17:40	R12	1	Α	NONE	AC59221	-011	05/20/11 17:40	R12	2	Α	NONE
AC59221-003	05/23/11 15:50	R12	1	Α	NONE	AC59221	-011	05/23/11 15:50	R12	2	Α	NONE
AC59221-003	05/23/11 09:13	R21	2	Α	NONE	AC59221		05/24/11 08:34	вст	2	М	%solids
AC59221-003	05/26/11 13:25	WP	2	Α	VOA	AC59221	-011	05/24/11 08:55	R12	2	Α	NONE
AC59221-003	05/26/11 14:17	R21	2	Α	NONE	AC59221		05/20/11 10:00	FRAN	-	М	Received
AC59221-004	05/20/11 10:00	FRAN	0	M	Received	AC59221	-012	05/20/11 11:36	FRAN	0	М	Login
AC59221-004	05/20/11 11:36	FRAN	0	М	Login	AC59221		05/23/11 09:13	R21	1	Α	NONE
AC59221-004	05/20/11 16:27	SDL	1	Α	MIXING	AC59221	-012	05/26/11 13:25	WP	1	Α	VOA
AC59221-004	05/20/11 17:40	R12	1	Α	NONE	AC59221	-012	05/26/11 14:17	R21	1	Α	NONE
AC59221-004	05/23/11 15:50	R12	1	Α	NONE	AC59221	-012	05/27/11 09:08	SG	1	Α	VOA
AC59221-004	05/23/11 09:13	R21	2	Α	NONE	AC59221		05/27/11 09:17	R21	1	Α	NONE
AC59221-004	05/26/11 13:25	WP	2	Α	VOA	AC59221		05/20/11 16:27	SDL	2	Α	MIXING
AC59221-004	05/26/11 14:17	R21	2	Α	NONE	AC59221	-012	05/20/11 17:40	R12	2	Α	NONE
AC59221-004	05/27/11 09:41	SG	2	Α	VOA	AC59221	-012	05/23/11 15:50	R12	2	Α	NONE
AC59221-004	05/27/11 09:45	R21	2	Α	NONE	AC59221	-012	05/24/11 08:34	вст	2	М	%solids
AC59221-005	05/20/11 10:00	FRAN	0	М	Received	AC59221	-012	05/24/11 08:55	R12	2	Α	NONE
AC59221-005	05/20/11 11:36	FRAN	0	М	Login	AC59221	-013	05/20/11 10:00	FRAN	0	М	Received
AC59221-005	05/20/11 16:27	SDL	1	Α	MIXING	AC59221	-013	05/20/11 11:36	FRAN	0	М	Login
AC59221-005	05/20/11 17:40	R12	1	Α	NONE	AC59221	-013	05/23/11 09:13	R21	1	Α	NONE .
AC59221-005	05/23/11 15:50	R12	1	Α	NONE	AC59221	-013	05/26/11 13:25	WP	1	Α	VOA
AC59221-005	05/23/11 09:13	R21	2	Α	NONE	AC59221		05/26/11 14:17	R21	1	Α	NONE
AC59221-005	05/26/11 13:25	WP	2	Α	VOA	AC59221		05/27/11 09:08	SG	1	Α	VOA
AC59221-005	05/26/11 14:17	R21	2	Α	NONE	AC59221		05/27/11 09:17	R21	1	Α	NONE
AC59221-006	05/20/11 10:00	FRAN	0	M	Received	AC59221		05/20/11 16:27	SDL	2	Α	MIXING
AC59221-006	05/20/11 11:36	FRAN	0	M	Login	AC59221		05/20/11 17:40	R12	2	Α	NONE
AC59221-006	05/20/11 16:27	SDL	1	Α	MIXING	AC59221		05/23/11 15:50	R12	2	Α	NONE
AC59221-006	05/20/11 17:40	R12	1	Α	NONE	AC59221		05/24/11 08:34	ВСТ	2	М	%solids
AC59221-006	05/23/11 15:50	R12	1	Α	NONE	AC59221	-013	05/24/11 08:55	R12	2	Α	NONE
AC59221-006	05/24/11 11:04	JU	1	Α	TDSI-HG							
AC59221-006	05/24/11 15:40	R12	1	Α	NONE							
AC59221-006	05/23/11 09:13	R21	2	Α	NONE							
AC59221-006	05/26/11 13:25	WP	2	Α	VOA							
AC59221-006	05/26/11 14:17	R21	2	Α	NONE							
AC59221-007	05/20/11 10:00	FRAN	0	M	Received							
AC59221-007	05/20/11 11:36	FRAN	0	М	Login							
AC59221-007	05/20/11 16:27	SDL	1	Α	MIXING							
AC59221-007	05/20/11 17:40	R12	1	Α	NONE							
AC59221-007	05/23/11 15:50	R12	1	Α	NONE							
AC59221-007	05/23/11 09:13	R21	2	Α	NONE							
AC59221-007	05/26/11 13:25	WP	2	Α	VOA							
AC59221-007	05/26/11 14:17	R21	2	Α	NONE							
AC59221-008	05/20/11 10:00	FRAN	0	М	Received							
AC59221-008	05/20/11 11:36	FRAN	0	M	Login							
AC59221-008	05/20/11 16:27	SDL	1	Α	MIXING							
AC59221-008	05/20/11 17:40	R12	1	Α	NONE							
AC59221-008	05/23/11 15:50	R12	1	Α	NONE							
AC59221-008	05/23/11 09:13	R21	2	Α	NONE							
AC59221-008	05/26/11 13:25	WP	2	Α	VOA							
AC59221-008	05/26/11 14:17	R21	2	Α	NONE							
AC59221-009	05/20/11 10:00	FRAN	1	м	Received							

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

M Login

FRAN 0

05/20/11 11:36

AC59221-009

GC/MS Volatile Data

GC/MS Volatile Data QC Summary

FORM2

Surrogate Recovery

Method: EPA 8260B

				_ : _	Surr	Dilute Out	Column1 S1	Column1 S2	Column1 S3	Column1 S4	Column0 S5	Column0 S6
	Dfile	Sample#	Matrix	Date/Time	Dil	Flag	Recov	Recov	Recov	Recov	Recov	Recov
	1M68772.D	DAILY BLANK	Soil	05/26/11 15:47	1		97	95	94	95		-
	1M68817.D	DAILY BLANK	Soil	05/27/11 08:24	1		97	97	101	96		
	1M69046.D	DAILY BLANK	Soil	06/01/11 07:39	1		107	102	95	90		
	1M68777.D	AC59221-001	Soil	05/26/11 17:10	1		106	105	98	95		
	1M68825.D	AC59221-002(Soil	05/27/11 10:38	1		100	106	99	111		
l	1M68779.D	AC59221-003	Soil	05/26/11 17:44	1		99	98	93	95		
l	1M68826.D	AC59221-004(Soil	05/27/11 10:55	1		104	105	98	90		
	1M68802.D	AC59221-005	Soil	05/27/11 00:05	1		95	98	101	96		
	1M68781.D	AC59221-006		05/26/11 18:17	1		103	105	93	112		
ĺ	1M68782.D	AC59221-007	Soil	05/26/11 18:34	1		102	112	101	90		
	1M68783.D	AC59221-008		05/26/11 18:50	1		108	109	94	100		
		AC59221-009		05/26/11 19:07	1		103	105	94	92		
	1M68785.D	AC59221-010		05/26/11 19:23	1		119	103	125*	120		
	1M68821.D	AC59221-010		05/27/11 09:32	1		108	109	127*	154*		
ĺ	1M68822.D	AC59221-011(05/27/11 09:48	1		97	90	109	108		
	1M68823.D	AC59221-012(05/27/11 10:05	1		97	100	118	103		
	1M68824.D	AC59221-013	Soil	05/27/11 10:22	1		94	101	95	97		
	1M68773.D	MBS9696	Soil	05/26/11 16:04	1		97	92	97	101		
	1M68795.D	MBS9697	Soil	05/26/11 22:09	1		93	95	112	96		
	1M68818.D	MBS9703	Soil	05/27/11 08:41	1		98	101	100	95		
ı	1M68838.D	MBS9710	Soil	05/27/11 14:15	1		92	107	104	90		
	1M69047.D	MBS9764	Soil	06/01/11 07:55	1		96	101	94	93		
	1M69061.D	MBS9769	Soil	06/01/11 11:57	1		103	98	102	89		
	1M69067.D		Soil	06/01/11 13:41	1		104	98	104	93		
	1M69068.D	AC59297-017(06/01/11 13:56	1		87	86	99	96		
	1M69069.D	AC59297-018(06/01/11 14:12	1		86	82	99	102		
	1M69080.D	MBS9773	Soil	06/01/11 17:10	1		84	82	96	94		

Flags: SD=Surrogate diluted out

*=Surrogate out

Method: EPA 8260B

Soil Limits

	Spike	
Compound	Amt	Limits
S1=Dibromofluoromethane	30	63-140
S2=1,2-Dichloroethane-d4	30	63-143
S3=Toluene-d8	30	68-122
S4=Bromofluorobenzene	30	64-129

Form3 **Recovery Data** QC Batch: MBS9696

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M68773.D

MBS9696

5/26/2011 4:04:00 PM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Soil

		Spike	Sample	Expected		Lower	Upper		ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	31.8422	0	50	64	6	117	0	0
1,1-Dichloroethene	1	34.3508	0	50	69	8	114	0	0
1,1-Dichloroethane	1	35.2501	0	50	71	14	127	0	0
Chloroform	1	39.1969	0	50	78	26	119	0	0
1,2-Dichloroethane	1	43.7621	0	50	88	18	130	0	0
2-Butanone	1	41.8118	0	50	84	4	141	0	0
Carbon Tetrachloride	1	40.4024	0	50	81	19	122	0	0
Trichloroethene	1	38.5297	0	50	77	21	116	0	0
Benzene	1	38.9693	0	50	78	21	122	0	0
Tetrachloroethene	1	45.285	0	50	91	18	116	0	0
Toluene	1	40.55	0	50	81	19	128	0	0
Chlorobenzene	1	46.4357	0	50	93	21	117	0	0 .
1,4-Dichlorobenzene	1	47.6596	0	50	95	20	110	0	0
1,2-Dichlorobenzene	1	44.7069	0	50	89	19	113	0	. 0
n-Propylbenzene	1	50.9982	0	50	102	16	122	0	0
sec-Butylbenzene	1	50.3986	0	50	101	9	125	0	0

Form3 **Recovery Data** QC Batch: MBS9697

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M68795.D

MBS9697

5/26/2011 10:09:00 PM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Soil

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Upper Limit
Vinyl Chloride	1	36.3058	0	50	73	6	117	0	0
1.1-Dichloroethene	1	36.9244	0	50	74	8	114	0	0
1,1-Dichloroethane	1	36.9282	0	50	74	14	127	0	0
Chloroform	1	40.4198	0	50	81	26	119	0	0
1,2-Dichloroethane	1	44.861	0	50	90	18	130	0	0
2-Butanone	1	43.4409	0	50	87	4	141	0	0
Carbon Tetrachloride	1	41.3702	0	50	83	19	122	0	0
Trichloroethene	1	38.1284	0	50	76	21	116	0	0
Benzene	1	41.453	0	50	83	21	122	0	0
Tetrachloroethene	1	48.6775	0	50	97	18	116	0	0
Toluene	1	47.367	0	50	95	19	128	0	0
Chlorobenzene	1	47.1093	0	50	94	21	117	0	0
1,4-Dichlorobenzene	1	44.6566	0	50	89	20	110	0	0
1,2-Dichlorobenzene	1	45.8869	0	50	92	19	113	0	0
n-Propylbenzene	1	48.5944	0	50	97	16	122	0	0
sec-Butylbenzene	1	49.4562	0	50	99	9	125	0	0

Form3 **Recovery Data**

QC Batch: MBS9703

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M68818.D

MBS9703

5/27/2011 8:41:00 AM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Soil

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Uppe Limit
Vinyl Chloride	1	43.0385	0	50	86	6	117	0	0
1,1-Dichloroethene	1	38.3016	0	50	77	8	. 114	0	0
1,1-Dichloroethane	1	39.2851	0	50	79	14	127	0	0
Chloroform	1	39.4946	0	50	79	26	119	0	0
1,2-Dichloroethane	1	43.8717	0	50	88	18	130	0	0
2-Butanone	1	45.606	0	50	91	4	141	0	0
Carbon Tetrachloride	1	41.8313	0	50	84	19	122	0	0
Trichloroethene	1	37.3597	0	50	75	21	116	0	0
Benzene	1	39.7096	0	50	79	21	122	0	0
Tetrachloroethene	1	46.2841	0	50	93	18	116	0	0
Toluene	1	41.1245	0	50	82	19	128	0	0
Chlorobenzene	1	46.833	0	50	94	21	117	. 0	0
1,4-Dichlorobenzene	1	44.5489	0	50	89	20	110	0	0
1,2-Dichlorobenzene	1	44.6844	0	50	89	19	113	0	0
n-Propylbenzene	1	49.7772	0	50	100	16	122	0	0
sec-Butylbenzene	1	49.4032	0	50	99	9	125	0	0

Form3 **Recovery Data**

QC Batch: MBS9710

Data File

Sample ID: MBS9710

Analysis Date

5/27/2011 2:15:00 PM

Spike or Dup: 1M68838.D

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Soil

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Upper Limit
Vinyl Chloride	1	43.8452	0	50	88	6	117	0	0
•			•			•		-	0
1,1-Dichloroethene	1	37.5845	0	50	75	8	114	0	U
1,1-Dichloroethane	1	37.1855	0	50	74	14	127	0	0
Chloroform	1	39.6904	0	50	79	26	119	0	0
1,2-Dichloroethane	1	45.9088	0	50	92	18	130	0	0
2-Butanone	1	43.9046	0	50	88	4	141	0	0
Carbon Tetrachloride	1	39.3906	0	50	79	19	122	0	0
Trichloroethene	1	37.3342	0	50	75	21	116	0	0
Benzene	1	40.0052	0	50	80	21	122	. 0	0
Tetrachloroethene	1	49.0366	0	50	98	18	116	0	0
Toluene	1	43.0484	0	50	86	19	128	0	0
Chlorobenzene	1	48.1577	0	50	96	21	117	0	0
1,4-Dichlorobenzene	1	43.825	0	50	88	20	110	0	0
1,2-Dichlorobenzene	1	44.2736	0	50	89	19	113	0	0
n-Propylbenzene	1	48.245	0	50	96	16	122	0	0
sec-Butylbenzene	1	48.9738	0	50	98	9	125	0	0

Form3 **Recovery Data** QC Batch: MBS9764

Data File

Spike or Dup: 1M69047.D

Sample ID:

MBS9764

Analysis Date 6/1/2011 7:55:00 AM

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

						1		
Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Uppe Limit
1	48.658	0	50	97	6	117	0	0
1	46.0434	0	50	92	8	114	0	0
1	39.2325	0	50	78	14	127	0	0
1	43.333	0	50	87	26	119	0	0
1	47.1014	0	50	94	18	130	0	0
1	51.2478	0	50	102	4	141	0	0
1	44.9311	0	50	90	19	122	0	0
1	45.5118	0	50	91	21	116	0	0
1	44.7053	0	50	89	21	122	0	0
1	47.2876	0	50	95	18	116	0	0
1	43.8899	0	50	88	19	128	0	0
1	48.5094	0	50	97	21	117	0	0
1	50.4967	0	50	101	20	110	0	0
1	48.8329	0	50	98	19	113	0	0
1	54.9187	0	50	110	16	122	0	0
1	54.6738	0	50	109	9	125	0	0
	Col 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Col Conc 1 48.658 1 46.0434 1 39.2325 1 43.333 1 47.1014 1 51.2478 1 44.9311 1 45.5118 1 44.7053 1 47.2876 1 43.8899 1 48.5094 1 50.4967 1 48.8329 1 54.9187	Col Conc Conc 1 48.658 0 1 46.0434 0 1 39.2325 0 1 43.333 0 1 47.1014 0 1 51.2478 0 1 44.9311 0 1 45.5118 0 1 47.2876 0 1 43.8899 0 1 48.5094 0 1 50.4967 0 1 48.8329 0 1 54.9187 0	Col Conc Conc Conc 1 48.658 0 50 1 46.0434 0 50 1 39.2325 0 50 1 43.333 0 50 1 47.1014 0 50 1 51.2478 0 50 1 44.9311 0 50 1 45.5118 0 50 1 44.7053 0 50 1 47.2876 0 50 1 48.8999 0 50 1 48.5094 0 50 1 48.8329 0 50 1 54.9187 0 50	Col Conc Conc Conc Recovery 1 48.658 0 50 97 1 46.0434 0 50 92 1 39.2325 0 50 78 1 43.333 0 50 87 1 47.1014 0 50 94 1 51.2478 0 50 102 1 44.9311 0 50 90 1 45.5118 0 50 91 1 44.7053 0 50 89 1 47.2876 0 50 95 1 43.8899 0 50 88 1 48.5094 0 50 97 1 50.4967 0 50 98 1 54.9187 0 50 110	Col Conc Conc Conc Recovery Limit 1 48.658 0 50 97 6 1 46.0434 0 50 92 8 1 39.2325 0 50 78 14 1 43.333 0 50 87 26 1 47.1014 0 50 94 18 1 51.2478 0 50 94 18 1 51.2478 0 50 90 19 1 44.9311 0 50 90 19 1 45.5118 0 50 91 21 1 44.7053 0 50 89 21 1 47.2876 0 50 95 18 1 43.8899 0 50 88 19 1 48.5094 0 50 97 21 1 50.4967	Col Conc Conc Conc Recovery Limit Limit 1 48.658 0 50 97 6 117 1 46.0434 0 50 92 8 114 1 39.2325 0 50 78 14 127 1 43.333 0 50 87 26 119 1 47.1014 0 50 94 18 130 1 51.2478 0 50 94 18 130 1 51.2478 0 50 90 19 122 1 44.9311 0 50 90 19 122 1 45.5118 0 50 91 21 116 1 44.7053 0 50 89 21 122 1 47.2876 0 50 95 18 116 1 43.8899 0	Col Conc Conc Conc Recovery Limit Limit Limit 1 48.658 0 50 97 6 117 0 1 46.0434 0 50 92 8 114 0 1 39.2325 0 50 78 14 127 0 1 43.333 0 50 87 26 119 0 1 47.1014 0 50 94 18 130 0 1 51.2478 0 50 94 18 130 0 1 51.2478 0 50 102 4 141 0 1 44.9311 0 50 90 19 122 0 1 45.5118 0 50 91 21 116 0 1 47.2876 0 50 95 18 116 0 1

Form3 Recovery Data QC Batch: MBS9769

Data File

Sample ID: MBS9769 Analysis Date

6/1/2011 11:57:00 AM

Spike or Dup: 1M69061.D

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Uppe Limit
Vinyl Chloride	1	41.4139	0	50	83	6	117	0	0
1,1-Dichloroethene	1	41.5373	0	50	83	8	114	0	0
1,1-Dichloroethane	1	43.6498	0	50	87	14	127	0	0
Chloroform	1	42.5956	0	50	85	26	119	0	0
1,2-Dichloroethane	1	44.9319	0	50	90	18	130	0	0
2-Butanone	1	63.0198	0	50	126	4	141	0	O O
Carbon Tetrachloride	1	35.0945	0	50	70	19	122	0	0
Trichloroethene	1	33.7097	0	50	67	21	116	0	0
Benzene	1	40.4291	0	50	81	21	122	0	0
Tetrachloroethene	1	43.2804	0	50	87	18	116	0	0
Toluene	1	39.9525	0	50	80	19	128	0	0
Chlorobenzene	1	45.9231	0	50	92	21	117	0	0
1,4-Dichlorobenzene	1	42.5628	0	50	85	20	110	0	0
1,2-Dichlorobenzene	1	42.6573	0	50	85	19	113	0	0
n-Propylbenzene	1	46.5113	0	50	93	16	122	0	0
sec-Butylbenzene	1	47.6032	0	50	95	9	125	0	0

Form3 **Recovery Data**

QC Batch: MBS9773

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M69080.D

MBS9773 6/1/2011 5:10:00 PM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Soil

		Spike	Sample	Expected		Lower	Upper		ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	45.6182	0	50	91	6	117	0	0
1,1-Dichloroethene	1	42.3209	0	50	85	8	114	0	0
1,1-Dichloroethane	1	36.9845	0	50	74	14	127	0	0.
Chloroform	1	38.567	0	50	77	26	119	0	0
1,2-Dichloroethane	1	39.4172	0	50	79	18	130	0	0
2-Butanone	1	32.3176	0	50	65	4	141	0	0
Carbon Tetrachloride	1	42.214	0	50	84	19	122	. 0	0
Trichloroethene	1	41.991	0	50	84	21	116	0	0
Benzene	1	41.2225	0	50	82	21	122	0	0
Tetrachloroethene	1	48.9186	0	50	98	18	116	0	0
Toluene	1	43.4284	0	50	87	19	128	0	0
Chlorobenzene	1	47.7705	0	50	96	21	117	0	0
1,4-Dichlorobenzene	1	47.0635	0	50	94	20	110	0	0
1,2-Dichlorobenzene	1	46.0349	0	50	92	19	113	0	0
n-Propylbenzene	1	55.4318	0	50	111	16	122	0	0
sec-Butylbenzene	1	56.8792	0	50	114	9	125	0	0

Form3 **Recovery Data**

QC Batch: MBS9703

Data File

Sample ID:

Spike or Dup: 1M68822.D

AC59221-011(MS:AC59221-010

5/27/2011 9:48:00 AM

Non Spike(If applicable): 1M68785.D

AC59221-010

5/26/2011 7:23:00 PM

Analysis Date

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	29.6188	0	50	59	6	117	0	0
1,1-Dichloroethene	1	24.2933	0	50	49	8	114	0	0
1,1-Dichloroethane	1	28.0291	0	50	56	14	127	0	0
Chloroform	1	29.1303	0	50	58	26	119	0	0
1,2-Dichloroethane	1	25.4458	0	50	51	18	130	0	0
2-Butanone	1	38.2762	0	50	77	4	141	0	0
Carbon Tetrachloride	1	33.3607	0	50	67	19	122	0	0
Trichloroethene	1	17.1843	0	50	34	21	116	0	0
Benzene	1	26.6347	0	50	53	21	122	0	0
Tetrachloroethene	1	21.3091	0	50	43	18	116	0	0
Toluene	1	21.6395	0	50	43	19	128	0	0
Chlorobenzene	1	14.732	0	50	29	21	117	0	0
1,4-Dichlorobenzene	1	6.3387	0	50	13*	20	110	0	0
1,2-Dichlorobenzene	1	9.3411	0	50	19	19	113	0	0
n-Propylbenzene	1	13.269	0	50	27	16	122	0	0
sec-Butylbenzene	1	18.9224	0	50	38	9	125	0	0

Data File

Spike or Dup: 1M68823.D

Sample ID:

Analysis Date

AC59221-012(MSD:AC59221-0

5/27/2011 10:05:00 AM

Non Spike(If applicable): 1M68785.D AC59221-010 5/26/2011 7:23:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

							1		
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Upper Limit
Vinyl Chloride	1	37.4097	0	50	75	6	117	0	0
1,1-Dichloroethene	1	33.314	0	50	67	8	114	0	0
1,1-Dichloroethane	1	36.1802	0	50	72	14	127	0	0
Chloroform	1	36.1657	0	50	72	26	119	0	0
1,2-Dichloroethane	1	35.9935	0	50	72	18	130	0	0
2-Butanone	1	48.8171	0	50	98	4	141	0	0
Carbon Tetrachloride	1	38.4872	0	50	77	19	122	0	0
Trichloroethene	1	27.7034	0	50	55	21	116	0	0
Benzene	1	35.5548	0	50	71	21	122	0	0
Tetrachloroethene	1	35.5677	0	50	71	18	116	0	0
Toluene	1	34.8118	0	50	70	19	128	0	0
Chlorobenzene	1	26.9111	0	50	54	21	117	0	0
1,4-Dichlorobenzene	1	12.6295	0	50	25	20	110	. 0	0
1,2-Dichlorobenzene	1	17.2415	0	50	34	19	113	. 0	0
n-Propylbenzene	1	22.7465	0	50	45	16	122	. 0	0
sec-Butylbenzene	1	28.0823	0	50	56	9	125	0	0

Form3 RPD DATA

QC Batch: MBS9703

Data File

Sample ID:

Analysis Date AC59221-012(MSD:AC59221-0 5/27/2011 10:05:00 AM

Spike or Dup: 1M68823.D Duplicate(If applicable): 1M68822.D

AC59221-011(MS:AC59221-010 5/27/2011 9:48:00 AM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Vinyl Chloride	1	37.4097	29.6188	23	53
1,1-Dichloroethene	1	33.314	24.2933	31	53
1,1-Dichloroethane	1	36.1802	28.0291	25	44
Chloroform	1	36.1657	29.1303	22	39
1,2-Dichloroethane	1	35.9935	25.4458	34	37
2-Butanone	1	48.8171	38.2762	24	59
Carbon Tetrachloride	1	38.4872	33.3607	14	40
Trichloroethene	1	27.7034	17.1843	47 *	39
Benzene	1	35.5548	26.6347	29	38
Tetrachloroethene	1	35.5677	21.3091	50 *	37
Toluene	1	34.8118	21.6395	47 *	35
Chlorobenzene	1	26.9111	14.732	58 *	37
1,4-Dichlorobenzene	1	12.6295	6.3387	66 *	41
1,2-Dichlorobenzene	1	17.2415	9.3411	59 *	42
n-Propylbenzene	1	22.7465	13.269	53 *	42
sec-Butylbenzene	1	28.0823	18.9224	39	48

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

Form3 **Recovery Data** QC Batch: MBS9764

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M69068.D Non Spike(If applicable): 1M69067.D AC59297-017(MS:AC59297-016 AC59297-016

6/1/2011 1:56:00 PM 6/1/2011 1:41:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	44.0329	0	50	88	6	117	0	0
1,1-Dichloroethene	1	44.0225	0	50	88	8	114	0	0
1,1-Dichloroethane	1	39.4041	0	50	79	14	127	0	0
Chloroform	1	39.1513	0	50	78	26	119	0	0
1,2-Dichloroethane	1	39.9022	0	50	80	18	130	0	0
2-Butanone	1	38.0248	0	50	76	4	141	0	0
Carbon Tetrachloride	1	42.9852	0	50	86	19	122	0	0
Trichloroethene	1	36.439	0	50	73	21	116	0	0
Benzene	1	41.6	0	50	83	21	122	0	0
Tetrachloroethene	1	43.9882	0	50	88	18	116	0	0
Toluene	1	40.0174	0	50	80	19	128	0	0
Chlorobenzene	1	40.6906	0	50	81	21	117	0	0
1,4-Dichlorobenzene	1	28.7821	0	50	58	20	110	0	0
1,2-Dichlorobenzene	1	35.2325	0	50	70	19	113	0	0
n-Propylbenzene	1	44.711	0	50	89	16	122	0	0
sec-Butylbenzene	1	50.2398	0	50	100	9	125	0	0

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M69069.D Non Spike(If applicable): 1M69067.D AC59297-018(MSD:AC59297-0

6/1/2011 2:12:00 PM

AC59297-016

6/1/2011 1:41:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	27.6465	0	50	55	6	117	0	0
1,1-Dichloroethene	1	34.0938	0	50	68	8	114	0	0
1,1-Dichloroethane	1	32.3134	0	50	65	14	127	0	0
Chloroform	1	32.7773	0	50	66	26	119	0	0
1,2-Dichloroethane	1	34.0987	0	50	68	18	130	0	0
2-Butanone	1	36.4235	0	50	73	4	141	0	0
Carbon Tetrachloride	1	34.1223	0	50	68	19	122	0	0
Trichloroethene	1	29.4305	0	50	59	21	116	0	0
Benzene	1	33.3886	0	50	67	21	122	0	0
Tetrachloroethene	1	35.863	0	50	72	18	116	0	0
Toluene	1	32.6783	0	50	65	19	128	0	0
Chlorobenzene	1	32.8109	0	50	66	21	117	0	0
1,4-Dichlorobenzene	1	20.8837	0	50	42	20	110	0	0
1,2-Dichlorobenzene	1	29.3543	0	50	59	19	113	0	0
n-Propylbenzene	1	35.6665	0	50	71	16	122	0	0
sec-Butylbenzene	1	41.7403	0	50	83	9	125	0	0

^{* -} Indicates outside of limits

Form3 RPD DATA

QC Batch: MBS9764

Data File

Sample ID:

AC59297-018(MSD:AC59297-0 6/1/2011 2:12:00 PM

Analysis Date

Spike or Dup: 1M69069.D Duplicate(If applicable): 1M69068.D

AC59297-017(MS:AC59297-016 6/1/2011 1:56:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

Column	Conc	Conc	RPD	1 3 14
1		00110	REU	Limit
	27.6465	44.0329	46	53
1	34.0938	44.0225	25	53
1	32.3134	39.4041	20	44
1	32.7773	39.1513	18	39
1	34.0987	39.9022	16	37
1	36.4235	38.0248	4.3	59
1	34.1223	42.9852	23	40
1	29.4305	36.439	21	39
1	33.3886	41.6	22	38
1	35.863	43.9882	20	37
1	32.6783	40.0174	20	35
1	32.8109	40.6906	21	37
1	20.8837	28.7821	32	41
1	29.3543	35.2325	18	42
1	35.6665	44.711	23	42
1	41.7403	50,2398	18	48
	1 1 1 1 1 1 1 1 1 1 1 1	1 34.0938 1 32.3134 1 32.7773 1 34.0987 1 36.4235 1 34.1223 1 29.4305 1 33.3886 1 35.863 1 32.6783 1 32.8109 1 20.8837 1 29.3543 1 35.6665	1 34.0938 44.0225 1 32.3134 39.4041 1 32.7773 39.1513 1 34.0987 39.9022 1 36.4235 38.0248 1 34.1223 42.9852 1 29.4305 36.439 1 33.3886 41.6 1 35.863 43.9882 1 32.6783 40.0174 1 32.8109 40.6906 1 20.8837 28.7821 1 29.3543 35.2325 1 35.6665 44.711 1 41.7403 50.2398	1 34.0938 44.0225 25 1 32.3134 39.4041 20 1 32.7773 39.1513 18 1 34.0987 39.9022 16 1 36.4235 38.0248 4.3 1 34.1223 42.9852 23 1 29.4305 36.439 21 1 33.3886 41.6 22 1 35.863 43.9882 20 1 32.6783 40.0174 20 1 32.8109 40.6906 21 1 29.3543 35.2325 18 1 35.6665 44.711 23 1 41.7403 50.2398 18

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 1M68772.D

Matrix: Soil

Blank Analysis Date: 05/26/11 15:47

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260B

Sample Number	Data File	Analysis Date	
 AC59221-001	1M68777.D	05/26/11 17:10	
AC59221-003	1M68779.D	05/26/11 17:44	
AC59221-005	1M68802.D	05/27/11 00:05	
AC59221-006	1M68781.D	05/26/11 18:17	
AC59221-007	1M68782.D	05/26/11 18:34	
AC59221-008	1M68783.D	05/26/11 18:50	
AC59221-009	1M68784.D	05/26/11 19:07	
AC59221-010	1M68785.D	05/26/11 19:23	
MBS9697	1M68795.D	05/26/11 22:09	
MBS9696	1M68773.D	05/26/11 16:04	

FORM 4 Blank Summary

Blank Number: DAILY BLANK

Blank Data File: 1M68817.D

Matrix: Soil

Blank Analysis Date: 05/27/11 08:24

Blank Extraction Date: NA

(If Applicable) Method: EPA 8260B

Sample Number	Data File	Analysis Date	
AC59221-002(5X)	1M68825.D	05/27/11 10:38	
AC59221-004(5X)	1M68826.D	05/27/11 10:55	
AC59221-011(MS:	1M68822.D	05/27/11 09:48	
AC59221-012(MSD	1M68823.D	05/27/11 10:05	
AC59221-013	1M68824.D	05/27/11 10:22	
MBS9710	1M68838.D	05/27/11 14:15	
MBS9703	1M68818.D	05/27/11 08:41	

FORM 4 Blank Summary

Blank Number: DAILY BLANK

Blank Data File: 1M69046.D

Matrix: Soil

Blank Analysis Date: 06/01/11 07:39

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260B

Sample Number	Data File	Analysis Date
MBS9773	1M69080.D	06/01/11 17:10
MBS9764	1M69047.D	06/01/11 07:55
AC59297-016	1M69067.D	06/01/11 13:41
AC59297-017(MS:	1M69068.D	06/01/11 13:56
AC59297-018(MSD	1M69069.D	06/01/11 14:12
MBS9769	1M69061.D	06/01/11 11:57

Tune Name: BFB TUNE

Data File: 1M68107.D Instrument: GCMS 1 Analysis Date: 05/12/11 08:37
Method: EPA 8260B
Tune Scan/Time Range: Average of 4.317 to 4.356 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	Fail
50	95	15	40	19.8	6089	PASS
75	95	30	60	52.1	15994	PASS
95	95	100	100	100.0	30694	PASS
96	95	5	9	7.2	2202	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	82.7	25390	PASS
175	174	5	9	7.6	1929	PASS
176	174	95	101	96.3	24445	PASS
177	176	5	9	6.8	1670	PASS

Data File	Sample Number	Analysis Date:
1M68108.D	BLK	05/12/11 08:48
1M68109.D	CAL @ 0.5 PPB	05/12/11 09:05
1M68110.D	CAL @ 1 PPB	05/12/11 09:21
1M68111.D	CAL @ 2 PPB	05/12/11 09:37
1M68112.D	CAL @ 5 PPB	05/12/11 09:53
1M68113.D	CAL @ 500 PPB	05/12/11 10:10
1M68114.D	CAL @ 250 PPB	05/12/11 10:26
1M68115.D	CAL @ 100 PPB	05/12/11 10:42
1M68116.D	CAL @ 50 PPB	05/12/11 10:58
1M68117.D	ÇAL @ 20 PPB	05/12/11 11:15
1M68118.D	ICV	05/12/11 11:32
1M68119.D	BLK	05/12/11 11:48
1M68120.D	DAILY BLANK	05/12/11 12:07
1M68121.D	MBS7666	05/12/11 12:23
1M68122.D	AC58853-010	05/12/11 12:40
1M68123.D	AC58853-011	05/12/11 12:56
1M68124.D	AC58853-014	05/12/11 13:12
1M68125.D	AC58853-017	05/12/11 13:28
1M68126.D	AC58853-001	05/12/11 13:44
1M68127.D	BLK	05/12/11 14:01
1M68128.D	AC58853-003	05/12/11 14:17
1M68129.D	BLK	05/12/11 14:33
1M68130.D	AC58804-005	05/12/11 14:49
1M68131.D	BLK	05/12/11 15:06
1M68132.D	AC58853-006	05/12/11 15:22
1M68133.D	AC58853-008	05/12/11 15:38
1M68134.D	AC58853-009	05/12/11 15:55
1M68135.D	BLK	05/12/11 16:11
1M68136.D	AC58853-019	05/12/11 16:27
1M68137.D	BLK	05/12/11 16:43
1M68138.D	AC58804-005	05/12/11 16:59
1M68139.D	BLK	05/12/11 17:15
1M68140.D	AC58853-001	05/12/11 17:31
1M68141.D	BLK	05/12/11 17:48
1M68142.D	AC58853-009	05/12/11 18:04
1M68143.D	BLK	05/12/11 18:20
1M68144.D	AC58995-001(5X)	05/12/11 18:36
1M68145.D	MBS7671	05/12/11 18:52
1M68146.D	AC58853-019(MS) AC58853-019(MSD	05/12/11 19:08 05/12/11 19:24
1M68147.D	AC38833-019(MSD	05/12/11 19:24

Tune Name: BFB TUNE

Data File: 1M68767.D Instrument: GCMS 1 Analysis Date: 05/26/11 14:22
Method: EPA 8260B
Tune Scan/Time Range: Average of 4.345 to 4.385 min

I une Sc	Tune Scan/Time Range: Average of 4.345 to 4.365 min							
Tgt	Rel	Lo	Hi	Rel	Raw	Pass/		
Mass	Mass	Lim	Lim	Abund	Abund	Fail		
50	95	15	40	20.6	7599	PASS		
75	95	30	60	50.9	18751	PASS		
95	95	100	100	100.0	36820	PASS		
96	95	5	9	6.7	2466	PASS		
173	174	0.00	2	0.0	0	PASS		
174	95	50	100	84.7	31197	PASS		
175	174	5	9	7.8	2419	PASS		
176	174	95	101	96.7	30174	PASS		
177	176	5	9	7.3	2203	PASS		

Data File	Sample Number	Analysis Date:
1M68768.D	50 PPB	05/26/11 14:31
1M68770.D	CAL @ 50 PPB	05/26/11 15:07
1M68771.D	BLK	05/26/11 15:30
1M68772.D	DAILY BLANK	05/26/11 15:47
1M68773.D	MBS9696	05/26/11 16:04
1M68774.D	AC59206-005	05/26/11 16:21
1M68775.D	AC59206-006	05/26/11 16:37
1M68776.D	AC59257-001	05/26/11 16:54
1M68777.D	AC59221-001	05/26/11 17:10
1M68778.D	AC59221-002	05/26/11 17:27
1M68779.D	AC59221-003	05/26/11 17:44
1M68780.D	AC59221-004	05/26/11 18:00
1M68781.D	AC59221-006	05/26/11 18:17
1M68782.D	AC59221-007	05/26/11 18:34
1M68783.D	AC59221-008	05/26/11 18:50
1M68784.D	AC59221-009	05/26/11 19:07
1M68785.D	AC59221-010	05/26/11 19:23
1M68786.D	AC59221-011(MS:	05/26/11 19:40
1M68787.D	AC59221-012(MSD	05/26/11 19:57
1M68788.D	AC59221-013	05/26/11 20:13
1M68789.D	AC59266-001	05/26/11 20:30
1M68790.D	AC59266-002	05/26/11 20:46
1 M 68791.D	AC59266-003	05/26/11 21:03
1M68792.D	AC59266-004	05/26/11 21:19
1M68793.D	BLK	05/26/11 21:36
1M68794.D	BLK	05/26/11 21:53
1M68795.D	MBS9697	05/26/11 22:09
1M68796.D	MBS9698	05/26/11 22:26
1M68797.D	AC59282-001	05/26/11 22:42
1 M 68798.D	BLK	05/26/11 22:59
1M68799.D	AC59284-008	05/26/11 23:16
1M68800.D	BLK	05/26/11 23:32
1M68801.D	AC59281-001(5X)	05/26/11 23:49
1M68802.D	AC59221-005	05/27/11 00:05
1M68803.D	BLK	05/27/11 00:22
1M68804.D	BLK	05/27/11 00:38
1 M 68805.D	BLK	05/27/11 00:55
1M68806.D	BLK	05/27/11 01:12

Tune Name: BFB TUNE Instrument: GCMS 1

Data File: 1M68813.D Analysis Date: 05/27/11 07:24 Method: EPA 8260B 353 to 4,382 min

Fune Scan/Time Range: Average of 4.353 to 4.382 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	_Lim	Lim	Abund	Abund	Fail
50	95	15	40	20.1	3763	PASS
75	95	30	60	48.6	9087	PASS
95	95	100	100	100.0	18684	PASS
96	95	5	9	7.0	1304	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	78.2	14611	PASS
175	174	5	9	8.9	1304	PASS
176	174	95	101	100.9	14737	PASS
177	176	5	9	5.0	743	PASS

Data File	Sample Number	Analysis Date:
1M68815.D	CAL @ 50 PPB	05/27/11 07:50
1M68816.D	BLK	05/27/11 08:07
1M68817.D	DAILY BLANK	05/27/11 08:24
1M68818.D	MBS9703	05/27/11 08:41
1M68819.D	BLK	05/27/11 08:58
1M68820.D	BLK	05/27/11 09:15
1M68821.D	AC59221-010	05/27/11 09:32
1M68822.D	AC59221-011(MS:	05/27/11 09:48
1M68823.D	AC59221-012(MSD	05/27/11 10:05
1M68824.D	AC59221-013	05/27/11 10:22
1M68825.D	AC59221-002(5X)	05/27/11 10:38
1M68826.D	AC59221-004(5X)	05/27/11 10:55
1M68827.D	BLK	05/27/11 11:12
1M68828.D	AC59243-001	05/27/11 11:28
1M68829.D	AC59203-004	05/27/11 11:45
1M68830.D	AC59203-011	05/27/11 12:02
1M68831.D	AC59145-006	05/27/11 12:18
1M68832.D	AC59191-001	05/27/11 12:35
1M68833.D	AC59130-002	05/27/11 12:52
1M68834.D	BLK	05/27/11 13:08
1M68835.D	AC59145-006	05/27/11 13:25
1M68836.D	AC59284-008	05/27/11 13:42
1M68837.D	AC59281-001(5X)	05/27/11 13:58
1M68838.D	MBS9710	05/27/11 14:15
1M68839.D	AC59221-006(MS)	05/27/11 14:31
1M68840.D	AC59221-006(MSD	05/27/11 14:48
1M68841.D	AC59222-002	05/27/11 15:05
1M68842.D	AC59130-002	05/27/11 15:22
1M68843.D	BLK	05/27/11 15:38
1M68844.D	AC59259-008	05/27/11 15:55
1M68845.D	AC59259-003	05/27/11 16:11
1M68846.D	AC59236-001	05/27/11 16:28
1M68847.D	AC59236-003	05/27/11 16:44
1M68848.D	AC59236-002	05/27/11 17:01
1M68849.D	AC59236-004	05/27/11 17:18
1M68851.D	MBS9732	05/27/11 17:41

Tune Name: BFB TUNE Instrument: GCMS 1

Data File: 1M69042.D Analysis Date: 06/01/11 06:37 Method: EPA 8260B

Tune Scan/Time Range: Average of 4.	.328 to 4.387 min	
-------------------------------------	-------------------	--

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	_Lim	Lim	Abund	Abund	<u> Fail</u>
50	95	15	40	21.5	5323	PASS
75	95	30	60	52.6	13035	PASS
95	95	100	100	100.0	24797	PASS
96	95	5	9	6.3	1573	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	80.0	19848	PASS
175	174	5	9	7.8	1553	PASS
176	174	95	101	97.5	19348	PASS
177	176	5	9	7.2	1392	PASS

Data File	Sample Number	Analysis Date:
1M69044.D	CAL @ 50 PPB	06/01/11 07:04
1M69045.D	BLK	06/01/11 07:21
1M69046.D	DAILY BLANK	06/01/11 07:39
1M69047.D	MBS9764	06/01/11 07:55
1M69048.D	BLK	06/01/11 08:12
1M69049.D	AC59205-012	06/01/11 08:29
1M69050.D	AC59205-003	06/01/11 08:46
1M69051.D	AC59410-001	06/01/11 09:05
1M69052.D	BLK	06/01/11 09:22
1M69053.D	BLK	06/01/11 09:41
1M69054.D	AC59230-002	06/01/11 10:00
1M69055.D	AC59422-001	06/01/11 10:17
1M69056.D	AC59422-003	06/01/11 10:33
1M69057.D	AC59424-001	06/01/11 10:50
1M69058.D	AC59424-002	06/01/11 11:07
1M69059.D	BLK	06/01/11 11:23
1M69060.D	AC59366-013	06/01/11 11:40
1M69061.D	MBS9769	06/01/11 11:57
1M69062.D	BLK	06/01/11 12:14
1M69063.D	AC59305-002	06/01/11 12:33
1M69064.D	BLK	06/01/11 12:51
1M69065.D	AC59305-004	06/01/11 13:07
1M69066.D	BLK	06/01/11 13:24
1M69067.D	AC59297-016	06/01/11 13:41
1M69068.D	AC59297-017(MS:	06/01/11 13:56
1M69069.D	AC59297-018(MSD	06/01/11 14:12
1M69070.D	AC59266-002(MS)	06/01/11 14:28
1M69071.D	AC59266-002(MSD	06/01/11 14:45
1M69072.D	BLK	06/01/11 15:01
1M69073.D	AC59385-001	06/01/11 15:17
1M69074.D	AC59385-002	06/01/11 15:33
1M69075.D	AC59385-003	06/01/11 15:49
1M69076.D	AC59385-004	06/01/11 16:05
1M69077.D	BLK	06/01/11 16:21
1M69078.D	AC59423-001	06/01/11 16:38
1M69079.D	BLK	06/01/11 16:54
1M69080.D	MBS9773	06/01/11 17:10
1M69081.D	AC59424-003	06/01/11 17:26
1M69082.D	AC59328-003	06/01/11 17:42
1M69083.D	BLK	06/01/11 17:58
1M69084.D	BLK	06/01/11 18:14

FORM8

Internal Standard Areas

Evaluation Std Data File: 1M68117.D

Method: EPA 8260B

Analysis Date/Time: 05/12/11 11:15

Lab File ID: CAL @ 20 PPB

Eval File Area/RT:
Eval File Area Limit:
Eval File Rt Limit:

I1		12		12		12		13		14		15		16	
Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT				
104790	4.53	89897	6.35	60865	7.77										
52395-2	209580	44948-	179794	30432-	121730		-	,							
4.03-	5.03	5.85-	6.85	7.27-	8.27										

Evan no ra Emma.	7,00-0.00		J.05-0.05		1.21-0.21				
Data File Sample									
1M68108.D BLK	40388	4.54	45140	6.35	27303	7.77			
1M68109.D CAL @ 0.5 PF	142433	4.53	115292	6.35	72735	7.77			
1M68110.D CAL @ 1 PPB	134919	4.53	118742	6.35	74498	7.77			
1M68111.D CAL @ 2 PPB	142552	4.53	119709	6.35	62552	7.77	•		
1M68112.D CAL @ 5 PPB	158262	4.53	111572	6.35	64754	7.77			
1M68113.D CAL @ 500 P	107854	4.53	108893	6.35	66692	7.77		 	
1M68114.D CAL @ 250 P	136513	4.53	112693	6.35	64420	7.77	•		
1M68115.D CAL @ 100 P	150062	4.53	109308	6.35	65621	7.77	•		
1M68116.D CAL @ 50 PP	150263	4.53	124177	6.35	62346	7.77			
1M68117.D CAL @ 20 PP	104790	4.53	89897	6.35	60865	7.77	<u> </u>		
1M68118.D ICV	157786	4.53	116074	6.35	66163	7.76			
1M68119.D BLK	120107	4.53	106776	6.35	70675	7.77			
1M68120.D DAILY BLANK	141503	4.53	122840	6.35	65285	7.77	•		
1M68121.D MBS7666	147971	4.53	127900	6.35	76894	7.77	•		
1M68122.D AC58853-010	138044	4.53	114770	6.35	76429	7.77		 	
1M68123.D AC58853-011	130237	4.53	115148	6.35	73029	7.77			
1M68124.D AC58853-014	159072	4.53	128537	6.35	75197	7.77	,		
1M68125.D AC58853-017	146126	4.53	127116	6.35	75693	7.77			
1M68126.D AC58853-001	121720	4.53	124411	6.35	64193	7.77	•		
1M68127.D BLK	134465	4.53	115610	6.35	70799	7.77			
1M68128.D AC58853-003	136231	4.53	92361	6.35	59658	7.77	•		
1M68129.D BLK	128746	4.53	112089	6.35	56828	7.77			
1M68130.D AC58804-005	118983	4.53	82863	6.35	60259	7.77			
1M68131.D BLK	133499	4.53	115532	6.35		7.77			
1M68132.D AC58853-006	123372	4.53	102964	6.35	61927	7.77			
1M68133.D AC58853-008	143113	4.53	117879	6.35		7.77			
1M68134.D AC58853-009	129249	4.53	117427	6.35		7.77			
1M68135.D BLK	123930	4.53	104359	6.35	62965	7.77			
1M68136.D AC58853-019	149300	4.53	116850	6.35	70821	7.77			
1M68137.D BLK	128025	4.53	109264	6.35		7.77		 	
1M68138.D AC58804-005	101378	4.53	62036	6.35		7.77			
1M68139.D BLK	116224	4.53	101761	6.36		7.77			
1M68140.D AC58853-001	127655	4.53	115619	6.36		7.77			
1M68141.D BLK	116287	4.53	100684	6.35		7.77			
1M68142.D AC58853-009	59988	4.53	113364	6.35		7.77		 	
1M68143.D BLK	127259	4.53	104749	6.35		7.77			
1M68144.D AC58995-001i	122117	4.53	94186	6.35		7.77			
1M68145.D MBS7671	129030	4.53	109252	6.35		7.77			
1M68146.D AC58853-019	131371	4.53	111685	6.35		7.77			
1M68147.D AC58853-019	139648	4.53	109890	6.35	67658	7.77		 	

I1 =	Fluorobenzene
12 =	Chlorobenzene-d5
13 =	1 4-Dichlorobenzene-d4

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

 \boldsymbol{R} - Indicates the compound failed the internal standard retention time criteria.

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

I4 = I5 = I6 =

FORM8

Internal Standard Areas

Evaluation Std Data File: 1M68770.D

Method: EPA 8260B

Analysis Date/Time: 05/26/11 15:07 Lab File ID: CAL @ 50 PPB

Eval File Area/RT:
Eval File Area Limit:
Eval File Rt Limit:

						g 00 1 1 D							
. I1		12		12		13		· 14		15		16	
Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT		
141152	4.54	105805	6.36	60271	7.78								
70576-2	282304	52902-2	211610	30136-	120542				1		1		
4.04-	5.04	5.86-	6.86	7.28-8.2	280001								

	4.04-5.04		5.86-6.86		30130-1203-			1	
Eval File Rt Limit:					7.28-8.280001				
Data File Sample									
1M68768.D 50 PPB	130525	4.54	91652	6.36	61324	7.78			
1M68771.D BLK	127360	4.54	101696	6.36	56233	7.78			
1M68772.D DAILY BLANK	125812	4.54	95662	6.36	54087	7.78			
1M68773.D MBS9696	136413	4.54	102566	6.37	58225	7.78			
1M68774.D AC59206-005	129409	4.54	89961	6.36	33425	7.78			
1M68775.D AC59206-006	131453	4.54	89773	6.37	30069 A	7.78	 		
1M68776.D AC59257-001	73343	4.54	30142 A	6.37	8922 A	7.79			
1M68777.D AC59221-001	107101	4.55	81712	6.37	44972	7.79			
1M68778.D AC59221-002	112483	4.54	76185	6.36	41388	7.78			
1M68779.D AC59221-003	112810	4.54	88390	6.36	51412	7.78			
1M68780.D AC59221-004	107927	4.54	80484	6.36	39247	7.78			
1M68781.D AC59221-006	108126	4.54	83202	6.36	42555	7.78			
1M68782.D AC59221-007	108198	4.54	82091	6.36	51963	7.78			
1M68783.D AC59221-008	103925	4.54	79308	6.36	38062	7.78			
1M68784.D AC59221-009	108106	4.54	83562	6.36	46651	7.78			
IM68785.D AC59221-010	73503	4.54	32315 A	6.36	9338 A	7.78			
1M68786.D AC59221-011	92916	4.54	48019 A	6.36	18390 A	7.78			
1M68787.D AC59221-012	126946	4.54	88746	6.36	59529	7.78			
1M68788.D AC59221-013	103580	4.54	69254	6.36	23527 A	7.78			
1M68789 D AC59266-001	108064	4.54	82818	6.36	49424	7.78			
1M68790.D AC59266-002	116143	4.54	81227	6.36	47687	7.78			
1M68791.D AC59266-003	112526	4.54	79474	6.37	45650	7.78			
1M68792.D AC59266-004	118370	4.54	81430	6.36	49995	7.78			
1M68793.D BLK	110000	4.54	77450	6.36	44697	7.78			
1M68794.D BLK	105570	4.54	76599	6.36	43646	7.78	 		
1M68795.D MBS9697	125964	4.54	81625	6.36	50884	7.78			
IM68796.D MBS9698	123806	4.54	79369	6.36	49294	7.78			
1M68797.D AC59282-001	121582	4.54	86829	6.36	53628	7.78			
1M68798.D BLK	112886	4.54	86200	6.36	47957	7.78			
M68799 D AC59284-008	77206	4.54	37621 A	6.36	10563 A	7.78			
M68800.D BLK	119853	4.54	83664	6.36	51086	7.78			
M68801.D AC59281-001	99721	4.54	62144	6.36	58755	7.76			
M68802.D AC59221-005	113674	4.54	71197	6.36	35532	7.78			
IM68803.D BLK	115066	4.54	88550	6.36	48202	7.78			
IM68804 D BLK	120962	4.54	84353	6.36	50621	7.78	 		
IM68805.D BLK	125468	4.54	89670	6.36	52125	7.78			
IM68806.D BLK	109247	4.54	84042	6.36	47121	7.78			

T1 =	Fluorobenzene
I2 =	Chlorobenzene-d5
I3 =	1 4-Dichlorobenzene-d4

I4 = I5 = I6 = 625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags

A - Indicates the compound failed the internal standard area criteria

 $\ensuremath{\mathsf{R}}$ - Indicates the compound failed the internal standard retention time criteria.

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

RT

FORM8

Internal Standard Areas

Evaluation Std Data File: 1M68815.D

Method: EPA 8260B

RT

Area

Analysis Date/Time: 05/27/11 07:50

					Lab File	ID: CAL @	3 20 PPB			
	I1		12		13		14		15	
	Area	RT	Area	RT	Area	RT	Area	RT	Area	T
Eval File Area/RT:	136791	4.54	96345	6.36	55978	7.78				
Eval File Area Limit:	68396-2	73582	48172-1	92690	27989-1	11956				
Eval File Rt Limit:	4.04-	5.04	5.86-6	3.86	7.28-8.2	80001				
Data File Sample										
1M68816.D BLK	11504	4 4.54	9155	4 6.36	54206	6 7.78				
1M68817.D DAILY BL	ANK 12564	7 4.54	9443	9 6.36	54866	6 7.78				
1M68818 D MRS0703	12181	N 454	8375	6 636	51201	3 778				

Data File	Sample							
1M68816.D	BLK	115044	4.54	91554	6.36	54206	7.78	
	DAILY BLANK	125647	4.54	94439	6.36	54866	7.78	
1M68818.D		121810	4.54	83756	6.36	51293	7.78	
1M68819.D		119132	4.54	83911	6.36	47678	7.78	
1M68820.D		118019	4.54	81881	6.36	46698	7.78	
1M68821.D	AC59221-010	105675	4.54	56920	6.36	10747 A	7.78	
1M68822.D	AC59221-011	126429	4.54	83133	6.36	35970	7.78	
	AC59221-012	122270	4.54	75695	6.36	40423	7.78	
1M68824.D	AC59221-013	130304	4.54	90028	6.36	49019	7.78	
1M68825.D	AC59221-002	108180	4.54	80083	6.36	40445	7.78	
1M68826.D	AC59221-004	111446	4.54	87124	6.36	43498	7.78	
1M68827.D	BLK	108189	4.54	81910	6.36	41917	7.78	
1M68828.D	AC59243-001	110513	4.54	76423	6.36	37389	7.78	
1M68829.D	AC59203-004	104390	4.54	65350	6.36	25279 A	7.78	
	AC59203-011	105665	4.54	69338	6.36	23493 A	7.78	
	AC59145-006	52984 A	4.54	14682 A	6.36	2636 A	7.78	
	AC59191-001	92338	4.54	54325	6.36	21820 A	7.78	
	AC59130-002	95065	4.54	58922	6.36	22581 A	7.78	
1M68834.D		99155	4.54	75703	6.36	45089	7.78	
	AC59145-006	56312 A	4.54	15786 A	6.36	2853 A	7.78	
	AC59284-008	62774 A	4.54	24417 A	6.36	5543 A	7.78	
	AC59281-001	96194	4.54	76719	6.36	53849	7.78	
1M68838.D		112489	4.54	82713	6.36	47359	7.78	
	AC59221-006	134269	4.54	88316	6.36	51441	7.78	
	AC59221-006	131411	4.54	88000	6.36	53109	7.78	· · · · · · · · · · · · · · · · · · ·
	AC59222-002	113033	4.54	85822	6.36	51042	7.78	
1M68842.D	AC59130-002	31269 A	4.54	8821 A	6.36	2956 A	7.78	
1M68843.D		117820	4.54	87959	6.36	49234	7.78	
	AC59259-008	112713	4.54	85643	6.36	50151	7.78	
	AC59259-003	156912	4.55	106514	6.37	57870	7.78	
	AC59236-001	125522	4.54	98786	6.36	51119	7.78	
	AC59236-003	125441	4.54	87466	6.36	47473	7.78	
	AC59236-002	118995	4.54	74733	6.36	32279	7.78	
1M68849.D	AC59236-004	119521	4.54	76836	6.36	35867	7.78	
	MBS9732	124764	4.54	97753	6.36	60177	7.78	

I1 =	Fluorobenzene	I4 =	
I2 =	Chlorobenzene-d5	I5 =	
13 =	1.4-Dichlorobenzene-d4	I6 =	

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt.

Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

 $\ensuremath{\mathsf{R}}$ - Indicates the compound failed the internal standard retention time criteria.

FORM8

Internal Standard Areas

Evaluation Std Data File: 1M69044.D

Method: EPA 8260B

Analysis Date/Time: 06/01/11 07:04

Lab File ID: CAL @ 50 PPB

					Lab File	ID: CAL @	30 PFB					
	l1 l2			13		I4		15		16		
	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
Eval File Area/RT:	134907	4.53	102270	6.35	56889	7.77						
Eval File Area Limit:	67454-2	269814	51135-20	4540	28444-1	13778						
Eval File Rt Limit:	4.03-	5.03	5.85-6	.85	7.27-8	.27						
Data File Sample												
1M69045.D BLK	12696	1 4.53	98615	6.35	56898	3 7.77						
1M69046.D DAILY BLA	ANK 10874				49256	7.78						
1M69047.D MBS9764	11732	0 4.53	94860	6.35	54110	7.77						
1M69048.D BLK	10836	0 4.53	82483	6.35	48838	3 7.77						
1M69049 D AC59205-0	012 10865			6.36	17300	DA 7.78						
1M69050.D AC59205-0	003 10110	0 4.54	62985	6.36	20245	5A 7.78						
1M69051.D AC59410-0	001 11127	1 4.53	74681	6.35	43139	7.77						
1M69052.D BLK	11245	7 4.54	87585	6.36	53112	2 7.77						
1M69053.D BLK	10538	5 4.53	72162	6.36	47472	2 7.77						
1M69054.D AC59230-	002 9501	8 4.54	74070	6.36	38448	7.77						
1M69055.D AC59422-	001 9462	0 4.54	67829	6.36	34216	7.78						
1M69056.D AC59422-	003 10097	0 4.54	72290	6.36	35583	3 7.77						
1M69057.D AC59424-0	001 10243	8 4.54	83465	6.36	50219	7.78						
1M69058.D AC59424-0	002 9869	3 4.54	75915	6.36	41180	7.78						
1M69059 D BLK	12130	2 4.54	81840	6.36	48618	7.78						
1M69060.D AC59366-0	013 9482	3 4.54	51831	6.36	39818	3 7.87	-					
1M69061.D MBS9769	10162	0 4.54	79468	6.36	52765	5 7.78						
1M69062.D BLK	11033	2 4.54	90793	6.36	54926	7.78						
1M69063.D AC59305-0	002 9135	1 4.54	64194	6.36	26668	3A 7.78						
1M69064 D BLK	10589	2 4.54	85843	6.36	51927	7.78						
1M69065.D AC59305-0	004 10190	8 4.54	73597	6.36	38852	7.78						
1M69066.D BLK	10783	35 4.54	86710	6.36	53649	7.78						
1M69067.D AC59297-0	016 9870	3 4.54	72775	6.36	41528	3 7.78						
1M69068.D AC59297-0		6 4.54										
1M69069.D AC59297-		1 4.54	91513	6.36	48051	7.78						
1M69070 D AC59266-0							_		_			
1M69071.D AC59266-0		5 4.54										
1M69072.D BLK	9995				46782							
1M69073.D AC59385-0					43634							
1M69074.D AC59385-0					45887							
1M69075.D AC59385-0					47307							
1M69076.D AC59385-0					47377							
1M69077.D BLK	10921				46587							
1M69078.D AC59423-0					54193							
1M69079.D BLK	10969	_			45266							

I1 =	Fluorobenzene
I2 =	Chlorobenzene-d5
I3 =	1.4-Dichlorobenzene-d4

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration = 5ug/L

QC Limits:

Internal Standard Areas

1M69080.D MBS9773 1M69081.D AC59424-003

1M69084.D BLK

1M69082.D AC59328-003 1M69083.D BLK

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

111200

106907

104351

94598

102443

4.55

4.54

4.54

4.54

4.54

83437

84409

76784

71274

77491

6.37

6.36

6.36

6.36

6.36

Flags:

7.79

7.78

7.78

7.78

7.78

48506

49206

39442

44788

47012

A - Indicates the compound failed the internal standard area criteria

 $\ensuremath{\mathsf{R}}$ - Indicates the compound failed the internal standard retention time criteria.

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

I4 == I5 = I6 =

GC/MS Volatile Data Sample Data

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-001

Client Id: MW-06 4-5 Data File: 1M68777.D

Analysis Date: 05/26/11 17:10

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.06g

Final Vol: NA

Dilution: 0.988

Solids: 87

Units: mg/Kg

			• • • • • • • • • • • • • • • • • • • •				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0023	U	75-00-3	Chloroethane	0.0023	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0057	U	67-66-3	Chloroform	0.0023	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0023	U	74-87-3	Chloromethane	0.0023	U
79-00-5	1,1,2-Trichloroethane	0.0023	U	156-59-2	cis-1,2-Dichloroethene	0.0023	U
75-34-3	1,1-Dichloroethane	0.0023	U	10061-01-5	cis-1,3-Dichloropropene	0.0057	U
75-35-4	1,1-Dichloroethene	0.0023	U	110-82-7	Cyclohexane	0.0023	U
120-82-1	1,2,4-Trichlorobenzene	0.0023	U	124-48-1	Dibromochloromethane	0.0057	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0023	U	75-71-8	Dichlorodifluoromethane	0.0023	U
106-93-4	1,2-Dibromoethane	0.0023	U	100-41-4	Ethylbenzene	0.0011	U
95-50-1	1,2-Dichlorobenzene	0.0023	U	98-82-8	Isopropylbenzene	0.0011	U
107-06-2	1,2-Dichloroethane	0.0023	U	136777612	m&p-Xylenes	0.0011	U
78-87-5	1,2-Dichloropropane	0.0023	U	79-20-9	Methyl Acetate	0.0023	U
541-73-1	1,3-Dichlorobenzene	0.0023	U	108-87-2	Methylcyclohexane	0.0023	U
106-46-7	1,4-Dichlorobenzene	0.0023	U	75-09-2	Methylene Chloride	0.0023	U
78-93-3	2-Butanone	0.0057	U	1634-04-4	Methyl-t-butyl ether	0.00057	U
591-78-6	2-Hexanone	0.0023	U	95-47-6	o-Xylene	0.0011	U
108-10-1	4-Methyl-2-Pentanone	0.0023	U	100-42-5	Styrene	0.0023	U
67-64-1	Acetone	0.028	U	127-18-4	Tetrachloroethene	0.0023	0.041
71 -4 3-2	Benzene	0.0011	U	108-88-3	Toluene	0.0011	U
75-27-4	Bromodichloromethane	0.0023	U	156-60-5	trans-1,2-Dichloroethene	0.0023	U
75-25-2	Bromoform	0.0023	U	10061-02-6	trans-1,3-Dichloropropene	0.0057	U
74-83-9	Bromomethane	0.0023	U	79-01-6	Trichloroethene	0.0023	U
75-15-0	Carbon Disulfide	0.0023	U	75-69-4	Trichlorofluoromethane	0.0023	U
56-23-5	Carbon Tetrachloride	0.0023	U	75-01-4	Vinyl Chloride	0.0023	U
108-90-7	Chlorobenzene	0.0023	U		Xylenes (Total)	0.0011	U
					. ,		

^{0.041}R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

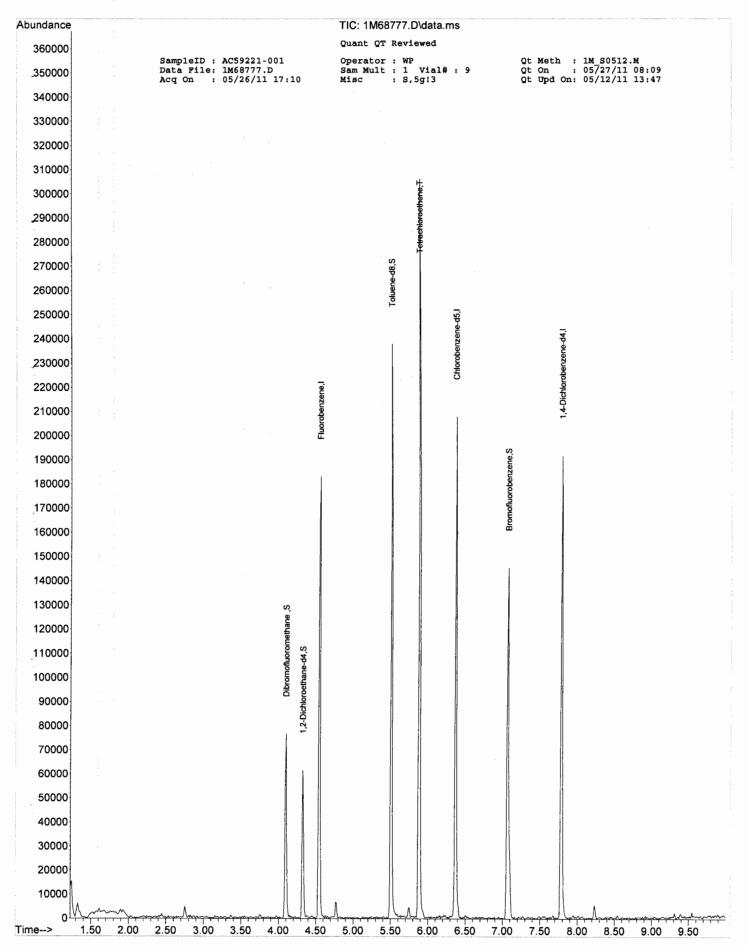
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

 $[\]emph{J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

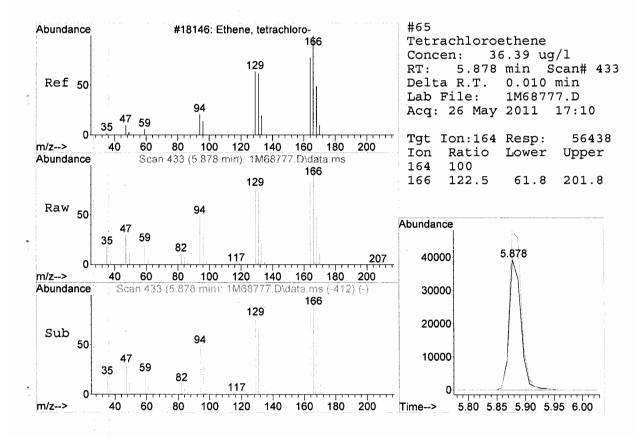
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

 SampleID : AC59221-001
 Operator : WP

 Data File: 1M68777.D
 Sam Mult : 1


 Acq On : 05/26/11 17:10
 Misc : S,5

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards 4) Fluorobenzene 52) Chlorobenzene-d5	4.550 6.370		107101 81712	30.00	ug/l ug/l	0.02
70) 1,4-Dichlorobenzene-d4	7.786	152	44972	30.00	ug/l	0.02
System Monitoring Compounds						
36) Dibromofluoromethane	4.097	111				0.02
Spiked Amount 30.000			Recove:	ry =	105.57%	
38) 1,2-Dichloroethane-d4	4.323	67	16439	31.38	٥,	0.00
Spiked Amount 30.000			Recove:	ry =	104.60%	
66) Toluene-d8	5.504	98	109063	29.47	ug/l	0.00
Spiked Amount 30.000			Recove:	ry =	98.23%	
76) Bromofluorobenzene	7.068	174	35955	28.49	ug/l	0.00
Spiked Amount 30.000			Recove:	ry =	94.97%	
Target Compounds						Qvalue
65) Tetrachloroethene	5.878	164	56438	36.388	33 ug/:	1 92
;	 -					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

V

1M_S0512.M Mon Jun 06 12:14:25 2011 RPT1

RPT1

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-002(5X)

Client Id: MW-06 10-11 Data File: 1M68825.D Analysis Date: 05/27/11 10:38

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 1.03g Final Vol: NA

Dilution: 4.85 Solids: 85

Units: mg/Kg

			Oilleo. I	9,9			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.011	U	75-00-3	Chloroethane	0.011	U
79-34-5	1,1,2,2-Tetrachloroethane	0.029	U	67-66-3	Chloroform	0.011	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.011	U	74-87-3	Chloromethane	0.011	U
79-00-5	1,1,2-Trichloroethane	0.011	U	156-59-2	cis-1,2-Dichloroethene	0.011	U
75-34-3	1,1-Dichloroethane	0.011	U	10061-01-5	cis-1,3-Dichloropropene	0.029	U
75-35-4	1,1-Dichloroethene	0.011	U	110-82-7	Cyclohexane	0.011	U
120-82-1	1,2,4-Trichlorobenzene	0.011	U	124-48-1	Dibromochloromethane	0.029	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.011	U	75-71-8	Dichlorodifluoromethane	0.011	U
106-93-4	1,2-Dibromoethane	0.011	U	100-41-4	Ethylbenzene	0.0057	U
95-50-1	1,2-Dichlorobenzene	0.011	U	98-82-8	Isopropylbenzene	0.0057	U
107-06-2	1,2-Dichloroethane	0.011	U	136777612	m&p-Xylenes	0.0057	U
78-87-5	1,2-Dichloropropane	0.011	U	79-20-9	Methyl Acetate	0.011	U
541-73-1	1,3-Dichlorobenzene	0.011	U	108-87-2	Methylcyclohexane	0.011	U
106-46-7	1,4-Dichlorobenzene	0.011	U	75-09-2	Methylene Chloride	0.011	U
78-93-3	2-Butanone	0.029	U	1634-04-4	Methyl-t-butyl ether	0.0029	U
591-78-6	2-Hexanone	0.011	U	95-47-6	o-Xylene	0.0057	U
108-10-1	4-Methyl-2-Pentanone	0.011	U	100-42-5	Styrene	0.011	U
67-64-1	Acetone	0.14	U	127-18-4	Tetrachloroethene	0.011	0.70
71-43-2	Benzene	0.0057	U	108-88-3	Toluene	0.0057	U
75-27-4	Bromodichloromethane	0.011	U	156-60-5	trans-1,2-Dichloroethene	0.011	U
75-25-2	Bromoform	0.011	U	10061-02-6	trans-1,3-Dichloropropene	0.029	U
74-83-9	Bromomethane	0.011	U	79-01-6	Trichloroethene	0.011	0.043
75-15-0	Carbon Disulfide	0.011	U	75-69-4	Trichlorofluoromethane	0.011	U
56-23-5	Carbon Tetrachloride	0.011	U	75-01-4	Vinyl Chloride	0.011	U
108-90-7	Chlorobenzene	0.011	U	1330-20-7	Xylenes (Total)	0.0057	U

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

^{0.74}

U - Indicates the compound was analyzed but not detected.

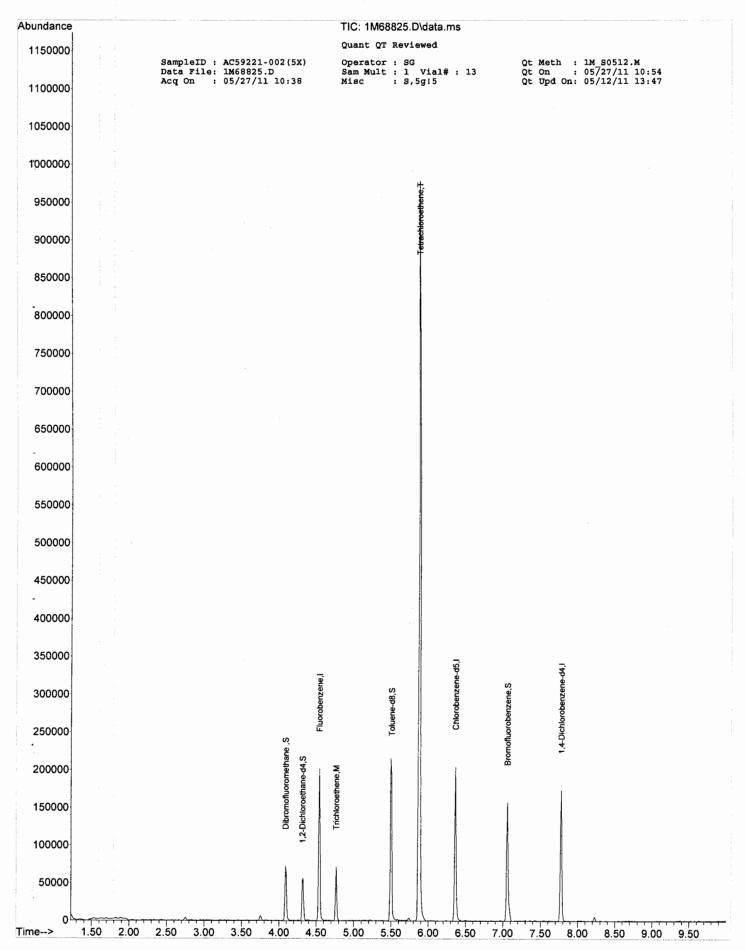
B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument,

R - Retention Time Out

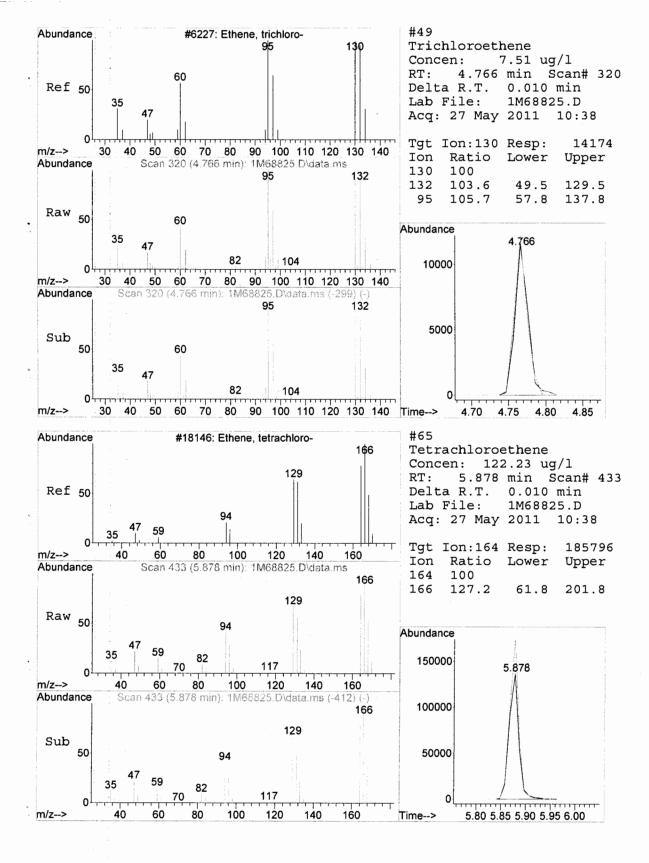
 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea


Qt Meth : 1M_S0512.M Qt On : 05/27/11 10:54 Operator : SG Sam Mult : 1 Vial# : 13 SampleID : AC59221-002(5X) Data File: 1M68825.D Acq On : 05/27/11 10:38 Misc : S,5g!5 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 4) Fluorobenzene 52) Chlorobenzene-d5 70) 1,4-Dichlorobenzene-d4		117	108180 80083 40445		ug/l ug/l ug/l	0.00 0.00 0.00
System Monitoring Compounds 36) Dibromofluoromethane Spiked Amount 30.000 38) 1,2-Dichloroethane-d4 Spiked Amount 30.000 66) Toluene-d8 Spiked Amount 30.000 76) Bromofluorobenzene Spiked Amount 30.000	4.087 4.314 5.504 7.058	67 98	16767 Recove 107181 Recove 37628	31.69 ery = 29.55 ery = 33.15	99.80% ug/l 105.63% ug/l 98.50%	0.00
Target Compounds	4.766		14174	•	80 ug/1	


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:14:31 2011 RPT1

Page: 1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-003

Client Id: MW-07 6-7 Data File: 1M68779.D Analysis Date: 05/26/11 17:44

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 4.96g

Final Vol: NA Dilution: 1.01

Solids: 81

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0025	U	75-00-3	Chloroethane	0.0025	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0062	. U	67-66-3	Chloroform	0.0025	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025	U	74-87-3	Chloromethane	0.0025	U
79-00-5	1,1,2-Trichloroethane	0.0025	U	156-59-2	cis-1,2-Dichloroethene	0.0025	U
75-34-3	1,1-Dichloroethane	0.0025	U	10061-01-5	cis-1,3-Dichloropropene	0.0062	U
75-35-4	1,1-Dichloroethene	0.0025	U	110-82-7	Cyclohexane	0.0025	U
120-82-1	1,2,4-Trichlorobenzene	0.0025	U	124-48-1	Dibromochloromethane	0.0062	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025	U	75-71-8	Dichlorodifluoromethane	0.0025	U
106-93-4	1,2-Dibromoethane	0.0025	U	100-41-4	Ethylbenzene	0.0012	U
95-50-1	1,2-Dichlorobenzene	0.0025	U	98-82-8	Isopropylbenzene	0.0012	U
107-06-2	1,2-Dichloroethane	0.0025	U	136777612	m&p-Xylenes	0.0012	U
78-87-5	1,2-Dichloropropane	0.0025	U	79-20-9	Methyl Acetate	0.0025	U
541-73-1	1,3-Dichlorobenzene	0.0025	U	108-87-2	Methylcyclohexane	0.0025	U
106-46-7	1,4-Dichlorobenzene	0.0025	U	75-09-2	Methylene Chloride	0.0025	U
78-93-3	2-Butanone	0.0062	U	1634-04-4	Methyl-t-butyl ether	0.00062	U
591-78-6	2-Hexanone	0.0025	· U	95-47-6	o-Xylene	0.0012	U
108-10-1	4-Methyl-2-Pentanone	0.0025	U	100-42-5	Styrene	0.0025	U
67-64-1	Acetone	0.031	U	127-18-4	Tetrachloroethene	0.0025	0.085
71-43-2	Benzene	0.0012	U	108-88-3	Toluene	0.0012	U
75-27-4	Bromodichloromethane	0.0025	U	156-60-5	trans-1,2-Dichloroethene	0.0025	U
75-25-2	Bromoform	0.0025	U	10061-02-6	trans-1,3-Dichloropropene	0.0062	U
74-83-9	Bromomethane	0.0025	U	79-01-6	Trichloroethene	0.0025	0.011
75-15-0	Carbon Disulfide	0.0025	U	75-69-4	Trichlorofluoromethane	0.0025	U
56-23-5	Carbon Tetrachloride	0.0025	U	75-01-4	Vinyl Chloride	0.0025	U
108-90-7	Chlorobenzene	0.0025	U	1330-20-7	Xylenes (Total)	0.0012	U

^{0.096} ColumnI

ColumnID: (^) Indicates results from 2nd column

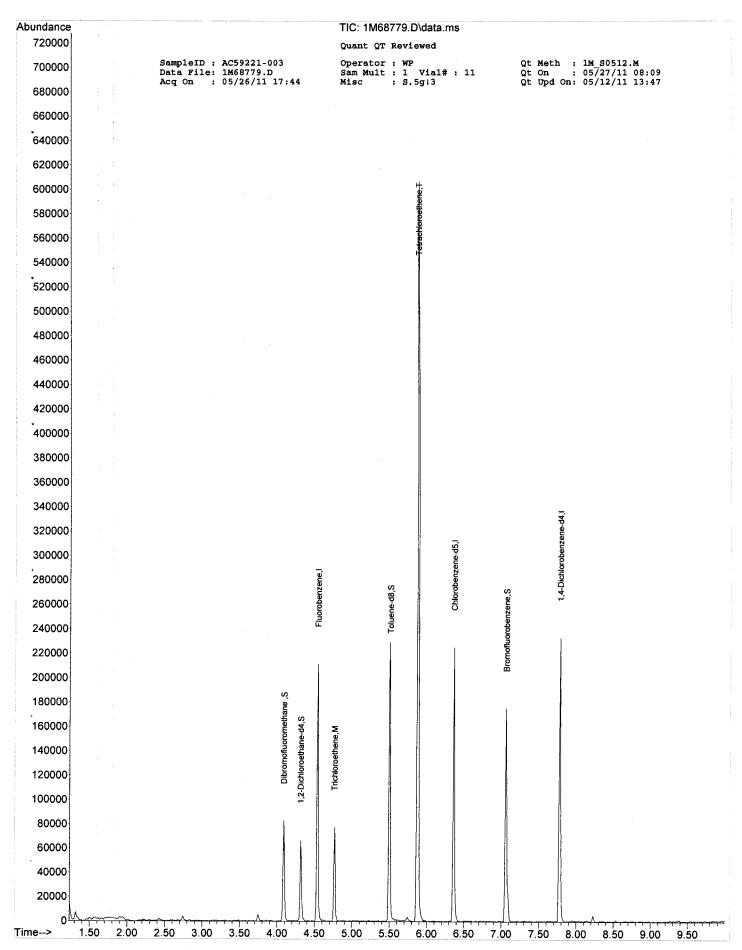
U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

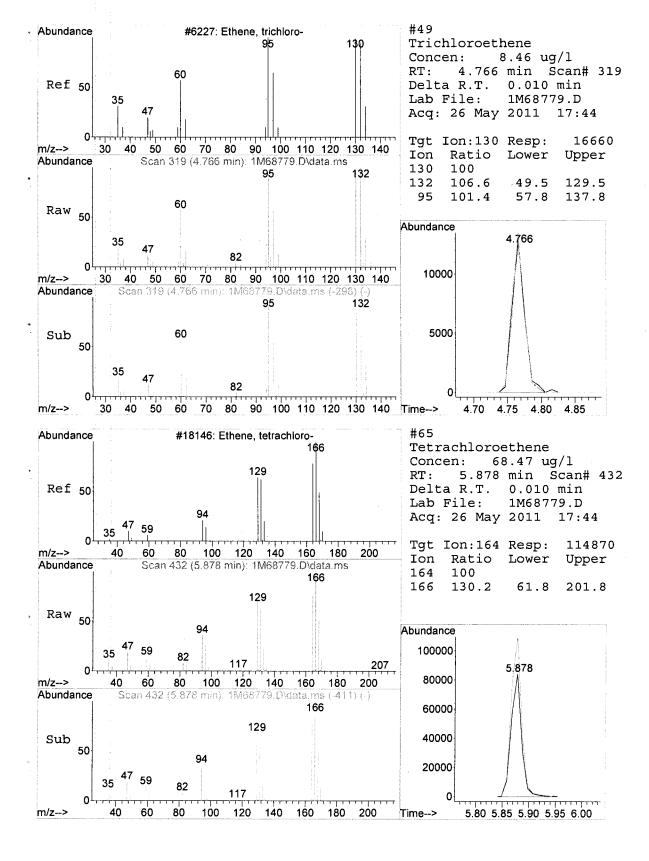
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.


d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Operator : WP Sam Mult : 1 Vial# : 11 Misc : S,5g!3 Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:09 Qt Upd On: 05/12/11 13:47 SampleID : AC59221-003 Data File: 1M68779.D Acq On : 05/26/11 17:44


Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards 4) Fluorobenzene	4.540	96	112810	30.00 ug/	1 0.01
			88390	<u>.</u>	
70) 1,4-Dichlorobenzene-d4					
System Monitoring Compounds					
36) Dibromofluoromethane	4.088	111	33010	29.72 ug/	1 0.01
Spiked Amount 30.000			Recove	ry = 99	.07%
38) 1,2-Dichloroethane-d4	4.314	67	16167	29.30 ug/	1 0.00
Spiked Amount 30.000			Recove	ry = 97	.67%
66) Toluene-d8	5.504	98	111808	27.93 ug/	1 0.01
Spiked Amount 30.000			Recove	ry = 93	.10%
76) Bromofluorobenzene	7.059	174	41085	28.48 ug/	1 0.00
Spiked Amount 30.000			Recove	ry = 94	.93%
Target Compounds					Qvalue
49) Trichloroethene	4.766	130	16660	8.4626	ug/l 89
65) Tetrachloroethene	5.878	164	114870	68.4668	ug/l 99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:14:37 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-004(5X)

Client Id: MW-07 14-15 Data File: 1M68826.D Analysis Date: 05/27/11 10:55

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 1.04g

Final Vol: NA Dilution: 4.81

Solids: 78

Units: ma/Ka

			Omits. i	iig/i\g			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.012	U	75-00-3	Chloroethane	0.012	U
79-34-5	1,1,2,2-Tetrachloroethane	0.031	U	67-66-3	Chloroform	0.012	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.012	U	74-87-3	Chloromethane	0.012	U
79-00-5	1,1,2-Trichloroethane	0.012	U	156-59-2	cis-1,2-Dichloroethene	0.012	0.018
75-34-3	1,1-Dichloroethane	0.012	U	10061-01-5	cis-1,3-Dichloropropene	0.031	U
75-35-4	1,1-Dichloroethene	0.012	U	110-82-7	Cyclohexane	0.012	U
120-82-1	1,2,4-Trichlorobenzene	0.012	U	124-48-1	Dibromochloromethane	0.031	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.012	U	75-71-8	Dichlorodifluoromethane	0.012	U
106-93-4	1,2-Dibromoethane	0.012	U	100-41-4	Ethylbenzene	0.0062	U
95-50-1	1,2-Dichlorobenzene	0.012	U	98-82-8	Isopropylbenzene	0.0062	U
107-06-2	1,2-Dichloroethane	0.012	U	136777612	m&p-Xylenes	0.0062	U
78-87-5	1,2-Dichloropropane	0.012	U	79-20-9	Methyl Acetate	0.012	U
541-73-1	1,3-Dichlorobenzene	0.012	U	108-87-2	Methylcyclohexane	0.012	U
106-46-7	1,4-Dichlorobenzene	0.012	U	75-09-2	Methylene Chloride	0.012	U
78-93-3	2-Butanone	0.031	U	1634-04-4	Methyl-t-butyl ether	0.0031	U
591-78-6	2-Hexanone	0.012	U	95-47-6	o-Xylene	0.0062	U
108-10-1	4-Methyl-2-Pentanone	0.012	U	100-42-5	Styrene	0.012	U
67-64-1	Acetone	0.15	U	127-18-4	Tetrachloroethene	0.012	0.67
71-43-2	Benzene	0.0062	U	108-88-3	Toluene	0.0062	U
75-27-4	Bromodichloromethane	0.012	U	156-60-5	trans-1,2-Dichloroethene	0.012	U
75-25-2	Bromoform	0.012	U	10061-02-6	trans-1,3-Dichloropropene	0.031	U
74-83-9	Bromomethane	0.012	U	79-01-6	Trichloroethene	0.012	0.056
75-15-0	Carbon Disulfide	0.012	U	75-69-4	Trichlorofluoromethane	0.012	U
56-23-5	Carbon Tetrachloride	0.012	U	75-01-4	Vinyl Chloride	0.012	U
108-90-7	Chlorobenzene	0.012	U	1330-20-7	Xylenes (Total)	0.0062	U

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

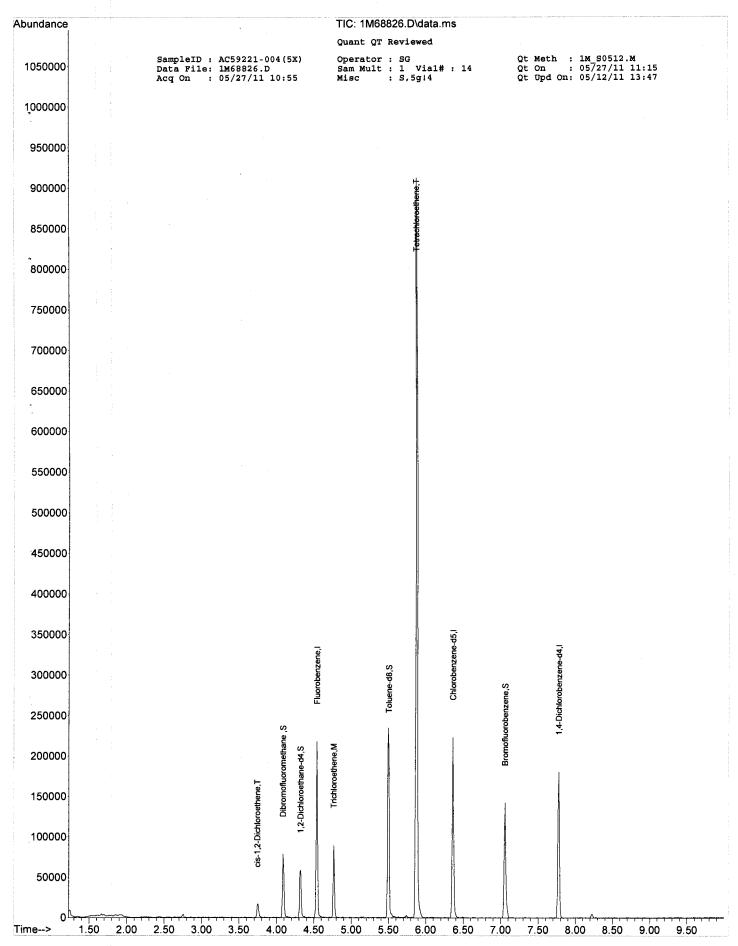
^{0.74}

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

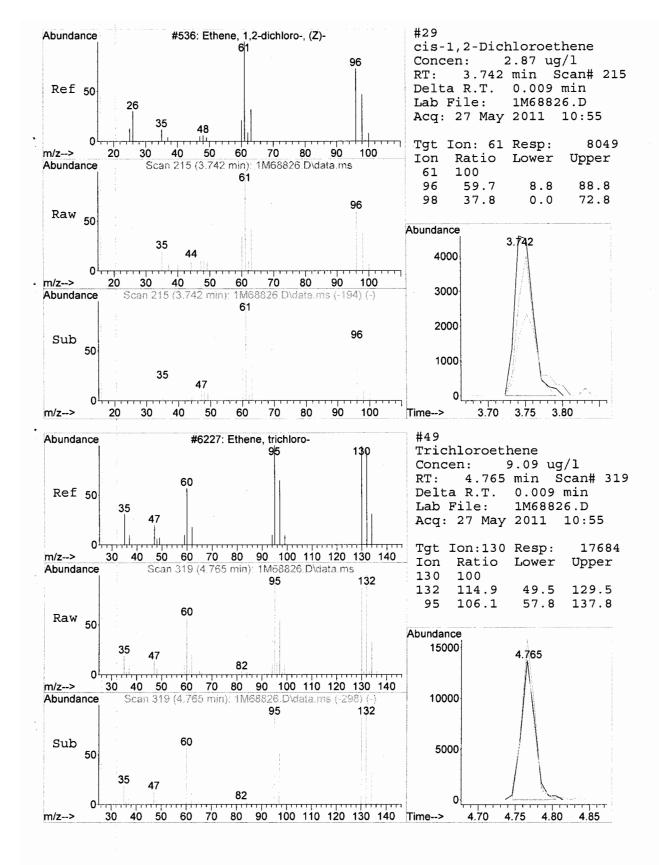
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

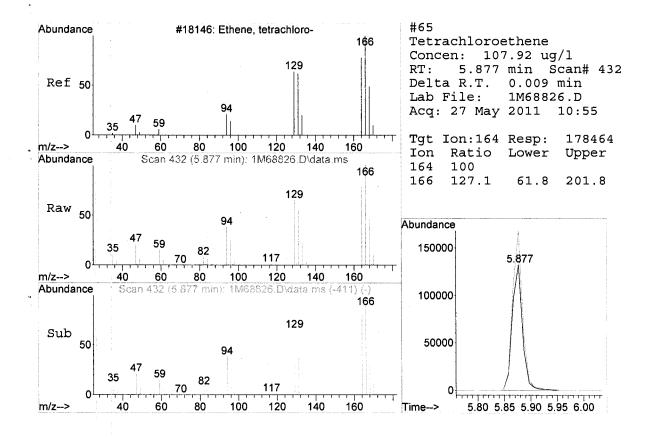
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea


Operator : SG Sam Mult : 1 Vial# : 14 Misc : S,5g!4 Qt Meth : 1M_S0512.M Qt On : 05/27/11 11:15 Qt Upd On: 05/12/11 13:47 SampleID : AC59221-004(5X) Data File: 1M68826.D Acq On : 05/27/11 10:55

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
4) Fluorobenzene	4.539	96	111446	30.00 ug/	1 0.00
52) Chlorobenzene-d5	6.359	117	87124	30.00 ug/	1 0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	43498	30.00 ug/	1 0.00
System Monitoring Compounds					
36) Dibromofluoromethane	4.087	111	34128	31.10 ug/	1 0.00
Spiked Amount 30.000			Recove	ry = 103	.67%
38) 1,2-Dichloroethane-d4	4.323	67	17144	31.45 ug/	1 0.00
Spiked Amount 30.000			Recove	ry = 104	.83%
66) Toluene-d8	5.503	98		29.43 ug/	
Spiked Amount 30.000			Recove	ry = 98	1.10%
76) Bromofluorobenzene	7.058	174		26.86 ug/	
Spiked Amount 30.000				ry = 89	
Target Compounds					Qvalue
29) cis-1,2-Dichloroethene	3.742	61	8049	2.8725	ug/l 87
49) Trichloroethene	4.765	130	17684	9.0927	ug/1 83
65) Tetrachloroethene	5.877	164	178464		ug/l 96
		'			


^(#) = qualifier out of range (m) = manual integration (+) = signals summed



1M_S0512.M Mon Jun 06 12:14:42 2011 RPT1

Page: 1

RPT1

Sample Number: AC59221-005

Client Id: MW-08 11-12

Data File: 1M68802.D Analysis Date: 05/27/11 00:05

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 4.92g

Final Vol: NA

Dilution: 1.02 Solids: 64

Units: mg/Kg

				Units: n	ng/Kg			
_	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	0.0032	U	75-00-3	Chloroethane	0.0032	U
	79-34-5	1,1,2,2-Tetrachloroethane	0.0079	U	67-66-3	Chloroform	0.0032	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0032	U	74-87-3	Chloromethane	0.0032	U
	79-00-5	1,1,2-Trichloroethane	0.0032	U	156-59-2	cis-1,2-Dichloroethene	0.0032	0.043
	75-34-3	1,1-Dichloroethane	0.0032	U	10061-01-5	cis-1,3-Dichloropropene	0.0079	U
	75-35-4	1,1-Dichloroethene	0.0032	U	110-82-7	Cyclohexane	0.0032	U
	120-82-1	1,2,4-Trichlorobenzene	0.0032	. U	124-48-1	Dibromochloromethane	0.0079	U
	96-12-8	1,2-Dibromo-3-Chloropropa	0.0032	U	75-71-8	Dichlorodifluoromethane	0.0032	U
	106-93-4	1,2-Dibromoethane	0.0032	U	100-41-4	Ethylbenzene	0.0016	U
	95-50-1	1,2-Dichlorobenzene	0.0032	U	98-82-8	Isopropylbenzene	0.0016	U
	107-06-2	1,2-Dichloroethane	0.0032	U	136777612	m&p-Xylenes	0.0016	U
	78-87-5	1,2-Dichloropropane	0.0032	U	79-20-9	Methyl Acetate	0.0032	U
	541-73-1	1,3-Dichlorobenzene	0.0032	U	108-87-2	Methylcyclohexane	0.0032	U
	106-46-7	1,4-Dichlorobenzene	0.0032	U	75-09-2	Methylene Chloride	0.0032	U
	78-93-3	2-Butanone	0.0079	0.048	1634-04-4	Methyl-t-butyl ether	0.00079	U
	591-78-6	2-Hexanone	0.0032	. υ	95-47-6	o-Xylene	0.0016	U
	108-10-1	4-Methyl-2-Pentanone	0.0032	U	100-42-5	Styrene	0.0032	U
	67-64-1	Acetone	0.040	0.21	127-18-4	Tetrachloroethene	0.0032	U
	71-43-2	Benzene	0.0016	U	108-88-3	Toluene	0.0016	U
	75-27-4	Bromodichloromethane	0.0032	U	156-60-5	trans-1,2-Dichloroethene	0.0032	U
	75-25-2	Bromoform	0.0032	U	10061-02-6	trans-1,3-Dichloropropene	0.0079	U
	74-83-9	Bromomethane	0.0032	U	79-01-6	Trichloroethene	0.0032	0.010
	75-15-0	Carbon Disulfide	0.0032	U	75-69-4	Trichlorofluoromethane	0.0032	U
	56-23-5	Carbon Tetrachloride	0.0032	U	75-01-4	Vinyl Chloride	0.0032	U
	108-90-7	Chlorobenzene	0.0032	U	1330-20-7	Xylenes (Total)	0.0016	U

ColumnID: (^) Indicates results from 2nd column

^{0.31}R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

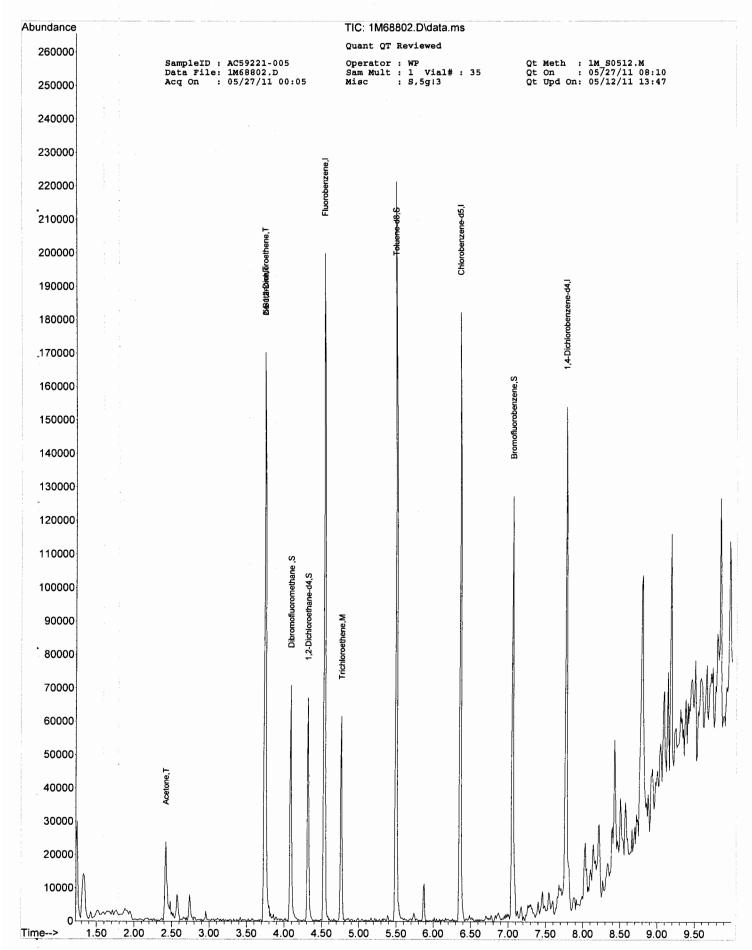
B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

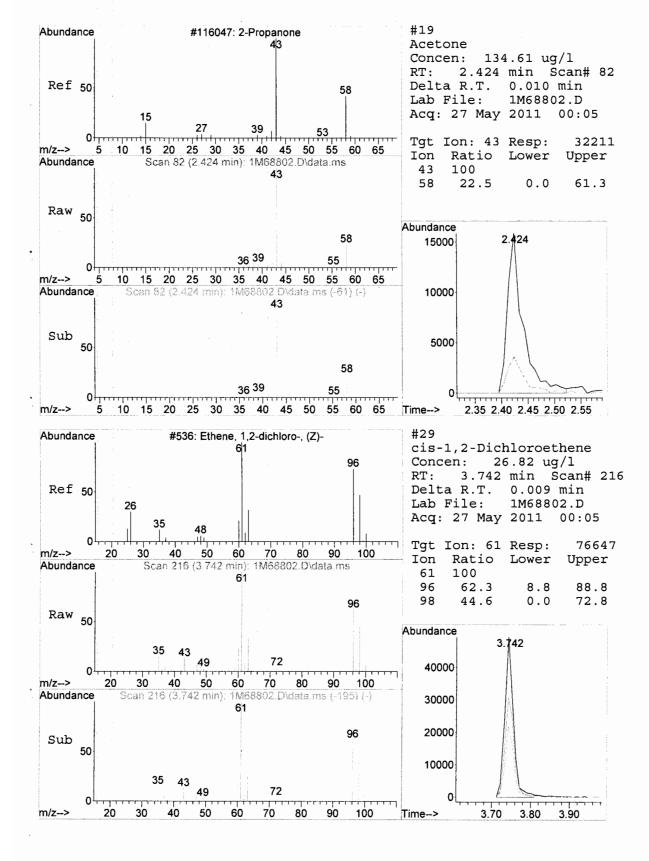
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

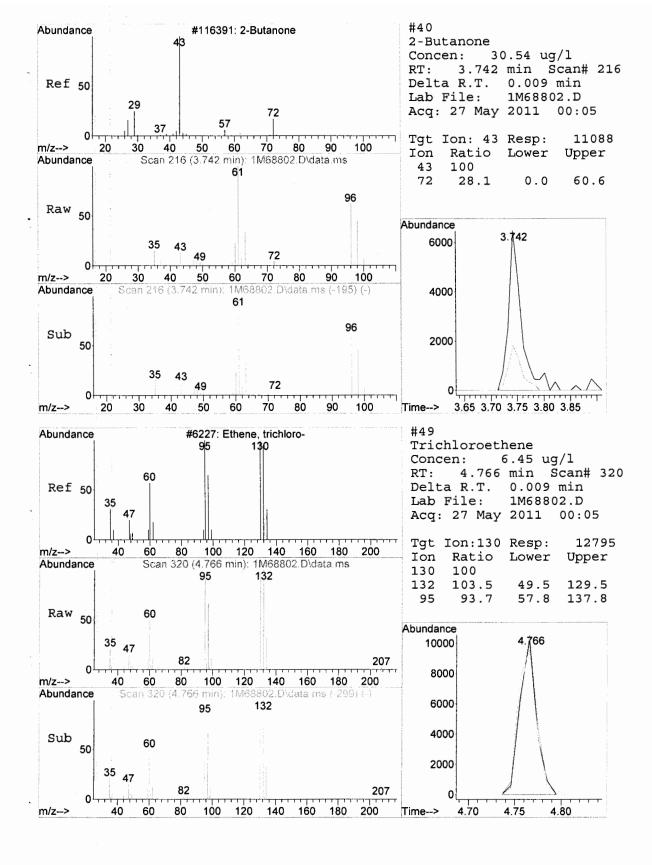
SampleID : AC59221-005 Data File: 1M68802.D Acq On : 05/27/11 00:05


5 Operator : WP Sam Mult : 1 Vial# : 35 0:05 Misc : S,5g!3 Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:10 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Uni	ts Dev(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	113674	30.00 u	g/l	0.00
52) Chlorobenzene-d5	6.359	117	71197	30.00 u	g/l	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	35532	30.00 u	g/1	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.087	111	31902	28.50 u	g/l	0.00
Spiked Amount 30.000			Recove	ry =	95.00%	
38) 1,2-Dichloroethane-d4	4.313	67	16338	29.39 u	g/l	0.00
Spiked Amount 30.000			Recove	ry =	97.97%	
66) Toluene-d8	5.494	98	97937	30.38 u	g/l	0.00
Spiked Amount 30.000			Recove	ry = 1	01.27%	
76) Bromofluorobenzene	7.058	174	28608	28.69 u	g/l	0.00
Spiked Amount 30.000			Recove	ry =	95.63%	
Target Compounds						Qvalue
19) Acetone	2.424	43	32211	134.6099	ug/l	97
29) cis-1,2-Dichloroethene	3.742	61	76647	26.8177	ug/l	80
40) 2-Butanone	3.742	43	11088	30.5401	. ug/l	84
49) Trichloroethene	4.766	130	12795	6.4500	ug/l	91

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed



1M_S0512.M Mon Jun 06 12:14:49 2011 RPT1

RPT1

Sample Number: AC59221-006

Client Id: MW-09 5-6 Data File: 1M68781.D

Analysis Date: 05/26/11 18:17 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.02g Final Vol: NA

Dilution: 0.996

Solids: 81

Uni	ts:	mg/	Κg
-----	-----	-----	----

			Oilito. I	פיישיי			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0025	U	75-00-3	Chloroethane	0.0025	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0061	υ	67-66-3	Chloroform	0.0025	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025	U	74-87-3	Chloromethane	0.0025	U
79-00-5	1,1,2-Trichloroethane	0.0025	υ	156-59-2	cis-1,2-Dichloroethene	0.0025	U
75-34-3	1,1-Dichloroethane	0.0025	U	10061-01-5	cis-1,3-Dichloropropene	0.0061	U
75-35-4	1,1-Dichloroethene	0.0025	U	110-82-7	Cyclohexane	0.0025	U
120-82-1	1,2,4-Trichlorobenzene	0.0025	U	124-48-1	Dibromochloromethane	0.0061	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025	U	75-71-8	Dichlorodifluoromethane	0.0025	U
106-93-4	1,2-Dibromoethane	0.0025	U	100-41-4	Ethylbenzene	0.0012	U
95-50-1	1,2-Dichlorobenzene	0.0025	U	98-82-8	Isopropylbenzene	0.0012	U
107-06-2	1,2-Dichloroethane	0.0025	U	136777612	m&p-Xylenes	0.0012	U
78-87-5	1,2-Dichloropropane	0.0025	U	79-20-9	Methyl Acetate	0.0025	U
541-73-1	1,3-Dichlorobenzene	0.0025	U	108-87-2	Methylcyclohexane	0.0025	U
106-46-7	1,4-Dichlorobenzene	0.0025	U	75-09-2	Methylene Chloride	0.0025	U
78-93-3	2-Butanone	0.0061	U	1634-04-4	Methyl-t-butyl ether	0.00061	U
591-78-6	2-Hexanone	0.0025	U	95-47-6	o-Xylene	0.0012	U
108-10-1	4-Methyl-2-Pentanone	0.0025	U	100-42-5	Styrene	0.0025	U
67-64-1	Acetone	0.031	U	127-18-4	Tetrachloroethene	0.0025	U
71-43-2	Benzene	0.0012	U	108-88-3	Toluene	0.0012	U
75-27-4	Bromodichloromethane	0.0025	U	156-60-5	trans-1,2-Dichloroethene	0.0025	U
75-25-2	Bromoform	0.0025	U	10061-02-6	trans-1,3-Dichloropropene	0.0061	U
74-83-9	Bromomethane	0.0025	U	79-01-6	Trichloroethene	0.0025	U
75-15-0	Carbon Disulfide	0.0025	U	75-69-4	Trichlorofluoromethane	0.0025	U
56-23-5	Carbon Tetrachloride	0.0025	U	75-01-4	Vinyl Chloride	0.0025	U
108-90-7	Chlorobenzene	0.0025	U		Xylenes (Total)	0.0012	U
					. ,		

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

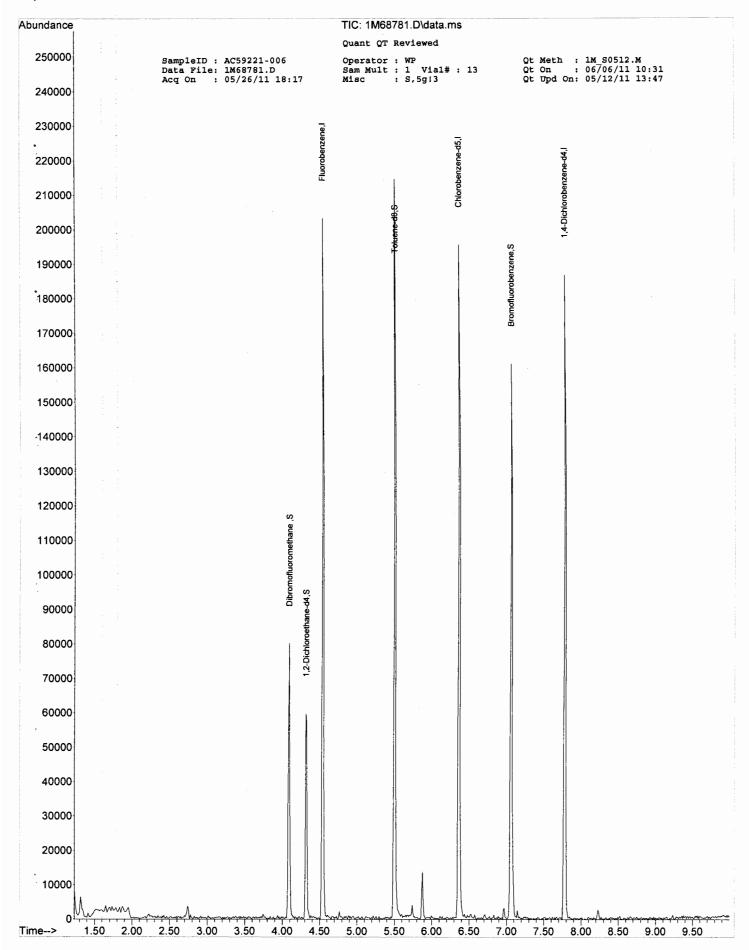
R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

 SampleID:
 AC59221-006
 Operator:
 WP
 Qt Meth:
 1M_S0512.M

 Data File:
 1M68781.D
 Sam Mult:
 1 Vial#:
 13
 Qt On:
 06/06/11
 10:31


 Acq On:
 05/26/11
 18:17
 Misc:
 S,5g!3
 Qt Upd On:
 05/12/11
 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	108126	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.359	117	83202	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	42555	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.086	111	32839	30.84	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	102.80%	
38) 1,2-Dichloroethane-d4	4.313	67	16698	31.57	ug/l	0.00
Spiked Amount 30.000			Recove	ery =	105.23%	
66) Toluene-d8	5.503	98	105682	28.05	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	93.50%	
76) Bromofluorobenzene	7.057	174	40217	33.68	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	112.27%	
Target Compounds						Qvalu

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

(e

1M S0512.M Mon Jun 06 12:14:56 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-007

Client Id: MW-09 6-7 Data File: 1M68782.D Analysis Date: 05/26/11 18:34

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.1g Final Vol: NA

Dilution: 0.980

Solids: 83

Units: mg/Kg

	onto: mg//g										
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	0.0024	U	75-00-3	Chloroethane	0.0024	U				
79-34-5	1,1,2,2-Tetrachloroethane	0.0059	υ	67-66-3	Chloroform	0.0024	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0024	υ	74-87-3	Chloromethane	0.0024	U				
79-00-5	1,1,2-Trichloroethane	0.0024	υ	156-59-2	cis-1,2-Dichloroethene	0.0024	U				
75-34-3	1,1-Dichloroethane	0.0024	U	10061-01-5	cis-1,3-Dichloropropene	0.0059	U				
75-35-4	1,1-Dichloroethene	0.0024	U	110-82-7	Cyclohexane	0.0024	U				
120-82-1	1,2,4-Trichlorobenzene	0.0024	U	124-48-1	Dibromochloromethane	0.0059	U				
96-12-8	1,2-Dibromo-3-Chloropropa	0.0024	U	75-71-8	Dichlorodifluoromethane	0.0024	U				
106-93-4	1,2-Dibromoethane	0.0024	U	100-41-4	Ethylbenzene	0.0012	U				
95-50-1	1,2-Dichlorobenzene	0.0024	U	98-82-8	Isopropylbenzene	0.0012	U				
107-06-2	1,2-Dichloroethane	0.0024	U	136777612	m&p-Xylenes	0.0012	U				
78-87-5	1,2-Dichloropropane	0.0024	U	79-20-9	Methyl Acetate	0.0024	U				
541-73-1	1,3-Dichlorobenzene	0.0024	U	108-87-2	Methylcyclohexane	0.0024	U				
106-46-7	1,4-Dichlorobenzene	0.0024	U	75-09-2	Methylene Chloride	0.0024	U				
78-93-3	2-Butanone	0.0059	U	1634-04-4	Methyl-t-butyl ether	0.00059	U				
591-78-6	2-Hexanone	0.0024	U	95-47-6	o-Xylene	0.0012	U				
108-10-1	4-Methyl-2-Pentanone	0.0024	U	100-42-5	Styrene	0.0024	U				
67-64-1	Acetone	0.030	U	127-18-4	Tetrachloroethene	0.0024	U				
71-43-2	Benzene	0.0012	U	108-88-3	Toluene	0.0012	U				
75-27-4	Bromodichloromethane	0.0024	U	156-60-5	trans-1,2-Dichloroethene	0.0024	U				
75-25-2	Bromoform	0.0024	U	10061-02-6	trans-1,3-Dichloropropene	0.0059	U				
74-83-9	Bromomethane	0.0024	U	79-01-6	Trichloroethene	0.0024	U				
75-15-0	Carbon Disulfide	0.0024	U	75-69-4	Trichlorofluoromethane	0.0024	U				
56-23-5	Carbon Tetrachloride	0.0024	υ	75-01-4	Vinyl Chloride	0.0024	U				
108-90-7	Chlorobenzene	0.0024	U	1330-20-7	Xylenes (Total)	0.0012	U				
			I		•						

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

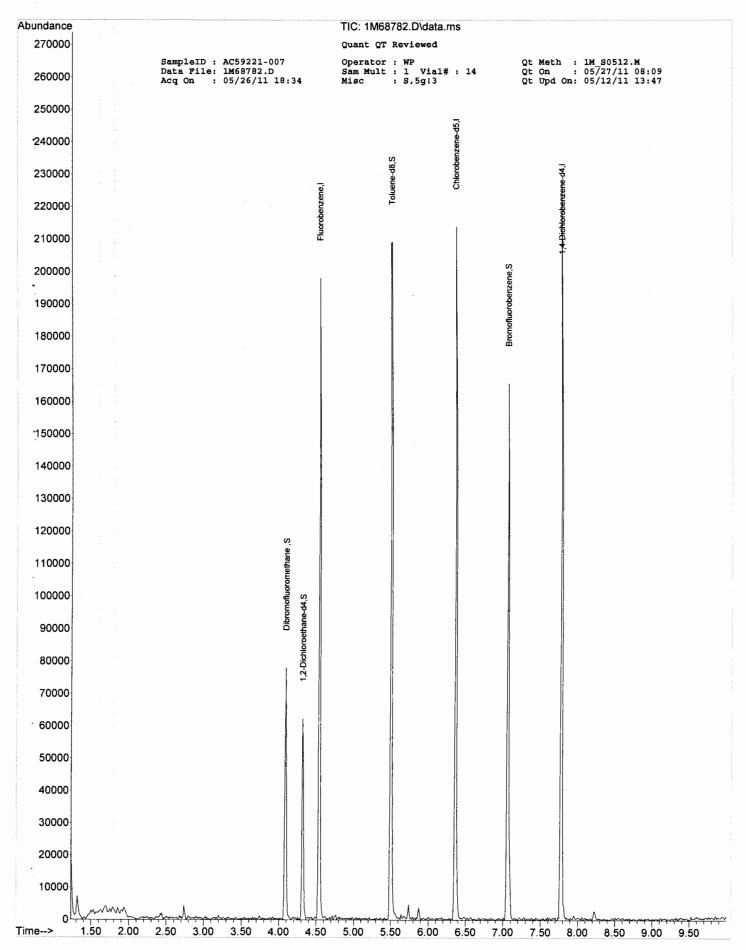
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59221-007 Data File: 1M68782.D Acq On : 05/26/11 18:34

Operator : WP Sam Mult : 1 Vial# : 14 Misc : S,5g!3

Qt Meth : $1M_S0512.M$ Qt On : 05/27/11 08:09 Qt Upd On: 05/12/11 13:47


Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path :: G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response (Conc U	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	108198	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.359	117	82091	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	51963	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.087	111	32651	30.64	ug/l	0.00
Spiked Amount 30.000			Recovery	<i>y</i> =	102.13%	
38) 1,2-Dichloroethane-d4	4.313	67	17709	33.46	ug/l	0.00
Spiked Amount 30.000			Recovery	y =	111.53%	
66) Toluene-d8	5.503	98	112692	30.31	ug/l	0.00
Spiked Amount 30.000			Recovery	y =	101.03%	
76) Bromofluorobenzene	7.058	174	39231	26.90	ug/l	0.00
Spiked Amount 30,000			Recovery	y =	89.67%	
Target Compounds						Qvalue

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:15:01 2011 RPT1

Sample Number: AC59221-008

Client Id: MW-10 7-8 Data File: 1M68783.D

Analysis Date: 05/26/11 18:50

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.05g

Final Vol: NA Dilution: 0.990

Solids: 75

Units: mg/Kg

			• • • • • • • • • • • • • • • • • • • •				
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0026	U	75-00-3	Chloroethane	0.0026	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0066	U	67-66-3	Chloroform	0.0026	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0026	U	74-87-3	Chloromethane	0.0026	U
79-00-5	1,1,2-Trichloroethane	0.0026	U	156-59-2	cis-1,2-Dichloroethene	0.0026	U
75-34-3	1,1-Dichloroethane	0.0026	U	10061-01-5	cis-1,3-Dichloropropene	0.0066	U
75-35-4	1,1-Dichloroethene	0.0026	U	110-82-7	Cyclohexane	0.0026	U
120-82-1	1,2,4-Trichlorobenzene	0.0026	U	124-48-1	Dibromochloromethane	0.0066	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0026	U	75-71-8	Dichlorodifluoromethane	0.0026	U
106-93-4	1,2-Dibromoethane	0.0026	U	100-41-4	Ethylbenzene	0.0013	U
95-50-1	1,2-Dichlorobenzene	0.0026	U	98-82-8	Isopropylbenzene	0.0013	U
107-06-2	1,2-Dichloroethane	0.0026	U	136777612	m&p-Xylenes	0.0013	U
78-87-5	1,2-Dichloropropane	0.0026	U	79-20-9	Methyl Acetate	0.0026	U
541-73-1	1,3-Dichlorobenzene	0.0026	U	108-87-2	Methylcyclohexane	0.0026	U
106-46-7	1,4-Dichlorobenzene	0.0026	U	75-09-2	Methylene Chloride	0.0026	U
78-93-3	2-Butanone	0.0066	U	1634-04-4	Methyl-t-butyl ether	0.00066	U
591-78-6	2-Hexanone	0.0026	U	95-47-6	o-Xylene	0.0013	U
108-10-1	4-Methyl-2-Pentanone	0.0026	U	100-42-5	Styrene	0.0026	U
67-64-1	Acetone	0.033	U	127-18-4	Tetrachloroethene	0.0026	U
71-43-2	Benzene	0.0013	U	108-88-3	Toluene	0.0013	U
75-27-4	Bromodichloromethane	0.0026	· U	156-60-5	trans-1,2-Dichloroethene	0.0026	U
75-25-2	Bromoform	0.0026	U	10061-02-6	trans-1,3-Dichloropropene	0.0066	U
74-83-9	Bromomethane	0.0026	U	79-01-6	Trichloroethene	0.0026	U
75-15-0	Carbon Disulfide	0.0026	U	75-69-4	Trichlorofluoromethane	0.0026	U
56-23-5	Carbon Tetrachloride	0.0026	U	75-01-4	Vinyl Chloride	0.0026	U
108-90-7	Chlorobenzene	0.0026	U	1330-20-7	Xylenes (Total)	0.0013	U

0

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample,

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

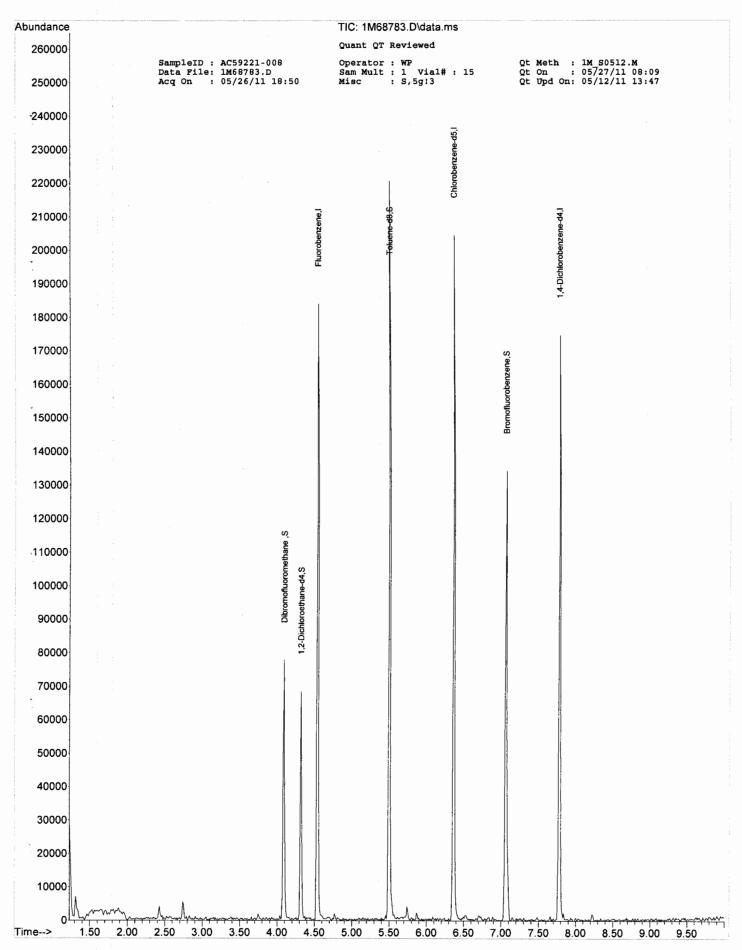
R - Retention Time Out

 $[\]it J$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59221-008 Data File: 1M68783.D

Ot Meth : 1M_S0512.M Ot On : 05/27/11 08:09


Qt Upd On: 05/12/11 13:47

Operator : WP Sam Mult : 1 Vial# : 15 Misc : S,5g!3 Acq On : 05/26/11 18:50

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.541	96	103925	30.00	ug/l	0.01
52) Chlorobenzene-d5	6.361	117	79308	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.778	152	38062	30.00	ug/l	0.01
					_	
System Monitoring Compounds						
36) Dibromofluoromethane	4.088	111	33176	32.42	ug/l	0.01
Spiked Amount 30.000			Recove	ry =	108.07%	
38) 1,2-Dichloroethane-d4	4.315	67	16660	32.78	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	109.27%	
66) Toluene-d8	5.495	98	100975	28.11	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	93.70%	
76) Bromofluorobenzene	7.059	174	32058	30.02	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	100.07%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:15:06 2011 RPT1

Sample Number: AC59221-009

Client Id: MW-11 5-6

Data File: 1M68784.D

Analysis Date: 05/26/11 19:07

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.08g

Final Vol: NA

Dilution: 0.984

Solids: 90

Units: mg/Kg

				Omia. I	119/119			
_	Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	71-55-6	1,1,1-Trichloroethane	0.0022	U	75-00-3	Chloroethane	0.0022	U
	79-34-5	1,1,2,2-Tetrachloroethane	0.0055	U	67-66-3	Chloroform	0.0022	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0022	U	74-87-3	Chloromethane	0.0022	U
	79-00-5	1,1,2-Trichloroethane	0.0022	U	156-59-2	cis-1,2-Dichloroethene	0.0022	U
	75-34-3	1,1-Dichloroethane	0.0022	U	10061-01-5	cis-1,3-Dichloropropene	0.0055	U
	75-35-4	1,1-Dichloroethene	0.0022	U	110-82-7	Cyclohexane	0.0022	U
	120-82-1	1,2,4-Trichlorobenzene	0.0022	U	124-48-1	Dibromochloromethane	0.0055	U
	96-12-8	1,2-Dibromo-3-Chloropropa	0.0022	U	75-71-8	Dichlorodifluoromethane	0.0022	U
	106-93-4	1,2-Dibromoethane	0.0022	U	100-41-4	Ethylbenzene	0.0011	U
	95-50-1	1,2-Dichlorobenzene	0.0022	U	98-82-8	Isopropyibenzene	0.0011	U
	107-06-2	1,2-Dichloroethane	0.0022	U	136777612	m&p-Xylenes	0.0011	U
	78-87-5	1,2-Dichloropropane	0.0022	U	79-20-9	Methyl Acetate	0.0022	U
	541-73-1	1,3-Dichlorobenzene	0.0022	υ	108-87-2	Methylcyclohexane	0.0022	U
	106-46-7	1,4-Dichlorobenzene	0.0022	U	75-09-2	Methylene Chloride	0.0022	U
	78-93-3	2-Butanone	0.0055	U	1634-04-4	Methyl-t-butyl ether	0.00055	U
	591-78-6	2-Hexanone	0.0022	U	95-47-6	o-Xylene	0.0011	U
	108-10-1	4-Methyl-2-Pentanone	0.0022	U	100-42-5	Styrene	0.0022	U
	67-64-1	Acetone	0.027	U	127-18-4	Tetrachloroethene	0.0022	0.0047
	71-43-2	Benzene	0.0011	U	108-88-3	Toluene	0.0011	U
	75-27 -4	Bromodichloromethane	0.0022	U	156-60-5	trans-1,2-Dichloroethene	0.0022	U
	75-25-2	Bromoform	0.0022	U	10061-02-6	trans-1,3-Dichloropropene	0.0055	U
	74-83-9	Bromomethane	0.0022	U	79-01-6	Trichloroethene	0.0022	U
	75-15-0	Carbon Disulfide	0.0022	U	75-69-4	Trichlorofluoromethane	0.0022	U
	56-23-5	Carbon Tetrachloride	0.0022	U	75-01-4	Vinyl Chloride	0.0022	U
	108-90-7	Chlorobenzene	0.0022	U	1330-20-7	Xylenes (Total)	0.0011	U

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

^{0.0047}

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

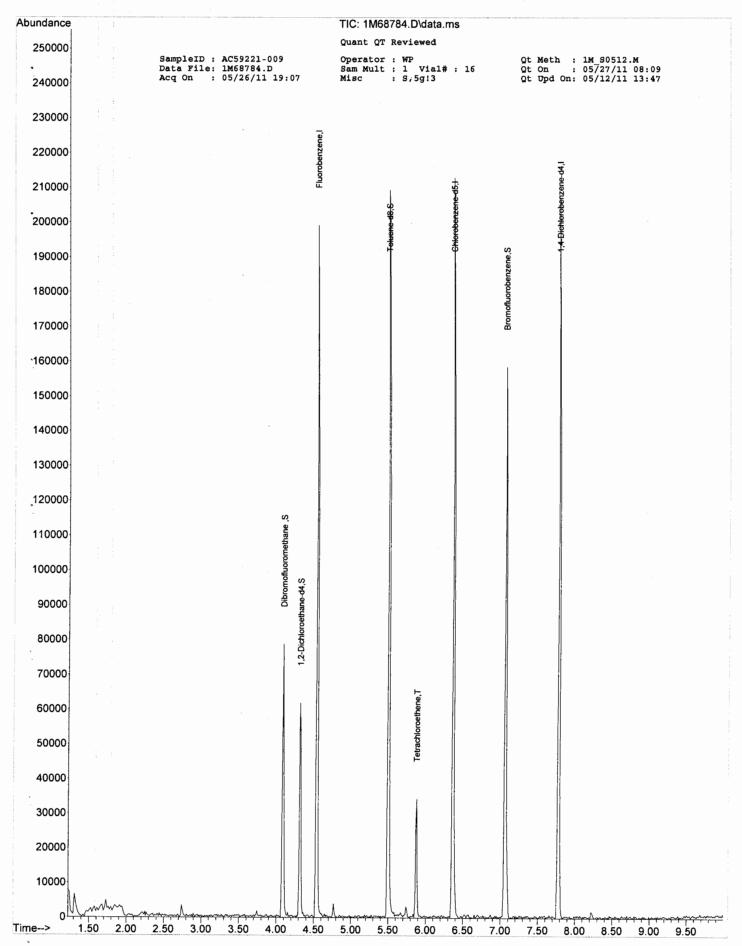
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

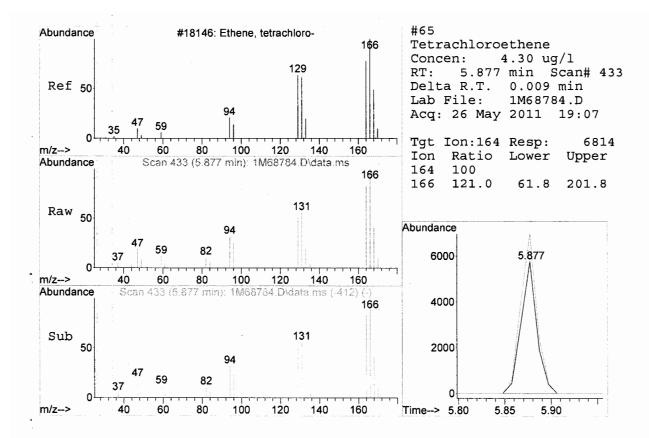
SampleID: AC59221-009 Data File: 1M68784.D Acq On: 05/26/11 19:07 Operator : WP Sam Mult : 1 Vial# : 16 Misc : S,5g!3

Qt

Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:09 Qt Upd On: 05/12/11 13:47


Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
	4.539	96	108106	30.00		0.00
52) Chlorobenzene-d5	6.359	117	83562	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	46651	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.087	111	32903	30.91	ug/l	0.00
Spiked Amount 30.000			Recove		103.03%	
38) 1,2-Dichloroethane-d4	4.313	67	16661	31.51	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	105.03%	
66) Toluene-d8	5.494	98	106333	28.10	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	93.67%	
76) Bromofluorobenzene	7.058	174	36299	27.73	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	92.43%	
Target Compounds						Qvalue
65) Tetrachloroethene	5.877	164	6814	4.29	61 ug/	91

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:15:11 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-010

Client Id: MW-11 13-14 Data File: 1M68785.D

Analysis Date: 05/26/11 19:23 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.04g Final Vol: NA

Dilution: 0.992

Solids: 76

Units: mg/Kg

			• • • • • • • • • • • • • • • • • • • •				
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0026	U	75-00-3	Chloroethane	0.0026	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0065	υ	67-66-3	Chloroform	0.0026	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0026	υ	74-87-3	Chloromethane	0.0026	U
79-00-5	1,1,2-Trichloroethane	0.0026	υ	156-59-2	cis-1,2-Dichloroethene	0.0026	U
75-34-3	1,1-Dichloroethane	0.0026	υ	10061-01-5	cis-1,3-Dichloropropene	0.0065	U
75-35-4	1,1-Dichloroethene	0.0026	U	110-82-7	Cyclohexane	0.0026	U
120-82-1	1,2,4-Trichlorobenzene	0.0026	U	124-48-1	Dibromochloromethane	0.0065	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0026	U	75-71-8	Dichlorodifluoromethane	0.0026	U
106-93-4	1,2-Dibromoethane	0.0026	U	100-41-4	Ethylbenzene	0.0013	U
95-50-1	1,2-Dichlorobenzene	0.0026	U	98-82-8	Isopropylbenzene	0.0013	U
107-06-2	1,2-Dichloroethane	0.0026	U	136777612	m&p-Xylenes	0.0013	U
78-87-5	1,2-Dichloropropane	0.0026	U	79-20-9	Methyl Acetate	0.0026	U
541-73-1	1,3-Dichlorobenzene	0.0026	U	108-87-2	Methylcyclohexane	0.0026	U
106-46-7	1,4-Dichlorobenzene	0.0026	U	75-09-2	Methylene Chloride	0.0026	U
78-93-3	2-Butanone	0.0065	U	1634-04-4	Methyl-t-butyl ether	0.00065	U
591-78-6	2-Hexanone	0.0026	U	95-47-6	o-Xylene	0.0013	U
108-10-1	4-Methyl-2-Pentanone	0.0026	U	100-42-5	Styrene	0.0026	U
67-64-1	Acetone	0.033	U	127-18-4	Tetrachloroethene	0.0026	U
71-43-2	Benzene	0.0013	U	108-88-3	Toluene	0.0013	U
75-27-4	Bromodichloromethane	0.0026	U	156-60-5	trans-1,2-Dichloroethene	0.0026	U
75-25-2	Bromoform	0.0026	U	10061-02-6	trans-1,3-Dichloropropene	0.0065	U
74-83-9	Bromomethane	0.0026	U	79-01-6	Trichloroethene	0.0026	U
75-15-0	Carbon Disulfide	0.0026	U	75-69-4	Trichlorofluoromethane	0.0026	U
56-23-5	Carbon Tetrachloride	0.0026	U	75-01-4	Vinyl Chloride	0.0026	U
108-90-7	Chlorobenzene	0.0026	U	1330-20-7	Xylenes (Total)	0.0013	Ü

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

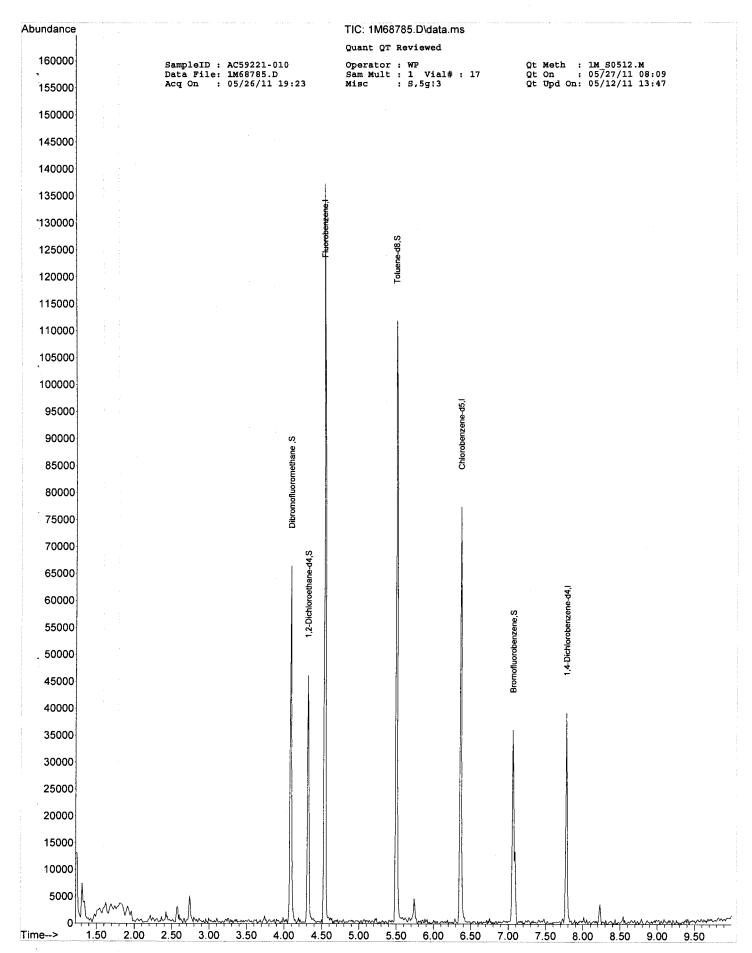
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59221-010 Data File: 1M68785.D Acq On : 05/26/11 19:23

10 Operator : WP Sam Mult : 1 Vial# : 17 19:23 Misc : S,5g!3 Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:09 Qt Upd On: 05/12/11 13:47

(QT Reviewed)


Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	73503	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.359	117	32315	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.775	152	9338	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.086	111	25812	35.66	ug/l	0.00
Spiked Amount 30.000			Recover	y =	118.87%	
38) 1,2-Dichloroethane-d4	4.313	67	11126	30.95	ug/l	0.00
Spiked Amount 30.000			Recover	y =	103.17%	
66) Toluene-d8	5.503	98	54982	37.57	ug/l	0.00
Spiked Amount 30.000			Recover	y =	125.23%	
76) Bromofluorobenzene	7.057	174	9410	35.91	ug/l	0.00
Spiked Amount 30.000			Recover	y =	119.70%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:15:16 2011 RPT1

Page: 1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-010 Client Id: MW-11 13-14

Data File: 1M68821.D Analysis Date: 05/27/11 09:32

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.32g

Final Vol: NA Dilution: 0.940

Solids: 76

Units: mg/Kg

onite. Ingreg											
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	0.0025	U	75-00-3	Chloroethane	0.0025	U				
79-34-5	1,1,2,2-Tetrachloroethane	0.0062	U	67-66-3	Chloroform	0.0025	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025	U	74-87-3	Chloromethane	0.0025	U				
79-00-5	1,1,2-Trichloroethane	0.0025	U	156-59-2	cis-1,2-Dichloroethene	0.0025	U				
75-34-3	1,1-Dichloroethane	0.0025	U	10061-01-5	cis-1,3-Dichloropropene	0.0062	U				
75-35-4	1,1-Dichloroethene	0.0025	U	110-82-7	Cyclohexane	0.0025	U				
120-82-1	1,2,4-Trichlorobenzene	0.0025	U	124-48-1	Dibromochloromethane	0.0062	U				
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025	U	75-71-8	Dichlorodifluoromethane	0.0025	U				
106-93-4	1,2-Dibromoethane	0.0025	U	100-41-4	Ethylbenzene	0.0012	U				
95-50-1	1,2-Dichlorobenzene	0.0025	U	98-82-8	Isopropylbenzene	0.0012	U				
107-06-2	1,2-Dichloroethane	0.0025	U	136777612	m&p-Xylenes	0.0012	U				
78-87-5	1,2-Dichloropropane	0.0025	U	79-20-9	Methyl Acetate	0.0025	U				
541-73-1	1,3-Dichlorobenzene	0.0025	U	108-87-2	Methylcyclohexane	0.0025	U				
106-46-7	1,4-Dichlorobenzene	0.0025	U	75-09-2	Methylene Chloride	0.0025	U				
78-93-3	2-Butanone	0.0062	U	1634-04-4	Methyl-t-butyl ether	0.00062	U				
591-78-6	2-Hexanone	0.0025	U	95-47-6	o-Xylene	0.0012	U				
108-10-1	4-Methyl-2-Pentanone	0.0025	U	100-42-5	Styrene	0.0025	U				
67-64-1	Acetone	0.031	U	127-18-4	Tetrachloroethene	0.0025	U				
71-43-2	Benzene -	0.0012	U	108-88-3	Toluene	0.0012	U				
75-27-4	Bromodichloromethane	0.0025	U	156-60-5	trans-1,2-Dichloroethene	0.0025	U				
75-25-2	Bromoform	0.0025	U	10061-02-6	trans-1,3-Dichloropropene	0.0062	U				
74-83-9	Bromomethane	0.0025	U	79-01-6	Trichloroethene	0.0025	U				
75-15-0	Carbon Disulfide	0.0025	U	75-69-4	Trichlorofluoromethane	0.0025	U				
56-23-5	Carbon Tetrachloride	0.0025	U	75-01-4	Vinyl Chloride	0.0025	U				
108-90-7	Chlorobenzene	0.0025	U	1330-20-7	Xylenes (Total)	0.0012	υ				
				I .	• •						

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

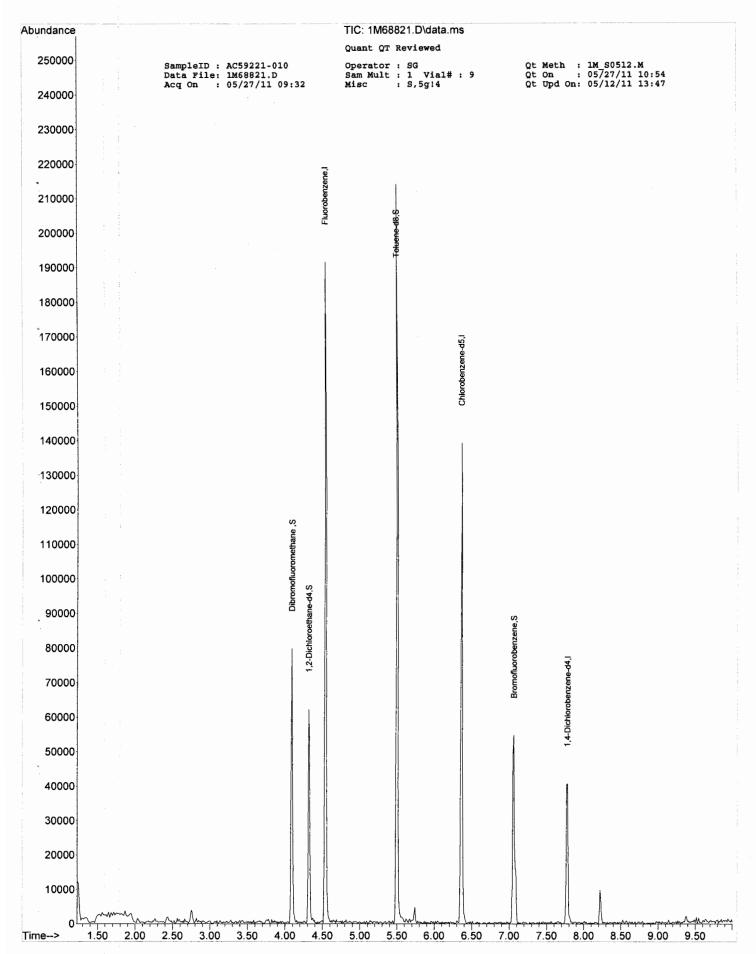
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59221-010 Data File: 1M68821.D Acq On : 05/27/11 09:32 Operator : SG Sam Mult : 1 Vial# : 9 Misc : S,5g!4


Qt Meth : 1M_S0512.M Qt On : 05/27/11 10:54 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.541	96	105675	30.00	ug/l	0.01
52) Chlorobenzene-d5	6.361	117	56920	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.777	152	10747	30.00	ug/l	0.01
System Monitoring Compounds						
36) Dibromofluoromethane	4.088	111	33677	32.36	ug/l	0.01
Spiked Amount 30.000			Recover	y =	107.87%	
38) 1,2-Dichloroethane-d4	4.314	67	16909	32.71	ug/l	0.00
Spiked Amount 30.000			Recover	y =	109.03%	
66) Toluene-d8	5.495	98	98114	38.06	ug/l	0.00
Spiked Amount 30.000			Recover	y =	126.87%	
76) Bromofluorobenzene	7.059	174	13898	46.08	ug/l	0.00
Spiked Amount 30.000			Recover	y =	153.60%	
Target Compounds						Qvalue

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Sample Number: AC59221-011(MS:AC59

Client Id: MW-11 13-14 MS

Data File: 1M68822.D Analysis Date: 05/27/11 09:48

Date Rec/Extracted: 05/20/11-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.21g Final Vol: NA

Dilution: 0.960

Solids: 86

Units: ma/Ka

Units: mg/kg											
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	0.0022	0.037	75-00-3	Chloroethane	0.0022	0.034				
79-34-5	1,1,2,2-Tetrachloroethane	0.0056	0.039	67-66-3	Chloroform	0.0022	0.033				
76-13-1	1,1,2-Trichloro-1,2,2-triflu	0.0022	0.041	74-87-3	Chloromethane	0.0022	0.028				
79-00-5	1,1,2-Trichloroethane	0.0022	0.033	156-59-2	cis-1,2-Dichloroethene	0.0022	0.028				
75-34-3	1,1-Dichloroethane	0.0022	0.031	10061-01-5	cis-1,3-Dichloropropene	0.0056	0.018				
75-35-4	1,1-Dichloroethene	0.0022	0.027	110-82-7	Cyclohexane	0.0022	0.033				
120-82-1	1,2,4-Trichlorobenzene	0.0022	0.0032	124-48-1	Dibromochloromethane	0.0056	0.028				
96-12-8	1,2-Dibromo-3-Chloroprop	0.0022	0.019	75-71-8	Dichlorodifluoromethane	0.0022	0.022				
106-93-4	1,2-Dibromoethane	0.0022	0.018	100-41-4	Ethylbenzene	0.0011	0.025				
95-50-1	1,2-Dichlorobenzene	0.0022	0.010	98-82-8	Isopropylbenzene	0.0011	0.029				
107-06-2	1,2-Dichloroethane	0.0022	0.028	136777612	m&p-Xylenes	0.0011	0.045				
78-87-5	1,2-Dichloropropane	0.0022	0.030	79-20-9	Methyl Acetate	0.0022	0.032				
541-73-1	1,3-Dichlorobenzene	0.0022	0.0084	108-87-2	Methylcyclohexane	0.0022	0.031				
106-46-7	1,4-Dichlorobenzene	0.0022	0.0071	75-09-2	Methylene Chloride	0.0022	0.033				
78-93-3	2-Butanone	0.0056	0.043	1634-04-4	Methyl-t-butyl ether	0.00056	0.035				
591-78-6	2-Hexanone	0.0022	0.021	95-47-6	o-Xylene	0.0011	0.028				
108-10-1	4-Methyl-2-Pentanone	0.0022	0.040	100-42-5	Styrene	0.0022	0.013				
67-64-1	Acetone	0.028	0.21	127-18-4	Tetrachloroethene	0.0022	0.024				
71-43-2	Benzene	0.0011	0.030	108-88-3	Toluene	0.0011	0.024				
75-27-4	Bromodichloromethane	0.0022	0.025	156-60-5	trans-1,2-Dichloroethene	0.0022	0.024				
75-25-2	Bromoform	0.0022	0.029	10061-02-6	trans-1,3-Dichloropropene	0.0056	0.011				
74-83-9	Bromomethane	0.0022	0.035	79-01-6	Trichloroethene	0.0022	0.019				
75-15-0	Carbon Disulfide	0.0022	0.022	75-69-4	Trichlorofluoromethane	0.0022	0.033				
56-23-5	Carbon Tetrachloride	0.0022	0.037	75-01-4	Vinyl Chloride	0.0022	0.033				
108-90-7	Chlorobenzene	0.0022	0.016	1330-20-7	Xylenes (Total)	0.0011	0.073				

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

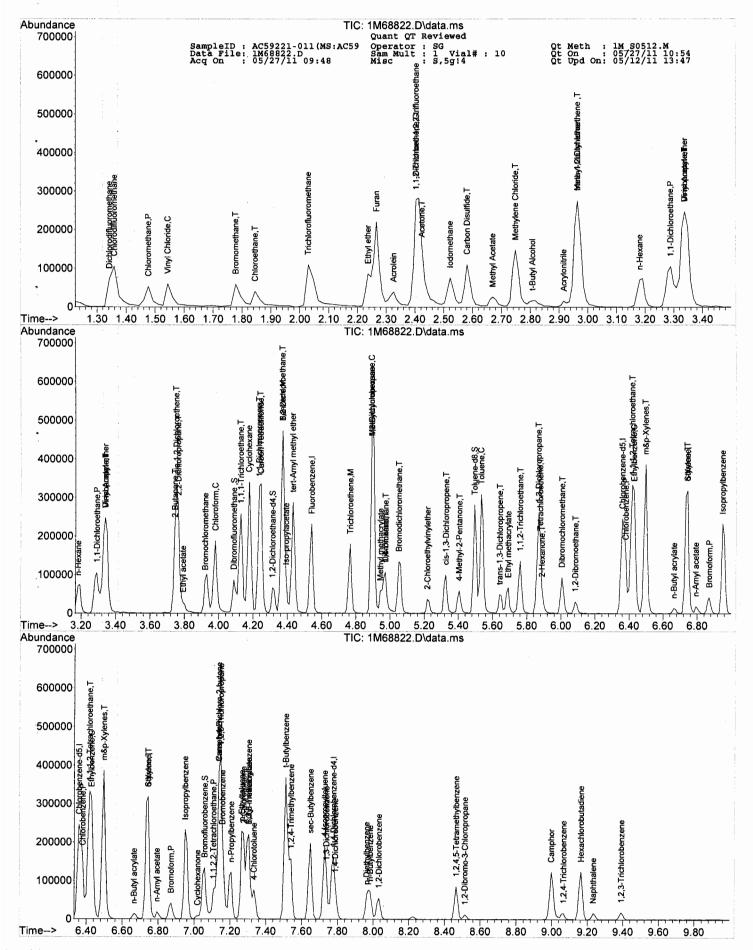
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Qt Meth : 1M_S0512.M Qt On : 05/27/11 10:54 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration


t	Resp Via : Initial Calibration						
	Compound				Conc Units		
	Internal Standards						
	4) Fluorobenzene	4.540	96	126429	30.00 ug/	'1 o	.00
	52) Chlorobenzene-d5	6.360		83133	•		.00
	70) 1,4-Dichlorobenzene-d4	7.776	152	35970	30.00 ug/	'l 0	.00
	Garage Wasting to a Garage of						
	System Monitoring Compounds 36) Dibromofluoromethane	4.087	111	36360	29.21 ug/	/1 0	.00
	Spiked Amount 30.000	4.007	111	Recove	-	7.37%	.00
	38) 1,2-Dichloroethane-d4	4.313	67	16683	26.98 ug/		.00
	Spiked Amount 30.000					9.93%	
	66) Toluene-d8	5.494	98		32.65 ug/		.00
	Spiked Amount 30.000	7 050	174		ery = 108		00
	76) Bromofluorobenzene Spiked Amount 30.000	7.058	174	32632 Recove		7.77%	.00
	bpined Amount				, - 10	. , , ,	
	Target Compounds					Q	value
	Chlorodifluoromethane	1.359		92043	25.5702	ug/l	98
	6) Dichlorodifluoromethane	1.343		53686	19.6794	ug/l	95
	7) Chloromethane	1.477		54639	24.7073	ug/l	81
	8) Bromomethane	1.779		33029	31.5538	ug/l	92
	9) Vinyl Chloride 10) Chloroethane	1.544 1.846		52318 29631	29.6188 30.3966	ug/l ug/l	98 92
	11) Trichlorofluoromethane	2.030		105246	29.3955	ug/l	80
	12) Ethyl ether	2.237		34871	28.6704	ug/l	81
	13) Furan	2.267		123076	30.7598	ug/l	99
	14) 1,1,2-Trichloro-1,2,2			63335	36.7711	ug/l	94
	15) Methylene Chloride	2.749	84	53185	29.6225	ug/l	88
	16) Acrolein	2.326	56	21938	130.8606	ug/l	96
	<pre>17) Acrylonitrile</pre>	2.916		11061	29.0736	ug/l	91
	18) Iodomethane	2.523		63718	28.4167		94
	19) Acetone	2.424		49912	187.5392	•	98
	20) Carbon Disulfide	2.582		108707	19.5733		100 74
	21) t-Butyl Alcohol 22) n-Hexane	2.808 3.182		9988 28690	133.0088 12.0810	ug/l ug/l	68
	23) Di-isopropyl-ether	3.339		190975	34.1826		100
	24) 1,1-Dichloroethene	2.405		70714	24.2933	ug/l	98
	25) Methyl Acetate	2.670		31950	28.5759		100
	26) Methyl-t-butyl ether	2.965	73	107292	31.3498	ug/l	71
	27) 1,1-Dichloroethane	3.290		94940	28.0291	ug/l	97
	28) trans-1,2-Dichloroethene	2.965		38918	21.3647	ug/l	79
	29) cis-1,2-Dichloroethene	3.752		81127	25.5215	ug/l	74
	30) Bromochloromethane	3.920 3.762		38206	26.9045	ug/l	63 95
	31) 2,2-Dichloropropane 32) Ethyl acetate	3.792		98402 23978	36.0819 24.0545	ug/l ug/l	93
	33) 1,4-Dioxane	4.972		15629	1346.4945		77
	34) 1,1-Dichloropropene	4.235				ug/l	97
	35) Chloroform	3.979	83	102071	29.1303	ug/l	84
	37) Cyclohexane	4.176	56	99317	29.8774	ug/l	95
	39) 1,2-Dichloroethane	4.372	62	59894	25.4458	ug/l	95
	40) 2-Butanone	3.743	43	15456	38.2762	ug/l	91
	41) 1,1,1-Trichloroethane	4.126	97	114850	32.7133	ug/l	95
	42) Carbon Tetrachloride 43) Vinyl Acetate	4.244	117 43	97530 118173	33.3607 29.1017	ug/l ug/l	91 100
	45) Bromodichloromethane	5.051	83	65943	22.5619	ug/l	93
	46) Methylcyclohexane	4.894	83	83741	27.5850	ug/l	93
	47) Dibromomethane	4.972	174	24643	20.5568	ug/l	87
	48) 1,2-Dichloropropane	4.894	63	50127	27.1065	ug/l	86
	49) Trichloroethene	4.766	130	37914	17.1843	ug/l	96
	50) Benzene	4.372	78	192065	26.6347	ug/l	100
	51) tert-Amyl methyl ether	4.431	73	115155	30.2517	ug/l	86
	53) Iso-propylacetate	4.392	43	48062	32.1946	ug/l	90
	54) Methyl methacrylate 55) Dibromochloromethane	4.943	41 129	23567	23.1184	ug/l	92 97
	56) 2-Chloroethylvinylether	6.005 5.218	63	37289 11493	25.4847 17.5993	ug/l ug/l	97 77
	57) cis-1,3-Dichloropropene	5.327	75	39200	15.7501	ug/l	83
	58) trans-1,3-Dichloropropene	5.641	75	20854	9.8862	ug/l	97
	59) Ethyl methacrylate	5.691	41	18347	15.0217	ug/l	65
	60) 1,1,2-Trichloroethane	5.759	97	30872	29.5236	ug/l	88
	61) 1,2-Dibromoethane	6.084	107	16077	16.5059	ug/l	92
	62) 1,3-Dichloropropane	5.868	76	41401	22.4814	ug/l	93
	63) 4-Methyl-2-Pentanone	5.405	43	31407	35.7915	ug/l	87
	64) 2-Hexanone 65) Tetrachloroethene	5.887 5.877	43 164	12761 33625	19.1992 21.3091	ug/l	88 94
	67) Toluene	5.533	92	91357	21.6395	ug/l ug/l	98
	68) 1,1,1,2-Tetrachloroethane	6.419	133	51618	36.9078	ug/l	77
						_	

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
69)	Chlorobenzene	6.379	112	58915	14.7320	ug/l	98
71)		6.665	55	8415	6.1831	ug/l	93
72)	n-Amyl acetate	6.792	43	8278	7.0359	ug/l	82
73)	Bromoform	6.871	173	16347	25.5977	ug/l	100
74)	Ethylbenzene	6.428	106	28432	22.7362	ug/l	85
75)	1,1,2,2-Tetrachloroethane	7.107	83	28084	34.6327	ug/l	91
77)	Styrene	6.743	104	38580	12.0854	ug/l	86
78)	m&p-Xylenes	6.497	106	79095	39.9358	ug/l	89
79)	o-Xylene	6.743	106	52211	25.2398	ug/l	77
80)	trans-1,4-Dichloro-2-b	7.137	53	16019	34.4882	ug/l	69
81)	1,3-Dichlorobenzene	7.737	146	18834	7.5354	ug/l	89
82)	1,4-Dichlorobenzene	7.786	146	14905	6.3387	ug/l	94
: 83)	1,2-Dichlorobenzene	8.032	146	20185	9.3411	ug/l	92
84)	Isopropylbenzene	6.950	105	123069	26.0372	ug/l	95
85)	Cyclohexanone	7.019	55	3839	180.9175	ug/l	94
86)	Camphene	7.137	93	94930	46.2154	ug/l	97
87)	1,2,3-Trichloropropane	7.147	75	23647	22.8399	ug/l	93
88)	2-Chlorotoluene	7.274	91	51063	16.8070	ug/l	96
89)	p-Ethyltoluene	7.265	105	66797m	11.4612	ug/l	
90)	4-Chlorotoluene	7.333	91	25472	8.3285	ug/l	87
91)	n-Propylbenzene	7.206	91	78628	13.2690	ug/l	99
92)	Bromobenzene	7.156	77	64429	20.9976	ug/l	69
93)	1,3,5-Trimethylbenzene	7.304	105	92115m	22.5872	ug/l	
94)	Butyl methacrylate	7.304	41	12691	9.9104	ug/l	78
95)	t-Butylbenzene	7.511	119	137981	33.4470	ug/l	84
96)	1,2,4-Trimethylbenzene	7.540	105	72660	16.8021	ug/l	66
97)	sec-Butylbenzene	7.648	105	103964	18.9224	ug/l	99
98)	4-Isopropyltoluene	7.727	119	69968	15.1579	ug/l	93
99)	n-Butylbenzene	7.983	91	34580	6.2797	ug/l	97
100)	p-Diethylbenzene	7.963	119	16230	6.4854	ug/l	92
101)	1,2,4,5-Tetramethylben	8.465	119	38422	8.8034	ug/l	91
102)	1,2-Dibromo-3-Chloropr	8.514	157	2745	17.4051	ug/l	72
103)	Camphor	8.996	95	26356	366.6070	ug/l	91
104)	Hexachlorobutadiene	9.163	225	25527	15.7641	ug/l	97
105)	1,2,4-Trichlorobenzene	9.065	180	4911	2.8538	ug/l	96
	1,2,3-Trichlorobenzene	9.390		5683	3.7717	ug/l	98
	Naphthalene	9.232		11355	4.3238	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:15:22 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-012(MSD:AC

Client Id: MW-11 13-14 MSD

Data File: 1M68823.D

Analysis Date: 05/27/11 10:05
Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 4.98g

Final Vol: NA

Dilution: 1.00 Solids: 84

Units: mg/Kg

			Units.	iliy/Ny			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0024	0.047	75-00-3	Chloroethane	0.0024	0.046
79-34 - 5	1,1,2,2-Tetrachloroethane	0.0060	0.056	67-66-3	Chloroform	0.0024	0.043
76-13-1	1,1,2-Trichloro-1,2,2-triflu	0.0024	0.050	74-87-3	Chloromethane	0.0024	0.035
79-00-5	1,1,2-Trichloroethane	0.0024	0.054	156-59-2	cis-1,2-Dichloroethene	0.0024	0.044
75-34-3	1,1-Dichloroethane	0.0024	0.043	10061-01-5	cis-1,3-Dichloropropene	0.0060	0.033
75-35-4	1,1-Dichloroethene	0.0024	0.040	110-82-7	Cyclohexane	0.0024	0.043
120-82-1	1,2,4-Trichlorobenzene	0.0024	0.0070	124-48-1	Dibromochloromethane	0.0060	0.046
96-12-8	1,2-Dibromo-3-Chloroprop	0.0024	0.038	75-71-8	Dichlorodifluoromethane	0.0024	0.028
106-93-4	1,2-Dibromoethane	0.0024	0.039	100-41-4	Ethylbenzene	0.0012	0.038
95-50-1	1,2-Dichlorobenzene	0.0024	0.021	98-82-8	Isopropylbenzene	0.0012	0.041
107-06-2	1,2-Dichloroethane	0.0024	0.043	136777612	m&p-Xylenes	0.0012	0.071
78-87-5	1,2-Dichloropropane	0.0024	0.042	79-20-9	Methyl Acetate	0.0024	0.042
541-73-1	1,3-Dichlorobenzene	0.0024	0.016	108-87-2	Methylcyclohexane	0.0024	0.043
106-46-7	1,4-Dichlorobenzene	0.0024	0.015	75-09-2	Methylene Chloride	0.0024	0.046
78-93-3	2-Butanone	0.0060	0.058	1634-04-4	Methyl-t-butyl ether	0.00060	0.046
591-78-6	2-Hexanone	0.0024	0.048	95-47-6	o-Xylene	0.0012	0.041
108-10-1	4-Methyl-2-Pentanone	0.0024	0.063	100-42-5	Styrene	0.0024	0.025
67-64-1	Acetone	0.030	0.29	127-18-4	Tetrachloroethene	0.0024	0.043
71-43-2	Benzene	0.0012	0.042	108-88-3	Toluene	0.0012	0.042
75-27-4	Bromodichloromethane	0.0024	0.036	156-60-5	trans-1,2-Dichloroethene	0.0024	0.037
75-25-2	Bromoform	0.0024	0.045	10061-02-6	trans-1,3-Dichloropropene	0.0060	0.025
74-83-9	Bromomethane	0.0024	0.044	79-01-6	Trichloroethene	0.0024	0.033
75-15-0	Carbon Disulfide	0.0024	0.034	75-69-4	Trichlorofluoromethane	0.0024	0.041
56-23-5	Carbon Tetrachloride	0.0024	0.046	75-01-4	Vinyl Chloride	0.0024	0.045
108-90-7	Chlorobenzene	0.0024	0.032	1330-20-7	Xylenes (Total)	0.0012	0.112
				The second secon	· •		

specified detection limit.

Worksheet #: 192369

^{2.2} ColumnID: (^) Indicates results from 2nd column

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

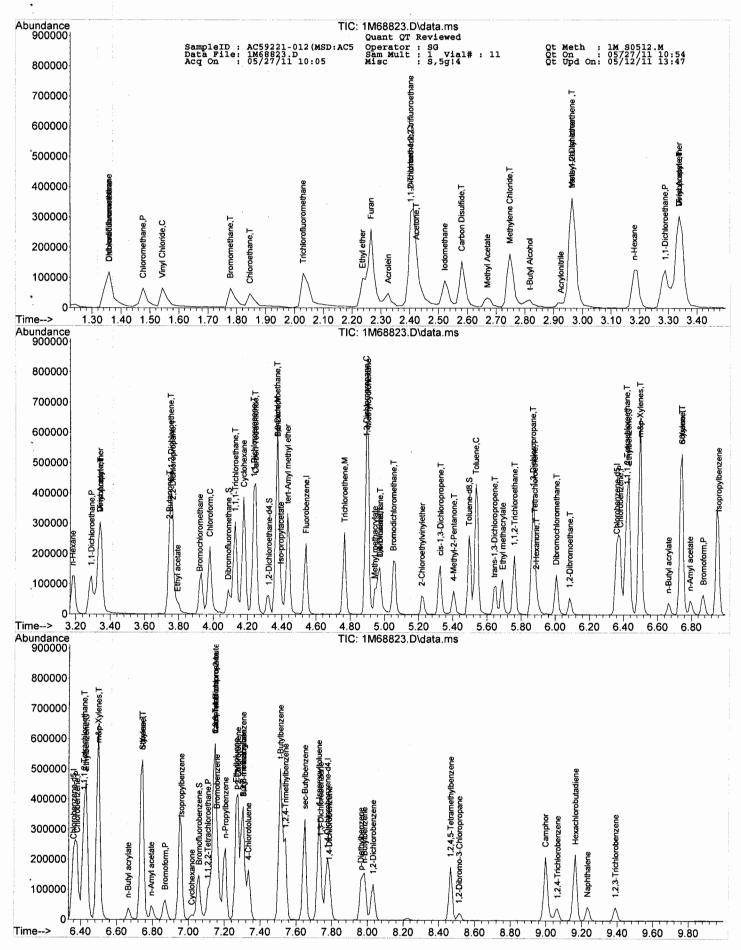
R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Qt Meth : 1M_S0512.M Qt On : 05/27/11 10:54 Qt Upd On: 05/12/11 13:47

	Compound	R.T.	QIon	Response	Conc Unit	s Dev(M	in)
Inte	rnal Standards						
4)	Fluorobenzene	4.539	96	122270	30.00 ug	/1 0	.00
52)	Chlorobenzene-d5	6.359	117	75695	30.00 ug	/1 0	.00
70)	1,4-Dichlorobenzene-d4	7.776	152	40423	30.00 ug	/1 0	.00
vst	em Monitoring Compounds						
	Dibromofluoromethane	4.087	111	35017	29.08 ug	/1 0	.00
Sp:	iked Amount 30.000			Recov		5.93%	
38)	1,2-Dichloroethane-d4	4.323	67	17963	30.04 ug	/1 0	.00
	iked Amount 30.000			Recov	_	0.13%	
	Toluene-d8	5.493	98	121642	35.49 ug		.00
	iked Amount 30.000	- 0-0	2.7.4	Recov		8.30%	
	Bromofluorobenzene iked Amount 30.000	7.058	174	35113 Recov	30.96 ug erv = 10	/⊥ ∪ 3.20%	.00
					,		
	et Compounds						value
	Chlorodifluoromethane	1.359	51	98826	28.3884	ug/l	96
	Dichlorodifluoromethane	1.359	85	62225	23.5854	ug/l	89
-	Chloromethane	1.476	50	62671	29.3032	ug/1	80
	Bromomethane	1.778	94	37192	36.7394	ug/l	85
	Vinyl Chloride	1.544	62	63906	37.4097	ug/1	98
	Chloroethane	1.845	64	36448	38.6615	ug/l	98
	Trichlorofluoromethane	2.030	101	119511	34.5152	ug/l ug/l	78
	Ethyl ether	2.237	59 39	42151	35.8347	ug/1 ug/1	84 99
	Furan 1,1,2-Trichloro-1,2,2	2.404	101	146064 70168	37.7468 42.1239	ug/l	95
	Methylene Chloride	2.404	84	66450	38.2696	ug/1 ug/1	87
	Acrolein	2.326	56	24847	153.2543	ug/1	93
	Acrylonitrile	2.926	53	14032	38.1373	ug/l	90
	Iodomethane	2.522	142	79040	36.4490	ug/l	94
	Acetone	2.424	43	61406	238.5749	ug/1	85
	Carbon Disulfide	2.581	76	153761	28.6273	ug/1	100
	t-Butyl Alcohol	2.818	59	14527	200.0273	ug/l	91
	n-Hexane	3.182	57	46089	20.0676	ug/l	77
	Di-isopropyl-ether	3.339	45	223605	41.3844	ug/l	100
	1,1-Dichloroethene	2.404	61	93782	33.3140	ug/l	100
	Methyl Acetate	2.670	43	38238	35.3631	ug/l	100
	Methyl-t-butyl ether	2.965	73	126800	38.3101	ug/1	71
	1,1-Dichloroethane	3.290	63	118518	36.1802	ug/l	97
	trans-1,2-Dichloroethene	2.965	96	54714	31.0579	ug/l	84
	cis-1,2-Dichloroethene	3.752	61	112563	36.6153	ug/l	80
	Bromochloromethane	3.919	49	50234	36.5778	ug/l	60
	2,2-Dichloropropane	3.762	77	112627	42.7027	ug/l	92
	Ethyl acetate	3.792	43	29635	30.7408	ug/1	99
	1,4-Dioxane	4.972	88	29010	2584.3297	ug/1	95
34)	1,1-Dichloropropene	4.234	75	79707	29.9684	ug/l	95
	Chloroform	3.978	83	122554	36.1657	ug/1	91
37)	Cyclohexane	4.175	56	116834	36.3425	ug/l	97
	1,2-Dichloroethane	4.372	62	81934	35.9935	ug/l	94
	2-Butanone	3.742	43	19064	48.8171	ug/l	100
	1,1,1-Trichloroethane	4.126	97	132134	38.9166	ug/l	97
	Carbon Tetrachloride	4.244	117	108816	38.4872	ug/l	95
	Vinyl Acetate	3.339	43	147332	37.5167	ug/l	100
15)	Bromodichloromethane	5.051	83	85547	30.2649	ug/l	94
16)	Methylcyclohexane	4.903	83	106766	36.3659	ug/l	94
17)	Dibromomethane	4.972	174	36035	31.0823	ug/l	90
48)	1,2-Dichloropropane	4.893	63	62697	35.0571	ug/l	92
19)	Trichloroethene	4.765	130	59112	27.7034	ug/l	100
50)	Benzene	4.372	78	247954	35.5548	ug/l	100
51)	tert-Amyl methyl ether	4.431	73	136141	36.9814	ug/l	88
53)	Iso-propylacetate	4.392	43	60732	44.6792	ug/l	83
54)	Methyl methacrylate	4.943	41	32840	35.3804	ug/l	95
55)	Dibromochloromethane	6.005	129	51662	38.7772	ug/l	94
56)	2-Chloroethylvinylether	5.218	63	19180	32.2564	ug/l	76
	cis-1,3-Dichloropropene	5.326	75	63084	27.8370	ug/l	95
58)	trans-1,3-Dichloropropene	5.641	75	40439	21.0546	ug/l	98
	Ethyl methacrylate	5.690	41	29620	26.6346	ug/l	67
	1,1,2-Trichloroethane	5.759	97	43075	45.2414	ug/l	86
59)		6.084	107	28892	32.5775	ug/l	93
59) 60)	1,2-Dibiomoechane			62490	37.2674	ug/l	99
59) 60) 61)		5.867	76	02490	3,,20,1		
59) 60) 61) 62)		5.867 5.405	43	42042	52.6191	ug/l	
59) 60) 61) 62) 63)	1,3-Dichloropropane				52.6191	ug/l	91
59) 60) 61) 62) 63) 64)	1,3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone	5.405	43	42042			91 95
59) 60) 61) 62) 63) 64) 65)	1,3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone	5.405 5.887	43 43	42042 24124	52.6191 39.8615	ug/l ug/l	91 95 100 96

Quantitation Report (QT Reviewed)


SampleID: AC59221-012(MSD:AC5 Operator: SG Qt Meth: 1M_S0512.M Data File: 1M68823.D Sam Mult: 1 Vial#: 11 Qt On: 05/27/11 10:54 Acq On: 05/27/11 10:05 Misc: S,5g!4 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

:	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
69)	Chlorobenzene	6.379	112	97992	26.9111	ug/l	100
71)	n-Butyl acrylate	6.664	55	20235	13.2302	ug/l	99
72)	n-Amyl acetate	6.792	43	21508	16.2669	ug/l	78
73)		6.871	173	27125	37.7959	ug/l	89
74)		6.428	106	44616	31.9393	ug/l	79
75)	1,1,2,2-Tetrachloroethane	7.107	83	42459	46.5918	ug/l	87
. 77)	Styrene	6.743	104	75407	21.1647	ug/l	97
78)	m&p-Xylenes	6.497	106	131232	59.4345	ug/l	90
79)	o-Xylene	6.743	106	79057	34.3255	ug/l	72
80)	trans-1,4-Dichloro-2-b	7.146	53	23528	45.0746	ug/l	75
81)	1,3-Dichlorobenzene	7.737	146	37092	13.2056	ug/l	91
. 82)	1,4-Dichlorobenzene	7.786	146	33374	12.6295	ug/l	94
83)	1,2-Dichlorobenzene	8.032	146	41869	17.2415	ug/l	91
84)	Isopropylbenzene	6.959	105	184361	34.7078	ug/l	95
85)	Cyclohexanone	7.018	55	6789	284.6953	ug/l	93
86)	Camphene	7.146	93	121529	52.6472	ug/l	96
87)	1,2,3-Trichloropropane	7.146	75	40749	35.0224	ug/l	95
88)	2-Chlorotoluene	7.274	91	91840	26.8985	ug/l	94
89)	p-Ethyltoluene	7.264	105	124916m	19.1561	ug/l	
90)	4-Chlorotoluene	7.333	91	56688	16.4932	ug/l	91
91)	n-Propylbenzene	7.205	91	151475	22.7465	ug/l	94
92)	Bromobenzene	7.156	77	104359	30.2643	ug/l	75
93)	1,3,5-Trimethylbenzene	7.304	105	149991m	32.7272	ug/l	
94)	Butyl methacrylate	7.304	41	24720	17.1773	ug/l	81
. 95)	t-Butylbenzene	7.510	119	191143	41.2295	ug/l	86
96)	1,2,4-Trimethylbenzene	7.540	105	127689	26.2744	ug/l	75
97)	sec-Butylbenzene	7.648	105	173391	28.0823	ug/l	99
98)	4-Isopropyltoluene	7.727	119	122759	23.6649	ug/l	92
99)	n-Butylbenzene	7.982	91	73421	11.8644	ug/l	95
100)	p-Diethylbenzene	7.963	119	34992	12.4422	ug/l	92
101)	1,2,4,5-Tetramethylben	8.464	119	76382	15.5731	ug/l	90
102)	1,2-Dibromo-3-Chloropr	8.514	157	5660	31.9347	ug/l	78
103)	Camphor	8.996	95	45311	560.8372	ug/l	92
104)	Hexachlorobutadiene	9.163	225	43141	23.7068	ug/l	94
105)	1,2,4-Trichlorobenzene	9.065	180	11310	5.8482	ug/l	94
106)	1,2,3-Trichlorobenzene	9.389	180	13320	7.8664	ug/l	94
107)	Naphthalene	9.232	128	32426	10.9872	ug/l	100
·							

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:15:28 2011 RPT1

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-013

Client Id: Duplicate
Data File: 1M68824.D
Analysis Date: 05/27/11 10:22

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.33g

Final Vol: NA

Dilution: 0.938

Solids: 87

Units: mg/Kg

			Onito. 1	119/179			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0022	U	75-00-3	Chloroethane	0.0022	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0054	U	67-66-3	Chloroform	0.0022	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0022	U	74-87-3	Chloromethane	0.0022	U
79-00-5	1,1,2-Trichloroethane	0.0022	U	156-59-2	cis-1,2-Dichloroethene	0.0022	U
75-34-3	1,1-Dichloroethane	0.0022	U	10061-01-5	cis-1,3-Dichloropropene	0.0054	U
75-35-4	1,1-Dichloroethene	0.0022	U	110-82-7	Cyclohexane	0.0022	U
120-82-1	1,2,4-Trichlorobenzene	0.0022	U	124-48-1	Dibromochloromethane	0.0054	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0022	U	75-71-8	Dichlorodifluoromethane	0.0022	U
106-93-4	1,2-Dibromoethane	0.0022	U	100-41-4	Ethylbenzene	0.0011	U
95-50-1	1,2-Dichlorobenzene	0.0022	U	98-82-8	Isopropylbenzene	0.0011	U
107-06-2	1,2-Dichloroethane	0.0022	U	136777612	m&p-Xylenes	0.0011	U
78-87-5	1,2-Dichloropropane	0.0022	U	79-20-9	Methyl Acetate	0.0022	U
541-73-1	1,3-Dichlorobenzene	0.0022	U	108-87-2	Methylcyclohexane	0.0022	U
106-46-7	1,4-Dichlorobenzene	0.0022	U	75-09-2	Methylene Chloride	0.0022	U
78-93-3	2-Butanone	0.0054	U	1634-04-4	Methyl-t-butyl ether	0.00054	U
591-78-6	2-Hexanone	0.0022	U	95-47-6	o-Xylene	0.0011	U
108-10-1	4-Methyl-2-Pentanone	0.0022	U	100-42-5	Styrene	0.0022	U
67-64-1	Acetone	0.027	U	127-18-4	Tetrachloroethene	0.0022	U
71-43-2	Benzene :	0.0011	U	108-88-3	Toluene	0.0011	U
75-27-4	Bromodichloromethane	0.0022	U	156-60-5	trans-1,2-Dichloroethene	0.0022	U
75-25-2	Bromoform	0.0022	U	10061-02-6	trans-1,3-Dichloropropene	0.0054	U
74-83-9	Bromomethane	0.0022	U	79-01-6	Trichloroethene	0.0022	U
75-15-0	Carbon Disulfide	0.0022	U	75-69-4	Trichlorofluoromethane	0.0022	U
56-23-5	Carbon Tetrachloride	0.0022	U	75-01-4	Vinyl Chloride	0.0022	U
108-90-7	Chlorobenzene	0.0022	U	1330-20-7	Xylenes (Total)	0.0011	U

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

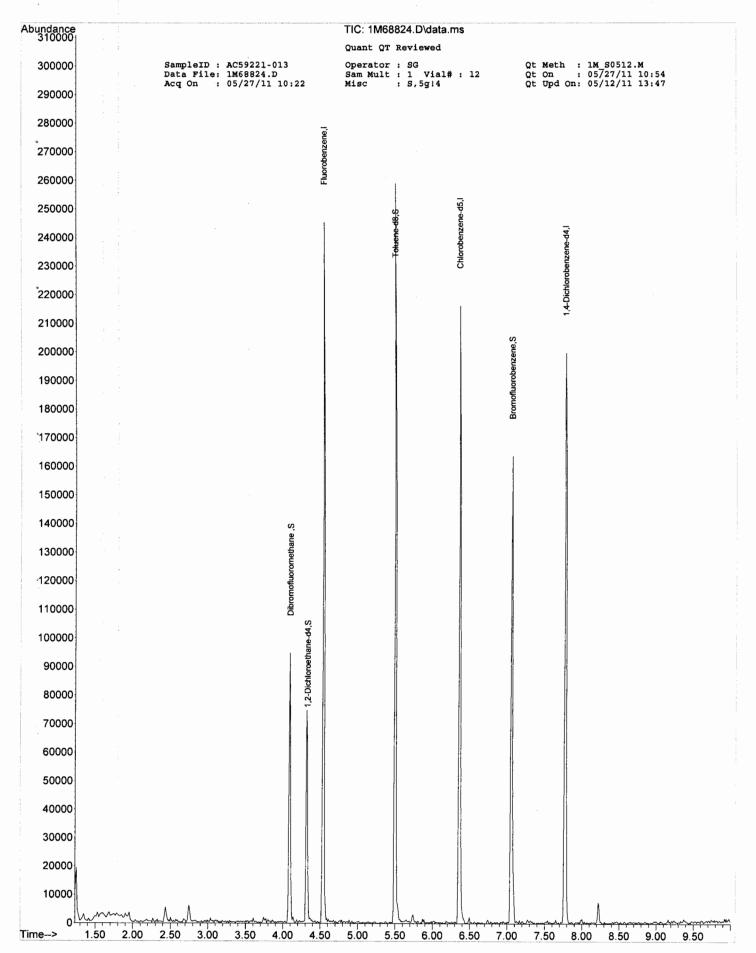
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59221-013 Data File: 1M68824.D Acq On : 05/27/11 10:22


Operator : SG Sam Mult : 1 Vial# : 12 Misc : S,5g!4

Qt Meth : 1M_S0512.M Qt On : 05/27/11 10:54 Qt Upd On: 05/12/11 13:47

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.540	96	130304	30.00	ug/l	0.01
52) Chlorobenzene-d5	6.360	117	90028	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.777	152	49019	30.00	ug/l	0.01
System Monitoring Compounds						
36) Dibromofluoromethane	4.088	111	36276	28.27	ug/l	0.01
Spiked Amount 30.000			Recover	∴y =	94.23%	
38) 1,2-Dichloroethane-d4	4.324	67	19286	30.26	ug/l	0.01
Spiked Amount 30.000			Recover	ry =	100.87%	
66) Toluene-d8	5.495	98	116066	28.47	ug/l	0.00
Spiked Amount 30.000			Recover	cy =	94.90%	
76) Bromofluorobenzene	7.059	174	40188	29.22	ug/l	0.00
Spiked Amount 30.000			Recover	- -	97.40%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:15:32 2011 RPT1

GC/MS Volatile Data Standards Data

Initial Calibration Form 6

Instrument: GCMS_1

	15.9 . <i>Ea</i>	Avg Rsd: 15.9	- Completion Conf	Note:	•	Flags	
Page 1 of 3							
20.00 5.00 2.00 50.00 100.0 250.0 500.0	16	0.999 1.00	0.622 5.05	0.6151 0.6939 0.6974	0.7428 0.5279 0.4748 0.6048 0.6151 0.6939 0.6974	loromethane 1 0 LinF	Bron
20.00 5.00 2.00 50.00 100.0 250.0 500.0 1.00	15	1.00 1.00	8 0.937 4.53	0.9379 0.9620 0.9589 0.9098	1.2244 0.7611 0.7699 0.9748 0.9379 0.9620 0.9589	1 0 Avg	<u>-</u>
20.00 5.00 2.00 50.00 100.0 250.0 500.0	16	0.999 0.999	0.867 3.33	0.8398 0.9615 0.9701	1.0557 0.7394 0.6664 0.8367 0.8398 0.9615 0.9701	1 0 LinF	Vinv
20.00 5.00 2.00 50.00 100.0 250.0 500.0	=	0.999 1.00	0.694 4.23	0.7012 0.7369 0.6890	0.7992 0.6776 0.5516 0.7001 0.7012 0.7369 0.6890	1 0 Avg	Cart
20.00 5.00 2.00 50.00 100.0 250.0 500.0	14	1.00 1.00	0.833 4.12	0.8178 0.8846 0.8829	0.7106	proethane 1 0 Avg	1
20.00 5.00 50.00 100.0 250.0 500.0	13	1.00 1.00	0.0958 3.73	0.0889 0.0918 0.0984 0.0989	0.1173 0.0793 0.0889	1 0 Avg	2-B
20.00 5.00 2.00 50.00 100.0 250.0 500.0	=	1.00 1.00	0.559 4.36	0.5218 0.5096 0.5449 0.5523 0.5515	0.6918 0.5375 0.5218 0.5096	1 0 Avg	1.2-
30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	6.6	<u>.</u>	0.1337 0.1442 0.147 4.31		0.1451 0.1395 0.1479 0.1471 0.1432 0.1505 0.1691	thane-d4 1 0 Avg	1.2-
20.00 5.00 2.00 50.00 100.0 250.0 500.0	17	0.999 0.999	0.733 4.17		0.9019 0.6169 0.5361 0.7465 0.7301 0.8115 0.7857	1 0 LinF	Cyc
30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	8.1	<u>-</u>	0.2899 0.2861 0.295 4.08		0.2929 0.2727 0.2921 0.2768 0.2852 0.3094 0.3531	oromethane 1 0 Avq	Di (
20.00 5.00 2.00 50.00 100.0 250.0 500.0	11 *(30)	0.999 1.00	0.831 3.97	0.8061 0.8586 0.8957	0.9829 0.7544 0.7283 0.7938 0.8061 0.8586 0.8957	1 0 Avg	SE :
2.00 50.00 100.0 250.0	19	_	0.641 4.23	0.6600 0.6769 0.6454	0.8365 0.4895 0.4808 0.6988 0.6600	propene 10 LinF	<u>-</u>
250.0 100.0 2500. 5000. 1250	45	٠.	0.00237 4.96	0.0026 0.0030 0.0026	0.0032 0.0000 0.0023 0.0025 0.0026 0.0030 0.0026	1 O Linf	1.4
5.00 2.00 50.00 100.0 250.0	14	_	0.237 3.78	0.2246 0.2651 0.2575	0.2635 0.1792 0.2564 0.2092 0.2246	1 0 Avg	E P
5.00 2.00 50.00 100.0 250.0	9.7	1	0.647 3.74	0.6624 0.7033 0.6722	0.7224 0.5771 0.5528 0.6393 0.6624 0.7033 0.6722	1 0 Avg	2.2-
5.00 2.00 50.00 100.0 250.0	13	_	0.337 3.92	0.3152 0.3307 0.3536	0.4122 0.2756 0.3643 0.3068 0.3152 0.3307 0.3536	1 0 Avg	Bror
5.00 2.00 50.00 100.0 250.0	12		0.754 3.73	0.7804 0.8202 0.8113	0.8626 0.6569 0.6146 0.7336 0.7804 0.8202 0.8113		cis-1
5.00 2.00 50.00 100.0 250.0	3		0.432 2.95	0.4329 0.4690 0.4506	0.5103 0.3754 0.3510 0.4361 0.4329 0.4690 0.4506	ther 1 0 Avg	trans
5.00 2.00 50.00 100.0 250.0	18 **(0.100)		0.745 3.27	0.7479 0.7133 0.8289	0.9865 0.6548 0.5479 0.7358 0.7479 0.7133 0.8289	1 O LinF	<u>-</u>
20.00 5.00 2.00 50.00 100.0 250.0 500.0 1.00 0.50	21	1.00 1.00	0.6986 0.4953 0.708 2.95		0.9459 0.6001 0.5119 0.7334 0.7472 0.8234 0.8124	ther 1 0 LinF	Meth
2.00 50.00 100.0 250.0 500.0	15	_			0.3066 0.2357 0.3226 0.2184 0.2338 0.2697 0.2701	1 0 Avg	Meth
5.00 2.00 50.00 100.0 250.0	12 *(30)		0.691 2.39	0.6974 0.6805 0.7111		e 10 Avg	<u>-1</u>
2.00 50.00 100.0 250.0	15	0.999 0.999	1.33 3.33	1.3131 1.4705 1.4244	1.5815 1.1139 1.0403 1.3360 1.3131 1.4705 1.4244	yvl-ether 1 0 Avg	Di-is
20.00 5.00 2.00 50.00 100.0 250.0 500.0	13	1.00 1.00	0.564 3.17	0.5798 0.6345 0.6349	0.6191 0.4561 0.4741 0.5458 0.5798 0.6345 0.6349	1 0 Avg	ᇎ
100.0 25.00 10.00 250.0 500.0 1250. 2500.	20	0.997 0.997	0.0150 2.80	0.0142 0.0188 0.0177	0.0167 0.0104 0.0120 0.0152 0.0142 0.0188 0.0177	1 0 LinF	-But
2.00 50.00 100.0 250.0	14		1.32 2.56	1.2689 1.4280 1.4607	1.1138	Disulfide 1 0 Avg	Carb
100.0 25.00 250.0 500.0 1250. 2500.	14	0.998 0.999	0.0632 2.41	0.0569 0.0634 0.0593	0.0787 0.0665 0.0539 0.0569	1 0 Avg	Acetone
20.00 5.00 2.00 50.00 100.0 250.0 500.0	12	0.999 1.00	0.532 2.50	0.5535 0.5670 0.6016	0.5864 0.4431 0.4548 0.5177 0.5535	e 1 0 Avg	lodo
5.00 2.00 50.00 100.0 250.0	30		0.0738 2.91	0.0830 0.0956 0.0893	0.0856 0.0351 0.0499 0.0776 0.0830 0.0956 0.0893	trile 1 0 LinF	Acry
100.0 25.00 10.00 250.0 500.0 1250. 2500.	19		0.0338 2.31	0.0344 0.0401 0.0399	0.0387 0.0279 0.0236 0.0317 0.0344 0.0401 0.0399	1 O LinF	Acrolein
20.00 5.00 2.00 50.00 100.0 250.0 500.0	6.3	1.00 1.00	0.426 2.73	0.3971 0.4438 0.4440	0.4695 0.4096 0.4144 0.4034 0.3971 0.4438 0.4440	1 0 Avg	Meth
5.00 2.00 50.00 100.0 250.0	33	_	0.409 2.39	0.3993 0.3972 0.4270	0.5149 0.3789 0.3414 0.4019 0.3993	Trichloro-1.2.2-tri 1 0 Avg	1.1.2
20.00 5.00 2.00 50.00 100.0 250.0 500.0	16	1.00 1.00	0.877 2.25	0.8684 0.9446 0.9546	1.0898 0.7640 0.6601 0.8546 0.8684 0.9446 0.9546	1 0 LinF	Furan
20.00 5.00 2.00 50.00 100.0 250.0 500.0	16	0.998 1.00	0.261 2.22	0.2506 0.2697 0.2952	.3300 0.2196 0.2125 0.2461 0.2506 0.2697	1 0 LinF	Ethy
1	16	0.999 0.999	0.825 2.02	0.7446 0.8419 0.8567	1.0659 0.6949 0.8648 0.7062 0.7446 0.8419 0.8567	omethane 1 0 LinF	Trich
2.00 50.00 100.0 250.0		0.998 1.00	0.231 1.83	0.2069 0.2235 0.2386	0.2647 0.2423 0.2413 0.2015 0.2069 0.2235	1 0 Avg	Chlo
2.00 50.00 100.0 250.0	15 *(30)		0.419 1.53	0.4281 0.4704 0.4847	0.4824 0.3518 0.3726 0.3438 0.4281 0.4704 0.4847	1 0 Ava	
5.00 2.00 50.00 100.0 250.0			0.248 1.76	0.2240 0.2321 0.2479	0 2937 0 2413 0 2886 0 2107 0 2240 0 2321 0 2479		
5.00 2.00 50.00 100.0 250.0	13 **(0.100)	0.999 0.999	0.525 1.45	0.4541 0.5259 0.5400	0 6548 0 4779 0 5481 0 4722 0 4541 0 5259 0 5400	1 0 4	
5.00 2.00 50.00 100.0 250.0	17	1	<u> </u>	0.5739 0.6762 0.6436	0 7806 0 4461 0 5864 0 5685 0 5739 0 6762 0 6436	100	
20.00 5.00 2.00 50.00 100.0 250.0 500.0	36	0.999 1.00	0.961 1.35	0 7461 0 8365 0 8635	7801	10	2
Calibration Level Concentrations Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9	%Rsd	Corr1 Corr2	RF9 AvgRf RT	RF5 RF6 RF7 RF8	RF1 RF2 RF3 RF4	Compound Col Mr Fit: F	Com
	3		(05/12/11 09:05	CAL @	9 1M68109	
	CAL @ 1 PPB	1M68110	oo (05/12/11 10:12	2 2		
05/12/11 10:36	CAL @ 250 PPB	1M68114	ຫ 4	05/12/11 09:5/	CAL ®	3 1M68111.	
		1M68112.	× N.	05/12/11 11:15	CAL @		Ō
Analysis Date/Time	Cal Identifier:	Data File:	Level #:	Analysis Date/Time	Cal Ider	Level #: Data File	1
		!		!			2

a - failed the spcc criteria *- ccc compound
b - failed the ccc criteria *- spcc compound
Corr 2 = Correlation Coefficient for linear Eq.
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Form 6 Initial Calibration

Instrument: GCMS_1

Page 2 of 3							
					1000 11000 11000	2-CHOIOIOIOIdelle	7
20.00 5.00 2.00 50.00 100.0 250.0	12	0.991 0.998	2.53 7.27	765 2 0469	7252 2 7293 2 4066 2 9189 2 3765 2 0469	1 0	2 -
20.00 5.00 2.00 50.00 100.0 250.0	14	0.996 0.997	0.864 7.15	102 0.7904	1.0138 0.7988 0.7481 1.0195 0.8102 0.7904	oropropane 1 0 Avo	100
2.00		0.998	1./9/.14	258 1.6709	2.0064 1.4461 1.5061 2.2737 1.8258 1.6709	Camphene 1 0 LinF	Cam
500 000 5000 0000 1500		0.999	0.01007.02	0.0186 0.0184 0.0194 0.0172	0.0242 0.0120 0.0186 0.0	Cyclohexanone 1 0 LinF	Cvc
35 00 250 3500 1000 1350 3500 1		0.990	0.0103.7.03	766 3.8705 3.337 Z =	.9831		laosi
2.00 50.00 100.0 250.0		008	3 04 6 05		2.2058 1.64/6 1./1/2 1.8191 1.8092 1./000 1.3/33	ne 1 0 Avg	1.2-[
5 00 2 00 50 00 100 0 250 0	1	3 8	1 80 8 03	202 1 7808 1 5755	2.3002 1.0409 1.3703 1.3003 1.3	O AVQ	1.4-1
5.00 2.00 50.00 100.0		1.00	1.96 7.79	967 1 8980 1 6729			
5.00 2.00 50.00 100.0		0.999	2.08 7.74		6385 1 9762 1 9486 2 1631 2 0192 1 7616	1 - C	1010
20.00 5.00 2.00 50.00 100.0 250.0 500.0	21 2	0.991 0.999 3	0.430 7.14	610 0.4375 0.3699	0 5147 0 3468 0 3184 0 5609 0 4610 0 4375	-Dichloro-2-bit 1 0 LinF	trans
20.00 5.00 2.00 50.00 100.0 250.0 1.00	17	0.991 0.998	1.51 6.73	146 1.3332 1.3353 -	1.8444 1.3958 1.2536 1.9048 1.5146 1.3332	1 0	o-Xvlene
10.00 4.00 100.0 200.0 500.0 1000.		0.999		191 1.3207 1.0063 1.8191 1.3343	.7464 1.4692 1.9004 1.9710 1.5191 1.3207	m&p-Xvlenes 1 0 Qua	a&m
3.00 2.00 30.00 100.0 200.0 300.0	6 6	0.999		108 2.1623 1.6832	2.6613 2.0311 1.7989 3.0483 2.4408 2.1623 1.6832	1 0 Qua	Styrene
500 3000 5000 3000 3000 5000		200	_	1.0064 0.8649 0.8984 0.8915 0.8077 0.7501	0.7869 0.8018	Bromofluorobenzene 1 0 Avg	Bron
30 00 30 00 30 00 30 00					0.0900 0.0720		1.1.2
5.00 2.00 50.00 100.0 250.0 500.0	**(0.300)	100	0 676 7 11		. 1200 0.0209 0.0024 1.0100 0.0		EINV
5.00	*(30)	0.998	0.956 6.43	91 0.8650 0.7212 0.9221	0 8269 0 8824		
20.00 5.00 2.00 50.00 100.0 250.0 500.0	8.5 **(0.100) 2	0.999 1.00 8	0.533 6.87	216 0.5592 0.5339	0.5535 0.4461 0.5215 0.5922 0.5216	1 0 Ava	Bron
20.00 5.00 2.00 50.00 100.0 250.0 500.0	23 2	0.999 1.00	0.906 6.79	377 1.0355 0.9662	1,0395 0,6256 0,5901 1,0937 0,9877 1,0355 0,9662	1 O LinF	n-Arr
20.00 5.00 2.00 50.00 100.0 250.0 500.0	28 2	0.997 0.999 2	1.02 6.66	841 1.2344 1.1088	1.1273 0.7162 0.5098 1.2888 1.1341	1 0 LinF	n-Bu
5.00 2.00 50.00 100.0 250.0	***(0.300)	1.00	1.44 6.37)75 1.3464 1.2442	1.8743 1.3206 1.4154 1.4934 1.4075	1 0 Avg	Chlo
5.00 2.00 50.00 100.0 250.0		1.00	0.505 6.41	15 0.4697 0.4343	0.6512 0.4718 0.4591 0.5351 0.5115	.1.1.2-Tetrachloroetha 1 0 Avg (1.1.1
5.00 2.00 50.00 100.0 250.0	(30)	0.999	- 1.52 5.53		1.7515 1.5507 1.2170 1.3978 1.5506	1 0 Avg	Toluene
5 00 0 00 50 00 100 00 00 00 00 00	***	2		1.54/3 1.3340	1.3104 1.4412 1.2120 1.2929 1.5523	oluene-d8 1 0 Avg	Tolue
30.00 30.00 30.00 30.00		1 333		0.5570	0.7394 0.6929 0.4355 0.5799 0.6369	etrachloroethene 1 0 LinF (Tetra
500 200 5000 1000		0.000	0.607 5.87	SO 0 5570	0.2611 0.1632 0.1269 0.2001 0.2371 0.2417		2-He
2.00 50.00 100.0 250.0		0.999	0.205 5.89	71 0 2417	0.3444 0.2497 0.3103 0.2911 0.3330 0.3370 0.3371	rentanone i u Avg	4-Me
2.00 50.00		0.999	0.317 5.40	96 0 3570 0 3041	3444 0 2007 0 3103 0 2911 0 3		
20.00 5.00 2.00 50.00 100.0 250.0 500.0	15 2	0.987 1.00 1	0.665 5.86	66 0.6620 0.5387	0 8066 0 7235 0 5518 0 6424 0 7266 0 6620 0 5387	P 1 0 Avg	۱ ا د
20.00 5.00 2.00 50.00 100.0 250.0 500.0	15 2	0.998 0.999 1	0.351 6.08	92 0.3485 0.3339	0.4340 0.3421 0.2643 0.3381 0.3992 0.3485 0.3339	1 0 Ava	3 :
2.00 50.00 100.0		0.999	0.377 5.76)73 0.3978 0.3294	0.4400 0.3794 0.3222 0.3650 0.4073 0.3978 0.3294	ine 1 0 Avg	1.1.2
5.00 2.00 50.00 100.0 250.0		0.999	0.364 5.68	01 0.4461	0.4470 0.3013 0.2116 0.3484 0.4301 0.4461	1 O Linf	Ethvi
5.00 2.00 50.00 100.0		0.999	0.64/ 5.64	63 0.7707	0.7436 0.5548 0.4794 0.5879 0.7463 0.7707	trans-1.3-Dichloroprop∈ 1 0 LinF (trans
5.00 2.00 50.00 100.0		0.000	0.7535.32	86 0.9034	0.8877 0.6365 0.4805 0.7701 0.8986 0.9034	cis-1.3-Dichloropropen: 1 0 LinF (cis-1
E 00 2 00 E0 00 100 0 250 0		0.000	0.752 5.25	93 0.2610 0.2294	0.2356 0.1079 0.1649 0.2079 0.2393 0.2610 0.2294	2-Chloroethylvinylether 1 0 LinF (2-Ch
5 00 2 00 50 00 100 0 250 0		0.000	0.320 0.01	99 0.5765 0.4657	0.5929 0.5105 0.4521 0.4984 0.5799 0.5763 0.4657		Dibro
50.00 100.0	10 00	0.999 0.999 1	0.528.6.01	51 U.36/1	0.3732 0.2609 0.1981 0.3177 0.3851 0.3671	Methyl methacrylate 1 0 LinF (Methy
5 00 2 00 50 00 100 0 250 0		0.000		// 0.61// 0.4014	0.6196 0.5138 0.4136 0.5069 0.6177 0.6177 0.4614		Iso-pi
5 00 2 00 50 00 100 0 250 0		0.008	0.500 4.45	41 0.9233 0.9016	1.0174 0.6039 0.5815 0.8041 0.8241 0.9253 0.5016	•	tert-A
5.00		0.000		38 1.7147 1.5411 2.0136	2.0255 1.6210 1.5234 1.6154 1.6338 1.7147 1.5411 2.0136	1 0 Avg	Benzene
5.00 2.00 50.00 100.0 250.0 500.0		0.999		82 0.5611 0.5201	0.6234 0.4498 0.4718 0.5099 0.5282 0.5611 0.5201	1 0 Avg	Trichl
5.00 2.00 50.00 100.0 250.0	(30)	0.999		85 0.4446 0.4142	0.5548 0.3825 0.4245 0.4323 0.4185 0.4446 0.4142	.2-Dichloropropane 1 0 Avg 0	1.2-D
5.00 2.00 50.00 100.0 250.0	*/30/	5 - 5		2/ 0.280 0.2900	0.3337 0.2695 0.2/09 0.25/3 0.2/2/ 0.2660 0.2966	Dibromomethane 1 0 Avg 0	Dibro
5.00 2.00 50.00		3.00		86 0.7676 0.7072	0.9202 0.5616 0.5457 0.7441 0.7386 0.7676 0.7072	Methylcyclohexane 1 0 LinF 0	Methy
				1	7.7	Compound Col Wit Fit. I	Comp
Calibration Level Concentrations Lvl3 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9	%Rsd L	Corr1 Corr2 %I	RF9 AvgRf RT	RF6 RF7 RF8	RES R	O Mr Ei	
	; ; ;		ć	05/12/11 09:05	09. CAL @ 0.5 PPB	7 1M68113 9 1M68109	
05/12/11 09:21	CAL ® 1 PPR	110	20 C	05/12/11 10:42			
05/12/11 10:36	CAL (#) 250 PPR			05/12/11 09:37	22		
05/12/11 09:53	CAL ® 5 PPB	112.	. 2	05/12/11 11:15	CAL		0.
Analysis Date/ I ime	Cal Identitier:	Ē.	Level #:	Analysis Date/Time	ile: Cal Identifier:	Level #: Data File	1:
		1		!			2.

a - failed the spcc criteria *- ccc compound
b - failed the ccc criteria *- spcc compound
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound. Flags

Avg Rsd: 15.9

Note:

Page 2 of 3

Form 6 Initial Calibration

Instrument: GCMS_1

Hexachtorobutadiene 1.2.4-Trichtorobenzene 1.2.3-Trichtorobenzene Nachthalene	n-Butvibenzene p-Diethvibenzene 1.2.4.5-Tetramethviber 1.2-Dibromo-3-Chlorop Camphor	p-Ethvitoluene 4-Chiorotoluene n-Propvibenzene Bromobenzene 1.35-Trimethvibenzene Butvi methacrviate t-Butvibenzene 1.2.4-Trimethvibenzene sec-Butvibenzene 4-Isonronvitoluene	0 1 2 Level # 1 3 3 5 5 7 9 9 Compound Col
		O Qua 6.1876 4 O Avg 2.8055 2 O LinF 6.3988 4 O Avg 2.8705 2 O Avg 3.7683 3 O LinF 1.4638 0 O Avg 4.2603 3 O Avg 4.5527 3 O LinF 5.9186 4	Data File: 1M68117. 1M68111. 1M68115. 1M68113. 1M68109.
1.0472 1.3592 1.4025 1.4910 1.5123 1.2908 1.4013 1.3473 1.3342 1.6637 1.6784 1.5445 1.07 1.2241 1.1356 1.1963 1.4579 1.4588 1.3562 0.96 1.7886 1.4262 1.1755 2.2420 2.2582 2.1802	5.7684 4.1156 4.1468 5.0114 4.8351 4.3183 2.5010 1.8228 1.8308 2.3169 2.3219 2.0908 3.3028 2.5066 2.3037 3.8249 3.8497 3.6018 0.1225 0.1102 0.1230 0.1309 0.1410 0.1501 0.0422 0.0306 0.0149 0.0534 0.0595 0.0604	6.1876 4.4394 4.0204 6.3564 4.7328 4.0394 3.52 2.8055 2.4639 2.0596 3.1403 2.5659 2.2693 6.3988 4.7546 4.5387 6.5470 5.3111 4.8097 2.8705 2.4162 2.3802 3.1920 2.6192 2.4718 1.96 2.7683 3.2877 2.9919 4.1564 3.4053 3.0408 1.4638 0.9941 0.9141 1.5131 1.2387 1.1998 1.02 4.2603 3.0763 3.2147 3.8438 3.7901 3.3922 2.70 4.2527 3.1935 3.0658 3.9842 3.8245 3.4694 5.9186 4.0354 4.0864 4.9694 4.9388 4.5015 4.9513 3.5035 3.2452 4.2064 4.0386 3.4729	Cal Identifier: CAL @ 20 PPB CAL @ 2 PPB CAL @ 100 PPB CAL @ 500 PPB CAL @ 0.5 PPB CAL @ 0.5 PPB
71	1.7259	3.5267 1.9636 1.0231 2.7063	Analysis Date/Time 05/12/11 11:15 05/12/11 09:37 05/12/11 10:42 05/12/11 10:10 05/12/11 09:05 RF5 RF6 RF7 RF8
	3.9528 4.59 7.98 2.09 7.96 3.23 8.47 0.132 8.51 0.0138 0.0393 9.00	4.76 7.27 2.55 7.33 4.8500 — 5.32 7.20 2.56 7.16 3.1587 — 3.40 7.29 — 1.19 7.30 3.2413 — 3.44 7.51 3.1567 — 3.61 7.54 3.9001 — 4.62 7.65 3.5308 — 3.85 7.73	Level #: 2 4 6 8 8 RF9 AvgRf RT
.16 0.994 0.999 .07 0.958 0.999 .39 0.963 0.999 .23 0.999 1.00	0.997 0.988 0.999 0.999 0.999	0.990 0.997 0.993 0.998 0.994 0.998 0.983 0.999 0.994 0.998 0.992 0.999 0.984 1.00 0.998 1.00 0.998 1.00 0.998 1.00	Data File: 1M68112. 1M68116. 1M68114. 1M68110. Corr1 Corr2
15 15 26	51 1 2 1 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cal Identifier: CAL @ 5 PPB CAL @ 50 PPB CAL @ 250 PPB CAL @ 1 PPB
20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 500.0 20.00 5.00 2.00 50.00 100.0 250.0 500.0 20.00 5.00 2.00 50.00 100.0 250.0 1.00	5.00 2.00 50.00 5.00 2.00 50.00 5.00 2.00 50.00 5.00 2.00 50.00 50.00 20.00 500.0	20.00 5.00 2.00 50.00 100.0 250.0 500.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0 20.00 5.00 2.00 50.00 100.0 250.0	sis Date/Time 112/11 09:53 112/11 10:58 112/11 10:26 112/11 09:21 Calibration Lev Lvl3 Lvl4

Flags

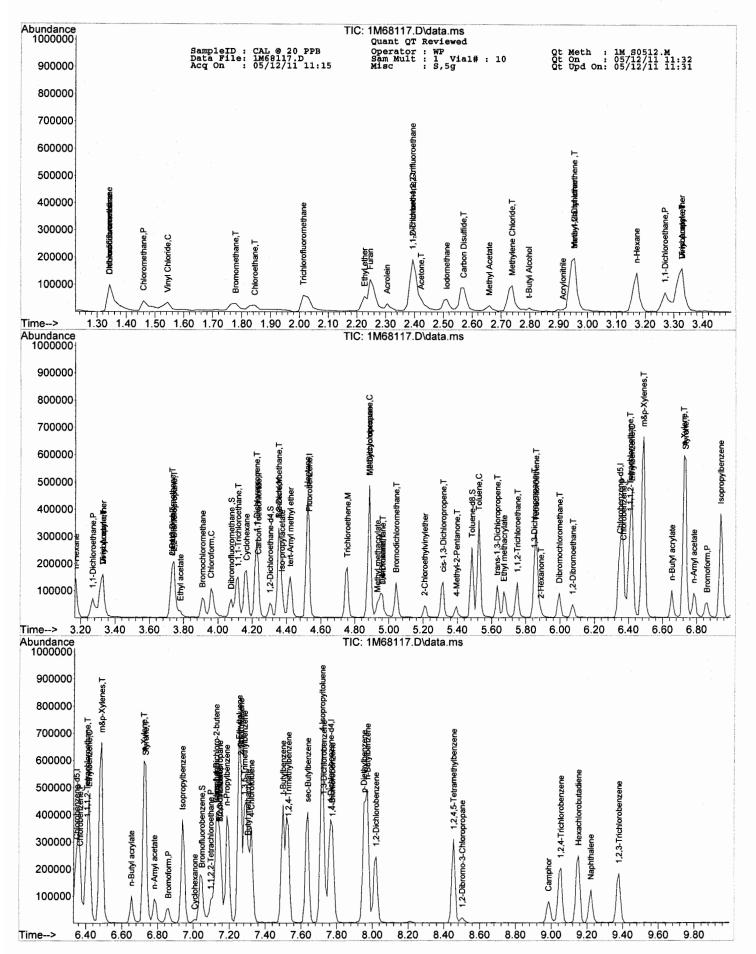
Avg Rsd: 15.9

Note:

a - failed the spcc criteria *- ccc compound
b - failed the ccc criteria *- spcc compound
Corr 2 = Correlation Coefficient for linear Eq.
Corr 2 = Correlation Coefficient for quad Eq.
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

SampleID : CAL @ 20 PPB Data File: 1M68117.D Acq On : 05/12/11 11:15

Operator : WP Sam Mult : 1 Vial# : 10 Misc : S,5g


Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

-							
	Compound	R.T.	OIon	Response	Conc Units	Dev(M	in)
Inter	nal Standards						
	Fluorobenzene	4.529	96	104790	30.00 ug/	'1 o	.00
52)	Chlorobenzene-d5	6.349	117	89897	30.00 ug/	′1 -O	.01
	1,4-Dichlorobenzene-d4	7.766		60865	30.00 ug/		.00
	-,				-		
Syste	em Monitoring Compounds						
	Dibromofluoromethane	4.076	111	30701	31.09 ug/	/1 0	.00
-	iked Amount 30.000			Recove		3.63%	
-	1,2-Dichloroethane-d4	4.303	67	15210	32.34 ug/		.01
	iked Amount 30.000		-			7.80%	
	Toluene-d8	5.483	98	117808	30.43 ug/		.01
	iked Amount 30.000			Recove		L.43%	
	Bromofluorobenzene	7.047	174	46761	-		.01
	iked Amount 30.000	,	_,_	Recove		_ 0.70%	
JP.					•		
Targe	et Compounds					0	value
	Chlorodifluoromethane	1.343	51	71325	33.0097	ug/l	78
	Dichlorodifluoromethane	1.343		54535	27.9643	ug/l	85
- ,	Chloromethane	1.461		45748	28.5157	ug/l	79
	Bromomethane	1.779		20520	26.5616	ug/l	95
	Vinyl Chloride	1.545		33703	25.5119	ug/l	93
	Chloroethane	1.846		18492	22.7884	ug/l	89
	Trichlorofluoromethane	2.014		74466	31.4419	ug/l	81
		2.227		23059	25.6709	ug/l	81
	Ethyl ether	2.247		76136	21.9544	ug/l	98
	Furan 1,1,2-Trichloro-1,2,2	2.394		35973	31.8961	ug/l	91
	-, -,	2.738		32802	22.2120	ug/l	96
	Methylene Chloride	2.736		13523	164.1421	ug/l	87
	Acrolein					ug/l	68
	Acrylonitrile	2.916		5986	33.0366	ug/l	91
	Iodomethane	2.512		40970	21.5164	- · · · ·	90
	Acetone	2.424		27501	126.7423	ug/l	100
	Carbon Disulfide	2.571		112450	24.8702	ug/l	
	t-Butyl Alcohol	2.797		5832	150.4989	ug/l	95
	n-Hexane	3.171		43251	28.6529	ug/1	79
	Di-isopropyl-ether	3.329		110484	27.3283	ug/l	100
24)	1,1-Dichloroethene	2.394		59539	25,2871	ug/l	93
25)	Methyl Acetate	2.660		21424	34.9506	ug/l	100
26)	Methyl-t-butyl ether	2.955		66087	31.7179	ug/l	67
	1,1-Dichloroethane	3.270	63	68921	26.3257	ug/l	97
28)	trans-1,2-Dichloroethene	2.955	96	35656	25.0766	ug/l	87
	cis-1,2-Dichloroethene	3.732	61	60266	23.3803	ug/1	72
30)	Bromochloromethane	3.909	49	28797	25.7608	ug/l	81
31)	2,2-Dichloropropane	3.742	77	50469	22.8119	ug/l	92
32)	Ethyl acetate	3.781	43	18414	25.5329	ug/l	92
	1,4-Dioxane	4.962	88	11472	1823.1668	ug/l	93
	1,1-Dichloropropene	4.224	75	58443	26.9354	ug/l	92
	Chloroform	3.958	83	68671	24.6735	ug/l	83
	Cyclohexane	4.165	56	63010	30.2788	ug/l	94
	1,2-Dichloroethane	4.352	62	48331	25.6858	ug/l	100
	2-Butanone	3.732	43	8197	25.8581	ug/l	87
	1,1,1-Trichloroethane	4.116		72081	27.0662	ug/l	91
	Carbon Tetrachloride	4.234		55835	23.9438	ug/l	97
	Vinyl Acetate	3.329		73756	20.8060	ug/l	100
	Heptane	4.519		85538	1058.3696	ug/l	96
	Bromodichloromethane	5.041		51898	24.3099	ug/l	92
	Methylcyclohexane	4,883		64286	31.1529	ug/l	96
	Dibromomethane	4.962	174	23318	25.2376	ug/l	90
	1,2-Dichloropropane	4.883	63	38760	27.3544	ug/l	94
	Trichloroethene	4.755	130	43556	25.0781	ug/l	87
	Benzene	4.352	_	141502	25.4561	ug/l	100
	tert-Amyl methyl ether	4.421		71079	26.6825	ug/l	81
	Iso-propylacetate	4.372		37136	24.2614	ug/l	94
	Methyl methacrylate	4.932		22372	25.3385	ug/l	88
	Dibromochloromethane	5.995		35534	25.0009	ug/l	85
	2-Chloroethylvinylether	5.208		14121	24.5852	ug/l	84
		5.316		53205	24.3032	ug/l	93
	cis-1,3-Dichloropropene			44566	25.0171	ug/l	91
	trans-1,3-Dichloropropene	5.631		26792	26.3642	ug/l	81
	Ethyl methacrylate	5.670			25.9613	ug/l	89
	1,1,2-Trichloroethane	5.749		26373 26014	25.0600	ug/l	87
	1,2-Dibromoethane	6.074	_	26014		ug/l	99
	1,3-Dichloropropane	5.847	_	48346	26.5983		91
	4-Methyl-2-Pentanone	5.395		20645	23.6369	ug/l	
	2-Hexanone	5.887		15648	30.0113	ug/l	96 82
	Tetrachloroethene	5.857		44318	26.4737	ug/l	82 97
67)	Toluene \\	5.523	92	104970	24.5318	ug/l	97
	U						

SampleID : CAL @ 20 PPB Data File: 1M68117.D Acq On : 05/12/11 11:15 Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31 Operator : WP Sam Mult : 1 Vial# : 10 : S,5g

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	1)
68)	1,1,1,2-Tetrachloroethane	6.408	133	39027	26.2242	ug/l	71
	Chlorobenzene	6.369	112	112334	25.8642	ug/l	94
71)	n-Butyl acrylate	6.654	55	45743	22.4514	ug/l	95
	n-Amyl acetate	6.782	43	42180	21.9394	ug/l	80
73)	Bromoform	6.861	173	22462	22.4647	ug/l	96
74)	Ethylbenzene	6.418	106	45448	22.8097	ug/l	98
75)		7.097	83	31746	23.1554	ug/l	97
77)	Styrene	6.733	104	107987	22.6718	ug/l	96
78)	m&p-Xylenes	6.487	106	141727	44.3577	ug/l	94
79)	o-Xylene	6.723	106	74840	25.2904	ug/l	74
80)	trans-1,4-Dichloro-2-b	7.126	53	20888	22.9501	ug/l	98
81)	1,3-Dichlorobenzene	7.726	146	107063	27.0485	ug/l	89
82)	1,4-Dichlorobenzene	7.775	146	95771	23.8791	ug/l	93
83)	1,2-Dichlorobenzene	8.021	146	89507	24.3218	ug/l	89
84)	Isopropylbenzene	6.939	105	196331	23.7090	ug/l	94
85)	Cyclohexanone	7.008	55	4912	126.3856	ug/l	68
86)	Camphene	7.126	93	81415	23.7539	ug/l	96
87)	1,2,3-Trichloropropane	7.146	75	41137	24.4903	ug/l	83
88)	2-Chlorotoluene	7.264	91	110580	21.9577	ug/l	95
89)	p-Ethyltoluene	7.254	105	251072	24.0736	ug/l	83
90)	4-Chlorotoluene	7.323	91	113840	23.5917	ug/l	91
91)	n-Propylbenzene	7.185	91	259644	25.0424	ug/l	98
92)	Bromobenzene	7.146	77	116477	22.1018	ug/l	84
93)	1,3,5-Trimethylbenzene	7.284	105	152907	23.4401	ug/l	98
94)	Butyl methacrylate	7.303	41	59398	23.0523	ug/l	65
95)	t-Butylbenzene	7.500	119	172869	25.1254	ug/l	85
96)	1,2,4-Trimethylbenzene	7.530		184734	26.2179	ug/l	86
	sec-Butylbenzene	7.638		240160	26.8900	ug/l	93
98)	4-Isopropyltoluene	7.716	119	200910	27.7579	ug/l	94
	n-Butylbenzene	7.972		234063	26.2740	ug/l	96
100)	p-Diethylbenzene	7.953		101485	21.8116	ug/l	92
101)	1,2,4,5-Tetramethylben	8.454		134018	18.0662	ug/l	93
102)		8.503		4974	21.9601	ug/l	70
103)		8.986		17157	225.4066	ug/l	97
	Hexachlorobutadiene	9.153		42495	16.2596	ug/l	82
	1,2,4-Trichlorobenzene	9.054		56863	21.1223	ug/l	94
106)		9.379		49673	20.6621	ug/l	89
107)	Naphthalene	9.222	128	72579	22.4936	ug/l	100
							-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:49:24 2011 SYSTEM1

Operator : WP Sam Mult : 1 Vial# : 5 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31 SampleID : CAL @ 5 PPB Data File: 1M68112.D Acq On : 05/12/11 09:53


C	Resp via : Initial Calibration						
	Compound	R.T.	QIon	Response	Conc Units	Dev (M	in)
	Internal Standards						
	4) Fluorobenzene	4.530	96	158262	30.00 ug/	1 0	.00
	52) Chlorobenzene-d5	6.350	117	111572	30.00 ug/		.00
	70) 1,4-Dichlorobenzene-d4	7.767	152	64754	30.00 ug/		.00
	, _ ,						
	System Monitoring Compounds						
	36) Dibromofluoromethane	4.087	111	43169	28.94 ug/		.00
	Spiked Amount 30.000			Recove	•	.47%	
	38) 1,2-Dichloroethane-d4	4.314	67	22091	31.10 ug/		.00
	Spiked Amount 30.000					.67%	0.0
	66) Toluene-d8	5.484	98	160800	33.47 ug/		.00
	Spiked Amount 30.000		274	Recove	•	.57%	.00
	76) Bromofluorobenzene	7.048	174	50959 Recove	27.87 ug/ erv = 92	.90%	.00
	Spiked Amount 30.000			Recove	:LY - 92	. 50%	
	Haraat Compounds					0.	value
	Target Compounds 5) Chlorodifluoromethane	1.360	51	20579	6.3062	ug/l	96
	6) Dichlorodifluoromethane	1.360	85	11768	3.9955	ug/l	91
	7) Chloromethane	1.478	50	12607	5.2032	ug/l	85
	8) Bromomethane	1.780	94	6367	5.4570	ug/l	100
	9) Vinyl Chloride	1.562	62	9280	4.6512	ug/l	88
	10) Chloroethane	1.847	64	6393	5.2165	ug/l	83
	11) Trichlorofluoromethane	2.031	101	18331	5.1248	ug/l	81
	12) Ethyl ether	2.238	59	5793	4.2702	ug/l	77
	13) Furan	2.267	39	20152	3.8476	ug/l	96
	14) 1,1,2-Trichloro-1,2,2			9996	5.8685	ug/l	91
	15) Methylene Chloride	2.749	84	10805	4.8446	ug/l	78 96
	16) Acrolein	2.326		3686	29.6241	ug/l	92
	17) Acrylonitrile	2.917		926	3.3839	ug/l ug/l	91
	18) Iodomethane	2.523		11688 8776	4.0643 26.7801	ug/l	100
	19) Acetone	2.444		29226	4.2799	ug/l	100
	20) Carbon Disulfide	2.582 2.818		1375	23.4943	ug/l	50
	21) t-Butyl Alcohol	3.182		12031	5.2774	ug/l	75
	22) n-Hexane	3.330		29382	4.8121	ug/l	98
	<pre>23) Di-isopropyl-ether 24) 1,1-Dichloroethene</pre>	2.405		15607	4.3889	ug/l	95
	25) Methyl Acetate	2.671		6218	6.7166	ug/l	100
	26) Methyl-t-butyl ether	2.956		15831	5.0308	ug/l	72
	27) 1,1-Dichloroethane	3.281		17274	4.3688	ug/l	100
	28) trans-1,2-Dichloroethene	2.966		9902	4.6111	ug/l	70
	29) cis-1,2-Dichloroethene	3.743	61	17327	4.4509	ug/l	92
	30) Bromochloromethane	3.920	49	7272	4.3073	ug/l	83
	31) 2,2-Dichloropropane	3.753		15223	4.5560	ug/l	98
	32) Ethyl acetate	3.792		4727m		ug/l	
	33) 1,4-Dioxane	5.051		119	12.5221	ug/l	42 97
	34) 1,1-Dichloropropene	4.225		12914	3.9409	ug/l ug/l	80
	35) Chloroform	3.969		19899	4.7340 5.1777	ug/l	89
	37) Cyclohexane	4.176		16273 14178	4.9891	ug/l	79
	39) 1,2-Dichloroethane	4.363		2093m			
	<pre>40) 2-Butanone 41) 1,1,1-Trichloroethane</pre>	3.753 4.117		18638	4.6339	ug/l	100
	41) 1,1,1-Trichloroethane 42) Carbon Tetrachloride	4.235		17874	5.0752	ug/l	84
	43) Vinyl Acetate	3.330		19504	3.6430	ug/l	100
	44) Heptane	4.530		20078	164.4909	ug/l	
	45) Bromodichloromethane	5.051	83	13926	4.3192	ug/1	96
	46) Methylcyclohexane	4.894	83	14815	4.7536	ug/l	95
	47) Dibromomethane	4.963	174	7109	5.0946	ug/l	86
	48) 1,2-Dichloropropane	4.894		10090	4.7150	ug/l	97
	49) Trichloroethene	4.756		11866	4.5237	ug/l	88
	50) Benzene	4.363		42757	5.0931	ug/l	100
	51) tert-Amyl methyl ether	4.432		15931	3.9598	ug/l	94 97
	53) Iso-propylacetate	4.382		9555	5.0297	ug/l	76
	54) Methyl methacrylate	4.943		4852 9494	4.4278 5.3821	ug/l ug/l	93
	55) Dibromochloromethane	5.996		9494 2008	2.8168	ug/l	91
	56) 2-Chloroethylvinylether	5.219 5.317		11836	4.3605	ug/l	92
	57) cis-1,3-Dichloropropene 58) trans-1,3-Dichloropropene			10317	4.6664	ug/l	91
	59) Ethyl methacrylate	5.681		5604	4.4432	ug/l	64
	60) 1,1,2-Trichloroethane	5.750		7055	5.5957	ug/l	91
	61) 1,2-Dibromoethane	6.084		6362	4.9381	ug/l	85
	62) 1,3-Dichloropropane	5.858		13455	5.9644	ug/l	99
	63) 4-Methyl-2-Pentanone	5.396		4644	4.2841	ug/l	93
	64) 2-Hexanone	5.888	43	3036	4.6916	ug/l	89
	65) Tetrachloroethene			12885	6.2017	ug/l	94
	67) Toluene	y 5.533	92	28837	5.4301	ug/l	99
		1					

Quantitation Report (QT Reviewed)

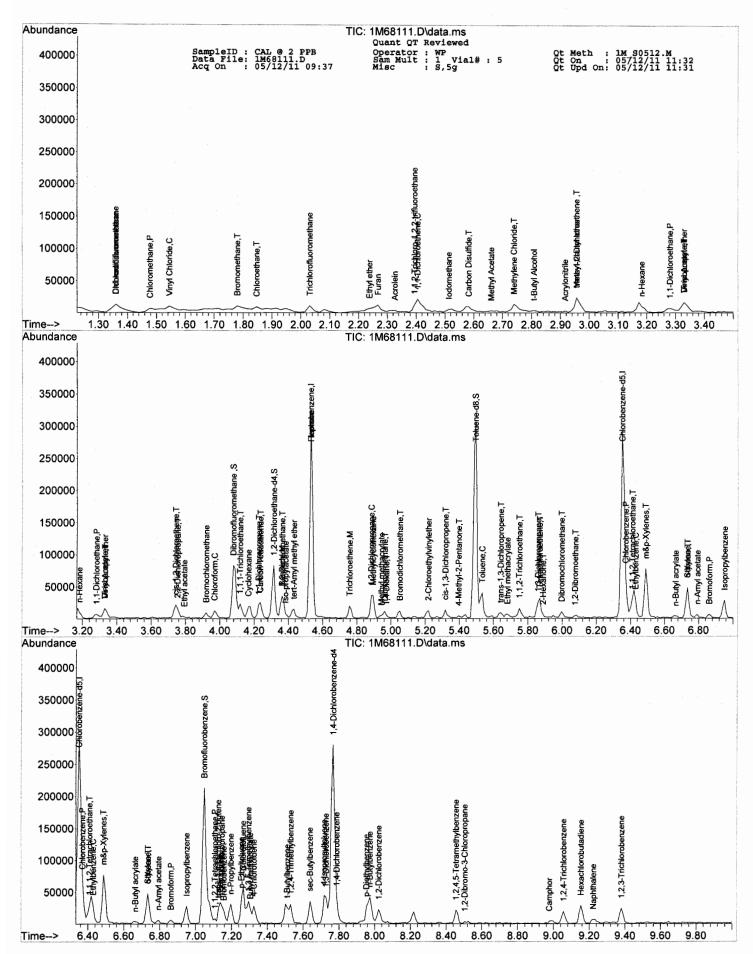
SampleID : CAL @ 5 PPB Operator : WP Sam Mult : 1 Vial# : 5 Misc : S,5g Qt Meth : 1M S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31 Data File: 1M68112.D Acq On : 05/12/11 09:53 Misc

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min))
68)	1,1,1,2-Tetrachloroethane	6.409	133	8774	4.7503	ug/l	70
69)	Chlorobenzene	6.370	112	24557	4.5557	ug/l	99
71)	n-Butyl acrylate	6.655	55	7730	3.5661	ug/l	92
72)	n-Amyl acetate	6.793	43	6752	3.3011	ug/l	78
73)	Bromoform	6.862	173	4815	4.5264	ug/l	90
74)	Ethylbenzene	6.419	106	8925	4.2103	ug/l	99
75)	1,1,2,2-Tetrachloroethane	7.107	83	6427	4.4063	ug/l	90
77)	Styrene	6.734	104	21921	4.3259	ug/l	97
78)	m&p-Xylenes	6.488	106	31714	9.3297	ug/l	92
79)	o-Xylene	6.734	106	15064	4.7848	ug/l	68
80)	trans-1,4-Dichloro-2-b	7.127	53	3743	3.8655	ug/l	97
81)	1,3-Dichlorobenzene	7.727	146	21328	5.0647	ug/l	87
82)	1,4-Dichlorobenzene	7.776	146	19954	4.6764	ug/l	97
83)	1,2-Dichlorobenzene	8.022	146	17782	4.5417	ug/l	87
84)	Isopropylbenzene	6.950	105	36436	4.1358	ug/l	93
85)	Cyclohexanone	7.009	55	650	15.7200	ug/l	75
86)	Camphene	7.137	93	15607	4.2801	ug/l	98
87)	1,2,3-Trichloropropane	7.147	75	8621	4.8241	ug/l	88
88)	2-Chlorotoluene	7.265	91	29456	5.4978	ug/l	93
89)	p-Ethyltoluene	7.255	105	47912	4.3181	ug/l	65
90)	4-Chlorotoluene	7.324	91	26592	5.1798	ug/l	97
91)	n-Propylbenzene	7.196	91	51314	4.6519	ug/l	94
92)	Bromobenzene	7.147	77	26077	4.6510	ug/l	84
93)	1,3,5-Trimethylbenzene	7.294	105	35482	5.1126	ug/l	51
94)	Butyl methacrylate	7.304	41	10729	3.9138	ug/l	74
95)	t-Butylbenzene	7.501	119	33201	4.5357	ug/l	86
96)	1,2,4-Trimethylbenzene	7.531	105	34466	4.5977	ug/l	81
97)	sec-Butylbenzene	7.639	105	43552	4.5835	ug/l	98
98)	4-Isopropyltoluene	7.717	119	37811	4.9103	ug/l	91
99)	n-Butylbenzene	7.973	91	44417	4.6864	ug/l	96
100)	p-Diethylbenzene	7.954	119	19673	3.9743	ug/l	89
101)	1,2,4,5-Tetramethylben	8.455	119	27053	3.4278	ug/l	88
102)	1,2-Dibromo-3-Chloropr	8.504	157	1190	4.9383	ug/l	63
103)	Camphor	8.996	95	3304	40.8006	ug/l	77
104)	Hexachlorobutadiene	9.154	225	14669	5.2756	ug/l	98
105)	1,2,4-Trichlorobenzene	9.055	180	14541	5.0770	ug/l	93
106)	1,2,3-Trichlorobenzene	9.380	180	12256	4.7919	ug/l	92
107)	Naphthalene	9.223	128	15392	4.4838	ug/l	100
							_

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Operator : WP Sam Mult : 1 Vial# : 5 Misc : S,5g SampleID : CAL @ 2 PPB Data File: 1M68111.D Acq On : 05/12/11 09:37 Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-12-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\


Qt Resp Via : Initial Calibration

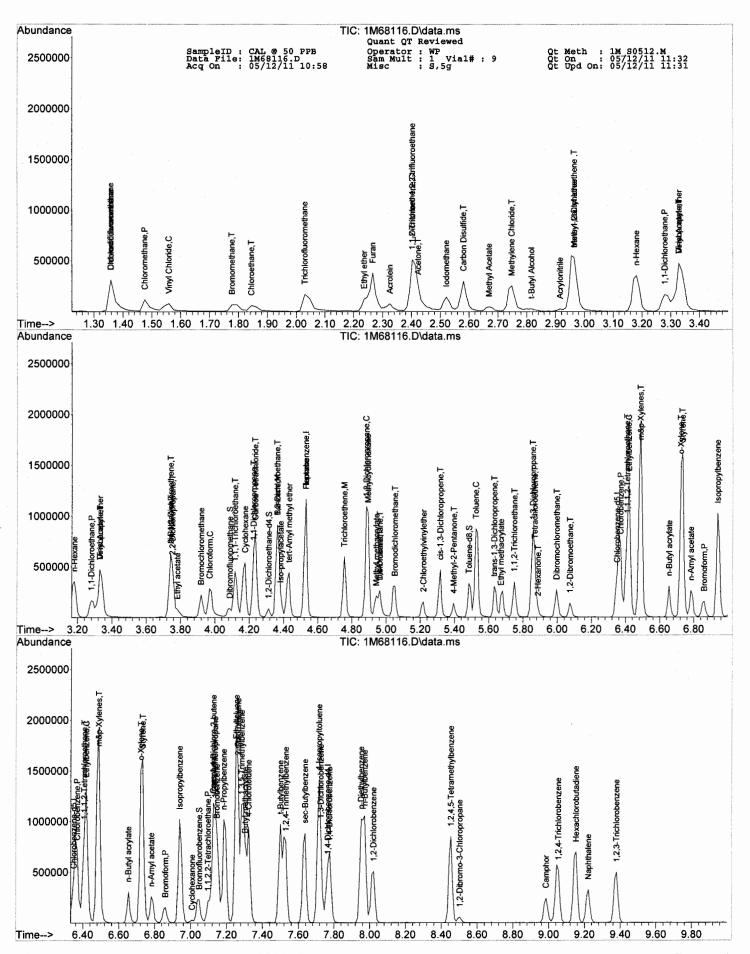
_								
	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
				-			'-	_
Inte	rnal Standards							
4)	Fluorobenzene	4.530	96	142552	30.00 ug/	1 (0.0	0
52)	Chlorobenzene-d5	6.350	117	119709		1 (0.0	0
70)	1,4-Dichlorobenzene-d4	7.767	152	62552	30.00 ug/	1 (0.0	0
Syste	em Monitoring Compounds							
36)	Dibromofluoromethane	4.078	111	41647	31.00 ug/	1 (0.0	0
Sp:	iked Amount 30.000			Recove	ery = 103	.33%		
38)	1,2-Dichloroethane-d4	4.314	67	21083	32.95 ug/	1 (0.0	0
	iked Amount 30.000			Recove	ery = 109	.83%		
66)	Toluene-d8	5.495	98		28.15 ug/	1 (0.0	0
-	iked Amount 30.000					.83%		
	Bromofluorobenzene	7.049	174		28.40 ug/		0.0	0
	iked Amount 30.000			Recove	ery = 94	.67%		
					•			
Targe	et Compounds					(Qva	lue
	Chlorodifluoromethane	1.360	51	16382	5.5733	ug/l		66
	Dichlorodifluoromethane	1.360		5573	2.1007	ug/l		93
- •	Chloromethane	1.478		5209	2.3868	ug/l		89
	Bromomethane	1.780		2743	2.6101	ug/l		89
	Vinyl Chloride	1.545		3541	1.9704	ug/l		56
	Chloroethane	1.847		2294	2.0781	ug/l		69
	Trichlorofluoromethane	2.031		8219		ug/l		81
		2.031		2020	1.6531	ug/l		86
	Ethyl ether				1.3299			88
	Furan	2.268		6274		ug/l		85
,	1,1,2-Trichloro-1,2,2			3245		ug/l		
	Methylene Chloride	2.740		3939	1.9607	ug/l		81
	Acrolein	2.327		1123		ug/l		56
	Acrylonitrile	2.917		475	1.9271	ug/l		7
18)	Iodomethane	2.514		4323	1.6689	ug/l		88
19)	Acetone	0.000		0	N.D. d			
20)	Carbon Disulfide	2.583	76	10585	1.7209	ug/l		100
21)	t-Butyl Alcohol	2.809	59	571	10.8317	ug/l	#	1
22)	n-Hexane	3.183	57	4506	2.1944	ug/l		75
-	Di-isopropyl-ether	3.330	45	9887	1.7977	ug/l		99
	1,1-Dichloroethene	2.405		5997	1.8723	ug/l		93
	Methyl Acetate	2.661		3066	3.6768	ug/l		100
	Methyl-t-butyl ether	2.956		4865	1.7164	ug/l		77
	1,1-Dichloroethane	3.281		5207	1.4620	ug/l		91
	trans-1,2-Dichloroethene	2.956		3336	1.7247	ug/l		86
		3.743		5841	1.6658	ug/l		92
	cis-1,2-Dichloroethene				2.2773	ug/l		71
	Bromochloromethane	3.920		3463	1.7457	ug/1		86
	2,2-Dichloropropane	3.753		5254				92
	Ethyl acetate	3.793		2437	2.4840	ug/l		
	1,4-Dioxane	4.973		1092		ug/l		86
	1,1-Dichloropropene	4.225		4570				96
	Chloroform	3.970		6922		ug/l		100
	Cyclohexane	4.166		5095	1.7998			97
39)	1,2-Dichloroethane	4.363		4959	1.9374	ug/l		89
40)	2-Butanone	0.000		0	N.D. d			
41)	1,1,1-Trichloroethane	4.117	97	6754	1.8643	ug/l		90
42)	Carbon Tetrachloride	4.235	117	5243	1.6528	ug/l		64
43)	Vinyl Acetate	3.330	43	6334	1.3135	ug/l		100
44)	Heptane	4.530	43	7317	66.5515	ug/l	#	44
45)	Bromodichloromethane	5.052	83	4513	1.5540	ug/l		96
46)		4.894	83	5186	1.8474	ug/l		89
	Dibromomethane	4.963	174	2575	2.0487	ug/l		98
48)		4.885	63	4035	2.0933	ug/l		77
	Trichloroethene	4.757		4484	1.8978	ug/l		96
	Benzene	4.363		14478	1.9146	ug/l		100
	tert-Amyl methyl ether	4.432		5527	1.5252	ug/l		97
		4.383	43	3301	1.6195	ug/l		75
53)		4.363	41	1581	1.3447	ug/l		73
	Methyl methacrylate			3608	1.9063	ug/1		83
	Dibromochloromethane	5.996		1316	1.7206	ug/1		75
56)		5.219						
	cis-1,3-Dichloropropene	5.317		3835	1.3168	ug/l		89
	trans-1,3-Dichloropropene			3826	1.6129	ug/l	ш	90
	Ethyl methacrylate	5.681		1689	1.2481	ug/l	#	53
	1,1,2-Trichloroethane	5.750		2572	1.9013	ug/l		72
	1,2-Dibromoethane	6.075		2110	1.5264	ug/l		94
62)	1,3-Dichloropropane	5.859		4404	1.8195	ug/l		92
63)	4-Methyl-2-Pentanone	5.396		2477	2.1297	ug/l		84
64)	2-Hexanone	5.888	43	1013	1.4590	ug/l		78
65)	Tetrachloroethene	5.868	164	3476	1.5593	ug/l		71
67)	Toluene	5.534	92	9713	1.7047	ug/l		89
·		\mathcal{L}						

SampleID : CAL @ 2 PPB Data File: 1M68111.D Acq On : 05/12/11 09:37 Operator : WP Sam Mult : 1 Vial# : 5 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
68)	1,1,1,2-Tetrachloroethane	6.409	133	3664	1.8489	ug/l	78
	Chlorobenzene	6.370	112	11296	1.9531	ug/l	89
	n-Butyl acrylate	6.665	55	2126	1.0153	ug/l	87
	n-Amyl acetate	6.793	43	2461	1.2455	ug/l	72
	Bromoform	6.862	173	2175	2.1166	ug/l	86
74)	Ethylbenzene	6,429	106	3680	1.7971	ug/l	71
75)	1,1,2,2-Tetrachloroethane	7.108	83	2388	1.6948	ug/l	73
77)	Styrene	6.734	104	7502	1.5326	ug/l	98
78)	m&p-Xylenes	6.488	106	15850	4.8269	ug/l	99
79)	o-Xylene	6.734	106	5228	1.7190	ug/l	94
80)	trans-1,4-Dichloro-2-b	7.128	53	1328	1.4198	ug/l	92
81)	1,3-Dichlorobenzene	7.728	146	8126	1.9976	ug/l #	72
82)	1,4-Dichlorobenzene	7.787	146	8219	1.9940	ug/l	95
83)	1,2-Dichlorobenzene	8.023	146	7161	1.8934	ug/l	89
84)	Isopropylbenzene	6.951	105	12440	1.4617	ug/l	97
85)	Cyclohexanone	0.000		0	N.D. d		
	Camphene	7.137	93	6281	1.7831	ug/1	92
	1,2,3-Trichloropropane	7.147		3120	1.8073	ug/l	88
	2-Chlorotoluene	7.265	91	10036	1.9391	ug/l	98
89)	p-Ethyltoluene	7.256	105	16766	1.5642	ug/l	81
90)	4-Chlorotoluene	7.324		8589	1.7319	ug/l	89
	n-Propylbenzene	7.197		18927	1.7763	ug/l	100
	Bromobenzene	7.157		9926	1.8327	ug/l	79
	1,3,5-Trimethylbenzene	7.295		12477	1.8611	ug/l	97
	Butyl methacrylate	7.305		3812	1.4395	ug/l	91
	t-Butylbenzene	7.511		13406	1.8959	ug/l	80
	1,2,4-Trimethylbenzene	7.531		12785	1.7655	ug/l	85
	sec-Butylbenzene	7.639		17041	1.8566	ug/l	94
	4-Isopropyltoluene	7.718		13533	1.8193	ug/l	92
	n-Butylbenzene	7.974		17293	1.8888	ug/l	95
	p-Diethylbenzene	7.954		7635	1.5967	ug/l	90
	1,2,4,5-Tetramethylben	8.456		9607	1.2601	ug/l	92
	1,2-Dibromo-3-Chloropr	8.505		513	2.2038	ug/l	24
	Camphor	8.977		623	7.9642	ug/l	78
	Hexachlorobutadiene	9.154		5849	2.1776	ug/l	94
	1,2,4-Trichlorobenzene	9.056		5564	2.0111	ug/l	95
	1,2,3-Trichlorobenzene	9.381		4989	2.0193	ug/l	92
107)	Naphthalene	9.223		4902	1.4782	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:49:34 2011 SYSTEM1


Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31 SampleID : CAL @ 50 PPB Data File: 1M68116.D Acq On : 05/12/11 10:58 Operator : WP Sam Mult : 1 Vial# : 9 Misc : S,5g

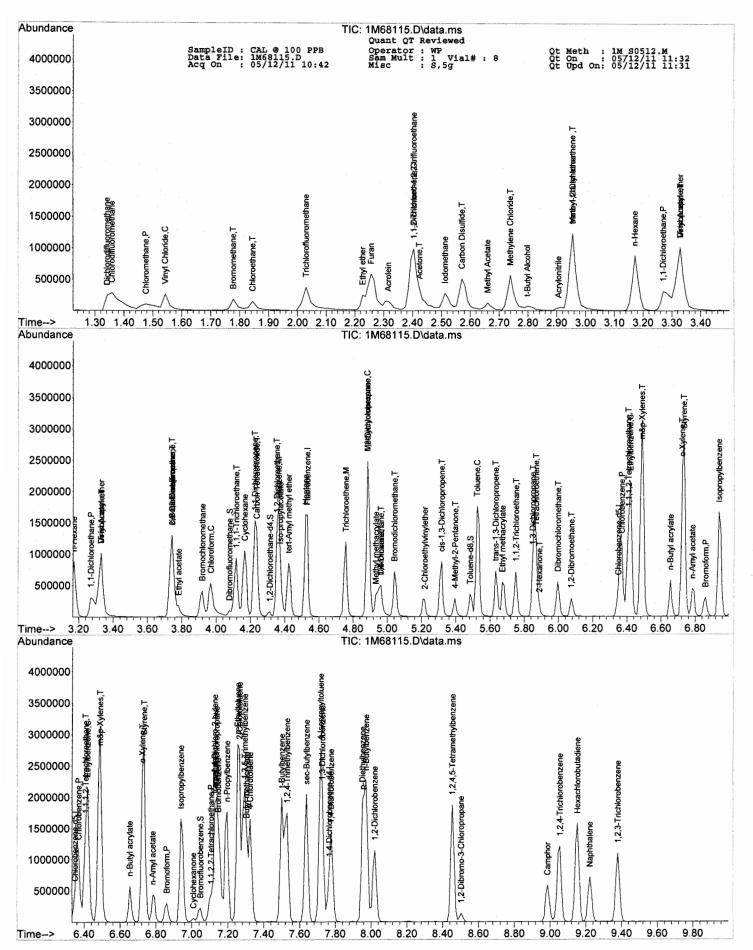
	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
Inter	nal Standards						
4)	Fluorobenzene	4.529					.00
52)	Chlorobenzene-d5	6.349					.01
70)	1,4-Dichlorobenzene-d4	7.766	152	62346	30.00 ug/	1 0	.00
	em Monitoring Compounds					,	
	Dibromofluoromethane	4.086	111	41601	29.38 ug/		.00
	ked Amount 30.000				•	7.93%	
-	1,2-Dichloroethane-d4	4.313	67	22104	32.77 ug/		.00
•	ked Amount 30.000				ery = 109		0.1
	Toluene-d8	5.483	98		30.02 ug/		.01
-	ked Amount 30.000		274		ery = 100		0.1
-	Bromofluorobenzene	7.048	174		35.65 ug/		.01
Spi	ked Amount 30.000			Recov	ery = 118	.03%	
m	t Compounds					0	value
	et Compounds Chlorodifluoromethane	1.359	51	190079	61.3481	ug/l	80
	Dichlorodifluoromethane	1.359		142382	50.9157	ug/l	87
- •	Chloromethane	1.476		118269	51.4103	ug/l	80
	Bromomethane	1.778		52771	47.6366	ug/l	90
- ,	Vinyl Chloride	1.560		86105	45.4537	·	93
	Chloroethane	1.845		50482	43.3845	ug/l	88
	Trichlorofluoromethane	2.030		176860		ug/l	86
	Ethyl ether	2.237		61656		ug/l	83
	Furan	2.266		214045	43.0431	ug/l	98
	1,1,2-Trichloro-1,2,2			100668	62.2472	ug/l	93
	Methylene Chloride	2.748		101049	47.7186	ug/l	86
	Acrolein	2.325	56	39770	336.6436	ug/l	97
	Acrylonitrile	2.916	53	19446	74.8439	ug/l	77
	Iodomethane	2.522	142	129667	47.4898	ug/l	99
	Acetone	2.424	43	67568	217.1610	ug/l	98
20)	Carbon Disulfide	2.581	. 76	309476	47.7325	ug/l	100
	t-Butyl Alcohol	2.817	59	19146	344.5574	ug/l	77
22)	n-Hexane	3.181	. 57	136708	63.1589	ug/1	74
23)	Di-isopropyl-ether	3.329	45	334593	57.7162	ug/l	99
	1,1-Dichloroethene	2.404	61	167992	49.7569	ug/l	98
25)	Methyl Acetate	2.670	43	54704	62.2359	ug/l	100
26)	Methyl-t-butyl ether	2.965	73	183677	61.4767	ug/1	67
27)	1,1-Dichloroethane	3.280	63	184289	49.0902	ug/l	96
28)	trans-1,2-Dichloroethene	2.965		109237	53.5765	ug/l	80
29)	cis-1,2-Dichloroethene	3.742	61	183741	49.7108	ug/l	85
30)	Bromochloromethane	3.919			47.9435	ug/l	72
31)	2,2-Dichloropropane	3.752			50.4732	ug/l	91
	Ethyl acetate	3.781				ug/l	96
	1,4-Dioxane	4.962				ug/l	86
	1,1-Dichloropropene	4.224				ug/l	98
	Chloroform	3.968			49.8125	ug/l	87 94
	Cyclohexane	4.175			62.6558	ug/l	98
•	1,2-Dichloroethane	4.362		127633	47.3041	ug/l ug/l	90
40)	2-Butanone	3.742		22270	48.9925 52.2660	ug/l	97
	1,1,1-Trichloroethane	4.116		199593 175346	52.4385	ug/l	93
	Carbon Tetrachloride	4.234		209557	41.2250	ug/1	100
•	Vinyl Acetate	4.529		244134	2106.5623	ug/l	99
	Heptane	5.050		151475	49.4813	ug/l	95
	Bromodichloromethane	4.893		186374	62.9847	ug/l	98
	Methylcyclohexane Dibromomethane	4.962		64455	48.6498	ug/l	94
	1,2-Dichloropropane	4.883		108269	53.2862	ug/l	90
	Trichloroethene	4.755		127711	51.2794	ug/l	95
	Benzene	4.362		404564	50.7556	ug/l	100
	tert-Amyl methyl ether	4.431		201397	52.7237	ug/l	81
	Iso-propylacetate	4.381		104917	49.6216	ug/l	87
	Methyl methacrylate	4.942		65756	53.9157	ug/l	87
	Dibromochloromethane	5.995		103164	52.5466	ug/l	98
	2-Chloroethylvinylether	5.218		43028	54.2331	ug/l	87
	cis-1,3-Dichloropropene	5.316		159391	52.7601	ug/l	94
	trans-1,3-Dichloropropene	5.631		121680	49.4490	ug/l	98
	Ethyl methacrylate	5.670		72113	51.3721	ug/l	67
60)	1,1,2-Trichloroethane	5.749		75552	53.8415	ug/l	90
	1,2-Dibromoethane	6.074			48.8079	ug/l	88
	1,3-Dichloropropane	5.857			52.9592	ug/l	97
	4-Methyl-2-Pentanone	5.395		60257	49.9444	ug/l	85
	2-Hexanone	5.887			57.5137	ug/l	83
	Tetrachloroethene	5.867	7 164	120032	51.9082	ug/l	98
67)	- 1	5.523	92	289297	48.9454	ug/l	97
,		/					

SampleID : CAL @ 50 PPB Data File: 1M68116.D Acq On : 05/12/11 10:58 Operator : WP Sam Mult : 1 Vial# : 9 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

	Compound	R.T.	QIon	Response	Conc Units	Dev (M	in)
68)	1,1,1,2-Tetrachloroethane	6.408	133	110748	53.8738	ug/1	78
69)	Chlorobenzene	6.369	112	309077	51.5180	ug/l	95
71)	n-Butyl acrylate	6.654	55	133920	64.1686	ug/l	95
72)	n-Amyl acetate	6.782	43	113653	57.7110	ug/l	79
73)	Bromoform	6.861	173	61542	60.0874	ug/l	93
74)	Ethylbenzene	6.418	106	136128	66.6976	ug/l	92
75)		7.097	83	79464	56.5839	ug/l	91
77)	Styrene	6.733	104	316755	64.9227	ug/l	100
78)	m&p-Xylenes	6.487	106	409621	125.1577	ug/l	88
79)	o-Xylene	6.723	106	197928	65.2963	ug/l	80
80)	trans-1,4-Dichloro-2-b	7.126	53	58287	62.5199	ug/l	98
81)	1,3-Dichlorobenzene	7.726	146	224768	55.4366	ug/l	87
82)	1,4-Dichlorobenzene	7.776	146	205779	50.0893	ug/l	95
83)	1,2-Dichlorobenzene	8.021	146	189027	50.1442	ug/l	91
84)	Isopropylbenzene	6.939	105	525619	61.9663	ug/l	93
	Cyclohexanone	7.008	55	9697	243.5768	ug/l	98
86)	Camphene	7.126	93	236264	67.2956	ug/l	99
87)	1,2,3-Trichloropropane	7.136	75	105938	61.5703	ug/l	88
88)	2-Chlorotoluene	7.264	91	303308	58.7968	ug/l	96
89)	p-Ethyltoluene	7.254	105	660502	61.8267	ug/l	84
90)	4-Chlorotoluene	7.323	91	326318	66.0182	ug/l	93
91)	n-Propylbenzene	7.185	91	680303	64.0559	ug/l	95
92)	Bromobenzene	7.146	77	331686	61.4433	ug/l	84
93)	1,3,5-Trimethylbenzene	7.284	105	431893	64.6351	ug/l	94
94)	Butyl methacrylate	7.303	41	157229	59.5709	ug/l	64
95)	t-Butylbenzene	7.500	119	399416	56.6736	ug/l	83
96)	1,2,4-Trimethylbenzene	7.530	105	414006	57.3610	ug/l	87
97)	sec-Butylbenzene	7.638	105	516379	56.4440	ug/l	99
98)	4-Isopropyltoluene	7.716	119	437087	58.9538	ug/l	92
99)	n-Butylbenzene	7.972	91	520742	57.0656	ug/l	96
100)	p-Diethylbenzene	7.953	119	240749	50.5136	ug/l	91
101)	1,2,4,5-Tetramethylben	8.454	119	397448	52.3049	ug/l	95
102)	1,2-Dibromo-3-Chloropr	8.504	157	13603	58.6303	ug/l	69
103)		8.986	95	55561	712.6141	ug/l	88
	Hexachlorobutadiene	9.153	225	154930	57.8717	ug/l	96
	1,2,4-Trichlorobenzene	9.054	180	172879	62.6921	ug/1	96
	1,2,3-Trichlorobenzene	9.379		151494	61.5189	ug/1	97
107)	Naphthalene	9.222	128	232970	70.4865	ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:49:38 2011 SYSTEM1


SampleID : CAL @ 100 PPB Data File: 1M68115.D Acq On : 05/12/11 10:42 Operator : WP Sam Mult : 1 Vial# : 8 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
				- -			
	rnal Standards						
-	Fluorobenzene	4.529		150062			.00
	Chlorobenzene-d5	6.349		109308	30.00 ug/		.01
70)	1,4-Dichlorobenzene-d4	7.766	152	65621	30.00 ug/	1 0	.00
Cust	em Monitoring Compounds						
	Dibromofluoromethane	4.077	111	42805	30.27 ug/	/1 0	.00
	iked Amount 30.000	1.077				.90%	
-	1,2-Dichloroethane-d4	4.313	67	21489	31.90 ug/		.00
	iked Amount 30.000				ery = 106		
	Toluene-d8	5.484	98	169679	-		.01
Sp	iked Amount 30.000			Recov	ery = 120	17%	
76)	Bromofluorobenzene	7.048	174	56761	•		.01
Sp	iked Amount 30.000			Recov	ery = 102	2.13%	
_							
	et Compounds	1 250	F-1	272216	100 (171		value
	Chlorodifluoromethane	1.359		373216	120.6171	ug/l	77 88
,	Dichlorodifluoromethane Chloromethane	1.342		287091 227145	102.8010 98.8699	ug/l ug/l	81
	Bromomethane	1.778		112068	101.2997	ug/1	89
-	Vinyl Chloride	1.543		214152	113.1995	ug/l	97
	Chloroethane	1.845		103529		ug/l	90
- ,	Trichlorofluoromethane	2.030		372462	109.8201	ug/l	85
-	Ethyl ether	2.227		125368		ug/l	82
	Furan	2.257		434378	87.4677	ug/l	96
	1,1,2-Trichloro-1,2,2			199742	123.6743	ug/l	96
	Methylene Chloride	2.739	84	198664	93.9412	ug/l	94
16)	Acrolein	2.316	56	86223	730.8347	ug/l	97
17)	Acrylonitrile	2,906	53	41534	160.0705	ug/l	99
18)	Iodomethane	2.513	142	276873	101.5390	ug/l	98
19)	Acetone	2.424		142496		ug/l	85
-	Carbon Disulfide	2.572		634748	98.0324	ug/l	100
	t-Butyl Alcohol	2.798		35667		ug/l	91
	n-Hexane	3.172		290026	134.1710	ug/l	71
	Di-isopropyl-ether	3.329		656831	113.4529	ug/l	99
	1,1-Dichloroethene	2.404		348885	103.4734	ug/l	98
	Methyl Acetate	2.660		116965	133.2475	ug/l	100 67
	Methyl-t-butyl ether	2.955		373791	125.2754 99.7979	ug/l ug/l	98
	1,1-Dichloroethane	3.270 2.955		374149 216570		ug/1	99
	trans-1,2-Dichloroethene cis-1,2-Dichloroethene	3.742		390407		ug/l	90
	Bromochloromethane	3.920		157663	98.4898	ug/l	89
	2,2-Dichloropropane	3.742		331380		ug/1	95
	Ethyl acetate	3.782		112359	108.7950	ug/l	98
	1,4-Dioxane	4.962		65830		ug/l	77
-	1,1-Dichloropropene	4.224		330163	106.2598	ug/l	95
	Chloroform	3.969	83	403251	101.1768	ug/l	89
37)	Cyclohexane	4.165	56	365224	122.5567	ug/l	96
39)	1,2-Dichloroethane	4.352	62	272605	101.1698	ug/l	95
40)	2-Butanone	3.742	43	45952	101.2266	ug/l	99
	1,1,1-Trichloroethane	4.116	97	409079	107.2661	ug/l	98
	Carbon Tetrachloride	4.234	117	350760	105.0378	ug/l	93
	Vinyl Acetate	3.329		420120	82.7587	ug/l	100
	Heptane	4.520		469145	4053.5399	ug/l	98 93
	Bromodichloromethane	5.041	83 83	307689 369473	100.6453 125.0299	ug/l ug/l	95
46)	Methylcyclohexane Dibromomethane	4.884 4.962	174	136414	103.1014	ug/l	92
48)		4.884	63	209340	103.1679	ug/l	88
49)		4.756	130	264223	106.2347	ug/l	93
	Benzene	4,362	78	817266	102.6696	ug/1	100
	tert-Amyl methyl ether	4.421	73	412232	108.0627	ug/l	81
53)		4.372	43	225079	120.9341	ug/l	86
	Methyl methacrylate	4.933	41	140325	130.7085	ug/l	90
	Dibromochloromethane	5.995		211316	122.2750	ug/l	94
	2-Chloroethylvinylether	5.218		87215	124.8802	ug/l	85
	cis-1,3-Dichloropropene	5.317		327413	123.1195	ug/l	92
	trans-1,3-Dichloropropene	5.631		271929	125.5402	ug/l	98
59)	Ethyl methacrylate	5.671	41	156710	126.8234	ug/l	66
	1,1,2-Trichloroethane	5.749		148414	120.1531	ug/l	90
	1,2-Dibromoethane	6.074		145470	115.2501	ug/l	90
62)		5.848	76	264745	119.7883	ug/1	97
	4-Methyl-2-Pentanone	5.395	43	131051	123.3982	ug/l	95
	2-Hexanone	5.887		86396	136.2739	ug/l	84
	Tetrachloroethene	5.867		232077	114.0145	ug/l	96 97
67)	Toluene	5.523	92	565008	108.5955	ug/l	31
	U						

SampleID : CAL @ 100 PPB Data File: 1M68115.D Acq On : 05/12/11 10:42 Operator : WP Sam Mult : 1 Vial# : 8 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31 Misc

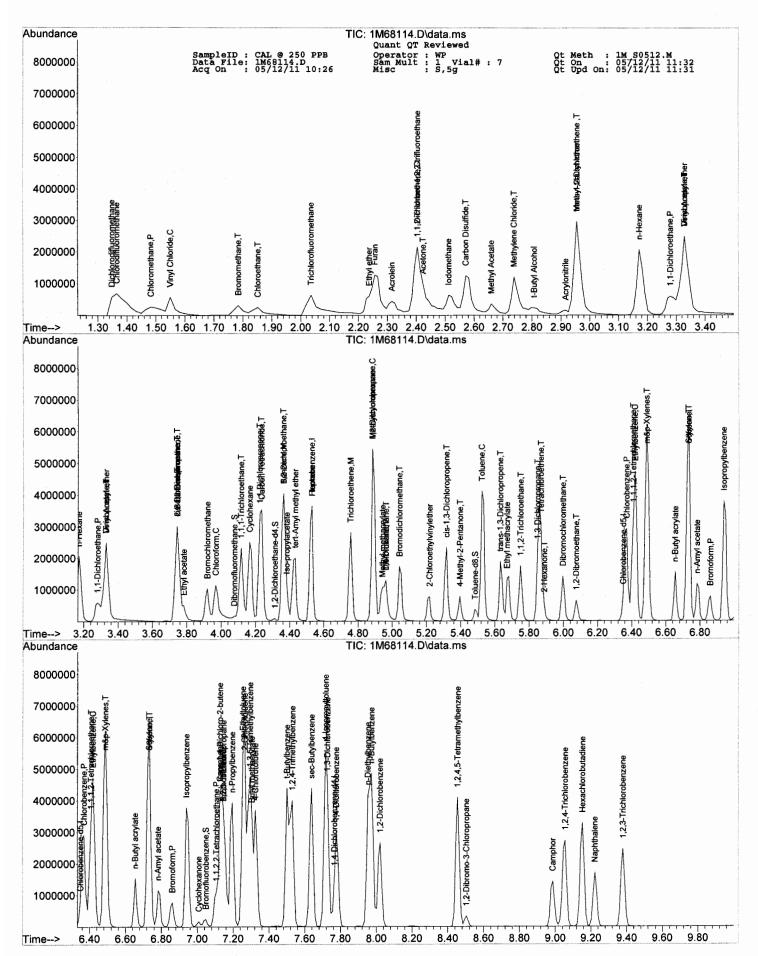
	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	1,1,1,2-Tetrachloroethane	6.409	133	186383	103.0000	ug/l	- 78
69)	Chlorobenzene	6.369	112	512860	97.1136	ug/l	95
71)	n-Butyl acrylate	6.654	55	248081	112.9370	ug/l	94
72)	n-Amyl acetate	6.782	43	216060	104.2361	ug/l	86
73)	Bromoform	6.861	173	114093	105.8368	ug/l	91
74)	Ethylbenzene	6.418	106	218560	101.7418	ug/l	92
75)	1,1,2,2-Tetrachloroethane	7.107	83	147045	99.4806	ug/l	96
77)	Styrene	6.733	104	533913	103.9703	ug/l	99
78)	m&p-Xylenes	6.487	106	664565	192.9206	ug/l	87
79)	o-Xylene	6.723	106	331299	103.8407	ug/l	78
80)	trans-1,4-Dichloro-2-b	7.127	53	100846	102.7711	ug/l	97
81)	1,3-Dichlorobenzene	7.727	146	441692	103.5017	ug/l	89
82)	1,4-Dichlorobenzene	7.776	146	436772	101.0099	ug/l	94
83)	1,2-Dichlorobenzene	8.022	146	408877	103.0518	ug/l	91
84)	Isopropylbenzene	6.940	105	891703	99.8781	ug/l	94
85)	Cyclohexanone	7.009	55	20129	480.3816	ug/l	91
86)	Camphene	7.127	93	399386	108.0806	ug/l	98
87)	1,2,3-Trichloropropane	7.137	75	177233	97.8656	ug/l	88
88)	2-Chlorotoluene	7.264	91	519834	95.7415	ug/l	98
89)	p-Ethyltoluene	7.255	105	1035250	92.0688	ug/l #	35
90)	4-Chlorotoluene	7.323	91	561262	107.8833	ug/l	94
91)	n-Propylbenzene	7.196	91	1161749	103.9286	ug/l	96
92)	Bromobenzene	7.146	77	572934	100.8365	ug/l	83
93)	1,3,5-Trimethylbenzene	7.294	105	744864	105.9095	ug/l	47
94)	Butyl methacrylate	7.304	41	270964	97.5392	ug/l	60
95)	t-Butylbenzene	7.501	119	829044	111.7631	ug/l	82
96)	1,2,4-Trimethylbenzene	7.530	105	836559	110.1216	ug/l	84
97)	sec-Butylbenzene	7.638	105	1080315	112.1929	ug/l	99
98)	4-Isopropyltoluene	7.717	119	883391	113.2043	ug/l	92
99)	n-Butylbenzene	7.973	91	1057634	110.1166	ug/l	95
100)	p-Diethylbenzene	7.953	119	507900	101.2484	ug/l	91
101)	1,2,4,5-Tetramethylben	8.455	119	842076	105.2881	ug/l	93
102)	1,2-Dibromo-3-Chloropr	8.504	157	30851	126.3346	ug/l	74
103)	Camphor	8.986	95	130232	1586.9668	ug/l	89
104)	Hexachlorobutadiene	9.153	225	330812	117.4026	ug/l	96
105)	1,2,4-Trichlorobenzene	9.055	180	367147	126.4958	ug/l	97
106)	1,2,3-Trichlorobenzene	9.380	180	319107	123.1163	ug/l	97
107)	Naphthalene	9.222	128	493969	141.9945	ug/l	100
							-

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:49:43 2011 SYSTEM1

SampleID : CAL @ 250 PPB Data File: 1M68114.D Acq On : 05/12/11 10:26

Operator : WP Sam Mult : 1 Vial# : 7 Misc : S,5g Misc


Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

Resp via . Initial caristat						
Compound	R.T.	QIon	Response	Conc Unit	s Dev(Mi	n)
Internal Standards					(3	
4) Fluorobenzene	4.529		136513			
52) Chlorobenzene-d5	6.349	117	112693 64420	30.00 ug		
70) 1,4-Dichlorobenzene-d4	7.766	152	64420	30.00 ug	/1 0.	00
System Monitoring Compounds	4.077	111	42250	32.84 ug	/1 0.	0.0
36) Dibromofluoromethane Spiked Amount 30.000	4.077	111			9.47%	
Spiked Amount 30.000 38) 1,2-Dichloroethane-d4	4.313	67	20546	33.53 ug		00
Spiked Amount 30.000	4.515	0,	Recove		1.77%	
66) Toluene-d8	5.484	98	174375	35.93 ug		01
Spiked Amount 30.000	5.101	,			9.77%	
76) Bromofluorobenzene	7.048	174		31.82 ug		01
Spiked Amount 30.000	,,,,,			ery = 10		
DP11104 141104111				-		
Target Compounds					Qv	alue
5) Chlorodifluoromethane	1.365	51	951670	338.0895	ug/l	71
6) Dichlorodifluoromethan	e 1.349	85	769287		ug/l	87
7) Chloromethane	1.483	50	598306	286.2733		79
8) Bromomethane	1.785	94	264117	262.4336	ug/l	84
Vinyl Chloride	1.550	62	535196	310.9798	ug/l	95
10) Chloroethane	1.852	64	254287	240.5469	ug/l	93
 Trichlorofluoromethane 			957802		ug/l	87
12) Ethyl ether	2.237		306880	262.2497	ug/l	92
13) Furan	2.257		1074632		ug/1	99
14) 1,1,2-Trichloro-1,2,2-			451893	307.5688	ug/l	96
15) Methylene Chloride	2.739		504977	262.4853		92 98
16) Acrolein	2.316		228106	2125.3451		99
17) Acrylonitrile	2.916		108760	460.7585		97
18) Iodomethane	2.513		645129	260.0731 1275.8649		94
19) Acetone	2.424		360650	275.8094		100
20) Carbon Disulfide	2.572		1624591	2122.6882		84
21) t-Butyl Alcohol	2.808		107158 721882	367.1002		71
22) n-Hexane	3.172		1672923	317.6397		98
23) Di-isopropyl-ether	3.329		774191	252.4010		96
24) 1,1-Dichloroethene	2.404				,-	100
25) Methyl Acetate	2.660 2.955		306833 936715	345.0971		67
26) Methyl-t-butyl ether	3.280			237.9298		95
27) 1,1-Dichloroethane			533644	288.0940		99
28) trans-1,2-Dichloroethe				277.8805		86
30) Bromochloromethane	3.920			258.3731		84
31) 2,2-Dichloropropane				277.6127		94
32) Ethyl acetate	3.782			321.0583		97
33) 1,4-Dioxane	4.962			21021.745	7 ug/l	76
34) 1,1-Dichloropropene	4.224		770056	272.4330		94
35) Chloroform	3.969		976817	269.4112	ug/l	88
37) Cyclohexane	4.165		923214	340.5468		95
39) 1,2-Dichloroethane	4.362	62	628335	256.3333	ug/l	98
40) 2-Butanone	3.742	43		271.2556	ug/l	93
41) 1,1,1-Trichloroethane	4.116	97		290.0749	ug/l	99
42) Carbon Tetrachloride	4.234	117		275.9818	ug/l	96
43) Vinyl Acetate	3.329			236.8720	ug/l	100
44) Heptane	4.529		1094477	10395.149		97
45) Bromodichloromethane	5.041		789397	283.8401	ug/l	95 97
46) Methylcyclohexane	4.884		873292	324.8534	ug/l	94
47) Dibromomethane	4.962			272.2303	ug/l	88
48) 1,2-Dichloropropane	4.884			274.0054	ug/l ug/l	95
49) Trichloroethene	4.756			282.1582	ug/1	100
50) Benzene	4.362			269.3859 303.4188	ug/l	80
51) tert-Amyl methyl ethe	r 4.431			303.4166	ug/l	90
53) Iso-propylacetate	4.382			311.5039	ug/l	85
54) Methyl methacrylate	4.943 5.995			303.7766	ug/1	96
55) Dibromochloromethane				340.5157	ug/l	88
56) 2-Chloroethylvinyleth	ne 5.316			309.4443	ug/l	93
57) cis-1,3-Dichloroprope 58) trans-1,3-Dichloropro	pene 5.633			324.1208	ug/l	99
	5.67			328.9138	ug/1	69
59) Ethyl methacrylate 60) 1,1,2-Trichloroethane				293.4018		91
61) 1,2-Trichloroethane	6.07			251.5002		89
62) 1,3-Dichloropropane	5.848			272.8644		100
63) 4-Methyl-2-Pentanone	5.39			306.2147		86
64) 2-Hexanone	5.88			347.3894		93
65) Tetrachloroethene	5.86			249.2983	ug/l	97
67) Toluene	5.52			254.7569	ug/l	100
	۱ ۲					

SampleID : CAL @ 250 PPB Data File: 1M68114.D Acq On : 05/12/11 10:26 Operator : WP Sam Mult : 1 Vial# : 7 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	L) -
68)	1,1,1,2-Tetrachloroethane	6.409	133	441142	236.4636	ug/l	- 79
69)	Chlorobenzene	6.369	112	1264471	232.2444	ug/l	96
71)	n-Butyl acrylate	6.654	55	662718	307.3220	ug/l	96
72)	n-Amyl acetate	6.782	43	555895	273.1861	ug/l	84
73)	Bromoform	6.861	173	300219	283.6861	ug/l	93
74)	Ethylbenzene	6.418	106	464384	220.2055	uq/l	86
75)	1,1,2,2-Tetrachloroethane	7.107	83	376950	259.7730	ug/l	96
77)	Styrene	6.733	104	1160797	230.2592	ug/l	98
78)	m&p-Xylenes	6.487	106	1418054	419.3301	ug/l	82
79)	o-Xylene	6.733	106	715738	228.5197	ug/l	77
80)	trans-1,4-Dichloro-2-b	7.127	53	234912	243.8596	ug/l	96
81)	1,3-Dichlorobenzene	7.727	146	945711	225.7401	ug/l	90
82)	1,4-Dichlorobenzene	7.776	146	1018941	240.0383	ug/l	95
83)	1,2-Dichlorobenzene	8.022	146	956042	245.4495	ug/l	92
84)	Isopropylbenzene	6.940	105	2077849	237.0752	ug/l	95
85)	Cyclohexanone	7.009	55	52122	1267.0898	ug/l	93
86)	Camphene	7.127	93	897018	247.2739	ug/l	98
87)	1,2,3-Trichloropropane	7.146	75	424337	238.6813	ug/l	86
88)	2-Chlorotoluene	7.264	91	1098882	206.1620	ug/l	96
89)	p-Ethyltoluene	7.255	105	2168490	196.4477	ug/l	59
90)	4-Chlorotoluene	7.323	91	1218268	238.5359	ug/l	95
91)	n-Propylbenzene	7.196	91	2582020	235.2906	ug/l	94
92)	Bromobenzene	7.146	77	1326957	237.8986	ug/l	83
93)	1,3,5-Trimethylbenzene	7.294	105	1632427	236.4360	ug/l	46
94)	Butyl methacrylate	7.304	41	644101	236.1803	ug/l	60
95)	t-Butylbenzene	7.501	119	1821083	250.0764	ug/l	85
96)	1,2,4-Trimethylbenzene	7.530	105	1862515	249.7456	ug/l	84
97)	sec-Butylbenzene	7.638	105	2416560	255.6435	ug/l	98
98)	4-Isopropyltoluene	7.717	119	1864380	243.3697	ug/l	93
99)	n-Butylbenzene	7.973	91	2318238	245.8656	ug/l	95
	p-Diethylbenzene	7.953	119	1122423	227.9232	ug/l	92
101)	1,2,4,5-Tetramethylben	8.455	119	1933582	246.2707	ug/l	93
102)	1,2-Dibromo-3-Chloropr	8.504	157	80596	336.1931	ug/l	72
103)	Camphor	8.986	95	324326	4025.8169	ug/l	90
	Hexachlorobutadiene	9.153	225	692970	250.5145	ug/l	95
	1,2,4-Trichlorobenzene	9.055	180	829164	291.0037	ug/l	97
	1,2,3-Trichlorobenzene	9.380	180	728070	286.1373	ug/l	97
107)	Naphthalene	9.222	128	1170446	342.7247	ug/l	100
							-

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:49:48 2011 SYSTEM1

Page: 1

SampleID : CAL @ 500 PPB Data File: 1M68113.D Acq On : 05/12/11 10:10 Operator : WP Sam Mult : 1 Vial# : 6

: S,5g

Misc

Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-12-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Resp Via : Initial Calibration	.5_1 \1.10011	ouge (
Compound	R.T.	QIon	Response	Conc Units	Dev (Mi	n)
Internal Standards						
4) Fluorobenzene	4.529	96	107854	30.00 ug/	1 0.	00
52) Chlorobenzene-d5	6.350	117	108893	30.00 ug/		
4) Fluorobenzene 52) Chlorobenzene-d5 70) 1,4-Dichlorobenzene-d4	7.766	152	66692	30.00 ug/		00
System Monitoring Compounds	4 007	111	20000	27 47 119/	1 0.	00
36) Dibromofluoromethane Spiked Amount 30.000	4.087	111	38089 Recove	-	.90%	00
38) 1,2-Dichloroethane-d4	4.313	67		37.68 ug/		00
Spiked Amount 30.000	1.515	0,		ery = 125		• •
66) Toluene-d8	5.494	98	145273	30.98 ug/	1 0.	00
Spiked Amount 30.000			Recove	ery = 103	.27%	
76) Bromofluorobenzene	7.048	174	59460	31.58 ug/	1 -0.	01
Spiked Amount 30.000			Recove	ery = 105	.27%	
					0.11	
Target Compounds	1 261	- 1	1552272	697 9932	ug/l	alue 80
5) Chlorodifluoromethane6) Dichlorodifluoromethane	1.361 1.361	51 85	1552273 1156969	697.9932 576.4135	ug/l ug/l	92
7) Chloromethane	1.478	50	970765			81
8) Bromomethane	1.780		445706	FC0 C440	ug/1	92
9) Vinyl Chloride	1.545	62	871311	640.8114	ug/l	95
10) Chloroethane	1.847	64	428980	513.6301	ug/l	91
11) Trichlorofluoromethane	2.031	101	1540114	631.8112	ug/l	83
12) Ethyl ether	2.237	59	530647	500.6442 640.8114 513.6301 631.8112 573.9709 480.7607 661.3605 525.1192	ug/l	80
13) Furan	2.267	39	1715989	480.7607	ug/l	97
14) 1.1.2-Trichloro-1,2,2	2.405	101	767704	661.3605	ug/l	97
15) Methylene Chloride 16) Acrolein	2.749	84	798154	525.1192	ug/l	91
16) Acrolein	2.326	56	333463	4233.2313	ug/±	97
17) Acrylonitrile	2.916	53	160654	861.4567	ug/l	98
18) Iodomethane	2.523		1081427	551.8027	ug/l	87 94
19) Acetone	2.424	43		2386.4478 564.2354		100
20) Carbon Disulfide 21) t-Butyl Alcohol	2.582 2.818			3996.2464		88
	3.182		1141407	734.6774	ug/l	71
22) n-Hexane	3.329	45	2560489	615.3462	ug/l	99
23) Di-isopropyl-ether24) 1,1-Dichloroethene	3.329 2.405	61	1278345	527.5078	ug/l	99
25) Methyl Acetate	2.670		485573	769.6478	ug/l	100
26) Methyl-t-butyl ether			1460452	681.0184 553.0197	ug/l	67
27) 1,1-Dichloroethane	3.280	63	1490147	553.0197	ug/l	98
28) trans-1,2-Dichloroethene	2.965			553.5158	ug/l	79
29) cis-1,2-Dichloroethene	3.742		1458513	549.7572		90
30) Bromochloromethane 31) 2,2-Dichloropropane 32) Ethyl acetate	3.920					74 92
31) 2,2-Dichloropropane	3.752	77	1208453	530.7012 623.6536	ug/l ug/l	97
32) Ethyl acetate	3.782	9.0	241939	37357.4073	119/1	
33) 1,4-Dioxane	4.972	75	1160260	37357.4073 519.5537	ug/l	97
34) 1,1-Dichloropropene 35) Chloroform	3.969	83	1610104	562.0747	ug/l	88
37) Cyclohexane	4.175	56	1412344	659.4057	ug/l	94
39) 1,2-Dichloroethane	4.362		991476	511.9573	ug/l	93
40) 2-Butanone	3.742	43	177887	545.2166	ug/l	96
41) 1,1,1-Trichloroethane	4.116	97	1587198	579.0564	ug/l	100
42) Carbon Tetrachloride	4.244	117	1238579	516.0524	ug/l	93
43) Vinyl Acetate	3.329	43	1743886	477.9613	ug/l	100
44) Heptane	4.529	43	1723790	20722.6930	ug/l	99 96
45) Bromodichloromethane	5.051	83	1253629 1271321	570.5387 598.5781	ug/l ug/l	96 95
46) Methylcyclohexane	4.894	83		564.8418	ug/l	95
47) Dibromomethane	4.962 4.894	174 63	537139 744676	510.6155	ug/l	89
48) 1,2-Dichloropropane	4.854	130	935085	523.0957	ug/l	89
<pre>49) Trichloroethene 50) Benzene</pre>	4.750	78	2770261	484.2097	ug/l	100
51) tert-Amyl methyl ether	4.431	73	1620815	591.1562	ug/l	80
53) Iso-propylacetate	4.382	43	873844	471.3024	ug/l	91
54) Methyl methacrylate	4.943	41	548127	512.5097	ug/l	85
55) Dibromochloromethane	5.995	129	881644	512.0951	ug/l	96
56) 2-Chloroethylvinylether	5.218	63	416425	598.5372	ug/l	79
57) cis-1,3-Dichloropropene	5.317	75	1357712	512.4960	ug/l	93
58) trans-1,3-Dichloropropene		75	1191129	551.9987	ug/l	98
59) Ethyl methacrylate	5.681	41	657924	534.4787	ug/l	68 92
60) 1,1,2-Trichloroethane	5.749	97	597951 606073	485.9345 481.9975	ug/l ug/l	88
61) 1,2-Dibromoethane	6.084	107 76	606073 977709	444.0666	ug/l	98
62) 1,3-Dichloropropane 63) 4-Methyl-2-Pentanone	5.858 5.395	43		521.8128	ug/l	91
BAL A-MELOVI-Z-PEDEAUCHE			2220,0		-3/-	

43 43

367768

783718

92 2020183

582.2975

386.4915 389.7623

ug/l

ug/l

ug/l

90

94

98

5.395

5.887

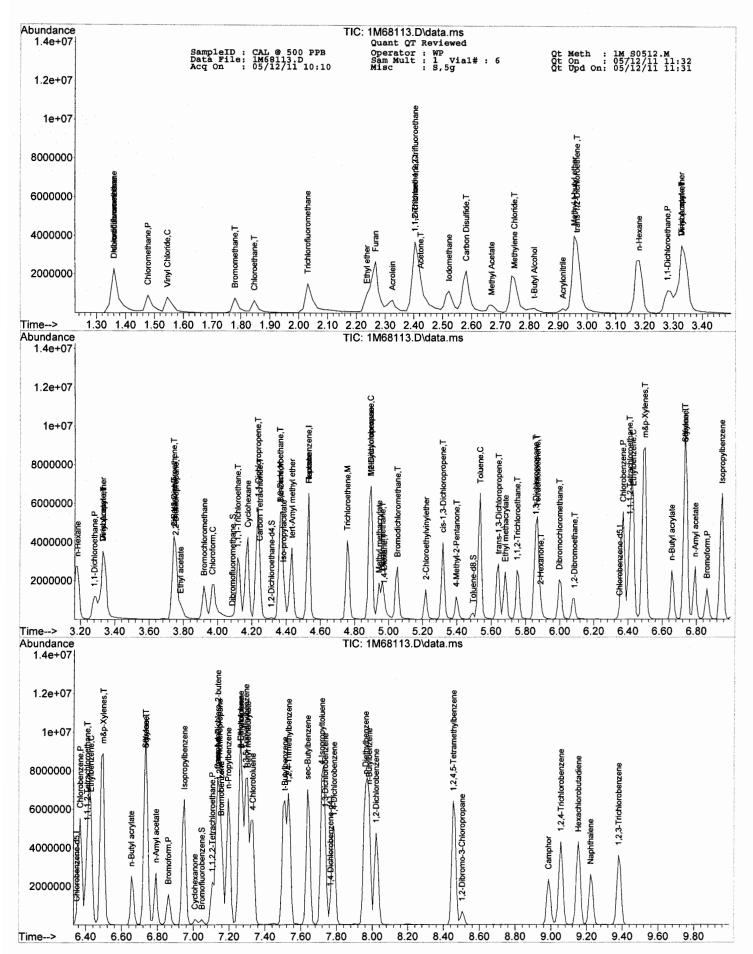
5.533

5.867 164

63) 4-Methyl-2-Pentanone 64) 2-Hexanone 65) Tetrachloroethene 67) Toluene

 SampleID: CAL @ 500 PPB
 Operator: WP
 Qt Meth: 1M_S0512.M

 Data File: 1M68113.D
 Sam Mult: 1 Vial#: 6
 Qt On: 05/12/11 11:32


 Acq On: 05/12/11 10:10
 Misc: S,5g
 Qt Upd On: 05/12/11 11:31

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-12-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

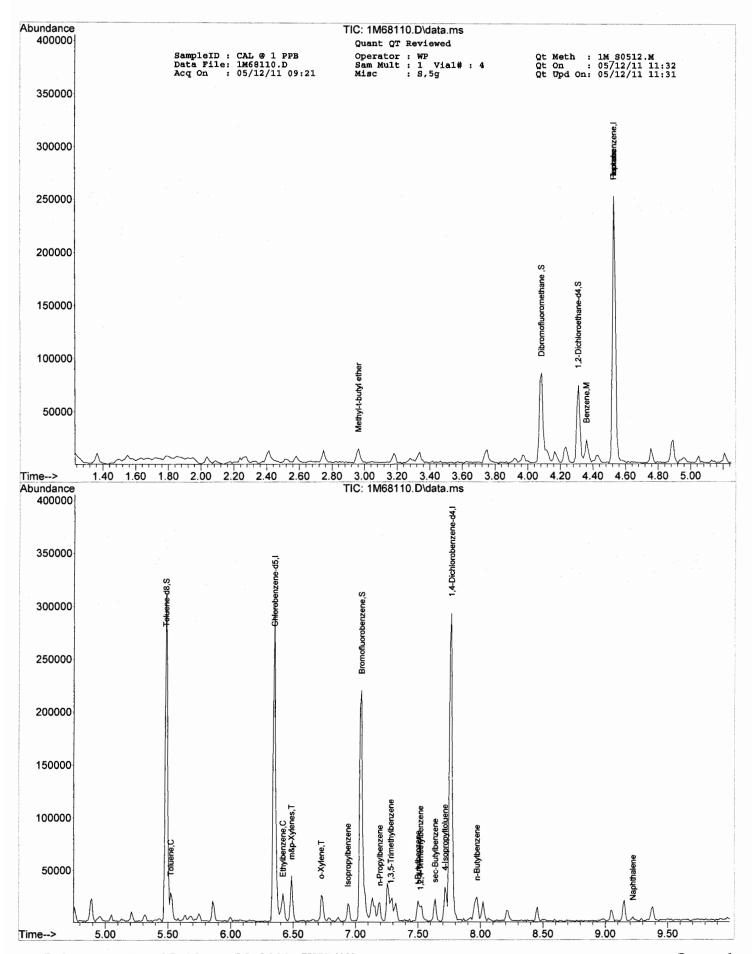
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	1,1,1,2-Tetrachloroethane	6.409	133	788269	437.2777	ug/l	80
69)	Chlorobenzene	6.369	112	2258186	429.2329	ug/l	90
71)	n-Butyl acrylate	6.654	55	1232475	552.0647	ug/l	94
72)	n-Amyl acetate	6.792	43	1074048	509.8431	ug/l	84
73)	Bromoform	6.861	173	593511	541.7209	ug/l	92
74)	Ethylbenzene	6.428	106	801728	367.2188	ug/l	69
75)	1,1,2,2-Tetrachloroethane	7.107	83	716450	476.9174	ug/l	95
77)	Styrene	6.733	104	1870950	358.4841	ug/l	92
78)	m&p-Xylenes	6.497	106	2237173	639.0132	ug/l	79
79)	o-Xylene	6.733	106	1138614	351.1503	ug/l	72
80)	trans-1,4-Dichloro-2-b	7.137	53	411220	412.3403	ug/l	93
81)	1,3-Dichlorobenzene	7.737	146	1535682	354.0776	ug/l	92
82)	1,4-Dichlorobenzene	7.786	146	1859503	423.1314	ug/l	94
83)	1,2-Dichlorobenzene	8.022	146	1751290	434.3004	ug/l	91
84)	Isopropylbenzene	6.950	105	3561477	392.5086	ug/l	93
85)	Cyclohexanone	7.009	55	95702	2247.2651	ug/l	92
86)	Camphene	7.137	93	1487752	396.1454	ug/l	98
87)	1,2,3-Trichloropropane	7.146	75	719576	390.9590	ug/l	85
88)	2-Chlorotoluene	7.264	91	1460099	264.5981	ug/l	92
89)	p-Ethyltoluene	7.264	105	3920110	343.0321	ug/l	69
90)	4-Chlorotoluene	7.333	91	1767527	334.2904	ug/l	91
91)	n-Propylbenzene	7.196	91	4291192	377.7199	ug/l	91
92)	Bromobenzene	7.156	77	2182704	377.9870	ug/l	85
93)	1,3,5-Trimethylbenzene	7.294	105	2175928	304.4187	ug/l #	18
94)	Butyl methacrylate	7.304	41	1137309	402.8238	ug/l	62
95)	t-Butylbenzene	7.510	119	3008234	399.0264	ug/l	88
96)	1,2,4-Trimethylbenzene	7.530	105	3125509	404.8235	ug/l	83
97)	sec-Butylbenzene	7.638	105	4117636	420.7578	ug/l	99
98)	4-Isopropyltoluene	7.717	119	2917944	367.9221	ug/l	95
99)	n-Butylbenzene	7.983	91	3756548	384.8359	ug/l	97
100)	p-Diethylbenzene	7.963	119	1918433	376.2926	ug/l	93
101)	1,2,4,5-Tetramethylben	8.455	119	3273074	402.6734	ug/l	90
102)	1,2-Dibromo-3-Chloropr	8.504	157	158733	639.5720	ug/l	79
103)	Camphor	8.986	95	534469	6408.2841	ug/l	87
104)	Hexachlorobutadiene	9.153	225	778425	271.8205	ug/l	92
105)		9.055	180		405.8772	ug/l	96
106)	1,2,3-Trichlorobenzene	9.380	180	1075372	408.2320	ug/l	95
107)	Naphthalene	9.222	128	1840818	520.6571	ug/l	100
							-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:49:52 2011 SYSTEM1

Operator : WP Sam Mult : 1 Vial# : 4 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31


кезр	Via : Initial Calibration						
	Compound	R.T.	QIon	Response	Conc Units	Dev (Mi	in)
Inte	rnal Standards	4 520	96	124919	30 00 110/1	0	0.0
52)	Chlorobenzene-d5	6.349	117	118742	30.00 ug/3	-0.	.01
70)	Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4	7.765	152	74498	30.00 ug/1	. 0	.00
	•						
	em Monitoring Compounds				22 55 /3		
		4.086	111	39124	30.77 ug/3	L 0.	.00
	iked Amount 30.000 1,2-Dichloroethane-d4	4 312	67	18048	ry = 102. 29.80 ug/l	0.	.00
	iked Amount 30.000	4.512	0 /	Recove	ry = 99	.33%	
66)	Toluene-d8	5.483	98	148936	29.13 ug/	L -0	.01
	Toluene-d8 iked Amount 30.000			Recove	ry = 97	.10%	
76)	Bromofluorobenzene	7.047	174	60179	28.61 ug/1		.01
_	iked Amount 30.000				ry = 95	. 3 / 16	
Targ	et Compounds Chlorodifluoromethane Dichlorodifluoromethane Chloromethane Bromomethane Vinyl Chloride Chloroethane Trichlorofluoromethane Ethyl ether Furan 1,1,2-Trichloro-1,2,2 Methylene Chloride Acrolein Acrylonitrile Iodomethane Carbon Disulfide t-Butyl Alcohol n-Hexane Di-isopropyl-ether 1,1-Dichloroethene Methyl Acetate Methyl-t-butyl ether 1,1-Dichloroethane trans-1,2-Dichloroethene					Q	value
5)	Chlorodifluoromethane	0.000		0	N.D. d		
6)	Dichlorodifluoromethane	0.000		0	N.D. d		
7)	Chloromethane	0.000		0	N.D. d		
8)	Bromomethane	0.000		0	N.D. d		
10)	Chloroethane	0.000		0	N.D. d		
11)	Trichlorofluoromethane	0.000		0	N.D. d		
12)	Trichlorofluoromethane Ethyl ether	0.000		0	N.D. d		
13)	Furan	0.000		0	N.D. d		
14)	1,1,2-Trichloro-1,2,2	0.000		0	N.D. d		
15)	Acrolein	0.000		0	N.D. d		
17)	Acrylonitrile	0.000		Ö	N.D. d		
18)	Iodomethane	0.000		0	N.D. d		
19)	Acetone	0.000		0	N.D. d		
20)	Furan 1,1,2-Trichloro-1,2,2 Methylene Chloride Acrolein Acrylonitrile Iodomethane Acetone Carbon Disulfide t-Butyl Alcohol n-Hexane	0.000		0	N.D. a		
21)	t-Butyl Alcohol	0.000		0	ир.		
22)	n-nexane Di-isopropyl-ether	0.000		0	N.D. d		
24)	1.1-Dichloroethene	0.000		0	N.D. d		
25)	Acetone Carbon Disulfide t-Butyl Alcohol n-Hexane Di-isopropyl-ether 1,1-Dichloroethene Methyl Acetate Methyl-t-butyl ether 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Bromochloromethane	0.000		0	N.D. d		
26)	Methyl-t-butyl ether	2.965	73	3142	1.1712	ug/l	83
27)	1,1-Dichloroethane	0.000		0	N.D. d N.D. d N.D. d N.D. d N.D. d		
28)	cis-1 2-Dichloroethene	0.000		Ö	N.D. d		
30)	cis-1,2-Dichloroethene Bromochloromethane 2,2-Dichloropropane Ethyl acetate 1,4-Dioxane 1,1-Dichloropropene Chloroform Cyclohexane 1,2-Dichloroethane	0.000		0	N.D. d		
31)	2,2-Dichloropropane	0.000		0	N.D. d N.D. d N.D. d N.D. d N.D. d N.D. d N.D. d		
32)	Ethyl acetate	0.000		0	N.D. d		
33)	1,4-Dioxane	0.000		0	и.р. а		
34) 35)	Chloroform	0.000		0	N.D. d		
37)	Cvclohexane	0.000		0	N.D. d		
39)	1,2-Dichloroethane	0.000					
	2-Butanone	0.000		0	N.D. d		
	1,1,1-Trichloroethane	0.000		0	N.D. d N.D. d		
	Carbon Tetrachloride Vinyl Acetate	0.000		0	N.D. d		
	Heptane	4.529		4092m	39.3243	ug/l	
	Bromodichloromethane	0.000		0	N.D. d		
	Methylcyclohexane	0.000		0	N.D. d		
	Dibromomethane	0.000		0	N.D. d N.D. d		
	1,2-Dichloropropane Trichloroethene	0.000		0	N.D. d		
	Benzene	4.362		9056	1.2654	ug/l	100
	tert-Amyl methyl ether	0.000		0	N.D. d		
	Iso-propylacetate	0.000		0	N.D. d		
	Methyl methacrylate	0.000		0	N.D. d		
	Dibromochloromethane	0.000		0	N.D. d N.D. d		
	2-Chloroethylvinylether cis-1,3-Dichloropropene	0.000		0	N.D. d		
58)	trans-1,3-Dichloropropene	0.000		0	N.D. d		
59)	Ethyl methacrylate	0.000		0	N.D. d		
	1,1,2-Trichloroethane	0.000		0	N.D. d		
	1,2-Dibromoethane	0.000		0	N.D. d N.D. d		
	1,3-Dichloropropane 4-Methyl-2-Pentanone	0.000		0	N.D. d		
	2-Hexanone	0.000		Ö	N.D. d		
65)	Tetrachloroethene	0.000		0	N.D. d		
67)	Toluene	5.522	92	6893	1.2196	ug/l	71

Quantitation Report (QT Reviewed)

Operator : WP Sam Mult : 1 Vial# : 4 Misc : S,5g SampleID : CAL @ 1 PPB Data File: 1M68110.D Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:32 Qt Upd On: 05/12/11 11:31 Acq On : 05/12/11 09:21

	Compound	R.T.	QIon	Response	Conc Units	Dev (Mi	.n)
68)	1,1,1,2-Tetrachloroethane	0.000		0	N.D. d		
69)	Chlorobenzene	0.000		0	N.D. d		
71)	n-Butyl acrylate	0.000		0	N.D. d		
72)	n-Amyl acetate	0.000		0	N.D. d		
73)	Bromoform	0.000		0	N.D. d		
74)	Ethylbenzene	6.418	106	2290	0.9390	ug/l	88
75)	1,1,2,2-Tetrachloroethane			0	N.D. d	•	
77)	Styrene	0.000		0	N.D. d		
78)	m&p-Xylenes	6.487	106	9035	2.3103	ug/l	85
79)	o-Xylene	6.723	106	3316	0.9155	ug/l	77
80)	trans-1,4-Dichloro-2-b	0.000		0	N.D. d	•	
81)	1,3-Dichlorobenzene	0.000		0	N.D. d		
82)	1,4-Dichlorobenzene	0.000		0	N.D. d		
83)	1,2-Dichlorobenzene	0.000		0	N.D. d		
84)				8337	0.8225	ug/l	92
	Cyclohexanone	0.000		0	N.D. d	•	
86)	Camphene	0.000		0	N.D. d		
87)	1,2,3-Trichloropropane	0.000		0	N.D. d		
	2-Chlorotoluene	0.000		0	N.D. d		
89)	n-Ethyltoluene	0 000		0	N.D. d		
90)	4-Chlorotoluene	0.000		0	N.D. d		
91)	n-Propylbenzene	7.195	91	12044	0.9491	ug/l	87
92)	Bromobenzene	0.000		0	N.D. d		
93)	1,3,5-Trimethylbenzene	7.283	105	7844	0.9824	ug/l	48
94)	Butyl methacrylate	0.000		0	N.D. d		
95)	t-Butylbenzene	7.500	119	8049	0.9558	ug/l	89
96)	1,2,4-Trimethylbenzene	7.520	105	7839	0.9089	ug/l	92
97)		7.638		9685	0.8860	ug/l	97
98)	4-Isopropyltoluene	7.716	119	8768	0.9897	ug/l	95
99)	n-Butylbenzene	7.972	91	9816	0.9002	ug/l	85
100)	p-Diethylbenzene	0.000		0	N.D. d		
101)	1,2,4,5-Tetramethylben	0.000		0	N.D. d		
102)	1,2-Dibromo-3-Chloropr	0.000		0	N.D. d		
103)	Camphor	0.000		0	N.D. d		
104)	Hexachlorobutadiene	0.000		0	N.D. d		
105)	1,2,4-Trichlorobenzene	0.000		0	N.D. d		
106)	1,2,3-Trichlorobenzene	0.000		0	N.D. d		
107)		9.222				ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:49:56 2011 SYSTEM1

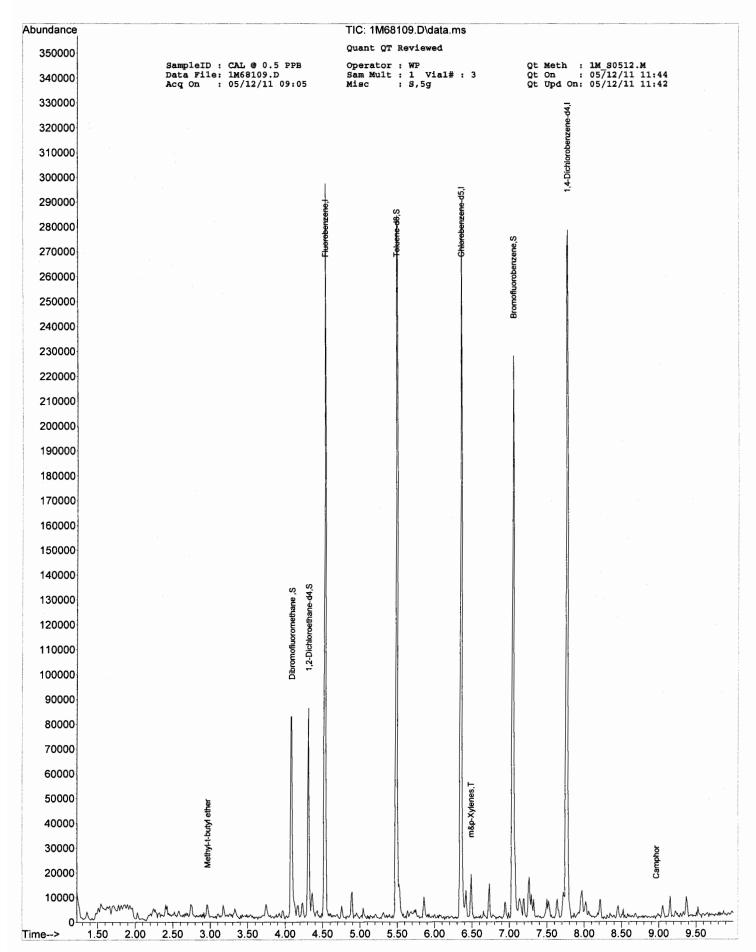
Operator : WP Sam Mult : 1 Vial# : 3 Misc : S,5g

Qt Meth : 1M_S0512.M Qt On : 05/12/11 11:44 Qt Upd On: 05/12/11 11:42

_							
	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
Inter	mal Standards						
4)	Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4	4.529	96	142433	30.00 ug/l	0.	00
52)	Chlorobenzene-d5	6.349	117	115292	30.00 ug/l	-0.	01
70)	1,4-Dichlorobenzene-d4	7.766	152	72735	30.00 ug/l	0.	00
Syste	em Monitoring Compounds						
	Dibromofluoromethane	4.086	111	40758	29.06 ug/l	0.	00
	ked Amount 30.000			Recove	ery = 96.	87%	
		4.313	67		29.50 ug/l		00
	ked Amount 30.000	F 403	0.0	Recove	ery = 98.	33*	01
66) Sni	Toluene-d8 .ked Amount 30.000	5.483	98		28.32 ug/l ery = 94.		01
	Bromofluorobenzene	7.048	174		26.73 ug/l		01
	ked Amount 30.000				ery = 89.		
_						0	_ 1
Targe	et Compounds Chlorodifluoromethane	0 000		0	N.D. d	QV	alue
	Dichlorodifluoromethane			0	N.D. d		
7)	Chloromethane	0.000		Ö	N.D. d		
8)				0	N.D. d		
9)	Vinyl Chloride Chloroethane	0.000 0.000 0.000		0	N.D. d		
-0,	Chloroethane	0.000		0	N.D. d		
11)	Trichlorofluoromethane	0.000		0			
12)	Ethyl ether	0.000		0			
14)	1 1 2-Trichloro-1 2 2-	0.000		0			
15)	Methylene Chloride	0.000		Ö			
16)	Methylene Chloride Acrolein	0.000		Ö			
17)	Acrylonitrile	0.000		0	N.D.		
18)	Acrylonitrile Iodomethane	0.000		0			
19)	Acetone			0	N.D. d		
20)	Carbon Disulfide t-Butyl Alcohol	0.000		0			
21)	t-Butyl Alcohol	0.000		0			
22)	n-Hexane	0.000		0			
23)	Di-isopropyl-ether 1,1-Dichloroethene	0.000		0	N.D. d		
25)	Methyl Acetate	0.000		ő	_		
26)	Methyl Acetate Methyl-t-butyl ether	2.965	73	1176	0.3500	ug/l	9
	1,1-Dichloroethane	0.000		0	N.D. d		
28)	trans-1,2-Dichloroethene	0.000		0	N.D. d		
29)	cis-1,2-Dichloroethene	0.000		0			
30)	Bromochloromethane	0.000		0	_		
31)	2,2-Dichloropropane	0.000		0			
32/	cis-1,2-Dichloroethene Bromochloromethane 2,2-Dichloropropane Ethyl acetate 1,4-Dioxane 1,1-Dichloropropene Chlorocom	0.000		Ö			
34)	1,1-Dichloropropene	0.000		0			
35)	Chloroform Cyclohexane	0.000		0			
3/)	Cyclonexane	0.000		0			
321	1,2-Dichioloechane	0.000		0	N.D. d		
40)		0.000		0	N.D. d N.D. d		
	1,1,1-Trichloroethane Carbon Tetrachloride	0.000		0	N.D. d		
	Vinyl Acetate	0.000		Ö	N.D. d		
	Heptane	0.000		0	N.D. d		
	Bromodichloromethane	0.000		0	N.D. d		
	Methylcyclohexane	0.000		0	N.D. d		
47)	Dibromomethane	0.000		0	N.D. d		
	1,2-Dichloropropane	0.000		0	N.D. d		
	Trichloroethene	0.000		0	N.D. d N.D. d		
	Benzene tert-Amyl methyl ether	0.000		0	N.D. d		
	Iso-propylacetate	0.000		0	N.D. d		
	Methyl methacrylate	0.000		Ö	N.D. d		
	Dibromochloromethane	0.000		0	N.D. d		
56)	2-Chloroethylvinylether	0.000		0	N.D. d		
57)	cis-1,3-Dichloropropene	0.000		0	N.D. d		
E 0 \	trans-1,3-Dichloropropene	0.000		0	N.D. d		
	Ethyl methacrylate	0.000		0 0	N.D. d		
59)				U	N.D. d		
59) 60)	1,1,2-Trichloroethane	0.000		n	ира		
59) 60) 61)	1,1,2-Trichloroethane 1,2-Dibromoethane	0.000		0	N.D. d N.D. d		
59) 60) 61) 62)	1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane	0.000		0 0 0	N.D. d N.D. d N.D. d		
59) 60) 61) 62) 63)	1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane 4-Methyl-2-Pentanone	0.000		0	N.D. d		
59) 60) 61) 62) 63) 64)	1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane	0.000 0.000 0.000		0	N.D. d N.D. d		

 SampleID : CAL @ 0.5 PPB
 Operator : WP
 Qt Meth : 1M_S0512.M

 Data File: 1M68109.D
 Sam Mult : 1 Vial# : 3
 Qt On : 05/12/11 11:44


 Acq On : 05/12/11 09:05
 Misc : S,5g
 Qt Upd On: 05/12/11 11:42

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-12-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)	
68)	1.1.1.2-Tetrachloroethane	0.000		0	N.D. d		
69)	Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene	0.000		0	N.D. d		
71)	n-Butyl acrylate	0.000		0	N.D. d N.D. d N.D. d		
72)	n-Amyl acetate	0.000		0	N.D. d		
73)	Bromoform	0.000		0	N.D. d		
74)	Ethylbenzene	0.000		0	и в		
75)	1,1,2,2-Tetrachloroethane	0.000		0	N.D. d		
77)	1,1,2,2-Tetrachloroethane Styrene m&p-Xylenes o-Xylene	0.000		0	N.D. d		
78)	m&p-Xylenes	6.487	106	3235	0.8525	ug/l	84
79)	o-Xylene	0.000		0	N.D. d	•	
80)	trans-1,4-Dichloro-2-b	0.000		0	N.D. d		
011	1 2 Dishlershorson	0 000		^	N.D. d		
82)	1,4-Dichlorobenzene	0.000		0	N.D. d		
83)	1,2-Dichlorobenzene	0.000		0	N.D. d		
84)	Isopropylbenzene	0.000		0	N.D. d		
85)	Cyclohexanone	0.000		0	N.D. d		
86)	1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene Isopropylbenzene Cyclohexanone Camphene 1,2,3-Trichloropropane 2-Chlorotoluene p-Ethyltoluene 4-Chlorotoluene	0.000		0	N.D. d		
87)	1,2,3-Trichloropropane	0.000		0	N.D. d		
88)	2-Chlorotoluene	0.000		0	N.D. d		
89)	p-Ethyltoluene	0.000		0	N.D. d		
90)	4-Chlorotoluene	0.000		0	N.D. d		
91)	n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenzene Butyl methacrylate t-Butylbenzene	0.000		0	14. υ. α		
92)	Bromobenzene	0.000		0	N.D. d		
93)	1,3,5-Trimethylbenzene	0.000		0	N.D. d		
94)	Butyl methacrylate	0.000		0	N.D. d		
95)	t-Butylbenzene	0.000		0	N.D. d		
96)	1,2,4-Trimethylbenzene	0.000		0	N.D. d		
97)	1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene n-Butylbenzene p-Diethylbenzene	0.000		0	N.D. d		
98)	4-Isopropyltoluene	0.000		0	N.D. d		
99)	n-Butylbenzene	0.000		0	N.D. d		
100)	p-Diethylbenzene	0.000		0	N.D. d		
101)	1,2,4,5-Tetramethviben	0.000		0	N.D. a		
102)	1,2-Dibromo-3-Chloropr	0.000		0	N.D.		
103)	1,2-Dibromo-3-Chloropr Camphor Hexachlorobutadiene	8.966	95	168	N.D. 1.7152	ug/l #	9
104)	Hexachlorobutadiene	0.000					
105)	1,2,4-Trichlorobenzene	0.000		0	N.D. d		
106)	1,2,3-Trichlorobenzene	0.000		0	N.D. d		
107)	Naphthalene	0.000		0	N.D. d		
105) 1,2,4-Trichlorobenzene 0.000 0 N.D. d 106) 1,2,3-Trichlorobenzene 0.000 0 N.D. d 107) Naphthalene 0.000 0 N.D. d							

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:50:00 2011 SYSTEM1

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 5/26/2011 3:07:00 P Data File: 1M68770.D Method: EPA 8260B Instrument: GCMS 1

			07:00 P	•	Method: EPA	02000				
TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp	Lo 1 Lim Li	li Initial m RF	RF	%Diff Flag
		_	_			_				
Fluorobenzene	1	0	ı	4.54	30.00	30		:	0.000	0.00
Chlorodifluoromethane	1	0		1.36	33.77	50		0.961		10.00
Dichlorodifluoromethane	1	0		1.35	40.87	50		0.611	0.529	18.25
Chloromethane	1	0	CP	1.48	37.00	50	0.1	0.525	0.388	26.00
Bromomethane	1	0	00	1.78	42.55	50	20	0.248	0.211	14.89
Vinvl Chloride Chloroethane	1 1	0	CC	1.55	49.37	50	20	0.419	0.414	1.26
Trichlorofluoromethane	1	0		1.85 2.03	45.36	50 50		0.231	0.210	9.27
Ethyl ether	1	0		2.03	39.13	50		0.825	0.665	21.73
Furan	1	0		2.24	38.56 39.51	50 50		0.261	0.223	22.87
1.1.2-Trichloro-1.2.2-trifluoroetha		0		2.40	48.98	50 50		0.877	0.750	20.98
Methylene Chloride	1	0		2.40	40.90 42.51	50 50		0.409 0.426	0.400 0.362	2.04 14.99
Acrolein	i	Ö		2.73	210.46	250		0.426	0.033	15.82
Acrylonitrile	1	0		2.92	42.86	50		0.034	0.033	14.29
odomethane	i	Ö		2.52	29.02	50		0.532	0.309	41.97
Acetone	i	ŏ		2.42	223.67	250		0.063	0.056	10.53
Carbon Disulfide	i	ŏ		2.58	27.17	50		1.318	0.716	45.66
-Butyl Alcohol	i	ŏ		2.82	197.98	250		0.015	0.014	20.81
n-Hexane	1	0		3.18	46.78	50		0.564	0.527	6.44
Di-isopropyl-ether	i	ŏ		3.34	46.17	50		1.326	1.224	7.65
1.1-Dichloroethene	i	ŏ	CC	2.40	45.02	50	20	0.691	0.622	9.97
Methyl Acetate	i	ŏ	00	2.67	36.20	50	20	0.265	0.192	27.59
Methyl-t-butyl ether	1	ŏ		2.97	42.80	50		0.708	0.695	14.39
1.1-Dichloroethane	1	Ö	CP	3.29	41.58	50	0.1	0.745	0.668	16.84
rans-1.2-Dichloroethene	1	ō	•	2.97	46.30	50	•••	0.432	0.400	7.41
cis-1,2-Dichloroethene	1	Ö		3.74	46.79	50		0.754	0.706	6.43
Bromochloromethane	1	0		3.92	44.89	50		0.337	0.302	10.23
2.2-Dichloropropane	1	0		3.76	48.71	50		0.647	0.630	2.58
Ethyl acetate	1	0		3.79	45.56			0.237		
1.4-Dioxane	1	0		4.97	2299.20	2500		0.002	0.003	8.03
1.1-Dichloropropene	1	0		4.23	48.40	50		0.641	0.632	3.21
Chloroform	1	0	CC	3.98	44.70	50	20	0.831	0.743	10.61
Dibromofluoromethane	1	0	S	4.09	29.70	75		0.295	0.292	1.00
Cvclohexane	1	0		4.18	44.02	50		0.733	0.695	11.95
1,2-Dichloroethane-d4	1	0	S	4.31	30.59	75		0.147	0.150	1.96
1.2-Dichloroethane	1	0		4.37	46.25	50		0.559	0.517	7.50
2-Butanone	1	0		3.74	45.96	50		0.096	0.088	8.07
1.1.1-Trichloroethane	1	0		4.13	43.69	50		0.833	0.728	12.62
Carbon Tetrachloride	1	0		4.24	47.39	50		0.694	0.658	5.21
/inyl Acetate	1	0		3.34	38.18	50		0.867	0.736	23.63
n-Heptane	1	0		4.53	41.66			0.937		
Bromodichloromethane	1	0		5.05	41.34	50		0.622	0.573	17.33
Methylcyclohexane	1	0		4.89	49.23	50		0.712	0.709	1.55
Dibromomethane	1	0		4.97	44.67	50		0.284	0.254	10.65
1.2-Dichloropropane	1	0	CC	4.89	44.45	50	20	0.439	0.390	11.09
Trichloroethene	1	0		4.77	45.86	50		0.524	0.480	8.28
Benzene	1	0		4.37	44.31	50		1.711	1.516	11.39
ert-Amyl methyl ether	1	0		4.43	39.77	50		0.808	0.718	20.46
Chlorobenzene-d5	1	0	ı	6.36	30.00	30			0.000	0.00
so-propylacetate	1	0		4.39	55.53			0.539		
Methyl methacrylate	1	0		4.94	50.79			0.317		
Dibromochloromethane	1	0		6.01	49.43	50		0.528	0.522	1.15
2-Chloroethylvinylether	1	0		5,22	52.68	50		0.207	0.248	5.35
cis-1.3-Dichloropropene	1	0		5.33	44.25	50		0.763	0.795	11.50
rans-1.3-Dichloropropene	1	0		5.65	42.69	50		0.647	0.650	14.62
Ethyl methacrylate	1	0		5.69	50.92			0.364		
.1.2-Trichloroethane	1	0		5.76	51.55	50		0.377	0.389	3.10
.2-Dibromoethane	1	0		6.08	54.82	50		0.351	0.385	9.64
.3-Dichloropropane	1	0		5.87	51.11	50		0.665	0.679	2.21
I-Methyl-2-Pentanone	1	0		5.41	61.57	50		0.317	0.390	23.13
2-Hexanone	1	0		5.90	61.55	50		0.205	0.295	23.11
Tetrachloroethene	1	0	_	5.88	52.12	50		0.607	0.594	4.23
Toluene-d8	1	0	S	5.49	29.34	75		1.359	1.329	2.19
Toluene	1	0	CC	5.53	46.03	50	20	1.524	1.403	7.94
1.1.1.2-Tetrachloroethane	1	0		6.42	51.61	50		0.505	0.521	3.21
Chlorobenzene	1	0	CP	6.38	52.20	50	0.3	1.443	1.507	4.40
1.4-Dichlorobenzene-d4	1	0	J	7.78	30.00	30		4.04-	0.000	0.00
n-Butyl acrylate	1	0		6.66	55.57			1.017		
n-Amvl acetate	1	0		6.79	58.34			0.906		

CC - Continuing Calibration Check Compound N/O or N/O - Not applicable for this run

Page 1 of 2

CP - System Performance Check Compound I - Internal Standard

^{* -} Failed the C or P Criteria

^{** -} No limit specified in method

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 5/26/2011 3:07:00 P Data File: 1M68770.D Method: EPA 8260B

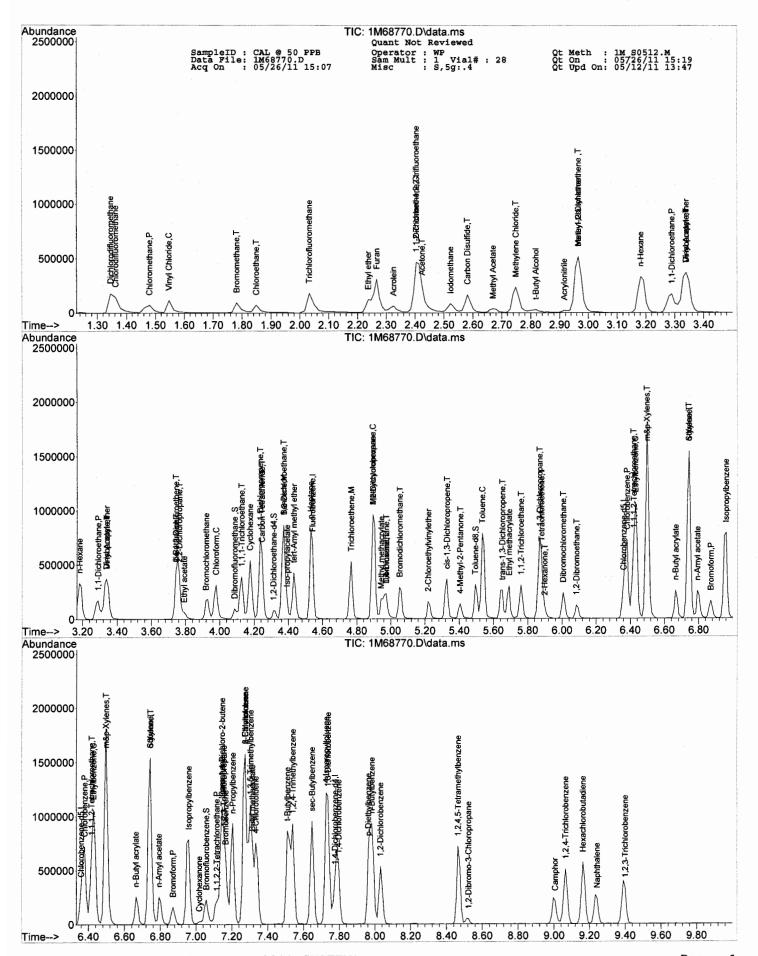
Instrument: GCMS 1

TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp	Lo Hi Lim Lim	Initial RF	RF	%Diff Flag
Bromoform	1	0	CP	6.87	55.00	50	0.1	0.533	0.586	9.99
Ethvlbenzene	1	0	CC	6.43	50.75	50	20	0.956	1.039	1.50
1.1.2.2-Tetrachloroethane	1	0	CP	7.12	57.48	50	0.3	0.676	0.777	14.96
Bromofluorobenzene	1	0	S	7.06	30.80	75		0.842	0.864	2.65
Styrene	1	0		6.74	54.18	50		2.261	2.793	8.35
m&p-Xvlenes	1	0		6.50	110.65	100		1.565	1.775	10.65
o-Xvlene	1	0		6.74	51.83	50		1.512	1.740	3.65
trans-1.4-Dichloro-2-butene	1	0		7.15	69.46	50		0.430	0.538	38.91
1.3-Dichlorobenzene	1	Õ		7.74	50.34	50		2.085	2.099	0.69
1.4-Dichlorobenzene	1	Ō		7.80	53.66	50		1.961	2.105	7.32
1.2-Dichlorobenzene	1	0		8.03	50.04	50		1.802	1.804	0.08
Isopropylbenzene	1	ŏ		6.96	56.39	50		3.937	4.446	12.78
Cyclohexanone	1	Ö		7.02	290.76	•		0.018	7.770	12.70
Camphene	1	ŏ		7.15	54.16	50		1.788	1.856	8.31
1.2.3-Trichloropropane	1	Õ		7.16	56.42	50		0.864	0.974	12.84
2-Chlorotoluene	1	0		7.27	54.48	50		2.534	2.761	8.96
p-Ethyltoluene	i	ŏ		7.27	53.60	00		4.758	2.701	0.50
4-Chlorotoluene	1	ŏ		7.33	49.24	50		2.551	2.512	1.51
n-Propvibenzene	i	ŏ		7.21	56.90	50		5.316	5.624	13.79
Bromobenzene	i	ŏ		7.17	56.74	50		2.559	2.904	13.49
1.3.5-Trimethylbenzene	1	0		7.30	56.43	50		3.401	3.839	12.86
Butvl methacrylate	1	ŏ		7.31	63.11	30		1.192	3.033	12.00
t-Butvibenzene	i	ŏ		7.51	55.11	50		3.441	3.792	10.21
1.2.4-Trimethylbenzene	1	Ö		7.54	55.62	50		3.607	4.012	11.25
sec-Butylbenzene	1	0		7.65	54.81	50		4.622	5.023	9.62
4-Isopropyltoluene	1	0		7.73	51.97	50		3.850	4.001	3.93
n-Butvibenzene	1	Ö		7.73	47.35	50 50		4.593	4.350	
p-Diethylbenzene	4	0				50			4.350	5.29
	1	0		7.96	48.38			2.087		
1.2.4.5-Tetramethylbenzene	<u> </u>	0		8.46	45.14	50		3.232	0.400	0.00
1,2-Dibromo-3-Chloropropane				8.52	50.15	50		0.132	0.132	0.30
Camphor	1	0		9.01	456.22	500		0.039	0.055	8.76
Hexachlorobutadiene	1	0		9.16	42.26	50		1.351	1.141	15.48
1.2.4-Trichlorobenzene	1	0		9.06	48.48	50		1.435	1.392	3.04
1,2,3-Trichlorobenzene	1	0		9.40	47.55	50		1.257	1.195	4.90
Naphthalene	_1	0		9.24	43.61	50		1.770	1.910	12.78
1.2-Dioxane	1	100		0.00	0.00	5000			0.000	100.00
Freon 113	1	100		0.00	0.00	50			0.000	<u> 100</u> .00

Operator : WP Sam Mult : 1 Vial# : 28 Misc : S,5g:.4 SampleID : CAL @ 50 PPB Data File: 1M68770.D Acq On : 05/26/11 15:07 Qt Meth : 1M_S0512.M Qt On : 05/26/11 15:19 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\Qt Resp Via : Initial Calibration

	Compound	R.T.	OIon	Response	Conc Units	B Dev(M	in)
	rnal Standards	4.539	96	141152	30.00 ug	/1 0	.00
		6.359			30.00 ug	/1 0	.00
70)		7.776		60271	30.00 ug	/1 0	.00
	em Monitoring Compounds			44004	00 70	/1 0	
	Dibromofluoromethane	4.087	111	41281	29.70 ug, ery = 99	/1 U 9.00%	.00
	iked Amount 30.000 1,2-Dichloroethane-d4	4.313	67	21117	30.59 ug		.00
	iked Amount 30.000		•		ery = 10:		
	Toluene-d8	5.494	98	140591	29.34 ug	/1 0	.00
	iked Amount 30.000				ery = 9'		- 11
	Bromofluorobenzene	7.058	174		30.80 ug		0.00
Sp	iked Amount 30.000			Recove	ery = 10:	2.0/8	
Targ	ret Compounds					Ç	value
	Chlorodifluoromethane	1.362	51	135723	33.7720	ug/l	58
	Dichlorodifluoromethane	1.346	85	124488	40.8732	ug/l	90
	Chloromethane	1.480		91351	36.9994		75
	Bromomethane	1.782		49731	42.5543 49.3682	ug/l ug/l	88 94
	Vinyl Chloride	1.547 1.849		97358 49372	45.3648	ug/l	97
	Chloroethane Trichlorofluoromethane	2.033		156429			82
	Ethyl ether	2.237		52365	38.5629	ug/l	84
	Furan	2.267		176502	39.5112	ug/l	98
	1,1,2-Trichloro-1,2,2	2.405	101	94185	48.9784	ug/l	93
15)	Methylene Chloride	2.749		85206		ug/l	93
	Acrolein	2.326		39391	210.4595	ug/l	97
	Acrylonitrile	2.916		18203	42.8555	ug/l ug/l	95 91
•	Iodomethane	2.523		72637 66459	29.0155 223.6664	ug/1	93
	Acetone Carbon Disulfide	2.582		168482	27.1719	ug/l	100
	t-Butyl Alcohol	2.818		16598		ug/l	92
	n-Hexane	3.182		124027		ug/l	74
	Di-isopropyl-ether	3.339	45	288014	46.1744	ug/l	100
	1,1-Dichloroethene	2.405		146294		ug/l	97
	Methyl Acetate	2.670		45192	36.2034	ug/l	100 70
26)	Methyl-t-butyl ether	2.965		163552	42.8038 41.5806	ug/l ug/l	99
	1,1-Dichloroethane	3.290 2.965		157243 94153	46.2957	ug/l	85
28)	trans-1,2-Dichloroethene cis-1,2-Dichloroethene	3.743		166041	46.7860	ug/l	93
	Bromochloromethane	3.920		71164	44.8862	ug/l	69
	2,2-Dichloropropane	3.762	77	148317		ug/l	94
	Ethyl acetate	3.792		50705		ug/l	97
33)		4.972		29795		ug/l	83 93
	_,	4.234				ug/l ug/l	
	Chloroform	3.979 4.175		163385	44.6967 44.0241	ug/l	97
3/)	Cyclohexane 1,2-Dichloroethane	4.372		121538	46.2492	ug/l	95
	2-Butanone		43		45.9645	ug/l	87
41)	1,1,1-Trichloroethane	4.126		171255	43.6915	ug/l	98
42)	Carbon Tetrachloride	4.244		154690	47.3935	ug/l	90
	Vinyl Acetate	3.339		173105	38.1830	ug/l	100 98
	n-Heptane	4.530		183722 134886	41.6553 41.3365	ug/l ug/l	98
	Bromodichloromethane	5.051 4.894		166845	49.2274	ug/l	93
	Methylcyclohexane Dibromomethane	4.972		59789	44.6727	ug/l	92
	1,2-Dichloropropane	4.894		91782	44.4549	ug/l	84
	Trichloroethene	4.766	130	112960	45.8581	ug/l	96
50)	Benzene	4.372		356701	44.3062	ug/l	100
	tert-Amyl methyl ether	4.431		169011	39.7687	ug/l	86 86
) Iso-propylacetate	4.392		105499 65895	55.5261 50.7895	ug/l ug/l	86 87
) Methyl methacrylate) Dibromochloromethane	4.943 6.005		92045	49.4273	ug/l	98
55) 56)) 2-Chloroethylvinylether	5.218		43781	52.6762	ug/l	76
50	cis-1,3-Dichloropropene	5.327		140164	44.2487	ug/l	89
	trans-1,3-Dichloropropene	5.651		114610	42.6904	ug/l	91
59	Ethyl methacrylate	5.691		79155	50.9214	ug/l	70
60) 1,1,2-Trichloroethane	5.759		68603	51.5483	ug/l	88
61		6.084			54.8188	ug/l ug/l	96 99
) 1,3-Dichloropropane	5.868		119781 68759	51.1055 61.5673	ug/l ug/l	
) 4-Methyl-2-Pentanone) 2-Hexanone	5.405 5.897			61.5536	ug/l	
) Tetrachloroethene (5.877			52.1151	ug/l	95
) Toluene	5.533			46.0324	ug/l	99
	U						


Quantitation Report (Not Reviewed)

SampleID : CAL @ 50 PPB Data File: 1M68770.D Qt Meth : 1M_S0512.M Qt On : 05/26/11 15:19 Qt Upd On: 05/12/11 13:47 Operator : WP Sam Mult : 1 Vial# : 28 Misc : S,5g:.4 Acq On : 05/26/11 15:07

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\ Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	1,1,1,2-Tetrachloroethane	6.419	133	91859	51.6067	ug/l	- 76
69)	Chlorobenzene	6.379	112	265693	52.2013	ug/l	97
71)	n-Butyl acrylate	6.664	55	126717	55.5670	ug/l	97
72)	n-Amyl acetate	6.792	43	115021	58.3446	ug/l	82
73)	Bromoform	6.871	173	58848	54.9954	ug/l	92
74)	Ethylbenzene	6.428	106	104400	50.7507	ug/l	88
75)	1,1,2,2-Tetrachloroethane	7.117	83	78098	57.4778	ug/l	94
77)	Styrene	6.743	104	280569	54.1765	ug/l	96
78)	m&p-Xylenes	6.497	106	356592	110.6492	ug/l	90
79)	o-Xylene	6.743	106	174768	51.8262	ug/l	71
80)	trans-1,4-Dichloro-2-b	7.147	53	54057	69.4575	ug/l	97
81)	1,3-Dichlorobenzene	7.737	146	210834	50.3428	ug/l	91
82)	1,4-Dichlorobenzene	7.796	146	211423	53.6599	ug/l	93
83)	1,2-Dichlorobenzene	8.032	146	181180	50.0395	ug/l	91
84)	Isopropylbenzene	6.960	105	446600	56.3893	ug/l	95
85)	Cyclohexanone	7.019	55	10338	290.7576	ug/l	95
86)	Camphene	7.147	93	186398	54.1573	ug/l	98
87)	1,2,3-Trichloropropane	7.156	75	97879	56.4208	ug/l	89
88)	2-Chlorotoluene	7.274	91	277336	54.4782	ug/l	98
89)	p-Ethyltoluene	7.274	105	510901	53.6024	ug/l	82
90)	4-Chlorotoluene	7.333	91	252352	49.2427	ug/l	93
91)	n-Propylbenzene	7.206	91	564923	56.8963	ug/l	96
	Bromobenzene	7.166	77	291742	56.7440	ug/l	83
93)	1,3,5-Trimethylbenzene	7.304	105	385616	56.4311	ug/l	95
94)	Butyl methacrylate	7.314	41	135420	63.1116	ug/l	60
	t-Butylbenzene	7.511	119	380922	55.1069	ug/l	85
	1,2,4-Trimethylbenzene	7.540	105	403058	55.6246	ug/l	87
-	sec-Butylbenzene	7.648	105	504593	54.8110	ug/l	98
98)	4-Isopropyltoluene	7.727	119	401925	51.9656	ug/l	93
	n-Butylbenzene	7.983	91	436935	47.3547	ug/l	96
	p-Diethylbenzene	7.963	119	202880	48.3823	ug/l	93
	1,2,4,5-Tetramethylben	8.465	119	330144	45.1447	ug/l	92
102)	1,2-Dibromo-3-Chloropr	8.524	157	13253	50.1512	ug/l	69
103)	Camphor	9.006	95	54957	456.2221	ug/l	91
104)	Hexachlorobutadiene	9.163	225	114665	42.2603	ug/l	93
105)	1,2,4-Trichlorobenzene	9.065	180	139787	48.4783	ug/l	97
106)	1,2,3-Trichlorobenzene	9.399	180	120044	47.5481	ug/l	95
107)	Naphthalene	9.242	128	191906	43.6117	ug/l	100
							_

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:50:09 2011 SYSTEM1

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 5/27/2011 7:50:00 A Data File: 1M68815.D Method: EPA 8260B

Instrument: GCMS 1

TxtCompd: Col# Num Type RT Conc Conc Lo Hi Initial RF	0.000 0.489 0.369 0.199 0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030	%Diff Flag 0.00 24.49 29.70 19.89 9.92 15.12 30.17 27.47 30.52
Chlorodifluoromethane 1 0 1.35 29.99 0.961 Dichlorodifluoromethane 1 0 1.35 37.76 50 0.611 Chloromethane 1 0 CP 1.46 35.15 50 0.1 0.525 Bromomethane 1 0 CC 1.55 45.04 50 20 0.419 Vinvl Chloride 1 0 CC 1.55 45.04 50 20 0.419 Chloroethane 1 0 CC 1.55 45.04 50 20 0.419 Chloroethane 1 0 2.03 34.92 50 0.231 Trichlorofluoromethane 1 0 2.24 36.27 50 0.825 Ethvl ether 1 0 2.24 36.27 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methylene Chloride 1 0 2.7	0.489 0.369 0.199 0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030	24.49 29.70 19.89 9.92 15.12 30.17 27.47 30.52
Chlorodifluoromethane 1 0 1.35 29.99 0.961 Dichlorodifluoromethane 1 0 1.35 37.76 50 0.611 Chloromethane 1 0 CP 1.46 35.15 50 0.1 0.525 Bromomethane 1 0 CC 1.55 45.04 50 20 0.419 Vinvl Chloride 1 0 CC 1.55 45.04 50 20 0.419 Chloroethane 1 0 CC 1.55 45.04 50 20 0.419 Chloroethane 1 0 2.03 34.92 50 0.231 Trichlorofluoromethane 1 0 2.03 34.92 50 0.825 Ethvl ether 1 0 2.27 34.74 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.426 Acrolein 1 0 2.75	0.489 0.369 0.199 0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030	24.49 29.70 19.89 9.92 15.12 30.17 27.47 30.52
Dichlorodifluoromethane 1 0 1.35 37.76 50 0.611 Chloromethane 1 0 CP 1.46 35.15 50 0.1 0.525 Bromomethane 1 0 1.78 40.05 50 0.248 Vinvl Chloride 1 0 CC 1.55 45.04 50 20 0.419 Chloroethane 1 0 1.85 42.44 50 0.231 Trichlorofluoromethane 1 0 2.03 34.92 50 0.825 Ethvl ether 1 0 2.24 36.27 50 0.261 Furan 1 0 2.24 36.27 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methylene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.93 38.53 50 0.034 <td>0.369 0.199 0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030</td> <td>29.70 19.89 9.92 15.12 30.17 27.47 30.52</td>	0.369 0.199 0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030	29.70 19.89 9.92 15.12 30.17 27.47 30.52
Chloromethane 1 0 CP 1.46 35.15 50 0.1 0.525 Bromomethane 1 0 1.78 40.05 50 0.248 Vinvl Chloride 1 0 CC 1.55 45.04 50 20 0.419 Chloroethane 1 0 1.85 42.44 50 0.231 Trichlorofluoromethane 1 0 2.03 34.92 50 0.825 Ethvl ether 1 0 2.24 36.27 50 0.261 Furan 1 0 2.24 36.27 50 0.261 Furan 1 0 2.24 36.27 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methvlene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.93 38.53 50 0.034	0.369 0.199 0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030	29.70 19.89 9.92 15.12 30.17 27.47 30.52
Stromomethane	0.199 0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030	19.89 9.92 15.12 30.17 27.47 30.52
Vinvl Chloride 1 0 CC 1.55 45.04 50 20 0.419 Chloroethane 1 0 1.85 42.44 50 0.231 Trichlorofluoromethane 1 0 2.03 34.92 50 0.825 Ethvl ether 1 0 2.24 36.27 50 0.261 Furan 1 0 2.27 34.74 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methylene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.33 190.44 250 0.034 Acrolein 1 0 2.93 38.53 50 0.074 odomethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.58 24.22 50 1.318 Carbon Disulfide 1 <td>0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030</td> <td>9.92 15.12 30.17 27.47 30.52</td>	0.378 0.196 0.593 0.209 0.660 0.370 0.335 0.030	9.92 15.12 30.17 27.47 30.52
Chloroethane 1 0 1.85 42.44 50 0.231 Erichlorofluoromethane 1 0 2.03 34.92 50 0.825 Ethvl ether 1 0 2.24 36.27 50 0.261 Furan 1 0 2.27 34.74 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methylene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.33 190.44 250 0.034 Acrolonitrile 1 0 2.93 38.53 50 0.074 Acrolonethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0	0.196 0.593 0.209 0.660 0.370 0.335 0.030	15.12 30.17 27.47 30.52
Trichlorofluoromethane 1 0 2.03 34.92 50 0.825 Ethvl ether 1 0 2.24 36.27 50 0.261 Furan 1 0 2.27 34.74 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methylene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.33 190.44 250 0.034 Acrolonitrile 1 0 2.93 38.53 50 0.074 Acrolonethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0 3.19 45.13 50 0.564	0.593 0.209 0.660 0.370 0.335 0.030	30.17 27.47 30.52
Ethvl ether 1 0 2.24 36.27 50 0.261 Furan 1 0 2.27 34.74 50 0.877 I.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methvlene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.33 190.44 250 0.034 Acrolonitrile 1 0 2.93 38.53 50 0.074 Acrolonitrile 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.63 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butvl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.209 0.660 0.370 0.335 0.030	27.47 30.52
Furan 1 0 2.27 34.74 50 0.877 1.1.2-Trichloro-1.2.2-trifluoroetha 1 0 2.41 45.26 50 0.409 Methylene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.33 190.44 250 0.034 Acrylonitrile 1 0 2.93 38.53 50 0.074 odomethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.660 0.370 0.335 0.030	30.52
1.2-Trichloro-1.2.2-trifluoroetha 1	0.370 0.335 0.030	
Methylene Chloride 1 0 2.75 39.26 50 0.426 Acrolein 1 0 2.33 190.44 250 0.034 Acrylonitrile 1 0 2.93 38.53 50 0.074 odomethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.335 0.030	9.47
Acrolein 1 0 2.33 190.44 250 0.034 Acrylonitrile 1 0 2.93 38.53 50 0.074 odomethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.030	21.47
Acrylonitrile 1 0 2.93 38.53 50 0.074 odomethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564		23.83
odomethane 1 0 2.52 25.85 50 0.532 Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.070	22.93
Acetone 1 0 2.42 199.80 250 0.063 Carbon Disulfide 1 0 2.58 24.22 50 1.318 E-Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.275	48.30
Carbon Disulfide 1 0 2.58 24.22 50 1.318 -Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.050	20.08
-Butyl Alcohol 1 0 2.82 200.83 250 0.015 n-Hexane 1 0 3.19 45.13 50 0.564	0.638	51.56
n-Hexane 1 0 3.19 45.13 50 0.564	0.014	19.67
	0.509	9.75
	1.101	16.93
1.1-Dichloroethene 1 0 CC 2.41 40.66 50 20 0.691	0.562	18.69
Methyl Acetate 1 0 2.67 34.05 50 0.265	0.181	31.89
Methyl-t-butyl ether 1 0 2.97 39.32 50 0.708	0.639	21.37
I.1-Dichloroethane 1 0 CP 3.29 37.16 50 0.1 0.745	0.597	25.68
rans-1.2-Dichloroethene 1 0 2.97 42.21 50 0.432	0.365	15.58
cis-1.2-Dichloroethene 1 0 3.74 41.28 50 0.754	0.623	17.44
3romochloromethane 1 0 3.92 40.20 50 0.337	0.271	19.60
2.2-Dichloropropane 1 0 3.76 43.68 50 0.647	0.565	12.64
Ethyl acetate 1 0 3.79 41.96 0.237		
.4-Dioxane 1 0 4.97 1877.38 2500 0.002	0.002	24.90
.1-Dichloropropene 1 0 4.23 44.38 50 0.641	0.579	11.24
Chloroform 1 0 CC 3.98 40.06 50 20 0.831	0.666	19.87
Dibromofluoromethane 1 0 S 4.09 29.15 75 0.295	0.287	2.85
Cyclohexane 1 0 4.18 40.59 50 0.733	0.640	18.83
1.2-Dichloroethane-d4 1 0 S 4.31 28.47 75 0.147	0.139	5.09
1.2-Dichloroethane 1 0 4.37 41.40 50 0.559	0.462	17.19
2-Butanone 1 0 3.74 43.75 50 0.096	0.084	12.50
1.1.1-Trichloroethane 1 0 4.13 40.06 50 0.833	0.667	19.88
Carbon Tetrachloride 1 0 4.24 41.73 50 0.694	0.579	16.54
Vinvl Acetate 1 0 3.34 34.32 50 0.867	0.661	31.35
n-Heptane 1 0 4.53 42.41 0.937		
Gromodichloromethane 1 0 5.05 37.01 50 0.622	0.513	25.98
Methylcyclohexane 1 0 4.89 44.59 50 0.712	0.642	10.82
Dibromomethane 1 0 4.97 39.84 50 0.284	0.227	20.32
.2-Dichloropropane 1 0 CC 4.89 39.76 50 20 0.439	0.349	20.49
Trichloroethene 1 0 4.77 38.28 50 0.524	0.401	23.43
Benzene 1 0 4.37 40.70 50 1.711	1.393	18.60
ert-Amyl methyl ether 1 0 4.43 36.52 50 0.808	0.660	26.97
Chlorobenzene-d5 1 0 I 6.36 30.00 30	0.000	0.00
so-propylacetate 1 0 4.39 57.18 0.539		
Methyl methacrylate 1 0 4.94 46.94 0.317		
Dibromochloromethane 1 0 6.01 48.08 50 0.528	0.508	3.84
-Chloroethylvinylether 1 0 5.22 51.26 50 0.207	0.242	2.53
is-1,3-Dichloropropene 1 0 5.33 41.08 50 0.763	0.738	17.83
rans-1,3-Dichloropropene 1 0 5.64 41.48 50 0.647	0.631	17.04
thyl methacrylate 1 0 5.68 48.69 0.364		
.1.2-Trichloroethane 1 0 5.76 47.85 50 0.377	0.361	4.30
.2-Dibromoethane 1 0 6.08 51.80 50 0.351	0.364	3.59
.3-Dichloropropane 1 0 5.86 50.43 50 0.665	0.670	0.85
-Methyl-2-Pentanone 1 0 5.41 64.35 50 0.317	0.408	28.70
-Hexanone 1 0 5.89 61.47 50 0.205	0.295	22.94
etrachloroethene 1 0 5.88 49.82 50 0.607	0.567	0.35
oluene-d8 1 0 S 5.49 30.27 75 1.359	1.371	0.90
oluene 1 0 CC 5.53 44.14 50 20 1.524	1.345	11.73
	0.509	0.93
	1.432	0.80
1.1.1.2-Tetrachloroethane 1 0 6.42 50.46 50 0.505		
.1.1.2-Tetrachloroethane 1 0 6.42 50.46 50 0.505 Chlorobenzene 1 0 CP 6.38 49.60 50 0.3 1.443		0.00
1.1.1.2-Tetrachloroethane 1 0 6.42 50.46 50 0.505	0.000	0.00

CC - Continuing Calibration Check Compound N/O or N/O - Not applicable for this run

Page 1 of 2

CP - System Performance Check Compound I - Internal Standard

^{** -} No limit specified in method * - Failed the C or P Criteria

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 5/27/2011 7:50:00 A

Data File: 1M68815.D Method: EPA 8260B

Instrument: GCMS 1

				••						
TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp	Lo Hi Li <u>m</u> Lim	Initial RF	RF	%Diff Flag
Bromoform	1	0	CP	6.87	50.15	50	0.1	0.533	0.534	0.30
Ethylbenzene	1	Õ	CC	6.43	51.47	50	20	0.956	1.054	2.94
1.1.2.2-Tetrachloroethane	1	0	CP	7.11	52.59	50	0.3	0.676	0.711	5.18
Bromofluorobenzene	1	0	S	7.06	29.21	75	•.•	0.842	0.820	2.64
Styrene	1	0		6.74	48.47	50		2.261	2.510	3.06
m&p-Xvlenes	1	0		6.50	102.04	100		1.565	1.643	2.04
o-Xvlene	1	Ō		6.73	46.83	50		1.512	1.580	6.34
trans-1.4-Dichloro-2-butene	1	0		7.14	68.25	50		0.430	0.529	36.50
1.3-Dichlorobenzene	1	0		7.74	46.84	50		2.085	1.953	6.31
1,4-Dichlorobenzene	1	0		7.79	47.19	50		1.961	1.851	5.61
1,2-Dichlorobenzene	1	0		8.03	45.31	50		1.802	1.633	9.38
Isopropylbenzene	1	Ö		6.95	53.22	50		3.937	4.196	6.44
Cvclohexanone	1	Ō		7.02	315.33			0.018		
Camphene	1	0		7.14	52.97	50		1.788	1.815	5.95
1,2,3-Trichloropropane	1	Ö		7.15	51.21	50		0.864	0.884	2.41
2-Chlorotoluene	1	0		7.27	47.65	50		2.534	2.415	4.71
p-Ethyltoluene	1	0		7.27	52.72			4.758		
4-Chlorotoluene	1	Ö		7.33	48.92	50		2.551	2.496	2.16
n-Propylbenzene	1	0		7.20	53.13	50		5.316	5.252	6.27
Bromobenzene	1	0		7.16	53.02	50		2.559	2.714	6.05
1.3.5-Trimethylbenzene	1	0		7.29	48.13	50		3.401	3.274	3.75
Butyl methacrylate	1	0		7.30	60.89			1.192		
t-Butvlbenzene	1	0		7.51	51.08	50		3.441	3.515	2.15
1.2.4-Trimethylbenzene	1	0		7.54	50.95	50		3.607	3.675	1.91
sec-Butylbenzene	1	0		7.65	51.09	50		4.622	4.682	2.18
4-Isopropyltoluene	1	0		7.73	49.61	50		3.850	3.820	0.78
n-Butylbenzene	1	0		7.98	46.37	50		4.593	4.259	7.27
p-Diethylbenzene	1	0		7.96	47.43			2.087		
1.2.4.5-Tetramethylbenzene	1	0		8.47	43.16			3.232		
1,2-Dibromo-3-Chloropropane	1	Ō		8.51	47.63	50		0.132	0.125	4.74
Camphor	1	0		9.00	431.42	500		0.039	0.052	13.72
Hexachlorobutadiene	1	Ö		9.16	42.30	50		1.351	1.142	15.41
1.2.4-Trichlorobenzene	1	ŏ		9.07	47.61	50		1.435	1.367	4.78
1.2.3-Trichlorobenzene	1	ŏ		9.39	48.22	50		1.257	1.212	3.57
Naphthalene	1	Ö		9.23	43.28	50		1.770	1.896	13.44
1.2-Dioxane	1	100		0.00	0.00	5000			0.000	100.00
Freon 113	1_	100		0.00	0.00	50			0.000	100.00

SampleID : CAL @ 50 PPB Data File: 1M68815.D Acq On : 05/27/11 07:50 Operator : SG Sam Mult : 1 Vial# : 3 Misc : S,5g:.4

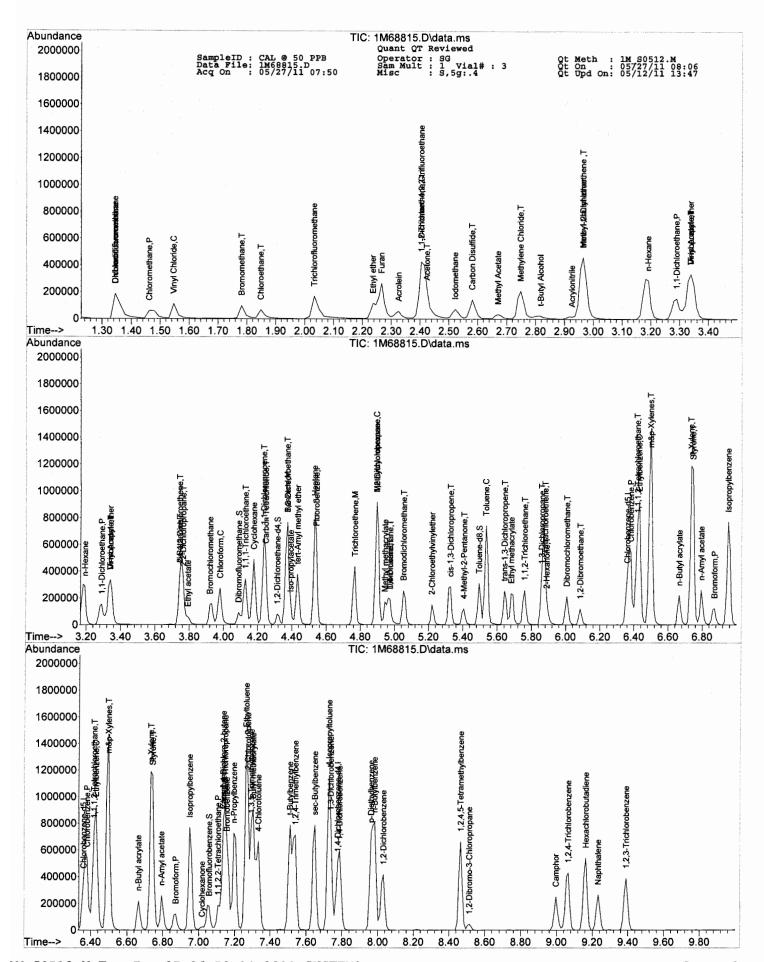
Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:06 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
		~	-			- -	
	rnal Standards	4.540	0.0	126701	30.00 ug/	1 0	.00
	Fluorobenzene	6.360	96 117	136791 96345	30.00 ug/		.00
	Chlorobenzene-d5 1,4-Dichlorobenzene-d4	7.777		55978	30.00 ug/		.00
707	1,4-Dichiolobenzene-d4	,.,,,	132		30.00 49/	_	
Syst	em Monitoring Compounds						
36)	Dibromofluoromethane	4.087	111	39260	29.15 ug/		0.00
Sp	iked Amount 30.000			Recove		.17%	
	1,2-Dichloroethane-d4	4.314	67	19050	28.47 ug/		0.00
	iked Amount 30.000	- 404	0.0	Recove		.90%	0.00
•	Toluene-d8	5.494	98	132069 Recove	30.27 ug/ ery = 100	.90%	.00
_	iked Amount 30.000	7.058	174	45878	29.21 ug/		0.00
-	Bromofluorobenzene iked Amount 30.000	7.050	1/4	Recove	•	.37%	
Sp	TREA FAMOUNE 30.000						
Tarq	et Compounds						value
	Chlorodifluoromethane	1.346	51	116799	29.9897	ug/l	52
6)	Dichlorodifluoromethane	1.346	85	111445	37.7573	ug/l	84
	Chloromethane	1.463		84101	35.1490	ug/l	81
	Bromomethane	1.782		45362	40.0532	ug/l	85
	Vinyl Chloride	1.547		86074	45.0378	ug/l ug/l	93 100
	Chloroethane	1.849		44760	42.4383 34.9155	ug/1 ug/1	86
	Trichlorofluoromethane	2.033		135255 47726	36.2671	ug/l	79
	Ethyl ether	2.238		150388	34.7386	ug/l	100
	Furan 1,1,2-Trichloro-1,2,2	2.405		84352	45.2634	ug/l	93
	Methylene Chloride	2.749		76272	39.2633	ug/l	81
	Acrolein	2.326		34542	190.4357	ug/l	100
	Acrylonitrile	2.926	53	15862	38.5346	ug/l	98
	Iodomethane	2.523	142	62713	25.8499	ug/l	99
19)	Acetone	2.425		57533	199.7990	ug/l	84
	Carbon Disulfide	2.582		145533	24.2191	ug/l	100
	t-Butyl Alcohol	2.818		16317	200.8312	ug/l	
	n-Hexane	3.192		115953	45.1275	ug/l ug/l	
	Di-isopropyl-ether	3.340	_	251075 128044	41.5357 40.6564	ug/1	
24)	1,1-Dichloroethene	2.405		41195	34.0535	ug/l	
	Methyl Acetate	2.966		145583	39.3158	ug/l	
	Methyl-t-butyl ether 1,1-Dichloroethane	3.291		136190	37.1615	ug/l	
	trans-1,2-Dichloroethene	2.966		83187	42.2077	ug/l	
	cis-1,2-Dichloroethene	3.743		141967	41.2779	ug/l	85
	Bromochloromethane	3.920	49	61769	40.2024	ug/l	
	2,2-Dichloropropane	3.763		128884	43.6791	ug/l	
32)	Ethyl acetate	3.792		45258	41.9631	ug/l	
	1,4-Dioxane	4.973		23577		ug/l	
	1,1-Dichloropropene	4.235		132055	44.3797	ug/l ug/l	
	Chloroform	3.979		151889 145974	40.0643 40.5867	ug/1	
37)	Cyclohexane	4.176 4.373		105441	41.4030	ug/l	
	1,2-Dichloroethane 2-Butanone	3.743		19115	43.7517	ug/l	90
	1,1,1-Trichloroethane	4.127		152163	40.0582	ug/l	99
42)		4.245		131998	41.7305	ug/l	96
	Vinyl Acetate	3.340		150802	34.3239	ug/l	100
44)	n-Heptane	4.530		181292	42.4148	ug/l	
45)	Bromodichloromethane	5.051		117043	37.0120	ug/l	
	Methylcyclohexane	4.894		146464	44.5917	ug/l	
	Dibromomethane	4.973		51675	39.8411	ug/l	
	1,2-Dichloropropane	4.894		79545	39.7562	ug/l	89
,	Trichloroethene	4.766		91390	38.2842	ug/l	
	Benzene	4.373		317531	40.6982	ug/l ug/l	
	tert-Amyl methyl ether	4.432		150397 98931	36.5170 57.1819	ug/l	
53)	Iso-propylacetate	4.392		55459	46.9429	ug/l	
54)	Methyl methacrylate Dibromochloromethane	6.006		81527	48.0778	ug/l	
	2-Chloroethylvinylether	5.219		38798	51.2643	ug/l	
50)	cis-1,3-Dichloropropene	5.327		118502	41.0834	ug/l	
581	trans-1,3-Dichloropropene	5.642		101399	41.4781	ug/l	
	Ethyl methacrylate	5.681		68924	48.6933	ug/l	71
60	1,1,2-Trichloroethane	5.760		57988	47.8505	ug/l	
61	1,2-Dibromoethane	6.084	107	58467	51.7952	ug/l	
62)	1,3-Dichloropropane	5.858	3 76	107624	50.4273	ug/l	
	4-Methyl-2-Pentanone	5.406		65443	64.3518	ug/l	
64)	2-Hexanone	5.888		47351	61.4712	ug/l	
	Tetrachloroethene	5.878		91115 215940	49.8238 44.1350	ug/l ug/l	
67) Toluene	5.534	92	213340	44.1330	49/I	_00
	U						

 SampleID : CAL @ 50 PPB
 Operator : SG
 Qt Meth : 1M S0512.M

 Data File: 1M68815.D
 Sam Mult : 1 Vial# : 3
 Qt On : 05/27/11 08:06


 Acq On : 05/27/11 07:50
 Misc : S,5g:.4
 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mir	1)
68)	1,1,1,2-Tetrachloroethane	6.419	133	81795	50.4648	ug/l	81
	Chlorobenzene	6.380	112	229883	49.6004	ug/1	95
71)	n-Butyl acrylate	6.665	55	110938	52.3785	ug/l	98
	n-Amyl acetate	6.793	43	102772	56.1293	ug/l	83
	Bromoform	6.872	173	49840	50.1492	ug/l	90
74)	Ethylbenzene	6.429	106	98288	51.4683	ug/l	87
75)	1,1,2,2-Tetrachloroethane	7.108	83	66370	52.5924	ug/l	95
77)	Styrene	6.744	104	234178	48.4706	ug/l	92
78)	m&p-Xylenes	6.498	106	306541	102.0439	ug/l	86
79)	o-Xylene	6.734	106	147446	46.8323	ug/l	83
80)	trans-1,4-Dichloro-2-b	7.137	53	49333	68.2489	ug/l	95
81)	1,3-Dichlorobenzene	7.737	146	182209	46.8444	ug/l	89
82)	1,4-Dichlorobenzene	7.786	146	172701	47.1936	ug/l	95
83)	1,2-Dichlorobenzene	8.032	146	152368	45.3094	ug/l	90
84)	Isopropylbenzene	6.950	105	391486	53.2213	ug/l	95
85)	Cyclohexanone	7.019	55	10413	315.3272	ug/l	94
86)	Camphene	7.137	93	169340	52.9744	ug/l	97
87)	1,2,3-Trichloropropane	7.147	75	82506	51.2066	ug/l	89
88)	2-Chlorotoluene	7.275	91	225283	47.6470	ug/l	96
89)	p-Ethyltoluene	7.265	105	466910	52.7166	ug/l	83
90)	4-Chlorotoluene	7.334	91	232832	48.9180	ug/l	92
91)	n-Propylbenzene	7.196	91	489995	53.1346	ug/l	96
92)	Bromobenzene	7.157	77	253202	53.0248	ug/l	82
93)	1,3,5-Trimethylbenzene	7.295	105	305438	48.1258	ug/l	95
94)	Butyl methacrylate	7.304	41	121341	60.8871	ug/l	69
95)	t-Butylbenzene	7.511	119	327914	51.0764	ug/l	85
96)	1,2,4-Trimethylbenzene	7.540	105	342909	50.9530	ug/l	85
97)	sec-Butylbenzene	7.649	105	436826	51.0888	ug/l	100
98)	4-Isopropyltoluene	7.727	119	356370	49.6093	ug/l	94
	n-Butylbenzene	7.983	91	397351	46.3673	.ug/l	97
100)	p-Diethylbenzene	7.963	119	184728	47.4320	ug/l	92
101)	1,2,4,5-Tetramethylben	8.465	119	293152	43.1605	ug/1	93
102)	1,2-Dibromo-3-Chloropr	8.514	157	11690	47.6291	ug/l	69
	Camphor	8.996	95	48268	431.4234	ug/l	89
	Hexachlorobutadiene	9.164	225	106588	42.2962	ug/l	95
	1,2,4-Trichlorobenzene	9.065	180	127500	47.6082	ug/l	96
	1,2,3-Trichlorobenzene	9.390	180	113059	48.2158	ug/l	98
107)	Naphthalene	9.233	128	176874	43.2782	ug/l	100
						-	-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

IM_S0512.M Tue Jun 07 06:50:14 2011 SYSTEM1

Page: 1

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 6/1/2011 7:04:00 A Data File: 1M69044.D Method: EPA 8260B

Instrument: GCMS 1

Cont Calibration Date/Time	e 6/1/2	011 7:0	04:00 A	1	Method: EPA	8260B					
TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp	Lo Hi Lim Lim	Initial RF	RF	%Diff Flag	
Fluorobenzene	1	0		4.53	30.00	30			0.000	0.00	
Chlorodifluoromethane	i	ŏ	'	1.35	44.68	30		0.961	0.000	0.00	
Dichlorodifluoromethane	i	ŏ		1.35	47.51	50		0.611	0.615	4.98	
Chloromethane	1	0	CP	1.46	50.51	50	0.1	0.525	0.530	1.03	
Bromomethane	1	ŏ	0.	1.78	54.88	50	0.1	0.248	0.273	9.76	
Vinvl Chloride	1	ō	CC	1.55	56.39	50	20	0.419	0.473	12.78	
Chloroethane	1	0		1.85	53.31	50		0.231	0.247	6.62	
Trichlorofluoromethane	1	0		2.03	48.23	50		0.825	0.819	3.54	
Ethvl ether	1	0		2.24	46.23	50		0.261	0.267	7.54	
Furan	1	0		2.26	43.41	50		0.877	0.824	13.18	
1.1.2-Trichloro-1.2.2-trifluoroetha	1	0		2.41	54.94	50		0.409	0.449	9.88	
Methylene Chloride	1	0		2.74	48.13	50		0.426	0.410	3.73	
Acrolein	1	0		2.32	211.20	250		0.034	0.034	15.52	
Acrylonitrile	1	0		2.92	48.86	50		0.074	0.088	2.27	
lodomethane	1	0		2.51	53.16	50		0.532	0.566	6.32	
Acetone	1	0		2.43	275.02	250		0.063	0.069	10.01	
Carbon Disulfide	1	0		2.58	52.39	50		1.318	1.381	4.77	
t-Butyl Alcohol	1	0		2.80	278.44	250		0.015	0.020	11.38	
n-Hexane	1	0		3.17	55.65	50		0.564	0.627	11.30	
Di-isopropyl-ether	1	0		3.33	54.11	50		1.326	1.435	8.22	
1.1-Dichloroethene	1	0	CC	2.41	54.95	50	20	0.691	0.759	9.91	
Methyl Acetate	1	0		2.66	39.62	50		0.265	0.210	20.75	
Methyl-t-butyl ether		0	CD	2.96	53.86	50		0.708	0.875	7.72	
1.1-Dichloroethane	1	0	CP	3.28	48.63	50	0.1	0.745	0.782	2.75	
trans-1.2-Dichloroethene	1	0		2.96	51.98	50		0.432	0.449	3.95	
cis-1.2-Dichloroethene Bromochloromethane	1	0		3.74	55.68	50		0.754 0.337	0.840	11.36	
2.2-Dichloropropane	1	0		3.92 3.75	51.00 53.78	50 50		0.337	0.344 0.696	2.00 7.56	
Ethyl acetate		0		3.78	57.38	30		0.237	0.090	7.50	
1.4-Dioxane	4	Ö		4.96	2339.67	2500		0.002	0.003	6.41	
1.1-Dichloropropene	i	Ö		4.23	57.93	50		0.641	0.756	15.87	
Chloroform	1	ŏ	CC	3.97	49.99	50	20	0.831	0.831	0.02	
Dibromofluoromethane	i	ŏ	S	4.09	27.05	75	20	0.295	0.266	9.83	
Cyclohexane	1	0		4.18	51.32	50		0.733	0.810	2.64	
1.2-Dichloroethane-d4	1	ŏ	S	4.31	31.00	75		0.147	0.152	3.32	
1.2-Dichloroethane	1	Ō	-	4.36	55.06	50		0.559	0.615	10.13	
2-Butanone	1	Ō		3.74	55.66	50		0.096	0.107	11.31	
1.1.1-Trichloroethane	1	0		4.12	49.26	50		0.833	0.821	1.48	
Carbon Tetrachloride	1	0		4.24	46.25	50		0.694	0.642	7.51	
Vinvl Acetate	1	0		3.33	64.91	50		0.867	1.251	29.81	
n-Heptane	1	0		0.00	0.00			0.937			
Bromodichloromethane	1	0		5.05	48.11	50		0.622	0.667	3.79	
Methylcyclohexane	1	0		4.89	53.36	50		0.712	0.769	6.72	
Dibromomethane	1	0		4.96	47.64	50		0.284	0.271	4.73	
1,2-Dichloropropane	1	0	CC	4.89	52.89	50	20	0.439	0.464	5.78	
Trichloroethene	1	0		4.76	48.16	50		0.524	0.504	3.69	
Benzene	1	0		4.36	52.36	50		1.711	1.792	4.71	
tert-Amyl methyl ether	_!	_0		4.43	52.20	50		0.808	0.943	4.40	
Chlorobenzene-d5	1	0	ı	6.35	30.00	30			0.000	0.00	
Iso-propylacetate	1	0		4.38	60.78			0.539			
Methyl methacrylate	1	0		4.94	51.11			0.317	0.540	0.40	
Dibromochloromethane	1	0		6.00	51.73	50		0.528	0.546	3.46	
2-Chloroethylvinylether	1	0		5.22	53.58	50		0.207	0.253	7.16	
cis-1.3-Dichloropropene	1	0		5.32	53.44	50		0.763	0.960	6.89	
trans-1.3-Dichloropropene	1	0		5.64	50.59	50		0.647	0.770	1.18	
Ethyl methacrylate	1	0		5.68	52.68			0.364	0.405	40.00	
1.1.2-Trichloroethane	1	0		5.75	56.30	50 50		0.377 0.351	0.425 0.380	12.60 8.11	
1,2-Dibromoethane 1,3-Dichloropropane	1	0		6.08 5.86	54.05 58.42	50 50		0.665	0.360	16.85	
4-Methyl-2-Pentanone	1	0		5.40	56.42 59.70	50 50		0.005	0.777	19.41	
4-MethVI-2-Pentanone 2-Hexanone	1	0		5.40 5.89	59.70 56.08	50 50		0.317	0.378	19.41	
z-nexanone Tetrachloroethene	1	0		5.89 5.87	54.89	50 50		0.205	0.269	9.77	
Tetrachioroethene Toluene-d8	1	0	S	5.49	30.61	75		1.359	1.386	2.05	
Toluene Toluene	1	0	CC	5.53	53.10	50	20	1.524	1.618	6.20	
1.1.1.2-Tetrachloroethane	1	0	00	6.41	55.03	50	20	0.505	0.555	10.06	
Chlorobenzene	1	Ö	CP	6.37	57.23	50	0.3	1.443	1.652	14.46	
1.4-Dichlorobenzene-d4	1	ŏ	ï	7.77	30.00	30	0.0		0.000	0.00	
n-Butyl acrylate	1	ŏ		6.66	63.05	-		1.017			
n-Amyl acetate	1	0		6.79	73.15			0.906			
		-									

CC - Continuing Calibration Check Compound N/O or N/Q - Not applicable for this run

Page 1 of 2

CP - System Performance Check Compound 1 - Internal Standard * - Failed the C or P Criteria

^{** -} No limit specified in method

Calibration Name: CAL @ 50 PPB Cont Calibration Date/Time 6/1/2011 7:04:00 A Data File: 1M69044.D Method: EPA 8260B

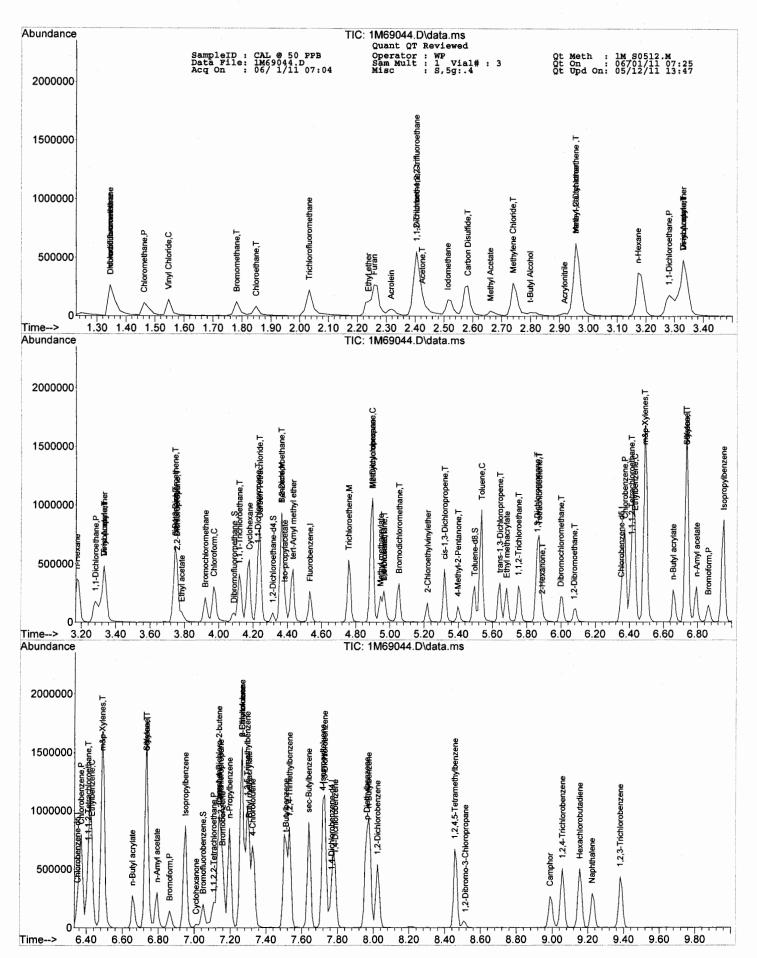
Instrument: GCMS 1

Cont Cambi ation Date/111	110 0/1/2	011 7.0	7.00 /1	IV	ieinoa; EPA	0200D				
TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp	Lo Hi Lim Lim	Initial RF	RF	%Diff Flag
Bromoform		•	0.0	0.00	50.44	50	•			
Ethylbenzene	1	0	CP	6.86	52.11	50	0.1	0.533	0.555	4.23
1.1.2.2-Tetrachloroethane	1	0	CC	6.43	51.78	50	20	0.956	1.060	3.57
	1	-	CP	7.11	57.05	50	0.3	0.676	0.772	14.09
Bromofluorobenzene	1	0	S	7.05	26.40	75		0.842	0.741	11.99
Styrene		0		6.73	57.70	50		2.261	2.966	15.40
m&p-Xvlenes	1	0		6.49	118.36	100		1.565	1.892	18.36
o-Xvlene	1	0		6.73	50.76	50		1.512	1.706	1.52
rans-1.4-Dichloro-2-butene	1	0		7.14	66.39	50		0.430	0.514	32.78
1.3-Dichlorobenzene	1	0		7.73	49.23	50		2.085	2.052	1.55
1,4-Dichlorobenzene	1	0		7.79	52.71	50		1.961	2.067	5.42
1.2-Dichlorobenzene	1	0		8.02	51.99	50		1.802	1.874	3.98
Isopropvibenzene	1	0		6.95	59.90	50		3.937	4.723	19.80
Cvclohexanone	1	0		7.01	297.61			0.018		
Camphene	1	0		7.14	53.54	50		1.788	1.834	7.08
1,2,3-Trichloropropane	1	0		7.15	59.97	50		0.864	1.036	19.94
2-Chlorotoluene	1	0		7.27	56.02	50		2.534	2.839	12.05
o-Ethyltoluene	1	0		7.27	62.93			4.758		
4-Chlorotoluene	1	0		7.32	45.26	50		2.551	2.309	9.49
n-Propylbenzene	1	0		7.20	54.42	50		5.316	5.379	8.84
Bromobenzene	1	0		7.16	51.92	50		2.559	2.657	3.84
1.3.5-Trimethylbenzene	1	0		7.30	40.97	50		3.401	2.787	18.05
Butvl methacrylate	1	0		7.31	70.74			1.192		
-Butvlbenzene	1	0		7.51	54.36	50		3.441	3.741	8.72
1.2.4-Trimethvlbenzene	1	0		7.53	55.02	50		3.607	3.969	10.04
sec-Butylbenzene	1	0		7.64	56.13	50		4.622	5.144	12.26
4-Isopropyltoluene	1	0		7.72	51.56	50		3.850	3.970	3.12
n-Butvibenzene	1	0		7.97	50.22	50		4.593	4.613	0.44
o-Diethylbenzene	1	0		7.96	49.33			2.087		****
1.2.4.5-Tetramethylbenzene	1	ŏ		8.46	46.20			3.232		
1,2-Dibromo-3-Chloropropane	1	ō		8.52	51.24	50		0.132	0.135	2.49
Camphor	1	0		8.99	535.27	500		0.039	0.064	7.05
Hexachlorobutadiene	1	ŏ		9.15	33.36	50		1.351	0.901	33.28
1.2.4-Trichlorobenzene	1	ŏ		9.06	50.81	50		1.435	1.458	1.62
1.2.3-Trichlorobenzene	i	ŏ		9.38	49.54	50		1.257	1.245	0.92
Naphthalene	1	Õ		9.22	45.35	50 50		1.770	1.986	9.31
1,2-Dioxane	1	100		0.00	0.00	5000			0.000	100.00
Freon 113	1	100		0.00	0.00	50			0.000	100.00
FIEUII II3		100		0.00	0.00	50			0.000	100.00

SampleID : CAL @ 50 PPB Data File: 1M69044.D Acq On : 06/ 1/11 07:04

Operator : WP Sam Mult : 1 Vial# : 3 Misc : S,5g:.4 Qt Meth : 1M_S0512.M Qt On : 06/01/11 07:25 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
Internal Standards						
	4.531	96	134907	30.00 ug/	1 0	.00
52) Chlorobenzene-d5	6.351		102270			.00
70) 1,4-Dichlorobenzene-d4	7.767	152	56889	30.00 ug/	1 0	.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.088	111	35938	27.05 ug/	1 0	.01
Spiked Amount 30.000			Recove		.17%	
38) 1,2-Dichloroethane-d4	4.314	67	20452	31.00 ug/		.00
Spiked Amount 30.000	E 49E	98	Recove 141786	ery = 103 /30.61 ug		.00
66) Toluene-d8 Spiked Amount 30.000	5.495	30		ery = 102		.00
76) Bromofluorobenzene	7.049	174		26.40 ug/		.00
Spiked Amount 30.000				ery = 88		
Target Compounds						value
Target Compounds 5) Chlorodifluoromethane	1.346	51	171621	44.6813	ug/l	72
6) Dichlorodifluoromethane	1.346	85	138297	47.5091	ug/l	90
7) Chloromethane	1.463	50	119200	50.5139	ug/l	79
Bromomethane	1.782	94	61300	54.8819	ug/l	90
Vinyl Chloride	1.547		106286	56.3903	ug/l	97
10) Chloroethane	1.849		55453	53.3109	ug/l	92
11) Trichlorofluoromethane	2.033		184259	48.2299 46.2324	ug/l ug/l	85 86
12) Ethyl ether	2.239		60002 185337	43.4095	ug/l	100
13) Furan 14) 1,1,2-Trichloro-1,2,2			100975	54.9400	ug/l	93
15) Methylene Chloride	2.740		92214	48.1329	ug/l	84
16) Acrolein	2.317		37781	211.2017	ug/l	94
17) Acrylonitrile	2.917	53	19837	48.8643	ug/l	85
18) Iodomethane	2.514	142	127188		ug/l	87
19) Acetone	2.425	43	78102		ug/l	93
20) Carbon Disulfide	2.583	76	310451	52.3856	ug/l	100
21) t-Butyl Alcohol	2.799		22311	278.4408	ug/l ug/l	99 75
22) n-Hexane	3.173 3.331		141025 322594	55.6518 54.1124	ug/1	98
<pre>23) Di-isopropyl-ether 24) 1,1-Dichloroethene</pre>	2.406		170689		ug/l	97
25) Methyl Acetate	2.662		47273		ug/l	100
26) Methyl-t-butyl ether	2.957		196699		ug/l	68
27) 1,1-Dichloroethane	3.281		175755	48.6272	ug/l	97
28) trans-1,2-Dichloroethene	2.957	96	101027	51.9753	ug/l	94
29) cis-1,2-Dichloroethene	3.744		188871	55.6824	ug/l	84
30) Bromochloromethane	3.921		77282	51.0015	ug/l	65 90
31) 2,2-Dichloropropane	3.754		156510		ug/l ug/l	98
32) Ethyl acetate	3.783 4.964		61032 28978		ug/1	79
33) 1,4-Dioxane 34) 1,1-Dichloropropene	4.226			57.9325	ug/l	93
35) Chloroform	3.970		186910	49.9905	ug/l	87
37) Cyclohexane	4.177		182028		ug/l	91
39) 1,2-Dichloroethane	4.364	62	138298	55.0631	ug/l	90
40) 2-Butanone	3.744	43				99
41) 1,1,1-Trichloroethane	4.118		184534	49.2586	ug/1	94 97
42) Carbon Tetrachloride	4.236		144265	46.2456	ug/l ug/l	100
43) Vinyl Acetate	3.331 5.052		281243 150028	64.9074 48.1052	ug/1	93
45) Bromodichloromethane 46) Methylcyclohexane	4.895		172843	53.3578	ug/l	92
47) Dibromomethane	4.964		60934	47.6358	ug/l	91
48) 1,2-Dichloropropane	4.895		104369	52.8915	ug/l	99
49) Trichloroethene	4.757		113375	48.1572	ug/1	87
50) Benzene	4.364		402854	52.3552	ug/l	100
51) tert-Amyl methyl ether	4.432		212026	52.1998	ug/l	79
53) Iso-propylacetate	4.383		111615	60.7756	ug/l ug/l	87 82
54) Methyl methacrylate	4.944		64098 93115	51.1121 51.7302	ug/l	92
55) Dibromochloromethane	5.997 5.219		43043	53.5783	ug/l	84
56) 2-Chloroethylvinylether 57) cis-1,3-Dichloropropene	5.318		163635	53.4439	ug/l	85
58) trans-1,3-Dichloropropene	5.642	_	131277	50.5888	ug/l	97
59) Ethyl methacrylate	5.682		79159	52.6841	ug/l	74
60) 1,1,2-Trichloroethane	5.751	. 97	72422	56.2989	ug/l	97
61) 1,2-Dibromoethane	6.075		64768	54.0530	ug/l	95
62) 1,3-Dichloropropane	5.859		132360	58.4244	ug/1	97 97
63) 4-Methyl-2-Pentanone	5.396		64451	59.7047	ug/1	97 90
64) 2-Hexanone	5.888		45856 106544	56.0815 54.8855	ug/l ug/l	80
65) Tetrachloroethene	5.869 5.534		275769	53.0978	ug/1	96
67) Toluene 68) 1,1,1,2-Tetrachloroethane	6.410		94683	55.0319	ug/l	79
30, 2,2,2,2 2002001202001101						

Operator : WP Sam Mult : 1 Vial# : 3 Misc : S,5g:.4 SampleID : CAL @ 50 PPB Data File: 1M69044.D Qt Meth : 1M_S0512.M Qt On : 06/01/11 07:25 Qt Upd On: 05/12/11 13:47 Acq On : 06/ 1/11 07:04

Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
69)	Chlorobenzene	6.370	112	281545	57.2278	ug/l	96
71)	n-Butyl acrylate	6.656	55	135723	63.0544	ug/l	96
72)	n-Amyl acetate	6.793	43	136110	73.1466	ug/l	88
73)	Bromoform	6.862	173	52635	52.1134	ug/l	84
74)	Ethylbenzene	6.429	106	100480	51.7845	ug/l	91
75)	1,1,2,2-Tetrachloroethane	7.108	83	73161	57.0453	ug/l	90
77)	Styrene	6.734	104	281267	57.6987	ug/l	89
78)	m&p-Xylenes	6.488	106	358867	118.3590	ug/l	93
79)	o-Xylene	6.734	106	161754	50.7620	ug/l	94
80)	trans-1,4-Dichloro-2-b	7.138	53	48772	66.3923	ug/l	95
81)	1,3-Dichlorobenzene	7.728	146	194588	49.2258	ug/l	92
82)	1,4-Dichlorobenzene	7.787	146	196020	52.7081	ug/l	94
83)	1,2-Dichlorobenzene	8.023	146	177674	51.9885	ug/l	91
84)	Isopropylbenzene	6.951	105	447794	59.9013	ug/l	95
85)	Cyclohexanone	7.010	55	9988	297.6139	ug/l	95
86)	Camphene	7.138	93	173937	53.5411	ug/l	100
87)	1,2,3-Trichloropropane	7.148	75	98199	59.9703	ug/l	88
88)	2-Chlorotoluene	7.266	91	269202	56.0241	ug/l	96
89)	p-Ethyltoluene	7.266	105	563096	62.9332	ug/l	72
90)	4-Chlorotoluene	7.325	91	218906	45.2557	ug/l	94
91)	n-Propylbenzene	7.197	91	510003	54.4186	ug/l	96
92)	Bromobenzene	7.157	77	251966	51.9210	ug/l	87
93)	1,3,5-Trimethylbenzene	7.295	105	264273	40.9729	ug/l	81
94)	Butyl methacrylate	7.305	41	143269	70.7390	ug/l	64
95)	t-Butylbenzene	7.512	119	354688	54.3621	ug/l	87
96)	1,2,4-Trimethylbenzene	7.531	105	376297	55.0187	ug/l	89
97)	sec-Butylbenzene	7.640		487733	56.1291	ug/l	99
98)	4-Isopropyltoluene	7.718	119	376403	51.5589	ug/l	94
99)		7.974	91	437352	50.2178	ug/l	99
	p-Diethylbenzene	7.964		195243	49.3291	ug/l	91
101)	1,2,4,5-Tetramethylben	8.456	119	318901	46.1997	ug/l	95
102)	1,2-Dibromo-3-Chloropr	8.515	157	12782	51.2443	ug/l	84
103)	Camphor	8.987	95	60861	535.2695	ug/l	87
104)		9.155	225	85441	33.3617	ug/l	91
105)		9.056	180	138285	50.8084	ug/l	96
	1,2,3-Trichlorobenzene	9.381	180	118056	49.5406	ug/l	93
107)	Naphthalene	9.223	128	188338	45.3453	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:50:20 2011 SYSTEM1

Page: 1

GC/MS Volatile Data Raw QC Data

Form 5

Tune Name: BFB TUNE

Data File: 1M68107.D Instrument: GCMS 1 Analysis Date: 05/12/11 08:37 Method: EPA 8260B
Tune Scan/Time Range: Average of 4.317 to 4.356 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	<u>Fail</u>
50	95	15	40	19.8	6089	PASS
75	95	30	60	52.1	15994	PASS
95	95	100	100	100.0	30694	PASS
96	95	5	9	7.2	2202	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	82.7	25390	PASS
175	174	5	9	7.6	1929	PASS
176	174	95	101	96.3	24445	PASS
177	176	5	9	6.8	1670	PASS

Data File	Sample Number	Analysis Date:
1M68108.D	BLK	05/12/11 08:48
1M68109.D	CAL @ 0.5 PPB	05/12/11 09:05
1M68110.D	CAL @ 1 PPB	05/12/11 09:21
1M68111.D	CAL @ 2 PPB	05/12/11 09:37
1M68112.D	CAL @ 5 PPB	05/12/11 09:53
1M68113.D	CAL @ 500 PPB	05/12/11 10:10
1M68114.D	CAL @ 250 PPB	05/12/11 10:26
1M68115.D	CAL @ 100 PPB	05/12/11 10:42
1M68116.D	CAL @ 50 PPB	05/12/11 10:58
1M68117.D	CAL @ 20 PPB	05/12/11 11:15
1M68118.D	ICV	05/12/11 11:32
1M68119.D	BLK	05/12/11 11:48
1M68120.D	DAILY BLANK	05/12/11 12:07
1M68121.D	MBS7666	05/12/11 12:23
1M68122.D	AC58853-010	05/12/11 12:40
1M68123.D	AC58853-011	05/12/11 12:56
1M68124.D	AC58853-014	05/12/11 13:12
1M68125.D	AC58853-017	05/12/11 13:28
1M68126.D	AC58853-001	05/12/11 13:44
1M68127.D	BLK	05/12/11 14:01
1M68128.D	AC58853-003	05/12/11 14:17
1M68129.D	BLK	05/12/11 14:33
1M68130.D	AC58804-005	05/12/11 14:49
1M68131.D	BLK	05/12/11 15:06
1M68132.D	AC58853-006	05/12/11 15:22
1M68133.D	AC58853-008	05/12/11 15:38
1M68134.D	AC58853-009	05/12/11 15:55
1M68135.D	BLK	05/12/11 16:11
1M68136.D	AC58853-019	05/12/11 16:27
1M68137.D	BLK	05/12/11 16:43
1M68138.D	AC58804-005	05/12/11 16:59
1M68139.D	BLK	05/12/11 17:15
1M68140.D	AC58853-001	05/12/11 17:31
1M68141.D	BLK	05/12/11 17:48
1M68142.D	AC58853-009	05/12/11 18:04
1M68143.D	BLK	05/12/11 18:20
1M68144.D	AC58995-001(5X)	05/12/11 18:36
1M68145.D	MBS7671	05/12/11 18:52
1M68146.D	AC58853-019(MS)	05/12/11 19:08
1M68147.D	AC58853-019(MSD	05/12/11 19:24

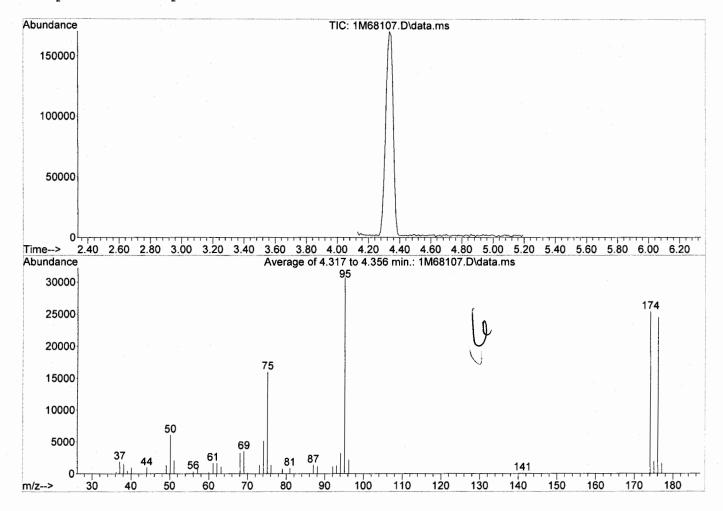
Data Path : G:\GcMsData\2011\GCMS_1\Data\05-12-11\

Data File : 1M68107.D

Acq On : 12 May 2011 8:37

Operator : WP

Sample : BFB TUNE Misc : S,5g


ALS Vial : 5 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2011\GCMS_1\MethodQt\1M_S0412.M

Title : @GCMS 1,ug,624,8260

Last Update : Tue Apr 12 12:07:38 2011

Spectrum Information: Average of 4.317 to 4.356 min.

	arget Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail	
1	50	95	15	40	19.8	6089	PASS	Ī
	75	95	30	60	52.1	15994	PASS	
İ	95	95	100	100	100.0	30694	PASS	
İ	96	95	5	9	7.2	2202	PASS	
	173	174	0.00	2	0.0	0	PASS	ĺ
	174	95	50	100	82.7	25390	PASS	ĺ
	175	174	5	9	7.6	1929	PASS	
	176	174	95	101	96.3	24445	PASS	ĺ
	177	176	5	9	6.8	1670	PASS	
				. 				-

Form 5

Tune Name: BFB TUNE Instrument: GCMS 1

Data File: 1M68767.D Analysis Date: 05/26/11 14:22 Method: EPA 8260B

Tune Scan/Time Range: Average of 4.345 to 4.385 min								
Tgt	Rel	Lo	Hi	Rel	Raw	Pass/		
Mass	Mass	Lim	Lim	Abund	Abund	Fail		
50	95	15	40	20.6	7599	PASS		
75	95	30	60	50.9	18751	PASS		
95	95	100	100	100.0	36820	PASS		
96	95	5	9	6.7	2466	PASS		
173	174	0.00	2	0.0	0	PASS		
174	95	50	100	84.7	31197	PASS		
175	174	5	9	7.8	2419	PASS		
176	174	95	101	96.7	30174	PASS		
177	176	5	9	7.3	2203	PASS		

Data File	Sample Number	Analysis Date:
1M68768.D	50 PPB	05/26/11 14:31
1M68770.D	CAL @ 50 PPB	05/26/11 15:07
1M68771.D	BLK	05/26/11 15:30
1M68772.D	DAILY BLANK	05/26/11 15:47
1M68773.D	MBS9696	05/26/11 16:04
1M68774.D	AC59206-005	05/26/11 16:21
1M68775.D	AC59206-006	05/26/11 16:37
1M68776.D	AC59257-001	05/26/11 16:54
1M68777.D	AC59221-001	05/26/11 17:10
1M68778.D	AC59221-002	05/26/11 17:27
1M68779.D	AC59221-003	05/26/11 17:44
1M68780.D	AC59221-004	05/26/11 18:00
1M68781.D	AC59221-006	05/26/11 18:17
1M68782.D	AC59221-007	05/26/11 18:34
1M68783.D	AC59221-008	05/26/11 18:50
1M68784.D	AC59221-009	05/26/11 19:07
1M68785.D	AC59221-010	05/26/11 19:23
1M68786.D	AC59221-011(MS:	05/26/11 19:40
1M68787.D	AC59221-012(MSD	05/26/11 19:57
1M68788.D	AC59221-013	05/26/11 20:13
1M68789.D	AC59266-001	05/26/11 20:30
1M68790.D	AC59266-002	05/26/11 20:46
1M68791.D	AC59266-003	05/26/11 21:03
1M68792.D	AC59266-004	05/26/11 21:19
1M68793.D	BLK	05/26/11 21:36
1M68794.D	BLK	05/26/11 21:53
1M68795.D	MBS9697	05/26/11 22:09
1M68796.D	MBS9698	05/26/11 22:26
1M68797.D	AC59282-001	05/26/11 22:42
1M68798.D	BLK	05/26/11 22:59
1M68799.D	AC59284-008	05/26/11 23:16
1M68800.D	BLK	05/26/11 23:32
1M68801.D	AC59281-001(5X)	05/26/11 23:49
1M68802.D	AC59221-005	05/27/11 00:05
1M68803.D	BLK	05/27/11 00:22
1M68804.D	BLK	05/27/11 00:38
1M68805.D	BLK	05/27/11 00:55
1M68806.D	BLK	05/27/11 01:12

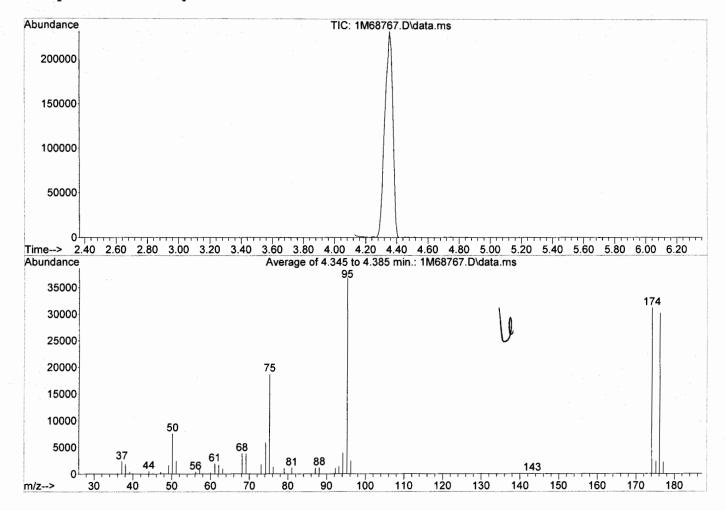
Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\

Data File: 1M68767.D

Acq On : 26 May 2011 14:22

Operator : WP

Sample : BFB TUNE Misc : S,5g


ALS Vial : 27 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2011\GCMS_1\MethodQt\1M_S0512.M

Title : @GCMS_1,ug,624,8260

Last Update : Thu May 12 11:45:30 2011

Spectrum Information: Average of 4.345 to 4.385 min.

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	15	40	20.6	7599	PASS
75	95	30	60	50.9	18751	PASS
95	95	100	100	100.0	36820	PASS
96	95	5	9	6.7	2466	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	84.7	31197	PASS
175	174	5	9	7.8	2419	PASS
176	174	95	101	96.7	30174	PASS
177	176	5	9	7.3	2203	PASS
i						

Form 5

Tune Name: BFB TUNE Instrument: GCMS 1

UNE Data File: 1M68813.D

1 Analysis Date: 05/27/11 07:24

Method: EPA 8260B

age: Average of 4.353 to 4.382 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	Fail
50	95	15	40	20.1	3763	PASS
75	95	30	60	48.6	9087	PASS
95	95	100	100	100.0	18684	PASS
96	95	5	9	7.0	1304	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	78.2	14611	PASS
175	174	5	9	8.9	1304	PASS
176	174	95	101	100.9	14737	PASS
177	176	5	9	5.0	743	PASS

Data File	Sample Number	Analysis Date:
1M68815.D	CAL @ 50 PPB	05/27/11 07:50
1M68816.D	BLK	05/27/11 08:07
1M68817.D	DAILY BLANK	05/27/11 08:24
1 M 68818.D	MBS9703	05/27/11 08:41
1M68819.D	BLK	05/27/11 08:58
1M68820.D	BLK	05/27/11 09:15
1M68821.D	AC59221-010	05/27/11 09:32
1M68822.D	AC59221-011(MS:	05/27/11 09:48
1M68823.D	AC59221-012(MSD	05/27/11 10:05
1M68824.D	AC59221-013	05/27/11 10:22
1M68825.D	AC59221-002(5X)	05/27/11 10:38
1M68826.D	AC59221-004(5X)	05/27/11 10:55
1 M 68827.D	BLK	05/27/11 11:12
1M68828.D	AC59243-001	05/27/11 11:28
1M68829.D	AC59203-004	05/27/11 11:45
1M68830.D	AC59203-011	05/27/11 12:02
1M68831.D	AC59145-006	05/27/11 12:18
1M68832.D	AC59191-001	05/27/11 12:35
1M68833.D	AC59130-002	05/27/11 12:52
1M68834.D	BLK	05/27/11 13:08
1M68835.D	AC59145-006	05/27/11 13:25
1M68836.D	AC59284-008	05/27/11 13:42
1M68837.D	AC59281-001(5X)	05/27/11 13:58
1M68838.D	MBS9710	05/27/11 14:15
1M68839.D	AC59221-006(MS)	05/27/11 14:31
1M68840.D	AC59221-006(MSD	05/27/11 14:48
1M68841.D	AC59222-002	05/27/11 15:05
1M68842.D	AC59130-002	05/27/11 15:22
1M68843.D	BLK	05/27/11 15:38
1M68844.D	AC59259-008	05/27/11 15:55
1M68845.D	AC59259-003	05/27/11 16:11
1M68846.D	AC59236-001	05/27/11 16:28
1M68847.D	AC59236-003	05/27/11 16:44
1M68848.D	AC59236-002	05/27/11 17:01 05/27/11 17:18
1M68849.D 1M68851.D	AC59236-004 MBS9732	05/27/11 17:16
U.I COODIVII	MD98135	03/2//11 17.41

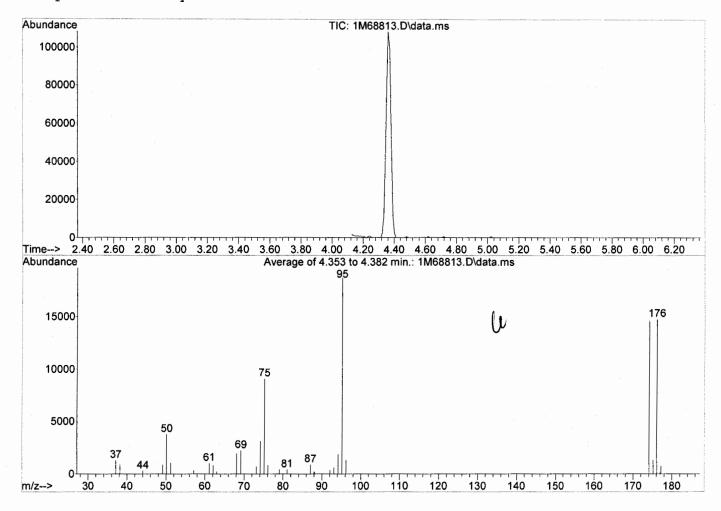
Data Path : G:\GcMsData\2011\GCMS 1\Data\05-27-11\

Data File: 1M68813.D

Acq On : 27 May 2011 7:24

Operator : SG

Sample : BFB TUNE Misc : S,5g


ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2011\GCMS_1\MethodQt\1M_S0512.M

Title : @GCMS_1,ug,624,8260

Last Update : Thu May 12 11:45:30 2011

Spectrum Information: Average of 4.353 to 4.382 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
Ī	50	95	15	40	20.1	3763	PASS
ĺ	75	95	30	60	48.6	9087	PASS
- [95	95	100	100	100.0	18684	PASS
	96	95	5	9	7.0	1304	PASS
1	173	174	0.00	2	0.0	j 0	PASS
İ	174	95	50	100	78.2	14611	PASS
İ	175	174	5	9	8.9	1304	PASS
-	176	174	95	101	100.9	14737	PASS
	177	176	5	9	5.0	743	PASS
_							

Form 5

 Tune Name:
 BFB TUNE
 Data File:
 1M69042.D

 Instrument:
 GCMS 1
 Analysis Date:
 06/01/11 06:37

 Method:
 EPA 8260B

 Tune Scan/Time Range:
 Average of 4.328 to 4.387 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	Fail
50	95	15	40	21.5	5323	PASS
75	95	30	60	52.6	13035	PASS
95	95	100	100	100.0	24797	PASS
96	95	5	9	6.3	1573	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	80.0	19848	PASS
175	174	5	9	7.8	1553	PASS
176	174	95	101	97.5	19348	PASS
177	176	5	9	7.2	1392	PASS

Data File	Sample Number	Analysis Date:
1M69044.D	CAL @ 50 PPB	06/01/11 07:04
1M69045.D	BLK	06/01/11 07:21
1M69046.D	DAILY BLANK	06/01/11 07:39
1M69047.D	MBS9764	06/01/11 07:55
1M69048.D	BLK	06/01/11 08:12
1M69049.D	AC59205-012	06/01/11 08:29
1M69050.D	AC59205-003	06/01/11 08:46
1M69051.D	AC59410-001	06/01/11 09:05
1M69052.D	BLK	06/01/11 09:22
1M69053.D	BLK	06/01/11 09:41
1M69054.D	AC59230-002	06/01/11 10:00
1M69055.D	AC59422-001	06/01/11 10:17
1M69056.D	AC59422-003	06/01/11 10:33
1M69057.D	AC59424-001	06/01/11 10:50
1M69058.D	AC59424-002	06/01/11 11:07
1M69059.D	BLK	06/01/11 11:23
1M69060.D	AC59366-013	06/01/11 11:40
1M69061.D	MBS9769	06/01/11 11:57
1M69062.D	BLK	06/01/11 12:14
1M69063.D	AC59305-002	06/01/11 12:33
1M69064.D	BLK	06/01/11 12:51
1M69065.D	AC59305-004	06/01/11 13:07
1M69066.D	BLK	06/01/11 13:24
1M69067.D	AC59297-016	06/01/11 13:41
1M69068.D	AC59297-017(MS:	06/01/11 13:56
1M69069.D	AC59297-018(MSD	06/01/11 14:12
1M69070.D	AC59266-002(MS)	06/01/11 14:28
1M69071.D	AC59266-002(MSD	06/01/11 14:45
1M69072.D	BLK	06/01/11 15:01
1M69073.D	AC59385-001	06/01/11 15:17
1M69074.D	AC59385-002	06/01/11 15:33
1M69075.D	AC59385-003	06/01/11 15:49
1M69076.D	AC59385-004	06/01/11 16:05
1M69077.D	BLK	06/01/11 16:21
1M69078.D	AC59423-001	06/01/11 16:38
1M69079.D	BLK	06/01/11 16:54
1M69080.D	MBS9773	06/01/11 17:10
1M69081.D	AC59424-003	06/01/11 17:26
1M69082.D	AC59328-003	06/01/11 17:42
1M69083.D	BLK	06/01/11 17:58
1M69084.D	BLK	06/01/11 18:14

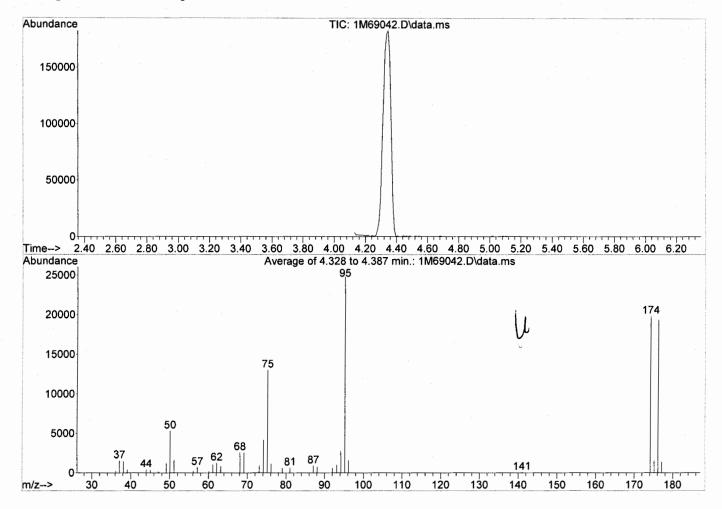
Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\

Data File: 1M69042.D

Acq On : 1 Jun 2011 6:37

Operator : WP

Sample : BFB TUNE Misc : S,5g


ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

 $\label{eq:method:constant} \mbox{Method: $G:\GcMsData\2011\GCMS_1\MethodQt\1M_S0512.M$} \\$

Title : @GCMS_1,ug,624,8260

Last Update : Thu May 12 11:45:30 2011

Spectrum Information: Average of 4.328 to 4.387 min.

1	arget Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1	50	95	15	40	21.5	5323	PASS
ĺ	75	95	30	60	52.6	13035	PASS
İ	95	95	100	100	100.0	24797	PASS
İ	96	95	5	9	6.3	1573	PASS
	173	174	0.00	2	0.0	0	PASS
1 :	174	95	50	100	80.0	19848	PASS
	175	174	5	9	7.8	1553	PASS
- [:	176	174	95	101	97.5	19348	PASS
	177	176	5	9	7.2	1392	PASS
				<i></i> .			

Form1

ORGANICS VOLATILE REPORT Sample Number: DAILY BLANK

Client Id:

Data File: 1M68772.D

Analysis Date: 05/26/11 15:47

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Units:	mg/Kg
•	

omis. mg/kg											
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	0.0020	U	75-00-3	Chloroethane	0.0020	U				
79-34-5	1,1,2,2-Tetrachloroethane	0.0050	U	67-66-3	Chloroform	0.0020	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0020	U	74-87-3	Chloromethane	0.0020	U				
79-00-5	1,1,2-Trichloroethane	0.0020	U	156-59-2	cis-1,2-Dichloroethene	0.0020	U				
75-34-3	1,1-Dichloroethane	0.0020	U	10061-01-5	cis-1,3-Dichloropropene	0.0050	U				
75-35-4	1,1-Dichloroethene	0.0020	U	110-82-7	Cyclohexane	0.0020	U				
120-82-1	1,2,4-Trichlorobenzene	0.0020	U	124-48-1	Dibromochloromethane	0.0050	U				
96-12-8	1,2-Dibromo-3-Chloropropa	0.0020	U	75-71-8	Dichlorodifluoromethane	0.0020	U				
106-93-4	1,2-Dibromoethane	0.0020	U	100-41-4	Ethylbenzene	0.0010	U				
95-50-1	1,2-Dichlorobenzene	0.0020	U	98-82-8	Isopropylbenzene	0.0010	U				
107-06-2	1,2-Dichloroethane	0.0020	U	136777612	m&p-Xylenes	0.0010	U				
78-87-5	1,2-Dichloropropane	0.0020	U	79-20-9	Methyl Acetate	0.0020	U				
541-73-1	1,3-Dichlorobenzene	0.0020	U	108-87-2	Methylcyclohexane	0.0020	U				
106-46-7	1,4-Dichlorobenzene	0.0020	U	75-09-2	Methylene Chloride	0.0020	U				
78-93-3	2-Butanone	0.0050	U	1634-04-4	Methyl-t-butyl ether	0.00050	U				
591-78-6	2-Hexanone	0.0020	U	95-47-6	o-Xylene	0.0010	U				
108-10-1	4-Methyl-2-Pentanone	0.0020	U	100-42-5	Styrene	0.0020	U				
67 - 64-1	Acetone	0.025	U	127-18-4	Tetrachloroethene	0.0020	U				
71-43-2	Benzene	0.0010	U	108-88-3	Toluene	0.0010	U				
75-27-4	Bromodichloromethane	0.0020	U	156-60-5	trans-1,2-Dichloroethene	0.0020	U				
75-25-2	Bromoform	0.0020	U	10061-02-6	trans-1,3-Dichloropropene	0.0050	U				
74-83-9	Bromomethane	0.0020	U	79-01-6	Trichloroethene	0.0020	U				
75-15-0	Carbon Disulfide	0.0020	U	75-69-4	Trichlorofluoromethane	0.0020	U				
56-23-5	Carbon Tetrachloride	0.0020	U	75-01-4	Vinyl Chloride	0.0020	U				
108-90-7	Chlorobenzene	0.0020	U		•						

ColumnID: (^) Indicates results from 2nd column

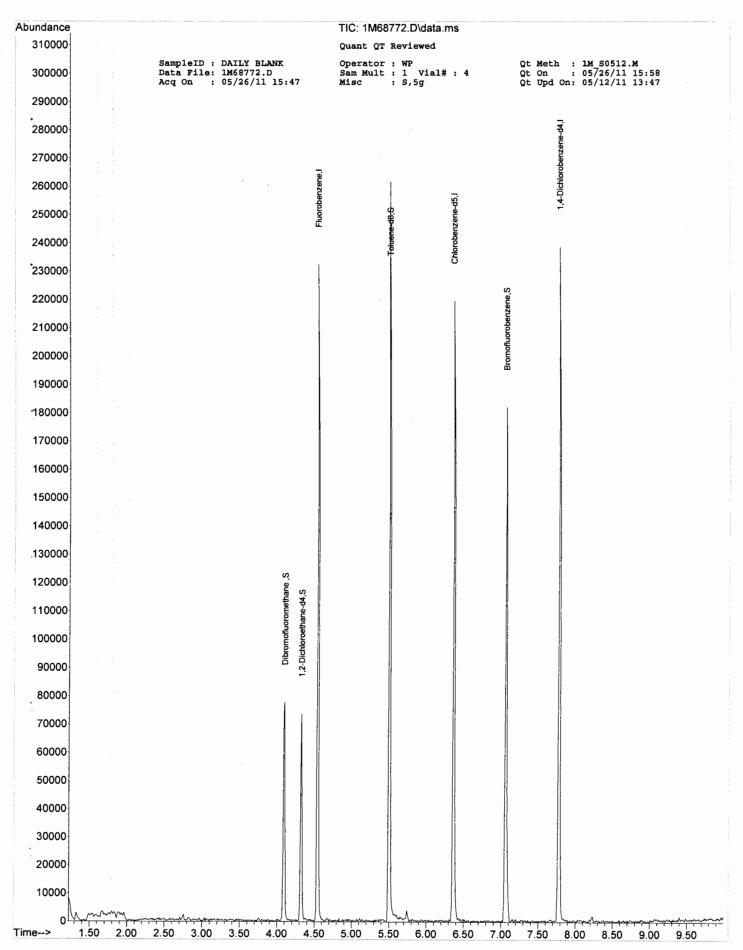
U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.


d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Un	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.540	96	125812	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.360	117	95662	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	54087	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.097	111	36086	29.13	ug/l	0.02
Spiked Amount 30.000			Recove	ry =	97.10%	
38) 1,2-Dichloroethane-d4	4.323	67	17604	28.61	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	95.37%	
66) Toluene-d8	5.504	98	121532	28.05	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	93.50%	
76) Bromofluorobenzene	7.058	174	43251	28.50	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	95.00%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Mon Jun 06 12:14:15 2011 RPT1

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 1M68817.D

Analysis Date: 05/27/11 08:24

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5g

Final Vol: NA

Dilution: 1.00

Solids: 100

Units: mg/Kg

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	0.0020	U	75-00-3 Chloroethane		0.0020	U
79-34-5	1,1,2,2-Tetrachloroethane	0.0050	U	67-66-3	Chloroform	0.0020	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0020	U	74-87-3	Chloromethane	0.0020	U
79-00-5	1,1,2-Trichloroethane	0.0020	U	156-59-2	cis-1,2-Dichloroethene	0.0020	U
75-34-3	1,1-Dichloroethane	0.0020	U	10061-01-5	cis-1,3-Dichloropropene	0.0050	U
75-35-4	1,1-Dichloroethene	0.0020	U	110-82-7	Cyclohexane	0.0020	U
120-82-1	1,2,4-Trichlorobenzene	0.0020	U	124-48-1	Dibromochloromethane	0.0050	U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0020	U	75-71-8	Dichlorodifluoromethane	0.0020	U
106-93-4	1,2-Dibromoethane	0.0020	U	100-41-4	Ethylbenzene	0.0010	U
95-50-1	1,2-Dichlorobenzene	0.0020	U	98-82-8	Isopropylbenzene	0.0010	U
107-06-2	1,2-Dichloroethane	0.0020	U	136777612	m&p-Xylenes	0.0010	U
78-87-5	1,2-Dichloropropane	0.0020	U	79-20-9	Methyl Acetate	0.0020	U
541-73-1	1,3-Dichlorobenzene	0.0020	U	108-87-2	Methylcyclohexane	0.0020	U
106-46-7	1,4-Dichlorobenzene	0.0020	U	75-09-2	Methylene Chloride	0.0020	U
78-93-3	2-Butanone	0.0050	U	1634-04-4	Methyl-t-butyl ether	0.00050	U
591-78-6	2-Hexanone	0.0020	U	95-47-6	o-Xylene	0.0010	U
108-10-1	4-Methyl-2-Pentanone	0.0020	U	100-42-5	Styrene	0.0020	U
67-64-1	Acetone	0.025	U	127-18-4	Tetrachloroethene	0.0020	U
71-43-2	Benzene	0.0010	U	108-88-3	Toluene	0.0010	U
75-27-4	Bromodichloromethane	0.0020	U	156-60-5	trans-1,2-Dichloroethene	0.0020	U
75-25-2	Bromoform	0.0020	U	10061-02-6	trans-1,3-Dichloropropene	0.0050	U
74-83-9	Bromomethane	0.0020	U	79-01-6	Trichloroethene	0.0020	U
75-15-0	Carbon Disulfide	0.0020	U	75-69-4	Trichlorofluoromethane	0.0020	U
56-23-5	Carbon Tetrachloride	0.0020	U	75-01-4	Vinyl Chloride	0.0020	U
108-90-7	Chlorobenzene	0.0020	U				

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

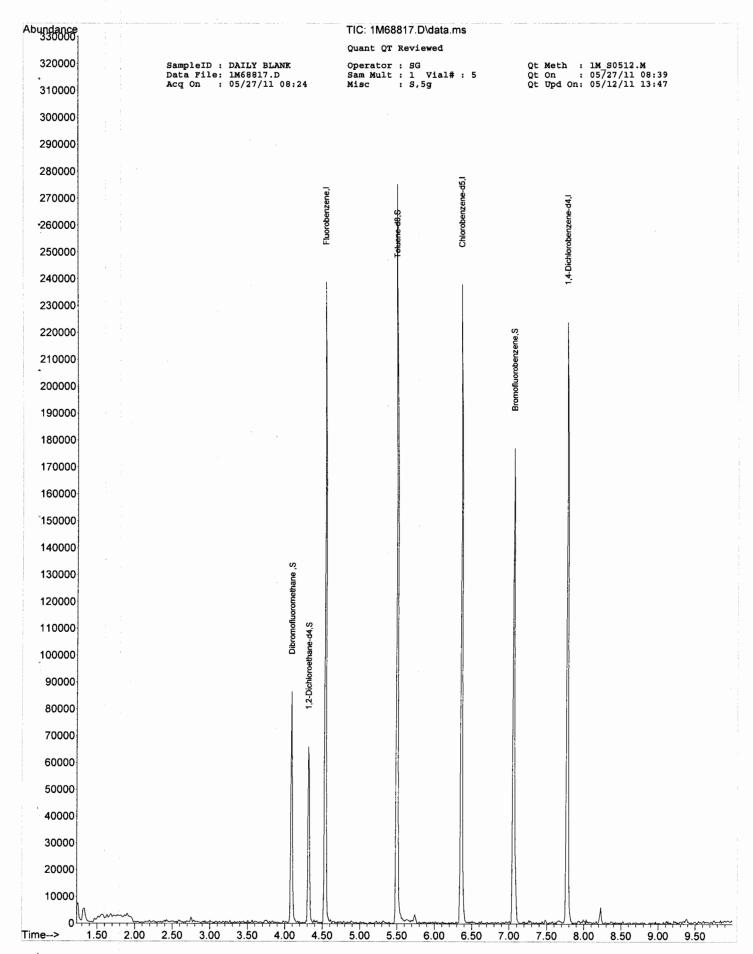
R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Qvalue

Operator : SG Sam Mult : 1 Vial# : 5 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:39 Qt Upd On: 05/12/11 13:47 SampleID : DAILY BLANK Data File: 1M68817.D Acq On : 05/27/11 08:24


Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	125647	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.359	117	94439	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	54866	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.086	111	35830	28.96	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	96.53%	
38) 1,2-Dichloroethane-d4	4.313	67	17845	29.04	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	96.80%	
66) Toluene-d8	5.493	98	129345	30.24	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	100.80%	
76) Bromofluorobenzene	7.057	174	44224	28.72	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	95.73%	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Target Compounds

1M_S0512.M Mon Jun 06 12:14:20 2011 RPT1

Form3 Recovery Data QC Batch: MBS9696

Data File

Sample ID:

MBS9696

Analysis Date

5/26/2011 4:04:00 PM

Spike or Dup: 1M68773.D Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

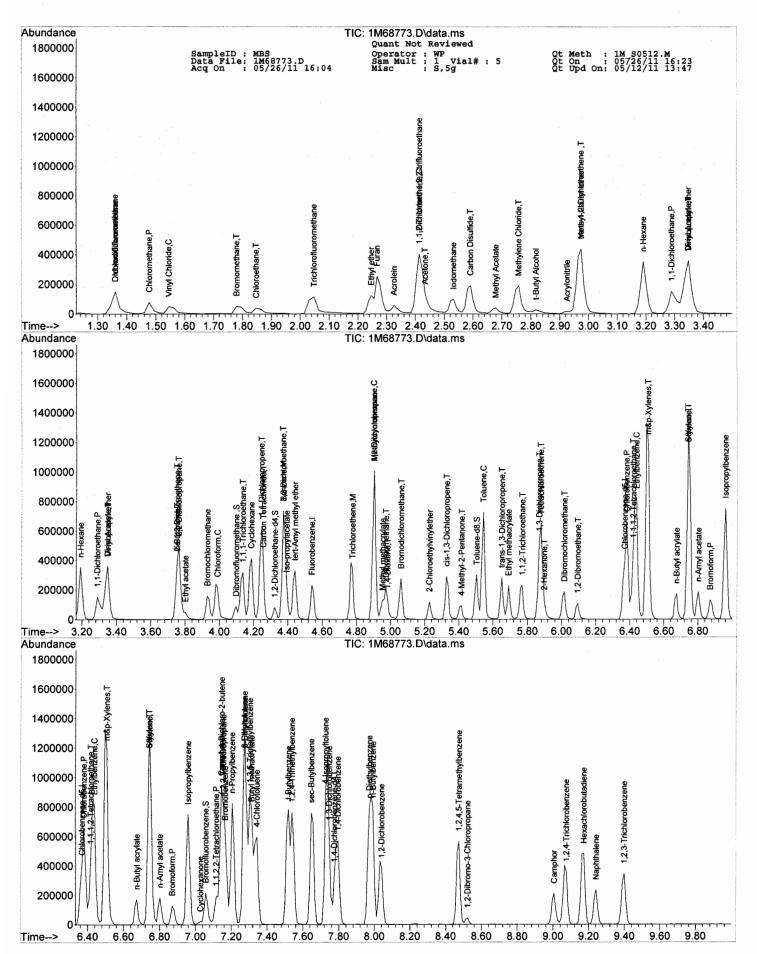
QC Type: MBS

		Spike	Sample	Expected	_	Lower	Upper		ME Uppe
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	31.8422	0	50	64	6	117	0	0
1,1-Dichloroethene	1	34.3508	0	50	69	8	114	0	0
1,1-Dichloroethane	1	35.2501	0	50	71	14	127	0	0
Chloroform	1 '	39.1969	0	50	78	26	119	0	0
1,2-Dichloroethane	1	43.7621	0	50	88	18	130	0	0
2-Butanone	1	41.8118	0	50	84	4	141	0	0
Carbon Tetrachloride	1	40.4024	0	50	81	. 19	122	0	0
Trichloroethene	1	38.5297	0	50	77	21	116	0	0
Benzene	1	38.9693	0	50	78	21	122	0	0
Tetrachloroethene	1	45.285	0	50	91	18	116	0	0
Toluene	1	40.55	0	50	81	19	128	0	0
Chlorobenzene	1	46.4357	0	50	93	21	117	0	0
1,4-Dichlorobenzene	1	47.6596	0	50	95	20	110	0	0
1,2-Dichlorobenzene	1	44.7069	0	50	89	19	113	0	0
n-Propylbenzene	1	50.9982	0	50	102	16	122	0	0
sec-Butylbenzene	1	50.3986	0	50	101	9	125	0	0

SampleID : MBS Data File: 1M68773.D Acq On : 05/26/11 16:04 Operator : WP Sam Mult : 1 Vial# : 5 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 05/26/11 16:23 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	s Dev(Min)
Inte	ernal Standards						
4)	Fluorobenzene	4.539	96	136413	30.00 ug	/1	0.00
	Chlorobenzene-d5	6.369		102566			0.00
70)	1,4-Dichlorobenzene-d4	7.776	152	58225	30.00 ug	/1	0.00
Syst	tem Monitoring Compounds						
	Dibromofluoromethane	4.096	111	39091	29.10 ug		0.02
	piked Amount 30.000	4 222	6.7		-	7.00%	
	1,2-Dichloroethane-d4 piked Amount 30.000	4.323	67		27.72 ug, ery = 9:	/⊥ 2.40%	0.00
	Toluene-d8	5.503	98	135043	•		0.00
	oiked Amount 30.000			Recov	•	5.90%	
	Bromofluorobenzene	7.058	174	49271	-		0.00
S	piked Amount 30.000			Recov	ery = 10	0.53%	
Targ	get Compounds						Qvalue
	Chlorodifluoromethane	1.360	51	110437	28.4347	ug/l	
	Dichlorodifluoromethane	1.360		64316	21.8505	ug/l	
	Chloromethane	1.478		68858	28.8581	ug/1	
	Bromomethane Vinyl Chloride	1.780 1.545		37905 60687		ug/l ug/l	
	Chloroethane	1.847		38447		ug/1	
	Trichlorofluoromethane	2.048		132001	34.1699	ug/l	
	Ethyl ether	2.247	59	48448	36.9178	ug/l	
	Furan	2.267		160560	37.1911	ug/l	
	1,1,2-Trichloro-1,2,2			78569	42.2771	ug/l	
	Methylene Chloride Acrolein	2.758 2.326		71506 33496	36.9119 185.1807	ug/l ug/l	
	Acrylonitrile	2.926		15826	38.5537	ug/l	
	Iodomethane	2.532		88505	36.5823	ug/1	
19)	Acetone	2.434	43	58275	202.9366	ug/l	86
	Carbon Disulfide	2.591		225183		ug/l	
	t-Butyl Alcohol	2.817		14881		ug/l	
-	n-Hexane Di-isopropyl-ether	3.191 3.349		114128 245688	44.5404 40.7571	ug/l ug/l	
	1,1-Dichloroethene	2.414		107886	34.3508	ug/l	
	Methyl Acetate	2.680		44889	37.2100	ug/1	
26)	Methyl-t-butyl ether	2.975	73	137549	37.2491	ug/l	
	1,1-Dichloroethane	3.290		128828		ug/l	
	trans-1,2-Dichloroethene			74235	37.7700	ug/l	
	cis-1,2-Dichloroethene Bromochloromethane	3.752 3.929		136921 57489	39.9210 37.5205	ug/l ug/l	
	2,2-Dichloropropane	3.762		118403	40.2383	ug/l	
	Ethyl acetate	3.801	43	38313	35.6221	ug/l	
	1,4-Dioxane	4.982			1974.4029	ug/l	
	1,1-Dichloropropene	4.244		127474		ug/1	
	Chloroform Cyclohexane	3.988 4.185	83 56	148190 141913	39.1969 39.5669	ug/l ug/l	
39)	•	4.372	62	111141	43.7621	ug/1	
40)		3.752	43	18217	41.8118	ug/l	
41)		4.136	97	145212	38.3343	ug/l	
42)		4.254	117	127444	40.4024	ug/l	
	Vinyl Acetate	3.349	43	166115	37.9140	ug/l	
45) 46)	Bromodichloromethane Methylcyclohexane	5.061 4.903	83 83	113991 148267	36.1467 45.2657	ug/l ug/l	
	Dibromomethane	4.972	174	52885	40.8870	ug/l	
48)		4.903	63	79289	39.7380	ug/l	
49)	Trichloroethene	4.775	130	91722	38.5297	ug/l	88
	Benzene	4.372	78	303202	38.9693	ug/l	
	tert-Amyl methyl ether	4.441	73	147760	35.9762	ug/l	85
53)	Iso-propylacetate Methyl methacrylate	4.392 4.952	43 41	70869 41265	38.4776 32.8100	ug/l ug/l	82 85
	Dibromochloromethane	6.015	129	78062	43.2423	ug/l	
56)		5.228	63	31790	39.4568	ug/l	
57)		5.326	75	112184	36.5340	ug/l	95
	trans-1,3-Dichloropropene	5.651	75	94732	36.4005	ug/l	
59)		5.690	41	54329	36.0542	ug/l	
60)		5.769	97 107	58587 55813	45.4125	ug/l	
61) 62)		6.094 5.867	107 76	55813 105552	46.4451 46.4567	ug/l ug/l	88 98
63)		5.415	43	53096	49.0439	ug/l	83
64)	-	5.897	43	36759	44.8262	ug/l	77
65)		5.877	164	88162	45.2850	ug/l	97
67)		5.543	92	211210	40.5500	ug/l	
68)	1,1,1,2-Tetrachloroethane	6.418	133	78500	45.4943	ug/l	66
	1	n					


Quantitation Report (Not Reviewed)

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-2611\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev (M	in)
69)	Chlorobenzene	6.379	112	229112	46.4357	ug/l	100
71)	n-Butyl acrylate	6.674	55	90404	41.0363	ug/l	96
72)	n-Amyl acetate	6.802	43	83231	43.7027	ug/l	84
73)	Bromoform	6.871	173	50562	48.9123	ug/l	93
74)	Ethylbenzene	6.438	106	92576	46.4517	ug/l	84
75)	1,1,2,2-Tetrachloroethane	7.117	83	66888	50.9574	ug/l	91
77)	Styrene	6.743	104	232521	46.1883	ug/l	99
78)	m&p-Xylenes	6.507	106	304174	97.1490	ug/l	83
79)	o-Xylene	6.743	106	145883	44.4367	ug/l	76
80)	trans-1,4-Dichloro-2-b	7.146	53	46718	62.1370	ug/l	94
81)		7.746	146	181974	44.9785	ug/l	90
82)	1,4-Dichlorobenzene	7.795	146	181407	47.6596	ug/l	91
83)	1,2-Dichlorobenzene	8.041	146	156377	44.7069	ug/l	92
84)	Isopropylbenzene	6.959	105	380829	49.7745	ug/l	94
85)	Cyclohexanone	7.028	55	8110	236.1100	ug/l	86
86)		7.146	93	175849	52.8876	ug/l	94
87)	1,2,3-Trichloropropane	7.156	75	83734	49.9632	ug/l	88
88)	2-Chlorotoluene	7.274	91	217476	44.2208	ug/l	98
89)	p-Ethyltoluene	7.274	105	454926	49.2827	ug/l	74
90)	4-Chlorotoluene	7.343	91	204992	41.4067	ug/l	93
91)	n-Propylbenzene	7.205	91	489172	50.9982	ug/l	94
92)	Bromobenzene	7.166	77	251766	50.6893	ug/l	83
93)	1,3,5-Trimethylbenzene	7.304	105	271137	41.0725	ug/l	89
94)	Butyl methacrylate	7.313	41	109792	52.9659	ug/l	70
95)	t-Butylbenzene	7.520	119	338614	50.7076	ug/l	84
96)	1,2,4-Trimethylbenzene	7.540	105	347846	49.6919	ug/l	86
97)	sec-Butylbenzene	7.648	105	448222	50.3986	ug/l	98
98)	4-Isopropyltoluene	7.727	119	366703	49.0777	ug/l	93
99)		7.992	91	419786	47.0948	ug/l	97
100)	p-Diethylbenzene	7.973	119	180327	44.5151	ug/l	89
101)	1,2,4,5-Tetramethylben	8.474	119	272315	38.5455	ug/l	94
102)	1,2-Dibromo-3-Chloropr	8.524	157	11046	43.2684	ug/l	68
103)	Camphor	9.006	95	47289	406.3613	ug/l	90
104)	Hexachlorobutadiene	9.173	225	107182	40.8905	ug/l	95
105)	1,2,4-Trichlorobenzene	9.074	180	121107	43.4759	ug/l	97
106)	1,2,3-Trichlorobenzene	9.399	180	103898	42.5990	ug/l	96
107)	Naphthalene	9.242	128	161284	37.9406	ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:47:39 2011 SYSTEM1

Form3 **Recovery Data** QC Batch: MBS9697

Data File

Sample ID: MBS9697

Analysis Date

Spike or Dup: 1M68795.D

5/26/2011 10:09:00 PM

Non Spike(If applicable):

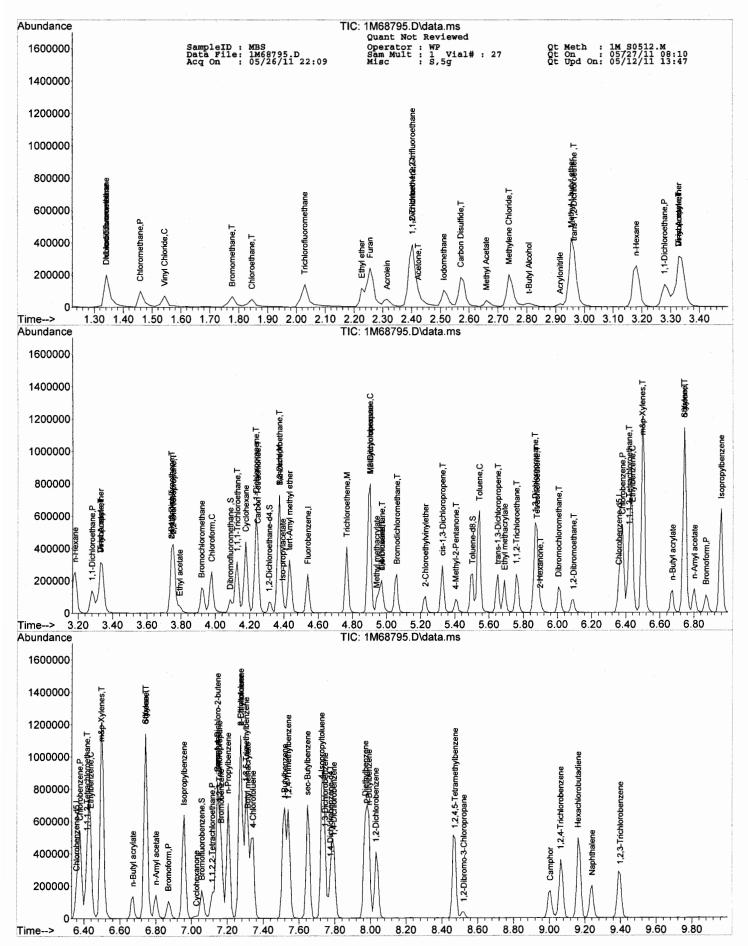
Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MBS

		Spike	Sample	Expected	_	Lower	Upper		ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	36.3058	0	50	73	6	117	0	0
1,1-Dichloroethene	1	36.9244	0	50	74	8	114	0	0
1,1-Dichloroethane	1	36.9282	0	50	74	14	127	0	0
Chloroform	1	40.4198	0	50	81	26	119	0	0
1,2-Dichloroethane	1	44.861	0	50	90	18	130	0 -	0
2-Butanone	1	43.4409	0	50	87	4	141	0	0
Carbon Tetrachloride	1	41.3702	0	50	83	19	122	0	0
Trichloroethene	1	38.1284	0	50	76	21	116	0	0
Benzene	1	41.453	0	50	83	21	122	0	0
Tetrachloroethene	1	48.6775	0	50	97	18	116	0	0
Toluene	1	47.367	0	50	95	19	128	0	0
Chlorobenzene	1	47.1093	0	50	94	21	117	0	0
1,4-Dichlorobenzene	1	44.6566	0	50	89	20	110	0	0
1,2-Dichlorobenzene	1	45.8869	0	50	92	19	113	0	0
n-Propylbenzene	1	48.5944	0	50	97	16	122	0	0
sec-Butylbenzene	1	49.4562	0	50	99	9	125	0	0


Operator : WP Sam Mult : 1 Vial# : 27 Misc : S,5g SampleID : MBS Data File: 1M68795.D Acq On : 05/26/11 22:09 Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:10 Qt Upd On: 05/12/11 13:47 Misc

Compound	R.T.	QIon	Response	Conc Unit	s Dev(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	125964	30.00 ug	/1	0.00
52) Chlorobenzene-d5	6.359		81625	30.00 ug		0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	50884	30.00 ug	/1	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.086	111	34787	28.04 ug	/1	0.00
Spiked Amount 30.000			Recov	ery = 93	3.47%	
38) 1,2-Dichloroethane-d4	4.313	67	17547	28.48 ug		0.00
Spiked Amount 30.000			Recov	•	4.93%	
66) Toluene-d8	5.503	98	124471	33.67 ug		0.00
Spiked Amount 30.000 76) Bromofluorobenzene	7.057	174	Recov 41091	ery = 11: 28.78 ug	2.23% /1	0.00
Spiked Amount 30.000	7.057	1/4	Recov		7 ± 5 . 93%	0.00
- .				•		
Target Compounds						Qvalue
5) Chlorodifluoromethane	1,342	51	132467	36.9361	ug/l	90 89
6) Dichlorodifluoromethane7) Chloromethane	1.342		69705 85123	25.6458 38.6340	ug/l ug/l	
8) Bromomethane	1.778		35809	34.3359	ug/1	88
9) Vinyl Chloride	1.543		63894	36.3058	ug/l	
10) Chloroethane	1.845		34597	35.6219	ug/l	
11) Trichlorofluoromethane	2.030	101	125128	35.0776	ug/l	84
12) Ethyl ether	2.227	59	46436	38.3199	ug/l	86
13) Furan	2.256		159545	40.0216	ug/l	
14) 1,1,2-Trichloro-1,2,2	2.404		72351	42.1607	ug/l	96
15) Methylene Chloride	2.739		69269	38.7233	ug/l	.94
16) Acrolein	2.316 2.916		27573	165.0806	ug/l ug/l	
17) Acrylonitrile 18) Iodomethane	2.516		14469 89656	38.1718 40.1321	ug/l	
19) Acetone	2.424		51777	195.2650	ug/l	
20) Carbon Disulfide	2.571		210624	38.0640	ug/l	
21) t-Butyl Alcohol	2.807		12181	162.8114	ug/l	
22) n-Hexane	3.181	57	95625	40.4150	ug/l	72
23) Di-isopropyl-ether	3.329		233958	42.0307	ug/l	
24) 1,1-Dichloroethene	2.404		107086	36.9244	ug/l	
25) Methyl Acetate	2.660		41616	37.3585	ug/l	
26) Methyl-t-butyl ether	2.955		124231	36.4332	ug/l	71 95
<pre>27) 1,1-Dichloroethane 28) trans-1,2-Dichloroethene</pre>	3.280 2.965		124623 75797	36.9282 41.7637	ug/l ug/l	
29) cis-1,2-Dichloroethene	3.742		134174	42.3652	ug/l	89
30) Bromochloromethane	3.919		58222	41.1510	ug/l	71
31) 2,2-Dichloropropane	3.752	77	109543	40.3154	ug/l	88
32) Ethyl acetate	3.791	43	33643	33.8749	ug/l	99
33) 1,4-Dioxane	4.972	88	19098		ug/l	89
34) 1,1-Dichloropropene	4.234	75	116956	42.6838	ug/l	99
35) Chloroform 37) Cyclohexane	3.978	83 56	141108	40.4198 39.9767	ug/l ug/l	86 94
39) 1,2-Dichloroethane	4.175 4.372	62	132400 105205	44.8610	ug/l	97
40) 2-Butanone	3.742	43	17477	43.4409	ug/l	85
41) 1,1,1-Trichloroethane	4.126	97	136313	38.9701	ug/l	98
42) Carbon Tetrachloride	4.244	117	120501	41.3702	ug/l	94
43) Vinyl Acetate	3.329	43	159570	39.4414	ug/l	100
45) Bromodichloromethane	5.060	83	107100	36.7788	ug/l	95
46) Methylcyclohexane	4.903	83	132528	43.8169	ug/l	97
47) Dibromomethane 48) 1,2-Dichloropropane	4.972	174 63	50546 74255	42.3203 40.3022	ug/l ug/l	93 81
48) 1,2-Dichloropropane 49) Trichloroethene	4.765	130	83814	38.1284	ug/l	92
50) Benzene	4.372	78	297821	41.4530	ug/l	100
51) tert-Amyl methyl ether	4.431	73	131037	34.5511	ug/l	91
53) Iso-propylacetate	4.391	43	62942	42.9410	ug/l	78
54) Methyl methacrylate	4.942	41	40057	40.0205	ug/l	88
55) Dibromochloromethane	6.005	129	64432	44.8488	ug/l	93
56) 2-Chloroethylvinylether	5.228	63	29912	46.6506	ug/l	90
57) cis-1,3-Dichloropropene	5.326	75 75	104173	42.6287	ug/l	89 94
58) trans-1,3-Dichloropropene 59) Ethyl methacrylate	5.651 5.690	75 41	85807 46816	41.4299 39.0390	ug/l ug/l	68
60) 1,1,2-Trichloroethane	5.759	97	52306	50.9455	ug/1	90
61) 1,2-Dibromoethane	6.093	107	47388	49.5510	ug/l	89
62) 1,3-Dichloropropane	5.867	76	96613	53.4316	ug/l	98
63) 4-Methyl-2-Pentanone	5.405	43	43970	51.0341	ug/l	80
64) 2-Hexanone	5.896	43	29004	44.4433	ug/l	81
65) Tetrachloroethene	5.877	164	75418	48.6775	ug/l	97
67) Toluene	5.542	92 133	196345	47.3670 50.4932	ug/l	98 79
68) 1,1,1,2-Tetrachloroethane	6.418	133	69337	50.4932	ug/l	19

Quantitation Report (Not Reviewed)

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	.)
69)	Chlorobenzene	6.379	112	184979	47.1093	ug/l	98
71)	n-Butyl acrylate	6.674	55	71825	37.3065	ug/l	95
72)	n-Amyl acetate	6.802	43	66152	39.7461	ug/l	84
73)	Bromoform	6.870	173	41367	45.7906	ug/l	96
74)	Ethylbenzene	6.438	106	69104	39.4949	ug/l	92
75)	1,1,2,2-Tetrachloroethane	7.116	83	54907	47.8646	ug/l	97
77)	Styrene	6.743	104	197867	44.9313	ug/l	99
78)	m&p-Xylenes	6.497	106	255070	93.0597	ug/l	91
79)	o-Xylene	6.743	106	121257	42.1646	ug/l	80
80)	trans-1,4-Dichloro-2-b	7.146	53	39496	60.1101	ug/l	91
81)	1,3-Dichlorobenzene	7.746	146	154446	43.6818	ug/l	90
82)	1,4-Dichlorobenzene	7.795	146	148546	44.6566	ug/l	94
83)	1,2-Dichlorobenzene	8.031	146	140268	45.8869	ug/l	91
84)	Isopropylbenzene	6.959	105	325911	48.7421	ug/l	94
85)	Cyclohexanone	7.028	55	6165	205.3784	ug/l	86
86)	Camphene	7.146	93	148218	51.0086	ug/l	98
87)	1,2,3-Trichloropropane	7.156	75	65634	44.8131	ug/l	90
88)	2-Chlorotoluene	7.274	91	208944	48.6154	ug/l	97
89)	p-Ethyltoluene	7.274	105	316289	38.9735	ug/l	81
90)	4-Chlorotoluene	7.343	91	171575	39.6567	ug/l	92
91)	n-Propylbenzene	7.205	91	407347	48.5944	ug/l	96
92)	Bromobenzene	7.166	77	212228	48.8934	ug/l	84
93)	1,3,5-Trimethylbenzene	7.303	105	291533	50.5334	ug/l	94
94)	Butyl methacrylate	7.313	41	87080	48.0698	ug/l	63
95)	t-Butylbenzene	7.520	119	291517	49.9529	ug/l	84
96)	1,2,4-Trimethylbenzene	7.539	105	288903	47.2258	ug/l	84
97)	sec-Butylbenzene	7.648	105	384386	49.4562	ug/l	98
98)	4-Isopropyltoluene	7.726	119	308893	47.3049	ug/l	93
99)	n-Butylbenzene	7.992	91	345100	44.3015	ug/l	97
100)	p-Diethylbenzene	7.972	119	145695	41.1547	ug/l	89
101)	1,2,4,5-Tetramethylben	8.474	119	256526	41.5491	ug/l	92
102)	1,2-Dibromo-3-Chloropr	8.523	157	10021	44.9164	ug/l	70
103)	Camphor	9.005	95	40514	398.3691	ug/l	87
104)	Hexachlorobutadiene	9.163	225	101083	44.1273	ug/l	93
105)	1,2,4-Trichlorobenzene	9.064	180	104337	42.8594	ug/l	96
106)	1,2,3-Trichlorobenzene	9.399	180	90175	42.3064	ug/l	97
107)	Naphthalene	9.241	128	140966	37.9451	ug/l	100
							-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:47:46 2011 SYSTEM1

Data File

Spike or Dup: 1M68818.D

Sample ID:

MBS9703

Analysis Date

5/27/2011 8:41:00 AM

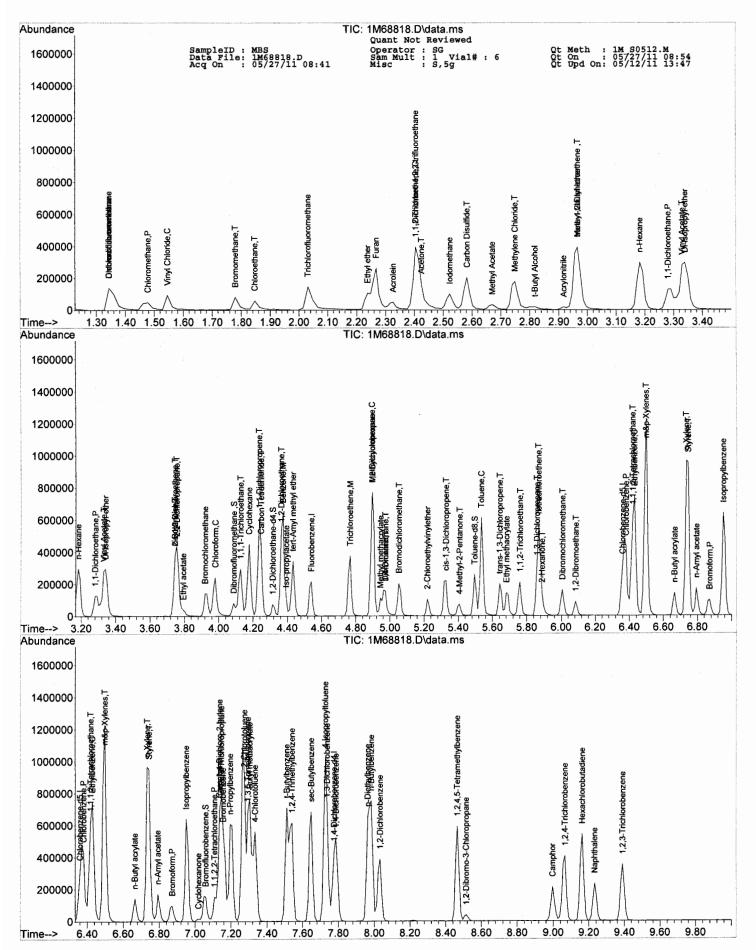
Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MBS

							1		
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Uppe Limit
Vinyl Chloride	1	43.0385	0	50	86	6	117	0	0
1,1-Dichloroethene	1	38.3016	0	50	77	8	114	0	0
1,1-Dichloroethane	1	39.2851	0	50	79	14	127	0	0
Chloroform	1	39.4946	0	50	79	26	119	0	0
1,2-Dichloroethane	1	43.8717	0	50	88	18	130	0	0
2-Butanone	1	45.606	0	50	91	4	141	0	0
Carbon Tetrachloride	1	41.8313	0	50	84	19	122	0	0
Trichloroethene	1	37.3597	0	50	75	21	116	0	0
Benzene	1	39.7096	0	50	79	21	122	0	0
Tetrachloroethene	1	46.2841	0	50	93	18	116	0	0
Toluene	1	41.1245	0	50	82	19	128	0	0
Chlorobenzene	1	46.833	0	50	94	21	117	0	0
1,4-Dichlorobenzene	1	44.5489	0	50	89	20	110	0	0
1,2-Dichlorobenzene	1	44.6844	0	50	89	19	113	0	0
n-Propylbenzene	1	49.7772	0	50	100	16	122	0	0
sec-Butylbenzene	1	49.4032	0	50	99	9	125	0	0


Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:54 Qt Upd On: 05/12/11 13:47 SampleID : MBS Data File: 1M68818.D Acq On : 05/27/11 08:41 Operator : SG Sam Mult : 1 Vial# : 6 Misc : S,5g

Compound	R.T.	OIon	Response	Conc Uni	ts Dev(Min)
Internal Standards	4 540	0.0	121010	30 00 11	~/1	0.01
 4) Fluorobenzene 52) Chlorobenzene-d5 	4.540		121810 83756		- '.	0.01
70) 1,4-Dichlorobenzene-d4	7.777		51293		-·.	0.01
System Monitoring Compounds	4 000	111	25276	20 41 11	~/1	0.01
36) Dibromofluoromethane Spiked Amount 30.000	4.088	111	35276 Recove	29.41 u ery =	9/1 98.03%	0.01
38) 1,2-Dichloroethane-d4	4.314	67	18025	30.25 u		0.00
Spiked Amount 30.000				ery = 1		
66) Toluene-d8	5.494	98	113970 Recov	30.05 u	g/⊥ 00.17%	0.00
Spiked Amount 30.000 76) Bromofluorobenzene	7.059	174	41079			0.00
Spiked Amount 30.000					95.13%	
						0 1
Target Compounds 5) Chlorodifluoromethane	1.344	51	118870	34.2751		Qvalue 98
6) Dichlorodifluoromethane	1.344		72270	27.4962		
7) Chloromethane	1.478		65624	30.7998		
8) Bromomethane	1.780		38290	37.9669		
 9) Vinyl Chloride 10) Chloroethane 	1.545		73245 37256	43.0385 39.6678		
11) Trichlorofluoromethane	2.032		121188	35.1317		
12) Ethyl ether	2.238	59	43372	37.0120		
13) Furan	2.268		157429	40.8375		
14) 1,1,2-Trichloro-1,2,2 15) Methylene Chloride	2.405		75998 64994	45.7961 37.5725		
16) Acrolein	2.327		30685	189.9773		
17) Acrylonitrile	2.917		12874	35.1221	. ug/l	
18) Iodomethane	2.523		86769	40.1643		
19) Acetone	2.425		53033 207484	206.8222 38.7753		
20) Carbon Disulfide 21) t-Butyl Alcohol	2.819		12662	175.0120		
22) n-Hexane	3.183		106351	46.4810		. 71
23) Di-isopropyl-ether	3.340		228605	42.4696		
24) 1,1-Dichloroethene	2.405		107417 42654	38.3016 39.5961		
<pre>25) Methyl Acetate 26) Methyl-t-butyl ether</pre>	2.966		125552	38.0763		
27) 1,1-Dichloroethane	3.281		128205	39.2851	. ug/l	
28) trans-1,2-Dichloroethene	2.966		72961	41.5721		
29) cis-1,2-Dichloroethene 30) Bromochloromethane	3.743		130792 53654	42.7057 39.2156	_ ,_	
31) 2,2-Dichloropropane	3.753		116812	44.4567		
32) Ethyl acetate	3.793		32987	34.3471		
33) 1,4-Dioxane	4.973		21352	1909.3068		
34) 1,1-Dichloropropene 35) Chloroform	4.235		116778 133331	44.0723 39.4946		
37) Cyclohexane	4.176		132897	41.4952		
39) 1,2-Dichloroethane	4.363	62	99492	43.8717		
40) 2-Butanone	3.743		17743	45.6060		
41) 1,1,1-Trichloroethane42) Carbon Tetrachloride	4.127		133421 117826	39.4441 41.8313		
43) Vinyl Acetate	3.330		152729	39.0378		
45) Bromodichloromethane	5.052	83	91846	32.6161		
46) Methylcyclohexane	4.894		123348	42.1726		
47) Dibromomethane 48) 1,2-Dichloropropane	4.973		42276 63996	36.6032 35.9186		
49) Trichloroethene	4.766		79416	37.3597		
50) Benzene	4.373		275887	39.7096		
51) tert-Amyl methyl ether	4.432		132108	36.0213		
53) Iso-propylacetate 54) Methyl methacrylate	4.393		65864 35613	43.7913 34.6753		
55) Dibromochloromethane	6.006		63990	43.4079		
56) 2-Chloroethylvinylether	5.219		27690	42.0864		
57) cis-1,3-Dichloropropene	5.327		94541	37.7029		
58) trans-1,3-Dichloropropene	5.642 5.681		78693 42240	37.0284 34.3270		
59) Ethyl methacrylate 60) 1,1,2-Trichloroethane	5.760		46783	44.4068		
61) 1,2-Dibromoethane	6.085		45365	46.2288	ug/1	. 88
62) 1,3-Dichloropropane	5.858		80708	43.4997		
63) 4-Methyl-2-Pentanone	5.406		40637 28558	45.9656 42.6465		
64) 2-Hexanone 65) Tetrachloroethene	5.888 5.868		73582	46.2841		
67) Toluene	5.534	92	174919	41.1245	ug/1	. 99
68) 1,1,1,2-Tetrachloroethane	6.419	133	67615	47.9864	ug/1	. 75
\ <i>)</i> -						

Ot Meth : 1M_S0512.M Ot On : 05/27/11 08:54 Ot Upd On: 05/12/11 13:47 SampleID : MBS Data File: 1M68818.D Operator : SG Sam Mult : 1 Vial# : 6 Misc : S,5g Acq On : 05/27/11 08:41

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	in)
69)	Chlorobenzene	6.380	112	188695	46.8330	ug/l	98
71)	n-Butyl acrylate	6.665	55	67995	35.0356	ug/l	95
72)	n-Amyl acetate	6.793	43	69128	41.2029	ug/l	88
73)	Bromoform	6.872	173	41008	45.0312	ug/l	98
74)	Ethylbenzene	6.429	106	82352	46.9206	ug/l	85
75)	1,1,2,2-Tetrachloroethane	7.108	83	53935	46.6424	ug/l	97
77)	Styrene	6.744	104	194103	43.6828	ug/l	93
78)	m&p-Xylenes	6.498	106	251797	91.0569	ug/l	87
79)	o-Xylene	6.734	106	124935	43.1408	ug/l	78
80)	trans-1,4-Dichloro-2-b	7.137	53	39366	59.4345	ug/l	100
81)	1,3-Dichlorobenzene	7.737	146	152894	42.8980	ug/l	92
82)	1,4-Dichlorobenzene	7.787	146	149379	44.5489	ug/l	93
83)	1,2-Dichlorobenzene	8.033	146	137690	44.6844	ug/l	92
84)	Isopropylbenzene	6.950	105	322055	47.7813	ug/l	96
85)	Cyclohexanone	7.019	55	6666	220.2978	ug/l	95
86)	Camphene	7.137	93	149224	50.9453	ug/l	96
87)	1,2,3-Trichloropropane	7.147	75	68586	46.4553	ug/l	87
88)	2-Chlorotoluene	7.275	91	183896	42.4462	ug/l	95
90)	4-Chlorotoluene	7.334	91	194368	44.5667	ug/l	92
91)	n-Propylbenzene	7.196	91	420616	49.7772	ug/l	96
92)	Bromobenzene	7.157	77	211005	48,2241	ug/l	83
93)	1,3,5-Trimethylbenzene	7.295	105	270308	46.4807	ug/l	52
94)	Butyl methacrylate	7.305	41	92260	50.5231	ug/l	72
95)	t-Butylbenzene	7.511	119	282417	48.0077	ug/l	86
96)	1,2,4-Trimethylbenzene	7.541	105	296977	48.1585	ug/l	85
97)	sec-Butylbenzene	7.649	105	387060	49.4032	ug/l	99
98)	4-Isopropyltoluene	7.728	119	316241	48.0440	ug/l	93
99)	n-Butylbenzene	7.983	91	368657	46.9482	ug/l	97
100)	p-Diethylbenzene	7.964	119	156790	43.9356	ug/l	90
101)	1,2,4,5-Tetramethylben	8.466	119	265654	42.6844	ug/l	92
102)	1,2-Dibromo-3-Chloropr	8.515	157	10370	46.1101	ug/l	68
103)	Camphor	8.997	95	42201	411.6483	ug/l	94
104)	Hexachlorobutadiene	9.164	225	107747	46.6614	ug/1	96
	1,2,4-Trichlorobenzene	9.066	180	115681	47.1403	ug/1	95
	1,2,3-Trichlorobenzene	9.390	180	100300	46.6815	ug/1	96
107)	Naphthalene	9.233	128	154641	41.2942	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:47:53 2011 SYSTEM1

Data File

Sample ID:

MBS9710

Analysis Date

5/27/2011 2:15:00 PM

Spike or Dup: 1M68838.D Non Spike(If applicable):

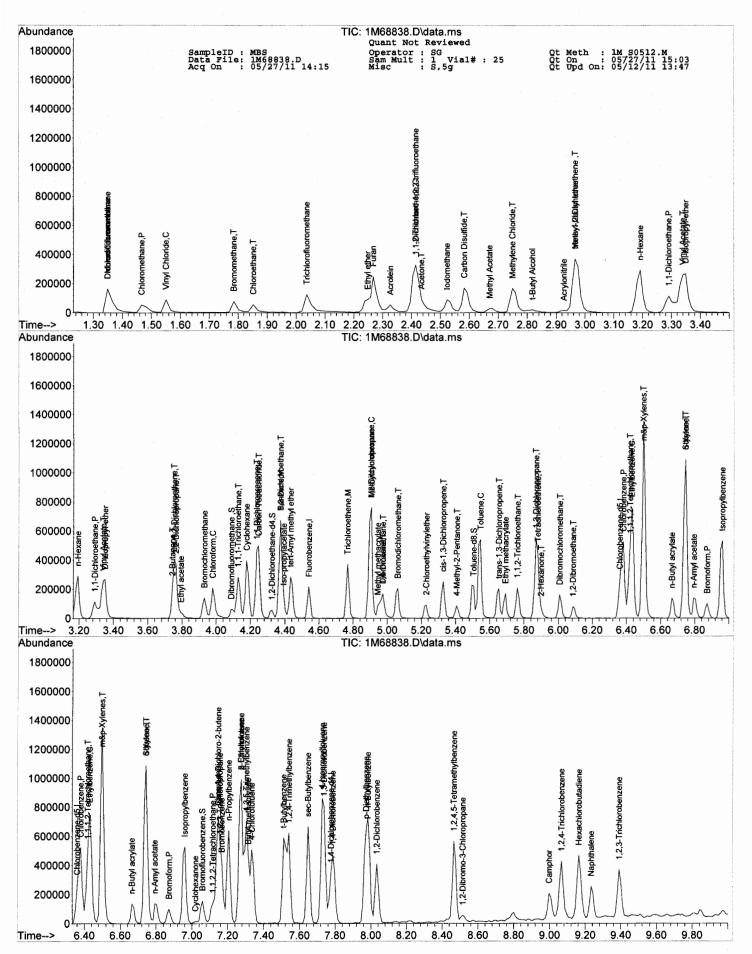
Inst Blank(If applicable): Method: 8260

Matrix: Soil

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Uppe Limit
Vinyl Chloride	1	43.8452	0	50	88	6	117	0	0
1.1-Dichloroethene	1	37.5845	Ö	50	75	8	114	. 0	Õ
1.1-Dichloroethane	1	37.1855	Ö	50	74	14	127	0	Ö
Chloroform	1	39.6904	Ō	50	79	26	119	Ō	0
1.2-Dichloroethane	1	45.9088	0	50	92	18	130	0	0
2-Butanone	1	43.9046	0	50	88	4	141	0	0
Carbon Tetrachloride	1	39.3906	0	50	79	19	122	0	0
Trichloroethene	1	37.3342	0	50	75	21	116	0	0
Benzene	1	40.0052	0	50	80	21	122	0	0
Tetrachloroethene	1	49.0366	0	50	98	18	116	0	0
Toluene	1	43.0484	0	50	86	19	128	0	0,
Chlorobenzene	1	48.1577	0	50	96	21	117	0	0
1,4-Dichlorobenzene	1	43.825	0	50	88	20	110	0	0
1,2-Dichlorobenzene	1	44.2736	0	50	. 89	19	113	0	0
n-Propylbenzene	1	48.245	0	50	96	16	122	0	0
sec-Butylbenzene	1	48.9738	0	50	98	9	125	0	0

Qt Meth : 1M_S0512.M Qt On : 05/27/11 15:03 Qt Upd On: 05/12/11 13:47 Operator : SG Sam Mult : 1 Vial# : 25 Misc : S,5g SampleID : MBS Data File: 1M68838.D Acq On : 05/27/11 14:15


įC	Resp via : iniciai calibracion	.1					
	Compound	R.T.	QIon	Response	Conc Units		in)
	Tutawa 1 Chandarda						
	Internal Standards 4) Fluorobenzene	4.540	96	112489	30.00 ug/	/1 0	.01
	52) Chlorobenzene-d5	6.360		82713	30.00 ug/		.00
	70) 1,4-Dichlorobenzene-d4	7.777		47359	30.00 ug/		.01
	,						
	System Monitoring Compounds						
	36) Dibromofluoromethane	4.088	111	30512	27.54 ug/		.01
	Spiked Amount 30.000	4 304	67	Recove		L.80%	0.1
	38) 1,2-Dichloroethane-d4 Spiked Amount 30.000	4.324	67	17654 Recov	32.09 ug/ erv = 106	71 U 5.97%	.01
	Spiked Amount 30.000 66) Toluene-d8	5.504	98	116761	31.17 ug		.01
	Spiked Amount 30.000	3.301	,,,	Recov	<u> </u>	3.90%	
	76) Bromofluorobenzene	7.059	174	35847	26.97 ug/		.00
	Spiked Amount 30.000			Recov	ery = 89	9.90%	
						_	
	Target Compounds			100555	20 5040	_	value
	5) Chlorodifluoromethane	1.349		123577	38.5849	ug/l ug/l	92 86
	6) Dichlorodifluoromethane7) Chloromethane	1.349 1.467		66625 66997	27.4489 34.0498	ug/l	81
	8) Bromomethane	1.786		37289	40.0381	ug/l	96
	9) Vinyl Chloride	1.551		68908	43.8452	ug/l	99
	10) Chloroethane	1.853		33851	39.0289	ug/l	84
	11) Trichlorofluoromethane	2.037	101	123762	38.8508	ug/l	83
	12) Ethyl ether	2.248		39790	36.7688	ug/l	82
	13) Furan	2.268		138936	39.0267	ug/l	98
	14) 1,1,2-Trichloro-1,2,2			68655	44.7993	ug/l ug/l	95 88
	15) Methylene Chloride	2.750 2.327		61459 28483	38.4729 190.9564	٠.	94
	16) Acrolein 17) Acrylonitrile	2.327		12190	36.0117		92
	18) Iodomethane	2.523		75641	37.9146		93
	19) Acetone	2.435		44666	188.6257		83
	20) Carbon Disulfide	2.582	76	188825	38.2123		100
	21) t-Butyl Alcohol	2.819		11461	171.5382	ug/l	100
	22) n-Hexane	3.192			46.7414		71
	23) Di-isopropyl-ether	3.350		207163	41.6752		99 92
	24) 1,1-Dichloroethene	2.415		97340 36036	37.5845 36.2245	ug/l ug/l	100
	<pre>25) Methyl Acetate 26) Methyl-t-butyl ether</pre>	2.671 2.966		115628	37.9723	ug/l	70
	27) 1,1-Dichloroethane	3.291		112067	37.1855	ug/l	97
	28) trans-1,2-Dichloroethene			66424	40.9835	ug/l	90
	29) cis-1,2-Dichloroethene	3.753		123123	43.5328	ug/l	83
	30) Bromochloromethane	3.930		52638	41.6609	ug/l	80
	31) 2,2-Dichloropropane	3.763		99724	41.0981	ug/l	95
	32) Ethyl acetate	3.793		31045	35.0035	ug/l ug/l	94 99
	33) 1,4-Dioxane 34) 1,1-Dichloropropene	4.973 4.235			2143.6231 45.4446		97
	35) Chloroform	3.979			39.6904	ug/l	89
	37) Cyclohexane	4.176			41.7607	ug/l	92
	39) 1,2-Dichloroethane	4.373		96145	45.9088	ug/l	95
	40) 2-Butanone	3.743	43	15774	43.9046	ug/l	95
	41) 1,1,1-Trichloroethane	4.127		127211	40.7244	ug/l	100
	42) Carbon Tetrachloride	4.245		102461	39.3906	ug/l	91
	43) Vinyl Acetate 45) Bromodichloromethane	3.340 5.062		138793 93439	38.4153 35.9312	ug/l ug/l	100 89
	46) Methylcyclohexane	4.904		122705	45.4290	ug/l	99
	47) Dibromomethane	4.973		40937	38.3808	ug/1	94
	48) 1,2-Dichloropropane	4.904		71793	43.6336	ug/l	89
	49) Trichloroethene	4.766	130	73289	37.3342	ug/l	88
	50) Benzene	4.373		256673	40.0052	ug/l	100
	51) tert-Amyl methyl ether	4.432		124295	36.6993	ug/l	85
	53) Iso-propylacetate	4.393		59145	39.8198	ug/l ug/l	80 86
	54) Methyl methacrylate 55) Dibromochloromethane	4.944 6.006		35900 62013	35.3955 42.5973	ug/l	91
	56) 2-Chloroethylvinylether	5.229		28238	43.4605	ug/l	87
	57) cis-1,3-Dichloropropene	5.327		97441	39.3494	ug/1	84
	58) trans-1,3-Dichloropropen			83023	39.5584	ug/l	97
	59) Ethyl methacrylate	5.691	41	45053	37.0747	ug/l	78
	60) 1,1,2-Trichloroethane	5.760		47535	45.6896	ug/l	87
	61) 1,2-Dibromoethane	6.085		40289	41.5739	ug/l	77
	62) 1,3-Dichloropropane	5.868		90962	49.6446	ug/l	95 88
	63) 4-Methyl-2-Pentanone 64) 2-Hexanone	5.406 5.898		42463 30469	48.6367 46.0740	ug/l ug/l	83
	65) Tetrachloroethene	5.878		76987	49.0366	ug/l	83
	67) Toluene	5.544		180822	43.0484	ug/l	97
	68) 1,1,1,2-Tetrachloroethan			67203	48.2954	ug/l	95
	:						

Quantitation Report (Not Reviewed)

Qt Meth : 1M_S0512.M Qt On : 05/27/11 15:03 Qt Upd On: 05/12/11 13:47 SampleID : MBS Operator : SG Sam Mult : 1 Vial# : 25 Misc : S,5g Data File: 1M68838.D Acq On : 05/27/11 14:15 Misc

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	.n)
69)	Chlorobenzene	6.380	112	191616	48.1577	ug/l	94
71)	n-Butyl acrylate	6.665	55	73349	40.9338	ug/l	95
72)	n-Amyl acetate	6.793	43	69887	45.1155	ug/l	85
73)	Bromoform	6.872	173	37120	44.1478	ug/l	86
74)	Ethylbenzene	6.429	106	70048	43.1171	ug/l	97
75)	1,1,2,2-Tetrachloroethane	7.118	83	48536	45.4600	ug/l	88
77)	Styrene	6.744	104	199145	48.7309	ug/l	95
78)	m&p-Xylenes	6.498	106	256559	100.9003	ug/l	100
79)	o-Xylene	6.744	106	117112	43.8300	ug/l	76
80)	trans-1,4-Dichloro-2-b	7.147	53	34086	55.7377	ug/l	95
81)	1,3-Dichlorobenzene	7.738	146	147872	44.9354	ug/l	89
82)	1,4-Dichlorobenzene	7.787	146	135681	43.8250	ug/l	95
83)	1,2-Dichlorobenzene	8.033	146	125961	44.2736	ug/l	93
84)	Isopropylbenzene	6.960	105	293824	47.2140	ug/l	94
85)	Cyclohexanone	7.019	55	6616	236.8078	ug/l	85
86)	Camphene	7.147	93	134248	49.6397	ug/l	95
87)	1,2,3-Trichloropropane	7.157	75	63822	46.8194	ug/l	87
88)	2-Chlorotoluene	7.275	91	184064	46.0141	ug/l	98
89)	p-Ethyltoluene	7.275	105	307239	40.7173	ug/l	81
90)	4-Chlorotoluene	7.334	91	173824	43.1669	ug/l	95
91)	n-Propylbenzene	7.206	91	376402	48.2450	ug/l	94
92)	Bromobenzene	7.167	77	186123	46.0709	ug/1	83
93)	1,3,5-Trimethylbenzene	7.305	105	257724	47.9981	ug/l	94
94)	Butyl methacrylate	7.314	41	83298	49.4045	ug/l	73
95)	t-Butylbenzene	7.511	119	262799	48.3837	ug/l	82
96)	1,2,4-Trimethylbenzene	7.541	105	274454	48.2031	ug/l	87
97)	sec-Butylbenzene	7.649	105	354268	48.9738	ug/l	99
98)	4-Isopropyltoluene	7.728	119	287003	47.2240	ug/l	93
99)	n-Butylbenzene	7.983	91	346180	47.7479	ug/l	97
100)	p-Diethylbenzene	7.974	119	137133	41.6194	ug/l	91
101)	1,2,4,5-Tetramethylben	8.466	119	264872	46.0941	ug/l	94
102)	1,2-Dibromo-3-Chloropr	8.515	157	9159	44.1084	ug/l	79
103)	Camphor	8.997	95	42682	450.9246	ug/1	86
104)	Hexachlorobutadiene	9.164	225	68715	32.2299	ug/1	92
105)	1,2,4-Trichlorobenzene	9.066	180	103482	45.6721	ug/l	93
106)	1,2,3-Trichlorobenzene	9.390	180	88347	44.5339	ug/l	95
	Naphthalene	9.233	128	142607	41.2440	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:48:00 2011 SYSTEM1

Data File

Spike or Dup: 1M69047.D

Sample ID:

MBS9764

Analysis Date 6/1/2011 7:55:00 AM

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Uppe Limit
Vinyl Chloride	1	48.658	0	50	97	6	117	0	. 0
1,1-Dichloroethene	1	46.0434	0	50	92	8	114	0	0
1,1-Dichloroethane	1	39.2325	0	50	78	14	127	0	0
Chloroform	1	43.333	0	50	87	26	119	0	0
1,2-Dichloroethane	1	47.1014	0	50	94	18	130	0	0
2-Butanone	1	51.2478	0	50	102	4	141	0	0
Carbon Tetrachloride	1	44.9311	0	50	90	19	122	0	0
Trichloroethene	1	45.5118	0	50	91	21	116	0	0
Benzene	1	44.7053	0	50	89	21	122	0	0
Tetrachloroethene	1	47.2876	0	50	95	18	116	0	. 0
Toluene	1	43.8899	0	50	88	19	128	0	0
Chlorobenzene	1	48.5094	0	50	97	21	117	0	0
1,4-Dichlorobenzene	1	50.4967	0	50	101	20	110	0	0
1,2-Dichlorobenzene	1	48.8329	0	50	98	19	113	0	0
n-Propylbenzene	1	54.9187	0	50	110	16	122	0	0
sec-Butylbenzene	1	54.6738	0	50	109	9	125	0	0

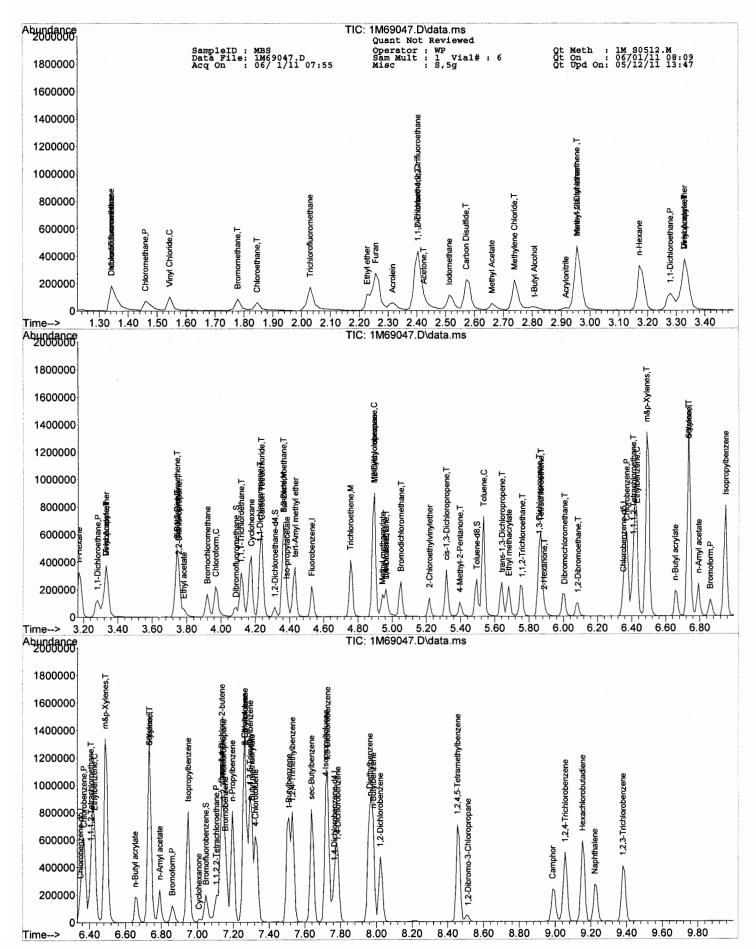
SampleID : MBS Data File: 1M69047.D Acq On : 06/ 1/11 07:55

Operator : WP Sam Mult : 1 Vial# : 6 Misc : S,5g

Misc

Qt Meth : 1M_S0512.M Qt On : 06/01/11 08:09 Qt Upd On: 05/12/11 13:47

•							
Compound		R.T.	QIon	Response	Conc Un	its Dev(M	Min)
Internal Standards	;						
 Fluorobenzene 		4.529		117320	30.00		0.00
52) Chlorobenzene		6.349		94860		•	0.01
70) 1,4-Dichlorob	enzene-d4	7.766	152	54110	30.00	ug/I	0.00
Grant and Manifestina	Compounds						
System Monitoring 36) Dibromofluoro		4.087	111	33230	28.76	ug/1 (0.00
Spiked Amount	30.000	4.007			ery =	•	
38) 1,2-Dichloroe		4.313	67		30.39		0.00
	30.000				ery =		
66) Toluene-d8		5.494	98	120794	-		0.00
Spiked Amount	30.000			Recov	ery =	93.73%	
76) Bromofluorobe		7.048	174	42575	28.04	ug/l -	0.01
Spiked Amount	30.000			Recov	ery =	93.47%	
Target Compounds							Qvalue
5) Chlorodifluor		1.343		145718	43.624		
6) Dichlorodifly		1.343		87676	34.634		
7) Chloromethane	9	1.460		85305		·	
8) Bromomethane	1.	1.779 1.544		43655 79756			
 9) Vinyl Chlorid 10) Chloroethane 	ie	1.846		40265			
11) Trichlorofluc	romethane	2.030		141337		- , -	
12) Ethyl ether	or office criaire	2.227		56772			
13) Furan		2.257		187771			
14) 1,1,2-Trichlo	pro-1.2.2			83942	52.519		
15) Methylene Chl		2.739		74824	44.910	5 ug/l	90
16) Acrolein		2.316	56	33543	215.619	7 ug/l	99
17) Acrylonitrile	9	2.916	53	15153	42.921	.7 ug/l	
18) Iodomethane		2.513	142	102385	49.206		
19) Acetone		2.424		62256			
20) Carbon Disuli	fide	2.572		265626			
21) t-Butyl Alcol	nol	2.808		17208			
22) n-Hexane		3.172		119362			
<pre>23) Di-isopropyl</pre>		3.329		253368			
24) 1,1-Dichloro		2.405		124369			
25) Methyl Acetat		2.660		55137			
26) Methyl-t-buty		2.955		150743 123314			
27) 1,1-Dichloroe		3.280 2.955		77518			
28) trans-1,2-Dic 29) cis-1,2-Dich		3.742		136496			
30) Bromochlorome		3.920		59736		_ ,_	
31) 2,2-Dichloro		3.752		121472			
32) Ethyl acetate		3.782		43112		• , -	
33) 1,4-Dioxane	-	4.962		22781	2115.051	10 ug/l	71
34) 1,1-Dichloro	propene	4.225		125719	49.262	25 ug/l	97
35) Chloroform	•	3.969	83	140897	43.333	0 ug/l	
37) Cyclohexane		4.175	56	150304			
39) 1,2-Dichloro	ethane	4.362		102879	47.101	•	
40) 2-Butanone		3.742		19203	51.247		
41) 1,1,1-Trichlo		4.116		143393	44.014		
42) Carbon Tetra		4.234		121892	44.931		
43) Vinyl Acetate		3.329		167272	44.391 40.171		
45) Bromodichlord		5.051		108951	53.656		
46) Methylcyclohe		4.893		151152 46471	41.775	- , -	
47) Dibromomethan 48) 1,2-Dichloron		4.962 4.893		76385	44.512		
49) Trichloroethe		4.756		93179	45.511		
50) Benzene	circ	4.362		299147	44.705	• • • • • • • • • • • • • • • • • • • •	
51) tert-Amyl met	thyl ether	4.431		163178	46.195	_ ,_	
53) Iso-propylace		4.382		81687	47.954		
54) Methyl methac		4.943		48026	41.287		
55) Dibromochloro		6.005		74679	44.728	39 ug/l	. 97
56) 2-Chloroethy:		5.218	63	31907	42.819	91 ug/l	. 79
57) cis-1,3-Dich		5.317		117500	41.373		
58) trans-1,3-Di		5.641		95636	39.733		
59) Ethyl methac:		5.681		59125	42.424		
60) 1,1,2-Trichle		5.759		55112	46.189		
61) 1,2-Dibromoe		6.084		54988	49.475		
62) 1,3-Dichloro		5.858		102632	48.841		
63) 4-Methyl-2-Pe	entanone	5.395		50780	50.715		
64) 2-Hexanone		5.887		36020	47.493 47.287		
65) Tetrachloroe	thene	5.867 5.533		85144 211431	43.889		
67) Toluene 68) 1,1,1,2-Tetra	achloroethane	6.409		78501	49.190		
00, 1,1,1,2-1001	dought occurring	0.403	100	.0301			
	\ 1						


Quantitation Report (Not Reviewed)

Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	1)
69)	Chlorobenzene	6.369	112	221361	48.5094	ug/l	9.8
71)	n-Butyl acrylate	6.654	55	105018	51.2952	ug/l	94
72)	n-Amyl acetate	6.792	43	97182	54.9086	ug/l	85
73)	Bromoform	6.861	173	46441	48.3423	ug/l	98
74)	Ethylbenzene	6.428	106	89208	48.2224	ug/l	86
75)	1,1,2,2-Tetrachloroethane	7.107	83	68663	56.2877	ug/l	91
77)	Styrene	6.733	104	231222	49.5526	ug/l	92
78)	m&p-Xylenes	6.487	106	298338	102.7732	ug/l	91
79)	o-Xylene	6.733	106	142465	46.8113	ug/l	85
80)	trans-1,4-Dichloro-2-b	7.137	53	46516	66.5733	ug/l	96
81)	1,3-Dichlorobenzene	7.727	146	176466	46.9341	ug/l	92
82)	1,4-Dichlorobenzene	7.786	146	178622	50.4967	ug/l	94
83)	1,2-Dichlorobenzene	8.022	146	158737	48.8329	ug/l	92
84)	Isopropylbenzene	6.950	105	387867	54.5496	ug/l	95
85)	Cyclohexanone	7.009	55	9238	289.4033	ug/l	92
86)	Camphene	7.137	93	177614	57.4809	ug/l	98
87)	1,2,3-Trichloropropane	7.146	75	80404	51.6247	ug/l	91
88)	2-Chlorotoluene	7.264	91	242304	53.0161	ug/l	96
89)	p-Ethyltoluene	7.264	105	506639	59.4087	ug/l	74
90)	4-Chlorotoluene	7.323	91	199552	43.3733	ug/l	92
91)	n-Propylbenzene	7.196	91	489548	54.9187	ug/l	96
92)	Bromobenzene	7.156	77	250503	54.2706	ug/l	82
93)	1,3,5-Trimethylbenzene	7.294	105	258776	42.1811	ug/l	84
94)	Butyl methacrylate	7.304	41	123095	63.8995	ug/l	68
95)	t-Butylbenzene	7.510	119	337762	54,4266	ug/l	85
96)	1,2,4-Trimethylbenzene	7.530	105	352072	54.1205	ug/l	85
97)	sec-Butylbenzene	7.638	105	451879	54.6738	ug/l	99
98)	4-Isopropyltoluene	7.717	119	364329	52.4681	ug/l	94
99)	n-Butylbenzene	7.983	91	437859	52.8581	ug/l	97
100)	p-Diethylbenzene	7.963	119	201688	53.5746	ug/l	91
101)	1,2,4,5-Tetramethylben	8.455	119	346209	52.7318	ug/l	93
102)	1,2-Dibromo-3-Chloropr	8.514	157	11873	50.0447	ug/l	78
103)	Camphor	8.986	95	57982	536.1390	ug/l	89
104)	Hexachlorobutadiene	9.153	225	118089	48.4778	ug/l	95
	1,2,4-Trichlorobenzene	9.055	180	140594	54.3098	ug/l	96
	1,2,3-Trichlorobenzene	9.380	180	124442	54.9024	ug/l	96
107)		9.222	128	197405	49.9693	ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:48:07 2011 SYSTEM1

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M69061.D

MBS9769

6/1/2011 11:57:00 AM

Non Spike(If applicable): Inst Blank(If applicable):

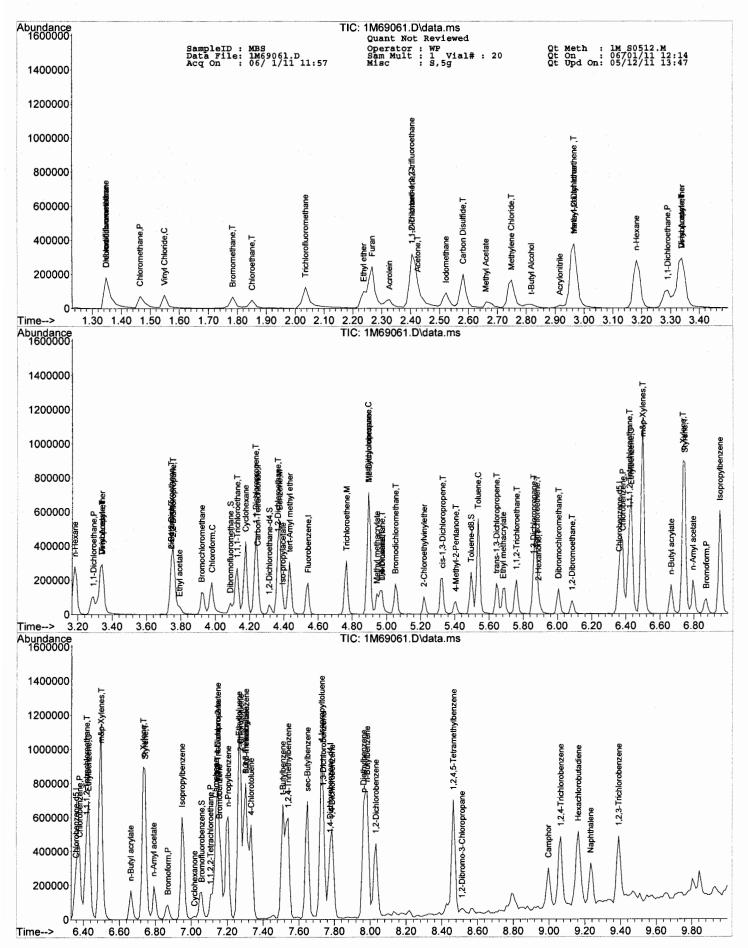
Method: 8260

Matrix: Soil

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Upper Limit
Vinyl Chloride	1	41.4139	0	50	83	6	117	0	0
1,1-Dichloroethene	1	41.5373	0	50	83	8	114	0	0
1,1-Dichloroethane	1	43.6498	0	50	87	14	127	0	0
Chloroform	1	42.5956	0	50	85	26	119	0	0
1,2-Dichloroethane	1	44.9319	0	50	90	18	130	0	0
2-Butanone	1	63.0198	0	50	126	4	141	. 0	0
Carbon Tetrachloride	1	35.0945	0	50	70	19	122	0	0
Trichloroethene	1	33.7097	0	50	67	21	116	0	0
Benzene	1	40.4291	0	50	81	21	122	0	0
Tetrachloroethene	1	43.2804	0	50	87	18	116	0	0
Toluene	1	39.9525	0	50	80	19	128	0	0
Chlorobenzene	1	45.9231	0	50	92	21	117	0	0
1,4-Dichlorobenzene	1	42.5628	0	50	85	20	110	0	0
1,2-Dichlorobenzene	1	42.6573	0	50	85	19	113	0	0
n-Propylbenzene	1	46.5113	0	50	93	16	122	0	0
sec-Butylbenzene	1	47.6032	0	50	95	9	125	0	0

Operator : WP Sam Mult : 1 Vial# : 20 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 06/01/11 12:14 Qt Upd On: 05/12/11 13:47 SampleID : MBS Data File: 1M69061.D Acq On : 06/ 1/11 11:57


-	Commonwed	D T	OTon	Pognonge	Conc Units	Dev (M	inl
	Compound		QION		Cone onics		
Inte	rnal Standards						
	Fluorobenzene	4.540	96	101620	30.00 ug/		.00
- ,	Chlorobenzene-d5	6.360 7.776		79468 52765	30.00 ug/ 30.00 ug/		.00
70)	1,4-Dichlorobenzene-d4	7.776	152	32763	30.00 dg/	1 0	
Syst	em Monitoring Compounds						
	Dibromofluoromethane	4.087	111	30781	30.76 ug/		.00
	iked Amount 30.000 1,2-Dichloroethane-d4	4.313	67	Recove 14609	ery = 102 29.39 ug/	2.53% /1 n	.00
	iked Amount 30.000	4.313	0 /			7.97%	
-	Toluene-d8	5.494	98	109739	•		.00
	iked Amount 30.000			Recove	•	L.63%	
	Bromofluorobenzene	7.058	174	39674 Recove			.00
Sp	iked Amount 30.000			Recove	sry – 0.	7.500	
Targ	et Compounds						value
	Chlorodifluoromethane	1.348		134035	46.3264	ug/l	91
- ,	Dichlorodifluoromethane	1.348		70452 70819	32.1301 39.8418	ug/l ug/l	89 81
	Chloromethane Bromomethane	1.465 1.784		34225	40.6787	ug/l	89
	Vinyl Chloride	1.549		58798	41.4139	ug/l	97
10)	Chloroethane	1.851		31819	40.6100	ug/l	95
-	Trichlorofluoromethane	2.036		120609	41.9105	ug/l	83
	Ethyl ether	2.238		46905 150080	47.9795 46.6660	ug/l ug/l	78 97
	Furan 1,1,2-Trichloro-1,2,2			70349	50.8146	ug/l	92
	Methylene Chloride	2.749		59142	40.9823	ug/l	96
	Acrolein	2.326		29533	219.1729	ug/l	92
	Acrylonitrile	2.917		12873	42.0970	ug/l	99
	Iodomethane Acetone	2.523		75066 55489	41.6508 259.3950	ug/l ug/l	97
,	Carbon Disulfide	2.582		203850	45.6652	ug/l	100
	t-Butyl Alcohol	2.818		13695	226.8983	ug/l	99
	n-Hexane	3.182		99269	52.0058	ug/l	78
	Di-isopropyl-ether	3.340		223417	49.7522	ug/l	99 94
	1,1-Dichloroethene	2.405		97183 45439	41.5373 50.5621	ug/l ug/l	100
	Methyl Acetate Methyl-t-butyl ether	2.966		130026	47.2677	ug/l	69
	1,1-Dichloroethane	3.290		118838	43.6498	ug/l	95
	trans-1,2-Dichloroethene	2.966		62817	42.9034	ug/l	84
	cis-1,2-Dichloroethene	3.743		119680	46.8414	ug/l ug/l	91 57
	Bromochloromethane 2,2-Dichloropropane	3.920 3.753		53340 93307	46.7319 42.5664	ug/l	90
	Ethyl acetate	3.792		36458	45.5033	ug/l	95
	1,4-Dioxane	4.973	88	21776	2334.0976	ug/l	97
	1,1-Dichloropropene	4.235		97218	43.9800	ug/l	93 90
- ,	Chloroform	3.979 4.176		119965 124222	42.5956 46.4927	ug/l ug/l	94
	Cyclohexane 1,2-Dichloroethane	4.363		85007	44.9319	ug/l	92
	2-Butanone	3.743		20454	63.0198	ug/l	99
41)		4.127		121335	42.9979	ug/l	99
	Carbon Tetrachloride	4.245		82466	35.0945 44.3649	ug/l ug/l	95 100
43) 45)	Vinyl Acetate Bromodichloromethane	3.340 5.051		144801 80020	34.0623	ug/l	93
46)		4.894		113662	46.5819	ug/l	98
47)		4.973		35576	36.9221	ug/l	97
48)		4.894		62560	42.0888	ug/l	94
49)		4.766 4.373		59780 234329	33.7097 40.4291	ug/l ug/l	85 100
50) 51)	Benzene tert-Amyl methyl ether	4.432		132029	43.1523	ug/l	78
53)		4.392		66231	46.4114	ug/l	91
54)	Methyl methacrylate	4.943		41220	42.3003	ug/l	94
	Dibromochloromethane	6.006		55332	39.5600	ug/l	97
56)		5.219 5.327		26740 91362	42.8355 38.4011	ug/l ug/l	77 84
	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	5.327		75655	37.5197	ug/l	100
	Ethyl methacrylate	5.681		48584	41.6130	ug/l	76
60)	1,1,2-Trichloroethane	5.760	97	45346	45.3654	ug/l	87
61)		6.084		40262	43.2425	ug/l	82
62)		5.858 5.406		83763 42130	47.5823 50.2257	ug/l ug/l	98 78
63) 64)	4-Methyl-2-Pentanone 2-Hexanone	5.888		30427	47.8893	ug/l	92
65)		5.878	164	65284	43.2804	ug/l	91
67)		5.533		161234	39.9525	ug/l	96
68)	1,1,1,2-Tetrachloroethane	6.419	133	61019	45.6419	ug/l	97
	11						

Quantitation Report (Not Reviewed)

Operator : WP Sam Mult : 1 Vial# : 20 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 06/01/11 12:14 Qt Upd On: 05/12/11 13:47 SampleID : MBS Data File: 1M69061.D Acq On : 06/ 1/11 11:57 Misc

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	in)
69)	Chlorobenzene	6.379	112	175556	45.9231	ug/l	91
71)	n-Butyl acrylate	6.665	55	85384	42.7682	ug/l	93
72)	n-Amyl acetate	6.793	43	87910	50.9360	ug/l	90
73)	Bromoform	6.871	173	32301	34.4805	ug/l	89
74)	Ethylbenzene	6.429	106	78072	43.1330	ug/l	80
75)	1,1,2,2-Tetrachloroethane	7.107	83	55016	46.2500	ug/l	88
77)	Styrene	6.743	104	167821	36.5117	ug/l	94
78)	m&p-Xylenes	6.498	106	225295	78.7970	ug/l	93
79)	o-Xylene	6.734	106	112131	37.4170	ug/l	84
80)	trans-1,4-Dichloro-2-b	7.147	53	35500	52.1024	ug/l	98
81)	1,3-Dichlorobenzene	7.737	146	150392	41.0189	ug/l	90
82)	1,4-Dichlorobenzene	7.786	146	146815	42.5628	ug/1	94
83)	1,2-Dichlorobenzene	8.032	146	135216	42.6573	ug/l	93
84)	Isopropylbenzene	6.950	105	310119	44.7269	ug/l	93
85)	Cyclohexanone	7.019	55	8536	274.2278	ug/l	92
86)	Camphene	7.137	93	142542	47.3065	ug/l	100
87)	1,2,3-Trichloropropane	7.147	75	69886	46.0153	ug/l	87
88)	2-Chlorotoluene	7.275	91	176629	39.6315	ug/l	95
89)	p-Ethyltoluene	7.265	105	372384	44.3888	ug/l	81
90)	4-Chlorotoluene	7.334	91	188160	41.9397	ug/l	92
91)	n-Propylbenzene	7.206	91	404298	46.5113	ug/l	99
92)	Bromobenzene	7.157	77	184170	40.9168	ug/l	87
93)	1,3,5-Trimethylbenzene	7.304	105	263138	43.9855	ug/l	94
94)	Butyl methacrylate	7.304	41	103500	55.0972	ug/l	68
95)	t-Butylbenzene	7.511	119	281293	46.4827	ug/l	84
96)	1,2,4-Trimethylbenzene	7.540	105	296589	46.7538	ug/l	90
97)	sec-Butylbenzene	7.649	105	383661	47.6032	ug/l	97
98)	4-Isopropyltoluene	7.727	119	312523	46.1546	ug/l	94
99)	n-Butylbenzene	7.983	91	367317	45.4726	ug/l	98
	p-Diethylbenzene	7.963	119	163150	44.4424	ug/l	94
101)	1,2,4,5-Tetramethylben	8.465	119	310456	48.4915	ug/l	96
102)	1,2-Dibromo-3-Chloropr	8.514	157	8692	37.5707	ug/l	94
	Camphor	8.996	95	52821	500.8670	ug/l	87
104)	Hexachlorobutadiene	9.164	225	74382	31.3136	ug/l	93
	1,2,4-Trichlorobenzene	9.065	180	116365	46.0962	ug/l	94
106)	1,2,3-Trichlorobenzene	9.390	180	102103	46.1949	ug/l	93
107)	Naphthalene	9.232	128	159864	41.4980	ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M69080.D

MBS9773

6/1/2011 5:10:00 PM

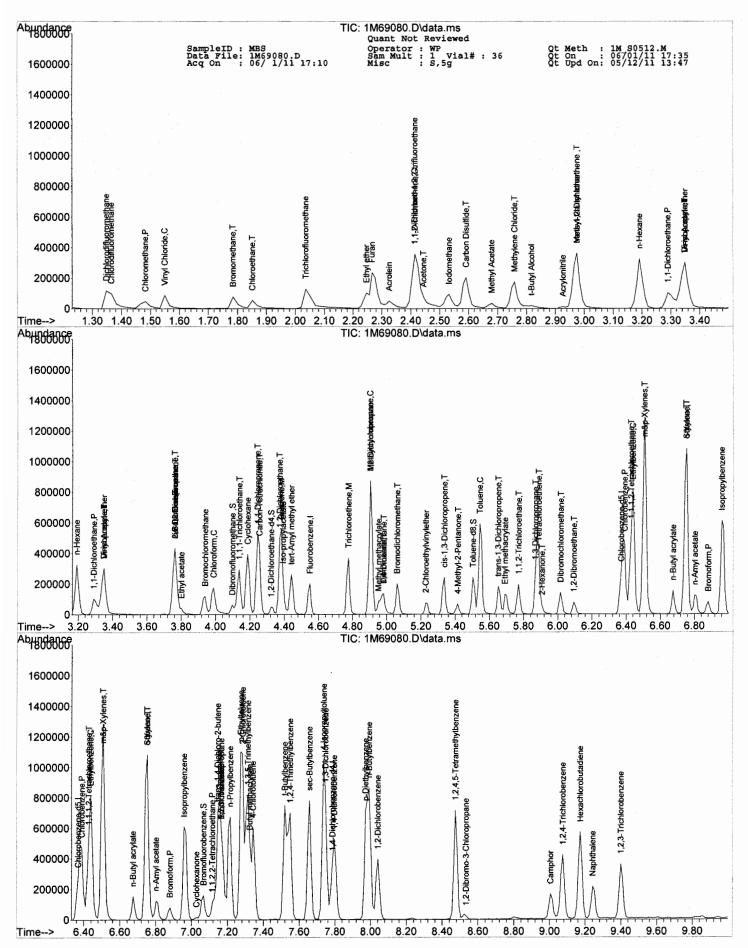
Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Upper Limit
Vinyl Chloride	1	45.6182	0	50	91	6	117	0	0
1,1-Dichloroethene	1	42.3209	0	50	85	8	114	0	0
1,1-Dichloroethane	1	36.9845	0	50	74	14	127	0	0
Chloroform	1	38.567	0	50	77	26	119	0	0
1,2-Dichloroethane	1	39.4172	0	50	79	18	130	0	0
2-Butanone	1	32.3176	0	50	65	4	141	0	0
Carbon Tetrachloride	1	42.214	0	50	84	19	122	0	0
Trichloroethene	1	41.991	0	50	84	21	116	0	0
Benzene	1	41.2225	0	50	82	21	122	0	0
Tetrachloroethene	1	48.9186	0	50	98	18	116	0	0
Toluene	1	43.4284	0	50	87	19	128	0	0
Chlorobenzene	1	47.7705	0	50	96	21	117	0	0
1,4-Dichlorobenzene	1	47.0635	0	50	94	20	110	0	0
1,2-Dichlorobenzene	1	46.0349	0	50	92	19	113	0	0
n-Propylbenzene	1	55.4318	0	50	111	16	122	0	0
sec-Butylbenzene	1	56.8792	0	50	114	9	125	0	0


SampleID : MBS
Data File: 1M69080.D
Acq On : 06/ 1/11 17:10 Operator : WP Sam Mult : 1 Vial# : 36 Misc : S,5g Qt Meth : 1M_S0512.M Qt On : 06/01/11 17:35 Qt Upd On: 05/12/11 13:47

_						
Compound			Response	Conc Un	its Dev	(Min)
		-				
Internal Standards	4 540	0.6	111000	20.00	/1	0 00
4) Fluorobenzene	4.549		111200	30.00		0.02
52) Chlorobenzene-d5	6.369 7.786		83437 48506	30.00 30.00		0.00
70) 1,4-Dichlorobenzene-d4	7.786	152	40506	30.00	ug/I	0.02
System Monitoring Compounds						
36) Dibromofluoromethane	4.097	111	27756	25.35	ug/l	0.02
Spiked Amount 30.000				ery =		
38) 1,2-Dichloroethane-d4	4.323	67	13416	24.67		0.00
Spiked Amount 30.000				ery =		
66) Toluene-d8	5.504	98		28.95		0.00
Spiked Amount 30.000			Recov	ery =	96.50%	
76) Bromofluorobenzene	7.068	174	38195	28.06		0.00
Spiked Amount 30.000			Recov	ery =	93.53%	
Target Compounds						Qvalue
Chlorodifluoromethane	1.366		118854	37.540		
Dichlorodifluoromethane	1.349		66526	27.725		
7) Chloromethane	1.483		63285	32.536		
8) Bromomethane	1.785		39613	43.026		
9) Vinyl Chloride	1.550		70873	45.618		
10) Chloroethane	1.852		36770	42.885		
11) Trichlorofluoromethane	2.036		135988	43.183	<u> </u>	
12) Ethyl ether	2.247		43312 163892	40.487		
13) Furan	2.267 2.415		78130	46.570		
14) 1,1,2-Trichloro-1,2,2	2.415		62680	51.573 39.692		
<pre>15) Methylene Chloride 16) Acrolein</pre>	2.733		22880	155.170	_ · · ·	
17) Acrylonitrile	2.926		10066	30.081	<u> </u>	
18) Iodomethane	2.533		87988	44.614		
19) Acetone	2.444		41905		- · · ·	
20) Carbon Disulfide	2.592		225073	46.075		
21) t-Butyl Alcohol	2.818		7781	117.809	• .	
22) n-Hexane	3.192		107586	51.507		
23) Di-isopropyl-ether	3.349		206691	42.062		
24) 1,1-Dichloroethene	2.415		108351	42.320		
25) Methyl Acetate	2.680		35944	36.550		
26) Methyl-t-butyl ether	2.975		103698	34.449		
27) 1,1-Dichloroethane	3.290	63	110184	36.984	5 ug/:	l 97
28) trans-1,2-Dichloroethene	2.975	96	67809	42.323	0 ug/	l 91
29) cis-1,2-Dichloroethene	3.762		120788	43.202	2 ug/	
30) Bromochloromethane	3.939	49	46638	37.340	•	
31) 2,2-Dichloropropane	3.762		104334	43.496		
32) Ethyl acetate	3.802		26800	30.567		
33) 1,4-Dioxane	4.982		16044			
34) 1,1-Dichloropropene	4.244		111574	46.126	/:	
35) Chloroform	3.989		118859	38.567 44.654	0 ug/	
37) Cyclohexane	4.185		130559 81604	39.417	7 ug/	
39) 1,2-Dichloroethane	4.372	62			٠,٠	
40) 2-Butanone 41) 1,1,1-Trichloroethane	3.762 4.136	43 97	11478 127609	32.317 41.325		
42) Carbon Tetrachloride	4.254	117	108547	42.214		
43) Vinyl Acetate	3.349	43	128274	35.915	٠	
45) Bromodichloromethane	5.061	83	86555	33.669		
46) Methylcyclohexane	4.904	83	138333	51.808		
47) Dibromomethane	4.982	174	34929	33.127		
48) 1,2-Dichloropropane	4.904	63	67629	41.579		
49) Trichloroethene	4.776	130	81486	41.991		96
50) Benzene	4.382	78	261452	41.222		100
51) tert-Amyl methyl ether	4.441	73	114737	34.269	9 ug/1	. 82
53) Iso-propylacetate	4.392	43	53412	35.648	0 ug/1	L 80
54) Methyl methacrylate	4.953	41	33441	32.684	9 ug/1	. 92
55) Dibromochloromethane	6.015	129	54315	36.985	7 ug/1	99
56) 2-Chloroethylvinylether	5.228	63	21681	33.079		
57) cis-1,3-Dichloropropene	5.336	75	90336	36.163	-	
58) trans-1,3-Dichloropropene	5.651	75	69272	32.720		
59) Ethyl methacrylate	5.691	41	40081	32.697		
60) 1,1,2-Trichloroethane	5.769	97	41317	39.368		
61) 1,2-Dibromoethane	6.094	107	41222	42.167		
62) 1,3-Dichloropropane	5.868	76	78524	42.484		
63) 4-Methyl-2-Pentanone	5.415	43	30451	34.575		
64) 2-Hexanone	5.907	43	21346	31.998		
65) Tetrachloroethene	5.887	164	77474	48.918		
67) Toluene 68) 1,1,1,2-Tetrachloroethane	5.543	92 133	184015 63572	43.428 45.289		
55/ 1/1/2-Tectacifforcectiane	10.320	133	00012	13.203	_ ug/_	. / -
	V					

Qt Meth : 1M_S0512.M Qt On : 06/01/11 17:35 Qt Upd On: 05/12/11 13:47 Operator : WP Sam Mult : 1 Vial# : 36 Misc : S,5g SampleID : MBS Data File: 1M69080.D Acq On : 06/ 1/11 17:10

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	1)
69)	Chlorobenzene	6.389	112	191739	47.7705	ug/l	96
71)	n-Butyl acrylate	6.674	55	71682	39.0575	ug/l	96
72)	n-Amyl acetate	6.802	43	63387	39.9519	ug/l	86
73)	Bromoform	6.881	173	30049	34.8930	ug/l	93
74)	Ethylbenzene	6.438	106	84160	50.8377	ug/l	84
75)	1,1,2,2-Tetrachloroethane	7.117	83	46699	42.7052	ug/l	90
77)	Styrene	6.753	104	199093	47.5214	ug/l	99
78)	m&p-Xylenes	6.507	106	265562	102.0192	ug/l	92
79)	o-Xylene	6.753	106	129147	47.3653	ug/l	73
80)	trans-1,4-Dichloro-2-b	7.147	53	36750	58.6729	ug/l	90
81)	1,3-Dichlorobenzene	7.747	146	157901	46.8484	ug/l	91
82)	1,4-Dichlorobenzene	7.796	146	149236	47.0635	ug/l	96
83)	1,2-Dichlorobenzene	8.042	146	134144	46.0349	ug/l	93
84)	Isopropylbenzene	6.960	105	348846	54.7299	ug/l	96
85)	Cyclohexanone	7.029	55	7953	277.9320	ug/l	74
86)	Camphene	7.156	93	165090	59.6004	ug/l	95
87)	1,2,3-Trichloropropane	7.166	75	58023	41.5588	ug/l	87
88)	2-Chlorotoluene	7.284	91	211264	51.5650	ug/l	97
89)	p-Ethyltoluene	7.274	105	406340	52.9524	ug/l	81
90)	4-Chlorotoluene	7.343	91	195200	47.3291	ug/l	93
91)	n-Propylbenzene	7.215	91	442947	55.4318	ug/l	96
92)	Bromobenzene	7.166	77	213251	51.5377	ug/l	81
93)	1,3,5-Trimethylbenzene	7.314	105	292700	53.2230	ug/l	95
94)	Butyl methacrylate	7.324	41	92216	53.4005	ug/l	65
95)	t-Butylbenzene	7.520	119	314265	56.4909	ug/l	83
96)	1,2,4-Trimethylbenzene	7.550	105	318159	54.5578	ug/l	85
97)	sec-Butylbenzene	7.658	105	421419	56.8792	ug/l	100
98)	4-Isopropyltoluene	7.737	119	347335	55.7997	ug/l	93
	n-Butylbenzene	7.993	91	406424	54.7317	ug/l	96
100)	p-Diethylbenzene	7.973	119	187056	55.4284	ug/l	92
101)	1,2,4,5-Tetramethylben	8.475	119	319936	54.3600	ug/l	94
102)	1,2-Dibromo-3-Chloropr	8.534	157	7440	34.9827	ug/l	82
	Camphor	9.006	95	39927	411.8442	ug/l	84
104)	Hexachlorobutadiene	9.173	225	114291	52.3392	ug/l	96
	1,2,4-Trichlorobenzene	9.075		116205	50.0747	ug/l	96
	1,2,3-Trichlorobenzene	9.399		99176	48.8104	ug/l	96
	Naphthalene	9.242		150330	42.4495	ug/l	100
							-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

QC Batch. MB397

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M68822.D Non Spike(If applicable): 1M68785.D AC59221-011(MS:AC59221-010 AC59221-010 5/27/2011 9:48:00 AM 5/26/2011 7:23:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Upper Limit
Vinyl Chloride	1	29.6188	0	50	59	6	117	0	0
1,1-Dichloroethene	1	24.2933	0	50	49	8	114	0	0
1,1-Dichloroethane	1	28.0291	0	50	56	14	127	0	0
Chloroform	1	29.1303	0	50	58	26	119	0	0
1,2-Dichloroethane	1	25.4458	0	50	51	18	130	0	0
2-Butanone	1	38.2762	0	50	77	4	141	0	0
Carbon Tetrachloride	1	33.3607	0	50	67	19	122	0	0
Trichloroethene	1	17.1843	0	50	34	21	116	0	0
Benzene	1	26.6347	0	50	53	21	122	0	0
Tetrachloroethene	1	21.3091	0	50	43	18	116	0	0
Toluene	1	21.6395	0	50	43	19	128	0	0
Chlorobenzene	1	14.732	0	50	29	21	117	0	0
1,4-Dichlorobenzene	1	6.3387	0	50	13*	20	110	0	0
1,2-Dichlorobenzene	1	9.3411	0	50	19	19	113	0	0
n-Propylbenzene	1	13.269	0	50	27	16	122	0	0
sec-Butylbenzene	1	18.9224	0	50	38	9	125	0	0

Data File

Spike or Dup: 1M68823.D

Sample ID:

Analysis Date

AC59221-012(MSD:AC59221-0 5/27/2011 10:05:00 AM

Non Spike(If applicable): 1M68785.D

AC59221-010

5/26/2011 7:23:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MSD

. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	37.4097	0	50	75	6	117	0	0
1,1-Dichloroethene	1	33.314	0	50	67	8	114	0	0
1,1-Dichloroethane	1	36.1802	0	50	72	14	127	0	0
Chloroform	1	36.1657	0	50	72	26	119	0	0
1,2-Dichloroethane	1	35.9935	0	50	72	18	130	0	0
2-Butanone	1	48.8171	0	50	98	4	141	0	0
Carbon Tetrachloride	1	38.4872	0	50	77	19	122	0	0
Trichloroethene	1	27.7034	0	50	55	21	116	0	0
Benzene	1	35.5548	0	50	71	21	122	0	0
Tetrachloroethene	1	35.5677	0	50	71	18	116	0	0
Toluene	1	34.8118	0	50	70	19	128	0	0
Chlorobenzene	1	26.9111	0	50	54	21	117	0	0
1,4-Dichlorobenzene	1	12.6295	0	50	25	20	110	0	0
1,2-Dichlorobenzene	1	17.2415	0	50	34	19	113	0	0
n-Propylbenzene	1	22.7465	0	50	45	16	122	0	0
sec-Butylbenzene	1	28.0823	0	50	56	9	125	0	0

Form3 RPD DATA

QC Batch: MBS9703

Data File

Sample ID:

Analysis Date AC59221-012(MSD:AC59221-0 5/27/2011 10:05:00 AM

Duplicate(If applicable): 1M68822.D

Spike or Dup: 1M68823.D

AC59221-011(MS:AC59221-010 5/27/2011 9:48:00 AM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

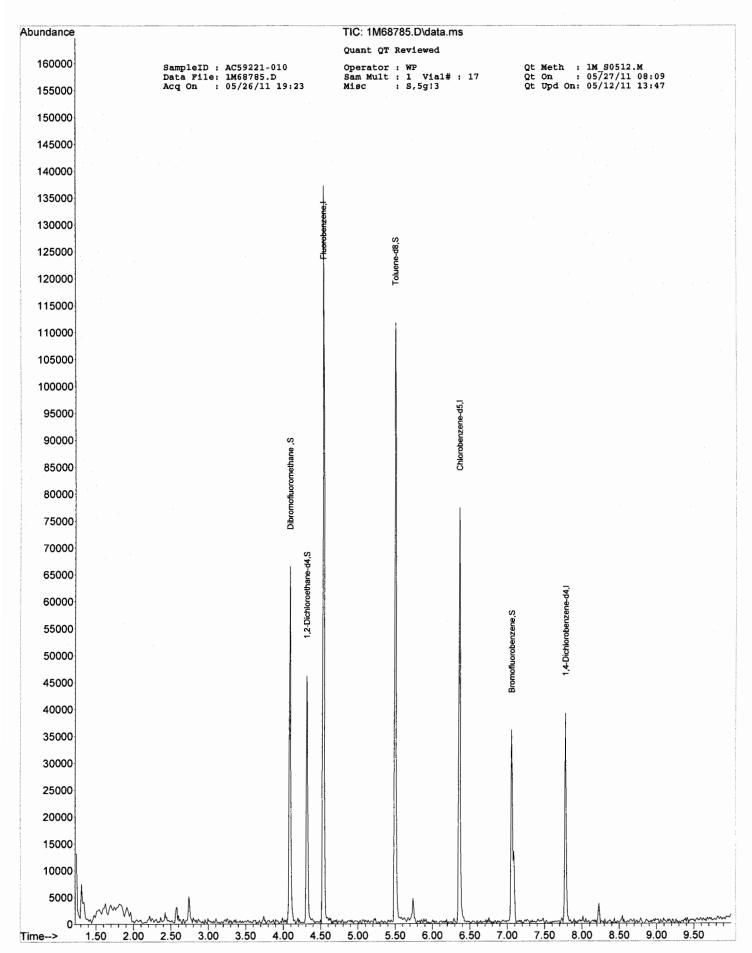
QC Type: MSD

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Vinyl Chloride	1	37.4097	29.6188	23	53
1,1-Dichloroethene	1	33.314	24.2933	31	53
1,1-Dichloroethane	1	36.1802	28.0291	25	44
Chloroform	1	36.1657	29.1303	22	39
1,2-Dichloroethane	1	35.9935	25.4458	34	37
2-Butanone	1	48.8171	38.2762	24	59
Carbon Tetrachloride	1	38.4872	33.3607	14	40
Trichloroethene	1	27.7034	17.1843	47 *	39
Benzene	1	35.5548	26.6347	29	38
Tetrachloroethene	1	35.5677	21.3091	50 *	37
Toluene	1	34.8118	21.6395	47 *	35
Chlorobenzene	1	26.9111	14.732	58*	37
1,4-Dichlorobenzene	1	12.6295	6.3387	66 *	41
1,2-Dichlorobenzene	1	17.2415	9.3411	59*	42
n-Propylbenzene	1	22.7465	13.269	53*	42
sec-Butylbenzene	11	28.0823	18.9224	39	48

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

SampleID : AC59221-010


Qt Meth : 1M_S0512.M Qt On : 05/27/11 08:09

Qt Upd On: 05/12/11 13:47

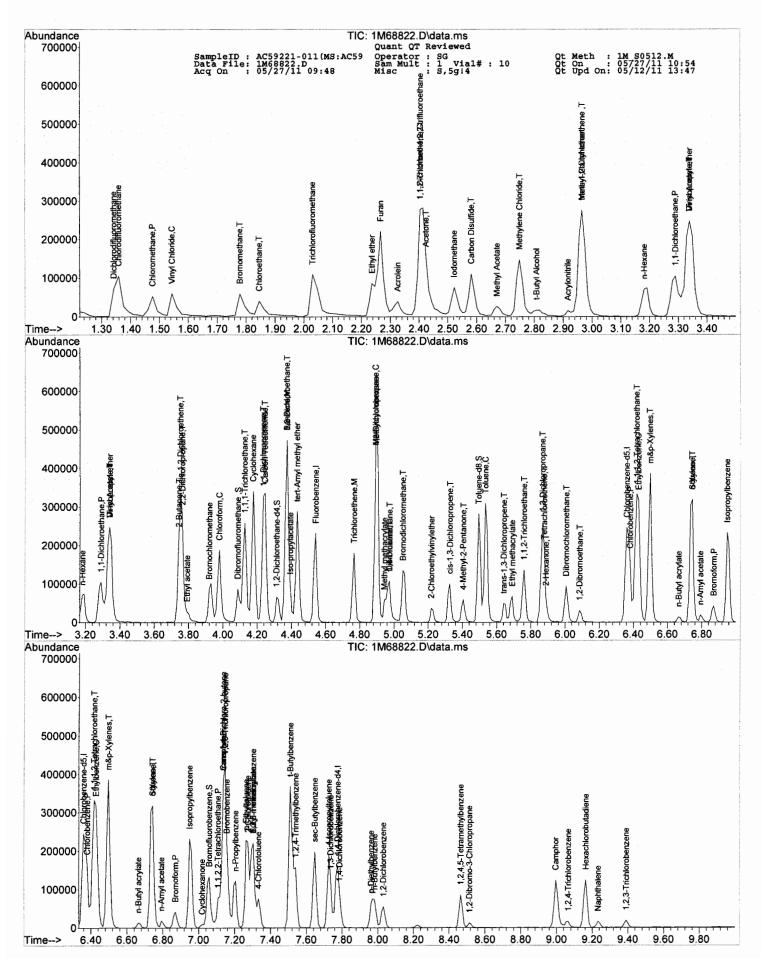
Operator : WP Sam Mult : 1 Vial# : 17 Misc : S,5g!3 Data File: 1M68785.D Acq On : 05/26/11 19:23

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
 Fluorobenzene 	4.539	96	73503	30.00	ug/l	0.00
52) Chlorobenzene-d5	6.359	117	32315	30.00	ug/l	0.00
70) 1,4-Dichlorobenzene-d4	7.775	152	9338	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.086	111	25812	35.66	ug/l	0.00
Spiked Amount 30.000					118.87%	
38) 1,2-Dichloroethane-d4	4.313	67	11126	30.95	ug/l	0.00
Spiked Amount 30.000			Recove	ery =	103.17%	
66) Toluene-d8	5.503	98	54982	37.57	ug/l	0.00
Spiked Amount 30.000			Recove	ery =	125.23%	
76) Bromofluorobenzene	7.057	174	9410	35.91	ug/l	0.00
Spiked Amount 30.000			Recove	ery =	119.70%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:48:31 2011 SYSTEM1

Qt Meth : 1M_S0512.M Qt On : 05/27/11 10:54 Qt Upd On: 05/12/11 13:47 Data File: 1M68822.D Acq On : 05/27/11 09:48


. Kesp	Via : inicial calibration						
	Compound	R.T.	QIon	Response	Conc Un	its Dev(Min)
	rnal Standards		0.5	106400	20.00	/ 3	0 00
		4.540			30.00	ug/l ug/l	0.00
-		6.360 7.776	152	83133 35970	30.00	ug/1	0.00
70)	1,4-Dichlorobenzene-d4	7.776	152	33370	30.00	49/1	0.00
Syste	em Monitoring Compounds						
	Dibromofluoromethane	4.087	111	36360	29.21	ug/l	0.00
Sp:	iked Amount 30.000			Recove	ery =		
38)	1,2-Dichloroethane-d4	4.313	67	16683	26.98		0.00
_	iked Amount 30.000				ery =		0 00
	Toluene-d8	5.494	98	122922	32.65 ery =	ug/1 108.83%	0.00
	iked Amount 30.000 Bromofluorobenzene	7.058	174	32632	32.33		0.00
	iked Amount 30.000	7.030	1/1		ery =		
Dp.	Thea Immodite				•		
Targ	et Compounds						Qvalue
	Chlorodifluoromethane	1.359	51	92043	25.570		
6)	Dichlorodifluoromethane	1.343	85	53686	19.679		
	Chloromethane	1.477		54639	24.707		
	Bromomethane	1.779		33029	31.553 29.618		
	Vinyl Chloride Chloroethane	1.544 1.846		52318 29631	30.396		
	Trichlorofluoromethane	2.030		105246			
	Ethyl ether	2.237		34871	28.670		
	Furan	2.267		123076	30.759	8 ug/1	99
14)	1,1,2-Trichloro-1,2,2	2.405	101	63335	36.771		
15)	Methylene Chloride	2.749	84	53185	29.622		
	Acrolein	2.326		21938			
	Acrylonitrile	2.916	53	11061	29.073	- , -	
	Iodomethane	2.523		63718 49912		- ,.	
	Acetone Carbon Disulfide	2.424 2.582		108707			
	t-Butyl Alcohol	2.808		9988			
	n-Hexane	3.182		28690			
-	Di-isopropyl-ether	3.339		190975	34.182	26 ug/	
	1,1-Dichloroethene	2.405	61	70714	24.293		
25)	Methyl Acetate	2.670		31950	28.57	· · · · ·	
	Methyl-t-butyl ether	2.965		107292	31.349		
	1,1-Dichloroethane	3.290		94940 38918	28.029 21.364		
	trans-1,2-Dichloroethene cis-1,2-Dichloroethene	2.965 3.752		81127			
	Bromochloromethane	3.752		38206			
	2,2-Dichloropropane	3.762		98402			
	Ethyl acetate	3.792	43	23978	24.054	15 ug/	
33)	1,4-Dioxane	4.972			1346.494		
	_,	4.235		51368	18.678		
	Chloroform	3.979		102071	29.130		
	Cyclohexane	4.176 4.372	56 62	99317 59894	29.87° 25.44!		
	1,2-Dichloroethane 2-Butanone	3.743		15456		52 ug/	
	1,1,1-Trichloroethane	4.126	97	114850	32.713		
42)		4.244	117	97530	33.360		
	Vinyl Acetate	3.339	43	118173	29.10	•	
	Bromodichloromethane	5.051	83	65943	22.56		
	Methylcyclohexane	4.894	83	83741	27.589		
	Dibromomethane	4.972	174	24643	20.556		
	1,2-Dichloropropane	4.894	63 130	50127 37914	27.100 17.184		
	Trichloroethene	4.766 4.372	78	192065	26.634	,.	
	Benzene tert-Amyl methyl ether	4.431		115155	30.25		
53)		4.392	43	48062	32.194	- , .	
	Methyl methacrylate	4.943	41	23567	23.118	34 ug/:	l 92
55)	Dibromochloromethane	6.005	129	37289	25.484		
56)	2-Chloroethylvinylether	5.218		11493	17.599		
57)	cis-1,3-Dichloropropene	5.327		39200	15.75	•	
	trans-1,3-Dichloropropene	5.641		20854	9.88		
	Ethyl methacrylate	5.691 5.759		18347 30872	15.023 29.523		
	1,1,2-Trichloroethane 1,2-Dibromoethane	6.084		16077	16.50	- , ,	
	1,3-Dichloropropane	5.868		41401	22.48		
	4-Methyl-2-Pentanone	5.405		31407	35.79		1 87
	2-Hexanone	5.887		12761	19.19		
	Tetrachloroethene	5.877		33625	21.30		
	Toluene	5.533		91357	21.63		
68)	1,1,1,2-Tetrachloroethane	6.419	133	51618	36.90	78 ug/:	_ //
	\	X.					

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

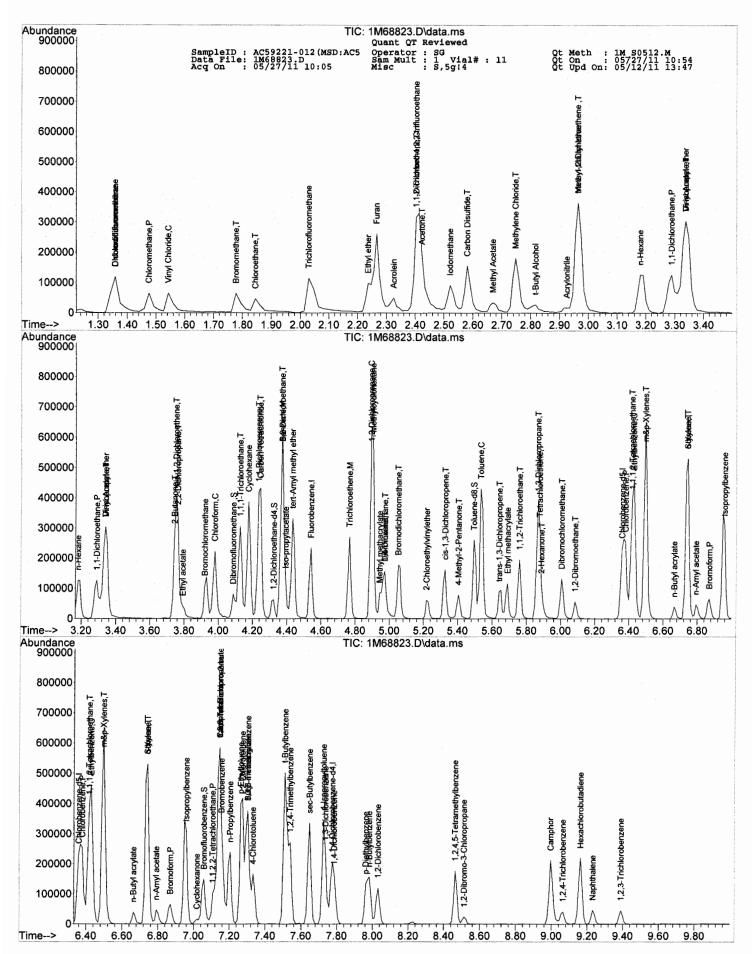
	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
69)	Chlorobenzene	6.379	112	58915	14.7320	ug/l	98
71)	n-Butyl acrylate	6.665	55	8415	6.1831	ug/l	93
72)	n-Amyl acetate	6.792	43	8278	7.0359	ug/l	82
73)	Bromoform	6.871	173	16347	25.5977	ug/l	100
74)	Ethylbenzene	6.428	106	28432	22.7362	ug/l	85
75)	1,1,2,2-Tetrachloroethane	7.107	83	28084	34.6327	ug/l	91
77)	Styrene	6.743	104	38580	12.0854	ug/l	86
78)	m&p-Xylenes	6.497	106	79095	39.9358	ug/l	89
79)	o-Xylene	6.743	106	52211	25.2398	ug/l	77
80)	trans-1,4-Dichloro-2-b	7.137	53	16019	34.4882	ug/l	69
81)	1,3-Dichlorobenzene	7.737	146	18834	7.5354	ug/l	89
82)	1,4-Dichlorobenzene	7.786	146	14905	6.3387	ug/l	94
83)	1,2-Dichlorobenzene	8.032	146	20185	9.3411	ug/l	92
84)	Isopropylbenzene	6.950	105	123069	26.0372	ug/l	95
85)	Cyclohexanone	7.019	55	3839	180.9175	ug/l	94
86)	Camphene	7.137	93	94930	46.2154	ug/l	97
87)	1,2,3-Trichloropropane	7.147	75	23647	22.8399	ug/l	93
88)	2-Chlorotoluene	7.274	91	51063	16.8070	ug/l	96
89)	p-Ethyltoluene	7.265	105	66797m	11.4612	ug/l	
90)	4-Chlorotoluene	7.333	91	25472	8.3285	ug/l	87
91)	n-Propylbenzene	7.206	91	78628	13.2690	ug/l	99
92)	Bromobenzene	7.156	77	64429	20.9976	ug/l	69
93)	1,3,5-Trimethylbenzene	7.304	105	92115m	22.5872	ug/l	
94)	Butyl methacrylate	7.304	41	12691	9.9104	ug/l	78
95)	t-Butylbenzene	7.511	119	137981	33.4470	ug/l	84
96)	1,2,4-Trimethylbenzene	7.540	105	72660	16.8021	ug/l	66
97)	sec-Butylbenzene	7.648	105	103964	18.9224	ug/l	99
	4-Isopropyltoluene	7.727	119	69968	15.1579	ug/l	93
99)	n-Butylbenzene	7.983	91	34580	6.2797	ug/l	97
100)	p-Diethylbenzene	7.963	119	16230	6.4854	ug/l	92
101)	1,2,4,5~Tetramethylben	8.465	119	38422	8.8034	ug/l	91
102)		8.514	157	2745	17.4051	ug/l	72
103)	•	8.996	95	26356	366.6070	ug/l	91
104)	Hexachlorobutadiene	9.163	225	25527	15.7641	ug/l	97
	1,2,4-Trichlorobenzene	9.065	180	4911	2.8538	ug/l	96
106)		9.390	180	5683	3.7717	ug/l	98
107)	Naphthalene	9.232	128	11355	4.3238	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:48:36 2011 SYSTEM1

Page: 1

SampleID : AC59221-012(MSD:AC5 Operator : SG
Data File: 1M68823.D Sam Mult : 1 Vial# : 11
Acq On : 05/27/11 10:05 Misc : S,5g!4 Qt Meth : 1M_S0512.M Qt On : 05/27/11 10:54 Qt Upd On: 05/12/11 13:47


Compound	R.T.	QIon	Response	Conc Unit	s Dev(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	122270	30.00 ug	/1	0.00
52) Chlorobenzene-d5	6.359	117	75695	30.00 ug	/1	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	40423	30.00 ug	/1	0.00
Sustan Manitoring Compounds						
System Monitoring Compounds 36) Dibromofluoromethane	4.087	111	35017	29.08 ug	/1	0.00
Spiked Amount 30.000	1,007		Recove	_	6.93%	
38) 1,2-Dichloroethane-d4	4.323	67	17963	•		0.00
Spiked Amount 30.000			Recove	ery = 10	0.13%	
66) Toluene-d8	5.493	98	121642	35.49 ug		0.00
Spiked Amount 30.000			Recove	•	8.30%	
76) Bromofluorobenzene Spiked Amount 30.000	7.058	174	35113 Recove	-	/⊥ 3.20%	0.00
Spiked Amount 30.000			Recov	- 10	3.200	
Target Compounds					(Qvalue
Chlorodifluoromethane	1.359		98826	28.3884	ug/l	
6) Dichlorodifluoromethane	1.359		62225	23.5854	ug/l	
7) Chloromethane	1.476		62671	29.3032	ug/l	
8) Bromomethane	1.778 1.544		37192	36.7394	ug/l ug/l	
 9) Vinyl Chloride 10) Chloroethane 	1.845		63906 36448	37.4097 38.6615	ug/l	
11) Trichlorofluoromethane	2.030		119511	34.5152	ug/l	
12) Ethyl ether	2.237		42151	35.8347	ug/l	
13) Furan	2.267		146064	37.7468	ug/l	
14) 1,1,2-Trichloro-1,2,2	2.404	101	70168	42.1239	ug/l	
15) Methylene Chloride	2.749	84	66450	38.2696	ug/l	87
16) Acrolein	2.326		24847	153.2543	ug/l	
17) Acrylonitrile	2.926		14032	38.1373	ug/l	
18) Iodomethane	2.522		79040	36.4490	ug/l	
19) Acetone	2.424		61406 153761	238.5749 28.6273	ug/l ug/l	
20) Carbon Disulfide 21) t-Butyl Alcohol	2.581 2.818		14527	200.0343	ug/l	
22) n-Hexane	3.182		46089	20.0676	ug/l	
23) Di-isopropyl-ether	3.339		223605	41.3844	ug/1	
24) 1,1-Dichloroethene	2.404		93782	33.3140	ug/l	
25) Methyl Acetate	2.670	43	38238	35.3631	ug/l	100
26) Methyl-t-butyl ether	2.965	73	126800	38.3101	ug/l	
27) 1,1-Dichloroethane	3.290		118518	36.1802	ug/l	
28) trans-1,2-Dichloroethene	2.965		54714	31.0579	ug/l	
29) cis-1,2-Dichloroethene	3.752		112563 50234	36.6153 36.5778	ug/l ug/l	
30) Bromochloromethane 31) 2,2-Dichloropropane	3.919 3.762		112627	42.7027	ug/l	
32) Ethyl acetate	3.792		29635	30.7408	ug/l	
	4.972		29010		ug/l	
	4.234	75	79707	29.9684	ug/l	
35) Chloroform	3.978		122554		ug/l	
	4.175		116834		ug/l	
39) 1,2-Dichloroethane	4.372		81934	35.9935	ug/l	94 100
40) 2-Butanone 41) 1,1,1-Trichloroethane	3.742 4.126	43 97	19064 132134	48.8171 38.9166	ug/l ug/l	97
41) 1,1,1-Trichloroethane 42) Carbon Tetrachloride	4.244	117	108816	38.4872	ug/l	
43) Vinyl Acetate	3.339	43	147332	37.5167	ug/l	100
45) Bromodichloromethane	5.051	83	85547	30.2649	ug/l	
46) Methylcyclohexane	4.903	83	106766	36.3659	ug/l	94
47) Dibromomethane	4.972	174	36035	31.0823	ug/l	
48) 1,2-Dichloropropane	4.893	63	62697	35.0571	ug/l	
49) Trichloroethene	4.765	130	59112	27.7034	ug/l	100
50) Benzene	4.372	78 73	247954	35.5548	ug/l	100
51) tert-Amyl methyl ether 53) Iso-propylacetate	4.431 4.392	73 43	136141 60732	36.9814 44.6792	ug/l ug/l	88 83
53) Iso-propylacetate 54) Methyl methacrylate	4.943	41	32840	35.3804	ug/l	95
55) Dibromochloromethane	6.005	129	51662	38.7772	ug/l	94
56) 2-Chloroethylvinylether	5.218	63	19180	32.2564	ug/l	76
57) cis-1,3-Dichloropropene	5.326	75	63084	27.8370	ug/l	95
58) trans-1,3-Dichloropropene	5.641	75	40439	21.0546	ug/l	98
59) Ethyl methacrylate	5.690	41	29620	26.6346	ug/l	67
60) 1,1,2-Trichloroethane	5.759	97	43075	45.2414	ug/l	86
61) 1,2-Dibromoethane	6.084	107	28892	32.5775	ug/1	93 99
<pre>62) 1,3-Dichloropropane 63) 4-Methyl-2-Pentanone</pre>	5.867 5.405	76 43	62490 42042	37.2674 52.6191	ug/l ug/l	99
63) 4-Methyl-2-Pentanone 64) 2-Hexanone	5.887	43	24124	39.8615	ug/l	95
65) Tetrachloroethene	5.877	164	51103	35.5677	ug/l	
67) Toluene	5.533	92	133818	34.8118	ug/l	96
68) 1,1,1,2-Tetrachloroethane	6.418	133	57618	45.2462	ug/l	72
F						

Data Path : G:\GcMsData\2011\GCMS_1\Data\05-27-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev (M	in)
69)	Chlorobenzene	6.379	112	97992	26.9111	ug/l	100
71)	n-Butyl acrylate	6.664	55	20235	13.2302	ug/l	99
72)	n-Amyl acetate	6.792	43	21508	16.2669	ug/l	78
73)	Bromoform	6.871	173	27125	37.7959	ug/l	89
74)	Ethylbenzene	6.428	106	44616	31.9393	ug/l	79
75)	1,1,2,2-Tetrachloroethane	7.107	83	42459	46.5918	ug/l	87
77)	Styrene	6.743	104	75407	21.1647	ug/l	97
78)	m&p-Xylenes	6.497	106	131232	59.4345	ug/l	90
79)	o-Xylene	6.743	106	79057	34.3255	ug/l	72
80)	trans-1,4-Dichloro-2-b	7.146	53	23528	45.0746	ug/l	75
81)	1,3-Dichlorobenzene	7.737	146	37092	13.2056	ug/l	91
82)	1,4-Dichlorobenzene	7.786	146	33374	12.6295	ug/l	94
83)	1,2-Dichlorobenzene	8.032	146	41869	17.2415	ug/l	91
84)	Isopropylbenzene	6.959	105	184361	34.7078	ug/l	95
85)	Cyclohexanone	7.018	55	6789	284.6953	ug/l	93
86)	Camphene	7.146	93	121529	52.6472	ug/l	96
87)	1,2,3-Trichloropropane	7.146	75	40749	35.0224	ug/l	95
88)	2-Chlorotoluene	7.274	91	91840	26.8985	ug/l	94
89)	p-Ethyltoluene	7.264	105	124916m	19.1561	ug/l	
90)	4-Chlorotoluene	7.333	91	56688	16.4932	ug/l	91
91)	n-Propylbenzene	7.205	91	151475	22.7465	ug/l	94
92)	Bromobenzene	7.156	77	104359	30.2643	ug/l	75
93)	1,3,5-Trimethylbenzene	7.304	105	149991m	32.7272	ug/l	
94)	Butyl methacrylate	7.304	41	24720	17.1773	ug/l	81
95)	t-Butylbenzene	7.510	119	191143	41.2295	ug/l	86
96)	1,2,4-Trimethylbenzene	7.540	105	127689	26.2744	ug/l	75
97)	sec-Butylbenzene	7.648	105	173391	28.0823	ug/l	99
98)	4-Isopropyltoluene	7.727	119	122759	23.6649	ug/l	92
99)	n-Butylbenzene	7.982	91	73421	11.8644	ug/l	95
100)	p-Diethylbenzene	7.963	119	34992	12.4422	ug/l	92
101)	1,2,4,5-Tetramethylben	8.464	119	76382	15.5731	ug/l	90
102)	1,2-Dibromo-3-Chloropr	8.514	157	5660	31.9347	ug/l	78
103)	Camphor	8.996	95	45311	560.8372	ug/l	92
104)	Hexachlorobutadiene	9.163	225	43141	23.7068	ug/l	94
105)	1,2,4-Trichlorobenzene	9.065	180	11310	5.8482	ug/l	94
106)	1,2,3-Trichlorobenzene	9.389	180	13320	7.8664	ug/l	94
107)	Naphthalene	9.232	128	32426	10.9872	ug/l	100

⁽#) = qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:48:40 2011 SYSTEM1

Data File

Sample ID:

AC59297-016

Analysis Date

Spike or Dup: 1M69068.D Non Spike(If applicable): 1M69067.D AC59297-017(MS:AC59297-016

6/1/2011 1:56:00 PM 6/1/2011 1:41:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MS

		Spike	Sample	Expected		Lower	Upper	ME Low ME Upper	
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	44.0329	0	50	88	6	117	0	0
1,1-Dichloroethene	1	44.0225	0	50	88	8	114	0	0
1,1-Dichloroethane	1	39.4041	0	50	79	14	127	0	0
Chloroform	1	39.1513	0	50	78	26	119	0	0
1,2-Dichloroethane	1	39.9022	0	50	80	18	130	0	0
2-Butanone	1	38.0248	0	50	76	4	141	0	0
Carbon Tetrachloride	1	42.9852	0	50	86	19	122	0	0
Trichloroethene	1	36.439	0	50	73	21	116	0	0
Benzene	1	41.6	0	50	83	21	122	0	0
Tetrachloroethene	1	43.9882	0	50	88	18	116	0	0
Toluene	1	40.0174	0	50	80	19	128	0	0
Chlorobenzene	1	40.6906	0	50	81	21	117	0	0
1,4-Dichlorobenzene	1	28.7821	0	50	58	20	110	0	0
1,2-Dichlorobenzene	1	35.2325	0	50	70	19	113	0	0
n-Propylbenzene	1	44.711	0	50	89	16	122	0	0
sec-Butylbenzene	1	50.2398	0	50	100	9	125	0	0

Data File Spike or Dup: 1M69069.D Sample ID:

Analysis Date

Non Spike(If applicable): 1M69067.D

AC59297-018(MSD:AC59297-0 AC59297-016

6/1/2011 2:12:00 PM

6/1/2011 1:41:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Soil

QC Type: MSD

Analyte: Col Spike Conc Sample Conc Expected Conc Lower Limit Upper Limit ME Low M Limit Vinyl Chloride 1 27.6465 0 50 55 6 117 0 1,1-Dichloroethene 1 34.0938 0 50 68 8 114 0 1,1-Dichloroethane 1 32.3134 0 50 65 14 127 0 Chloroform 1 32.7773 0 50 66 26 119 0 1,2-Dichloroethane 1 34.0987 0 50 68 18 130 0 2-Butanone 1 36.4235 0 50 68 18 130 0 2-Butanone 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 33.3886										
Vinyl Chloride 1 27.6465 0 50 55 6 117 0 1,1-Dichloroethene 1 34.0938 0 50 68 8 114 0 1,1-Dichloroethane 1 32.3134 0 50 65 14 127 0 Chloroform 1 32.7773 0 50 66 26 119 0 1,2-Dichloroethane 1 34.0987 0 50 68 18 130 0 2-Butanone 1 36.4235 0 50 68 18 130 0 2-Butanone 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 29.4305 0 50 68 19 122 0 Tetrachloroethene 1 33.3886 0 50 67 21 122 0 Toluene 1 35.863 0 50			•			_				
1,1-Dichloroethene 1 34.0938 0 50 68 8 114 0 1,1-Dichloroethane 1 32.3134 0 50 65 14 127 0 Chloroform 1 32.7773 0 50 66 26 119 0 1,2-Dichloroethane 1 34.0987 0 50 68 18 130 0 2-Butanone 1 36.4235 0 50 68 18 130 0 2-Butanone 1 34.1223 0 50 68 19 122 0 Carbon Tetrachloride 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 29.4305 0 50 59 21 116 0 Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 72 18 116 0 Toluene 1 32.6783		Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
1,1-Dichloroethane 1 32.3134 0 50 65 14 127 0 Chloroform 1 32.7773 0 50 66 26 119 0 1,2-Dichloroethane 1 34.0987 0 50 68 18 130 0 2-Butanone 1 36.4235 0 50 73 4 141 0 Carbon Tetrachloride 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 29.4305 0 50 59 21 116 0 Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 67 21 122 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 <td>oride</td> <td>1</td> <td>27.6465</td> <td>0</td> <td>50</td> <td>55</td> <td>6</td> <td>117</td> <td>0</td> <td>0</td>	oride	1	27.6465	0	50	55	6	117	0	0
Chloroform 1 32.7773 0 50 66 26 119 0 1,2-Dichloroethane 1 34.0987 0 50 68 18 130 0 2-Butanone 1 36.4235 0 50 73 4 141 0 Carbon Tetrachloride 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 29.4305 0 50 59 21 116 0 Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 67 21 122 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 29.3543 0 50	oroethene	1	34.0938	0	50	68	8	114	0	0
1,2-Dichloroethane 1 34.0987 0 50 68 18 130 0 2-Butanone 1 36.4235 0 50 73 4 141 0 Carbon Tetrachloride 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 29.4305 0 50 59 21 116 0 Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 72 18 116 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	oroethane	1	32.3134	0	50	65	14	127	0	0
2-Butanone 1 36.4235 0 50 73 4 141 0 Carbon Tetrachloride 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 29.4305 0 50 59 21 116 0 Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 72 18 116 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	rm	1	32.7773	0	50	66	26	119	0	0
Carbon Tetrachloride 1 34.1223 0 50 68 19 122 0 Trichloroethene 1 29.4305 0 50 59 21 116 0 Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 72 18 116 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	oroethane	1	34.0987	0	50	68	18	130	0	0
Trichloroethene 1 29.4305 0 50 59 21 116 0 Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 72 18 116 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	ne	1	36.4235	0	50	73	4	141	0	0
Benzene 1 33.3886 0 50 67 21 122 0 Tetrachloroethene 1 35.863 0 50 72 18 116 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	Tetrachloride	1	34.1223	0	50	68	19	122	0	0
Tetrachloroethene 1 35.863 0 50 72 18 116 0 Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	ethene	1	29.4305	0	50	59	21	116	0	0
Toluene 1 32.6783 0 50 65 19 128 0 Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0		1	33.3886	0	50	67	21	122	0	0
Chlorobenzene 1 32.8109 0 50 66 21 117 0 1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	proethene	1	35.863	0	50	72	18	116	0	0
1,4-Dichlorobenzene 1 20.8837 0 50 42 20 110 0 1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0		1	32.6783	0	50	65	19	128	0	0
1,2-Dichlorobenzene 1 29.3543 0 50 59 19 113 0	nzene	1	32.8109	0	50	66	21	117	0	0
	orobenzene	1	20.8837	0	50	42	20	110	0	0
n-Propylbenzene 1 35.6665 0 50 71 16 122 0	orobenzene	1	29.3543	0	50	59	19		0	0
	penzene	1	35.6665	0	50	71	16		0	0
sec-Butylbenzene 1 41.7403 0 50 83 9 125 0	lbenzene	1	41.7403	0	50	83	9	125	0	0

^{* -} Indicates outside of limits

Form3 RPD DATA

QC Batch: MBS9764

Data File

Sample ID:

Analysis Date

Spike or Dup: 1M69069.D

AC59297-018(MSD:AC59297-0 6/1/2011 2:12:00 PM

Duplicate(If applicable): 1M69068.D

AC59297-017(MS:AC59297-016 6/1/2011 1:56:00 PM

Inst Blank(If applicable):

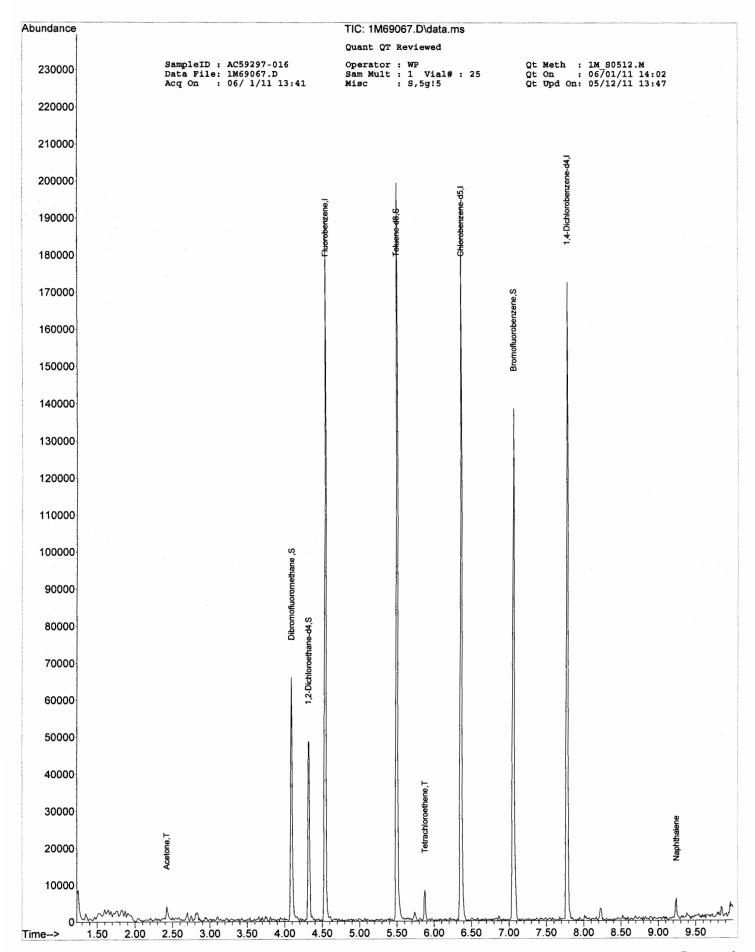
Method: 8260

Matrix: Soil

QC Type: MSD

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Vinyl Chloride	1	27.6465	44.0329	46	53
1,1-Dichloroethene	1	34.0938	44.0225	25	53
1,1-Dichloroethane	1	32.3134	39.4041	20	44
Chloroform	1	32.7773	39.1513	18	39
1,2-Dichloroethane	. 1	34.0987	39.9022	16	37
2-Butanone	1	36.4235	38.0248	4.3	59
Carbon Tetrachloride	1	34.1223	42.9852	23	40
Trichloroethene	1	29.4305	36.439	21	39
Benzene	1	33.3886	41.6	22	38
Tetrachloroethene	1	35.863	43.9882	20	37
Toluene	1	32.6783	40.0174	20	35
Chlorobenzene	1	32.8109	40.6906	21	37
1,4-Dichlorobenzene	1	20.8837	28.7821	32	41
1,2-Dichlorobenzene	1	29.3543	35.2325	18	42
n-Propylbenzene	1	35.6665	44.711	23	42
sec-Butylbenzene	1	41.7403	50.2398	18	48

^{* -} Indicates outside of limits


NA - Both concentrations=0... no result can be calculated

SampleID : AC59297-016 Data File: 1M69067.D Acq On : 06/ 1/11 13:41 Operator : WP Sam Mult : 1 Vial# : 25 Misc : S,5g!5

Qt Meth : 1M_S0512.M Qt On : 06/01/11 14:02 Qt Upd On: 05/12/11 13:47

Compound	R.T.	QIon	Response	Conc Uni	ts Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.539	96	98703	30.00 u	ıg/l	0.00
52) Chlorobenzene-d5	6.359	117	72775	30.00 u	1g/l	0.00
70) 1,4-Dichlorobenzene-d4	7.776	152	41528	30.00 ນ	ıg/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.087	111	30185	31.06 u	ıg/l	0.00
Spiked Amount 30.000			Recove	ry = 1	.03.53%	
38) 1,2-Dichloroethane-d4	4.313	67	14159	29.33 u	ıg/l	0.00
Spiked Amount 30.000			Recove	ry =	97.77%	
66) Toluene-d8	5.494	98	102716	⁻ 31.17 ບ	ıg/l	0.00
Spiked Amount 30.000			Recove	ry = 1	.03.90%	
76) Bromofluorobenzene	7.058	174	32680	28.04 u	ıg/l	0.00
Spiked Amount 30.000			Recove	ry =	93.47%	
Target Compounds						Qvalue
19) Acetone	2.424	43	5066	24.3820	ug/l	. 89
65) Tetrachloroethene	5.877	164	2276	1.6477	/ ug/]	82
107) Naphthalene	9.242	128	5456	1.7995	ug/1	100

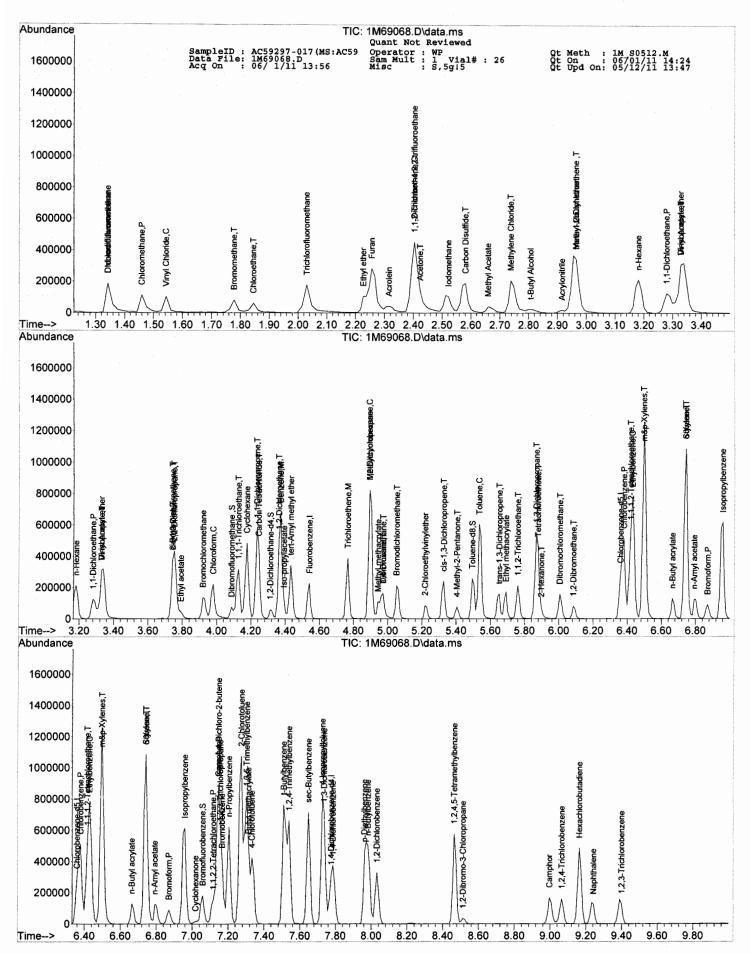
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:53:26 2011 SYSTEM1

Qt Meth : 1M_S0512.M Qt On : 06/01/11 14:24 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration

•						
Compound		QIon	Response	Conc Units	Dev(M	in)
Internal Standards	4 530	96	123996	30.00 ug/	1 0	00
 4) Fluorobenzene 52) Chlorobenzene-d5 	4.539 6.359		94528	30.00 ug/		.00
70) 1,4-Dichlorobenzene-d4			50623	30.00 ug/		.00
707 1,4-Dichiolobenzene-da	, ,,,,	132	3002,3	30.00 -9,		
System Monitoring Compounds	3					
36) Dibromofluoromethane	4.087	111	31920	26.14 ug/	1 0	.00
Spiked Amount 30.000			Recov	ery = 87	.13%	
38) 1,2-Dichloroethane-d4	4.313	67	15624	25.76 ug/		.00
Spiked Amount 30.000					.87%	
66) Toluene-d8	5.494	98	126700	29.60 ug/		.00
Spiked Amount 30.000				•	.67%	
76) Bromofluorobenzene	7.058	174		28.70 ug/		.00
Spiked Amount 30.000			Recov	very = 95	.67%	
_					_	1
Target Compounds				20 4704		value 76
5) Chlorodifluoromethane	1.343		107603	30.4794	ug/l	92
6) Dichlorodifluoromethan			83112	31.0638 46.0063	ug/l ug/l	82
7) Chloromethane	1.460		99783	39.3412	ug/l	87
8) Bromomethane	1.779 1.544		40388 76282	44.0329	ug/l	97
9) Vinyl Chloride	1.846		39791	41.6200	ug/l	93
10) Chloroethane11) Trichlorofluoromethane			141451	40.2829	ug/l	87
•	2.228		49694		ug/1	84
12) Ethyl ether 13) Furan	2.257		193491	49.3072	ug/l	100
14) 1,1,2-Trichloro-1,2,2			87899	52.0338	ug/l	94
15) Methylene Chloride	2.739	84	75498		ug/l	87
16) Acrolein	2.316		24438	148.6334	ug/l	91
17) Acrylonitrile	2.916		13095	35.0952	ug/l	96
18) Iodomethane	2.523		107242	48.7659	ug/l	99
19) Acetone	2.424	43	58240	223.1247	ug/l	92
20) Carbon Disulfide	2.582		221173	40.6049	ug/1	100
21) t-Butyl Alcohol	2.808	59	12192	165.5449	ug/1	92
22) n-Hexane	3.182	57	79060	33.9443	ug/l	71
23) Di-isopropyl-ether	3.329	45	247455	45.1610	ug/l	97
24) 1,1-Dichloroethene	2.405	61	125677		ug/l	93
25) Methyl Acetate	2.660		46202		ug/l	100
26) Methyl-t-butyl ether	2.965		125574	37.4116	ug/l	69
27) 1,1-Dichloroethane	3.280				ug/l	94
28) trans-1,2-Dichloroeth					ug/l	77
29) cis-1,2-Dichloroethen			129220		ug/l	91
30) Bromochloromethane	3.920				ug/l ug/l	65 94
31) 2,2-Dichloropropane	3.752				ug/l	98
32) Ethyl acetate	3.792				ug/l	84
33) 1,4-Dioxane	4.972 4.234				ug/l	98
34) 1,1-Dichloropropene	3.979				ug/l	91
35) Chloroform	4.175		146266	44.8643	ug/l	94
37) Cyclohexane 39) 1,2-Dichloroethane	4.362		92114		ug/l	93
40) 2-Butanone	3.743		15059	38.0248	ug/l	84
41) 1,1,1-Trichloroethane			143539	41.6872	ug/l	99
42) Carbon Tetrachloride	4.244		123249	42.9852	ug/l	93
43) Vinyl Acetate	3.329		145914	36.6384	ug/l	100
45) Bromodichloromethane	5.051		102282	35.6817	ug/l	91
46) Methylcyclohexane	4.894	83	141787	47.6222	ug/l	99
47) Dibromomethane	4.972	174	38274	32.5540	ug/l	94
48) 1,2-Dichloropropane	4.894	63	71729	39.5491	ug/l	83
49) Trichloroethene	4.766	130	78849	36.4390	ug/l	93
50) Benzene	4.372	2 78	294208	41.6000	ug/l	100
51) tert-Amyl methyl ethe	r 4.431	L 73	144281	38.6470	ug/l	80
53) Iso-propylacetate	4.392		66931	39.4296	ug/l	82
54) Methyl methacrylate	4.943		39694	34.2446	ug/l	93
55) Dibromochloromethane	6.00		62644	37.6523	ug/l	99
56) 2-Chloroethylvinyleth				34.6724	ug/l	83 96
57) cis-1,3-Dichloroprope			91347	32.2778	ug/1	98
58) trans-1,3-Dichloropro			66553	27.7474 32.3853	ug/l ug/l	69
59) Ethyl methacrylate	5.690			32.3853	ug/l	92
60) 1,1,2-Trichloroethane				38.4877	ug/l	89
61) 1,2-Dibromoethane	6.084 5.868				ug/l	98
62) 1,3-Dichloropropane	5.40				ug/l	82
63) 4-Methyl-2-Pentanone	5.89			·	ug/l	94
64) 2-Hexanone65) Tetrachloroethene	5.87				ug/1	
67) Toluene	5.53				ug/l	
68) 1,1,1,2-Tetrachloroet					ug/l	71
, -,-,	1					


Quantitation Report (Not Reviewed)

Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration

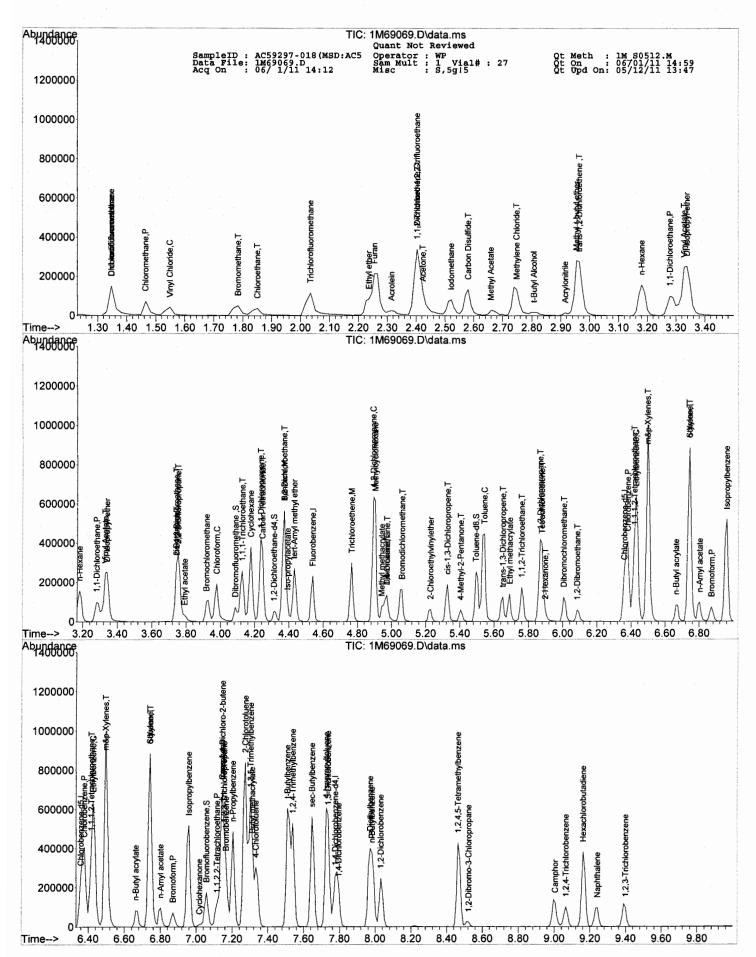
	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
69)	Chlorobenzene	6.379	112	185032	40.6906	ug/1	98
71)	n-Butyl acrylate	6.664	55	66483	34.7099	ug/l	94
72)	n-Amyl acetate	6.792	43	63139	38.1313	ug/l	87
73)	Bromoform	6.871	173	35045	38.9925	ug/l	99
74)	Ethylbenzene	6.428	106	74144	42.6835	ug/l	87
75)	1,1,2,2-Tetrachloroethane	7.117	83	50855	44.5609	ug/l	98
77)	Styrene	6.743	104	177784	40.4382	ug/l	97
78)	m&p-Xylenes	6.497	106	260478	95.6251	ug/l	90
79)	o-Xylene	6.743	106	134370	47.2124	ug/l	73
80)	trans-1,4-Dichloro-2-b	7.146	53	38436	58.7984	ug/l	84
81)	1,3-Dichlorobenzene	7.737	146	101877	28.9623	ug/l	93
82)	1,4-Dichlorobenzene	7.786	146	95250	28.7821	ug/l	95
83)	1,2-Dichlorobenzene	8.032	146	107147	35.2325	ug/l	91
84)	Isopropylbenzene	6.960	105	352691	53.0192	ug/l	94
85)	Cyclohexanone	7.019	55	7051	236.1054	ug/l	96
86)	Camphene	7.146	93	174548	60.3797	ug/l	98
87)	1,2,3-Trichloropropane	7.156	75	59506	40.8386	ug/l	92
88)	2-Chlorotoluene	7.274	91	209386	48.9694	ug/l	96
90)	4-Chlorotoluene	7.333	91	143744	33.3953	ug/l	95
91)	n-Propylbenzene	7.206	91	372872	44.7110	ug/l	97
92)	Bromobenzene	7.166	77	197967	45.8431	ug/l	80
93)	1,3,5-Trimethylbenzene	7.304	105	301410	52.5148	ug/l	60
94)	Butyl methacrylate	7.314	41	84641	46.9643	ug/l	71
95)	t-Butylbenzene	7.511	119	326181	56.1809	ug/l	84
96)	1,2,4-Trimethylbenzene	7.540	105	296273	48.6802	ug/l	85
97)	sec-Butylbenzene	7.648	105	388473	50.2398	ug/l	99
98)	4-Isopropyltoluene	7.727	119	302513	46.5667	ug/l	94
99)	n-Butylbenzene	7.983	91	243583	31.4307	ug/l	93
100)	p-Diethylbenzene	7.963	119	128628	36.5211	ug/l	94
101)	1,2,4,5-Tetramethylben	8.465	119	261940	42.6447	ug/l	95
102)	1,2-Dibromo-3-Chloropr	8.514	157	8875	39.9849	ug/l	70
103)	Camphor	8.996	95	37384	369.4874	ug/l	90
104)	Hexachlorobutadiene	9.163	225	91519	40.1582	ug/l	93
105)	1,2,4-Trichlorobenzene	9.065	180	41437	17.1092	ug/l	96
106)	1,2,3-Trichlorobenzene	9.399	180	47982	22.6273	ug/l	96
107)	Naphthalene	9.242	128	100702	27.2466	ug/l	100
							_

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

1M S0512.M Tue Jun 07 06:49:03 2011 SYSTEM1

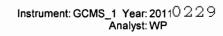
SampleID : AC59297-018 (MSD:AC5 Operator : WP Data File: 1M69069.D Sam Mult : 1 Vial# : 27 Acq On : 06/ 1/11 14:12 Misc : S,5g!5 Qt Meth : 1M_S0512.M Qt On : 06/01/11 14:59 Qt Upd On: 05/12/11 13:47

Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\
Qt Resp Via : Initial Calibration


•	Compound			Response	Conc Units	Dev(Min)
	rnal Standards						
	Fluorobenzene	4.539	96	121341	30.00 ug/	1 (0.00
52)	Chlorobenzene-d5	6.359		91513	30.00 ug/		0.00
70)	1,4-Dichlorobenzene-d4	7.776	152	48051	30.00 ug/	1 (0.00
Syste	em Monitoring Compounds						
36)	Dibromofluoromethane	4.086	111	30738	25.72 ug/		0.00
•	iked Amount 30.000			Recove	-	.73%	
	1,2-Dichloroethane-d4	4.313	67	14653 Recove	24.69 ug/ erv = 82	1.30%	0.00
	iked Amount 30.000 Toluene-d8	5.493	98	123362	ery = 62 /29.77 ug		0.00
	iked Amount 30.000	55	,,,			.23%	
76)	Bromofluorobenzene	7.058	174		30.46 ug/		0.00
Sp	iked Amount 30.000			Recove	ery = 101	53%	
Targe	et Compounds					(Qvalue
	Chlorodifluoromethane	1.348	51	107470	31.1078	ug/l	86
	Dichlorodifluoromethane	1.348	85	52439	20.0283	ug/l	92
	Chloromethane	1.465	50	62754	29.5667	ug/l	82 77
	Bromomethane Vinyl Chloride	1.784 1.549	94 62	32796 46869	32.6450 27.6465	ug/l ug/l	95
	Chloroethane	1.851	64	31892	34.0878	ug/l	
	Trichlorofluoromethane	2.036		121814	35.4496	ug/l	83
	Ethyl ether	2.237	59	41079	35.1907	ug/l	85
	Furan	2.257	39	155159	40.4042	ug/l	96
	1,1,2-Trichloro-1,2,2	2.404		66686	40.3401	ug/l	
	Methylene Chloride Acrolein	2.749 2.316	84 56	55218 13228	32.0444 82.2139	ug/l ug/l	
	Acrylonitrile	2.916	53	10361	28.3756	ug/l	
	Iodomethane	2.522		77105	35.8289	ug/l	
	Acetone	2.424	43	45732	179.0385	ug/l	
	Carbon Disulfide	2.581		144829	27.1707	ug/l	
	t-Butyl Alcohol	2.808	59	8620	119.6047	ug/l	
	n-Hexane Di-isopropyl-ether	3.181 3.339	57 45	57566 200184	25.2567 37.3333	ug/l ug/l	
	1,1-Dichloroethene	2.404		95248		ug/1	
	Methyl Acetate	2.660		32662	30.4376	ug/l	
	Methyl-t-butyl ether	2.955	73	100817	30.6930	ug/l	
	1,1-Dichloroethane	3.280		105047	32.3134	ug/l	
	trans-1,2-Dichloroethene	2.965	96 61	50638 101532	28.9643 33.2799	ug/l ug/l	
	cis-1,2-Dichloroethene Bromochloromethane	3.742 3.919	49	47295	34.7014	ug/l	
	2,2-Dichloropropane	3.752	77	92192	35.2223	ug/l	
	Ethyl acetate	3.791	43	24799	25.9213	ug/l	
	1,4-Dioxane	4.972	88	15929		ug/l	
	1,1-Dichloropropene	4.234	75 83	82183	31.1359 32.7773	ug/l ug/l	
-	Chloroform Cyclohexane	3.978 4.175	56	110228 114436		ug/l	
	1,2-Dichloroethane	4.372	62	77031	34.0987	ug/1	90
	2-Butanone	3.742	43	14116	36.4235	ug/l	93
41)	1,1,1-Trichloroethane	4.126	97	112369	33.3487	ug/l	99
	Carbon Tetrachloride	4.244	117	95742	34.1223	ug/l	94
,	Vinyl Acetate	3.329 5.060	43 83	122697 80328	31.4828 28.6361	ug/l ug/l	100 96
	Bromodichloromethane Methylcyclohexane	4.903	83	118490	40.6682	ug/l	93
	Dibromomethane	4.972	174	32102	27.9018	ug/l	93
	1,2-Dichloropropane	4.893	63	61107	34.4297	ug/l	92
49)	Trichloroethene	4.765	130	62320	29.4305	ug/l	94
	Benzene	4.372	78	231078	33.3886	ug/l	100 81
	tert-Amyl methyl ether Iso-propylacetate	4.431 4.391	73 43	114387 51897	31.3100 31.5802	ug/l ug/l	84
	Methyl methacrylate	4.942	41	30481	27.1627	ug/1	93
	Dibromochloromethane	6.005	129	50036	31.0651	ug/l	94
56)	2-Chloroethylvinylether	5.228	63	20086	27.9412	ug/l	89
	cis-1,3-Dichloropropene	5.326	75	72909	26.6115	ug/l	
	trans-1,3-Dichloropropene	5.651	75 41	48965 37539	21.0871	ug/l	95 77
	Ethyl methacrylate 1,1,2-Trichloroethane	5.690 5.759	41 97	37539 40018	27.9208 34.7657	ug/l ug/l	91
	1,2-Trichioroethane	6.084	107	32185	30.0178	ug/l	79
	1,3-Dichloropropane	5.867	76	69597	34.3315	ug/l	
63)	4-Methyl-2-Pentanone	5.405	43	31285	32.3877	ug/l	
	2-Hexanone	5.897	43	19285	26.3578	ug/l	
	Tetrachloroethene Toluene	5.877 5.542	164 92	62295 151867	35.8630 32.6783	ug/l ug/l	
68)		6.418	133	62276	40.4509	ug/l	
/	1						

Data Path : G:\GcMsData\2011\GCMS_1\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_1\MethodQt\

Qt Resp Via : Initial Calibration


	Compound	R.T.	QIon	Response	Conc Units	Dev(Mir	1)
69)	Chlorobenzene	6.379	112	144442	32.8109	ug/l	97
71)	n-Butyl acrylate	6.664	55	47839	26.3130	ug/l	95
72)	n-Amyl acetate	6.802	43	47134	29.9891	ug/l	81
73)	Bromoform	6.871	173	27045	31.7021	ug/l	93
74)	Ethylbenzene	6.428	106	57056	34.4166	ug/l	90
75)	1,1,2,2-Tetrachloroethane	7,117	83	42182	38.9397	ug/l	90
. 77)	Styrene	6.743	104	136017	32.3927	ug/l	96
78)	m&p-Xylenes	6.497	106	200118	76.7940	ug/l	92
79)	o-Xylene	6.743	106	109072	40.0769	ug/l	78
80)	trans-1,4-Dichloro-2-b	7.146	53	29267	47.1684	ug/l	78
81)	1,3-Dichlorobenzene	7.736	146	71570	21.4355	ug/l	90
82)	1,4-Dichlorobenzene	7.795	146	65600	20.8837	ug/l	95
83)	1,2-Dichlorobenzene	8.031	146	84735	29.3543	ug/l	90
84)	Isopropylbenzene	6.959	105	280867	44.4820	ug/l	94
85)	Cyclohexanone	7.018	55	5969	210.5727	ug/l	90
86)	Camphene	7.146	93	138921	50.6278	ug/l	98
87)	1,2,3-Trichloropropane	7.156	75	48186	34.8398	ug/l	92
88)	2-Chlorotoluene	7.274	91	161216	39.7220	ug/l	95
90)	4-Chlorotoluene	7.333	91	101304	24.7952	ug/l	93
91)	n-Propylbenzene	7.205	91	282332	35.6665	ug/l	97
92)	Bromobenzene	7.166	77	154399	37.6679	ug/l	78
93)	1,3,5-Trimethylbenzene	7.303	105	244354	44.8527	ug/l	65
94)	Butyl methacrylate	7.313	41	65887	38.5152	ug/l	72
95)	t-Butylbenzene	7.510	119	265981	48.2643	ug/l	84
96)	1,2,4-Trimethylbenzene	7.540	105	229214	39.6777	ug/l	82
97)	sec-Butylbenzene	7.648	105	306354	41.7403	ug/l	99
98)	4-Isopropyltoluene	7.726	119	240092	38.9363	ug/l	94
99)	n-Butylbenzene	7.982	91	180615	24.5531	ug/l	94
100)	p-Diethylbenzene	7.972	119	96285	28.8013	ug/l	94
101)	1,2,4,5-Tetramethylben	8.464	119	203674	34.9337	ug/l	92
102)	1,2-Dibromo-3-Chloropr	8.523	157	6664	31.6306	ug/l	78
103)	Camphor	9.005	95	32508	338.4929	ug/l	91
104)	Hexachlorobutadiene	9.163	225	74387	34.3879	ug/l	93
105)	1,2,4-Trichlorobenzene	9.064	180	28782	12.5201	ug/l	92
106)	1,2,3-Trichlorobenzene	9.399	180	33597	16.6917	ug/l	94
107)	Naphthalene	9.242	128	74133	21.1316	ug/l	100
							_

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

1M_S0512.M Tue Jun 07 06:49:08 2011 SYSTEM1

GC/MS Volatile Data Logbook Data

|--|--|

	1-1-1	IM68107		Reviewed	•		Surr	Sam			Analysis
Data File	Sample Number	Flags	Comments	By	Test Group	Matrix		Dil	Meth	nod(s)	Date
1M68107.D	BFB TUNE		V-111011,V-110414,V-115763	WP							05/12 08:37
1M68108.D	BLK	IsCnS8Anc	-	WP		Soil	1	1		8260	05/12 08:48
1M68109.D	CAL @ 0.5 PPB		B-10244	WP		Soil	1	1	624	8260	05/12 09:05
	CAL @ 1 PPB		B-10244	WP		Soil	1	1	624	8260	05/12 09:21
1M68111.D	CAL @ 2 PPB	*	B-10244	WP		Soil	1	1	624	8260	05/12 09:37
1M68112.D	CAL @ 5 PPB		B-10244	WP		Soil	1	1	624	8260	05/12 09:53
1M68113.D	CAL @ 500 PPB	Oc	B-10244	WP		Soil	1	1	624	8260	05/12 10:10
1M68114.D	CAL @ 250 PPB	Oc	B-10244	WP		Soil	1	1	624	8260	05/12 10:26
1M68115.D	CAL @ 100 PPB	Oc	B-10244	WP		Soil	1	1	624	8260	05/12 10:42
1M68116.D	CAL @ 50 PPB		B-10244	WP		Soil	1	1	624	8260	05/12 10:58
	CAL @ 20 PPB		B-10244	WP		Soil	1	1	624	8260	05/12 11:15
1M68118.D	ICV	IvoSd	V-115875	WP		Soil	2.5	1		8260	05/12 11:32
1M68119.D	BLK		•	WP		Soil	1	1		8260	05/12 11:48
1M68120.D	DAILY BLANK		OK	WP		Soil	1	1		8260	05/12 12:07
1M68121.D	MBS7666		OK MBS7666	WP		Soil	1	1		8260	05/12 12:23
1M68122.D	AC58853-010		OK	WP	VO-8260	Soil	1	1		8260	05/12 12:40
1M68123.D	AC58853-011		OK	WP	VO-8260	Soil	1	1		8260	05/12 12:56
1M68124.D	AC58853-014		OK	WP	VO-8260	Soil	1	1		8260	05/12 13:12
1M68125.D	AC58853-017		OK	WP	VO-8260	Soil	1	1		8260	05/12 13:28
1M68126.D	AC58853-001	Ос	OK	WP	VO-8260	Soil	1	1		8260	05/12 13:44
1M68127.D	BLK		•	WP		Soil	1	1		8260	05/12 14:01
1M68128.D	AC58853-003		OK	WP	VO-8260	Soil	1	1		8260	05/12 14:17
1M68129.D	BLK		OK	WP		Soil	1	1		8260	05/12 14:33
1M68130.D	AC58804-005	S8	RR-5G,dirty	WP	VO10-8260	Soil	1	1		8260	05/12 14:49
1M68131.D	BLK		-	WP		Soil	1	1		8260	05/12 15:06
1M68132.D	AC58853-006		OK	WP	VO-8260	Soil	1	1		8260	05/12 15:22
1M68133.D	AC58853-008		OKOK	WP	VO-8260	Soil	1	1		8260	05/12 15:38
1M68134.D	AC58853-009	Oc	RR-1G,RR-MEXT	WP	VO-8260	Soil	1	1		8260	05/12 15:55
1M68135.D	BLK		-	WP		Soil	1	1		8260	05/12 16:11
1M68136.D	AC58853-019		OK MBS7666	WP	VOBTEX-826	Soil	1	1		8260	05/12 16:27
1M68137.D	BLK		-	WP		Soil	1	1 ·			05/12 16:43
1M68138.D	AC58804-005	S8Ao	Confirms surr.	KL	VO10-8260	Soil	1	1		8260	05/12 16:59
1M68139.D	BLK		-	WP		Soil	1	1			05/12 17:15
1M68140.D	AC58853-001		OK	WP	VO-8260	Soil	1	1			05/12 17:31
1M68141.D	BLK		-	WP		Soil	1	1			05/12 17:48
1M68142.D	AC58853-009	S8Oc	RR-MEXT	WP	VO-8260	Soil	1	1		8260	05/12 18:04
1M68143.D	BLK		_	WP		Soil	1	1		8260	05/12 18:20
	AC58995-001(5X)	S8Oc	RR-MEXT	WP	VO-8260	Soil	1	5		8260	05/12 18:36
1M68145.D	MBS7671		OK MBS7671	WP		Soil	1	1		8260	05/12 18:52
	AC58853-019(MS)		OK MBS7666	WP	VOBTEX-826	Soil	1	1		8260	05/12 19:08
	AC58853-019(MSD))	OK MBS7666	WP	VOBTEX-826	Soil	1	1		8260	05/12 19:24

Anc. Area Not Checked An Area Out Barn Blank 800 series mission Blank 800 series mission Blank 800 series mission Etn Tolo/Solvent Extraction Date Mission/Not check'd Etn Tolo/Solvent Extraction Date Mission/Not check'd Etn Tolo-Straction Performed Offsite of Hold Etn Extraction Date Mission/Not check'd Etn Tolo-Straction Performed Offsite of Hold Eve Eval Mix Falland Ever. Eval Mix Falland Ever. Eval Mix Not Checked Eval Mix Rision did not endrin Eval Mix Rision did not endrin Eval Mix Rision did not endrin Eval Mix Rision did not endrin Ever. Eval Mix Rision did not endrin Ever. Eval Mix Rision did not endrin Eval Mix Rision did not e					·—·	
BBm Blank 800 series mission Blank 800 series mission Blank 800 series mission Etc Tclo/Solvant Extraction Date Mission/Not check'd Etc Eval Mix Falled Eval Time Extracted Outside of Hold Eval Time Extracted Custide of Hold Eval Time Extracted Custide of Hold Eval Time Extracted Custide of Hold Eval Time Extracted Custide of Hold Eval Time Extracted Custide of Hold time Calibration Column 1 Out (800 Series) Ho Samole Analyzed outside of hold time Calibration Column 2 Out (800 Series) Ho Samole Analyzed outside of hold time Calibration Column 2 Out (800 Series) Ho Samole Analyzed outside of hold time Calibration Column 3 Out (800 Series) Ho Samole Analyzed outside of hold time Calibration Column 2 Out (800 Series) Ho Samole Analyzed outside of hold time Calibration Column 3 Out (800 Series) Ho Samole Analyzed outside of hold time Calibration Column 3 Out (800 Series) Ho Samole Analyzed outside of hold time Rt16. R26 R	Anc	Area Not Checked	Eα		Cn	
Bilank 8000 series mission Bilank 8000 series mission Bilank 8000 series mission Bilank Nrt Found/Assigned Etc Eval Time Extraction Performed Outside of Hold Evr Eval Mix Falled Evr Eval Mix Falled Evr Eval Mix Falled Evr Eval Mix Falled Evr Eval Mix Not Checked Evr Eval Mix Not Checked Evr Eval Mix Relie	An	Area Out	Esm	Solvent Extraction Date Missing/Not check'd	CRN	
Bof Blank Not Found/Assigned Ev Eval Time Exceeded Evn Eval Mix Not Checked Evn Eval Mix Not Evn Eval Mix Not Checked Evn Eval Mix Not Evn Eval Mix Not Checked Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Checked Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval Mix Not Evn Eval M	B6m	Blank 800 sedes mission	Etn	Tclo/Solvent Extraction Date Missing/Not check'd		
C18 Calibration Column 1 Out (800 Series) Hb Analysis Before Collection Date C18 Calibration Column 2 Out (800 Series) Hb Sample Analyze delisted Column 1 and or 2 C26 Calibration Column 2 Out (800 Series) H18 [28 Initial cal B00) series failed Column 1 and or 2 C27 Calibration Column 2 Out (800 Series) C28 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C29 Calibration Column 2 Out (800 Series) C20 Calibration Not Checked for sample/Dlank/eval D10 D20 Diff Out Column 1 or Column 2 Out (800 Series) C20 Calibration Not Checked for sample/Dlank/eval D10 Diff Out Column 1 or Column 2 Out (800 Series) C20 Calibration Not Checked for sample/Dlank/eval D10 D20 Diff Out Column 1 or Column 2 Out (800 Series) C20 Calibration Not Checked C21 Calibration Not Checked C22 Calibration Not Checked for sample/Dlank/eval D20 Diff Out Column 2 Out (800 Series) C22 Calibration Not Checked C23 Calibration Column 1 or Column 1 and or Col 2 800 Series C24 Calibration Out In MSMsdt (col 1 and or Col 2 800 Series) C25 Calibration Column 1 or Column 1	B8m	Blank 8000 sedes mission	Eto	Trin Extraction Performed Outside of Hold	EvF	Eval Mix Failed
C18 Calibration Column 1 Out (8000 Series) C28 Calibration Column 2 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 3 Out (8000 Series) C38 Calibration Column 3 Out (8000 Series) C38 Calibration Column 1 Out (8000 Series) C38 Calibration Column 1 Out (8000 Series) C38 Calibration Column 2 Out (8000 Series) C38 Calibration Column 1 Out (8000 Series) C38 Calibration Column 1 Out (8000 Series) C38 Calibration Column 1 Out (8000 Series) C38 Calibration Column 1 Out (8000 Series) C48 Calibration Column 1 Out (8000 Series) C58 Calibration Column 1 Out (8000 Series) C58 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C69 Calibration Column 1 Out (8000 Series) C60 Series Surmoste Out (8000 Series) C60 Calibration Column 1 Out (8000 Series) C60 Calibration Calibration Column 1 out (8000 Series) C60 Series Surmoste Out (8000 Series) C60 Calibration Cal	Bnf	Blank Not Found/Assigned	Έν	Eval Time Exceeded	Evnc	
C28 Calibration Column 2 Out (600 Series) 118.128 Initial cal 800 series failed Column 1 and or 2 C28 Calibration Column 2 Out (600 Series) 118.128 Initial cal 8000 series failed Column 1 and or 2 C28 Calibration Column 2 Out (800 Series) 118.128 Initial cal 8000 series failed Column 1 and or 2 C28 Calibration Column 2 Out (800 Series) 128 Initial cal 8000 series failed Column 1 and or 2 C28 Calibration Column 2 Out (800 Series) 129 Initial cal 800 Series failed Column 1 and or 2 C28 Calibration Column 2 Out (800 Series) 138 Initial cal 800 Series failed Column 1 and or 2 C28 Calibration Column 2 Out (800 Series) 148 Calibration 1 and or 2 C28 Calibration Column 2 Out (800 Series) 158 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 1 and or 2 C28 Calibration 2 and 0	C16	Calibration Column 1 Out (800 Saries)	Hb .	Analysis Before Collection Date	Evrc	
C28 Calibratino Column 2 Out (8000 Saries) C8f 600 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank did not have nassino cal C8f 8000 saries samnie/blank/eval C9f 800	C18	Calibration Column 1 Out (8000 Series)	Ho	Samole Analyzed outside of hold time	R16.R26	
C8f 800 series samnle/blank did not have nassing cal local Mot Checked 800 series samole/blank did not have nassing cal local Mot Checked 800 series samole/blank did not have nassing cal local Mot Checked 800 series samole/blank did not have nassing cal local Mot Checked 800 series samole/blank did not have nassing cal local 800 series samole/blank did not have nassing cal local 800 series 800 series samone/blank did not have nassing cal local 800 series 800 series samone/blank/eval local 800 series 800 series samone/blank/eval local 800 series 800 series samone/blank/eval local 800 series 800 series samone/blank did not not series samone/blank did not not series samone/blank did not not series samone/blank did not not series samone/blank did not not series samone/blank did not not not series samone/blank did not not not series samone/blank did not not not series samone/blank did not not not series samone/blank did not not not not not not not not not not	C26	Calibration Column 2 Out (600 Series)	116.126	Initial cal 800 series failed Column 1 and or 2	R18.R28	Rnd Out on MsMsd (col1 and or col2) 8000 series
CBf 8000 series samole/blank did not have nessino cal Cme Endino Cal mission for samole/blank/eval Dro. Drift Out Column 1 or Column 2 Cals or Init Cals Dro. Drift Out Cherked for samole/blank/eval Dro. Drift Out Cherked for samole/blank/eval Dro. Drift Out Cherked for samole/blank/eval Dro. Drift Out Cherked for samole/blank/eval Dro. Drift Out Cherked for samole/blank/eval Dro. Drift Out Cherked for samole/blank/eval Name 1 or Column 2 Cals or Init Cals Dro. Drift Out Cherked Dro. Drift Out Cherked for Samole/blank/eval Dro. Drift Out Cherked for Samole/blank/eval Name 1 or Column 2 cals or Init Cals Dro. Drift Out Cherked Dro. Drift	C28	Calibration Column 2 Out (8000 Sades)	118.128	Initial cal 8000 sedes falled. Column 1 and or 2	Ro	Retention Time Out Or %Diff Out
Cme Endino Cal mission for samole (8000 sedes) N	C6f	600 sedes sample/blank did not have passing cal	is	Initial Cal Not Chacked		Can't Calculate Drift
Co. Calibration Not Checked for samole/blank/eval D1o.D2n Orifi Out Column 1 or Column 2 Cals or Init Cals D1o.D2n Orifi Out Column 1 or Column 2 Cals or Init Cals D1o.D4n Orifi Out Column 1 or Column 2 Cals or Init Cals D1o.D4n Orifi Out Checked D1o.D4n Orifi Out Checked D2 D4n Orifi Out Cals D1o.D4n Orifi Out D4n D4n Orifi Out D4n D5n D4n Orifi Out D4n D6n D4n D5n D4n D6n D6n D4n D6n D6n D6n D6n D6n D6n D6n D6n D6n D6	C8f	8000 series sample/blank did not have nassing call	lv	Pmh with calmt.csv for init calibration chek rfs	S6	800 series surronate out
D1o D2o Drift Out Column 1 or Column 2 Cals or Init Cals Dnc Drift Not Cherked M18a M18b Soike Out Col 1 and or Col 2 600 series Sa8.Sb8 Acid and or BN Surmoate Out (8000 series) Dn Drift Out Soike Out Col 1 and or Col 2 8000 series Snc Surmoate Not Cherked Dn Drift Out Column 1 or Column 2 Cals or Init Cals M18a M18b Soike Out Col 1 and or Col 2 8000 series Snc Surmoate Not Cherked M18a M18b Soike Out Col 1 and or Col 2 8000 series Snc Surmoate Not Cherked Outside of 500 series Tune time	Cme	Ending Cal mission for sample (8000 sedes)	lw	Initial cal warningIni cal file <> method	S8	8000 sedes surrogate out
Dnc Ddft Nnt Cherked M16a M16b Soike Out Cni 1 800 sedes Acid and or BN Sd Surmoate Diluted Out Dn Ddft Out M18a M28 Soike Out Cni 1 and or Coi 2 8000 sedes Soic Surmoate Nnt Cherked Surmoate Nnt Cherked Soike Out Cni 1 and or Coi 2 8000 sedes Soic Surmoate Nnt Cherked Soike Out Cni 1 and or Coi 2 8000 sedes Soic Surmoate Nnt Cherked Soike Out Cni 1 and or Coi 2 8000 sedes Soic Surmoate Nnt Cherked Soike Out Cni 1 and or Coi 2 8000 sedes Soice Surmoate Nnt Cherked Soice Out Cni 1 8000 sedes Acid and or BN Ti5 Outside of 500 sedes Soice Surmoate Nnt Cherked Soice Soil Soil Soil Soil Soil Soil Soil Soil	Cn	Calibration Not Checked for samole/blank/eval	lx	Initial Cal Files Not Undated Properly for a sample	Sa6.Sb6	Acid and or BN Surronate Out (800 series)
Do Drift Out M18 M28 Scike Out Col 1 and or Col 2 8000 series Soc Surmoste Not Checked Eba An Extraction Before Collection Date M18a M18b Solke Out Col 1 8000 sedes Acid and or BN TIS Outside of 500 sedes Tune time	D10.D2n	Drift Out Column 1 or Column 2 Cals or Init Cals	M16.M28	Snike Out Cot 1 and or Cot 2 600 series	Sa8.Sb8	Acid and or BN Surmoste Out (8000 series)
Eha An Extraction Before Collection Date M18a.M18b Solke Out Col 1 8000 sedes Acid and or BN TI5 Outside of 500 sedes Tune time	Dnc	Ddft Not Checked	M16a.M16b	Snike Out Cni 1 600 sedes Acid and or BN	Sd	Surmoste Diluted Out
	Do	Drift Out	M18.M28	Soike Out Col 1 and or Col 2 8000 series	Snc	Surmoate Not Checked
Emp. Problem Chacking Prograndates modeleckprograndation. Solks Not Chacked for this me/med.	Eba	An Extraction Before Collection Date	M18a.M18b	Solke Out Cot 1 8000 sedes Acid and or BN		Outside of 500 series Tune time
	Emn	Problam Checking Preg/rundates modeheckpregrund	Mnc	Solke Not Checked for this ms/msd	Ti6	Outside of 600 sedas Tune time/Cal Time
En Eval Time Not Checked Oc Warning Compound(s) Over Calibration Till Outside of 8000 sades Tune time/Cal Time	En	Eval Time Not Checked	Oc	Warning Compound(s) Over Calibration	_ Ti8	Outside of 8000 series Tune time/Cal Time

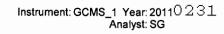
Instrument: GCMS_1 Year: 2011 0 2 3 0 Analyst: WP

Data File	Sample Number	1M68767 Flags	Comments	ار Reviewed By	Test Group	Matrix		Sam Dil	Method(s)	Analysis Date
	BFB TUNE		V-111011,V-116940,V-1091	08.V-11576 Д В						05/26 14:22
1M68768.D	50 PPB	CnSdAnc	-	DB		Soil	0.4	1	8260	05/26 14:31
1M68770.D	CAL @ 50 PPB	C16	OK	DB		Soil	0.4	1	624 8260	05/26 15:07
1M68771.D	BLK		-	DB		Soil	1	1	8260	05/26 15:30
1M68772.D	DAILY BLANK		OK	DB		Soil	1	1	8260	05/26 15:47
1M68773.D	MBS9696		OK MB\$9696	DB		Soil	1	1	8260	05/26 16:04
	AC59206-005		OK	DB	VO-8260	Soil	1	1	8260	05/26 16:21
1M68775.D	AC59206-006	Ao	2ND RUN	DB	VO-8260	Soil	1	1	8260	05/26 16:37
1M68776.D	AC59257-001	S8Ao	2ND RUN	DB	VO-8260	Soil	1	1	8260	05/26 16:54
1M68777.D	AC59221-001		OK	DB	VO-8260	Soil	1	1	8260	05/26 17:10
1M68778.D	AC59221-002	Ос	RR-1g	DB	VO-8260	Soil	1	1	8260	05/26 17:27
1M68779.D	AC59221-003	-	OK	DB	VO-8260	Soil	1	1	8260	05/26 17:44
1M68780.D	AC59221-004	Oc	RR-1g	DB	VO-8260	Soil	1	1	8260	05/26 18:00
1M68781.D	AC59221-006		OK MBS9710	DB	VO-8260	Soil	1	1	8260	05/26 18:17
1M68782.D	AC59221-007		OK MBS9714	DB	VO-8260	Soil	1	1	8260	05/26 18:34
1M68783.D	AC59221-008		OK	DB	VO-8260	Soil	1	1	8260	05/26 18:50
1M68784.D	AC59221-009		ОК	DB	VO-8260	Soil	1	1	8260	05/26 19:07
1M68785.D	AC59221-010	S8Ao	RR-5g MBS9703	DB	VO-8260	Soil	1	1	8260	05/26 19:23
1M68786.D	AC59221-011(MS:/	A68Ao	RR-5g	DB	VO-8260	Soil	1	1	8260	05/26 19:40
1M68787.D	AC59221-012(MSE	D:A	RR-5a	DB	VO-8260	Soil	1	1	8260	05/26 19:57
1M68788.D	AC59221-013	S8Ao	RR-5g	DB	VO-8260	Soil	1	1	8260	05/26 20:13
1M68789.D	AC59266-001		OK MBS9750	DB	VO-8260	Soil	1	1	8260	05/26 20:30
1M68790.D	AC59266-002		OK MBS9769	DB	VO-8260	Soil	1	1	8260	05/26 20:46
1M68791.D	AC59266-003		OK MBS9742	DB	VO-8260	Soil	1	1	8260	05/26 21:03
	AC59266-004		OK MBS9733	DB	VO-8260	Soil	1	1	8260	05/26 21:19
1M68793.D	BLK			DB		Soil	1	1		05/26 21:36
1M68794.D	BLK		OK	DB		Soil	1	1		05/26 21:53
1M68795.D	MBS9697		OK MBS9697	DB		Soil	1	1	8260	05/26 22:09
1M68796.D	MBS9698		MBS9698			Soil	1	1	8260	05/26 22:26
1M68797.D	AC59282-001		OK	DB	VO-8260	Soil	1 -	1		05/26 22:42
1M68798.D	BLK			DB		Soil	1	1	8260	05/26 22:59
1M68799.D	AC59284-008	S8Ao	RR-5g	DB	VO-8260	Soil	1	1	8260	05/26 23:16
1M68800.D	BLK		-	DB		Soil	1	1	8260	05/26 23:32
1M68801.D	AC59281-001(5X)	S8	RR-1g	DB	VO-8260	Soil	1	5	8260	05/26 23:49
1M68802.D	AC59221-005		OK	DB	VO-8260	Soil	1	1	8260	05/27 00:05
1M68803.D	BLK		-	DB		Soil	1	1	8260	05/27 00:22
1M68804.D			-	DB		Soil	1	1	8260	05/27 00:38
1M68805.D			-	DB		Soil	1	1	8260	05/27 00:55

Anc	Area Not Checked
An	Area Out
B6m	Black 600 sedes missino
B8m	Blank 8000 sedes missino
Bnf	Blank Not Found/Assigned
C16	Calibration Column 1 Out (600 Series)
C18	Calibration Column 1 Out (8000 Series)
C26	Calibration Column 2 Out (600 Sedes)
C28	Calibration Column 2 Out (8000 Series)
C6f	600 sedes samole/blank did not have nassinn cal
C8f	8000 series samnle/blank did not have nassion cal
Cme	Endino Cal mission for sample (8000 series)
Cn	Calibration Not Checked for sample/blank/eval
D1n.D2n	Drift Out Column 1 or Column 2 Cals or Init Cals
Dnc	Drift Not Checked
Dn	Drift Out
Eha	An Extraction Before Collection Date
Emo	Problem Checkino Preo/nundates modcheckprenrunda

1M68806.D BLK

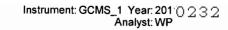
Extraction Performed Past Hold
Solvent Extraction Date Missino/Not check'd
Toto/Solvent Extraction Date Missino/Not check'd
Toto Extraction Performed Outside of Hold
Eval Time Exceeded
Analysis Befora Collection Date
Samole Analyzad outside of hold time
Initial cal Bool series failed Column 1 and or 2
Initial cal Bool series failed Column 1 and or 2
Initial cal Bool series failed Column 1 and or 2
Initial cal Initial Cal Initial Cal Initial cal Films Not Undested
Prob with Calmid Lest for init calibration chek ris
Initial Cal Files Not Undested Procedy for a samol
Snike Out Cnl 1 and or Cnl 2 800 series
Snike Out Cnl 1 and or Cnl 2 800 series
Solke Out Cnl 1 and or Cnl 2 800 series
Solke Out Cnl 1 and or Cnl 2 800 series
Solke Out Cnl 1 solo series Acid and or BN
Solke Out Cnl 1 solo series Acid and or BN
Solke Out Cnl 1 solo series Acid and or BN
Solke Out Cnl 1 solo series Acid and or BN
Solke Out Cnl 1 solo series Acid and or BN
Solke Out Cnl 2 800 series Solke Out Cnl 2 800 series
Solke Out Cnl 1 solo series Acid and or BN
Solke Out Cnl 2 800 series Solke Out Cnl 2 800 series
Solke Out Cnl 3 800 series Solk


Waminn Possible Carry Over
Waminn c30/c20... not checked
C30/C20 falled for eob
Eval Mix Failed
Eval Mix Failed
Eval Mix Failed
Eval Mix hot Checked
Eval Mix mission offt or endrin
Rod Qui on MsMsd (colt and or col2) 800 series
Rod Qut on MsMsd (colt and or col2) 800 series
Rod Qut on MsMsd (colt and or col2) 8000 series
Rod Qut on MsMsd (colt and or col2) 8000 series
Rod Qut on MsMsd (colt and or col2) 8000 series
Rod Qut on MsMsd (colt and or col2) 8000 series
800 series surmonate nut
8000 series surmonate nut
8000 series surmonate nut
8000 series surmonate Qut (6000 series)
Surmonate Rol Surmonate Qut (6000 series)
Surmonate Not Checked
Quisside of \$00 series Tune time
Qutside of \$00 series Tune time/Cal Time
Qutside of 800 series Tune time/Cal Time Cn CRN EVF EVFC R16.R26 R18.R28 R0 R10.S6 Sa8.Sb6 Sa8.Sb6 Sa8.Sb6 Sa8.Sb6 Sa8.Sb6 Sa8.Sb6 Sa8.Sb6

DB

Soil

1


8260 05/27 01:12

	1-1-1	IM68813		67114 Reviewed	1		Surr	Sam		Analysis
Data File	Sample Number	Flags	Comments	617114 By	Test Group	Matrix	Dil		Method(s)	Date
	BFB TUNE		V-111011,V-117129,V-1091	08.V-11638 ³ ⊅B						05/27 07:2
1M68815.D	CAL @ 50 PPB	C16	OK	DB		Soil	0.4	1	624 8260	05/27 07:5
1M68816.D			-	DB		Soil	1	1		05/27 08:0
	DAILY BLANK		OK	D <u>B</u>		Soil	1	1		05/27 08:2
IM68818.D			OK MBS9703	DB		Soil	1	1		05/27 08:4
M68819.D			-	DB		Soil	1	1		05/27 08:5
M68820.D				DB		Soil	1	1		05/27 09:1
	AC59221-010	S8Ao	2ND RUN	DB	VO-8260	Soil	1	1		05/27 09:3
	AC59221-011(MS:A		OK MBS9703	DB	VO-8260	Soil	1	1	8260	05/27 09:4
M68823.D	AC59221-012(MSD	: R 18	OK MBS9703	DB	VO-8260	Soil	1	1	8260	05/27 10:0
	AC59221-013		OK	DB_	VO-8260	Soil	1	1	8260	05/27 10:2
	AC59221-002(5X)		OK	DB	VO-8260	Soil	1	5	8260	05/27 10:3
	AC59221-004(5X)		OK	DB	VO-8260	Soil	1	5		05/27 10:5
M68827.D			-	DB		Soil	1	1		05/27 11:1
	AC59243-001	_	OK	DB	VO15-8260	Soil	1	1		05/27 11:2
M68829.D	AC59203-004	Ao	2ND RUN	DB	VO10-8260	Soil	1	1	8260	05/27 11:4
M68830.D	AC59203-011	Ao	2ND RUN	DB	VO10-8260	Soil	1	1	8260	05/27 12:0
M68831.D	AC59145-006	S8Ao	RR-5g see below	DB	VO10-8260	Soil	1	1	8260	05/27 12:1
M68832.D	AC59191-001	Ao	RR-5g	DB	VO10-8260	Soil	1	1	8260	05/27 12:3
M68833.D	AC59130-002	S8Ao	RR-5g	DB	VO10-8260	Soil	1	1	8260	05/27 12:5
M68834.D	BLK		ОК	DB		Soil	1	1	8260	05/27 13:0
M68835.D	AC59145-006	S8Ao	2ND RUN	DB	VO10-8260	Soil	1	1	8260	05/27 13:
M68836.D	AC59284-008	S8AoOc	2ND RUN	DB	VO-8260	Soil	1	1	8260	05/27 13:4
M68837.D	AC59281-001(5X)		OK	DB	VO-8260	Soil	1	5	8260	05/27 13:5
M68838.D			OK MBS9710	DB		Soil	1	1	8260	05/27 14:
M68839.D	AC59221-006(MS)		OK MBS9710	DB	VO-8260	Soil	1	1	8260	05/27 14:3
M68840.D	AC59221-006(MSD))	OK MBS9710	DB	VO-8260	Soil	1	1	8260	05/27 14:4
	AC59222-002		OK	DB	VO10-8260	Soil	1	1		05/27 15:0
M68842.D	AC59130-002	S8Ao	2ND RUN	DB	VO10-8260	Soil	1	1	8260	05/27 15:
M68843.D	BLK		_	DB		Soil	1	1		05/27 15:
	AC59259-008		OK	DB	VO10-8260	Soil	1	1		05/27 15:
	AC59259-003		OK	DB	VO10-8260	Soil	1	1		05/27 16:
	AC59236-001		OK	DB	VO10-8260	Soil	1	1		05/27 16:
	AC59236-003		OK	DB	VO10-8260	Soil	_1	1		05/27 16:
	AC59236-002		OK	DB	VO10-8260	Soil	1	1		05/27 17:
	AC59236-004		OK	DB	VO10-8260	Soil	1	1		05/27 17:
1M68851.D	MBS9732		- MBS9732	DB		Soil	1	1	8260	05/27 17:4

Anc	Area Not Checked	En	Extraction Performed Past Hold	Co	Warning Possible Carry Over
An	Area Out	Esm	Solvent Extraction Date Mission/Not check'd	CRN	Warning c30/c20 not checked
B6m	Blank 600 sedes missing	Etn	Tcln/Solvent Extraction Date Missino/Not check'd	Cro	C30/C20 failed for eoh
B8m	Blank 8000 sedes missing	Eto	Toln Extraction Performed Outside of Hold	EvF	Eval Mix Failed
Bnf	Blank Not Found/Assigned	Ev	Eval Time Exceeded	Evnc	Eval Mix Not Checked
C16	Calibration Column 1 Out (600 Series)	Hb	Analysis Before Collection Date	Evic	Eval Mix mission ddt or endrin
C18	Calibration Column 1 Out (8000 Series)	Ho		R16.R26	Rod Out on MsMsd (col1 and or col2) 600 series
C26	Calibration Column 2 Out (600 Series)	116.126	initial cal 600 series failed Column 1 and or 2	R18.R28	Rod Out on MsMsd (col1 and or col2) 8000 sades
C28	Calibration Column 2 Out (8000 Sedes)	118.128	Initial cal 8000 series failed Column 1 and or 2	Ro	Retention Time Out Or %Diff Out
C6f	600 series sample/blank did not have passion cal	le	Initial Cal Not Checked	Rtn	Can't Calculate Ddft
CBf	8000 series sample/blank did not have passing cal	iv	Prob with calmt.csv for init calibration chek rfs	S6	600 sedes surrocate out
Cme	Ending Cal missing for sample (8000 sedes)	lw	Initial cal waming. Initial file <> method	S8	8000 sedes surrogate out
Cn	Calibration Not Checked for sample/blank/eval	iv		Sa6.Sh6	Acid and or BN Surmoate Out (600 series)
D1n.D2n	Drift Out Column 1 or Column 2 Cals or Init Cals	M16.M26	Snike Out Col 1 and or Col 2 600 series	Sa8.Sb8	Acid and or BN Surrogate Out (8000 series)
Dnc	Drift Not Checked	M16a.M16b	Snike Out Col 1 600 series Acid and or BN	Sd	Surrogate Diluted Out
Do	Drift Out	M18.M28	Snike Out Cnl 1 and or Col 2 8000 series	Snc	Surrogate Not Checked
Eba	An Extraction Before Collection Date	M18a.M18b	Soike Out Col 1 8000 series Acid and or BN	Ti5	Outside of 500 series Tune time
Emn	Problem Checking Preg/guidates modcheckprenguid		Spike Not Checked for this ms/msd	Ti6	Outside of 600 series Tuna time/Cal Time
En	Eval Time Not Checked	Oc.	Warning Compound(s) Over Calibration	Ti8	Outside of 8000 series Tune time/Cal Time
ien	EVALLIME NOT Checked	IUC	VVAIDING COMBOUNDIS) CVRI CAMBINION	1110	Offision of account the fitter of the

			RUN	LOG		Ins	strume	ent: G0	CMS_1 Yea Analys	ar: 201 () (2 st: WP
Data File	1-1 Sample Number	-1M69042 Flags	Comments	ار Reviewed الراز By	Test Group	Matrix		Sam Dil	Method(s)	Analysis Date
1M69042.D	BFB TUNE		V-111011,V-117303,V-109	9108.V-11713 2 DB						06/01 06:37
1M69044.D	CAL @ 50 PPB	C16	OK	DB		Soil	0.4	1	624 8260	06/01 07:04
1M69045.D	BLK		-	DB		Soil	1	1	8260	06/01 07:21
1M69046.D	DAILY BLANK		OK	DB		Soil	1	1		06/01 07:39
1M69047.D	MBS9764		OK MBS9764	DB		Soil	1	1	8260	06/01 07:55
1M69048.D			-	DB		Soil	1	1	8260	06/01 08:12
1M69049.D	AC59205-012	S8Ao	. -	DB	VO-8260	Soil	1	1	8260	06/01 08:29
1M69050.D	AC59205-003	S8Ao	2ND RUN	DB	VO10-8260	Soil	1	1	8260	06/01 08:46
1M69051.D	AC59410-001		OK	DB	VO-8260	Soil	1	1	8260	06/01 09:05
1M69052.D			-	DB		Soil	1	1	8260	06/01 09:22
1M69053.D	BLK		-	DB		Soil	1	1	8260	06/01 09:41
1M69054.D	AC59230-002	·	OK	DB	VO10-8260	Soil	1	1	8260	06/01 10:00
1M69055.D	AC59422-001		OK	DB	VO10-8260	Soil	1	1	8260	06/01 10:17
	AC59422-003		OK	DB	VO10-8260	Soil	1	1	8260	06/01 10:33
	AC59424-001		OK	DB	VO10-8260	Soil	1	1		06/01 10:50
	AC59424-002	_	OK	DB	VO10-8260	Soil	1	1		06/01 11:07
1M69059.D			-	DB		Soil	1	1		06/01 11:23
1M69060.D	AC59366-013	S8Oc	2ND RUN	DB	VO10-8260	Soil	1	1	8260	06/01 11:40
1M69061.D			OK MBS9769	DB		Soil	1	1		06/01 11:57
M69062.D		_	-	DB		Soil	1	1		06/01 12:14
	AC59305-002	Ao _	OK	DB	VO-8260	Soil	1	1	8260	06/01 12:33
1M69064.D			-	DB		Soil	1	1		06/01 12:51
	AC59305-004		OK	DB	VO-8260	Soil	1	1		06/01 13:07
1M69066.D			_	DB		Soil	1	1		06/01 13:24
	AC59297-016		OK MBS9764	DB	VO-8260	Soil	1	1		06/01 13:41
	AC59297-017(MS		OK MBS9764	DB	VO-8260	Soil	1	1		06/01 13:56
	AC59297-018(MS		OK MB\$9764	DB	VO-8260	Soil	1	1		06/01 14:12
	AC59266-002(MS	,	OK MBS9769	DB	VO-8260	Soil	1	1		06/01 14:28
	AC59266-002(MS	5D)	OK MBS9769	DB	VO-8260	Soil	1	1 1		06/01 14:45
1M69072.D			-	DB	1/040 0000	Soil	1	1		06/01 15:01
	AC59385-001		OK.	DB DB	VO10-8260	Soil	1	1		06/01 15:17 06/01 15:33
	AC59385-002	_	OK	DB	VO10-8260 VO10-8260	Soil Soil	1	1		06/01 15:33
	AC59385-003	-	OK OK	DB	VO10-8260 VO10-8260	Soil	1	1		06/01 15:49
1M69076.D 1M69077.D	AC59385-004		OK OK	DB DB	V U 10-0200	Soil	1	1		06/01 16:05
	AC59423-001	S8Oc _	RR-5g - DIRTY	DB	VO10-8260	Soil	1	1	8260	06/01 16:21
1M69079.D		0,000	III ea en i	DB	,	Soil	1	1	8260	06/01 16:54
1M69079.D			OK MBS9773	DB		Soil	1	1		06/01 17:10
	AC59424-003		OK MBS9773	DB	VO10-8260	Soil	1	1		06/01 17:16
	AC59424-003 AC59328-003		OK OK	DB	VO10-8260	Soil	1	1		06/01 17:42
1M69083.D		_	- OK	DB	1010-0200	Soil	1	1		06/01 17:58
11VIOSU03.D		-	-	DB		Coil	4			06/01 19:14

Anc	Area Not Checked	E0	EXTRACTION PARTORMAN PAST MOR
An	Area Out	Esm	Solvent Extraction Date Mission
B6m	Blank 600 series mission	Etn	Trin/Solvent Extraction Date M
B8m	Blank 6000 series missing	Eto	Tclo Extraction Performed Outs
Bnf	Blank Not Found/Assigned	Ev	Evel Time Exceeded
C16	Calibration Column 1 Out (600 Series)	Hb	Analysis Before Collection Date
C18	Calibration Column 1 Out (8000 Series)	Ho	Samole Analyzed outside of ho
C26	Calibration Column 2 Out (600 Series)	116.126	Initial cal 600 series failed Colu
C28	Calibration Column 2 Out (8000 Saries)	118.128	Initial cal 8000 series failed. Co.
C6f	600 series samole/blank did not have nassino cal	ls	initial Cal Not Checked
C8f	8000 series sample/blank did not have passion call	Iv	Pmb with calmt.csv for init calil
Cme	Ending Cal mission for sample (8000 sedes)	lw	Initial cal warning. Ini cal file <>
Cn	Calibration Not Checked for samole/hlank/eval	lx	Initial Cal Files Not Undated Pr
D1n.D2n	Doft Out Column 1 or Column 2 Cals or Init Cals	M16.M26	Snike Out Col 1 and or Col 2 60
Dnc	Drift Not Checked	M16a.M16b	Solke Out Col 1 600 sedes Acid
Do	Drift Out	M18.M28	Soike Out Col 1 and or Col 2 80
Eba	An Extraction Before Collection Date	M18a.M18h	Snike Out Cnl 1 8000 sedes Ad
Emo	Pmblem Checking Pren/gundates modcheckprengund	daMnc	Snike Not Checked for this ms/
En	Eval Time Not Checked	Oc	Warning Compound(s) Over Ca

1M69084.D BLK

inn/Not check'd Missino/Not check'd itside of Hold ate nold time dumo 1 and or 2 Columo 1 and or 2 alibration chek rfs <> method. Propody for a samol 600 series cid and or BN 8000 series Acid and or BN symsd Calibration

Waminn Possible Carry Over
Waminn 250/c20 ... not checked
C30/C20 failed for eith
Eval Mix Failed
Eval Mix Failed
Eval Mix Failed
Eval Mix mission did no endrin
Rod Out on MsMsd (rot) and or col2) 800 series
Rod Out on MsMsd (rot) and or col2) 800 series
Rod Out on MsMsd (rot) and or col2) 800 series
Rod Out on MsMsd (rot) and or col2) 8000 series
Rod Out on MsMsd (rot) and col2) 8000 series
Rod Out on MsMsd (rot) and col2) 8000 series
Rod Out on MsMsd (rot) and col2) 8000 series
Rod Out on MsMsd (rot) and col2) 8000 series
Rod Out on MsMsd (rot) and col2) 8000 series
Acid and or BN Surmoate Out (8000 series)
Surmoate Ditared Out
Surmoate Ditared Out
Surmoate Ditared Col
Cutside of 500 series Tune time
Outside of 500 series Tune time/Cal Time
Outside of 8000 series Tune time/Cal Time

DB

Soil

8260 06/01 18:14

Veritech Internally Prepared Standard Log

Veritech Lot Number: V-88943

Prepared By: Revolus, Jean Description: Voa extra add mix Prep Date: 6/21/2010

Department: Organics BatchNumber:

ApprovedBy: jean ApproveDate: 09/23/10 Checked: Yes

Expiration Date: 6/21/2011

Concentration: 2000-20000 p Final Volume: 10 ml

Veritech Conc of Final Lot#/Rec# Amount Used Std Conc Lot Description 5013 20000 ppm d-Camphor 200 mg NEAT 5014 Camphene 20 mg **NEAT** 2000 ppm 4995 **METHANOL** 10 ml neat neat

Veritech Lot Number: V-91412

Prepared By: Revolus, Jean Description: 1,4-Dioxane-d8 Solution

Department: Organics BatchNumber:

ApprovedBy: jean ApproveDate: 11/15/10

Prep Date: 7/22/2010 Expiration Date: 7/22/2011 Concentration: 2000 ppm

Checked: Yes

Veritech Lot# /Rec# Lot Description Final Volume: 10 ml

Conc of Final Std Conc

4995 **METHANOL** 5086 1,4-Dioxane-d8 Amount Used 10 ml neat neat 20 mg | NEAT

2000 ppm

Veritech Lot Number: V-93698

Prepared By: Revolus, Jean Description: Voa Extra Add mix 2 Prep Date: 8/19/2010

Department: Organics BatchNumber: Concentration: 5000 ppm

ApprovedBy: jean ApproveDate: 09/24/10

Expiration Date: 8/19/2011

Final Volume: 5 ml

Checked: Yes

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
5101	Methyl methacrylate	25 mg	Neat	5000 ppm
5100	Ethyl Methacrylate	25 mg	Neat	5000 ppm
5099	Butyl methacrylate	25 mg	Neat	5000 ppm
5098	n-Butyl acrylate	25 mg	Neat	5000 ppm
5097	n-Amyl acetate	25 mg	Neat	5000 ppm
5096	Iso-propyl acetate	25 mg	Neat	5000 ppm
5095	Ethyl acetate	25 mg	Neat	5000 ppm
5185	METHANOL	5 ml	neat neat	

Veritech Lot Number: V-93699

Prepared By: Revolus, Jean Description: Voa Extra Add mix 2(2nd source)

Department: Organics BatchNumber:

ApprovedBy: jean ApproveDate: 09/24/10

Prep Date: 8/19/2010

Concentration: 5000 ppm

Checked: Yes

Expiration Date: 8/19/2011

Final Volume: 5 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
5101	Methyl methacrylate	25 mg	Neat	5000 ppm
5100	Ethyl Methacrylate	25 mg	Neat	5000 ppm
5099	Butyl methacrylate	25 mg	Neat	5000 ppm
5098	n-Butyl acrylate	25 mg	Neat	5000 ppm
5097	n-Amyl acetate	25 mg	Neat	5000 ppm
5096	Iso-propyl acetate	25 mg	Neat	5000 ppm
5095	Ethyl acetate	25 mg	Neat	5000 ppm
5185	METHANOL	5 ml	neat neat	

Veritech Lot Number: V-105159

Prepared By: Batelli, Daniel Description: VOA ADD MIX Prep Date: 1/4/2011

Department: Organics BatchNumber:

Concentration: 5000 ppm

ApprovedBy: DAN ApproveDate: 01/05/11

Checked: Yes

Expiration Date: 1/4/2012 Final Volu		Final Volume: 10 ml	ne: 10 ml		
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc	
2889	1,2,4,5-TETRAMETHYLBENZENE	50 mg	NEAT	5000 ppm	
5532	p-Diethylbenzene	50 mg	Neat neat	5000 ppm	
5533	p-Ethyltoluene	50 mg	Neat neat	5000 ppm	
5531	Cyclohexanone	250 mg	Neat neat	25000 ppm	
1230	METHANOL		NEAT		

Veritech Lot Number: V-105161

Prepared By: Batelli, Daniel Description: VOA ADD MIX(2nd Source) Prep Date: 1/4/2011 Expiration Date: 1/4/2012

Department: Organics BatchNumber:

Concentration: 5000 ppm Final Volume: 10 ml

ApprovedBy: DAN ApproveDate: 01/05/11 Checked: Yes

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
2889	1,2,4,5-TETRAMETHYLBENZENE	50 mg	NEAT	5000 ppm
5532	p-Diethylbenzene	50 mg	Neat neat	5000 ppm
5533	p-Ethyltoluene	50 mg	Neat neat	5000 ppm
5531	Cyclohexanone	250 mg	Neat neat	25000 ppm
1230	METHANOL		NEAT	

Veritech Lot Number: V-106417

Prepared By: Revolus, Jean Description: Ethyl ether/Furan Mix Prep Date: 1/19/2011 Expiration Date: 1/10/2012

Lot Description

Ethyl ether

Methanol

Furan

Veritech

Lot# /Rec#

5555

5559

5544

Department: Organics BatchNumber:

Concentration: 5000 ppm Final Volume: 10 ml

ApprovedBy: jean ApproveDate: 02/03/11 Checked: Yes

Final Conc of Std Conc Amount Used 50 mg **NEAT** 5000 ppm 5000 ppm 50 mg **NEAT** 10 ml neat neat

Veritech Lot Number: V-106418

Prepared By: Revolus, Jean Description: Ethyl ether/Furan Mix(2nd Source) Prep Date: 1/19/2011

Expiration Date: 1/10/2012

Department: Organics

BatchNumber: Concentration: 5000 ppm

ApprovedBy: jean ApproveDate: 02/03/11 Checked: Yes

Final Volume: 10 ml

Expiration Da	to. 17 10/2012			
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
5555	Ethyl ether	50 mg	NEAT	5000 ppm
5559	Furan	50 mg	NEAT	5000 ppm
5544	Methanol	10 ml	neat neat	

Veritech Lot Number: V-109108

Prepared By: Previlon, Wilner Description: SIM IS/SURR MIX Prep Date: 2/24/2011 Expiration Date: 7/22/2011

Department: Organics BatchNumber:

Concentration: 25/250 ppm

ApprovedBy: dan ApproveDate: 02/24/11 Checked: Yes

Final Volume: 10 ml

Expiration Di	111111111111111111111111111111111111111	. 10 1111		
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
5513	524 FORTIFICATION MIX	125 ul	2000 ppm	25 ppm
1230	METHANOL	9625 ul	NEAT	
v-91412	1,4-Dioxane-d8 Solution	250 ul	2000 ppm	50 ppm

Veritech Internally Prepared Standard Log

Veritech Lot Number: V-110205

Checked: Yes

Prepared By: Revolus, Jean Department: Organics ApprovedBy: jean Description: VOA STOCK INT/SURR MIX BatchNumber: ApproveDate: 03/09/11 Concentration: 1500 ppm Prep Date: 3/9/2011 Expiration Date: 3/9/2012 Final Volume: 100 ml

Expiration D	Expiration pate: 5/5/2012			
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
3178	1,2-Dichloroethane-d4	150 mg	NEAT	1500 ppm
1297	TOLUENE-D8	150 mg	NEAT	1500 ppm
3693	Dibromofluoromethane	150 mg	NEAT	1500 ppm
3661	Fluorobenzene	150 mg	NEAT	1500 ppm
4295	CHLOROBENZENE-D5	150 mg	NEAT	1500 ppm
4760	1,2-Dichloroethane-d4	150 mg	NEAT	1500 ppm
5185	METHANOL	100 ml	neat neat	
5746	4-BROMOFLUOROBENZENE(1-BROMO-4-FLUOROBEN	150 mg	NEAT	1500 ppm

Veritech Lot Number: V-110414

Prepared By: Batelli, Daniel Department: Organics ApprovedBy: dan Description: VOA WORKING INT/SURR MIX BatchNumber: ApproveDate: 03/15/11 Prep Date: 3/10/2011 Concentration: 150 ppm Checked: Yes Expiration Date: 9/10/2011 Final Volume: 200 ml Veritech Conc of Final Amount Used Std Lot# /Rec# Conc Lot Description 1230 225 ml NEAT **METHANOL** V-110205 VOA STOCK INT/SURR MIX 25 ml | 1500 ppm 150 ppm

Veritech Lot Number: V-111011

Department: Organics ApprovedBy: DAN Prepared By: Previlon, Wilner Description: BFB Tune Mix BatchNumber: ApproveDate: 03/22/11 Prep Date: 3/10/2011 Concentration: 50 ppm Checked: Yes Expiration Date: 9/10/2011 Final Volume: 1.5 ml

Veritech			Conc of	Final Conc
Lot# /Rec#	Lot Description	Amount Used	Sta	Conc
V-110414	VOA WORKING INT/SURR MIX	500 ul	150 ppm	50 ppm
1230	METHANOL	1000 ul	NEAT	

Veritech Lot Number: V-115004

Prepared By: Revolus, Jean ApprovedBy: jean Department: Organics ApproveDate: 05/10/11 Description: Heptane BatchNumber: Checked: Yes Prep Date: 5/3/2011 Concentration: 5000 ppm Expiration Date: 9/3/2011 Final Volume: 10 ml Conc of Final Veritech Lot# /Rec# Amount Used Std Conc Lot Description 5544 Methanol 10 ml neat neat 50 mg NEAT 5000 ppm 5905 Heptane

Veritech Lot Number: V-115005

Prepared By: Revolus, Jean Department: Organics ApprovedBy: jean ApproveDate: 05/10/11 BatchNumber: Description: Heptane(2nd source) Checked: Yes Concentration: 5000 ppm Prep Date: 5/3/2011 Expiration Date: 9/3/2011 Final Volume: 10 ml Conc of Final Veritech Lot# /Rec# Std Conc Lot Description Amount Used 10 ml neat neat 5544 Methanol 5905 Heptane 50 mg | NEAT 5000 ppm

Veritech Internally Prepared Standard Log

Veritech Lot Number: V-115762

Prepared By: Previlon, Wilner Department: Organics ApprovedBy: DAN Description: 200ppm VOA Working Std BatchNumber: ApproveDate: 05/16/11 Prep Date: 5/12/2011 Concentration: VARIOUS pp Checked: Yes Expiration Date: 6/21/2011 Final Volume: 1 ml

Veritech Conc of Final Lot# /Rec# Std Conc Lot Description Amount Used 1230 METHANOL 240 ul NEAT neat 5412 100 ul 2000 ppm 200 ppm Gases 5516 502/524 VOA CAL MIX 100 ul 2000 ppm 200 ppm 100 ul 5903 8260 ADDDITIONS 2000 ppm 200 ppm 5450 CUSTOM VOC STANDARD(2nd Source) 100 ul 2000 ppm various ppm 100 ul 5123 tert-Amyl Methyl Ether Standard 2000 ppm 200 ppm V-105159 VOA ADD MIX 40 ul | 5000 ppm various ppm V-88943 Voa extra add mix 100 ul 2000-20000 p 200-2000 pp 40 ul 5000 ppm V-93698 Voa Extra Add mix 2 200 ppm V-106417 Ethyl ether/Furan Mix 40 ul | 5000 ppm 200 ppm 40 ul 5000 ppm 200 ppm V-115004 Heptane

Veritech Lot Number: V-115763

Department: Organics ApprovedBy: DAN Prepared By: Previlon, Wilner BatchNumber: ApproveDate: 05/16/11 Description: MBS Checked: Yes Prep Date: 5/12/2011 Concentration: 100 ppm Expiration Date: 6/21/2011 Final Volume: 1 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
1230	METHANOL	620 ul	NEAT	neat neat
5652	VOA COMP MIX#6(GASES)	50 ul	2000 ppm	100 ppm
5595	502/524 VOA CAL MIX	50 ul	2000 ppm	100 ppm
5409	8260 ADDITIONS MIX	50 ul	2000 ppm	100 ppm
5450	CUSTOM VOC STANDARD(2nd Source)	50 ul	2000 ppm	various ppm
5123	tert-Amyl Methyl Ether Standard	50 ul	2000 ppm	100 ppm
V-105161	VOA ADD MIX(2nd Source)	20 ul	5000 ppm	various ppm
v-88943	Voa extra add mix	50 ul	2000-20000 p	100-1000 pp
v-93699	Voa Extra Add mix 2(2nd source)	20 ul	5000 ppm	100 ppm
V-106418	Ethyl ether/Furan Mix(2nd Source)	20 ul	5000 ppm	100 ppm
V-115005	Heptane(2nd source)	20 ul	5000 ppm	100 ppm

Veritech Lot Number: V-115865

Department: Organics ApprovedBy: DAN Prepared By: Previlon, Wilner ApproveDate: 05/16/11 Description: Soil8260 CAL @ 500 PPB BatchNumber: Prep Date: 5/12/2011 Concentration: VARIOUS ppb Checked: Yes Final Volume: 40 ml Expiration Date: 5/13/2011 Conc of Final Veritech Amount Used Std Conc Lot# /Rec# Lot Description

	Veritech Lot Number: V-115866			111
5650	FREON#22(CHLORODIFLUOROMETHANE	100 ul	200 ppm	500 ppb
5381	P&T Water	40 ml	Neat neat	neat
V-115762	200ppm VOA Working Std	100 ul	VARIOUS pp	500 ppb
	Lot Description	Amount oscu		

Descript Prep D	By: Previlon, Wilner ion: Soil8260 CAL @ 250 PPB ate: 5/12/2011 ate: 5/13/2011	Department: Organion BatchNumber: B-1024 Concentration: VARIO Final Volume: 5 ml	14	ApprovedBy: I ApproveDate: (Checked: \	05/16/11
Veritech Lot# /Rec#	Lot Description	Amo	ount Used	Conc of Std	Final Conc
5381	P&T Water		2.5 ml	Neat neat	
V-115865	Soil8260 CAL @ 500 PPB		2.5 ml	VARIOUS pp	250 ppb

Veritech Lot Number: V-115867 Prepared By: Previlon, Wilner Department: Organics ApprovedBy: DAN Description: Soil8260 CAL @ 100 PPB BatchNumber: B-10244 ApproveDate: 05/16/11 Prep Date: 5/12/2011 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 5/13/2011 Final Volume: 5 ml Veritech Conc of Final Lot# /Rec# Amount Used Std Conc Lot Description 5381 P&T Water 4 ml Neat neat V-115865 Soil8260 CAL @ 500 PPB 1 ml VARIOUS pp 100 ppb

	Veritech Lot	Number: V-115868			
•	By: Previlon, Wilner ion: Soil8260 CAL @ 50 PPB	Department: Orga BatchNumber: B-10		ApprovedBy: I	
Prep Da	ate: 5/12/2011	Concentration: VAR		Checked: \	
Expiration Da	ate: 5/13/2011	Final Volume: 5 ml			
Veritech Lot# /Rec#	Lot Description	А	mount Used	Conc of Std	Final Conc
V-115865	Soil8260 CAL @ 500 PPB		.5 ml	VARIOUS pp	50 ppb
5381	P&T Water		4.5 ml	Neat neat	
	V	Number V 115960			

	Veritech Lot	Number: V-115869		
Prepared	By: Previlon, Wilner	Department: Organics	ApprovedBy: I	DAN
Descript	ion: Soil8260 CAL @ 20 PPB	BatchNumber: B-10244	ApproveDate:	05/16/11
Prep D	ate: 5/12/2011	Concentration: VARIOUS ppb	Checked: `	Yes
Expiration D	ate: 5/13/2011	Final Volume: 5 ml		
Veritech Lot# /Rec#	Let Description	Amount Used	Conc of	Final Conc
	Lot Description			00110
5381	P&T Water		Neat neat	
V-115865	Soil8260 CAL @ 500 PPB	.2 ml	VARIOUS pp	20 ppb

	Veritech Lot N	lumber: V-115870			
Prepared	By: Previlon, Wilner	Department: 0	Organics	ApprovedBy: I	DAN
Description: Soil8260 CAL @ 2 PPB Prep Date: 5/12/2011		BatchNumber: B-10244 Concentration: VARIOUS ppb		ApproveDate: 05/16/1 Checked: Yes	
Veritech Lot# /Rec#	Lot Description		Amount Used	Conc of Std	Final Conc
5381	P&T Water		4.98 ml	Neat neat	
V-115865	Soil8260 CAL @ 500 PPB		.02 ml	VARIOUS pp	2 ppb

	Veritech Lot I	Number: V-115871			
Prepared	By: Previlon, Wilner	Department: Or	ganics	ApprovedBy:	DAN
Descript	ion: Soil8260 CAL @ 5 PPB	BatchNumber: B-	10244	ApproveDate:	05/16/11
Prep D	ate: 5/12/2011	Concentration: VA	RIOUS ppb	Checked: '	Yes
Expiration D	ation Date: 5/13/2011 Final Volume: 5 ml		nl		
Veritech Lot# /Rec#	Lot Description		Amount Used	Conc of Std	Final Conc
5381	P&T Water		4.95 ml	Neat neat	
V-115865	Soil8260 CAL @ 500 PPB		.05 ml	VARIOUS pp	5 ppb

	Veritech Lot	Number: V-115872			
Prepared	By: Previlon, Wilner	Department: Organ	ics	ApprovedBy: I	DAN
Descripti	on: Soil8260 CAL @ 1 PPB	BatchNumber: B-102	44	ApproveDate:	05/16/11
Prep Da	ate: 5/12/2011	Concentration: VARIO	OUS ppb	Checked: '	Yes
Expiration Da	ate: 5/13/2011	Final Volume: 5 ml			
Veritech				Conc of	Final
Lot# /Rec#	Lot Description	Am	ount Used	Std	Conc
V-115865	Soil8260 CAL @ 500 PPB		.01 ml	VARIOUS pp	1 ppb
5381	P&T Water		4.99 ml	Neat neat	

Veritech Internally Prepared Standard Log

Veritech Lot Number: V-115873

Prepared By: Previlon, Wilner Description: Soil8260 CAL @ 500 PPB

Prep Date: 5/12/2011 Expiration Date: 5/13/2011

Department: Organics BatchNumber: B-10244 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/16/11 Checked: Yes

Final Volume: 5 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc	
V-115865	Soil8260 CAL @ 500 PPB	5 ml	VARIOUS pp	500 ppb	

Veritech Lot Number: V-115874

Prepared By: Previlon, Wilner Description: Soil8260 CAL @ 0.5 PPB

Prep Date: 5/12/2011 Expiration Date: 5/13/2011

Department: Organics BatchNumber: B-10244 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/16/11

Checked: Yes

Final Volume: 5 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
5381	P&T Water	4.995 ml	Neat neat	
V-115865	Soil8260 CAL @ 500 PPB	.005 ml	VARIOUS pp	0.5 ppb

Veritech Lot Number: V-115875

Prepared By: Previlon, Wilner Description: ICV CAL @ 50 PPB Prep Date: 5/12/2011

Expiration Date: 5/13/2011

Department: Organics BatchNumber:

Concentration: VARIOUS ppb

Final Volume: 5 ml

ApprovedBy: DAN ApproveDate: 05/16/11

Checked: Yes

		, man colombia and				
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc		
5381	P&T Water	5 ml	Neat neat			
V-115763	MBS	2.5 ul	100 ppm	50 ppb		
5650	FREON#22(CHLORODIFLUOROMETHANE	1.25 ul	200 ppm	50 ppb		

Veritech Lot Number: V-116389

Prepared By: Goring, Shawn Description: MBS Prep Date: 5/20/2011 Expiration Date: 6/21/2011

Department: Organics BatchNumber: Concentration: 100 ppm

ApprovedBy: DAN ApproveDate: 05/20/11 Checked: Yes

Final Volume: 1 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
1230	METHANOL	640 ul	NEAT	neat neat
5652	VOA COMP MIX#6(GASES)	50 ul	2000 ppm	100 ppm
5595	502/524 VOA CAL MIX	50 ul	2000 ppm	100 ppm
5409	8260 ADDITIONS MIX	50 ul	2000 ppm	100 ppm
5931	VOA CUSTOM MIX(2nd Source)	50 ul	VARIOUS	various ppm
5288	TAMES	50 ul	2000 ppm	100 ppm
V-105161	VOA ADD MIX(2nd Source)	20 ul	5000 ppm	various ppm
v-88943	Voa extra add mix	50 ul	2000-20000 p	100-1000 pp
v-93699	Voa Extra Add mix 2(2nd source)	20 ul	5000 ppm	100 ppm
V-106418	Ethyl ether/Furan Mix(2nd Source)	20 ul	5000 ppm	100 ppm

Veritech Lot Number: V-116940

	101100			1 - 0 - 10
Prepared By: Goring, Shawn		Department: Organics	ApprovedBy	y: DAN
Description: CAL @ 50 PPB		BatchNumber:	ApproveDate: 05/27/1	
Prep Date: 5/26/2011 Concentration: \		Concentration: VARIOUS ppb	Checked: Yes	
Expiration Da	ate: 5/27/2011	Final Volume: 5 ml		
Veritech			Conc of	Final
Lot# /Rec#	Lot Description	Amount Use	Std	Conc

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
V-115762	200ppm VOA Working Std	1.25 ul	VARIOUS pp	50 ppb
5381	P&T Water	5 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	1.25 ul	200 ppm	50 ppb

Veritech Internally Prepared Standard Log

Veritech Lot Number: V-117129

Department: Organics

ApprovedBy: DAN ApproveDate: 06/01/11

Prepared By: Batelli, Daniel Description: CAL @ 50 PPB Prep Date: 5/27/2011

BatchNumber:

Concentration: VARIOUS ppb

Checked: Yes

Expiration Date: 5/28/2011 Final Volume: 5 ml

Veritech			Conc of	Final
Lot# /Rec#	Lot Description	Amount Used	Std	Conc
V-115762	200ppm VOA Working Std	1.25 ul	VARIOUS pp	50 ppb
5381	P&T Water	5 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	1.25 ul	200 ppm	50 ppb

Veritech Lot Number: V-117133

Prepared By: Goring, Shawn Description: MBS Prep Date: 5/30/2011 nirotion Data: 6/21/2011

Department: Organics BatchNumber: Concentration: 100 ppm

ApprovedBy: DAN ApproveDate: 06/01/11 Checked: Yes

Cinal Valumes 4 mal

Expiration Da	ate: 6/21/2011	Final Volume: 1 ml					
Veritech Lot# /Rec#	Lot Description	Amount Use	Conc of Std	Final Conc			
1230	METHANOL	640 ເ	I NEAT	neat neat			
5652	VOA COMP MIX#6(GASES)	50 u	1 2000 ppm	100 ppm			
5595	502/524 VOA CAL MIX	50 u	i 2000 ppm	100 ppm			
5903	8260 ADDDITIONS	50 u	1 2000 ppm	100 ppm			
5931	VOA CUSTOM MIX(2nd Source)	50 u	VARIOUS	various ppm			
5904	tert-Amyl methyl ether	50 u	2000 ppm	100 ppm			
V-105161	VOA ADD MIX(2nd Source)	20 ເ	1 5000 ppm	various ppm			
v-88943	Voa extra add mix	50 u	i 2000-20000 p	100-1000 pp			
v-93699	Voa Extra Add mix 2(2nd source)	20 (1 5000 ppm	100 ppm			
V-106418	Ethyl ether/Furan Mix(2nd Source)	20 (1 5000 ppm	100 ppm			

Veritech Lot Number: V-117134

Prepared By: Goring, Shawn Description: 200ppm VOA Working Std Prep Date: 5/30/2011 Expiration Date: 6/20/2011

Department: Organics BatchNumber:

ApprovedBy: DAN ApproveDate: 06/01/11 Checked: Yes

Concentration: VARIOUS pp

Final Volume: 1 ml

Expiration B								
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc				
1230	METHANOL	280 ul	NEAT	neat				
5412	Gases	100 ul	2000 ppm	200 ppm				
5516	502/524 VOA CAL MIX	100 ul	2000 ppm	200 ppm				
5929	8260 ADDITIONS	100 ul	2000 ppm	200 ppm				
5930	VOA CUSTOM MIX	100 ul	VARIOUS	various ppm				
5621	tert-Amyl Methyl Ether	100 ul	2000 ppm	200 ppm				
V-105159	VOA ADD MIX	40 ul	5000 ppm	various ppm				
V-88943	Voa extra add mix	100 ul	2000-20000 p	200-2000 pp				
V-93698	Voa Extra Add mix 2	40 ul	5000 ppm	200 ppm				
V-106417	Ethyl ether/Furan Mix	40 ul	5000 ppm	200 ppm				

Veritech Lot Number: V-117303

Prepared By: Previlon, Wilner Description: CAL @ 50 PPB Prep Date: 6/1/2011 Expiration Date: 6/2/2011

Department: Organics BatchNumber:

ApprovedBy: DAN ApproveDate: 06/02/11

Concentration: VARIOUS ppb

Final Volume: 5 ml

Checked: Yes

Veritech			Conc of	Final
Lot# /Rec#	Lot Description	Amount Used	Std	Conc
V-117134	200ppm VOA Working Std	1.25 ul	VARIOUS pp	50 ppb
5381	P&T Water	5 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	1.25 ul	200 ppm	50 ppb

		Verited	h Control/Red	ceipt Nun	nber: 1230				
			Descrip	otion				dBy: jean	
			METHA					Date: 07/30	0/09
							Chec	ked: Yes	
Manufacturer	Catalog Num	Lot Num:	Deta De	Eve D-4-	Dan Diri	Num of			11-4
FISHER	Catalog Num: A453-1	045850	06/22/05	Exp Date: 06/22/15	Rec By:	Cont 36	/Cont		Units:
FISHER	A453-1	045650	00/22/05	06/22/15	Revolus, Jean	36	1L	NEAT	
		Verited	h Control/Red	ceipt Nun	nber: 1297				
			Descrip	otion				dBy: jean	
			TOLUEN					Date: 07/30)/09
							Chec	ked: Yes	
						Num of			
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Cont	/Cont		Units:
SIGMA-ALDRICH	434388-5G	02504HB	09/06/05	09/30/15	Revolus, Jean	1 1	5g	NEAT	<u></u>
		Veritec	h Control/Red	ceipt Nun	nber: 2889				
			Descrip	otion			Approve	dBy: jean	
		1.2	,4,5-TETRAMET		'ENE			Date: 07/30	0/09
							Chec	ked: Yes	
						Num of			
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:
ACROS ORGANI	409390050	A0214190	11/20/07	11/30/20	Revolus, Jean	1	1ML	NEAT	
		Voltage	th Control/Red Descrip 1,2-Dichloroe	otion	1501.0170		ApproveD	dBy: jean Date: 07/30	
							Chec	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num of Cont	f Volum /Cont	e Conc:	Units:
SIGMA-ALDRICH		EW0372	03/26/08	03/26/18	Revolus, Jean	1	1g	NEAT	
-		Veritec	h Control/Red		nber: 3661				
			Descrip	otion				dBy: jean	
			Fluorober				ApproveD		/09
							Chec	ked: Yes	
NA	Ostali N	1-/1	5	F	D - D	Num of			
Manufacturer	Catalog Num:	Lot Num:		Exp Date:		Cont	/Cont	Conc:	Units:
CHEM SERVICE	F839	388-117B	10/06/08	09/30/13	Revolus, Jean	1	2g	NEAT	
		Veritec	h Control/Red	ceipt Nun	nber: 3693				
			Descrip	tion			Approved		
			Dibromofluoro				ApproveD		/09
			2.2.3.110114014				Chec	ked: Yes	
						Num of		_	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:		Cont	/Cont	Conc:	Units:
RESTEK	30634	A063048	10/22/08	09/30/13	Revolus, Jean	5	100m	NEAT	
		Veritec	h Control/Red	eipt Nun	ber: 4295				
			Descrip	tion			Approved	dBy: jean	
			CHLOROBEN				ApproveD	ate: 08/04	/09
			SHESHODEN				Chec	ked: Yes	
							1/-1		
						Num of	Volum	е	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	/Cont	e Conc:	Units:

		Veritec	h Control/Red	ceipt Nun	nber: 4760	_			
			Descrip	otion				dBy: jean	
			1,2-Dichloroe		/			Date: 03/17	/10
								ked: Yes	
Monufactures	Catalog Niver	Lot Niver	Data Barr	Evn Detc:	Pag Pyr	Num of Cont	f Volum /Cont	e Conc:	Units:
Manufacturer ACCUSTANDAR	Catalog Num:	Lot Num: 435-90B	Date Rec: 03/17/10	Exp Date: 01/31/14	Rec By: Revolus, Jean	2	100m	NEAT	Units:
ACCUSTANDAR	F030			4					
		Veritec	h Control/Red	ceipt Nun	nber: 4995				
			Descrip	tion				dBy: richq	
			METHA					Date: 06/22	/10
							Chec	ked: Yes	
						Num of		-	
Manufacturer FISHER	Catalog Num:	Lot Num: 103255	Date Rec: 06/11/10	Exp Date: 06/11/12	Rec By:	Cont el 4	/Cont 4LT	Conc:	Units:
FISHER	M4120N-4				Okomeng, Maxwe	71 4	411	neat	neat
		Veritec	h Control/Red	ceipt Nun	nber:5013				
			Descrip	otion				dBy: jean	
			d-Camp					Date: 06/29	/10
		t					Chec	ked: Yes	
	0-4-1	1 -/ 51	D-1 D	F D :	D D	Num of		-	11-4-
Manufacturer	Catalog Num: F2404	Lot Num: 402-140B	Date Rec: 06/21/10	Exp Date: 06/30/14	Rec By: Revolus, Jean	Cont 1	/Cont	Conc: NEAT	Units:
CHEMSERVICE	FZ4U4	4UZ-14UB	00/21/10	00/30/14	revolus, Jean	<u> </u>	2g		
		Veritec	h Control/Red		nber: 5014		Approve	dBy: jean	
			Descrip					Date: 06/29	/10
			Camph	ene				ked: Yes	
						Num o	f Volum	ne .	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont	-	Units:
CHEMSERVICE	O-747	419-138A	06/21/10	03/31/15	Revolus, Jean	1	2g	NEAT	
		Veritec	h Control/Re	ceipt Nun	nber: 5086				
			Descrip	otion				dBy: jean	
			1,4-Dioxa					Date: 07/23	/10
						<u> </u>	Chec	ked: Yes	
					•	Num of		-	11-24-
Manufacturer	Catalog Num:	Lot Num: 10C-370	07/22/10	Exp Date: 07/22/30	Rec By: Revolus, Jean	Cont 1	/Cont 5g	Conc: NEAT	Units:
CIL	DLM-28-5	100-370	07/22/10	07/22/30	Revolus, Jean		- 5g	INCAT	
		Veritec	h Control/Red	ceipt Nun	nber: 5095				
			Descrip	otion				dBy: jean	
			Ethyl ac			-		Date: 07/26	/10
							Chec	ked: Yes	
						Num of		-	
	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Cont	/Cont		Units:
Manufacturer	O-412	433-138B	07/26/10	03/31/15	Revolus, Jean	1 1	1g	Neat	
Manufacturer CHEM SERVICE					hor: 5006				
		Veritec	h Control/Red	ceipt Nun	IDEI . 3030				- 10 0 - 10
		Veritec				¬ Г		dBy: jean	
		Veritec	Descrip	tion			Approve		
		Veritec		tion	ibei. 3030		Approve Approve E	dBy: jean	
		Veritec	Descrip	tion		Num of	Approve Approve Chec	dBy: jean Date: 07/26 ked: Yes le	/10
	Catalog Num:	Lot Num:	Descrip Iso-propyl	tion	Rec By:		Approve Approve Chec	dBy: jean Date: 07/26 ked: Yes	

		Veritec	h Control/Red	ceipt Nun	nber: 5097				
			Descrip	otion			Approve		
			n-Amyl ad				ApproveD		/10
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:
CHEM SERVICE	o-2003	414-70B	07/26/10	11/30/14	Revolus, Jean	1	5g	Neat	
		Vi4	h Control/Po	saimt Num					
		verited	h Control/Red	ceipt nun	1ber: 5096				
			Descrip	otion			Approve	• •	/10
			n-Butyl ac	crylate			ApproveD	ked: Yes	/10
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:
CHEM SERVICE	O-1004	409-80A	07/26/10	09/30/14	Revolus, Jean	1	10g	Neat	- Cincor
		Veritec	h Control/Red	coint Nun	her: 5099				
		Verited			ibei.5055		Approve		
			Descrip				Approve		/10
			Butyl metha	acrylate				ked: Yes	
						Num of		-	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:
CHEM SERVICE	O-1005	419-155B	07/26/10	03/31/13	Revolus, Jean	1	1g	Neat	
		vented	h Control/Red		inder. 5 TOO		Approve	dBy: jean	11
			Descrip Ethyl Metha				ApproveD		/10
			Euryi Meuri	aciyiale			Chec	ked: Yes	
						Num of		_	
Manufacturer	Catalog Num:	Lot Num: 433-132A	Date Rec:		Rec By:	Cont	/Cont	Conc:	Units:
CHEM SERVICE	F984	433-132/	07/26/10	02/28/14	Revolus, Jean	1	5g	Neat	
CHEM SERVICE	F984		h Control/Rec				5g		
CHEM SERVICE	F984		h Control/Red	ceipt Nun			Approve	dBy: jean	
CHEM SERVICE	F984			ceipt Nun			Approve	dBy: jean	
CHEM SERVICE	F984		h Control/Red	ceipt Nun			Approved Approved Chec	dBy: jean Pate: 07/26 ked: Yes	
Manufacturer		Verited	h Control/Red Descrip Methyl meth	ceipt Nur otion nacrylate	nber: 5101	Num of	Approve Department of the Column	dBy: jean pate: 07/26 ked: Yes	/10
Manufacturer	Catalog Num:	Verited	Descrip Methyl meth	ceipt Num otion nacrylate Exp Date:	nber: 5101	Num of Cont	Approved Approved Chec	dBy: jean Pate: 07/26 ked: Yes e Conc:	
Manufacturer	Catalog Num:	Lot Num:	Descrip Methyl meth Date Rec: 07/26/10	otion nacrylate Exp Date:	Rec By: Revolus, Jean	Num of Cont	Approved Approved Chec Volum /Cont 5g	dBy: jean Date: 07/26 ked: Yes e Conc:	Units:
Manufacturer	Catalog Num:	Lot Num:	Descrip Methyl meth	otion nacrylate Exp Date:	Rec By: Revolus, Jean	Num of Cont	Approve Approve Chec Volum /Cont	dBy: jean pate: 07/26 ked: Yes e Conc:	Units:
Manufacturer	Catalog Num:	Lot Num:	Descrip Methyl meth Date Rec: 07/26/10	ceipt Num nacrylate Exp Date: 04/30/15	Rec By: Revolus, Jean	Num of Cont	Approved Approved Chec Volum /Cont 5g	dBy: jean oate: 07/26 ked: Yes e Conc: Neat	Units:
Manufacturer CHEM SERVICE	Catalog Num:	Lot Num: 422-28B Veritec	Descrip Methyl meth Date Rec: 07/26/10	ceipt Num nacrylate Exp Date: 04/30/15 ceipt Num	Rec By: Revolus, Jean	Num of Cont	Approved Approved Chec Volum /Cont 5g Approved Approved Approved	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02	Units:
Manufacturer	Catalog Num:	Lot Num: 422-28B Veritec	Descrip Date Rec: 07/26/10 h Control/Rec Descrip	ceipt Num nacrylate Exp Date: 04/30/15 ceipt Num	Rec By: Revolus, Jean	Num of Cont	Approved Approved Chec Volum /Cont 5g Approved Approved Approved Chec	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes	Units:
Manufacturer CHEM SERVICE	Catalog Num: F982	Lot Num: 422-28B Veritec	Date Rec: 07/26/10 h Control/Rec Descrip	etion Exp Date: 04/30/15 ceipt Nun otion Ether Stand	Rec By: Revolus, Jean nber: 5123	Num of Cont 1	Approved Approved Chec Volum /Cont 5g Approved Approved Approved Chec Volum	dBy: jean Date: 07/26 Red: Yes Conc: Neat BBY: jean Date: 08/02 Red: Yes Red: Yes	Units:
Manufacturer CHEM SERVICE	Catalog Num: F982 Catalog Num:	Lot Num: 422-28B Veritec te	Date Rec: 07/26/10 h Control/Rec Descrip Tt-Amyl Methyl E	ceipt Num nacrylate Exp Date: 04/30/15 ceipt Num	Rec By: Revolus, Jean hber: 5123 dard Rec By:	Num of Cont Num of Cont	Approved Approved Chec Volum /Cont 5g Approved Approved Approved Chec	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes	Units: //10 Units:
Manufacturer CHEM SERVICE	Catalog Num: F982	Lot Num: 422-28B Veritec tel Lot Num: A075900	Descrip Methyl meth Date Rec: 07/26/10 h Control/Rec Descrip rt-Amyl Methyl E Date Rec: 08/02/10	eipt Number Date: Exp Date: 04/30/15 ceipt Number Date: Exp Date: Exp Date: 07/31/15	Rec By: Revolus, Jean hber: 5123 dard Rec By: Revolus, Jean	Num of Cont 1 Num of Cont 2	Approved Approved Chec Volum /Cont 5g Approved Approved Approved Chec Volum /Cont 1mi	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes e Conc: 2000	/10 Units: /10 Units: PPM
Manufacturer CHEM SERVICE	Catalog Num: F982 Catalog Num:	Lot Num: 422-28B Veritec tel Lot Num: A075900	Date Rec: 07/26/10 h Control/Rec Descrip Tt-Amyl Methyl E	eipt Number Date: Exp Date: 04/30/15 ceipt Number Date: Exp Date: Exp Date: 07/31/15	Rec By: Revolus, Jean hber: 5123 dard Rec By: Revolus, Jean	Num of Cont 1 Num of Cont 2	Approved Approved Chec Volum /Cont 5g Approved Approved Approved Chec Volum /Cont 1ml	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes e Conc: 2000	/10 Units: /10 Units: PPM
Manufacturer CHEM SERVICE	Catalog Num: F982 Catalog Num:	Lot Num: 422-28B Veritec tel Lot Num: A075900	Descrip Methyl meth Date Rec: 07/26/10 h Control/Rec Descrip rt-Amyl Methyl E Date Rec: 08/02/10 h Control/Rec	eipt Number of Standard Standa	Rec By: Revolus, Jean hber: 5123 dard Rec By: Revolus, Jean	Num of Cont 1 Num of Cont 2	Approved Approved Chec Volum /Cont 5g Approved Approved Chec Volum /Cont 1ml	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes e Conc: 2000 dBy: jean dBy: jea	Units: //10 Units: //10 Units: PPM
Manufacturer CHEM SERVICE	Catalog Num: F982 Catalog Num:	Lot Num: 422-28B Veritec tel Lot Num: A075900	Descrip Methyl meth Date Rec: 07/26/10 h Control/Rec Descrip rt-Amyl Methyl E Date Rec: 08/02/10	eipt Number Date: Date: D4/30/15	Rec By: Revolus, Jean hber: 5123 dard Rec By: Revolus, Jean	Num of Cont 1 Num of Cont 2	Approved Approved Chec Volum /Cont 5g Approved Approved Chec Volum /Cont 1ml Approved Approved Approved Approved Approved Approved Approved Approved	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes e Conc: 2000 dBy: jean pate: 08/17	Units: //10 Units: //10 Units: PPM
Manufacturer CHEM SERVICE	Catalog Num: F982 Catalog Num:	Lot Num: 422-28B Veritec tel Lot Num: A075900	Descrip Methyl meth Date Rec: 07/26/10 h Control/Rec Descrip rt-Amyl Methyl E Date Rec: 08/02/10 h Control/Rec Descrip	eipt Number Date: Date: D4/30/15	Rec By: Revolus, Jean hber: 5123 dard Rec By: Revolus, Jean	Num of Cont Num of Cont 2	Approved Approved Chec Volum /Cont 5g Approved Approved Chec Volum /Cont 1mi Approved Approved Approved Chec Chec	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes e Conc: 2000 dBy: jean pate: 08/17 ked: Yes	Units: //10 Units: //10 Units: PPM
Manufacturer	Catalog Num: F982 Catalog Num:	Lot Num: 422-28B Veritec tel Lot Num: A075900	Descrip Date Rec: 07/26/10 Ch Control/Rec Descrip Date Rec: 08/02/10 Ch Control/Rec Date Rec: 08/02/10 Ch Control/Rec Date Rec: 08/02/10 Ch Control/Rec	eipt Number Date: Date: D4/30/15	Rec By: Revolus, Jean hber: 5123 dard Rec By: Revolus, Jean hber: 5185	Num of Cont 1 Num of Cont 2	Approved Approved Chec Volum /Cont 5g Approved Approved Chec Volum /Cont 1mi Approved Approved Approved Chec Chec	dBy: jean pate: 07/26 ked: Yes e Conc: Neat dBy: jean pate: 08/02 ked: Yes e Conc: 2000 dBy: jean pate: 08/17 ked: Yes	Units: //10 Units: //10 Units: PPM

		Veritec	h Control/Red	ceipt Nun	nber: 5288					
			Descrip	otion			ApprovedBy: jean			
			TAME				ApproveDate: 10/04/10			
							Chec	ked: Yes		
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Num of Cont	f Volum /Cont	e Conc:	Units:	
Supelco	5-06737	LB64951	09/29/10	02/28/12	Hamid, Akmal	2	11	2000	ppm	
		Veritec	h Control/Red	ceipt Nun	nber: 5381					
			Descrip	tion				dBy: DAN		
			P&T W	ater				Date: 10/27	7/10	
								ked: Yes		
Manufacturar	Catalog Num:	Lat Num	Data Basi	Eva Data:	Dee Bu	Num of		-	l laita.	
Manufacturer Veritech	Catalog Num:	Lot Num:	10/01/10	Exp Date: 10/01/15	Rec By: Batelli, Daniel	Cont 1	/Cont N/A	Conc:	Units:	
V CITGOII	14/7						14//	INCAL	INCAL	
		Veritec	h Control/Red		nber: 5409					
			Descrip					dBy: jean 0ate: 11/09	9/10	
			8260 ADDITI	ONS MIX				ked: Yes	,, 10	
						Num of				
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont	e Conc:	Units:	
SUPELCO	46831-U	LB73020	11/09/10	11/30/12	Revolus, Jean	3	1ml	2000	PPM	
		Veriled	ch Control/Red	-	11061.3412		Approve	dBy: jean		
			Descrip					Date: 11/09	9/10	
	İ		Gase	25				ked: Yes		
						Num of	f Volum	e		
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont		Units:	
ACCUSTANDAR	V-601B-10X-PAK	210091188	11/09/10	10/06/13	Revolus, Jean	5	1ml	2000	PPM	
		Veritec	h Control/Red	ceipt Nun	nber: 5450					
	-		Descrip	otion				dBy: jean		
		CUSTO	OM VOC STAND		Source)			Date: 11/22	2/10	
	1						Chec	ked: Yes		
						Num of		_		
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	T	Cont	/Cont	Conc:	Units:	
ACCUSTANDAR	S-16418	210111131	11/16/10	08/23/11	Revolus, Jean	5	1ml	2000	PPM	
		Veritec	h Control/Red	ceipt Nun	nber: 5513					
			Descrip				Approved		1/10	
			524 FORTIFIC	ATION MIX	<		ApproveD)ate: 12/14 ked: Yes)10 b	
Monufactures	Catalan Norm	Lot Nives	Date Basi	Eve Data	Poo Pur	Num of Cont	f Volum /Cont	e Conc:	Units:	
Manufacturer SUPELCO	Catalog Num: 47358-U	Lot Num: LB63491	12/14/10	Exp Date: 12/31/11	Revolus, Jean	1	1ml	2000	PPM	
OUT LLOU	77 330-0	LD03431	12/14/10	12/31/11	Nevolus, Jean		11111	2000	I - I - IVI	
		Veritec	h Control/Red	eipt Nun	nber: 5516					
Description							Approved			
502/524 VOA CAL MIX							ApproveD		<i>#</i> 10	
								ked: Yes		
						Num of		-		
Manufactura	Cotolog Nurse	Lot Mirror	Data Data	Eve Data	Doc Pre	Cart	/Cant	Conc	Haite.	
Manufacturer CHEMSERVICE	Catalog Num:	Lot Num: 457-9A	Date Rec: 12/16/10	Exp Date: 12/31/11	Rec By: Revolus, Jean	Cont 4	/Cont 1ml	Conc: 2000	Units:	

		Verited	h Control/Red	ceipt Nun	nber: 5531				
			Descrip	otion	34.54.4.5		Approved	•	
			Cyclohex				ApproveD		711
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volume /Cont	e Conc:	Units:
ChemService	F2326	428-78B	12/28/10	07/31/14	Batelli, Daniel	1	5g	Neat	Neat
		Verited	h Control/Red	ceipt Nun	nber: 5532				
			Descrip				Approved		,,,,
			p-Diethylbe	enzene			ApproveDa	ate: 01/0 <i>1</i> ked: Yes	/11
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volume /Cont	e Conc:	Units:
ChemService	O-2296	451-130B	12/28/10	11/30/14	Batelli, Daniel	1	100m	Neat	Neat
		Verited	h Control/Red	ceipt Nun	nber: 5533	ı			
		1000		<u>-</u>			Approved		
			Descrip				Approved		711
			p-Ethylto	iuene				ced: Yes	
						Num of			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:		Rec By:	Cont	/Cont	Conc:	Units:
ChemService	O-2413	453-143B	12/28/10	12/31/15	Batelli, Daniel	1	1g	Neat	Neat
		Verited	h Control/Red	ceipt Nun	nber: 5544				
			Descrip	otion			Approved		111
			Metha	nol			ApproveD: Check	ate: 01/12 ked: Yes	711
						Num of			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:
J.T.Baker	9077-02	H45E36	01/11/11	01/10/12	Lopez, Jose	18	1L	neat	neat
		Verited	h Control/Red	ceipt Nun	nber: 5555	ļ			
			Descrip	otion			Approved		
			Ethyl et				ApproveDa		/11
								ed: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By	Num of Cont	Volume /Cont	€ Conc:	Units:
CHEMSERVICE	O-569	444-37B	01/18/11	03/31/15	Revolus, Jean	1	2g	NEAT	Omio.
		Varitas	h Control/Red						
		verited			1061.000		Approved		
			Descrip				Approved ApproveDa		/11
			Fura	n				ed: Yes	
						Num of	Volume)	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:
CHEMSERVICE	O-2298	451-74A	01/18/11	09/30/13	Revolus, Jean	1	10g	NEAT	
		Veritec	h Control/Red	eipt Nun	nber: 5595				
			Descrip	tion			Approved		
			502/524 VOA				ApproveDa Check	ate: 02/07 :ed: Yes	/11
						Num of	Volume		
						Numo			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:

		Veritec	h Control/Re	ceipt Nur	nber: 5621				
			Descrip	otion				dBy: jean	
			tert-Amyl Me				ApproveD		5/11
			y . me	.,			Chec	ked: Yes	
Manufacture	Ontolog N	Lathi	D		D. D.	Num c		_	
Manufacturer RESTEK	Catalog Num: 30629	Lot Num: A078931	Date Rec: 02/15/11	Exp Date:		Cont	/Cont	Conc:	Units:
RESIEK	30629	A078931	02/15/11	01/31/16	Revolus, Jean	1	1ml	2000	PPM
		Veritec	h Control/Re	ceipt Nur	nber: 5650				
			Descrip	otion				dBy: jean	
		FREON#	22(CHLOROD		METHANE		ApproveD		3/11
	_						Chec	ked: Yes	
Manufactures	Ontales Norm	I at Nivers	D-4- D-	- D.		Num c		-	
Manufacturer ACCUSTANDAR	Catalog Num: ALR-CFC-003S-2X	Lot Num: 209121020	02/18/11	Exp Date: 12/02/19		Cont	/Cont	Conc:	Units:
ACCOSTANDAR	ALK-CFC-0035-2X	209121020	02/16/11	12/02/19	Revolus, Jean	20	1ml	200	PPM
		Veritec	h Control/Re	ceipt Nur	nber: 5652				
			Descrip	otion				dBy: jean	
			VOA COMP MIX		S)		ApproveD		2/11
							Chec	ked: Yes	
						Num c		-	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:		Cont	/Cont	Conc:	Units:
SUPELCO	48799-U	LB82463	02/22/11	05/31/12	Revolus, Jean	5	1ml	2000	PPM
		4-BROMOFLUO	Descrip		-4-FLUOROBEN	JE	ApproveD		5/11
			,				Chec	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num o	of Volum /Cont	e Conc:	Units:
CHEM SERVICE		426-67B	03/09/11	08/31/14	Revolus, Jean	1	5g	NEAT	
		Veritec	h Control/Re	ceipt Nur	nber: 5903				
			Descrip	otion				dBy: jean	
			8260 ADDE				ApproveD		3/11
	L						Chec	ked: Yes	
						Num o	f Volum	е	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:
SUPELCO	46831-U	LB73020	05/03/11	11/30/12	Revolus, Jean	3	1ml	2000	PPM
		Veritec	h Control/Red	ceipt Nur	nber: 5904				
			Descrip	otion			Approved	-	
			tert-Amyl me				ApproveD		3/11
								ked: Yes	
14	Ontale C N	1 -4 14	0	F D :	D D	Num o		_	11-4
Manufacturer SUPELCO	Catalog Num: 5-06737	Lot Num: LB64951	05/03/11	Exp Date: 02/28/12		Cont 2	/Cont	Conc: 2000	Units:
JUPELUU	J-00131	LD04931	05/03/11	02/20/12	Revolus, Jean		IIMI	2000	PEN
		Veritecl	h Control/Red	ceipt Nun	nber: 5905	phone			
			Descrip	otion			Approved		
			Hepta				ApproveD		3/11
								ked: Yes	
14	Ostala e N	Labb	5.4.5	F D :	D F	Num o			11-4
Manufacturer	Catalog Num:	Lot Num:	Date Rec:			Cont	/Cont	Conc:	Units:
ALDRICH	27051-2	BO17779BO	09/17/01	09/17/21	Revolus, Jean	1	100ml	NEAT	

		Veritec	Descrip 8260 ADD	otion	nber: 5929		Approved ApproveDa Check	By: jean	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	Rec By:	Num of Cont	Volume /Cont	Conc:	Units:
ACCUSTANDAR	M-8260-ADD-10X	211031133	05/10/11	07/11/11	Revolus, Jean	2	1ml	2000	PPM
		Veritecl	h Control/Red	ceipt Nun	nber:5930				
			Descrip	tion			Approved		44
			VOA CUST	OM MIX			ApproveDa	ate: 05/11/ ed: Yes	11
						l	Crieck	eu. 1es	
						Num of	Volume		
Manufacturer	Catalog Num:	Lot Num:	Date Rec:		Rec By:	Cont	/Cont	Conc:	Units:
ACCUSTANDAR	S-16418	211041602	05/10/11	11/06/11	Revolus, Jean	5	1ml	VARIOU	
		Veritec	h Control/Red	ceipt Nur	nber: 5931				
			Descrip	tion			Approved		
		VO	A CUSTOM MI	X(2nd Sou	irce)		ApproveDa		11
	Ę					L	Check	ed: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volume /Cont	Conc:	Units:
ACCUSTANDAR	S-16418	211041598	05/10/11	11/06/11	Revolus, Jean	5	1ml	VARIOU	

Wet Chemistry Data

VERITECH Wet Chem Form1 Analysis Summary % Solids

TestGroupName: % Solids SM2540G

TestGroup: %SOLIDS

Project #: 1052009

Lab#	Client SampleID	Matrix	Dilution:	Result	Units:	RL	Prep Date	Analysis Date	Received Date	Collect Date
AC59221-001	MW-06 4-5	Soil	1	87	Percent			05/23/11	05/20/11	05/16/11
AC59221-002	MW-06 10-11	Soil	1	85	Percent			05/23/11	05/20/11	05/16/11
AC59221-003	MW-07 6-7	Soil	1	81	Percent			05/23/11	05/20/11	05/16/11
AC59221-004	MW-07 14-15	Soil	1	78	Percent			05/23/11	05/20/11	05/16/11
AC59221-005	MW-08 11-12	Soil	1	64	Percent			05/23/11	05/20/11	05/17/11
AC59221-006	MW-09 5-6	Soil	1	81	Percent			05/23/11	05/20/11	05/17/11
AC59221-007	MW-09 6-7	Soil	1	83	Percent			05/23/11	05/20/11	05/17/11
AC59221-008	MW-10 7-8	Soil	1	75	Percent			05/23/11	05/20/11	05/18/11
AC59221-009	MW-11 5-6	Soil	1	90	Percent			05/23/11	05/20/11	05/18/11
AC59221-010	MW-11 13-14	Soil	1	76	Percent			05/23/11	05/20/11	05/18/11
AC59221-011	MW-11 13-14 MS	Soil	1	86	Percent			05/24/11	05/20/11	05/18/11
AC59221-012	MW-11 13-14 MS	Soil	1	84	Percent			05/24/11	05/20/11	05/18/11
AC59221-013	Duplicate	Soil	1	87	Percent			05/24/11	05/20/11	05/18/11

% Solids Report

Analysis Type: SOLIDS-S BatchID: SOLIDS-S-5221

QcType	SampleID:	Rounded Result	Raw Result	Units	Tare Weight	Wet Weight	Dry Weight	Analysis Date	Analyzed By	QC RPD	Rpd Limit
DUP	AC59215-003	67	67.30072	Percent	1.03	12.07	8.46	05/23/11	jamesb	4.2	5
Sample	AC59214-017	91	91.22958	Percent	1.04	12.67	11.65	05/23/11	jamesb		
Sample	AC59214-018	88	88.35556	Percent	1.03	12.28	10.97	05/23/11	jamesb		
Sample	AC59214-019	87	86.50307	Percent	1.02	12.43	10.89	05/23/11	jamesb		
Sample	AC59214-020	87	87.47871	Percent	1.03	12.77	11.30	05/23/11	jamesb		
Sample	AC59215-001	73	73.01870	Percent	1.03	12.26	9.23	05/23/11	jamesb		
Sample	AC59215-003	65	64.54148	Percent	1.02	12.47	8.41	05/23/11	jamesb		
Sample	AC59215-004	68	68.41637	Percent	1.03	12.27	8.72	05/23/11	jamesb		
Sample	AC59215-005	70	70.31802	Percent	1.02	12.34	8.98	05/23/11	jamesb		
Sample	AC59215-007	71	70.98712	Percent	1.03	12.68	9.30	05/23/11	jamesb		
Sample	AC59215-009	75	75.06427	Percent	1.03	12.70	9.79	05/23/11	jamesb		
Sample	AC59221-001	87	86.64944	Percent	1.03	12.64	11.09	05/23/11	jamesb		
Sample	AC59221-002	85	84.77293	Percent	1.04	12.27	10.56	05/23/11	jamesb		
Sample	AC59221-003	81	80.53571	Percent	1.03	12.23	10.05	05/23/11	jamesb		
Sample	AC59221-004	78	77.79705	Percent	1.04	12.57	10.01	05/23/11	jamesb		
Sample	AC59221-005	64	64.18182	Percent	1.04	12.04	8.10	05/23/11	jamesb		
Sample	AC59221-006	81	80.78947	Percent	1.06	12.46	10.27	05/23/11	jamesb		
Sample	AC59221-007	83	83.00598	Percent	1.04	12.75	10.76	05/23/11	jamesb		
Sample	AC59221-008	75	74.64158	Percent	1.03	12.19	9.36	05/23/11	jamesb		
Sample	AC59221-009	90	89.58707	Percent	1.04	12.18	11.02	05/23/11	jamesb		
Sample	AC59221-010	76	76.48601	Percent	1.03	12.47	9.78	05/23/11	jamesb		

^{* -} Indicates Failed Rpd Criteria

% Solids Report

Analysis Type: SOLIDS-S BatchID: SOLIDS-S-5222

QcType	SampleID:	Rounded Result	Raw Result	Units	Tare Weight	Wet Weight	Dry Weight	Analysis Date	Analyzed By	QC RPD	Rpd Limit
DUP	AC59098-011	84	83.73984	Percent	1.03	12.10	10.30	05/24/11	beena	1.9	5
Sample	AC59098-011	82	82.13333	Percent	1.03	12.28	10.27	05/24/11	beena		
Sample	AC59221-011	86	85.99827	Percent	1.04	12.61	10.99	05/24/11	beena		
Sample	AC59221-012	84	84.47528	Percent	1.04	12.57	10.78	05/24/11	beena		
Sample	AC59221-013	87	86.87500	Percent	1.06	12.26	10.79	05/24/11	beena		
Sample	AC59222-001	87	87.10801	Percent	1.04	12.52	11.04	05/24/11	beena		
Sample	AC59222-002	85	85.20103	Percent	1.04	12.73	11.00	05/24/11	beena		
Sample	AC59226-001	91	90.62218	Percent	1.04	12.13	11.09	05/24/11	beena		
Sample	AC59226-002	90	89.69918	Percent	1.03	12.00	10.87	05/24/11	beena		
Sample	AC59226-003	88	87.58929	Percent	1.03	12.23	10.84	05/24/11	beena		
Sample	AC59226-004	83	82.68908	Percent	1.04	12.94	10.88	05/24/11	beena		
Sample	AC59227-001	77	76.83135	Percent	1.04	12.78	10.06	05/24/11	beena		
Sample	AC59228-001	77	76.78729	Percent	1.03	12.36	9.73	05/24/11	beena		
Sample	AC59230-001	77	77.41935	Percent	1.04	12.51	9.92	05/24/11	beena		
Sample	AC59230-002	85	84.53139	Percent	1.04	12.03	10.33	05/24/11	beena		
Sample	AC59251-001	87	86.78414	Percent	1.03	12.38	10.88	05/24/11	beena		
Sample	AC59251-002	90	90.49774	Percent	1.04	12.09	11.04	05/24/11	beena		
Sample	AC59251-003	85	85.27660	Percent	1.03	12.78	11.05	05/24/11	beena		
Sample	AC59251-004	94	93.84215	Percent	1.04	12.57	11.86	05/24/11	beena		
Sample	AC59251-005	83	83.34779	Percent	1.03	12.56	10.64	05/24/11	beena		
Sample	AC59265-001	87	87.33392	Percent	1.03	12.32	10.89	05/24/11	beena		

^{* -} Indicates Failed Rpd Criteria

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004

> 800-426-9992 · 973-244-9770 FAX: 973-244-9787

> > WWW.HCVLAB.COM

Project: Former Damshire Cleaners

Client PO: 1436846

Report To: EA Engineering, Science & Technology

6712 Brooklawn Pkwy.

Suite 104

Syracuse, NY 13211

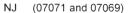
Attn: J.Graham

Received Date: 5/26/2011

Report Date: 6/23/2011

Deliverables: NYDOH-CatB

Lab ID: AC59335


Lab Project No: 1052604

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC Institute standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Jeri Rossi - Quality Assurance Director

OR

Stanley Gilewicz - Laboratory Director

TABLE OF CONTENTS

HC·V LABORATORY RESULTS	PAGE NOS.
SDG Narrative	1-4
Reporting Limit Definitions	5-6
Data Package Summary Forms	7-35
Chain of Custody Forms	36-41
GC/MS Volatiles Data	42-238

SDG Narrative

HCV Case Narrative/Conformance Summary

Client: EA Engineering, Science & Technology

Project: Former Damshire Cleaners

HCV Project: 1052604

Hampton-Clarke/Veritech (HC·V) received the following samples on May 26, 2011:

Client ID	HCV Sample ID	<u>Matrix</u>	Analysis
MW-01	AC59335-001	Aqueous	VO (8260B)
MW-02	AC59335-002	Aqueous	VO (8260B)
MW-03	AC59335-003	Aqueous	VO (8260B)
MW-04	AC59335-004	Aqueous	VO (8260B)
MW-05	AC59335-005	Aqueous	VO (8260B)
MW-06	AC59335-006	Aqueous	VO (8260B)
MW-07	AC59335-007	Aqueous	VO (8260B)
MW-08	AC59335-008	Aqueous	VO (8260B)
MW-08 MS	AC59335-009	Aqueous	VO (8260B)
MW-08 MSD	AC59335-010	Aqueous	VO (8260B)
MW-09	AC59335-011	Aqueous	VO (8260B)
MW-10	AC59335-012	Aqueous	VO (8260B)
MW-11	AC59335-013	Aqueous	VO (8260B)
Duplicate	AC59335-014	Aqueous	VO (8260B)

Volatile Organic Analysis:

Data conforms to method requirements.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

LU ROSSI			6/24/11
Jeri Rossi	Or	Stanley Gilewicz	Date
Quality Assurance Director		Laboratory Director	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

FORM S-I

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

NIVODEO	1 -11	Analytical Requirements						
NYSDEC Sample	Laboratory Sample	VOA	BNA	VOA	Pest	Metals	Other	
ID/Code	ID/Code	GC/MS	GC/MS	GC	PCBs			
ib/code	ID/Code	(Method #)	(Method #)	(Method #)	(Method #)	(Method #)	(Method #)	
MW-01	AC59335-001	8260B						
MW-02	AC59335-002	8260B						
MW-03	AC59335-003	8260B						
MW-04	AC59335-004	8260B						
MW-05	AC59335-005	8260B						
MW-06	AC59335-006	8260B						
MW-07	AC59335-007	8260B						
MW-08	AC59335-008	8260B						
MW-08 MS	AC59335-009	8260B						
MW-08 MSD	AC59335-010	8260B						
MW-09	AC59335-011	8260B						
MW-10	AC59335-012	8260B						
MW-11	AC59335-013	8260B						
Duplicate	AC59335-014	8260B						

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

FORM S-IIb

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
AC59335-001	Aqueous	05/25/11	05/26/11	-	05/31/11
AC59335-002	Aqueous	05/25/11	05/26/11	-	05/31/11
AC59335-003	Aqueous	05/25/11	05/26/11	-	05/31/11
AC59335-004	Aqueous	05/25/11	05/26/11	-	06/01/11
AC59335-005	Aqueous	05/25/11	05/26/11	-	05/31/11
AC59335-006	Aqueous	05/25/11	05/26/11	-	06/01/11
AC59335-007	Aqueous	05/25/11	05/26/11	-	06/01/11
AC59335-008	Aqueous	05/25/11	05/26/11	-	05/31/11
AC59335-009	Aqueous	05/25/11	05/26/11	-	05/31/11
AC59335-010	Aqueous	05/25/11	05/26/11	-	05/31/11
AC59335-011	Aqueous	05/25/11	05/26/11	-	06/01/11
AC59335-012	Aqueous	05/25/11	05/26/11	-	06/01/11
AC59335-013	Aqueous	05/25/11	05/26/11	-	06/01/11
AC59335-014	Aqueous	05/25/11	05/26/11	-	05/31/11

Reporting Limit Definitions

HCV Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL = Reporting Limit *

RT = Retention Time

NA = Not Applicable

ND = Not Detected

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the concentration is below the Reporting Limit (RL) but above the MDL (Method Detection Limit). The concentration reported is an estimate.

*For Clean Water Act and SW846 Organic Methods and Metals Methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve.

*For Clean Water Act and SW846 Wet Chemistry methods, the Reporting Limit is determined by the concentration of the lowest standard in the calibration curve. For most gravimetric methods the Reporting Limit is defined as a value 3 to 5 times the MDL.

HCV Report Of Analysis

Client: EA Engineering, Science & Technology

HCV Project #: 1052604

Project: Former Damshire Cleaners

Sample ID: MW-01

Lab#: AC59335-001 Matrix: Aqueous Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	ÐF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1,0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/I	1,0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/i	1.0	ND
2-Hexanone	1	u g /l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND ND
Acetone	1	ug/l	1.0	ND ND
Benzene	1		0.50	
Bromodichloromethane	1	u g/ i	· -	ND ND
Bromoform	1	ug/l	1.0	ND ND
		ug/l		ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	<u> </u>	ug/l	1.0	ND
Chlorobenzene	1	u g/ l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	u g/l	1.0	ND
Methylene chloride	1	u g/i	1.0	ND
Methyl-t-butyl ether	1	u g/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND ND
Xylenes (Total)	1	ug/l	1.0	ND

Sample ID: MW-02 Lab#: AC59335-002

Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

1,1,1-Trick/corethane 1 upl 1,0 ND 1,1,2-Trick/corethane 1 upl 1,0 ND 1,1,2-Trick/corethane 1 upl 1,0 ND 1,1,2-Trick/corethane 1 upl 1,0 ND 1,1-Dick/corethane 1 upl 1,0 ND 1,1-Dick/corethane 1 upl 1,0 ND 1,2-Dick/corethane 1 upl 1,0 ND	Analyte	DF	Units	RL	Result
1,1,2-Trichitorocethane 1 ugl 1,0 ND 1,1-Dichitocethane 1 ugl 1,0 ND 1,1-Dichitocethane 1 ugl 1,0 ND 1,2-Brichitocethane 1 ugl 1,0 ND 1,2-Dibrimon-S-chitorpropane 1 ugl 1,0 ND 1,2-Dibrimone-S-chitorpropane 1 ugl 1,0 ND 1,2-Dibrimone-S-chitorpropane 1 ugl 1,0 ND 1,2-Dichitorpropane 1 ugl 1,0 ND 2-Butanone 1 ugl 1,0 ND 2-Butanone 1 ugl 1,0	1,1,1-Trichloroethane	1	u g/l	1.0	ND
1,1,2-Trichitorocethane 1 ugl 1,0 ND 1,1-Dichitocethane 1 ugl 1,0 ND 1,1-Dichitocethane 1 ugl 1,0 ND 1,2-Brichitocethane 1 ugl 1,0 ND 1,2-Dibrimon-S-chitorpropane 1 ugl 1,0 ND 1,2-Dibrimone-S-chitorpropane 1 ugl 1,0 ND 1,2-Dibrimone-S-chitorpropane 1 ugl 1,0 ND 1,2-Dichitorpropane 1 ugl 1,0 ND 2-Butanone 1 ugl 1,0 ND 2-Butanone 1 ugl 1,0	1,1,2,2-Tetrachloroethane	1	u g/ l	1.0	ND
1.1.2.Technoreshane 1 ugl 1.0 ND 1.1.Dichloroebane 1 ugl 1.0 ND 1.1.Publichoroebane 1 ugl 1.0 ND 1.2.Publichoroebane 1 ugl 1.0 ND 1.2.Dibhronoebhane 1 ugl 1.0 ND 1.2.Dibhronoebhane 1 ugl 1.0 ND 1.2.Dibhronoebhane 1 ugl 0.50 ND 1.2.Dibhronoebhane 1 ugl 0.50 ND 1.2.Dibhronoebhane 1 ugl 0.50 ND 1.2.Dibhronoebhane 1 ugl 1.0 ND 2.Buanone 1 ugl 1.0 ND 2.Buanone 1 ugl 1.0 ND		1			
1,1-Dichloroethane 1, ugil 1,0 ND 1,1-Dichloroethane 1, ugil 1,0 ND 1,2-Dichroethane 1, ugil 0,50 ND 1,2-Dichroethane 1, ugil 0,50 ND 1,2-Dichroethane 1, ugil 0,50 ND 1,2-Dichroethane 1, ugil 1,0 ND 1,2-Dichroethane 1, ugil 1,0 ND 1,3-Dichroethane 1, ugil 1,0 ND 1,0 ND 1,3-Dichroethane 1, ugil 1,0 ND 1,0		1		1.0	ND
1,4-Dictoroechene 1 ugl 1,0 N.1 1,2-Dictoroechane 1 ugl 1,0 N.D 1,2-Dictoroechane 1 ugl 1,0 N.D 1,2-Dichloroechane 1 ugl 1,0 N.D 1,2-Dichloroebargene 1 ugl 0,50 N.D 1,2-Dichloroebargene 1 ugl 1,0 N.D 1,3-Dichloroebargene 1 ugl 1,0 N.D 1,3-Dichloroebargene 1 ugl 1,0 N.D 1,4-Dichloroebargene 1 ugl 1,0 N.D 1,4-Dichloroebargene 1 ugl 1,0 N.D 2-Bearance 1 ugl 1,0 N.D 2-Hexanone 1 ugl 1,0 N.D Bornace					
1.2.4.Tich/horbenzene 1 ugil 1.0 ND 1.2.Dibromo-3-chloropropane 1 ugil 1.0 ND 1.2.Dibridonobrane 1 ugil 1.0 ND 1.2.Dichlorobrane 1 ugil 0.50 ND 1.2.Dichloropropane 1 ugil 1.0 ND 1.2.Dichlorobrane 1 ugil 1.0 ND 1.4.Dichlorobrane 1 ugil 1.0 ND 2.4beranone 1 ugil 1.0 ND 2.4beranone 1 ugil 1.0 ND Bromachibare 1 ugil 1.0 ND			-		
1_2-Dibromo-2-Indicopropane 1	•		-		
1.2-Dichlorobenzene 1 ug/l 1.0 ND 1.2-Dichlorobenzene 1 ug/l 0.50 ND 1.2-Dichlorobenzene 1 ug/l 0.50 ND 1.2-Dichlorobenzene 1 ug/l 1.0 ND 1.2-Dichloropropane 1 ug/l 1.0 ND 1.2-Dichloropropane 1 ug/l 1.0 ND 1.4-Dichlorobenzene 1 ug/l 1.0 ND 1.4-			-		
1,2-Dichlorobenzene					
1,2 Dichloroethane	·		-		
1.2-Dichloropropane 1 ug/l 1.0 ND 1.3-Dichloropropane 1 ug/l 1.0 ND 1.4-Dichlorobersene 1 ug/l 1.0 ND 2-Butanone 1 ug/l 1.0 ND 2-Hexanore 1 ug/l 1.0 ND 4-Methyl-2-pentarone 1 ug/l 1.0 ND Acetone 1 ug/l 0.50 ND Bromodichloromethane 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorochane 1 ug/l 1.0 ND Chlorochane 1 ug/l 1.0 ND Chlorochane 1 ug/l 1.0 ND	•		-		
1,3-Dichlorobenzene 1 ug/l 1,0 ND 1,4-Dichlorobenzene 1 ug/l 1,0 ND 2-Butanone 1 ug/l 1,0 ND 2-Butanone 1 ug/l 1,0 ND 4-Meltyl-2-pentanone 1 ug/l 1,0 ND Acetone 1 ug/l 1,0 ND Benzene 1 ug/l 1,0 ND Bromofichoromethane 1 ug/l 1,0 ND Bromofichoromethane 1 ug/l 1,0 ND Bromofichoromethane 1 ug/l 1,0 ND Carbon disulfide 1 ug/l 1,0 ND Carbon disulfide 1 ug/l 1,0 ND Carbon disulfide 1 ug/l 1,0 ND Chlorobetrace 1 ug/l 1,0 ND Chlorobetrace 1 ug/l 1,0 ND Chlorobetrace </td <td>•</td> <td></td> <td></td> <td></td> <td></td>	•				
1.4-Dichlorobenzene 1 ug/l 1.0 ND 2-Butanone 1 ug/l 1.0 ND 2-Hexanone 1 ug/l 1.0 ND 4-Methyl-2-pentanone 1 ug/l 1.0 ND Acetone 1 ug/l 1.0 ND Bromachichromethane 1 ug/l 1.0 ND Bromodichloromethane 1 ug/l 1.0 ND Bromodichloromethane 1 ug/l 1.0 ND Bromodichloromethane 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorobenzene 1 ug/l 1.0 ND C	<u> </u>				
2-Butanone 1 ug/l 1.0 ND 2-Hexanone 1 ug/l 1.0 ND 4-Methyl-Z-pentanone 1 ug/l 10 ND Acetone 1 ug/l 0.50 ND Bromadichloromethane 1 ug/l 1.0 ND Bromodichloromethane 1 ug/l 1.0 ND Bromodishloromethane 1 ug/l 1.0 ND Bromodishloromethane 1 ug/l 1.0 ND Carbon disulfide 1 ug/l 1.0 ND Carbon disulfide 1 ug/l 1.0 ND Carbon disulfide 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Cis-1,2-Dichloroethane 1 ug/l 1.0 ND Dichloroethane 1 ug/l 1.0 ND C	•		-		
2-Hexanone 1 ug/l 1.0 ND 4-Methyl-2-pentanone 1 ug/l 1.0 ND A-Methyl-2-pentanone 1 ug/l 1.0 ND Benzone 1 ug/l 0.50 ND Bromothme 1 ug/l 1.0 ND Carbon disulfide 1 ug/l 1.0 ND Carbon disulfide 1 ug/l 1.0 ND Chlorothme 1 ug/l	·		-		
A-Methyl-2-pentanone					
Acetone 1 ug/l 10 ND Benzene 1 ug/l 0.50 ND Bromodichloromethane 1 ug/l 1.0 ND Bromodichloromethane 1 ug/l 1.0 ND Bromodichloromethane 1 ug/l 1.0 ND Carbon distifide 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorobenzene 1 ug/l 1.0 ND Chlorodethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Cycloheane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Ethylbenzene </td <td></td> <td><u>*</u></td> <td></td> <td></td> <td></td>		<u>*</u>			
Benzene 1 ug/l 0.50 ND Bromodichloromethane 1 ug/l 1.0 ND Bromodom 1 ug/l 1.0 ND Bromomethane 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorobenzene 1 ug/l 1.0 ND Chlorochtane 1 ug/l 1.0 ND Chlorochtane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Elsopopthenzene 1 ug/l 1.0 ND Methyl Cotate 1					
Bromodichloromethane 1 ug/l 1.0 ND Bromoform 1 ug/l 1.0 ND Bromomethane 1 ug/l 1.0 ND Carbon disulfide 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorobenzene 1 ug/l 1.0 ND Chloroderme 1 ug/l 1.0 ND Chloroform 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Gis-1,3-Dichloropropene 1 ug/l 1.0 ND Okolevane 1 ug/l 1.0 ND Dichorodifluoromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Methylcyclohexane			-		
Bromoform 1 ug/l 1.0 ND Bromomethane 1 ug/l 1.0 ND Carbon disulfide 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorobenzene 1 ug/l 1.0 ND Chlorodethane 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dibromochlorodethane 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Methyl Actate <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Bromomethane 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorobenzene 1 ug/l 1.0 ND Chlorobehane 1 ug/l 1.0 ND Chlororofform 1 ug/l 1.0 ND Cis-1,2-Dichloroethene 1 ug/l 1.0 ND cis-1,2-Dichloropropene 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Methyl Acetate 1 ug/l 1.0 ND Methylycohexane 1 ug/l 1.0 ND Methyl-butyl ether 1 ug/l 1.0 ND <					
Carbon disulfide 1 ug/l 1.0 ND Carbon tetrachloride 1 ug/l 1.0 ND Chlorosbenzene 1 ug/l 1.0 ND Chlorostane 1 ug/l 1.0 ND Chloroform 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Cis-1,2-Dichloroethene 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Methylacetale 1 ug/l 1.0 ND Methyl-butyl ether 1 ug/l 1.0 ND O-Xylene			-		
Carbon tetrachloride 1 ug/l 1.0 ND Chlorobenzene 1 ug/l 1.0 ND Chlorotethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND Cis-1,2-Dichloropropene 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Dichlorodifluoromethane 1 ug/l 1.0 ND Ethylsenzene 1 ug/l 1.0 ND Ethylsenzene 1 ug/l 1.0 ND Methylcyclohexane 1 ug/l 1.0 ND Methylyclochexane 1 ug/l 1.0 ND Methylyclochexane 1 ug/l 1.0 ND Methylyclochexane 1 ug/l 1.0 ND <			-		
Chlorobenzene			-		
Chloroethane 1 ug/l 1.0 ND Chloroform 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND cis-1,2-Dichloroethene 1 ug/l 1.0 ND cis-1,3-Dichloropropene 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Dichlorodiffuoromethane 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Methyl Acetale 1 ug/l 1.0 ND Methyly Acetale 1 ug/l 1.0 ND Methylyechoxane 1 ug/l 1.0 ND Methyl-L-butyl ether 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND					
Chloroform 1 ug/l 1.0 ND Chloromethane 1 ug/l 1.0 ND cis-1,2-Dichloroethene 1 ug/l 1.0 ND cis-1,3-Dichloropropene 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dichlorodifluoromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Methylenzene 1 ug/l 1.0 ND Methylacetale 1 ug/l 1.0 ND Methylcyclohexane 1 ug/l 1.0 ND <t< td=""><td></td><td></td><td>-</td><td></td><td></td></t<>			-		
Chloromethane 1 ug/l 1.0 ND cis-1,2-Dichloroethene 1 ug/l 1.0 320 cis-1,3-Dichloropropene 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Dichlorodifluoromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Mesp-Xylenes 1 ug/l 1.0 ND Methyl-Acetate 1 ug/l 1.0 ND Methyl-Leutylether 1 ug/l 1.0 ND Methyl-Leutyl ether 1 ug/l 1.0 ND Methyl-Leutyl ether 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetachloroethene 1 ug/l 1.0 ND			-		
cis-1,2-Dichloroethene 1 ug/l 1,0 320 cis-1,3-Dichloropropene 1 ug/l 1,0 ND Cyclohexane 1 ug/l 1,0 ND Dibromochloromethane 1 ug/l 1,0 ND Dichlorodifluoromethane 1 ug/l 1,0 ND Ethylbenzene 1 ug/l 1,0 ND Isopropylbenzene 1 ug/l 1,0 ND Methylenzene 1 ug/l 1,0 ND Methyl Acetate 1 ug/l 1,0 ND Methyl-koyclohexane 1 ug/l 1,0 ND Methyl-buly ether 1 ug/l 1,0 ND Methyl-buly ether 1 ug/l 1,0 ND Styrene 1 ug/l 1,0 ND Styrene 1 ug/l 1,0 ND Tetrachloroethene 1 ug/l 1,0 ND					
cis-1,3-Dichloropropene 1 ug/l 1.0 ND Cyclohexane 1 ug/l 1.0 ND Dichloromethane 1 ug/l 1.0 ND Dichlorodifluoromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Methyl Acetate 1 ug/l 1.0 ND Methylcyclohexane 1 ug/l 1.0 ND Methyl-butyle ether 1 ug/l 1.0 ND Methyl-butyle ether 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND Trans-1,2-Dichloroethene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Cyclohexane 1 ug/l 1.0 ND Dibromochloromethane 1 ug/l 1.0 ND Dichlorodifluoromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Methyl Acetate 1 ug/l 1.0 ND Methyl Acetate 1 ug/l 1.0 ND Methyl-Acetate 1 ug/l 1.0 ND Methyl-Bethyl ether 1 ug/l 1.0 ND Methyl-I-butyl ether 1 ug/l 1.0 ND e-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND <	•		-		
Dibromochloromethane 1 ug/l 1.0 ND Dichlorodifluoromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND Methyl Acetale 1 ug/l 1.0 ND Methylcyclohexane 1 ug/l 1.0 ND o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetachloroethene 1 ug/l 1.0 ND tra					
Dichlorodifluoromethane 1 ug/l 1.0 ND Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND m8p-Xylenes 1 ug/l 1.0 ND Methyl Acetate 1 ug/l 1.0 ND Methylene chloride 1 ug/l 1.0 ND Methylene chloride 1 ug/l 0.50 ND Methyl-t-butyl ether 1 ug/l 1.0 ND O-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND			-		
Ethylbenzene 1 ug/l 1.0 ND Isopropylbenzene 1 ug/l 1.0 ND m&p-Xylenes 1 ug/l 1.0 ND Methyl Acetate 1 ug/l 1.0 ND Methylcyclohexane 1 ug/l 1.0 ND Methylene chloride 1 ug/l 0.50 ND o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND Toluene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND					
Isopropylbenzene			=		
m8p-Xylenes 1 ug/l 1.0 ND Methyl Acetate 1 ug/l 1.0 ND Methylcyclohexane 1 ug/l 1.0 ND Methylene chloride 1 ug/l 1.0 ND Methyl-t-butyl ether 1 ug/l 0.50 ND o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND	•				
Methyl Acetate 1 ug/l 1.0 ND Methylcyclohexane 1 ug/l 1.0 ND Methylene chloride 1 ug/l 1.0 ND Methyl-t-butyl ether 1 ug/l 0.50 ND o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND			-		_
Methylcyclohexane 1 ug/l 1.0 ND Methylene chloride 1 ug/l 1.0 ND Methyl-t-butyl ether 1 ug/l 0.50 ND o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND		· · · · · · · · · · · · · · · · · · ·			
Methylene chloride 1 ug/l 1.0 ND Methyl-t-butyl ether 1 ug/l 0.50 ND o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND	· · · · · · · · · · · · · · · · · · ·		-		
Methyl-t-butyl ether 1 ug/l 0.50 ND o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND			-		
o-Xylene 1 ug/l 1.0 ND Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 13 Toluene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND Trichloropropene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND			-		
Styrene 1 ug/l 1.0 ND Tetrachloroethene 1 ug/l 1.0 13 Toluene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 ND Trichloropropene 1 ug/l 1.0 ND Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND					
Tetrachloroethene 1 ug/l 1.0 13 Toluene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 3.1 trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND	-		=		
Toluene 1 ug/l 1.0 ND trans-1,2-Dichloroethene 1 ug/l 1.0 3.1 trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 8.5 Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND	•				
trans-1,2-Dichloroethene 1 ug/l 1.0 3.1 trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 8.5 Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND			-		
trans-1,3-Dichloropropene 1 ug/l 1.0 ND Trichloroethene 1 ug/l 1.0 8.5 Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND				,	
Trichloroethene 1 ug/l 1.0 8.5 Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND			-		
Trichlorofluoromethane 1 ug/l 1.0 ND Vinyl chloride 1 ug/l 1.0 ND			-		
Vinyl chloride 1 ug/l 1.0 ND					
·			ug/l		
Xylenes (Total) 1 ug/l 1.0 ND	Vinyl chloride	1	ug/l	1.0	ND
	Xylenes (Total)	1	ug/l	1.0	ND

Sample ID: MW-03 Lab#: AC59335-003

Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/t	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	27
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	u g/ I	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	6,5
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	9.0
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	<u>'</u>	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
	ı	~ 9 ··	1.0	.,,,

0011

Sample ID: MW-04 Lab#: AC59335-004

Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	500	ug/l	500	ND
1,1,2,2-Tetrachloroethane	500	ug/l	500	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	500	ug/l	500	ND
1,1,2-Trichloroethane	500	ug/l	500	ND
1,1-Dichloroethane	500	ug/l	500	ND
1,1-Dichloroethene	500	ug/l	500	ND
1,2,4-Trichlorobenzene	500	ug/l	500	ND
1,2-Dibromo-3-chloropropane	500	ug/l	500	ND
1,2-Dibromoethane	500	ug/l	500	ND
1,2-Dichlorobenzene	500	ug/l	500	ND
1,2-Dichloroethane	500	ug/l	250	ND
1,2-Dichloropropane	500	ug/l	250	ND
1,3-Dichlorobenzene	500	ug/l	500	ND
1,4-Dichlorobenzene	500	ug/l	500	ND
2-Butanone	500	ug/l	500	ND
2-Hexanone	500	ug/l	500	ND
4-Methyl-2-pentanone	500	ug/l	500	ND
Acetone	500	ug/l	5000	ND
Benzene	500	ug/l	250	ND
Bromodichloromethane	500	ug/i	300	ND
Bromoform	500	ug/l	500	ND ND
Bromomethane	500	ug/l	500	ND
Carbon disulfide	500	ug/l	500	ND
Carbon tetrachloride	500	ug/l	500	ND
Chlorobenzene	500	ug/l	500	ND
Chloroethane	500	ug/l	500	ND
Chloroform	500	ug/l	500	ND
Chloromethane	500	-	500	ND
cis-1,2-Dichloroethene	500	ug/l ug/l	500	ND
cis-1,3-Dichloropropene	500	ug/l	500	ND
Cyclohexane	500	-	500	ND ND
•	500	ug/l	500	ND ND
Dibromochloromethane	500	ug/l	500	ND ND
Dichlorodifluoromethane		ug/l		
Ethylbenzene	500	ug/l	500	ND
Isopropylbenzene	500	ug/l	500	ND
m&p-Xylenes	500	ug/l	500	ND
Methyl Acetate	500	ug/l	500	ND
Methylcyclohexane	500	ug/l	500	ND
Methylene chloride	500	ug/l	500	ND
Methyl-t-butyl ether	500	ug/l	250	ND
o-Xylene	500	ug/l	500	ND
Styrene	500	u g/ l	500	ND
Tetrachloroethene	500	ug/l	500	48000
Toluene	500	ug/l	500	ND
trans-1,2-Dichloroethene	500	ug/l	500	ND
trans-1,3-Dichloropropene	500	ug/l	500	ND
Trichloroethene	500	ug/l	500	500
Trichlorofluoromethane	500	ug/l	500	ND
Vinyl chloride	500	ug/l	500	ND
Xylenes (Total)	500	ug/l	500	ND

Sample ID: MW-05 Lab#: AC59335-005

Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	100	ug/l	100	ND
1,1,2,2-Tetrachloroethane	100	ug/l	100	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	100	ug/l	100	ND
1,1,2-Trichloroethane	100	ug/l	100	ND
1,1-Dichloroethane	100	ug/l	100	ND
1,1-Dichloroethene	100	ug/l	100	ND
1,2,4-Trichlorobenzene	100	ug/l	100	ND
1,2-Dibromo-3-chloropropane	100	ug/l	100	ND
1,2-Dibromoethane	100	ug/l	100	ND
1,2-Dichlorobenzene	100	ug/l	100	ND
1,2-Dichloroethane	100	ug/l	50	ND
1,2-Dichloropropane	100	ug/l	100	ND
1,3-Dichlorobenzene	100	ug/l	100	ND
1,4-Dichlorobenzene	100	ug/l	100	ND
2-Butanone	100	ug/l	100	ND
2-Hexanone	100	ug/l	100	ND
4-Methyl-2-pentanone	100	ug/l	100	ND
Acetone	100	ug/l	1000	ND
Benzene	100	ug/l	50	ND
Bromodichloromethane	100	ug/l	100	ND
Bromoform	100	ug/l	100	ND
Bromomethane	100	ug/l	100	ND
Carbon disulfide	100	ug/l	100	ND
Carbon tetrachloride	100	ug/l	100	ND
Chlorobenzene	100	ug/l	100	ND
Chloroethane	100	ug/l	100	ND
Chloroform	100	ug/i	100	ND
Chloromethane	100	ug/l	100	ND
cis-1,2-Dichloroethene	100	ug/l	100	260
cis-1,3-Dichloropropene	100	ug/l	100	ND
Cyclohexane	100	ug/l	100	ND
Dibromochloromethane	100	ug/l	100	ND
Dichlorodifluoromethane	100	ug/I	100	ND
Ethylbenzene	100	ug/l	100	ND
Isopropylbenzene	100	ug/l	100	ND
m&p-Xylenes	100	ug/l	100	ND
Methyl Acetate	100	ug/l	100	ND ND
Methylcyclohexane	100	ug/l	100	ND
Methylene chloride	100	ug/l	100	ND
Methyl-t-butyl ether	100	ug/l	50	ND
o-Xylene	100	ug/l	100	ND ND
Styrene	100	ug/l	100	ND
Tetrachloroethene	100	ug/l	100	25000
Toluene	100	ug/l	100	ND
trans-1,2-Dichloroethene	100	ug/l	100	ND
trans-1,3-Dichloropropene	100	ug/l	100	ND
Trichloroethene	100	ug/l	100	6500
Trichlorofluoromethane	100	ug/l	100	ND
Vinyl chloride	100	ug/l	100	ND
viriyi cinonue	100	ugri	100	ND

Sample ID: MW-06 Lab#: AC59335-006 Matrix: Aqueous Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
,1,1-Trichloroethane	1	ug/l	1.0	ND
,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
,1,2-Trichloroethane	1	ug/l	1.0	ND
,1-Dichloroethane	1	ug/l	1.0	ND
,1-Dichloroethene	1	ug/l	1.0	ND
l,2,4-Trichlorobenzene	1	ug/l	1.0	ND
,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
,2-Dibromoethane	1	ug/l	1.0	ND
,2-Dichlorobenzene	1	ug/l	1.0	ND
,2-Dichloroethane	1	ug/l	0.50	ND
,2-Dichloropropane	1	ug/l	0.51	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
I-Methyl-2-pentanone	<u>'</u>	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	0.61	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1		1.0	ND
		ug/l		ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	11	ug/l	1.0	ND ND
Chlorobenzene	1	ug/l	1.0	
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/ł	1.0	ND
sopropylbenzene	1	ug/l	1.0	ND
n&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/I	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
p-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
[etrachloroethene	1	ug/l	1.0	2.0
Toluene	1	ug/l	1.0	ND
rans-1,2-Dichloroethene	1	ug/l	1.0	ND
rans-1,3-Dichloropropene	1	ug/l	1.0	ND
Frichloroethene	1	ug/l	1.0	ND
Frichlorofluoromethane	1	ug/l	1.0	ND
/inyl chloride	1	ug/l	1.0	ND
Vinyl chloride Kylenes (Total)	1	ug/l	1.0	ND ND

Sample ID: MW-07 Lab#: AC59335-007 Matrix: Aqueous Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/I	0.50	ND
1,2-Dichloropropane	1	u g/ l	0.51	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1		0.61	ND
Bromoform	1	ug/l	1.0	ND ND
		ug/l	1.0	ND
Bromomethane	1	ug/l		ND
Carbon disulfide	1	ug/l	1.0	
Carbon tetrachloride	11	ug/i	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	2.2
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	1.3
Methyl Acetate	1	ug/I	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	u g /l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	44
Toluene	1	ug/l	1.0	2.2
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	4.6
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND

0015

Sample ID: MW-08 Lab#: AC59335-008 Matrix: Aqueous Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	u g/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	u g/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/I	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/I	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/I	1.0	ND
Methyl Acetate	1	ug/l	1,0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	<u> </u>	ug/l	1.0	ND ND
Xylenes (Total)	1	ug/l	1.0	ND
. 17.01.100 (. 0.01)		ug/i	1.0	NU

Sample ID: MW-08 MS Lab#: AC59335-009

Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	20
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	16
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	19
1,1,2-Trichloroethane	1	ug/l	1.0	17
1,1-Dichloroethane	1	ug/l	1.0	16
1,1-Dichloroethene	1	ug/l	1.0	15
1,2,4-Trichlorobenzene	1	ug/l	1.0	18
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	14
1,2-Dibromoethane	1	ug/l	1.0	16
1,2-Dichlorobenzene	1	ug/l	1.0	18
1,2-Dichloroethane	1	ug/l	0.50	19
1,2-Dichloropropane	1	u g/l	1.0	16
1,3-Dichlorobenzene	1	ug/l	1.0	19
1,4-Dichlorobenzene	1	u g/l	1.0	18
2-Butanone	1	ug/l	1.0	15
2-Hexanone	1	u g /l	1.0	14
4-Methyl-2-pentanone	1	ug/l	1.0	15
Acetone	1	ug/l	10	84
Benzene	1	ug/l	0.50	16
Bromodichloromethane	1	ug/l	1.0	17
Bromoform	1	ug/l	1.0	15
Bromomethane	1	ug/l	1.0	22
Carbon disulfide	1	ug/l	1.0	18
Carbon tetrachloride	1	ug/l	1.0	22
Chlorobenzene	1	ug/l	1.0	19
Chloroethane	1	ug/l	1.0	22
Chloroform	1	ug/l	1.0	18
Chloromethane	1	ug/l	1.0	16
cis-1,2-Dichloroethene	1	ug/l	1.0	17
cis-1,3-Dichloropropene	1	ug/l	1.0	15
Cyclohexane	1	ug/l	1.0	17
Dibromochloromethane	1	ug/l	1.0	16
Dichlorodifluoromethane	1	ug/l	1.0	15
Ethylbenzene	1	ug/t	1.0	18
Isopropylbenzene	1	ug/l	1.0	15
m&p-Xylenes	1	ug/l	1.0	32
Methyl Acetate	1	ug/l	1.0	20
Methylcyclohexane	1	ug/l	1.0	18
Methylene chloride	1	ug/l	1.0	17
Methyl-t-butyl ether	1	ug/l	0.50	16
o-Xylene	1	ug/f	1.0	16
Styrene	1	ug/l	1.0	16
Tetrachloroethene	1	ug/l	1.0	20
Toluene	1	ug/l	1.0	17
trans-1,2-Dichloroethene	1	ug/l	1.0	19
trans-1,3-Dichloropropene	1	ug/l	1.0	16
Trichloroethene	1	ug/l	1.0	19
Trichlorofluoromethane	1	ug/l	1.0	20
Vinyl chloride	1	ug/l	1.0	18
Xylenes (Total)	1	ug/l	1.0	48

Sample ID: MW-08 MSD Lab#: AC59335-010

Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	21
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	18
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	22
1,1,2-Trichloroethane	1	ug/l	1.0	18
1,1-Dichloroethane	1	ug/i	1.0	18
1,1-Dichloroethene	1	ug/l	1.0	18
1,2,4-Trichlorobenzene	1	ug/l	1.0	20
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	14
1,2-Dibromoethane	1	ug/l	1.0	18
1,2-Dichlorobenzene	1	ug/l	1.0	19
1,2-Dichloroethane	1	ug/l	0.50	21
1,2-Dichloropropane	1	ug/l	1.0	19
1,3-Dichlorobenzene	1	ug/l	1.0	21
1,4-Dichlorobenzene	1	ug/l	1.0	19
2-Butanone	1	ug/l	1.0	18
2-Hexanone	1	ug/l	1.0	16
4-Methyl-2-pentanone	1	ug/l	1.0	15
Acetone	1	ug/l	10	89
Benzene	1	ug/l	0.50	19
Bromodichloromethane	1	ug/l	1.0	19
Bromoform	1	ug/l	1.0	16
Bromomethane	1	ug/l	1.0	25
Carbon disulfide	1	ug/l	1.0	20
Carbon tetrachloride	1	ug/l	1.0	23
Chlorobenzene	1	ug/l	1.0	20
Chloroethane	1	ug/l	1.0	21
Chloroform	1	ug/l	1.0	20
Chloromethane	1	ug/l	1.0	17
cis-1,2-Dichloroethene	1	ug/l	1.0	17
cis-1,3-Dichloropropene	1	ug/l	1.0	17
Cyclohexane	1	ug/l	1.0	19
Dibromochloromethane	1	ug/l	1.0	18
Dichlorodifluoromethane	1	ug/l	1.0	16
Ethylbenzene	1	ug/l	1.0	19
Isopropylbenzene	1	ug/l	1.0	17
m&p-Xylenes	1	ug/l	1.0	33
Methyl Acetate	1	ug/l	1.0	23
Methylcyclohexane	1	ug/l	1.0	20
Methylene chloride	1	ug/l	1.0	18
Methyl-t-butyl ether	1	ug/l	0.50	18
o-Xylene	1	ug/l	1.0	17
Styrene	1	ug/l	1.0	18
Tetrachloroethene	1	ug/l	1.0	23
Toluene	1	ug/l	1.0	19
trans-1,2-Dichloroethene	1	ug/l	1.0	21
trans-1,3-Dichloropropene	1	ug/l	1.0	17
Trichloroethene	1	ug/l	1.0	20
Trichlorofluoromethane	1	ug/l	1.0	23

Sample ID: MW-09 Lab#: AC59335-011 Matrix: Aqueous Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	0.51	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	0.61	ND
Bromoform	1	ug/I	1.0	ND ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/!	1.0	ND ND
trans-1,3-Dichloropropene	1	ug/i	1.0	ND
Trichloroethene	1	ug/l	1.0	ND ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	<u>.</u> 1		1.0	ND ND
Xylenes (Total)		ug/l		
Ayleries (Total)	1	ug/l	1.0	ND

Sample ID: MW-10 Lab#: AC59335-012 Matrix: Aqueous Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/i	0.50	ND
1,2-Dichloropropane	1	ug/l	0.51	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	0.61	ND
Bromoform	<u>'</u>	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	-	1.0	ND ND
Carbon distinde Carbon tetrachloride	1	ug/l	1.0	ND ND
Chlorobenzene	1	ug/l	1.0	ND ND
Chloroethane		ug/l		_
Chloroform	1	ug/l	1.0	ND ND
Chloromethane	1	ug/l	1.0	ND ND
	1	ug/l	1.0	ND ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND ND
cis-1,3-Dichloropropene	1	ug/l	1.0	
Cyclohexane	•	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/I	1.0	ND
trans-1,3-Dichloropropene	1	ug/I	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

Sample ID: MW-11 Lab#: AC59335-013 Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	u g/l	0.51	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND ND
Acetone	1	ug/l	10	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	0.61	ND
Bromoform	<u>.</u>	ug/l	1.0	ND ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	u g/ l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	<u>.</u>	ug/l	1.0	ND ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND ND
Methylcyclohexane	1	ug/l	1.0	ND ND
Methylene chloride	1	ug/l	1.0	ND ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND ND
Toluene	1	ug/l	1.0	ND ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND ND
trans-1,3-Dichloropropene	1		1.0	ND ND
Trichloroethene	1 1	ug/l		ND ND
Trichlorofluoromethane	1	ug/l	1.0 1.0	ND ND
Vinyl chloride	1	ug/l		
-		ug/l	1.0	ND ND
Xylenes (Total)	1	ug/l	1.0	ND

Sample ID: Duplicate Lab#: AC59335-014

Matrix: Aqueous

Collection Date: 5/25/2011 Receipt Date: 5/26/2011

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	100	ug/t	100	ND
1,1,2,2-Tetrachloroethane	100	ug/l	100	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	100	ug/l	100	ND
1,1,2-Trichloroethane	100	ug/l	100	ND
1,1-Dichloroethane	100	ug/l	100	ND
1,1-Dichloroethene	100	ug/l	100	ND
1,2,4-Trichlorobenzene	100	ug/l	100	ND
1,2-Dibromo-3-chloropropane	100	ug/l	100	ND
1,2-Dibromoethane	100	ug/l	100	ND
1,2-Dichlorobenzene	100	ug/l	100	ND
1,2-Dichloroethane	100	ug/l	50	ND
1,2-Dichloropropane	100	ug/l	100	ND
1,3-Dichlorobenzene	100	ug/l	100	ND
1,4-Dichlorobenzene	100	ug/l	100	ND
2-Butanone	100	ug/l	100	ND
2-Hexanone	100	ug/l	100	ND
4-Methyl-2-pentanone	100	ug/l	100	ND
Acetone	100	ug/l	1000	ND
Benzene	100	ug/l	50	ND
Bromodichloromethane	100	ug/l	100	ND
Bromoform	100	ug/l	100	ND
Bromomethane	100	ug/l	100	ND
Carbon disulfide	100	ug/l	100	ND
Carbon tetrachloride	100	ug/l	100	ND
Chlorobenzene	100	ug/l	100	ND
Chloroethane	100	_	100	ND
Chloroform	100	ug/l ug/l	100	ND
Chloromethane	100	ug/l	100	ND ND
	100		100	240
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	100	ug/l	100	ND
	100	ug/l	100	ND ND
Cyclohexane	100 100	ug/l		ND ND
Dibromochloromethane		ug/l	100	
Dichlorodifluoromethane	100	ug/l	100	ND
Ethylbenzene	100	ug/l	100	ND ND
Isopropylbenzene	100	ug/l	100	ND ND
m&p-Xylenes	100	ug/l	100	ND
Methyl Acetate	100	ug/l	100	ND
Methylcyclohexane	100	ug/l	100	ND ND
Methylene chloride	100	ug/l	100	ND
Methyl-t-butyl ether	100	ug/l	50	ND
o-Xylene	100	ug/l	100	ND
Styrene	100	ug/l	100	ND
Tetrachloroethene	100	ug/l "	100	34000
Toluene	100	ug/l	100	ND
trans-1,2-Dichloroethene	100	ug/l	100	ND
trans-1,3-Dichloropropene	100	ug/l	100	ND
Trichloroethene	100	ug/l	100	7900
Trichlorofluoromethane	100	ug/l	100	ND
Vinyl chloride	100	ug/l	100	ND
Xylenes (Total)	10 0	ug/l	100	ND

Sample Number: AC59335-001

Client Id: MW-01

Data File: 2M67548.D Analysis Date: 05/31/11 15:12

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

			Ullits. t	#9/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U		Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U		Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	-	1.0	U
67-64-1	Acetone	10	U		Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U		trans-1,3-Dichloropropene	1.0	Ü
74-83-9	Bromomethane	1.0	U		,	1.0	Ü
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U		Vinyl Chloride	1.0	Ü
108-90-7	Chlorobenzene	1.0	U		Xylenes (Total)	1.0	Ü
			- 1	. 300 20 .	,		ū

⁰

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-002

Client Id: MW-02

Data File: 2M67550.D

Analysis Date: 05/31/11 15:44 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

	† · · · · · · · · · · · · · · · · · · ·		Omis. u	J' -			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	320
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	1.1	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	Ų
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	13
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	3.1
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	υ	79-01-6	Trichloroethene	1.0	8.5
75-15-0	Carbon Disulfide	1.0	U	7 5-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	υ	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U		Xylenes (Total)	1.0	U

³⁵⁰

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-003

Client Id: MW-03

Data File: 2M67551.D

Analysis Date: 05/31/11 16:00 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			Units: t	ıg/∟			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U ·	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	27
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
7 8-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	6.5
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	9.0
75-15-0	Carbon Disulfide	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U
	i i						

Worksheet #: 193017

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

⁴²R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit,

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-004(500X)

Client Id: MW-04

Data File: 3M93536.D Analysis Date: 06/01/11 13:19

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 500

Solids: 0

			Units: t	Jg/∟			
Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	500	U	75-00-3	Chloroethane	500	U
79-34-5	1,1,2,2-Tetrachloroethane	500	U	67-66-3	Chloroform	500	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	500	U	74-87-3	Chloromethane	500	U
79-00-5	1,1,2-Trichloroethane	500	U	156-59-2	cis-1,2-Dichloroethene	500	U
75-34-3	1,1-Dichloroethane	500	U	10061-01-5	cis-1,3-Dichloropropene	500	U
75-35-4	1,1-Dichloroethene	500	U	110-82-7	Cyclohexane	500	U
120-82-1	1,2,4-Trichlorobenzene	500	υ	124-48-1	Dibromochloromethane	500	U
96-12-8	1,2-Dibromo-3-Chloropropa	500	υ	75-71-8	Dichlorodifluoromethane	500	U
106-93-4	1,2-Dibromoethane	500	υ	100-41-4	Ethylbenzene	500	U
95-50-1	1,2-Dichlorobenzene	500	U	98-82-8	Isopropylbenzene	500	U
107-06-2	1,2-Dichloroethane	250	U	136777612	m&p-Xylenes	500	U
78-87-5	1,2-Dichloropropane	250	U	79-20-9	Methyl Acetate	500	U
541-73-1	1,3-Dichlorobenzene	500	U	108-87-2	Methylcyclohexane	500	U
106-46-7	1,4-Dichlorobenzene	500	U	75-09-2	Methylene Chloride	500	U
78-93-3	2-Butanone	500	U	1634-04-4	Methyl-t-butyl ether	250	U
591-78-6	2-Hexanone	500	υ	95-47-6	o-Xylene	500	U
108-10-1	4-Methyl-2-Pentanone	500	U	100-42-5	Styrene	500	U
67-64-1	Acetone	5000	υ	127-18-4	Tetrachloroethene	500	48000
71-43-2	Benzene	250	U	108-88-3	Toluene	500	U
75-27 -4	Bromodichloromethane	300	U	156-60-5	trans-1,2-Dichloroethene	500	U
75-25-2	Bromoform	500	U	10061-02-6	trans-1,3-Dichloropropene	500	U
74-83-9	Bromomethane	500	U	79-01-6	Trichloroethene	500	500
75-15-0	Carbon Disulfide	500	U	75-69-4	Trichlorofluoromethane	500	U
56-23-5	Carbon Tetrachloride	500	υ	75-01 -4	Vinyl Chloride	500	U
108-90-7	Chlorobenzene	500	υ	1330-20-7	Xylenes (Total)	500	U

⁴⁸⁰⁰⁰

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-005(100X)

Client Id: MW-05

Data File: 2M67543.D

Analysis Date: 05/31/11 13:53 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 100

Solids: 0

			• • • • • • • • • • • • • • • • • • • •	- g· –			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	100	U	75-00-3	Chloroethane	100	U
79-34-5	1,1,2,2-Tetrachloroethane	100	U	67-66-3	Chloroform	100	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	100	U	74-87-3	Chloromethane	100	U
79-00-5	1,1,2-Trichloroethane	100	U	156-59-2	cis-1,2-Dichloroethene	100	260
75-34-3	1,1-Dichloroethane	100	U	10061-01-5	cis-1,3-Dichloropropene	100	U
75-35-4	1,1-Dichloroethene	100	U	110-82-7	Cyclohexane	100	U
120-82-1	1,2,4-Trichlorobenzene	100	U	124-48-1	Dibromochloromethane	100	U
96-12-8	1,2-Dibromo-3-Chloropropa	100	U	75-71-8	Dichlorodifluoromethane	100	U
106-93-4	1,2-Dibromoethane	100	U	100-41-4	Ethylbenzene	100	U
95-50-1	1,2-Dichlorobenzene	100	U	98-82-8	Isopropylbenzene	100	U
107-06-2	1,2-Dichloroethane	50	U	136777612	m&p-Xylenes	100	U
78-87-5	1,2-Dichloropropane	100	U	79-20-9	Methyl Acetate	100	U
541-73-1	1,3-Dichlorobenzene	100	U	108-87-2	Methylcyclohexane	100	U
106-46-7	1,4-Dichlorobenzene	100	U	75-09-2	Methylene Chloride	100	U
78-93-3	2-Butanone	100	U	1634-04-4	Methyl-t-butyl ether	50	U
591-78-6	2-Hexanone	100	U	95-47-6	o-Xylene	100	U
108-10-1	4-Methyl-2-Pentanone	100	U	100-42-5	Styrene	100	U
67-64-1	Acetone	1000	U	127-18-4	Tetrachloroethene	100	25000
71-43-2	Benzene	50	U	108-88-3	Toluene	100	U
75-27-4	Bromodichloromethane	100	U	156-60-5	trans-1,2-Dichloroethene	100	U
75-25-2	Bromoform	100	U	10061-02-6	trans-1,3-Dichloropropene	100	U
74-83-9	Bromomethane	100	U	79-01-6	Trichloroethene	100	6500
75-15-0	Carbon Disulfide	100	U	75-69-4	Trichlorofluoromethane	100	U
56-23-5	Carbon Tetrachloride	100	U	75-01-4	Vinyl Chloride	100	U
108-90-7	Chlorobenzene	100	U	1330-20-7	Xylenes (Total)	100	U
	1						

³²⁰⁰⁰

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-006

Client Id: MW-06

Data File: 3M93532.D Analysis Date: 06/01/11 12:08

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

	:		Omis.	ug/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	2.0
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U
	· ·						

² ColumnID: (^) Indicates results from 2nd column *R - Retention Time Out*

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

Sample Number: AC59335-007

Client Id: MW-07

Data File: 3M93531.D

Analysis Date: 06/01/11 11:52 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			Onits. u	ıg/∟			
Cas#	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	2.2
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	υ	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	υ	136777612	m&p-Xylenes	1.0	1.3
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	, ,	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U		o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U		Tetrachloroethene	1.0	44
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	2.2
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	4.6
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U		Vinyl Chloride	1.0	Ü
108-90-7	Chlorobenzene	1.0	Ū		Xylenes (Total)	1.0	1.3
			- 1	1300 -	,		

Worksheet #: 193017

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

⁵⁴R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-008

Client Id: MW-08

Data File: 2M67547.D

Analysis Date: 05/31/11 14:56

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

	the state of the s		Omis. c	·9/ -			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	υ	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	υ	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	1.0	υ	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	υ	100-42-5	•	1.0	U
67-64-1	Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	υ	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	1.0	υ	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	Ü
74-83-9	Bromomethane	1.0	Ū		Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	Ū
56-23-5	Carbon Tetrachloride	1.0	Ū		Vinyl Chloride	1.0	Ü
	Chlorobenzene	1.0	Ü		Xylenes (Total)	1.0	Ü
			- !		.,,		_

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-009(MS:AC59

Client Id: MW-08 MS Data File: 2M67545.D Analysis Date: 05/31/11 14:24

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omits. u	9, ⊏			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	20	75-00-3	Chloroethane	1.0	22
79-34-5	1,1,2,2-Tetrachloroethane	1.0	16	67-66-3	Chloroform	1.0	18
76-13-1	1,1,2-Trichloro-1,2,2-triflu	1.0	19	74-87-3	Chloromethane	1.0	16
79-00-5	1,1,2-Trichloroethane	1.0	17	156-59-2	cis-1,2-Dichloroethene	1.0	17
75-34-3	1,1-Dichloroethane	1.0	16	10061-01-5	cis-1,3-Dichloropropene	1.0	15
75-35-4	1,1-Dichloroethene	1.0	15	110-82-7	Cyclohexane	1.0	17
120-82-1	1,2,4-Trichlorobenzene	1.0	18	124-48-1	Dibromochloromethane	1.0	16
96-12-8	1,2-Dibromo-3-Chloroprop	1.0	14	75-71-8	Dichlorodifluoromethane	1.0	15
106-93-4	1,2-Dibromoethane	1.0	16	100-41-4	Ethylbenzene	1.0	18
95-50-1	1,2-Dichlorobenzene	1.0	18	98-82-8	Isopropylbenzene	1.0	15
107-06-2	1,2-Dichloroethane	0.50	19	136777612	m&p-Xylenes	1.0	32
78-87-5	1,2-Dichloropropane	1.0	16	79-20-9	Methyl Acetate	1.0	20
541-73-1	1,3-Dichlorobenzene	1.0	19	108-87-2	Methylcyclohexane	1.0	18
106-46-7	1,4-Dichlorobenzene	1.0	18	75-09-2	Methylene Chloride	1.0	17
78-93-3	2-Butanone	1.0	15	1634-04-4	Methyl-t-butyl ether	0.50	16
591-78-6	2-Hexanone	1.0	14	95-47-6	o-Xylene	1.0	16
108-10-1	4-Methyl-2-Pentanone	1.0	15	100-42-5	Styrene	1.0	16
67-64-1	Acetone	10	84	127-18-4	Tetrachloroethene	1.0	20
71-43-2	Benzene	0.50	16	108-88-3	Toluene	1.0	17
75-27-4	Bromodichloromethane	1.0	17	156-60-5	trans-1,2-Dichloroethene	1.0	19
75-25-2	Bromoform	1.0	15	10061-02-6	trans-1,3-Dichloropropene	1.0	16
74-83-9	Bromomethane	1.0	22	79-01-6	Trichloroethene	1.0	19
75-15-0	Carbon Disulfide	1.0	18	75-69-4	Trichlorofluoromethane	1.0	20
56-23-5	Carbon Tetrachloride	1.0	22	75-01-4	Vinyl Chloride	1.0	18
108-90-7	Chlorobenzene	1.0	19	1330-20-7	Xylenes (Total)	1.0	48

Worksheet #: 193017

Total Target Concentration

930

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-010(MSD:AC

Client Id: MW-08 MSD Data File: 2M67546.D Analysis Date: 05/31/11 14:40

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

	1 · 1		Units: (ug/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	21	75-00-3	Chloroethane	1.0	21
79-34-5	1,1,2,2-Tetrachloroethane	1.0	18	67-66-3	Chloroform	1.0	20
76-13-1	1,1,2-Trichloro-1,2,2-triflu	1.0	22	74-87-3	Chloromethane	1.0	17
79-00-5	1,1,2-Trichloroethane	1.0	18	156-59-2	cis-1,2-Dichloroethene	1.0	17
75-34-3	1,1-Dichloroethane	1.0	18	10061-01-5	cis-1,3-Dichloropropene	1.0	17
75-35-4	1,1-Dichloroethene	1.0	18	110-82-7	Cyclohexane	1.0	19
120-82-1	1,2,4-Trichlorobenzene	1.0	20	124-48-1	Dibromochloromethane	1.0	18
96-12-8	1,2-Dibromo-3-Chloroprop	1.0	14	75-71-8	Dichlorodifluoromethane	1.0	16
106-93-4	1,2-Dibromoethane	1.0	18	100-41-4	Ethylbenzene	1.0	19
95-50-1	1,2-Dichlorobenzene	1.0	19	98-82-8	Isopropylbenzene	1.0	17
107-06-2	1,2-Dichloroethane	0.50	21	136777612	m&p-Xylenes	1.0	33
78-87-5	1,2-Dichloropropane	1.0	19	79-20-9	Methyl Acetate	1.0	23
541-73-1	1,3-Dichlorobenzene	1.0	21	108-87-2	Methylcyclohexane	1.0	20
106-46-7	1,4-Dichlorobenzene	1.0	19	75-09-2	Methylene Chloride	1.0	18
78-93-3	2-Butanone	1.0	18	1634-04-4	Methyl-t-butyl ether	0.50	18
591-78-6	2-Hexanone	1.0	16	95-47-6	o-Xylene	1.0	17
108-10-1	4-Methyl-2-Pentanone	1.0	15	100-42-5	Styrene	1.0	18
67-64-1	Acetone	10	89	127-18-4	Tetrachloroethene	1.0	23
71-43-2	Benzene	0.50	19	108-88-3	Toluene	1.0	19
75-27-4	Bromodichloromethane	1.0	19	156-60-5	trans-1,2-Dichloroethene	1.0	21
75-25-2	Bromoform	1.0	16	10061-02-6	trans-1,3-Dichloropropene	1.0	17
74-83-9	Bromomethane	1.0	25	79-01-6	Trichloroethene	1.0	20
75-15-0	Carbon Disulfide	1.0	20	75-69-4	Trichlorofluoromethane	1.0	23
56-23-5	Carbon Tetrachloride	1.0	23	75-01-4	Vinyl Chloride	1.0	20
108-90-7	Chlorobenzene	1.0	20	1330-20-7	Xylenes (Total)	1.0	50
					•		

Worksheet #: 193017

Total Target Concentration

1000

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-011

Client Id: MW-09

Data File: 3M93526.D

Analysis Date: 06/01/11 10:29 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00 Solids: 0

			Units: u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	Ų
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U
	·						

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ColumnID: (^) Indicates results from 2nd column

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-012

Client Id: MW-10

Data File: 3M93529.D

Analysis Date: 06/01/11 11:19 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			• · · · · · ·	-y-			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U

Worksheet #: 193017

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC59335-013

Client Id: MW-11

Data File: 3M93530.D

Analysis Date: 06/01/11 11:35 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Units. (Jy/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	υ	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	υ
67-64-1	Acetone	10	υ	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U

Worksheet #: 193017

Total Target Concentration

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59335-014(100X)

Client Id: Duplicate Data File: 2M67558.D

Analysis Date: 05/31/11 17:50 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 100 Solids: 0

Units: ug/L

			Omis. u	19/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	100	U	75-00-3	Chloroethane	100	U
79-34-5	1,1,2,2-Tetrachloroethane	100	U	67-66-3	Chloroform	100	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	100	U	74-87-3	Chloromethane	100	U
79-00-5	1,1,2-Trichloroethane	100	U	156-59-2	cis-1,2-Dichloroethene	100	240
75-34-3	1,1-Dichloroethane	100	υ	10061-01-5	cis-1,3-Dichloropropene	100	U
75-35-4	1,1-Dichloroethene	100	υ	110-82-7	Cyclohexane	100	U
120-82-1	1,2,4-Trichlorobenzene	100	υ	124-48-1	Dibromochloromethane	100	U
96-12-8	1,2-Dibromo-3-Chloropropa	100	υ	75-71-8	Dichlorodifluoromethane	100	U
106-93-4	1,2-Dibromoethane	100	υ	100-41-4	Ethylbenzene	100	U
95-50-1	1,2-Dichlorobenzene	100	υ	98-82-8	Isopropylbenzene	100	υ
107-06-2	1,2-Dichloroethane	50	U	136777612	m&p-Xylenes	100	U
78-87-5	1,2-Dichloropropane	100	U	79-20-9	Methyl Acetate	100	U
541-73-1	1,3-Dichlorobenzene	100	U	108-87-2	Methylcyclohexane	100	U
106-46-7	1,4-Dichlorobenzene	100	U	75-09-2	Methylene Chloride	100	U
78-93-3	2-Butanone	100	U	1634-04-4	Methyl-t-butyl ether	50	U
591-78-6	2-Hexanone	100	U	95-47-6	o-Xylene	100	U
108-10-1	4-Methyl-2-Pentanone	100	U	100-42-5	Styrene	100	U
67-64-1	Acetone	1000	U	127-18-4	Tetrachloroethene	100	34000
71-43-2	Benzene	50	U	108-88-3	Toluene	100	U
75-27-4	Bromodichloromethane	100	U	156-60-5	trans-1,2-Dichloroethene	100	U
75-25-2	Bromoform	100	U	10061-02-6	trans-1,3-Dichloropropene	100	U
74-83-9	Bromomethane	100	U	79-01-6	Trichloroethene	100	7900
75-15-0	Carbon Disulfide	100	υ	75-69-4	Trichlorofluoromethane	100	U
56-23-5	Carbon Tetrachloride	100	U	75-01-4	Vinyl Chloride	100	U
108-90-7	Chlorobenzene	100	U	1330-20-7	Xylenes (Total)	100	U
	and the second s						

Worksheet #: 193017

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

⁴²⁰⁰⁰

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Chain of Custody Forms

\ \{\frac{1}{2}}	ay be delayed. analysis	Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis	not completed y	ERED items. If be assessed for st	Please note NUMB A fee of \$5/sample will						
2	(1/2 5/2	Date:	77.7	Luch	11) Sampler:						
Cooler Tmp											
							_ / /		\mathcal{L}_{I}		
						10\00	136/11	6	, de	x of	TENEX
						1800	125/11	5	TENET		M
	ıts, HAZARDS	mments, Notes, Special Requirements, HAZARDS	ts, Notes, Sp	Commen		Time	Date		Accepted By	By:	10) Relinquished By
	3					رر و	0750	5/23/1	6v	MW-10	Jon 1
	ن					<u>ල</u>	Sh	1 3/25/11	6 ₩	MW-09	110~
	9					69	1425	5/25/1,	\sim	MW-O8(MSIMSD)	008/008/000
	\(\frac{1}{2}\)					63	1350		2	MW-07	68)
	3					63	1335	15/25/	S	MW-06	200-
	3					G3	ĨĞ C	5/25/11	N	MW-05	8
	3					6 3	1115	4	GV GV	MW-04	924
	W					63	1120		S.	WV-00	8,
	3					() ()		 	GV/	MW-02	285
	W					G 3	SZ 05	1 325111	6V	MW-OI	ह
	NaOH HCI H2SO4 HNO3 Other:	None MeOH Encore		/	80	Grab	Time	6) Sample	5) Matrix	4) Customer Sample ID	Lab \ Sample#
Comments	Of Bottles		\	\ \ \	74.8	-		Ot-Other	SL-Sludge O-Oil	GW-Ground Water WW-Waste Water	A 52555
(If applicable)			\ \ \	\ \ \	266 -			•	Matrix Codes:		Ratch#
9) Methanol			\	<u> </u>	B	Sample Type	(0)				ONLY
ntingent	<===Check if Contingent			H		ent==>	Check if Contingent===>	Check			FOR LAB
check with tab):	Experimed IN: Not aimay's available (1 lease vileon with table	Topodissa 171	Request) Analysis F	7						
shock with labil	ave available (Diago	Culei.			1		1	(Geaes)	gaban @eaest.com	o: Judy Graham	1d) Send Report To:
Other:	Other:	10 Days(10%) Standard	8	hle): 1436846	2d) Orote#/PO# (If Applicable)	2d) Onote#/	3	@ caest	jaraham@ caest.co.	Send Invoice To: Judy Graham	1C) Send Invoice
Excel-PAActil	Full/Cat-B	4 Day (TPH) 1-Week(25%)		γ, γ <u>ς</u>	Location (City/State): Albeny, N	2c) Location (Email/Cell/Fax/Ph: 315-Y31-4610	1b) Email/Cell/Fax
Excel-NJCC	Red-NJ/NY/PA	48-Hour (50%) 72-Hour (50%)		Grahom	ć'		104	4	Brookland forkuny	713 Brookland	Address: 6712
Hazsite/Csv	Data Sum	24-Hour(100%)	તે જ	Domshire Cleaners	Project NYDEC Dor	2a) Project: N				2	1a) Customer: £
Electronic Deliv	Report type	Turnaround Time		Project Information	Project In				Customer Information	Custom	0
ease circle)	3) Reporting Requirements(please circle)	3) Reporting I			353 KY# 90124	3-04409 WV#	\# 68-463/68	08/11939 P/	NY/ELAP# 114	©;LAC/NJ# 07071/07069 CT# PH-0671 NY/ELAP# 11408/11939 PA# 68-463/68-04409 WV# 353 KY# 90124	(m:LAC/NJ# 07071
Page of &	b Use Only)	_	Ph: 800-426-9992 Fax: 973-439-1458	7.50	ersey 07004 Fax: 973-439-1458	d, New Jersey 07	⁻loor, Fairfield	46 East, 1st F	'004 & 198 Route	175 US Hwy 46 West, Fairfield, New Jersey 07004 & 198 Route 46 East, 1st Floor, Fairfield, New Jersey 07004	175 US Hwy 46 Wes
,		┪	5	TO BECO	N OF CUSTO	CHAI			Clarko	sion of Hampto	Veritach/Divi

	alysis	s not be activated for any and	e of \$5/sample will be assessed for storage should sample	A f.				
2.1.6	S/3.5/11	Ur analytical work may	11) Sampler: Apo 30 3 both Date: \$\sigma_5/1 Please note NUMBERED items. If not completed your analytical work may be delayed.	P ->				
Cooler Tmp								
				10:00	5/26/11	Come	16100	
				288	11/28/2	TENER	N.	
	s, HAZARDS	Special Requirements, HAZARDS	Comments, Notes, Spe	Time	Date	Accepted By	d By:	10) Relinquished By:
	3			S S		S√	Duplicate	762
				ব		\$	Tare Clark	
-								
	ندا			6 3	1, 1320	D.	かく-:	1-013
	HCI H2SO4 HNO3 Other:	None MeOH Encore		Grab	Sample Time	Matrix Date	4) Customer Sample ID	Lab Sample#
Comments	3ottle	-		(G)	Ot-Other	St-Sludge Ot	WW-Waste Water	ACS 3335
(If applicable)	<u>®</u>						DW-Drinking Water	Batch#
9) Methanol			108 / / / / / / / / / / / / / / / / / / /	Type Type		Hatric Codes		ONLY
ntingent	<===Check if Contingent	/////		gent==>	Check if Contingent===>	Ch		FOR LAB
			7) Analysis Request					
check with lab)!	/s available (Please	Expedited TAT Not always available (Please check with lab)!			com	m jaraham e cacst	To: Judy Graham	1d) Send Report To:
Other:	Other:	Standard Other	2d) Quote#/PO# (If Applicable): 1436846	2d) Quote#/P(63	Jaraham @ cacs	e To: July Graham	1C) Send Invoice To:
Excel-PAActil	Full/Cat-B	4 Day (1PH) 1-Week(25%)	2C) Location (City/State): Albony, M	2c) Location (Cit			15	1b) Email/Cell/F
Excel-NJCC	Red-NJ/NY/PA	72-Hour (50%)	Judy Braho			Parkway Suite 104	Syracuse NY 13011	
Hazsite/Csv	Data Sum	24-Hour(100%)	(DEC Damahire Cleaners	2a) Project: NYDEC			ustomer: EA Engineering	(la) Customer:
Electronic Deliv	Report type	Turnaround Time	nformation			Customer Information	Custom	0
lease circle)	equirements(p	Reportir		8-04409 WV# 35	9 PA# 68-463/6	$^{\circ\circ}_{\text{Po}}$ LAC/NJ# 07071/07069 CT# PH-0671 NY/ELAP# 11408/11939 PA# 68-463/68-04409 WV# 353 KY# 90124	71/07069 CT# PH-0671	NOLAC/NJ# 070
Page of a		0 9	Ph: 800-426-9992 4 Fax: 973-439-1458	d, New Jersey 0700	. 1st Floor, Fairfiek	07004 & 198 Route 46 East	est, Fairfield, New Jersey (175 US Hwy 46 W
)	_		CHAIN OF CLISTODY RECORD	CHAIN		n-Clarke	Veritech/Division of Hampton-Clarke	Veritech/Div

CONDITION UPON RECEIPT

Batch Number AC59335

Entered By: Frantz
Date Entered 5/26/2011 10:47:00 AM

1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.1
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	NO	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC59335

Entered By: Frantz

Date Entered 5/26/2011 10:48:00 AM

Lab#:	Container Siz	Container Typ	Paramete	Preservative	PH
AC59335-008	40ml	G	VO+10	HCL	1
AC59335-009	40ml	G	VO+10	HCL	1
AC59335-010	40ml	G	VO+10	HCL	1
AC59335-011	40ml	G	VO+10	HCL	1
AC59335-012	40ml	G	VO+10	HCL	1
AC59335-013	40ml	G	VO+10	HCL	1
AC59335-014	40ml	G	VO+10	HCL	7
AC59335-001	40ml	G	VO+10	HCL	7
AC59335-002	40ml	G	VO+10	HCL	7
AC59335-003	40ml	G	VO+10	HCL	7
AC59335-004	40ml	G	VO+10	HCL	7
AC59335-005	40ml	G	VO+10	HCL	7
AC59335-006	40ml	G	VO+10	HCL	1
AC59335-007	40ml	G	VO+10	HCL	1

Internal Chain of Custody

					()()41	
		Loc				
		or	Bot	A/		
Lab#:	DateTime:	User	Nu	М	Analysis	
AC59335-014	06/01/11 09:32	WP	3	Α	voa	

	1	1.	ı	,	
		Loc	Pot	A/	
Lab#:	DateTime:	or User	Bot Nu	M	Analysis
AC59335-001	05/26/11 10:00	FRAN	0	М	Received
AC59335-001	05/26/11 10:47	FRAN	0	М	Login
AC59335-001	05/27/11 07:48	R22	2	Α	NONE
AC59335-001	05/31/11 11:57	WP	2	Α	VOA
AC59335-001	05/27/11 07:48	R22	3	Α	NONE
AC59335-002	05/26/11 10:00	FRAN	0	М	Received
AC59335-002	05/26/11 10:47	FRAN	0	M	Login
AC59335-002 AC59335-002	05/27/11 07:48 05/31/11 11:57	R22 WP	2	A A	NONE VOA
AC59335-002 AC59335-002	05/27/11 07:48	R22	3	A	NONE
AC59335-003	05/26/11 10:00	FRAN	0	M	Received
AC59335-003	05/26/11 10:47	FRAN	0	М	Login
AC59335-003	05/27/11 07:48	R22	2	Α	NONE
AC59335-003	05/31/11 11:57	WP	2	Α	VOA
AC59335-003	05/27/11 07:48	R22	3	Α	NONE
AC59335-004	05/26/11 10:00	FRAN	0	М	Received
AC59335-004	05/26/11 10:47	FRAN	0	M	Login
AC59335-004	05/27/11 07:48	R22	2	Α	NONE
AC59335-004 AC59335-004	05/31/11 11:57 05/27/11 07:48	WP R22	2	A A	NONE
AC59335-004 AC59335-004	06/01/11 07:48	WP	3	Ā	voa
AC59335-005	05/26/11 10:00	FRAN	0	м	Received
AC59335-005	05/26/11 10:47	FRAN	0	М	Login
AC59335-005	05/27/11 07:48	R22	2	Α	NONE
AC59335-005	05/31/11 11:57	WP	2	Α	VOA
AC59335-005	05/27/11 07:48	R22	3	Α	NONE
AC59335-006	05/26/11 10:00	FRAN	0	М	Received
AC59335-006	05/26/11 10:47	FRAN	0	М	Login
AC59335-006	05/27/11 07:48	R22	2	Α	NONE
AC59335-006 AC59335-006	05/31/11 11:57 05/27/11 07:48	WP R22	3	A	NONE
AC59335-006	06/01/11 09:32	WP	3	A	voa
AC59335-007	05/26/11 10:00	FRAN	0	м	Received
AC59335-007	05/26/11 10:47	FRAN	0	м	Login
AC59335-007	05/27/11 07:48	R22	2	Α	NONE
AC59335-007	05/31/11 11:57	WP	2	Α	VOA
AC59335-007	05/27/11 07:48	R22	3	Α	NONE
AC59335-007	06/01/11 09:32	WP	3	Α	voa
AC59335-008	05/26/11 10:00	FRAN	0	М	Received
AC59335-008	05/26/11 10:47	FRAN	0	М	Login
AC59335-008 AC59335-008	05/27/11 07:48 05/31/11 11:57	R22 WP	2	A A	NONE
AC59335-008 AC59335-008	05/27/11 07:48	R22	3	A	NONE
AC59335-009	05/26/11 10:00	FRAN	0	м	Received
AC59335-009	05/26/11 10:47	FRAN	0	М	Login
AC59335-009	05/27/11 07:48	R22	2	Α	NONE
AC59335-009	05/27/11 07:48	R22	3	Α	NONE
AC59335-009	05/31/11 11:57	WP	3	Α	VOA
AC59335-010	05/26/11 10:00	FRAN	0	M	Received
AC59335-010	05/26/11 10:47	FRAN	0	М	Login
AC59335-010	05/27/11 07:48	R22	3	A	NONE
AC59335-010 AC59335-011	05/31/11 11:57	WP	3	A	VOA
AC59335-011 AC59335-011	05/26/11 10:00 05/26/11 10:47	FRAN	0	M M	Received Login
AC59335-011	05/27/11 07:48	R22	2	A	NONE
AC59335-011	05/31/11 11:57	WP	2	A	VOA
AC59335-011	05/27/11 07:48	R22	3	Α	NONE
AC59335-011	06/01/11 09:32	WP	3	Α	voa
AC59335-012	05/26/11 10:00	FRAN	0	М	Received
AC59335-012	05/26/11 10:47	FRAN	0	М	Login
AC59335-012	05/27/11 07:48	R22	2	Α	NONE
AC59335-012	05/31/11 11:57	WP	2	Α	VOA
AC59335-012	05/27/11 07:48	R22	3	Α	NONE
AC59335-012 AC59335-013	06/01/11 09:32 05/26/11 10:00	WP FRAN	3	A M	voa Received
AC59335-013 AC59335-013	05/26/11 10:00	FRAN	0	M	Login
AC59335-013 AC59335-013	05/27/11 07:48	R22	2	A	NONE
AC59335-013	05/31/11 11:57	WP	2	Α	VOA
AC59335-013	05/27/11 07:48	R22	3	Α	NONE
AC59335-013	06/01/11 09:32	WP	3	Α	voa
AC59335-014	05/26/11 10:00	FRAN	0	М	Received
AC59335-014	05/26/11 10:47	FRAN	0	M	Login
AC59335-014	05/27/11 07:48	R22	2	Α	NONE
AC59335-014	05/31/11 11:57	WP	2	A	VOA
AC59335-014	05/27/11 07:48	R22	3	Α	NONE

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

GC/MS Volatile Data

\sim	\sim	4	\sim
U	U	4	.∵≾

GC/MS Volatile Data QC Summary

Surrogate Recovery

Method: EPA 8260B

I	<u>Dfile</u>	Sample# Matrix	Date/Time	Surr Dil	Dilute Out Flag	Column1 S1 Recov	Column1 S2 Recov	Column1 S3 Recov	Column1 S4 Recov	Column0 S5 Recov	Column0 S6 Recov
l	2M67534.D	DAILY BLANK Aqueou	s 05/31/11 11:29	1		104	90	95	101		
l	3M93520.D	DAILY BLANK Aqueou	s 06/01/11 08:50	1		104	102	92	103		
l	2M67548.D	AC59335-001 Aqueou	is 05/31/11 15:12	1		113	95	92	98		
	2M67550.D	AC59335-002 Aqueou	s 05/31/11 15:44	1		118	96	95	100		
	2M67551.D	AC59335-003 Aqueou	is 05/31/11 16:00	1		110	93	95	98		
ı	3M93536.D	AC59335-004(Aqueou	is 06/01/11 13:19	1		108	101	94	101		
l	2M67543.D	AC59335-005(Aqueou	is 05/31/11 13:53	1		105	106	96	103		
ı	3M93532.D	AC59335-006 Aqueou	is 06/01/11 12:08	1		109	106	93	103		
l	3M93531.D	AC59335-007 Aqueou	is 06/01/11 11:52	1		111	103	92	102		
	2M67547.D	AC59335-008 Aqueou	is 05/31/11 14:56	1		111	102	97	101		
	2M67545.D	AC59335-009(Aqueou	is 05/31/11 14:24	1		106	103	94	99		
l	2M67546.D	AC59335-010(Aqueou	is 05/31/11 14:40	1		109	102	100	95		
ı	3M93526.D	AC59335-011 Aqueou	is 06/01/11 10:29	1		106	101	95	100		
ı	3M93529.D	AC59335-012 Aqueou	is 06/01/11 11:19	1		113	111	94	100		
ı	3M93530.D	AC59335-013 Aqueou	is 06/01/11 11:35	1		112	105	91	100		
ı	2M67558.D	AC59335-014(Aqueou	is 05/31/11 17:50	1		112	96	95	99		
	2M67536.D	MBS9752 Aqueou	is 05/31/11 12:01	1		110	92	99	95		
	3M93522.D	MBS9766 Aqueou	is 06/01/11 09:23	1		101	103	96	99		

Flags: SD=Surrogate diluted out
*=Surrogate out

Method: EPA 8260B

Aqueous Limits

Compound	Spike Amt	Limits
S1=Dibromofluoromethane	30	73-131
S2=1,2-Dichloroethane-d4	30	78-128
S3=Toluene-d8	30	79-111
S4=Bromofluorobenzene	30	82-112

Form3 Recovery Data QC Batch: MBS9752

Data File

Spike or Dup: 2M67536.D

ile

Sample ID: MBS9752 Analysis Date

5/31/2011 12:01:00 PM

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

QC Type: MBS

		Spike	Sample	Expected		Lower	Upper		ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit_	Limit
Vinyl Chloride	1	17.6423	0	20	88	21	137	0	0
1,1-Dichloroethene	1	16.7765	0	20	84	21	133	0	0
1,1-Dichloroethane	1	17.1693	0	20	86	44	134	0	0
Chloroform	1	18.4016	0	20	92	40	148	0	0
1,2-Dichloroethane	1	20.0775	0	20	100	43	144	0	0
2-Butanone	1	19.4944	0	20	97	25	157	0	0
Carbon Tetrachloride	1	20.1708	Ο,	20	101	42	146	0	0
Trichloroethene	1	19.1628	ο '	20	96	46	127	0	0
Benzene	1	18.0054	0	20	90	49	135	0	0
Tetrachloroethene	1	21.2587	0	20	106	42	138	0	0
Toluene	. 1	19.0599	0	20	95	53	129	0	0
Chlorobenzene	1	21.3921	0	20	107	51	129	0	0
1,4-Dichlorobenzene	1	20.1786	0	20	101	45	128	0	0
1,2-Dichlorobenzene	1	19.8654	0	20	99	50	126	0	0
n-Propylbenzene	1	17.1169	0	20	86	45	135	0	0
sec-Butylbenzene	1	18.3385	0	20	92	43	123	0	0

Form3 **Recovery Data** QC Batch: MBS9766

Data File

Spike or Dup: 3M93522.D

Sample ID: MBS9766

Analysis Date 6/1/2011 9:23:00 AM

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

QC Type: MBS

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit	ME Low Limit	ME Uppe Limit
Vinyl Chloride	1	17.3	0	20	86	21	137	0	0
1,1-Dichloroethene	1	20.9449	0	20	105	21	133	0	0
1,1-Dichloroethane	1	20.8688	0	20	104	44	134	0	0
Chloroform	1	20.1448	0	20	101	40	148	0	0
1,2-Dichloroethane	1	17.2105	0	20	86	43	144	0	0
2-Butanone	1	21.6047	0	20	108	25	157	0	0
Carbon Tetrachloride	1	24.5797	0	20	123	42	146	0	0
Trichloroethene	1	22.0153	0	20	110	46	127	0	0
Benzene	1	21.5882	0	20	108	49	135	0	0
Tetrachloroethene	1	21.6652	0	20	108	42	138	0	0
Toluene	. 1	21.035	0	20	105	53	129	0	0
Chlorobenzene	1	21.5409	0	20	108	51	129	0	0
1,4-Dichlorobenzene	1	20.0335	0	20	100	45	128	0	0
1,2-Dichlorobenzene	1	16.4304	0	20	82	50	126	0	0
n-Propylbenzene	1	18.9243	0	20	95	45	135	0	0
sec-Butylbenzene	1	18.8634	0	20	94	43	123	0	0

Form3 **Recovery Data** QC Batch: MBS9752

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M67545.D Non Spike(If applicable): 2M67547.D

AC59335-009(MS:AC59335-008 AC59335-008

5/31/2011 2:24:00 PM 5/31/2011 2:56:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	17.5962	0	20	88	21	137	0	0
1,1-Dichloroethene	1	15.3117	0	20	77	21	133	0	0
1,1-Dichloroethane	1	16.1815	0	20	81	44	134	0	0
Chloroform	1	18.2421	0	20	91	40	148	0	0
1,2-Dichloroethane	1	19.1344	0	20	96	43	144	0	0
2-Butanone	1	14.9976	0	20	75	25	157	0	0
Carbon Tetrachloride	1	21.6307	0	20	108	42	146	0	0
Trichloroethene	1	18.6037	0	20	93	46	127	0	0
Benzene	1	16.0642	0	20	80	49	135	0	0
Tetrachloroethene	1	19.7196	0	20	99	42	138	0	0
Toluene	1	17.1651	0	20	86	53	129	0	0
Chlorobenzene	1	19.0123	0	20	95	51	129	0	0
1,4-Dichlorobenzene	1	18.0826	0	20	90	45	128	0	0
1,2-Dichlorobenzene	1	18.0073	0	20	90	50	126	0	0
n-Propylbenzene	1	15.289	0	20	76	45	135	0	0
sec-Butylbenzene	1	15.7195	0	20	79	43	123	0	0

Data File

Sample ID: AC59335-010(MSD:AC59335-0 Analysis Date

Spike or Dup: 2M67546.D Non Spike(If applicable): 2M67547.D

AC59335-008

5/31/2011 2:40:00 PM

5/31/2011 2:56:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

QC Type: MSD

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	19.8718	0	20	99	21	137	0	0
1,1-Dichloroethene	1	17.706	0	20	89	21	133	0	0
1,1-Dichloroethane	1	18.1965	0	20	91	44	134	0	0
Chloroform	1	19.9538	0	20	100	40	148	0	0
1,2-Dichloroethane	1	20.6679	0	20	103	43	144	0	0
2-Butanone	1	17.8748	0	20	89	25	157	0	0
Carbon Tetrachloride	1	23.3845	0	20	117	42	146	0	0
Trichloroethene	1	19.7485	0	20	99	46	127	0	0
Benzene	1	18.6579	0	20	93	49	135	0	0
Tetrachloroethene	1	22.8859	0	20	114	42	138	0	0
Toluene	1	18.9866	0	20	95	53	129	0	0
Chlorobenzene	1	20.4274	0	20	102	51	129	0	0
1,4-Dichlorobenzene	1	18.9918	0	20	95	45	128	0	0
1,2-Dichlorobenzene	1	19.1747	0	20	96	50	126	0	0
n-Propylbenzene	1	16.9134	0	20	85	45	135	0	0
sec-Butylbenzene	1	17.3783	0	20	87	43	123	0	0

^{* -} Indicates outside of limits

FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 2M67534.D

Matrix: Aqueous

Blank Analysis Date: 05/31/11 11:29

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260B

Sample Number	Data File	Analysis Date	
AC59335-001	2M67548.D	05/31/11 15:12	
AC59335-002	2M67550.D	05/31/11 15:44	
AC59335-003	2M67551.D	05/31/11 16:00	
AC59335-005(100X	2M67543.D	05/31/11 13:53	
AC59335-008	2M67547.D	05/31/11 14:56	
AC59335-009(MS:	2M67545.D	05/31/11 14:24	
AC59335-010(MSD	2M67546.D	05/31/11 14:40	
AC59335-014(100X	2M67558.D	05/31/11 17:50	
MBS9752	2M67536.D	05/31/11 12:01	

FORM 4 Blank Summary

Blank Number: DAILY BLANK Blank Data File: 3M93520.D

Matrix: Aqueous

Blank Analysis Date: 06/01/11 08:50

Blank Extraction Date: NA (If Applicable)

Method: EPA 8260B

 Sample Number	Data File	Analysis Date	
 AC59335-004(500X	3M93536.D	06/01/11 13:19	
AC59335-006	3M93532.D	06/01/11 12:08	
AC59335-007	3M93531.D	06/01/11 11:52	
AC59335-011	3M93526.D	06/01/11 10:29	
AC59335-012	3M93529.D	06/01/11 11:19	
AC59335-013	3M93530.D	06/01/11 11:35	
MBS9766	3M93522.D	06/01/11 09:23	

Tune Name: BFB TUNE Data File: 3M93050.D
Instrument: GCMS 3 Analysis Date: 05/26/11 07:32
Method: EPA 8260B
Tune Scan/Time Range: Average of 4.429 to 4.439 min

-	Tune Sc	can/I Ime i	Kange: /	verage of 4.425 to 4.435 filli						
	Tgt	Rel	Lo	Hi	Rel	Raw	Pass/			
	Mass	Mass	Lim	Lim	Abund	Abund	Fail			
	50	95	15	40	25.3	6778	PASS			
	75	95	30	60	51.7	13862	PASS			
	95	95	100	100	100.0	26812	PASS			
	96	95	5	9	6.0	1600	PASS			
	173	174	0.00	2	0.0	0	PASS			
	174	95	50	100	93.3	25024	PASS			
	175	174	5	9	7.4	1856	PASS			
	176	174	95	101	95.7	23948	PASS			
	177	176	5	9	5.8	1400	PASS			

Data File	Sample Number	Analysis Date:
3M93052.D	BLKJUG1	05/26/11 07:59
3M93053.D	CAL @ 1 PPB CAL @ 0.5 PPB	05/26/11 08:18 05/26/11 08:38
3M93054.D 3M93055.D	CAL @ 5 PPB	05/26/11 08:57
3M93056.D	CAL @ 500 PPB	05/26/11 09:13
3M93057.D	CAL @ 250 PPB	05/26/11 09:30 05/26/11 09:46
3M93058.D 3M93059.D	CAL @ 100 PPB CAL @ 50 PPB	05/26/11 10:02
3M93060.D	CAL @ 20 PPB	05/26/11 10:19
3M93061.D	CAL @ 10 PPB	05/26/11 10:35
3M93062.D 3M93063.D	20 PPB BLK	05/26/11 10:52 05/26/11 11:08
3M93064.D	ICV	05/26/11 11:25
3M93065.D	DAILY BLANK	05/26/11 11:42
3M93066.D 3M93067.D	DAILY BLANK MBS9690	05/26/11 11:58 05/26/11 12:14
3M93068.D	AC59194-006	05/26/11 12:31
3M93069.D	AC59201-010	05/26/11 12:47
3M93070.D 3M93071.D	AC59201-011 AC59205-013	05/26/11 13:04 05/26/11 13:20
3M93072.D	AC59201-006	05/26/11 13:37
3M93073.D	AC59201-008	05/26/11 13:53
3M93074.D 3M93075.D	AC59194-003 AC59201-009	05/26/11 14:10 05/26/11 14:26
3M93076.D	AC59201-003 AC59201-001	05/26/11 14:42
3M93077.D	AC59201-003	05/26/11 14:59
3M93078.D 3M93079.D	BLK AC59194-001	05/26/11 15:15 05/26/11 15:32
3M93079.D	MBS9694	05/26/11 15:49
3M93081.D	AC59149-013	05/26/11 16:05
3M93082.D 3M93083.D	AC59261-015 AC59145-007	05/26/11 16:22 05/26/11 16:38
3M93084.D	AC59244-005	05/26/11 16:55
3M93085.D	AC59244-002	05/26/11 17:11
3M93086.D 3M93087.D	AC59244-001(5X) AC59244-003(5X)	05/26/11 17:30 05/26/11 17:52
3M93088.D	AC59244-003(5X)	05/26/11 18:14
3M93089.D	AC59261-007(500X	05/26/11 18:33
3M93090.D 3M93091.D	AC59261-009(500X AC59194-003(MS)	05/26/11 18:50 05/26/11 19:07
3M93092.D	AC59194-003(MSD	05/26/11 19:25
3M93093.D	AC59158-001(100X	05/26/11 19:42
3M93094.D 3M93095.D	AC59158-002(100X AC59158-003(100X	05/26/11 19:58 05/26/11 20:14
3M93096.D	AC59158-004(200X	05/26/11 20:31
3M93097.D	AC59158-005(200X	05/26/11 20:47
3M93098.D 3M93099.D	BLK BLK	05/26/11 21:04 05/26/11 21:20
3M93100.D	BLK	05/26/11 21:36
3M93101.D	MBS9701	05/26/11 21:52
3M93102.D 3M93103.D	MBS9702 AC59224-002	05/26/11 22:09 05/26/11 22:26
3M93104.D	AC59224-002 AC59224-003	05/26/11 22:43
3M93105.D	AC59242-015	05/26/11 22:59
3M93106.D	AC59242-016 AC59242-001	05/26/11 23:17 05/26/11 23:35
3M93107.D 3M93108.D	AC59242-001 AC59242-002	05/26/11 23:51
3M93109.D	AC59242-003	05/27/11 00:08
3M93110.D 3M93111.D	AC59242-004 AC59242-005	05/27/11 00:24 05/27/11 00:40
3M93111.D 3M93112.D	AC59242-005 AC59242-006	05/27/11 00:40
3M93113.D	AC59242-007	05/27/11 01:16
3M93114.D 3M93115.D	AC59242-008 AC59242-009	05/27/11 01:32 05/27/11 01:49
3M93116.D	AC59242-010	05/27/11 02:05

Tune Name: BFB TUNE

Data File: 3M93050.D

	Tune	Name: BFE	3 TUNE			Data File:	3M93050.D		
	Instru	ument: GCl	MS 3	Analysis Date: 05/26/11 07:32					
							EPA 8260B		
\mathbf{L}	une S	can/Time R	lange; /	verage	of 4.429	<u>to 4.439 mir</u>	<u> </u>		
	Tgt	Rel	Lo	Hi	Rel	Raw	Pass/		
N	Aass	Mass	Lim	Lim	Abund	Abund	Fail		
	50	95	15	40	25.3	6778	PASS		
	75	95	30	60	51.7	13862	PASS		
	95	95	100	100	100.0	26812	PASS		
	96	95	5	9	6.0	1600	PASS		
	173	174	0.00	2	0.0	0	PASS		
	174	95	50	100	93.3	25024	PASS		
	175	174	5	9	7.4	1856	PASS		
	176	174	95	101	95.7	23948	PASS		
	177	176	5	9	5.8	1400	PASS		

	1050040 044	05/07/44 00:04
3M93117.D	AC59242-011	05/27/11 02:21
3M93118.D	AC59242-012	05/27/11 02:38
3M93119.D	AC59242-013	05/27/11 02:54
3M93120.D	AC59242-014	05/27/11 03:10
3M93121.D	AC59224-001	05/27/11 03:27
3M93122.D	AC59229-001	05/27/11 03:43
3M93123.D	AC59201-006(MS)	05/27/11 04:00
3M93124.D	AC59201-006(MSD	05/27/11 04:16
3M93125.D	BLK	05/27/11 04:33
3M93126.D	BLK	05/27/11 04:49
3M93127.D	BLK	05/27/11 05:05
3M93128.D	BLK	05/27/11 05:22
3M93129.D	BLK	05/27/11 05:38
3M93130.D	BLK	05/27/11 05:53
3M93131.D	BLK	05/27/11 06:09

Tune Name: BFB TUNE Instrument: GCMS 2

Data File: 2M67517.D Analysis Date: 05/31/11 06:41 Method: EPA 8260B 069 to 4.079 min

Tune Scan/Time Range: Average of 4.069 to 4.079 min

Tune Scan/Time Range: Average of 4.069 to 4.079 min											
Tgt	Rel	Lo	Hi	Rel	Raw	Pass/					
Mass	Mass	Lim	Lim	Abund	Abund	Fail					
50	95	15	40	24.7	11390	PASS					
75	95	30	60	58.6	27052	PASS					
95	95	100	100	100.0	46184	PASS					
96	95	5	9	6.2	2860	PASS					
173	174	0.00	2	0.0	0	PASS					
174	95	50	100	76.7	35428	PASS					
175	174	5	9	7.4	2622	PASS					
176	174	95	101	99.2	35144	PASS					
177	176	5	9	7.7	2704	PASS					

Data File	Sample Number	Analysis Date:
2M67519.D	BLK	05/31/11 07:22
2M67520.D	BLK	05/31/11 07:38
2M67522.D	CAL @ 1 PPB	05/31/11 08:14
2M67523.D	CAL @ 0.5 PPB	05/31/11 08:32 05/31/11 08:50
2M67524.D	CAL @ 5 PPB	05/31/11 08:50
2M67525.D	CAL @ 500 PPB CAL @ 250 PPB	05/31/11 09:03
2M67526.D	CAL @ 250 PPB	05/31/11 09:37
2M67527.D 2M67528.D	CAL @ 50 PPB	05/31/11 09:53
2M67529.D	CAL @ 20 PPB	05/31/11 10:09
2M67529.D 2M67530.D	CAL @ 10 PPB	05/31/11 10:25
2M67531.D	ICV	05/31/11 10:41
2M67532.D	BLK	05/31/11 10:57
2M67533.D	DAILY BLANK	05/31/11 11:14
2M67534.D	DAILY BLANK	05/31/11 11:29
2M67535.D	MBS9751	05/31/11 11:45
2M67536.D	MBS9752	05/31/11 12:01
2M67537.D	BLKJUG1	05/31/11 12:17
2M67538.D	AC59210-012(500X	05/31/11 12:33
2M67539.D	AC59210-008(200X	05/31/11 12:49
2M67540.D	AC59210-001(100X	05/31/11 13:05
2M67541.D	AC59210-014(100X	05/31/11 13:21
2M67542.D	AC59335-014(100X	05/31/11 13:37 05/31/11 13:53
2M67543.D	AC59335-005(100X AC59335-008	05/31/11 13:55
2M67544.D	AC59335-006 AC59335-009(MS:	05/31/11 14:09
2M67545.D 2M67546.D	AC59335-009(MSD	05/31/11 14:40
2M67547.D	AC59335-010(MSD	05/31/11 14:56
2M67547.D 2M67548.D	AC59335-001	05/31/11 15:12
2M67549.D	BLK	05/31/11 15:28
2M67550.D	AC59335-002	05/31/11 15:44
2M67551.D	AC59335-003	05/31/11 16:00
2M67552.D	AC59335-004	05/31/11 16:15
2M67553.D	AC59335-006	05/31/11 16:31
2M67554.D	AC59335-007	05/31/11 16:47
2M67555.D	AC59335-011	05/31/11 17:03
2M67556.D	AC59335-012	05/31/11 17:19
2M67557.D	AC59335-013	05/31/11 17:34
2M67558.D	AC59335-014(100X	05/31/11 17:50
2M67559.D	AC59210-001	05/31/11 18:06 05/31/11 18:22
2M67560.D	AC59210-002	05/31/11 18:22
2M67561.D	AC59210-006 MBS9757	05/31/11 18:53
2M67562.D	: - :	05/31/11 19:09
2M67563.D	STD STD	05/31/11 19:25
2M67564.D 2M67565.D	BLK	05/31/11 19:40
2M67565.D 2M67566.D	BLK	05/31/11 19:56
2M67567.D	MBS9758	05/31/11 20:12
2M67568.D	MBS9759	05/31/11 20:27
2M67569.D	AC59234-013	05/31/11 20:43
2M67570.D	AC59234-015	05/31/11 20:59
2M67571.D	AC59302-001	05/31/11 21:14

Tune Name: BFB TUNE Data File: 3M93514.D Instrument: GCMS 3
Analysis Date: 06/01/11 07:11
Method: EPA 8260B
Tune Scan/Time Range: Average of 4.418 to 4.448 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	Fail
50	95	15	40	26.9	4773	PASS
75	95	30	60	54.1	9606	PASS
95	95	100	100	100.0	17746	PASS
96	95	5	9	6.9	1231	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	95.8	17003	PASS
175	174	5	9	6.0	1025	PASS
176	174	95	101	100.1	17024	PASS
177	176	5	9	5.8	991	PASS

Data File	Sample Number	Analysis Date:
3M93515.D	BLK	06/01/11 07:21
3M93516.D	20 PPB	06/01/11 07:38
3M93517.D	CAL @ 20 PPB	06/01/11 08:00 06/01/11 08:17
3M93518.D 3M93519.D	BLK DAILY BLANK	06/01/11 08:33
3M93520.D	DAILY BLANK	06/01/11 08:50
3M93521.D	MBS9765	06/01/11 09:07
3M93522.D	MBS9766	06/01/11 09:23
3M93523.D	BLKJUG#3	06/01/11 09:40 06/01/11 09:56
3M93524.D	BLKJUG#2 AC59210-001	06/01/11 10:13
3M93525.D 3M93526.D	AC59335-011	06/01/11 10:19
3M93527.D	AC59454-001	06/01/11 10:46
3M93528.D	BLKJUG2	06/01/11 11:02
3M93529.D	AC59335-012	06/01/11 11:19
3M93530.D	AC59335-013	06/01/11 11:35 06/01/11 11:52
3M93531.D	AC59335-007 AC59335-006	06/01/11 12:08
3M93532.D 3M93533.D	59335-014(100X)	06/01/11 12:27
3M93534.D	AC59210-002	06/01/11 12:46
3M93535.D	AC59210-006	06/01/11 13:02
3M93536.D	AC59335-004(500X	06/01/11 13:19
3M93537.D	AC59210-014(500X	06/01/11 13:35 06/01/11 13:52
3M93538.D	59335-014(200X) AC59335-014(100X	06/01/11 14:08
3M93539.D 3M93540.D	AC59305-005	06/01/11 14:24
3M93541.D	AC59230-002(MS)	06/01/11 14:41
3M93542.D	AC59230-002(MSD	06/01/11 14:58
3M93543.D	BLK	06/01/11 15:14
3M93544.D	AC59305-005(T) EF-116576(6-1-11)	06/01/11 15:31 06/01/11 15:47
3M93545.D 3M93546.D	AC59456-001	06/01/11 16:04
3M93547.D	AC59340-005(10X)	06/01/11 16:24
3M93548.D	AC59233-003(40uL	06/01/11 16:42
3M93549.D	BLK	06/01/11 16:58
3M93550.D	AC59454-001(MS)	06/01/11 17:15 06/01/11 17:31
3M93551.D	AC59454-001(MSD AC59297-011(8uL)	06/01/11 17:49
3M93552.D 3M93553.D	AC59297-011(8uL)	06/01/11 18:05
3M93554.D	AC59297-021(8uL)	06/01/11 18:22
3M93555.D	BLK	06/01/11 18:38
3M93556.D	BLK	06/01/11 18:55
3M93557.D	BLK	06/01/11 19:11 06/01/11 19:27
3M93558.D 3M93559.D	MBS9776 AC59289-017	06/01/11 19:44
3M93560.D	AC59296-001	06/01/11 20:00
3M93561.D	AC59296-002	06/01/11 20:17
3M93562.D	AC59304-001	06/01/11 20:33
3M93563.D	MBS9777	06/01/11 20:49 06/01/11 21:06
3M93564.D	AC59302-004 AC59289-001	06/01/11 21:22
3M93565.D 3M93566.D	AC59289-003	06/01/11 21:39
3M93567.D	AC59289-005	06/01/11 21:55
3M93568.D	AC59289-007	06/01/11 22:12
3M93569.D	AC59289-009	06/01/11 22:28
3M93570.D	AC59289-011	06/01/11 22:45 06/01/11 23:01
3M93571.D 3M93572.D	AC59289-013 AC59289-015	06/01/11 23:18
3M93572.D 3M93573.D	AC59289-020	06/01/11 23:34
3M93574.D	AC59304-002	06/01/11 23:50
3M93575.D	AC59296-005(10X)	06/02/11 00:10
3M93576.D	AC59296-003(20X)	06/02/11 00:32
3M93577.D	AC59296-007(50X) AC59296-006(100X	06/02/11 00:54 06/02/11 01:15
3M93578.D 3M93579.D	BLK	06/02/11 01:34
JIVIOJOT O.L		

Tune Name: BFB TUNE

Data File: 3M93514.D Instrument: GCMS 3
Analysis Date: 06/01/11 07:11
Method: EPA 8260B
Tune Scan/Time Range; Average of 4.418 to 4.448 min

Tgt	Tgt Rel L			Rel	Raw	Pass/	
Mass	Mass	Lim	Lim	Abund	Abund	Fail	
50	95	15	40	26.9	4773	PASS	
75	95	30	60	54.1	9606	PASS	
95	95	100	100	100.0	17746	PASS	
96	95	5	9	6.9	1231	PASS	
173	174	0.00	2	0.0	0	PASS	
174	95	50	100	95.8	17003	PASS	
175	174	5	9	6.0	1025	PASS	
176	174	95	101	100.1	17024	PASS	
177	176	5	9	5.8	991	PASS	

3M93580.D 3M93581.D 3M93582.D

BLK BLK BLK524

06/02/11 01:51 06/02/11 02:07 06/02/11 02:23

Internal Standard Areas

Evaluation Std Data File: 3M93060.D

12

Method: EPA 8260B

Analysis Date/Time: 05/26/11 10:19

Lab File ID: CAL @ 20 PPB

			12		13		14		10)	16	
	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
Eval File Area/RT:	315238	4.57	228560	6.41	156199	7.83						
Eval File Area Limit:	157619-	630476	114280-4	57120	78100-31	2398						
Eval File Rt Limit:	4.07-	5.07	5.91-6	.91	7.33-8	.33						
Data File Sample	1 11 11 11 11 11 11								I			
Data File Sample 3M93052.D BLKJUG1	29180	2 4.5	7 21980	6.4	l 129182	7.83						
3M93053.D CAL @ 1 PF												
3M93054.D CAL @ 0.5 I												
3M93055.D CAL @ 5 PF												
3M93056.D CAL @ 500												
3M93057.D CAL @ 250 3M93058.D CAL @ 100	-											
3M93059.D CAL @ 50 F												
3M93060.D CAL @ 20 F												
3M93061.D CAL @ 10 F 3M93062.D 20 PPB	31492						_					
	28987											
3M93063.D BLK	30523											
3M93064.D ICV												
3M93065.D DAILY BLAN												
3M93066 D DAILY BLAN	30802											
3M93067.D MBS9690												
3M93071.D AC59205-01	26496											
3M93078.D BLK												
3M93080.D MBS9694	26995 3 26272											
3M93081.D AC59149-01 3M93082.D AC59261-01		-					_					
3M93083.D AC59201-01	_											
3M93084.D AC59244-00												
3M93085.D AC59244-00												
3M93086.D AC59244-00												
3M93087 D AC59244-00							_				_	
3M93088.D AC59244-00												
3M93089.D AC59261-00												
3M93090.D AC59261-00												
3M93091.D AC59194-00												
3M93092.D AC59194-00												
3M93098.D BLK	23567											
3M93099.D BLK	23385											
3M93100.D BLK	23763											
3M93101.D MBS9701	25387											
3M93102.D MBS9702	26360						_					
3M93123.D AC59201-00												
3M93124.D AC59201-00												
3M93125.D BLK	24385											
3M93126.D BLK	24467											
3M93127.D BLK	24342	-										
3M93128.D BLK	24176											
3M93129.D BLK	23475											
3M93130.D BLK	23798											
3M93131.D BLK	22257											
JUD U.I CEIVIC	22231	2 4.3	101990	0.41	100000	7.03						

I1 =	Fluorobenzene
12 =	Chlorobenzene-d5
13 =	1.4-Dichlorobenzene-d4

I4 = I5 = I6 =

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Retention Times:

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas

Evaluation Std Data File: 2M67529.D

Method: EPA 8260B

Analysis Date/Time: 05/31/11 10:09

Lab File ID: CAL @ 20 PPB

Eval File Area/RT:
Eval File Area Limit:
Eval File Rt Limit:

I1		12		13		14		15		16	
Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
228230	4.29	220447	6.09	145554	7.49						
114115-4	156460	110224-	440894	72777-2	72777-291108						
3.79-4	1.79	5.59-	6.59	6.99-	6.99-7.99						

Eval i lie i kt Elii lit.	0.70-4.70		0.00-0.00		0.00-7.00				
Data File Sample									
2M67519.D BLK	214828	4.28	208255	6.08	124201	7.48	}		
2M67520.D BLK	198355	4.28	182924	6.08	108930	7.48			
2M67522.D CAL @ 1 PPB	218718	4.28	196540	6.08	126481	7.48			
2M67523.D CAL @ 0.5 PF	215581	4.28	199175	6.08	124258	7.48			
2M67524 D CAL @ 5 PPB	224008	4.28	209964	6.08	125515	7.48			
2M67525.D CAL @ 500 P	244859	4.28	218800	6.09	124354	7.49			
2M67526.D CAL @ 250 P	251782	4.28	232768	6.08	141201	7.48			
2M67527.D CAL @ 100 P	265649	4.28	243435	6.09	147177	7.48			
2M67528.D CAL @ 50 PP	259821	4.29	249456	6.08	156654	7.48			
2M67529.D CAL @ 20 PP	228230	4.29	220447	6.09	145554	7.49			
2M67530.D CAL @ 10 PP	227688	4.29	221704	6.09	137011	7.48		 	
2M67531.D ICV	207259	4.29	210095	6.09	129646	7.48			
2M67532.D BLK	209185	4.29	210093	6.09	131792	7.49			
2M67533.D DAILY BLANK	180986	4.29	183244	6.09	127325	7.49			
	205284	4.29	204744	6.09	132867	7.48			
2M67534.D DAILY BLANK	196047	4.28	196628	6.09	131719	7.49			
2M67535.D MBS9751	205087	4.29	199568	6.09	131719	7.49			
2M67536.D MBS9752		4.29	190004	6.09	120751	7.49			
2M67537.D BLKJUG1	193307								
2M67538.D AC59210-012	196810	4.29	186952	6.09	122425	7.49			
2M67539 D AC59210-008	187424	4.29	171632	6.09	115828	7.49		 	
2M67540.D AC59210-001	188378	4.29	188061	6.09	122384	7.49			
2M67541.D AC59210-014	170746	4.29	165409	6.09	108248	7.49			
2M67542.D AC59335-014	182118	4.29	175508	6.09	107216	7.49			
2M67543.D AC59335-005	157864	4.29	150763	6.09	98305	7.49			
2M67544.D AC59335-008	163610	4.29	160807	6.09	105748	7.49		 1111-111	
2M67545.D AC59335-009	188910	4.29	184032	6.09	124435	7.49			
2M67546.D AC59335-010	184843	4.29	178043	6.09	122631	7.49			
2M67547.D AC59335-008	175952	4.29	178552	6.09	114157	7.49			
2M67548.D AC59335-001	179180	4.29	178352	6.09	113578	7.49			
2M67549.D BLK	186789	4.29	187266	6.09	117194	7.48		 	
2M67550.D AC59335-002	187346	4.29	185006	6.09	116035	7.49			
2M67551.D AC59335-003	169542	4.29	162883	6.09	102766	7.49			
2M67552.D AC59335-004	184879	4.29	146099	6.10	100823	7.49			
2M67553.D AC59335-006	179713	4.29	186611	6.09	119302	7.49			
2M67554.D AC59335-007	181706	4.29	179342	6.09	116287	7.49		 	
2M67555.D AC59335-011	185827	4.29	178748	6.09	116045	7.49			
2M67556.D AC59335-012	163815	4.29	159110	6.09	103664	7.49			
2M67557.D AC59335-013	157916	4.29	165880	6.09	101148	7.49			
2M67558.D AC59335-014	167784	4.29	154252	6.09	100275	7.49			
2M67559.D AC59210-001	171235	4.29	173398	6.09	113250	7.48		 	
2M67560.D AC59210-002	185565	4.29	178492	6.09	112704	7.49			
2M67561.D AC59210-006	148201	4.29	153606	6.09	95155	7.49			
2M67562.D MBS9757	168820	4.29	164916	6.09	107398	7.49			
2M67563.D STD	175930	4.29	175395	6.09	113910	7.49			
2M67564.D STD	185896	4.29	186970	6.09	118626	7.49		 	
2M67565.D BLK	194016	4.29	182405	6.09	120570	7.49			
2M67566.D BLK	192502	4.30	186267	6.09	119508	7.49			
2M67567.D MBS9758	179886	4.29	175671	6.09	117891	7.49			
2M67568.D MBS9759	201775	4.29	189831	6.09	129705	7.49			

I1 =	Fluorobenzene	I4 =	
I2 =	Chlorobenzene-d5	15 =	
13 =	1.4-Dichlorobenzene-d4	I6 =	

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

 $\ensuremath{\mathsf{R}}$ - Indicates the compound failed the internal standard retention time criteria.

Retention Times: Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt.

Internal Standard Areas

Evaluation Std Data File: 3M93517.D

Method: EPA 8260B

Analysis Date/Time: 06/01/11 08:00

212	Dat	E/ 1 11	IIÇ.	00/0	17 1 1	00.0	,0
	l ah	File	ID.	CAL	@ 1	20 PE	PR

	I1		12		13		14		15		16	
MARINE TO THE STATE OF THE STAT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT	Area	RT
Eval File Area/RT:	297172	4.57	234981	6.40	159271	7.82						
Eval File Area Limit:	148586-5	94344	117490-4	69962	79636-3	18542						
Eval File Rt Limit:	4.07-5	.07	5.9-6	.9	7.32-8	3.32						
D (5")												
Data File Sample												
3M93515.D BLK	292529											
3M93516.D 20 PPB	30377											
3M93518.D BLK	27702											
3M93519.D DAILY BLAI												
3M93520 D DAILY BLAI												
3M93521.D MBS9765	30769											
3M93522.D MBS9766	299329											
3M93523.D BLKJUG#3	27746											
3M93524.D BLKJUG#2	27280											
3M93525.D AC59210-00							-				_	
3M93526.D AC59335-01	1 26474	5 4.5	7 208922	2 6.41	13196	8 7.82						
3M93528.D BLKJUG2	25895	4 4.5	7 20661	6.40	12926	1 7.83						
3M93529.D AC59335-01	12 25757	7 4.5	7 20683	6.41	13101	4 7.82						
3M93530.D AC59335-01	13 258598	3 4.5	7 209470	6.41	13395	9 7.83						
3M93531,D AC59335-00	7 26752	3 4.5	7 21376	6.41	13178	6 7.82						
3M93532.D AC59335-00	6 259760	3 4.5	7 20710	7 6.41	12635	8 7.82						
3M93533.D 59335-0140	10 203424	4 4.5	7 16297	6.41	9414	2 7.83						
3M93534.D AC59210-00	26627	3 4.5	7 220310	6.41	13147	8 7.83						
3M93535.D AC59210-00	6 259236	3 4.5	7 208910	6.41	12758	5 7.83						
3M93536.D AC59335-00	26070	3 4.5	20956	6.41	12869	7 7.83					an area	
3M93537.D AC59210-01		4.5	205159	6.41	13176							
3M93538.D 59335-014(2	20 25795	1 4.5	7 208544	4 6.41	12437	4 7.83						
3M93539.D AC59335-01		5 4.5	7 207180	6.41	12685	3 7.83						
3M93540.D AC59305-00		9 4.5	7 201208	6.41	13889	2 7.83						
3M93541.D AC59230-00		7 4.5	7 225034	4 6.41	16466	6 7.83						
3M93542.D AC59230-00					16610							
3M93543.D BLK	255848											
3M93544.D AC59305-00												
3M93545.D EF-1165760												
3M93548.D AC59233-00												
3M93549.D BLK	266818											
3M93550.D AC59454-00												
3M93551.D AC59454-00												
3M93552.D AC59297-01												
3M93553.D AC59297-02												
3M93554.D AC59297-02										-		
	242978											
3M93555.D BLK	243174											
3M93556.D BLK	249043											
3M93557.D BLK												
3M93558.D MBS9776	274157	· Lawrence					-4-4					
3M93563.D MBS9777	271770											
3M93579.D BLK	257229											
3M93580.D BLK	250302											
3M93581.D BLK	253635											
3M93582 D BLK524	254522	2 4.5	195880	6.41	12527	4 7.83						

I1 =	Fluorobenzene
I2 =	Chlorobenzene-d5
13 =	1 4-Dichlorobenzene-d4

625/8270 Internal Standard concentration = 40 mg/L (in final extract) 624/8260 Internal Standard concentration = 30ug/L 524 Internal Standard concentration =5ug/L

QC Limits:

Internal Standard Areas

Upper Limit = + 100% of internal standard area from daily cal or mid pt. Lower Limit = - 50% of internal standard area from daily cal or mid pt.

Flags:

A - Indicates the compound failed the internal standard area criteria

R - Indicates the compound failed the internal standard retention time criteria.

Limit = within +/- 0.5 min of internal standard retention time from the daily cal or mid pt. **Retention Times:**

I4 = 15 = 16 =

GC/MS Volatile Data Sample Data

ORGANICS VOLATILE REPORT

Sample Number: AC59335-001

Client Id: MW-01

Data File: 2M67548.D

Analysis Date: 05/31/11 15:12

Date Rec/Extracted: 05/26/11-NA Column: DB-624 25M 0.200mm ID 1.12um film Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

	Onto. ug/L												
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc						
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U						
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U						
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U						
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U						
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U						
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U						
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U						
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U						
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U						
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U						
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U						
78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U						
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U						
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U						
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U						
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U						
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U						
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U						
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U						
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U						
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U						
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U						
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U						
56-23-5	Carbon Tetrachloride	1.0	· U	75-01-4	Vinyl Chloride	1.0	U						
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U						
				•									

Worksheet #: 193017

Total Target Concentration

Column1D: (^) Indicates results from 2nd column

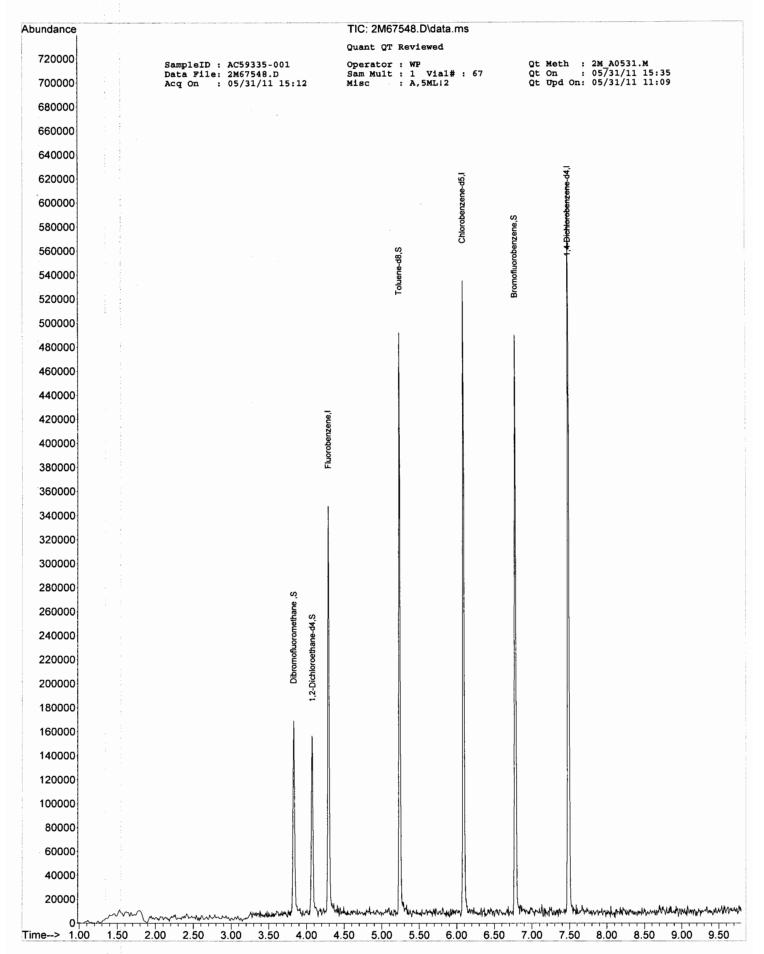
U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea


Operator : WP Sam Mult : 1 Vial# : 67 Misc : A,5ML!2 Qt Meth : 2M_A0531.M Qt On : 05/31/11 15:35 Qt Upd On: 05/31/11 11:09 SampleID: AC59335-001 Data File: 2M67548.D Acq On : 05/31/11 15:12

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits 1	Dev(Min)
Internal Standards						
4) Fluorobenzene	4.289	96	179180	30.00	ug/l	-0.02
51) Chlorobenzene-d5	6.089	117	178352	30.00	ug/l	-0.02
69) 1,4-Dichlorobenzene-d4	7.486	152	113578	30.00	ug/l	-0.02
System Monitoring Compounds						
36) Dibromofluoromethane	3.832	111	71269	33.85	ug/l	-0.02
Spiked Amount 30.000			Recovery = 112.			83%
38) 1,2-Dichloroethane-d4	4.079	67	36915	28.44	ug/l	-0.01
Spiked Amount 30.000			Recove	ry =	94.	80%
65) Toluene-d8	5.240	98	190708	27.72	ug/l	-0.01
Spiked Amount 30.000			Recove	ry =	92.	40%
75) Bromofluorobenzene	6.781	174	98759	29.29	ug/l	-0.02
Spiked Amount 30.000			Recove	ry =	97.	63%
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-002

Client Id: MW-02

Data File: 2M67550.D

Analysis Date: 05/31/11 15:44 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

	Office. ug/L											
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc					
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U					
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U					
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U					
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	320					
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U					
75-35-4	1,1-Dichloroethene	1.0	1.1	110-82-7	Cyclohexane	1.0	U					
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U					
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U					
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U					
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U					
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U					
78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U					
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U					
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U					
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U					
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U					
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U					
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	13					
71-43-2	Benzene:	0.50	U	108-88-3	Toluene	1.0	U					
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	3.1					
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U					
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	8.5					
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U					
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U					
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U					
	<u> </u>				• • •							

350

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

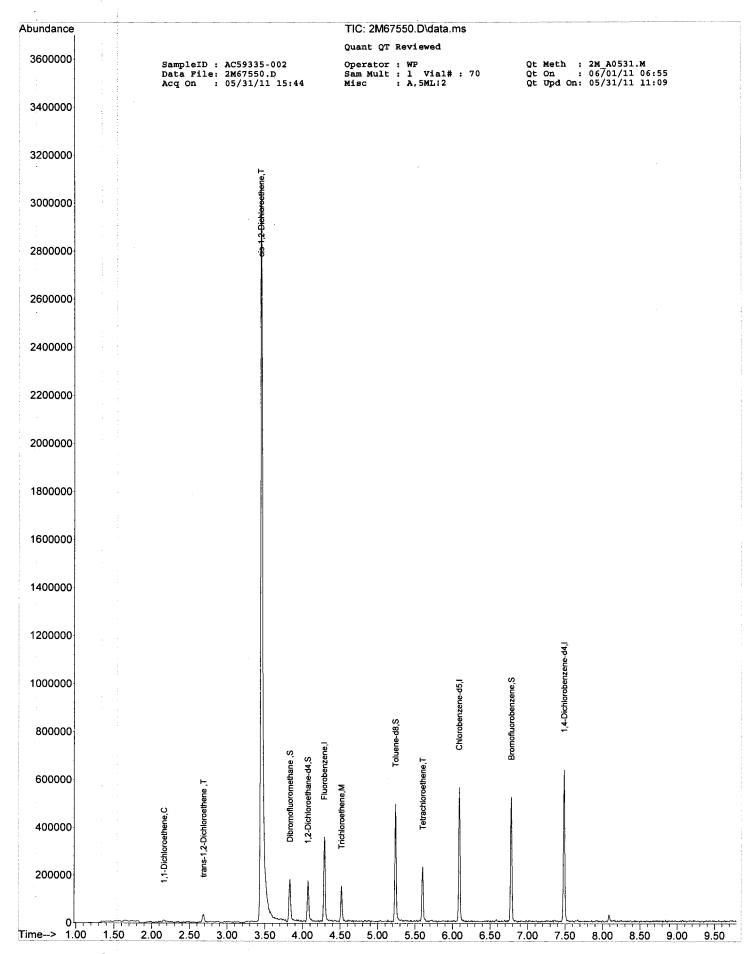
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

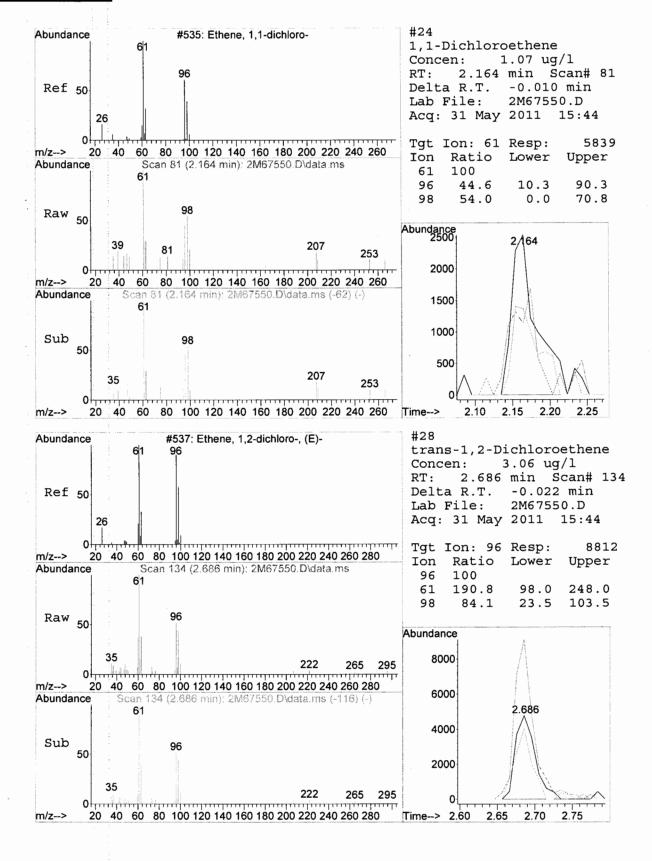
SampleID: AC59335-002 Data File: 2M67550.D

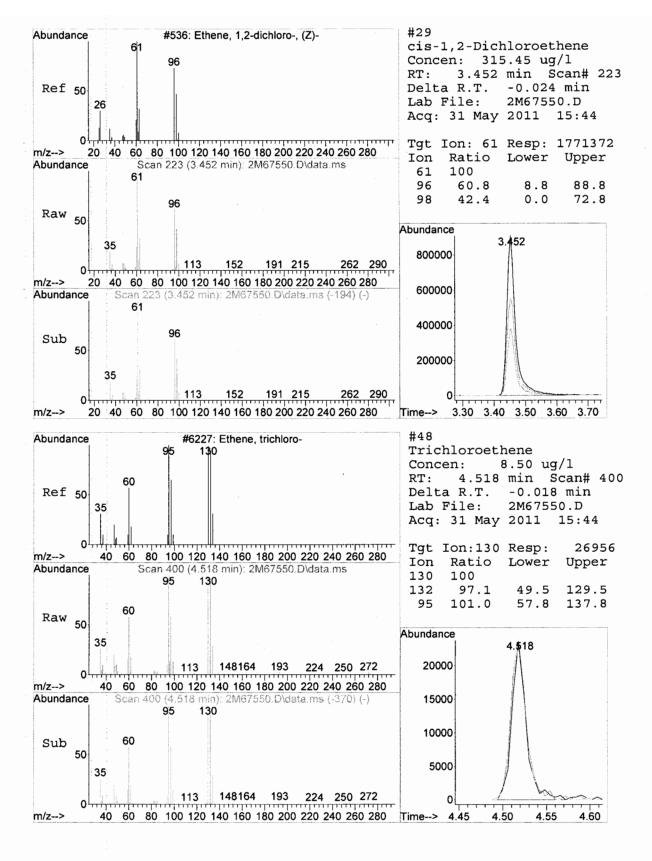
Acq On : 05/31/11 15:44

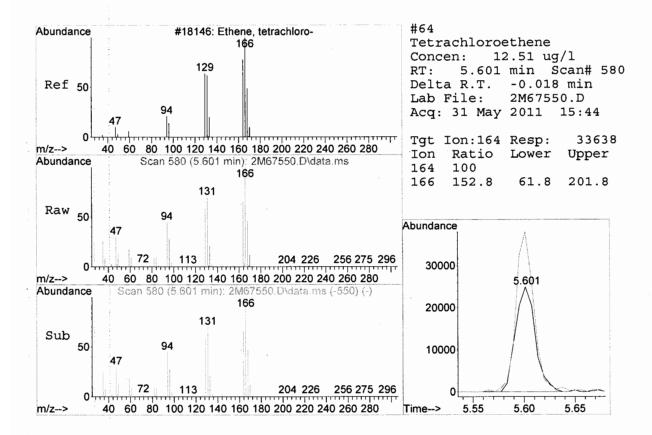
Operator : WP Sam Mult : 1 Vial# : 70 Misc : A,5ML!2


Qt Meth : 2M_A0531.M Qt On : 06/01/11 06:55 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMs_2\Data\05-31-11\Qt Path : G:\GcMsData\2011\GCMs_2\MethodQt\Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
Internal Standards						
	4.289	96	187346	30.00 ug/	1 -0.	02
51) Chlorobenzene-d5	6.089	117	185006	30.00 ug/		
69) 1,4-Dichlorobenzene-d4	7.486	152	116035	30.00 ug/	1 -0.	02
System Monitoring Compounds						
36) Dibromofluoromethane	3.832	111	78177	35.51 ug/	1 -0.	02
Spiked Amount 30.000			Recove	xy = 118	.37%	
38) 1,2-Dichloroethane-d4	4.072	67	39209	28.89 ug/	1 ~0.	02
Spiked Amount 30.000			Recove	= 96	.30%	
65) Toluene-d8	5.240	98	203032	28.45 ug/	1 -0.	01
Spiked Amount 30.000			Recove	ery = 94	.83%	
75) Bromofluorobenzene	6.781	174	103238	29.97 ug/	1 -0.	02
Spiked Amount 30.000			Recove	ry = 99	.90%	
Target Compounds					Qva	alue
24) 1,1-Dichloroethene	2.164	61	5839	1.0662	ug/l	79
28) trans-1,2-Dichloroethene	2.686	96	8812	3.0602	ug/l	83
29) cis-1,2-Dichloroethene	3.452	61	1771372	315.4525	ug/l	83
48) Trichloroethene	4.518	130	26956	8.4980	ug/l	94
64) Tetrachloroethene	5.601	164	33638	12.5097	ug/l	82


^(#) = qualifier out of range (m) = manual integration (+) = signals summed



2M_A0531.M Thu Jun 09 14:37:58 2011 RPT1

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-003

Client Id: MW-03

Data File: 2M67551.D

Analysis Date: 05/31/11 16:00

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0,200mm ID 1,12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Onto: ug/E											
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	· U				
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	67-66-3	Chloroform	1.0	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U				
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	27				
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U				
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	υ				
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	124-48-1	Dibromochloromethane	1.0	υ				
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U				
106-93-4	1,2-Dibromoethane	1.0	υ	100-41-4	Ethylbenzene	1.0	U				
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U				
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U				
78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U				
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U				
106-46-7	1,4-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	υ				
78-93-3	2-Butanone	1.0	υ	1634-04-4	Methyl-t-butyl ether	0.50	U				
591-78-6	2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	U				
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U				
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	6.5				
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U				
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U				
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U				
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	9.0				
75-15-0	Carbon Disulfide	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U				
56-23-5	Carbon Tetrachloride	1.0	υ	75-01-4	Vinyl Chloride	1.0	U				
108-90-7	Chlorobenzene	1.0	υ	1330-20-7	Xylenes (Total)	1.0	U				

42

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

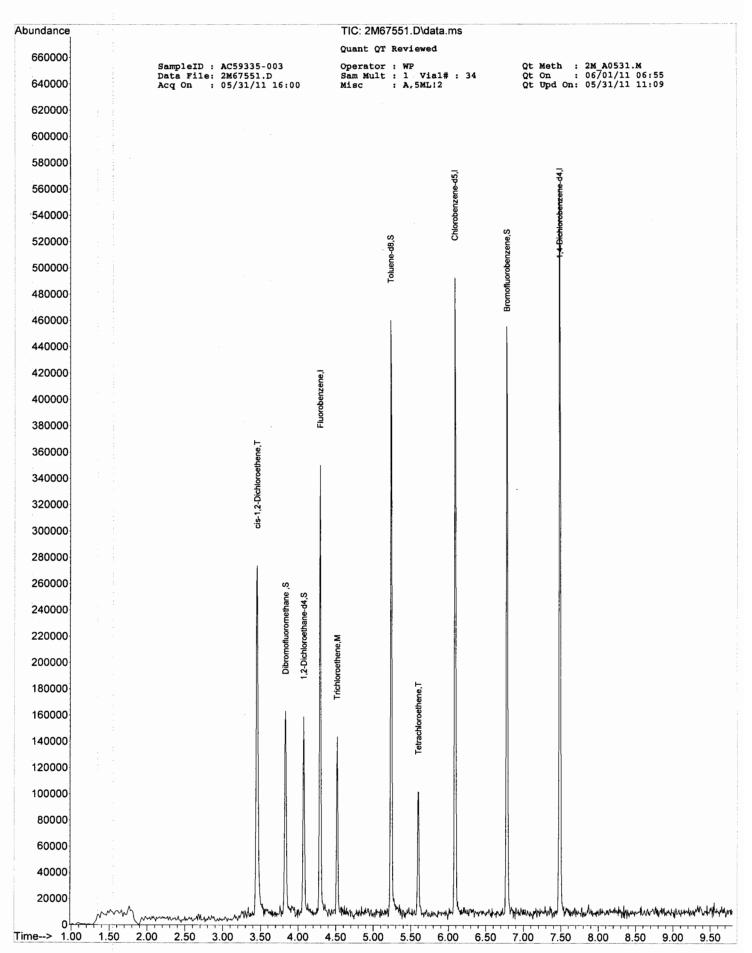
R - Retention Time Out
I - Indicates an estimated

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

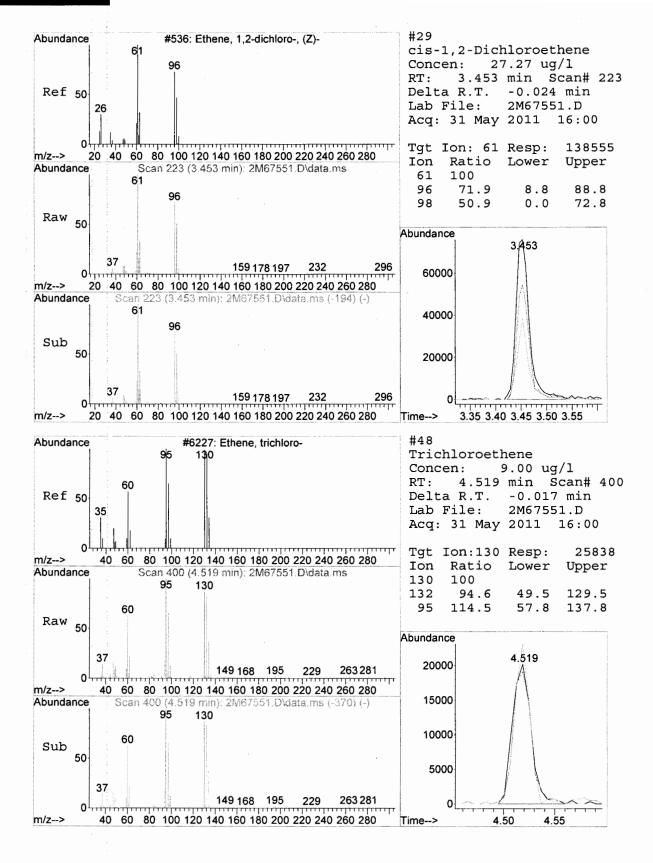
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

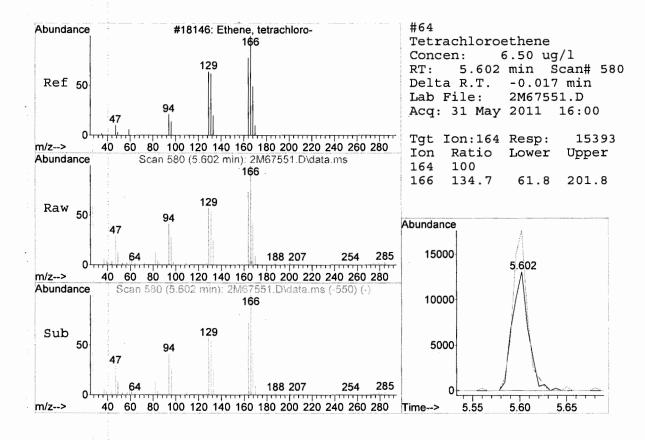
SampleID : AC59335-003 Data File: 2M67551.D Acq On : 05/31/11 16:00

Operator : WP Sam Mult : 1 Vial# : 34 Misc : A,5ML!2 Misc


Qt Meth : 2M_A0531.M Qt On : 06/01/11 06:55 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration


Compound	R.T. Ç	lon	Response	Conc Units	Dev(Min)
Internal Standards 4) Fluorobenzene 51) Chlorobenzene-d5 69) 1,4-Dichlorobenzene-d4		117	169542 162883 102766	30.00 ug/ 30.00 ug/ 30.00 ug/	1 -0.02
System Monitoring Compounds 36) Dibromofluoromethane Spiked Amount 30.000 38) 1,2-Dichloroethane-d4 Spiked Amount 30.000 65) Toluene-d8 Spiked Amount 30.000 75) Bromofluorobenzene Spiked Amount 30.000	3.832 4.073 5.235 6.782	67	Recover 34237 Recover 179834 Recover 89302	33.00 ug/ ry = 110 27.88 ug/ ry = 92 28.62 ug/ ry = 95 29.27 ug/ ry = 97	.00% 1 -0.02 .93% 1 -0.02 .40% 1 -0.02
Target Compounds 29) cis-1,2-Dichloroethene 48) Trichloroethene 64) Tetrachloroethene	3.453 4.519 5.602	130	138555 25838 15393	9.0010	Qvalue ug/l 67 ug/l 89 ug/l 98


^(#) = qualifier out of range (m) = manual integration (+) = signals summed

2M_A0531.M Thu Jun 09 14:38:07 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59335-004(500X)

Client Id: MW-04

Data File: 3M93536.D

Analysis Date: 06/01/11 13:19

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 500

Solids: 0

Units: ua/L

	Onits. ug/L											
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc					
71-55-6	1,1,1-Trichloroethane	500	U	75-00-3	Chloroethane	500	U					
79-34-5	1,1,2,2-Tetrachloroethane	500	U	67-66-3	Chloroform	500	U					
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	500	U	74-87-3	Chloromethane	500	U					
79-00-5	1,1,2-Trichloroethane	500	U	156-59-2	cis-1,2-Dichloroethene	500	U					
75-34-3	1,1-Dichloroethane	500	U	10061-01-5	cis-1,3-Dichloropropene	500	U					
75-35-4	1,1-Dichloroethene	500	U	110-82-7	Cyclohexane	500	U					
120-82-1	1,2,4-Trichlorobenzene	500	U	124-48-1	Dibromochloromethane	500	U					
96-12-8	1,2-Dibromo-3-Chloropropa	500	U	75-71-8	Dichlorodifluoromethane	500	U					
106-93-4	1,2-Dibromoethane	500	U	100-41-4	Ethylbenzene	500	U					
95-50-1	1,2-Dichlorobenzene	500	U	98-82-8	Isopropyibenzene	500	U					
107-06-2	1,2-Dichloroethane	250	U	136777612	m&p-Xylenes	500	U					
78-87-5	1,2-Dichloropropane	250	U	79-20-9	Methyl Acetate	500	U					
541-73-1	1,3-Dichlorobenzene	500	U	108-87-2	Methylcyclohexane	500	U					
106-46-7	1,4-Dichlorobenzene	500	U	75-09-2	Methylene Chloride	500	U					
78-93-3	2-Butanone	500	U	1634-04-4	Methyl-t-butyl ether	250	U					
591-78-6	2-Hexanone	500	U	95-47-6	o-Xylene	500	U					
108-10-1	4-Methyl-2-Pentanone	500	U	100-42-5	Styrene	500	U					
67 - 64-1	Acetone	5000	U	127-18-4	Tetrachloroethene	500	48000					
71-43-2	Benzene	250	U	108-88-3	Toluene	500	U					
75-27-4	Bromodichloromethane	300	U	156-60-5	trans-1,2-Dichloroethene	500	U					
75-25-2	Bromoform	500	U	10061-02-6	trans-1,3-Dichloropropene	500	U					
74-83-9	Bromomethane	500	U	79-01-6	Trichloroethene	500	500					
75-15-0	Carbon Disulfide	500	U	75-69-4	Trichlorofluoromethane	500	U					
56-23-5	Carbon Tetrachloride	500	U	75-01-4	Vinyl Chloride	500	U					
108-90-7	Chlorobenzene	500	U	1330-20-7	Xylenes (Total)	500	U					

⁴⁸⁰⁰⁰

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

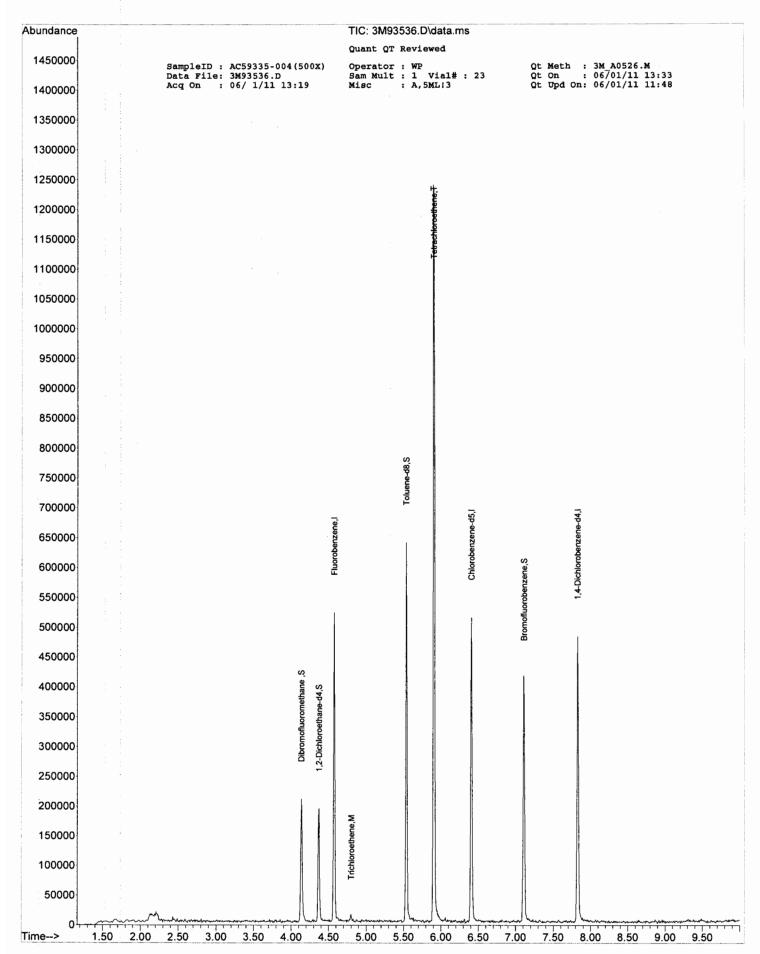
R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

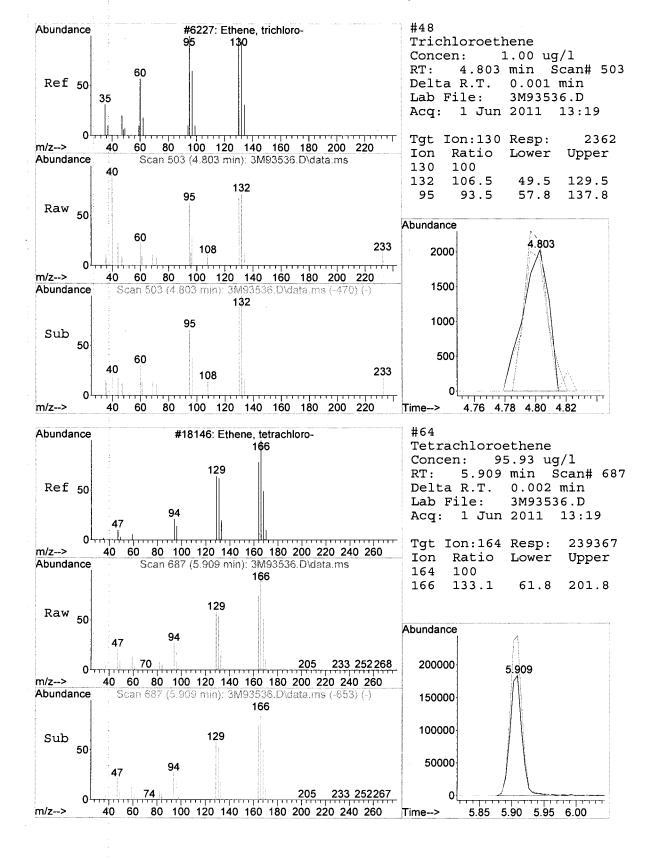
specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59335-004(500X)

Data File: 3M93536.D Acq On : 06/ 1/11 13:19 Operator : WP Sam Mult : 1 Vial# : 23 Misc : A,5ML!3


Qt Meth : 3M_A0526.M Qt On : 06/01/11 13:33 Qt Upd On: 06/01/11 11:48

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\
Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.575	96	260708	30.00	ug/l	0.00
51) Chlorobenzene-d5	6.407	117	209561	30.00	ug/l	0.00
69) 1,4-Dichlorobenzene-d4	7.825	152	128697	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.136	111	85938	32.25	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	107.50%	
38) 1,2-Dichloroethane-d4	4.370	67	48389	30.32	ug/l	0.00
Spiked Amount 30.000			Recove	101.07%		
65) Toluene-d8	5.536	98	260173	28.11	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	93.70%	
75) Bromofluorobenzene	7.110	174	141876	30.44	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	101.47%	
Target Compounds						Qvalue
48) Trichloroethene	4.803	130	2362	1.00	14 ug/	1 89
64) Tetrachloroethene	5.909	164	239367	95.92	86 ug/	1 99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

3M_A0526.M Thu Jun 09 14:38:14 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59335-005(100X)

Client Id: MW-05

Data File: 2M67543.D

Analysis Date: 05/31/11 13:53

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 100

Solids: 0

			Ullits. t	ıyı∟			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	100	U	75-00-3	Chloroethane	100	U
79-34-5	1,1,2,2-Tetrachloroethane	100	U	67-66-3	Chloroform	100	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	100	U	74-87-3	Chloromethane	100	U
79-00-5	1,1,2-Trichloroethane	100	U	156-59-2	cis-1,2-Dichloroethene	100	260
75-34-3	1,1-Dichloroethane	100	U	10061-01-5	cis-1,3-Dichloropropene	100	U
75-35-4	1,1-Dichloroethene	100	U	110-82-7	Cyclohexane	100	U
120-82-1	1,2,4-Trichlorobenzene	100	U	124-48-1	Dibromochloromethane	100	U
96-12-8	1,2-Dibromo-3-Chloropropa	100	U	75-71-8	Dichlorodifluoromethane	100	U
106-93-4	1,2-Dibromoethane	100	U	100-41-4	Ethylbenzene	100	U
95-50-1	1,2-Dichlorobenzene	100	U	98-82-8	Isopropylbenzene	100	U
107-06-2	1,2-Dichloroethane	50	U	136777612	m&p-Xylenes	100	U
78-87-5	1,2-Dichloropropane	100	U	79-20-9	Methyl Acetate	100	U
541-73-1	1,3-Dichlorobenzene	100	U	108-87-2	Methylcyclohexane	100	U
106-46-7	1,4-Dichlorobenzene	100	U	75-09-2	Methylene Chloride	100	U
78-93-3	2-Butanone	100	U	1634-04-4	Methyl-t-butyl ether	50	U
591-78-6	2-Hexanone	100	U	95-47-6	o-Xylene	100	U
108-10-1	4-Methyl-2-Pentanone	100	U	100-42-5	Styrene	100	U
67-64-1	Acetone	1000	U	127-18-4	Tetrachloroethene	100	25000
71-43-2	Benzene	50	U	108-88-3	Toluene	100	U
75-27-4	Bromodichloromethane	100	U	156-60-5	trans-1,2-Dichloroethene	100	U
75-25-2	Bromoform	100	U	10061-02-6	trans-1,3-Dichloropropene	100	U
74-83-9	Bromomethane	100	U	79-01-6	Trichloroethene	100	6500
75-15-0	Carbon Disulfide	100	U	75-69-4	Trichlorofluoromethane	100	U
56-23-5	Carbon Tetrachloride	100	U	75-01-4	Vinyl Chloride	100	U
108-90-7	Chlorobenzene	100	U	1330-20-7	Xylenes (Total)	100	U
				1			

³²⁰⁰⁰

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

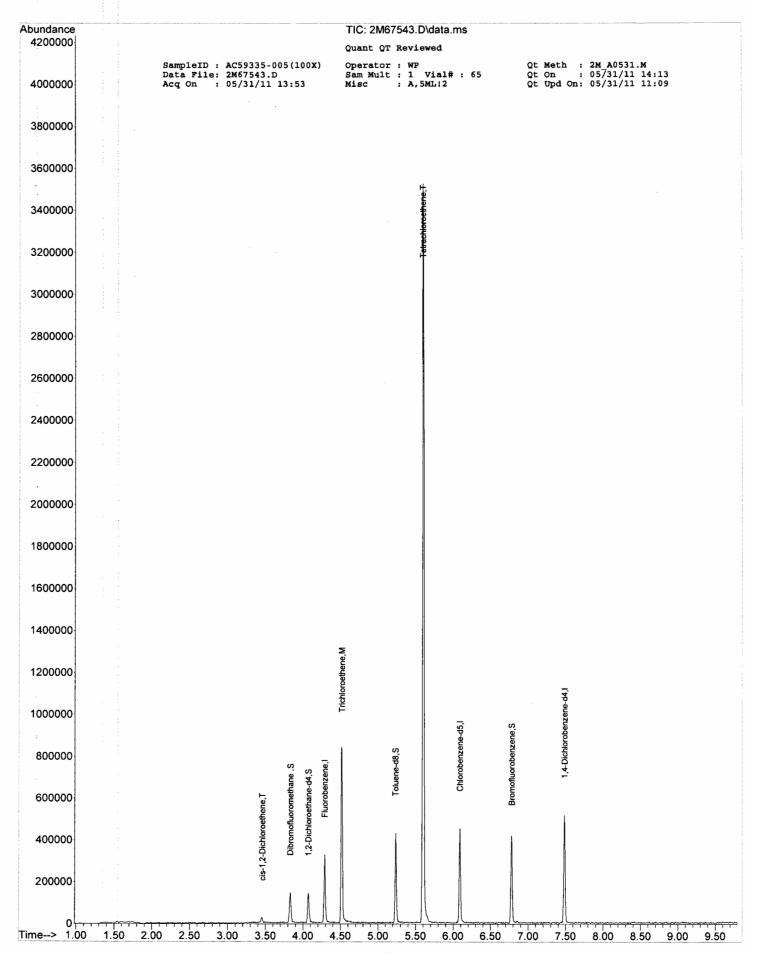
R - Retention Time Out

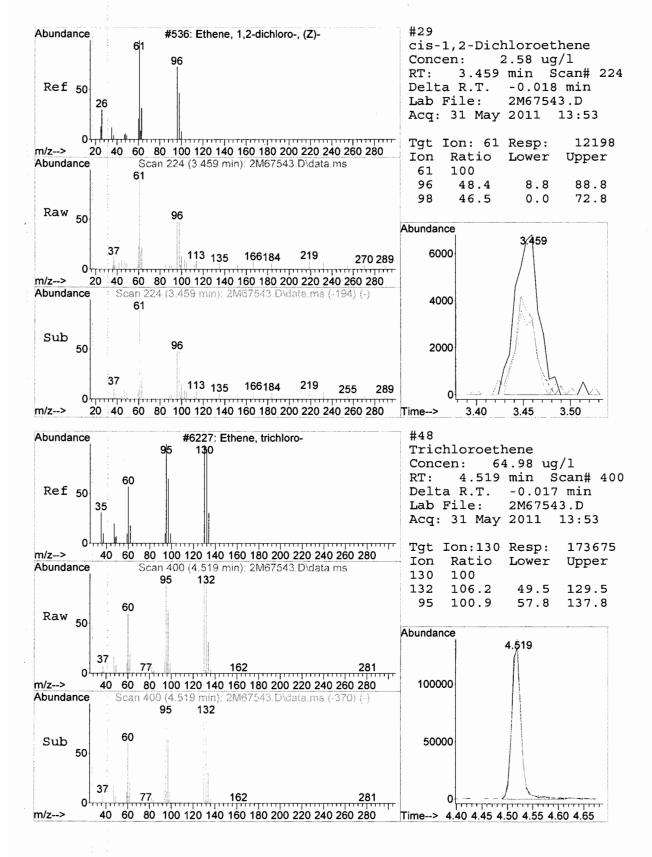
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

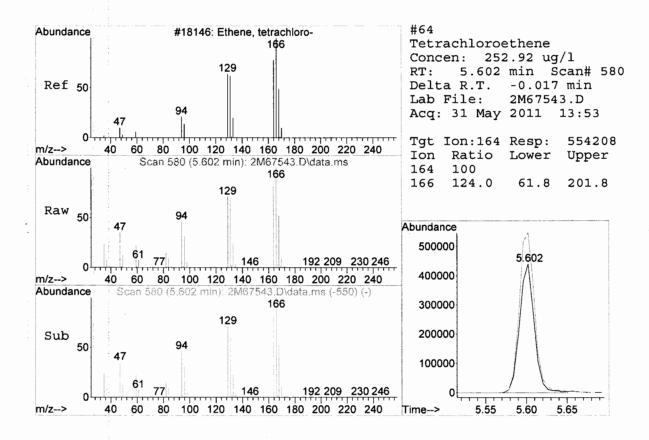
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59335-005(100X) Data File: 2M67543.D Acq On : 05/31/11 13:53

Operator : WP Sam Mult : 1 Vial# : 65 Misc : A,5ML!2


Qt Meth : 2M_A0531.M
Qt On : 05/31/11 14:13 Qt Upd On: 05/31/11 11:09


Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
4) Fluorobenzene	4.290	96	157864	30.00 ug/	1 -0.02
51) Chlorobenzene-d5	6.090	117	150763	30.00 ug/	1 -0.02
69) 1,4-Dichlorobenzene-d4	7.486	152	98305	30.00 ug/	1 -0.02
System Monitoring Compounds					
36) Dibromofluoromethane	3.833	111	58586	31.58 ug/	1 -0.02
Spiked Amount 30.000			Recove	rv = 105	.27%
38) 1,2-Dichloroethane-d4	4.073	67	36421	31.85 ug/	1 -0.02
Spiked Amount 30.000			Recove	ry = 106	178
65) Toluene-d8	5.235	98		28.80 ug/	
Spiked Amount 30.000			Recove	ry = 96	.00%
75) Bromofluorobenzene	6.782	174	89828	30.78 ug/	1 -0.02
Spiked Amount 30.000				= 102	
Target Compounds					Qvalue
29) cis-1,2-Dichloroethene	3.459	61	12198	2.5779	ug/l 90
48) Trichloroethene	4.519	130	173675	64.9773	ug/l 90
64) Tetrachloroethene	5.602	164	-		ug/l 93

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-006

Client Id: MW-06

Data File: 3M93532.D

Analysis Date: 06/01/11 12:08

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Cas #							
Ca5 #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U .	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	•	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	2.0
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	υ
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	υ
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	υ
108-90-7	Chlorobenzene	1.0	υ		Xylenes (Total)	1.0	Ū

ColumnID: (^) Indicates results from 2nd column

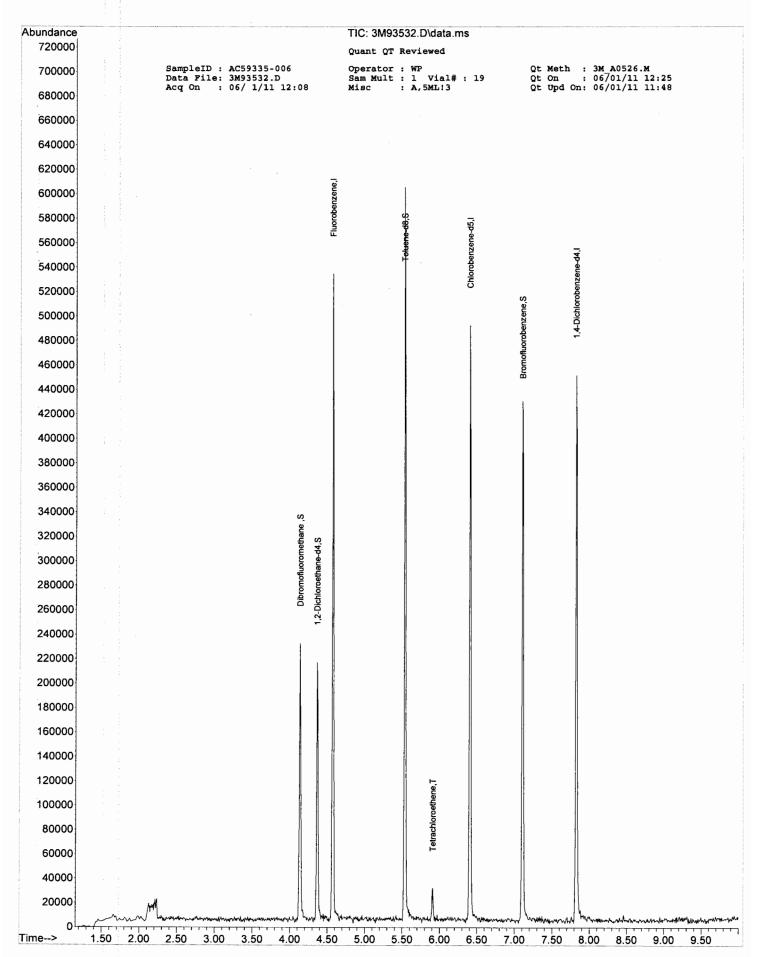
U - Indicates the compound was analyzed but not detected.

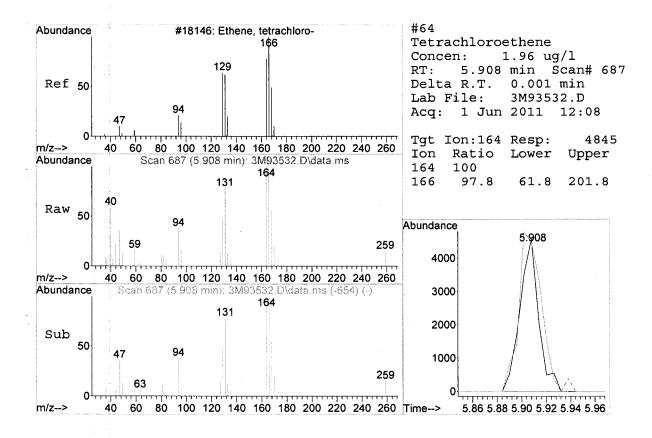
B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea


SampleID : AC59335-006 Data File: 3M93532.D Acq On : 06/ 1/11 12:08


Operator : WP Sam Mult : 1 Vial# : 19 Misc : A,5ML!3 Qt Meth : $3M_A0526.M$ Qt On : 06/01/11 12:25 Qt Upd On: 06/01/11 11:48

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.574	96	259760	30.00	ug/l	0.00
51) Chlorobenzene-d5	6.407	117	207107	30.00	ug/l	0.00
69) 1,4-Dichlorobenzene-d4	7.825	152	126358	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.135	111	87064	32.80	ug/l	0.00
Spiked Amount 30.000			Recover	y =	109.33%	
38) 1,2-Dichloroethane-d4	4.364	67	50513	31.76	ug/l	0.00
Spiked Amount 30.000			Recover	y =	105.87%	
65) Toluene-d8	5.536	98	254490	27.83	ug/l	0.00
Spiked Amount 30.000			Recover	y =	92.77%	
75) Bromofluorobenzene	7.110	174	141794	30.99	ug/l	0.00
Spiked Amount 30.000			Recover	y =	103.30%	
Target Compounds						Qvalue
64) Tetrachloroethene	5.908	164	4845	1.96	47 ug/	1 71

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

ORGANICS VOLATILE REPORT

Sample Number: AC59335-007

Client Id: MW-07

Data File: 3M93531.D

Analysis Date: 06/01/11 11:52 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omis. (ug/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	2.2
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	1.3
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	44
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	2.2
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	4.6
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	1.3
	* 1			'	·		

Worksheet #: 193017

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

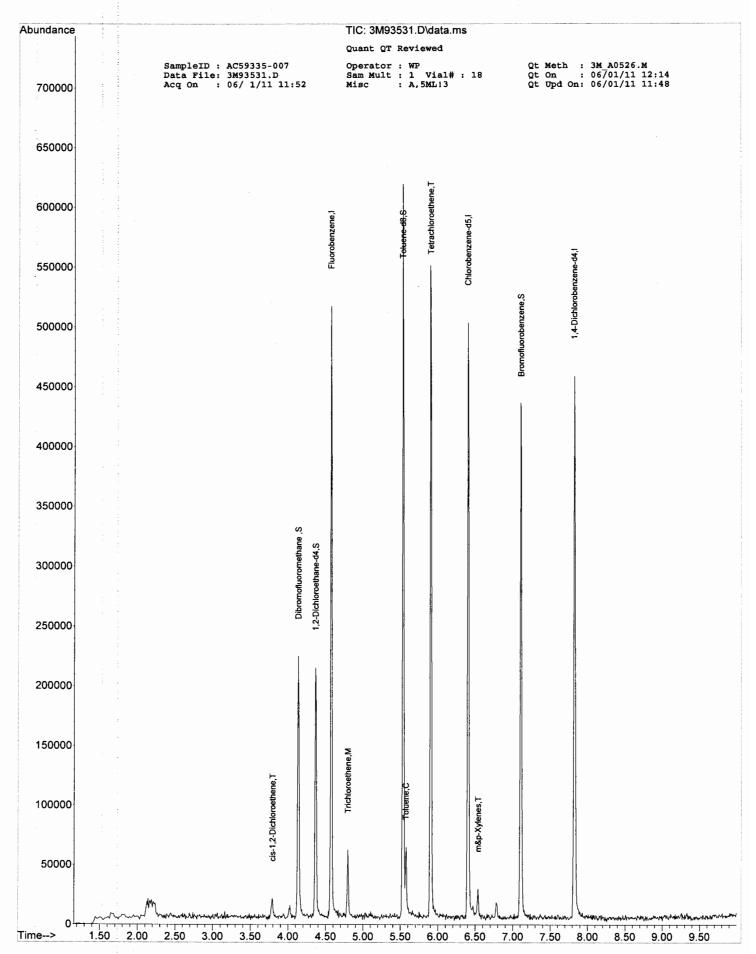
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

⁵⁴ R - Retention Time Out

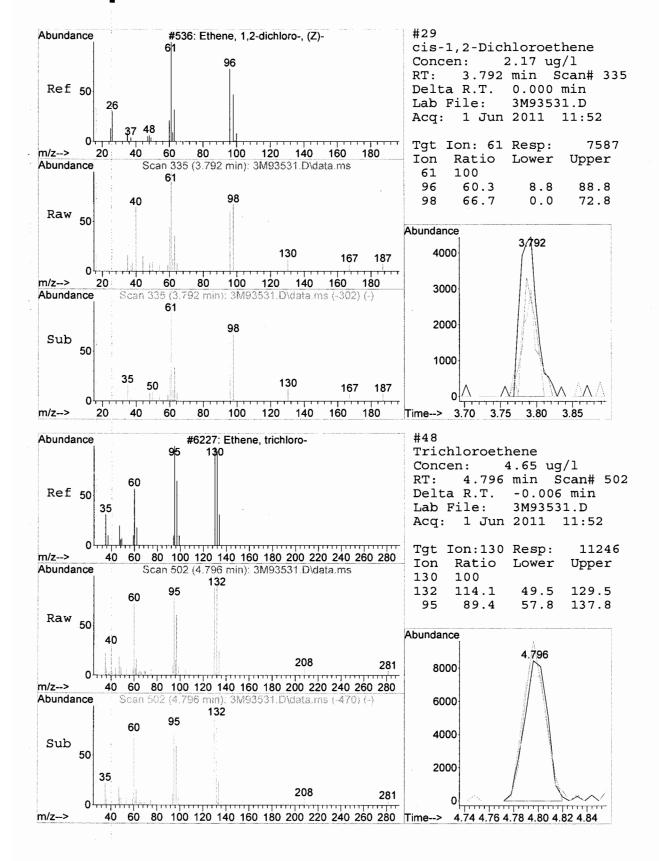
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

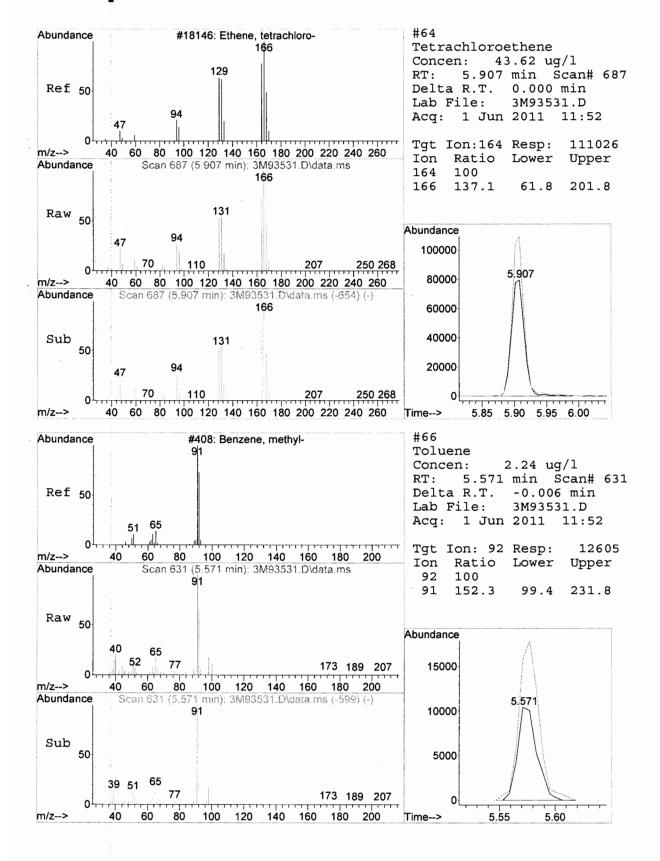
SampleID : AC59335-007 Data File: 3M93531.D Acq On : 06/ 1/11 11:52

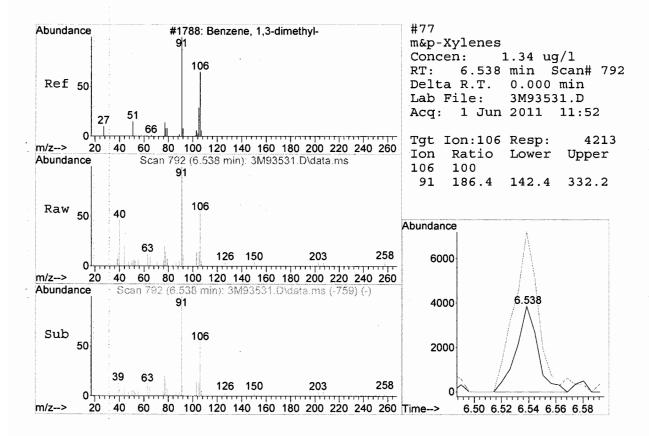
OO7 Operator : WP Sam Mult : 1


Sam Mult : 1 Vial# : 18 Misc : A,5ML!3 Qt Meth : 3M_A0526.M Qt On : 06/01/11 12:14 Qt Upd On: 06/01/11 11:48

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\Qt Resp Via : Initial Calibration


Compound	R.T.	QIon	Response	Conc Un	its Dev	(Min)
Internal Standards			,			
4) Fluorobenzene	4.573	96	267523	30.00	ug/l	0.00
51) Chlorobenzene-d5	6.406	117	213765	30.00	ug/l	0.00
69) 1,4-Dichlorobenzene-d4	7.824	152	131786	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.135	111	91425	33.44	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	111.47%	
38) 1,2-Dichloroethane-d4	4.363	67	50794	31.01	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	103.37%	
65) Toluene-d8	5.535	98	259406	27.48	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	91.60%	
75) Bromofluorobenzene	7.109	174	146488	30.70	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	102.33%	
Target Compounds						Qvalue
29) cis-1,2-Dichloroethene	3.792	61	7587	2.174	6 ug/1	L 66
48) Trichloroethene	4.796	130	11246	4.646	3 ug/1	L 83
64) Tetrachloroethene	5.907	164	111026	43.619	7 ug/1	L 95
66) Toluene	5.571	92	12605	2.237	6 ug/1	L 90
77) m&p-Xylenes	6.538	106	4213	1.344	1 ug/1	L 70


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed



3M A0526.M Thu Jun 09 14:38:38 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59335-008

Client Id: MW-08

Data File: 2M67547.D

Analysis Date: 05/31/11 14:56

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

			Omto. t	19 , L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

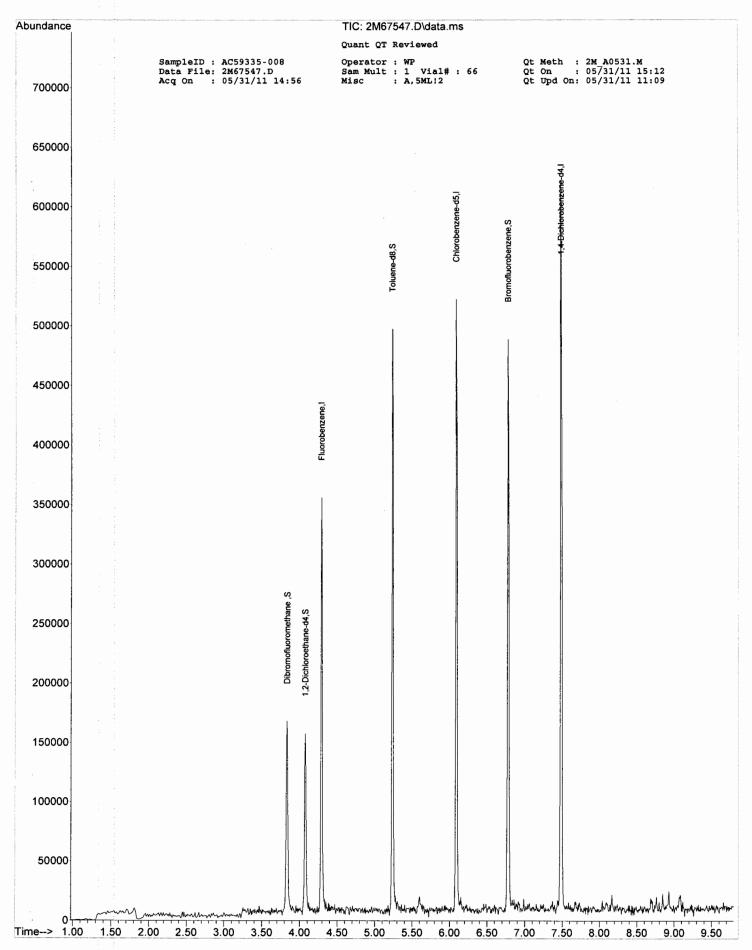
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59335-008 Data File: 2M67547.D Acq On : 05/31/11 14:56

Operator : WP Sam Mult : 1 Vial# : 66 Misc : A,5ML!2


Qt Meth : 2M_A0531.M Qt On : 05/31/11 15:12 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits De	ev(Min)
Internal Standards						
4) Fluorobenzene	4.290	96	175952	30.00	ug/l	-0.02
51) Chlorobenzene-d5	6.090	117	178552	30.00	ug/l	-0.02
69) 1,4-Dichlorobenzene-d4	7.486	152	114157	30.00	ug/l	-0.02
System Monitoring Compounds						
36) Dibromofluoromethane	3.832	111	68770	33.26	ug/l	-0.02
Spiked Amount 30.000			Recove		110.87	7 ቼ
38) 1,2-Dichloroethane-d4	4.073	67	39033	30.62	ug/l	-0.02
Spiked Amount 30.000			Recove	ry =	102.07	7 ቼ
65) Toluene-d8	5.241	98	200489	29.11	ug/l	-0.01
Spiked Amount 30.000			Recove	ry =	97.03	3 8
75) Bromofluorobenzene	6.782	174	102256	30.17	ug/l	-0.02
Spiked Amount 30.000			Recove	ry =	100.57	78
Target Compounds						Qvalu

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-009(MS:AC59

Client Id: MW-08 MS Data File: 2M67545.D

Analysis Date: 05/31/11 14:24 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Units: (ug/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	20	75-00-3	Chloroethane	1.0	22
79-34-5	1,1,2,2-Tetrachloroethane	1.0	16	67-66-3	Chloroform	1.0	18
76-13-1	1,1,2-Trichloro-1,2,2-triflu	1.0	19	74-87-3	Chloromethane	1.0	16
79-00-5	1,1,2-Trichloroethane	1.0	17	156-59-2	cis-1,2-Dichloroethene	1.0	17
75-34-3	1,1-Dichloroethane	1.0	16	10061-01-5	cis-1,3-Dichloropropene	1.0	15
75-35-4	1,1-Dichloroethene	1.0	15	110-82-7	Cyclohexane	1.0	17
120-82-1	1,2,4-Trichlorobenzene	1.0	18	124-48-1	Dibromochloromethane	1.0	16
96-12-8	1,2-Dibromo-3-Chloroprop	1.0	14	75-71-8	Dichlorodifluoromethane	1.0	15
106-93-4	1,2-Dibromoethane	1.0	16	100-41-4	Ethylbenzene	1.0	18
95-50-1	1,2-Dichlorobenzene	1.0	18	98-82-8	Isopropylbenzene	1.0	15
107-06-2	1,2-Dichloroethane	0.50	19	136777612	m&p-Xylenes	1.0	32
78-87-5	1,2-Dichloropropane	1.0	16	79-20-9	Methyl Acetate	1.0	20
541-73-1	1,3-Dichlorobenzene	1.0	19	108-87-2	Methylcyclohexane	1.0	18
106-46-7	1,4-Dichlorobenzene	1.0	18	75-09-2	Methylene Chloride	1.0	17
78-93-3	2-Butanone	1.0	15	1634-04-4	Methyl-t-butyl ether	0.50	16
591-78-6	2-Hexanone	1.0	14	95-47-6	o-Xylene	1.0	16
108-10-1	4-Methyl-2-Pentanone	1.0	15	100-42-5	Styrene	1.0	16
67-64-1	Acetone	10	84	127-18-4	Tetrachloroethene	1.0	20
71-43-2	Benzene	0.50	16	108-88-3	Toluene	1.0	17
75-27-4	Bromodichloromethane	1.0	17	156-60-5	trans-1,2-Dichloroethene	1.0	19
75-25-2	Bromoform	1.0	15	10061-02-6	trans-1,3-Dichloropropene	1.0	16
74-83-9	Bromomethane	1.0	22	79-01-6	Trichloroethene	1.0	19
75-15-0	Carbon Disulfide	1.0	18	75-69-4	Trichlorofluoromethane	1.0	20
56-23-5	Carbon Tetrachloride	1.0	22	75-01-4	Vinyl Chloride	1.0	18
108-90-7	Chlorobenzene	1.0	19	1330-20-7	Xylenes (Total)	1.0	48
				t contract to the contract to	·		

930

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

 SampleID:
 AC59335-009(MS:AC59)
 Operator:
 WP
 Qt Meth:
 2M_A0531.M

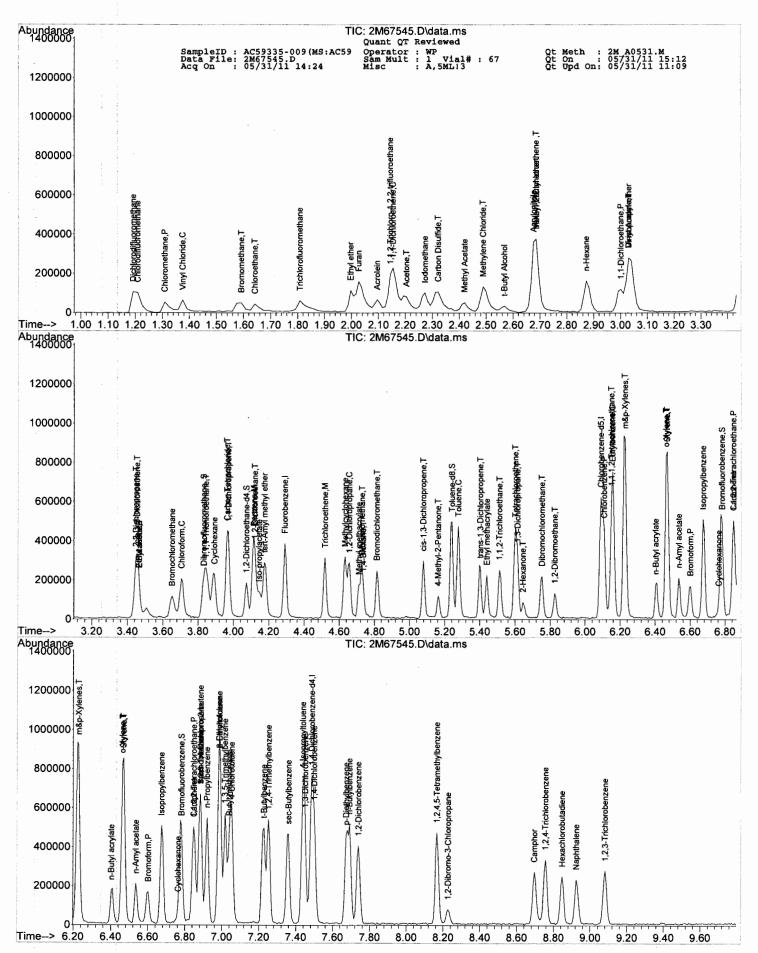
 Data File:
 2M67545.D
 Sam Mult:
 1 Vial#:
 67
 Qt On:
 05/31/11 15:12

 Acq On:
 05/31/11 14:24
 Misc:
 : A,5ML!3
 Qt Upd On:
 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound				Conc Units		in)
Inte	ernal Standards						
4)	Fluorobenzene	4.290	96	188910	30.00 ug/	/1 -0	.02
51)	Chlorobenzene-d5	6.090	117	184032	30.00 ug/	/1 -0	.02
69)	1,4-Dichlorobenzene-d4	7.486	152	124435	30.00 ug/	/1 -0	.02
yst	em Monitoring Compounds						
36)	Dibromofluoromethane	3.832	111	70486	31.75 ug/	/1 -0	.02
Sp	oiked Amount 30.000			Recove	ry = 105	5.83%	
38)	1,2-Dichloroethane-d4	4.073	67	42204	30.84 ug/	/1 -0	.02
Sp	oiked Amount 30.000			Recove	ry = 102	₹08.2	
	Toluene-d8	5.241	98	199836	28.15 ug/		.01
-	oiked Amount 30.000			Recove	ry = 93	3.83∜	
	Bromofluorobenzene	6.782	174	110153	29.82 ug/		.02
Sp	oiked Amount 30.000			Recove	ry = 99	9.40%	
	get Compounds						value
	Chlorodifluoromethane	1.209	51	114859	22.6691	ug/l	91
	Dichlorodifluoromethane	1.192	85	61277	14.8137	ug/l	85
	Chloromethane	1.309	50	61892	16.3589	ug/l	84
	Bromomethane	1.592	94	35929	22.1421	ug/l	93
	Vinyl Chloride	1.376	62	52568	17.5962	ug/l	90
	Chloroethane	1.642	64	32066	22.1110	ug/l	88
	Trichlorofluoromethane	1.809	101	73578	20.3921	ug/l	96
	Ethyl ether	1.998	59	45140	18.3446	ug/l	83
	Furan	2.027	39	133432	20.7485	ug/l	95
	1,1,2-Trichloro-1,2,2	2.145	101	50499	18.9702	ug/l	90
	Methylene Chloride	2.490	84	56368	16.8175	ug/l	92
	Acrolein	2.096	56	41728	84.2819	ug/l	92
	Acrylonitrile	2.677	53	18324	15.8966	ug/l	66
	Iodomethane	2.273	142	102088	17.7851	ug/l	93
-	Acetone	2.204	43	79524	83.5763	ug/l	94
	Carbon Disulfide	2.322	76	165042	17.5249	ug/l	100
	t-Butyl Alcohol	2.568	59	22432	70.6992	ug/l	99
	n-Hexane	2.873	57	55144	18.1979	ug/l	75
	Di-isopropyl-ether	3.031	45	181025	16.0050	ug/l	97
	1,1-Dichloroethene	2.155	61	84553	15.3117	ug/l	97
	Methyl Acetate	2.421	43	54860	19.6616	ug/l	100
	Methyl-t-butyl ether	2.686	73	142408	15.5322	ug/l	67
	1,1-Dichloroethane	3.001	63	101894	16.1815	ug/l	92
	trans-1,2-Dichloroethene	2.686	96	54622	18.8121	ug/l	88
	cis-1,2-Dichloroethene	3.453	61	97331	17.1896	ug/1	94
	Bromochloromethane	3.652	49	43810	16.1675	ug/l	87
	2,2-Dichloropropane	3.447	77	90199	22.3596	ug/l	98
	Ethyl acetate	3.465	43	19093	6.3732	ug/l	65
	1,4-Dioxane	4.735	88	25220	859.7977	ug/l	94
	1,1-Dichloropropene	3.971	75	76710	18.0733	ug/l	96
	Chloroform	3.706	83	108034	18.2421	ug/l	94
	Cyclohexane	3.892 4.121	56	72913	17.0769	ug/l	95
	1,2-Dichloroethane		62	100616	19.1344	ug/l	97
	2-Butanone	3.465	43	19093	14.9976		75
	1,1,1-Trichloroethane	3.844	97	95787	19.5207	ug/l	94
	Carbon Tetrachloride	3.965	117	88574	21.6307	ug/l	89
	Vinyl Acetate	3.031	43	139393	11.4435	ug/l	100
	Bromodichloromethane	4.813	83	86655	16.6145	ug/l	94
	Methylcyclohexane	4.633	83	67725	18.4942	ug/l	97
	Dibromomethane	4.729	174	53388	19.4528	ug/l	92
	1,2-Dichloropropane	4.657	63	50777	16.3901	ug/l	92
	Trichloroethene	4.519	130	59504	18.6037	ug/l	97
	Benzene	4.115	78 73	177347	16.0642	ug/l	100
	tert-Amyl methyl ether	4.175	73	137394	16.5909	ug/l	71
52)		4.145	43	82987m	12.9594	ug/l	
E 2 \	Methyl methacrylate	4.711	41	42128	13.0343	ug/l	90
		5.753	129 75	69024	16.4482	ug/l	99
54)	Dibromochloromethane		/ 5	83960	15.2082	ug/1	88
54) 56)	cis-1,3-Dichloropropene	5.078		00010	15 2265	33~ / T	
54) 56) 57)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	5.078 5.403	75	88018	15.7765	ug/l	
54) 56) 57) 58)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate	5.078 5.403 5.440	75 41	49837	14.0285	ug/l	76
54) 56) 57) 58) 59)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane	5.078 5.403 5.440 5.512	75 41 97	49837 46700	14.0285 17.1507	ug/l ug/l	76 90
54) 56) 57) 58) 59) 60)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane	5.078 5.403 5.440 5.512 5.825	75 41 97 107	49837 46700 54361	14.0285 17.1507 15.8490	ug/l ug/l ug/l	76 90 90
54) 56) 57) 58) 59) 60) 61)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane	5.078 5.403 5.440 5.512 5.825 5.614	75 41 97 107 76	49837 46700 54361 80164	14.0285 17.1507 15.8490 17.1379	ug/l ug/l ug/l ug/l	76 90 90 91
54) 56) 57) 58) 59) 60) 61) 62)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane 4-Methyl-2-Pentanone	5.078 5.403 5.440 5.512 5.825 5.614 5.163	75 41 97 107 76 43	49837 46700 54361 80164 48343	14.0285 17.1507 15.8490 17.1379 14.5263	ug/l ug/l ug/l ug/l ug/l	95 76 90 91 93
54) 56) 57) 58) 59) 60) 61) 62)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone	5.078 5.403 5.440 5.512 5.825 5.614 5.163 5.644	75 41 97 107 76 43 43	49837 46700 54361 80164 48343 33376	14.0285 17.1507 15.8490 17.1379 14.5263 14.3095	ug/l ug/l ug/l ug/l ug/l ug/l	76 90 90 91 93
54) 56) 57) 58) 59) 60) 61) 62) 63)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene	5.078 5.403 5.440 5.512 5.825 5.614 5.163 5.644 5.602	75 41 97 107 76 43 43 164	49837 46700 54361 80164 48343 33376 52746	14.0285 17.1507 15.8490 17.1379 14.5263 14.3095 19.7196	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	76 90 90 91 93 95
54) 56) 57) 58) 59) 60) 61) 62) 63) 64)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene	5.078 5.403 5.440 5.512 5.825 5.614 5.163 5.644 5.602 5.277	75 41 97 107 76 43 43 164 92	49837 46700 54361 80164 48343 33376 52746 117879	14.0285 17.1507 15.8490 17.1379 14.5263 14.3095 19.7196 17.1651	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	76 90 90 91 93 95 99
54) 56) 57) 58) 59) 60) 61) 62) 63)	cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl methacrylate 1,1,2-Trichloroethane 1,2-Dibromoethane 1,3-Dichloropropane 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene	5.078 5.403 5.440 5.512 5.825 5.614 5.163 5.644 5.602	75 41 97 107 76 43 43 164	49837 46700 54361 80164 48343 33376 52746	14.0285 17.1507 15.8490 17.1379 14.5263 14.3095 19.7196	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	76 90 90 91 93 95


SampleID: AC59335-009(MS:AC59 Operator: WP Qt Meth: 2M_A0531.M Data File: 2M67545.D Sam Mult: 1 Vial#: 67 Qt On: 05/31/11 15:12 Acq On: 05/31/11 14:24 Misc: A,5ML13 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
70)	n-Butyl acrylate	6.403	55	85315	12.1406	ug/l	92
71)	n-Amyl acetate	6.535	43	83822	12.0029	ug/l	90
72)	Bromoform	6.601	173	52488	14.6553	ug/l	95
73)	Ethylbenzene	6.156	106	57451	17.7631	ug/l	82
74)	1,1,2,2-Tetrachloroethane	6.848	83	63218	16.1245	ug/l	86
76)	Styrene	6.469	104	138747	15.5449	ug/l	93
77)	m&p-Xylenes	6.228	106	167223	31.5782	ug/l	92
78)	o-Xylene	6.463	106	85315	15.9695	ug/l	96
79)	trans-1,4-Dichloro-2-b	6.884	53	24858	18.2982	ug/l	39
80)	1,3-Dichlorobenzene	7.450	146	114896	18.8072	ug/l	92
81)	1,4-Dichlorobenzene	7.498	146	117939	18.0826	ug/l	97
82)	1,2-Dichlorobenzene	7.739	146	114032	18.0073	ug/l	92
83)	Isopropylbenzene	6.674	105	209986	15.0234	ug/l	92
84)	Cyclohexanone	6.764	55	7402	54.9073	ug/l	93
85)	Camphene	6.848	93	68230	15.1847	ug/l	93
86)	1,2,3-Trichloropropane	6.884	75	89185	17.6375	ug/l	88
87)	2-Chlorotoluene	6.987	91	154498	16.1347	ug/l	91
88)	p-Ethyltoluene	6.987	105	251089	17.8219	ug/l	77
89)		7.053	91	155392	19.6218	ug/l	95
90)	n-Propylbenzene	6.920	91	275019	15.2890	ug/l	97
91)	Bromobenzene	6.884	77	123083	17.2984	ug/l	85
92)	1,3,5-Trimethylbenzene	7.017	105	191913	19.1552	ug/l	86
93)	Butyl methacrylate	7.041	41	87342	13.9105	ug/l	63
94)	t-Butylbenzene	7.227	119	187138	16.8005	ug/l	92
95)	1,2,4-Trimethylbenzene	7.251	105	213305	19.5762	ug/l	92
96)	sec-Butylbenzene	7.360	105	218537	15.7195	ug/l	97
97)	4-Isopropyltoluene	7.438	119	194279	17.6019	ug/l	94
98)	n-Butylbenzene	7.691	91	213874	17.7593	ug/l	96
99)	p-Diethylbenzene	7.673	119	102588	17.4927	ug/l	91
100)	1,2,4,5-Tetramethylben	8.166	119	178208	16.9191	ug/l	91
101)	1,2-Dibromo-3-Chloropr	8.227	157	13586	13.7570	ug/l	87
102)	Camphor	8.696	95	46358	120.4933	ug/l	95
103)	Hexachlorobutadiene	8.847	225	40534	15.4169	ug/l	95
104)		8.756	180	79904	18.2036	ug/l	97
105)	1,2,3-Trichlorobenzene	9.081	180	63095	15.9628	ug/l	95
106)	Naphthalene	8.925	128	132186	13.7960	ug/l	100
1							-

^{:(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M_A0531.M Thu Jun 09 14:38:54 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59335-010(MSD:AC

Client Id: MW-08 MSD Data File: 2M67546.D

Analysis Date: 05/31/11 14:40 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

			Units. u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	21	75-00-3	Chloroethane	1.0	21
79-34-5	1,1,2,2-Tetrachloroethane	1.0	18	67-66-3	Chloroform	1.0	20
76-13-1	1,1,2-Trichloro-1,2,2-triflu	1.0	22	74-87-3	Chloromethane	1.0	17
79-00-5	1,1,2-Trichloroethane	1.0	18	156-59-2	cis-1,2-Dichloroethene	1.0	17
75-34-3	1,1-Dichloroethane	1.0	18	10061-01-5	cis-1,3-Dichloropropene	1.0	17
75-35-4	1,1-Dichloroethene	1.0	18	110-82-7	Cyclohexane	1.0	19
120-82-1	1,2,4-Trichlorobenzene	1.0	20	124-48-1	Dibromochloromethane	1.0	18
96-12-8	1,2-Dibromo-3-Chloroprop	1.0	14	75-71-8	Dichlorodifluoromethane	1.0	16
106-93-4	1,2-Dibromoethane	1.0	18	100-41-4	Ethylbenzene	1.0	19
95-50-1	1,2-Dichlorobenzene	1.0	19	98-82-8	Isopropylbenzene	1.0	17
107-06-2	1,2-Dichloroethane	0.50	21	136777612	m&p-Xylenes	1.0	33
78-87-5	1,2-Dichloropropane	1.0	19	79-20-9	Methyl Acetate	1.0	23
541-73-1	1,3-Dichlorobenzene	1.0	21	108-87-2	Methylcyclohexane	1.0	20
106-46-7	1,4-Dichlorobenzene	1.0	19	75-09-2	Methylene Chloride	1.0	18
78-93-3	2-Butanone	1.0	18	1634-04-4	Methyl-t-butyl ether	0.50	18
591-78-6	2-Hexanone	1.0	16	95-47-6	o-Xylene	1.0	17
108-10-1	4-Methyl-2-Pentanone	1.0	15	100-42-5	-	1.0	18
67-64-1	Acetone	10	89		Tetrachloroethene	1.0	23
71-43-2	Benzene	0.50	19	108-88-3	Toluene	1.0	19
75-27-4	Bromodichloromethane	1.0	19	156-60-5	trans-1,2-Dichloroethene	1.0	21
75-25-2	Bromoform	1.0	16		trans-1,3-Dichloropropene	1.0	17
74-83-9	Bromomethane	1.0	25		Trichloroethene	1.0	20
75-15-0	Carbon Disulfide	1.0	20	75-69-4	Trichlorofluoromethane	1.0	23
56-23-5	Carbon Tetrachloride	1.0	23		Vinyl Chloride	1.0	20
108-90-7	Chlorobenzene	1.0	20		Xylenes (Total)	1.0	50

Worksheet #: 193017

Total Target Concentration

1000

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

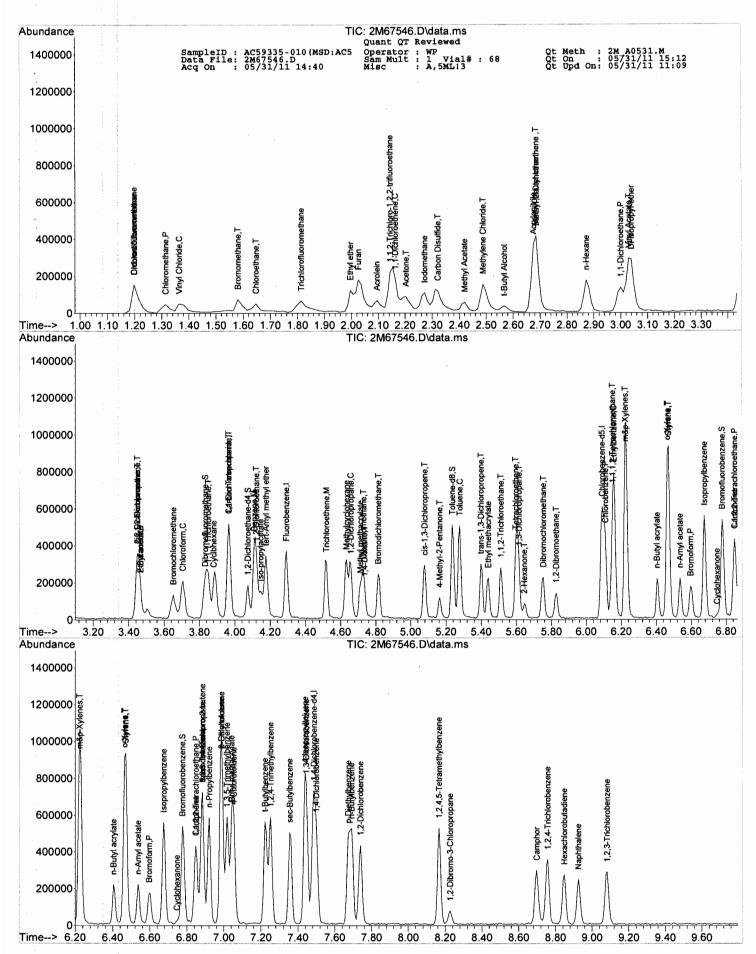
R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59335-010(MSD:AC5 Operator : WP Sam Mult : 1 Vial# : 68 Acq On : 05/31/11 14:40 Misc : A,5ML!3

Qt Meth : 2M_A0531.M Qt On : 05/31/11 15:12 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration


	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
	rnal Standards	4 201	96	10/0/2	30.00 ug/	/1 _0	0.2
	Fluorobenzene Chlorobenzene-d5	4.291 6.091		184843 178043	30.00 ug/		.02 .02
	1,4-Dichlorobenzene-d4	7.487		122631	30.00 ug/		.02
057	1,4 Dichiologenzene u4	7.407	132	122031	30.00 ag/		
Syst	em Monitoring Compounds						
	Dibromofluoromethane	3.833	111	70878	32.63 ug/	1 -0	.02
	iked Amount 30.000			Recove	ry = 108	3.77%	
38)	1,2-Dichloroethane-d4	4.074	67	40777	30.45 ug/	/1 -0	.02
Sp	iked Amount 30.000			Recove	ry = 101	L.50%	
65)	Toluene-d8	5.236	98	206535	30.07 ug/		.02
	iked Amount 30.000			Recove	•).23%	
	Bromofluorobenzene	6.777	174	103431	28.41 ug/		.02
Sp	oiked Amount 30.000			Recove	ery = 94	1.70%	
m						^	•••]
	et Compounds Chlorodifluoromethane	1 107	51	120200	26.0805	ug/l	value 86
	Dichlorodifluoromethane	1.197 1.197		129299 63712	15.7412	ug/1 ug/1	88
	Chloromethane	1.314	50	62270	16.8209	ug/l	89
	Bromomethane	1.581		40330	25.4012	ug/l	87
	Vinyl Chloride	1.364		58088	19.8718	ug/l	98
	Chloroethane	1.647		29286	20.6384	ug/l	70
	Trichlorofluoromethane	1.814		80159	22.7048	ug/l	85
	Ethyl ether	1.996		53288	22.1324	ug/l	83
	Furan	2.026		147866	23.4989	ug/l	97
	1,1,2-Trichloro-1,2,2	2.144		56069	21.5260	ug/l	92
	Methylene Chloride	2.488		58235	17.7568	ug/l	93
16)	Acrolein	2.095	56	44777	92.4302	ug/l	84
17)	Acrylonitrile	2.675	53	22679	20.1076	ug/l	97
18)	Iodomethane	2.272	142	111810	19.9074	ug/l	98
19)	Acetone	2.203	43	83136	89.2948	ug/l	89
	Carbon Disulfide	2.321		184600	20.0330	ug/l	100
	t-Butyl Alcohol	2.567		23839	76.7868	ug/l	74
	n-Hexane	2.872		62237	20.9905	ug/l	73
	Di-isopropyl-ether	3.039		198032	17.8939	ug/l	98
24)		2.164		95670	17.7060	ug/l	94
	Methyl Acetate	2.419		63029	23.0863	ug/l	100
	Methyl-t-butyl ether	2.685		157167	17.5191	ug/l	66
27)	1,1-Dichloroethane trans-1,2-Dichloroethene	3.000	63 96	112115 59439	18.1965 20.9215	ug/l ug/l	98 93
	cis-1,2-Dichloroethene	2.685 3.448	61	96148	17.3542	ug/l	84
	Bromochloromethane	3.653	49	49828	18.7929	ug/1	89
	2,2-Dichloropropane	3.448	77	85597	21.6857	ug/l	90
	Ethyl acetate	3.466		22266	7.5958	ug/1	69
	1,4-Dioxane	4.736		27564	960.3850	ug/1	92
	1,1-Dichloropropene	3.966	75	83354	20.0708	ug/l	88
	Chloroform	3.707		115627	19.9538	ug/l	89
		3.881	56	79407	19.0071	ug/l	97
39)	1,2-Dichloroethane	4.122	62	106340	20.6679	ug/l	96
40)	2-Butanone	3.466	43	22266	17.8748	ug/l	97
41)		3.851	97	102485	21.3452	ug/l	86
	Carbon Tetrachloride	3.966	117	93694	23.3845	ug/l	89
	Vinyl Acetate	3.030	43	147842	12.4041	ug/l	100
	Bromodichloromethane	4.814	83	95659	18.7444	ug/l	98
	Methylcyclohexane	4.634	83	70044	19.5483	ug/l	95
46)		4.730	174	52588	19.5829	ug/l	90
47)		4.658	63	57015	18.8085	ug/l	96
48)		4.519	130	61806 201547	19.7485	ug/l	92
50)	Benzene tert-Amyl methyl ether	4.110 4.176	78 73	149360	18.6579 18.4327	ug/l ug/l	100 71
52)	•	4.146	43	93959m	15.1663	ug/l	7 1
53)		4.712	41	49024	15.6781	ug/l	96
	Dibromochloromethane	5.753	129	73856	18.1916	ug/l	90
	cis-1,3-Dichloropropene	5.079		91485	17.1287	ug/l	85
	trans-1,3-Dichloropropene	5.398	75	91971	17.0396	ug/l	98
	Ethyl methacrylate	5.440	41	53929	15.6910	ug/1	78
59)		5.513	97	48371	18.3619	ug/l	89
60)		5.826	107	61315	18.4778	ug/1	97
61)	1,3-Dichloropropane	5.615	76	93120	20.5773	ug/l	91
62)		5.164	43	48063	14.9280	ug/l	83
63)		5.645	43	35804	15.8668	ug/l	91
	Tetrachloroethene	5.597		59223	22.8859	ug/l	87
66)		5.278	92	126145	18.9866	ug/l	100
67)	1,1,1,2-Tetrachloroethane	6.151	133	64412	24.4316	ug/l	86
68)	Chlorobenzene	6.109	112	140335	20.4274	ug/l	99
	[]						

Qt Meth : 2M_A0531.M Qt On : 05/31/11 15:12 Qt Upd On: 05/31/11 11:09 SampleID : AC59335-010 (MSD:AC5 Data File: 2M67546.D Operator : WP Sam Mult: 1 Vial#: 68 Misc: A,5ML!3 Acq On : 05/31/11 14:40

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	in)
70)	n-Butyl acrylate	6.404	55	92857	13.4082	ug/l	94
71)	n-Amyl acetate	6.536	43	88532	12.8639	ug/l	88
72)	Bromoform	6.596	173	56609	16.0384	ug/l	88
73)	Ethylbenzene	6.157	106	60704	19.0450	ug/l	93
74)	1,1,2,2-Tetrachloroethane	6.849	83	69045	17.8698	ug/l	99
76)	Styrene	6.470	104	157897	17.9506	ug/l	99
77)	m&p-Xylenes	6.223	106	174054	33.3517	ug/l	99
78)	o-Xylene	6.464	106	91869	17.4493	ug/l	91
79)	trans-1,4-Dichloro-2-b	6.885	53	28738	21.4656	ug/l	56
80)	1,3-Dichlorobenzene	7.445	146	124608	20.6970	ug/l	94
81)	1,4-Dichlorobenzene	7.499	146	122073	18.9918	ug/l	95
82)	1,2-Dichlorobenzene	7.740	146	119664	19.1747	ug/l	93
83)	Isopropylbenzene	6.675	105	233788	16.9724	ug/l	97
84)	Cyclohexanone	6.747	55	8072	60.7581	ug/l	98
85)	Camphene	6.849	93	48891	11.0408	ug/l	92
86)	1,2,3-Trichloropropane	6.885	75	89205	17.9010	ug/l	91
87)	2-Chlorotoluene	6.988	91	169664	17.9792	ug/l	93
88)	p-Ethyltoluene	6.988	105	254605	18.3373	ug/l	82
89)	4-Chlorotoluene	7.054	91	149120	19.1069	ug/l	92
. 90)	n-Propylbenzene	6.921	91	299828	16.9134	ug/l	96
91)	Bromobenzene	6.885	77	137639	19.6287	ug/l	91
92)	1,3,5-Trimethylbenzene	7.018	105	222469	22.5317	ug/l	97
93)	Butyl methacrylate	7.042	41	96182	15.5437	ug/l	65
94)	t-Butylbenzene	7.222	119	199294	18.1550	ug/l	91
95)	1,2,4-Trimethylbenzene	7.252	105	224658	20.9214	ug/l	91
96)	sec-Butylbenzene	7.355	105	238096	17.3783	ug/l	99
97)	4-Isopropyltoluene	7.439	119	208028	19.1248	ug/l	96
98)	n-Butylbenzene	7.692	91	224779	18.9394	ug/l	95
99)	p-Diethylbenzene	7.674	119	108001	18.6866	ug/l	94
100)	1,2,4,5-Tetramethylben	8.167	119	196085	18.8902	ug/l	93
101)	1,2-Dibromo-3-Chloropr	8.228	157	13477	13.8474	ug/l	81
102)	Camphor	8.697	95	48098	126.8549	ug/l	98
103)	Hexachlorobutadiene	8.848	225	50519	19.4972	ug/l	95
104)	1,2,4-Trichlorobenzene	8.757	180	87511	20.2299	ug/l	98
105)	1,2,3-Trichlorobenzene	9.082		72283	18.5564	ug/l	95
:106)	Naphthalene	8.926	128	139119	14.7331	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0531.M Thu Jun 09 14:39:01 2011 RPT1

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-011

Client Id: MW-09

Data File: 3M93526.D

Analysis Date: 06/01/11 10:29 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

	1		0111101 1	-9			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U
•							

Worksheet #: 193017

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

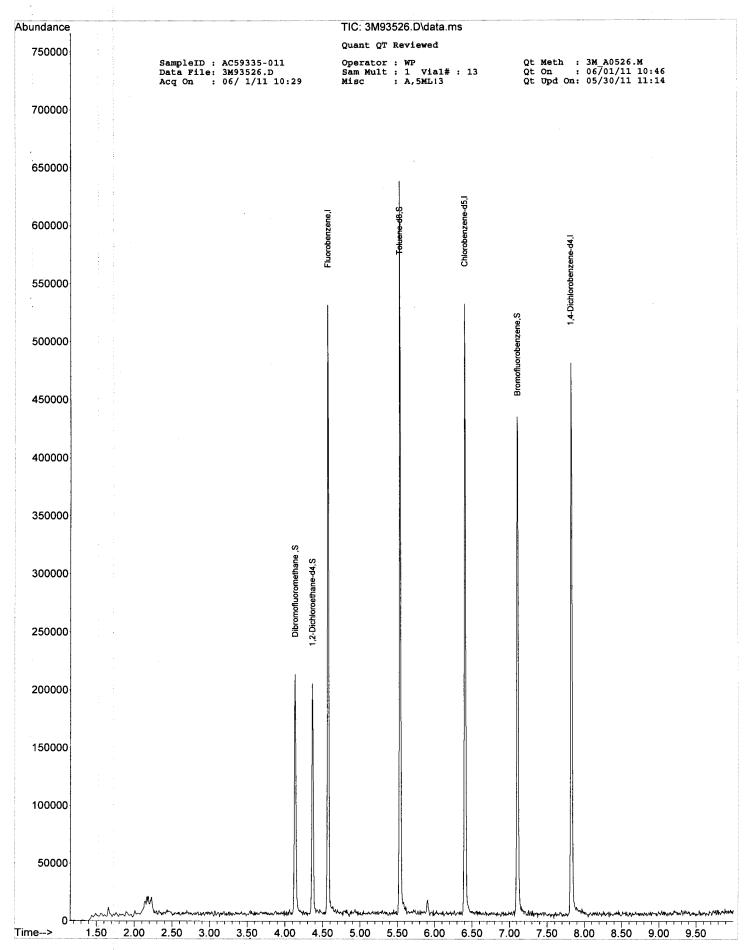
R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59335-011

Data File: 3M93526.D Acq On : 06/ 1/11 10:29

Operator : WP Sam Mult : 1 Vial# : 13 Misc : A,5ML!3


Qt Meth : 3M_A0526.M Qt On : 06/01/11 10:46 Qt Upd On: 05/30/11 11:14

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\ Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\
Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.574	96	264745	30.00	ug/l	0.00
51) Chlorobenzene-d5	6.407	117	208922	30.00	ug/l	0.00
69) 1,4-Dichlorobenzene-d4	7.825	152	131968	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.135	111	85980		J .	0.00
Spiked Amount 30.000			Recove:	ry =	105.93%	
38) 1,2-Dichloroethane-d4	4.363	67	48983	30.22	ug/l	0.00
Spiked Amount 30.000			Recove:	ry =	100.73%	
65) Toluene-d8	5.535	98	261845	28.38	ug/l	0.00
Spiked Amount 30.000			Recove:	ry =	94.60%	
75) Bromofluorobenzene	7.110	174	143785	30.09	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	100.30%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-012

Client Id: MW-10

Data File: 3M93529.D

Analysis Date: 06/01/11 11:19

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

omes ug.2										
Cas #	Compound	RL	Conc	Cas #	Compound	RL .	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U			
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U			
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U			
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U			
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U			
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U			

ColumnID: (^) Indicates results from 2nd column

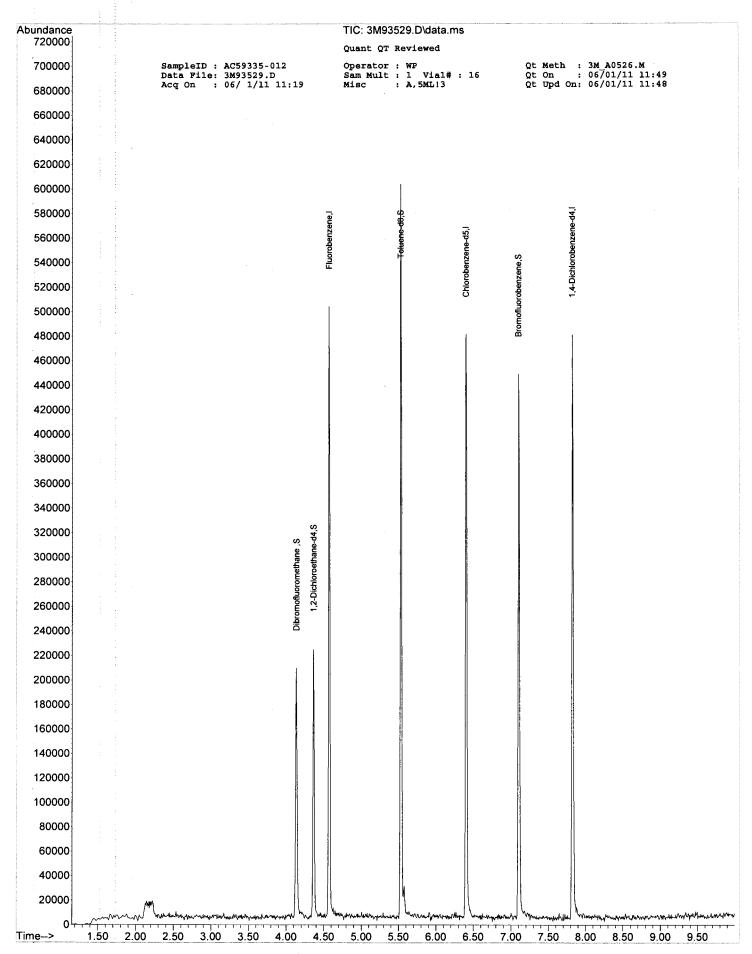
U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea


Operator : WP Sam Mult : 1 Vial# : 16 Misc : A,5ML!3 Qt Meth : 3M_A0526.M Qt On : 06/01/11 11:49 SampleID : AC59335-012 Data File: 3M93529.D Acq On : 06/ 1/11 11:19 Qt Upd On: 06/01/11 11:48

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\
Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\
Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.574	96	257577	30.00	ug/l	0.00
51) Chlorobenzene-d5	6.407	117	206831	30.00	ug/l	0.00
69) 1,4-Dichlorobenzene-d4	7.825	152	131014	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.135	111	89393	33.96	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	113.20%	
38) 1,2-Dichloroethane-d4	4.363	67	52719	33.43	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	111.43%	
65) Toluene-d8	5.535	98	258067	28.25	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	94.17%	
75) Bromofluorobenzene	7.104	174	142780	30.10	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	100.33%	
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

3M_A0526.M Thu Jun 09 14:39:12 2011 RPT1

ORGANICS VOLATILE REPORT

Sample Number: AC59335-013 Client Id: MW-11

Data File: 3M93530.D

Analysis Date: 06/01/11 11:35

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

			Omis. u	·9/ L			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	υ	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	υ
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	υ	100-41-4	Ethylbenzene	1.0	υ
95-50-1	1,2-Dichlorobenzene	1.0	υ	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	υ
541-73-1	1,3-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	υ
106-46-7	1,4-Dichlorobenzene	1.0	υ	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	υ
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	υ
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	υ
75-15-0	Carbon Disulfide	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	υ
108-90-7	Chlorobenzene	1.0	U	1330-20-7	Xylenes (Total)	1.0	U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

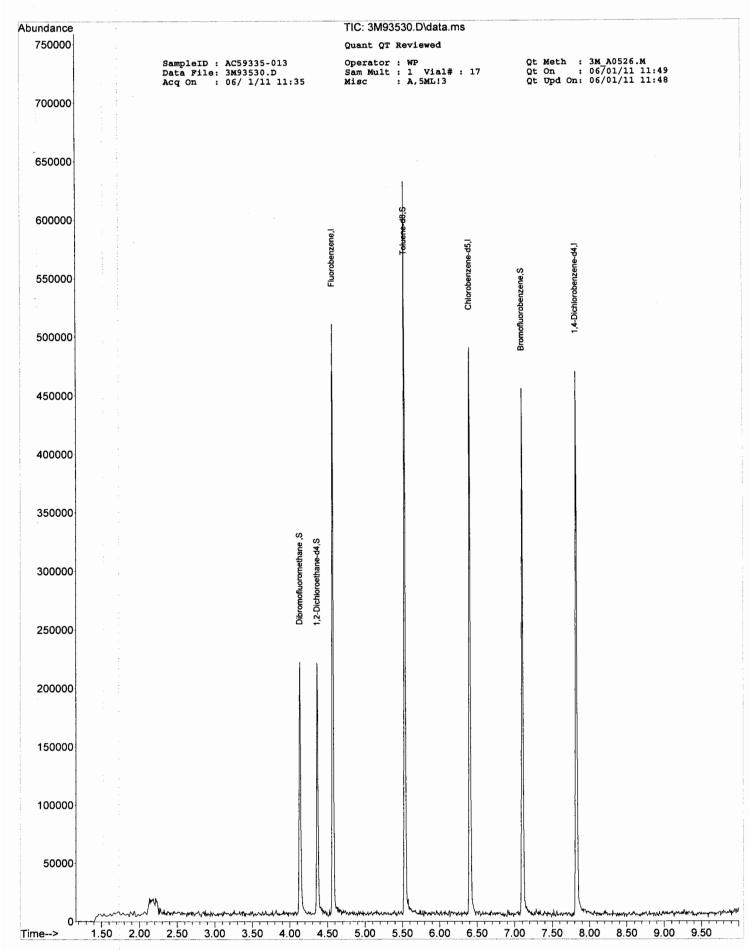
R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59335-013 Data File: 3M93530.D

Acq On : 06/ 1/11 11:35

Operator : WP Sam Mult : 1 Vial# : 17 Misc : A,5ML!3


Qt Meth : 3M_A0526.M Qt On : 06/01/11 11:49 Qt Upd On: 06/01/11 11:48

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.574	96	258598	30.00	ug/l	0.00
51) Chlorobenzene-d5	6.407	117	209470	30.00	ug/l	0.00
69) 1,4-Dichlorobenzene-d4	7.825	152	133959	30.00	ug/l	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.136	111	88788	33.60	ug/l	0.00
Spiked Amount 30.000					112.00%	
38) 1,2-Dichloroethane-d4	4.364	67	50020	31.60	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	105.33%	
65) Toluene-d8	5.536	98	253131	27.36	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	91.20%	
75) Bromofluorobenzene	7.104	174	145320	29.96	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	99.87%	
Target Compounds						Qvalue

(#) = qualifier out of range (#) = manual integration (+) = signals summed

ORGANICS VOLATILE REPORT

Sample Number: AC59335-014(100X)

Client Id: Duplicate Data File: 2M67558.D

Analysis Date: 05/31/11 17:50

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 100

Solids: 0

Office. agr.											
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc				
71-55-6	1,1,1-Trichloroethane	100	U	75-00-3	Chloroethane	100	U				
79-34-5	1,1,2,2-Tetrachloroethane	100	U	67-66-3	Chloroform	100	U				
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	100	U	74-87-3	Chloromethane	100	U				
79-00-5	1,1,2-Trichloroethane	100	U	156-59-2	cis-1,2-Dichloroethene	100	240				
75-34-3	1,1-Dichloroethane	100	U	10061-01-5	cis-1,3-Dichloropropene	100	U				
75-35-4	1,1-Dichloroethene	100	U	110-82-7	Cyclohexane	100	U				
120-82-1	1,2,4-Trichlorobenzene	100	U	124-48-1	Dibromochloromethane	100	U				
96-12-8	1,2-Dibromo-3-Chloropropa	100	U	75-71-8	Dichlorodifluoromethane	100	U				
106-93-4	1,2-Dibromoethane	100	U	100-41-4	Ethylbenzene	100	U				
95-50-1	1,2-Dichlorobenzene	100	U	98-82-8	Isopropylbenzene	100	U				
107-06-2	1,2-Dichloroethane	50	U	136777612	m&p-Xylenes	100	U				
78-87-5	1,2-Dichloropropane	100	U	79-20-9	Methyl Acetate	100	U				
541-73-1	1,3-Dichlorobenzene	100	U	108-87-2	Methylcyclohexane	100	U				
106-46-7	1,4-Dichlorobenzene	100	U	75-09-2	Methylene Chloride	100	U				
78-93-3	2-Butanone	100	U	1634-04-4	Methyl-t-butyl ether	50	U				
591-78-6	2-Hexanone	100	U	95-47-6	o-Xylene	100	U				
108-10-1	4-Methyl-2-Pentanone	100	U	100-42-5	Styrene	100	U				
67-64-1	Acetone	1000	U	127-18-4	Tetrachloroethene	100	34000				
71-43-2	Benzene	50	U	108-88-3	Toluene	100	U				
75-27-4	Bromodichloromethane	100	U	156-60-5	trans-1,2-Dichloroethene	100	U				
75-25-2	Bromoform	100	U	10061-02-6	trans-1,3-Dichloropropene	100	U				
74-83-9	Bromomethane	100	U	79-01-6	Trichloroethene	100	7900				
75-15-0	Carbon Disulfide	100	U	75-69-4	Trichlorofluoromethane	100	U				
56-23-5	Carbon Tetrachloride	100	U	75-01-4	Vinyl Chloride	100	U				
108-90-7	Chlorobenzene	100	Ū		Xylenes (Total)	100	U				

⁴²⁰⁰⁰

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

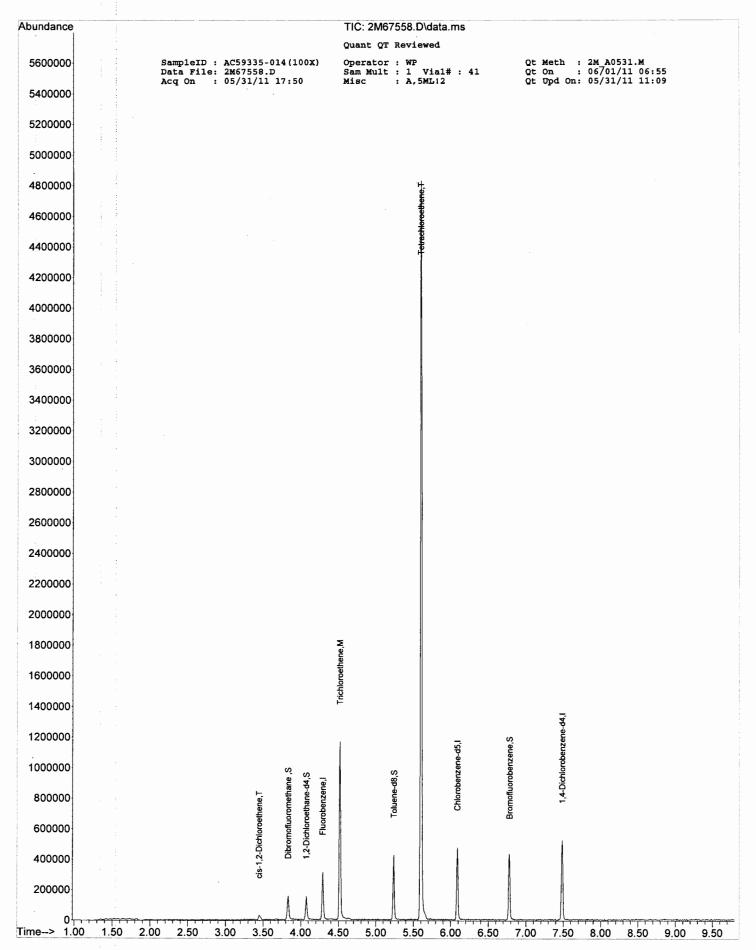
E - Indicates the analyte concentration exceeds the calibration range of the instrument.

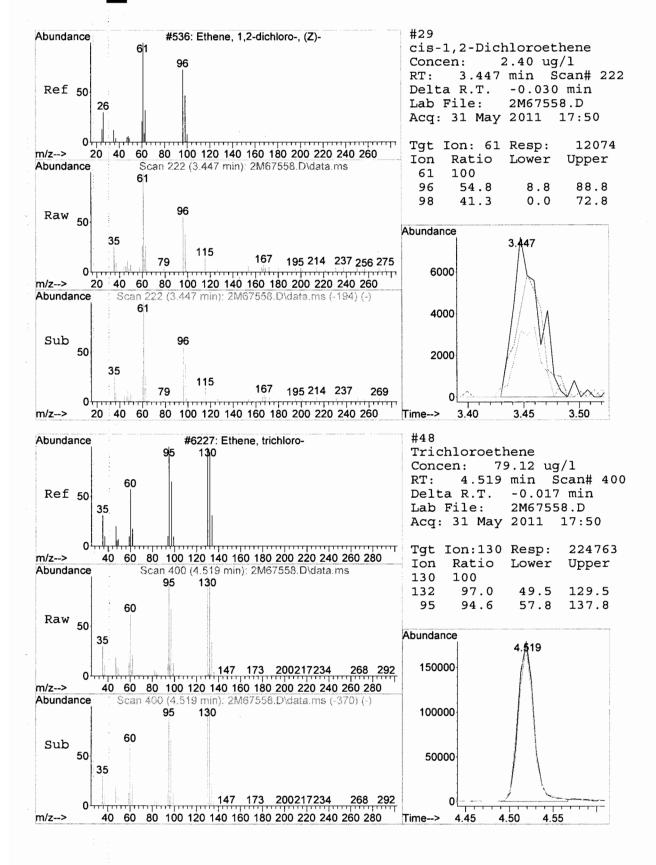
R - Retention Time Out

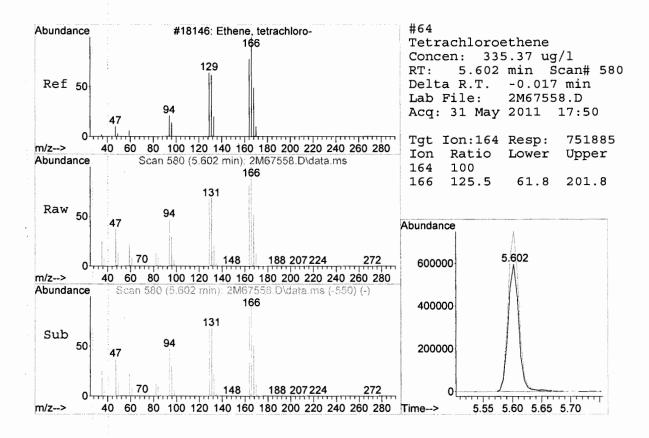
J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : AC59335-014(100X) Data File: 2M67558.D Acq On : 05/31/11 17:50


Operator : WP Sam Mult : 1 Vial# : 41 Misc : A,5ML!2


Qt Meth : 2M_A0531.M Qt On : 06/01/11 06:55 Qt Upd On: 05/31/11 11:09


Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
4) Fluorobenzene	4.290	96	167784	30.00 ug/	1 -0.02
51) Chlorobenzene-d5	6.090	117	154252	30.00 ug/	1 -0.02
69) 1,4-Dichlorobenzene-d4	7.486	152	100275	30.00 ug/	1 -0.02
System Monitoring Compounds					
36) Dibromofluoromethane	3.833	111		33.64 ug/	
Spiked Amount 30.000			Recove	ry = 112	.13%
38) 1,2-Dichloroethane-d4	4.073	67	34970	28.77 ug/	1 -0.02
Spiked Amount 30.000			Recove	ry = 95	.90%
65) Toluene-d8	5.241	98	170406	28.64 ug/	1 -0.01
Spiked Amount 30.000			Recove	ry = 95	.47%
75) Bromofluorobenzene	6.782	174	88459	29.72 ug/	1 -0.02
Spiked Amount 30.000			Recove	ry = 99	.07%
					01
Target Compounds					Qvalue
29) cis-1,2-Dichloroethene	3.447	61			ug/l 89
48) Trichloroethene	4.519				ug/l 95
64) Tetrachloroethene	5.602	164	751885	335.3691	ug/l 95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

\sim 5	
V.	- /

GC/MS Volatile Data Standards Data

0118

Form 6 Initial Calibration

Instrument: GCMS_3

			u for linear Ea.	Correlation Coefficient	Corr I = Corre	npound	iteria * - ccc compound	a - failed the spcc criteria	
Page 1 of 3		,	Avg Rsd: 18.7		Note:			Flags	
)	1					
100.0 250.0 500.0 1.00	10.00				0.1321	0.2244 0.1625 0.2115 0.2451 0.3177 0.2593 0.2420 0.1321	.1625 0.2115 0.2451	E F	Methylcyclohexane
100.0	20.00 5.00 10.00 50.00		0.995 0.998 11	0.394 5.11 0.	0.3726 0.4337	0.3590 0.3913 0.3410 0.3961 0.4871 0.3946 0.3675 0.3726 0.4337	.3913 0.3410 0.3961	1 0 Avg 0.3590 0	Bromodichloromethane
00 100.0 250.0 500.0 1.00	20.00 5.00 10.00 50.00 100.0	•	0.992 0.998 17	0.586 3.35 0.	0.4231	0.5506 0.5470 0.6308 0.7834 0.6093 0.5509 0.4231	.5506 0.5470 0.6308		Vinvi Acetate
10.00 50.00 100.0 250.0 500.0 1.00	١.				0.3/51	U.2828 U.2818 U.28U2 U.2865 U.3608 U.2682 U.2535 U.3/51	2818 0.2802 0.2855	AVQ 0.2828	Carbon Letrachioride
00 100.0 250.0 500.0 1.00		. +			6007.0	0.3234 0.3063 0.3111 0.3328 0.4262 0.3430 0.3307 0.2338	3049 0.3111 0.3329) Avq	C-t-T-t-st-st-
100.0 250.0 500.0	10.00		0.997		0.5550	0.1324 0.8651 0.8863 0.1448 0.1823 0.1277 0.1377 0.2842	3085 0 3111 0 3330		1 1 Tiphle pathons
100.0 250.0 500.0	200		0.007	-	0.2042	0 1625 0 1277 O 1377	0651 0 0983 0 1449	- !	3-Butanone
10 100 0 250 0 500 0 1 00 0 50			866 U 66		0 4228 0 7621	0 3962 0 4306 0 3911 0 4071 0 5080 0 3953 0 3549 0 4228 0 7621	4306 0 3911 0 4071	— П	1 2-Dichloroethane
	0				0.1987 0.2038	0.1817 0.1934 0.1780 0.1716 0.1789 0.1807 0.1656 0.1987	.1934 0.1780 0.1716		1.2-Dichloroethane-d4
100.0 250.0 500.0	20.00 5.00 10.00 50.00		0.995 0.998 22	0.324 4.19 0.	0.2643	0.3201 0.2210 0.2802 0.3652 0.4468 0.3578 0.3349 0.2643	.2210 0.2802 0.3652		Cvclohexane
30.00 30.00	30.00 30.00 30.00 30.00		-1 6.9	0.307 4.13 -1	0.3262 0.3445	3072 0.3201 0.3058 0.2884 0.3019 0.2805 0.2844 0.3262	.3201 0.3058 0.2884	0	Dibromofluoromethane
00 100.0 250.0 500.0 1.00	20.00 5.00 10.00 50.00	3 *(30)	97 0.998 13	0.466 4.03 0.99	0.5520	0.4025 0.4534 0.5604 0.4580 0.4435	.4210 0.4025 0.4534	1 0 Avg 0.4360 0.4210	Chloroform
50.00 100.0 250.0 500.0 1.00	20.00 5.00 10.00 50.	•	0		0.2402	0.3252 0.2915 0.3166 0.3445 0.4257 0.3344 0.2943 0.2402	.2915 0.3166 0.3445	1 0 LinF 0.3252 0	1.1-Dichloropropene
0. 5000. 50.00	1000. 250.0 500.0 2500.		0.999			0.0051	0.0041 0.0023 0.0028 0.0041 0.0051		1.4-Dioxane
00 100.0 250.0 500.0 1.00	5.00		0.998	1		0.31/3 0.2919 0.31// 0.3445 0.4495 0.3565 0.3346 0.2/54	2919 0.31// 0.3445	1	Ethyl acetate
00 100.0 250.0 500.0 1.00		•	0.998		0.1808	0.1906 0.1854 0.1875 0.1994 0.2666 0.2139 0.2030 0.1808	.1854 0.1875 0.1994	AVQ	2.2-Dichloropropane
100.0 250.0 500.0	10.00		0.990		0.32/0	0.2404 0.2711 0.2002 0.2023 0.3473 0.2701 0.2020 0.3270	2711 0.262 0.2623	À	Diomocniorometriane
100.0 250.0 500.0	5.00 10.00		0.997		0.40/3	0.3090 0.3343 0.3062 0.3900 0.3027 0.3664 0.3627 0.4073 6.3464 6.3744 6.3665 6.3836 6.3476 6.3784 6.3656 6.3270	.3343 0.3662 0.3960		Cls-1.2-Dichloroetherie
250.0 500.0	10.00		0.997		0.2163	0.1957	3345 0 3683 0 3060		trans-1.2-Dichloroetner
250.0 500.0	Ι.	(0.100)	7 0.997		0.4342	0.4148 0.4020 0.3810 0.4535 0.5859 0.4620 0.4571 0.4342	4020 0.3810 0.4535	Avq	1.1-Dichloroethane
00 100.0 250.0 500.0 1.00 0.50			0.990		0.3912 0.4221	0.3221 0.2224 0.2997 0.3423 0.4317 0.3170 0.2000 0.3912	.2224 0.2997 0.3423	Cua	MethAl-f-parki ettlet
100.0 250.0 500.0 1.00			0.990			0.3110 0.2839 0.2007 0.3330 0.4140 0.3380 0.3233 0.3380	2224 0.2007 0.3330		Mothyl t butyl othor
100.0 250.0 500.0		(30)	7 0.990		0.3586	0.3/3/ 0.34/9 0.339 0.3000 0.4042 0.3020 0.3/3/ 0.3030	3800 0 3687 0 3336		Mothyl Acetata
100.0 250.0 500.0			7 0 008		0.3656	7777 N 8087 N 6087 N	3479 0.761 0.3806	אַ רַ	1 1-Dichloroethene
10 00 50 00 100 0 250 0 500 0 1 00			3 0 998		0 6855	0 8789	6965 0 7811 0 9376	- I	Di-isopropyl-ether
100 0 250 0 500 0	200		866 0		0 1111	0 1805 0 1151 0 1626 0 2017 0 2552 0 2125 0 2120 0 1111	1151 0 1626 0 2017		п-Нехапе
500.0 1250, 2500.	0		8 0.996		0.0185	0.0102 0.0087 0.0110 0.0118 0.0165 0.0123 0.0101 0.0185	.0087 0.0110 0.0118	ш	t-Butvl Alcohol
100.0 250.0			1 0.996	-	0.3745	0.5020 0.4055	0.3886 0.3499 0.4201 0.4001 0.5020 0.4055		Carbon Disulfide
500.0 1250. 2500.	0	-	7 0.998	-	0.1150	0.0825 0.0816 0.0802 0.0881 0.1078 0.0868 0.0861 0.1150	.0816 0.0802 0.0881		Acetone
		.	1 1.00		0.1924	0.2532	0.1817 0.1646 0.1963 0.2069 0.2532		iodomethane
100.0 250.0 500.0	5.00		5 0.998	1	0.1104	0.1136 0.1092 0.1172 0.1214 0.1442 0.1143 0.1070 0.1104	.1092 0.1172 0.1214	Avq	Acrylonitrile
500.0 1250. 2500.	0		0.998		0.0485	0.0456 0.0433 0.0442 0.0536 0.0648 0.0523 0.0493 0.0485	.0433 0.0442 0.0536	Αyg	Acrolein
250.0 500.0		,,	0.998	•	0.2985	0.2368 0.2575 0.2271 0.2416 0.3008 0.2363 0.2283 0.2985	.2575 0.2271 0.2416	Avg	Methylene Chloride
250.0 500.0			0.996		0.1817	0.1666 0.1605 0.1664 0.1759 0.2288 0.1730 0.1734 0.1817	.1605 0.1664 0.1759	Avq	1.1.2-Trichloro-1.2.2-tri
- 1	_		7		0.3196	0.3105 0.3192 0.3111 0.3255 0.4111 0.3291 0.3198 0.3196	.3192 0.3111 0.3255		Furan
100.0 250.0 500.0	5.00		7 0.999		0.1882	0.1107 0.1138 0.1123 0.1207 0.1418 0.1181 0.1127 0.1882	.1138 0.1123 0.1207		Ethyl ether
250 0 500 0			0.993	_	0.2561	0.2523 0.2673 0.2545 0.2719 0.3442 0.2369 0.2397 0.2561	.2673 0.2545 0.2719		Trichlorofluoromethane
250.0 500.0			0.996		0.1844	0.0991 0.1177 0.0950 0.0989 0.1286 0.0943 0.0894 0.1844	.1177 0.0950 0.0989	E F	Chloroethane
250.0 500.0		*(30)	0.999		0.2217	0.1803 0.1881 0.1569 0.1929 0.2351 0.1964 0.2001 0.2217	.1881 0.1569 0.1929	Avg	Vinvl Chloride
			5	0.155 1.74 0.9	0.3050	0.1374	0.1122 0.1185 0.1336 0.1208 0.1374	•	Bromomethane
100.0 250.0 500.0	5.00	**(0.100)	1.00	141	0.3576	0.2780 0.3716 0.2873 0.2692 0.2953 0.3051 0.3149 0.3576	3716 0.2873 0.2692		Chloromethane
100.0 250.0 500.0	5.00 10.00	•	_	1.29	0.4487	0.3205	.2739 0.2669 0.2498	0	Dichlorodifluoromethan
00 100.0 250.0 500.0 1.00	20.00 5.00 10.00 50.00		0.998 0.998 11	0.466 1.29 0.1	0.3876	0.5535 0.4423 0.4420	0.5230 0.4498 0.4906	1 0 Avg 0.4383 0	Chlorodifluoromethane
Calibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9	Calibration I	sd	Corr1 Corr2 %Rsd	AvgRf RT Co	RF8 RF9 /	RF5 RF6 RF7	RF2 RF3 RF4	Mr Fit: RF1	Compound Col
						05/26/11 08:38	CAL @ 0.5 PPB	3M93054.	9
	05/26/11 08:18	CAL @ 1 PPB	3053.			05/26/11 09:13	CAL @ 500 PPB	3M93056.	7
	05/26/11 09:30	CAL @ 250 PPB	3057	3M9	o 1	05/26/11 09:46	CAL @ 100 PPB	3M93058	
	05/26/11 08:57	CAL ® 5 PPB	3055			05/26/11 10:19	CAL ® 20 PPB	3M93060.	10
ie .	Analysis Date/Time	cal identifier.	Tie.		Le	Analysis Date/Time	Cal Identifier.	Data File.	Level #
			T .		_	* t : . i : 7 - t > T i)) 1	_

a - failed the spec criteria *- ccc compound
b - failed the ccc criteria **- spec compound
c - failed the minimum correlation coeff criteria(if applicable)

| Corr 1 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for quad Eq.
| Corr 2 = Correlation Coefficient for quad Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 2 = Correlation Coefficient for linear Eq.
| Corr 3 = Correlation Coefficient for linear Eq.
| Corr 4 = Correlation Coefficient for linear Eq.
| Corr 5 = Correlation Coefficient for linear Eq.
| Corr 6 = Correlation Coefficient for linear Eq.
| Corr 7 = Correlation Coefficient for linear Eq.
| Corr 8 = Correlation Coefficient for linear Eq.
| Corr 9 = Correlation Coefficient for linear Eq.
| Corr 1 = Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation Coefficient for linear Eq.
| Correlation

9							
1 Level #:	Data File:	Cal Identifier:	Analysis Date/Time	Level #:	Data File:	Cal Identifier:	An
01 ₃ -	3M93060.	CAL @ 20 PPB CAL @ 10 PPB	05/26/11 10:19 05/26/11 10:35	4	3M93055. 3M93059.	CAL @ 5 PPB CAL @ 50 PPB	05/26/11 08:57 05/26/11 10:02
51 6	3M93058.	CAL @ 100 PPB	05/26/11 09:46	ာ	3M93057.	CAL @ 250 PPB	
9	3M93056. 3M93054.	CAL @ 0.5 PPB	05/26/11 09:13	α	SM93USS.	CAL (0) 1 775	Ç
Compound Col Mr	Fit: RF1	RF2 RF3 RF4 RF5	RF6 RF7 RF8	RF9 AvgRf RT	Corr1 Corr2	%Rsd	Calibration Level Concentrations Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9
Dibromomethane 1 0	1	0.2695 0.2622 0.2690 0.2793 0.3231	0.2615		2 (2	13	5.00 10.00 50.00 100.0 1.00
Trichloroethene 1 0		2367 0 2685 0 2734 0 3	0.2640 0.2611 0.2631 0.3076 0.3788 0.3664 0.2736 0.3687 0 0.2573 0.2367 0.2685 0.2734 0.3383 0.2615 0.2360 0.2994	0.3390 0.307 4.93	0.992 0.998	12 (30)	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
Benzene 1 0	Avg 0.9076 0.	0.9076 0.8685 0.8837 0.9495 1.1964 0.9022	0.8559	1.2265 0.974 4.41		15 i	5.00 10.00 50.00 100.0 250.0
tert-Amvl methyl ether 1 0		2514 0.2697 0.3050 0.3	2417	0.284 4.47		15	5.00
Iso-propviacetate 1 0		5368 0.6101 0.8512 1.0	0.6777 0.5368 0.6101 0.8512 1.0352 0.8788 0.9751 0.5677	0.767 4.44	7	25	5.00 10.00 50.00 100.0 250.0 500.0
Methyl methacrylate 1 0		3672 0.4241 0.5713 0.6	0.4796	0.488 4.99		26	5.00 10.00
2-Chloroethylvinylether 1 0	LinF 0.2650 0.	0.4266 0.4446 0.4666 0.3167 0.3850 0.3335 0.3049	3850 0.3335 0.3049 0.1366	0.272 5.28	0.996 0.999	30 -	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
cis-1.3-Dichloropropen: 1 0		3869 0,4260 0,5988 0,7	0.4807 0.3869 0.4260 0.5988 0.7416 0.6303 0.5886 0.3674	0.528 5.37	ത	25	5.00 10.00 50.00 100.0 250.0 500.0
trans-1.3-Dichloroprope 1 0		2709 0.3674 0.5062 0.6	0.3852 0.2709 0.3674 0.5062 0.6452 0.5658 0.5478 0.3158 —	- 0.451 5.70	0.998 0.999	ა	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
1.1.2-Trichloroethane 1 0	Avg 0.3014 0.	3217 0.3380 0.3657 0.4	0.3014 0.3217 0.3380 0.3657 0.4285 0.3472 0.3169 0.3169 -	0.342 5.82		12	5.00 10.00 50.00 100.0 250.0 500.0
1.2-Dibromoethane 1 0	LinF 0.3796 0.	3305 0.3453 0.4355 0.	0.3796 0.3305 0.3453 0.4355 0.5042 0.4381 0.4022 0.2742 -	0.389 6.14	0.996 0.999	19	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
4-Methyl-2-Pentanone 1 0	LinF 0.5568 0.	4081 0.5286 0.6779 0.8	0.5568 0.4081 0.5286 0.6779 0.8213 0.6928 0.6497 0.3889	0.591 5.46	0.996 0.999	25	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
_		2439 0.3126 0.4742 0.1	0.3648 0.2439 0.3126 0.4742 0.5649 0.4954 0.4702 0.2440	0.396 5.95	0.998 0.999	31	5.00 10.00 50.00 100.0 250.0 500.0
Tetrachloroethene 1 0		0.3508 0.3096 0.3308 0.3731 0.4182 0.3067	0.4109		0.980 0.998	13	5.00 10.00 50.00 100.0 250.0 10.00
Toluene-d8 1 0	Avg 0.7856 0.	6940 0.7337 0.8847 0.9	1.3389 1.2926 1.2946 1.3996 1.2911 1.3192 1.4001 1.2799 1 0.7856 0.6940 0.7337 0.8847 0.9929 0.7908 0.7008 0.7416	0.791 5.58	0.991 0.998	13 *(30)	20.00 5.00 10.00 50.00 100.0 250.0 50.0 1.00
etrachloroetha 1	1	3374 0.2994 0.3570 0.4	0.3362 0.3374 0.2994 0.3570 0.4032 0.3049 0.2485 0.3138	0.325 6.47	0.980 0.998		10.00 50.00 100.0 250.0 500.0
Chlorobenzene 1 0		8113 0.8831 0.9548 1.0	0.8325 0.8113 0.8831 0.9548 1.0695 0.8758 0.7644 1.0064	0.900 6.42	0.991 0.999	11 **(0.300)	5.00 10.00 50.00 100.0 250.0 500.0
n-Butvi acrviate 1 0	LinF 0.8808 0.	5827 0 6556 1 0525 1 :	0.8808	0.947 6.84	0.999 0.999	ა 8	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
Bromoform 1 0		6085 0.5818 0.7408 0.	0.6460 0.6085 0.5818 0.7408 0.9166 0.7981 0.7417 0.6193	0.707 6.93	0.997 0.999	16 **(0.100)	5.00 10.00 50.00 100.0 250.0 500.0
Ethvlbenzene 1 0	_	4351 0.4566 0.5046 0.1	0.4682 0.4351 0.4566 0.5046 0.6391 0.4475 0.3789 0.4149 -	0.468 6.47			10.00 50.00 100.0 250.0 500.0
1.1.2.2-Tetrachloroetha 1 0		0850 0.6092 0.7087 0.	0.6477	0./16/.18	0.993 0.998	8.0	30,00 3
Styrene 1 0	Qua 1.2135 1.	0973 1.1140 1.3547 1.	1.2135 1.0973 1.1140 1.3547 1.6192 1.2658 1.0593 0.9130 -	1.20 6.79	0.985 0.998	18	5.00 10.00 50.00 100.0 250.0 500.0
m&p-Xvlenes 1 0	1	6900 0.6285 0.7558 0.	0.6939 0.6900 0.6285 0.7558 0.8977 0.6910 0.5720 0.6938 0	0.7986 0.714 6.54	0.983 0.998	13	0
trans 1 4 Dichloro-3 hii 1 0	AVG 0.7494 0.	0429 0.0970 0.7000 0.3 0187 0 2969 0 2297 0	U./494	0.7140.70	0.900 0.997	20 -	20.00 3.00 10.00 30.00 100.0 250.0 300.0 1.00
1.3-Dichlorobenzene 1 0		0220 1.1155 1.2091 1.	1.1529 1.0220 1.1155 1.2091 1.4932 1.1215 0.9694 1.2236 -	1.167.79		14	5.00 10.00 50.00 100.0 250.0 500.0
1.4-Dichlorobenzene 1 0		1.1914 1.1320 1.2045 1.2584 1.5314	5314 1.1966 1.0646 1.3177 –	1.247.84		1	5.00
e 1	Qua	1338 0.9601 1.0475 1.2398 1.	1.2398 1.5519 1.1900 1.0571 0.9819	1.15 8.09		23	5.00 10.00 50.00 100.0 250.0
Isopropylbenzene 1 0	<u> </u>	0.0157 0.0189 0.0256 0.	1.5051 1.1642 1.354 1.7208 2.2100 1.8430 1.6775 1.1833 -	0.0225.7.00	0.994 0.999	36 23	100 0 25 00 50 00 250 0 500 0 1250 2500 5 00
Camphene 1 0	LinF 0.3745 0.	2639 0.3601 0.4107 0.		0.4558 0.368 7.18		31	5.00 10.00 50.00 100.0 250.0 500.0
ropane 1		.6660 0.6378 0.7332 0.	0.6759 0.6660 0.6378 0.7332 0.9480 0.7633 0.7034 0.6819 -	0.726 7.22		: 13	10.00 50.00 100.0 250.0
p-Ethyltolijene 1 0	A A	1 8010 1 5288 1 6912 1 9643 2 2744 1 8411	1 8010 1 5288 1 6912 1 9643 2 2744 1 8411 1 4707 -	1.807.31	0.991 0.998	15	20.00 5.00 10.00 50.00 100.0 250.0 100.0 1.00
-	1						

a - failed the spec criteria *- cee compound Corr 1 = Correlation Coefficient for linear Eq.
b - failed the cee criteria **- spec compound Corr 2 = Correlation Coefficient for quad Eq.
c - failed the minimum correlation coeff criteria(if applicable) Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Note:

Avg Rsd: 18.7

Page 2 of 3

Flags

0120

Form 6 Initial Calibration

Instrument: GCMS_3

20 Level#	Data File:	Cal Identifier:	Analysis Date/Time	Level #:	Data File:	Cal Identifier:	Analysis Date/Time
	3 M 93060.	CAL @ 20 PPB	05/26/11 10:19	2	3M93055.	CAL @ 5 PPB	05/26/11 08:57
0	3M93061.	CAL @ 10 PPB	05/26/11 10:35	4	3M93059.	CAL @ 50 PPB	05/26/11 10:02
Ç1	3M93058.	CAL @ 100 PPB	05/26/11 09:46	6	3M93057.	CAL @ 250 PPB	
7	3M93056.	CAL @ 500 PPB	05/26/11 09:13	∞	3M93053.	CAL @ 1 PPB	
9	3M93054.	CAL @ 0.5 PPB	05/26/11 08:38				
Compound	Col Mr Fit: RF1 RF2	2 RF3 RF4 RF5	RF6 RF7 RF8	RF9 AvgRf RT	Corr1 Corr2 9	%Rsd	Calibration Level Concentrations Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9
4-Chlorotoluene	1 0 LinF 1.0513 1.0)614 0.9982 1.1790 1.4	1.0513 1.0614 0.9982 1.1790 1.4859 1.1620 1.0275 0.9030	1.11 7.39	0.990 0.998	16	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
n-Propvibenzene		493 1.7244 2.1187 2.	1.9119 1.5493 1.7244 2.1187 2.7064 2.2269 2.0754 1.6608	2.00 7.25	0.996	19	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
Bromobenzene)946 1.0147 1.1432 1.4	1.0657 1.0946 1.0147 1.1432 1.4226 1.1072 1.1565 1.6253	1.20 7.22	0.997 0.997	17	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
1.3.5-Trimethvlbenzene	1 0 Qua)611 1.1629 1.4293 1.8	1.2736 1.0611 1.1629 1.4293 1.8894 1.3273 1.1940 1.2955	1.33 7.34	0.986 0.994	19	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
Butvl methacrylate	1 0 LinF	329 0.5703 0.7949 1.0		0.715 7.36	0.997	27	5.00 1
t-Butvlbenzene	1 0 LinF 1.2137 0.8	3926 1.0497 1.3278 1.6	1.2137 0.8926 1.0497 1.3278 1.6994 1.3581 1.2337 0.7999	1.20 7.56	0.993	24	5.00 10.00 50.00 100.0 250.0 500.0
1.2.4-Trimethylbenzene	1 0 LinF 1)799 1.2811 1.5935 2.0	1.4295 1.0799 1.2811 1.5935 2.0354 1.5854 1.4202 1.2804	1.46 7.58	0.991	20	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
sec-Butvlbenzene	1 0 LinF 1.3892 1.0)741 1.2240 1.5682 2.0	.3892 1.0741 1.2240 1.5682 2.0172 1.6493 1.5313 1.1170	1.45 7.69	0.995	22	5.00 1
4-Isopropyltoluene	1 0 LinF 1.2018 0.7	7729 1.0154 1.2755 1.0	1.2018 0.7729 1.0154 1.2755 1.6012 1.2681 1.1217 0.7858	1.13 7.77	_	24	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
n-Butvlbenzene	1 0 LinF 1.1990 0.8	3022 1.0936 1.3463 1.	1.1990 0.8022 1.0936 1.3463 1.7460 1.4256 1.3182 0.7443	1.21 8.03	0.995 0.998	27	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
p-Diethvlbenzene	1 0 LinF 0.5808 0.3	3481 0.4923 0.6485 0.8	0.5808 0.3481 0.4923 0.6485 0.8813 0.7062 0.6366 0.3898	0.586 8.02	0.992	30	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
1.2.4.5-Tetramethvlber	1 0 LinF	1927 0.7187 1.1615 1.	0.9781 0.4927 0.7187 1.1615 1.5143 1.2609 1.1454 0.4724	-	0.994	39	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
1.2-Dibromo-3-Chlorop	1 0 LinF	1473 0.1540 0.2024 0.:	0.1858 0.1473 0.1540 0.2024 0.2724 0.2309 0.2330 0.0656	0.186 8.59	0.998	35	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
Camphor	1 0 LinF)206 0.0277 0.0515 0.1	0.0406 0.0206 0.0277 0.0515 0.0693 0.0603 0.0557 0.0261 0.0363	0.0363 0.0432 9.07	0.996 0.999	39	200.0 50.00 100.0 500.0 1000. 2500. 5000. 10.00 5.00
Hexachlorobutadiene	1 O LinF	1449 0.5133 0.5863 0.	0.5653 0.4449 0.5133 0.5863 0.8139 0.6166 0.6157 0.6743	0.604 9.21	0.996 0.996	18	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
1.2.4-Trichlorobenzene	ne 1 0 Qua	3874 0.8804 1.0731 1.	1.0251 0.6874 0.8804 1.0731 1.3888 1.0620 0.9038 0.7399	0.970 9.12	0.985 0.997	23	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00
1.2.3-Trichlorobenzene	1 O LinF	0.9030 0.7142 0.8242 1.0111 1.3125 1.0627	3125 1.0627 0.7452	0.939 9.46	0.990 0.996	22	20.00 5.00 10.00 50.00 100.0 250.0 1.00
Naphthalene	1 0 Linf	9636 1.0872 1.5575 2.	1.3391 0.9636 1.0872 1.5575 2.1153 1.7236 1.6864 0.7199	1.40 9.30	0.997 0.998	33	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00

Flags

Note: Avg Rsd: 18.7

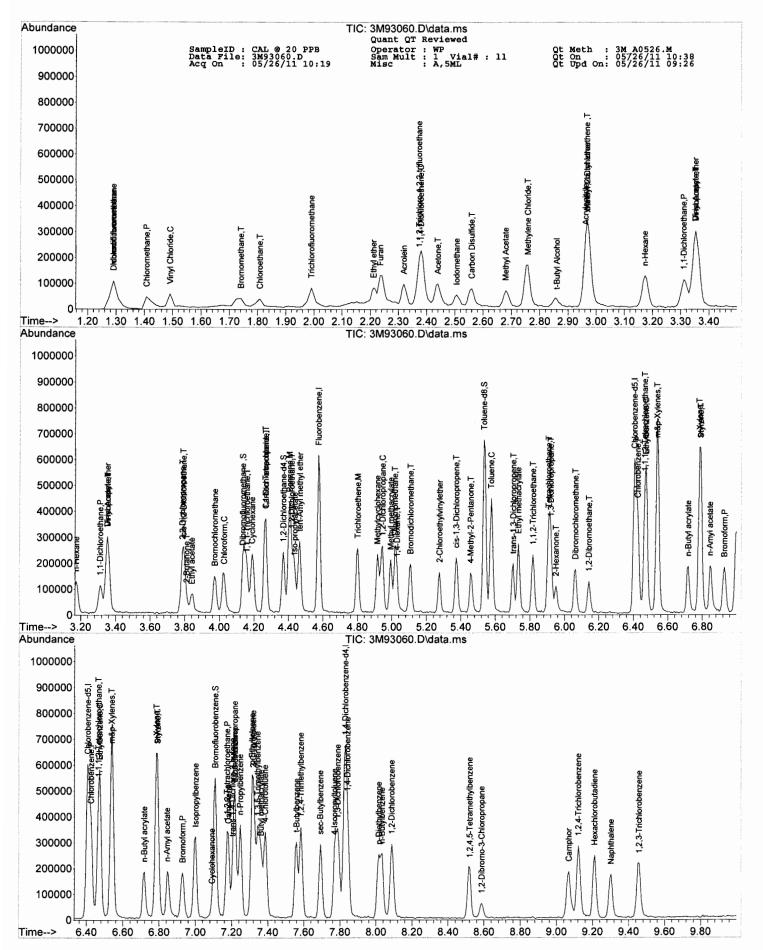
a - failed the spcc criteria * - ccc compound
b - failed the ccc criteria ** - spcc compound
Corr 2 = Correlation Coefficient for linear Eq.
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Qt Meth : 3M_A0526.M Qt On : 05/26/11 10:38 Qt Upd On: 05/26/11 09:26

SampleID : CAL @ 20 PPB Data File: 3M93060.D Acq On : 05/26/11 10:19

Operator : WP Sam Mult : 1 Vial# : 11 Misc : A,5ML

t Resp	Via : Initial Calibration						
	Compound	R.T.	QIon	Response	Conc Units	B Dev(M	in)
Tator	nal Standards						
4)	Fluorobenzene	4.573	96	315238	30.00 ug	/1 0	.00
51)		6.406		228560	30.00 ug		.00
69)	1,4-Dichlorobenzene-d4	7.830	152	156199	30.00 ug	/1 0	.01
	m Monitoring Compounds						
	Dibromofluoromethane	4.135	111	96857			.00
_	ked Amount 30.000			Recove	•	9.30%	0.1
	1,2-Dichloroethane-d4	4.369	67	57300 Recove	28.66 ug, ery = 9!	71 U 5.53%	.01
-	ked Amount 30.000 Toluene-d8	5.535	98	306023	•		.00
-	ked Amount 30.000	3.333	,,,	Recove		8.80%	
_	Bromofluorobenzene	7.109	174	168156	33.04 ug	/1 0	.01
	ked Amount 30.000			Recove	ery = 110	0.13%	
						_	_
	t Compounds						value
	Chlorodifluoromethane	1.291		92118	14.8474	ug/l	96 91
	Dichlorodifluoromethane Chloromethane	1.291 1.408		52414 58443	12.3408 16.0837	ug/l ug/l	83
,	Bromomethane	1.741		23588	12.3455		78
- ,	Vinyl Chloride	1.491		37896	12.0774	ug/l	91
	Chloroethane	1.808		20826	12.7151	ug/l	99
11)	Trichlorofluoromethane	1.991	101	53040	15.3802	ug/l	91
12)	Ethyl ether	2.212		23270	13.8352		91
	Furan	2.236		65261	13.8009		85
•	1,1,2-Trichloro-1,2,2	2.374		35032	16.8672		94 95
	Methylene Chloride Acrolein	2.759		49770 47938	16.4119 88.0119	ug/1	98
	Acrylonitrile	2.963		23884	18.5357		89
	Iodomethane	2.506		38201	9.5293	-	94
	Acetone	2.440		86762	67.3490	ug/l	95
20)	Carbon Disulfide	2.560	76	81673	9.2826		100
21)	t-Butyl Alcohol	2.861		10754	68.5156	ug/l	89
	n-Hexane	3.173		37945	17.9833	- .	87
	Di-isopropyl-ether	3.354		184713	16.9981		83 96
	1,1-Dichloroethene Methyl Acetate	2.380		78549 65533	16.4536 13.1972		100
	Methyl-t-butyl ether	2.969		67700	13.1372	ug/1	88
	1,1-Dichloroethane	3.311		87193	15.8900	ug/1	94
	trans-1,2-Dichloroethene	2.969		41128	15.9253	ug/l	96
	cis-1,2-Dichloroethene	3.792	61	77685	16.8549	ug/1	98
	Bromochloromethane	3.972		51789	15.4937		73
	2,2-Dichloropropane	3.786		40065	16.5370	ug/l	95
	Ethyl acetate	3.840		66685	15.5656 1171.3322		99 95
	1,4-Dioxane 1,1-Dichloropropene	5.030 4.267		43331 68354	17.6465		96
	Chloroform	4.027					90
	Cyclohexane	4.189	56	91629 67290	18.6058	J.,_	86
	1,2-Dichloroethane	4.417	62	83278	16.2598	ug/l	95
40)	2-Butanone	3.810	43	27830	15.7076	ug/l	100
		4.159		67980	16.2926	ug/l	86
	Carbon Tetrachloride	4.267		59441	16.7998	ug/1	94 100
	Vinyl Acetate Bromodichloromethane	3.354 5.108		124737 75461	14.6535 16.5642	ug/l ug/l	91
	Methylcyclohexane	4.916		47162	18.6955	ug/l	95
	Dibromomethane	5.018		56640	19.4109	ug/l	93
		4.946		59693	17.4307	ug/l	90
	Trichloroethene	4.802	130	54081	17.4160	ug/l	90
	Benzene	4.405		190747	15.9055	ug/l	100
	tert-Amyl methyl ether	4.465		60883	15.7060	ug/l	52
	Iso-propylacetate	4.435		103275	16.1294	ug/l	85 96
	Methyl methacrylate	4.994 6.064		73079 65038	21.4018 18.5402	ug/l ug/l	94
	Dibromochloromethane 2-Chloroethylvinylether	5.276		40384	21.7677	ug/l	85
	cis-1,3-Dichloropropene	5.373		73259	18.6488	ug/1	95
	trans-1,3-Dichloropropene	5.703		58694	17.2355	ug/l	100
	Ethyl methacrylate	5.733		72255	19.8931	ug/l	82
	1,1,2-Trichloroethane	5.817		45929	18.1265	ug/l	92
	1,2-Dibromoethane	6.142		57855	18.3886	ug/l	93
	1,3-Dichloropropane	5.919		84983	18.4885	ug/l	97 99
	4-Methyl-2-Pentanone	5.457 5.949		84854 55588	22.9335 22.0130	ug/l ug/l	99 93
		5.949		53463	22.4679	ug/l	94
	Toluene	5.577		119717	19.2675	ug/l	93
	1,1,1,2-Tetrachloroethane	6.466		51231	19.6104	ug/l	69
	i .						


Quantitation Report (QT Reviewed)

Data Path : G:\GcMsData\2011\GCMS_3\Data\05-26-11\Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\

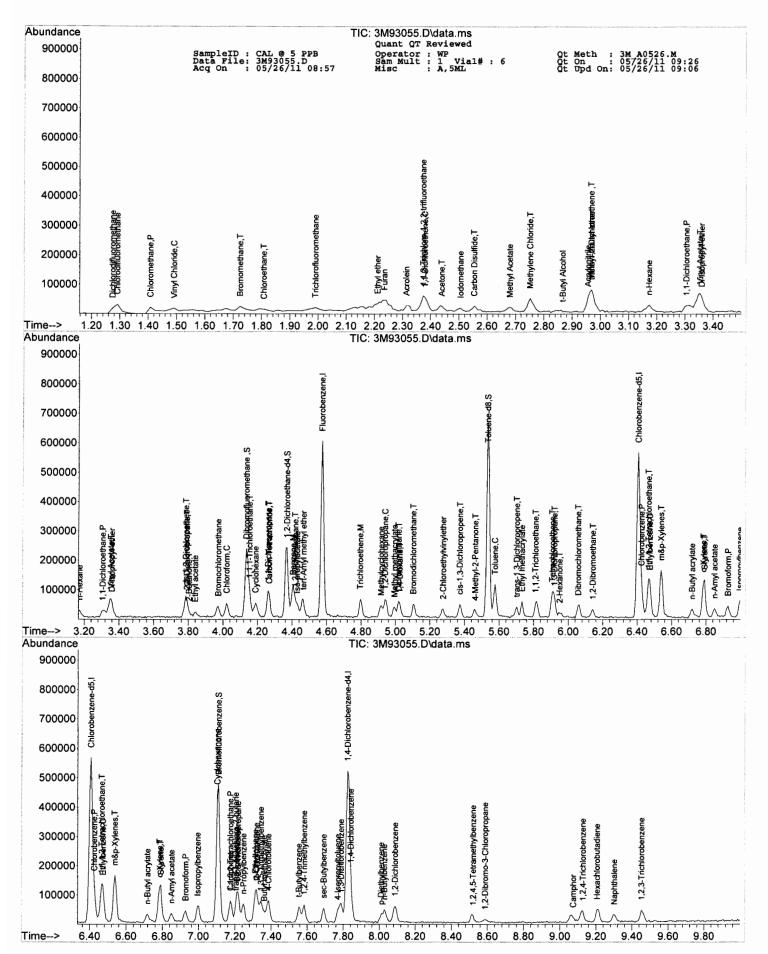
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev (M	in)
68)	Chlorobenzene	6.424	112	126856	18.3765	ug/l	100
70)	n-Butyl acrylate	6.719	55	91722	16.2331	ug/l	96
71)	n-Amyl acetate	6.845	43	84368	14.5178	ug/l	88
72)	Bromoform	6.929	173	67276	20.1334	ug/l	94
73)	Ethylbenzene	6.472	106	48760	18.3498	ug/l	84
74)	1,1,2,2-Tetrachloroethane	7.175	83	67448	16.8270	ug/l	98
76)	Styrene	6.791	104	126371	18.6291	ug/l	94
77)	m&p-Xylenes	6.538	106	144531	36.1480	ug/l	88
78)	o-Xylene	6.785	106	78045	19.7369	ug/l	70
79)	trans-1,4-Dichloro-2-b	7.205	53	30898	18.7268	ug/l	89
80)	1,3-Dichlorobenzene	7.788	146	120062	20.5280	ug/l	78
81)	1,4-Dichlorobenzene	7.842	146	124073	19.3981	ug/l	86
82)	1,2-Dichlorobenzene	8.089	146	118074	19.4222	ug/l	81
83)	Isopropylbenzene	7.001	105	156736	18.1002	ug/l	90
84)	Cyclohexanone	7.091	55	11194	79.2734	ug/l	92
85)	Camphene	7.181	93	39000	18.9779	ug/l	100
86)	1,2,3-Trichloropropane	7.217	75	70385	16.4848	ug/l	92
87)	2-Chlorotoluene	7.320	91	105116	16.9302	ug/l	93
88)	p-Ethyltoluene	7.314	105	187550	19.0811	ug/l	88
89)	4-Chlorotoluene	7.386	91	109484	17.1556	ug/l	87
90)	n-Propylbenzene	7.247	91	199091	17.7755	ug/l	96
91)	Bromobenzene	7.217	77	110978	16.4924	ug/l	70
92)	1,3,5-Trimethylbenzene	7.344	105	132633	18.1320	ug/l	84
93)	Butyl methacrylate	7.362	41	64739	14.2591	ug/l	59
94)	t-Butylbenzene	7.560	119	126386	18.9725	ug/l	77
95)	1,2,4-Trimethylbenzene	7.584	105	148860	18.3562	ug/l	88
96)	sec-Butylbenzene	7.692	105	144663	18.3262	ug/l	94
97)	4-Isopropyltoluene	7.770	119	125151	20.0236	ug/l	86
98)	n-Butylbenzene	8.035	91	124859	18.2686	ug/l	92
99)	p-Diethylbenzene	8.017	119	60488	18.1023	ug/l	84
100)		8.521	119	101860	18.2027	ug/l	86
101)	1,2-Dibromo-3-Chloropr	8.587	157	19354	19.9035	ug/l	35
102)	Camphor	9.068	95	42296	165.1415	ug/l	91
103)	Hexachlorobutadiene	9.212	225	58873	17.7490	ug/l	95
104)	1,2,4-Trichlorobenzene	9.122	180	106747	22.4910	ug/l	88
105)	1,2,3-Trichlorobenzene	9.459	180	94032	18.8848	ug/l	93
106)	Naphthalene	9.303	128	139448	15.4868	ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

3M A0526.M Mon Jun 13 07:32:56 2011 SYSTEM1

Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:26 Qt Upd On: 05/26/11 09:06 SampleID : CAL @ 5 PPB
Data File: 3M93055.D
Acq On : 05/26/11 08:57 Operator : WP Sam Mult : 1 Vial# : 6 Misc : A,5ML

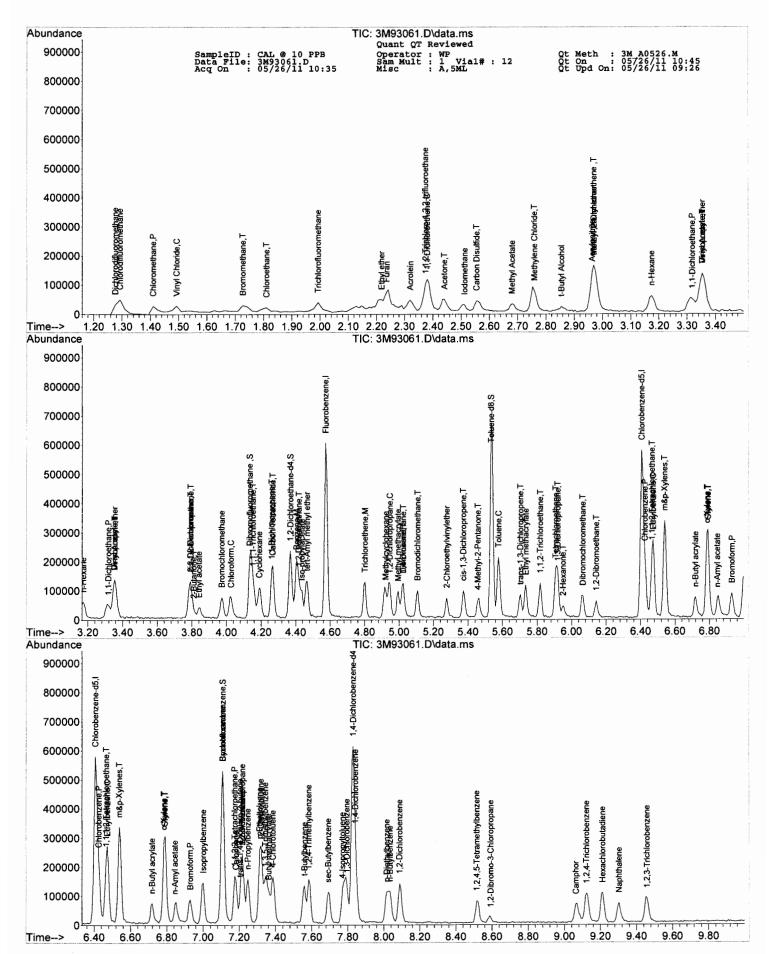

L	Resp Via : Initial Calibration						
	Compound	R.T.	QIon	Response	Conc Units	Dev (M	in)
	Internal Standards	4.573	96	305233	30.00 ug/	1 0	.00
	•, • = • = = = = = = = = = = = = = = = =	6.406			30.00 ug/	1 0	.00
		7.824		137072	30.00 ug/		.00
	of 1,4 biolitoropolitoria ar	,,,,,,			,		
	System Monitoring Compounds						
	36) Dibromofluoromethane	4.135	111	97712	31.04 ug/	1 0	.00
	Spiked Amount 30.000			Recove	•	.47%	
	38) 1,2-Dichloroethane-d4	4.369	67	59040	30.50 ug/		0.01
	Spiked Amount 30.000			Recove			
	65) Toluene-d8	5.535	98	282590	31.52 ug/		0.00
	Spiked Amount 30.000			Recove		.07%	0.01
	75) Bromofluorobenzene	7.109	174	135149 Recove	/30.26 ug erv = 100		7.01
	Spiked Amount 30.000			Recove	- 100	.0,0	
	Target Compounds					C	value
	5) Chlorodifluoromethane	1.291	51	26607	4.4290	ug/l	90
	6) Dichlorodifluoromethane	1.275		13935	3.3885	ug/l	84
	7) Chloromethane	1.408		18906	5.3735	ug/l	78
	8) Bromomethane	1.725	94	6029	3.2589	ug/l	75
	9) Vinyl Chloride	1.492	62	9572	3.1506	ug/l	95
	10) Chloroethane	1.808	64	5992	3.7783	ug/l	84
	 Trichlorofluoromethane 	1.992		13599	4.0726	ug/l	83
	12) Ethyl ether	2.212		5789	3.5547	ug/l	91
	13) Furan	2.236		16240	3.5469	ug/l	84
	14) 1,1,2-Trichloro-1,2,2			8167	4.0611	ug/l	90
	15) Methylene Chloride	2.752		13104	4.4627	ug/l ug/l	91 96
	16) Acrolein	2.314		11029	20.9124 4.4556	ug/l	87
	17) Acrylonitrile	2.957		5559 8377	2.1582	ug/1	87
	,	2.506		20780	16.6592	ug/l	87
	19) Acetone	2.554		17800	2.0894	ug/l	100
	20) Carbon Disulfide 21) t-Butyl Alcohol	2.867		2235	14.7063	ug/l	97
	22) n-Hexane	3.173		5857	2.8668	ug/1	94
	23) Di-isopropyl-ether	3.359		35437	3.3680	ug/l	75
	24) 1,1-Dichloroethene	2.380		17703	3.8298	ug/l	95
	25) Methyl Acetate	2.680		14748	3.0673	ug/l	100
	26) Methyl-t-butyl ether	2.969		11317	2.2570	ug/l	55
	27) 1,1-Dichloroethane	3.305	63	20452	3.8493	ug/1	85
	28) trans-1,2-Dichloroethene	2.969	96	8197	3.2780	ug/1	99
	29) cis-1,2-Dichloroethene	3.786		17021	3.8140	ug/l	98
	30) Bromochloromethane	3.972		13793	4.2617	ug/l	76
	31) 2,2-Dichloropropane	3.792		9434	4.0216	ug/l	91 91
	32) Ethyl acetate	3.840		14853	3.5806	ug/l ug/l	89
	33) 1,4-Dioxane	5.024		5851		ug/1	92
	34) 1,1-Dichloropropene	4.261		14834 21422		ug/l	70
	35) Chloroform	4.020		11247		ug/l	89
	37) Cyclohexane 39) 1,2-Dichloroethane	4.417		21908	4.4177	ug/1	80
	40) 2-Butanone	3.804		3312		ug/l	92
	41) 1,1,1-Trichloroethane	4.153		15696	3.8851	ug/l	93
	42) Carbon Tetrachloride	4.267		14337	4.1849	ug/l	97
	43) Vinyl Acetate	3.353	43	28013	3.3987	ug/l	100
	44) Bromodichloromethane	5.102	83	19909	4.5134	ug/l	90
	45) Methylcyclohexane	4.916		8268	3.3850	ug/l	88
	46) Dibromomethane	5.018		13341	4.7219	ug/l	90
	47) 1,2-Dichloropropane	4.940		13287	4.0070	ug/l	84
	48) Trichloroethene	4.796		12043	4.0054	ug/l ug/l	96 100
	49) Benzene	4.405		44186 12792	3.8052 3.4081	ug/1	63
	50) tert-Amyl methyl ether	4.465		19556	3.1936	ug/l	84
	52) Iso-propylacetate 53) Methyl methacrylate	4.994		13380	4.0973	ug/1	97
	53) Methyl methacrylate 54) Dibromochloromethane	6.057		16197	4.8280	ug/l	85
	55) 2-Chloroethylvinylether	5.276		7129	4.0181	ug/l	73
	56) cis-1,3-Dichloropropene	5.372		14098	3.7526	ug/l	98
	57) trans-1,3-Dichloropropene	5.703		9871	3.0309	ug/l	96
	58) Ethyl methacrylate	5.733		13631	3.9241	ug/l	92
	59) 1,1,2-Trichloroethane	5.81		11721	4.8370	ug/l	83
	60) 1,2-Dibromoethane	6.142		12043	4.0025	ug/l	84
	61) 1,3-Dichloropropane	5.919			4.7083	ug/l	
	62) 4-Methyl-2-Pentanone	5.463		14870	4.2024	ug/l	87 96
	63) 2-Hexanone	5.949		8887	3.6799	ug/l	
	64) Tetrachloroethene	5.90			4.9564	ug/l	
	66) Toluene	5.57			4.2553 4.9207	ug/l ug/l	
	67) 1,1,1,2-Tetrachloroethane	6.466	5 133	12234	4.9207	49/1	,, 55
	\ \						

Quantitation Report (QT Reviewed)

Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:26 Qt Upd On: 05/26/11 09:06 SampleID : CAL @ 5 PPB Data File: 3M93055.D Operator : WP Sam Mult : 1 Vial# : 6 Misc : A,5ML Acq On : 05/26/11 08:57

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	1)
	Chlorobenzene	6.424	112	29557	4.4771	ug/l	86
	n-Butyl acrylate	6.718	55	14545	2.9334	ug/l	90
	n-Amyl acetate	6.851	43	13314	2.6107	ug/l	81
	Bromoform	6.929	173	13902	4.7409	ug/l	99
	Ethylbenzene	6.472	106	9940	4.2627	ug/l	88
	1,1,2,2-Tetrachloroethane	7.175	83	15079	4.2869	ug/l	86
	Styrene	6.791	104	25069	4.2112	ug/l	83
77)		6.538	106	31529	8.9859	ug/l	78
78)		6.785	106	14689	4.2331	ug/l	52
79)	trans-1,4-Dichloro-2-b	7.205	53	4998	3.4519	ug/l	96
80)	1,3-Dichlorobenzene	7.788	146	23350	4.5494	ug/l	77
81)	1,4-Dichlorobenzene	7.842	146	25862	4.6076	ug/l	89
82)	1,2-Dichlorobenzene	8.089	146	21935	4.1116	ug/l	82
83)	Isopropylbenzene	6.995	105	26597	3.5001	ug/l	93
84)	Cyclohexanone	7.103	55	1796	14.4937	ug/l #	63
85)	Camphene	7.175	93	6031	3.3443	ug/l	90
86)	1,2,3-Trichloropropane	7.217	75	15215	4.0607	ug/l	93
87)	2-Chlorotoluene	7.319	91	24184	4.4386	ug/l	97
88)	p-Ethyltoluene	7.313	105	34926	4.0492	ug/l	81
89)	4-Chlorotoluene	7.385	91	24248	4.3297	ug/l	91
90)	n-Propylbenzene	7.247	91	35395	3.6012	ug/l	94
	Bromobenzene	7.211	77	25008	4.2350	ug/l	79
92)	1,3,5-Trimethylbenzene	7.343	105	24243	3.7767	ug/l	85
93)	Butyl methacrylate	7.361	41	12175	3.0558	ug/l	86
94)	t-Butylbenzene	7.554	119	20393	3.4885	ug/l	79
95)	1,2,4-Trimethylbenzene	7.584	105	24671	3.4667	ug/l	94
96)	sec-Butylbenzene	7.692	105	24539	3.5424	ug/l	97
97)	4-Isopropyltoluene	7.770	119	17658	3.2194	ug/l	83
98)	n-Butylbenzene	8.028	91	18327	3.0557	ug/l	89
99)	p-Diethylbenzene	8.010	119	7954	2.7126	ug/l #	2
100)	1,2,4,5-Tetramethylben	8.521	119	11258	2.2926	ug/l	78
101)	1,2-Dibromo-3-Chloropr	8.587	157	3366	3.9446	ug/l	25
102)	Camphor	9.074	95	4722	21.0093	ug/l	95
103)	Hexachlorobutadiene	9.206	225	10166	3.4925	ug/l	82
	1,2,4-Trichlorobenzene	9.128	180	15705	3.7707	ug/l	92
	1,2,3-Trichlorobenzene	9.453	180	16317	3.7343	ug/l	94
	Naphthalene	9.302	128	22015	2.7861		100
							_

(#) = qualifier out of range (m) = manual integration (+) = signals summed


Qt Meth : 3M_A0526.M Qt On : 05/26/11 10:45 Qt Upd On: 05/26/11 09:26 SampleID : CAL @ 10 PPB Data File: 3M93061.D Acq On : 05/26/11 10:35 Operator : WP Sam Mult : 1 Vial# : 12 Misc : A,5ML

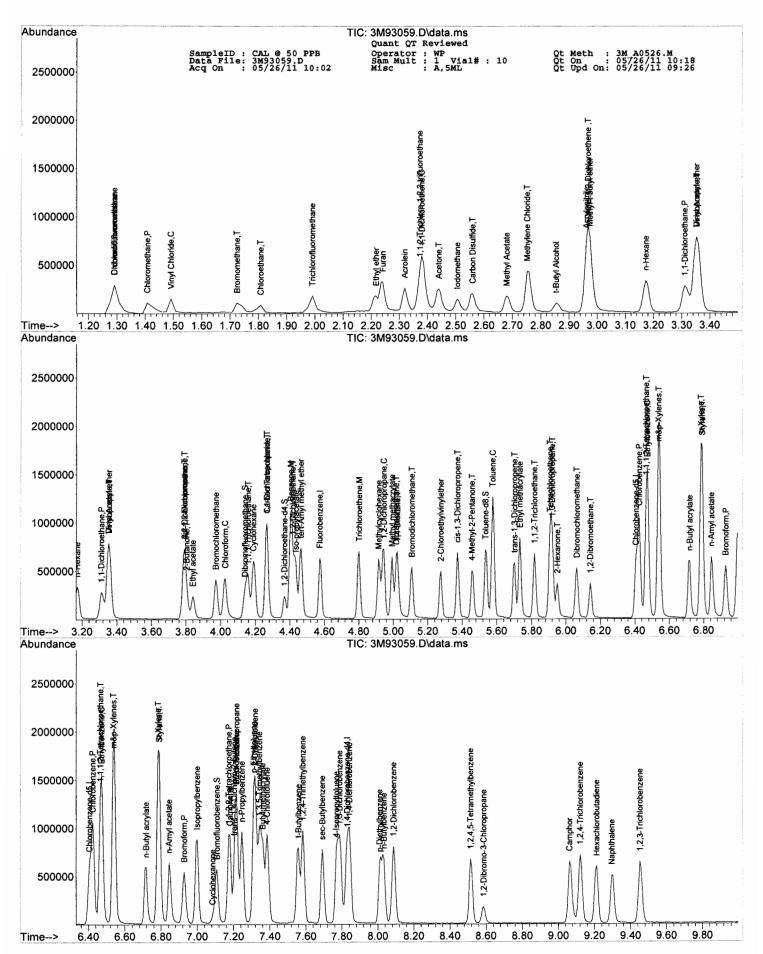
Compound	R.T.	QIon	Response	Conc Units	Dev(M	lin)
Internal Standards						
4) Fluorobenzene	4.574	96	306362	30.00 ug/	1 0	0.00
51) Chlorobenzene-d5	6.407		220083	30.00 ug/		0.00
69) 1,4-Dichlorobenzene-d4	7.831	152	155307	30.00 ug/		0.01
System Monitoring Compounds						
36) Dibromofluoromethane	4.135	111	93700	29.66 ug/		0.00
Spiked Amount 30.000			Recove	· •	.87%	
38) 1,2-Dichloroethane-d4	4.369	67	54558	28.08 ug/ ery = 93	.60%	0.01
Spiked Amount 30.000	5.535	98	Recove 284973	31.57 ug/		0.00
65) Toluene-d8 Spiked Amount 30.000	3.333	,,,	Recove		.23%	, , , ,
75) Bromofluorobenzene	7.110	174	162777	32.17 ug/		0.01
Spiked Amount 30.000			Recove	. 7	.23%	
•						_
Target Compounds						Qvalue
Chlorodifluoromethane	1.293	51	45940	7.6190	ug/l	99
6) Dichlorodifluoromethane	1.277	85	27265	6.6055 8.3093	ug/l ug/l	90 85
7) Chloromethane	1.410	50 94	29343 13644	7.3479	ug/l	95
8) Bromomethane9) Vinyl Chloride	1.493	62	16028	5.2561	ug/l	93
10) Chloroethane	1.810		9706	6.0976	ug/l	87
11) Trichlorofluoromethane	1.993		25997	7.7569	ug/l	90
12) Ethyl ether	2.218	59	11471	7.0177	ug/l	98
13) Furan	2.236	39	31773	6.9138	ug/l	80
14) 1,1,2-Trichloro-1,2,2	2.374	101	17002	8.4233	ug/l	98
15) Methylene Chloride	2.759	84	23196	7.8706	ug/l	89
16) Acrolein	2.320	56	22581	42.6588	ug/l	96
17) Acrylonitrile	2.963	53	11973	9.5611	ug/l	88
18) Iodomethane	2.513		20054	5.1474 32.7435	ug/l	92 86
19) Acetone	2.441		40994	5.0173	ug/l ug/l	100
20) Carbon Disulfide	2.555	76 59	42902 5624	36.8696	ug/1	66
21) t-Butyl Alcohol 22) n-Hexane	3.174		16609	8.0996	ug/l	86
23) Di-isopropyl-ether	3.354		79772	7.5536	ug/l	88
24) 1,1-Dichloroethene	2.380		36675	7.9049	ug/l	95
25) Methyl Acetate	2.681		27442	5.6864	ug/l	100
26) Methyl-t-butyl ether	2.969	73	30610	6.0821	ug/l	85
27) 1,1-Dichloroethane	3.318		38916	7.2975	ug/l	88
28) trans-1,2-Dichloroethene	2.969		19754	7.8706	ug/l	98
29) cis-1,2-Dichloroethene	3.793		37606	8.3955	ug/l ug/l	87 68
30) Bromochloromethane	3.973		27186 19149	8.3688 8.1328	ug/1	86
31) 2,2-Dichloropropane	3.793 3.841		32451	7.7942	ug/l	99
32) Ethyl acetate 33) 1,4-Dioxane	5.024		14342	398.9282	ug/1	86
34) 1,1-Dichloropropene	4.261		32332	8.5888	ug/l	88
35) Chloroform	4.027		41105	7.8659	ug/l	85
37) Cyclohexane	4.189	56	28620	8.1427	ug/l	87
39) 1,2-Dichloroethane	4.417	62	39942	8.0245	ug/l	98
40) 2-Butanone	3.811		10044	5.8332	ug/l	91
41) 1,1,1-Trichloroethane	4.153		31772	7.8353	ug/l	95
42) Carbon Tetrachloride	4.267		28620	8.3232 6.7527	ug/l ug/l	85 100
43) Vinyl Acetate	3.354 5.109		55863 34824	7.8656	ug/l	88
44) Bromodichloromethane 45) Methylcyclohexane	4.922		21608	8.8138	ug/l	87
45) Methylcyclohexane 46) Dibromomethane	5.024		27480	9.6904	ug/l	
47) 1,2-Dichloropropane	4.946		28914	8.6877	ug/l	
48) Trichloroethene	4.802		27423	9.0871	ug/l	89
49) Benzene	4.405		90250	7.7435	ug/l	
50) tert-Amyl methyl ether	4.466	73	27551	7.3132	ug/l	
52) Iso-propylacetate	4.436		44760	7.2598	ug/l	
53) Methyl methacrylate	4.994		31113	9.4627	ug/l	
54) Dibromochloromethane	6.064	_	29994	8.8796	ug/l	
55) 2-Chloroethylvinylether	5.277		16845	9.4295 8.2627	ug/l ug/l	
56) cis-1,3-Dichloropropene	5.373		31255 26953	8.2196	ug/l	
57) trans-1,3-Dichloropropene	5.703 5.733		29757	8.5082	ug/l	
58) Ethyl methacrylate 59) 1,1,2-Trichloroethane	5.818		24796	10.1630	ug/l	
60) 1,2-Dibromoethane	6.142		25334	8.3623	ug/l	
61) 1,3-Dichloropropane	5.920		40825	9.2238	ug/l	
62) 4-Methyl-2-Pentanone	5.457	43	38781	10.8851	ug/l	
63) 2-Hexanone	5.950		22934	9.4317	ug/l	
64) Tetrachloroethene	5.908		24274	10.5941	ug/l	
66) Toluene	5.577		53829	8.9970 8.7317	ug/l ug/l	
67) 1,1,1,2-Tetrachloroethane	6.467	133	21965	0.7317	49/ I	. 01
	Λ					

SampleID : CAL @ 10 PPB Data File: 3M93061.D Acq On : 05/26/11 10:35 Operator : WP Sam Mult : 1 Vial# : 12 Misc : A,5ML Qt Meth : 3M_A0526.M Qt On : 05/26/11 10:45 Qt Upd On: 05/26/11 09:26

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	Chlorobenzene	6.425	112	64786	9.7465	ug/l	98
70)	n-Butyl acrylate	6.719	55	36740	6.5397	ug/l	93
71)	n-Amyl acetate	6.845	43	33942	5.8742	ug/l	87
72)	Bromoform	6.929	173	30120	9.0656	ug/l	98
73)	Ethylbenzene	6.473	106	23640	8.9475	ug/l	73
74)	1,1,2,2-Tetrachloroethane	7.176	83	31541	7.9141	ug/l	95
76)	Styrene	6.791	104	57671	8.5504	ug/l	92
77)	m&p-Xylenes	6.539	106	65082	16.3709	ug/l	96
78)	o-Xylene	6.785	106	36115	9.1856	ug/l	59
79)	trans-1,4-Dichloro-2-b	7.206	53	15375	9.3721	ug/l	84
80)	1,3-Dichlorobenzene	7.795	146	57750	9.9307	ug/l	77
81)	1,4-Dichlorobenzene	7.843	146	62360	9.8056	ug/l	87
82)	1,2-Dichlorobenzene	8.089	146	54232	8.9720	ug/l	78
83)	Isopropylbenzene	7.001	105	69184	8.0354	ug/l	93
84)	Cyclohexanone	7.110	55	4897	34.8786	ug/l	81
85)	Camphene	7.182	93	18642	9.1235	ug/l	94
86)	1,2,3-Trichloropropane	7.218	75	33020	7.7780	ug/l	96
87)	2-Chlorotoluene	7.320	91	51784	8.3883	ug/l	88
88)	p-Ethyltoluene	7.314	105	87552	8.9586	ug/l	85
89)	4-Chlorotoluene	7.386	91	51680	8.1445	ug/l	91
90)	n-Propylbenzene	7.248	91	89275	8.0165	ug/l	94
91)	Bromobenzene	7.218	77	52532	7.8516	ug/l	78
92)	1,3,5-Trimethylbenzene	7.344	105	60207	8.2780	ug/l	79
93)	Butyl methacrylate	7.362	41	29525	6.5404	ug/l	72
94)	t-Butylbenzene	7.560	119	54343	8.2046	ug/l	76
95)	1,2,4-Trimethylbenzene	7.584	105	66322	8.2253	ug/l	87
96)	sec-Butylbenzene	7.692	105	63365	8.0733	ug/l	96
97)	4-Isopropyltoluene	7.771	119	52570	8.4593	ug/l	86
98)	n-Butylbenzene	8.035	91	56615	8.3311	ug/l	89
99)	p-Diethylbenzene	8.017	119	25486	7.6710	ug/l #	2
100)	1,2,4,5-Tetramethylben	8.516	119	37210	6.6877	ug/l	83
101)	1,2-Dibromo-3-Chloropr	8.594	157	7974	8.2475	ug/l	38
102)	Camphor	9.063	95	14359	56.3856	ug/l	99
103)	Hexachlorobutadiene	9.213	225	26573	8.0572	ug/l	91
104)	1,2,4-Trichlorobenzene	9.123	180	45579	9.6584	ug/l	86
105)	1,2,3-Trichlorobenzene	9.459	180	42671	8.6190	ug/l	96
106)	Naphthalene	9.303	128	56286	6.2869	ug/l	100
							-

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Qt Meth : 3M_A0526.M Qt On : 05/26/11 10:18 Qt Upd On: 05/26/11 09:26 SampleID : CAL @ 50 PPB Data File: 3M93059.D Acq On : 05/26/11 10:02 Operator : WP Sam Mult : 1 Vial# : 10 Misc : A,5ML


•						
Compound	R.T.	QIon	Response	Conc Units	Dev (M	in)
Internal Standards						
 Fluorobenzene 	4.573	96	327780	,		.00
51) Chlorobenzene-d5	6.406	117				.00
69) 1,4-Dichlorobenzene-d4	7.830	152	159868	30.00 ug/	1 0	.01
System Monitoring Compounds				/		
36) Dibromofluoromethane	4.140	111	94534	27.97 ug/		.01
Spiked Amount 30.000			Recove		.23%	0.1
38) 1,2-Dichloroethane-d4	4.369	67		27.06 ug/	_	.01
Spiked Amount 30.000					.20%	0.0
65) Toluene-d8	5.534	98		34.13 ug/		.00
Spiked Amount 30.000				•	.77%	0.1
75) Bromofluorobenzene	7.109	174		31.95 ug/		.01
Spiked Amount 30.000			Recove	ery = 106	.50%	
_					0	value
Target Compounds			060041	41 5402	ug/l	88
Chlorodifluoromethane	1.291	51	268041	41.5492	ug/1	91
Dichlorodifluoromethane	1.291	85	136498	30.9085	ug/1	83
7) Chloromethane	1.408	50	147077	38.9274	ug/l	87
8) Bromomethane	1.725	94	66034	33.2386		94
Vinyl Chloride	1.491	62	105431	32.3151	ug/l ug/l	88
10) Chloroethane	1.808		54073	31.7505	3 ·	84
 Trichlorofluoromethane 	1.991		148577	41.4350	ug/l	
12) Ethyl ether	2.217		65958	37.7147	ug/l	98
13) Furan	2.241	39	177856	36.1724	ug/l	83
14) 1,1,2-Trichloro-1,2,2			96093	44.4965	ug/l	93
15) Methylene Chloride	2.752	84	131999	41.8618	ug/l	84
16) Acrolein	2.320	56	146401	258.5006	ug/l	98
17) Acrylonitrile	2.962	53	66354	49.5252	ug/l	99
18) Iodomethane	2.506	142	113077	27.1280	ug/l	93
19) Acetone	2.440	43	240726	179.7135	ug/l	92
20) Carbon Disulfide	2.560	76	218590	23.8934	ug/l	100
21) t-Butyl Alcohol	2.854	59	32414	198.6132	ug/l	97
22) n-Hexane	3.173	57	110191	50.2246	ug/l	78
23) Di-isopropyl-ether	3.353	45	512251	45.3358	ug/l	86
24) 1,1-Dichloroethene	2.380	61	207945	41.8914	ug/l	98
25) Methyl Acetate	2.680	43	182276	35.3026	ug/l	100
26) Methyl-t-butyl ether	2.974	73	187024	34.7329	ug/l	88
27) 1,1-Dichloroethane	3.311	63	247791	43.4294	ug/l	94
28) trans-1,2-Dichloroethene	2.968	96	116512	43.3887	ug/l	94
29) cis-1,2-Dichloroethene	3.792		216375	45.1493	ug/l	88
30) Bromochloromethane	3.972		154344	44.4081	ug/l	74
31) 2,2-Dichloropropane	3.792		108979	43.2605	ug/l	92
32) Ethyl acetate	3.840		188202	42.2492	ug/l	97
33) 1,4-Dioxane	5.024		114091	2966.1210	ug/l	78
34) 1,1-Dichloropropene	4.266	75	188209	46.7296	ug/l	93
35) Chloroform	4.026	83	247716	44.3059	ug/l	87
37) Cyclohexane	4.188	56	199516	53.0555	ug/l	82
39) 1,2-Dichloroethane	4.417	62	222429	41.7670	ug/l	91
40) 2-Butanone	3.804	43	79162	42.9704	ug/l	90
41) 1,1,1-Trichloroethane	4.158	97	181869	41.9202	ug/l	95
42) Carbon Tetrachloride	4.266	117	156538	42.5494	ug/l	98
43) Vinyl Acetate	3.353	43	344617	38.9349	ug/l	100
44) Bromodichloromethane	5.108	83	216437	45.6915	ug/1	96
45) Methylcyclohexane	4.915	83	133937	51.0625	ug/l	95
46) Dibromomethane	5.018	174	152615	50.3009	ug/l	92
47) 1,2-Dichloropropane	4.945	63	168077	47.2014	ug/l	96
48) Trichloroethene	4.801	130	149400	46.2713	ug/l	92
49) Benzene	4.405	78	518712	41.5979	ug/l	100
50) tert-Amyl methyl ether	4.465	73	166622	41.3387	ug/1	49
52) Iso-propylacetate	4.435		324392	50.6444	ug/l	85
53) Methyl methacrylate	4.994	41	217737	63.7424	ug/l	98
54) Dibromochloromethane	6.063		196933	56.1183	ug/1	96
55) 2-Chloroethylvinylether	5.276		124087	66.8603	ug/l	79
56) cis-1,3-Dichloropropene	5.372		228191	58.0667	ug/l	88
57) trans-1,3-Dichloropropene	5.703		192923	56.6309	ug/l	98
58) Ethyl methacrylate	5.733		223778	61.5871	ug/l	86
59) 1,1,2-Trichloroethane	5.817		139367	54.9827	ug/l	89
60) 1,2-Dibromoethane	6.141		165966	52.7310	ug/l	95
61) 1,3-Dichloropropane	5.919		246292	53.5622	ug/l	94
62) 4-Methyl-2-Pentanone	5.456		258338	69.7951	ug/l	99
63) 2-Hexanone	5.949		180741	71.5474	ug/l	94
64) Tetrachloroethene	5.907		142211	59.7420	ug/l	97
66) Toluene	5.576		337160	54.2430	ug/l	96
67) 1,1,1,2-Tetrachloroethane	6.466		136067	52.0648	ug/l	64
	A					
1	0					

Quantitation Report (QT Reviewed)

SampleID : CAL @ 50 PPB Data File: 3M93059.D Qt Meth : 3M_A0526.M Qt On : 05/26/11 10:18 Qt Upd On: 05/26/11 09:26 Operator : WP Sam Mult : 1 Vial# : 10 Acq On : 05/26/11 10:02 Misc : A,5ML

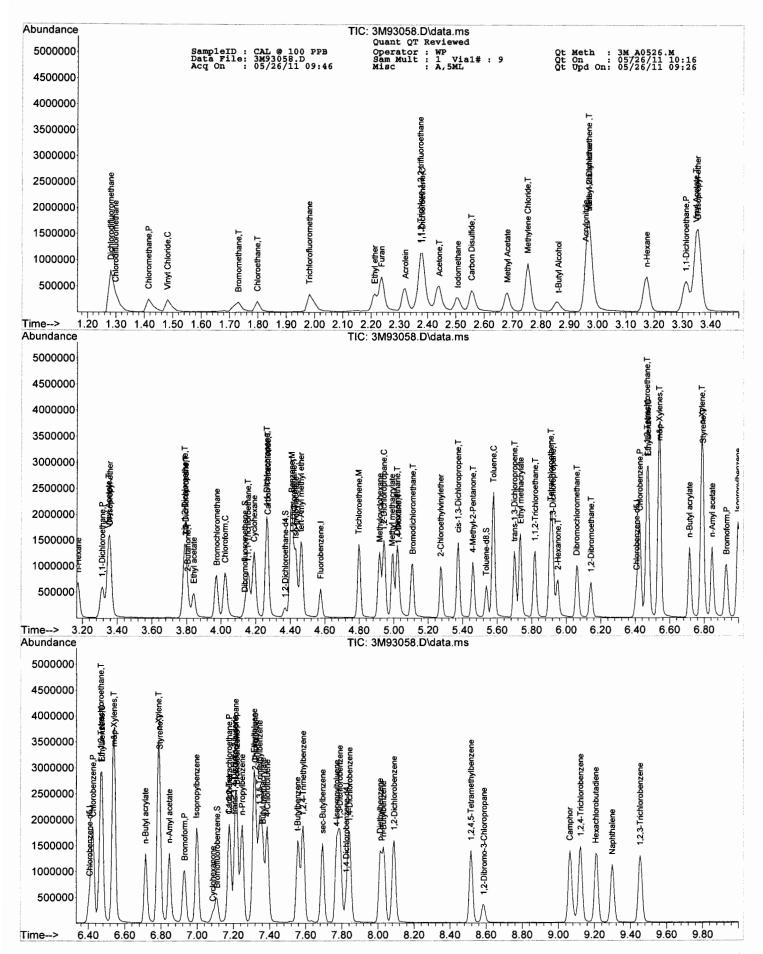
	Compound	R.T.	QIon	Response	Conc Units	Dev(Mir	1)
68)	Chlorobenzene	6.424	112	363875	52.6918	ug/l	98
70)	n-Butyl acrylate	6.718	55	298667	51.6456	ug/l	97
71)	n-Amyl acetate	6.844	43	280435	47.1491	ug/l	90
72)	Bromoform	6.928	173	197389	57.7159	ug/l	97
73)	Ethylbenzene	6.472	106	134464	49.4413	ug/l	90
74)	1,1,2,2-Tetrachloroethane	7.175	83	188839	46.0306	ug/l	94
76)	Styrene	6.790	104	360958	51.9896	ug/l	89
77)	m&p-Xylenes	6.538	106	402775	98.4245	ug/l	90
78)	o-Xylene	6.784	106	204266	50.4716	ug/l	76
79)	trans-1,4-Dichloro-2-b	7.205	53	87850	52.0227	ug/l	98
80)	1,3-Dichlorobenzene	7.788	146	322170	53.8198	ug/l	79
81)	1,4-Dichlorobenzene	7.842	146	335309	51.2204	ug/l	87
82)	1,2-Dichlorobenzene	8.088	146	330344	53.0919	ug/l	80
83)	Isopropylbenzene	7.001	105	458507	51.7342	ug/l	91
84)	Cyclohexanone	7.085	55	34165	236.3961	ug/l	88
85)	Camphene	7.181	93	109450	52.0374	ug/l	99
86)	1,2,3-Trichloropropane	7.217	75	195360	44.7050	ug/l	93
87)	2-Chlorotoluene	7.319	91	296233	46.6169	ug/l	91
88)	p-Ethyltoluene	7.313	105	523395	52.0276	ug/l	86
89)	4-Chlorotoluene	7.385	91	314146	48.0953	ug/l	88
90)	n-Propylbenzene	7.247	91	564544	49.2475	ug/l	94
	Bromobenzene	7.217	77	304601	44.2278	ug/l	75
92)	1,3,5-Trimethylbenzene	7.343	105	380837	50.8685	ug/l	91
93)	Butyl methacrylate	7.361	41	211807	45.5809	ug/l	61
94)	t-Butylbenzene	7.559	119	353795	51.8913	ug/l	77
95)	1,2,4-Trimethylbenzene	7.583	105	424606	51.1573	ug/l	86
96)	sec-Butylbenzene	7.692	105	417863	51.7209	ug/l	95
97)		7.770	119	339864	53.1287	ug/l	85
	n-Butylbenzene	8.034	91	358737	51.2836	ug/l	89
	p-Diethylbenzene	8.010	119	172812	50.5307	ug/l	84
	1,2,4,5-Tetramethylben	8.515	119	309484	54.0364	ug/l	90
	1,2-Dibromo-3-Chloropr	8.587	157	53949	54.2074	ug/l	35
	Camphor	9.062	95	137371	524.0451	ug/l	91
103)	Hexachlorobutadiene	9.212	225	156228	46.0186	ug/l	98
	1,2,4-Trichlorobenzene	9.122	180	285924	58.8601	ug/l	90
	1,2,3-Trichlorobenzene	9.452	180	269417	52.8664	ug/l	93
106)	Naphthalene	9.296	128	415014	45.0328	ug/l	100
							-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

3M A0526.M Mon Jun 13 07:33:08 2011 SYSTEM1

Qt Meth : 3M_A0526.M Qt On : 05/26/11 10:16 Qt Upd On: 05/26/11 09:26 Operator : WP Sam Mult : 1 Vial# : 9 Misc : A,5ML SampleID : CAL @ 100 PPB Data File: 3M93058.D Acq On : 05/26/11 09:46

•					- (***	
Compound	R.T.	QIon	Response	Conc Units	Dev (Mi	.n)
Internal Standards						
4) Fluorobenzene	4.575	96	269165	30.00 ug/	1 0.	00
51) Chlorobenzene-d5	6.407	117	199227	30.00 ug/		00
69) 1,4-Dichlorobenzene-d4	7.826	152	127169	30.00 ug/		00
05, 1,1 2201120101111111111111111111111111						
System Monitoring Compounds						
36) Dibromofluoromethane	4.136	111	81267	29.28 ug/		.00
Spiked Amount 30.000			Recove	•	.60%	0.1
38) 1,2-Dichloroethane-d4	4.370	67	48160	28.21 ug/ 27 = 94	.03%	.01
Spiked Amount 30.000	5.536	98	Recove 257230	31.48 ug/		.00
65) Toluene-d8 Spiked Amount 30.000	5.550	70	Recove		.93%	
75) Bromofluorobenzene	7.111	174	140042	33.80 ug/		.01
Spiked Amount 30.000			Recove	ery = 112	.67%	
						_
Target Compounds						value
Chlorodifluoromethane	1.298	51	496605	93.7424	ug/l	62
Dichlorodifluoromethane	1.282	85	423882m	116.8854	ug/l ug/l	86
7) Chloromethane	1.415	50 94	264982 123290	85.4065 75.5730	ug/l	82
8) Bromomethane9) Vinyl Chloride	1.732 1.482	62	210982	78.7492	ug/l	99
10) Chloroethane	1.798	64	115440	82.5449	ug/l	90
11) Trichlorofluoromethane	1.982	101	308877	104.8974	ug/l	86
12) Ethyl ether	2.213	59	127259	88.6127	ug/l	91
13) Furan	2.237	39	368901	91.3654	ug/l	85
14) 1,1,2-Trichloro-1,2,2	2.375	101	205351	115.7963	ug/l	97
15) Methylene Chloride	2.754	84	269910	104.2389	ug/l	89
16) Acrolein	2.321	56	290925	625.5506	ug/l	99 96
17) Acrylonitrile	2.958	53	129421	117.6325	ug/l ug/l	96
18) Iodomethane	2.508 2.441	142 43	227220 484020	66.3825 440.0327	ug/l	94
19) Acetone	2.556		450427m		ug/l	, ,
20) Carbon Disulfide 21) t-Butyl Alcohol	2.862	59	74236	553.9287	ug/l	85
22) n-Hexane	3.175		228985	127.0989	ug/l	76
23) Di-isopropyl-ether	3.355		1056667	113.8834	ug/l	86
24) 1,1-Dichloroethene	2.381		434504	106.5944	ug/1	97
25) Methyl Acetate	2.682	43	372224	87.7902	ug/1	100
26) Methyl-t-butyl ether	2.970		387362	87.6042	ug/1	89
27) 1,1-Dichloroethane	3.313		525700	112.2018	ug/l	99
28) trans-1,2-Dichloroethene	2.970		230949	104.7335	ug/l ug/l	94 86
29) cis-1,2-Dichloroethene	3.788	_	451070 311780	114.6177 109.2407	ug/1	77
30) Bromochloromethane	3.974 3.793		239283	115.6710	ug/l	95
31) 2,2-Dichloropropane 32) Ethyl acetate	3.842		403334	110.2613	ug/l	98
33) 1,4-Dioxane	5.025		231808	7338.8796	ug/l	83
34) 1,1-Dichloropropene	4.262		382006	115.5009	ug/l	96
35) Chloroform	4.022	83	502838	109.5216	ug/l	87
37) Cyclohexane	4.190		400961	129.8431	ug/l	84
39) 1,2-Dichloroethane	4.418		455831	104.2342	ug/1	96 100
40) 2-Butanone	3.806		145836	96.4009	ug/l ug/l	93
41) 1,1,1-Trichloroethane	4.154		382409 323741	107.3389 107.1607	ug/l	93
42) Carbon Tetrachloride	4.268		702926	96.7111	ug/1	100
43) Vinyl Acetate 44) Bromodichloromethane	5.109		437100	112.3695	ug/l	93
45) Methylcyclohexane	4.917		285077	132.3512	ug/l	96
46) Dibromomethane	5.019		289919	116.3641	ug/l	93
47) 1,2-Dichloropropane	4.941	63	339941	116.2556	ug/1	95
48) Trichloroethene	4.797	130	303545	114.4847	ug/l	93
49) Benzene	4.406		1073455	104.8316	ug/l	100
50) tert-Amyl methyl ether	4.461		334797	101.1509	ug/l	47
52) Iso-propylacetate	4.430		687465	123.1757	ug/l ug/l	88 99
53) Methyl methacrylate	4.989		454945	152.8511 128.2705	ug/l	93
54) Dibromochloromethane	6.059 5.272		392218 255684	158.1099	ug/1	77
55) 2-Chloroethylvinylether	5.374		492515	143.8341	ug/l	91
56) cis-1,3-Dichloropropene 57) trans-1,3-Dichloropropene	5.698		428488	144.3516	ug/1	100
58) Ethyl methacrylate	5.734		462179	145.9808	ug/l	87
59) 1,1,2-Trichloroethane	5.819		284560	128.8409	ug/l	88
60) 1,2-Dibromoethane	6.143		334835	122.0932	ug/l	95
61) 1,3-Dichloropropane	5.921		488584	121.9441	ug/l	100
62) 4-Methyl-2-Pentanone	5.458		545436	169.1197	ug/1	98
63) 2-Hexanone	5.951		375179	170.4470	ug/l	92 97
64) Tetrachloroethene	5.909		277771	133.9205 121.7491	ug/l ug/l	97 92
66) Toluene	5.578		659393 267818	117.6102	ug/l	80
67) 1,1,1,2-Tetrachloroethane	t	, 133	20/010	117.0102	~g/ *	
	\ L					


Quantitation Report (QT Reviewed)

SampleID : CAL @ 100 PPB Data File: 3M93058.D Qt Meth : 3M_A0526.M Qt On : 05/26/11 10:16 Qt Upd On: 05/26/11 09:26 Operator : WP Sam Mult : 1 Vial# : 9 Misc : A,5ML Acq On : 05/26/11 09:46

Data Path : G:\GcMsData\2011\GCMS_3\Data\05-26-11\
Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\
Qt Resp Via : Initial Calibration

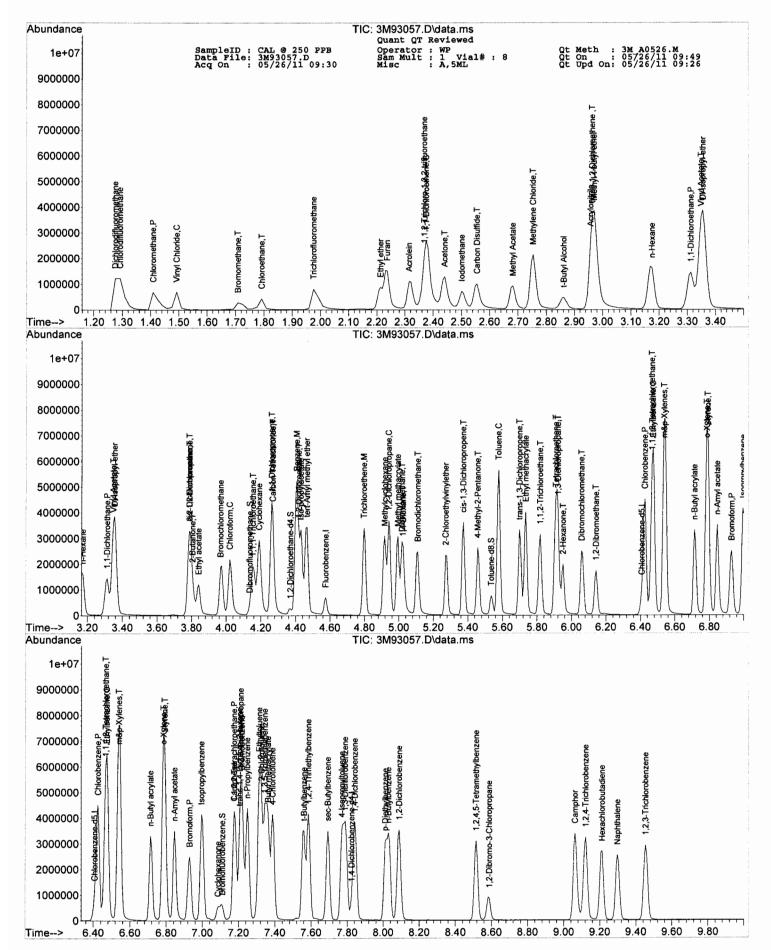
	Chlorobenzene						
70)		6.425	112	710265	118.0388	ug/l	98
	n-Butyl acrylate	6.714	55	637371	138.5538	ug/l	96
71)	n-Amyl acetate	6.846	43	591088	124.9319	ug/l	90
72)	Bromoform	6.930	173	388559	142.8269	ug/l	91
73)	Ethylbenzene	6.474	106	270912	125.2254	ug/l	84
74)	1,1,2,2-Tetrachloroethane	7.177	83	385148	118.0219	ug/l	92
76)	Styrene	6.792	104	686379	124.2809	ug/l	87
77)	m&p-Xylenes	6.540	106	761106	233.8116	ug/l	90
78)	o-Xylene	6.786	106	395249	122.7727	ug/l	77
79)	trans-1,4-Dichloro-2-b	7.207	53	178054	132.5510	ug/l	99
80)	1,3-Dichlorobenzene	7.790	146	632978	132.9309	ug/l	80
81)	1,4-Dichlorobenzene	7.844	146	649188	124.6663	ug/l	88
82)	1,2-Dichlorobenzene	8.090	146	657860	132.9154	ug/l	81
83)	Isopropylbenzene	6.996	105	936814	132.8819	ug/l	92
84)	Cyclohexanone	7.086	55	70206	610.6797	ug/l	96
85)	Camphene	7.177	93	214204	128.0287	ug/l	95
86)	1,2,3-Trichloropropane	7.213	75	401885	115.6118	ug/l	90
87)	2-Chlorotoluene	7.321	91	567840	112.3353	ug/l	93
88)	p-Ethyltoluene	7.315	105	964131	120.4815	ug/l	84
89)	4-Chlorotoluene	7.387	91	629908	121.2351	ug/l	86
90)	n-Propylbenzene	7.249	91	1147269	125.8150	ug/l	95
91)	Bromobenzene	7.219	77	603061	110.0793	ug/l	80
92)	1,3,5-Trimethylbenzene	7.345	105	800930	134.4884	ug/l	92
93)	Butyl methacrylate	7.363	41	426718	115.4420	ug/l	61
94)	t-Butylbenzene	7.555	119	720370	132.8246	ug/l	77
95)	1,2,4-Trimethylbenzene	7.585	105	862833	130.6859	ug/l	89
96)	sec-Butylbenzene	7.693	105	855101	133.0547	ug/l	97
97)	4-Isopropyltoluene	7.772	119	678745	133.3863	ug/l	86
98)	n-Butylbenzene	8.030	91	740162	133.0176	ug/l	90
99)	p-Diethylbenzene	8.012	119	373601	137.3314	ug/l	85
100)	1,2,4,5-Tetramethylben	8.517	119	641916	140.8986	ug/l	88
	1,2-Dibromo-3-Chloropr	8.589	157	115495	145.8876	ug/l	35
102)	Camphor	9.063	95	293947	1409.6876	ug/l	94
103)	Hexachlorobutadiene	9.208	225	345044	127.7702	ug/l	96
104)	1,2,4-Trichlorobenzene	9.124	180	588745	152.3624	ug/l	91
	1,2,3-Trichlorobenzene	9.454	180	556363	137.2439	ug/l	94
	Naphthalene	9.298	128	896672	122.3152	ug/l	100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

3M A0526.M Mon Jun 13 07:33:12 2011 SYSTEM1

Page: 1

0136


Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:49 Qt Upd On: 05/26/11 09:26 Operator : WP Sam Mult : 1 Vial# : 8 SampleID : CAL @ 250 PPB Data File: 3M93057.D : A,5ML Acq On : 05/26/11 09:30 Misc

•						
Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
Internal Standards	4 574	0.0	220100	30.00 ug/	'1 O	.00
 4) Fluorobenzene 51) Chlorobenzene-d5 	4.574 6.407		338198 239811	30.00 ug/		.00
69) 1,4-Dichlorobenzene-d4			144474			.00
of 1,4 Dieniolopenzene 44	7.023	132		30.00		
System Monitoring Compounds						
36) Dibromofluoromethane	4.136	111	94876	27.20 ug/		.00
Spiked Amount 30.000					.67%	
38) 1,2-Dichloroethane-d4	4.370	67	61138	28.50 ug/		.01
Spiked Amount 30.000	5.536	0.0		ery = 95 32.16 ug/	5.00% /1 0	.00
65) Toluene-d8 Spiked Amount 30.000	5.536	98		ery = 107		.00
75) Bromofluorobenzene	7.110	174	171156			.01
Spiked Amount 30.000	,,,,,			ery = 121		
-•				-		
Target Compounds						value
Chlorodifluoromethane	1.292		1246802	187.3139	ug/l	83
6) Dichlorodifluoromethane	1.276		903304	198.2425	ug/l	86
7) Chloromethane	1.409		860023		ug/l	78 90
8) Bromomethane	1.709 1.492		178306 553645		ug/l ug/l	97
 9) Vinyl Chloride 10) Chloroethane 	1.792		265939		ug/l	94
11) Trichlorofluoromethane	1.976		667896		ug/l	86
12) Ethyl ether	2.213		332850		ug/l	91
13) Furan	2.237		927612	182.8462	ug/l	84
14) 1,1,2-Trichloro-1,2,2	2.369	101	487789	218.9159	ug/l	95
15) Methylene Chloride	2.754	84	665963		ug/1	83
16) Acrolein	2.315		737951		ug/l	98
17) Acrylonitrile	2.958		322380		ug/l	95
18) Iodomethane	2.501		565771	131.5514 885.1764	ug/l ug/l	99 96
19) Acetone	2.441 2.555		1223378 1142903		ug/l	100
20) Carbon Disulfide 21) t-Butyl Alcohol	2.353		174012		ug/l	83
22) n-Hexane	3.174		599156		ug/l	75
23) Di-isopropyl-ether	3.355		2608402		ug/l	84
24) 1,1-Dichloroethene	2.375		1078995	210.6724	ug/l	94
25) Methyl Acetate	2.682	43	955045	179.2721	ug/1	100
26) Methyl-t-butyl ether	2.970		893625		ug/l	88
27) 1,1-Dichloroethane	3.313		1302177		ug/l	99
28) trans-1,2-Dichloroethene	2.964		557047		ug/l	95 91
29) cis-1,2-Dichloroethene	3.787		1094630 783764		ug/l ug/l	68
30) Bromochloromethane31) 2,2-Dichloropropane	3.968 3.787		603105		ug/l	95
32) Ethyl acetate	3.841		1004907		ug/l	96
33) 1,4-Dioxane	5.025		498946		ug/l	74
34) 1,1-Dichloropropene	4.262	75	942525	226.8065	ug/l	98
35) Chloroform	4.022	83	1290806		ug/l	88
37) Cyclohexane	4.190		1008660		ug/l	84
39) 1,2-Dichloroethane	4.418		1114278	202.7904	ug/l	94
40) 2-Butanone	3.805		360056	189.4236	ug/l ug/l	91 96
41) 1,1,1-Trichloroethane	4.154	97 117	966696 755972	215.9566 199.1549	ug/l	95
42) Carbon Tetrachloride 43) Vinyl Acetate	3.349		1717229	188.0367	ug/l	100
44) Bromodichloromethane	5.109		1112162	227.5534	ug/l	92
45) Methylcyclohexane	4.917		730980	270.0964	ug/l	96
46) Dibromomethane	5.019		663547	211.9638	ug/l	94
47) 1,2-Dichloropropane	4.941	63	863764	235.1003	ug/l	98
48) Trichloroethene	4.797		737063	221,2466	ug/l	92
49) Benzene	4.406		2542783	197.6357	ug/l	100
50) tert-Amyl methyl ether	4.466		823221	197.9485	ug/l	46
52) Iso-propylacetate	4.430		1756402 1127866	261.4434 314.8083	ug/l ug/l	88 99
53) Methyl methacrylate 54) Dibromochloromethane	4.995 6.059		1014052	275.5109	ug/l	100
55) 2-Chloroethylvinylether	5.271		666649	342.4772	ug/l	78
56) cis-1,3-Dichloropropene	5.374		1259675	305.6187	ug/l	92
57) trans-1,3-Dichloropropene	5.698		1130891	316.5066	ug/l	96
58) Ethyl methacrylate	5.734	41	1139446	298.9912	ug/l	87
59) 1,1,2-Trichloroethane	5.818		693938	261.0235	ug/l	90
60) 1,2-Dibromoethane	6.143		875651	265.2594	ug/l	95
61) 1,3-Dichloropropane	5.920		1194133	247.6015	ug/l	97 100
62) 4-Methyl-2-Pentanone	5.458		1384644	356.6708 373.6847	ug/l ug/l	100 92
63) 2-Hexanone 64) Tetrachloroethene	5.951 5.908		990092 613081	245.5598	ug/1 ug/1	99
66) Toluene	5.578		1580432	242.4244	ug/l	89
67) 1,1,1,2-Tetrachloroethane	6.467		609500	222.3607	ug/l	73
0,, 1,1,1,2 1001201120120101101						

SampleID : CAL @ 250 PPB Data File: 3M93057.D Operator : WP Sam Mult : 1 Vial# : 8 Misc : A,5ML Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:49 Qt Upd On: 05/26/11 09:26 Acq On : 05/26/11 09:30

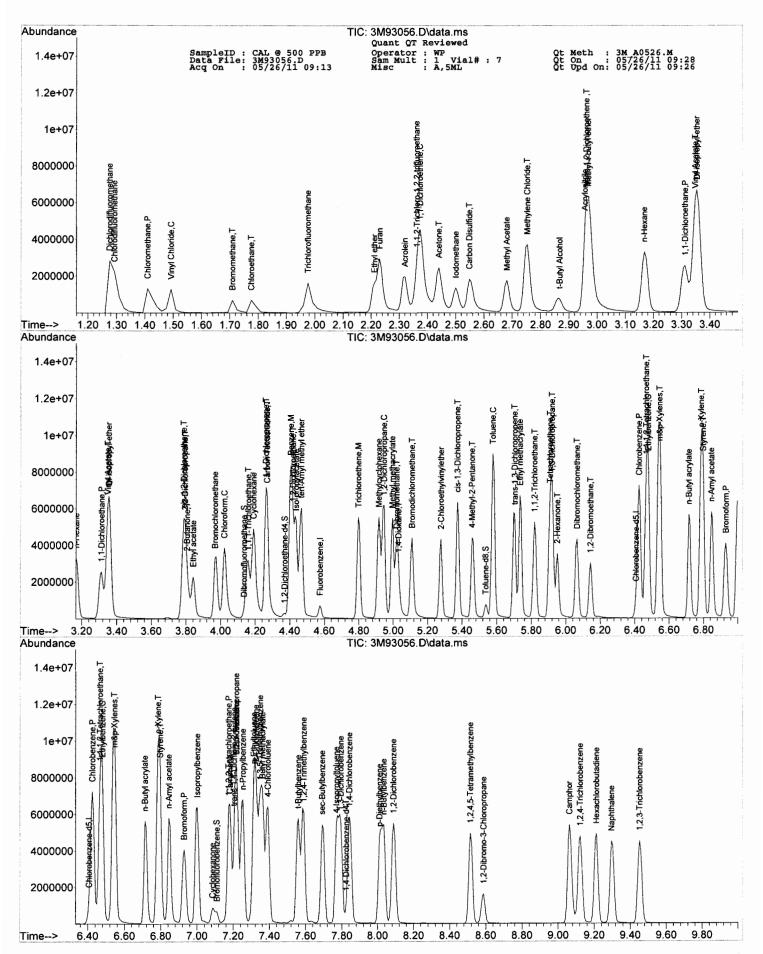
	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	in)
68)	Chlorobenzene	6.425	112	1750279	241.6523	ug/1	97
	n-Butyl acrylate	6.714	55	1652247	316.1496	ug/l	96
	n-Amyl acetate	6.846	43	1567042	291.5369	ug/l	92
	Bromoform	6.930	173	960922	310.9085	ug/l	97
73)	Ethylbenzene	6.473	106	538798	219.2208	ug/l	95
74)	1,1,2,2-Tetrachloroethane	7.176	83	873131	235.5082	ug/1	91
	Styrene	6.792	104	1523961	242.8878	ug/l	93
77)	m&p-Xylenes	6.539	106	1664071	449.9707	ug/l	97
78)	o-Xylene	6.786	106	839606	229.5611	ug/l	81
79)	trans-1,4-Dichloro-2-b	7.206	53	415396	272.1980	ug/l	92
80)	1,3-Dichlorobenzene	7.789	146	1350310	249.6102	ug/l	81
81)	1,4-Dichlorobenzene	7.843	146	1440643	243.5154	ug/l	88
82)	1,2-Dichlorobenzene	8.090	146	1432726	254.7983	ug/l	83
83)	Isopropylbenzene	6.996	105	2218937	277.0441	ug/l	93
84)	Cyclohexanone	7.086	55	180732	1383.7762	ug/l	97
85)	Camphene	7.176	93	512458	269.6061	ug/l	99
86)	1,2,3-Trichloropropane	7.212	75	919087	232.7280	ug/l	88
87)	2-Chlorotoluene	7.327	91	1248408	217.3894	ug/l	94
88)	p-Ethyltoluene	7.315	105	2216659	243.8231	ug/l	79
89)	4-Chlorotoluene	7.387	91	1399028	237.0114	ug/l	90
90)	n-Propylbenzene	7.248	91	2681165	258.8107	ug/l	96
91)	Bromobenzene	7.218	77	1333009	214.1752	ug/l	87
92)	1,3,5-Trimethylbenzene	7.345	105	1598102	236.2035	ug/l	84
93)	Butyl methacrylate	7.363	41	1067700	254.2516	ug/l	68
94)	t-Butylbenzene	7.561	119	1635171	265.3858	ug/l	78
95)	1,2,4-Trimethylbenzene	7.585	105	1908829	254.4841	ug/l	88
96)	sec-Butylbenzene	7.693	105	1985693	271.9671	ug/l	97
97)	4-Isopropyltoluene	7.771	119	1526762	264.0994	ug/l	87
98)	n-Butylbenzene	8.030	91	1716348	271.5059	ug/l	91
99)	p-Diethylbenzene	8.012	119	850254	275.1073	ug/l	87
100)	1,2,4,5-Tetramethylben	8.516	119	1518067	293.2994	ug/l	90
101)	1,2-Dibromo-3-Chloropr	8.588	157	278095	309.2003	ug/l	39
102)	Camphor	9.063	95	725970	3064.5315	ug/l	92
103)	Hexachlorobutadiene	9.213	225	742409	241.9858	ug/l	97
104)	1,2,4-Trichlorobenzene	9.123	180	1278637	291.2656	ug/l	92
105)	1,2,3-Trichlorobenzene	9.454	180	1279494		ug/l	95
106)	Naphthalene	9.298	128	2075226	249.1746	ug/l	100
							·

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Page: 1

Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:28 Qt Upd On: 05/26/11 09:26 SampleID : CAL @ 500 PPB Data File: 3M93056.D Acq On : 05/26/11 09:13 Operator : WP Sam Mult : 1 Vial# : 7 Misc : A,5ML

•						
Compound	R.T.	QIon	Response	Conc Units	Dev(Mir	1)
Internal Standards						
4) Fluorobenzene	4.574	96	323182	30.00 ug/		
51) Chlorobenzene-d5	6.407	117	227284		1 0.0	
69) 1,4-Dichlorobenzene-d4	7.825	152	128647	30.00 ug/	1 0.0	0
System Monitoring Compounds						
36) Dibromofluoromethane	4.135	111	91912	27.58 ug/)0
Spiked Amount 30.000			Recov		.93%	
38) 1,2-Dichloroethane-d4	4.370	67	53545	26.12 ug/)1
Spiked Amount 30.000			Recov		.07%	
65) Toluene-d8	5.535	98		34.14 ug/)0
Spiked Amount 30.000			Recov		.80%	
75) Bromofluorobenzene	7.110	174		38.09 ug/)1
Spiked Amount 30.000			Recov	ery = 126	.97%	
					_	_
Target Compounds						alue
Chlorodifluoromethane	1.293	51	2381121	374.3500	ug/l	73
Dichlorodifluoromethane	1.276	85	1905470	437.6115	ug/l	87
7) Chloromethane	1.410	50	1696312	455.3565	ug/l	81
8) Bromomethane	1.710	94	289979	148.0391	ug/l	84
Vinyl Chloride	1.493	62	1077818	335.0563	ug/l	96
10) Chloroethane	1.776	64	481606	286.8118	ug/l	92
11) Trichlorofluoromethane	1.976	101	1291239	365.2222	ug/l	87
12) Ethyl ether	2.212	59	607459	352.2864	ug/l	95
13) Furan	2.230	39	1722727	355.3530	ug/l	88
14) 1,1,2-Trichloro-1,2,2	2.363	101	934494	438.8799	ug/l	95
15) Methylene Chloride	2.753	84	1230178	395.6854	ug/l	83
16) Acrolein	2.321	56	1328958	2379.9296	ug/l	97
17) Acrylonitrile	2.958	53	576788	436.6266	ug/l	97
18) Iodomethane	2.501		1091693	265.6313	ug/l	99
	2.441		2320722	1757.1795	ug/l	96
19) Acetone	2.549		2164306	239.9392	ug/l	100
20) Carbon Disulfide	2.867		272026	1690.5233	ug/1	85
21) t-Butyl Alcohol	3.168		1142043	527.9448	ug/l	79
22) n-Hexane			4569276	410.1486	ug/l	81
23) Di-isopropyl-ether	3.354		2013387	411.3764	ug/l	95
24) 1,1-Dichloroethene	2.375		1774079	348.4864	ug/l	100
25) Methyl Acetate	2.681		1508516	284.1378	ug/l	82
26) Methyl-t-butyl ether	2.970			437.6754	ug/l	100
27) 1,1-Dichloroethane	3.312		2462175		ug/l	90
28) trans-1,2-Dichloroethene	2.964		1022263	386.1034	ug/l	93
29) cis-1,2-Dichloroethene	3.787		1953975	413.5217	ug/l	67
30) Bromochloromethane	3.967		1411625	411.9335	ug/l	98
31) 2,2-Dichloropropane	3.793		1093423	440.2225		98
32) Ethyl acetate	3.841		1802277	410.3469	ug/l	79
33) 1,4-Dioxane	5.031		661146		ug/l	97
34) 1,1-Dichloropropene	4.261	_	1585471	399.2500	ug/l	86
35) Chloroform	4.021		2389087	433.3861	ug/l	
37) Cyclohexane	4.189		1804247	486.6135	ug/l	83
39) 1,2-Dichloroethane	4.418		1911742	364.0884	ug/l	95
40) 2-Butanone	3.805		742067	408.5366	ug/l	88
 1,1,1-Trichloroethane 	4.159		1781732	416.5267	ug/l	100
42) Carbon Tetrachloride	4.268		1365952	376.5690	ug/l	93
43) Vinyl Acetate	3.348		2967340	340.0208	ug/l	100
44) Bromodichloromethane	5.109		1979858	423.9096	ug/l	92 95
45) Methylcyclohexane	4.916		1304008	504.2169	ug/l	95
46) Dibromomethane	5.019		1126336	376.5146	ug/l	93
47) 1,2-Dichloropropane	4.947		1474167	419.8833	ug/l	98
48) Trichloroethene	4.796	130	1271370	399.3631	ug/l	89
49) Benzene	4.406	78	4226267	343.7454	ug/l	100
50) tert-Amyl methyl ether	4.466		1302267	327.6873	ug/l #	
52) Iso-propylacetate	4.436	43	3693983	580.1614	ug/l	91
53) Methyl methacrylate	4.995	41	1977530	582.3874	ug/l	99
54) Dibromochloromethane	6.064	129	1748898	501.3525	ug/1	98
55) 2-Chloroethylvinylether	5.277		1155147	626.1407	ug/1	79
56) cis-1,3-Dichloropropene	5.373		2229847	570.8167	ug/l	93
57) trans-1,3-Dichloropropene	5.704		2075175	612.7976	ug/l	98
58) Ethyl methacrylate	5.734		2005090	555.1352	ug/l	91
59) 1,1,2-Trichloroethane	5.818	_	1200688	476.5290	ug/l	91
60) 1,2-Dibromoethane	6.142		1523727	487.0204	ug/l	93
61) 1,3-Dichloropropane	5.920		1970049	431.0005	ug/l	97
62) 4-Methyl-2-Pentanone	5.457	_	2461310	668.9535	ug/l	99
	5.950		1781497	709.4391	ug/l	93
63) 2-Hexanone	5.908		937730	396.2940	ug/l	98
64) Tetrachloroethene	5.577		2654892	429.6825	ug/l	94
66) Toluene	6.467		941536	362.4277	ug/l	76
67) 1,1,1,2-Tetrachloroethane	1 3.40/	1,5	3.1330			
	\sim					


Quantitation Report (QT Reviewed)

Data Path : G:\GcMsData\2011\GCMS_3\Data\05-26-11\
Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\

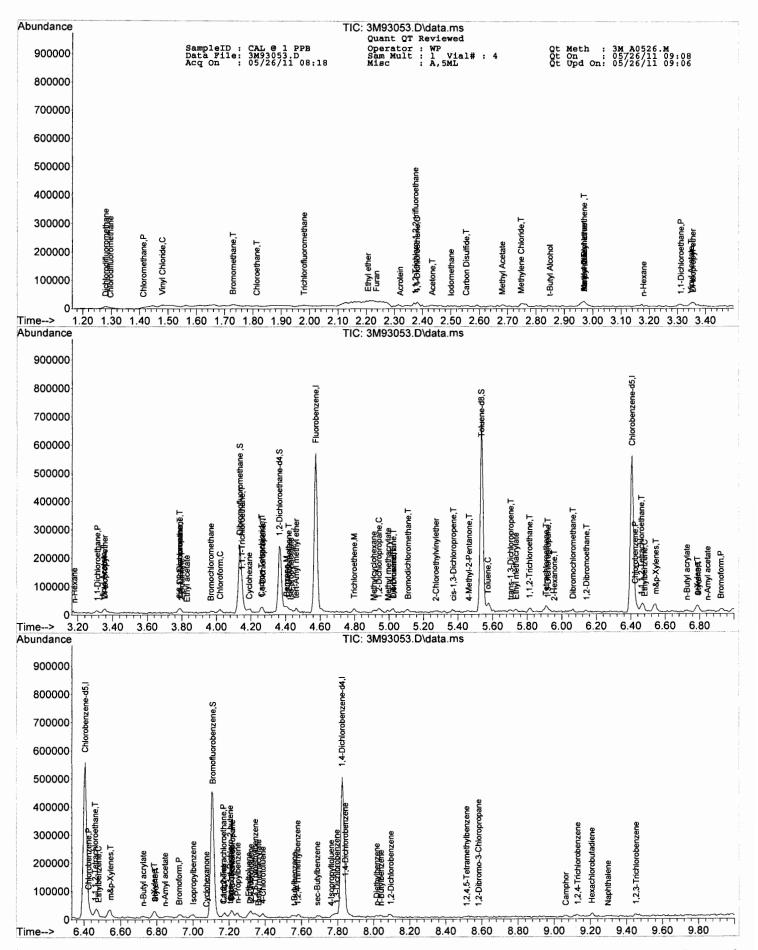
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	ι)
68)	Chlorobenzene	6.425	112	2895764	421.8392	ug/l	98
	n-Butyl acrylate	6.713	55	2895560	622.2147	ug/l	94
	n-Amyl acetate	6.845	43	2745452	573.6101	ug/l	94
	Bromoform	6.930	173	1590388	577.8799	ug/l	94
	Ethylbenzene	6.479	106	812465	371.2363	ug/l	93
74)	1,1,2,2-Tetrachloroethane	7.176	83	1410115	427.1409	ug/l	91
76)	Styrene	6.797	104	2271361	406.5445	ug/l	92
77)	m&p-Xylenes	6.545	106	2453085	744.9293	ug/l	99
78)	o-Xylene	6.785	106	1273974	391.1770	ug/l	83
79)	trans-1,4-Dichloro-2-b	7.206	53	705132	518.8994	ug/l	94
80)	1,3-Dichlorobenzene	7.795	146	2078502	431.4886	ug/l	83
81)	1,4-Dichlorobenzene	7.843	146	2282826	433.3441	ug/l	90
82)	1,2-Dichlorobenzene	8.089	146	2266642	452.6957	ug/l	84
83)	Isopropylbenzene	7.002	105	3596798	504.3245	ug/l	93
84)	Cyclohexanone	7.086	55	285854	2457.9051	ug/l	94
85)	Camphene	7.182	93	852845	503.8851	ug/l	93
86)	1,2,3-Trichloropropane	7.218	75	1508339	428.9247	ug/l	86
87)	2-Chlorotoluene	7.326	91	1806412	353.2552	ug/l	97
88)	p-Ethyltoluene	7.314	105	3232201	399.2679	ug/l	82
89)		7.392	91	2203251	419.1764	ug/l	91
90)	n-Propylbenzene	7.254	91	4449961	482.3973	ug/l	97
91)	Bromobenzene	7.218	77	2479772	447.4431	ug/l	95
92)	1,3,5-Trimethylbenzene	7.350	105	2560091	424.9396	ug/l	93
93)	Butyl methacrylate	7.362	41	1794437	479.8800	ug/l	73
	t-Butylbenzene	7.560	119		482.1410	ug/l	81
95)	1,2,4-Trimethylbenzene	7.591	105	3045254	455.9394	ug/l	90
	sec-Butylbenzene	7.693	105	3283436	505.0366	ug/l	98
97)	4-Isopropyltoluene	7.771	119	2405063	467.2104	ug/l	89
98)	n-Butylbenzene	8.035	91	2826395	502.1076	ug/l	93
	p-Diethylbenzene	8.011	119	1365078	496.0220	ug/l	89
100)	1,2,4,5-Tetramethylben	8.516	119	2455949	532.8802	ug/l	90
101)	1,2-Dibromo-3-Chloropr	8.588	157	499593	623.8111	ug/l	41
	Camphor	9.063	95	1194212	5661.3093	ug/l	92
	Hexachlorobutadiene	9.213	225	1320233	483.2671	ug/l	96
	1,2,4-Trichlorobenzene	9.123	180	1937894	495.7492	ug/l	92
105)	1,2,3-Trichlorobenzene	9.453	180	1963090	478.6925	ug/l	94
106)	Naphthalene	9.297	128	3615994	487.5915	ug/l	100
							-

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

3M A0526.M Mon Jun 13 07:33:20 2011 SYSTEM1

SampleID : CAL @ 1 PPB
Data File: 3M93053.D
Acq On : 05/26/11 08:18 Operator : WP Sam Mult : 1 Vial# : 4 Misc : A,5ML Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:08 Qt Upd On: 05/26/11 09:06


Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards						
4) Fluorobenzene	4.574	96	290847	30.00 ug/	/ 1	0.00
51) Chlorobenzene-d5	6.407		219764	30.00 ug/		0.00
69) 1,4-Dichlorobenzene-d4	7.825		129423	30.00 ug/		0.00
or 1,1 bromorobenbene di	7.025	132	127425	30.00 49/	-	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.136	111	94900	31.64 ug/	1	0.00
Spiked Amount 30.000			Recover	y = 105	.47%	
38) 1,2-Dichloroethane-d4	4.364	67	57812	31.34 ug/	1	0.00
Spiked Amount 30.000			Recover	y = 104	.47%	
65) Toluene-d8	5.536	98	281296	31.21 ug/	1	0.00
Spiked Amount 30.000			Recover		.03%	
75) Bromofluorobenzene	7.110	174	130995	31.06 ug/		0.01
Spiked Amount 30.000			Recover	xy = 103	3.53₺	
Target Compounds			2552	0 6565		Qvalue
5) Chlorodifluoromethane	1.297	51	3758	0.6565	ug/l	
6) Dichlorodifluoromethane	1.280	85	4351	1.1103	ug/l	
7) Chloromethane	1.413 1.730	50 94	3467 2957	1.0341 1.6774	ug/l ug/l	
8) Bromomethane9) Vinyl Chloride	1.480	62	2150m	0.7427	ug/1	
10) Chloroethane	1.813	64	1788	1.1832	ug/1	
11) Trichlorofluoromethane	1.980		2483	0.7804	ug/1	
12) Ethyl ether	2.207		1825	1.1760	ug/l	
13) Furan	2.237	39	3099	0.7103	ug/1	
14) 1,1,2-Trichloro-1,2,2	2.375	101	1762	0.9195	ug/l	
15) Methylene Chloride	2.747	84	2894	1.0343	ug/l	
16) Acrolein	2.321	56	2351	4.6783	ug/l	
17) Acrylonitrile	2.970	53	1071	0.9009	ug/l	
18) Iodomethane	2.501	142	1866	0.5045	ug/l	59
19) Acetone	2.435	43	5579	4.6939	ug/l	87
20) Carbon Disulfide	2.555	76	3631	0.4473	ug/l	100
21) t-Butyl Alcohol	2.850	59	899	6.2080	ug/l	50
22) n-Hexane	3.180	57	1078m	0.5537	ug/1	
23) Di-isopropyl-ether	3.354	45	6646	0.6629	ug/l	
24) 1,1-Dichloroethene	2.381	61	3545	0.8048	ug/l	
25) Methyl Acetate	2.681	43	3477	0.7589	ug/l	
26) Methyl-t-butyl ether	2.970		3793	0.7939	ug/l	
27) 1,1-Dichloroethane	3.312	63	4210	0.8316	ug/l	
28) trans-1,2-Dichloroethene	2.970	96	2097	0.8801	ug/l	
29) cis-1,2-Dichloroethene	3.787	61	3951	0.9291	ug/l	
30) Bromochloromethane	3.967	49	3171	1.0282	ug/l	
31) 2,2-Dichloropropane	3.787	77	1753	0.7842 0.6755	ug/l ug/l	
32) Ethyl acetate 33) 1,4-Dioxane	3.829 5.025	43 88	2670 1058	30.9985	ug/l	
33) 1,4-Dioxane 34) 1,1-Dichloropropene	4.268	75	2329	0.6517	ug/1	
35) Chloroform	4.021	83	5352	1.0788	ug/l	
37) Cyclohexane	4.190	56	2563	0.7681	ug/l	
39) 1,2-Dichloroethane	4.418	62	4099	0.8674	ug/l	
40) 2-Butanone	3.799	43	1980	1.2113	ug/l	
41) 1,1,1-Trichloroethane	4.148	97	2481	0.6445	ug/l	92
42) Carbon Tetrachloride	4.262	117	3637	1.1141	ug/l	78
43) Vinyl Acetate	3.348	43	4102	0.5223	ug/l	100
44) Bromodichloromethane	5.109	83	3613	0.8596	ug/1	
45) Methylcyclohexane	4.911	83	1281	0.5504	ug/l	
46) Dibromomethane	5.025	174	2536	0.9420	ug/l	76
47) 1,2-Dichloropropane	4.941	63	3003	0.9504	ug/l	
48) Trichloroethene	4.797	130	2903	1.0133	ug/l	92
49) Benzene	4.406	78	8298	0.7500	ug/l	
50) tert-Amyl methyl ether	4.460	73	2432	0.6800	ug/l	
52) Iso-propylacetate	4.430	43	4159	0.6755	ug/l	
53) Methyl methacrylate	4.995	41	2124	0.6469	ug/l	
54) Dibromochloromethane	6.064	129	2685	0.7960	ug/l	
55) 2-Chloroethylvinylether	5.271	63 75	1001	0.5612	ug/l ug/l	
56) cis-1,3-Dichloropropene	5.373	75 75	2692 2314	0.7127 0.7067	ug/1 ug/1	
57) trans-1,3-Dichloropropene	5.704 5.734	75 41	2865	0.7067	ug/1 ug/1	
58) Ethyl methacrylate 59) 1,1,2-Trichloroethane	5.734	97	2322	0.8204	ug/1	
59) 1,1,2-Trichloroethane 60) 1,2-Dibromoethane	6.143	107	2009	0.6641	ug/1	
61) 1,3-Dichloropropane	5.920	76	4496	1.0173	ug/l	
62) 4-Methyl-2-Pentanone	5.464	43	2849	0.8008	ug/l	
63) 2-Hexanone	5.956	43	1788	0.7364	ug/1	
64) Tetrachloroethene	5.908	164	3010	1.3156	ug/1	
66) Toluene	5.572	92	5433	0.9094	ug/l	
67) 1,1,1,2-Tetrachloroethane	6.461	133	2299	0.9152	ug/l	
1	J.					
) ¹					

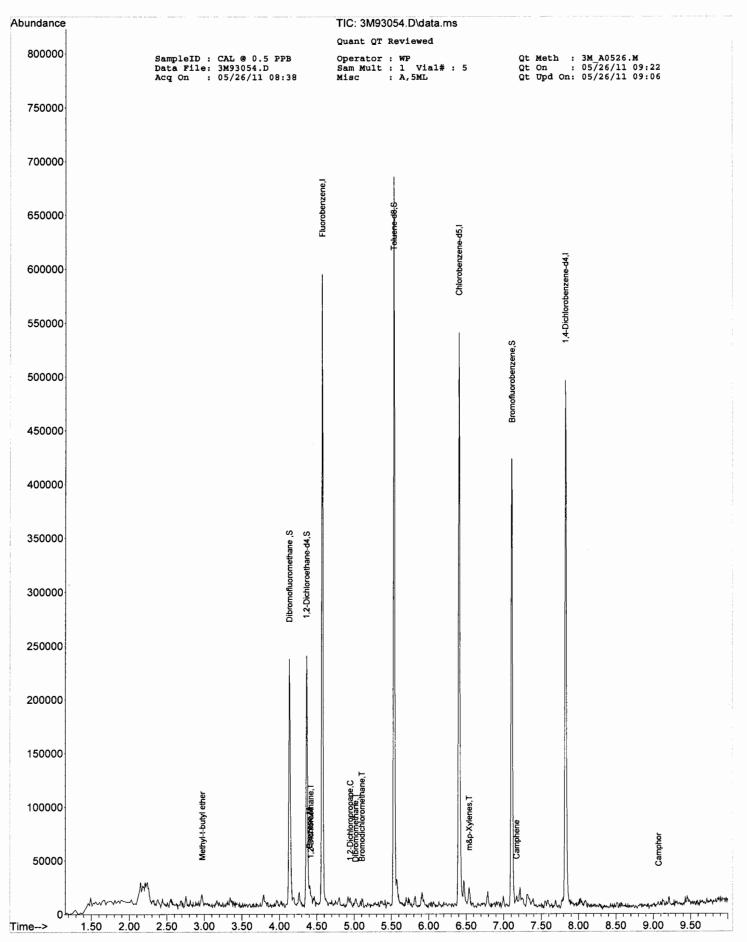
Quantitation Report (QT Reviewed)

Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:08 Qt Upd On: 05/26/11 09:06 Operator : WP Sam Mult : 1 Vial# : 4 Misc : A,5ML SampleID : CAL @ 1 PPB Data File: 3M93053.D Acq On : 05/26/11 08:18

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
68)	Chlorobenzene	6.425	112	7373	1.1108	ug/l	90
70)	n-Butyl acrylate	6.725	55	2149	0.4590	ug/l	84
71)	n-Amyl acetate	6.846	43	2158	0.4482	ug/l	67
72)	Bromoform	6.924	173	2672	0.9651	ug/l	97
73)	Ethylbenzene	6.479	106	1790	0.8130	ug/l	56
74)	1,1,2,2-Tetrachloroethane	7.170	83	3510	1.0568	ug/l	85
76)	Styrene	6.792	104	3939	0.7008	ug/l	62
77)	m&p-Xylenes	6.545	106	5987	1.8072	ug/l	73
78)	o-Xylene	6.785	106	2711	0.8274	ug/l	54
79)	trans-1,4-Dichloro-2-b	7.206	53	1816	1.3284	ug/l	62
80)	1,3~Dichlorobenzene	7.795	146	5279	1.0893	ug/l	79
81)	1,4-Dichlorobenzene	7.843	146	5685	1.0727	ug/l	89
82)	1,2-Dichlorobenzene	8.095	146	4236	0.8409	ug/l	81
83)	Isopropylbenzene	7.002	105	5105	0.7115	ug/l	89
84)	Cyclohexanone	7.074	55	174	1.4872	ug/l #	24
85)	Camphene	7.170	93	499m	0.2931	ug/l	
86)	1,2,3-Trichloropropane	7.218	75	2942	0.8316	ug/l	89
87)	2-Chlorotoluene	7.320	91	5181	1.0071	ug/l	91
88)	p-Ethyltoluene	7.308	105	6345	0.7791	ug/l	83
89)	4-Chlorotoluene	7.386	91	3896	0.7368	ug/l	76
90)	n-Propylbenzene	7.248	91	7165	0.7721	ug/l	85
91)	Bromobenzene	7.212	77	7012	1.2576	ug/l	90
92)	1,3,5-Trimethylbenzene	7.344	105	5589	0.9221	ug/l	95
93)	Butyl methacrylate	7.362	41	2034	0.5407	ug/l	82
94)	t-Butylbenzene	7.561	119	3451	0.6252	ug/l	79
95)	1,2,4-Trimethylbenzene	7.579	105	5524	0.8221	ug/l	96
96)	sec-Butylbenzene	7.687	105	4819	0.7368	ug/l	87
97)	4-Isopropyltoluene	7.765	119	3390	0.6546	ug/l	90
98)	n-Butylbenzene	8.041	91	3211	0.5670	ug/l	80
99)	p-Diethylbenzene	8.017	119	1682	0.6075	ug/l #	
100)	1,2,4,5-Tetramethylben	8.516	119	2038	0.4395	ug/l	77
101)	1,2-Dibromo-3-Chloropr	8.582	157	283	0.3512	ug/l	79
102)	Camphor	9.063	95	1129	5.3201	ug/1	91
103)	Hexachlorobutadiene	9.207	225	2909	1.0584	ug/l	85
104)	1,2,4-Trichlorobenzene	9.129	180	3192	0.8117	ug/l #	
105)	1,2,3-Trichlorobenzene	9.454	180	3215	0.7793	ug/l #	87
106)	Naphthalene	9.297	128	3106	0.4163	ug/l	100
				~			

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

SampleID : CAL @ 0.5 PPB Data File: 3M93054.D Acq On : 05/26/11 08:38 Operator : WP Sam Mult : 1 Vial# : 5 Misc : A,5ML Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:22 Qt Upd On: 05/26/11 09:06


Compound	R.T.	QIon	Response	Conc Units	Bev(Min)
Internal Standards						
4) Fluorobenzene 51) Chlorobenzene-d5 69) 1,4-Dichlorobenzene-d4	4.574	96	284266m	30.00 ug/	1	0.00
51) Chlorobenzene-d5	6.407	117	213463	30.00 ug/	'ī	0.00
69) 1,4-Dichlorobenzene-d4	7.825	152	123732	30.00 ug/	1	0.00
System Monitoring Compounds						
36) Dibromofluoromethane	4.135	111	97951m	33.41 ug/	1	0.00
Spiked Amount 30.000			Recove	ry = 111	37%	
38) 1,2-Dichloroethane-d4	4.364	67	57950	32.14 ug/	1	0.00
Spiked Amount 30.000 65) Toluene-d8	F F36	0.0		ry = 107		0 00
Spiked Amount 30.000	5.536	98		31.85 ug/ ry = 106		0.00
75) Bromofluorobenzene	7.110	174		30.72 ug/		0.01
Spiked Amount 30.000			Recove	ry = 102	2.40%	
Target Compounds						Qvalue
5) Chlorodifluoromethane			0	N.D. d		2.0200
Dichlorodifluoromethane	0.000		0	N.D. d		
7) Chloromethane	0.000		. 0	N.D. d		
8) Bromomethane 9) Vinyl Chloride	0.000		0 0	N.D. d N.D. d		
10) Chloroethane	0.000		0	N.D. d		
11) Trichlorofluoromethane			Ö	N.D. d		
12) Ethyl ether	0.000		0	N.D. d		
13) Fulan	0.000		0	N.D. d		
14) 1,1,2-Trichloro-1,2,2	0.000		0,	N.D. d N.D. d		
15) Methylene Chloride16) Acrolein	0.000		0	N.D. d		
17) Acrylonitrile	0.000		Ö	N.D. d		
18) Iodomethane	0.000		0	N.D. d		
19) Acetone			0	N.D. d		
20) Carbon Disulfide 21) t-Butyl Alcohol	0.000		0	N.D. d		
22) n-Hexane	0.000		0	N.D. d N.D. d		
	0.000		ő	N.D. d		
<pre>24) 1,1-Dichloroethene</pre>	0.000		0	N.D. d		
25) Methyl Acetate	0.000		0	N.D. d	/2	
<pre>26) Methyl-t-butyl ether 27) 1,1-Dichloroethane</pre>	0.000	73	2000	0.4283 N.D. d	ug/l	# 37
28) trans-1,2-Dichloroethene			0	N.D. d		
29) cis-1,2-Dichloroethene	0.000		0	N.D. d		
30) Bromochloromethane	0.000		0	N.D. d		
31) 2,2-Dichloropropane	0.000		0	N.D. d N.D. d		
32) Ethyl acetate 33) 1,4-Dioxane	0.000		0 0	N.D. d		
34) 1,1-Dichloropropene			ő	N.D. d		
35) Chloroform 37) Cyclohexane	0.000		0	N.D. d		
37) Cyclohexane	0.000		0	N.D. d	/3	
39) 1,2-Dichioroethane	4.418		3611 0	0.7819 N.D. d	ug/l	98
<pre>40) 2-Butanone 41) 1,1,1-Trichloroethane</pre>	0.000		0	N.D. d		
42) Carbon Tetrachloride	0.000		Ö	N.D. d		
43) Vinyl Acetate	0.000		0	N.D. d		
44) Bromodichloromethane	5.103	83	2055	0.5002	ug/l	84
45) Methylcyclohexane 46) Dibromomethane	0.000 5.019	174	0 1701	N.D. d 0.6465	ug/l	92
47) 1,2-Dichloropropane	4.947	63	1701	0.5508	ug/1	
48) Trichloroethene	0.000		0	N.D. d	-3,	
49) Benzene	4.406	78	5811	0.5373	ug/1	100
50) tert-Amyl methyl ether 52) Iso-propylacetate	0.000		0	N.D. d		
53) Methyl methacrylate	0.000		0	N.D. d N.D. d		
54) Dibromochloromethane	0.000		Ö	N.D. d		
55) 2-Chloroethylvinylether	0.000		0	N.D. d		
56) cis-1,3-Dichloropropene	0.000		0	N.D. d		
57) trans-1,3-Dichloropropene	0.000		0 0	N.D. d N.D. d		
58) Ethyl methacrylate 59) 1,1,2-Trichloroethane	0.000		0	N.D. d		
60) 1,2-Dibromoethane	0.000		Ö	N.D. d		
61) 1,3-Dichloropropane	0.000		0	N.D. d		
62) 4-Methyl-2-Pentanone	0.000		0	N.D. d		
63) 2-Hexanone 64) Tetrachloroethene	0.000		0	N.D. d N.D. d		
66) Toluene	0.000		0	N.D. d		
67) 1,1,1,2-Tetrachloroethane	0.000		0	N.D. d		
\ \						

Quantitation Report (QT Reviewed)

Qt Meth : 3M_A0526.M Qt On : 05/26/11 09:22 Qt Upd On: 05/26/11 09:06 SampleID : CAL @ 0.5 PPB Data File: 3M93054.D Operator : WP Sam Mult : 1 Vial# : 5 Misc : A,5ML Acq On : 05/26/11 08:38

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)	
	Chlorobenzene	0.000		0	N.D. d		
70)	n-Butyl acrylate	0.000		0	N.D. d		
71)	n-Amyl acetate	0.000		0	N.D. d		
72)	Bromoform	0.000		0	N.D. d		
73)	Ethylbenzene	0.000		0	N.D. d		
74)	Bromoform Ethylbenzene 1,1,2,2-Tetrachloroethane	0.000		0	N.D. d		
76)	Styrene	0 000		0	N.D. d		
77)	m&p-Xylenes	6.539	106	3294	1.0400	ug/l	80
78)	o-Xylene	0.000		0	N.D. d		
79)	trans-1,4-Dichloro-2-b	0.000		0	N.D. d		
80)	1.3-Dichlorobenzene	0.000		0	N.D. d		
81)	1,4-Dichlorobenzene	0.000		0	N.D. d		
82)	1,2-Dichlorobenzene	0.000		0	N.D. d		
83)	Isopropylbenzene	0.000		0	N.D. d		
84)	Cyclohexanone	0.000		0	N.D. d		
85)	1,4-Dichlorobenzene 1,2-Dichlorobenzene Isopropylbenzene Cyclohexanone Camphene	7.170	93	940	0.5774	ug/l	84
86)	1.2.3-Trichloropropane	0.000		0	N.D. d		
87)	2-Chlorotoluene p-Ethyltoluene 4-Chlorotoluene	0.000		0	N.D. d		
88)	p-Ethyltoluene	0.000		0	N.D. d		
89)	4-Chlorotoluene	0.000		0	N.D. d		
90)	n-Propylbenzene Bromobenzene	0.000		0	N.D. d		
91)	Bromobenzene	0.000		0	N.D. d		
92)	1,3,5-Trimethylbenzene	0.000		0	N.D. d		
93)	Butvl methacrvlate	0.000		0	N.D. d		
94)	t-Butylbenzene	0.000		0	N.D. d		
95)	1,2,4-Trimethylbenzene	0.000		0	N.D. d		
96)	t-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene	0.000		0	N.D. d		
97)	4-Isopropyltoluene	0.000		0	N.D. d		
98)	n-Butylbenzene	0.000		0	N.D. d		
99)	p-Diethylbenzene	0.000		0	N.D. d		
100)	1,2,4,5-Tetramethylben	0.000		0	N.D. d		
101)	1,2-Dibromo-3-Chloropr	0.000		0	N.D. d		
102)	Camphor	9.069	95	749m	3.6918	ug/l	
103)	Hexachlorobutadiene	0.000		0	N.D. d		
104)	1,2,4-Trichlorobenzene	0.000		. 0	N.D. d		
	1,2,3-Trichlorobenzene				N.D. d		
	Naphthalene	0.000		0	N.D. d		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

3M_A0526.M Mon Jun 13 07:33:28 2011 SYSTEM1

0148

Form 6 Initial Calibration

Instrument: GCMS_2

Page 1 of 3	4.9	Avg Rsd: 14.9		Note:		Flags
20:00 0:00 10:00 00:00 100:0 200:0 1:00	4.1	-	0.002	0.0000 0.001 0.0110 0.0110	0.000	-
5.00 10.00 30.00 100.0 250.0 500.0		7	0.582 4 64	2002		<u> </u>
10.00 50.00 100.0 250.0	18		0 864 4 83	188 0 8002 0 8334 1 2074		omethans 1 0
10 00 50 00 100 0 250 0 500 0	8.7		1.93 3.05	1.6926 1.8657 1.7476 2.0149 2.0641 2.0627 1.8595 2.1678	1.6926 1.8657 1.7476 2.0	10
5.00 10.00 50.00 100.0 250.0 500.0			0.650 3.98	0.6613 0.5768 0.6827 0.7162 0.6605 0.6317 0.5274 0.7453	0.6613 0.5768 0.6827 0.7	10
5.00 10.00 50.00 100.0 250.0 500.0		1.00	0.779 3.87	0.7926 0.7614 0.7344 0.8297 0.7713 0.7984 0.7236 0.8222	0.7926 0.7614 0.7344 0.8	proethane 1 0
10.00 50.00 100.0 250.0 500.0 1.00		0.999		0.1890 0.2209	0.1820 0.1805 0.1922 0.2	10
10.00 50.00 100.0 250.0 1.00	17	99 1.00		1.2022	0.8077 0.8764 0.8436 0.8981 0.8676 0.8274	<u>-</u>
0 30.00 30.00 30.00 30.00 30.00	6.5	<u>.</u>		108 0.2020 0.2242 0.2022 0.2278 0.2309	0.2167 0.2394 0.2015 0.2108 0.2020 0.2242	thane-d4 1 0
5.00 10.00 50.00 100.0 250.0 500.0 1.00		97 1.00		0.6970	0.6682 0.6060 0.6189 0.7	Cvclohexane 1 0 Avg
0 30.00 30.00 30.00 30.00 30.00		<u>.</u>		0.3646 0.3943 0.3589 0.3679 0.3422 0.3424 0.2958 0.3600 0.3466	0.3646 0.3943 0.3589 0.3	promethane 1 0
10.00 50.00 100.0 250.0	6.7 *(30)	1.00	0.940 3.73	0.9012 0.9380 0.8770 0.9343 0.9494 0.9736 0.8792 1.0708	0.9012 0.9380 0.8770 0.9	1 0
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	9.2	w	0.674 3.99	0.6946 0.6436 0.6583 0.7025 0.6731 0.6789 0.5601 0.7808	0.6946 0.6436 0.6583 0.7	1.1-Dichloropropene 1 0 Avg
1000. 250.0 500.0 2500. 5000. 1250 2500 50.00	18	0.996 1.00	0.00541 4.75	0.0044 0.0062 0.0049 0.0053 0.0053 0.0050 0.0045 0.0074	0.0044 0.0062 0.0049 0.0	1.4-Dioxane 1 0 LinF
5.00 10.00 50.00 100.0	4.8	1.00	0.4763.49	0.4470 0.4858 0.4571 0.4791 0.5053 0.5051 0.4763 0.4500	0.4470 0.4858 0.4571 0.4	1 0
10.00 50.00 100.0	5.8	0.995 0.999	0.641 3.48	0.6100 0.6623 0.5991 0.6661 0.6358 0.6759 0.5892 0.6863	0.6100 0.6623 0.5991 0.6	2.2-Dichloropropane 1 0 Avg
10.00 50.00 100.0		1.00	0.430 3.68	0.3902 0.4315 0.4264 0.4572 0.4420 0.4606 0.4195 0.4149	0.3902 0.4315 0.4264 0.4	10
10.00 50.00 100.0	8.6	0.999	0.899 3.48	0.8124 0.8629 0.7827 0.9827 0.9218 0.9836 0.8809 0.9661	0.8124 0.8629 0.7827 0.9	cis-1.2-Dichloroethene 1 0 Avg
10.00 50.00 100.0 250.0 500.0		1.00	0.461 2.71	0.4508 0.4668 0.4564 0.5005 0.4774 0.4897 0.4336 0.4132	0.4508 0.4668 0.4564 0.5	ther 1 0
5.00 10.00 50.00 100.0 250.0 500.0 1.00	6.1 **(0.100)	1.00		1.1071	0.9351 1.0160 0.9513 1.0	10
10.00 50.00 100.0 250.0 500.0	14			1.3293 1.4072 1.3446 1.4412 1.4403 1.3772 1.1956 1.7117 1.8566	1.3293 1.4072 1.3446 1.4	ther 10
5.00 10.00 50.00 100.0 250.0 500.0		1.00	0.443 2.43	0.3584 0.4231 0.4166 0.4523 0.4477 0.4672 0.4200 0.5593	0.3584 0.4231 0.4166 0.4	Methyl Acetate 1 0 Avg
	*(30)	1.00	0.877 2.17	0.8125 1.0165 0.8220 0.9066 0.8803 0.9054 0.8285 0.8434	0.8125 1.0165 0.8220 0.9	1.1-Dichloroethene 1 0 Avg
	7.8	0.997 1.00	1.80 3.05	1.6892 1.6270 1.6560 1.9081 1.9662 1.9843 1.7820 1.7563	1.6892 1.6270 1.6560 1.9	Di-isopropyl-ether 1 0 Avg
10.00 50.00 100.0 250.0 500.0	1	1	0.481 2.89	0.4883 0.4267 0.4685 0.5242 0.5048 0.5569 0.4959 0.3841	0.4883 0.4267 0.4685 0.5	n-Hexane 1 0 Avg
0 50.00 250.0 500.0 1250. 2500.	27	0.997 1.00	0.0579 2.59	0.0430 0.0802 0.0425 0.0557 0.0541 0.0548 0.0490 0.0838	0.0430 0.0802 0.0425 0.0	t-Butvl Alcohol 1 0 LinF
5.00 10.00 50.00 100.0 250.0 500.0			1.50 2.33	.3145 1.4521 1.3372 1.4742 1.4828 1.6016 1.4794 1.8222	1.3145 1.4521 1.3372 1.4	Carbon Disulfide 1 0 Avg
0		1.00	0.174 2.22	0.1399 0.1835 0.1430 0.1647 0.1600 0.1598 0.1484 0.2913	0.1399 0.1835 0.1430 0.1	1 0
	5.3	1.00	0.912 2.29	0.9154 0.9853 0.9234 0.9508 0.8997 0.9193 0.8238 0.8744	0.9154 0.9853 0.9234 0.9	e 10.
10.00 50.00 100.0 250.0 500.0	16		0.189 2.70	0.1728 0.2496 0.1618 0.1982 0.2003 0.1980 0.1784 0.1501	0.1728 0.2496 0.1618 0.1	trile 1 0
0 50.00 250.0 500.0 1250.	14	0.998 1.00	0.0786 2.12	0.0688 0.0879 0.0575 0.0796 0.0806 0.0848 0.0783 0.0912	0.0688 0.0879 0.0575 0.0	Acrolein 1 0 Avg
10.00 50.00 100.0 250.0		1.00	0.532 2.51	0.5054 0.5618 0.4538 0.5414 0.5306 0.5498 0.4881 0.6269	0.5054 0.5618 0.4538 0.5	10
10.00 50.00 100.0 250.0 500.0		0.995 0.999	0.423 2.16	0.4384 0.4033 0.4315 0.4411 0.4061 0.4277 0.3691 0.4645	0.4384 0.4033 0.4315 0.4	1.1.2-Trichloro-1.2.2-tri 1 0 Avg
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	13	1.00 1.00	1.02 2.05	0.9339 0.8172 0.9314 1.0514 1.0118 1.0653 1.1055 1.2532	0.9339 0.8172 0.9314 1.0	Furan 1 0 Avg
5.00 10.00 50.00 100.0 250.0 500.0	1	1.00 1.00	0.391 2.02	0.3513 0.4172 0.3224 0.3776 0.3859 0.4005 0.3980 0.4728	0.3513 0.4172 0.3224 0.3	0
10.00 50.00 100.0 250.0 500.0	17	1.00 1.00	0.651 1.82	0.6031 0.7107 0.6176 0.6374 0.5761 0.5853 0.5690 0.9063	0.6031 0.7107 0.6176 0.6	omethane 1 0
5.00 10.00 50.00 100.0 250.0	48		0.310 1.66	618 0.2250 0.2295 0.6394	0.2700 0.3024 0.2380 0.2618 0.2250 0.2295	1 0
5.00 10.00 50.00 100.0 250.0 500.0	14 *(30)		0.474 1.39	0.4391 0.4898 0.4477 0.4643 0.4007 0.4276 0.5045 0.6214	0.4391 0.4898 0.4477 0.4	1 0
20.00 5.00 10.00 50.00 100.0 1.00			0.347 1.61	920 0.2472 0.6208	0.2855 0.3265 0.3107 0.2920 0.2472	1 0
5.00 10.00 50.00 100.0 250.0 500.0	**(0.100)	7	0.631 1.32	0.5661 0.6636 0.5796 0.5436 0.5252 0.5528 0.6164 0.9977	0.5661 0.6636 0.5796 0.5	10
5.00 10.00 50.00 100.0 250.0 500.0	12	7	0.657 1.21	0.6350 0.6386 0.6459 0.6431 0.6270 0.6390 0.5757 0.8505	0.6350 0.6386 0.6459 0.6	0
20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	8.2	0.998 1.00	0.805 1.23	0.7275 0.7698 0.8722 0.8077 0.8365 0.7634 0.9151	0.7445 0.7275 0.7698 0.8	Chlorodifluoromethane 1 0 Avq
Calibration Level Concentrations Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9	%Rsd	Corr1 Corr2 9	AvgRf RT	4 RF5 RF6 RF7 RF8 RF9	RF1 RF2 RF3 RF4	Compound Col Mr Fit:
					CAL	
	CAL @ 1 PPB		œ		CAL	
05/31/11 09:21	CAL @ 250 PPB	2M67526.	o ↓	w	2	טוני
			^ ^	D 05/31/11 10:09	2M67530 CAL @ 20 FFB	
2	Cal Identiller.		æV€! #.	Alialysis Date/Time	Cal	Level #
A) - I - La - Aifine.	7 112		_		1 2 3 4 4 1

a - failed the spec criteria *- cee compound
b - failed the cee criteria *- spec compound
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

Form 6 Initial Calibration

Instrument: GCMS_2

Page 2 of 3		9	Avg Rsd: 14.9	Avg R		Note:				Flags	
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	0	15	0.981 1.0	3.40 7.00	4.3562	4406 3,1415 2,4392 4,3562	35 3.5144 3.4541 3.4406	1 3.4034 3.4235	1 0 Avg	p-Ethvitoluene
10.00 30.00 100.0	ı Ç		20	. _		3.550			1		2-Cniorotoiuerie
10.00 50.00 100.0 230.0 300.0	20.00					3 5073	1.1330 1.7170 1.2301 1.3731 1.7202 1.3310 1.1010 1.3301	10 3 5010 3 3507 3			
10.00 50.00 100.0 250.0 500.0	20.00 5.00	, ,	10.0			1 8001	1.0077 0.9340 1.1223 1.1049 1.1204 1.0700 0.9714 1.2220	46 1 2067 1 3737 1			1 3 3 Trickleronton
10.00 £00.0 100.0 1200. £000.	30.00 5.00			7		1 2220	1364 1 0769 0 0714	46 1 1222 1 1040 1			Carriorievallorie
1 50 00 250 0 500 0 1250 2500	100 0 25 00					0.0887	0.2730 0.0720 0.2070 0.0000 0.7200 0.0027 0.0010 7.1100 n naa8 n naa8 n no73 n nao1 n naan n nao25 n nao24 n n880	38 0 0273 0 0321 0		100	Cycloheyanone
	20 00 5 00		_	_∞ (_	4 1190	3 2796 3 0720 3 2970 3 3860 3 4209 3 3324 3 0510 4 1190	20 3 2970 3 3860 3		<u>.</u>	Isonronylhenzene
10 00 50 00 100 0 250 0 500 0	20 00 5 00	51		9		2 8232	1 6605 1 5219 1 6190 1 6389 1 6920 1 6004 1 5002 2 8232	19 1 6190 1 6389 1	Ċ	<u>.</u>	1 2-Dichlorobenzene
10.00 50.00 100.0 250.0 500.0	20.00 5.00	2		_	-	2.8220	1.7948 1.6907 1.7255 1.7914 1.7794 1.6540 1.5411 2.8220	07 1.7255 1.7914 1.		<u> </u>	1.4-Dichlorobenzene
10.00 50.00 100.0 250.0	20.00 5.00	01		_		2.2929		.7144 1.7748 1.6022 1.6400 1.6498 1.4359		<u> </u>	1.3-Dichlorobenzene
10.00 50.00 100.0 250.0 500.0	20.00 5.00	3		თ 		0.7770	3691 0.3566 0.3186	0.3170 0.3672 0.2431 0.3268 0.3691 0.3566	-	<u>-</u>	trans-1.4-Dichloro-2-bu
10.00 50.00 100.0 250.0	20.00 5.00	51	00 15	∞		1.7227	2521 1.1259	.2366 1.1626 1.2442 1.2715 1.2521 1.1259	_	1 0 Avg	o-Xvlene
0 20.00 100.0 200.0 500.0 2.00 1.00	40.00 10.00	ω	00 13	0.996 1.00		1.5808 1.4935	2367 1.0745	.1703 1.1767 1.2408 1.2399 1.2367 1.0745	_	1 0 Avg	m&p-Xvlenes
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	51	00 15	0.988 1.00	2.156.49 (1.6580 2.8061		2.0846 2.2083 1.9665 2.2159 2.2719 2.0033		1 0 Avg	Styrene
30.00	30.00 30.00	_	5	<u>-</u>		0.8210 0.8576		52 0.8981 0.8885 0.		e 10 Avg	Bromofluorobenzene
) 10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	7 **(0.300))0 27	0.998 1.00	1.07 6.86	1.7635	0.8910 0.9648 0.9265 1.0065 1.0504 0.9948 0.9280	48 0.9265 1.0065 1.		the 1 0 LinF	1.1.2.2-Tetrachloroetha
10.00 50.00 100.0 250.0 1.00	20.00 5.00	5 *(30))0 16	0.998 1.00	0.880 6.18 (1.1774	8452 0.7651	0.8031 0.8080 0.8875 0.8743 0.8452 0.7651		1 0 LinF	Ethvlbenzene
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	3 **(0.100))0 33	1.00 1.00	0.958 6.62	1.7421	0.7780 0.9088 0.7772 0.8516 0.8841 0.8546 0.8651 1.7421	38 0.7772 0.8516 0.		1 0 LinF	Bromoform
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	4	0 14	1.00 1.00	1.68 6.55	1.8754	1.4177 1.4866 1.3601 1.7101 1.7826 1.8909 1.9454 1.8754	36 1.3601 1.7101 1.		1 0 Avg	n-Amvl acetate
10.00 50.00 100.0 250.0	20.00 5.00	61)0 15	1.00 1.00		1.8721	.3916 1.4206 1.3918 1.6854 1.8975 1.9404 1.9539	06 1.3918 1.6854 1.	_	1 0 Avg	n-Butvl acrylate
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	0.300)	20	0.996 1.00	1.35 6.12 (2.0121	2793 1.2599 1.2280 1.3121 1.3014 1.2776 1.1200 2.0121	99 1.2280 1.3121 1.	_	<u> </u>	Chlorobenzene
10.00 50.00 100.0 250.0 1.00	20.00 5.00	4	34	0.998 1.00	0.559 6.17 (0.9784	ł	0.5420 0.5109 0.4733 0.4884 0.4844 0.4353	0	the 1 0 LinF	1.1.1.2-Tetrachloroetha
}	20.00 5.00	9 *(30)	0 7.9	5		1.2365	1.0324	32 1.0758 1.1604 1.	_	1 0 Avg	Toluene
0 30.00 30.00 30.00 30.00 30.00 30.00 30.00	30.00 30.00	v	3.9	<u>.</u>	1.16 5.25	1.2414 1.1117	.1405 1.1484 1.0867 1.1475 1.1733 1.1843 1.1812 1.2414	34 1.0867 1.1475 1.	_	1 0 Avg	Toluene-d8
10.00 50.00 100.0	20.00 5.00	2		0.986 1.00			0.4889 0.4063 0.4492 0.4701 0.4359 0.4153 0.3315 0.4907	53 0.4492 0.4701 0.		1 0 Avg	Tetrachloroethene
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	0	20	0.999 1.00	0.388 5.66 (0.5684	0.3288 0.3636 0.3184 0.3573 0.3912 0.3986 0.3755 0.5684	36 0.3184 0.3573 0.		1 0 LinF	2-Hexanone
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	w		1.00 1.00	0.554 5.18	0.9294	0.4470 0.4407 0.4406 0.5276 0.5488 0.5594 0.5383 0.9294	07 0.4406 0.5276 0.	0	10	4-Methvl-2-Pentanone
10.00 50.00 100.0 250.0 500.0	20.00 5.00	2	0 22	L	-	1.3379	7965 0.7793 0.7645 0.8508 0.8472 0.8325 0.7406 1.3379	93 0.7645 0.8508 0.	0	1 0	1.3-Dichloropropane
10.00 50.00 100.0 250.0 500.0 1.00	20.00 5.00	-	0 9.4	0.999 1.00	0.559 5.84 (0.6813	.5437 0.5206 0.5208 0.5576 0.5678 0.5578 0.5230 0.6813	06 0.5208 0.5576 0.		10	1.2-Dibromoethane
10.00 50.00 100.0 250.0 500.0	20.00 5.00	-		9		0.8689	0.4140 0.4174 0.4233 0.4533 0.4773 0.4667 0.4367 0.8689	74 0.4233 0.4533 0.		1	1.1.2-Trichloroethane
10.00 50.00 100.0 250.0 500.0	20.00 5.00	7		_	-	0.8143	0.4862 0.6056 0.4776 0.5816 0.6179 0.5978 0.5730 0.8143	56 0.4776 0.5816 0.	٠,	<u> </u>	Ethyl methacrylate
10.00 50.00 100.0	20.00 5.00	-	ŏ 11	0.998 1.00		1.1272	0.8200 0.8526 0.8066 0.8987 0.9525 0.9430 0.8747 1.1272	26 0.8066 0.8987 0.		10	trans-1.3-Dichloroprope
10.00 50.00 100.0 250.0 500.0	20.00 5.00			9		1.0272	0.8018 0.8122 0.8050 0.9386 0.9494 0.9607 0.9045 1.0272	22 0.8050 0.9386 0.		0	cis-1.3-Dichloropropen
10.00 50.00 100.0	20.00 5.00	_		9	_	0.3042	0.3177 0.2731 0.2853 0.3542 0.3595 0.3664 0.3471 0.3042	31 0.2853 0.3542 0.		0	2-Chloroethvlvinvlether
10.00 50.00 100.0 250.0	20.00 5.00	7)0 27		0.724 5.77 1	1.1588	6925 0.6832	0.6582 0.6158 0.5820 0.6790 0.6925 0.6832	.,	1	Dibromochloromethane
10.00 50.00 100.0 250.0 500.0	20.00 5.00	10	0 12	9	0.527 4.72 (0.5530	0.4435 0.4523 0.4708 0.5720 0.6038 0.5777 0.5416 0.5530	23 0.4708 0.5720 0.		1 0 Avg	Methyl methacrylate
10.00 50.00 100.0 250.0 500.0	20.00 5.00	O1)0 15	∞ ⊸		1.2583	0.8897 0.8997 0.8375 1.0349 1.1696 1.1779 1.0832 1.2583	97 0.8375 1.0349 1.		1 0	Iso-propylacetate
10.00 50.00 100.0 250.0	20.00 5.00			5	-	1.5056	2450 1.2414 1.2858 1.3691 1.3635 1.3387 1.1714 1.5056	4 1.2858 1.3691 1.	_	10	tert-Amvl methyl ether
10.00 50.00 100.0 250.0 500.0	20.00 5.00	w		7 1		1.7824 2.2869	.7364 1.6709 1.5238 1.7748 1.7441 1.7232 1.5358 1.7824)9 1.5238 1.7748 1.	_	1 0 Avg	Benzene
10.00 50.00 100.0 250.0 500.0	20.00 5.00	•		ω 		0.5929	0.4169		0	1 0 Avg	Trichloroethene
10.00 50.00 100.0	20.00 5.00	5 *(30))0 9.6	0.997 1.00		0.4230	0.4925	37 0.4822 0.5431 0.5235 0.5472	0.4953	1 0 Avg	1.2-Dichloropropane
10.00 50.00 100.0 250.0 1.00	20.00 5.00	+	0	0.998 1.00	0.436 4.75	0.5564	4089 0.3737	0.3997 0.4302 0.4291 0.4089 0.3737	0.4524	1 0 Avg	Dibromomethane
Calibration Level Concentrations Lvl3 Lvl4 Lvl5 Lvl6 Lvl7 Lvl8 Lvl9	Lvl1 Lvi2	lsd	rr2 %Rsd	Corr1 Corr2	AvgRf RT (RF8 RF9 A	RF5 RF6 RF7	RF3 RF4 R	RF1 RF2	Col Mr Fit:	Compound
							05/31/11 08:32	CAL @ 0.5 PPB	•	21	9 -
05/31/11 08:14		CAL @ 1 PPB		2M67522	.	œ (05/31/11 09:05	CAL ® 500 PPR		212	7
05/31/11 09:53 05/31/11 09:21		CAL (#) 30 PPB		2M67526	w N	a c	05/31/11 09:37	CAL ® 10 PPR	2M67527	2 2	
05/31/11 08:50	05/	CAL @ 5 PPB		2M67524.	N	. ~	05/31/11 10:09	CAL @ 20 PPB		2	
Analysis Date/Time	Analys	Cal Identifier:	C	Data File:		ne Level#	Analysis Date/Time	Cal Identifier:	Data File: C	D	4 Level #:
											Э

a - failed the spcc criteria * - ccc compound
b - failed the ccc criteria ** - spcc compound
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.

0150

Form 6 Initial Calibration

Instrument: GCMS_2

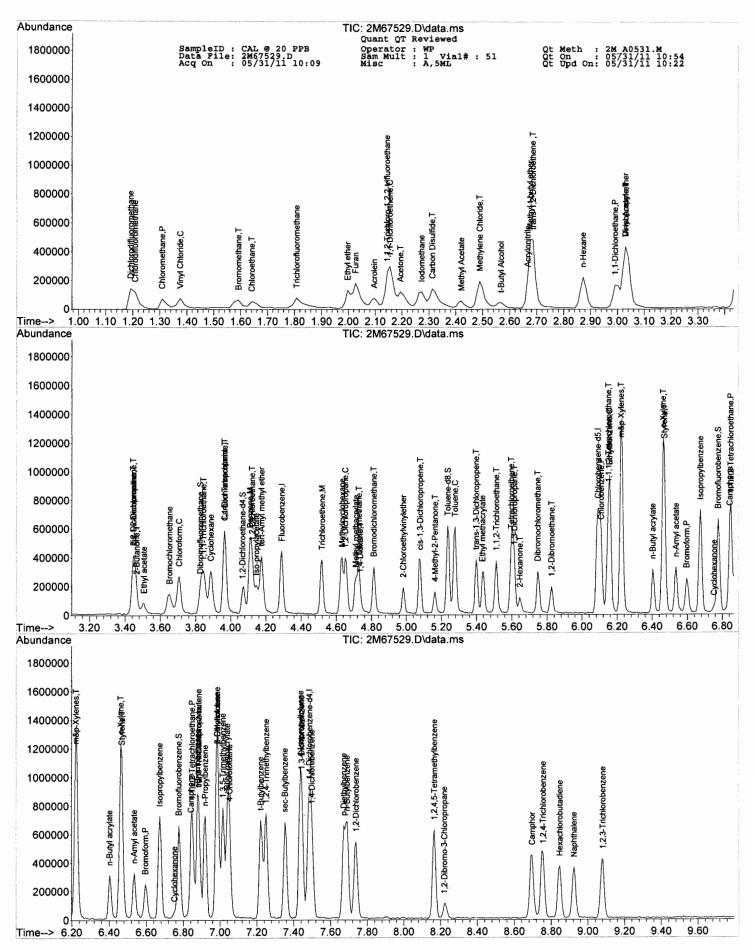
5 Level#:	Data File:	Cal Identifier:	Analysis Date/Time	Level #:	Data File:	Cal Identifier:	Analvsis Date/Time	
	2M67529.	CAL @ 20 PPB	05/31/11 10:09	2	2M67524.	CAL @ 5 PPB	05/31/11 08:50	
0 3	2M67530.	CAL @ 10 PPB	05/31/11 10:25	4	2M67528.	CAL @ 50 PPB	05/31/11 09:53	
5	2M67527.	CAL @ 100 PPB	05/31/11 09:37	თ	2M67526.	CAL @ 250 PPB	_	
7	2M67525.	CAL @ 500 PPB	05/31/11 09:05	œ	2M67522.	CAL @ 1 PPB		
9	2M67523.	CAL @ 0.5 PPB	05/31/11 08:32					
Compound C	Col Mr Fit: RF1 F	RF2 RF3 RF4 I	RF5 RF6 RF7 RF8	RF9 AvgRf RT	Corr1 Corr2	%Rsd	Calibration Level Concentrations Lvi1 Lvi2 Lvi3 Lvi4 Lvi5 Lvi6 Lvi7 Lvi8 Lvi9	
4-Chlorotoluene	1 0 LinF 2.1990 2	2.0023 2.0602 2.2600 2	2.1990 2.0023 2.0602 2.2600 2.2544 2.0780 1.8492 3.5431	2.287.07	0.996 1.00	23	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
n-Propvlbenzene		3.8995 4.1200 4.1996 4	4.0171 3.8995 4.1200 4.1996 4.3395 4.2706 4.0100 5.8370	4.34 6.94	0.999 1.00	14	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
Bromobenzene	1 0 LinF 1.7858 2	2.1279 1.8355 1.9889	1.7858 2.1279 1.8355 1.9889 1.9838 1.8629 1.6648 3.6422	2.11 6.90	0.996	30	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
1.3.5-Trimethvlbenzene		2.6128 2.9095 2.7713 ;	2.8445 2.6128 2.9095 2.7713 2.9227 2.5475 2.3576 3.8963	2.86 7.03	0.997	16	_	
Butvl methacrvlate	1 0 Avg 1.4062	1.4662 1.3101 1.5068	.4062 1.4662 1.3101 1.5068 1.6694 1.6439 1.5204 1.5868	1.51 7.06	0.998	8.0	5.00	
t-Butvlbenzene		2.2617 2.8473 2.6684 ;	2.7220 2.2617 2.8473 2.6684 2.6772 2.5190 2.2829 3.5049	2.697.24	0.997	15	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
1.2.4-Trimethylbenzene	1 0 LinF	2.8680 3.0317 3.0430 :	2.9642 2.8680 3.0317 3.0430 3.0517 2.8427 2.5511 4.4309	3.10 7.27	0.997	18	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
sec-Butvlbenzene	1 0 Avg 3.2200 2	2.9447 3.2954 3.2904 :	3.2200 2.9447 3.2954 3.2904 3.3766 3.3400 3.0500 4.2962	3.357.38	0.998	12	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
4-Isopropyltoluene	1 0 Avg 2.6845 2	2.6019 2.7354 2.7547 :	2.6845 2.6019 2.7354 2.7547 2.7565 2.3987 1.9897 3.3664	2.66 7.45		15	_	
n-Butvlbenzene	1	2.7856 3.3432 3.2035 :	3.1776 2.7856 3.3432 3.2035 3.2547 3.1714 2.8187 4.5870	3.29 7.71	0.996	17	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
b-Diethvlbenzene	1 0 Avg 1.5024 1	1.1318 1.3897 1.4366	1.5024 1.1318 1.3897 1.4366 1.4683 1.3552 1.1983 1.8285	1.41 7.69	0.995	15	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
1.2.4.5-Tetramethvlber	1 0 Avg	2.3117 2.5372 2.5783 :	2.5773 2.3117 2.5372 2.5783 2.5576 2.4162 2.1532 3.1830	2.54 8.18	0.996	12		
1.2-Dibromo-3-Chlorop	1 0 Avg	0.2549 0.2137 0.2291 (0.2171 0.2549 0.2137 0.2291 0.2438 0.2361 0.2424 0.2673	0.238 8.25	1.00	7.6	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
Camphor		0.0956 0.0854 0.0925	0.0885 0.0956 0.0854 0.0925 0.0912 0.0844 0.0816 0.1175 0.0976	0.0976 0.0928 8.71	0.999 1.00	12	200.0 50.00 100.0 500.0 1000. 2500. 5000. 10.00 5.00	
Hexachlorobutadiene	1 0 Avg 0.6926 (0.5021 0.7081 0.6312	0.6926 0.5021 0.7081 0.6312 0.6331 0.5964 0.5474 0.7597	0.634 8.86	0.998 1.00	13	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
1.2.4-Trichlorobenzene	1 0 LinF 1	1.0989 1.2892 1.2253	.2740 1.0989 1.2892 1.2253 1.1897 1.1251 1.0341 2.0016	1.28 8.77	0.998 1.00	24	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
1.2.3-Trichlorobenzene	1 0 LinF 1	0.9683 1.0869 1.0726	.0863 0.9683 1.0869 1.0726 1.0649 1.0220 0.9297 1.4807	1.09 9.10	0.998 1.00	15	20.00 5.00 10.00 50.00 100.0 250.0 500.0 1.00	
Naphthalene	1 0 Avg 2.1632	1.9845 2.3104 2.3175 :	2.1632 1.9845 2.3104 2.3175 2.3917 2.3101 2.2083 2.7941	2.31 8.95	0.999	10	10.00 50.00 100.0	

Flags

Avg Rsd: 14.9

Note:

a - failed the spcc criteria *- ccc compound
b - failed the ccc criteria **- spcc compound
c - failed the ccc criteria **- spcc compound
c - failed the minimum correlation coeff criteria(if applicable)
Fit = Indicates whether Avg RF, Linear, or Quadratic Curve was used for compound.


Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:54 Qt Upd On: 05/31/11 10:22 SampleID : CAL @ 20 PPB
Data File: 2M67529.D
Acq On : 05/31/11 10:09 Operator : WP Sam Mult : 1 Vial# : 51 : A,5ML Misc

	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
	rnal Standards	4 200	0.0	228220	30.00 ug/	1 -0	. 02
	Fluorobenzene Chlorobenzene-d5	4.290 6.090		228230 220447	30.00 ug/		.02
	1,4-Dichlorobenzene-d4	7.486	152	145554	30.00 ug/		.02
037	2,1 2101120101010101				-		
	em Monitoring Compounds				/		
	Dibromofluoromethane	3.826	111	83222	33.11 ug/		.02
	iked Amount 30.000	4.067	67	Recove 49475	ery = 110 30.64 ug/).37% '1 -0	02
	1,2-Dichloroethane-d4 iked Amount 30.000	4.007	67	Recove		1.13%	. 02
-	Toluene-d8	5.235	98	251427	25.86 ug/		.02
	iked Amount 30.000			Recove	ery = 86	5.20%	
75)	Bromofluorobenzene	6.776	174	123749	- -		.02
Sp	iked Amount 30.000			Recove	ery = 99	0.07%	
ma wa	ot Compounds					O.	value
	et Compounds Chlorodifluoromethane	1.209	51	113285	22.4258	ug/l	67
,	Dichlorodifluoromethane	1.192	85	96625	20.4027	ug/l	89
- •	Chloromethane	1.309	50	86138	19.9484	ug/l	77
8)	Bromomethane	1.592	94	43447	18.1283	ug/l	79
	Vinyl Chloride	1.376		66813	17.8863	ug/l	94
	Chloroethane	1.642		41093	16.7167	ug/l	98 88
-	Trichlorofluoromethane	1.809		91778 53461	20.3374 18.3720	ug/l ug/l	85
	Ethyl ether	1.998		142103	19.6516	ug/l	98
	Furan 1,1,2-Trichloro-1,2,2	2.145		66717	31.8343	ug/l	99
	Methylene Chloride	2.490		76901	23.9639	ug/l	95
	Acrolein	2.096		52363	152.9933	ug/l	97
17)	Acrylonitrile	2.667	53	26298	25.0447	ug/l	91
18)	Iodomethane	2.273		139290	25.8932	ug/l	96
	Acetone	2.194		106434	87.9376	ug/l	98
	Carbon Disulfide	2.312		200020	22.7774 102.0055	ug/l ug/l	100 97
	t-Butyl Alcohol	2.568		32714 74306	33.8023	ug/l	78
	n-Hexane Di-isopropyl-ether	3.031		257018	26.0196	ug/l	93
	1,1-Dichloroethene	2.155		123626	22.6290	ug/l	97
	Methyl Acetate	2.421		54533	19.3810	ug/l	100
26)	Methyl-t-butyl ether	2.676		202262	24.8379	ug/l	65
	1,1-Dichloroethane	2.991		142285	24.4705	ug/l	97
	trans-1,2-Dichloroethene	2.686		68597	24.7643	ug/l	86 85
	cis-1,2-Dichloroethene	3.447		123622 59374	23.7772 22.5342	ug/l ug/l	96
	Bromochloromethane 2,2-Dichloropropane	3.652 3.447		92827	20.8347	ug/l	88
	Ethyl acetate	3.507		68017m		ug/l	
	1,4-Dioxane	4.735	88	33534	1125.1896	ug/l	74
34)	1,1-Dichloropropene	3.965		105686	26.7837	ug/l	95
	Chloroform	3.706		137134	24.8094	ug/l	90
	Cyclohexane	3.887		101679	30.8352 22.3441	ug/l ug/l	92 89
	1,2-Dichloroethane	4.121		122905 27697	25.1128	ug/l	83
	2-Butanone 1,1,1-Trichloroethane	3.845		120605	25.1272	ug/1	98
	Carbon Tetrachloride	3.965		100624	26.4092	ug/l	88
	Vinyl Acetate	3.031	43	257546	22.5806	ug/l	100
44)	Bromodichloromethane	4.814		121235	25.4137	ug/l	97
	Methylcyclohexane	4.633		92774	33.2414	ug/l	93 86
	Dibromomethane	4.729 4.651		68847 75375	30.8145 27.0231	ug/l ug/l	95
	1,2-Dichloropropane Trichloroethene	4.519		79091	27.9492	ug/l	96
-	Benzene	4.109		264207	25.7313	ug/l	100
	tert-Amyl methyl ether	4.176		189442	23.3948	ug/l	69
52)	Iso-propylacetate	4.146		130754	17.2997	ug/l	
	Methyl methacrylate	4.711		65185	16.4786	ug/l	87
	Dibromochloromethane	5.747		96742	21.1198	ug/l	100
	2-Chloroethylvinylether	4.982		46691	18.2548	ug/l ug/l	80 97
	cis-1,3-Dichloropropene	5.079 5.398		117844 120520	17.7584 18.3854	ug/1	99
	trans-1,3-Dichloropropene Ethyl methacrylate	5.434		71459	17.2826	ug/l	73
58) 59)		5.512		60845	18.3557	ug/l	88
	1,2-Dibromoethane	5.825		79911	20.4494	ug/l	97
61)		5.614		117061	19.2731	ug/l	94
62)	4-Methyl-2-Pentanone	5.163		65697	16.9544	ug/l	96
	2-Hexanone	5.644		48331	17.0939	ug/l	88
	Tetrachloroethene	5.596		71854 164798	23.8540 19.5443	ug/l ug/l	85 100
66) 67)		5.277 6.150		164798 79658	22.7706	ug/l	. 78
0/)	1,1,1,2-Tectachioloechale	3.130				J, =	

SampleID : CAL @ 20 PPB Data File: 2M67529.D Acq On : 05/31/11 10:09 Operator : WP Sam Mult : 1 Vial# : 51 Misc : A,5ML Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:54 Qt Upd On: 05/31/11 10:22

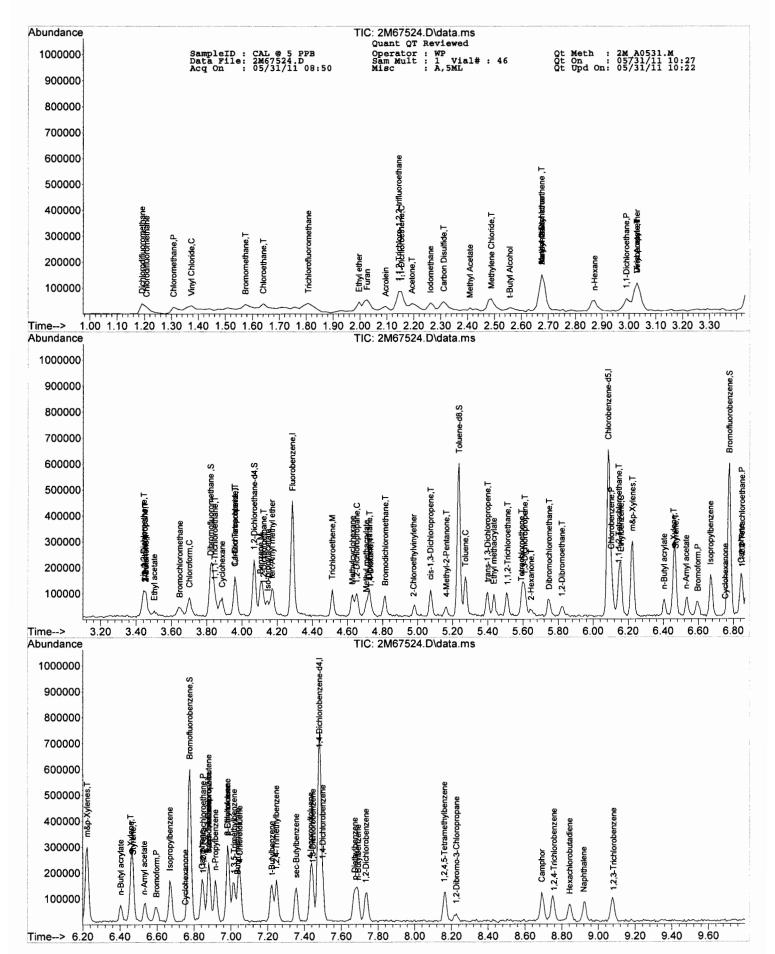
	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
68)	Chlorobenzene	6.108	112	188023	20.4018	ug/l	95
70)	n-Butyl acrylate	6.403	55	135042	17.1313	ug/l	93
71)	n-Amyl acetate	6.535	43	137573	18.2123	ug/l	90
72)	Bromoform	6.596	173	75501	20.9557	ug/l	94
73)	Ethylbenzene	6.156	106	77936	19.0080	ug/l	92
74)	1,1,2,2-Tetrachloroethane	6.848	83	86465	17.6684	ug/l	93
76)	Styrene	6.469	104	202289	18.3234	ug/l	100
77)	m&p-Xylenes	6.222	106	227132	38.4859	ug/l	96
78)	o-Xylene	6.463	106	119997	19.4416	ug/l	76
79)	trans-1,4-Dichloro-2-b	6.884	53	30766	16.1734	ug/l	50
80)	1,3-Dichlorobenzene	7.444	146	166359	19.9721	ug/1	92
81)	1,4-Dichlorobenzene	7.498	146	174169	20.3891	ug/l	93
82)	1,2-Dichlorobenzene	7.739	146	161130	19.9480	ug/1	92
83)	Isopropylbenzene	6.674	105	318248	18.8509	ug/l	94
84)	Cyclohexanone	6.752	55	16431	77.9723	ug/l	83
85)	Camphene	6.842	93	105547	18.1118	ug/l	98
86)	1,2,3-Trichloropropane	6.884	75	116350	17.0127	ug/l	89
87)	2-Chlorotoluene	6.987	91	223950	17.9756	ug/l	96
88)	p-Ethyltoluene	6.987	105	330252	17.5308	ug/l	78
89)	4-Chlorotoluene	7.053	91	213387	18.6431	ug/l	97
90)	n-Propylbenzene	6.921	91	389804	18.2412	ug/l	99
91)	Bromobenzene	6.878	77	173294	17.9592	ug/l	88
92)	1,3,5-Trimethylbenzene	7.017	105	276022	19.5005	ug/l	94
93)	Butyl methacrylate	7.041	41	136454	20.4514	ug/1	60
94)	t-Butylbenzene	7.222	119	264134	19.1061	ug/l	88
95)	1,2,4-Trimethylbenzene	7.252	105	287636	19.2019	ug/l	93
96)	sec-Butylbenzene	7.354	105	312458	18.3113	ug/l	99
97)	4-Isopropyltoluene	7.438	119	260497	19.0195	ug/l	96
98)	n-Butylbenzene	7.691	91	308343	18.3676	ug/l	96
99)	p-Diethylbenzene	7.673	119	145787	19.1616	ug/1	89
100)	1,2,4,5-Tetramethylben	8.167	119	250100	18.7387	ug/l	98
101)	1,2-Dibromo-3-Chloropr	8.221	157	21069	20.2586	ug/1	79
102)	Camphor	8.696	95	85918	196.0391	ug/l	91
103)	Hexachlorobutadiene	8.847	225	67215	27.4214	ug/1	99
	1,2,4-Trichlorobenzene	8.757	180	123628	23.6003	ug/l	94
105)	1,2,3-Trichlorobenzene	9.082	180	105418	23.4136	ug/l	95
106)	Naphthalene	8.925	128	209911	18.9279	ug/l	100

⁽#) = qualifier out of range (m) = manual integration (+) = signals summed

SampleID : CAL @ 5 PPB
Data File: 2M67524.D
Acq On : 05/31/11 08:50 Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:27 Qt Upd On: 05/31/11 10:22 Operator : WP Sam Mult : 1 Vial# : 46 Misc : A,5ML

Resp	Via : initial calibration						
	Compound	R.T.	QIon	Response	Conc Units	Dev (Mi	in)
Total							
	rnal Standards Fluorobenzene	4.285	96	224008	30.00 ug/	1 -0.	. 02
	Chlorobenzene-d5	6.085				1 -0	.02
	1,4-Dichlorobenzene-d4	7.481	152	209964 125515	30.00 ug/	1 -0	.02
,	-,						
Syst	em Monitoring Compounds						
	Dibromofluoromethane	3.821	111	88327	35.80 ug/		. 03
Sp	iked Amount 30.000				ry = 119		0.2
	1,2-Dichloroethane-d4	4.068	67	53640 Recove	$^{33.85}$ ug/		.02
_	iked Amount 30.000	5.236	98	241124	26.04 ug/		. 02
	Toluene-d8 iked Amount 30.000	3.230	70	Recove		.80%	
	Bromofluorobenzene	6.777	174		31.68 ug/		.02
	iked Amount 30.000				ry = 105	.60%	
-							_
	et Compounds						value
	Chlorodifluoromethane	1.208	51	27162	5.4783	ug/l	63
	Dichlorodifluoromethane	1.191	85	23844	5.1296	ug/1	89 96
	Chloromethane	1.308	50	24778	5.8464 5.1830	ug/l ug/l	94
	Bromomethane	1.574	94 62	12192 18288	4.9881	ug/l	93
	Vinyl Chloride Chloroethane	1.375 1.641	64	11293	4.6806	ug/l	96
	Trichlorofluoromethane	1.808	101	26535	5.9908	ug/l	70
	Ethyl ether	1.997	59	15578	5.4543	ug/l	77
	Furan	2.026	39	30513	4.2992	ug/1	85
	1,1,2-Trichloro-1,2,2	2.144	101	15057	7.3199	ug/l	94
15)	Methylene Chloride	2.489	84	20977	6.6601	ug/1	87
	Acrolein	2.095	56	16414		ug/1	86
17)	Acrylonitrile	2.676		9321	9.0441	ug/l	76
18)	Iodomethane	2.262		36789	6.9677	ug/1	93
	Acetone	2.193	43	34269	28.8473	ug/l	94
	Carbon Disulfide	2.311	76	54214 14980	6.2900	ug/l ug/l	100 84
	t-Butyl Alcohol	2.557	59 57	15931		ug/l	79
	n-Hexane	2.872 3.030		60744		ug/l	91
	Di-isopropyl-ether 1,1-Dichloroethene	2.154		37954		ug/l	92
	Methyl Acetate	2.410		15797		ug/l	100
	Methyl-t-butyl ether	2.676		52539		ug/l	66
	1,1-Dichloroethane	2.990		37934	6.6469	ug/l	89
	trans-1,2-Dichloroethene	2.676		17431	6.4114	ug/l	86
	cis-1,2-Dichloroethene	3.442	61	32219	6.3137	ug/l	93
30)	Bromochloromethane	3.647	49	16111	6.2298	ug/l	77
	2,2-Dichloropropane	3.448		24727	5.6545	ug/l	87
	Ethyl acetate	3.502		18139m		ug/l ug/l	80
	1,4-Dioxane	4.730 3.960	88 75	11688 24029		ug/l	94
	1,1-Dichloropropene Chloroform	3.701	83	35022		ug/l	87
	Cyclohexane	3.887		22626		ug/l	87
39)	1,2-Dichloroethane	4.122		32722	6.0610	ug/l	98
	2-Butanone	3.454		6739	6.2254	ug/1	94
41)		3.845	97	28429	6.0346	ug/l	91
42)	Carbon Tetrachloride	3.960	117	21535	5.7585	ug/1	95
	Vinyl Acetate	3.030	43	69656	6.2223	ug/l	100
	Bromodichloromethane	4.814	83	30152	6.4397	ug/l ug/l	83
45)		4.628	83	17184	6.2732 6.8056	ug/1 ug/1	93 96
	Dibromomethane	4.724 4.652	174 63	14924 16007	5.8469	ug/1	98
47)		4.513	130	20007	7.2033	ug/l	75
48)	Benzene	4.104		62386	6.1903	ug/l	100
50)		4.170		46348	5.8315	ug/l	75
52)	·	4.146		31485	4.3737	ug/l	93
	Methyl methacrylate	4.706	41	15829	4.2013	ug/l	87
	Dibromochloromethane	5.747	129	21551	4.9397	ug/l	86
	2-Chloroethylvinylether	4.977		9558	3.9235	ug/l	71
	cis-1,3-Dichloropropene	5.073		28422	4.4969	ug/l	96
	trans-1,3-Dichloropropene	5.398		29838	4.7791	ug/l	80
	Ethyl methacrylate	5.434		21194	5.3817	ug/l ug/l	98 84
	1,1,2-Trichloroethane	5.513		14609 18219	4.6273 4.8951	ug/l ug/l	80
	1,2-Dibromoethane	5.820 5.609		27273	4.7145	ug/l	93
	1,3-Dichloropropane 4-Methyl-2-Pentanone	5.164		15424	4.1792	ug/l	96
	2-Hexanone	5.645		12727	4.7261	ug/l	70
	Tetrachloroethene	5.591		14220	4.9564	ug/l	90
	Toluene	5.272			4.2189	ug/l	100
67)		6.145	133	17879	5.3660	ug/1	96
		11.					
		\sim	ACE.	1			

 SampleID : CAL @ 5 PPB
 Operator : WP
 Qt Meth : 2M_A0531.M


 Data File: 2M67524.D
 Sam Mult : 1 Vial# : 46
 Qt On : 05/31/11 10:27

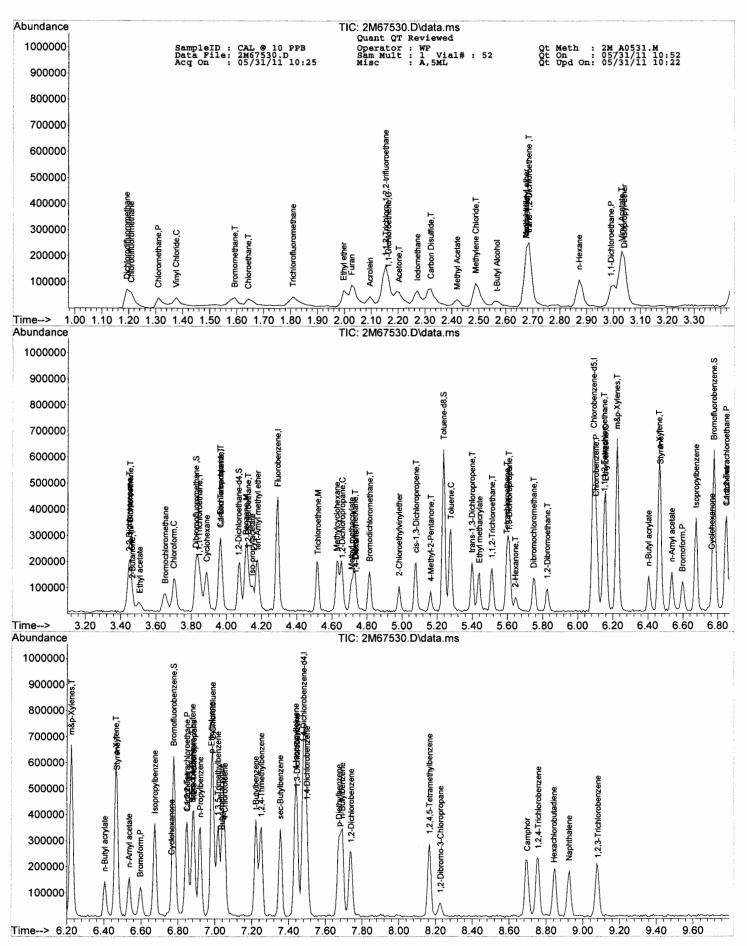
 Acq On : 05/31/11 08:50
 Misc : A,5ML
 Qt Upd On: 05/31/11 10:22

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration

Compound R.T. QIon Response Conc Units Dev(Min) 68) Chlorobenzene 6.103 112 44090 5.0229 ug/l 6.404 55 29719 6.530 43 31099 6.596 173 19013 70) n-Butyl acrylate 4.3720 ug/l 31099 19013 4.7743 ug/l 90 72) Bromoform 73) Ethylbenzene ug/l 89 73) Ethylbenzene 6.157 106 16904
74) 1,1,2,2-Tetrachloroethane 6.849 83 20183
76) Styrene 6.470 104 46196 ug/l 4.7810 97 4.7827 ug/l 92 ug/l 92 4.8525 77) m&p-Xylenes 6.223 106 6.458 106 49232 9.6738 79 24322 ug/l 78) o-Xylene 4.5697 ug/l 91 79) trans-1,4-Dichloro-2-b... 6.879 53 80) 1,3-Dichlorobenzene 7.445 146 81) 1,4-Dichlorobenzene 7.499 146 7682 4.6831 ug/l 37129 5.1691 ug/l 92 35369 ug/l 4.8015 97 31838 7.734 146 6.668 105 82) 1,2-Dichlorobenzene 4.5709 90 ug/l 83) Isopropylbenzene 84) Cyclohexanone 64265 4.4144 ug/l 94 84) Cyclohexanone 6.753 55
85) Camphene 6.843 93
86) 1,2,3-Trichloropropane 6.879 75
87) 2-Chlorotoluene 6.981 91
88) p-Ethyltoluene 6.981 105 3542 19.4919 ug/l 19971 3.9742 ug/l 90 30849 5.2309 ug/l 91 47736 71618 4.4433 ug/l 92 4.4087 ug/l 77 88) p-Ethyltolucia 89) 4-Chlorotolucne 90) n-Propylbenzene 7.048 91 6.915 91 6.879 77 41888 4.2439 ug/l 81576 4.4269 ug/l 98 44515 91) Bromobenzene ug/l 92) 1,3,5-Trimethylbenzene 7.018 105 93) Butyl methacrylate 7.036 41 94) t-Butylbenzene 7.222 119 5.3498 94 54658 4.4780 ug/l 98 ug/l 30672 5.3310 77 94) t-Butylbenzene 95) 1,2,4-Trimethylbenzene 96) sec-Butylbenzene 47314 3.9689 ug/l 7.246 105 7.355 105 7.433 119 7.692 91 7.674 119 59998 4.6448 93 ug/l 61602 4.1865 ug/l 96 97) 4-Isopropyltoluene 54430 4.6085 ug/l 94 99) p-Diethylbenzene 58274 4.0255 90 ug/l 23677 3.6088 ug/l 85 100) 1,2,4,5-Tetramethylben... 8.161 119 101) 1,2-Dibromo-3-Chloropr... 8.228 157 4.2018 ug/l 48360 98 5334 5.9477 ug/l 87 8.691 95 8.842 225 ug/l 102) Camphor 20017 52.9647 92 103) Hexachlorobutadiene 10504 4.9694 ug/l 94 8.757 180 5.0894 ug/l 104) 1,2,4-Trichlorobenzene 22990 97 9.082 180 8.920 128 105) 1,2,3-Trichlorobenzene 20257 5.2174 83 ug/l 106) Naphthalene 41514 4.3410 ug/l 100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:52 Qt Upd On: 05/31/11 10:22 SampleID : CAL @ 10 PPB Data File: 2M67530.D Acq On : 05/31/11 10:25 Operator : WP Sam Mult : 1 Vial# : 52 Misc : A,5ML


Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
Total and a state of the state						
Internal Standards 4) Fluorobenzene	4.291	96	227688	30.00 ug/	1 -0.	02
51) Chlorobenzene-d5	6.091	117	221704	30.00 ug/		
69) 1,4-Dichlorobenzene-d4	7.481	152	137011	30.00 ug/		
69) 1,4-bichiolobenzene al	,			-J.		
System Monitoring Compounds						
36) Dibromofluoromethane	3.827	111	81726	32.59 ug/	1 -0.	02
Spiked Amount 30.000			Recove	•	.63%	
38) 1,2-Dichloroethane-d4	4.068	67	45891	28.49 ug/		02
Spiked Amount 30.000			Recove	- 1	.97%	00
65) Toluene-d8	5.236	98	240925	24.64 ug/		02
Spiked Amount 30.000	-		Recove	- 1	.13%	0.2
75) Bromofluorobenzene	6.777	174	123051	31.40 ug/	1 -0. .67%	02
Spiked Amount 30.000			Recove	ry = 104	.0/10	
Harrest Compounds					Ov	alue
Target Compounds 5) Chlorodifluoromethane	1.209	51	58427	11.5937	ug/l	68
6) Dichlorodifluoromethane	1.193	85	49028	10.3771	ug/l	83
7) Chloromethane	1.309		43991	10.2120	ug/l	81
8) Bromomethane	1.592	94	23583	9.8634	ug/l	94
9) Vinyl Chloride	1.376		33982	9.1189	ug/l	96
10) Chloroethane	1.642		18066	7.3668	ug/l	92
11) Trichlorofluoromethane	1.809		46877	10.4124	ug/l	84
12) Ethyl ether	1.997		24470	8.4292	ug/l	90
13) Furan	2.026	39	70694	9.7996	ug/l	95
14) 1,1,2-Trichloro-1,2,2	2.154	101	32750	15.6640	ug/l	93
15) Methylene Chloride	2.489	84	34446	10.7596	ug/l	97
16) Acrolein	2.095	56	21827	63.9256	ug/l	81
17) Acrylonitrile	2.676		12284	11.7264	ug/l	89
18) Iodomethane	2.272		70084	13.0592	ug/l	97
19) Acetone	2.203		54268	44.9439	ug/l	95
20, 6412611	2.321		101492	11.5850	ug/l	100
21) t-Butyl Alcohol	2.567		16153	50.4866	ug/l	85
22) n-Hexane	2.872		35559	16.2145	ug/l	77 99
23) Di-isopropyl-ether	3.040		125686	12.7543	ug/l ug/l	90
24) 1,1-Dichloroethene	2.164		62390	11.4473	ug/l ug/l	100
25) Methyl Acetate	2.420		31622	11.2652 12.5620	ug/l	65
26) Methyl-t-butyl ether	2.676		102053 72203	12.4472	ug/l	91
27) 1,1-Dichloroethane	2.990		34643	12.5363	ug/l	92
28) trans-1,2-Dichloroethene	3.454		59409	11.4538	ug/l	89
<pre>29) cis-1,2-Dichloroethene 30) Bromochloromethane</pre>	3.653		32368	12.3138	ug/l	72
31) 2,2-Dichloropropane	3.448		45471	10.2301	ug/l	89
32) Ethyl acetate	3.508		34693m	12.8108	ug/l	
33) 1,4-Dioxane	4.736		18883	635.1027	ug/l	83
34) 1,1-Dichloropropene	3.966		49967	12.6931	ug/l	99
35) Chloroform	3.701	83	66562	12.0706	ug/1	84
37) Cyclohexane	3.887	56	46974	14.2793	ug/1	97
39) 1,2-Dichloroethane	4.122	62	64029	11.6682	ug/l	99
40) 2-Butanone	3.466		14594	13.2638	ug/l	100
41) 1,1,1-Trichloroethane	3.845		55745	11.6417	ug/1	94
42) Carbon Tetrachloride	3.966		51817	13.6320	ug/l	98
43) Vinyl Acetate	3.030		132640	11.6570	ug/l ug/l	100 97
44) Bromodichloromethane	4.814		59406	12.4825	ug/l	97
45) Methylcyclohexane	4.628		45667 32655	16.4017 14.6505	ug/l	83
46) Dibromomethane	4.730		36603	13.1540	ug/l	70
47) 1,2-Dichloropropane	4.519		37233	13.1887	ug/l	95
48) Trichloroethene 49) Benzene	4.110		115651	11.2901	ug/l	100
	4.176		97594	12.0809	ug/l	70
50) tert-Amyl methyl ether 52) Iso-propylacetate	4.146		61897	8.1430	ug/l :	
53) Methyl methacrylate	4.712		34797	8.7467	ug/l	95
54) Dibromochloromethane	5.747		43017	9.3378	ug/l	96
55) 2-Chloroethylvinylether	4.983		21091	8.1992	ug/l	95
56) cis-1,3-Dichloropropene	5.079		59494	8.9146	ug/l	97
57) trans-1,3-Dichloropropene	5.398		59615	9.0427	ug/l	93
58) Ethyl methacrylate	5.441		35295	8.4878	ug/l	71
59) 1,1,2-Trichloroethane	5.513		31284	9.3843	ug/l	87
60) 1,2-Dibromoethane	5.826		38488	9.7933	ug/l	96
61) 1,3-Dichloropropane	5.609		56502	9.2498	ug/l	93
62) 4-Methyl-2-Pentanone	5.164		32564	8.3561	ug/l	70
63) 2-Hexanone	5.645		23530	8.2750	ug/l	83 81
64) Tetrachloroethene	5.597		33197	10.9582	ug/l ug/l	92
66) Toluene	5.278			9.3760 9.9428	ug/l	88
67) 1,1,1,2-Tetrachloroethane	6.151	L 133	34981	9.5420	49/1	33
\	1					

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

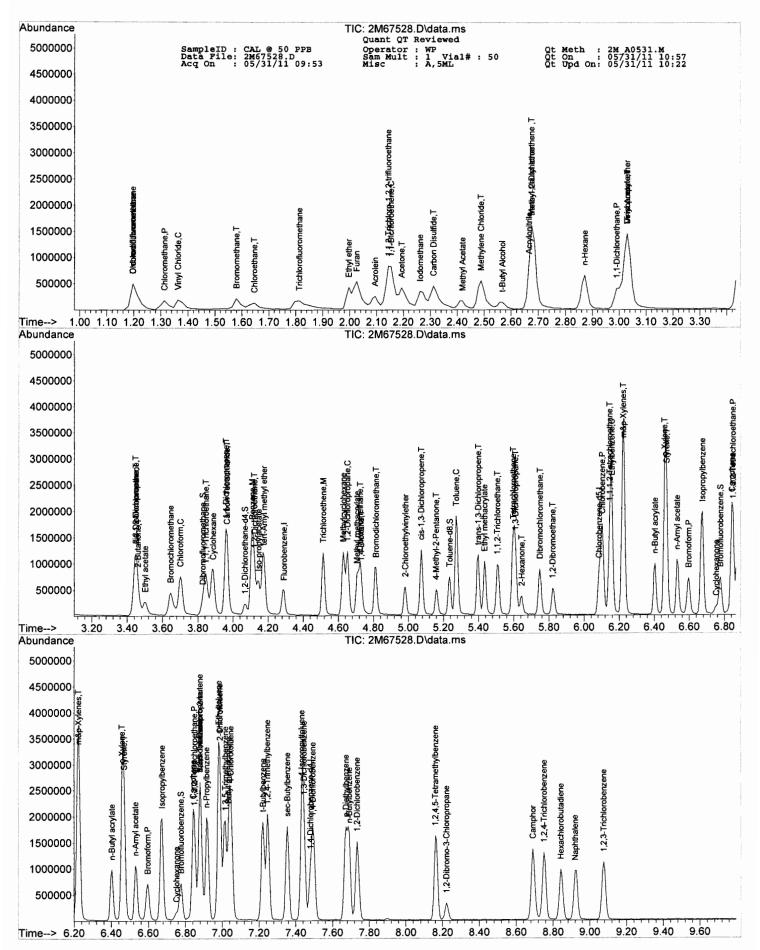
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	Chlorobenzene	6.103	112	90751	9.7913	ug/l	92
70)	n-Butyl acrylate	6.404	55	63564	8.5664	ug/l	92
71)	n-Amyl acetate	6.536	43	62119	8.7362	ug/l	86
72)	Bromoform	6.596	173	35499	10.4673	ug/l	89
73)	Ethylbenzene	6.157	106	40536	10.5029	ug/l	86
74)	1,1,2,2-Tetrachloroethane	6.849	83	42314	9.1857	ug/l	91
76)	Styrene	6.470	104	89811	8.6423	ug/l	88
77)	m&p-Xylenes	6.223	106	113342	20.4025	ug/l	96
78)	o-Xylene	6.464	106	56826	9.7809	ug/l	82
79)	trans-1,4-Dichloro-2-b	6.879	53	11104	6.2012	ug/l	9
80)	1,3-Dichlorobenzene	7.445	146	73174	9.3326	ug/l	96
81)	1,4-Dichlorobenzene	7.499	146	78805	9.8005	ug/l	94
82)	1,2-Dichlorobenzene	7.740	146	73942	9.7249	ug/l	89
83)	Isopropylbenzene	6.675	105	150575	9.4752	ug/l	96
84)	Cyclohexanone	6.765	55	6248	31.4982	ug/l	82
85)	Camphene	6.849	93	51256	9.3439	ug/l	92
86)	1,2,3-Trichloropropane	6.885	75	59221	9.1992	ug/l	85
87)	2-Chlorotoluene	6.988	91	117913	10.0545	ug/l	95
88)	p-Ethyltoluene	6.982	105	160504	9.0513	ug/l	81
89)	4-Chlorotoluene	7.054	91	94091	8.7331	ug/l	97
90)	n-Propylbenzene	6.921	91	188165	9.3544	ug/l	99
91)	Bromobenzene	6.879	77	83832	9.2296	ug/l	87
92)	1,3,5-Trimethylbenzene	7.018	105	132882	9.9732	ug/l	91
93)	Butyl methacrylate	7.036	41	59837	9.5274	ug/l	54
	t-Butylbenzene	7.222	119	130040	9.9929	ug/l	91
95)	1,2,4-Trimethylbenzene	7.252	105	138460	9.8196	ug/l	93
96)	sec-Butylbenzene	7.355	105	150504	9.3701	ug/l	99
97)	4-Isopropyltoluene	7.439	119	124927	9.6900	ug/l	97
98)	n-Butylbenzene	7.692	91	152688	9.6626	ug/l	93
99)	p-Diethylbenzene	7.674	119	63471	8.8625	ug/l	88
100)	1,2,4,5-Tetramethylben	8.167	119	115876	9.2233	ug/l	97
101)	1,2-Dibromo-3-Chloropr	8.228	157	9761	9.9708	ug/l	80
102)	Camphor	8.697	95	39039	94.6294	ug/l	99
103)	Hexachlorobutadiene	8.842	225	32339	14.0158	ug/l	95
104)	1,2,4-Trichlorobenzene	8.757	180	58880	11.9409	ug/l	97
105)	1,2,3-Trichlorobenzene	9.082	180	49639	11.7124	ug/l	88
106)	Naphthalene	8.926	128	105517	10.1078	ug/l	100
							_

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

SampleID : CAL @ 50 PPB Data File: 2M67528.D Acq On : 05/31/11 09:53

Operator : WP Sam Mult : 1 Vial# : 50 Misc : A,5ML


Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:57 Qt Upd On: 05/31/11 10:22

20	мезр	via : iniciai calibración						
		Compound	R.T.	QIon	Response	Conc Units	Dev (Mi	in)
	Inter	nal Standards						
	4)	Fluorobenzene	4.291	96	259821	30.00 ug/	1 -0.	. 02
	51)	Chlorobenzene-d5	6.085			30.00 ug/ 30.00 ug/	1 -0.	.02
		1,4-Dichlorobenzene-d4	7.481	152	156654	30.00 ug/	1 -0	.02
	C	Maritarias Compounda						
		m Monitoring Compounds Dibromofluoromethane	3.827	111	95590	33.40 ug/	1 -0	02
		ked Amount 30.000	3.027	111		ry = 111		
		1,2-Dichloroethane-d4	4.068	67	54775	¹ 29.80 ug/		. 02
	Spi	ked Amount 30.000				•	.33%	
		Toluene-d8	5.236	98	286271	26.02 ug/		. 02
		ked Amount 30.000 Bromofluorobenzene	6.777	174	Recove 139201	ery = 86 /31.06 ug	.73% 1 -0	02
		ked Amount 30.000	0.777	1/4		ery = 103		. 02
	~					•		
		t Compounds						value
		Chlorodifluoromethane	1.197		377700	65.6781	ug/l ug/l	82 91
		Dichlorodifluoromethane Chloromethane	1.197 1.313		278486 235403	51.6535 47.8877	ug/l	81
		Bromomethane	1.580			46.3520	ug/l	71
		Vinyl Chloride	1.363		201077	47.2847	ug/l	99
		Chloroethane	1.646		113387	40.5178	ug/l	94
		Trichlorofluoromethane	1.813		276019		ug/l ug/l	89 88
		Ethyl ether Furan	1.997 2.026		163548 455307		ug/l	100
		1,1,2-Trichloro-1,2,2	2.144		191012		ug/1	96
		Methylene Chloride	2.489		234449		ug/l	97
		Acrolein	2.095		172478		ug/l	96
	-	Acrylonitrile	2.666		85829		ug/1	98 95
		Iodomethane	2.262 2.193		411762 356649		ug/l ug/l	93
		Acetone Carbon Disulfide	2.312		638417		ug/l	100
		t-Butyl Alcohol	2.567		120685		ug/l	81
		n-Hexane	2.872				ug/l	74
		Di-isopropyl-ether	3.030		826285		ug/l ug/l	95 99
		1,1-Dichloroethene	2.154		392614 195863		ug/1	100
		Methyl Acetate Methyl-t-butyl ether	2.676		624128	67.3244	ug/l	65
		1,1-Dichloroethane	2.990		445927	67.3668	ug/1	97
	28)	trans-1,2-Dichloroethene	2.676		216773	68.7423	ug/l	94
		cis-1,2-Dichloroethene	3.448		425551	71.8978	ug/l ug/l	94 82
		Bromochloromethane 2,2-Dichloropropane	3.647 3.448		197985 288470		ug/1	91
	-	Ethyl acetate	3.502		207486m		ug/l	
	33)	1,4-Dioxane	4.730	88		3413.2937	ug/l	79
	34)	1,1-Dichloropropene	3.960		304228	67.7252	ug/l	96
		Chloroform	3.701				ug/l ug/l	86 95
		Cyclohexane 1,2-Dichloroethane	3.888 4.122		388911	62.1071	ug/l	97
	1	2-Butanone	3.460	43				97
		1,1,1-Trichloroethane	3.845	97	359311	65.7578	ug/1	90
	-	Carbon Tetrachloride	3.966		310146	71.5020 67.2005	ug/l ug/l	89 100
		Vinyl Acetate Bromodichloromethane	3.030 4.815		872557 354608	65.2961	ug/1	94
		Methylcyclohexane	4.628		265752	83.6426	ug/l	96
		Dibromomethane	4.724		185852	73.0696	ug/l	92
		1,2-Dichloropropane	4.652		235203	74.0712	ug/l	99
	- ,	Trichloroethene	4.514		228236	70.8475	ug/l ug/l	93 100
		Benzene tert-Amyl methyl ether	4.110 4.176		768567 592896	65.7502 64.3162	ug/1	68
	-	Iso-propylacetate	4.146		430278	50.3087	ug/l	58
		Methyl methacrylate	4.706		237850	53.1357	ug/l	97
	54)	Dibromochloromethane	5.748		282313	54.4647	ug/l	98
	55)		4.983		147286	50.8881	ug/l	78 89
		cis-1,3-Dichloropropene	5.073 5.398		390236 373664	51.9677 50.3738	ug/l ug/l	94
		trans-1,3-Dichloropropene Ethyl methacrylate	5.435		241844	51.6888	ug/1	75
		1,1,2-Trichloroethane	5.507		188495	50.2524	ug/l	93
	60)	1,2-Dibromoethane	5.820	107	231863	52.4343	ug/l	93
		1,3-Dichloropropane	5.609		353738	51.4673	ug/1	98
		4-Methyl-2-Pentanone	5.158 5.645		219360 148565	50.0271 46.4348	ug/l ug/l	99 93
	63) 64)	2-Hexanone Tetrachloroethene	5.545		195487	57.3506	ug/1	98
	66)		5.272		482480	50.5660	ug/l	94
	67)		6.145	133	203057	51.2948	ug/1	68

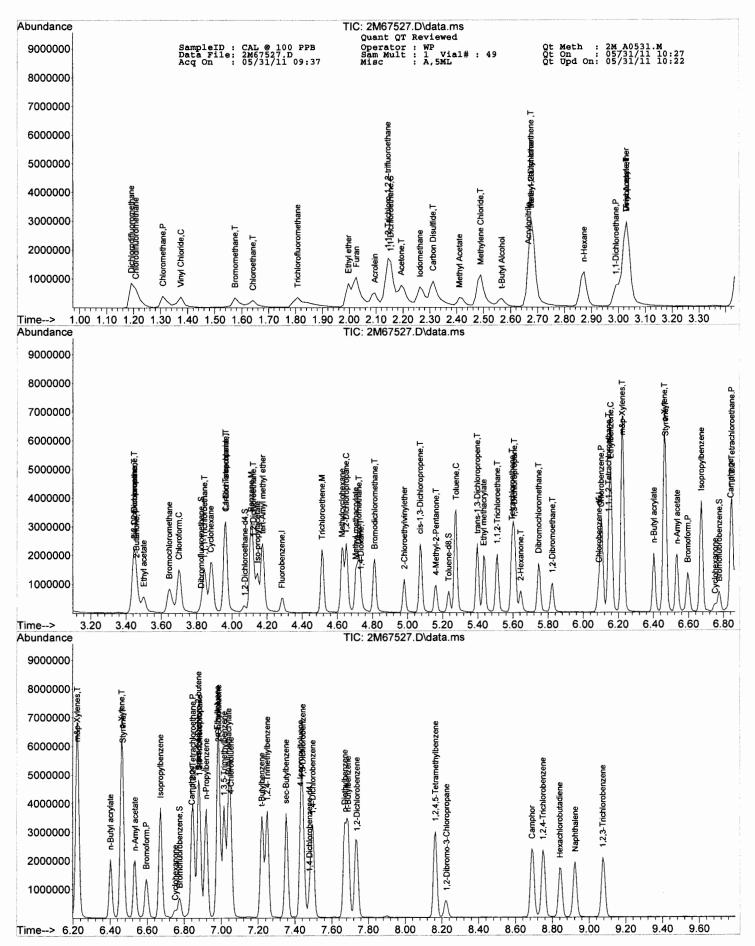
Operator : WP Sam Mult : 1 Vial# : 50 Misc : A,5ML SampleID : CAL @ 50 PPB Data File: 2M67528.D Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:57 Qt Upd On: 05/31/11 10:22 Acq On : 05/31/11 09:53

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
,	Chlorobenzene	6.103	112	545548	52.3118	ug/l	93
	n-Butyl acrylate	6.404	55	440049	51.8685	ug/l	92
	n-Amyl acetate	6.530	43	446490	54.9194	ug/l	92
	Bromoform	6.596	173	222368	57.3461	ug/l	87
73)	Ethylbenzene	6.157	106	228288	51.7325	ug/l	94
	1,1,2,2-Tetrachloroethane	6.849	83	262794	49.8948	ug/l	93
	Styrene	6.470	104	578561	48.6928	ug/l	96
77)		6.223	106	647485	101.9379	ug/l	97
78)	o-Xylene	6.458	106	331987	49.9766	ug/l	81
	trans-1,4-Dichloro-2-b	6.879	53	85335	41.6811	ug/l	28
80)	1,3-Dichlorobenzene	7.445	146	428188	47.7632	ug/l	95
81)	1,4-Dichlorobenzene	7.493	146	467730	50.8750	ug/l	94
82)	1,2-Dichlorobenzene	7.734	146	427923	49.2234	ug/l	93
83)	Isopropylbenzene	6.675	105	884068	48.6558	ug/l	95
84)	Cyclohexanone	6.753	55	41999	185.1815	ug/l	95
85)	Camphene	6.843	93	288503	45.9992	ug/l	99
86)	1,2,3-Trichloropropane	6.879	75	358663	48.7276	ug/l	86
87)	2-Chlorotoluene	6.988	91	592604	44.1956	ug/l	97
88)	p-Ethyltoluene	6.982	105	901852	44.4811	ug/l	82
89)	4-Chlorotoluene	7.048	91	590080	47.9009	ug/l	96
90)	n-Propylbenzene	6.915	91	1096487	47.6752	ug/l	99
91)	Bromobenzene	6.879	77	519288	50.0029	ug/l	92
92)	1,3,5-Trimethylbenzene	7.018	105	723576	47.4972	ug/l	92
93)	Butyl methacrylate	7.036	41	393427	54.7879	ug/l	54
94)	t-Butylbenzene	7.222	119	696714	46.8258	ug/l	90
95)	1,2,4-Trimethylbenzene	7.246	105	794519	49.2819	ug/l	92
96)	sec-Butylbenzene	7.355	105	859104	46.7794	ug/l	100
97)	4-Isopropyltoluene	7.433	119	719230	48.7919	ug/l	96
98)	n-Butylbenzene	7.692	91	836413	46.2938	ug/l	93
99)	p-Diethylbenzene	7.674	119	375106	45.8088	ug/l	92
100)	1,2,4,5-Tetramethylben	8.161	119	673192	46.8648	ug/l	95
101)	1,2-Dibromo-3-Chloropr	8.222	157	59834	53.4559	ug/l	83
102)	Camphor	8.691	95	241563	512.1200	ug/l	96
103)	Hexachlorobutadiene	8.842	225	164813	62.4737	ug/l	96
104)	1,2,4-Trichlorobenzene	8.751	180	319913	56.7434	ug/l	97
105)	1,2,3-Trichlorobenzene	9.076	180	280052	57.7929	ug/l	94
	Naphthalene	8.920	128	605084	50.6951	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0531.M Mon Jun 13 07:33:45 2011 SYSTEM1

Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:27 Qt Upd On: 05/31/11 10:22 Operator : WP Sam Mult : 1 Vial# : 49 Misc : A,5ML SampleID : CAL @ 100 PPB Data File: 2M67527.D Acq On : 05/31/11 09:37


Compound	R.T.	OIon	Response	Conc Units	Dev(Mi	.n)
						- -
Internal Standards		0.5	0.65640	20.00.00/	1 -0	0.2
4) Fluorobenzene	4.283	96 117		30.00 ug/ 30.00 ug/		
51) Chlorobenzene-d5 69) 1,4-Dichlorobenzene-d4	6.089 7.479	152	147177	30.00 ug/		
63) 1,4-Dichiolobenzene d4	,,	-52		-J,		
System Monitoring Compounds						
36) Dibromofluoromethane	3.826	111	90924	31.07 ug/		02
Spiked Amount 30.000			Recove			00
38) 1,2-Dichloroethane-d4	4.072	67	53675	28.56 ug/ rv = 95		.02
Spiked Amount 30.000	E 224	98	Recove 285634	26.60 ug/		02
65) Toluene-d8 Spiked Amount 30.000	5.234	90		-	.67%	02
75) Bromofluorobenzene	6.775	174		31.06 ug/		.02
Spiked Amount 30.000	• • • • • • • • • • • • • • • • • • • •			ry = 103		
						_
Target Compounds				101 6515		value 77
Chlorodifluoromethane	1.208	51	715283	121.6515	ug/l ug/l	85
6) Dichlorodifluoromethane	1.191	85	555278	100.7332 92.5464	ug/l	81
7) Chloromethane	1.308 1.575	50 94	465137 218934	78.4828	ug/l	85
8) Bromomethane9) Vinyl Chloride	1.375	62	354864	81.6180	ug/l	92
10) Chloroethane	1.641	64	199295	69.6538	ug/l	89
11) Trichlorofluoromethane	1.808	101	510199	97.1319	ug/l	91
12) Ethyl ether	1.997	59	341763	100.9041	ug/1	92
13) Furan	2.026	39	895997	106.4550	ug/l	98
14) 1,1,2-Trichloro-1,2,2	2.144	101	359610	147.4196	ug/l	94
15) Methylene Chloride	2.489	84	469895	125.8030	ug/l	96
16) Acrolein	2.095	56	356850	895.7734	ug/l ug/l	95 97
17) Acrylonitrile	2.666	53 142	177414 796703	145.1593 127.2407	ug/l	92
18) Iodomethane	2.262 2.193	43	708489	502.9117	ug/l	98
19) Acetone 20) Carbon Disulfide	2.312	76	1313079	128.4652	ug/l	100
21) t-Butyl Alcohol	2.567	59	239522	641.6527	ug/l	82
22) n-Hexane	2.872	57	447068	174.7270	ug/1	76
23) Di-isopropyl-ether	3.030	45	1741117	151.4363	ug/l	93
24) 1,1-Dichloroethene	2.154	61	779533	122.5898	ug/l	99
25) Methyl Acetate	2.410	43	396449	121.0513	ug/l	100 65
26) Methyl-t-butyl ether	2.676	73	1275454	134.5643 132.3280	ug/l ug/l	95
27) 1,1-Dichloroethane	2.990	63 96	895579 422763	131.1240	ug/l	100
28) trans-1,2-Dichloroethene	2.676 3.446	61	816265	134.8843	ug/l	91
<pre>29) cis-1,2-Dichloroethene 30) Bromochloromethane</pre>	3.645	49	391441	127.6368	ug/l	78
31) 2,2-Dichloropropane	3.446	77	563006	108.5650	ug/l	94
32) Ethyl acetate	3.501	43	447523m	141.6385	ug/1	
33) 1,4-Dioxane	4.735	88	234693		ug/l	91
34) 1,1-Dichloropropene	3.964	75	596076	129.7832	ug/l	98
35) Chloroform	3.699		840764		ug/l ug/l	87 90
37) Cyclohexane	3.880	56	636937 768302	165.9496 120.0022	ug/l	95
39) 1,2-Dichloroethane	4.121 3.458	62 43	189268		ug/l	96
<pre>40) 2-Butanone 41) 1,1,1-Trichloroethane</pre>	3.844	97	682981	122.2507	ug/l	100
42) Carbon Tetrachloride	3.964	117	584953	131.8983	ug/l	94
43) Vinyl Acetate	3.030	43	1827767	137.6783	ug/1	100
44) Bromodichloromethane	4.813	83	708622	127.6201	ug/l	94
45) Methylcyclohexane	4.626	83	530965	163.4493	ug/l	96
46) Dibromomethane	4.723	174	362152	139.2599	ug/l ug/l	90 100
47) 1,2-Dichloropropane	4.650	63	463597	142.7950 131.5522	ug/1	91
48) Trichloroethene	4.512 4.109	130 78	433303 1544456	129.2281	ug/l	100
<pre>49) Benzene 50) tert-Amyl methyl ether</pre>	4.175	73	1207397	128.1026	ug/1	69
52) Iso-propylacetate	4.145	43	949082	113.7127	ug/l	# 78
53) Methyl methacrylate	4.704	41	489965	112.1655	ug/l	98
54) Dibromochloromethane	5.746	129	561993	111.1030	ug/l	95
55) 2-Chloroethylvinylether	4.981	63	291774	103.3029	ug/l	82
56) cis-1,3-Dichloropropene	5.072	75	770411	105.1332	ug/l	91
57) trans-1,3-Dichloropropene	5.397		772922	106.7751	ug/1	99 79
58) Ethyl methacrylate	5.433	41	501459	109.8266 105.8155	ug/l ug/l	95
59) 1,1,2-Trichloroethane	5.511		387330 460786	106.7810	ug/1	94
60) 1,2-Dibromoethane 61) 1,3-Dichloropropane	5.824 5.607		687513	102.5042	ug/l	98
62) 4-Methyl-2-Pentanone	5.162		445373	104.0836	ug/l	91
63) 2-Hexanone	5.643		317475	101.6827	ug/l	95
64) Tetrachloroethene	5.595		353714	106.3367	ug/l	99
66) Toluene	5.276		958176	102.9048	ug/l	100
67) 1,1,1,2-Tetrachloroethane	6.143	133	393138	101.7680	ug/l	67
· \ 1						

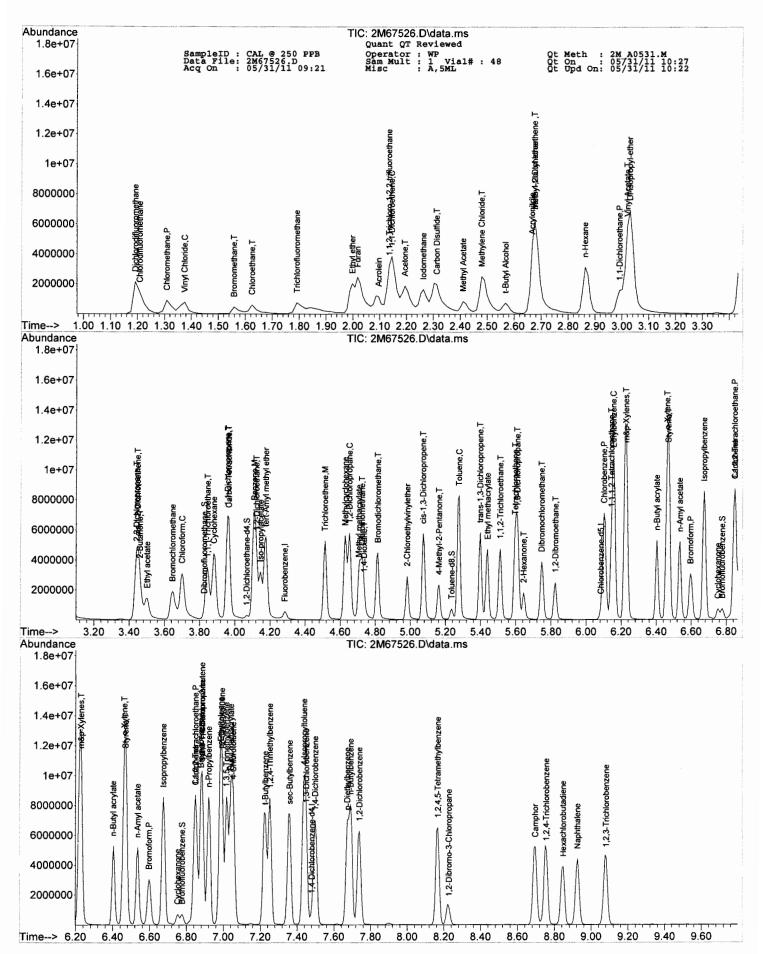
Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
	Chlorobenzene	6.101	112	1056061	103.7688	ug/l	 97
	n-Butyl acrylate	6.402	55	930921	116.7932	ug/l	94
71)	n-Amyl acetate	6.534	43	874570	114.5012	ug/l	92
	Bromoform	6.595	173	433743	119.0600	ug/l	99
	Ethylbenzene	6.155	106	414675	100.0207	ug/l	99
74)	1,1,2,2-Tetrachloroethane	6.847	83	515335	104.1433	ug/l	92
76)	Styrene	6.468	104	1114584	99.8459	ug/l	99
77)	m&p-Xylenes	6.221	106	1213494	203.3504	ug/l	94
78)	o-Xylene	6.462	106	614289	98.4282	ug/l	83
79)	trans-1,4-Dichloro-2-b	6.878	53	181123	94.1645	ug/l	22
80)	1,3-Dichlorobenzene	7.443	146	809404	96.1006	ug/l	92
81)	1,4-Dichlorobenzene	7.498	146	872957	101.0657	ug/l	94
82)	1,2-Dichlorobenzene	7.738	146	830119	101.6361	ug/l	94
83)	Isopropylbenzene	6.673	105	1678265	98.3130	ug/l	95
84)	Cyclohexanone	6.751	55	81079	380.5123	ug/l	95
85)	Camphene	6.841	93	552633	93.7860	ug/l	95
86)	1,2,3-Trichloropropane	6.884	75	699699	101.1816	ug/l	85
87)	2-Chlorotoluene	6.986	91	1135960	90.1736	ug/l	95
88)	p-Ethyltoluene	6.980	105	1687968	88.6147	ug/l	81
89)	4-Chlorotoluene	7.052	91	1106012	95.5640	ug/l	95
90)	n-Propylbenzene	6.920	91	2128958	98.5275	ug/l	99
91)	Bromobenzene	6.878	77	973265	99.7515	ug/l	95
92)	1,3,5-Trimethylbenzene	7.016	105	1433873	100.1834	ug/l	93
93)	Butyl methacrylate	7.040	41	819029	121.4007	ug/l	61
94)	t-Butylbenzene	7.221	119	1313414	93.9580	ug/l	91
95)	1,2,4-Trimethylbenzene	7.251	105	1497165	98.8449	ug/l	93
96)	sec-Butylbenzene	7.353	105	1656551	96.0098	ug/l	100
97)	4-Isopropyltoluene	7.431	119	1352323	97.6477	ug/l	95
98)	n-Butylbenzene	7.690	91	1596752	94.0677	ug/l	94
99)	p-Diethylbenzene	7.672	119	720377	93.6389	ug/l	94
100)	1,2,4,5-Tetramethylben	8.166	119	1254765	92.9763	ug/l	93
101)	1,2-Dibromo-3-Chloropr	8.226	157	119630	113.7599	ug/l	83
	Camphor	8.689	95	447725	1010.3089	ug/l	95
	Hexachlorobutadiene	8.840	225	310636	125.3312	ug/l	96
	1,2,4-Trichlorobenzene	8.750	180	583687	110.1958	ug/l	96
105)		9.075	180	522433	114.7541	ug/1	95
	Naphthalene	8.924	128	1173374	104.6377	ug/l	100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page: 1

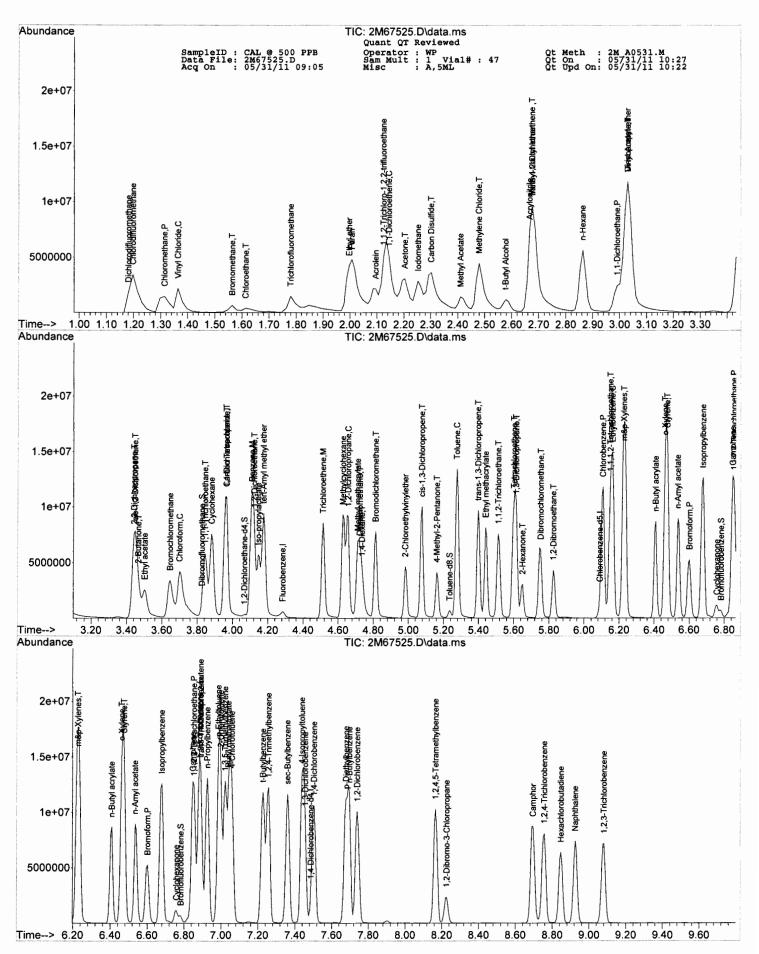

Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:27 Qt Upd On: 05/31/11 10:22 SampleID : CAL @ 250 PPB Data File: 2M67526.D Acq On : 05/31/11 09:21 Operator : WP Sam Mult : 1 Vial# : 48 Misc : A,5ML

Resp Via : Initial Calibration						
Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
Internal Standards		0.6	051500	20 00 20/	1 -0.	0.2
4) Fluorobenzene	4.284 6.084	96 117	251782 232768	30.00 ug/ 30.00 ug/		
51) Chlorobenzene-d5 69) 1,4-Dichlorobenzene-d4	7.481	152	141201	30.00 ug/		
65) 1,4-Dichiolopenzene-d4	7.401	132	111201	50100 Lg,	_	_
System Monitoring Compounds						
36) Dibromofluoromethane	3.827	111	86216	31.09 ug/		02
Spiked Amount 30.000			Recove	•	.63%	
38) 1,2-Dichloroethane-d4	4.067	67		31.70 ug/		02
Spiked Amount 30.000		0.0	Recove	ery = 105 26.85 ug/	.67% 1 -0.	02
65) Toluene-d8 Spiked Amount 30.000	5.235	98	275666 Recove		.50%	02
Spiked Amount 30.000 75) Bromofluorobenzene	6.776	174	131646	• ,		02
Spiked Amount 30.000	0.,,0				.63%	
						_
Target Compounds				214 2682	. –	ralue
5) Chlorodifluoromethane	1.209	51	1755273	314.9689	ug/l ug/l	78 87
6) Dichlorodifluoromethane	1.192	85 50	1340829 1160024	256.6370 243.5168	ug/1 ug/1	84
7) Chloromethane	1.559	94	327661m		ug/l	0.
8) Bromomethane9) Vinyl Chloride	1.375	62	897195	217.7180	ug/l	96
10) Chloroethane	1.625	64	481698			91
11) Trichlorofluoromethane	1.792	101	1228168m	177.6260 246.6967	ug/l	
12) Ethyl ether	1.998	59	840521	261.8278	ug/l	93
13) Furan	2.017	39	2235199		ug/l	97
14) 1,1,2-Trichloro-1,2,2	2.136	101	897460	388.1700		93
15) Methylene Chloride	2.480	84	1153780	325.9092 2356.8625	ug/l ug/l	88 93
16) Acrolein	2.096	56 53	889894 415498	358.6820		97
17) Acrylonitrile	2.667 2.263	142	1929007	325.0476		95
18) Iodomethane 19) Acetone	2.195	43	1676644	1255.6915		94
20) Carbon Disulfide	2.313	76	3360635	346.8961	ug/l	100
21) t-Butyl Alcohol	2.568	59	575452	1626.4743		86
22) n-Hexane	2.864	57	1168483	481.8282		74
23) Di-isopropyl-ether	3.031	45	4163595	382.0798		89
<pre>24) 1,1-Dichloroethene</pre>	2.145	61	1899878	315.2312		96 100
25) Methyl Acetate	2.411	43	980288	315.8051 321.6632		65
26) Methyl-t-butyl ether	2.677 2.992	73 63	2889701 2152746	335.6018		95
<pre>27) 1,1-Dichloroethane 28) trans-1,2-Dichloroethene</pre>	2.677		1027561	336.2609		98
29) cis-1,2-Dichloroethene	3.447		2063810	359.8184		95
30) Bromochloromethane	3.646		966514	332.5073		79
31) 2,2-Dichloropropane	3.441	77	1418267	288.5481	ug/l	95
32) Ethyl acetate	3.502		1059925	353.9360		99
33) 1,4-Dioxane	4.736		532320	16190.5350		88 97
31, 1, 1 D D D D D D D D D D D D D D D D	3.959		1424511 2042814	327.2398 335.0028		83
35) Chloroform	3.700 3.881			428.4900	ug/l	91
37) Cyclohexane 39) 1,2-Dichloroethane	4.122		1736168	286.1097	ug/l	96
40) 2-Butanone	3.460	43	461429	379.2408	ug/l	98
41) 1,1,1-Trichloroethane	3.845	97	1675321	316.3911	ug/l	95
42) Carbon Tetrachloride	3.965		1325572	315.3589	ug/l	92
43) Vinyl Acetate	3.021		4328021	343.9676	ug/l	100 93
44) Bromodichloromethane	4.814		1748638	332.2675 413.8103	ug/l ug/l	97
45) Methylcyclohexane	4.627 4.724		1274092 784230	318.1722	ug/l	94
46) Dibromomethane 47) 1,2-Dichloropropane	4.651		1148208	373.1441	ug/l	98
47) 1,2-Dichloropropane 48) Trichloroethene	4.513		1030206	330.0002	ug/l	92
49) Benzene	4.110		3615787	319.2035	ug/1	100
50) tert-Amyl methyl ether	4.176	73	2808934	314.4364	ug/l	68
52) Iso-propylacetate	4.146		2284931	286.3110	ug/l	69
53) Methyl methacrylate	4.706		1120633	268.2981	ug/l	97 100
54) Dibromochloromethane	5.747		1325375	274.0271	ug/l ug/l	83
55) 2-Chloroethylvinylether	4.982 5.073		710816 1863559	263.1981 265.9624	ug/1	92
56) cis-1,3-Dichloropropene 57) trans-1,3-Dichloropropene	5.073		1829343	264.2952	ug/l	98
58) Ethyl methacrylate	5.440		1159670	265.6234	ug/l	79
59) 1,1,2-Trichloroethane	5.512		905431	258.6921	ug/l	94
60) 1,2-Dibromoethane	5.825		1082152	262.2664	ug/l	93
61) 1,3-Dichloropropane	5.609		1614887	251.8041	ug/l	96
62) 4-Methyl-2-Pentanone	5.163		1085208	265.2352	ug/l	95
63) 2-Hexanone	5.645		773309	259.0303	ug/l ug/l	93 91
64) Tetrachloroethene	5.596			253.3315 257.1075	ug/l	95
66) Toluene 67) 1,1,1,2-Tetrachloroethane	5.277 6.144			228.5997	ug/1	71
6/) 1,1,1,2-Tectachioroechane)		000		J, =	

SampleID : CAL @ 250 PPB Data File: 2M67526.D Operator : WP Sam Mult : 1 Vial# : 48 Misc : A,5ML Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:27 Acq On : 05/31/11 09:21 Qt Upd On: 05/31/11 10:22 Misc

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
68)	Chlorobenzene	6.102	112	2478224	254.6702	ug/l	97
70)	n-Butyl acrylate	6.403	55	2283216	298.5752	ug/l	94
71)	n-Amyl acetate	6.536	43	2225001	303.6323	ug/l	93
72)	Bromoform	6.596	173	1005597	287.7131	ug/l	94
73)	Ethylbenzene	6.156	106	900329	226.3526	ug/l	98
74)	1,1,2,2-Tetrachloroethane	6.849	83	1170655	246.5885	ug/l	96
76)	Styrene	6.469	104	2357237	220.1013	ug/l	95
77)	m&p-Xylenes	6.229	106	2528684	441.6763	ug/l	98
78)	o-Xylene	6.463	106	1324898	221.2745	ug/l	85
79)	trans-1,4-Dichloro-2-b	6.885	53	419619	227.3897	ug/l	43
80)	1,3-Dichlorobenzene	7.451	146	1689654	209.1033	ug/l	94
81)	1,4-Dichlorobenzene	7.499	146	1946242	234.8605	ug/l	96
82)	1,2-Dichlorobenzene	7.739	146	1883253	240.3359	ug/l	94
83)	Isopropylbenzene	6.674	105	3921158	239.4235	ug/l	96
84)	Cyclohexanone	6.752	55	191510	936.8152	ug/l	100
85)	Camphene	6.849	93	1267041	224.1268	ug/l	93
86)	1,2,3-Trichloropropane	6.885	75	1567164	236.2146	ug/l	83
87)	2-Chlorotoluene	6.993	91	2124450	175.7782	ug/l	94
88)	p-Ethyltoluene	6.987	105	3696611	202,2774	ug/l	77
89)	4-Chlorotoluene	7.053	91	2445149	220.2126	ug/l	97
90)	n-Propylbenzene	6.921	91	5025219	242.4084	ug/l	99
91)	Bromobenzene	6.879	77	2192048	234.1751	ug/l	95
92)	1,3,5-Trimethylbenzene	7.017	105	2997645	218,3070	ug/l	86
93)	Butyl methacrylate	7.041	41	1934396	298.8610	ug/l	67
94)	t-Butylbenzene	7.228	119	2964071	221.0156	ug/l	91
95)	1,2,4-Trimethylbenzene	7.252	105	3344964	230.1855	ug/l	91
96)	sec-Butylbenzene	7.360	105	3930147	237.4224	ug/l	98
97)	4-Isopropyltoluene	7.438	119	2822499	212.4308	ug/l	95
98)	n-Butylbenzene	7.691	91	3731749	229.1490	ug/l	91
99)	p-Diethylbenzene	7.673	119	1594718	216.0640	ug/l	93
100)	1,2,4,5-Tetramethylben	8.167	119	2843162	219.5905	ug/l	96
101)	1,2-Dibromo-3-Chloropr	8.227	157	277865	275.4134	ug/l	82
102)	Camphor	8.697	95	993718	2337.2661	ug/l	96
103)	Hexachlorobutadiene	8.847	225	701859	295.1614	ug/l	97
104)		8.757	180	1323924	260.5254	ug/1	96
105)		9.082	180	1202561	275.3259	ug/l	98
106)	Naphthalene	8.925	128	2718323	252.6707	ug/l	100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed


Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:27 Qt Upd On: 05/31/11 10:22 SampleID : CAL @ 500 PPB Data File: 2M67525.D Acq On : 05/31/11 09:05 Operator : WP Sam Mult : 1 Vial# : 47 Misc : A,5ML

c help tra . initial dalization						
Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
Internal Standards 4) Fluorobenzene	4.284	96	244859	30.00 ug/	1 -0.	02
-,	6.090	117	218800		1 -0.	
	7.486		124354	30.00 ug/	1 -0.	02
System Monitoring Compounds			50445	26.26.22/		0.2
36) Dibromofluoromethane	3.826	111	72445	26.86 ug/ ery = 89	⊥ -∪. .53%	02
Spiked Amount 30.000	4.067	67	49533	28.59 ug/		02
38) 1,2-Dichloroethane-d4 Spiked Amount 30.000	4.007	0 /			.30%	~
65) Toluene-d8	5.235	98		26.78 ug/		02
Spiked Amount 30.000			Recove	ery = 89	.27%	
75) Bromofluorobenzene	6.782	174		34.00 ug/		02
Spiked Amount 30.000			Recove	ery = 113	.33%	
					0.1	alue
Target Compounds 5) Chlorodifluoromethane	1.198	51	3115580	574.8711	ug/l	79
6) Dichlorodifluoromethane	1.181		2349646		ug/l	88
7) Chloromethane	1.314		2515767		ug/l	81
8) Bromomethane	1.564		380882m	148.1302	ug/l	
Vinyl Chloride	1.364	62	2058929		ug/l	96
10) Chloroethane	1.614		431050		ug/l	95
 Trichlorofluoromethane 	1.781		2322311m		ug/l	0.5
12) Ethyl ether	1.998		1624562		ug/l ug/l	85 85
13) Furan	2.007		4511887 1506491		ug/l	93
, -,-,	2.125 2.480		1992113		ug/l	88
<pre>15) Methylene Chloride 16) Acrolein</pre>	2.096		1599124		ug/l	98
17) Acrylonitrile	2.667			646.5762	ug/l	98
18) Iodomethane	2.253		3361931	582.5197	ug/l	92
19) Acetone	2.204	43	3029157	2332.7730	ug/l	94
20) Carbon Disulfide	2.303	76	6037789		ug/l	100
21) t-Butyl Alcohol	2.578		1001487		ug/l	90
22) n-Hexane	2.863			858.2293	ug/l	74 88
23) Di-isopropyl-ether	3.031		7272492 3381208		ug/l ug/l	97
24) 1,1-Dichloroethene	2.145		1714271		ug/l	100
<pre>25) Methyl Acetate 26) Methyl-t-butyl ether</pre>	2.676		4879368		ug/l	66
27) 1,1-Dichloroethane	2.991		3766882	603.8403	ug/l	99
28) trans-1,2-Dichloroethene	2.676	96	1769517	595.4319	ug/l	97
29) cis-1,2-Dichloroethene	3.447		3595281		ug/l	96
30) Bromochloromethane	3.646		1712185		ug/l	77
31) 2,2-Dichloropropane	3.441		2404525		ug/l ug/l	94
32) Ethyl acetate	3.501 4.735		1943881m	667.4640 28855.6716		80
<pre>33) 1,4-Dioxane 34) 1,1-Dichloropropene</pre>	3.965		2286061		ug/l	97
35) Chloroform	3.700		3588128		ug/l	85
37) Cyclohexane	3.881		2736685		ug/l	89
39) 1,2-Dichloroethane	4.121		2851129		ug/l	94
40) 2-Butanone				651.9954	ug/l	99
41) 1,1,1-Trichloroethane	3.845		2952981	573.4500	ug/l ug/l	95 94
42) Carbon Tetrachloride	3.965		2152568	526.5836 620.1711	ug/l	100
43) Vinyl Acetate	3.031 4.814		7588829 3051801	596.2835	ug/l	94
44) Bromodichloromethane 45) Methylcyclohexane	4.627		2214148	739.4619	ug/l	95
46) Dibromomethane	4.723		1326204	553.2708	ug/l	92
47) 1,2-Dichloropropane	4.657		2010002	671.6779	ug/l	95
48) Trichloroethene	4.513	130	1701406	560.4110	ug/l	86
49) Benzene	4.109		6267859	568.9743	ug/l	100
50) tert-Amyl methyl ether	4.176		4780825	550.3040	ug/l	69
52) Iso-propylacetate	4.146		3950301	526.5882	ug/l ug/l	71 99
53) Methyl methacrylate	4.711		1975295 2277668	503.1089 500.9808	ug/l	99
54) Dibromochloromethane	5.753 4.982		1265818	498.6235	ug/l	78
55) 2-Chloroethylvinylether 56) cis-1,3-Dichloropropene	5.079		3298544	500.8126	ug/l	90
57) trans-1,3-Dichloropropene	5.398		3189856	490.2767	ug/l	98
58) Ethyl methacrylate	5.440		2089701	509.2042	ug/l	82
59) 1,1,2-Trichloroethane	5.512		1592773	484.1251	ug/l	91
60) 1,2-Dibromoethane	5.825		1907377	491.7755	ug/l	91
61) 1,3-Dichloropropane	5.614		2701029	448.0493	ug/1	99 96
62) 4-Methyl-2-Pentanone	5.163		1963240 1369348	510.4669 487.9634	ug/l ug/l	93
63) 2-Hexanone	5.650		1209057	404.4020	ug/1	98
64) Tetrachloroethene 66) Toluene	5.277		3765144	449.8912	ug/l	95
67) 1,1,1,2-Tetrachloroethane	6.150		1333841	384.1545	ug/l	64
U	_					
_						

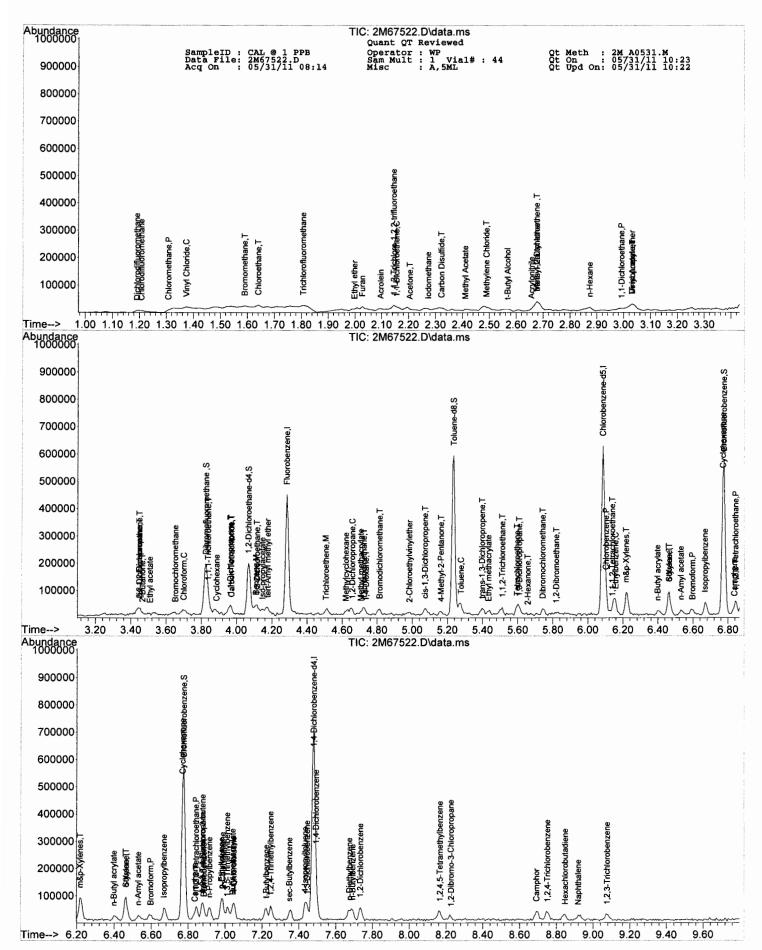
SampleID : CAL @ 500 PPB Data File: 2M67525.D Acq On : 05/31/11 09:05 Operator : WP Sam Mult : 1 Vial# : 47 Misc : A,5ML Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:27 Qt Upd On: 05/31/11 10:22 Misc

	Compound	R.T.	QIon	Response	Conc Units	Dev (M	n)
68)	Chlorobenzene	6.108	112	4084370	446.5177	ug/1	97
70)	n-Butyl acrylate	6.409	55	4049665	601.3175	ug/l	94
	n-Amyl acetate	6.535	43	4031964	624.7589	ug/l	93
	Bromoform	6.602	173	1793048	582.5130	ug/l	96
73)	Ethylbenzene	6.162	106	1313126	374.8597	ug/l	92
	1,1,2,2-Tetrachloroethane	6.854	83	1923496	460.0586	ug/l	90
76)		6.475	104	3436420	364.3373	ug/l	100
77)	m&p-Xylenes	6.228	106	3712946	736.3871	ug/l	92
78)	o-Xylene	6.463	106	1942192	368.3147	ug/l	91
79)	trans-1,4-Dichloro-2-b	6.890	53	660379	406.3375	ug/l	34
80)	1,3-Dichlorobenzene	7.456	146	2534383	356.1339	ug/l	95
81)	1,4-Dichlorobenzene	7.504	146	3194130	437.6669	ug/l	94
82)	1,2-Dichlorobenzene	7.739	146	3109417	450.5749	ug/l	94
83)	Isopropylbenzene	6.680	105	6323416	438.4118	ug/l	96
84)	Cyclohexanone	6.758	55	336474	1868.9254	ug/l	97
85)	Camphene	6.848	93	2013388	404.3977	ug/l	93
86)	1,2,3-Trichloropropane	6.890	75	2447758	418.9274	ug/l	82
87)	2-Chlorotoluene	6.999	91	2846093	267.3903	ug/l	91
88)	p-Ethyltoluene	6.987	105	5055415	314.1076	ug/l	78
89)	4-Chlorotoluene	7.059	91	3832654	391.9354	ug/l	97
90)	n-Propylbenzene	6.927	91	8311068	455.2265	ug/l	97
91)	Bromobenzene	6.884	77	3450536	418.5575	ug/l	93
92)	1,3,5-Trimethylbenzene	7.023	105	4886378	404.0661	ug/l	95
93)	Butyl methacrylate	7.041	41	3151184	552.8098	ug/l	71
94)	t-Butylbenzene	7.228	119	4731473	400.5979	ug/l	91
95)	1,2,4-Trimethylbenzene	7.258	105	5287360	413.1459	ug/l	92
96)	sec-Butylbenzene	7.360	105	6321475	433.6200	ug/l	98
97)	4-Isopropyltoluene	7.438	119	4123885	352.4263	ug/l	97
98)	n-Butylbenzene	7.697	91	5842062	407.3330	ug/l	92
99)	p-Diethylbenzene	7.679	119	2483599	382.0832	ug/l	94
100)	1,2,4,5-Tetramethylben	8.167	119	4462803	391.3791	ug/l	95
101)	1,2-Dibromo-3-Chloropr	8.227	157	502449	565.4852	ug/l	80
102)	Camphor	8.696	95	1691172	4516.5913	ug/l	96
103)	Hexachlorobutadiene	8.847	225	1134629	541.8032	ug/l	95
104)	1,2,4-Trichlorobenzene	8.757	180	2143353	478.9154	ug/l	97
105)	1,2,3-Trichlorobenzene	9.082	180	1926913	500.9334	ug/l	98
106)	Naphthalene	8.925	128	4576860	483.0583	ug/1	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0531.M Mon Jun 13 07:33:58 2011 SYSTEM1

Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:23 Qt Upd On: 05/31/11 10:22 SampleID : CAL @ 1 PPB
Data File: 2M67522.D
Acq On : 05/31/11 08:14 Operator : WP Sam Mult : 1 Vial# : 44 Misc : A,5ML


Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
Internal Standards						
4) Fluorobenzene	4.284	96	218718	30.00 ug/	1 -0.	02
51) Chlorobenzene-d5	6.084	117	196540	30.00 ug/		
69) 1,4-Dichlorobenzene-d4	7.481	152	126481	30.00 ug/	1 -0.	02
Control Manitonian Compounds						
System Monitoring Compounds 36) Dibromofluoromethane	3.827	111	78738	32.68 ug/	1 -0.	02
Spiked Amount 30.000			Recove		3.93%	
38) 1,2-Dichloroethane-d4	4.068	67	49833	32.21 ug/	1 -0.	02
Spiked Amount 30.000			Recove		.37%	
65) Toluene-d8	5.235	98	244000	28.15 ug/		02
Spiked Amount 30.000		254	Recove	- 4	8.83%	0.2
75) Bromofluorobenzene Spiked Amount 30.000	6.776	174	103850 Recove	28.70 ug/ rv = 95	′1 -0.: 5.67%	02
Spiked Amount 30.000			Recove	Ly - 33	.070	
Target Compounds						alue
Chlorodifluoromethane	1.208	51	6672	1.3782	ug/l	56
Dichlorodifluoromethane	1.191	85	6201	1.3663	ug/l	83
7) Chloromethane	1.308	50	7274	1.7578	ug/l	68 93
8) Bromomethane	1.591		4526 4531	1.9706 1.2657	ug/l ug/l	40
 9) Vinyl Chloride 10) Chloroethane 	1.375		4662	1.9790	ug/l	77
11) Trichlorofluoromethane	1.808		6608	1.5280	ug/l	70
12) Ethyl ether	1.998		3447	1.2361	ug/l	73
13) Furan	2.027		9137	1.3185	ug/l	93
14) 1,1,2-Trichloro-1,2,2	2.146	101	3387	1.6864	ug/l	75
15) Methylene Chloride	2.490		4571	1.4864	ug/l	74
16) Acrolein	2.096		3327	10.1435	ug/l	69
17) Acrylonitrile	2.657		1095	1.0882	ug/l #	7 86
18) Iodomethane	2.273		6375 10619	1.2366 9.1552	ug/l ug/l	93
<pre>19) Acetone 20) Carbon Disulfide</pre>	2.205		13285	1.5786	ug/l	100
21) t-Butyl Alcohol	2.569		3056	9.9433	ug/l	84
22) n-Hexane	2.874		2801	1.3296	ug/l	78
23) Di-isopropyl-ether	3.031		12805	1.3527	ug/l	93
24) 1,1-Dichloroethene	2.155		6149	1.1745	ug/l	44
25) Methyl Acetate	2.411		4078	1.5124	ug/l	100
26) Methyl-t-butyl ether	2.677		12480	1.5992	ug/l	67 92
27) 1,1-Dichloroethane	2.992		8072 3013	1.4486 1.1350	ug/l ug/l #	
28) trans-1,2-Dichloroethene 29) cis-1,2-Dichloroethene	2.677		7044	1.4138	ug/l "	95
30) Bromochloromethane	3.652		3025	1.1980	ug/l	66
31) 2,2-Dichloropropane	3.448		5004	1.1720	ug/l	78
32) Ethyl acetate	3.508	43	3281m	1.2612	ug/l	
33) 1,4-Dioxane	4.736		2696	94.3949	ug/l	66
34) 1,1-Dichloropropene	3.965		5693	1.5055	ug/l	77 79
35) Chloroform	3.700		7807 5082	1.4738 1.6082	ug/l ug/l	86
37) Cyclohexane 39) 1,2-Dichloroethane	3.887 4.116		8765	1.6628	ug/l	75
<pre>39) 1,2-Dichloroethane 40) 2-Butanone</pre>	3.466		1611	1.5242	ug/l	78
41) 1,1,1-Trichloroethane	3.839		5995	1.3033	ug/l	88
42) Carbon Tetrachloride	3.971		5434m	1.4882	ug/l	
43) Vinyl Acetate	3.031		15805	1.4460	ug/l	100
44) Bromodichloromethane	4.814		8803	1.9256	ug/l	95
45) Methylcyclohexane	4.621		4502	1.6832 1.8948	ug/l ug/l	85 95
46) Dibromomethane	4.724		4057 3084	1.1537	ug/l	94
47) 1,2-Dichloropropane 48) Trichloroethene	4.507		4323	1.5941	ug/l	85
49) Benzene	4.110		12995	1.3206	ug/l	100
50) tert-Amyl methyl ether	4.176		10977	1.4145	ug/l	84
52) Iso-propylacetate	4.146	43	8244	1.2234	ug/l	90
53) Methyl methacrylate	4.706		3623	1.0273	ug/l	94
54) Dibromochloromethane	5.741		7592	1.8590	ug/l	84
55) 2-Chloroethylvinylether	4.983		1993	0.8740	ug/l #	58 91
56) cis-1,3-Dichloropropene	5.073		6730 7385	1.1375 1.2636	ug/l ug/l	99
57) trans-1,3-Dichloropropene 58) Ethyl methacrylate	5.398 5.434		5335	1.4472	ug/l	87
59) 1,1,2-Trichloroethane	5.512		5693	1.9264	ug/1 #	
60) 1,2-Dibromoethane	5.819		4464	1.2813	ug/l	83
61) 1,3-Dichloropropane	5.609		8765	1.6186	ug/l	84
62) 4-Methyl-2-Pentanone	5.163		6089	1.7625	ug/l	89
63) 2-Hexanone	5.657		3724	1.4773	ug/l	68
64) Tetrachloroethene	5.597		3215	1.1971	ug/l	79 84
<pre>66) Toluene 67) 1,1,1,2-Tetrachloroethane</pre>	5.278 6.138		8101 6410	1.0776 2.0552	ug/l ug/l	94
67) 1,1,1,2-Tetrachioroethane	0.130	133	2410	2.0002	-3/-	

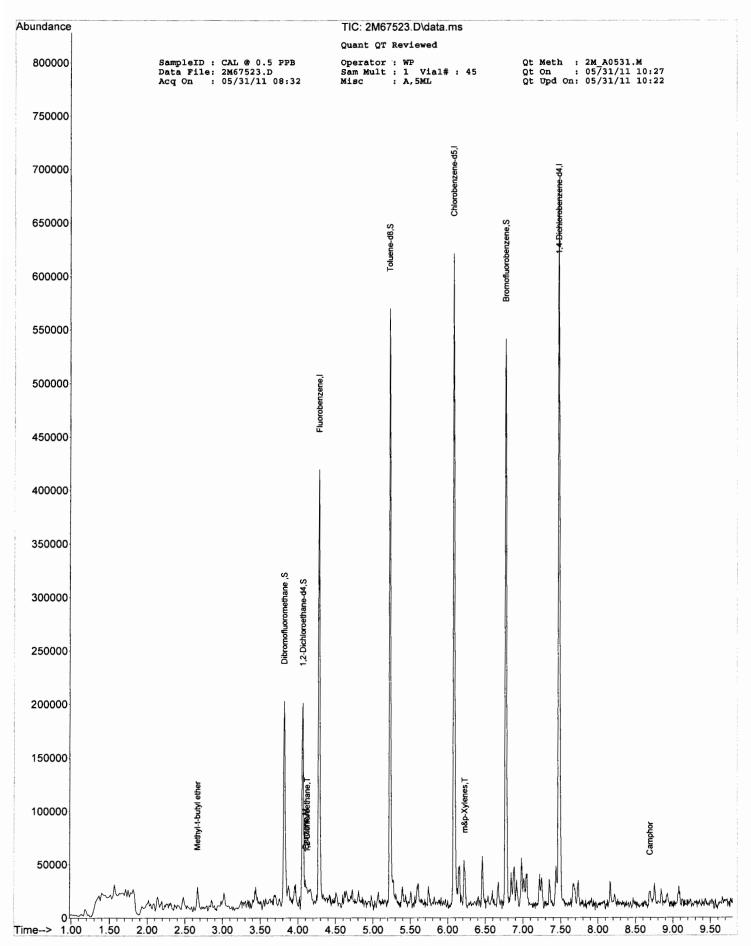
Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	.)
68)	Chlorobenzene	6.102	112	13182	1.6043	ug/1	95
70)	n-Butyl acrylate	6.397	55	7893	1.1523	ug/l	84
71)		6.530	43	7907	1.2046	ug/l	83
72)	Bromoform	6.596	173	7345	2.3461	ug/l	60
	Ethylbenzene	6.156	106	4964	1.3932	ug/l	78
	1,1,2,2-Tetrachloroethane	6.843	83	7435	1.7484	ug/l	74
76)	Styrene	6.463	104	11831	1.2333	ug/l	80
77)	m&p-Xylenes	6.217	106	13330	2.5993	ug/l	62
78)	o-Xylene	6.463	106	7263	1.3542	ug/l	52
79)	trans-1,4-Dichloro-2-b	6.879	53	3276	1.9819	ug/l	77
80)	1,3-Dichlorobenzene	7.445	146	9667	1.3356	ug/l	85
81)	1,4-Dichlorobenzene	7.493	146	11898	1.6029	ug/l	90
82)	1,2-Dichlorobenzene	7.734	146	11903	1.6958	ug/l	92
83)	Isopropylbenzene	6.668	105	17366	1.1838	ug/l	90
84)	Cyclohexanone	6.770	55	1860m	10.1575	ug/l	
85)	Camphene	6.837	93	5152	1.0174	ug/l	92
86)	1,2,3-Trichloropropane	6.879	75	7969	1.3409	ug/l	99
87)	2-Chlorotoluene	6.987	91	15166	1.4009	ug/l	96
88)	p-Ethyltoluene	6.981	105	18366	1.1219	ug/l	98
89)	4-Chlorotoluene	7.047	91	14938	1.5019	ug/l	97
90)	n-Propylbenzene	6.915	91	24609	1.3253	ug/l	100
91)	Bromobenzene	6.885	77	15356	1.8314	ug/l	87
92)	1,3,5-Trimethylbenzene	7.011	105	16427	1.3355	ug/l	99
93)	Butyl methacrylate	7.041	41	6690	1.1539	ug/l	60
94)	t-Butylbenzene	7.222	119	14777	1.2301	ug/l	97
95)	1,2,4-Trimethylbenzene	7.246	105	18681	1.4352	ug/l	90
96)	sec-Butylbenzene	7.348	105	18113	1.2216	ug/l	96
97)	4-Isopropyltoluene	7.433	119	14193	1.1925	ug/l	94
98)	n-Butylbenzene	7.691	91	19339	1.3257	ug/l	74
99)	p-Diethylbenzene	7.673	119	7709	1.1660	ug/l #	74
100)	1,2,4,5-Tetramethylben	8.167	119	13420	1.1571	ug/l	85
101)	1,2-Dibromo-3-Chloropr	8.227	157	1127	1.2471	ug/l	41
102)	Camphor	8.691	95	4957	13.0160	ug/l	88
103)	Hexachlorobutadiene	8.847	225	3203	1.5038	ug/l	99
104)		8.751	180	8439	1.8539	ug/l	89
105)	1,2,3-Trichlorobenzene	9.076	180	6243	1.5957	ug/l	98
106)	Naphthalene	8.919	128	11780	1.2224	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

SampleID : CAL @ 0.5 PPB Data File: 2M67523.D Acq On : 05/31/11 08:32 Qt Meth : 2M_A0531.M Qt On : 05/31/11 10:27 Qt Upd On: 05/31/11 10:22 Operator : WP Sam Mult : 1 Vial# : 45 Misc : A,5ML


ic west	, via . iniciai calibracion						
	Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
	ernal Standards						
4)	Fluorobenzene	4.284	96	215581	30.00 ug/	1 -0	.02
51)	Chlorobenzene-d5	6.084 7.481	117	199175 124258	30.00 ug/	1 -0	.02
69)	1,4-Dichlorobenzene-d4	7.481	152	124258	30.00 ug/	1 -0	.02
C	Maritari Carranda						
	em Monitoring Compounds Dibromofluoromethane	3.821	111	74739	31.48 ug/	1 -0	0.3
	oiked Amount 30.000	3.021	111		ry = 104		.03
	1,2-Dichloroethane-d4	4.067	67		32.64 ug/		.02
Sp	oiked Amount 30.000				ry = 108		
	Toluene-d8	5.229	98	221423			.02
	oiked Amount 30.000	6 776	174		ry = 84		00
	Bromofluorobenzene oiked Amount 30.000	6.776	174		29.98 ug/ ry = 99		.02
D _F	Thed Amount 50.000			Recove			
Targ	get Compounds					Ç	value
	Chlorodifluoromethane	0.000		0	N.D. d		
	Dichlorodifluoromethane	0.000		0	N.D. d		
	Chloromethane Bromomethane	0.000		0 0	N.D. d N.D. d		
9)	Vinyl Chloride	0.000		0	N.D. d		
10)	Chloroethane	0.000		ő	N.D. d		
	Trichlorofluoromethane	0.000		0	N.D. d		
12)	Ethyl ether	0.000		0	N.D. d		
13)	Furan	0.000		0	N.D. d		
14)	1,1,2-Trichloro-1,2,2			0	N.D. d		
15)	Methylene Chloride	0.000		0	N.D. d		
	Acrolein Acrylonitrile	0.000		0	N.D. d N.D. d		
	Iodomethane	0.000		0	N.D. d		
	Acetone	0.000		Ö	N.D. d		
20)	Carbon Disulfide	0.000		0	N.D. d		
21)	t-Butyl Alcohol	0.000		0	N.D. d		
,		0.000		0	N.D. d		
23)	Di-isopropyl-ether	0.000		0	N.D. d		
24)	1,1-Dichloroethene Methyl Acetate	0.000		0	N.D. d N.D. d		
	Methyl-t-butyl ether	0.000 2.667	73	-	0.8673	ug/l	62
	1,1-Dichloroethane	0.000	,,,	0	N.D. d	-5/-	
28)	trans-1,2-Dichloroethene	0.000		0	N.D. d		
	cis-1,2-Dichloroethene	0.000		0	N.D. d		
	Bromochloromethane	0.000		0	N.D. d		
	2,2-Dichloropropane	0.000		0	N.D. d N.D. d		
221	1 4 Diovano	0 000		0	N.D. d		
34)	1,1-Dichloropropene Chloroform	0.000		ő	N.D. d		
35)	Chloroform	0.000		0	N.D. d		
37)	Cyclohexane	0.000		0	N.D. d		
39)	1,2-Dichloroethane	4.122		4215	0.8112	ug/l	85
40)	2-Butanone	0.000		0	N.D. d		
	1,1,1-Trichloroethane	0.000		0	N.D. d N.D. d		
	Carbon Tetrachloride Vinyl Acetate	0.000		0	N.D. d		
	Bromodichloromethane	0.000		Ö	N.D. d		
	Methylcyclohexane	0.000		0	N.D. d		
46)	Dibromomethane	0.000		0	N.D. d		
	1,2-Dichloropropane	0.000		0	N.D. d		
	Trichloroethene	0.000	70	0	N.D. d	/ 1	100
	Benzene tert-Amyl methyl ether	4.104	78	8217 0	0.8472 N.D. d	ug/l	100
	Iso-propylacetate	0.000		0	N.D. d		
	Methyl methacrylate	0.000		Ö	N.D. d		
	Dibromochloromethane	0.000		0	N.D. d		
	2-Chloroethylvinylether	0.000		0	N.D. d		
	cis-1,3-Dichloropropene	0.000		0	N.D. d		
	trans-1,3-Dichloropropene	0.000		0	N.D. d		
	Ethyl methacrylate 1,1,2-Trichloroethane	0.000		0	N.D. d N.D. d		
	1,2-Dibromoethane	0.000		0	N.D. d		
	1,3-Dichloropropane	0.000		ő	N.D. d		
	4-Methyl-2-Pentanone	0.000		0	N.D. d		
63)	2-Hexanone	0.000		0	N.D. d		
	Tetrachloroethene	0.000		0	N.D. d		
	Toluene	0.000		0	N.D. d		
67)	1,1,1,2-Tetrachloroethane	0.000		U	N.D. d		
		\					

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound			-	Conc Units	Dev(Min	1)
68)	Chlorobenzene n-Butyl acrylate n-Amyl acetate Bromoform Ethylbenzene	0.000		0	N.D. d		-
70)	n-Butyl acrylate	0.000		0	N.D. d		
71)	n-Amyl acetate	0.000		0	N.D. d		
72)	Bromoform	0.000		0	N.D. d		
73)	Ethylbenzene	0.000		0	N.D. d		
74)					N.D. d		
76)	Styrene m&p-Xylenes o-Xylene	0.000		0	N.D. d		
77)	m&p-Xylenes	6.223	106	6186	1.2278	ug/l	97
78)	o-Xylene	0.000		0	N.D. d		
79)	trans-1,4-Dichloro-2-b	0.000		0	N.D. d		
80)	1,3-Dichlorobenzene	0.000		0	N.D. d		
81)	1.4-Dichlorobenzene	0.000		0			
82)	1,2-Dichlorobenzene	0.000		0	N.D. d		
83)	Isopropylbenzene	0.000		0	N.D. d		
84)	1,2-Dichlorobenzene Isopropylbenzene Cyclohexanone Camphene	0.000		0	N.D. d		
85)	Camphene	0.000		0	N.D. d		
86)	1,2,3-Trichloropropane 2-Chlorotoluene p-Ethyltoluene 4-Chlorotoluene n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenzene	0.000		0	N.D. d		
87)	2-Chlorotoluene	0.000		0	N.D. d		
88)	p-Ethyltoluene	0.000		0	N.D. d		
89)	4-Chlorotoluene	0.000		0	N.D. d		
90)	n-Propylbenzene	0.000		0	N.D. d		
91)	Bromobenzene	0.000		0	N.D. d		
92)	1,3,5-Trimethylbenzene	0.000		0	N.D. d		
93)	Butyl methacrylate t-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene	0.000		0	N.D. d		
94)	t-Butylbenzene	0.000		0	N.D. d		
95)	1,2,4-Trimethylbenzene	0.000		0	N.D. d		
96)	sec-Butylbenzene	0.000		0	N.D. d		
97)	4-Isopropyltoluene	0.000		0	N.D. d		
98)	n-Butylbenzene	0.000		0			
	p-Diethylbenzene			0	N.D. d		
100)	1.2.4.5-Tetramethylben	0.000		0	N.D. d		
101)	1,2-Dibromo-3-Chloropr	0.000		Ö	N.D. d		
102)	Camphor	8.691	95	2023		ug/l #	43
103)	Camphor Hexachlorobutadiene	0.000	-	0	N.D. d	3, - "	
104)	1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Naphthalene	0.000		Ö	N.D. d		
105)	1,2,3-Trichlorobenzene	0.000		0			
106)	Naphthalene	0.000		0	N.D. d		

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

2M_A0531.M Mon Jun 13 07:34:05 2011 SYSTEM1

Form7
Continuing Calibration

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 6/1/2011 8:00:00 A Data File: 3M93517.D Method: EPA 8260B Instrument: GCMS 3

TxtCompd:	Col#	Multi	Туре	RT	Conc	Conc	Lo Hi	Initial	RF	%Diff Flag
rxtoompa.	CUIII	Num	туре	- Ki	COILC	Exp	Lim Lim	RF	NF.	76DIII Flag
Fluorobenzene	1	0	1	4.57	30.00	30			0.000	0.00
Chlorodifluoromethane	i	ŏ	'	1.28	21.14	30		0.466	0.000	0.00
Dichlorodifluoromethane	1	Õ		1.28	17.10	20		0.329	0.299	14.48
Chloromethane	1	0	CP	1.41	14.51	20	0.1	0.310	0.225	27.44
Bromomethane	1	0		1.73	18.99	20		0.155	0.127	5.07
/invl Chloride	1	0	CC	1.48	22.74	20	20	0.196	0.223	13.69
Chloroethane	1	0		1.80	23.35	20		0.113	0.107	16.77
Trichlorofluoromethane	1	0		1.98	19.45	20		0.265	0.258	2.74
Ethyl ether Furan	1	0		2.21	24.02 31.86	20 20		0.127 0.331	0.138 0.527	20.08 59.32
- uran I.1.2-Trichloro-1.2.2-trifluoroeth	•	0		2.23	21.30	20		0.331	0.527	6.52
Methylene Chloride	1	ő		2.75	19.87	20		0.253	0.150	0.64
Acrolein	i	ŏ		2.32	80.57	100		0.050	0.040	19.43
Acrylonitrile	1	Ö		2.96	18.43	20		0.117	0.108	7,86
odomethane	1	0		2.50	29.96	20		0.199	0.362	49.80
Acetone	1	0		2.43	92.15	100		0.091	0.084	7.85
Carbon Disulfide	1	0		2.55	30.16	20		0.406	0.662	50.79
-Butvl Alcohol	1	0		2.84	51.19	100		0.012	0.008	48.81
-Hexane	_1_	0		3.16	16.47	20		0.181	0.176	17.64
Di-isopropyl-ether	1	0	00	3.34	18.09	20	20	0.866	0.790	9.57
i.1-Dichloroethene Methyl Acetate	1 1	0	CC	2.38 2.68	20.14 15.05	20 20	20	0.384 0.331	0.386 0.249	0.68 24.73
Methyl-t-butyl ether	1	0		2.96	12.82	20		0.337	0.249	35.92
.1-Dichloroethane	i	ŏ	CP	3.31	21.00	20	0.1	0.449	0.471	4.99
rans-1.2-Dichloroethene	1	0		2.96	20.66	20		0.203	0.210	3.31
cis-1.2-Dichloroethene	1	Ö		3.78	20.92	20		0.391	0.409	4.62
Bromochloromethane	1	Ö		3.96	20.73	20		0.285	0.295	3.63
2.2-Dichloropropane	1	0		3.78	21.97	20		0.203	0.223	9.84
Ethyl acetate	1	0		3.83	15.89			0.336		
.4-Dioxane	1	0		5.02	631.11	1000		0.003	0.003	36.89
.1-Dichloropropene	1	0		4.26	23.22	20		0.322	0.356	16.12
Chloroform	1	0	CC	4.02	21.10	20	20	0.466	0.492	5.52
Dibromofluoromethane	1	0	S	4.13	29.76	30 20		0.307 0.324	0.304 0.296	0.81 13.81
Cyclohexane I.2-Dichloroethane-d4	<u> </u>	0	s	4.18 4.36	17.24 30.21	30		0.324	0.185	0.70
.2-Dichloroethane	1	0	3	4.41	17.93	20		0.452	0.463	10.36
2-Butanone	i	ő		3.79	18.80	20		0.134	0.128	6.02
1.1.1-Trichloroethane	i	ŏ		4.15	20.75	20		0.329	0.341	3.76
Carbon Tetrachloride	i	Ö		4.26	22.64	20		0.299	0.338	13.18
/invl Acetate	1	0		3.34	30.24	20		0.586	0.862	51.18
Bromodichloromethane	1	0		5.10	21.58	20		0.394	0.425	7.92
Methylcyclohexane	1	0		4.91	17.84	20		0.224	0.221	10.82
Dibromomethane	1	0		5.01	20.27	20		0.289	0.293	1.35
2-Dichloropropane	1	0	CC	4.94	20.36	20	20	0.307	0.313	1.77
richloroethene	1	0		4.79	20.74	20		0.271	0.281	3.69
Senzene	1	0		4.39	20.60	20		0.974	1.003	3.01
ert-Amvl methyl ether Chlorobenzene-d5	1	0	- 1	4.45 6.40	16.78 30.00	20 30		0.284	0.239 0.000	16.08 0.00
so-propylacetate	1	0	'	4.42	9.29	30		0.767	0.000	0.00
Methyl methacrylate	1	0		4.98	13.30			0.488		
Dibromochloromethane	i	ŏ		6.05	20.31	20		0.465	0.473	1.55
-Chloroethylyinylether	1	Ö		5.27	11.57	20		0.272	0.181	42.13
is-1,3-Dichloropropene	1	0		5.37	15.70	20		0.528	0.472	21.50
ans-1,3-Dichloropropene	_1	0		5.69	15.15	20		0.451	0.419	24.24
thyl methacrylate	1	0		5.73	13.41			0.503		
.1.2-Trichloroethane	1	0		5.81	20.31	20		0.342	0.347	1.55
.2-Dibromoethane	1	0		6.14	18.78	20		0.389	0.387	6.09
.3-Dichloropropane	1	0		5.91	20.03	20		0.599	0.600	0.15
-Methyl-2-Pentanone	1	0		5.45 5.94	9.93 9.73	20 20		0.591 0.396	0.329 0.232	50.35 51.37
-Hexanone etrachloroethene	1	0		5.94 5.90	9.73 19.52	20		0.396	0.232	2.40
oluene-d8	1	0	s	5.90 5.53	28.61	30		1.325	1.263	4.65
oluene	1	0	cc	5.53 5.57	20.99	20	20	0.791	0.830	4.97
.1.1.2-Tetrachloroethane	1	0	00	6.46	22.34	20	20	0.731	0.363	11.68
Chlorobenzene	1	0	CP	6.42	21.29	20	0.3	0.900	0.958	6.44
.4-Dichlorobenzene-d4	1	ŏ	Ĭ	7.82	30.00	30			0.000	0.00
-Butvl acrylate	1	ō		6.71	10.53			1.009		
-Amvl acetate	1	0		6.84	11.32			0.947		
Bromoform		0	CP	6.92	17.49	20	0.1	0.707	0.663	12.57

CC - Continuing Calibration Check Compound N/O or N/O - Not applicable for this run

Page 1 of 2

Note:

8260/8270 limits are compared against the %DIFF/R.F. 624 limits are compared against the concentration found.

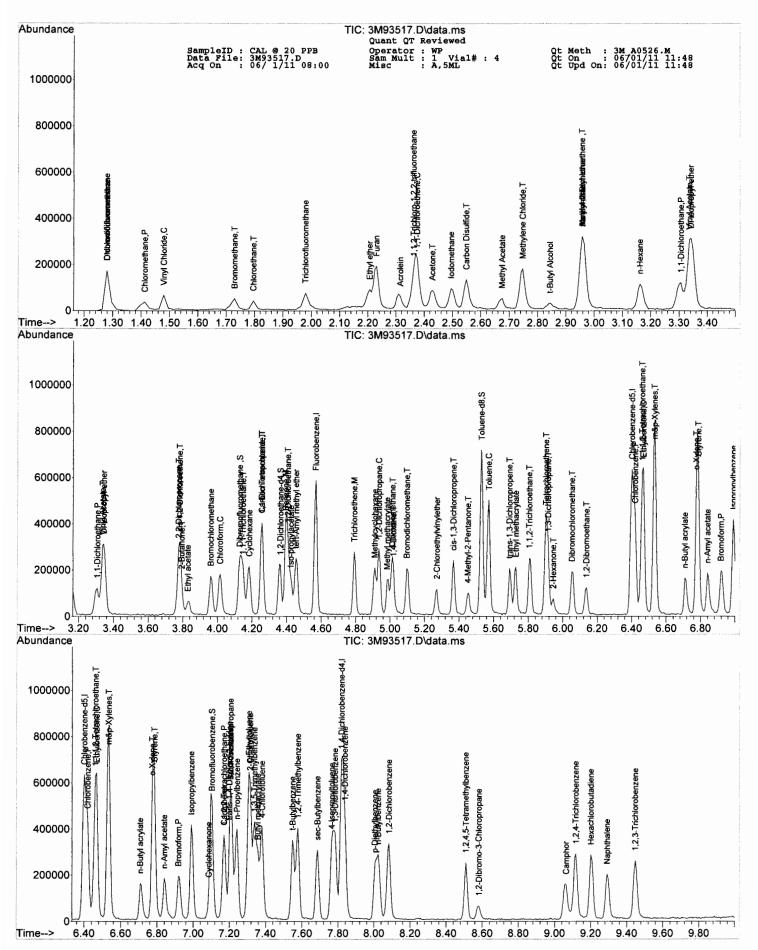
CP - System Performance Check Compound I - Internal Standard
* - Failed the C or P Criteria ** - No limit specified in method

Form7
Continuing Calibration

Calibration Name: CAL @ 20 PPB Cont Calibration Date/Time 6/1/2011 8:00:00 A Data File: 3M93517.D Method: EPA 8260B Instrument: GCMS 3

				• • •						
TxtCompd:	Col#	Multi Num	Туре	RT	Conc	Conc Exp	Lo Hi Lim Lim	Initial RF	RF	%Diff Flag
The the second		_			10.01					
Ethylbenzene	1	0	CC	6.47	19.24	20	20	0.468	0.537	3.80
1.1.2.2-Tetrachloroethane	1	0	CP	7.17	19.16	20	0.3	0.716	0.686	4.18
Bromofluorobenzene	1	0	S	7.10	27.03	30		1.086	0.979	9.90
Styrene	1	0		6.79	18.12	20		1.205	1.377	9.38
m&p-Xylenes		0		6.53	42.64	40		0.714	0.761	6.61
o-Xvlene	1	0		6.77	21.98	20		0.714	0.784	9.88
trans-1,4-Dichloro-2-butene	1	0		7.20	18.83	20		0.332	0.315	5.84
1.3-Dichlorobenzene	1	0		7.78	20.53	20		1.163	1.194	2.66
1.4-Dichlorobenzene	1	0		7.84	21.09	20		1.237	1.305	5.45
1,2-Dichlorobenzene	1	0		8.08	17.86	20		1.145_	1.246	10.70
Isopropvibenzene	1	0		6.99	21.32	20		1.580	1.840	6.61
Cvclohexanone	1	0		7.09	56.09			0.022		
Camphene	1	0		7.17	16.58	20		0.368	0.337	17.11
1.2.3-Trichloropropane	1	0		7.21	19.60	20		0.726	0.712	2.01
2-Chlorotoluene	1	0		7.31	23.74	20		1.075	1.276	18.70
o-Ethvltoluene	1	0		7.31	20.27			1.796		
4-Chlorotoluene	1	0		7.38	23.34	20		1.109	1.247	16.72
n-Propylbenzene	1	0		7.24	20.20	20		1.997	2.145	0.98
Bromobenzene	1	0		7.21	21.87	20		1.204	1.263	9.36
1,3,5-Trimethylbenzene	1	0		7.34	19.73	20		1.329	1.579	1.37
Butvl methacrylate	1	0		7.36	18.00			0.715		
-Butvibenzene	1	0		7.55	21.23	20		1.197	1.351	6.14
1.2.4-Trimethylbenzene	1	Ö		7.58	22.05	20		1.463	1.623	10.27
sec-Butvibenzene	1	ō		7.69	19.24	20		1.446	1.509	3.81
4-Isopropyltoluene	i	Ö		7.77	21.08	20		1.130	1.228	5.38
n-Butvlbenzene	1	Ö		8.02	19.75	20		1.209	1.335	1.26
p-Diethylbenzene	1	Ö		8.01	18.00			0.586		1.20
1.2.4.5-Tetramethylbenzene	1	Ö		8.51	16.49			0.968		
1.2-Dibromo-3-Chloropropane	1	ŏ		8.58	13.39	20		0.186	0.156	33.06
Camphor	1	0		9.06	124.92	200		0.043	0.036	37.54
Hexachlorobutadiene	1	0		9.20	21.72	20		0.604	0.675	8.62
1,2,4-Trichlorobenzene	1	0		9.12	15.90	20		0.970	1.010	20.50
1.2.3-Trichlorobenzene	1	0		9.45	17.47	20		0.939	0.955	12.65
Naphthalene	4	0		9.45	16.92	20		1.399	1.443	15.40
	1	100		0.00	0.00	20		1.333	0.000	100.00
Freon 113	1									
1,2-Dioxane	_1_	100		0.00	0.00	2000			0.000	<u>100</u> .00

524.2 limits are compared against the %DIFF


Qt Meth : 3M_A0526.M Qt On : 06/01/11 11:48 Qt Upd On: 06/01/11 11:48 Operator : WP Sam Mult : 1 Vial# : 4 Misc : A,5ML SampleID : CAL @ 20 PPB Data File: 3M93517.D Acq On : 06/ 1/11 08:00

. повр	Compound	υп	OTon	Response	Conc Units	Dev(M	in)
	Compound						
	nal Standards	4 560	0.0	207172	30 00 1197/	1 0	0.00
	Fluorobenzene Chlorobenzene-d5	4.568					0.00
		7.819			30.00 ug/	1 -0	0.01
057	1,1 21011212201120110 41	,,,,,			•		
Syste	m Monitoring Compounds						
	Dibromofluoromethane	4.130	111	90377	29.76 ug/	1 ().20%	0.00
	ked Amount 30.000 1,2-Dichloroethane-d4	4.364	67	54958	ry = 99 30.21 ug/		0.00
	ked Amount 30.000	4.304	0,			.70%	
-	Toluene-d8	5.530	98		28.61 ug/	1 0	0.00
	ked Amount 30.000				•	.37%	
	Bromofluorobenzene	7.104	174		27.03 ug/		0.00
Spi	ked Amount 30.000			Recove	ry = 90	1.10%	
Targe	et Compounds					(value
	Chlorodifluoromethane	1.280	51	97554	21.1368	ug/l	99
	Dichlorodifluoromethane	1.280	85	59310	17.1039	ug/l	88
7)	Chloromethane	1.413		44548	14.5111	ug/l	74
	Bromomethane	1.730		25092	18.9866	ug/l ug/l	90 91
	Vinyl Chloride	1.480		44255 21204	22.7376 23.3541	ug/1	
	Chloroethane Trichlorofluoromethane	1.797		51141	19.4517	ug/l	
	Ethyl ether	2.207		27299		ug/l	
	Furan	2.231		104409		ug/l	91
14)	1,1,2-Trichloro-1,2,2	2.363		37637	21.3035	ug/l	95
	Methylene Chloride	2.748		49881	19.8720	ug/l	98 82
	Acrolein	2.315		40091 21398	80.5693 18.4272	ug/lug/l	75
	Acrylonitrile Iodomethane	2.495		71691	29.9602	ug/l	
		2.429		83143	92.1532	ug/l	90
		2.549		131130		ug/l	
21)	t-Butyl Alcohol	2.844		7678	51.1860	ug/l	
	n-Hexane	3.162		34808	16.4726	ug/1	
	Di-isopropyl-ether	3.343		156570 76499	18.0859 20.1367	ug/l ug/l	
	1,1-Dichloroethene Methyl Acetate	2.375		49321	15.0546	ug/l	
	Methyl-t-butyl ether	2.958		48398		ug/l	
	1,1-Dichloroethane	3.307		93362	20.9976	ug/l	
28)	trans-1,2-Dichloroethene	2.958		41565		ug/l	
	cis-1,2-Dichloroethene	3.781		81093		ug/l	
	Bromochloromethane	3.962		58538 44274		ug/l ug/l	
-	2,2-Dichloropropane Ethyl acetate	3.775		53880		ug/l	
		5.019		30766		ug/l	
34)	1,1-Dichloropropene	4.256	75	70514		ug/l	
35)	Chloroform	4.016		97396 58565	21.1045	ug/l	
	-1	4.184				ug/l ug/l	92 83
	1,2-Dichloroethane	4.406		91787 25441	17.9285 18.7966	ug/1	87
	2-Butanone 1,1,1-Trichloroethane	4.148		67632	20.7528	ug/l	93
	Carbon Tetrachloride	4.256		66969	22.6367	ug/l	84
-	Vinyl Acetate	3.337		170692	30.2351	ug/l	
	Bromodichloromethane	5.097		84174	21.5831	ug/l	
	Methylcyclohexane	4.911		43768	17.8364	ug/l	
	Dibromomethane	5.013		58057 61920	20.2706 20.3550	ug/l ug/l	97
	1,2-Dichloropropane Trichloroethene	4.935		55758	20.7383	ug/l	
	Benzene	4.394		198734	20.6019	ug/l	
,	tert-Amyl methyl ether	4.454		47255	16.7840	ug/l	
	Iso-propylacetate	4.424		69661m	9.2926	ug/l	
	Methyl methacrylate	4.983		55768	13.2967	ug/l	
	Dibromochloromethane	6.053		74040	20.3102	ug/1	
	2-Chloroethylvinylether	5.272		28375 73938	11.5746 15.7005	ug/l ug/l	
	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	5.368 5.692		73938 65710	15.7005	ug/l	
	Ethyl methacrylate	5.728		57014	13.4148	ug/l	
	1,1,2-Trichloroethane	5.806		54419	20.3107	ug/l	93
	1,2-Dibromoethane	6.137	107	60683	18.7825	ug/l	
61)	1,3-Dichloropropane	5.915			20.0297	ug/l	
	4-Methyl-2-Pentanone	5.452		51597	9.9305	ug/l	
	2-Hexanone	5.945		36406 54614	9.7266 19.5194	ug/l ug/l	
	Tetrachloroethene Toluene	5.572			20.9944	ug/l	
67)	1,1,1,2-Tetrachloroethane	6.461			22.3360	ug/l	
5.7	U	J					

SampleID : CAL @ 20 PPB Data File: 3M93517.D Acq On : 06/ 1/11 08:00 Operator : WP Sam Mult : 1 Vial# : 4 Misc : A,5ML Qt Meth : 3M_A0526.M Qt On : 06/01/11 11:48 Qt Upd On: 06/01/11 11:48

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
68)	Chlorobenzene	6.419	112	150024	21.2873	ug/l	98
70)	n-Butyl acrylate	6.708	55	75885	10.5349	ug/l	97
71)		6.840	43	77270	11.3225	ug/l	80
72)	Bromoform	6.918	173	70345	17.4858	ug/l	95
73)	Ethylbenzene	6.467	106	57064	19.2406	ug/l	87
74)		7.170	83	72884	19.1641	ug/l	93
76)		6.786	104	146159	18.1245	ug/l	91
77)	•	6.533	106	161545	42.6441	ug/l	84
	o-Xylene	6.774	106	83257	21.9750	ug/l	74
	trans-1,4-Dichloro-2-b	7.200	53	33466	18.8324	ug/l	88
	1,3-Dichlorobenzene	7.783	146	126818	20.5314	ug/l	84
	1,4-Dichlorobenzene	7.837	146	138523	21.0906	ug/l	88
	1,2-Dichlorobenzene	8.084	146	132310	17.8609	ug/l	82
83)	•	6.990	105	195337	21.3216	ug/l	93
	Cyclohexanone	7.086	55	8186	56.0895	ug/l	92
	Camphene	7.170	93	35774	16.5778	ug/l	97
	1,2,3-Trichloropropane	7.206	75	75564	19.5986	ug/l	97
	2-Chlorotoluene	7.315	91	135488	23.7396	ug/l	93
	p-Ethyltoluene	7.309	105	193268	20.2696	ug/l	84
	4-Chlorotoluene	7.381	91	132440	23.3434	ug/l	84
	n-Propylbenzene	7.242	91	227721	20.1955	ug/l	95
	Bromobenzene	7.206	77	134115	21.8718	ug/l	80
	1,3,5-Trimethylbenzene	7.339	105	167649	19.7250	ug/l	95
	Butyl methacrylate	7.357	41	81312	17.9970	ug/l	76
	t-Butylbenzene	7.549	119	143412	21.2274	ug/l	79
	1,2,4-Trimethylbenzene	7.579	105	172372	22.0543	ug/l	91
	sec-Butylbenzene	7.687	105	160239	19.2377	ug/l	96
	4-Isopropyltoluene	7.765	119	130439	21.0756	ug/l	86
	n-Butylbenzene	8.024	91	141739	19.7478	ug/l	92
	p-Diethylbenzene	8.006	119	62815	17.9953	ug/l	84
	1,2,4,5-Tetramethylben	8.510	119	103208	16.4932	ug/l	86
	1,2-Dibromo-3-Chloropr	8.583	157	16596	13.3872	ug/l	47
102)	•	9.063	95	37761	124.9178	ug/l	93
103)	-	9.201	225	71703	21.7249	ug/l	92
104)		9.117	180	107221	15.9004	ug/l	93
105)	• •	9.448	180	101360	17.4703	ug/l	95
•	Naphthalene	9.292	128	153171	16.9201		100
							-

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

GC/MS Volatile Data Raw QC Data

Form 5

Tune Name: BFB TUNE Data File: 3M93050.D
Instrument: GCMS 3 Analysis Date: 05/26/11 07:32
Method: EPA 8260B
Tune Scan/Time Range: Average of 4.429 to 4.439 min

Tunes	can/Inne	Kange, r	verage	01 4.423	0 4.455 111111	
Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
Mass	Mass	Lim	Lim	Abund	Abund	<u>Fail</u>
50	95	15	40	25.3	6778	PASS
75	95	30	60	51.7	13862	PASS
95	95	100	100	100.0	26812	PASS
96	95	5	9	6.0	1600	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	93.3	25024	PASS
175	174	5	9	7.4	1856	PASS
176	174	95	101	95.7	23948	PASS
177	176	5	9	5.8	1400	PASS

Data File			
3M93053.D CAL @ 1 PPB 3M93054.D CAL @ 0.5 PPB 05/26/11 08:38 3M93055.D CAL @ 5 PPB 05/26/11 08:37 3M93055.D CAL @ 50 PPB 05/26/11 09:30 3M93057.D CAL @ 250 PPB 05/26/11 09:30 3M93057.D CAL @ 250 PPB 05/26/11 09:30 3M93058.D CAL @ 100 PPB 05/26/11 10:93 3M93061.D CAL @ 100 PPB 05/26/11 10:93 3M93061.D CAL @ 10 PPB 05/26/11 10:52 3M93061.D CAL @ 10 PPB 05/26/11 10:52 3M93062.D 20 PPB 05/26/11 10:52 3M93064.D ICV 3M93065.D DAILY BLANK 05/26/11 11:25 3M93066.D DAILY BLANK 05/26/11 11:42 3M93066.D DAILY BLANK 05/26/11 11:42 3M93066.D DAILY BLANK 05/26/11 11:43 3M93067.D MBS9690 05/26/11 12:31 3M93071.D AC59201-011 05/26/11 13:20 3M93071.D AC59201-011 05/26/11 13:20 3M93075.D AC59201-006 05/26/11 13:37 3M93075.D AC59201-008 3M93075.D AC59201-009 05/26/11 13:53 3M93076.D AC59201-009 05/26/11 14:42 3M93076.D AC59201-009 05/26/11 14:42 3M93076.D AC59201-009 05/26/11 15:53 3M93077.D AC59201-009 05/26/11 15:53 3M93078.D BLK 05/26/11 15:15 3M93078.D BLK 05/26/11 15:15 3M93078.D AC59194-001 05/26/11 15:15 3M93078.D AC59194-001 05/26/11 15:15 3M93078.D AC59194-001 05/26/11 15:15 3M93078.D AC59101-009 05/26/11 15:15 3M93078.D AC59101-009 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 15:20 3M93078.D AC59101-001 05/26/11 15:20 3M93078.D AC59101-001 05/26/11 15:20 3M93078.D AC59101-001 05/26/11 15:15 3M93078.D AC59101-001 05/26/11 10:32 3M93078.D AC59101-001 05/26/11 10:32 3M93078.D AC59101-001 05/26/11 10:32 3M93078.D AC59101-001 05/26/11 10:32 3M93078.D AC59101-001 05/26/11 10:32 3M93078.D AC59101-001 05/26/11 10:32 3M93078.D AC59101-001 05/26/11 1	Data File	Sample Number	Analysis Date:
3M93055.D CAL @ 0.5 PPB 05/26/11 08:38 3M93055.D CAL @ 5 PPB 05/26/11 08:57 3M93056.D CAL @ 50 PPB 05/26/11 08:57 3M93056.D CAL @ 250 PPB 05/26/11 09:30 3M93058.D CAL @ 100 PPB 05/26/11 09:30 3M93058.D CAL @ 100 PPB 05/26/11 10:02 3M93060.D CAL @ 20 PPB 05/26/11 10:19 3M93061.D CAL @ 20 PPB 05/26/11 10:35 3M93062.D 20 PPB 05/26/11 10:35 3M93063.D BLK 05/26/11 11:08 3M93063.D BLK 05/26/11 11:08 3M93065.D DAILY BLANK 05/26/11 11:25 3M93065.D DAILY BLANK 05/26/11 11:42 3M93066.D DAILY BLANK 05/26/11 11:42 3M93066.D DAILY BLANK 05/26/11 11:42 3M93066.D DAILY BLANK 05/26/11 11:42 3M93067.D MS9690 05/26/11 12:47 3M93070.D AC59201-010 05/26/11 12:47 3M93070.D AC59201-010 05/26/11 12:47 3M93070.D AC59201-010 05/26/11 13:04 3M93071.D AC59201-008 05/26/11 13:04 3M93071.D AC59201-008 05/26/11 13:30 3M93072.D AC59201-008 05/26/11 13:43 3M93075.D AC59201-008 05/26/11 13:43 3M93075.D AC59201-009 05/26/11 14:42 3M93075.D AC59201-009 05/26/11 14:42 3M93075.D AC59201-009 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 14:42 3M93075.D AC59201-001 05/26/11 16:52 3M93085.D AC59149-001 05/26/11 16:22 3M93085.D AC59149-001 05/26/11 16:38 3M93085.D AC59149-001 05/26/11 16:38 3M93085.D AC59149-001 05/26/11 16:38 3M93085.D AC59149-001 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93085.D AC59149-003 05/26/11 16:38 3M93105.D AC59149-003 05/26/11 19:49 3M93105.D AC59149-003 05/2	3M93052.D		
SM93055.D		CAL @ 1 PPB	
SM93056.D			
SM93057.D			
SM93059.D		CAL @ 250 PPB	
SM93061.D			
3M93061 D 3M93062 D 3M93063 D 3M93063 D 3M93064 D 3M93065 D 3M93065 D 3M93065 D 3M93065 D 3M93065 D 3M93065 D 3M93065 D 3M93066 D 3M93066 D 3M93066 D 3M93068 D 3M93068 D 3M93068 D 3M93068 D 3M93068 D 3M93068 D 3M93069 D 3M93070 D 3M93070 D 3M93071 D 3M93071 D 3M93071 D 3M93071 D 3M93071 D 3M93073 D 3M93074 D 3M93075 D 3M93075 D 3M93075 D 3M93076 D 3M93077 D 3M93077 D 3M93077 D 3M93077 D 3M93077 D 3M93077 D 3M93078 D 3M93079 D 3M93079 D 3M93079 D 3M93079 D 3M93079 D 3M93080 D 3M93090 D 3M9300			
3M93062.D 3M93063.D 3M93064.D ICV 3M93065.D DAILY BLANK 05/26/11 11:25 3M93065.D DAILY BLANK 05/26/11 11:25 3M93066.D DAILY BLANK 05/26/11 11:25 3M93066.D DAILY BLANK 05/26/11 11:42 3M93066.D DAILY BLANK 05/26/11 11:43 3M93069.D AC59194-006 05/26/11 12:41 3M93069.D AC59201-010 05/26/11 12:47 3M93070.D AC59201-011 05/26/11 13:04 3M93071.D AC59201-011 05/26/11 13:04 3M93073.D AC59201-006 05/26/11 13:37 3M93074.D AC59201-008 05/26/11 13:33 3M93074.D AC59201-008 05/26/11 13:53 3M93075.D AC59201-009 05/26/11 14:10 3M93075.D AC59201-009 05/26/11 14:10 3M93076.D AC59201-001 05/26/11 14:26 3M93077.D AC59201-001 05/26/11 14:26 3M93077.D AC59201-001 05/26/11 16:25 3M93080.D BLK 05/26/11 15:32 3M93081.D AC59194-001 05/26/11 16:25 3M93082.D AC59149-013 05/26/11 16:05 3M93083.D AC59149-013 05/26/11 16:05 3M93085.D AC59244-005 05/26/11 16:05 3M93085.D AC59244-005 05/26/11 16:55 3M93087.D AC59244-005 05/26/11 16:55 3M93087.D AC59244-005 05/26/11 16:55 3M93087.D AC59244-001(5X) 05/26/11 16:55 3M93088.D AC59244-001(5X) 05/26/11 16:55 3M93087.D AC59244-001(5X) 05/26/11 16:55 3M93087.D AC5914001(5X) 05/26/11 16:55 3M93087.D AC59244-003(5X) 05/26/11 16:55 3M93088.D AC59244-004(5X) 05/26/11 16:55 3M93089.D AC59244-003(5X) 05/26/11 18:34 3M93099.D AC59158-001(100X 05/26/11 19:25 3M93099.D AC59158-001(100X 05/26/11 19:25 3M93099.D AC59158-001(100X 05/26/11 19:25 3M93099.D BLK 05/26/11 19:25 3M93099.D BLK 05/26/11 19:25 3M93099.D AC59158-005(200X 05/26/11 19:25 3M93099.D BLK 05/26/11 19:25 3M93099.D BLK 05/26/11 19:25 3M93099.D AC59158-005(200X 05/26/11 19:25 3M93099.D BLK 05/26/11 19:25 3M93090.D AC59149-003 AC59141 AC59149-003 AC59149-003 AC59149-003 AC59149-003 AC59149-003 AC59149-003 AC59149-003 AC591			
3M93064.D 3M93065.D 3M93065.D 3M93066.D DAILY BLANK 05/26/11 11:42 3M93066.D 3M93067.D 3M93068.D 3M93068.D 3M93069.D 3M93069.D 3M93070.D 3M93071.D 3M93071.D 3M93071.D 3M93072.D 3M93073.D 3M93074.D 3M93074.D 3M93074.D 3M93075.D 3M93075.D 3M93075.D 3M93075.D 3M93075.D 3M93077.D 3M93077.D 3M93077.D 3M93077.D 3M93077.D 3M93077.D 3M93078.D 3M93078.D 3M93078.D 3M93078.D 3M93078.D 3M93078.D 3M93080.D			
3M93065.D DAILY BLANK 3M93066.D DAILY BLANK 3M93066.D DAILY BLANK 3M93067.D MBS9690 05/26/11 12:14 3M93068.D AC59194-006 05/26/11 12:31 3M93070.D AC59201-010 3M93071.D AC59201-011 3M93071.D AC59201-008 05/26/11 13:04 3M93073.D AC59201-008 05/26/11 13:37 3M93073.D AC59201-008 05/26/11 13:37 3M93073.D AC59201-008 05/26/11 13:33 3M93073.D AC59201-008 05/26/11 13:33 3M93074.D AC59201-008 05/26/11 14:10 3M93075.D AC59201-009 05/26/11 14:26 3M93076.D AC59201-001 05/26/11 14:26 3M93077.D AC59201-001 05/26/11 15:15 3M93078.D BLK 05/26/11 15:15 3M93079.D AC59194-001 05/26/11 15:15 3M93080.D MBS9694 05/26/11 16:05 3M93081.D AC59149-013 05/26/11 16:05 3M93082.D AC59241-005 3M93083.D AC59244-005 05/26/11 16:22 3M93084.D AC59244-005 05/26/11 16:25 3M93085.D AC59244-005 05/26/11 16:25 3M93086.D AC59244-001(5X) 3M93086.D AC59244-001(5X) 3M93087.D AC59244-003(5X) 3M93088.D AC59244-004(5X) 3M93088.D AC59244-004(5X) 3M93080.D AC59261-017(500X 3M93090.D AC59194-003(MS) 3M93090.D AC59194-003(MS) 3M93090.D AC59194-003(MS) 3M93090.D AC59194-003(MS) 3M93090.D AC5918-009(500X 05/26/11 18:38 3M93090.D AC5918-009(500X 05/26/11 18:30 3M93091.D AC5918-009(500X 05/26/11 19:07 3M93092.D AC5918-001(100X 05/26/11 19:07 3M93093.D AC5918-001(100X 05/26/11 19:07 3M93099.D AC5918-001(100X 05/26/11 19:07 3M93099.D AC5918-001(100X 05/26/11 19:07 3M93099.D BLK 05/26/11 20:14 3M93099.D BLK 05/26/11 20:14 3M93099.D AC5918-001(100X 05/26/11 20:14 3M93099.D BLK 05/26/11 20:14 3M93090.D AC5918-001(100X 05/26/11 20:14 3M93090.D AC5918-001(100X 05/26/11 20:14 3M93090.D AC5918-001(100X 05/26/11 20:14 3M93090.D AC5918-001(100X 05/26/11 10:05 3M93090.D AC5918-001(100X 05/26/11 10:05 3M93090.D AC5918-001(100X 05/26/11 10:05 3M93090.D AC5918-001(100X 05/26/11 10:05 3M93090.D AC5918-001(100X 05/26/11 10:05 3M93090.D AC5918-001(100X 05/26/11 10:05 05/26/11 10:05 05/26/11 10:05 05/26/11 10:05 05/26/11 10:05 05/26/11			
3M93066.D DAILY BLANK 05/26/11 11:58 3M93068.D MBS9690 05/26/11 12:14 3M93068.D AC59194-006 05/26/11 12:31 3M93070.D AC59201-010 05/26/11 12:31 3M93071.D AC59205-013 05/26/11 13:20 3M93072.D AC59201-006 05/26/11 13:20 3M93073.D AC59201-008 05/26/11 13:37 3M93073.D AC59201-008 05/26/11 13:53 3M93074.D AC59201-009 05/26/11 14:10 3M93075.D AC59201-009 05/26/11 14:42 3M93076.D AC59201-001 05/26/11 14:42 3M93077.D AC59201-001 05/26/11 14:42 3M93077.D AC59201-003 05/26/11 14:59 3M93078.D BLK 05/26/11 15:15 3M93079.D AC59201-003 05/26/11 15:15 3M93080.D MBS9694 05/26/11 15:32 3M93081.D AC59149-013 05/26/11 15:32 3M93082.D AC59149-013 05/26/11 16:22 3M93083.D AC59149-013 05/26/11 16:22 3M93083.D AC59149-005 05/26/11 16:23 3M93085.D AC59244-005 05/26/11 16:38 3M93085.D AC59244-005 05/26/11 17:30 3M93085.D AC59244-005 05/26/11 17:30 3M93085.D AC59244-005 05/26/11 17:52 3M93085.D AC59244-005 05/26/11 17:52 3M93085.D AC59244-005 05/26/11 17:52 3M93085.D AC59244-005 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 17:52 3M93080.D AC59244-001 05/26/11 18:14 3M93080.D AC59244-001 05/26/11 18:50 3M93090.D AC59158-001/100X 05/26/11 18:50 3M93090.D AC59158-001/100X 05/26/11 19:42 3M93090.D BLK 05/26/11 20:47 3M93090.D BLK 05/26/11 20:47 3M93090.D BLK 05/26/11 20:47 3M93100.D BLK 05/26/11 20:47 3M93101.D MBS9701 05/26/11 20:31 3M93102.D MBS9702 05/26/11 20:31 3M93103.D AC59242-002 05/26/11 20:31 3M93103.D AC59242-003 05/26/11 20:31 3M93103.D AC59242-001 05/26/11 20:35 3M93103.D AC59242-001 05/26/11 20:35 3M93103.D AC59242-001 05/26/11 20:35 3M93103.D AC59242-001 05/26/11 20:35 3M93103.D AC59242-000 05/27/11 00:40 3M93115.D AC59242-006 05/27/11 00:40 3M93115.D AC59242-008 05/27/11 00:49			
3M93067.D 3M93068.D 3M93069.D AC59194-006 05/26/11 12:14 3M93070.D AC59201-010 3M93071.D AC59201-011 3M93072.D AC59201-006 05/26/11 13:20 3M93073.D AC59201-006 05/26/11 13:37 3M93073.D AC59201-008 05/26/11 13:37 3M93075.D AC59201-009 05/26/11 14:10 3M93075.D AC59101-009 05/26/11 14:26 3M93075.D AC59201-009 05/26/11 14:26 3M93075.D AC59201-009 05/26/11 14:40 3M93075.D AC59201-001 3M93075.D AC59201-001 05/26/11 14:40 3M93075.D AC59201-003 05/26/11 14:59 3M93078.D BLK 05/26/11 15:15 3M93079.D AC59101-003 05/26/11 15:49 3M93080.D MBS9694 05/26/11 15:49 3M93081.D AC59149-013 05/26/11 16:05 3M93082.D AC59149-013 05/26/11 16:05 3M93083.D AC59145-007 05/26/11 16:38 3M93084.D AC59244-005 3M93085.D AC59244-005 3M93086.D AC59244-001(5X) 05/26/11 17:30 3M93087.D AC59244-001(5X) 05/26/11 17:30 3M93088.D AC59244-001(5X) 05/26/11 17:30 3M93089.D AC59244-001(5X) 05/26/11 18:33 3M93090.D AC59244-003(MS) 05/26/11 18:33 3M93090.D AC59194-003(MS) 05/26/11 18:30 3M93090.D AC59194-003(MS) 05/26/11 19:07 3M93090.D AC59158-001(100X 05/26/11 19:07 3M93090.D AC59158-003(MS) 05/26/11 19:25 3M93090.D AC59158-003(MS) 05/26/11 19:25 3M93090.D AC59158-003(MS) 05/26/11 19:25 3M93090.D AC59158-003(MS) 05/26/11 19:25 3M93090.D AC59158-003(MS) 05/26/11 19:25 3M93090.D AC59158-003(100X 05/26/11 19:25 3M93090.D AC59158-003(100X 05/26/11 19:25 3M93090.D AC59158-003(100X 05/26/11 20:47 3M93090.D AC59158-003(100X 05/26/11 20:47 3M93090.D AC59158-003(100X 05/26/11 20:47 3M93090.D AC59158-003(100X 05/26/11 20:47 3M93100.D BLK 05/26/11 20:47 3M93100.D AC5924-001 05/26/11 20:47 3M93100.D AC5924-002 05/26/11 20:47 3M93100.D AC5924-003 05/26/11 20:47 3M93100.D AC5924-003 05/26/11 20:47 3M93100.D AC5924-003 05/26/11 20:47 3M93100.D AC5924-003 05/26/11 20:47 3M93100.D AC5924-003 05/26/11 20:47 3M93100.D AC5924-003 05/26/11 20:47 3M93100.D AC5924-006 05/27/11 00:49 3M93115.D AC5924-008 05/27/11 00:49			
3M93069.D AC59201-010 3M93071.D AC59205-013 M93072.D AC59201-006 M93073.D AC59201-008 M93073.D AC59201-008 M93074.D AC59201-008 M93075.D AC59201-009 M93075.D AC59201-009 M93076.D AC59201-009 M93077.D AC59201-001 M93077.D AC59201-001 M93077.D AC59201-001 M93077.D AC59201-001 M93077.D AC59201-003 M93077.D AC59201-003 M93077.D AC59201-003 M93078.D BLK M93079.D MC59194-001 MBS9694 M93080.D MBS9694 M93080.D MBS9694 M93080.D MBS9694 M93080.D MBS9694 M93080.D MBS9694 M93080.D M659145-007 M93080.D M			
3M93070.D AC59201-011 3M93071.D AC59201-006 3M93072.D AC59201-008 3M93073.D AC59201-008 3M93074.D AC59201-009 3M93075.D AC59201-009 3M93075.D AC59201-009 3M93075.D AC59201-009 3M93076.D AC59201-001 3M93077.D AC59201-001 3M93077.D AC59201-001 3M93077.D AC59201-001 3M93078.D AC59201-003 3M93078.D BLK 05/26/11 15:15 3M93079.D AC59149-001 3M93080.D MBS9694 05/26/11 15:32 3M93081.D AC59149-013 3M93081.D AC59149-013 3M93082.D AC59149-013 3M93083.D AC59145-007 05/26/11 16:22 3M93083.D AC59145-007 05/26/11 16:25 3M93085.D AC59244-005 3M93085.D AC59244-005 3M93086.D AC59244-001 3M93087.D AC59244-001 3M93088.D AC59244-001 3M93088.D AC59244-001(5X) 3M93088.D AC59244-004(5X) 3M93089.D AC59244-004(5X) 3M93089.D AC59244-004(5X) 3M93099.D AC59261-007(500X 3M93091.D AC59261-007(500X 3M93091.D AC59149-003(MS) 3M93091.D AC59149-003(MS) 3M93091.D AC59149-003(MS) 3M93091.D AC59149-003(MS) 3M93091.D AC59149-003(MS) 3M93091.D AC59149-003(MS) 3M93091.D AC59149-003(MS) 3M93091.D AC59158-001(100X 05/26/11 19:25 3M93099.D AC59158-001(100X 05/26/11 19:58 3M93099.D AC59158-003(100X 05/26/11 19:58 3M93099.D AC59158-001(100X 05/26/11 20:31 3M93099.D AC59158-002(100X 05/26/11 20:31 3M93099.D BLK 05/26/11 20:31 3M93090.D AC59158-003(100X 05/26/11 20:31 3M93091.D AC59158-005(200X 05/26/11 20:31 3M93090.D AC59158-005(200X 05/26/11 20:31 3M93090.D AC59158-005(200X 05/26/11 20:47 3M93090.D AC59158-005(200X 05/26/11 20:47 3M93100.D BLK 05/26/11 21:36 3M93100.D AC59240-001 3M93100.D AC59240-002 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 20:47 3M93100.D AC59240-003 05/26/11 10:008 3M93110.D AC59240-008 05/27/11 00:008 3M93115.D AC59240-008			
3M93071.D AC59201-006 05/26/11 13:20 3M93072.D AC59201-006 05/26/11 13:37 3M93073.D AC59201-008 05/26/11 13:53 3M93074.D AC59194-003 05/26/11 14:10 3M93075.D AC59201-009 05/26/11 14:10 3M93076.D AC59201-001 05/26/11 14:26 3M93077.D AC59201-003 05/26/11 14:59 3M93077.D AC59201-003 05/26/11 14:59 3M93078.D BLK 05/26/11 15:15 3M93079.D AC59194-001 05/26/11 15:15 3M93080.D MBS9694 05/26/11 15:49 3M93080.D AC59149-013 05/26/11 15:49 3M93081.D AC59149-015 05/26/11 16:05 3M93082.D AC59261-015 05/26/11 16:05 3M93083.D AC59261-015 05/26/11 16:38 3M93084.D AC59244-002 05/26/11 16:55 3M93085.D AC59244-002 05/26/11 17:51 3M93086.D AC59244-001(5X) 05/26/11 17:52 3M93087.D AC59244-001(5X) 05/26/11 17:52 3M93088.D AC59244-001(5X) 05/26/11 17:52 3M93089.D AC59244-004(5X) 05/26/11 18:49 3M93089.D AC59261-009/500X 05/26/11 18:33 3M93090.D AC59261-009/500X 05/26/11 18:50 3M93091.D AC59194-003/MSD 05/26/11 18:50 3M93093.D AC59194-003/MSD 05/26/11 19:25 3M93093.D AC59158-001/100X 05/26/11 19:25 3M93094.D AC59158-001/100X 05/26/11 19:25 3M93095.D AC59158-002/100X 05/26/11 20:31 3M93097.D AC59158-002/100X 05/26/11 20:31 3M93097.D AC59158-002/100X 05/26/11 20:31 3M93099.D BLK 05/26/11 20:31 3M93090.D BLK 05/26/11 20:31 3M93090.D BLK 05/26/11 20:31 3M93090.D BLK 05/26/11 20:31 3M93090.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D BLK 05/26/11 20:31 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-001 05/26/11 20:35 3M93100.D AC59242-000 05/27/11 00:08 3M93113.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-009 05/27/11 00:59 3M93115.D AC59242-009 05/27/11 00:59			
3M93072.D AC59201-006 05/26/11 13:37 3M93073.D AC59201-008 05/26/11 13:53 3M93074.D AC59194-003 05/26/11 14:10 3M93075.D AC59201-009 05/26/11 14:26 3M93076.D AC59201-001 05/26/11 14:42 3M93077.D AC59201-001 05/26/11 14:59 3M93078.D BLK 05/26/11 15:15 3M93079.D AC59194-001 05/26/11 15:15 3M93080.D MBS9694 05/26/11 15:32 3M93081.D AC59149-013 05/26/11 16:05 3M93081.D AC59149-013 05/26/11 16:05 3M93082.D AC59149-013 05/26/11 16:05 3M93083.D AC59145-007 05/26/11 16:22 3M93084.D AC59244-005 05/26/11 16:55 3M93085.D AC59244-005 05/26/11 16:55 3M93086.D AC59244-001(5X) 05/26/11 17:30 3M93087.D AC59244-001(5X) 05/26/11 17:52 3M93088.D AC59244-004(5X) 05/26/11 17:52 3M93089.D AC59244-004(5X) 05/26/11 17:52 3M93089.D AC59244-004(5X) 05/26/11 18:14 3M93089.D AC59261-009/500X 05/26/11 18:50 3M93091.D AC59261-009/500X 05/26/11 18:50 3M93091.D AC59158-002/100X 05/26/11 19:25 3M93093.D AC59158-002/100X 05/26/11 19:25 3M93094.D AC59158-002/100X 05/26/11 19:25 3M93095.D AC59158-002/100X 05/26/11 19:58 3M93097.D AC59158-002/100X 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93100.D BLK 05/26/11 20:47 3M93100.D BLK 05/26/11 20:47 3M93100.D BLK 05/26/11 20:43 3M93100.D BLK 05/26/11 20:45 3M93100.D BLK 05/26/11 20:47 3M93100.D BLK 05/26/11 20:47 3M93100.D BLK 05/26/11 20:47 3M93100.D AC59124-002 05/26/11 20:43 3M93100.D AC59242-004 05/26/11 20:43 3M93100.D AC59242-004 05/26/11 20:45 3M93110.D AC59242-006 05/27/11 00:08 3M93111.D AC59242-006 05/27/11 00:49 3M93113.D AC59242-006 05/27/11 00:59 3M93115.D AC59242-008 05/27/11 00:49 3M93115.D AC59242-009 05/26/11 00:49			
3M93073.D AC59201-008 05/26/11 13:53 3M93076.D AC59194-003 05/26/11 14:10 3M93076.D AC59201-009 05/26/11 14:26 3M93077.D AC59201-001 05/26/11 14:26 3M93077.D AC59201-003 05/26/11 14:42 3M93077.D AC59201-003 05/26/11 14:59 3M93079.D AC59194-001 05/26/11 15:15 3M93079.D AC59194-001 05/26/11 15:32 3M93080.D MBS9694 05/26/11 15:49 3M93081.D AC59149-013 05/26/11 16:05 3M93082.D AC59261-015 05/26/11 16:05 3M93083.D AC59145-007 05/26/11 16:22 3M93083.D AC59244-005 05/26/11 16:55 3M93085.D AC59244-005 05/26/11 17:30 3M93085.D AC59244-002 05/26/11 17:30 3M93085.D AC59244-002 05/26/11 17:30 3M93085.D AC59244-001(5X) 05/26/11 17:52 3M93088.D AC59244-004(5X) 05/26/11 17:52 3M93089.D AC59261-007(500X 05/26/11 18:33 3M93090.D AC59261-007(500X 05/26/11 18:33 3M93090.D AC59261-009(500X 05/26/11 18:50 3M93091.D AC59194-003/MSD 05/26/11 19:25 3M93093.D AC59198-003/MSD 05/26/11 19:25 3M93093.D AC59158-001/100X 05/26/11 19:42 3M93095.D AC59158-001/100X 05/26/11 19:42 3M93096.D AC59158-003/100X 05/26/11 20:31 3M93097.D AC59158-003/100X 05/26/11 20:47 3M93098.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 21:20 3M93101.D MBS9701 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:36 3M93102.D MBS9701 05/26/11 21:36 3M93103.D AC59242-003 05/26/11 22:26 3M93104.D AC59242-001 05/26/11 22:26 3M93105.D AC59242-001 05/26/11 22:26 3M93107.D AC59242-001 05/26/11 22:26 3M93109.D AC59242-001 05/26/11 22:26 3M93109.D AC59242-001 05/26/11 22:26 3M93109.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-006 05/27/11 00:40 3M93111.D AC59242-006 05/27/11 00:40 3M93111.D AC59242-006 05/27/11 00:40 3M93113.D AC59242-007 05/27/11 00:59 3M93113.D AC59242-008 05/27/11 00:59 3M93115.D AC59242-009 05/27/11 00:59			
3M93075.D AC59201-009 05/26/11 14:26 3M93076.D AC59201-001 05/26/11 14:42 3M93077.D AC59201-003 05/26/11 14:59 3M93078.D BLK 05/26/11 15:15 3M93079.D AC59194-001 05/26/11 15:32 3M93080.D MBS9694 05/26/11 15:49 3M93081.D AC59149-013 05/26/11 16:05 3M93082.D AC59145-007 05/26/11 16:22 3M93083.D AC59145-007 05/26/11 16:23 3M93084.D AC59244-005 05/26/11 16:55 3M93085.D AC59244-002 05/26/11 17:11 3M93086.D AC59244-001 05/26/11 17:10 3M93087.D AC59244-001(5X) 05/26/11 17:52 3M93088.D AC59244-004(5X) 05/26/11 18:14 3M93089.D AC59244-004(5X) 05/26/11 18:14 3M93089.D AC59261-007(500X 05/26/11 18:14 3M93091.D AC59261-009(500X 05/26/11 18:50 3M93091.D AC59194-003(MSD 05/26/11 19:07 3M93092.D AC59194-003(MSD 05/26/11 19:07 3M93093.D AC59158-001(100X 05/26/11 19:42 3M93094.D AC59158-002(100X 05/26/11 19:42 3M93095.D AC59158-003(100X 05/26/11 19:58 3M93096.D AC59158-003(100X 05/26/11 20:14 3M93097.D AC59158-003(100X 05/26/11 20:14 3M93099.D BLK 05/26/11 20:14 3M93099.D BLK 05/26/11 21:50 3M93101.D MBS9701 05/26/11 21:04 3M93102.D MBS9701 05/26/11 21:04 3M93103.D AC59244-002 05/26/11 21:04 3M93103.D AC59244-002 05/26/11 21:50 3M93103.D AC59244-002 05/26/11 22:59 3M93104.D AC59244-003 05/26/11 22:59 3M93105.D AC59244-003 05/26/11 23:51 3M93107.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-003 05/26/11 23:51 3M93109.D AC59244-004 05/27/11 00:04 3M93113.D AC59242-006 05/27/11 00:40 3M93113.D AC59242-006 05/27/11 00:40 3M93113.D AC59242-007 05/27/11 00:40 3M93113.D AC59242-008 05/27/11 00:59 3M93113.D AC59242-009 05/27/11 00:40 3M93115.D AC59242-009 05/27/11 00:40			
3M93076.D 3M93077.D 3M93078.D 3M93078.D 3M93078.D 3M93079.D 3M93079.D 3M93080.D 3M93080.D 3M93080.D 3M93081.D 3M93081.D 3M93081.D 3M93082.D 3M93082.D 3M93085.D 3M93085.D 3M93085.D 3M93085.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93086.D 3M93087.D 3M93088.D 3M93088.D 3M93088.D 3M93089.D 3M93089.D 3M93080.D 3M9300.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M9300.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M93080.D 3M9300.D			
3M93077.D 3M93078.D 3M93078.D 3M93079.D AC59194-001 S5/26/11 15:15 3M93080.D MBS9694 S1/26/11 15:49 3M93081.D AC59149-013 S1/26/11 16:05 3M93082.D AC59261-015 S1/26/11 16:05 3M93083.D AC59261-015 S1/26/11 16:22 3M93083.D AC59244-005 S1/26/11 16:55 3M93084.D AC59244-005 S1/26/11 16:55 3M93085.D AC59244-001 S1/26/11 17:11 S1/26/11 16:55 S1/26/11 16:55 S1/26/11 16:55 S1/26/11 16:55 S1/26/11 16:55 S1/26/11 17:30 S1/26/11 17:30 S1/26/11 17:30 S1/26/11 17:51 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 17:52 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:14 S1/26/11 18:15 S1/26/11 18:14 S1/26/11 18:15 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 18:16 S1/26/11 20:11			
3M93078.D BLK 05/26/11 15:15 3M93079.D AC59194-001 05/26/11 15:32 3M93080.D MBS9694 05/26/11 16:05 3M93081.D AC59149-013 05/26/11 16:05 3M93082.D AC59145-007 05/26/11 16:22 3M93083.D AC59145-007 05/26/11 16:38 3M93085.D AC59244-005 05/26/11 16:55 3M93085.D AC59244-002 05/26/11 17:11 3M93087.D AC59244-001/5X) 05/26/11 17:52 3M93087.D AC59244-004/5X) 05/26/11 17:52 3M93089.D AC59244-004/5X) 05/26/11 18:14 3M93089.D AC59261-007/500X 05/26/11 18:33 3M93091.D AC59261-007/500X 05/26/11 18:33 3M93092.D AC59194-003/MSD 05/26/11 19:07 3M93093.D AC59194-003/MSD 05/26/11 19:07 3M93094.D AC59158-001/100X 05/26/11 19:25 3M93095.D AC59158-003/100X 05/26/11 20:14 3M93096.D AC59158-004/200X 05/26/11 20:14 3M93099.D BLK 05/26/11 20:31 </td <td></td> <td></td> <td></td>			
3M93080.D 3M93081.D 3M93081.D 3M93082.D AC59261-015 3M93083.D AC59261-015 3M93083.D AC59244-005 3M93084.D 3M93085.D AC59244-002 3M93085.D AC59244-002 3M93087.D AC59244-003/5X) 3M93088.D AC59244-004/5X) 3M93088.D AC59244-004/5X) 3M93089.D AC59244-004/5X) 3M93090.D AC59261-007/500X 3M93091.D AC59149-003/MS) 3M93091.D AC59149-003/MS) 3M93093.D AC59158-003/100X 3M93095.D AC59158-003/100X 3M93096.D AC59158-003/100X 3M93090.D AC59158-003/100X 3M93090.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93095.D AC59158-005/200X 3M93096.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93091.D AC59158-005/200X 3M93100.D BLK 3M93090.D BLK 3M93090.D BLK 3M93090.D BLK 3M93090.D BLK 3M93100.D BLK 3M93100.D BLK 3M93100.D BLK 3M93100.D BLK 3M93100.D BLK 3M93100.D AC59242-002 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93100.D AC59242-001 3M93110.D AC59242-006 3M93110.D AC59242-006 3M93111.D AC59242-007 3M93111.D AC59242-008 3M93111.D AC59242-008 3M93111.D AC59242-009 05/27/11 00:40 3M93115.D AC59242-009 05/27/11 00:40 3M93115.D AC59242-009 05/27/11 01:16			
3M93081.D AC59149-013 M93082.D AC59261-015 M93083.D AC59261-015 M93083.D AC59244-005 M93085.D AC59244-005 M93085.D AC59244-002 M93085.D AC59244-002 M93085.D AC59244-001(5X) M93086.D AC59244-003(5X) M93088.D AC59244-003(5X) M93088.D AC59244-003(5X) M93089.D AC59261-007(500X M93090.D AC59261-007(500X M93090.D AC59194-003(MS) M93091.D AC59194-003(MS) M93092.D AC59194-003(MS) M93093.D AC59194-003(MS) M93094.D AC59158-001(100X M93095.D AC59158-001(100X M93095.D AC59158-003(100X M93096.D AC59158-003(100X M93096.D AC59158-004(200X M93096.D AC59158-005(200X M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D BLK M93099.D MBS9701 MBS9701 MBS9701 MBS9701 MBS9702 MBS9702 MBS9102.D MBS9702 MBS9103.D AC59242-002 MBS9104.D AC59242-001 MBS9106.D AC59242-001 MS93101.D AC59242-001 MS93103.D AC59242-001 MS93105.D AC59242-001 MS93103.D AC59242-002 M93103.D AC59242-003 M93104.D AC59242-004 M659242-005 M93110.D AC59242-006 M93111.D AC59242-006 M93111.D AC59242-007 M93111.D AC59242-008 M93111.D			
3M93082.D AC59261-015 05/26/11 16:22 3M93083.D AC59145-007 05/26/11 16:38 3M93084.D AC59244-005 05/26/11 16:55 3M93085.D AC59244-002 05/26/11 17:11 3M93086.D AC59244-001(5X) 05/26/11 17:30 3M93087.D AC59244-003(5X) 05/26/11 17:52 3M93088.D AC59244-004(5X) 05/26/11 18:14 3M93089.D AC59261-007(500X 05/26/11 18:14 3M93090.D AC59261-009(500X 05/26/11 18:50 3M93091.D AC59194-003(MS) 05/26/11 18:50 3M93092.D AC59194-003(MSD 05/26/11 19:07 3M93093.D AC59158-001(100X 05/26/11 19:25 3M93094.D AC59158-001(100X 05/26/11 19:28 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93096.D AC59158-004(200X 05/26/11 20:14 3M93097.D AC59158-005(200X 05/26/11 20:47 3M93099.D BLK 05/26/11 21:20 3M93101.D MBS9701 05/26/11 21:20 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:29 3M93103.D AC59242-002 05/26/11 22:29 3M93105.D AC59242-001 05/26/11 22:59 3M93106.D AC59242-015 05/26/11 22:59 3M93107.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93111.D AC59242-003 05/27/11 00:24 3M93113.D AC59242-006 05/27/11 00:24 3M93113.D AC59242-007 05/27/11 00:49 3M93113.D AC59242-008 05/27/11 01:49			
3M93083.D AC59145-007 05/26/11 16:38 3M93084.D AC59244-005 05/26/11 17:51 3M93085.D AC59244-002 05/26/11 17:51 3M93086.D AC59244-001(5X) 05/26/11 17:30 3M93087.D AC59244-003(5X) 05/26/11 17:52 3M93088.D AC59244-004(5X) 05/26/11 18:14 3M93090.D AC59261-007(500X 05/26/11 18:50 3M93091.D AC59161-009(500X 05/26/11 19:07 3M93092.D AC59194-003(MSD 05/26/11 19:07 3M93093.D AC59194-003(MSD 05/26/11 19:42 3M93093.D AC59158-001(100X 05/26/11 19:42 3M93094.D AC59158-002(100X 05/26/11 19:42 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93096.D AC59158-003(100X 05/26/11 20:14 3M93097.D AC59158-005(200X 05/26/11 20:47 3M93099.D BLK 05/26/11 20:47 3M93099.D BLK 05/26/11 21:04 3M93101.D MBS9701 05/26/11 21:20 3M93102.D MBS9702 05/26/11 2			
3M93085.D AC59244-002 05/26/11 17:11 3M93086.D AC59244-001(5X) 05/26/11 17:30 3M93087.D AC59244-003(5X) 05/26/11 17:52 3M93088.D AC59244-004(5X) 05/26/11 18:14 3M93089.D AC59261-007(500X 05/26/11 18:33 3M93090.D AC59261-009(500X 05/26/11 19:07 3M93091.D AC59194-003(MS) 05/26/11 19:07 3M93092.D AC59194-003(MS) 05/26/11 19:07 3M93093.D AC59158-001(100X 05/26/11 19:58 3M93094.D AC59158-002(100X 05/26/11 20:14 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93096.D AC59158-004(200X 05/26/11 20:31 3M93099.D BLK 05/26/11 20:47 3M93100.D BLK 05/26/11 21:20 3M93101.D MBS9701 05/26/11 21:36 3M93102.D MBS9701 05/26/11 22:29 3M93103.D AC59224-002 05/26/11 22:43 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-016 05/26/11 23:51<		AC59145-007	
3M93086.D AC59244-001(5X) 05/26/11 17:30 3M93087.D AC59244-003(5X) 05/26/11 17:52 3M93088.D AC59244-004(5X) 05/26/11 18:14 3M93089.D AC59261-007(500X 05/26/11 18:33 3M93090.D AC59261-007(500X 05/26/11 18:50 3M93091.D AC59194-003(MS) 05/26/11 19:07 3M93092.D AC59194-003(MSD 05/26/11 19:25 3M93093.D AC59158-001(100X 05/26/11 19:42 3M93094.D AC59158-001(100X 05/26/11 19:42 3M93095.D AC59158-002(100X 05/26/11 20:14 3M93096.D AC59158-003(100X 05/26/11 20:14 3M93097.D AC59158-005(200X 05/26/11 20:31 3M93097.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:04 3M93100.D BLK 05/26/11 21:04 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9701 05/26/11 22:29 3M93103.D AC59224-002 05/26/11 22:43 3M93104.D AC59224-002 05/26/11 22:43 3M93105.D AC59224-001 05/26/11 22:43 3M93107.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-016 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:35 3M93109.D AC59242-002 05/27/11 00:04 3M93111.D AC59242-004 05/27/11 00:04 3M93111.D AC59242-006 05/27/11 00:05 3M93113.D AC59242-007 05/27/11 01:32 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-008 05/27/11 01:49			
3M93087.D 3M93088.D 3M93088.D 3C59244-004(5X) 3M93088.D 3C59244-004(5X) 3M93089.D 3C59261-007(500X 3M93090.D 3M93091.D 3M93091.D 3M93092.D 3M93093.D 3M259158-003(MSD 3M93093.D 3M93094.D 3M93095.D 3M93095.D 3M93096.D 3M93097.D 3M93097.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93099.D 3M93090.D 3M93099.D 3M93099.D 3M93099.D 3M93103.D 3M93099.D 3M93103.D 3M93099.D 3M93103.D 3M93099.D 3M93103.D 3M93099.D 3M93103.D 3M93099.D 3M93103.D 3M93103.D 3M93099.D 3M93103.D 3M93103.D 3M93103.D 3M93103.D 3M93103.D 3M93103.D 3M93103.D 3M93105.D 3M93105.D 3M93105.D 3M93105.D 3M93107.D 3M93107.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93109.D 3M93110.D 3M93111.D			
3M93088.D AC59244-004(5X) 05/26/11 18:14 3M93089.D AC59261-007(500X 05/26/11 18:50 3M93090.D AC59194-003(MS) 05/26/11 18:50 3M93091.D AC59194-003(MS) 05/26/11 19:25 3M93092.D AC59194-003(MSD 05/26/11 19:25 3M93093.D AC59158-001(100X 05/26/11 19:42 3M93094.D AC59158-002(100X 05/26/11 19:58 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93096.D AC59158-004(200X 05/26/11 20:31 3M93097.D AC59158-005/200X 05/26/11 20:47 3M93098.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:04 3M93100.D BLK 05/26/11 21:20 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:43 3M93103.D AC59224-002 05/26/11 22:43 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:43 3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-010 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-004 05/27/11 00:08 3M93111.D AC59242-006 05/27/11 00:09 3M93113.D AC59242-007 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:32 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-008 05/27/11 01:32			
3M93090.D AC59261-009(500X 05/26/11 18:50 3M93091.D AC59194-003(MS) 05/26/11 19:07 3M93092.D AC59194-003(MSD 05/26/11 19:25 3M93093.D AC59158-001(100X 05/26/11 19:58 3M93094.D AC59158-002(100X 05/26/11 19:58 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93096.D AC59158-004(200X 05/26/11 20:31 3M93097.D AC59158-005(200X 05/26/11 20:47 3M93099.D BLK 05/26/11 21:04 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:36 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:09 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:43 3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:04 <td></td> <td></td> <td></td>			
3M93091.D AC59194-003(MS) 05/26/11 19:07 3M93092.D AC59194-003(MSD) 05/26/11 19:25 3M93093.D AC59158-001(100X) 05/26/11 19:42 3M93094.D AC59158-002(100X) 05/26/11 19:58 3M93095.D AC59158-003(100X) 05/26/11 20:14 3M93096.D AC59158-004(200X) 05/26/11 20:31 3M93097.D AC59158-005(200X) 05/26/11 20:47 3M93098.D BLK 05/26/11 21:04 3M93100.D BLK 05/26/11 21:04 3M93101.D MBS9701 05/26/11 21:36 3M93102.D MBS9701 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:09 3M93104.D AC59224-002 05/26/11 22:43 3M93105.D AC59224-003 05/26/11 22:43 3M93106.D AC59242-015 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:35 3M93109.D AC59242-003 05/27/11 00:08 3M93111.D AC59242-006 05/27/11 00:04 </td <td></td> <td></td> <td></td>			
3M93092.D AC59194-003(MSD 05/26/11 19:25 3M93093.D AC59158-001(100X 05/26/11 19:42 3M93094.D AC59158-002(100X 05/26/11 19:58 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93096.D AC59158-004(200X 05/26/11 20:31 3M93097.D AC59158-005(200X 05/26/11 20:47 3M93098.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:04 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9701 05/26/11 22:09 3M93103.D AC59242-002 05/26/11 22:09 3M93104.D AC59224-002 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 22:59 3M93107.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-010 05/26/11 23:35 3M93108.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-002 05/26/11 00:40 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-004 05/27/11 00:40 3M93111.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:32 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-008 05/27/11 01:49			
3M93093.D AC59158-001(100X 05/26/11 19:42 3M93094.D AC59158-002(100X 05/26/11 19:58 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93096.D AC59158-004(200X 05/26/11 20:47 3M93097.D AC59158-005(200X 05/26/11 20:47 3M93098.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:20 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59224-015 05/26/11 22:43 3M93106.D AC59242-016 05/26/11 22:59 3M93107.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-004 05/27/11 00:08 3M93111.D AC59242-005 05/27/11 00:24 3M93111.D AC59242-006 05/27/11 00:40 <			
3M93094.D AC59158-002(100X 05/26/11 19:58 3M93095.D AC59158-003(100X 05/26/11 20:14 3M93097.D AC59158-004(200X 05/26/11 20:31 3M93098.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:20 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59224-015 05/26/11 22:43 3M93106.D AC59242-016 05/26/11 22:59 3M93107.D AC59242-016 05/26/11 23:17 3M93108.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:51 3M93110.D AC59242-004 05/27/11 00:04 3M93111.D AC59242-006 05/27/11 00:40 3M93113.D AC59242-007 05/27/11 00:40 3M93114.D AC59242-008 05/27/11 01:32 3M93115			05/26/11 19:42
3M93096.D AC59158-004(200X 05/26/11 20:31 3M93097.D AC59158-005(200X 05/26/11 20:47 3M93098.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:20 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:09 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59224-015 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:35 3M93109.D AC59242-003 05/27/11 00:08 3M93111.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:32 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93097.D AC59158-005(200X 05/26/11 20:47 3M93098.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:04 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:59 3M93106.D AC59242-015 05/26/11 22:59 3M93107.D AC59242-001 05/26/11 23:17 3M93108.D AC59242-001 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:51 3M93110.D AC59242-004 05/27/11 00:08 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-008 05/27/11 </td <td></td> <td></td> <td></td>			
3M93098.D BLK 05/26/11 21:04 3M93099.D BLK 05/26/11 21:20 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:26 3M93105.D AC59242-015 05/26/11 22:43 3M93105.D AC59242-016 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 23:317 3M93107.D AC59242-001 05/26/11 23:35 3M93108.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-002 05/26/11 00:08 3M93110.D AC59242-004 05/27/11 00:08 3M93111.D AC59242-006 05/27/11 00:40 3M93111.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:32			
3M93099.D BLK 05/26/11 21:20 3M93100.D BLK 05/26/11 21:36 3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 23:17 3M93108.D AC59242-001 05/26/11 23:51 3M93109.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:08 3M93111.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93113.D AC59242-006 05/27/11 00:59 3M93114.D AC59242-007 05/27/11 01:32 3M93115.D AC59242-008 05/27/11 01:49			
3M93101.D MBS9701 05/26/11 21:52 3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:37 3M93108.D AC59242-002 05/26/11 23:35 3M93109.D AC59242-002 05/26/11 23:51 3M93110.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93102.D MBS9702 05/26/11 22:09 3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:35 3M93108.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:04 3M93111.D AC59242-005 05/27/11 00:59 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93103.D AC59224-002 05/26/11 22:26 3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59224-015 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:51 3M93108.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93104.D AC59224-003 05/26/11 22:43 3M93105.D AC59242-015 05/26/11 22:59 3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:35 3M93108.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49		AC59224-002	
3M93106.D AC59242-016 05/26/11 23:17 3M93107.D AC59242-001 05/26/11 23:35 3M93108.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49		AC59224-003	
3M93107.D AC59242-001 05/26/11 23:35 3M93108.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93108.D AC59242-002 05/26/11 23:51 3M93109.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93109.D AC59242-003 05/27/11 00:08 3M93110.D AC59242-004 05/27/11 00:24 3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93111.D AC59242-005 05/27/11 00:40 3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49	3M93109.D		
3M93112.D AC59242-006 05/27/11 00:59 3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93113.D AC59242-007 05/27/11 01:16 3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
3M93114.D AC59242-008 05/27/11 01:32 3M93115.D AC59242-009 05/27/11 01:49			
ONIOG TIGE	3M93114.D	AC59242-008	
3M93116.D AC59242-010 05/27/11 02:05			
	JM93116.D	AC39242-010	USIZITIT UZ.US

Form 5

 Tune Name:
 BFB TUNE
 Data File:
 3M93050.D

 Instrument:
 GCMS 3
 Analysis Date:
 05/26/11 07:32

 Method:
 EPA 8260B

 Tune Scan/Time Range:
 Average of 4.429 to 4.439 min

Tune Scan/Time Range: Average of 4.429 to 4.439 mil							
Tgt	Rel	Lo	Hi	Rel	Raw	Pass/	
Mass	Mass	Lim	Lim	Abund	Abund	Fail	
50	95	15	40	25.3	6778	PASS	
75	95	30	60	51.7	13862	PASS	
95	95	100	100	100.0	26812	PASS	
96	95	5	9	6.0	1600	PASS	
173	174	0.00	2	0.0	0	PASS	
174	95	50	100	93.3	25024	PASS	
175	174	5	9	7.4	1856	PASS	
176	174	95	101	95.7	23948	PASS	
177	176	5	9	5.8	1400	PASS	

3M93117.D	AC59242-011	05/27/11 02:21
3M93118.D	AC59242-012	05/27/11 02:38
3M93119.D	AC59242-013	05/27/11 02:54
3M93120.D	AC59242-014	05/27/11 03:10
3M93121.D	AC59224-001	05/27/11 03:27
3M93122.D	AC59229-001	05/27/11 03:43
3M93123.D	AC59201-006(MS)	05/27/11 04:00
3M93124.D	AC59201-006(MSD	05/27/11 04:16
3M93125.D	BLK	05/27/11 04:33
3M93126.D	BLK	05/27/11 04:49
3M93127.D	BLK	05/27/11 05:05
3M93128.D	BLK	05/27/11 05:22
3M93129.D	BLK	05/27/11 05:38
3M93130.D	BLK	05/27/11 05:53
3M93131.D	BLK	05/27/11 06:09

0186

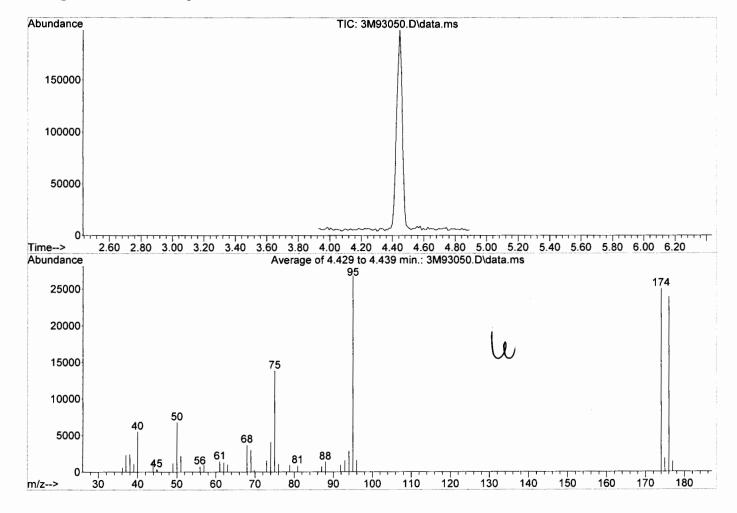
Data Path: G:\GcMsData\2011\GCMS_3\Data\05-26-11\

Data File: 3M93050.D

Acq On : 26 May 2011 7:32

Operator : WP

Sample : BFB TUNE Misc : A,5ML


ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2011\GCMS_3\MethodQt\3M_A0512.M

Title : @GCMS_3,ug,624,8260

Last Update : Thu May 12 12:27:10 2011

Spectrum Information: Average of 4.429 to 4.439 min.

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass		Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173	95 95 95 95 95 174 95	15 30 100 5 0.00	40 60 100 9 2 100	25.3 51.7 100.0 6.0 0.0 93.3	6778 13862 26812 1600 0 25024	PASS PASS PASS PASS PASS PASS
175	174	5	9	7.4	1856	PASS
176	174	95	101	95.7	23948	PASS
177	176	5	9	5.8	1400	PASS

Form 5

Tune Name: BFB TUNE Instrument: GCMS 2

Data File: 2M67517.D Analysis Date: 05/31/11 06:41 Method: EPA 8260B 069 to 4.079 min

Tune Scan/Time Range: Average of 4.069 to 4.079 min

Tune Scan/Time Range: Average of 4.069 to 4.079 min Tgt Rel Lo Hi Rel Raw I								
Mass	Mass	Lim	Lim	Abund	Abund	Fail		
50	95	15	40	24.7	11390	PASS		
75	95	30	60	58.6	27052	PASS		
95	95	100	100	100.0	46184	PASS		
96	95	5	9	6.2	2860	PASS		
173	174	0.00	2	0.0	0	PASS		
174	95	50	100	76.7	35428	PASS		
175	174	5	9	7.4	2622	PASS		
176	174	95	101	99.2	35144	PASS		
177	176	5	9	7.7	2704	PASS		

Data File	Sample Number	Analysis Date:
2M67519.D	BLK	05/31/11 07:22
2M67520.D	BLK	05/31/11 07:38
2M67522.D	CAL @ 1 PPB	05/31/11 08:14
2M67523.D	CAL @ 0.5 PPB	05/31/11 08:32
2M67524.D	CAL @ 5 PPB	05/31/11 08:50
2M67525.D	CAL @ 500 PPB	05/31/11 09:05
2M67526.D	CAL @ 250 PPB	05/31/11 09:21
2M67527.D	CAL @ 100 PPB	05/31/11 09:37
2M67528.D	CAL @ 50 PPB	05/31/11 09:53
2M67529.D	CAL @ 20 PPB	05/31/11 10:09 05/31/11 10:25
2M67530.D	CAL @ 10 PPB ICV	05/31/11 10:25
2M67531.D 2M67532.D	BLK	05/31/11 10:57
2M67532.D 2M67533.D	DAILY BLANK	05/31/11 11:14
2M67533.D 2M67534.D	DAILY BLANK	05/31/11 11:29
2M67535.D	MBS9751	05/31/11 11:45
2M67535.D 2M67536.D	MBS9752	05/31/11 12:01
2M67537.D	BLKJUG1	05/31/11 12:17
2M67538.D	AC59210-012(500X	05/31/11 12:33
2M67539.D	AC59210-008(200X	05/31/11 12:49
2M67540.D	AC59210-001(100X	05/31/11 13:05
2M67541.D	AC59210-014(100X	05/31/11 13:21
2M67542.D	AC59335-014(100X	05/31/11 13:37
2M67543.D	AC59335-005(100X	05/31/11 13:53
2M67544.D	AC59335-008	05/31/11 14:09
2M67545.D	AC59335-009(MS:	05/31/11 14:24
2M67546.D	AC59335-010(MSD	05/31/11 14:40
2M67547.D	AC59335-008	05/31/11 14:56
2M67548.D	AC59335-001	05/31/11 15:12
2M67549.D	BLK	05/31/11 15:28 05/31/11 15:44
2M67550.D	AC59335-002	05/31/11 15:44
2M67551.D	AC59335-003 AC59335-004	05/31/11 16:00
2M67552.D 2M67553.D	AC59335-004 AC59335-006	05/31/11 16:31
2M67554.D	AC59335-000 AC59335-007	05/31/11 16:47
2M67555.D	AC59335-007 AC59335-011	05/31/11 17:03
2M67556.D	AC59335-012	05/31/11 17:19
2M67557.D	AC59335-013	05/31/11 17:34
2M67558.D	AC59335-014(100X	05/31/11 17:50
2M67559.D	AC59210-001	05/31/11 18:06
2M67560.D	AC59210-002	05/31/11 18:22
2M67561.D	AC59210-006	05/31/11 18:37
2M67562.D	MBS9757	05/31/11 18:53
2M67563.D	STD	05/31/11 19:09
2M67564.D	STD	05/31/11 19:25
2M67565.D	BLK	05/31/11 19:40
2M67566.D	BLK	05/31/11 19:56
2M67567.D	MBS9758	05/31/11 20:12
2M67568.D	MBS9759	05/31/11 20:27
2M67569.D	AC59234-013	05/31/11 20:43 05/31/11 20:59
2M67570.D	AC59234-015 AC59302-001	05/31/11 20:59
2M67571.D	AC39302-001	03/3 // 11 21.14

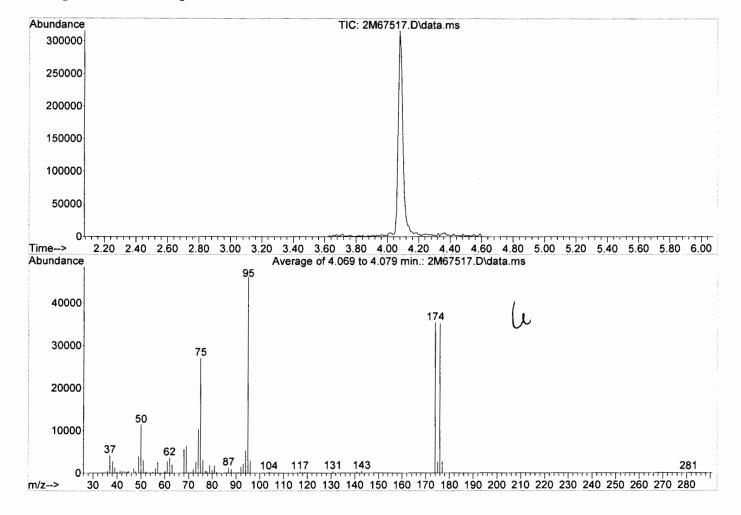
Data Path : G:\GcMsData\2011\GCMS 2\Data\05-31-11\

Data File : 2M67517.D

Acq On : 31 May 2011 6:41

Operator : WP

Sample : BFB TUNE Misc : A,5ML


ALS Vial : 40 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2011\GCMS_2\MethodQt\2M_A0429.M

Title : @GCMS_2,ug,624,8260

Last Update : Fri Apr 29 13:05:38 2011

Spectrum Information: Average of 4.069 to 4.079 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
Ī	50	95	15	40	24.7	11390	PASS
ĺ	75	95	30	60	58.6	27052	PASS
	95	95	100	100	100.0	46184	PASS
	96	95	5	9	6.2	2860	PASS
İ	173	174	0.00	2	0.0	0	PASS
j	174	95	50	100	76.7	35428	PASS
	175	174	5	9	7.4	2622	PASS
ĺ	176	174	95	101	99.2	35144	PASS
İ	177	176	5	9	7.7	2704	PASS
_	- -		. 	. 			

Form 5

Tune Name: BFB TUNE

Data File: 3M93514.D Instrument: GCMS 3
Analysis Date: 06/01/11 07:11
Method: EPA 8260B
Tune Scan/Time Range: Average of 4.418 to 4.448 min

Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
<u>Mass</u>	<u> Mass</u>	Lim	Lim	Abund	Abund	<u>Fail</u>
50	95	15	40	26.9	4773	PASS
75	95	30	60	54.1	9606	PASS
95	95	100	100	100.0	17746	PASS
96	95	5	9	6.9	1231	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	100	95.8	17003	PASS
175	174	5	9	6.0	1025	PASS
176	174	95	101	100.1	17024	PASS
177	176	5	9	5.8	991	PASS

Data File	Sample Number	Analysis Date:
3M93515.D	BLK	06/01/11 07:21 06/01/11 07:38
3M93516.D 3M93517.D	20 PPB CAL @ 20 PPB	06/01/11 07:38
3M93518.D	BLK	06/01/11 08:17
3M93519.D	DAILY BLANK	06/01/11 08:33
3M93520.D	DAILY BLANK	06/01/11 08:50
3M93521.D 3M93522.D	MBS9765 MBS9766	06/01/11 09:07 06/01/11 09:23
3M93523.D	BLKJUG#3	06/01/11 09:40
3M93524.D	BLKJUG#2	06/01/11 09:56
3M93525.D	AC59210-001	06/01/11 10:13 06/01/11 10:29
3M93526.D 3M93527.D	AC59335-011 AC59454-001	06/01/11 10:29
3M93528.D	BLKJUG2	06/01/11 11:02
3M93529.D	AC59335-012	06/01/11 11:19
3M93530.D	AC59335-013	06/01/11 11:35 06/01/11 11:52
3M93531.D 3M93532.D	AC59335-007 AC59335-006	06/01/11 11:32
3M93533.D	59335-014(100X)	06/01/11 12:27
3M93534.D	AC59210-002	06/01/11 12:46
3M93535.D	AC59210-006	06/01/11 13:02
3M93536.D 3M93537.D	AC59335-004(500X AC59210-014(500X	06/01/11 13:19 06/01/11 13:35
3M93538.D	59335-014(200X)	06/01/11 13:52
3M93539.D	AC59335-014(100X	06/01/11 14:08
3M93540.D	AC59305-005	06/01/11 14:24
3M93541.D 3M93542.D	AC59230-002(MS) AC59230-002(MSD	06/01/11 14:41 06/01/11 14:58
3M93543.D	BLK	06/01/11 15:14
3M93544.D	AC59305-005(T)	06/01/11 15:31
3M93545.D	EF-116576(6-1-11)	06/01/11 15:47 06/01/11 16:04
3M93546.D 3M93547.D	AC59456-001 AC59340-005(10X)	06/01/11 16:24
3M93548.D	AC59233-003(40uL	06/01/11 16:42
3M93549.D	BLK	06/01/11 16:58
3M93550.D	AC59454-001(MS) AC59454-001(MSD	06/01/11 17:15 06/01/11 17:31
3M93551.D 3M93552.D	AC59494-001(NISD AC59297-011(8uL)	06/01/11 17:49
3M93553.D	AC59297-020(8uL)	06/01/11 18:05
3M93554.D	AC59297-021(8uL)	06/01/11 18:22
3M93555.D	BLK BLK	06/01/11 18:38 06/01/11 18:55
3M93556.D 3M93557.D	BLK	06/01/11 19:11
3M93558.D	MBS9776	06/01/11 19:27
3M93559.D	AC59289-017	06/01/11 19:44
3M93560.D	AC59296-001 AC59296-002	06/01/11 20:00 06/01/11 20:17
3M93561.D 3M93562.D	AC59290-002 AC59304-001	06/01/11 20:33
3M93563.D	MBS9777	06/01/11 20:49
3M93564.D	AC59302-004	06/01/11 21:06
3M93565.D 3M93566.D	AC59289-001 AC59289-003	06/01/11 21:22 06/01/11 21:39
3M93567.D	AC59289-005	06/01/11 21:55
3M93568.D	AC59289-007	06/01/11 22:12
3M93569.D	AC59289-009	06/01/11 22:28 06/01/11 22:45
3M93570.D 3M93571.D	AC59289-011 AC59289-013	06/01/11 22:45
3M93571.D 3M93572.D	AC59289-015	06/01/11 23:18
3M93573.D	AC59289-020	06/01/11 23:34
3M93574.D	AC59304-002	06/01/11 23:50 06/02/11 00:10
3M93575.D 3M93576.D	AC59296-005(10X) AC59296-003(20X)	06/02/11 00:10
3M93577.D	AC59296-007(50X)	06/02/11 00:54
3M93578.D	AC59296-006(100X	06/02/11 01:15
3M93579.D	BLK	06/02/11 01:34

Form 5

Tune Name: BFB TUNE
Instrument: GCMS 3
Analysis Date: 06/01/11 07:11
Method: EPA 8260B
Tune Scan/Time Range: Average of 4.418 to 4.448 min

-		an Ime	vange.	Troinge	01 7.7 10 1	9 7. 7 70 111111	
	Tgt	Rel	Lo	Hi	Rel	Raw	Pass/
_	Mass	Mass	Lim	Lim	Abund	Abund	Fail
	50	95	15	40	26.9	4773	PASS
	75	95	30	60	54.1	9606	PASS
	95	95	100	100	100.0	17746	PASS
	96	95	5	9	6.9	1231	PASS
	173	174	0.00	2	0.0	0	PASS
	174	95	50	100	95.8	17003	PASS
	175	174	5	9	6.0	1025	PASS
	176	174	95	101	100.1	17024	PASS
	177	176	5	9	5.8	991	PASS

3M93580.D	BLK	06/02/11 01:51
3M93581.D	BLK	06/02/11 02:07
3M93582.D	BLK524	06/02/11 02:23

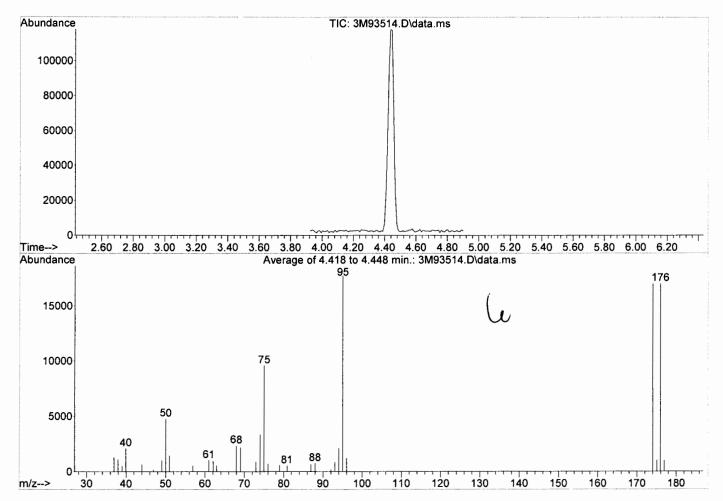
Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\

Data File: 3M93514.D

Acq On : 1 Jun 2011 7:11

Operator : WP

Sample : BFB TUNE Misc : A,5ML


ALS Vial : 4 Sample Multiplier: 1

Integration File: RTEINT.P

Method : G:\GcMsData\2011\GCMS_3\MethodQt\3M_A0526.M

Title : @GCMS_3,ug,624,8260

Last Update : Thu May 26 10:47:39 2011

Spectrum Information: Average of 4.418 to 4.448 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1	50	95	15	40	26.9	4773	PASS
1	75	95	30	60	54.1	9606	PASS
-	95	95	100	100	100.0	17746	PASS
İ	96	95	5	9	6.9	1231	PASS
İ	173	174	0.00	2	0.0	0	PASS
Ì	174	95	50	100	95.8	17003	PASS
ľ	175	174	5	9	6.0	1025	PASS
İ	176	174	95	101	100.1	17024	PASS
İ	177	176	5	9	5.8	991	PASS
٠,			'		•	•	

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 2M67534.D

Analysis Date: 05/31/11 11:29

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

*			Omis.	ug/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U		-		
				1			

R - Retention Time Out

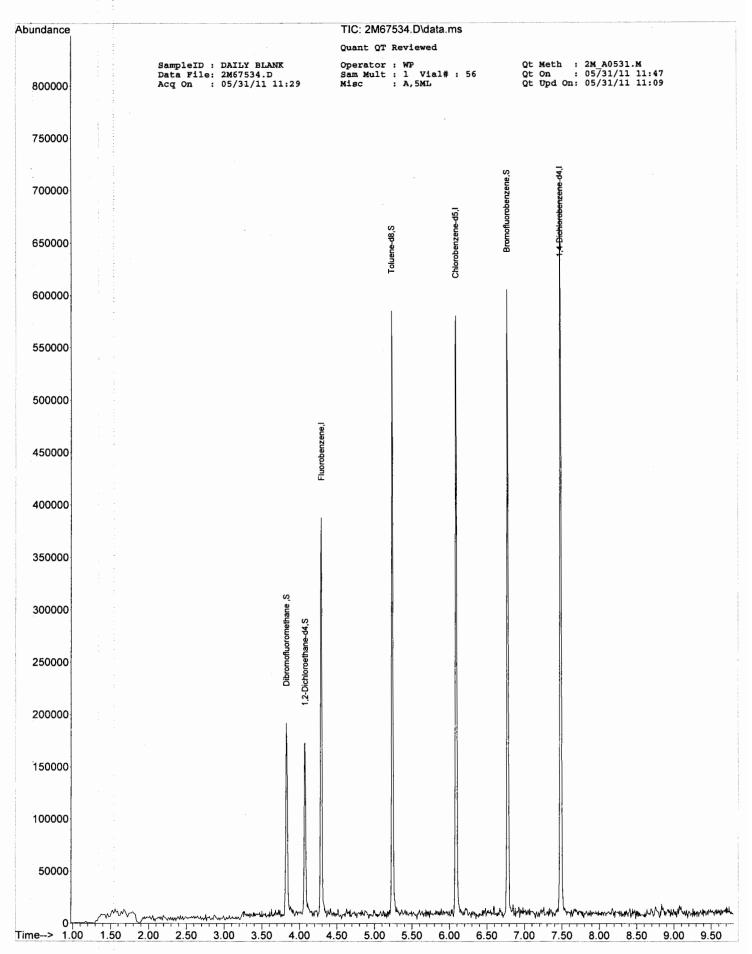
U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the specified detection limit. d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea


Operator : WP Sam Mult : 1 Vial# : 56 Misc : A,5ML Qt Meth : 2M_A0531.M Qt On : 05/31/11 11:47 Qt Upd On: 05/31/11 11:09 SampleID : DAILY BLANK Data File: 2M67534.D Acq On : 05/31/11 11:29

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response C	onc Ui	nits De	v(Min)
Internal Standards						
4) Fluorobenzene	4.290	96	205284	30.00	ug/l	-0.02
51) Chlorobenzene-d5	6.090	117	204744	30.00	ug/l	-0.02
69) 1,4-Dichlorobenzene-d4	7.481	152	132867	30.00	ug/l	-0.02
System Monitoring Compounds			•			
36) Dibromofluoromethane	3.827	111	75076	31.12	ug/l	-0.02
Spiked Amount 30.000			Recovery	=	103.73	8
38) 1,2-Dichloroethane-d4	4.074	67	40046	26.93	ug/l	-0.02
Spiked Amount 30.000			Recovery	=	89.77	'ቔ
65) Toluene-d8	5.236	98	225835	28.59	ug/l	-0.02
Spiked Amount 30.000			Recovery	=	95.30	1 %
75) Bromofluorobenzene	6.777	174	119803	30.37	ug/l	-0.02
Spiked Amount 30.000			Recovery	=	101.23	ક
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0531.M Thu Jun 09 14:37:35 2011 RPT1

Form1 ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M93520.D

Analysis Date: 06/01/11 08:50

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Ullits. u	g/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	75-00-3	Chloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	67-66-3	Chloroform	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	74-87-3	Chloromethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	110-82-7	Cyclohexane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	124-48-1	Dibromochloromethane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	100-41-4	Ethylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	98-82-8	Isopropylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	136777612	m&p-Xylenes	1.0	U
78-87-5	1,2-Dichloropropane	0.51	U	79-20-9	Methyl Acetate	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	10	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
75-27-4	Bromodichloromethane	0.61	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-25-2	Bromoform	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
74-83-9	Bromomethane	1.0	U	79-01-6	Trichloroethene	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
56-23-5	Carbon Tetrachloride	1.0	U	75-01-4	Vinyl Chloride	1.0	U
108-90-7	Chlorobenzene	1.0	U				

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

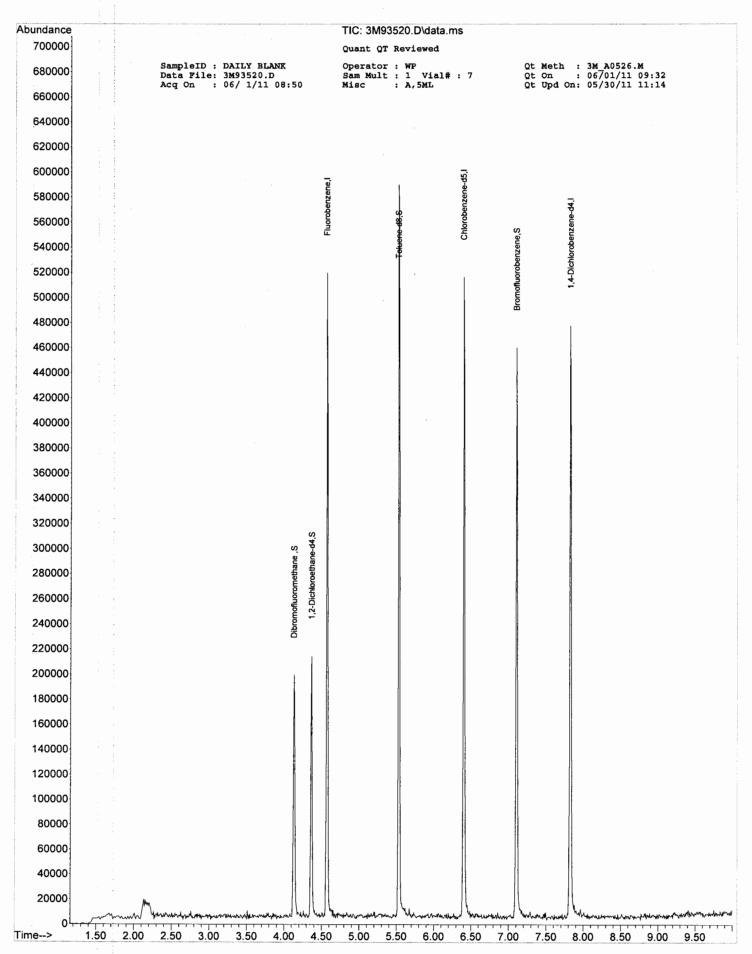
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

SampleID : DAILY BLANK
Data File: 3M93520.D
Acq On : 06/ 1/11 08:50

Target Compounds

ANK Operator :
D Sam Mult :

Operator : WP Sam Mult : 1 Vial# : 7 Misc : A,5ML Qt Meth : 3M_A0526.M Qt On : 06/01/11 09:32 Qt Upd On: 05/30/11 11:14


Qvalue

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\Qt Resp Via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
4) Fluorobenzene	4.568	96	267162	30.00	ug/l	0.00
51) Chlorobenzene-d5	6.401	117	214282	30.00	ug/l	0.00
69) 1,4-Dichlorobenzene-d4	7.825	152	132025	30.00	ug/l	0.00
System Monitoring Compounds 36) Dibromofluoromethane	4.130	111	85174	31.20		0.00
	4.130	TII			J.	0.00
Spiked Amount 30.000			Recove	- 4	104.00%	
38) 1,2-Dichloroethane-d4	4.364	67	50093	30.63	ug/l	0.00
Spiked Amount 30.000			Recove	ry =	102.10%	
65) Toluene-d8	5.530	98	260508	27.53	ug/l	0.00
Spiked Amount 30.000			Recove	ery =	91.77%	
75) Bromofluorobenzene	7.104	174	147660	30.89	ug/l	0.00
Spiked Amount 30.000			Recove	ery =	102.97%	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

الہ

Form3 **Recovery Data** QC Batch: MBS9752

Data File

Sample ID:

MBS9752

Analysis Date

Spike or Dup: 2M67536.D.

5/31/2011 12:01:00 PM

Non Spike(If applicable): Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

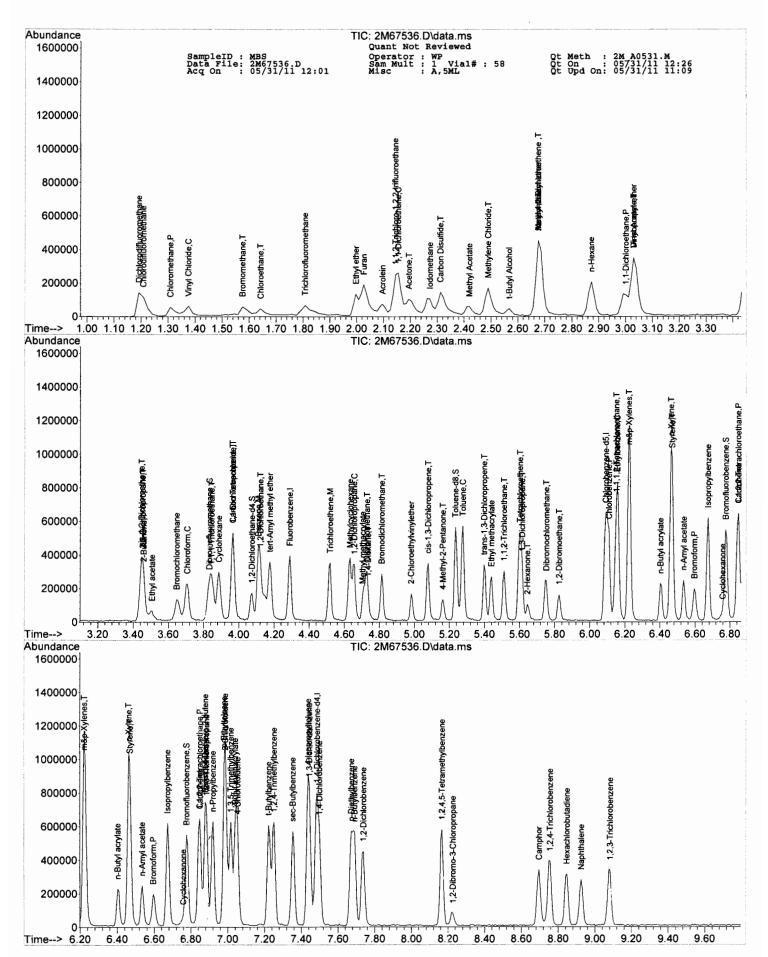
QC Type: MBS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	17.6423	0	20	88	21	137	0	0
1,1-Dichloroethene	1	16.7765	0	20	84	21	133	0	0
1,1-Dichloroethane	1	17.1693	0	20	86	44	134	0	0
Chloroform	1	18.4016	0	20	92	40	148	0	0
1,2-Dichloroethane	1	20.0775	0	20	100	43	144	0	0
2-Butanone	1	19.4944	0	20	97	25	157	0	0
Carbon Tetrachloride	1	20.1708	0	20	101	42	146	0	0
Trichloroethene	1	19.1628	0	20	96	46	127	0	0
Benzene	1	18.0054	0	20	90	49	135	0	0
Tetrachloroethene	1	21.2587	0	20	106	42	138	0	0
Toluene	1	19.0599	0	20	95	53	129	0	0
Chlorobenzene	1	21.3921	0	20	107	51	129	0	0
1,4-Dichlorobenzene	1	20.1786	0	20	101	45	128	0	0
1,2-Dichlorobenzene	1	19.8654	0	20	99	50	126	0	0
n-Propylbenzene	1	17.1169	0	20	86	45	135	0	0
sec-Butylbenzene	1	18.3385	0	20	92	43	123	0	0

SampleID : MBS Data File: 2M67536.D Acq On : 05/31/11 12:01 Operator : WP Sam Mult : 1 Vial# : 58 Misc : A,5ML Qt Meth : 2M_A0531.M Qt On : 05/31/11 12:26 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration

c Kesp	via : initial Calibration						
				Response	Conc Units	Bev(M	in)
T							
	ernal Standards		0.6	205025	20 00	/1 0	00
	Fluorobenzene Chlorobenzene-d5	4.290 6.090	96 117	205087	30.00 ug, 30.00 ug,		.02 .02
	1,4-Dichlorobenzene-d4	7.486	152	199568 131306	30.00 ug		.02
031	1,4-Dichiolobenzene-d4	7.400	152	131300	30.00 ug/	1 -0	.02
Syst	em Monitoring Compounds						
	Dibromofluoromethane	3.832	111	79364	32.93 ug	/1 -0	.02
-	oiked Amount 30.000	0.002		Recove		9.77%	
	1,2-Dichloroethane-d4	4.073	67	40805	27.46 ug		.02
	piked Amount 30.000			Recove		1.53%	
65 ⁾	Toluene-d8	5.235	98	227551	29.56 ug	/1 -0	.02
Sp	oiked Amount 30.000			Recove	ery = 98	₿.53%	
75)	Bromofluorobenzene	6.776	174	111337	28.56 ug,		.02
Sp	piked Amount 30.000			Recove	ery = 9!	5.20%	
						_	
	get Compounds						value
	Chlorodifluoromethane	1.209		146347	26.6054	ug/l	88
	Dichlorodifluoromethane	1.192	85	74208	16.5247	ug/l	89
-	Chloromethane	1.309	50	67960	16.5459	ug/l	82
	Bromomethane	1.575	94	33178 57219	18.8339	ug/l	82 94
	Vinyl Chloride Chloroethane	1.376	62 64		17.6423	ug/l ug/l	82
	Trichlorofluoromethane	1.642 1.809		31799 84203	20.1974 21.4960	ug/l	81
	Ethyl ether	1.997	59	54335	20.3397	ug/l	87
	Furan	2.027	39	150266	21.5231	ug/l	98
	1,1,2-Trichloro-1,2,2	2.145	101	59188	20.4804	ug/l	93
	Methylene Chloride	2.489	84	62026	17.0459	ug/l	97
	Acrolein	2.096	56	47800	88.9307	ug/l	90
-	Acrylonitrile	2.676	53	23438	18.7293	ug/l	83
	Iodomethane	2.273		114445	18.3652	ug/l	97
	Acetone	2.194	43	95215	92.1737	ug/l	94
20)	Carbon Disulfide	2.312	76	201853	19.7430	ug/l	100
21)	t-Butyl Alcohol	2.568	59	28395	82.4338	ug/l	87
22)	n-Hexane	2.873	57	73962	22.4827	ug/l	69
	Di-isopropyl-ether	3.030	45	216640	17.6430	ug/l	98
	1,1-Dichloroethene	2.155	61	100575	16.7765	ug/l	93
	Methyl Acetate	2.420	43	70457	23.2597	ug/l	100
	Methyl-t-butyl ether	2.676	73	170580	17.1373	ug/l	64
	1,1-Dichloroethane	3.001	63	117372	17.1693	ug/l	95
	trans-1,2-Dichloroethene	2.676	96	61276	19.4391	ug/l	93
	cis-1,2-Dichloroethene	3.447	61 49	115778	18.8346	ug/l	95 76
	Bromochloromethane 2,2-Dichloropropane	3.646 3.453	77	56517 102832	19.2117 23.4805	ug/l ug/l	98
	Ethyl acetate	3.507	43	49345	15.1720	ug/l	99
	1,4-Dioxane	4.735	88	31553	990.8517	ug/l	92
		3.965	75	87997	19.0973	ug/l	97
	Chloroform	3.706	83	118311	18.4016	ug/l	88
	Cyclohexane	3.886	56	88274	19.0438	ug/l	99
	1,2-Dichloroethane	4.121	62	114616	20.0775	ug/l	86
40)	2-Butanone	3.459	43	26943	19.4944	ug/l	71
41)	1,1,1-Trichloroethane	3.844	97	108983	20.4581	ug/l	92
42)	Carbon Tetrachloride	3.965	117	89669	20.1708	ug/l	88
	Vinyl Acetate	3.030	43	165917	12.5466	ug/l	100
	Bromodichloromethane	4.813	83	100456	17.7413	ug/l	100
	Methylcyclohexane	4.633	83	86629	21.7904	ug/l	94
	Dibromomethane	4.729	174	57242	19.2119	ug/l	96
47)	· · · · · · · · · · · · · · · · · · ·	4.657	63	66499	19.7718	ug/l	87
48)		4.518	130	66541	19.1628	ug/l	95
,	Benzene	4.109	78	215800	18.0054	ug/l	100
	tert-Amyl methyl ether	4.175	73	170410 59714	18.9545	ug/l	71 95
	Methyl methacrylate Dibromochloromethane	4.705 5.752	41 129	80555	17.0370 17.7016	ug/l ug/l	95
55)		4.982	63	39546	18.2365	ug/l	79
	cis-1,3-Dichloropropene	5.078	75	104530	17.4602	ug/l	88
-	trans-1,3-Dichloropropene	5.397	75	105259	17.3981	ug/l	98
	Ethyl methacrylate	5.439	41	63776	16.5546	ug/l	74
	1,1,2-Trichloroethane	5.512	97	52656	17.832€	ug/l	91
	1,2-Dibromoethane	5.825	107	65764	17.6810	ug/l	75
61)		5.614	76	102864	20.2788	ug/l	93
	4-Methyl-2-Pentanone	5.163	43	59993	16.6236	ug/l	96
	2-Hexanone	5.644	43	41939	16.5810	ug/l	90
	Tetrachloroethene	5.602	164	61663	21.2587	ug/l	83
66)	Toluene	5.277	92	141941	19.0599	ug/l	95
67)		6.150	133	65444	22.1456	ug/l	67
68)	Chlorobenzene	6.108	112	164730	21.3921	ug/l	97
	1,50						


Quantitation Report (Not Reviewed)

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Mi	n)
	n-Butyl acrylate	6.403	55	106458	14.3566	ug/l	9,6
71)	n-Amyl acetate	6.535	43	100565	13.6469	ug/l	91
72)	Bromoform	6.595	173	60168	15.9205	ug/l	81
73)	Ethylbenzene	6.156	106	65872	19.301Ì	ug/l	95
74)	1,1,2,2-Tetrachloroethane	6.848	83	71331	17.2417	ug/l	92
76)	Styrene	6.469	104	167377	17.7712	ug/l	95
77)	m&p-Xylenes	6.222	106	200747	35.9252	ug/l	100
78)	o-Xylene	6.463	106	100948	17.9070	ug/l	87
79)	trans-1,4-Dichloro-2-b	6.878	53	26312	18.3550	ug/l	34
80)	1,3-Dichlorobenzene	7.444	146	140311	21.7656	ug/l	92
81)	1,4-Dichlorobenzene	7.498	146	138877	20.1786	ug/l	94
82)	1,2-Dichlorobenzene	7.739	146	132745	19.8654	ug/l	92
83)	Isopropylbenzene	6.673	105	252026	17.0876	ug/l	95
84)	Cyclohexanone	6.758	55	13330	93.7063	ug/l	86
85)	Camphene	6.848	93	89747	18.9281	ug/l	97
86)	1,2,3-Trichloropropane	6.884	75	100258	18.7898	ug/l	88
87)	2-Chlorotoluene	6.987	91	189194	18.7242	ug/l	96
88)	p-Ethyltoluene	6.980	105	288564	19.4101	ug/l	82
89)	4-Chlorotoluene	7.053	91	163136	19.5218	ug/1	93
90)	n-Propylbenzene	6.920	91	324899	17.1169	ug/l	96
91)	Bromobenzene	6.878	77	153238	20.4095	ug/l	88
92)	1,3,5-Trimethylbenzene	7.017	105	232864	22.0264	ug/l	94
93)	Butyl methacrylate	7.041	41	98977	14.9387	ug/l	60
94)	t-Butylbenzene	7.221	119	214186	18.2225	ug/l	92
95)	1,2,4-Trimethylbenzene	7.251	105	246840	21.4685	ug/l	93
96)	sec-Butylbenzene	7.354	105	269025	18.3385	ug/l	100
97)	4-Isopropyltoluene	7.438	119	233357	20.0361	ug/l	93
98)	n-Butylbenzene	7.691	91	261465	20.5750	ug/l	96
99)	p-Diethylbenzene	7.673	119	115840	18.7188	ug/l	92
100)	1,2,4,5-Tetramethylben	8.166	119	223901	20.1449	ug/l	94
101)	1,2-Dibromo-3-Chloropr	8.227	157	15573	14.9439	ug/l	80
102)	Camphor	8.696	95	60327	148.5962	ug/l	93
103)	Hexachlorobutadiene	8.847	225	54435	19.6206	ug/l	98
104)	1,2,4-Trichlorobenzene	8.756	180	98766	21.3233	ug/l	95
105)	1,2,3-Trichlorobenzene	9.081	180	82484	19.7762	ug/l	94
106)	Naphthalene	8.925	128	164329	16.2532	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0531.M Mon Jun 13 07:32:16 2011 SYSTEM1

Form3 **Recovery Data** QC Batch: MBS9766

Data File Spike or Dup: 3M93522.D Sample ID: MBS9766

Analysis Date 6/1/2011 9:23:00 AM

Non Spike(If applicable):

Inst Blank(If applicable): Method: 8260

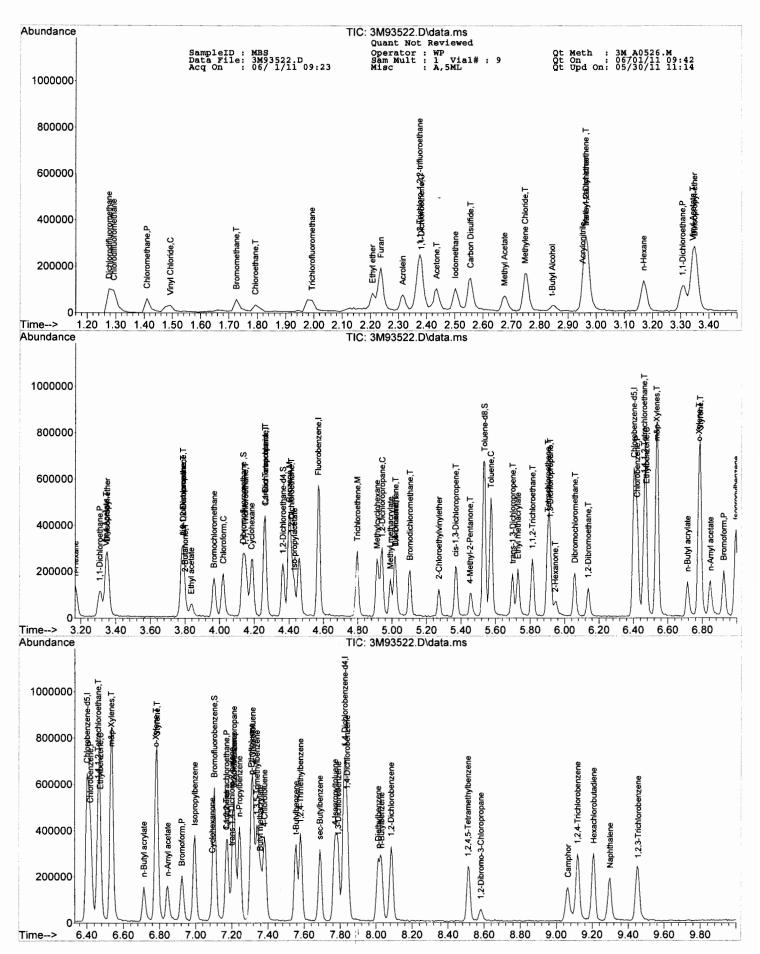
Matrix: Aqueous

QC Type: MBS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Uppe
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	17.3	0	20	86	21	137	0	0
1,1-Dichloroethene	1	20.9449	0	20	105	21	133	0	0
1,1-Dichloroethane	1	20.8688	0	20	104	44	134	0	0
Chloroform	1	20.1448	0	20	101	40	148	0	0
1,2-Dichloroethane	1	17.2105	0	20	86	43	144	0	0
2-Butanone	1	21.6047	0	20	108	25	157	0	0
Carbon Tetrachloride	1	24.5797	0	20	123	42	146	0	0
Trichloroethene	1	22.0153	0	20	110	46	127	0	0
Benzene	1	21.5882	0	20	108	49	135	0	0
Tetrachloroethene	1	21.6652	0	20	108	42	138	0	0
Toluene	1	21.035	0	20	105	53	129	0	0
Chlorobenzene	1	21.5409	0	20	108	51	129	0	0
1,4-Dichlorobenzene	1	20.0335	0	20	100	45	128	0	0
1,2-Dichlorobenzene	1	16.4304	0	20	82	50	126	0	0
n-Propylbenzene	1	18.9243	0	20	95	45	135	0	0
sec-Butylbenzene	1	18.8634	0	20	94	43	123	0	0

Operator : WP Sam Mult : 1 Vial# : 9 Misc : A,5ML Qt Meth : 3M_A0526.M Qt On : 06/01/11 09:42 Qt Upd On: 05/30/11 11:14 SampleID : MBS Data File: 3M93522.D Acq On : 06/ 1/11 09:23

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\Qt Resp Via : Initial Calibration


, C 10	CSP	via . initial calibration						
		Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
		rnal Standards						
	4)	Fluorobenzene	4.568	96	299329	30.00 ug/	1 (0.00
	51)	Chlorobenzene-d5	6.401			30.00 ug/	1 (0.00
		1,4-Dichlorobenzene-d4	7.825	152	169566	30.00 ug/	1	0.00
_								
		em Monitoring Compounds	4 136	111	02042	20 42 20	/a ·	0 00
		Dibromofluoromethane iked Amount 30.000	4.136	111	93043 Recove	30.42 ug/ ery = 101		0.00
		1,2-Dichloroethane-d4	4.364	67	56426	30.79 ug/		0.00
		iked Amount 30.000		•		ery = 102		
		Toluene-d8	5.536	98	310835	28.91 ug/		0.00
		iked Amount 30.000			Recove	•	.37%	
		Bromofluorobenzene	7.104	174	182052	29.65 ug/		0.00
	Sp.	iked Amount 30.000			Recove	ery = 98	1.83₺	
T	ard	et Compounds						Qvalue
-		Chlorodifluoromethane	1.293	51	98688	21.2284	ug/l	
		Dichlorodifluoromethane	1.276		61810	17.6965	ug/l	88
	7)	Chloromethane	1.410	50	57649	18.6433	ug/l	77
	8)	Bromomethane	1.726	94	24888	18.6965	ug/l	
		Vinyl Chloride	1.493		33916	17.3000	ug/l	
		Chloroethane	1.793		20956	22.9146	ug/l	
		Trichlorofluoromethane	1.993		55879	21.1006	ug/l	86
		Ethyl ether Furan	2.207		22917 100767	20.0158 30.5317	ug/l ug/l	89 87
		1,1,2-Trichloro-1,2,2			40101	22.5347	ug/l	
		Methylene Chloride	2.748		50402	19.9349	ug/l	85
		Acrolein	2.315		41644	83.0872	ug/l	100
	17)	Acrylonitrile	2.952	53	17825	15.2397	ug/l	98
	18)	Iodomethane	2.501		72209	29.9592	ug/l	95
		Acetone	2.435		84992	93.5237	ug/l	96
		Carbon Disulfide	2.555	76	151718	34.9153	ug/l	100
		t-Butyl Alcohol n-Hexane	2.844 3.168		7094 39228	46.9246 18.4305	ug/l ug/l	91 82
		Di-isopropyl-ether	3.349		161016	18.4655	ug/l	84
		1,1-Dichloroethene	2.381		80147	20.9449	ug/l	96
		Methyl Acetate	2.676		68845	20.8627	ug/l	100
		Methyl-t-butyl ether	2.964		53659	14.1162	ug/l	73
	27)	1,1-Dichloroethane	3.307	63	93463	20.8688	ug/l	92
		trans-1,2-Dichloroethene	2.964		44282	21.8535	ug/l	94
		cis-1,2-Dichloroethene	3.787		87514	22.4180	ug/l	88
		Bromochloromethane	3.968 3.787		59103 42143		ug/l ug/l	72 93
		2,2-Dichloropropane Ethyl acetate	3.835		40911	11.9753	ug/l	95
		1,4-Dioxane	5.019			607.0511	ug/l	73
		1,1-Dichloropropene	4.262		74010	24 4622	ug/l	95
		Chloroform	4.022		93642	20.1448	ug/l	82
:	37)	Cyclohexane	4.184		77521	22.6519	ug/l	86
		1,2-Dichloroethane	4.412	62	89876	17.2105	ug/l	94
		2-Butanone	3.799		29454	21.6047		98
		1,1,1-Trichloroethane Carbon Tetrachloride	4.148 4.262	97 117	71109 73245	21.6625 24.5797	ug/l ug/l	100 97
		Vinyl Acetate	3.343	43	125759	22.1155	ug/l	100
		Bromodichloromethane	5.103	83	83516	21.2601	ug/l	93
		Methylcyclohexane	4.911	83	53576	21.6761	ug/l	95
	46)	Dibromomethane	5.019	174	60011	20.8018	ug/l	96
		1,2-Dichloropropane	4.941	63	63615	20.7615	ug/l	100
		Trichloroethene	4.797	130	59621	22.0153	ug/l	95
		Benzene	4.400	78	209760	21.5882	ug/l	100
		Iso-propylacetate Methyl methacrylate	4.430 4.989	43 41	67770 47315	8.7245 10.8870	ug/l ug/l	78 85
		Dibromochloromethane	6.059	129	71059	18.8113	ug/1	99
		2-Chloroethylvinylether	5.271	63	30113	11.8543	ug/l	78
		cis-1,3-Dichloropropene	5.368	75	72323	14.8209	ug/l	85
		trans-1,3-Dichloropropene		75	59211	13.1759	ug/l	99
		Ethyl methacrylate	5.728	41	55185	12.5307	ug/l	83
		1,1,2-Trichloroethane	5.812	97	51620	18.5927	ug/l	87
		1,2-Dibromoethane	6.137	107	58272	17.4060	ug/l	78
		1,3-Dichloropropane	5.914 5.452	76 43	92966 56741	19.1073 10.5389	ug/l ug/l	99 100
		4-Methyl-2-Pentanone 2-Hexanone	5.452	43	36690	9.4599	ug/l	97
		Tetrachloroethene	5.902	164	62813	21.6652	ug/l	96
	66)		5.572	92	134972	21.0350	ug/l	96
	67)	1,1,1,2-Tetrachloroethane	6.461	133	56751	21.5077	ug/l	69
	68)	Chlorobenzene	6.419	112	157309	21.5409	ug/l	95
		1	al .					

Data Path : G:\GcMsData\2011\GCMS_3\Data\06-01-11\Qt Path : G:\GcMsData\2011\GCMS_3\MethodQt\

Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min	.)
70)	n-Butyl acrylate	6.714	55	71545	9.3294	ug/l	99
71)	n-Amyl acetate	6.846	43	64224	8.8395	ug/l	77
72)	Bromoform	6.924	173	72478	16.9222	ug/l	99
73)	Ethylbenzene	6.473	106	55648	17.6045	ug/l	75
74)	1,1,2,2-Tetrachloroethane	7.170	83	69752	17.2270	ug/l	87
76)	Styrene	6.786	104	143270	16.6723	ug/l	95
77)	m&p-Xylenes	6.533	106	178117	44.1640	ug/l	85
78)	o-Xylene	6.780	106	89289	22.1363	ug/l	81
79)	trans-1,4-Dichloro-2-b	7.200	53	30882	16.3232	ug/l	86
80)	1,3-Dichlorobenzene	7.789	146	134440	20.4439	ug/l	80
81)	1,4-Dichlorobenzene	7.837	146	140085	20.0335	ug/l	88
82)	1,2-Dichlorobenzene	8.084	146	129674	16.4304	ug/l	79
83)	Isopropylbenzene	6.996	105	181617	18.6205	ug/l	91
84)		7.092	55	7038	45.2957	ug/l	79
85)	Camphene	7.170	93	40441	17.6027	ug/l	93
86)	1,2,3-Trichloropropane	7.212	75	68690	16.7341	ug/l	92
87)	2-Chlorotoluene	7.315	91	125424	20.6420	ug/l	91
88)	p-Ethyltoluene	7.309	105	205461	20.2401	ug/l	86
89)	4-Chlorotoluene	7.381	91	125157	20.7204	ug/l	87
90)	n-Propylbenzene	7.242	91	227180	18.9243	ug/l	91
91)	Bromobenzene	7.212	77	121407	18.5973	ug/l	70
92)	1,3,5-Trimethylbenzene	7.339	105	154699	17.0719	ug/l	85
93)	Butyl methacrylate	7.357	41	65754	13.6699	ug/l	77
94)	t-Butylbenzene	7.555	119	145043	20.1654	ug/l	76
95)	1,2,4-Trimethylbenzene	7.579	105	168466	20.2459	ug/l	87
96)	sec-Butylbenzene	7.687	105	167278	18.8634	ug/l	96
97)	4-Isopropyltoluene	7.771	119	132445	20.1005	ug/l	86
98)	n-Butylbenzene	8.030	91	137659	18.0149	ug/l	88
99)	p-Diethylbenzene	8.012	119	64063	17.2386	ug/l	80
100)	1,2,4,5-Tetramethylben	8.510	119	113218	16.9944	ug/l	82
101)	1,2-Dibromo-3-Chloropr	8.582	157	16054	12.1637	ug/l	44
102)	Camphor	9.063	95	36251	112.6416	ug/l	89
103)	Hexachlorobutadiene	9.207	225	72097	20.5180	ug/l	93
104)	1,2,4-Trichlorobenzene	9.117	180	115286	16.0599	ug/l	90
	1,2,3-Trichlorobenzene	9.454	180	104892	16.9814	ug/l	94
106)	Naphthalene	9.298	128	145314	15.0776	ug/l	100
							-

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

3M A0526.M Mon Jun 13 07:32:23 2011 SYSTEM1

Page: 1

Form3 RPD DATA

QC Batch: MBS9752

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M67546.D

AC59335-010(MSD:AC59335-0 5/31/2011 2:40:00 PM

Duplicate(If applicable): 2M67545.D Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

QC Type: MSD

AC59335-009(MS:AC59335-008 5/31/2011 2:24:00 PM

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Vinyl Chloride	1	19.8718	17.5962	12	30
1,1-Dichloroethene	1	17.706	15.3117	15	34
1,1-Dichloroethane	1	18.1965	16.1815	12	30
Chloroform	1	19.9538	18.2421	9	- 37
1,2-Dichloroethane	1	20.6679	19.1344	7.7	34
2-Butanone	1	17.8748	14.9976	18	47
Carbon Tetrachloride	1	23.3845	21.6307	7.8	32
Trichloroethene	1	19.7485	18.6037	6	30
Benzene	1	18.6579	16.0642	15	29
Tetrachloroethene	1	22.8859	19.7196	15	27
Toluene	1	18.9866	17.1651	10	33
Chlorobenzene	1	20.4274	19.0123	7.2	30
1,4-Dichlorobenzene	1	18.9918	18.0826	4.9	30
1,2-Dichlorobenzene	1	19.1747	18.0073	6.3	34
n-Propylbenzene	1	16.9134	15.289	10	32
sec-Butylbenzene	1	17.3783	15.7195	10	33

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

Form3 Recovery Data QC Batch: MBS9752

Data File

Sample ID:

AC59335-008

Analysis Date

Spike or Dup: 2M67545.D Non Spike(If applicable): 2M67547.D

AC59335-009(MS:AC59335-008

5/31/2011 2:24:00 PM 5/31/2011 2:56:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

QC Type: MS

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	17.5962	0	20	88	21	137	0	0
1,1-Dichloroethene	1	15.3117	0	20	77	21	133	0	0
1,1-Dichloroethane	1	16.1815	0	20	81	44	134	0	0
Chloroform	1	18.2421	0	20	91	40	148	0	0
1,2-Dichloroethane	1	19.1344	0	20	96	43	144	0	0
2-Butanone	1	14.9976	0	20	75	25	157	0	0
Carbon Tetrachloride	1	21.6307	0	20	108	42	146	0	0
Trichloroethene	1	18.6037	0	20	93	46	127	0	0
Benzene	1	16.0642	0	20	80	49	135	0	0
Tetrachloroethene	1	19.7196	0	20	99	42	138	0	0
Toluene	1	17.1651	0	20	86	53	129	0	0
Chlorobenzene	1	19.0123	0	20	95	51	129	0	0
1,4-Dichlorobenzene	1	18.0826	0	20	90	45	128	0	0
1,2-Dichlorobenzene	1	18.0073	0	20	90	50	126	0	0
n-Propylbenzene	1	15.289	0	20	76	45	135	0	0
sec-Butylbenzene	1	15.7195	0	20	79	43	123	0	0

Data File

Spike or Dup: 2M67546.D Non Spike(If applicable): 2M67547.D Sample ID:

AC59335-008

AC59335-010(MSD:AC59335-0

Analysis Date

5/31/2011 2:40:00 PM 5/31/2011 2:56:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

QC Type: MSD

		Spike	Sample	Expected		Lower	Upper	ME Low	ME Uppe
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit	Limit	Limit
Vinyl Chloride	1	19.8718	0	20	99	21	137	0	0
1,1-Dichloroethene	1	17.706	0	20	89	21	133	0	0
1,1-Dichloroethane	1	18.1965	0	20	91	44	134	0	0
Chloroform	1	19.9538	0	20	100	40	148	0	0
1,2-Dichloroethane	1	20.6679	0	20	103	43	144	0	0
2-Butanone	1	17.8748	0	20	89	25	157	0	0
Carbon Tetrachloride	1	23.3845	0	20	117	42	146	0	0
Trichloroethene	1	19.7485	0	20	99	46	127	0	0
Benzene	1	18.6579	0	20	93	49	135	0	0
Tetrachloroethene	1	22.8859	0	20	114	42	138	0	0
Toluene	1	18.9866	0	20	95	53	129	0	0
Chlorobenzene	1	20.4274	0	20	102	51	129	0	0
1,4-Dichlorobenzene	1	18.9918	0	20	95	45	128	0	0
1,2-Dichlorobenzene	1	19.1747	0	20	96	50	126	0	0
n-Propylbenzene	1	16.9134	0	20	85	45	135	0	0
sec-Butylbenzene	1	17.3783	0	20	87	43	123	0	0

Form3 RPD DATA

QC Batch: MBS9752

Data File

Sample ID:

Analysis Date

Spike or Dup: 2M67546.D

AC59335-010(MSD:AC59335-0 5/31/2011 2:40:00 PM

Duplicate(If applicable): 2M67545.D

AC59335-009(MS:AC59335-008 5/31/2011 2:24:00 PM

Inst Blank(If applicable):

Method: 8260

Matrix: Aqueous

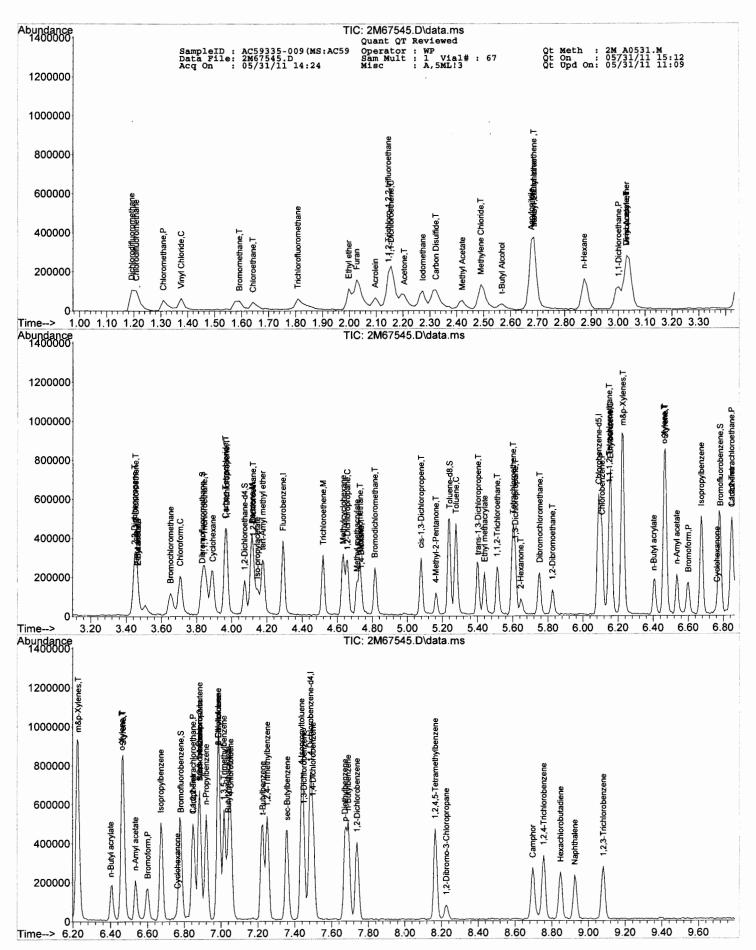
QC Type: MSD

	•	Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Vinyl Chloride	1	19.8718	17.5962	12	30
1,1-Dichloroethene	1	17.706	15.3117	15	34
1,1-Dichloroethane	1	18.1965	16.1815	12	30
Chloroform	1	19.9538	18.2421	9	37
1,2-Dichloroethane	1	20.6679	19.1344	7.7	34
2-Butanone	1	17.8748	14.9976	18	47
Carbon Tetrachloride	1	23.3845	21.6307	7.8	32
Trichloroethene	1	19.7485	18.6037	6	30
Benzene	1	18.6579	16.0642	15	29
Tetrachloroethene	1	22.8859	19.7196	15	27
Toluene	1	18.9866	17.1651	10	33
Chlorobenzene	1	20.4274	19.0123	7.2	30
1,4-Dichlorobenzene	1	18.9918	18.0826	4.9	30
1,2-Dichlorobenzene	1	19.1747	18.0073	6.3	34
n-Propylbenzene	1	16.9134	15.289	10	32
sec-Butylbenzene	1	17.3783	15.7195	10	33

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

Qt Meth : 2M_A0531.M Qt On : 05/31/11 15:12 Qt Upd On: 05/31/11 11:09


•						
Compound	R.T.	QIon	Response	Conc Units	Dev(M	in)
Internal Standards						
4) Fluorobenzene	4.290	96	188910	30.00 ug/	/1 -0	.02
51) Chlorobenzene-d5	6.090	117	184032	30.00 ug/	/1 -0	.02
69) 1,4-Dichlorobenzene-d4	7.486	152	124435	30.00 ug/	/1 -0	.02
System Monitoring Compounds						
36) Dibromofluoromethane	3.832	111	70486	31.75 ug/	/1 -0	.02
Spiked Amount 30.000			Recove	ery = 105	5.83%	
38) 1,2-Dichloroethane-d4	4.073	67	42204	30.84 ug/	/1 -0	.02
Spiked Amount 30.000			Recove	ery = 102	2.80%	
65) Toluene-d8	5.241	98	199836	28.15 ug/	/1 -0	.01
Spiked Amount 30.000			Recove	ery = 93	3.83%	
75) Bromofluorobenzene	6.782	174		29.82 ug/		.02
Spiked Amount 30.000			Recove	ery = 99	9.40%	
Target Compounds					Q	value
Chlorodifluoromethane	1.209	51	114859	22.6691	ug/l	.91
Dichlorodifluoromethane	1.192	85	61277	14.8137	ug/l	85
7) Chloromethane	1.309	50	61892	16.3589	ug/l	84
Bromomethane	1.592	94	35929	22.1421	ug/l	93
9) Vinyl Chloride	1.376	62	52568	17.5962	ug/l	90
10) Chloroethane	1.642	64	32066	22.1110	ug/l	88
 Trichlorofluoromethane 	1.809	101	73578	20.3921	ug/l	96
12) Ethyl ether	1.998	59	45140	18.3446	ug/l	83
13) Furan	2.027	39	133432	20.7485	ug/l	95
14) 1,1,2-Trichloro-1,2,2			50499	18.9702	ug/l	90
15) Methylene Chloride	2.490	84	56368	16.8175	ug/1	92
16) Acrolein	2.096	56	41728	84.2819	ug/l	92
17) Acrylonitrile	2.677		18324	15.8966	ug/1	66
18) Iodomethane	2.273		102088	17.7851	ug/l	93
19) Acetone	2.204		79524	83.5763	ug/1	94
20) Carbon Disulfide	2.322	76	165042	17.5249	ug/l	100
	2.568	59	22432	70.6992	ug/l	99
21) t-Butyl Alcohol		57		18.1979	ug/l	75
22) n-Hexane	2.873		55144			97
23) Di-isopropyl-ether	3.031	45	181025	16.0050	ug/l	
24) 1,1-Dichloroethene	2.155	61	84553	15.3117	ug/l	97
25) Methyl Acetate	2.421		54860	19.6616	ug/l	100
26) Methyl-t-butyl ether	2.686	73	142408	15.5322	ug/1	67
27) 1,1-Dichloroethane	3.001	63	101894	16.1815	ug/l	92
28) trans-1,2-Dichloroethene	2.686	96	54622	18.8121	ug/l	88
29) cis-1,2-Dichloroethene	3.453		97331	17.1896	ug/l	94
30) Bromochloromethane	3.652	49	43810	16.1675	ug/l	87
31) 2,2-Dichloropropane	3.447	77	90199	22.3596	ug/l	98
32) Ethyl acetate	3.465	43	19093	6.3732	ug/l	65
33) 1,4-Dioxane	4.735	88	25220	859.7977	ug/l	94
34) 1,1-Dichloropropene	3.971	75	76710	18.0733	ug/l	96
35) Chloroform	3.706	83	108034	18.2421	ug/l	94
37) Cyclohexane	3.892	56	72913	17.0769	ug/l	95
39) 1,2-Dichloroethane	4.121	62	100616	19.1344	ug/l	97
40) 2-Butanone	3.465	43	19093	14.9976	ug/l	75
41) 1,1,1-Trichloroethane	3.844	97	95787	19.5207	ug/l	94
42) Carbon Tetrachloride	3.965	117	88574	21.6307	ug/l	89
43) Vinyl Acetate	3.031	43	139393	11.4435	ug/l	100
44) Bromodichloromethane	4.813	83	86655	16.6145	ug/l	94
45) Methylcyclohexane	4.633	83	67725	18.4942	ug/l	97
46) Dibromomethane	4.729	174	53388	19.4528	ug/l	92
47) 1,2-Dichloropropane	4.657	63	50777	16.3901	ug/l	92
48) Trichloroethene	4.519	130	59504	18.6037	ug/l	97
45) Benzene	4.115	78	177347	16.0642	ug/l	100
50) tert-Amyl methyl ether	4.175	73	137394	16.5909	ug/l	71
52) Iso-propylacetate	4.145	43	82987m	12.9594	ug/l	
53) Methyl methacrylate	4.711	41	42128	13.0343	ug/l	90
54) Dibromochloromethane	5.753	129	69024	16.4482	ug/l	99
56) cis-1,3-Dichloropropene	5.078	75	83960	15.2082	ug/l	88
57) trans-1,3-Dichloropropene	5.403	75	88018	15.7765	ug/l	95
58) Ethyl methacrylate	5.440	41	49837	14.0285	ug/l	76
59) 1,1,2-Trichloroethane	5.512	97	€6700	17.1507	ug/l	90
60) 1,2-Dibromoethane	5.825	107	54361	15.8490	ug/l	90
61) 1,3-Dichloropropane	5.614	76	80164	17.1379	ug/l	91
62) 4-Methyl-2-Pentanone	5.163	43	48343	14.5263	ug/l	93
63) 2-Hexanone	5.644	43	33376	14.3095	ug/l	95
64) Tetrachloroethene	5.602	164	52746	19.7196	ug/l	99
66) Toluene	5.277	92	117879	17.1651	ug/l	98
67) 1,1,1,2-Tetrachloroethane	6.150	133	55517	20.3724	ug/l	74
68) Chlorobenzene	6.108	112	135007	19.0123	ug/l	99
()-	•					

Qt Meth : 2M_A0531.M Qt On : 05/31/11 15:12 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration

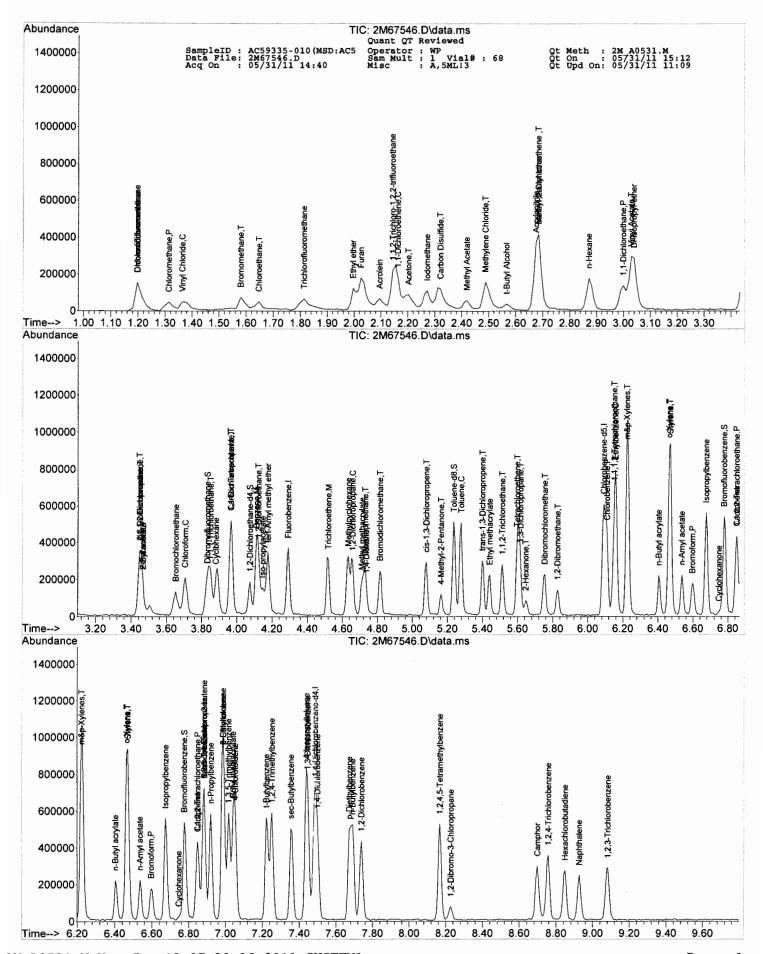
	Compound	R.T.	QIon	Response	Conc Units	Dev(Mir	a)
70)	n-Butyl acrylate	6.403	55	85315	12.1406	ug/l	92
71)	n-Amyl acetate	6.535	43	83822	12.0029	ug/l	90
72)	Bromoform	6.601	173	52488	14.6553	ug/l	95
73)	Ethylbenzene	6.156	106	57451	17.7631	ug/l	82
74)	1,1,2,2-Tetrachloroethane	6.848	83	63218	16.1245	ug/l	86
76)	Styrene	6.469	104	138747	15.5449	ug/l	93
77)	m&p-Xylenes	6.228	106	167223	31.5782	ug/l	92
78)	o-Xylene	6.463	106	85315	15.9695	ug/l	96
79)	trans-1,4-Dichloro-2-b	6.884	53	24858	18.2982	ug/l	39
80)	1,3-Dichlorobenzene	7.450	146	114896	18.8072	ug/l	92
81)	1,4-Dichlorobenzene	7.498	146	117939	18.0826	ug/l	97
82)	1,2-Dichlorobenzene	7.739	146	114032	18.0073	ug/l	92
83)	Isopropylbenzene	6.674	105	209986	15.0234	ug/l	92
84)	Cyclohexanone	6.764	55	7402	54.9073	ug/l	93
85)	Camphene	6.848	93	68230	15.1847	ug/l	93
86)	1,2,3-Trichloropropane	6.884	75	89185	17.6375	ug/l	88
87)	2-Chlorotoluene	6.987	91	154498	16.1347	ug/l	91
88)	p-Ethyltoluene	6.987	105	251089	17.8219	ug/l	77
89)	4-Chlorotoluene	7.053	91	155392	19.6218	ug/l	95
90)	n-Propylbenzene	6.920	91	275019	15.2890	ug/l	97
91)	Bromobenzene	6.884	77	123083	17.2984	ug/l	85
92)	1,3,5-Trimethylbenzene	7.017	105	191913	19.1552	ug/l	86
93)	Butyl methacrylate	7.041	41	87342	13.9105	ug/l	63
94)	t-Butylbenzene	7.227	119	187138	16.8005	ug/l	92
95)	1,2,4-Trimethylbenzene	7.251	105	213305	19.5762	ug/l	92
96)	sec-Butylbenzene	7.360	105	218537	15.7195	ug/l	97
97)	4-Isopropyltoluene	7.438	119	194279	17.6019	ug/l	94
98)	n-Butylbenzene	7.691	91	213874	17.7593	ug/l	96
99)	p-Diethylbenzene	7.673	119	102588	17.4927	ug/l	91
100)	1,2,4,5-Tetramethylben	8.166	119	178208	16.9191	ug/l	91
101)	1,2-Dibromo-3-Chloropr	8.227	157	13586	13.7570	ug/l	87
102)	Camphor	8.696	95	46358	120.4933	ug/l	95
103)	Hexachlorobutadiene	8.847	225	40534	15.4169	ug/l	95
104)	1,2,4-Trichlorobenzene	8.756	180	79904	18.2036	ug/l	97
105)	1,2,3-Trichlorobenzene	9.081	180	63095	15.9628	ug/l	95
106)	Naphthalene	8.925	128	132186	13.7960	ug/l	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M A0531.M Mon Jun 13 07:32:34 2011 SYSTEM1

Ot Meth : 2M_A0531.M Ot On : 05/31/11 15:12 Ot Upd On: 05/31/11 11:09 SampleID : AC59335-010(MSD:AC5 Operator : WP
Data File: 2M67546.D Sam Mult : 1 Vial# : 68
Acq On : 05/31/11 14:40 Misc : A,5ML!3 Data File: 2M67546.D Acq On : 05/31/11 14:40

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\Qt Resp Via : Initial Calibration


			_		D (34	
Compound			Response	Conc Units	Dev (M	in)
Internal Standards						
4) Fluorobenzene	4.291	96	184843	30.00 ug/	1 -0	.02
51) Chlorobenzene-d5	6.091			30.00 ug/		.02
69) 1,4-Dichlorobenzene-d4	7.487	152	122631	30.00 ug/	1 -0	.02
System Monitoring Compounds	2 022	111	70070	22 62 200/	1 -0	0.2
36) Dibromofluoromethane Spiked Amount 30.000	3.833	111	70878 Recove	32.63 ug/ 2ry = 108	3.77%	.02
38) 1,2-Dichloroethane-d4	4.074	67	40777	30.45 ug/		.02
Spiked Amount 30.000	1.0/1	0 /			50%	
65) Toluene-d8	5.236	98	206535	30.07 ug/	1 -0	.02
Spiked Amount 30.000			Recove	ery = 100	.23%	
75) Bromofluorobenzene	6.777	174		28.41 ug/		.02
Spiked Amount 30.000			Recove	ery = 94	1.70%	
Target Compounds					0	value
Target Compounds 5) Chlorodifluoromethane	1.197	51	129299	26.0805	ug/l	86
6) Dichlorodifluoromethane	1.197		63712	15.7412	ug/l	88
7) Chloromethane	1.314		62270	16.8209	ug/l	89
8) Bromomethane	1.581	94	40330	25.4012	ug/l	87
Vinyl Chloride	1.364	62	58088	19.8718	ug/l	98
10) Chloroethane	1.647		29286	20.6384	ug/l	70
11) Trichlorofluoromethane	1.814		80159	22.7048	ug/l	85
12) Ethyl ether	1.996		53288	22.1324	ug/l	83 97
13) Furan	2.026		147866 56069	23.4989 21.5260	ug/l ug/l	92
<pre>14) 1,1,2-Trichloro-1,2,2 15) Methylene Chloride</pre>	2.144		58235	17.7568	ug/l	93
16) Acrolein	2.095	56	44777	92.4302	ug/l	84
17) Acrylonitrile	2.675		22679	20.1076	ug/l	97
18) Iodomethane	2.272		111810	19.9074	ug/l	98
19) Acetone	2.203	43	83136	89.2948	ug/l	89
20) Carbon Disulfide	2.321		184600	20.0330	ug/l	100
21) t-Butyl Alcohol	2.567		23839	76.7868	ug/l	74
22) n-Hexane	2.872		62237	20.9905	ug/l	73
23) Di-isopropyl-ether	3.039		198032	17.8939	ug/1	98 94
24) 1,1-Dichloroethene	2.164 2.419		95670 63029	17.7060 23.0863	ug/l ug/l	100
<pre>25) Methyl Acetate 26) Methyl-t-butyl ether</pre>	2.685		157167	17.5191	ug/l	66
27) 1,1-Dichloroethane	3.000		112115	18.1965	ug/l	98
28) trans-1,2-Dichloroethene	2.685		59439	20.9215	ug/l	93
29) cis-1,2-Dichloroethene	3.448		96148	17.3542	ug/l	84
30) Bromochloromethane	3.653	49	49828	18.7929	ug/1	89
31) 2,2-Dichloropropane	3.448		85597	21.6857	ug/l	90
32) Ethyl acetate	3.466		22266	7.5958	ug/1	69
33) 1,4-Dioxane	4.736		27564	960.3850	ug/l ug/l	92 88
34) 1,1-Dichloropropene	3.966 3.707		83354 115627	20.0708 19.9538	ug/l	89
35) Chloroform 37) Cyclohexane	3.881		79407	19.0071	ug/l	97
39) 1,2-Dichloroethane	4.122		106340	20.6679	ug/1	96
40) 2-Butanone	3.466		22266	17.8748	ug/l	97
41) 1,1,1-Trichloroethane	3.851	97	102485	21.3452	ug/1	86
42) Carbon Tetrachloride	3.966	117	93694	23.3845	ug/1	89
43) Vinyl Acetate	3.030		147842	12.4041	ug/1	100
44) Bromodichloromethane	4.814		95659	18.7444	ug/l	98
45) Methylcyclohexane	4.634		70044	19.5483	ug/l	95 90
46) Dibromomethane	4.730		52588 57015	19.5829 18.8085	ug/l ug/l	96
47) 1,2-Dichloropropane 48) Trichloroethene	4.658 4.519		61806	19.7485	ug/l	92
48) Trichloroethene 49) Benzene	4.110		201547	18.6579	ug/1	100
50) tert-Amyl methyl ether	4.176		149360	18.4327	ug/1	71
52) Iso-propylacetate	4.146		93959m	15.1663	ug/1	
53) Methyl methacrylate	4.712	41	49024	15.6781	ug/1	96
54) Dibromochloromethane	5.753	129	73856	18.1916	ug/1	90
56) cis-1,3-Dichloropropene	5.079		91485	17.1287	ug/l	85
57) trans-1,3-Dichloropropene	5.398		91971	17.0396	ug/l	98 70
58) Ethyl methacrylate	5.440		53929	15.6910	ug/l	78 89
59) 1,1,2-Trichloroethane	5.513		48371 61315	18.3619 18.4778	ug/l ug/l	97
60) 1,2-Dibromoethane	5.826 5.615		93120	20.5773	ug/l	91
<pre>61) 1,3-Dichloropropane 62) 4-Methyl-2-Pentanone</pre>	5.164		48063	14.9280	ug/l	83
63) 2-Hexanone	5.645		35804	15.8668	ug/l	91
64) Tetrachloroethene	5.597		59223	22.8859	ug/1	87
66) Toluene	5.278	92	126145	18.9866	ug/1	100
67) 1,1,1,2-Tetrachloroethane	6.151		64412	24.4316	ug/1	86
68) Chlorobenzene	6.109	112	140335	20.4274	ug/1	99
10						

SampleID : AC59335-010(MSD:AC5 Operator : WP Sam Mult : 1 Vial# : 68 Acq On : 05/31/11 14:40 Misc : A,5ML!3 Qt Meth : 2M_A0531.M Qt On : 05/31/11 15:12 Qt Upd On: 05/31/11 11:09

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\
Qt Resp Via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
70)	n-Butyl acrylate	6.404	55	92857	13.4082	ug/l	94
71)	n-Amyl acetate	6.536	43	88532	12.8639	ug/l	88
72)		6.596	173	56609	16.0384	ug/l	88
73)	Ethylbenzene	6.157	106	60704	19.0450	ug/l	93
74)	1,1,2,2-Tetrachloroethane	6.849	83	69045	17.8698	ug/l	99
76)	Styrene	6.470	104	157897	17.9506	ug/l	99
77)	m&p-Xylenes	6.223	106	174054	33.3517	ug/l	99
78)	o-Xylene	6.464	106	91869	17.4493	ug/l	91
79)	trans-1,4-Dichloro-2-b	6.885	53	28738	21.4656	ug/l	56
80)	1,3-Dichlorobenzene	7.445	146	124608	20.6970	ug/l	94
81)	1,4-Dichlorobenzene	7.499	146	122073	18.9918	ug/l	95
82)	1,2-Dichlorobenzene	7.740	146	119664	19.1747	ug/l	93
83)	Isopropylbenzene	6.675	105	233788	16.9724	ug/l	97
84)	Cyclohexanone	6.747	55	8072	60.7581	ug/l	98
	Camphene	6.849	93	48891	11.0408	ug/l	92
86)	1,2,3-Trichloropropane	6.885	75	89205	17.9010	ug/l	91
87)	2-Chlorotoluene	6.988	91	169664	17.9792	ug/l	93
88)	p-Ethyltoluene	6.988	105	254605	18.3373	ug/l	82
89)	4-Chlorotoluene	7.054	91	149120	19.1069	ug/l	92
90)	n-Propylbenzene	6.921	91	299828	16.9134	ug/l	96
,	Bromobenzene	6.885	77	137639	19.6287	ug/l	91
92)	1,3,5-Trimethylbenzene	7.018	105	222469	22.5317	ug/l	97
93)	Butyl methacrylate	7.042	41	96182	15.5437	ug/l	65
94)	t-Butylbenzene	7.222	119	199294	18.1550	ug/l	91
95)	1,2,4-Trimethylbenzene	7.252	105	224658	20.9214	ug/l	91
	sec-Butylbenzene	7.355	105	238096	17.3783	ug/l	99
97)	4-Isopropyltoluene	7.439	119	208028	19.1248	ug/l	96
98)	n-Butylbenzene	7.692	91	224779	18.9394	ug/l	95
99)	p-Diethylbenzene	7.674	119	108001	18.6866	ug/l	94
100)	1,2,4,5-Tetramethylben	8.167	119	196085	18.8902	ug/l	93
101)	1,2-Dibromo-3-Chloropr	8.228	157	13477	13.8474	ug/l	81
102)		8.697	95	48098	126.8549	ug/l	98
103)	Hexachlorobutadiene	8.848	225	5051 9	19.4972	ug/l	95
104)	1,2,4-Trichlorobenzene	8.757	180	87511	20.2299	ug/l	98
105)	1,2,3-Trichlorobenzene	9.082	180	72283	18.5564	ug/l	95
106)	Naphthalene	8.926	128	139119	14.7331	ug/l	100
							_

(#) = qualifier out of range (m) = manual integration (+) = signals summed

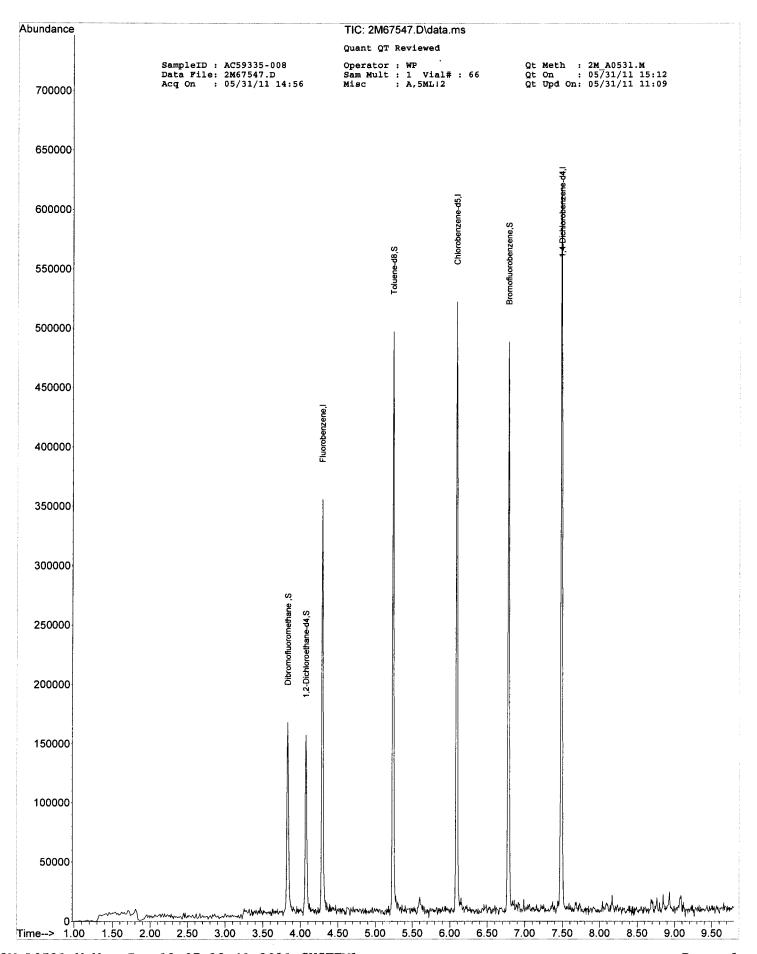
2M_A0531.M Mon Jun 13 07:32:38 2011 SYSTEM1

Page: 1

Quantitation Report (QT Reviewed)

Quantitation Report (QT Reviewed) 0215

Data Path : G:\GcMsData\2011\GCMS_2\Data\05-31-11\
Qt Path : G:\GcMsData\2011\GCMS_2\MethodQt\


Qt Resp Via : Initial Calibration

Compound	R.T. QIon Response Conc Units Dev(Min)
Internal Standards	:
4) Fluorobenzene	4.290 96 175952 30.00 ug/l -0.02
51) Chlorobenzene-d5	6.090 117 178552 30.00 ug/l -0.02
69) 1,4-Dichlorobenzene-d4	7.486 152 114157 30.00 ug/l -0.02
System Monitoring Compounds	÷
36) Dibromofluoromethane	3.832 111 68770 33.26 ug/l -0.02
Spiked Amount 30.000	Recovery = 110.87%
38) 1,2-Dichloroethane-d4	4.073 67 39033 30.62 ug/l -0.02
Spiked Amount 30.000	Recovery = 102.07%
65) Toluene-d8	5.241 98 200489 29.11 ug/l -0.01
Spiked Amount 30.000	Recovery = 97.03%
75) Bromofluorobenzene	6.782 174 102256 $30.17 ug/l$ -0.02
Spiked Amount 30.000	Recovery = 100.57%

Target Compounds Qvalue

1

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

2M_A0531.M Mon Jun 13 07:32:41 2011 SYSTEM1

GC/MS Volatile Data Logbook Data

Analysis

	1-1-3	3M93050		Reviewed			Surr	Sam			Analysis
Data File	Sample Number	Flags	Comments	By	Test Group	Matrix		Dil		od(s)	Date
					. ос. о.о.р						
	BFB TUNE		V-111011,V-109108,V-116389	DB		_					05/26 07:32
3M93052.D		IsCnAnc	-	DB		Aqueous	1	1	624	8260	05/26 07:59
3M93053.D	CAL @ 1 PPB		B-10337	DB		Aqueous	1	1	624	8260	05/26 08:18
3M93054.D	CAL @ 0.5 PPB		B-10337	DB		Aqueous	: 1	1	624	8260	05/26 08:38
3M93055.D	CAL @ 5 PPB		B-10337	DB		Aqueous	1	1	624	8260	05/26 08:57
3M93056.D	CAL @ 500 PPB	Oc	B-10337	DB		Aqueous	1	1	624	8260	05/26 09:13
	CAL @ 250 PPB	Oc	B-10337	DB		Aqueous	1	1	624	8260	05/26 09:30
3M93058.D	CAL @ 100 PPB	Oc	B-10337	DB		Aqueous	i 1	1	624	8260	05/26 09:46
3M93059.D	CAL @ 50 PPB		B-10337	DB		Aqueous	: 1	1	624	8260	05/26 10:02
3M93060.D	CAL @ 20 PPB		B-10337	DB		Aqueous	: 1	1	624	8260	05/26 10:19
3M93061.D	CAL @ 10 PPB		B-10337	DB		Aqueous	: 1	1	624	8260	05/26 10:35
3M93062.D	20 PPB		-	DB		Aqueous	1	1	624	8260	05/26 10:52
3M93063.D	BLK		-	DB		Aqueous	1	1	624	8260	05/26 11:08
3M93064.D	ICV	Ivo	V-116939	DB		Aqueous	: 1	1	624	8260	05/26 11:25
3M03065 D	DAILY BLANK		OK	DB		Aqueous	. 1	1	624	8260	05/26 11:42
				DB				1	024		05/26 11:58
	DAILY BLANK		OK MRS0600	DB DB		Methano Aqueous			624		05/26 11:58
3M93067.D			OK MBS9690	DB DB	VO10-624	Aqueous		1	624	020U	05/26 12:14
	AC59194-006	***************************************	OK OK					1			
	AC59201-010		OK OK	DB	VO10-624 VO10-624	Aqueous		4	624 624		05/26 12:47
	AC59201-011		OK.	DB		Aqueous		1	624		05/26 13:04
	AC59205-013		OK NAPOOTO4	DB	VO10-8260	Aqueous				0260	05/26 13:20
	AC59201-006		OK MBS9701	DB	VO10-624	Aqueous		1	624		05/26 13:37
	AC59201-008		OK	DB	VO10-624	Aqueous		1	624		05/26 13:53
	AC59194-003		OK MBS9690	DB	VO10-624	Aqueous		1	624		05/26 14:10
	AC59201-009		OK	DB	VO10-624	Aqueous		1	624		05/26 14:26
3M93076.D	AC59201-001		OK	DB	VO10-624	Aqueous	1	1	624		05/26 14:42
3M93077.D	AC59201-003		OK	DB	VO10-624	Aqueous	: 1	1	624		05/26 14:59
3M93078.D	BLK		OK	DB		Aqueous	: 1	1	624	8260	05/26 15:15
3M93079.D	AC59194-001		OK	DB	VO10-624	Aqueous	: 1	1	624		05/26 15:32
3M93080.D	MBS9694		OK MBS9694	DB		Aqueous	: 1	1	624	8260	05/26 15:49
3M93081.D	AC59149-013		OK	DB	VO-8260	Aqueous	1	1		8260	05/26 16:05
3M93082.D	AC59261-015		OK	DB	VO-8260	Aqueous	1	1		8260	05/26 16:22
3M93083.D	AC59145-007		OK	DB	VO10-8260	Aqueous	1	1		8260	05/26 16:38
3M93084.D	AC59244-005		OK	DB	VOSTAR2-82	Aqueous	1	1		8260	05/26 16:55
	AC59244-002		OK	DB	VOSTAR2-82	Aqueous	1	1		8260	05/26 17:11
	AC59244-001(5X)		OK	DB	VOSTAR2-82			5		8260	05/26 17:30
	AC59244-003(5X)		OK	DB	VOSTAR2-82			5		-	05/26 17:52
	AC59244-004(5X)		OK	DB	VOSTAR2-82			5			05/26 18:14
	AC59261-007(500X	·	RR-1X	DB	VO-8260	Aqueous		500			05/26 18:33
	AC59261-007(500X		RR-1X	DB	VO-8260	Aqueous		500			05/26 18:50
	AC59194-003(MS)		OK MBS9690	DB	VO10-624	Aqueous		1	624		05/26 19:07
	AC59194-003(MSD		OK MBS9690	DB	VO10-624	Aqueous		1			05/26 19:25
		-		DB	VO10-624			100	624	3230	05/26 19:42
	AC59158-001(100X		OK OK	DB	VO10-624 VO10-624	Aqueous		100	624		05/26 19:42
	AC59158-002(100X		OK	DB DB				100	624		05/26 19:56
	AC59158-003(100X		OK		VO10-624	Aqueous		200			05/26 20:14
	AC59158-004(200X		OK OK	DB DB	VO10-624	Aqueous			624		
	AC59158-005(200X	-	OK	DB	VO10-624	Aqueous		200	624	0000	05/26 20:47
3M93098.D	BLK	Ti8	•	DB		Aqueous	1	1			05/26 21:04
3M93099.D	BLK	Ti8	-	DB		Aqueous	1	1	624	8260	05/26 21:20
3M93100.D		Ti8	OK	DB		Aqueous	1	1	624	8260	05/26 21:36
3M93101.D	MBS9701	Ti8	OK MBS9701	DB		Aqueous	1	1	624	8260	05/26 21:52
3M93102.D	MBS9702	Ti8	- MBS9702	DB		Aqueous	1	1	624	8260	05/26 22:09
				DB	VO10-624	Aqueous		1	624		05/26 22:26
	AC59224-002		OK OK		VO10-624 VO10-624	Aqueous			624		05/26 22:26
	AC59224-003		OK	DB				1			
	AC59242-015		OK OK	DB	VO10-624	Aqueous		1	624		05/26 22:59
	AC59242-016		OK	DB	VO10-624	Aqueous		1	624		05/26 23:17
3M93107.D	AC59242-001	Oc	RR-20X	DB	VO10-624	Aqueous	1	1	624		05/26 23:35
3M93108.D	AC59242-002		RR-1X - possible CO	DB	VO10-624	Aqueous	1	1	624		05/26 23:51
	AC59242-003	Oc	RR-50X	DB	VO10-624	Aqueous	1	1	624		05/27 00:08
	AC59242-004	W	RR-1X - CO	DB	VO10-624	Aqueous	1	1	624		05/27 00:24
				DB	VO10-624 VO10-624	Aqueous		1	624		05/27 00:24
	AC59242-005	00	RR-1X - possible CO	DB DB		Aqueous		1	624		05/27 00:40
SIVISS I 12.D	AC59242-006	Oc	RR-100X	DB	VO10-624	Aqueous		•	024		03/2/ 00.09
Anc Area	Not Checked		Eo Extraction Performed Past Hold	Co Wan	ninn Possible Carry O	ver					

Anc	Area Not Checked
An	Area Out
B6m	Blank 600 series missino
B8m	Blank 8000 series mission
Bnf	Blank Not Found/Assigned
C16	Calibration Column 1 Out (600 Series)
C18	Calibration Column 1 Out (8000 Series)
C26	Calibration Column 2 Out (600 Sedes)
C28	Calibration Column 2 Out (8000 Series)
C6f	600 series samole/blank did not have passion cal
C8f	8000 series samole/blank did not have cassing cal
Cme	Endino Cal missino for sample (8000 series)
Cn	Calibration Not Checked for samole/blank/eval
D1n.D2n	Drift Out Column 1 or Column 2 Cals or Init Cals
Dno	Drift Not Checked
Do	Drift Out
Eba	An Extraction Before Collection Date
Emo	Problem Checking Preg/gundates modcheckgreggung
En	Eval Time Not Checked

En Extraction Parformed Past Hold
Esm Solvent Extraction Date Missino/Not check'd
Etn Tclo/Solvent Extraction Date Missino/Not check'd
Etn Tclo/Solvent Extraction Date Missino/Not check'd
Eve Tclo Extraction Performed Outside of Hold
Eve Tclo Extraction Performed Outside of Hold
Evel Time Exceeded
Hh Analysis Beform Collection Date
Ho Samole Analyzed outside of hold time
116 126 Initial cal BoO saries failed Column 1 and or 2
Initial Cal BoO saries failed Column 1 and or 2
Initial Cal BoO saries failed Column 1 and or 2
Initial Cal Files Not Undeted Procedy for a samol
Int M16 M168
M18 M28
M16 M28
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
M18 M18 M28
M18 N28
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 floot series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN
Solike Not Col 1 600 series Acid and or BN

Co Warninn Possible Carry Over
CRN Warninn c30/c20... not checked
Cm C30/c20 failed for enh
EvF
Eval Mix Failed
Evnc Eval Mix Failed
Evnc Eval Mix Instance Cardin
R16 R26
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R0d Out on MsMsct (col1 and or col2) 800 series
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18 R28
R18

	1-1-3	M93113	3	Reviewed			Surr	Sam		Analysis
Data File	Sample Number	Flags	Comments	Ву	Test Group	Matrix		Dil	Method(s)	Date
3M93113.D	AC59242-007	Ос	RR-5X	DB	VO10-624	Aqueous	3 1	1	624	05/27 01:16
3M93114.D	AC59242-008	Oc	RR-5X	DB	VO10-624	Aqueous	1	1	624	05/27 01:32
3M93115.D	AC59242-009	Oc	RR-20X	DB	VO10-624	Aqueous	s 1	1	624	05/27 01:49
3M93116.D	AC59242-010	Oc	RR-100X	DB	VO10-624	Aqueous	1	1	624	05/27 02:05
3M93117.D	AC59242-011		RR-1X - CO	DB_	VO10-624	Aqueous	1	1	624	05/27 02:21
3M93118.D	AC59242-012	Oc	RR-50X	DB	VO10-624	Aqueous	1	1	624	05/27 02:38
3M93119.D	AC59242-013	-	RR-1X - CO	DB	VO10-624	Aqueous	s 1	1	624	05/27 02:54
3M93120.D	AC59242-014	Oc	RR-5X	DB	VO10-624	Aqueous	3 1	1	624	05/27 03:10
3M93121.D	AC59224-001		RR-1X - CO	DB	VO10-624	Aqueous	1	1	624	05/27 03:27
3M93122.D	AC59229-001	_	RR-1X - CO	DB	VO10-624	Aqueous	s 1	1	624	05/27 03:43
3M93123.D	AC59201-006(MS)	Ti8	OK MBS9701	DB	VO10-624	Aqueous	3 1	1	624 8260	05/27 04:00
3M93124.D	AC59201-006(MSD)	Ti8	OK MBS9701	DB	VO10-624	Aqueous	s 1	1	624 8260	05/27 04:16
3M93125.D	BLK	Ti8				Aqueous	s 1	1	624 8260	05/27 04:33
3M93126.D	BLK	Ti8				Aqueous	1	1	624 8260	05/27 04:49
3M93127.D	BLK	Ti8				Aqueous	3 1	1	624 8260	05/27 05:05
3M93128.D	BLK	Ti8				Aqueous	3 1	1	624 8260	05/27 05:22
3M93129.D	BLK	Ti8				Aqueous	s 1	1	624 8260	05/27 05:38
3M93130.D	BLK	Ti8				Aqueous	1	1	624 8260	05/27 05:53
3M93131.D	BLK	Ti8				Aqueous	3 1	1	624 8260	05/27 06:09

Anc	Area Not Checked	Eo	Extraction Performed Past Hold	Co	Warning Possible Cerry Over
An	Area Out	Esm	Solvent Extraction Date Missing/Not check'd	CRN	Warning c30/c20 ont checked
B6m	Blank 600 series missing	Etn	Tcln/Solvent Extraction Date Mission/Not check'd	Crn	C30/C20 failed for eoh
38m	Blank 8000 sedes missing	Eto	Tcln Extraction Performed Outside of Hold	EvF	Eval Mix Failed
Bnf	Blank Not Found/Assigned	Ev	Eval Time Exceeded	Evnc	Eval Mix Not Checked
216	Calibration Column 1 Out (600 Series)	Hb	Analysis Before Collection Date	Evro	Eval Mix mission ddt or enddn
18	Calibration Column 1 Out (8000 Series)	Ho	Sample Analyzed outside of hold time	R16.R26	Rod Out on MsMsd (col1 and or col2) 600 series
226	Calibration Column 2 Out (600 Series)	116.126	Initial cal 600 sedes failed Column 1 and or 2	R18.R26	Rnd Out on MsMsd (col1 and or col2) 6000 sedes
28	Calibration Column 2 Out (8000 Series)	118 128	Initial cal 8000 series failed. Column 1 and or 2	Ro	Retention Time Out Or %Diff Out
6f	600 series sample/blank did not have passing cal	is	Initial Cal Not Checked	Rtn	Can't Calculate Drift
:8f	8000 series sample/blank did not have passing cal	lv	Prob with calrot csv for init calibration chek rfs	S6	600 series surronate out
me	Ending Cal mission for sample (8000 series)	lw	Initial cal warning. Ini cal file <> method.	S8	8000 series surrogate out
n	Calibration Not Checked for sample/blank/eval	1×	Initial Cal Files Not Undated Properly for a sample	Sa6 Sh6	Acid and or BN Surrogate Out (800 series)
1n.D2n	Drift Out Column 1 or Column 2 Cals or Init Cals	M16 M26	Soike Out Col 1 and or Col 2 600 series	Sa8 Sh8	Acid and or BN Surronate Out (8000 series)
nc	Drift Not Checked	M16a M16b	Snike Out Cnl 1 600 series Acid and or BN	Sd	Surmoate Diluted Out
00	Drift Out	M18 M28	Snike Out Cnl 1 and or Col 2 8000 series	Snc	Surmoste Not Checked
ba	An Extraction Refore Collection Date	M18a M18h	Snike Out Col 1 8000 series Acid and or BN	TI5	Outside of 500 series Tune time
mn	Problem Checking Prep/pundates modeheckpreprund	isMnc.	Snike Not Checked for this ms/msd	Ti6	Outside of 600 series Tune time/Cal Time
n	Eval Time Not Checked	Oc	Warning Compound(s) Over Calibration	Ti8	Outside of 8000 series Tune time/Cal Time

		Ш	RUN LC

Data File	1-1- Sample Number	2M67517 Flags	Comments	Reviewed By	Test Group	Matrix		Sam Dil	Meth	nod(s)	Analysis Date
	BFB TUNE		V-111011,V-109108,V-117133	DB							05/31 06:41
2M67519.D		CnAnc	-	DB		Aqueous	1	1	624	8260	05/31 07:22
2M67520.D	BLK	CnAnc	-	DB		Aqueous	1	1	624	8260	05/31 07:38
	CAL @ 1 PPB		B-10357	DB		Aqueous	1	1	624	8260	05/31 08:14
	CAL @ 0.5 PPB		B-10357	DB		Aqueous		1			05/31 08:32
	CAL @ 5 PPB		B-10357	DB		Aqueous		1			05/31 08:50
	CAL @ 500 PPB	Oc	B-10357	DB		Aqueous		1			05/31 09:05
	CAL @ 250 PPB	Oc	B-10357	DB		Aqueous		1			05/31 09:21
	CAL @ 100 PPB CAL @ 50 PPB		B-10357	DB_		Aqueous		1			05/31 09:37
	CAL @ 30 PPB		B-10357 B-10357	DB DB		Aqueous Aqueous		1 1			05/31 09:53 05/31 10:09
	CAL @ 10 PPB		B-10357 B-10357	DB		Aqueous		1			05/31 10:09
2M67531.D		Ivo	V-117146	DB		Aqueous		1			05/31 10:23
2M67532.D			-	DB		Aqueous		1			05/31 10:57
	DAILY BLANK		OK	DB		Methano		1	024		05/31 10:37
	DAILY BLANK		OK	DB		Aqueous		1	624		05/31 11:29
2M67535.D			OK MBS9751	DB		Methano		1			05/31 11:45
2M67536.D			OK MB\$9752	DB		Aqueous		1	624		05/31 12:01
2M67537.D	BLKJUG1		-	DB		Aqueous	1	1	624	8260	05/31 12:17
2M67538.D	AC59210-012(500)	X)	OK	DB	VO-8260	Aqueous	1	500		8260	05/31 12:33
	AC59210-008(200)		OK	DB	VO-8260	Aqueous		200			05/31 12:49
	AC59210-001(100)		RR-1X	DB	VO-8260	Aqueous		100			05/31 13:05
	AC59210-014(100)		RR-500X	DB	VO-8260	Aqueous	1	100			05/31 13:21
	AC59335-014(100)		RR-100X - CO	DB	VO-8260	Aqueous		100			05/31 13:37
	AC59335-005(100)	K)	OK	DB	VO-8260	Aqueous		100			05/31 13:53
	AC59335-008		RR-1X - CO	DB	VO-8260	Aqueous		1			05/31 14:09
	AC59335-009(MS:/		OK MBS9752	DB	VO-8260	Aqueous		1			05/31 14:24
	AC59335-010(MSE): K 16M16	OK MBS9752	DB	VO-8260	Aqueous		1	624		05/31 14:40
	AC59335-008	_	OK MBS9752	DB	VO-8260	Aqueous		1			05/31 14:56
2M67549.D	AC59335-001		OK	DB DB	VO-8260	Aqueous Aqueous		1	624		05/31 15:12 05/31 15:28
	AC59335-002		- OK	DB	VO-8260	Aqueous		1	024		05/31 15:26
	AC59335-002 AC59335-003		OK	DB	VO-8260	Aqueous		1			05/31 16:00
	AC59335-004	S8Oc	RR-500X	DB	VO-8260	Aqueous		1			05/31 16:15
	AC59335-006		RR-1X - CO	DB	VO-8260	Aqueous		1		8260	05/31 16:31
	AC59335-007		RR-1X - CO	DB	VO-8260	Aqueous		1			05/31 16:47
	AC59335-011		RR-1X - CO	DB	VO-8260	Aqueous	1	1		8260	05/31 17:03
2M67556.D	AC59335-012		RR-1X - CQ	DB	VO-8260	Aqueous	1	1		8260	05/31 17:19
2M67557.D	AC59335-013		RR-1X - CO	DB	VO-8260	Aqueous		1			05/31 17:34
	AC59335-014(100)	()	OK	DB	VO-8260	Aqueous		100			05/31 17:50
	AC59210-001		-	DB	VO-8260	Aqueous		1			05/31 18:06
	AC59210-002			DB	VO-8260	Aqueous		1			05/31 18:22
2M67562.D	AC59210-006 MBS0757	Ti8	- - MBS9757	DB DB	VO-8260	Aqueous Aqueous		1	624		05/31 18:37 05/31 18:53
2M67563.D				DB		Aqueous		1			05/31 19:09
		Ti8	-								05/31 19:25
2M67564.D		Ti8	-	DB		Aqueous		1			
2M67565.D		Ti8	-	DB		Aqueous		1			05/31 19:40
2M67566.D		Ti8	-	DB		Aqueous		1			05/31 19:56
2M67567.D		Ti8	- MBS9758	DB		Aqueous		1			05/31 20:12
2M67568.D	MBS9759	Ti8	- MBS9759	DB		Aqueous		1		8260	05/31 20:27
	AC59234-013		RR-1X - CO	DB	VO10-624	Aqueous		1	624		05/31 20:43
	AC59234-015		RR-1X - CO	DB	VO10-624	Aqueous		1	624		05/31 20:59
2M6/571.D	AC59302-001		RR-1X - CO	DB	VO10-624	Aqueous	1	1	624		05/31 21:14

Anc	Area Not Checked	Eo	Extraction Performed Past Hold	Co	Warning Possible Carry Over
An	Area Out	Esm	Solvent Extraction Date Missino/Not check'd	CRN	Wamino c30/c20 not checked
B6m	Blank 600 series mission	Etn	Trin/Solvent Extraction Date Missino/Not check'd	Cro	C30/C20 failed for enh
B8m	Blank 8000 series missino	Eto	Tolo Extraction Performed Outside of Hold	EvF	Eval Mix Feiled
Bnf	Blank Not Found/Assigned	Ev	Evel Time Exceeded	Evnc	Eval Mix Not Checked
C16	Calibration Column 1 Out (800 Sedes)	Hb	Analysis Before Collection Date	Evrc	Eval Mix missino ddt or endrin
C18	Calibration Column 1 Out (8000 Sedes)	Ho	Sample Analyzed outside of hold time	R16.R26	Rod Out on MsMsd (col1 and or col2) 600 sedes
C26	Calibration Column 2 Out (800 Series)	116.126	Initial cal 600 sedes failed Column 1 and or 2	R18.R28	Rod Out on MsMsd (col1 and or col2) 8000 series
C28	Calibration Column 2 Out (8000 Series)	118.128	Initial cal 8000 series failed. Column 1 and nr 2	Ro	Retention Time Out Or %Diff Out
C6f	600 series sample/blank did not have passing cal	ls	Initial Cal Not Checked	Rtn	Can't Calculate Drift
C8f	8000 series sample/blank did not have passing cal	lv	Prob with calmt.csv for init calibration chek rfs	S6	600 series surmoate out
Cme	Ending Cal mission for sample (8000 series)	lw	Initial cal warningini cal file <> method	88	8000 series summate nut
Cn	Calibration Not Checked for sample/blank/eval	lx	Initial Cal Files Not Undated Properly for a sample	Sa6.Sh6	Acid and or BN Surronate Out (600 series)
D1n D2n	Drift Out Column 1 or Column 2 Cals or Init Cals	M16 M26	Snike Out Col 1 and nr Col 2 600 series	Sa8.Sh8	Acid and or BN Summate Out (8000 series)
Dnc	Drift Not Checked	M16a M16b	Snike Out Cnl 1 600 series Acid and or BN	Sd	Sumnate Diluted Out
Dα	Drift Out	M18.M28	Snike Out Cnl 1 and nr Cnl 2 8000 series	Snc	Sumnate Not Checked
Eha	An Extraction Before Collection Date	M18a.M18h	Soike Out Cot 1 8000 series Acid and or BN	Ti5	Outside of 500 sedas Tune time
Emn	Problem Checkino Pren/rundates modcheckpreprundaMnc		Soike Not Checked for this ms/msd	Ti6	Outside of 600 series Tune time/Cal Time
En.	Eval Time Not Checked	Qc	Warning Compound(s) Over Calibration	_Ti8	Outside of 8000 series Tune time/Cal Time

Data File	Sample Number	SM93514 Flags	Comments	GH3/ By	Test Group	Matrix		Sam Dil	Meth	nod(s)	Analysis Date
3M93514.D 3M93515.D	BFB TUNE	CnAnc	V-111011,V-117302,V-10910	08,V-11713 3 0B DB		Aqueous	1	1	624	8260	06/01 07:1 06/01 07:2
3M93516.D		CnAnc	-	DB		Aqueous		1		8260	06/01 07:3
	CAL @ 20 PPB	0.111.110	OK	DB		Aqueous		1		8260	06/01 08:0
M93518.D	BLK		-	DB		Aqueous		1		8260	06/01 08:1
	DAILY BLANK		OK	DB		Methano		1	204		06/01 08:3
	DAILY BLANK MBS9765	-	OK MBS9765	DB DB		Aqueous Methano		1	624		06/01 08:5 06/01 09:0
	MBS9766		OK MBS9766	DB		Aqueous		1	624		06/01 09:2
	BLKJUG#3			DB		Aqueous		1			06/01 09:4
	BLKJUG#2 AC59210-001		- OV	DB DB	VO-8260	Aqueous Aqueous		1	624		06/01 09:5
	AC59210-001 AC59335-011		OK OK	DB	VO-8260	Aqueous		1			06/01 10:
	AC59454-001		OK MBS9766	DB	VO-624	Aqueous		1	624		06/01 10:4
	BLKJUG2		-	DB		Aqueous		1	624		06/01 11:0
	AC59335-012 AC59335-013	**********	OK OK	DB DB	VO-8260 VO-8260	Aqueous Aqueous		1			06/01 11: 06/01 11:
	AC59335-013 AC59335-007		OK OK	DB	VO-8260	Aqueous		1			06/01 11:5
	AC59335-006		OK	DB	VO-8260	Aqueous		1		8260	06/01 12:0
M93533.D	59335-014(100X)	Oc	-	DB		Aqueous	1	100	624	8260	06/01 12:2
	AC59210-002		RR-1X - possible CO	DB	VO-8260	Aqueous		1			06/01 12:4
	AC59210-006		RR-1X - possible CO	DB	VO-8260	Aqueous		1			06/01 13:0
	AC59335-004(500X AC59210-014(500X		OK RR-500X	DB DB	VO-8260 VO-8260	Aqueous		500 500			06/01 13:1 06/01 13:1
	59335-014(200X)	.,	- -	DB	70 0200	Aqueous		200	624		06/01 13:
	AC59335-014(100X	()	OK	DB	VO-8260	Aqueous		100			06/01 14:0
	AC59305-005		OK	DB	VOBTEX-826			1			06/01 14:2
	AC59230-002(MS) AC59230-002(MSD	`	OK MBS9765	DB DB	VO10-8260 VO10-8260	Methano Methano		1			06/01 14:4
M93543.D		,	OK MBS9765	DB	VO10-0200	Aqueous		1	624		06/01 15:
	AC59305-005(T)		OK	DB	VOTCLP-826			1			06/01 15:3
	EF-116576(6-1-11)		OK	DB		Aqueous		6		8260	06/01 15:4
	AC59456-001		OK	DB	VO10-624	Aqueous		1	624		06/01 16:0
	AC59340-005(10X) AC59233-003(40uL	`	OK OK	DB DB	VO-624 VO-8260	Aqueous Methano		10 20	624	8260	06/01 16:2 06/01 16:4
M93549.D		,	- -	DB	70 0200	Aqueous		1	624		06/01 16:5
M93550.D	AC59454-001(MS)		OK MBS9766	DB	VO-624	Aqueous		1			06/01 17:1
	AC59454-001(MSD)	OK MBS9766	DB	VO-624	Aqueous		1	624		06/01 17:3
	AC59297-011(8uL) AC59297-020(8uL)		RR-80uL RR-80uL	DB DB	VO-8260 VO-8260	Methano Methano		100 100			06/01 17:4 06/01 18:0
	AC59297-020(8uL)		RR-400uL	DB	VO-8260	Methano		100			06/01 18:2
M93555.D		-	-	DB		Aqueous		1	624	8260	06/01 18:3
M93556.D			-	DB		Aqueous		1			06/01 18:5
M93557.D		T:0	OK MBS9776	DB DB		Aqueous Aqueous		1 1			06/01 19:1 06/01 19:2
	MBS9776	Ti8			VO10-624						
	AC59289-017 AC59296-001		OK OK	DB	VO10-624 VO10-624	Aqueous Aqueous		1	624 624		06/01 19:4 06/01 20:0
	AC59296-002		OK	DB	VO10-624	Aqueous		1	624		06/01 20:1
	AC59304-001		OK	DB	VO-624	Aqueous	1	1	624		06/01 20:3
M93563.D	MBS9777	Ti8	- MBS9777	DB		Aqueous	1	1	624	8260	06/01 20:4
	AC59302-004		OK	DB	VO10-624	Aqueous		1	624		06/01 21:0
	AC59289-001		OK	DB DB	VO10-624 VO10-624	Aqueous Aqueous		1	624 624		06/01 21:2 06/01 21:3
	AC59289-003 AC59289-005		OK OK	DB	VO10-624	Aqueous		1	624		06/01 21:5
	AC59289-007		OK	DB	VO10-624	Aqueous		1	624		06/01 22:1
M93569.D	AC59289-009	MARKANIA	OK	DB	VO10-624	Aqueous		1	624		06/01 22:2
	AC59289-011		OK OK	DB DB	VO10-624	Aqueous		1	624		06/01 22:4
	AC59289-013 AC59289-015		OK OK	DB DB	VO10-624 VO10-624	Aqueous		1	624 624		06/01 23:0 06/01 23:1
	AC59289-015 AC59289-020		OK OK	DB	VO10-624	Aqueous		1	624		06/01 23:3
	AC59304-002		OK	DB	VO-624	Aqueous		1	624		06/01 23:5
	AC59296-005(10X)	Oc	RR-50X	DB	VO10-624	Aqueous	1	10	624		06/02 00:1
M93576.D	AC59296-003(20X)	Oc	RR-50X	DB	VO10-624	Aqueous	1	20	624		06/02 00:3
			the state of the s								
	AC59296-007(50X) Not Checked		OK Eo Extraction Performed Past Hold	DB	VO10-624	Aqueous	1	50	624		06/02 00:5

B6m	Blank 800 series missino
B8m	Blank 8000 series missino
Bnf	Blank Not Found/Assigned
C16	Calibration Column 1 Out (600 Seces)
C18	Calibration Column 1 Out (8000 Series)
C26	Calibration Column 2 Out (600 Series)
C28	Calibration Column 2 Out (8000 Series)
C6f	600 series sample/blank did not have passing call
C8f	8000 series sample/hiank did not have passing cal
Cme	Ending Cal missing for sample (8000 series)
Cn	Calibration Not Checked for sample/blank/eval
D10.D20	Drift Out Column 1 or Column 2 Cals or Init Cals
Dnc	Drift Not Checked
Do	Drift Out
Eba	An Extraction Before Collection Date
Emp	Problem Checking Preg/rundates modcheckpreprund
Fn	Eval Time Not Checked

Eo Extraction Performed Past Holf
Esm Solvent Extraction Date Mission/Not check'd
Etn Tclo/Solvent Extraction Date Mission/Not check'd
Etn Tclo/Estraction Date Mission/Not check'd
Etn Tclo Extraction Performed Outside of Hold
Ev Eval Time Exceeded
Hh Analysis Before Collection Date
Ho Samule Analysed outside of hold time
116 126 Initial cal 800 series failed Column 1 and or 2
Is Is Initial cal 8000 series failed Column 1 and or 2
Is Initial Cal Not Checked
Iv Initial Cal Not Checked
Iv Initial Cal Files Not Undelled Pomedry for a samol
M16 M26 Solike Out Col 1 and or Col 2 600 series
M18 M28 Solike Out Col 1 and or Col 2 600 series
M18 M38 Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 and or Col 2 600 series
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and or BN
Solike Out Col 1 600 series Acid and Dr BN
Solike Out Col 1 600 series Acid and Dr BN

Co Warninn Pressible Carry Over
CRN Warninn Pressible Carry Over
CRN Warninn C30/c20... not checked
Crn C30/c20 failed for enh
EVF EVAI Mix Failed
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
EVnc Eval Mix Not Checked
Evnc Eval Mix Timesout Or %Diff Out
R16 R28 Rod Out on MsMsd (col1 and or col2) 800 series
R6 R6 R6 R00 series surrocate out
S8 800 series surrocate out
S8 800 series surrocate out
S8 800 series surrocate out
S8 800 series surrocate out
S8 800 series surrocate out
S8 801 Acid and or BN Surrocate Out (8000 series)
S4 Surrocate Dilited Out
S9 Surrocate Dilited Out
S9 Surrocate Dilited Out
S9 Surrocate Not Checked
T15 Outside of 500 series Tune time
T16 Outside of 500 series Tune time/Cal Time
T18 Outside of 8000 series Tune time/Cal Time

Instrument: GCMS_3 Year: 2 \bigcirc 2 \bigcirc 2 Analyst: WP

1-1-3M93578			Reviewed	Reviewed		Surr			Analysis	
Data File	Sample Number	Flags	Comments	Ву	Test Group	Matrix	Dil	Dil	Method(s)	Date
3M93578.E	AC59296-006(100)	X)	OK	DB	VO10-624	Aqueous	s 1	100	624	06/02 01:15
3M93579.E	BLK	Ti8	-	DB		Aqueous	s 1	1	624 8260	06/02 01:34
3M93580.E	BLK	Ti8	-	DB		Aqueous	s 1	1	624 8260	06/02 01:51
3M93581.E	BLK	Ti8	-	DB		Aqueous	s 1	1	624 8260	06/02 02:07
3M93582.E	BLK524	Ti8		DB		Aqueous	s 1	1	624 8260	06/02 02:23

Anc	Area Not Checked	Eα	Extraction Performed Past Hold	Co	Warninn Possible Carry Over
An	Area Out	Esm	Solvent Extraction Date Missing/Not check'd	CRN	Waminn c30/c20 nnt checked
B6m	Blank 600 series missing	Etn	Tclo/Solvent Extraction Date Missino/Nnt check'd	Cm	C30/C20 failed for anh
B8m	Blank 8000 series missino	Eto	Tcln Extraction Performed Outside of Hold	EvF	Eval Mix Failed
Bnf	Blank Not Found/Assinned	Ev	Eval Time Exceeded	Evnc	Eval Mix Not Checked
C16	Calibration Column 1 Out (800 Series)	Hb	Analysis Before Collection Date	Evro	Eval Mix missino ddt or eodrin
C18	Calibration Column 1 Out (8000 Series)	Ho	Sample Analyzed nutside of bold time	R16.R26	Rod Out on MsMsd (col1 and or col2) 600 series
C26	Calibration Column 2 Out (600 Series)	116.126	Initial cal 800 series failed Column 1 and nr 2	R18.R28	Rod Out on MsMsd (col1 and or col2) 8000 series
C28	Calibration Column 2 Out (8000 Series)	118.128	loitial cal 8000 series failed. Column 1 and or 2	Ro	Retention Time Out Or %Diff Out
C6f	600 series sample/black did not have passing cal	Is	Initial Cal Not Checked	Rtn	Can't Calculate Drift
C8f	8000 series samole/blank did not have cassino cal	lv	Pmb with calrot.csv for init calibration chek rfs	S6	600 series surmoate out
Cme	Ending Cal missing for sample (8000 series)	lw	Initial cal warning. Ini cal file <> method	S8	8000 series surmoate out
Cn	Calibration Not Checked for samole/blank/eval	lx	Initial Cal Files Not Updated Propedy for a sample	Sa6.Sb6	Acid and or BN Surrogate Out (600 series)
D10.D20	Drift Out Column 1 or Column 2 Cals or Init Cals	M16.M26	Soike Out Col 1 and nr Col 2 600 series	Sa8.Sh8	Acid and or BN Surmoste Out (8000 series)
Dnc	Drift Not Checked	M16a.M16h	Snike Out Col 1 600 series Acid and or BN	Sd	Surrogate Diluted Out
Dn	Drift Out	M18.M28	Snike Out Col 1 and or Col 2 8000 series	Snc	Surronate Nnt Checked
Eha	An Extraction Before Collection Date	M18a.M18h	Snike Out Col 1 8000 series Acid and or BN	Ti5	Outside of 500 series Tune time
Emn	Problem Checkino Pren/nundates modcheckpreprund	Mnc	Snike Not Checked for this ms/msd	Ti6	Outside of 600 series Tune time/Cal Time
En	Eval Time Not Checked	Oc	Warning Compound(s) Over Calibration	Ti8	Outside of 8000 series Tune time/Cal Time

Veritech Lot Number: V-88943

Prepared By: Revolus, Jean Description: Voa extra add mix Prep Date: 6/21/2010

Department: Organics BatchNumber:

ApprovedBy: jean ApproveDate: 09/23/10

Expiration Date: 6/21/2011

Concentration: 2000-20000 p Final Volume: 10 ml

Checked: Yes

Verite

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
5013	d-Camphor	200 mg	NEAT	20000 ppm
5014	Camphene	20 mg	NEAT	2000 ppm
4995	METHANOL	10 ml	neat neat	

Veritech Lot Number: V-91412

Prepared By: Revolus, Jean Description: 1,4-Dioxane-d8 Solution

Department: Organics BatchNumber:

ApprovedBy: jean ApproveDate: 11/15/10

Prep Date: 7/22/2010 Expiration Date: 7/22/2011

Concentration: 2000 ppm Final Volume: 10 ml

Checked: Yes

Veritech Conc of Final Lot# /Rec# Amount Used Std Conc Lot Description 4995 **METHANOL** 10 ml | neat neat 5086 1,4-Dioxane-d8 20 mg | NEAT 2000 ppm

Veritech Lot Number: V-93698

Prepared By: Revolus, Jean Description: Voa Extra Add mix 2 Prep Date: 8/19/2010

Lot Description

Department: Organics BatchNumber: Concentration: 5000 ppm

ApprovedBy: jean ApproveDate: 09/24/10 Checked: Yes

Expiration Date: 8/19/2011

Veritech

Lot# /Rec#

5101

Veritech

Final Volume: 5 ml

Conc of Final Std Conc Amount Used Neat 5000 ppm 25 mg 25 mg Neat 5000 ppm 25 mg Neat 5000 ppm 25 mg Neat 5000 ppm

Methyl methacrylate 5100 Ethyl Methacrylate 5099 Butyl methacrylate 5098 n-Butyl acrylate 5097 n-Amyl acetate 25 mg Neat 5000 ppm 5096 Iso-propyl acetate 25 mg Neat 5000 ppm 5095 Ethyl acetate 25 mg Neat 5000 ppm 5185 **METHANOL** neat neat 5 ml

Veritech Lot Number: V-93699

Prepared By: Revolus, Jean Description: Voa Extra Add mix 2(2nd source)

Department: Organics BatchNumber:

ApprovedBy: jean ApproveDate: 09/24/10 Checked: Yes

Prep Date: 8/19/2010 Expiration Date: 8/19/2011

Concentration: 5000 ppm

Final Volume: 5 ml

Conc of Final

Lot# /Rec#	Lot Description	Amount Used	Sia	Conc
5101	Methyl methacrylate	25 mg	Neat	5000 ppm
5100	Ethyl Methacrylate	25 mg	Neat	5000 ppm
5099	Butyl methacrylate	25 mg	Neat	5000 ppm
5098	n-Butyl acrylate	25 mg	Neat	5000 ppm
5097	n-Amyl acetate	25 mg	Neat	5000 ppm
5096	Iso-propyl acetate	25 mg	Neat	5000 ppm
5095	Ethyl acetate	25 mg	Neat	5000 ppm
5185	METHANOL	5 ml	neat neat	

Veritech Lot Number: V-105159

Prepared By: Batelli, Daniel ApprovedBy: DAN Department: Organics ApproveDate: 01/05/11 Description: VOA ADD MIX BatchNumber: Prep Date: 1/4/2011 Concentration: 5000 ppm Checked: Yes Final Volume: 10 ml Expiration Date: 1/4/2012

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
2889	1,2,4,5-TETRAMETHYLBENZENE	50 mg	NEAT	5000 ppm
5532	p-Diethylbenzene	50 mg	Neat neat	5000 ppm
5533	p-Ethyltoluene	50 mg	Neat neat	5000 ppm
5531	Cyclohexanone	250 mg	Neat neat	25000 ppm
1230	METHANOL		NEAT	

Veritech Lot Number: V-105161

Prepared By: Batelli, Daniel Department: Organics ApprovedBy: DAN Description: VOA ADD MIX(2nd Source) ApproveDate: 01/05/11 BatchNumber: Prep Date: 1/4/2011 Concentration: 5000 ppm Checked: Yes Expiration Date: 1/4/2012 Final Volume: 10 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
2889	1,2,4,5-TETRAMETHYLBENZENE	50 mg	NEAT	5000 ppm
5532	p-Diethylbenzene	50 mg	Neat neat	5000 ppm
5533	p-Ethyltoluene	50 mg	Neat neat	5000 ppm
5531	Cyclohexanone	250 mg	Neat neat	25000 ppm
1230	METHANOL		NEAT	

Veritech Lot Number: V-106417

Department: Organics ApprovedBy: jean Prepared By: Revolus, Jean BatchNumber: ApproveDate: 02/03/11 Description: Ethyl ether/Furan Mix Concentration: 5000 ppm Checked: Yes Prep Date: 1/19/2011 Expiration Date: 1/10/2012 Final Volume: 10 ml Conc of Final Veritech Lot# /Rec# Std Conc Lot Description Amount Used 5555 50 mg NEAT 5000 ppm Ethyl ether 50 mg **NEAT** 5000 ppm 5559 Furan

5544 Methanol 10 ml neat neat Veritech Lot Number: V-106418

ApprovedBy: jean Prepared By: Revolus, Jean Department: Organics Description: Ethyl ether/Furan Mix(2nd Source) BatchNumber: ApproveDate: 02/03/11 Concentration: 5000 ppm Checked: Yes Prep Date: 1/19/2011 Expiration Date: 1/10/2012 Final Volume: 10 ml Conc of Final Veritech Lot# /Rec# Std Conc Amount Used Lot Description NEAT 5000 ppm 5555 Ethyl ether 50 mg NEAT 5000 ppm 5559 Furan 50 mg 10 ml neat neat

Methanol

5544

	Veritech Lo	ot Number: V-109108			
•	By: Previlon, Wilner	Department: Org	anics	ApprovedBy:	
Descript	ion: SIM IS/SURR MIX	BatchNumber:		ApproveDate:	
Prep Da	ate: 2/24/2011	Concentration: 25/3	250 ppm	Checked:	Yes
Expiration Da	ate: 7/22/2011	Final Volume: 10	ml		
Veritech				Conc of	Final
Lot# /Rec#	Lot Description		Amount Used	Std	Conc
5513	524 FORTIFICATION MIX		125 ul	2000 ppm	25 ppm
1230	METHANOL		9625 ul	NEAT	
v-91412	1,4-Dioxane-d8 Solution		250 ul	2000 ppm	50 ppm

Veritech Lot Number: V-110205

Prepared By: Revolus, Jean Description: VOA STOCK INT/SURR MIX

Prep Date: 3/9/2011 Expiration Date: 3/9/2012 Department: Organics

BatchNumber: Concentration: 1500 ppm

Final Volume: 100 ml

ApprovedBy: jean ApproveDate: 03/09/11

Checked: Yes

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
3178	1,2-Dichloroethane-d4	150 mg	NEAT	1500 ppm
1297	TOLUENE-D8	150 mg	NEAT	1500 ppm
3693	Dibromofluoromethane	150 mg	NEAT	1500 ppm
4295	CHLOROBENZENE-D5	150 mg	NEAT	1500 ppm
4760	1,2-Dichloroethane-d4	150 mg	NEAT	1500 ppm
5185	METHANOL	100 ml	neat neat	
5746	4-BROMOFLUOROBENZENE(1-BROMO-4-FLUOROBEN	150 mg	NEAT	1500 ppm
3661	Fluorobenzene	150 mg	NEAT	1500 ppm

Veritech Lot Number: V-110414

Prepared By: Batelli, Daniel

Description: VOA WORKING INT/SURR MIX Prep Date: 3/10/2011

Expiration Date: 9/10/2011

Department: Organics

BatchNumber: Concentration: 150 ppm Final Volume: 200 ml

ApprovedBy: dan ApproveDate: 03/15/11 Checked: Yes

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
1230	METHANOL	225 ml	NEAT	
V-110205	VOA STOCK INT/SURR MIX	25 ml	1500 ppm	150 ppm

Veritech Lot Number: V-111011

Prepared By: Previlon, Wilner Description: BFB Tune Mix Prep Date: 3/10/2011

Expiration Date: 9/10/2011

Department: Organics BatchNumber:

Concentration: 50 ppm Final Volume: 1.5 ml

ApprovedBy: DAN ApproveDate: 03/22/11

Checked: Yes

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
V-110414	VOA WORKING INT/SURR MIX	500 ul	150 ppm	50 ppm
1230	METHANOL	1000 ul	NEAT	

Veritech Lot Number: V-116389

Prepared By: Goring, Shawn Description: MBS

Prep Date: 5/20/2011 Expiration Date: 6/21/2011

Department: Organics BatchNumber:

Concentration: 100 ppm Final Volume: 1 ml

ApprovedBy: DAN ApproveDate: 05/20/11

Checked: Yes

Expiration D	ato. 0/2 //2011	That Colonie.				
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc		
1230	METHANOL	640 ul	NEAT	neat neat		
5652	VOA COMP MIX#6(GASES)	50 ul	2000 ppm	100 ppm		
5595	502/524 VOA CAL MIX	50 ul	2000 ppm	100 ppm		
5409	8260 ADDITIONS MIX	50 ul	2000 ppm	100 ppm		
5931	VOA CUSTOM MIX(2nd Source)	50 ul	VARIOUS	various ppn		
5288	TAMES	50 ul	2000 ppm	100 ppm		
V-105161	VOA ADD MIX(2nd Source)	20 ul	5000 ppm	various ppn		
v-88943	Voa extra add mix	50 ul	2000-20000 p	100-1000 p		
v-93699	Voa Extra Add mix 2(2nd source)	20 ul	5000 ppm	100 ppm		
V-106418	Ethyl ether/Furan Mix(2nd Source)	20 ul	5000 ppm	100 ppm		

Veritech Lot Number: V-116930

Prepared By: Goring, Shawn Description: 200ppm VOA Working Std Prep Date: 5/26/2011

Expiration Date: 6/20/2011

Department: Organics BatchNumber: Concentration: VARIOUS pp

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Final Volume: 1 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
1230	METHANOL	280 ul	NEAT	neat
5412	Gases	100 ul	2000 ppm	200 ppm
5902	502/524 VOA CAL MIX	100 ul	2000 ppm	200 ppm
5903	8260 ADDDITIONS	100 ul	2000 ppm	200 ppm
5930	VOA CUSTOM MIX	100 ul	VARIOUS	various ppm
5123	tert-Amyl Methyl Ether Standard	100 ul	2000 ppm	200 ppm
V-105159	VOA ADD MIX	40 ul	5000 ppm	various ppm
V-88943	Voa extra add mix	100 ul	2000-20000 p	200-2000 pp
V-93698	Voa Extra Add mix 2	40 ul	5000 ppm	200 ppm
V-106417	Ethyl ether/Furan Mix	40 ul	5000 ppm	200 ppm

Veritech Lot Number: V-116939

Prepared By: Goring, Shawn Description: ICV CAL @ 20 PPB Prep Date: 5/26/2011 Expiration Date: 6/2/2011

Department: Organics BatchNumber: Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Final Volume: 100 ml

Veritech Conc of Final Lot# /Rec# Std Conc Amount Used Lot Description V-116389 **MBS** 20 ul 100 ppm 20 ppb 5381 P&T Water 100 ml Neat neat neat 200 ppm 5650 FREON#22(CHLORODIFLUOROMETHANE 10 ul 20 ppb

Veritech Lot Number: V-116941

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 250 PPB Prep Date: 5/26/2011

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Expiration Date: 6/2/2011		Final Volume: 100 ml			
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc	
V-116930	200ppm VOA Working Std	125 ul	VARIOUS pp	250 ppb	
5381	P&T Water	100 ml	Neat neat		
5650	FREON#22(CHLORODIFLUOROMETHANE	125 ul	200 ppm	250 ppb	

Veritech Lot Number: V-116942

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 100 PPB Prep Date: 5/26/2011 Expiration Date: 6/2/2011

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Final Volume: 100 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc	
V-116930	200ppm VOA Working Std	50 ul	VARIOUS pp	100 ppb	
5381	P&T Water	100 ml	Neat neat		
5650	FREON#22(CHLORODIFLUOROMETHANE	50 ul	200 ppm	100 ppb	

Veritech Lot Number: V-116943

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 50 PPB

Prep Date: 5/26/2011 Expiration Date: 6/2/2011

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Final Volume: 100 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
V-116930	200ppm VOA Working Std	25 ul	VARIOUS pp	50 ppb
5381	P&T Water	100 mi	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	25 ul	200 ppm	50 ppb

Veritech Lot Number: V-116944

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 20 PPB Prep Date: 5/26/2011

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb Expiration Date: 6/2/2011 Final Volume: 100 ml

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Conc of Veritech Final Lot# /Rec# Amount Used Std Conc Lot Description V-116930 200ppm VOA Working Std 10 ul VARIOUS pp 20 ppb 5381 P&T Water 100 ml | Neat neat 5650 FREON#22(CHLORODIFLUOROMETHANE 10 ul 200 ppm 20 ppb

Veritech Lot Number: V-116945

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 10 PPB Prep Date: 5/26/2011

Expiration Date: 6/2/2011

Department: Organics BatchNumber: B-10337

Concentration: VARIOUS ppb Final Volume: 100 ml

ApprovedBy: DAN ApproveDate: 05/27/11

Checked: Yes

Veritech Final Conc of Lot# /Rec# Std Conc Lot Description Amount Used V-116930 200ppm VOA Working Std 5 ul VARIOUS pp 10 ppb 5381 P&T Water 100 ml Neat neat 5650 FREON#22(CHLORODIFLUOROMETHANE 5 ul 200 ppm 10 ppb

Veritech Lot Number: V-116946

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 5 PPB Prep Date: 5/26/2011

Expiration Date: 6/2/2011

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Final Volume: 100 ml

Veritech Conc of Final Lot# /Rec# Std Conc Lot Description Amount Used V-116930 VARIOUS pp 5 ppb 2.5 ul 200ppm VOA Working Std 5381 P&T Water 100 ml Neat neat 5650 FREON#22(CHLORODIFLUOROMETHANE 200 ppm 2.5 ul 5 ppb

Veritech Lot Number: V-116947

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 1 PPB Prep Date: 5/26/2011 Expiration Date: 6/2/2011 Veritech

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Final Volume: 100 ml

Conc of Final Lot# /Rec# Std Conc Lot Description Amount Used V-116930 VARIOUS pp 200ppm VOA Working Std .5 ul 1 ppb Neat neat 5381 P&T Water 100 ml 5650 200 ppm FREON#22(CHLORODIFLUOROMETHANE .5 ul 1 ppb

Veritech Lot Number: V-116948

Prepared By: Goring, Shawn Description: 624/8260 CAL @ 0.5 PPB Prep Date: 5/26/2011

Expiration Date: 6/2/2011

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

Final Volume: 100 ml

	Veritech			Conc of	Final	
	Lot# /Rec#	Lot Description	Amount Used	Std	Conc	
	V-116930	200ppm VOA Working Std	.25 ul	VARIOUS pp	0.5 ppb	
	5381	P&T Water	100 ml	Neat neat		
	5650	FREON#22(CHLORODIFLUOROMETHANE	.25 ul	200 ppm	0.5 ppb	

Veritech Lot Number: V-116949

Prepared By: Goring, Shawn

Description: 624/8260 CAL @ 500 PPB Prep Date: 5/26/2011 Expiration Date: 6/2/2011

Department: Organics BatchNumber: B-10337 Concentration: VARIOUS ppb Final Volume: 100 ml

ApprovedBy: DAN ApproveDate: 05/27/11 Checked: Yes

= Aprilation = 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 100 1111		
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
V-116930	200ppm VOA Working Std	250 ul	VARIOUS pp	500 ppb
5381	P&T Water	100 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	250 ul	200 ppm	500 ppb

Veritech Lot Number: V-117133

Department: Organics

Prepared By: Goring, Shawn Description: MBS Prep Date: 5/30/2011 ------- D-t-- C/24/2044

BatchNumber: Concentration: 100 ppm F:--- 1 \ /- 1....

ApprovedBy: DAN ApproveDate: 06/01/11

Checked: Yes

Expiration Date: 6/21/2011		Final Volume: 1 ml			
Veritech Lot# /Rec#	Lot Description		Amount Used	Conc of Std	Final Conc
1230	METHANOL		640 ul	NEAT	neat neat
5652	VOA COMP MIX#6(GASES)		50 ul	2000 ppm	100 ppm
5595	502/524 VOA CAL MIX		50 ul	2000 ppm	100 ppm
5903	8260 ADDDITIONS		50 ul	2000 ppm	100 ppm
5931	VOA CUSTOM MIX(2nd Source)		50 ul	VARIOUS	various ppm
5904	tert-Amyl methyl ether		50 ul	2000 ppm	100 ppm
V-105161	VOA ADD MIX(2nd Source)		20 ul	5000 ppm	various ppm
v-88943	Voa extra add mix		50 ul	2000-20000 p	100-1000 pp
v-93699	Voa Extra Add mix 2(2nd source)		20 ul	5000 ppm	100 ppm
V-106418	Ethyl ether/Furan Mix(2nd Source)		20 ul	5000 ppm	100 ppm

Veritech Lot Number: V-117134

Prepared By: Goring, Shawn Description: 200ppm VOA Working Std Prep Date: 5/30/2011 Expiration Date: 6/20/2011

Department: Organics BatchNumber: Concentration: VARIOUS pp

ApprovedBy: DAN ApproveDate: 06/01/11 Checked: Yes

Final Volume: 1 ml

Veritech Conc of Final Lot# /Rec# Conc Std Lot Description Amount Used NEAT 1230 **METHANOL** 280 ul neat Gases 5412 100 ul 2000 ppm 200 ppm 5516 502/524 VOA CAL MIX 100 ul 2000 ppm 200 ppm 5929 8260 ADDITIONS 100 ul 2000 ppm 200 ppm 5930 VOA CUSTOM MIX 100 ul VARIOUS various ppm 5621 100 ul 2000 ppm tert-Amvl Methyl Ether 200 ppm V-105159 VOA ADD MIX 40 ul 5000 ppm various ppm V-88943 Voa extra add mix 100 ul 2000-20000 p 200-2000 pp V-93698 Voa Extra Add mix 2 40 ul | 5000 ppm 200 ppm V-106417 Ethyl ether/Furan Mix 40 ul 5000 ppm 200 ppm

Veritech Lot Number: V-117137

Prepared By: Goring, Shawn
Department: Organics
ApprovedBy: DAN
Description: 624/8260 CAL @ 250 PPB
BatchNumber: B-10357
ApproveDate: 06/01/11
Concentration: VARIOUS ppb
Expiration Date: 6/6/2011
Final Volume: 100 ml

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
V-117134	200ppm VOA Working Std	125 ul	VARIOUS pp	250 ppb
5381	P&T Water	100 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	125 ul	200 ppm	250 ppb

Veritech Lot Number: V-117138

Department: Organics ApprovedBy: DAN Prepared By: Goring, Shawn Description: 624/8260 CAL @ 100 PPB ApproveDate: 06/01/11 BatchNumber: B-10357 Prep Date: 5/30/2011 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 6/6/2011 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Amount Used Std Conc Lot Description V-117134 50 ul VARIOUS pp 200ppm VOA Working Std 100 ppb 5381 P&T Water 100 ml Neat neat 5650 FREON#22(CHLORODIFLUOROMETHANE 50 ul 200 ppm 100 ppb

Veritech Lot Number: V-117139

Prepared By: Goring, Shawn
Department: Organics
ApprovedBy: DAN
Description: 624/8260 CAL @ 50 PPB
BatchNumber: B-10357
ApproveDate: 06/01/11
Concentration: VARIOUS ppb
Expiration Date: 6/6/2011
Final Volume: 100 ml

Veritech
Lott PRec#
Lot Description
Department: Organics
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy: DAN
ApprovedBy:

Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
V-117134	200ppm VOA Working Std	25 ul	VARIOUS pp	50 ppb
5381	P&T Water	100 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	25 ul	200 ppm	50 ppb

Veritech Lot Number: V-117140

Prepared By: Goring, Shawn
Department: Organics
ApprovedBy: DAN
Description: 624/8260 CAL @ 20 PPB
BatchNumber: B-10357
ApproveDate: 06/01/11
Concentration: VARIOUS ppb
Checked: Yes
Expiration Date: 6/6/2011
Final Volume: 100 ml

Veritech			Conc of	Final
Lot# /Rec#	Lot Description	Amount Used	Sta	Conc
V-117134	200ppm VOA Working Std	10 ul	VARIOUS pp	20 ppb
5381	P&T Water	100 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	10 ul	200 ppm	20 ppb

Veritech Lot Number: V-117141

5 ul

200 ppm

10 ppb

Prepared By: Goring, Shawn Department: Organics ApprovedBy: DAN Description: 624/8260 CAL @ 10 PPB BatchNumber: B-10357 ApproveDate: 06/01/11 Prep Date: 5/30/2011 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 6/6/2011 Final Volume: 100 ml Conc of Final Veritech Amount Used Std Lot# /Rec# Conc Lot Description V-117134 200ppm VOA Working Std 5 ul VARIOUS pp 10 ppb 100 ml | Neat neat 5381 P&T Water

FREON#22(CHLORODIFLUOROMETHANE

5650

Veritech Lot Number: V-117142

Prepared By: Goring, Shawn Department: Organics ApprovedBy: DAN Description: 624/8260 CAL @ 5 PPB BatchNumber: B-10357 ApproveDate: 06/01/11 Prep Date: 5/30/2011 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 6/6/2011 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Amount Used Std Conc Lot Description V-117134 200ppm VOA Working Std VARIOUS pp 5 ppb 2.5 ul 5381 P&T Water 100 ml Neat neat 5650 FREON#22(CHLORODIFLUOROMETHANE 2.5 ul 200 ppm 5 ppb

Veritech Lot Number: V-117143

Prepared By: Goring, Shawn Department: Organics ApprovedBy: DAN Description: 624/8260 CAL @ 1 PPB BatchNumber: B-10357 ApproveDate: 06/01/11 Prep Date: 5/30/2011 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 6/6/2011 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Std Conc Lot Description Amount Used V-117134 200ppm VOA Working Std VARIOUS pp 1 ppb .5 ul 5381 P&T Water 100 ml Neat neat 5650 FREON#22(CHLORODIFLUOROMETHANE .5 ul 200 ppm 1 ppb

Veritech Lot Number: V-117144

Prepared By: Goring, Shawn Department: Organics ApprovedBy: DAN Description: 624/8260 CAL @ 0.5 PPB BatchNumber: B-10357 ApproveDate: 06/01/11 Prep Date: 5/30/2011 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 6/6/2011 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Std Conc Lot Description Amount Used V-117134 200ppm VOA Working Std VARIOUS pp .25 ul 0.5 ppb 5381 P&T Water 100 ml Neat neat 5650 FREON#22(CHLORODIFLUOROMETHANE .25 ul 200 ppm 0.5 ppb

Veritech Lot Number: V-117145

Prepared By: Goring, Shawn
Department: Organics
ApprovedBy: DAN
Description: 624/8260 CAL @ 500 PPB
BatchNumber: B-10357
ApproveDate: 06/01/11
Concentration: VARIOUS ppb
Checked: Yes
Expiration Date: 6/6/2011
Final Volume: 100 ml

Expiration Du	ito, ororzott	. 100 1111		
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc
V-117134	200ppm VOA Working Std	250 ul	VARIOUS pp	500 ppb
5381	P&T Water	100 ml	Neat neat	
5650	FREON#22(CHLORODIFLUOROMETHANE	250 ul	200 ppm	500 ppb

Veritech Lot Number: V-117146

Prepared By: Goring, Shawn Department: Organics ApprovedBy: DAN Description: ICV CAL @ 20 PPB BatchNumber: ApproveDate: 06/01/11 Prep Date: 5/30/2011 Concentration: VARIOUS ppb Checked: Yes Expiration Date: 6/6/2011 Final Volume: 100 ml Veritech Conc of Final Lot# /Rec# Amount Used Std Conc Lot Description V-117133 MBS 20 ul 100 ppm 20 ppb 100 ml 5381 P&T Water Neat neat neat FREON#22(CHLORODIFLUOROMETHANE 5650 10 ul 200 ppm 20 ppb

Veritech Lot Number: V-117302

Prepared By: Previlon, Wilner Description: CAL @ 20 PPB

Department: Organics BatchNumber: ApprovedBy: DAN
ApproveDate: 06/02/11

Prep Date: 6/1/2011 Expiration Date: 6/8/2011 Concentration: VARIOUS ppb Final Volume: 100 ml

Checked: Yes	

Expiration D	ate. 0/0/2011	Tillal Volume. 100 mil					
Veritech Lot# /Rec#	Lot Description	Amount Used	Conc of Std	Final Conc			
V-117134	200ppm VOA Working Std	10 ul	VARIOUS pp	20 ppb			
5381	P&T Water	100 ml	Neat neat				
5650	FREON#22(CHLORODIFLUOROMETHANE	10 ul	200 ppm	20 ppb			

		Veritec	h Control/Re	ceipt Nur	nber: 1230					
			Descrip	otion				Approved	By: jean	
			METHA				/	ApproveD	ate: 07/30	/09
		L						Check	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Boo	Exp Date:	Rec By:	Num Cont		Volume /Cont	e Conc:	Units:
FISHER	A453-1	045850	06/22/05	06/22/15	Revolus, Jean	36		1L	NEAT	Omis.
	71-100 1									
		Veritec	h Control/Re	ceipt Nur	nber:1297					
			Descrip	otion				Approved		
			TOLUEN				/	ApproveD)/09
						L			ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Data Boo	Exp Date:	Rec By:	Num Cont	_	Volume /Cont	e Conc:	Units:
SIGMA-ALDRICH		02504HB	09/06/05	09/30/15	Revolus, Jean	1		5g	NEAT	Units.
	10,1000									
		Veritec	h Control/Re	ceipt Nur	nber: 2889					
			Descrip	otion				Approved		
		1,2	4,5-TETRAME	THYLBENZ	ZENE		,	ApproveD	ate: 07/30 ked: Yes	/09
						L				
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num Cont		Volume /Cont	e Conc:	Units:
ACROS ORGANI	409390050	A0214190	11/20/07	11/30/20	Revolus, Jean	1		1ML	NEAT	O.M.G.
		\\\-\.\\\-\.\\\\\\\\\\\\\\\\\\\\\\\\\\	L 0 4 1/D -	! - 4 NI			-			
		veritec	h Control/Re	ceipt Nur	nber: 3178	_				!
			Descrip	otion				Approved		
			1,2-Dichloroe	ethane-d4			,	ApproveD	ate: 07/30 ked: Yes	/09
						L				
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num Cont		Volume /Cont	e Conc:	Units:
SIGMA-ALDRICH		EW0372	03/26/08	03/26/18	Revolus, Jean	1		1g	NEAT	Offics.
		veritec	h (:Antrol/Re/	ceint Niir	nber: 3661					
				colpt ital		_				
			Descrip	•				Approved		
				otion				ApproveD	ate: 07/30	/09
			Descrip	otion			<i>F</i>	ApproveD Check	ate: 07/30 ked: Yes	/09
Manufacturer Manufacturer	Catalog Num	Lot Num	Descrip Fluorobe	otion nzene		Num	of	ApproveD Check Volume	ate: 07/30 ked: Yes	
Manufacturer CHEM SERVICE	Catalog Num:	Lot Num: 388-117B	Descrip Fluorobe	otion		Num Cont	of	ApproveD Check	ate: 07/30 ked: Yes	Units:
		388-117B	Descrip Fluorober Date Rec: 10/06/08	Exp Date:	Rec By: Revolus, Jean	Cont	of	ApproveD Check Volume /Cont 2g	ate: 07/30 ked: Yes Conc: NEAT	Units:
		388-117B	Descrip Fluorober Date Rec:	Exp Date:	Rec By: Revolus, Jean	Cont	of III	ApproveD Check Volume /Cont 2g	ate: 07/30 ked: Yes Conc: NEAT	Units:
		388-117B	Descrip Fluorober Date Rec: 10/06/08	Exp Date: 09/30/13	Rec By: Revolus, Jean	Cont	of III	ApproveD Check Volume /Cont 2g Approved	ate: 07/30 ked: Yes Conc: NEAT	Units:
		388-117B	Descrip Fluorober Date Rec: 10/06/08 h Control/Rec	Exp Date: 09/30/13 ceipt Num	Rec By: Revolus, Jean	Cont	of III	ApproveD Check Volume /Cont 2g Approved ApproveD	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30	Units:
		388-117B	Descrip Fluorobel Date Rec: 10/06/08 h Control/Rec	Exp Date: 09/30/13 ceipt Num	Rec By: Revolus, Jean	Cont 1	of III	ApproveD. Check Volume /Cont 2g Approved ApproveD. Check	ate: 07/30 ced: Yes Conc: NEAT By: jean ate: 07/30 ced: Yes	Units:
CHEM SERVICE	F839	Veritec	Descrip Fluorobel Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro	Exp Date: 09/30/13 ceipt Num otion omethane	Rec By: Revolus, Jean nber: 3693	Cont 1	of III	ApproveD Check Volume /Cont 2g Approved ApproveD Check Volume	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30 ked: Yes	Units:
CHEM SERVICE Manufacturer	F839 Catalog Num:	388-117B Veritec Lot Num:	Descrip Fluorobel Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro Date Rec:	Exp Date: 09/30/13 ceipt Num otion omethane Exp Date:	Rec By: Revolus, Jean nber: 3693	Cont 1	of III	ApproveD. Check Volume /Cont 2g Approved ApproveD. Check Volume /Cont	ate: 07/30 ced: Yes Conc: NEAT By: jean ate: 07/30 ced: Yes Conc:	Units:
CHEM SERVICE Manufacturer	F839	388-117B Veritec Lot Num: A063048	Descrip Fluorobel Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro Date Rec: 10/22/08	Exp Date: 09/30/13 ceipt Num otion omethane Exp Date: 09/30/13	Rec By: Revolus, Jean nber: 3693 Rec By: Rec By: Revolus, Jean	Cont 1	of III	ApproveD Check Volume /Cont 2g Approved ApproveD Check Volume	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30 ked: Yes	Units:
CHEM SERVICE	F839 Catalog Num:	388-117B Veritec Lot Num: A063048	Descrip Fluorobel Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro Date Rec:	Exp Date: 09/30/13 ceipt Num otion omethane Exp Date: 09/30/13	Rec By: Revolus, Jean nber: 3693 Rec By: Rec By: Revolus, Jean	Cont 1	of III	ApproveD. Check Volume /Cont 2g Approved ApproveD. Check Volume /Cont	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30 ked: Yes Conc: NEAT	Units:
CHEM SERVICE Manufacturer	F839 Catalog Num:	388-117B Veritec Lot Num: A063048	Descrip Fluorober Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro Date Rec: 10/22/08 h Control/Rec	Exp Date: 09/30/13 ceipt Num otion omethane Exp Date: 09/30/13	Rec By: Revolus, Jean nber: 3693 Rec By: Rec By: Revolus, Jean	Cont 1	of III	ApproveD Check Volume /Cont 2g ApproveD Check Volume /Cont 100m	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30 ked: Yes Conc: NEAT	Units:
CHEM SERVICE Manufacturer	F839 Catalog Num:	388-117B Veritec Lot Num: A063048	Descrip Fluorobel Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro Date Rec: 10/22/08	Exp Date: 09/30/13 ceipt Num exp Date: 09/30/13 ceipt Num exp Date: 09/30/13 ceipt Num etion	Rec By: Revolus, Jean nber: 3693 Rec By: Rec By: Revolus, Jean	Cont 1	of III	Approved Check Volume /Cont 2g Approved Approved Volume /Cont 100m Approved Approved Approved	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 08/04	Units:
CHEM SERVICE Manufacturer	F839 Catalog Num:	388-117B Veritec Lot Num: A063048	Descrip Fluorobel Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro Date Rec: 10/22/08 h Control/Rec Descrip	Exp Date: 09/30/13 ceipt Num exp Date: 09/30/13 ceipt Num exp Date: 09/30/13 ceipt Num etion	Rec By: Revolus, Jean nber: 3693 Rec By: Rec By: Revolus, Jean	Cont 1	of III	Approved Check Volume /Cont 2g Approved Approved Volume /Cont 100m Approved Approved Approved	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30 ked: Yes Conc: NEAT By: jean By: jean	Units:
CHEM SERVICE Manufacturer	F839 Catalog Num:	388-117B Veritec Lot Num: A063048	Descrip Fluorober Date Rec: 10/06/08 h Control/Rec Descrip Dibromofluoro Date Rec: 10/22/08 h Control/Rec Descrip CHLOROBEN	Exp Date: 09/30/13 ceipt Num exp Date: 09/30/13 ceipt Num exp Date: 09/30/13 ceipt Num etion	Rec By: Revolus, Jean nber: 3693 Rec By: Revolus, Jean nber: 4295	Cont 1	of IIII	Approved Check Volume /Cont 2g Approved Approved Volume /Cont 100m Approved Approved Approved	ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 07/30 ked: Yes Conc: NEAT By: jean ate: 08/04 ked: Yes	Units:

		Verited	h Control/Red	ceipt Nun	nber: 4760	_			
			Descrip	otion				dBy: jean	
			1,2-Dichloroe					Date: 03/17	7/10
							Chec	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Data Bass	Exp Date:	Rec By:	Num	of Volum /Cont		Units:
ACCUSTANDAR	F836	435-90B	03/17/10	01/31/14	Recolus, Jean	2	100m		Units:
ACCOUNTAINDAIN	1 000	433-906	03/1//10	01/31/14	Nevolus, Jean		100111	INCAT	
		Veritec	h Control/Red	ceipt Nun	nber: 4995				
			Descrip	otion				dBy: richq	
			METHA		A CONTRACTOR OF THE PARTY OF TH	7		Date: 06/22	2/10
							Chec	ked: Yes	
						Num			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Cont	/Cont	Conc:	Units:
FISHER	A412SK-4	103255	06/11/10	06/11/12	Okomeng, Maxwe	4	4LT	neat	neat
		Veritec	h Control/Red	ceipt Nun	nber: 5013				
			Descrip	otion			Approve	dBy: jean	
			d-Camp					Date: 06/29	9/10
							Chec	ked: Yes	
						Num			
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	·	Rec By:	Cont	/Cont		Units:
CHEMSERVICE	F2404	402-140B	06/21/10	06/30/14	Revolus, Jean	1	2g	NEAT	
		Veritec	h Control/Red	ceipt Nun	nber: 5014				
			Descrip	otion				dBy: jean	
			Camph					Date: 06/29) /10
						L.		ked: Yes	
Manufacturer	Catalog Num	Lot Num:	Data Boo	Evn Data:	Rec By:	Num (of Volum /Cont		Units:
CHEMSERVICE	Catalog Num: O-747	419-138A	06/21/10	Exp Date: 03/31/15	Rec By: Revolus, Jean	1	2g	NEAT	Oilles.
- I I I I I I I I I I I I I I I I I I I	1 7 7 7 7					<u> </u>			
		Veritec	h Control/Red	ceipt Nun	nber: 5086				
			Descrip	tion				dBy: jean	1/40
			1,4-Dioxa	ne-d8				Date: 07/23 ked: Yes	710
	Catalog Num:	Lot Num:	Data Basi	Exp Date:	Pec By:	Num (of Volum /Cont	ie Conc:	Units:
Manufacturer		LOUINUIII.	Date Rec:	EXP Date.		JULIE	/OUIL		OTIIIS.
		10C-370		07/22/30		1	5g	NEAT	
	DLM-28-5	10C-370	07/22/10	07/22/30	Revolus, Jean	1	5g	NEAT	
Manufacturer CIL					Revolus, Jean	1			
			07/22/10	eipt Nun	Revolus, Jean	1	Approve	dBy: jean	
			07/22/10 h Control/Red	ceipt Nun	Revolus, Jean	1	Approve E	dBy: jean Date: 07/26	
			07/22/10 h Control/Rec Descrip	ceipt Nun	Revolus, Jean	1	Approve Approve Chec	dBy: jean Date: 07/26 ked: Yes	
CIL	DLM-28-5	Veritec	07/22/10 h Control/Red Descrip Ethyl acc	ceipt Nun	Revolus, Jean	Num	Approve ApproveChec	dBy: jean Date: 07/26 ked: Yes	5/10
CIL Manufacturer	DLM-28-5 Catalog Num:	Veritec	Descrip Ethyl ace	ceipt Nun	Revolus, Jean nber: 5095 Rec By:	Num o	Approve Approve Chec	dBy: jean Date: 07/26 ked: Yes ne Conc:	
CIL Manufacturer	DLM-28-5	Veritec	07/22/10 h Control/Red Descrip Ethyl acc	ceipt Nun	Revolus, Jean	Num	Approve ApproveChec	dBy: jean Date: 07/26 ked: Yes	5/10
CIL	DLM-28-5 Catalog Num:	Lot Num:	Descrip Ethyl ace	etate Exp Date: 03/31/15	Revolus, Jean nber: 5095 Rec By: Revolus, Jean	Num o	Approve Approve Chec	dBy: jean Date: 07/26 ked: Yes le Conc: Neat	Units:
CIL Manufacturer	DLM-28-5 Catalog Num:	Lot Num:	Descrip Ethyl acc Date Rec: 07/26/10	etate Exp Date: 03/31/15	Revolus, Jean nber: 5095 Rec By: Revolus, Jean	Num o	Approve Approve Chec of Volum /Cont 1g Approve	dBy: jean Date: 07/26ked: Yes De Conc: Neat	Units:
CIL Manufacturer	DLM-28-5 Catalog Num:	Lot Num:	Descrip Ethyl acc Date Rec:	etate Exp Date: 03/31/15 ceipt Nun	Revolus, Jean nber: 5095 Rec By: Revolus, Jean	Num o	Approve Approve Chec of Volum /Cont 1g Approve Approve Approve	dBy: jean oate: 07/26 ked: Yes le Conc: Neat dBy: jean oate: 07/26	Units:
CIL Manufacturer	DLM-28-5 Catalog Num:	Lot Num:	Date Rec: 07/26/10 h Control/Rec Descrip	etate Exp Date: 03/31/15 ceipt Nun	Revolus, Jean nber: 5095 Rec By: Revolus, Jean	Num of Cont	Approve Approve Checo of Volum /Cont 1g Approve Approve Checo	dBy: jean Date: 07/26 Red: Yes Re Conc: Neat DBy: jean Date: 07/26 Red: Yes	Units:
CIL Manufacturer	DLM-28-5 Catalog Num:	Lot Num:	Date Rec: 07/26/10 h Control/Rec Date Rec: 07/26/10 h Control/Rec Descrip	etate Exp Date: 03/31/15 ceipt Nun	Revolus, Jean nber: 5095 Rec By: Revolus, Jean	Num o	Approve Approve Checo of Volum /Cont 1g Approve Approve Checo	dBy: jean Date: 07/26 Red: Yes Re Conc: Neat DBy: jean Date: 07/26 Red: Yes	Units:

		Verited	h Control/Red	ceipt Nur	nber: 5097				
			Descrip	otion				dBy: jean	
			n-Amyl a					Date: 07/26	6/10
							Chec	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont		Units:
CHEM SERVICE	o-2003	414-70B	07/26/10	11/30/14	Revolus, Jean	1	5g	Neat	
		Verited	h Control/Red	ceipt Nur	nber: 5098				
			Descrip	otion			Approve	dBy: jean	
			n-Butyl ad	crylate				Date: 07/26	6/10
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Boo But	Num of Cont	Volum /Cont	ne Conc:	Units:
CHEM SERVICE	O-1004	409-80A	07/26/10	09/30/14	Rec By: Revolus, Jean	1	10g	Neat	Units:
OTILW OLIVIOL	10-1004						109	INCAL	
		Verited	h Control/Red	ceipt Nun	nber: 5099				
			Descrip	tion				dBy: jean	
			Butyl metha	acrylate				Date: 07/26 ked: Yes	5/10
						Num of			14000
Manufacturer	Catalog Num:	Lot Num:	Date Rec:		Rec By:	Cont	/Cont		Units:
CHEM SERVICE	O-1005	419-155B	07/26/10	03/31/13	Revolus, Jean	1	1g	Neat	
		Verited	h Control/Red Descrip		nber: 5100		Approve	dBy: jean	
			Ethyl Metha			-		Date: 07/26	6/10
			,				Chec	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num of Cont	Volum /Cont	-	Units:
CHEM SERVICE	F984	433-132A	07/26/10	02/28/14	Revolus, Jean	1	5g	Neat	OTIKO.
	<u> </u>	Verited	h Control/Red	ceipt Nun	nber: 5101				
			Descrip	tion				dBy: jean	
			Methyl meth			-	ApproveD	Date: 07/26	3/10
			Weary mean	idoryidio			Chec	ked: Yes	
					_	Num of		_	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:		Cont	/Cont	Conc:	Units:
CHEM SERVICE	F982	422-28B	07/26/10	04/30/15	Revolus, Jean	1 1	5g	Neat	
		Veritec	h Control/Red	eipt Nun	nber: 5123				
			Descrip	tion				dBy: jean	
		te	rt-Amyl Methyl E		lard			Date: 08/02	:/10
							Chec	ked: Yes	
Manufertur	Catala - N	1 -4 51	D.4. 5	F D :	D D	Num of		_	1.1-24
Manufacturer RESTEK	Catalog Num: 30629	Lot Num: A075900	Date Rec: 08/02/10	Exp Date: 07/31/15		Cont	/Cont	Conc: 2000	Units:
NESTER	J0023	V019900	00/02/10	0//3//15	Revolus, Jean	2	1ml	2000	PPIVI
		Veritec	h Control/Red	eipt Nun	nber: 5185				
			Descrip	tion			Approve		
			METHAI					ate: 08/17	/10
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Data Basi	Evn Date:	Pac By:	Num of Cont	Volum /Cont	-	Linita
J T Baker	Catalog Num: 9077-02			Exp Date:	Rec By:			Conc:	Units:
гракег	9077-02	H45E36	08/13/10	08/13/12	Okomeng, Maxwe	I 60	2.5LT	neat	neat

		Veritec	h Control/Red	ceipt Nun	nber: 5288	ı			
			Descrip	otion	· · · · · · · · · · · · · · · · · · ·		Approved	By: jean	
			TAME				ApproveD		/10
	•		17 11712				Chec	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Data Pas:	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:
Supelco	5-06737	LB64951	09/29/10	02/28/12	Hamid, Akmal	2	1	2000	ppm
Oupeico	3-00737			1				2000	ppiii
		Veritec	h Control/Red	ceipt Nun	nber: 5381				
			Descrip	otion				By: DAN	
			P&T W	ater			ApproveD		/10
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:
Veritech	N/A	N/A	10/01/10	10/01/15	Batelli, Daniel	1	N/A	Neat	Neat
		Verited	ch Control/Red	ceipt Nun	nber: 5409				
			Descrip				ApproveD ApproveD		/10
			8260 ADDITI	ONS MIX				ked: Yes	
14	Ontolog Nivers	1 -4 Ni	D 4- D.	F D -1:	D D	Num of	Volum		11-2-
Manufacturer SUPELCO	Catalog Num: 46831-U	Lot Num: LB73020	Date Rec: 11/09/10	Exp Date: 11/30/12	Rec By: Revolus, Jean	Cont 3	/Cont 1ml	Conc: 2000	Units:
GOFELOO	→ 0031-U					<u> </u>	11111	2000	reivi
		Veritec	h Control/Red	ceipt Nun	nber: 5412				
			Descrip	otion			Approved		
			Gase	es			ApproveD		/10
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Bee	Exp Date:	Rec By:	Num of Cont	Volum /Cont	e Conc:	Units:
ACCUSTANDAR	Catalog Num: V-601B-10X-PAK	210091188	11/09/10	10/06/13	Revolus, Jean	5	1ml	2000	PPM
	1 20.0 10.17.10								
		Veritec	h Control/Red	ceipt Nun	nber: 5513				
			Descrip	otion			Approved		440
			524 FORTIFICA	ATION MIX	<		ApproveD	ate: 12/14 ked: Yes	/10
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec Bv:	Num of Cont	Volum/ /Cont	e Conc:	Units:
SUPELCO	47358-U	LB63491	12/14/10	12/31/11	Revolus, Jean	1	1ml	2000	PPM
		\/_=i4	h Control/D-	naint Alu-					
		veritec	h Control/Red	eipt nun	เมษาเออาช				
						1 1	Approved		:/10
	-		Descrip				Annroyan		, 10
			Descrip 502/524 VOA				ApproveD Check		
							Chec	ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	502/524 VOA		Rec By:	Num of Cont		ked: Yes	Units:
	Catalog Num: LVOC-1JM	Lot Num: 457-9A	502/524 VOA	CAL MIX	Rec By: Revolus, Jean	Num of	Chec	ked: Yes	Units:
		457-9A	502/524 VOA Date Rec: 12/16/10	Exp Date: 12/31/11	Revolus, Jean	Num of Cont	Volum /Cont 1ml	e Conc: 2000	PPM
		457-9A	502/524 VOA Date Rec:	Exp Date: 12/31/11	Revolus, Jean	Num of Cont	Volum/Cont	ced: Yes Conc: 2000	PPM
		457-9A	502/524 VOA Date Rec: 12/16/10	Exp Date: 12/31/11 ceipt Nun	Revolus, Jean	Num of Cont	Volum/Cont 1ml Approved	e Conc: 2000	PPM
		457-9A	Date Rec: 12/16/10	Exp Date: 12/31/11 ceipt Nun	Revolus, Jean	Num of Cont	Volum/Cont 1ml Approved ApproveD	Conc: 2000 By: DAN ate: 01/07	PPM
		457-9A	Date Rec: 12/16/10 Ch Control/Rec Descrip	Exp Date: 12/31/11 ceipt Nun	Revolus, Jean	Num of Cont 4	Check Volum /Cont 1ml Approved Approved Check	ced: Yes Conc: 2000 BBJ BJ BJ BJ BJ BJ BJ BJ BJ BJ BJ BJ BJ	PPM
Manufacturer CHEMSERVICE		457-9A	Date Rec: 12/16/10 h Control/Rec Descrip Cyclohexa	Exp Date: 12/31/11 ceipt Nun	Revolus, Jean	Num of Cont	Volum/Cont 1ml Approved ApproveD	ced: Yes Conc: 2000 BBJ BJ BJ BJ BJ BJ BJ BJ BJ BJ BJ BJ BJ	PPM

		Veritec	h Control/Red	ceipt Nun	nber: 5532				
			Descrip	otion				dBy: DAN	
			p-Diethylb					Date: 01/07	7/11
								ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont		Units:
ChemService	O-2296	451-130B	12/28/10	11/30/14	Batelli, Daniel	1	100m		Neat
	1.	Veritec	h Control/Red	ceipt Nun	nber: 5533		11 10 11	{BES 1 1	11 1 11
			Descrip	·				dBy: DAN	
			p-Ethylto				Approve[Date: 01/07	7/11
			p Emyno	140110			Chec	ked: Yes	
						Num of	Volum	ne	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:		Rec By:	Cont	/Cont	Conc:	Units:
ChemService	O-2413	453-143B	12/28/10	12/31/15	Batelli, Daniel	1 1	1g	Neat	Neat
		Veritec	h Control/Red	ceipt Nun	nber: 5544				
			Descrip	otion				dBy: jean	
			Metha					Date: 01/12	2/11
		L					Chec	ked: Yes	
_						Num of		. •	
Manufacturer	Catalog Num:	Lot Num:	Date Rec:			Cont	/Cont		Units:
J.T.Baker	9077-02	H45E36	01/11/11	01/10/12	Lopez, Jose	18	1L	neat	neat
			Descrip Ethyl e				Approve	dBy: jean Date: 01/19 :ked: Yes	9/11
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volum /Cont		Units:
CHEMSERVICE	O-569	444-37B	01/18/11	03/31/15	Revolus, Jean	1	2g	NEAT	
		Veritec	h Control/Red	ceipt Nun	nber: 5559	A A A A A A A A A A A A A A A A A A A			
			Descrip	tion				dBy: jean	
			Fura					Date: 01/19	9/11
							Chec	ked: Yes	
Manufactures	Catalan N	L of Nivers	Deta De	C D-4-	Dee Dee	Num of		-	l le ta
Manufacturer CHEMSERVICE	Catalog Num: O-2298	Lot Num: 451-74A	01/18/11	Exp Date: 09/30/13	Rec By: Revolus, Jean	Cont 1	/Cont	Conc: NEAT	Units:
O. ILMOLITATIOE	J-2230	751-747	01/16/11	03/30/13	revolus, Jean		109	HLAI	
		Veritec	h Control/Red	eipt Nun	nber: 5595				
			Descrip					dBy: jean	
			502/524 VOA	CAL MIX				02/07 ked: Yes	//11
Manufacturer	Catalog Num:	Lot Num:	Date Bass	Exp Date:	Poo Pur	Num of Cont	Volum /Cont	-	Units:
SUPELCO	5-02111	LB77670	02/07/11	08/31/12	Rec By: Revolus, Jean	3	1ul	2000	PPM
	J-02111						, ui	2000	1 1 141
		Veritec	h Control/Red	eipt Nun	nber: 5621				
			Descrip	tion				dBy: jean	
			tert-Amyl Met	thyl Ether				Date: 02/15	/11
			tert-Arriyi ivlet	any Emor	· · · · · · · · · · · · · · · · · · ·		Chec	ked: Yes	
						Num of			
Manufacturer	Catalog Num:	Lot Num: A078931	Date Rec:		Rec By:	Num of Cont			Units:

		Verited	ch Control/Red	ceipt Nun	nber: 56	50				
			Descrip	otion					dBy: jean	0/4.4
		FREON	#22(CHLOROD	IFLUORON	METHANE]		Date: 02/18 cked: Yes	B/11
							NI.			
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:		Num of Cont	f Volum /Cont		Units:
ACCUSTANDAR	ALR-CFC-003S-2X		02/18/11	12/02/19	Revolus,		20	1ml	200	PPM
		Va -i4a -	- h O t l/D	!4 NI	- L 50/	<u>-</u>				
		verited	ch Control/Red	ceipt Nun	nber: 56	52				
			Descrip	tion					dBy: jean	244
			VOA COMP MIX	K#6(GASE	S)]		Date: 02/22 cked: Yes	2/11
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:		Num of Cont	f Volum /Cont		Units:
SUPELCO	48799-U	LB82463	02/22/11	05/31/12	Revolus,		5	1ml	2000	PPM
		Va-it-		saint No				111 1P1 1P2		
		verited	ch Control/Red	ceipt Nun	iider:5/4	40				
	far		Descrip	tion]		dBy: jean	- 44.4
		4-BROMOFLUC	OROBENZENE(1-BROMO-	4-FLUOF	ROBENE			Date: 03/18 ked: Yes	o/11
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:		Num of Cont	f Volum /Cont		Units:
CHEM SERVICE	F833	426-67B	03/09/11	08/31/14	Revolus,		1	5g	NEAT	J.,
- Indiana										
		Verited	ch Control/Red	ceipt Nun	nber: 590	02				
			Descrip	tion					dBy: jean	
			502/524 VOA	CAL MIX					Date: 05/00	3/11
							<u> </u>		ked: Yes	
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:		Num of Cont	f Volum /Cont		Units:
SUPELCO	5-02111	LB79202	05/03/11	10/31/12	Revolus,		3	1ml	2000	PPM
									1	
		verited	h Control/Red	ceipt Nun	nper: 59(U 3				
			Descrip	tion					dBy: jean	2/4.4
			8260 ADDD	ITIONS					Date: 05/00 ked: Yes	5/77
							L			
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:		Num of Cont	f Volum /Cont	ne Conc:	Units:
SUPELCO	46831-U	LB73020	05/03/11	11/30/12	Revolus,		3	1ml	2000	PPM
	1	V14	h 0	! - 4 A !						
		verited	h Control/Red	ceipt Nun	nper: 59(J 4				
			Descrip	tion					dBy: jean	
			tert-Amyl me	thyl ether				• •	Date: 05/03 ked: Yes	5/11
							L			
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:		Num of Cont	f Volum /Cont		Units:
SUPELCO	5-06737	LB64951	05/03/11	02/28/12	Revolus,		2	1ml	2000	PPM
				saind Niss-						
		verited	:h Control/Red	eipt Nun	iber: 592	29				
			Descrip	tion					dBy: jean	
			8260 ADDI	ITIONS					Date: 05/11 ked: Yes	1/11
	L							Unec	ncu. 165	
	L									
Manufacturer	Catalog Num:	Lot Num:	Date Rec	Exp Date:	Rec By:		Num of Cont	Volum /Cont		Units:

		Veritech	Descrip VOA CUST	tion	nber: 5930		Approved ApproveD	dBy: jean ate: 05/11/ ked: Yes	
Manufacturer	Catalog Num:	Lot Num:		Exp Date:	·	Num of Cont	Volume /Cont	Conc:	Units:
ACCUSTANDAR	S-16418	211041602 Veritech	05/10/11 Control/Red	11/06/11 ceipt Nun	Revolus, Jean	5	1ml	VARIOU	
		VO	Descrip A CUSTOM MI		irce)	\neg	Approved ApproveD		
Manufacturer	Catalog Num:	Lot Num:	Date Rec:	Exp Date:	Rec By:	Num of Cont	Volume /Cont	e Conc:	Units:
ACCUSTANDAR	S-16418	211041598	05/10/11	11/06/11	Revolus, Jean	5	1ml	VARIOU	

Appendix F Data Usability Summary Report

DATA USABILITY SUMMARY REPORT DAMSHIRE CLEANERS

Client:

EA Engineering, Science & Technology, Inc., Syracuse, New York

SDG:

AC59221

Laboratory: Site:

Hampton Clarke-Veritech, Fairfield, New Jersey Former Damshire Cleaners, Albany, New York

Date:

July 5, 2011

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-06 4-5	AC59221-001	Soil
2	MW-06 10-11	AC59221-002	Soil
3	MW-07 6-7	AC59221-003	Soil
4	MW-07 14-15	AC59221-004	Soil
5	MW-08 11-12	AC59221-005	Soil
6	MW-09 5-6	AC59221-006	Soil
7	MW-09 6-7	AC59221-007	Soil
8	MW-10 7-8	AC59221-008	Soil
9	MW-11 5-6	AC59221-009	Soil
10	MW-11 13-14	AC59221-010	Soil
11MS	MW-11 13-14MS	AC59221-011MS	Soil
12MSD	MW-11 13-14MSD	AC59221-012MSD	Soil
10RE	MW-11 13-14RE	AC59221-010RE	Soil
13	DUPLICATE	AC59221-013	Soil

A Data Usability Summary Review was performed on the analytical data for eleven soil samples collected May 20, 2011 by EA Engineering at the Damshire Cleaners site in Albany, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>

<u>Method References</u>

USEPA SW-846 Method 8260B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;
- and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed:

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Duplicate (LCS/LCSD) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes. Data were qualified for the following deficiencies.

- One compound was qualified as estimated in one sample due to low MS/MSD percent recoveries.
- Several compounds were qualified as estimated in all samples due to high continuing calibration %D values.
- Several compounds were qualified as estimated in two original analysis samples and one reanalysis sample due to low internal standard area performance.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds

Holding Times

• All samples were analyzed within 14 days for soil samples.

Surrogate Spike Recoveries

• The following table presents surrogate percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

Sample ID	Surrogate	%R	Qualifier
10	S3= Toluene-d8	125%	None- All ND
10RE	S3= Toluene-d8	127%	
	S4= Bromofluorobenzene	154%	

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
10	1,4-Dichlorobenzene	13%/OK/66	J/UJ
	Trichloroethene	OK/OK/47	None for RPD alone
	Tetrachloroethene	OK/OK/50	
	Toluene	OK/OK/47	
	Chlorobenzene	OK/OK/58	
	1,2-Dichlorobenzene	OK/OK/59	
	n-Propylbenzene	OK/OK/53	

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC samples were not included in this data package.

GC/MS Tuning

• All criteria were met.

Initial Calibration

All %RSD and/or correlation coefficient criteria were met.

Continuing Calibration

• The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
05/26/11	Chloromethane	26.0%	J/UJ	1, 3, 5-10
	Trichlorofluoromethane	21.7%	J/UJ	
	Carbon disulfide	45.7%	J/UJ	
	Methyl acetate	27.6%	J/UJ	
	4-Methyl-2-pentanone	23.1%	J/UJ	
	2-Hexanone	23.1%	J/UJ	
05/27/11	Chloromethane	29.7%	J/UJ	2, 4, 10RE, 13
	Trichlorofluoromethane	30.2%	J/UJ	
	Methylene chloride	21.5%	J/UJ	
	Acetone	20.1%	J/UJ	
	Carbon disulfide	51.6%	J/UJ	
	Methyl acetate	31.9%	J/UJ	
	Methyl tert-butyl ether	21.4%	J/UJ	
	1,1-Dichloroethane	25.7%	J/UJ	
	Bromodichloromethane	26.0%	J/UJ	
	Trichloroethene	23.4%	J/UJ	
	4-Methyl-2-pentanone	28.7%	J/UJ	
	2-Hexanone	22.9%	J/UJ	

Compound Quantitation

- Several samples were analyzed at various dilutions due to high concentrations of target compounds.
- EDS sample ID #10 was reanalyzed due to high surrogate percent recoveries and low internal standard area performance. The reanalysis results should be used for reporting purposes.

Internal Standard (IS) Area Performance

• The following table presents samples that exceeded the -50%/+100% area criteria for internal standard areas. Non-detected results for the associated compounds are considered estimated and qualified (UJ). Positive results for the associated compounds are considered estimated and qualified (J). Non-detected compounds that exceed the lower limit by -25% area criteria are considered rejected (R) and unusable for project objectives.

Sample ID	Internal Standard	Area Count	Qualifier
10	IS2= Chlorobenzene-d5	Low	J/UJ- Associated compounds
	IS3= 1,4-Dichlorobenzene-d4	Low	
10RE	IS3= 1,4-Dichlorobenzene-d4	Low	
13	IS3= 1,4-Dichlorobenzene-d4	Low	

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	MW-10 7-8 mg/kg	DUPLICATE mg/kg	RPD	Qualifier
None	ND	ND	-	-

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Very truly yours,

Environmental Data Services, Inc.

ancy Neaver 7/8/11

Date

Nancy Weaver

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Sample Number: AC59221-001

Client Id: MW-06 4-5 Data File: 1M68777.D

Analysis Date: 05/26/11 17:10 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.06g Final Vol: NA

Dilution: 0.988

Solids: 87

Units: mg/Kg

			_						
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL		nc
71-55-6	1,1,1-Trichloroethane	0.0023		U	75-00-3	Chloroethane	0.0023	uJ	X
79-34-5	1,1,2,2-Tetrachloroethane	0.0057		U	67-66-3	Chloroform	0.0023		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0023		U	74-87-3	Chloromethane	0.0023		U
79-00-5	1,1,2-Trichloroethane	0.0023		U	156-59-2	cis-1,2-Dichloroethene	0.0023		U
75-34-3	1,1-Dichloroethane	0.0023		U	10061-01-5	cis-1,3-Dichloropropene	0.0057		U
75-35-4	1,1-Dichloroethene	0.0023		U	110-82-7	Cyclohexane	0.0023		U
120-82-1	1,2,4-Trichlorobenzene	0.0023		U	124-48-1	Dibromochloromethane	0.0057		U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0023		U	75-71-8	Dichlorodifluoromethane	0.0023		U
106-93-4	1,2-Dibromoethane	0.0023		υ	100-41-4	Ethylbenzene	0.0011		υ
95-50-1	1,2-Dichlorobenzene	0.0023		U	98-82-8	Isopropylbenzene	0.0011		U
107-06-2	1,2-Dichloroethane	0.0023		U	136777612	m&p-Xylenes	0.0011		U
78-87-5	1,2-Dichloropropane	0.0023		U	79-20-9	Methyl Acetate	0.0023	UJ	سكل
541-73-1	1,3-Dichlorobenzene	0.0023		U	108-87-2	Methylcyclohexane	0.0023		U
106-46-7	1,4-Dichlorobenzene	0.0023		U	75-09-2	Methylene Chloride	0.0023		U
78-93-3	2-Butanone	0.0057		U	1634-04-4	Methyl-t-butyl ether	0.00057		U
591-78-6	2-Hexanone	0.0023	uJ	Ø	95-47-6	o-Xylene	0.0011		U
108-10-1	4-Methyl-2-Pentanone	0.0023	UJ	2	100-42-5	Styrene	0.0023		U
67-64-1	Acetone	0.028		U	127-18-4	Tetrachloroethene	0.0023	. 0	.041
71-43-2	Benzene	0.0011		U	108-88-3	Toluene	0.0011		U
75-27-4	Bromodichloromethane	0.0023		U	156-60-5	trans-1,2-Dichloroethene	0.0023		U
75-25-2	Bromoform	0.0023		U	10061-02-6	trans-1,3-Dichloropropene	0.0057		U
74-83-9	Bromomethane	0.0023		U	79-01-6	Trichloroethene	0.0023		U
75-15-0	Carbon Disulfide	0.0023	ИJ	4	75-69-4	Trichlorofluoromethane	0.0023	UJ	X
56-23-5	Carbon Tetrachloride	0.0023		U	75-01-4	Vinyl Chloride	0.0023		U
108-90-7	Chlorobenzene	0.0023		U	1330-20-7	Xylenes (Total)	0.0011		U
					t				

^{0.041}

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration use

Sample Number: AC59221-002(5X)

Client Id: MW-06 10-11 Data File: 1M68825.D

Analysis Date: 05/27/11 10:38 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 1.03g

Final Vol: NA

Dilution: 4.85

Solids: 85

Units: mg/Kg

Cas #	Compound	RL	Co	onc	Cas #	Compound	RL	Co	nc
71-55-6	1,1,1-Trichloroethane	0.011		U	75-00-3	Chloroethane	0.011		U
79-34-5	1,1,2,2-Tetrachloroethane	0.029		U	67-66-3	Chloroform	0.011		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.011		U	74-87-3	Chloromethane	0.011	uJ	D
79-00-5	1,1,2-Trichloroethane	0.011		U	156-59-2	cis-1,2-Dichloroethene	0.011		U
75-34-3	1,1-Dichloroethane	0.011	uJ	¥	10061-01-5	cis-1,3-Dichloropropene	0.029		U
75-35-4	1,1-Dichloroethene	0.011		U	110-82-7	Cyclohexane	0.011		U
120-82-1	1,2,4-Trichlorobenzene	0.011		U	124-48-1	Dibromochloromethane	0.029		U
96-12-8	1,2-Dibromo-3-Chloropropa	0.011		U	75-71-8	Dichlorodifluoromethane	0.011		U
106-93-4	1,2-Dibromoethane	0.011		U	100-41-4	Ethylbenzene	0.0057		U
95-50-1	1,2-Dichlorobenzene	0.011		U	98-82-8	Isopropylbenzene	0.0057		U
107-06-2	1,2-Dichloroethane	0.011		U	136777612	m&p-Xylenes	0.0057		U
78-87-5	1,2-Dichloropropane	0.011		U	79-20-9	Methyl Acetate	0.011	uJ	T
541-73-1	1,3-Dichlorobenzene	0.011		U	108-87-2	Methylcyclohexane	0.011		U
106-46-7	1,4-Dichlorobenzene	0.011		U	75-09-2	Methylene Chloride	0.011	uJ	مىلد
78-93-3	2-Butanone	0.029		U	1634-04-4	Methyl-t-butyl ether	0.0029	UJ	مطر
591-78-6	2-Hexanone	0.011	VJ	مجار	95-47-6	o-Xylene	0.0057		U
108-10-1	4-Methyl-2-Pentanone	0.011	uJ	محك	100-42-5	Styrene	0.011		U
67-64-1	Acetone	0.14	uJ	X	127-18-4	Tetrachloroethene	0.011		0.70
71-43-2	Benzene	0.0057		Ų	108-88-3	Toluene	0.0057		U
75-27-4	Bromodichloromethane	0.011	uJ	<i>M</i>	156-60-5	trans-1,2-Dichloroethene	0.011		U
75-25-2	Bromoform	0.011		U	10061-02-6	trans-1,3-Dichloropropene	0.029		U
74-83-9	Bromomethane	0.011		U	79-01-6	Trichloroethene	0.011	J 0	.043
75-15-0	Carbon Disulfide	0.011	uJ	15	75-69-4	Trichlorofluoromethane	0.011	UJ	مملا
56-23-5	Carbon Tetrachloride	0.011		·U	75-01-4	Vinyl Chloride	0.011		U
108-90-7	Chlorobenzene	0.011		U	1330-20-7	Xylenes (Total)	0.0057		U
					•				

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration uses

Sample Number: AC59221-003

Client Id: MW-07 6-7

Data File: 1M68779.D Analysis Date: 05/26/11 17:44

Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 4.96g

Final Vol: NA

Dilution: 1.01

Solids: 81

Units: r	ng/Kg	3
----------	-------	---

			•		99			_		
Cas#	Compound	RL	Co	onc	Cas #	Compound	RL		nc	_
71-55-6	1,1,1-Trichloroethane	0.0025		U	75-00-3	Chloroethane	0.0025	uJ	7	
79-34-5	1,1,2,2-Tetrachloroethane	0.0062		U	67-66-3	Chloroform	0.0025		U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025		U	74-87-3	Chloromethane	0.0025		U	
79-00-5	1,1,2-Trichloroethane	0.0025		U	156-59-2	cis-1,2-Dichloroethene	0.0025		U	
75-34-3	1,1-Dichloroethane	0.0025		U	10061-01-5	cis-1,3-Dichloropropene	0.0062		U	
75-35-4	1,1-Dichloroethene	0.0025		U	110-82-7	Cyclohexane	0.0025		U	
120-82-1	1,2,4-Trichlorobenzene	0.0025		U	124-48-1	Dibromochloromethane	0.0062		U	
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025		U	75-71-8	Dichlorodifluoromethane	0.0025		U	
106-93-4	1,2-Dibromoethane	0.0025		U	100-41-4	Ethylbenzene	0.0012		U	
95-50-1	1,2-Dichlorobenzene	0.0025		U	98-82-8	Isopropylbenzene	0.0012		· U	
107-06-2	1,2-Dichloroethane	0.0025		U	136777612	m&p-Xylenes	0.0012		U	
78-87-5	1,2-Dichloropropane	0.0025		U	79-20-9	Methyl Acetate	0.0025	レブ	H	
541-73-1	1,3-Dichlorobenzene	0.0025		U	108-87-2	Methylcyclohexane	0.0025		U	
106-46-7	1,4-Dichlorobenzene	0.0025		U	75-09-2	Methylene Chloride	0.0025		U	
78-93-3	2-Butanone	0.0062		U	1634-04-4	Methyl-t-butyl ether	0.00062		U	
59178-6	2-Hexanone	0.0025	UJ	سلط	95-47-6	o-Xylene	0.0012		υ	
108-10-1	4-Methyl-2-Pentanone	0.0025	UJ	4	100-42-5	Styrene	0.0025		U	
67-64-1	Acetone	0.031		U	127-18-4	Tetrachloroethene	0.0025	C	.085	
71-43-2	Benzene	0.0012		U	108-88-3	Toluene	0.0012		U	
75-27-4	Bromodichloromethane	0.0025		U	156-60-5	trans-1,2-Dichloroethene	0.0025		U	
75-25-2	Bromoform	0.0025		U	10061-02-6	trans-1,3-Dichloropropene	0.0062		U	
74-83-9	Bromomethane	0.0025		U	79-01-6	Trichloroethene	0.0025	C	.011	
75-15-0	Carbon Disulfide	0.0025	UJ	ملا	75-69-4	Trichlorofluoromethane	0.0025	Uゴ	ملا	
56-23-5	Carbon Tetrachloride	0.0025		U	75-01-4	Vinyl Chloride	0.0025		U	
108-90-7	Chlorobenzene	0.0025		U	1330-20-7	Xylenes (Total)	0.0012		U	
•					•					

Worksheet #: 192369

Total Target Concentration 0.096

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration uses

Sample Number: AC59221-004(5X)

Client Id: MW-07 14-15 Data File: 1M68826.D

Analysis Date: 05/27/11 10:55 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 1.04g Final Vol: NA Dilution: 4.81

Solids: 78

Units: mg/Kg

			U	nits:	mg/r\g				
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL_	Co	nc
71-55-6	1,1,1-Trichloroethane	0.012		U	75-00-3	Chloroethane	0.012		U
79-34-5	1,1,2,2-Tetrachloroethane	0.031		U	67-66-3	Chloroform	0.012		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.012		U	74-87-3	Chloromethane	0.012	UJ	سلا
79-00-5	1,1,2-Trichloroethane	0.012		U	156-59-2	cis-1,2-Dichloroethene	0.012	O.	.018
75-34-3	1,1-Dichloroethane	0.012	uJ	Q	10061-01-5	cis-1,3-Dichloropropene	0.031		U
75-35-4	1,1-Dichloroethene	0.012		U	110-82-7	Cyclohexane	0.012		U
120-82-1	1,2,4-Trichlorobenzene	0.012		U	124-48-1	Dibromochloromethane	0.031		U
96-12-8	1,2-Dibromo-3-Chloropropa	0.012		U	75-71-8	Dichlorodifluoromethane	0.012		U
106-93-4	1,2-Dibromoethane	0.012		U	100-41-4	Ethylbenzene	0.0062		U
95-50-1	1,2-Dichlorobenzene	0.012		U	98-82-8	Isopropylbenzene	0.0062		U
107-06-2	1,2-Dichloroethane	0.012		U	136777612	m&p-Xylenes	0.0062		U
78-87-5	1,2-Dichloropropane	0.012		U	79-20-9	Methyl Acetate	0.012	UJ	AT.
541-73-1	1,3-Dichlorobenzene	0.012		U	108-87-2	Methylcyclohexane	0.012		U
106-46-7	1,4-Dichlorobenzene	0.012		U	75-09-2	Methylene Chloride	0.012	uJ	ملحلد
78-93-3	2-Butanone	0.031		U	1634-04-4	Methyl-t-butyl ether	0.0031	uJ	ď
591-78-6	2-Hexanone	0.012	us	14	95-47-6	o-Xylene	0.0062		U
108-10-1	4-Methyl-2-Pentanone	0.012	uJ	D	100-42-5	Styrene	0.012		U
67-64-1	Acetone	0.15	UJ	Ы	127-18-4	Tetrachloroethene	0.012		0.67
71-43-2	Benzene	0.0062		U	108-88-3	Toluene	0.0062		U
75-27 -4	Bromodichloromethane	0.012	uゴ	W	156-60-5	trans-1,2-Dichloroethene	0.012		U
7 5-25-2	Bromoform	0.012		U	10061-02-6	trans-1,3-Dichloropropene	0.031		U
74-83-9	Bromomethane	0.012		U	79-01-6	Trichloroethene	0.012	JO	.056
75-15-0	Carbon Disulfide	0.012	uJ	100	75-69-4	Trichlorofluoromethane	0.012	45	ملكر
56-23-5	Carbon Tetrachloride	0.012		U	75-01-4	Vinyl Chloride	0.012		U
108-90-7	Chlorobenzene	0.012		U	1330-20-7	Xylenes (Total)	0.0062		U

few 7/7/1

Worksheet #: 192369

Total Target Concentration

0.74

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

Sample Number: AC59221-005

Client Id: MW-08 11-12 Data File: 1M68802.D

Analysis Date: 05/27/11 00:05 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 4.92g

Final Vol: NA Dilution: 1.02

Solids: 64

Units: mg/Kg

				oma.	1119/13				
Cas #	Compound	RL	С	onc	Cas #	Compound	RL	Co	nc
71-55-6	1,1,1-Trichloroethane	0.0032		U	75-00-3	Chloroethane	0.0032	UJ	سلا
79-34-5	1,1,2,2-Tetrachloroethane	0.0079		U	67-66-3	Chloroform	0.0032		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0032		U	74-87-3	Chloromethane	0.0032		U
79-00-5	1,1,2-Trichloroethane	0.0032		U	156-59-2	cis-1,2-Dichloroethene	0.0032	0.	043
75-34-3	1,1-Dichloroethane	0.0032		U	10061-01-5	cis-1,3-Dichloropropene	0.0079		U
75-35-4	1,1-Dichloroethene	0.0032		U	110-82-7	Cyclohexane	0.0032		U
120-82-1	1,2,4-Trichlorobenzene	0.0032		U	124-48-1	Dibromochloromethane	0.0079		υ
96-12-8	1,2-Dibromo-3-Chloropropa	0.0032		υ	75-71-8	Dichlorodifluoromethane	0.0032		υ
106-93-4	1,2-Dibromoethane	0.0032		U	100-41-4	Ethylbenzene	0.0016		U
95-50-1	1,2-Dichlorobenzene	0.0032		U	98-82-8	Isopropylbenzene	0.0016		υ
107-06-2	1,2-Dichloroethane	0.0032		U	136777612	m&p-Xylenes	0.0016		U
78-87-5	1,2-Dichloropropane	0.0032		U	79-20-9	Methyl Acetate	0.0032	UJ	محلر
541-73-1	1,3-Dichlorobenzene	0.0032		υ	108-87-2	Methylcyclohexane	0.0032		U
106-46-7	1,4-Dichlorobenzene	0.0032		U	75-09-2	Methylene Chloride	0.0032		U
78-93-3	2-Butanone	0.0079	. (0.048	1634-04-4	Methyl-t-butyl ether	0.00079		U
591- 7 8-6	2-Hexanone	0.0032	UJ	18	95-47-6	o-Xylene	0.0016		U
108-10-1	4-Methyl-2-Pentanone	0.0032	uI	W	100-42-5	Styrene	0.0032		U
67-64-1	Acetone	0.040		0.21	127-18-4	Tetrachloroethene	0.0032		υ
71-43-2	Benzene	0.0016		υ	108-88-3	Toluene	0.0016		U .
75-27-4	Bromodichloromethane	0.0032		U	156-60-5	trans-1,2-Dichloroethene	0.0032		υ
75-25-2	Bromoform	0.0032		U	10061-02-6	trans-1,3-Dichloropropene	0.0079		U
74-83-9	Bromomethane	0.0032		U	79-01-6	Trichloroethene	0.0032	0	.010
75-15-0	Carbon Disulfide	0.0032	UJ	ملا	75-69-4	Trichlorofluoromethane	0.0032	uJ	سلا
56-23-5	Carbon Tetrachloride	0.0032		Ū	75-01-4	Vinyl Chloride	0.0032		U
108-90-7	Chlorobenzene	0.0032		U	1330-20-7	Xylenes (Total)	0.0016		U

B - Indicates the analyte was found in the blank as well as in the sample.

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

Sample Number: AC59221-006

Client Id: MW-09 5-6 Data File: 1M68781.D

Analysis Date: 05/26/11 18:17 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.02g

Final Vol: NA

Dilution: 0.996

Solids: 81

Units: mg/Kg

			·	milo.	iig/r\g					
Cas #	Compound	RL	Co	onc	Cas #	Compound	RL		onc	_
71-55-6	1,1,1-Trichloroethane	0.0025		U	75-00-3	Chloroethane	0.0025	us	4	
79-34-5	1,1,2,2-Tetrachloroethane	0.0061		U	67-66-3	Chloroform	0.0025		U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025		U	74-87-3	Chloromethane	0.0025		U	
79-00-5	1,1,2-Trichloroethane	0.0025		U	156-59-2	cis-1,2-Dichloroethene	0.0025		U	
75-34-3	1,1-Dichloroethane	0.0025		U	10061-01-5	cis-1,3-Dichloropropene	0.0061		U	
75-35-4	1,1-Dichloroethene	0.0025		U	110-82-7	Cyclohexane	0.0025		U	
120-82-1	1,2,4-Trichlorobenzene	0.0025		U	124-48-1	Dibromochloromethane	0.0061		U	
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025		U	75-71-8	Dichlorodifluoromethane	0.0025		U	
106-93-4	1,2-Dibromoethane	0.0025		U	100-41-4	Ethylbenzene	0.0012		U	
95-50-1	1,2-Dichlorobenzene	0.0025		U	98-82-8	isopropylbenzene	0.0012		U	
107-06-2	1,2-Dichloroethane	0.0025		U	136777612	m&p-Xylenes	0.0012		U	
78-87-5	1,2-Dichloropropane	0.0025		U	79-20-9	Methyl Acetate	0.0025	UJ	ملك	
541-73-1	1,3-Dichlorobenzene	0.0025		U	108-87-2	Methylcyclohexane	0.0025		U	
106-46-7	1,4-Dichlorobenzene	0.0025		U	75-09-2	Methylene Chloride	0.0025		U	
78-93-3	2-Butanone	0.0061		U	1634-04-4	Methyl-t-butyl ether	0.00061		U	
591-78-6	2-Hexanone	0.0025	uj	¥	95-47-6	o-Xylene	0.0012		U	
108-10-1	4-Methyl-2-Pentanone	0.0025	иJ	H	100-42-5	Styrene	0.0025		U	
67-64-1	Acetone	0.031		U	127-18-4	Tetrachloroethene	0.0025		U	
71-43-2	Benzene	0.0012		U	108-88-3	Toluene	0.0012		U	
75-27-4	Bromodichloromethane	0.0025		U	156-60-5	trans-1,2-Dichloroethene	0.0025		U	
75-25-2	Bromoform	0.0025		U	10061-02-6	trans-1,3-Dichloropropene	0.0061		U	
74-83-9	Bromomethane	0.0025		U	79-01-6	Trichloroethene	0.0025		U	
75-15-0	Carbon Disulfide	0.0025	uJ	של	75-69-4	Trichlorofluoromethane	0.0025	UJ	ملا	
56-23-5	Carbon Tetrachloride	0.0025		U	75-01-4	Vinyl Chloride	0.0025		U	
108-90-7	Chlorobenzene	0.0025		U	1330-20-7	Xylenes (Total)	0.0012		U	

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

R - Retention Time Out

 ${\it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration use

7

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-007

Client Id: MW-09 6-7 Data File: 1M68782.D

Analysis Date: 05/26/11 18:34 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.1g

Final Vol: NA

Dilution: 0.980

Solids: 83

Units: mg/Kg

-			-							
Cas #	Compound	RL	C	onc	Cas #	Compound	RL	Co	nc	
71-55-6	1,1,1-Trichloroethane	0.0024		U	75-00-3	Chloroethane	0.0024	uJ	4	
79-34-5	1,1,2,2-Tetrachloroethane	0.0059		υ	67-66-3	Chloroform	0.0024		υ	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0024		U	74-87-3	Chloromethane	0.0024		U	
79-00-5	1,1,2-Trichloroethane	0.0024		U	156-59-2	cis-1,2-Dichloroethene	0.0024		U	
75-34-3	1,1-Dichloroethane	0.0024		U	10061-01-5	cis-1,3-Dichloropropene	0.0059		U	
75-35-4	1,1-Dichloroethene	0.0024		U	110-82-7	Cyclohexane	0.0024		U	
120-82-1	1,2,4-Trichlorobenzene	0.0024		U	124-48-1	Dibromochloromethane	0.0059		U .	
96-12-8	1,2-Dibromo-3-Chloropropa	0.0024		U	75-71-8	Dichlorodifluoromethane	0.0024		U	
106-93-4	1,2-Dibromoethane	0.0024		U	100-41-4	Ethylbenzene	0.0012		U	
95-50-1	1,2-Dichlorobenzene	0.0024		U	98-82-8	Isopropylbenzene	0.0012		U	
107-06-2	1,2-Dichloroethane	0.0024		U	136777612	m&p-Xylenes	0.0012		U	
78-87-5	1,2-Dichloropropane	0.0024		U	79-20-9	Methyl Acetate	0.0024	us	1	
541-73-1	1,3-Dichlorobenzene	0.0024		υ	108-87-2	Methylcyclohexane	0.0024		υ	
106-46-7	1,4-Dichlorobenzene	0.0024		U	75-09-2	Methylene Chloride	0.0024		U	
78-93-3	2-Butanone	0.0059		U	1634-04-4	Methyl-t-butyl ether	0.00059		U	
591-78-6	2-Hexanone	0.0024	uJ	P.	95-47-6	o-Xylene	0.0012		U	
108-10-1	4-Methyl-2-Pentanone	0.0024	uJ	Q	100-42-5	Styrene	0.0024		U	
67-64-1	Acetone	0.030		U	127-18-4	Tetrachloroethene	0.0024		U	
71-43-2	Benzene	0.0012		U	108-88-3	Toluene	0.0012		U	
75-27-4	Bromodichloromethane	0.0024		U	156-60-5	trans-1,2-Dichloroethene	0.0024		U	
75-25-2	Bromoform	0.0024		U	10061-02-6	trans-1,3-Dichloropropene	0.0059		U	
74-83-9	Bromomethane	0.0024		U	79-01-6	Trichloroethene	0.0024		U	
75-15-0	Carbon Disulfide	0.0024	UJ	10	75-69-4	Trichlorofluoromethane	0.0024	uJ	سلط	
56-23-5	Carbon Tetrachloride	0.0024		U	75-01-4	Vinyl Chloride	0.0024		U	
108-90-7	Chlorobenzene	0.0024		U	1330-20-7	Xylenes (Total)	0.0012		U	
					· .					

Mul 7/17/19

R - Retention Time Out

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration use.

Ŷ

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59221-008

Client Id: MW-10 7-8 Data File: 1M68783.D

Analysis Date: 05/26/11 18:50 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil Initial Vol: 5.05g

Final Vol: NA Dilution: 0.990

Solids: 75

Units: mg/Kg

			_		9,1,79				
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Co	onc
71-55-6	1,1,1-Trichloroethane	0.0026		U	75-00-3	Chloroethane	0.0026	レブ	Ø
79-34-5	1,1,2,2-Tetrachloroethane	0.0066		U	67-66-3	Chloroform	0.0026		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0026		U	74-87-3	Chloromethane	0.0026		U
79-00-5	1,1,2-Trichloroethane	0.0026		U	156-59-2	cis-1,2-Dichloroethene	0.0026		U
75-34-3	1,1-Dichloroethane	0.0026		U	10061-01-5	cis-1,3-Dichloropropene	0.0066		U
75-35-4	1,1-Dichloroethene	0.0026		U	110-82-7	Cyclohexane	0.0026		U
120-82-1	1,2,4-Trichlorobenzene	0.0026		U	124-48-1	Dibromochloromethane	0.0066		U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0026		U	75-71-8	Dichlorodifluoromethane	0.0026		U
106-93-4	1,2-Dibromoethane	0.0026		U	100-41-4	Ethylbenzene	0.0013		U
95-50-1	1,2-Dichlorobenzene	0.0026		U	98-82-8	Isopropylbenzene	0.0013		U
107-06-2	1,2-Dichloroethane	0.0026		U	136777612	m&p-Xylenes	0.0013		U
78-87-5	1,2-Dichloropropane	0.0026		U	79-20-9	Methyl Acetate	0.0026	45	H
541-73-1	1,3-Dichlorobenzene	0.0026		U	108-87-2	Methylcyclohexane	0.0026		U
106-46-7	1,4-Dichlorobenzene	0.0026		U	75-09-2	Methylene Chloride	0.0026		U
78-93-3	2-Butanone	0.0066		U	1634-04-4	Methyl-t-butyl ether	0.00066		U
591-78-6	2-Hexanone	0.0026	UJ	W	95-47-6	o-Xylene	0.0013		U
108-10-1	4-Methyl-2-Pentanone	0.0026	uJ	せ	100-42-5	Styrene	0.0026		U
67-64-1	Acetone	0.033		U	127-18-4	Tetrachloroethene	0.0026		U
71-43-2	. Benzene	0.0013		U	108-88-3	Toluene	0.0013		U
75-27-4	Bromodichloromethane	0.0026		U	156-60-5	trans-1,2-Dichloroethene	0.0026		U
75-25-2	2 Bromoform	0.0026		U	10061-02-6	trans-1,3-Dichloropropene	0.0066		U
74-83-9	Bromomethane	0.0026		U	79-01-6	Trichloroethene	0.0026		U
75-15-0	Carbon Disulfide	0.0026	hJ	18	75-69-4	Trichlorofluoromethane	0.0026	uJ	ملا
56-23-5	Carbon Tetrachloride	0.0026		U	75-01-4	Vinyl Chloride	0.0026		U
108-90-7	Chlorobenzene	0.0026		U	1330-20-7	Xylenes (Total)	0.0013		U

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Sample Number: AC59221-009

Client Id: MW-11 5-6 Data File: 1M68784.D

Analysis Date: 05/26/11 19:07 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.08g Final Vol: NA

Dilution: 0.984

Solids: 90

Units: mg/Kg

_	_							_		
Cas #_	Compound	RL_	C	onc	Cas #	Compound	RL		onc	_
71-55-6	1,1,1-Trichloroethane	0.0022		U	75-00-3	Chloroethane	0.0022	uJ		
79-34-5	1,1,2,2-Tetrachloroethane	0.0055		U	67-66-3	Chloroform	0.0022		U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0022		U	74-87-3	Chloromethane	0.0022		U	
79-00-5	1,1,2-Trichloroethane	0.0022		U	156-59-2	cis-1,2-Dichloroethene	0.0022		U	
75-34-3	1,1-Dichloroethane	0.0022		U	10061-01-5	cis-1,3-Dichloropropene	0.0055		U	
75-35-4	1,1-Dichloroethene	0.0022		U	110-82-7	Cyclohexane	0.0022		U	
120-82-1	1,2,4-Trichlorobenzene	0.0022		U	124-48-1	Dibromochloromethane	0.0055		U	
96-12-8	1,2-Dibromo-3-Chloropropa	0.0022	-	U	75-71-8	Dichlorodifluoromethane	0.0022		U	
106-93-4	1,2-Dibromoethane	0.0022		U	100-41-4	Ethylbenzene	0.0011		U	
95-50-1	1,2-Dichlorobenzene	0.0022		U	98-82-8	Isopropylbenzene	0.0011		U	
107-06-2	1,2-Dichloroethane	0.0022		U	136777612	m&p-Xylenes	0.0011		U	
78-87-5	1,2-Dichloropropane	0.0022		U	79-20-9	Methyl Acetate	0.0022	uゴ	محلا	
541-73-1	1,3-Dichlorobenzene	0.0022		U	108-87-2	Methylcyclohexane	0.0022		U	
106-46-7	1,4-Dichlorobenzene	0.0022		U	75-09-2	Methylene Chloride	0.0022		U	
78-93-3	2-Butanone	0.0055		U	1634-04-4	Methyl-t-butyl ether	0.00055		U	
591-78-6	2-Hexanone	0.0022	UJ	¥	95-47-6	o-Xylene	0.0011		U	
108-10-1	4-Methyl-2-Pentanone	0.0022	UJ	4	100-42-5	Styrene	0.0022		υ	
67-64-1	Acetone	0.027		U	127-18-4	Tetrachloroethene	0.0022	0.0	0047	
71-43-2	Benzene	0.0011		U	108-88-3	Toluene	0.0011		U	
75-27-4	Bromodichloromethane	0.0022		U	156-60-5	trans-1,2-Dichloroethene	0.0022		U	
75-25-2	Bromoform	0.0022		U	10061-02-6	trans-1,3-Dichloropropene	0.0055		U	
74-83-9	Bromomethane	0.0022	<u></u>	U	79-01-6	Trichloroethene	0.0022		U.	
75-15-0	Carbon Disulfide	0.0022	uJ	1	75-69-4	Trichlorofluoromethane	0.0022	UJ	محلا	
56-23-5	Carbon Tetrachloride	0.0022		U	75-01-4	Vinyl Chloride	0.0022		U	
108-90-7	Chlorobenzene	0.0022		U	1330-20-7	Xylenes (Total)	0.0011		U	

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration use.

Sample Number: AC59221-010

Client Id: MW-11 13-14 Data File: 1M68785.D

Analysis Date: 05/26/11 19:23 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.04g

Final Vol: NA

Dilution: 0.992

Solids: 76

Generalysis

Units: mg/Kg											
	Cas #	Compound	RL	Conc		Cas #	Compound	RL	Co	onc	
	71-55-6	1,1,1-Trichloroethane	0.0026		U	75-00-3	Chloroethane	0.0026	uJ	4	
	79-34-5	1,1,2,2-Tetrachloroethane	0.0065	uJ	٠ محل	67-66-3	Chloroform	0.0026		U	
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0026		U	74-87-3	Chloromethane	0.0026		U	
	79-00-5	1,1,2-Trichloroethane	0.0026	uJ	JH .	156-59-2	cis-1,2-Dichloroethene	0.0026		U	
	75-34-3	1,1-Dichloroethane	0.0026		U	10061-01-5	cis-1,3-Dichloropropene	0.0065	uJ	محلد	
	75-35-4	1,1-Dichloroethene	0.0026		U	110-82-7	Cyclohexane	0.0026		U	
	120-82-1	1,2,4-Trichlorobenzene	0.0026	UJ	JJ.	124-48-1	Dibromochloromethane	0.0065	U J	X	
	96-12-8	1,2-Dibromo-3-Chloropropa	0.0026		U	75-71/-8	Dichlorodifluoromethane	0.0026		U	
	106-93-4	1,2-Dibromoethane	0.0026	uJ	24	100/41-4	Ethylbenzene	0.0013	UJ	ملحا	
	95-50-1	1,2-Dichlorobenzene	0.0026	uJ	B	98-82-8	Isopropylbenzene	0.0013	uJ	Ø	
	107-06-2	1,2-Dichloroethane	0.0026		U	/136777612	m&p-Xylenes	0.0013	UJ	محل	
	78-87-5	1,2-Dichloropropane	0.0026		U	79-20-9	Methyl Acetate	0.0026	uJ	مهر	
	541-73-1	1,3-Dichlorobenzene	0.0026	UJ	15	108-87-2	Methylcyclohexane	0.0026		U	
	106-46-7	1,4-Dichlorobenzene	0.0026	UJ	10/	75-09-2	Methylene Chloride	0.0026		U	
	78-93-3	2-Butanone	0.0065		کار	1634-04-4	Methyl-t-butyl ether	0.00065		U	
	591-78-6	2-Hexanone	0.0026	WJ/	12	95-47-6	o-Xylene	0.0013	47	¥	
	108-10-1	4-Methyl-2-Pentanone	0.0026	US	10	100-42-5	Styrene	0.0026	us	محار	
	67-64-1	Acetone	0.033		U	127-18-4	Tetrachloroethene	0.0026	uJ	محار	
	71-43-2	Benzene	0.0013		U	108-88-3	Toluene	0.0013	UJ	4	
	75-27-4	Bromodichloromethane	0.0026		U	156-60-5	trans-1,2-Dichloroethene	0.0026	_	U	
	75-25-2	Bromoform	0.0026	UJ	U	10061-02-6	trans-1,3-Dichloropropene	0.0065	uJ	مملا	
	74-83-9	Bromomethane	0.0026		U	79-01-6	Trichloroethene	0.0026		U	
	75-15-0	Carbon Disulfide	0.0026	us	X	75-69-4	Trichlorofluoromethane	0.0026	us	4	
	56-23-5	Carbon Tetrachloride	0.0026		U	75-01-4	Vinyl Chloride	0.0026		U	
	108-90-7	Chlorobenzene	0.0026	Uゴ	ملحا	1330-20-7	Xylenes (Total)	0.0013		U	

Worksheet #: 192369

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration used

Form1

ORGANICS VOLATILE REPORT

Sample Number: AC59221-010 RE

Client Id: MW-11 13-14 Data File: 1M68821.D

Analysis Date: 05/27/11 09:32 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.32g

Final Vol: NA

Dilution: 0.940

Solids: 76

Units: mg/Kg

~ "	0	ъ.	-		gy	Campaind	DI	0-	
Cas#_	Compound	RL	C	onc	Cas #	Compound	RL	Co	
7 1 -55-6	1,1,1-Trichloroethane	0.0025		U	75-00-3	Chloroethane	0.0025		U
79-34-5	1,1,2,2-Tetrachloroethane	0.0062	いて	X	67-66-3	Chloroform	0.0025	_	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0025		U	74-87-3	Chloromethane	0.0025	UJ	محلا
79-00-5	1,1,2-Trichloroethane	0.0025		U	156-59-2	cis-1,2-Dichloroethene	0.0025		U
75-34-3	1,1-Dichloroethane	0.0025	UJ	X	10061-01-5	cis-1,3-Dichloropropene	0.0062		U
75-35-4	1,1-Dichloroethene	0.0025		U	110-82-7	Cyclohexane	0.0025		U
120-82-1	1,2,4-Trichlorobenzene	0.0025	uJ	محلد	124-48-1	Dibromochloromethane	0.0062		U
96-12-8	1,2-Dibromo-3-Chloropropa	0.0025		U	75-71-8	Dichlorodifluoromethane	0.0025		U
106-93-4	1,2-Dibromoethane	0.0025		U	100-41-4	Ethylbenzene	0.0012	UJ	خسلحا
95-50-1	1,2-Dichlorobenzene	0.0025	uJ	ملحا	98-82-8	Isopropylbenzene	0.0012	レゴ	D
107-06-2	1,2-Dichloroethane	0.0025		U	136777612	m&p-Xylenes	0.0012	ルゴ	4
78-87-5	1,2-Dichloropropane	0.0025		U	79-20-9	Methyl Acetate	0.0025	uブ	ملطار
541-73-1	1,3-Dichlorobenzene	0.0025	レゴ	ململا	108-87-2	Methylcyclohexane	0.0025		U
106-46-7	1,4-Dichlorobenzene	0.0025	uj	₩.	75-09-2	Methylene Chloride	0.0025	UJ	محطد
78-93-3	2-Butanone	0.0062		U ,	1634-04-4	Methyl-t-butyl ether	0.00062	uJ	6
591-78-6	2-Hexanone	0.0025	uゴ	ملا	95-47-6	o-Xylene	0.0012	uJ	R
108-10-1	4-Methyl-2-Pentanone	0.0025	uJ	16	100-42-5	Styrene	0.0025	UJ	4
67-64-1	Acetone	0.031	us	ď	127-18-4	Tetrachloroethene	0.0025		U
71-43-2	Benzene	0.0012		U	108-88-3	Toluene	0.0012		U
75-27-4	Bromodichloromethane	0.0025	UJ	16	156-60-5	trans-1,2-Dichloroethene	0.0025		U
75-25-2	Bromoform	0.0025	Uブ	ملحأر	10061-02-6	trans-1,3-Dichloropropene	0.0062		U
74-83-9	Bromomethane	0.0025		U	79-01-6	Trichloroethene	0.0025	uJ	سليا
75-15-0	Carbon Disulfide	0.0025	иJ	1	75-69-4	Trichlorofluoromethane	0.0025	UJ	4
56-23-5	Carbon Tetrachloride	0.0025		U	75-01-4	Vinyl Chloride	0.0025		U
108-90-7	Chlorobenzene	0.0025		U	1330-20-7	Xylenes (Total)	0.0012		U

Worksheet #: 192366

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration use.

ORGANICS VOLATILE REPORT

Sample Number: AC59221-013

Client Id: Duplicate Data File: 1M68824.D

Analysis Date: 05/27/11 10:22 Date Rec/Extracted: 05/20/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Soil

Initial Vol: 5.33g

Final Vol: NA

Dilution: 0.938

Solids: 87

Units: mg/Kg

				•	J.11100.	פיייפייי				
_	Cas #	Compound	RL	C	onc	Cas #	Compound	RL	Cc	nc
	71-55-6	1,1,1-Trichloroethane	0.0022		U	75-00-3	Chloroethane	0.0022		U
	79-34-5	1,1,2,2-Tetrachloroethane	0.0054	UJ	سخا	67-66-3	Chloroform	0.0022		U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluor	0.0022		U	74-87-3	Chloromethane	0.0022	UJ	14
	79-00-5	1,1,2-Trichloroethane	0.0022		U	156-59-2	cis-1,2-Dichloroethene	0.0022		U
	75-34-3	1,1-Dichloroethane	0.0022	UJ	مخل	10061-01-5	cis-1,3-Dichloropropene	0.0054		U
	75-35-4	1,1-Dichloroethene	0.0022		U	110-82-7	Cyclohexane	0.0022		U
	120-82-1	1,2,4-Trichlorobenzene	0.0022	us	مخاد	124-48-1	Dibromochloromethane	0.0054		U
	96-12-8	1,2-Dibromo-3-Chloropropa	0.0022		U	75-71-8	Dichlorodifluoromethane	0.0022		U
	106-93-4	1,2-Dibromoethane	0.0022		U	100-41-4	Ethylbenzene	0.0011	UJ	H
	95-50-1	1,2-Dichlorobenzene	0.0022	us	2	98-82-8	Isopropylbenzene	0.0011	uJ	7
	107-06-2	1,2-Dichloroethane	0.0022		U	136777612	m&p-Xylenes	0.0011	uJ	سليله
	78-87-5	1,2-Dichloropropane	0.0022		Ų	79-20-9	Methyl Acetate	0.0022	uJ	~ ₽ ^
	541-73-1	1,3-Dichlorobenzene	0.0022	uJ	-to	108-87-2	Methylcyclohexane	0.0022		U
	106-46-7	1,4-Dichlorobenzene	0.0022	UJ	4	75-09-2	Methylene Chloride	0.0022	UJ	X
	78-93-3	2-Butanone	0.0054		U	1634-04-4	Methyl-t-butyl ether	0.00054	UJ	ъ
	591-78-6	2-Hexanone	0.0022	UJ	Ø	95-47-6	o-Xylene	0.0011	UJ	محلا
	108-10-1	4-Methyl-2-Pentanone	0.0022	UJ	Ø	100-42-5	Styrene	0.0022	UJ	H
	67-64-1	Acetone	0.027	UJ	R	127-18-4	Tetrachloroethene	0.0022		U
	71-43-2	Benzene	0.0011		U	108-88-3	Toluene	0.0011		U
	75-27-4	Bromodichloromethane	0.0022	UJ	,M	156-60-5	trans-1,2-Dichloroethene	0.0022		U
	75-25-2	Bromoform	0.0022	UJ	1	10061-02-6	trans-1,3-Dichloropropene	0.0054		· U
	74-83-9	Bromomethane	0.0022		U	79-01-6	Trichloroethene	0.0022	uJ	مطا
	75-15-0	Carbon Disulfide	0.0022	uJ	7	75-69-4	Trichlorofluoromethane	0.0022	uJ	Je V
	56-23-5	Carbon Tetrachloride	0.0022		U	75-01-4	Vinyl Chloride	0.0022		U
	108-90-7	Chlorobenzene	0.0022		U	1330-20-7	Xylenes (Total)	0.0011		U

Worksheet #: 192369

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration use.

DATA USABILITY SUMMARY REPORT DAMSHIRE CLEANERS

Client:

EA Engineering, Science & Technology, Inc., Syracuse, New York

SDG:

AC59335

Laboratory:

Hampton Clarke-Veritech, Fairfield, New Jersey Former Damshire Cleaners, Albany, New York

Site: Date:

July 26, 2011

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-01	AC59335-001	Water
2	MW-02	AC59335-002	Water
3	MW-03	AC59335-003	Water
4	MW-04	AC59335-004	Water
5	MW-05	AC59335-005	Water
6	MW-06	AC59335-006	Water
7	MW-07	AC59335-007	Water
8	MW-08	AC59335-008	Water
9MS	MW-08MS	AC59335-009MS	Water
10MSD	MW-08MSD	AC59335-010MSD	Water
11	MW-09	AC59335-011	Water
12	MW-10	AC59335-012	Water
13	MW-11	AC59335-013	Water
14	DUPLICATE	AC59335-014	Water

A Data Usability Summary Review was performed on the analytical data for twelve water samples collected May 25, 2011 by EA Engineering at the Damshire Cleaners site in Albany, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>

Method References

VOC USEPA SW-846 Method 8260B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;
- and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed:

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Duplicate (LCS/LCSD) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes. Data were qualified for the following deficiencies.

• Several compounds were qualified as estimated in all samples due to high continuing calibration %D values.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

The MS/MSD sample exhibited acceptable %R and RPD values.

<u>Laboratory Control Samples</u>

• The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC samples were not included in this data package.

GC/MS Tuning

All criteria were met.

Initial Calibration

• All %RSD and/or correlation coefficient criteria were met.

Continuing Calibration

• The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
06/01/11	Chloromethane	27.44%	J/UJ	All samples
	Carbon disulfide	50.79%	J/UJ	
	Methyl acetate	24.73%	J/UJ	
	Methyl-t-butyl ether	35.92%	J/UJ	
	cis-1,3-Dichloropropene	21.50%	J/UJ	
	trans-1,3-Dichloropropene	24.24%	J/UJ	
	4-Methyl-2-pentanone	50.35%	J/UJ	
	2-Hexanone	51.37%	J/UJ	

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
06/01/11	1,2-Dibromo-3-chloropropane	33.06%	J/UJ	All samples
	1,2,4-Trichlorobenzene	20.50%	I/UI	_

Compound Quantitation

• Several samples were analyzed at various dilutions due to high concentrations of target compounds.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	MW-05 ug/L	DUPLICATE ug/L	RPD	Qualifier
cis-1,2-Dichloroethene	260	240	8%	None
Tetrachloroethene	25000	34000	31%	None
Trichloroethene	6500	7900	19%	None

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Very truly yours,

Environmental Data Services, Inc.

Nancy Weaver

Date

Weaver 7/28/11

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Sample Number: AC59335-001

Client Id: MW-01

Data File: 2M67548.D Analysis Date: 05/31/11 15:12

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			U	iiits.	ug/L				
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Cor	nc
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0		U
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	uj	محا
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0		U
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	UJ	D
75-35-4	1,1-Dichloroethene	1.0		U	110-82-7	Cyclohexane	1.0		U
120-82-1	1,2,4-Trichlorobenzene	1.0	UJ	ملا	124-48-1	Dibromochloromethane	1.0		U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	UJ	1	75-71-8	Dichlorodifluoromethane	1.0		U
106-93-4	1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0		U
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0		U
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0		U
78-87-5	1,2-Dichloropropane	1.0		U	79-20-9	Methyl Acetate	1.0	U J	6
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0		U
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0		U
78-93-3	2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	UJ	1
591-78-6	2-Hexanone	1.0	ИJ	J 8'	95-47-6	o-Xylene	1.0		U
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	ď	100-42-5	Styrene	1.0		U
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0		U
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0		U
75-27-4	Bromodichloromethane	1.0		U	156-60-5	trans-1,2-Dichloroethene	1.0		U
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	UJ	14
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0		U
75-15-0	Carbon Disulfide	1.0	UJ	M	75-69-4	Trichlorofluoromethane	1.0		U
56-23-5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0		U
108-90-7	Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0		U

NW 7/26/11

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

Sample Number: AC59335-002

Client Id: MW-02

Data File: 2M67550.D

Analysis Date: 05/31/11 15:44 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/L

	Onits: ug/L												
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Conc					
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0	U					
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0	U					
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	ひょ ひ					
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0	320					
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	ロナゼ					
75-35-4	1,1-Dichloroethene	1.0		1.1	110-82-7	Cyclohexane	1.0	U					
120-82-1	1,2,4-Trichlorobenzene	1.0	UJ	У	124-48-1	Dibromochloromethane	1.0	U					
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	uJ	J	75-71-8	Dichlorodifluoromethane	1.0	U					
106-93-4	1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0	U					
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0	U					
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0	U					
78-87-5	1,2-Dichloropropane	1.0		U	79-20-9	Methyl Acetate	1.0	ひり か					
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0	U					
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0	U					
78-93-3	2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	U ブ ガ					
591-78-6	2-Hexanone	1.0	UJ	5	95-47-6	o-Xylene	1.0	U					
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	R	100-42-5	Styrene	1.0	U					
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0	13					
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0	U					
75-27-4	Bromodichloromethane	1.0		U	156-60-5	trans-1,2-Dichloroethene	1.0	3.1					
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	41 4					
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0	8.5					
75-15-0	Carbon Disulfide	1.0	UJ	W.	7 5-69-4	Trichlorofluoromethane	1.0	U					
56-23-5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0	U					
108-90-7	Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0	U					

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

2

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-003

Client Id: MW-03

Data File: 2M67551.D

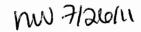
Analysis Date: 05/31/11 16:00 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml


Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			O.	iita.	ug/L				
Cas #	Compound	RL	Cor	nc	Cas #	Compound	RL	Co	nc
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0		U
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U .	74-87-3	Chloromethane	1.0	UJ	せ
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0		27
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	UJ	Jd .
75-35-4	1,1-Dichloroethene	1.0		U	110-82-7	Cyclohexane	1.0		U
120-82-1	1,2,4-Trichlorobenzene	1.0	UJ	R	124-48-1	Dibromochloromethane	1.0		U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	UJ	b	75-71-8	Dichlorodifluoromethane	1.0		U
106-93-4	1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0		U
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0		U
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0		U
7 8-87-5	1,2-Dichloropropane	1.0		U	79-20-9	Methyl Acetate	1.0	UJ	14
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0		U
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0		U
78-93-3	2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	UJ	X
591-78-6	2-Hexanone	1.0	UJ	Ħ	95-47-6	o-Xylene	1.0		U
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	¥	100-42-5	Styrene	1.0		U
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0		6.5
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0		U
75-27-4	Bromodichloromethane	1.0		U	156-60-5	trans-1,2-Dichloroethene	1.0		U
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	ИJ	5
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0		9.0
75-15-0	Carbon Disulfide	1.0	uj	Ø	75-69-4	Trichlorofluoromethane	1.0		U
56-23-5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0		U
108-90-7	Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0		U

Worksheet #: 193017

Total Target Concentration

42

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u.

Sample Number: AC59335-004(500X)

Client Id: MW-04

Data File: 3M93536.D

Analysis Date: 06/01/11 13:19 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 500

Solids: 0

Units: ug/L

			•					
Cas #	Compound	RL	Cor	nc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	500		U	75-00-3	Chloroethane	500	U
79-34-5	1,1,2,2-Tetrachloroethane	500		U	67-66-3	Chloroform	500	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	500		U	74-87-3	Chloromethane	500	U J b
79-00-5	1,1,2-Trichloroethane	500		U	156-59-2	cis-1,2-Dichloroethene	500	U
75-34-3	1,1-Dichloroethane	500		U	10061-01-5	cis-1,3-Dichloropropene	500	ひょりょ
75-35-4	1,1-Dichloroethene	500		U	110-82-7	Cyclohexane	500	U
120-82-1	1,2,4-Trichlorobenzene	500	UJ	R	124-48-1	Dibromochloromethane	500	U
96-12-8	1,2-Dibromo-3-Chloropropa	500	UJ	سحا	75-71-8	Dichlorodifluoromethane	500	U
106-93-4	1,2-Dibromoethane	500		U	100-41-4	Ethylbenzene	500	U
95-50-1	1,2-Dichlorobenzene	500		U	98-82-8	Isopropylbenzene	500	υ
107-06-2	1,2-Dichloroethane	250		U	136777612	m&p-Xylenes	500	U
78-87-5	1,2-Dichloropropane	250		U	79-20-9	Methyl Acetate	500	UJU
541-73-1	1,3-Dichlorobenzene	500		U	108-87-2	Methylcyclohexane	500	U
106-46-7	1,4-Dichlorobenzene	500		U	75-09-2	Methylene Chloride	500	υ
78-93-3	2-Butanone	500		U	1634-04-4	Methyl-t-butyl ether	250	UJU
591-78-6	2-Hexanone	500	UJ	R	95-47-6	o-Xylene	500	U
108-10-1	4-Methyl-2-Pentanone	500	UJ	u	100-42-5	Styrene	500	U
67-64-1	Acetone	5000	_	U	127-18-4	Tetrachloroethene	500	48000
71-43-2	Benzene	250		U	108-88-3	Toluene	500	U
75-27 -4	Bromodichloromethane	300		U	156-60-5	trans-1,2-Dichloroethene	500	U
75-25-2	Bromoform	500		U	10061-02-6	trans-1,3-Dichloropropene	500	UJU
74-83-9	Bromomethane	500		U	79-01-6	Trichloroethene	500	500
75-15-0	Carbon Disulfide	500	Uゴ	R	75-69-4	Trichlorofluoromethane	500	U
56-23-5	Carbon Tetrachloride	500		U	75-01-4	Vinyl Chloride	500	U
108-90-7	Chlorobenzene	500		U	1330-20-7	Xylenes (Total)	500	U
					1			

nw 7/26/11

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

ORGANICS VOLATILE REPORT

Sample Number: AC59335-005(100X)

Client Id: MW-05

Data File: 2M67543.D

Analysis Date: 05/31/11 13:53 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 100

Solids: 0

Units: ug/L

	the second secon		U	mis.	uy/L			
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	100		U	75-00-3	Chloroethane	100	U
79-34-5	1,1,2,2-Tetrachloroethane	100		U	67-66-3	Chloroform	100	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	100		U	74-87-3	Chloromethane	100	UJH
79-00-5	1,1,2-Trichloroethane	100		U	156-59-2	cis-1,2-Dichloroethene	100	260
75-34-3	1,1-Dichloroethane	100		U	10061-01-5	cis-1,3-Dichloropropene	100	ロブル
75-35-4	1,1-Dichloroethene	100		U	110-82-7	Cyclohexane	100	U
120-82-1	1,2,4-Trichlorobenzene	100	Uブ	A	124-48-1	Dibromochloromethane	100	U
96-12-8	1,2-Dibromo-3-Chloropropa	100	UJ	18	75-71-8	Dichlorodifluoromethane	100	U
106-93-4	1,2-Dibromoethane	100		U	100-41-4	Ethylbenzene	100	U
95-50-1	1,2-Dichlorobenzene	100		U	98-82-8	Isopropylbenzene	100	U
107-06-2	1,2-Dichloroethane	50		U	136777612	m&p-Xylenes	100	U
78-87-5	1,2-Dichloropropane	100		U	79-20-9	Methyl Acetate	100	UJB
541-73-1	1,3-Dichlorobenzene	100		U	108-87-2	Methylcyclohexane	100	U
106-46-7	1,4-Dichlorobenzene	100		U	75-09-2	Methylene Chloride	100	U
78-93-3	2-Butanone	100		U	1634-04-4	Methyl-t-butyl ether	50	UJB
591-78-6	2-Hexanone	100	uJ	U	95-47-6	o-Xylene	100	U
108-10-1	4-Methyl-2-Pentanone	100	UJ	Ą	100-42-5	Styrene	100	U
67-64-1	Acetone	1000		U	127-18-4	Tetrachloroethene	100	25000
71-43-2	Benzene	50		U	108-88-3	Toluene	100	U
75-27-4	Bromodichloromethane	100		U	156-60-5	trans-1,2-Dichloroethene	100	U
75-25-2	Bromoform	100		U	10061-02-6	trans-1,3-Dichloropropene	100	UJY
74-83-9	Bromomethane	100		U	79-01-6	Trichloroethene	100	6500
75-15-0	Carbon Disulfide	100	Uゴ	ď	75-69-4	Trichlorofluoromethane	100	U
56-23-5	Carbon Tetrachloride	100		U	75-01-4	Vinyl Chloride	100	U
108-90-7	Chlorobenzene	100		U	1330-20-7	Xylenes (Total)	100	· U
	•							

R - Retention Time Out
I - Indicates an estimated

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the

instrument.

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

Sample Number: AC59335-006

Client Id: MW-06

Data File: 3M93532.D

Analysis Date: 06/01/11 12:08 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ua/l

			U	mis:	ug/L				
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Conc	
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0	U	1
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0	U	1
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	ひりょ	-
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0	U	l
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	レンソ	•
75-35-4	1,1-Dichloroethene	1.0		U	110-82-7	Cyclohexane	1.0	U	1
120-82-1	1,2,4-Trichlorobenzene	1.0	U J	¥	124-48-1	Dibromochloromethane	1.0	U	1
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	UJ	Ŋ	75-71-8	Dichlorodifluoromethane	1.0	U	l
106-93-4	1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0	U	J
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0	, U	J
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0	U	J
78-87-5	1,2-Dichloropropane	0.51		U	79-20-9	Methyl Acetate	1.0	UJ 4	5
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0	U	J
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0	L	J
78-93-3	2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	UJE	1
591-78-6	2-Hexanone	1.0	UJ	Ħ	95-47-6	o-Xylene	1.0	L	J
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	TA.	100-42-5	Styrene	1.0	L	J
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0	2.0)
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0	L	J
75-27-4	Bromodichloromethane	0.61		U	156-60-5	trans-1,2-Dichloroethene	1.0	L	J
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	UJ t	4
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0	ι	J
75-15-0	Carbon Disulfide	1.0	UJ	N.	75-69-4	Trichlorofluoromethane	1.0	ι	J
56-23-5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0	L	J
108-90-7	Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0	·	J

nw 7/26/11

Worksheet #: 193017

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample. J - Indicates an estimated value when a compound is detected at less than the E - Indicates the analyte concentration exceeds the calibration range of the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration i

instrument.

Sample Number: AC59335-007

Client Id: MW-07

Data File: 3M93531.D

Analysis Date: 06/01/11 11:52

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Cor	nc	Cas #	Compound	RL	Con	ıc
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0		U
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	UJ.	JY .
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0	2	2.2
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	45	ď
75-35-4	1,1-Dichloroethene	1.0		U	110-82-7	Cyclohexane	1.0		U
120-82-1	1,2,4-Trichlorobenzene	1.0		N.	124-48-1	Dibromochloromethane	1.0		U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	UJ	Ŋ	75-71-8	Dichlorodifluoromethane	1.0		U
106-93-4	1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0		U
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0		U
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0		1.3
78-87-5	1,2-Dichloropropane	0.51		U	79-20-9	Methyl Acetate	1.0	uJ	4
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0		U
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0		U
78-93-3	2-Butanone	1.0		υ	1634-04-4	Methyl-t-butyl ether	0.50	NJ	¥
591-78-6	2-Hexanone	1.0	иJ	A	95-47-6	o-Xylene	1.0		U
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	R	100-42-5	Styrene	1.0		U
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0		44
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0	:	2.2
75-27-4	Bromodichloromethane	0.61		U	156-60-5	trans-1,2-Dichloroethene	1.0		Ų
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	UJ	مطا
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0		4.6
7 5-15-0	Carbon Disulfide	1.0	uJ	15	75-69-4	Trichlorofluoromethane	1.0		U
56-23 - 5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0		U
108-90-7	Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0		1.3
					1	• •			

nw 7/26/11

Worksheet #: 193017

Total Target Concentration

54 ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration i

Sample Number: AC59335-008

Client Id: MW-08

Data File: 2M67547.D

Analysis Date: 05/31/11 14:56

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

omis. ug/L											
Compound	RL	Co	nc	Cas #	Compound	RL	Conc				
1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0	U				
1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0	U				
1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	UJ b				
1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0	υ				
1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	はエル				
1,1-Dichloroethene	1.0		U	110-82-7	Cyclohexane	1.0	U				
1,2,4-Trichlorobenzene	1.0	UJ	18	124-48-1	Dibromochloromethane	1.0	U				
1,2-Dibromo-3-Chloropropa	1.0	UJ	Jer Vol.	75-71-8	Dichlorodifluoromethane	1.0	U				
1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0	U				
1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0	U				
1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0	U				
1,2-Dichloropropane	1.0		U	79-20-9	Methyl Acetate	1.0	UJY				
1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0	U				
1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0	U				
2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	UJ 女				
2-Hexanone	1.0	UJ	<i>.</i>	95-47-6	o-Xylene	1.0	U				
4-Methyl-2-Pentanone	1.0	UJ	¥	100-42-5	Styrene	1.0	U				
Acetone	10		U	127-18-4	Tetrachloroethene	1.0	U				
Benzene	0.50		U	108-88-3	Toluene	1.0	U				
Bromodichloromethane	1.0		U	156-60-5	trans-1,2-Dichloroethene	1.0	U				
Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	474				
Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0	U				
Carbon Disulfide	1.0	UJ	4	75-69-4	Trichlorofluoromethane	1.0	U				
Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0	U				
Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0	U				
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluor 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-Chloropropa 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 2-Butanone 2-Hexanone 4-Methyl-2-Pentanone Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride	1,1,1-Trichloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2-Trichloro-1,2,2-trifluor 1.0 1,1,2-Trichloroethane 1.0 1,1-Dichloroethane 1.0 1,1-Dichloroethane 1.0 1,2-Trichlorobenzene 1.0 1,2-Dibromo-3-Chloropropa 1.0 1,2-Dibromoethane 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichloroethane 0.50 1,2-Dichloropropane 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 2-Butanone 1.0 2-Hexanone 1.0 4-Methyl-2-Pentanone 1.0 Acetone 10 Benzene 0.50 Bromodichloromethane 1.0 Bromomethane 1.0 Carbon Disulfide 1.0 Carbon Tetrachloride 1.0	Compound RL Co 1,1,1-Trichloroethane 1.0 1.0 1,1,2,2-Tetrachloroethane 1.0 1.0 1,1,2-Trichloro-1,2,2-trifluor 1.0 1.0 1,1,2-Trichloroethane 1.0 1.0 1,1-Dichloroethane 1.0 1.0 1,2-Trichloroethane 1.0 1.0 1,2-Trichloroethane 1.0 1.0 1,2-Dibromo-3-Chloropropa 1.0 1.0 1,2-Dibromoethane 1.0 1.0 1,2-Dichlorobenzene 1.0 1.0 1,2-Dichloroptopane 1.0 1.0 1,3-Dichlorobenzene 1.0 1.0 2-Butanone 1.0 1.0 2-Hexanone 1.0 1.0 4-Methyl-2-Pentanone 1.0 1.0 Acetone 10 1.0 Bromodichloromethane 1.0 1.0 Bromoform 1.0 1.0 Bromomethane 1.0 1.0 Carbon Disulfide 1.0 1.0	Compound RL Conc 1,1,1-Trichloroethane 1.0 U 1,1,2,2-Tetrachloroethane 1.0 U 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 1,1,2-Trichloroethane 1.0 U 1,1-Dichloroethane 1.0 U 1,1-Dichloroethane 1.0 U 1,2-Trichloroethane 1.0 U 1,2-Trichloroethane 1.0 U 1,2-Dibromo-3-Chloropropa 1.0 U 1,2-Dibromoethane 1.0 U 1,2-Dichlorobenzene 1.0 U 1,2-Dichloroptopane 1.0 U 1,2-Dichloroptopane 1.0 U 1,3-Dichlorobenzene 1.0 U 1,4-Dichlorobenzene 1.0 U 2-Butanone 1.0 U 2-Hexanone 1.0 U 4-Methyl-2-Pentanone 1.0 U Acetone 10 U Bromodichloromethane 1.0 U Bromodichloromethane </td <td> Compound RL</td> <td> Compound RL Conc Cas # Compound </td> <td>Compound RL Conc Cas # Compound RL 1.1,1-Trichloroethane 1.0 U 75-00-3 Chloroethane 1.0 1,1,2-Trichloroethane 1.0 U 67-66-3 Chloroform 1.0 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 74-87-3 Chloromethane 1.0 1,1,2-Trichloroethane 1.0 U 156-59-2 cis-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 U 10061-01-5 cis-1,3-Dichloropropene 1.0 1,1-Dichloroethane 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dirhoroethane 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dibromoethane 1.0 U 10-44-8 Dibromochloromethane 1.0 1,2-Dichlorobenzene 1.0 U 10-41-4 Ethylbenzene 1.0 1,2-Dichloroethane 0.50 U 13677612 m&p-Xylenes 1.0 1,2-Dichloroethane 0.50 U 136777612 m&thylylene</td>	Compound RL	Compound RL Conc Cas # Compound	Compound RL Conc Cas # Compound RL 1.1,1-Trichloroethane 1.0 U 75-00-3 Chloroethane 1.0 1,1,2-Trichloroethane 1.0 U 67-66-3 Chloroform 1.0 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 74-87-3 Chloromethane 1.0 1,1,2-Trichloroethane 1.0 U 156-59-2 cis-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 U 10061-01-5 cis-1,3-Dichloropropene 1.0 1,1-Dichloroethane 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dirhoroethane 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dibromoethane 1.0 U 10-44-8 Dibromochloromethane 1.0 1,2-Dichlorobenzene 1.0 U 10-41-4 Ethylbenzene 1.0 1,2-Dichloroethane 0.50 U 13677612 m&p-Xylenes 1.0 1,2-Dichloroethane 0.50 U 136777612 m&thylylene				

nw 7/21/11

Worksheet #: 193017

Total Target Concentration

0

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out
I - Indicates an estimate

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

. .

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC59335-011

Client Id: MW-09

Data File: 3M93526.D

Analysis Date: 06/01/11 10:29

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Onics. ug/L												
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Co	onc			
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0		U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0		U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	uJ	゙゙゙゙゙゙゙゙゙゙゙゙゙			
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0		U			
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	uJ	¥			
75-35-4	1,1-Dichloroethene	1.0		U	110-82-7	Cyclohexane	1.0		U			
120-82-1	1,2,4-Trichlorobenzene	1.0	UJ	75	124-48-1	Dibromochloromethane	1.0		U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	UJ	4	75-71-8	Dichlorodifluoromethane	1.0		U			
106-93-4	1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0		U			
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0		U			
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0		U			
78-87-5	1,2-Dichloropropane	0.51		U	79-20-9	Methyl Acetate	1.0	UJ	T			
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0		U			
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0		U			
78-93-3	2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	UJ	T			
591-78-6	2-Hexanone	1.0	UJ	Ħ	95-47-6	o-Xylene	1.0		U			
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	4	100-42-5	Styrene	1.0		U			
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0		U			
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0		U			
75-27-4	Bromodichloromethane	0.61		U	156-60-5	trans-1,2-Dichloroethene	1.0	_	U			
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	uJ	V			
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0		U			
75-15-0	Carbon Disulfide	1.0	UJ	J.J	75-69-4	Trichlorofluoromethane	1.0		U			
56-23-5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0		U			
108-90-7	Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0		U			

nw 7/20/11

Worksheet #: 193017

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

ORGANICS VOLATILE REPORT

Sample Number: AC59335-012

Client Id: MW-10

Data File: 3M93529.D

Analysis Date: 06/01/11 11:19

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			U	nits: 1	ug/L					
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Co	nc	
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0		U	
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0		U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	UJ	4	
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0		U	
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	Uゴ	4	
75-35-4	1,1-Dichloroethene	1.0		U	. 110-82-7	Cyclohexane	1.0		U	
120-82-1	1,2,4-Trichlorobenzene	1.0	UJ	14	124-48-1	Dibromochloromethane	1.0		U	
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	UJ	JY.	75-71-8	Dichlorodifluoromethane	1.0		U	
106-93-4	1,2-Dibromoethane	1.0		U	100-41-4	Ethylbenzene	1.0		U	
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0		U	
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0		U	
78-87-5	1,2-Dichloropropane	0.51		U	79-20-9	Methyl Acetate	1.0	UJ	<i>کا</i>	
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0		U	
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0		U	
78-93-3	2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	UJ	せ	
591-78-6	2-Hexanone	1.0	UJ	丛	95-47-6	o-Xylene	1.0		U	
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	W	100-42-5	Styrene	1.0		U	
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0		U	
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0		U	
75-27-4	Bromodichloromethane	0.61		U	156-60-5	trans-1,2-Dichloroethene	1.0		U	
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	U ゴ	1	
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0		U	
75-15-0	Carbon Disulfide	1.0	UJ	.⊌r	75-69-4	Trichlorofluoromethane	1.0		U	
56-23-5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0		U	
108-90-7	Chlorobenzene	1.0		U		Xylenes (Total)	1.0		U	
					1					

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

ORGANICS VOLATILE REPORT

Sample Number: AC59335-013

Client Id: MW-11

Data File: 3M93530.D

Analysis Date: 06/01/11 11:35

Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

_			Ui	iitə.	ug/L				
Cas #	Compound	RL	Cor	nc	Cas #	Compound	RL	Cor	ic
71-55-6	1,1,1-Trichloroethane	1.0		U	75-00-3	Chloroethane	1.0		U
79-34-5	1,1,2,2-Tetrachloroethane	1.0		U	67-66-3	Chloroform	1.0		U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0		U	74-87-3	Chloromethane	1.0	UJ	セ
79-00-5	1,1,2-Trichloroethane	1.0		U	156-59-2	cis-1,2-Dichloroethene	1.0		U
75-34-3	1,1-Dichloroethane	1.0		U	10061-01-5	cis-1,3-Dichloropropene	1.0	UJ	سلا
75-35-4	1,1-Dichloroethene	1.0		U	110-82-7	Cyclohexane	1.0		U
120-82-1	1,2,4-Trichlorobenzene	1.0	UJ.	U	124-48-1	Dibromochloromethane	1.0		U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	uj	y	75-71-8	Dichlorodifluoromethane	1.0		U
106-93-4	1,2-Dibromoethane	1.0	•	U	100-41-4	Ethylbenzene	1.0		U
95-50-1	1,2-Dichlorobenzene	1.0		U	98-82-8	Isopropylbenzene	1.0		U
107-06-2	1,2-Dichloroethane	0.50		U	136777612	m&p-Xylenes	1.0		U
78-87-5	1,2-Dichloropropane	0.51		U	79-20-9	Methyl Acetate	1.0	uJ	1
541-73-1	1,3-Dichlorobenzene	1.0		U	108-87-2	Methylcyclohexane	1.0		U
106-46-7	1,4-Dichlorobenzene	1.0		U	75-09-2	Methylene Chloride	1.0		U
78-93-3	2-Butanone	1.0		U	1634-04-4	Methyl-t-butyl ether	0.50	UJ	سلحا
591-78-6	2-Hexanone	1.0	UJ	b.	95-47-6	o-Xylene	1.0		U
108-10-1	4-Methyl-2-Pentanone	1.0	UJ	Y	100-42-5	Styrene	1.0		U
67-64-1	Acetone	10		U	127-18-4	Tetrachloroethene	1.0		U
71-43-2	Benzene	0.50		U	108-88-3	Toluene	1.0		U
75-27-4	Bromodichloromethane	0.61		U	156-60-5	trans-1,2-Dichloroethene	1.0		U
75-25-2	Bromoform	1.0		U	10061-02-6	trans-1,3-Dichloropropene	1.0	uJ	مط
74-83-9	Bromomethane	1.0		U	79-01-6	Trichloroethene	1.0		U
75-15-0	Carbon Disulfide	1.0	UJ	¥	75-69-4	Trichlorofluoromethane	1.0		υ
56-23-5	Carbon Tetrachloride	1.0		U	75-01-4	Vinyl Chloride	1.0		U
108-90-7	Chlorobenzene	1.0		U	1330-20-7	Xylenes (Total)	1.0		U
	· ·				1				

Worksheet #: 193017

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration u

Sample Number: AC59335-014(100X)

Client Id: Duplicate Data File: 2M67558.D

Analysis Date: 05/31/11 17:50 Date Rec/Extracted: 05/26/11-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260B

Matrix: Aqueous

Initial Vol: 5ml Final Vol: NA

Dilution: 100

Solids: 0

Units: ug/L

			U	nits: 🏋	ug/L			
Cas #	Compound	RL	Co	nc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	100		U	75-00-3	Chloroethane	100	U
79-34-5	1,1,2,2-Tetrachloroethane	100		U	67-66-3	Chloroform	100	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	100		U	74-87-3	Chloromethane	100	UJ U
79-00-5	1,1,2-Trichloroethane	100		U	156-59-2	cis-1,2-Dichloroethene	100	240
75-34-3	1,1-Dichloroethane	100		U	10061-01-5	cis-1,3-Dichloropropene	100	UJ J
75-35-4	1,1-Dichloroethene	100		U	110-82-7	Cyclohexane	100	U
120-82-1	1,2,4-Trichlorobenzene	100	ИJ	せ	124-48-1	Dibromochloromethane	100	U
96-12-8	1,2-Dibromo-3-Chloropropa	100	UJ	Y	75-71-8	Dichlorodifluoromethane	100	U
106-93-4	1,2-Dibromoethane	100		υ	100-41-4	Ethylbenzene	100	U
95-50-1	1,2-Dichlorobenzene	100		U	98-82-8	Isopropylbenzene	100	U
107-06-2	1,2-Dichloroethane	50		U	136777612	m&p-Xylenes	100	U
78-87-5	1,2-Dichloropropane	100		U	79-20-9	Methyl Acetate	100	レブザ
541-73-1	1,3-Dichlorobenzene	100		U	108-87-2	Methylcyclohexane	100	Ù
106-46-7	1,4-Dichlorobenzene	100		U	75-09-2	Methylene Chloride	100	U
78-93-3	2-Butanone	100		U	1634-04-4	Methyl-t-butyl ether	50	ひけせ
591-78-6	2-Hexanone	100	UI	せ	95-47-6	o-Xylene	100	U
108-10-1	4-Methyl-2-Pentanone	100	UJ	ゼ	100-42-5	Styrene	100	U
67-64-1	Acetone	1000		U	127-18-4	Tetrachloroethene	100	34000
71-43-2	Benzene	50		U	108-88-3	Toluene	100	U
75-27-4	Bromodichloromethane	100		U	156-60-5	trans-1,2-Dichloroethene	100	· U
75-25-2	Bromoform	100		U	10061-02-6	trans-1,3-Dichloropropene	100	UJ y
74-83-9	Bromomethane	100		U	79-01-6	Trichloroethene	100	7900
75-15-0	Carbon Disulfide	100	UJ	ملإ	75-69-4	Trichlorofluoromethane	100	U
56-23-5	Carbon Tetrachloride	100		U	75-01-4	Vinyl Chloride	100	U
108-90-7	Chlorobenzene	100		U	1330-20-7	Xylenes (Total)	100	U
					•			

NW 7/210/11

Worksheet #: 193017

Total Target Concentration

42000

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration i

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.