SITE INVESTIGATION REPORT

Loudon Plaza 350 Northern Blvd. Albany, New York 12204

NETC PROJECT # 08.1023054

PREPARED FOR:

SKY Four LLC C/o Law Office of Gary S. Bowitch 119 Washington Avenue Albany, NY 12210

PREPARED BY:

NORTHEASTERN ENVIRONMENTAL TECHNOLOGIES CORP.

1476 NYS Route 50 - P.O. Box 2167 Ballston Spa, New York 12020 (518) 884-8545

> **Date**: October 12, 2009

"..... providing integrated environmental and geotechnical services"

GEO-ENVIRONMENTAL CONSULTING & PROPERTY MANAGEMENT SERVICES -SITE ASSESSMENTS - GEOTECHNICAL DRILLING & DPT PROBE SERVICES - TANK CLOSURES - EXCAVATION SERVICES - SOIL & GROUNDWATER REMEDIATION -EXPERT TESTIMONY - WASTE BROKERAGE SERVICES

TABLE OF CONTENTS

1.0 INTRODUCTION.	1
 2.0 METHODOLOGIES. 2.1 Soil Boring Program. 2.1.1 Soil Sampling Program . 2.1.2 Soil Gas Analysis. 2.2 Groundwater Sampling. 2.3 Vapor Intrusion Testing Program. 2.3.1 Sub Slab Vapor Probe Implant Installation Services. 2.3.2 Vapor Sampling Services. 	1 5 6 7 7 7
 3.0 FINDINGS. 3.1 Geotechnical Conditions. 3.2 Hydrogeology. 3.3 Soil Gas Survey Results. 3.4 Laboratory Results. 3.4.1 Soil Quality Results. 3.4.2 Groundwater Quality Results . 3.4.3 TO-15 Air / Vapor Quality Results. 3.4.4 TO-15 Data Validation. 	9 9 9 11 11 11 11
4.0 CONCLUSIONS.	14
5.0 RECOMMENDATIONS.	15
5.0 LIMITATIONS.	17

APPENDICES

ATTACHMENT A	SOIL BORING LOGS
ATTACHMENT B	WELL COMPLETION LOGS
ATTACHMENT C	SOIL GAS ANALYSIS
ATTACHMENT DINDOOR AIR QUALITY	QUESTIONNAIRE & BUILDING INVENTORY
ATTACHMENT E	PEL SOIL QUALITY REPORT
ATTACHMENT F	PEL GROUNDWATER QUALITY REPORT
ATTACHMENT F	ULI TO-15 AIR/VAPOR QUALITY REPORT
ATTACHMENT G	IYER ENVIRONMENTAL DATA VALIDATION
ATTACHMENT H	.IYER ENVIRONMENTAL DATA VALIDATION NETC STATEMENT OF SERVICES

1.0 INTRODUCTION

The following information presents the results of a Site Assessment (SI) performed at the Loudon Plaza located at 350 Northern Boulevard Albany, NY (see **Figure 1**). The focus of the SI has been areas of the site historically operated for dry cleaning purposes; specifically the former Tech Valley Office Interior, Town Total Health and KEM Cleaners tenant spaces. This work was performed on behalf of the property owner Sky Four LLC (Client) to further address the Recognized Environmental Conditions (RECs) identified in NETCs Phase 2 Environmental Site Assessment (ESA) dated December 29, 2008. The objective of the SI work is to further delineate the areal and vertical extent that the dry cleaning chemical Tetrachloroethene (PCE), and its associated breakdown chemical compounds, exist in soil, vapor and groundwater at the site .

The scope of this SI is based on the recommendation presented in NETCs Phase 2 Environmental Site Assessment and includes the spill delineation and chemical characterization measures deemed necessary by the NYS Department of Environmental Conservation (NYSDEC) pursuant to its written directives summarized on March 23, 2009. The SI testing measures have also incorporated those measures considered appropriate by SKY-Four LLC and Axiom Capital Corporation. A more detailed accounting of the work performed is included below for your consideration.

2.0 <u>METHODOLOGIES</u>

2.1 SOIL BORING PROGRAM

A total of (6) additional soil borings (i.e., GP-6,7,8,9,10 &11) were installed at the Loudon Plaza site between the dates of April 13 - 15, 2009 (see **Figure 2**). The soil borings were advanced to depths ranging from ± 20.0 to 32.0 feet below grade. The soil borings were completed to facilitate the acquisition of additional near surface soil and groundwater samples. Each soil boring was completed in a manner to provide a geological log of the subsurface conditions and provide necessary data on the site's soil and / or groundwater condition. Each soil boring was installed utilizing a track mounted Geoprobe 6620 sampling system following standard direct push methods / techniques (DPT).

Each soil boring was completed as monitoring wells, and given the designation "MW" (i.e., GP-6 = MW-6), to facilitate the acquisition of groundwater samples and elevation data from a shallow unconfined aquifer located at the site (see **Figure 3**). The monitoring wells installed during this investigation are composed of two basic components; the well screen and riser of blank. The well screen is the intake portion of the monitoring well. The basic purpose of the riser is to provide storage and a connection to the surface from the well screen. Each monitoring well installed during the SI is constructed of 1-inch, threaded, flush joint, schedule 40 PVC pipe with 10.0 feet of 0.010 inch slotted well screen. Each of the monitoring wells were constructed to a total depth of 19.0 - 29.0 feet.

LOU EXITSA BUCH THAT BUCH BUCH BUCH BUCH BUCH BUCH BUCH BUCH	Rd 9 3 Dr 1000 R 377 ch ch c	Did to the total of total of the total of total of the total of tot
FIGURE 1 - SITE LOCATION MAP	DRAWING N	IOT TO SCALE NT
NORTHEASTERN ENVIRONMENTAL	Site Name:	350 Northern Blvd (Loudon Plaza) Albany, New York 12204
TECHNOLOGIES, CORP.	Project Number:	08.1023054

With the exception of MW-10, all wells were constructed in such a manner as to screen (i.e.,straddle) the upper most groundwater bearing formations. Monitoring well MW-10 was constructed to screen the base of the shallow groundwater table. The annular space around the well screen and \pm 2.0 feet above has been filled with a uniform sand pack (0.010 grade). A bentonite seal has been installed above the sand pack at each monitoring well.

Each of the monitoring wells were developed to facilitate groundwater sampling services at the site. Well development services are deemed necessary for the following reasons:

- To remove residual mud and formational silt and clay, thereby preventing turbidity during sampling that could potentially interfere with chemical analysis; and,
- To increase the hydraulic conductivity immediately around the well, which in turn reduces the potential of the well yielding an insufficient volume of water during the sampling procedure.

New dedicated bailers were used at each monitoring well as a surge-block device for loosening the fine-grained material from the well annulus, and as a mechanism to remove the water and sediment from the well. The surging was assisted by rapidly raising and lowering the bailer within the screen section. Bailing was continued until the monitoring well water sufficiently cleared or five well volumes of water had been removed. Groundwater generated during the well development work was staged on site in 55 gallon open head salvage drums. NETC personnel have performed all aspects of the drilling, sampling and monitoring well installation services. Copies of the individual soil boring and monitoring well logs are included as **Appendix A** and **B**, respectively.

2.1.1 SOIL SAMPLING

A series of macro core and/or large bore soil samples were completed at each boring location following continuous soil sampling methods. Soil sampling depths for each boring ranged from ± 20.0 - 32.0 feet below grade. All soil samples were logged on site as they were extracted, labeled and retained for additional field volatile organic compound (VOC) analysis. New unused clear polyethylene terephthlate macro core sample liners (PETG) were used for all soil sampling work. All soil samples collected were examined and described using the Burmister and Unified Soil Classification Systems. In compliance with ASTM methods, the samples were labeled with the following information: boring number, sample number and depth of sample penetration record.

2.1.2 SOIL GAS ANALYSIS

Head space VOC soil gas measurements were initially recorded on each soil sample using a properly calibrated photoionization detector (PID -MiniRe3000). In addition, a Photo Vac 10S70 gas chromatograph (GC) equipped with a photoionization detector (PID) and an on board computer was used to quantify chlorinated VOC concentrations. The field GC analyzed a 250 micro liter aliquot of head space gas collected from a half filled 40 ml sample vial. Three chemical parameters were selected for consideration during the field GC testing services. The target chemicals of concern include PCE, cis-1,2-Dichloroethene (DCE), and Trichlorethene (TCE). Minimum detection limits (MDL) were established for PCE, TCE and DCE to assist in the review and interpretation of the soil guality data. Each soil sample was prepared for analysis by taking 20 grams of soil in a 40 ml vial and adding 20 ml of distilled water. The sample was then shaken and allowed to come to equilibrium. Prior to analyzing the first soil sample, a "clean" soil sample was spiked with a 20 ppm stock standard solution for calibration purposes. The results of the testing work was used to determine the vertical extent of VOC chemical contamination. A summary of the field GC soil quality results, as well as the field GC records are included in Appendix C. The PID soil gas results are also included on the individual boring logs (see Appendix A). The field GC soil quality data, as well as the PID information were used to short list (6) soil samples for confirmatory laboratory analysis. Each of the short listed samples were submitted to Phoenix Environmental Laboratories (PEL) for chemical analysis via EPA Method 8260.

2.2 GROUNDWATER SAMPLING

With the exception of monitoring well MW-3, each well at the site was sampled on April 16, 2008 with new unused bottom filled, check valve PVC bailers using monofilament to lower and raise the bailer. Attempts to sample monitoring well MW-3 were not realized (i.e., dry well). Three well volumes were removed from each monitoring well prior to sampling. All samples were collected in such a manner as to minimize agitation and other disturbing conditions, which may cause physio-chemical changes and bring about losses due to volatilization, adsorption, redox changes or degradation. The samples were then transferred to a set of laboratory prepared 40ml zero head space sample bottles, provided by Phoenix Environmental Laboratories (PEL), for chemical analysis.

Each groundwater sample was submitted to PEL for chemical analysis via EPA Method 8260 testing criteria. Observations have been recorded regarding weather and surrounding air/water/soil conditions, non-aqueous components of water (e.g. "floaters," surface sheens) and other pertinent field conditions. Chain of custody documentation was maintained throughout the transfer and shipment of samples to the laboratory.

NORTHEASTERN ENVIRONMENTAL TECHNOLOGIES CORPORATION

2.3 VAPOR INTRUSION TESTING PROGRAM

2.3.1 SUB SLAB VAPOR PROBE IMPLANT INSTALLATION SERVICES

Three sub slab vapor probe implants were installed below the southern and western portion of the Loudon Plaza. The implants were installed in a vacant tenant space (suite 110) and a rest room most recently occupied by Tech Valley Office Interiors (TVOI) and the Town Total Health tenant space (see **Figure 4**). A man operated rotary - impact drill was used to create three 1.0 inch penetrations through the floor slab of each tenant space. Each sub slab probe was installed in the unconsolidated soil / sand immediately below the concrete slab (i.e., <2.0 inches). The vapor probes installed during this SVI program consisted of 3/8 inch poly ethylene tubing and a stainless steel implant cover. The annular space around the base of the probe was filled with #1 morie well sand. The surface of the annular space surrounding the vapor probe was filled with a cement bentonite grout.

2.3.2 VAPOR SAMPLING SERVICES

Prior to collecting the vapor samples, an Indoor Air Quality Questionnaire and Building Inventory was completed by a representative of NETC. The Questionnaire and Inventory is included in **Appendix D**. One sub slab vapor sample was collected from each implant at the site on April 23, 2009. Prior to collecting the soil vapor samples, three vapor volumes were purged from each implant using a photoionization detector (i.e.,PID - MiniRae 3000). After purging and prior to sampling, a tracer gas (i.e., IsoButylene) enriched atmosphere was created around each soil vapor implant, a PID was attached to the vapor implant and continuously monitored for an increase in VOCs for ± 5 minutes to ensure the integrity of the implants. Soil Vapor Implants SS-1 and SS-2 demonstrated an increased level of VOCs, each implant was replaced in the same manor as described in section 2.3.1 and re-tested to ensure the implant's integrity. Sub slab vapor samples were collected using a negatively pressurized 1.4L Summa® canister equipped with a time specific regulator.

Each of the regulator systems were calibrated by Upstate Laboratories, Inc. (ULI) for the desired 24 hour sampling interval. Simultaneous indoor air samples were also collected from each of the two building areas as previously described. A simultaneous outdoor air sample was also collected at an upwind location (free of obstructions) adjacent to the Loudon Plaza structure. Each indoor and outdoor air sample was obtained from a 3 foot elevated platform via 1.4L Summa® canisters equipped with an 24 hour sample regulator.

All Summa[®] canisters were certified as clean by ULI. A sampling log was also maintained for the sampling event which documents sample IDs, date and time of the sample collection, sample height, the names of NETC staff, pertinent weather conditions, sampling methods and devices used, volume of air sampled, applicable pre

Northeastern Environmental Technologies Corporation

and post sample vacuum and ambient air temperature data and chain of custody information. The actual sampling times for each of the sampling points are illustrated in Attachment A. All samples were shipped to ULI for chemical analysis. All samples were analyzed via EPA Method TO-15. All data sets are reported in micrograms per cubic meter (ug/m³) with minimum sample reporting limits of 1 ug/m³.

3.0 <u>FINDINGS</u>

3.1 GEOTECHNICAL CONDITIONS

The results obtained from the soil boring work identify the unconsolidated deposits as an alternating sequence of brown varved medium to fine sand, silts and clays. Bedrock was not encountered during this work. A confining layer consisting of hard gray till was encountered at \pm 30.0 feet below grade at soil boring location GP-10. Groundwater was encountered in each of the soil borings at depths ranging from \pm 13.0 - 17.0 feet. No visual or olfactory indications of chemical contamination were apparent in the soil samples collected at the site. Total VOC soil gas measurements recorded at each sampling location [and horizon] were consistent with low level to background (i.e., > 10.0 parts per million [ppm]) concentrations. Total VOC soil gas concentrations recorded at each soil boring location ranged from 0.6 - 8.8 PPM with the greatest concentration encountered at soil boring GP-8 at a depth of \pm 18 feet below grade.

3.2 HYDROGEOLOGY

Groundwater elevations established from the existing network of wells on April 16, 2009 range from 12.28 to 17.85 ft. below grade. As previously reported, attempts to obtain groundwater data from monitoring well GP-3 was not realized during the SI work (i.e., dry well). No measurable non aqueous phase liquid (NAPL) contamination was recorded in the network of monitoring wells. Groundwater elevations recorded at the site identify an apparent southeasterly groundwater flow direction in the shallow groundwater system towards Northern Boulevard (see **Figure 5**).

3.3 SOIL GAS SURVEY RESULTS

Low concentrations of chlorinated VOCs were documented at (3) soil boring locations (i.e., GP-8, GP-10 and GP-11). The chlorinated VOCs identified at the site include the dry cleaning compound PCE and its breakdown compounds TCE and Cis-DCE. PCE, TCE and Cis-DCE concentrations identified in the soil boring samples were reported at 105, 30.23, 110 PPB, respectively.

NORTHEASTERN ENVIRONMENTAL TECHNOLOGIES CORPORATION

3.4 LABORATORY RESULTS

3.4.1 SOIL QUALITY RESULTS

Soil samples GP-6 S-4A, GP-7 S-3B and GP-9 S-4A were reported as unaffected by the chemical compounds inherent to the EPA 8260 testing criteria. Soil samples GP-10 S-1 and GP-11 S-4B were each reported to contain low levels of the chlorinated compound Tetrachloroethene below that of the NYSDEC TAGM 4046 recommended soil cleanup objectives (RSCOs). Soil sample GP-8 S-4B was reported to contain low levels of the chlorinated compounds Cis-1,2-Dichloroethene, Tetrachloroethene and Trichloroethene each at levels below the NYSDEC TAGM 4046 recommended soil cleanup objectives (RSCOs). Copies of the PEL soil quality results are included in **Appendix E** for consideration.

3.4.2 GROUNDWATER QUALITY RESULTS

Groundwater samples collected at monitoring well locations MW-6, MW-7 and MW-9 were each reported as unaffected by the chemical compounds inherent to the EPA 8260 testing criteria. Chlorinated VOCs groundwater impacts have been confirmed at monitoring wells MW-1, 2, 4, 5, 8, 10 and MW-11 (see **Figure 6**). The reported dissolved phase groundwater impacts exceed the NYSDEC's 6 NYCRR PART 703 water quality standards at each location. The greatest chlorinated VOC concentrations were reported at monitoring well MW-4. The presence of PCE, TCE, DCE and the lack of other dissolved phase VOC groundwater impacts suggest the source as aged release(s) of the dry cleaning chemical PCE. A copy of the PEL water quality report is included in **Appendix F**.

3.4.3 TO-15 Air / VAPOR QUALITY RESULTS

The completed TO-15 test results confirm the presence of chlorinated VOC impacts in and/or below the 3-story office area (Axiom Capital), TVOI, Town Total Health and KEM tenant spaces. The concentrations of PCE found to exist in and below the TVOI tenant space are within the "monitor" range pursuant to the New York State Department of Health (NYSDOH) Center for Environmental Health Bureau of Environmental Exposure Investigation (NYSDOH CEH BEEI) standards for indoor air as listed in "Matrix 2" pursuant to the NYSDOHs Guidance Document For Evaluation Soil Vapor Intrusion in the State of NY. The concentrations of PCE, TCE, 1,1,1-TCA and Carbon tetrachloride found to exist in and below the Axiom Capital, Town Total Health and KEM tenant spaces are within the NYSDOHs "no further action" and "take reasonable and practical actions to identify source(s) and reduce exposures" ranges. Figure 7 illustrates the chlorinated VOC concentrations reported in each of the sub slab, indoor air and outdoor air quality sampling sites. Low concentrations of other VOCs reported in the TO-15 samples (including the outdoor air control sample) are attributed to janitorial products used by the establishments and / or ambient air conditions at the site (see Indoor Air Quality Questionnaire and Building Inventory). A

copy of the ULI report, as well as a summary of the air quality and vapor quality data are included in **Appendix G**.

3.4.4 TO-15 DATA VALIDATION

lyer Environmental Group was retained to provided analytical data validation services for the TO-15 analysis on all sub slab, indoor air and outdoor air samples collected at the site during the SI work. Iyer Environmental Group has concluded that all TO-15 results are considered valid and usable pursuant to USEPA guidelines with the qualifiers listed in Table 1 of its data validation report. A specific accounting of the lyer Environmental Group report is included in **Appendix H**.

4.0 <u>CONCLUSIONS</u>

The quality conditions at monitoring wells MW-6, MW-7 and MW-9 indicate no chlorinated VOC impacts on the northern and eastern portions of the site. Despite low level nature of the chlorinated VOC soil quality impacts documented at soil boring locations GP-8, GP-10 and GP-11, groundwater impacts along the western and southern portions of the Loudon Plaza site exceed the NYSDEC's 6 NYCRR PART 703 water quality standards.

The most significant groundwater quality impacts remain at monitoring well MW-4. Monitoring well MW-4 is located directly down gradient of the KEM Cleaners tenant space. Low concentrations of PCE (34 ppb) in down gradient monitoring well MW-11 [slightly above the NYSDEC's 6 NYCRR PART 703 water quality standards] and the lack of other chlorinated VOC impacts suggests the green space south of Northern Boulevard represents the likely down gradient extent of the dissolved phase chlorinated VOC plume. Groundwater quality at monitoring well MW-11 also suggests natural reductive dechlorination of dry cleaning chemical PCE. NETCs position on the natural attenuation of the PCE plume is based on the absence of other chlorinated VOC compounds in the monitoring well MW-11 groundwater chemistry.

The concentrations of PCE and TCE in air and soil vapor samples taken in and below the Loudon Plaza tenant space are within the *"monitor"* or *"no further action"* and *"take reasonable and practical actions to identify source(s) and reduce exposures"* ranges pursuant to the NYSDOH SVI Guidance Document. The cause for the documented reduction in air and soil vapor quality impacts in the vacant office and KEM tenant spaces since 2008 although unsubstantiated, is expected to be the result of seasonal factors (i.e., absence of frozen ground / heating season conditions) present during the April 2009 sampling event.

The SI data continue to support release of the dry cleaning chemical PCE from the KEM tenant space during a period when on-site dry cleaning took place. Lower concentrations of PCE and the relative ratios of the other chlorinated VOC compounds at monitoring well MW-1, 5 and 8 suggest greater reductive dechlorination of the parent

dry cleaning chemical PCE and additional natural attenuation of dry cleaning chemical PCE has occurred in areas cross gradient and up gradient of the KEM tenant space.

These data suggest that other historical dry cleaning operations occurred in the plaza and / or the potential that improper disposal of dry cleaning waste occurred in solid waste receptacles historically located along the plaza's rear service alley adjacent to the western property line.

5.0 <u>RECOMMENDATIONS</u>

At a minimum, a quarterly groundwater quality and vapor intrusion monitoring program is advocated for this matter. The existing network of wells and vapor implants should be used to document chlorinated VOC concentration trends at this site. This work should be performed to further assess the migration potential of the PCE plume and the impact winter (i.e., frozen ground conditions and the use of the facility's heating season) have on the structure's vapor intrusion risk.

If it is deemed necessary by the NYSDEC, based on the absence of near surface PCE soil impacts, the remedial alternative considered most appropriate for the observed PCE groundwater impacts include in *Situ* groundwater treatment. NETC views in *Situ* groundwater treatment as technically defensible and a viable means to accelerate mass reduction rates of the chlorinated VOC plume based. Our opinion on this matter is largely based on the apparent existing natural attenuation of the PCE plume as documented in the groundwater chemistry taken from the existing network of wells.

An in *Situ* treatment program is also considered more advantageous than other treatment alternatives based on the position of the dry cleaning chemical impacts with respect to existing site improvements, underground utilities, adjacent properties and Northern Boulevard.

Hydrogen release compound (i.e., 3-D Micro Emulsion HRC advanced [3DMETM]) is a proprietary (patent-applied-for by Regenesis) product which is field proven and provides for an immediate, as well as time-release supply of hydrogen to fuel the demands of the anaerobic reductive dechlorination. Typical longevity for 3DMeTM is up to 2 years or more on a single injection and up to 4 years or more under optimal conditions. When handled appropriately, $3DMe^{TM}$ is safe and easy to apply to the contaminated subsurface without the health and safety concerns and lingering environmental issues that have become associated with other chemical treatment / oxidation technologies.

3DME[™] is a three stage electron donor which provides free lactic acid, controlled release lactic acid and long release fatty acids for effective hydrogen production for prolonged periods (Regenesis). 3DME[™] can be easily is mixed in the field with water to create a micro emulsion and can be easily injected into the subsurface via direct push field methods. The permeable sandy glaciolacustrine deposits that exist at the site are

considered very conducive to this approach.

NETC advocates the implementation of an initial pilot scale test (ideally near monitoring well MW-4) to design a plume size application program for this matter. In order to validate and track the effectiveness of the anaerobic reductive dechlorination, we propose using the existing network of monitoring wells. Additional (down gradient) monitoring wells control may be required based on the pilot test area selected.

Baseline water quality information will be obtained from the network of wells to identify groundwater quality and physiochemical conditions prior to the injection of the $3DME^{TM}$. The following parameters, methods and monitoring frequencies are proposed to document the progress of the pilot scale test work.

ANALYTE	Метнор	BASELINE	MONTHLY	EVERY OTHER MONTH*
pH, DO, ORP,	Low Flow Cell &			
Temperature,	Horiba Field Meter			
Conductivity	Readings	Х	Х	Х
Chlorinated VOCs	Lab Services (8260)	Х		Х
		. /		
Total Organic Carbon (TOC)	Lab Services (9060)	Х		Х
Nitrate & Sulfate	Lab Services	х		х
		Ň		N/
Dissolved Iron & Manganese	Lab Services Fe & Mr	n X		Х

*Note: 3dMe application rates based on existing water quality data and application recommendations received from Regenesis.

During an initial 6 month monitoring period, groundwater samples would be collected from a predetermined network of monitoring wells to assess the extent to which 3DMe[™] affects the shallow aquifer conditions and the dissolved phase chlorinated VOC concentrations. Similarly, background water quality information would be obtained to facilitate a comparison of conditions induced by the addition of 3DMe[™] with background natural attenuation conditions outside the plume. Potential contaminant and competing electron acceptor flux entering the treatment zone will be evaluated using a select number of existing monitoring wells. As noted, down gradient groundwater quality data will be obtained using a combination of the existing and (if necessary) new monitoring wells.

As noted, the need to purse other site investigation work and / or alternative interim remedial measures should be based on the results achieved from the monitoring and in *Situ* pilot test work advocated herein or as deemed necessary by the government.

6.0 LIMITATIONS

NETC opinions regarding the significance of the site conditions are based on historical regulatory directives and similar opinions previously issued by the NYSDEC and NYSDOH for situations of a similar nature. As with any investigation of a limited scope, should additional information become available modification to this report may be appropriate. The NETC organization and I remain available to assist you with this important matter.

The findings and opinions offered are based on the completed SI work completed to date; no warranties are offered or implied. NETC assumes no responsibility for subsurface conditions including, but not limited to, other soil, vapor and groundwater quality conditions and / or infrastructure that may exist at the site. NETC opinions regarding the significance of the site conditions are based on historical regulatory directives and similar opinions previously issued by the NYSDEC / NYSDOH for situations of a similar nature. As with any investigation of a limited scope, should additional information become available modification to this report may be appropriate.

APPENDIX A

SOIL BORING LOGS

PRESENTATION OF IDENTIFICATIONS

BASED ON THE

BURMISTER SYSTEM

Fully Written Descriptions

Start the description with the color, first letter of first color capitalized (e.g. Brown, Yellow brown, Yellow and brown). The color should be the same as field description, since with oxidation the color sometimes changes between the time the sample is recovered and when it is viewed in the laboratory.

Determine the primary component (e.g. sand, gravel, or silt) and whether the component represents 50% (by weight) or more of the sample.

- I. If more than 50% sand, the word sand gets fully capitalized. Preceding the word sand, are the terms coarse, medium and/or fine as follows:
 - a. If there are approximately equal amounts of coarse, medium and fine sand, the description reads "coarse to fine SAND". If there is more coarse sand, the description reads "coarse (+) to fine SAND". The same holds true for the fine sand predomination. If medium sand predominates, the description reads "coarse medium (+) to fine SAND". In order for a term coarse, medium or fine to be included in a description, it must represent at least 10% of the sand fraction. For example, if a sample contains 70% sand, the sample must contain at least 7% of coarse sand for the word coarse to be included in the description. The above usage of coarse, medium and fine applies to gravel as well as

Unless advised to the contrary on a specific job, the differentiation between coarse and fine silt shall not be made.

b. A comma <u>always</u> appears immediately after the word sand. Next comes the adjective giving the approximate percentage of soil by weight passing the #200 sieve as follows:

and:	35-50%	some:	20-35%
little:	10-20%	trace	1 100
		LIACe:	T-108

with a (+) sign indicating the upper third of percentage, a (-) sign indicating the lower third of percentage, and no sign indicating the middle third of percentage. Next comes a description of the soil passing the #200 sieve, based exclusively on plasticity as follows:

PI	Description	Organic
0 - 1%	Silt	(non-plastic)
1 - 5%	Clayey Silt	(Slight P.I.)
5 - 10%	Silt & Clay	(Low P.I.)
10 - 20%	Clay & Silt	(Medium P.I.)
20 - 40%	Silty Clay	(High P.I.)
40% and more	Clay	(Very High P.T.)

If the soil is organic, the term Organic Silt is used instead of the terms listed under "Description" and the terms listed under "Organic" are used at the very end of the full description (in parentheses).

- C. A comma is placed immediately after the term describing the soil passing the #200 sieve (e.g. Silt & Clay). Next the usage of and, some, little or trace (with a (+) or (-) if needed) is used to indicate the percent of gravel, followed by the use of coarse, medium and/or fine to describe the gravel gradation, with the word gravel always using a capital "G".
- d. An illustration of description of a soil having more than 50% sand is as follows:

Brown coarse to fine SAND, little Clayey Silt, some (-) medium to fine (+) Gravel.

- 2. If the major component is less than 50% of the total sample, the description is written exactly as for Item 1 above (with sand coming first), except that in the word sand, only the S is capitalized rather than the full word.
- 3. If there is more than 50% gravel, the description once more starts with the color, followed by the applicable terms of coarse, medium and fine, followed by the word GRAVEL in all capitals.
 - a. The adjective giving the percentage of all the soil except gravel is placed after the word gravel, and then a comma (e.g. if there is 62% gravel, a partial description would be "Brown medium to fine (+) GRAVEL and (-),...."). The sand is then described by coarse, medium and/or fine without its own percent adjective (with only the S in sand being capitalized). A comma is placed immediately after the word Sand, after which the soil passing the #200 sieve is indicated with the adjective for percentage as given in Item 1b above.
 - b. An example is: Gray medium to fine (+) GRAVEL and (-), coarse to fine Sand, trace Silt.

4. If there is more than 50% passing the #200 sieve, the description once more starts with the color, followed by the #200 description based exclusively on plasticity as follows:

PI	Description	Organic
0 - 18	SILT	(non-plastic)
1 - 5%	Clayey SILT	(Slight P.I.)
5 - 10%	SILT & CLAY	(Low P.I.)
10 - 20%	CLAY & SILT	(Medium P.I.)
20 - 40%	Silty CLAY	(High P.I.)
10% or more	CLAY	(Very High P.I.)

If the soil is organic, the term Organic SILT is used instead of the terms listed under "Description", and the terms listed under "Organic" are used at the very end of the full description (in parentheses).

- a. The description is written as discussed in Section 3, with sand preceding gravel.
- b. An example is: Brown Clayey SILT some (+), coarse to fine Sand, trace fine Gravel.
- c. In the foregoing example, if the fines are organic the identification would be:

Brown Organic SILT some (+), coarse to fine Sand, trace fine Gravel (Slight P.I.).

- 5. If pockets, layers, etc., of other soil are present in the sample, include it at the end of the previously written description with a comma at the end of the previously written description.
- 6. If closely layered (partings, seams, or layers) soils, such as varved clays, are involved, each layer must be completely identified along with a sketch in the remarks column showing layer thicknesses.
- 7. Organic soils are identified as Organic Silt (as previously described) or as Peat.
 - a. Characteristics of Organic Silt are:
 - (1) Usually light gray to very dark gray (or black; color
 - (2) Odor caused by decomposition of plant or animal life imparting H_2S , CO_2 and other organic gases
 - (3) Plastic properties, usually very compressible

(4) May contain shells and fragments of partly decayed vegetable matter

b. Characteristics of Peat are:

- (1) Fibrous aggregate of undecayed or partially decayed vegetable matter, found in swamps
- (2) Frequently contains organic silt
- (3) Usually light brown to black in color
- (4) Distinctive odor, as for organic silt

VISUAL IDENTIFICATION OF SAMPLES

The samples were identified in accordance with the American Society for Engineering Education System of Definition.

Material	Symbol	Fraction	Sieve Size	Definition
Boulders	Bidr		9~ +	Material retained on 9" sieve.
Cobbies	СЫ		3" to 9"	Material passing the 9" sieve and retained on the 3" sieve.
Gravel	G	coarse (c) medium (m) fine (f)	1" to 3" ¥s" to 1" No. 10 to ¥s"	Material passing the 3 rd sieve and retained on the No. 10 sieve.
Sand	S	coarse (c) medium (m) fine (f)	No. 30 to No. 10 No. 60 to No. 30 No. 200 to No. 60	Material passing the No. 10 sieve and retained on the No. 200 sieve.
Silt	\$		Passing No. 200 (0.074 mm)	Material passing the No. 200 sieve that is non- plastic in character and exhibits little or no strength when air dried.

1. Definition of Soil Components and Fractions

Organic Silt (0\$)

Material passing the No. 200 sieve which exhibits plastic properties within a certain range of moisture content, and exhibits fine granular and organic characteristics.

		Plasticity	Plasticity Index	
Clayey SILT	Cy\$	Slight (SI)	1 to 5	flar Sail
SILT & CLAY	2&C	Low (L)	5 to 10	Material passing the No. 200 sieve which can be
CLAY & SILT	C&\$	Medium (M)	10 to 20	made to exhibit plasticity and clay qualities within
Silty CLAY	\$yC	High (H)	20 to 40	a certain range of moisture content, and which
CLAY	С	Very High (VH)	40 plus	exhibits considerable strength when air-dried.

11. Definition of Component Proportions

Component	Written	Proportions	Symbol	Percentage Range by Weight *
Principal	CAPITALS			50 or more
Minor	Lower Case	and	a.	35 to 50
		some	S.	20 to 35
		little	I .	10 to 20
		trace	t.	1 to 10

* Minus sign (---) lower limit, plus sign (+) upper limit, no sign middle range.

Cat	tegory	Symbol	Term	Symbol	Term	Symbol	Term
A.	Borings	U/D	Undisturbed	В	Exploratory	A j	Auger
Β.	Sampies	C D O.E.	Casing Denison Open End	L S	Lost Spoon	U W	Undisturbed Wash
C.	Colors	bk bi br gr	black blue brown gray	gn or rd tn	green orange red tan	wh yw dk It	white yellow dark light
D.	Organic Soils	dec dec'g lig	decayed decaying lignite	o rts ts	organic roots topsoil	veg pt	ve getation peat
E.	Rocks	LS Gns	Limestone Gneiss	rk SS	rock San dstone	Sh st Sh	Schist Shale
F.	Fill and Miscellaneous Materials	bldr (s) brk (s) cndr (s)	boulder (s) brick (s) cinder (s)	cbl (s) wd dbr	cobbl e(s) wood debris	gls misc rbl	glass miscellaneous rubble
G.	Miscellaneous Terms	do e!, El fgmt (s) frqt irg mtid no rec pen	ditto elevation fragment(s) frequent large mottled no recovery penetration	pp P. I. P pc(s) rec or R	pocket penetrometer Plasticity Index pushed pressed piece (s) recovered	ref sm W. L. W. H. W. R.	refusal small water level weight of hammer weight of rods
H.	Stratifi ed Soils	alt thk thn w prt seam lyr stra vvd c pkt lns occ freq	alternating thick thin with parting seam layer stratum varved Clay pocket lens occasional frequent	0 to 1/16" 1/16 to ½' ½ to 12" tl greater than alternating s small, errati lenticular do one or less more than o	thickness thickness thickness 12" thickness seams or layers of sand, c deposit, usually less t eposit per foot of thickness one per foot of thickness	silt and clay han 1 foot	

III. Glossary of Modifying Abbreviations

؛

ter internet

	Laboratory Classification Célteria	$\begin{array}{c c} & C_{T} = \frac{D_{40}}{D_{10}} & Greater (han 4) \\ \hline C_{T} = \frac{D_{40}}{(D_{20})^3} & Greater (han 4) \\ \hline C_{T} = \frac{D_{10}}{D_{10}} & D_{10} & D_{10} \\ \hline C_{T} = \frac{D_{10}}{D_{10}} & D_{10} & D_{10} \\ \hline \end{array}$	R: Dan grad and Control and grad alon requirements for GR	In the state of th	1. In the second	$\frac{1}{2} \frac{1}{2} \frac{1}$	California and an array of the second and a second	di program de l'anter l'anter below Above "A" line ad 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.	CO D D D D D D D D D D D D D D D D D D D	⇒ď1	60 - Comparing wits a coul liquid limit	Curre In Curre In Cure In Curre In Cure				Liquid limit	by Hasticity chart of for laboratory classification of fine grained soils		l gravel-sand mixture with clay binder.	simply remove by hand the coarse particles that interfore with the tests. Tougherst Consistency near plastic limit): Tougherst Consistency near plastic limit): Tougherst Consistency and plastic limit): After removing period plastic limit): to a point one-half inch cube in aize, is moulded to the consistency of pulty. If one offy, we and and and it stick, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is colled when the automatic the thread is then folded and re-rolled repeatedly. During this manupulation the motivue content is prastually reduced and the specimen suffers, thalfy loses its plasticity, and cumbles when the plastic limit is reached.
Classification	Information Required for Describing Solis	Give typical name; indicate a proximate percentages of sa	and gravel; maximum at angularity, surface conditi and hardness of the cos	and other pertinent descript information: and symbols parentheses	For undisturbed soils add inform tion on stratification, degree compactness, cementatic	moisture conditions a drainage characteristics Example: Silly zand, gravelly: about 20	hard, sngular gravel partix 1-in. maximum size; round and subangular sand gra contrologic found gra	plastic fines with low of strength; well compacted a moist in place; alluvial aar				Give typical name; indicate degr and character of plastici amount and maximum size coaree sesion: colour in a	condition, odour if any, local geologic name, and other per nent descriptive informatio and symbol in parentheses	For undisturbed soils add info	tion, on superconduction to the super- and remoulded states, moistu- and drainage conditions	Example:	Clayey sill, brown; silghi plastic; small percentage	root holes: firm and dry place: locas; (ML)	"or example GW-GC, well graded	upposed, accenting is not intended lieve sitz, mould a pat of soli inccessary. Allow the pat to and ther test its atmessive is This atrensith by a transfer is a measure dat fraction contained in the ling plasticity. A typical of the CH group. A typical of the CH group. A typical statt, but can be distinguished incn. Fine aand feeh gritty f flour.
ble 3.5 Unified Soil	Typical Names	Well graded gravels, gravel- and mixtures, little or no fines	Poorly graded gravels, gravel- sand mixtures, little or no fines	Silty gravels, poorly graded gravel-gand-silt mixtures	Clayey gravels, poorly graded gravel-tand-clay mixtures	Well graded sands, gravely sands, little or no fines	Poorly graded sands, gravely sands, little or no fines	Silty sands, poorly graded sand- silt mixtures	Claycy sands, poorly graded sand-clay mixtures			Inorganic ailts and very fine sands, rock flour, silty or clayey fine sanda with slight plasificity	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Organic silts and organic silt- clays of low plasticity	Inorganic silts, micaccous or diatomaccous fine sandy or silty solls, clastic silts	Inorganic clays of high plat- ticity, fas clays	Organic clays of medium to high plasticity	Peat and other highly organic solis	combinations of group symbols. I fine Gro	city Y ₄ In. For field classification p (Crushing characteristics): ving particleri larger than No. 403 multitency of putty, adding water if pitcity by over, and or alt dying, a materier and quantity of the colled a materier and quantity of the colled e dry strength increases with increase of strength is characteristic for clays c stil postesse only very stillant of have about the same tight dry stre- ed when powdering the dried pace e when powdering the strong for a po- set when powdering the strong for a strength is the strong for a po- ed when powdering the dried pace a typical still has the smooth for a a typical still has the smooth for a
Ĩ	Symbols	GH	5	GM	23	SH	e S	SM	SC			ML	ธ	70	НМ	СН	но	Ä	nated by c	y Strength to the cc to the cc dry com breaking of the cd aoil. Th aoil. Th aoil. Th aoil. Th aoil. Th aoil. Th aoil. Th aoil. Th aoil. Th the cf ao the cf
	in Procedures In. and basing fractions on cights)	e range in grain size and substantial mounts of all intermediate particle	lominantly one size or a range of sizes in some intermediate sizes missing	plastic fines (for identification pro-	ic fines (for identification procedures, : CL below)	c range in grain sizes and substantial rounts of all intermediate particle	ominantly one size or a range of sizes th some intermediate sizes missing	plastic fines (for identification pro- courts, see ML below)	is fines (for identification procedures, CL below)	tion Smaller than No. 40 Sieve Size	Sitength Dilatancy Toughness tabing (reaction near plastic racter- to shaking) near plastic tics)	ne to Quick to None	tum to None to Medium	thi to Slow Slight	hi to Slow to Slight to dium none medium	th to None High	igh very slow medium	ily identified by colour, odour, with feel and frequently by fibrous	the second s	the minus No. 40 sieve size particles, al 40 sieve size, prepare a pet of -half cubic inch. Add enough and shake horizontally, striking and shake horizontally, striking and shake horizontally, striking and times. A positive eraction i the turindee of the pat which mers glossy. When the aample i the turindee of the pat which more storsy. When the aample i the of the dinapearance during ter of the dinapearance more distinct reaction whereas
	Field Jaconing Particles larger than 3 (Excluding particles larger than 3	Para Contraction (Contraction (els sieve si sieve si ditti ditti ditti	E Construction is construction	ned solf of mater seed eye free free free free free free free f	Совле-вта- тал прав прав прав прав прав прав прав прав		Z No. 4 No.	is sul 1 official paraz paraz in paraz in paraz in paraz in ara in araz in araz in ara in ara in ara i ara in ara i ara i ara i ara i ara i a ara i a ara i a a a a	2 Identification Procedures on Fract	Liter Period is a liter Period	olls e size e size o. 200 sie nic ling init init init init init init init i	strained av of mater . 200 siev Silts Vi Big liqt liqt liqt		בוואנו ווחונ ווחונ ווחונ ווחונ ווחונ ווחונ ווחונ ווחונ	Man 1990		Highly Organic Soils spoi	From Wagner, 1957.	These procedures are to be performed on <i>Dilators</i> (TReaction to shaking): After removing particles larger than No After removing particles larger than No moist soil with a volume of about one- water in necessary to make the soil wolf b Place the pat in the open palm of one hand a vigorously aginst the other hand sever consists of the appearance of water other is queered between the fighters, the water surface, the pat utilities and finally it cra- stic process of water during thaking a queering satist in identifying the charact Vity fine clean saids give the quickets and

٩

putty. It too ffy, water must be argue and in structure though spectra out in a thin layer and allowed to lose some moisture by responsition. Then the pairs link of allowed to lose some moisture by responsition. The thread is then folded and the rolled out one-light fach in diameter. The thread is then folded and the rolled out one-light fach in diameter. The thread is then folded and the rolled out one-light fach in diameter. The thread is then folded and the rolled out one-light fach in diameter. The thread is the folded and the rolled the treembers, the pieces about one-light fach and the preciment strated by rounder and the preciment strated by rounder and the rolled the treember, the pieces about one-light fach and a light threading action continued until the turn cumbles. The fourber the thread rest the plastic limit and quet loss of contract of the turn below the plastic limit rand quet loss of contract of the turn below the plastic limit rand quet loss of contract of the turn below the plastic limit rand queter loss of contract of the turn below the plastic limit rand queter loss of contract of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit and queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below the plastic limit rand queter loss of contents of the turn below th

6. 10 Sec.

1.00

Soil Characteristics Periment to Roads and Airfield. Name Value as Value as Value as Potential	Soli Characterktics Perlinent to Roads and Airfield. Value as Value at Value at Potential	Soli Characteristics Perlinent to Roads and Airfield: Value as Value as Potential	Soli Churacteristics Perlinent to Roads and Airfield. Value as Value as Potential	versitics Perlinent to Roads and Airficid Value at Potential	Potential	-	compressibility	Drainage	Compaction Equipment	Unit Dry	Typicat Der	ilgn Vatues
Name Name Nabe an Subgrade W Noi Subjer Frasi Acti	Value ar Subgrade W Not Subject Frost Actie	Value as Subgrade W Not Subject Frost Activ	t to	Value as Subbase When Not Subject to Frost Action	Value at Bave When Not Subject Io Front Action	Polential Frott Acilon	Compressibility and Expansion	Urainage Characteristics	Compaction Equipment	Unii Dry Weight Ib. per cu. ft.	CBR (2)	ų ——————————
Well-graded gravels or gravel-sand Excelle mixtures, little or no fines	vel-sand Excelie	Excelle	E	Excellent	Good	Nome to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	125-140	40.80	300-500
Poorly graded gravels or gravel-sand Good to e mixtures, little or no fines	ravel-sand Good to e	Good to e	scellent	Good	Fair to good	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller, steet-wheeled roller	110-140	30.60	003-00V
Silty gravels, gravel sand silt Good to es mixtures	tile Grod to ex	Gred to ex	icellent	Good	Fair to good	Slight to medium	Very slight	Fair to poor	Rubber-tired roller, sheepsfroot roller; close control of moisture	125-145	40.60	300-500
Good	Good	Good		Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	115-135	20:30	200-500
Clayey gravels, gravel sand-clay Good mixtures	d-clay Good	Good		Fair	Poor to not suitable	Slight to medium	Stight	Proce to practically impervious	Rubber-tired roller, sheepsfoot roller	130-145	201-40	200 500
Well-graded vands or gravelly sands, Good little or no fines	illy sands, Good	Good		Fair to good	Poor	Nome to very stight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller	011-011	20.40	200-400
Poorly graded vands or gravelly Fair to good sands, little or no fines	velly Fair to good	Fair to good		Fair	Poor to not suitable	None to very slight	Almost none	Excellent	Crawler-type tractor, tubber-tired roller	105-135	10-40	150-400
Silty rands, sand silt mixtures	res Fair to good	Fair to good		Fair to good	Pron	Slight to high	Very slight	Fair to poor	Rubber tired roller, sheepdood roller; close control of moisture	120-135	15-40	150-400
Fair	Fair	Fair		Poor to fair	Not suitable	Slight to high	Slight to medium	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	100-130	10 20	100-300
Clayey sands, sand-clay mixtures Poor to fair	atures Poor to fair	Poor to fair	<u> </u>	Poor	Not suitable	Slight to high	Slight to medium	Poor to practically impervious	Rubber-lired roller, sheepsfood relier	100-135	5.20	100-300
Integratic stilts and very fine sands. Poor to fair nock flour, silty or clayey fine sands or clayey silts with slight plasticity	e sands, Poor to fair ne sands lasticity	Poor to fair		Not suitable	Not suitable	Medium to very high	Slight to medium	Fair to poor	Rubber stired soller, sheepsfood soller; close control of moisture	01.06	15 or tess	00 200
Inorganic clays of low to medium Poor to fair plasticity, gravely clays, sandy clays, silly clays, lean clays	edium Poon to fair ndy clays.	Poor to fair		Not suitable	Not suitable	Medium to high	Medium	Practically impervious	Rubber tired roller, sheepsfroot roller	961-06	15 or less	80.1.80
Organic silts and organic silt-clays of Poor low plasticity	tectays of Poor	Poor		Not suitable	Not suitable	Medium to high	Medium to high	Poor	Rubber-lited roller, sheepsfoot roller	90-105	5 or less	50-100
Inveganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	sity soils.	Poor		Not suitable	Not suitable	Medium to very high	High	Fair to poor	Sheepsfoot roller, rukker-tired roller	80-105	10 or less	20-100
Inorganic clays of medium to high Poor to fair plasticity, organic silts	to high Poor to fair	Poor to fair	j	Nor suitable	Not suitable	Medium	High	Practically impervious	Sheepsfood roller, rukker-tired roller	90.115	15 or tess	051-05
Organic clays of high plasticity, fat Poor to very pr clays	city, fat Poor to very po	Poor to very po	ž	Not suitable	Not suitable	Medium	Nigh	Practically impervious	Sheepsfoot roller, rubber-tired roller	80-110	5 or less	25-100
Peat and other highly organic soils Not suitable	ic soils Not suitable	Not suitable		Not suitable	Not suitable	Slight	Very high	Fair to poor	Compaction not practical	1	1	1

(2) The matimum value that can be used in design of airfields is, in some cases, limited by gradation and plasticity requirements.

Note: (1) Unit Pay Weights are for compacted soil at optimum muisture content for modified AASHO compaction effort. Division of GM and SM groups into subdivision of d and u are for roads and airfields only. Subdivision is abise of Attester Binktrix, suffix d (e.g., GMd) will be used when the liquid limit (LL) is 35 or less and the plasticity inde is 6 or less; the suffix u will be used otherwise.

				TEST	BOR	ING LOO)		Boring No.	GP-6
PROJI	ECT:	Lou	don Plaza						SHEET NO.	1 of 1
CLIEN	T:	Sky	Four LLC						JOB NO.	08.1023054
DRILL	ING CC	NTF	RACTOR:	Northeas	stern Envir	onmental Tecl	nnologies C	orporation	M.P. ELEV.	
PURPO	OSE:	Sub	surface Inv	restigation	C				GR. ELEV.	
DRILL	ING ME	тно	D: Direc	t Push		Soil Sample	GW Sample	Sample Method	DATUM	
DRILL	RIG:	Geo	probe 6620	DDT	TYPE	Macro	Bailor	Sch40PVC	DATE START	04/13/2009
GROU	ND WA	TER	LEVEL:	12.28'	DIAM	. 2.0"	0.75"	1.0"	DATE FINISH	04/13/2009
MEAS	URING	РТ.:	Top F	PVC	Sampl	e Yes	Yes		DRILLER	R. Earl
DATE:	04/16/	2009	<u>)</u>	1	Scree	n		10.0'	INSPECTOR	R. Gray
Depth (feet)	Samı ID	ole	Peak PID (ppm) bkg=0.0	Unified Soil Class. System		GEOLO	GIC DES	CRIPTIO	N	REMARKS
1.0				¢.	Asphalt					R=3.0'
2.0	S-1/	4	1.2		Br mf S a	\$			(+/- 4.0")	No Odor
2.5	1				Brown me	dium fine SAN	ID and Silt			
3.0										Dry
4.0	S-11	3	1.1							
5.0										
6.0										R=1.75'
7.0	S-2/	۹	1.6		Same as	above				No Odor
7.5			-							-
8.0		·								Dry
9.0	S-28	3	1.2							
10.0										
11.0					Same as a	above				R=4.0'
12.0	S-34	۸	1.6							No Odor
12.5					Brc-fSs	\$			(+/- 11.5')	
13.0		Brown coarse to fine SAND some Silt								Damp
14.0	S-3B 1.9					•				
15.0										WET
16.0										R=4.75'
17.0	S-4A		1.5							No Odor
17.5					Same as a	above				
18.0										WET
19.0	S-4E	3	2.0							
20.0		ļ								
<u>i</u> ,				Grou	ndwater	sample colle	cted @ 13	3.0 feet		
	1			S	oil Boring	g Completed	@ 20.0 f	eet		
								· · · · · · · · · · · · · · · · · · ·		

			TEST	BORII	NG LOC	3		Boring No.	GP-7
PROJE	ECT: L	oudon Plaza						SHEET NO.	1 of 1
CLIEN	T: S	ky Four LLC						JOB NO.	08.1023054
DRILL	ING CON	TRACTOR:	Northeas	stern Enviro	nmental Tec	nnologies C	Corporation	M.P. ELEV.	
PURPO	DSE: S	ubsurface Inv	estigation					GR. ELEV.	
DRILL	NG MET	HOD: Direc	t Push		Soil Sample	GW Sample	Sample Method	DATUM	
DRILL	RIG: G	eoprobe 6620	DDT	TYPE	Macro	Bailor	Sch40PVC	DATE START	04/13/2009
GROU	ND WATE	ER LEVEL:	13.67'	DIAM.	2.0"	0.75"	1.0"	DATE FINISH	04/13/2009
MEASU	JRING P	r.: Top F	PVC	Sample	Yes	Yes		DRILLER	R. Earl
DATE:	04/16/20	09		Screen			10.0'	INSPECTOR	R. Gray
Depth (feet)	Sample ID	Peak e PID (ppm) bkg=0.0	Soil Class. System		GEOLC	GIC DES	CRIPTION	N	REMARKS
1.0				Asphalt					R=2.5'
2.0	S-1A	3.1		Brc-fSa\$	5,tfG			(+/- 4.0")	No Odor
2.5				Brown coal	r <u>se to fine S</u> A	ND and Sil	l <u>t, trac</u> e fine	Gravel	
3.0				BrmfSa\$				(+/- 2.5')	Dry
4.0	S-1B	3.8		Brown med	lium fine SAN	ND and Silt			-
<u> </u>									
5.0									P-2 0'
6.0	\$ 24	2.5		Same as a	oove				R-3.0
7.0	3-2A	2.5							No Odor
7.5									
8.0									Dry
9.0	S-2B	2.1							
10.0									
11.0				Same as at	oove				R=4.5'
12.0	S-3A 2.3								No Odor
12.5									WET
13.0									
14 0	S-3B 5.7								
15.0									
10.0									R=1 75'
10.0	Q./A	10							
17.0	0-4A	4.2		.					NO UDOr
17.5				Same as at	ove				
18.0									WET
19.0	S-4B	2.2							
20.0									
			Grou	ndwater sa	ample colle	cted @ 14	4.0 feet		
			S	oil Boring	Completed	@ 20.0 f	eet		

Shipping Address: 1476 Route 50 Ballston Spa, NY 12020 (518) 884-8545 - Phone Mailing Address: P.O. Box 2167 Ballston Spa, NY 12020 (518) 884-9710 - Fax

			TEST	BORIN				Boring No.	GP-8
PROJE	ECT: Lou	don Plaza						SHEET NO.	1 of 2
CLIEN	T: Sky	Four LLC						JOB NO.	08.1023054
DRILLI	NG CONT	RACTOR:	Northeas	stern Enviror	imental Tech	nnologies C	orporation	M.P. ELEV.	
PURPC	DSE: Sub	surface Inv	estigation					GR. ELEV.	
DRILLI	NG METHO	D: Direc	t Push		Soil Sample	GW Sample	Sample Method	DATUM	
DRILL	RIG: Geo	probe 6620	DT	TYPE	Macro	Bailor	Sch40PVC	DATE START	04/13/2009
GROU	ND WATER	LEVEL:	16.20'	DIAM.	2.0"	0.75"	1.0"	DATE FINISH	04/13/2009
MEASU	JRING PT.:	Top F	PVC	Sample	Yes	Yes		DRILLER	R. Earl
DATE:	04/16/200	Pook	Unified	Screen			10.0'	INSPECTOR	R. Gray
Depth (feet)	Sample ID	PID (ppm) bkg=0.0	Soil Class. System		GEOLO	GIC DES	CRIPTION	4	REMARKS
1.0				Asphalt					R=4.5'
2.0	S-1A	1.3		BrmfSa\$	c			(+/- 4.0")	No Odor
2.5				Brown med	ium fine SAN	ID and Silty	<u>/ Clay</u>		
3.0									Dry
4.0	S-1B	1.4		Br mf S a \$		~		(+/- 3.0')	
5.0				Brown med	ium fine SAN	D and Silt			
6.0				_					R=3.0'
7.0	S-2A	2.0		Same as at	oove				No Odor
7.5									
8.0									Dry
9.0	S-2B	1.8							
10.0									
11.0				Same as at	ove				R=4.0'
12.0	S-3A	3.0							No Odor
12.5									Damp
13.0									
14.0	S-3B	4.7							
15.0		5							WET
16.0									R=5.0'
17.0	S-4A	1.0							No Odor
17.5			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Same as ab	ove				
18.0									WET
19.0	S-4B	8.8							
20.0									
			Grou	ndwater sa	ample colle	cted @ 1	7.0 feet		
			S	Soil Boring	Completed	@ 25.0 f	eet		

			TEST	BORING LOG	Boring No.	GP-8
PROJE	CT: Loud	lon Plaza			SHEET NO.	2 of 2
CLIEN	r: Sky	Four LLC	1		JOB NO.	08.1023054
Depth (feet)	Sample ID	Peak PID (ppm)	Unified Soil Class. System	GEOLOGIC DESCRIPTION		REMARKS
21.0				Br mf S a \$		R= 5.0'
22.0	S-5A	0.8		Brown medium fine SAND and Silt		WET
22.5			-			No Odors
23.0				Same as above		
24.0	S-5B	1.4				
25.0						
26.0				End of Soil Boring at 25.0 feet		
27.0						
27.5						
28.0						
29.0						
30.0			•			
31.0						
32.0						
32.0						
33.0						
35.0						
36.0						
37.0						
37.5						
38.0						
39.0						
40.0						
			Collec	ted a Groundwater sample @ 17.0 feet		
			5	Soil Boring Completed @ 25.0 feet		

			TEST	BORI	NG LOG	5		Boring No.	GP-9
PROJE	ECT: Lo	oudon Plaza						SHEET NO.	1 of 1
CLIEN	T: SI	ky Four LLC						JOB NO.	08.1023054
DRILL	ING CON	TRACTOR:	Northeas	stern Enviro	nmental Tech	nnologies C	orporation	M.P. ELEV.	
PURPO	DSE: SI	ubsurface Inv	estigation			F	and a second state of the second s	GR. ELEV.	
DRILL	ING METI	HOD: Direc	t Push		Soil Sample	GW Sample	Sample Method	DATUM	
DRILL	RIG: G	eoprobe 6620	DDT	TYPE	Macro	Bailor	Sch40PVC	DATE START	04/14/2009
GROU	ND WATE	R LEVEL:	16.97'	DIAM.	2.0"	0.75"	1.0"	DATE FINISH	04/14/2009
MEASI	URING PT	Tep F	PVC	Sample	Yes	Yes		DRILLER	R. Earl
DATE:	04/16/20	09 Dealt	l lastifica al	Screen			10.0'	INSPECTOR	R. Gray
Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Soil Class. System		GEOLO	GIC DES	CRIPTION	N	REMARKS
1.0				Asphalt					R= 4.5'
2.0	S-1A	0.9		Brc-fSa\$	SC			(+/- 4.0")	No Odor
25				Brown coa	rse to fine SA	ND and Sil	tv Clav		
2.0									Drv
3.0	S-1B	0.6							,
4.0	0-10	0.0						(+/- 4.5')	
5.0			<u>.</u>	brmisat)				
6.0				Brown med	lium fine SAN	D and Silt			R= 3.0'
7.0	S-2A	1.8							No Odor
7.5									
8.0									Dry
9.0	S-2B	1.5							
10.0									
11.0				Same as a	bove				R= 3.0'
12.0	S-3A	2.3							No Odor
12.0									Damn
12.5									
13.0		0.5							
14.0	S-3B	2.5							
15.0									
16.0								:	R=4.0'
17.0	S-4A	3.9							No Odor
17.5				Same as al	oove				
18.0									WET
10.0	S-4B	1.3							
19.0									
20.0			Grou	ndwatara	omple colle		7 0 feet		·····
			Giou						
			2		Completed	າ ເ <u>ພ</u> 20.01	eet		

				TEST	• E	BORI	NG LOG)		Boring No.	GP-10
PROJE	ECT:	Lou	don Plaza							SHEET NO.	1 of 2
CLIEN	т:	Sky	Four LLC							JOB NO.	08.1023054
DRILL	ING CO	ONTR	RACTOR:	Northea	ster	n Enviro	nmental Tech	nnologies C	orporation	M.P. ELEV.	
PURPO	DSE:	Sub	surface Inv	estigation	1					GR. ELEV.	
DRILL	NG MI	ETHC	D: Direct	t Push			Soil Sample	GW Sample	Sample Method	DATUM	
DRILL	RIG:	Geo	probe 6620	DT		TYPE	Large Bore	Bailor	Sch40PVC	DATE START	04/14/2009
GROU	ND WA		LEVEL:	16.60'		DIAM.	1.0"	0.75"	1.0"	DATE FINISH	04/14/2009
MEAS	JRING	PT.:	Top F	PVC		Sample	Yes	Yes		DRILLER	R. Earl
DATE:	04/16	/2005	Pook	Unified		Screen			10.0'	INSPECTOR	R. Gray
Depth (feet)	Sam ID	ple	Peak PID (ppm) bkg=0.0	Soil Class. System			GEOLO	GIC DES	CRIPTIO	N	REMARKS
1.0					Dr	ive to 15	.0 feet				
2.0											
2.5											
3.0		ĺ									
4.0											
5.0											
6.0											
7.0											
7.5											1. In
8.0			9. 								
9.0											
10.0											
11.0											
12.0											
12.5											
13.0											
14.0											
15.0								▼			
16.0	S-1		3.4		Br	mfSa\$					R= 1.8'
17.0					Bro	wn med	ium fine SAN	D and Silt			No Odor/WET
17.5											
18.0					Dri	ve to 20.	0 feet				
19.0											
20.0								V			
i		i		Grou	nd	water sa	ample colle	cted @ 17	7.0 feet		
				S	Soil	Boring	Completed	@ 32.0 f	eet		

			TEST	BORING LOG	Boring No.	GP-10					
PROJE	CT: Lou	don Plaza			SHEET NO.	2 of 2					
CLIEN	T: Sky	Four LLC	1		JOB NO.	08.1023054					
Depth (feet)	Sample ID	Peak PID (ppm)	Unified Soil Class. System	GEOLOGIC DESCRIPTION	I	REMARKS					
21.0				Br mf S a \$		R= 1.9'					
22.0	S-2	5.8		Brown medium fine SAND and Silt		WET/ No Odors					
22.5											
23.0				Drive to 25.0 feet							
24.0											
25.0				▼							
26.0	S-3	2.8		Br mf S a \$		R= 1.9'					
27.0				Brown medium fine SAND and Silt		WET/No Odors					
27.5											
28.0				Drive to 30.0 feet							
29.0											
30.0											
31.0	S-4	1.8		Gr c-f S a \$C, I f G		R= 1.9'					
32.0				Gray coarse to fine SAND and Silty Clay, little fin	ne Gravel	Dry/No Odors					
32.5				End of Soil Boring @ 32.0 Feet							
33.0											
34.0											
35.0											
36.0											
37.0											
37.5											
38.0											
39.0											
40.0			0-11		1						
			Collec	Soil Boring Completed @ 32.0 feet		0 /AL					
PROJECT: Loudon Plaza SHEET NO. 1 of 2 CLENT: Sky Four LLC JOB NO. 08 1020364 PURPOSE: Substrated investigation GR. ELEV.				TEST	BORI	NG LOG	;		Boring No.	GP-11	
--	-----------------	------------------	---------------------------------	--------------------------	---	----------------	--	------------------	---------------	------------	--
CLIENT: Sky Four LLC JOB NO. 08.1023054 DRILLING CONTRACTOR: Northeastern Environmental Technologies Corporation MP. ELEV.	PROJE	ECT: Lou	don Plaza						SHEET NO.	1 of 2	
DRILLING CONTRACTOR: Northeastern Environmental Technologies Corporation N.P. ELEV.	CLIEN	T: Sky	Four LLC						JOB NO.	08.1023054	
PURPOSE: Subsurface Investigation GR. ELEV. DRILLING METHOD: Direct Push Soil Sample Smiths Soil Sample Smiths Method DATUM DRILLING METHOD: Direct Push TYPE Macro Balio Sch40PVC DATE START 04/15/2009 MEASURING PT: TO PVC Sample Yes DATE FINISH 04/15/2009 Datte: 04/16/2009 Scireen 10.0'' INSPECTOR R. Gay Depth Sample Peak Unified GEOLOGIC DESCRIPTION REMARKS 1.0 Class Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 5.0 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 5.0 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 5.0 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 5.0 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 5.0 Same as above R=4.0'' No Odor 10.0 Same	DRILLI	NG CONTR	RACTOR:	Northeas	stern Enviro	nmental Tecl	nologies C	orporation	M.P. ELEV.		
DRILLING METHOD: Direct Push Soil Sample Sample Datumethod Dat	PURPC	DSE: Sub	surface Inv	estigation	and the second se		Hernord and Hernord Market Market Market		GR. ELEV.		
DRILL RIG: Geoprobe 66200T TYPE Macro Bailor Sch40PVC (DATE START 0d/15/2009 GROUND WATER LEVEL: 17.71 DIAM. 2.0° 0.75° 1.0° DATE FINISH 0d/15/2009 MEASURING PT: Top PVC Sample Yes DRILLER R. Earl DATE: 04/16/2009 Screen 10.0' INSPECTOR R. Gray Depth Sample Peak Unified GEOLOGIC DESCRIPTION REMARKS 1.0 Ling of the start of t	DRILLI	NG METHO	D: Direc	t Push		Soil Sample	GW Sample	Sample Method	DATUM		
GROUND WATER LEVEL: 17.71 DIAME: 2.0° 0.75° 1.0° DATE: FINISH 0.4/15/2009 MEASURING PT:: Top PVC Sample Yes DILLER R. Earl Date: 0.4/16/2009 Sigreen 10.0° INSPECTOR R. Earl Depth Sample Peak Unified GEOLOGIC DESCRIPTION REMARKS 1.0 (reet) ID Class. GEOLOGIC DESCRIPTION REMARKS 1.0 Sample PiD Soil GEOLOGIC DESCRIPTION Re4.0° 2.0 S-1A 2.0 Br of S a \$.0 ff G Re4.0° No Odor 2.5 Br of S a \$.1f G (i+ 5.5) R=3.0° No Odor 5.0 Br own medium fine SAND and Silty Clay. trace fine Gravel No Odor No Odor 7.5 Br own medium fine SAND and Silty Clay. trace fine Gravel No Odor 11.0 Same as above R=4.0° No Odor 12.0 S-3A 2.8 <	DRILL	RIG: Geo	probe 6620	DT	TYPE	Macro	Bailor	Sch40PVC	DATE START	04/15/2009	
MEASURING PT: Top PVC Sample Yes Yes John Her DRILLER R. Earl DATE: 04/16/2009 Serven 10.0' INSPECTOR R. Gray Depth Sample PEak Unified GEOLOGIC DESCRIPTION REMARKS 1.0 Depth Sample PiD Soil GEOLOGIC DESCRIPTION REMARKS 1.0 S-1A 2.0 Br mf S a \$C, tf G R=4.0' No Odor 2.5 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 3.0 S-1B 1.0 Brown coarse to fine SAND and Silty Clay, trace fine Gravel No Odor 5.0 Br mf S a \$C, tf G (+-55) R=3.0' No Odor 7.5 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor Dry 9.0 S-2B 0.8 Br mf S a \$C, tf G Province (+-160) No Odor 11.0 Brown medium fine SAND and Silty Clay (+-160) No Odor Dry 12.5 Br mf S a \$ Province (+-160) Septic Odor 13.0	GROU	ND WATER	LEVEL:	17.71'	DIAM.	2.0"	0.75"	1.0"	DATE FINISH	04/15/2009	
DATE: 04/16/2009 Peak Unified Soil (reet) ID (ppm) Class big=0.0 System Class big=0.0 System PiD (ppm) Class big=0.0 System PiD (class big=0.0 Sig=0.0 S) PiD (class big=0.0 Sig=0.0 Sig=0.0 S) PiD (class big=0.0 Sig=0.0 S) PiD (class big=0.0 Sig=0.0 Sig=0.0 S) PiD (class big=0.0 Sig=0.0 S	MEASL	JRING PT.:	Top F	PVC	Sample	Yes	Yes		DRILLER	R. Earl	
Depth (feet) Sample ID Peak (ppm) bkg=0.0 Soil Soil Class. GEOLOGIC DESCRIPTION REMARKS 1.0 S.1A 2.0 Br mf S a \$C, tf G R=4.0' No Odor 2.0 S-1A 2.0 Br of S a \$, tf G (+2.5') No Odor 3.0 S-1B 1.0 Br of S a \$, tf G (+2.5') Dry 3.0 S-1B 1.0 Br of S a \$, tf G (+2.5') Dry 5.0 Brown coarse to fine SAND and Silty Clay, trace fine Gravel No Odor No Odor 5.0 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor No Odor 7.5 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor No Odor 7.5 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor No Odor 7.5 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor Dry 10.0 S-3A 2.8 Same as above R=4.0' No Odor 12.0 S-3A 2.8 Grav medium fine SAND and Silty Clay (+f-140') Septic Odor	DATE:	04/16/2009	Deek	l lucifica d	Screen			10.0'	INSPECTOR	R. Gray	
1.0 S-1A 2.0 S-1A 2.0 Br mf S a \$C, tf G R=4.0' No Odor 2.5 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 3.0 S-1B 1.0 Br of S a \$, tf G (*/-23) Dry 5.0 Brown coarse to fine SAND and Silt, trace fine Gravel Dry R=3.0' No Odor 5.0 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor No Odor 7.0 S-2A 1.3 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 7.5 Brown medium fine SAND and Silty Clay, trace fine Gravel Dry No Odor 9.0 S-2B 0.8 Same as above R=4.0' No Odor 11.0 S-3A 2.8 Same as above R=4.0' No Odor 12.0 S-3A 2.8 Gray medium fine SAND and Silty Clay (*f-140) Septic Odor 13.0 S-3G 5.0 Gray medium fine SAND and Silty Clay (*f-15.0) R=3.1' 14.0 S-4A 6.2 Brown medium fine SAND and Silty Clay (*f-15.0) R=3.1' 17.0 S-4A </td <td>Depth (feet)</td> <td>Sample ID</td> <td>Peak PID (ppm) bkg=0.0</td> <td>Soil Class. System</td> <td></td> <td>GEOLO</td> <td>GIC DES</td> <td>CRIPTION</td> <td>N</td> <td>REMARKS</td>	Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Soil Class. System		GEOLO	GIC DES	CRIPTION	N	REMARKS	
2.0 S-1A 2.0 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 2.5 -	1.0				Br mf S a \$	SC, tfG				R=4.0'	
2.5 Br of S a \$, tf G (+-25) Dry 3.0 Br of S a \$, tf G (+-25) Dry 6.0 Br mf S a \$C, tf G (+-5.5) R=3.0' 7.0 S-2A 1.3 Br mf S a \$C, tf G (+-5.5) R=3.0' 7.5 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 7.5 Dry Dry 9.0 S-2B 0.8 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 11.0 Dry Dry 12.5 Brown medium fine SAND and Silty Clay (+-14.0') 12.0 S-3A 2.8 Brown medium fine SAND and Silty Clay (+-14.0') 12.5 Moist Septic Odor 13.0 Br mf S a \$ R=3.1' 17.0 S-4A 6.2 Brown medium fine SAND and Silty Clay (+-14.0')	2.0	S-1A	2.0		Brown med	lium fine SAI	ND and Silty	Clay, trace	e fine Gravel	No Odor	
3.0 S-1B 1.0 Br cf S a \$, tf G (+-25) Dry 5.0 9 Brown coarse to fine SAND and Silt, trace fine Gravel R=3.0' 6.0 S-2A 1.3 Br mf S a \$C, tf G (+-25.5) R=3.0' 7.5 S-2A 1.3 Br mf S a \$C, tf G (+-25.5) R=3.0' No Odor 7.5 Brown medium fine SAND and Silty Clay, trace fine Gravel Dry No Odor Dry 9.0 S-2B 0.8 Same as above R=4.0' No Odor 11.0 S-3A 2.8 Same as above R=4.0' No Odor 12.5 - - Br mf S a \$ Moist Septic Odor 13.0 - - Br mf S a \$ Septic Odor Septic Odor 16.0 S-3A 6.2 Br mf S a \$ R=3.1' No Odor 17.5 Brown medium fine SAND and Silty Clay (+F. 15.0) R=3.1' No Odor 17.5 Brown medium fine SAND and Silty WET No Odor R=3.1' 18.0 S-4B 3.7 Same as above WET WET	2.5										
4.0 S-1B 1.0 Brown coarse to fine SAND and Silt, trace fine Gravel 5.0 Br mf S a \$C, tf G (+/- 5.5) R=3.0' 6.0 Br mf S a \$C, tf G (+/- 5.5) R=3.0' 7.0 S-2A 1.3 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 7.5 Dry Dry Dry 9.0 S-2B 0.8 R=4.0' No Odor 10.0 Same as above R=4.0' No Odor 12.0 S-3A 2.8 Same as above R=4.0' No Odor 12.5 Moist Septic Odor 13.0 Moist Septic Odor 16.0 Brown medium fine SAND and Silty Clay (+/- 15.0) R=3.1' 17.0 S-4A 6.2 Brown medium fine SAND and Silt No Odor 17.5 Same as above WET 18.0	3.0				Brc-fSa\$	 5,tfG			(+/- 2.5')	Dry	
5.0	4.0	S-1B	1.0		Brown coa	rse to fine SA	ND and Sill	t, trace fine	Gravel		
6.0 S-2A 1.3 Br mf S a \$C, tf G (+i-5.5) R=3.0' 7.5 S-2A 1.3 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 7.5 Dry Dry Dry Dry Dry 8.0 S-2B 0.8 R=4.0' No Odor 10.0 S-3A 2.8 R=4.0' No Odor 12.0 S-3A 2.8 R=4.0' No Odor 13.0 Arrow of the start of	5.0										
T.0 S-2A 1.3 Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor 7.5	6.0				BrmfSa\$	6C,tfG			(+/- 5.5')	R=3.0'	
7.5	7.0	S-2A	1.3		Brown medium fine SAND and Silty Clay, trace fine Gravel No Odor						
1.0 0.0 S-2B 0.8 0.9 Dry 9.0 S-2B 0.8 0.8 0.9 <td< td=""><td>7.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	7.5										
9.0 S-2B 0.8	8.0					Dry					
3.0 10.0 11.0 11.0 R=4.0' 11.0 12.0 S-3A 2.8 No Odor 12.5 12.5 12.5 Damp 13.0 14.0 S-3B 4.7 Moist 15.0 S-3C 5.0 Gray medium fine SAND and Silty Clay (+i- 14.0) 16.0 11.0 Br mf S a \$ Br mf S a \$ R=3.1' 17.0 S-4A 6.2 Brown medium fine SAND and Silty No Odor 17.5 18.0 S-4B 3.7 Same as above WET 19.0 S-4B 3.7 Same as above WET Soli Boring Completed @ 19.0 feet	0.0	S-2B	0.8								
11.0 A	10.0										
11.0 S-3A 2.8 No Odor 12.5	11.0				Same as a	bove				R=4.0'	
12.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0	S-3A	28								
12.5 Image: constraint of the second state of the second sta	12.0	0 0.1	2.0							Damn	
13.0 14.0 S-3B 4.7 Moist 15.0 S-3C 5.0 Gray medium fine SAND and Silty Clay (+/- 14.0) Septic Odor 16.0 Br mf S a \$ (+/- 15.0) R=3.1' No Odor 17.0 S-4A 6.2 Brown medium fine SAND and Silt No Odor 17.5 Brown medium fine SAND and Silt WET No Odor 18.0 S-4B 3.7 Same as above WET Groundwater sample collected @ 19.0 feet Soil Boring Completed @ 25.0 feet	12.5									Damp	
14.03-354.7Moist15.0S-3C5.0Gray medium fine SAND and Silty Clay(+7-14.0)Septic Odor16.0Br mf S a \$(+7-15.0)R=3.1'R=3.1'17.0S-4A6.2Brown medium fine SAND and SiltNo Odor17.5Brown medium fine SAND and SiltWET19.0S-4B3.7Same as aboveWETGroundwater sample collected @ 19.0 feetSoil Boring Completed @ 25.0 feet	13.0	C 3D	A 7							Moist	
15.0 3-50 5.0 Gray medium mile SAND and Sity Clay Septic Odor 16.0 17.0 S-4A 6.2 Br mf S a \$ R=3.1' 17.0 S-4A 6.2 Brown medium fine SAND and Silt No Odor 17.5 18.0 S-4B 3.7 Same as above WET 20.0 Groundwater sample collected @ 19.0 feet	14.0	0-00 S 20			Gray madi				(+/- 14.0')	NUISL	
16.0 Image: Second se	15.0	3-30	5.0					<u></u>	(+/- 15.0')		
17.0 S-4A 6.2 Brown medium tine SAND and Silt No Odor 17.5 18.0 S-4B 3.7 Same as above WET 20.0 Groundwater sample collected @ 19.0 feet Soil Boring Completed @ 25.0 feet	16.0	0.41			ormisa\$				- ,	R=3.1	
17.5	17.0	5-4A	6.2		Brown med	ium tine SAN	ND and Silt			No Odor	
18.0 S-4B 3.7 Same as above 20.0 Groundwater sample collected @ 19.0 feet Soil Boring Completed @ 25.0 feet	17.5										
19.0 S-4B 3.7 Same as above 20.0 Groundwater sample collected @ 19.0 feet Soil Boring Completed @ 25.0 feet	18.0									WET	
20.0 Groundwater sample collected @ 19.0 feet Soil Boring Completed @ 25.0 feet	19.0	S-4B	3.7		Same as al	oove					
Groundwater sample collected @ 19.0 feet Soil Boring Completed @ 25.0 feet	20.0										
Soil Boring Completed @ 25.0 feet				Grou	indwater s	ample colle	ected @ 19	9.0 feet			
				S	Soil Boring	Completed	d @ 25.0 f	eet			

 Shipping Address:
 1476 Route 50 Ballston Spa, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167 Ballston Spa, NY 12020
 (518) 884-9710 - Fax

			TEST	BORING LOG	Boring No.	GP-11
PROJE	CT: Loud	don Plaza			SHEET NO.	2 of 2
CLIEN	Г: Sky	Four LLC			JOB NO.	08.1023054
Depth (feet)	Sample ID	Peak PID (ppm)	Unified Soil Class. System	GEOLOGIC DESCRIPTION	1	REMARKS
21.0			r	Br mf S a \$		R= 4.0'
22.0	S-5A	6.0		Brown medium fine SAND and Silt		WET
22.5						No Odors
23.0	1			Same as above		
24.0	S-5B	4.2				
25.0						
26.0				End of Soil Boring at 25.0 feet		
27.0						
27.5						
28.0						
29.0	-					
30.0						
31.0						
32.0						
32.0						
34.0			:			
35.0						
36.0						
37.0						
37.5						
38.0						
39.0						
40.0						
			Collec	ted a Groundwater sample @ 17.0 feet		
			S	Soil Boring Completed @ 25.0 feet		

 Shipping Address:
 1476 Route 50 Ballston Spa, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167 Ballston Spa, NY 12020
 (518) 884-9710 - Fax

Appendix **B**

Well Completion Logs

Malta, NY 12020

Mailing Address: P.O. Box 2167

(518) 884-9710 - Fax

Malta, NY 12020

(518) 884-9710 - Fax

Mailing Address: P.O. Box 2167 Malta, NY 12020

Malta, NY 12020

Mailing Address: P.O. Box 2167

Malta, NY 12020

Mailing Address:

P.O. Box 2167

Malta, NY 12020

Mailing Address: P.O. Box 2167

APPENDIX C

SOIL GAS ANALYSIS

Field GC Raw Data

FIELD GC SOIL QUALITY SUMMARY TABLE

Loudon Plaza

Sampled on April 12, 14 & 15, 2009

C	D _	£
		υ

01 0					
			Actual Concentra	ation Field GC -	parts per billion (ppb)
Sample ID	Depth	PID (ppm)	Tetrachloroethene (PERC)	Trichloroethene (TCE)	cis-1,2,-Dichloroethene (DCE)
S-1A	0 - 2.5'	1.2	ND	ND	ND
S-1B	2.5 - 5'	1.1	ND	ND	ND
S-2A	5 - 7.5'	1.6	ND	ND	ND
S-2B	7.5 - 10'	1,2	ND	ND	ND
S-3A	10 - 12.5'	1.6	ND	ND	ND
S-3B	12.5 - 15'	1.9	ND	ND	ND
S-4A	15 - 17.5'	1.5	ND	ND	ND
S-4B	17.5 - 20'	2.0	ND	ND	ND

			Actual Concentra	tion Field GC -	parts per billion (ppb)
Sample ID	Depth	PID (ppm)	Tetrachloroethene (PERC)	Trichloroethene (TCE)	cis-1,2,-Dichloroethene (DCE)
S-1A	0 - 2.5'	3.1	ND	ND	ND
S-1B	2.5 - 5'	3.8	ND	ND	ND
S-2A	5 - 7.5'	2.5	ND	ND	ND
S-2B	7.5 - 10'	2.1	ND	ND	ND
S-3A	10 - 12.5'	2.3	ND	ND	ND
S-3B	12.5 - 15'	5.7	ND	ND	ND
S-4A	15 - 17.5'	4.2	ND	ND	ND
S-4B	17.5 - 20'	2.2	ND	ND	ND

GP-8

			Actual Concentre	ition Field GC -	parts per billion (ppb)
Sample ID	Depth	PID (ppm)	Tetrachloroethene (PERC)	Trichloroethene (TCE)	cis-1,2,-Dichloroethene (DCE)
S-1A	0 - 2.5'	1.3	ND	ND	ND
S-1B	2.5 - 5'	1.4	4.5	ND	ND
S-2A	5 - 7.5'	2.0	ND	ND	ND
S-2B	7.5 - 10'	1.8	ND	ND	ND
S-3A	10 - 12.5'	3.0	ND	ND	ND
S-3A Re-Run	10 - 12.5'	3.0	61.73	ND	ND
S-3B	12.5 - 15	4.7	ND	ND	ND
S-3B Re-Run	12.5 - 15'	4.7	27.69	ND	ND
S-4A	15 - 17.5'	1.0	18.60	ND	ND
S-48	17.5 - 20'	8.8	ND	7.95	20.37
S-5A	20 - 22.5'	0.8	ND	ND	ND
S-5B	22.5 - 25'	1.4	ND	ND	ND

GP-9							
			Actual Concentration Field GC - parts per billion (ppb)				
Sample ID	Depth	PID (ppm)	Tetrachloroethene (PERC)	Trichloroethene (TCE)	cis-1,2,-Dichloroethene (DCE)		
S-1A	0 - 2.5'	0.9	ND	ND	ND		
S-1B	2.5 - 5'	0.6	ND	ND	ND		
S-2A	5 - 7.5'	1.8	ND	ND	ND		
S-2B	7.5 - 10'	1.5	ND	ND	ND		
S-3A	10 - 12.5'	2.3	ND	ND	ND		
S-3B	12.5 - 15'	2.5	ND	ND	ND		
S-4A	15 - 17.5'	3.9	ND	ND	ND		
S-4B	17.5 - 20'	1.3	ND	ND	ND		

GP-10

			Actual Concentra	tion Field GC -	parts per billion (ppb)
Sample ID	Depth	PID (ppm)	Tetrachloroethene (PERC)	Trichloroethene (TCE)	cis-1,2,-Dichloroethene (DCE)
S-1	15 - 17'	3.4	12.81	ND	ND
S-2	20 - 22'	5.8	12.25	ND	ND
S-3	25 - 27'	2.8	ND	ND	ND
S-3 Re-Run	25 - 27'	2.8	ND	ND	ND
S-4	30 - 32'	1.8	ND	ND	ND

Notes: ND = Non Datect bkg = 0.0 ppm NA = Not Analyzed

GP-11

	Depth		Actual Concentration Field GC - parts per billion (ppb)				
Sample ID		PID (ppm)	Tetrachloroethene (PERC)	Trichlaroethene (TCE)	cis-1.2,-Dichloroethene (DCE)		
S-1A	0 - 2.5	2.0	ND	ND	ND		
S-1B	2.5 - 5'	1.0	ND	ND	ND		
S-2A	5 - 7.5'	1.3	ND	ND	ND		
S-2B	7.5 - 10'	0.8	ND	ND	ND		
S-3A	10 - 12.5'	2.8	ND	ND	ND		
S-3B	12.5 - 14'	4.7	ND	ND	ND		
S-3C	14 - 15'	5.0	ND	ND	ND		
S-4A	15 - 17.5'	6.2	ND	ND	ND		
S-4B	17.5 - 20'	3.7	10.49	ND	ND		
S-5A	20 - 22.5'	6.0	8.77	ND	ND		
S-5B	22.5 - 25'	4.2	1,59	ND	ND		

GP-7

PHOTOVAC
START
D: perc
STOP 4 123.5 SMIPLE LIBRART 1 APR 13 2003 15:33 RMNLTSIS 2 3 LOUDON PLASA INTERNAL TEMP 23 GP-8 5-18 GAIN 19 250 MICROLITERS
COMPDUND NAME PERK R.T. AREA/PPM
UNKNOWN 1 49.3 1.8 US PERC 2 374.7 0.501 PPB
L Detection limit 2 5 ppb
PHOTOVAC
START
GP-8 ** 5-3A
need to re-rule
STUP 8 432,7 Satifice Liberati 1 Apr 13 20039 17:26 NALTSIS 8 29 LOUDON PLAZA INTERNAL TEMP 25 GP-8 S-3A GAIN 19 258 MICROLITERS
CONPOLIND NAME PEAK R.T. AREA/PPN
UNKNOWN 2 58,3 1.3 US UNKNOWN 4 178,7 813,5 mUS

STARI	
· · · · · · · · · · · · · · · · · · ·	
STOP 9 412.0 SAMPLE LIBRART 1 APR 13 2003 17:11	
ANALISIS # 27 LOUDON PLAZA INTERNAL IEMP 26 GP-8 5-24	
COMPOLINO NAME PEAK R.T. AREA/PEN	
UNKNOWN 1 53.5 1.7 US	
START 1	
* ²	
* 3	
•••••===== # •	
* 5	
r r	
STOP 9 630.9	
SAMPLE LIBRART 1 APR 14 2003 14:55 ANALISIS # 19 LOLDON PLAZA	
Internal Temp 24 GP-8 S-3A-RE-RUN Gain 18 250 Microl Iters	
COMPOUND NAME PEAK R.T. AREA/PPH	
UNKNOWN 2 71 3 200 0	
PERC 4 363.5 81.73 PPB	
PERC 4 303.5 81.73 PPB ETHTLBENZENE 3 493.2 35.31 PPB	
РЕКС 1 363,5 61,23 FPB ЕТНИТЪВЕНИЕНЕ 3 433,2 35,31 FPB	
PERE 1 303.5 81.23 PPB ETHTLBENZENE 3 433.2 33.31 PPB	
PERE 1 363.5 61.23 PTB ETHTLBENZENE 3 433.2 33.31 PTB PHOTOVAC	
PERE 1 303.5 202.5 MOS THILBENZENE 3 433.2 35.31 PPB PHOTOVAC STORT * 1 * 2 * 3	
PERE 4 30.5 61.73 PPB ETHTLBENZENE 3 433.2 33.31 PPB PHOTOVAC STORT # 1 # 2 # 3	
PERC 1 303.5 81.23 PTB ETHTLBENZENE 3 433.2 35.31 PTB PHOTOVAC STORT * 1 * 2 * 3	
PERE 4 30.5 61.73 PPB ETHTLBENZENE 3 433.2 33.31 PPB PHOTOVAC STORT * 1 * 2 * 3	
PERC 1 303.5 81.23 PTB ETHTLBENZENE 3 433.2 33.31 PTB PHOTOVAC STORT * 1 * 2 * 3	
PERC 1 963.5 81.23 PTB ETHYLBENZENE 3 433.2 35.31 PTB STQRT 1 7 2 7 3 7 3	
PERE 1 303.5 81.23 PTB ETHTLBENZENE 3 433.2 33.31 PTB PHOTOVAC STORT * 1 * 2 * 3 * 4 * 5	
PERE 1 30.3 58.23 PTB ETHTLBENZENE 3 433.2 35.31 PTB PHOTOVAC STORT * 1 * 2 * 3 * 4 * 3 * 4 * 3	
PERE	
PERC 1 303.5 81.23 PFB ETHTLBENZENE 3 433.2 33.31 PFB PHOTOVAC STOP # # 1 * 2 * 1 * 2 * 1 * 2 * 3 STOP # GBB,0 SMIPLE LIERNET 1 APR 14 2003 INTERNET LIERT 2 OLDDON PLAZA INTERNET LIERT 2	
PERC + 393,3 81,23 PFB ETHTLBENZENE 3 433,2 35,31 PFB ETHTLBENZENE 3 433,2 35,31 PFB PHOTOVAC START + 1 + 2 + 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
PERC + 303,5 81.23 PFB ETHTLBENZENE 3 433.2 33.31 PFB ETHTLBENZENE 3 433.2 33.31 PFB PHOTOVAC STORT * 1 * 2 * 3 * 3 * 3 * 4 * 3 * 4 * 3 * 4 * 5 STOP # GB9,6 SMPLE LIBRART 1 APR 14 2003 15:10 ANALYSIS # 20 LOUDON PLAZA INTERNAL TEITP 25 GP-8 S-30-RE-RUN ANALYSIS # 20 LOUDON PLAZA INTERNAL TEITP 25 GP-8 S-30-RE-RUN INTERNAL TEITP 25 GP-8 S-30-RE-RUN 10 259 PICADLI TERS CONPOLING NORE PEAK R.T. AREB/PED	

PHOTOVAC
START # 1
3 2
ſ
λ.
{ ; 3 • 4
{
5 (UP # 130.2 Comm F (Import) OPP 13 2005 17142
ANALYSIS # 31 LOUDON PLATA
INTERNAL TEMP 25 GP-8 S-5A
GAIN 10 250 MICROLITERS
COMPOUND NAME PEAK R.T. AREA/PPM
UNKNOUN 1 10.4 970.1 mus
UNKNOUN 2 55,7 2,5 45
CINE 10 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2

PHOTOVAC
START# 1
ND
SATTLE LIBRARY 1 APR 13 2003 18:23 ANALTSIS # 34 LOUDON PLATA INTERNAL TEMP 24 GP-08 -50 GAIN 10 250 MICROLITERS
COMPOUND NAME PEAK R.T. AREA/PPM
UNKNDWN 1 59.5 1.4 US

PHOTOVAC
STACT
2
STOP 4 500.0 SAMPLE LEADER 1 APR 14 7000 11150
ANALYSIS # 8 LOUDON PLAZA INTERNAL TEMP 24 GP-9 S-2A
GAIN 10 250 MICROLITERS
UNKNOWN 1 36.0 2.3 US
* 1
2
STOP 9 472.8
ANALYSIS # 11 LOUDON PLAZA INTERNAL TEMP 24 GP-9 5-38
COMPOLINO NAME PEAK R.T. AREA/PPM
LINKNOWN 1 38.2 1.7 US
PHUIUVAC
START
3 3
1
STOP & SDO,0 SAMPLE LIBRARY 1 APR 14 2009 11:18 ANALYSIS # 4 100000 PLATA
INTERNAL TEMP 22 GP-3 S-48 GAIN 10 230 MICROLITERS
СОМРОШНО НАПЕ РЕАК В.Т. АВЕЛ/РМ
UNKNOUN 1 36.9 1.5 US

- 1

1 36.0 2.7 US

1 36.1 2.5 VS

VA(

1 36.5 L.Ø V\$

инкиоми

. . . .

 \bigcap

[]

ſ
STOP # 441.3
SAMPLE LIBRARY 1 APR 14 2009 16: 7
ANALISIS # 3 LOUDON PLATA
INTERNAL TEMP 21 SP-11 S-3C
GAIN 10 258 MICROLITERS
COMPOUND NAME PEAK R.I. AREA/PPN
UNKNOWN 1 38.2 456.7 mus

ĩ

PHOTOVAC
START# 1
ſ
* 2
1 3
SATTLE LIBRART 1 APR 14 2003 15:55
ANALISIS # 2 LOUDON PLAZA
GALN 10 250 MICROLITERS
COMPOLING NAME PEAK R.T. AREA/PPM
UNKNOWN 1 39.7 525.3 MUS FERC 3 383.1 1.565 PPp

Field GC Standards

Carleketer sum	·*
SAMPLE LIBRARY 1 ANALTSIS # 21 INTERNAL TEMP 25 GAIN 19	APR 13 2009 18:16 Loudon Flata TEC-Standard 250 microliters
COMPOUND NAME P	EAK R.J. AREA/PPN
UNKNOWN	2 44,5 585,2 mUS

PHO	TOVAC
	ID # R.T. LINIT
FERC	1 333.3 9.999 PF5 2 152.8 9.998 PF5
BENTENE	4 103.3 0.000 PP5 5 243.3 0.000 PP5
etenteene N-P Xylene D-Xylene	6 515.8 8.800 FT5 7 585.9 8.800 FT5 8 783.8 8.998 FT5

13 98 1	a na ana ana ana ana ana ana ana ana an
	- TUE I (m) Yang St 2.
STOP 9 SNTPLE LI ANALTSIS INTERNAL GAIN	318.0 BRART 1 APR 13 2003 13:53 # 20 LOUDON PLACA TEMP 25 TEC-STANDARD 10 250 MICROLITERS
	NAME PEAK R.T. AREA/PPM
TCE	1 43.9 214.8 MUS 3 160.7 2.405 PPR
- 	
	OTOVAC
FERC TCE CIS-DCE BENRENE TDLLINE ETHTLBENREN H-P XTLENE D-XTLENE	1 363.3 5.000 FPB 2 147.3 5.800 FPB 3 67.1 5.000 FPB 4 35.8 6.000 FPB 5 226.5 5.000 FPB 5 435.1 6.000 FPB 6 435.1 6.000 FPB 7 335.6 6.000 FPB 9 633.1 5.800 FPB
<u>Start</u>	
3 STOP 8 228 SATTLE LIBRA ANALYSIS # INTERNAL TEXP	371 AFR 13 2003 17:50 32 LOUDOR FLAZA 28 STANDARD
COMPOLIND NAME	19 239 MICROLITERS
UNKNDUN TOLUNE	1 68.3 470.0 mus 3 230.1 24.21 Pps
	TOVAC
* 2	
STOP 8 SOOLO SAMPLE LIBRART 1 ANALTSIS 4 33 INTERNAL TEMP 25 GAIN / 10	APR 13 2009 18:0 LOLDON PLAZA STANDARD 250 MICKOL ITERS
COMPOUND NAME F	PEAK R.T. AREAZEPH
LINKNI) UN	1 97.3 957.5 (2). 3 814.3 1.3 91

~

PHOTOUAC
500 9 228.8
SAMPLE LIBRARY I APR 13 2009 15:13 MARITSIS 21 LOUDON PLAZA INTERNAL TEMP 25 TEC-STANDARD GAIN 12 230 FICKOLITEKS
СОПРОЦИО NAME РЕАК R.T. АВЕА/РРЛ ЦИКНОЦИ 2 44.3 585.2 мUS ТСЕ 4 162.8 52.51 рер
PHOTOVAC
start OR
STOP # 138.5 SAMPLE LIBRART 1 APR 13 2009 16:58 ANALYSIS # 28 LOUDON FLAZA INTERNAL TEIT 22 STANDARD
GAIN 19 250 MICROLITERS COMPOLIND NAME PEAK R.T. AREA/PPM UNKNOWN L 93,0 574,2 mils
1CE 3 138.5 38.55 772 V
PHOTOVAC
VALIGRAYED JEAN D.YOE SAMPLE LIBRARY 1 APR 13 2005 17:2 ANALYSIS 3 26 LOUDON PLATA INTERNAL TEMP 25 STANDARD GAIN
UNKNOUN 1 93.8 574.2 mus
4 1 38,5 %0,06 //25
PHOTOUAC
PERC I 364.4 9.000 PTB ICE 2 136.5 0.000 PTB CLSPOCE 3 86.9 0.000 PTB BENZENE 4 105.6 0.000 PTB TOLUME 5 203.7 0.000 PTB
CI-P XTLENE 7 367.8 8.200 PPB D-XTLENE 8 676.6 8.000 PPB

COMPOUND NAME PEAK R.T. AREA/PPM

START	PHO	T(AC	
* 1 * 2 * 3 STDP # 500.0 SATFLE LIBRART 1 APR 14 2003 11: 2 ANALYSIS # 3 LOUDON FLAZA INTERNAL TETHP 22 BTEX STANDARD GRIN 19 250 HICROLITERS CONFOUND NAME PEAK R.T. AREA/PPH UNKNOWN 1 37.6 840.4 MUS BENZENE 2 101.8 05.80 PPB TOLUNE 3 252.8 84.00 PPB	START				
x 2 x 3 STDP 9 380.0 SNIFLE LIGNART 1 APR 14 2003 11: 2 ANALTSIS 4 3 LOLDON FLAZA INTERNAL TEMP 22 BTEX STANDARD GRIN 19 250 mICROLITERS COMPOUND NAME BENZENE 2 191.0 83.80 PPB TOLUNE 3 252.8 84.00 PPB	<u> </u>	# 1			
STOP 9 300.0 STOP 9 300.0 SATTLE LIBRART 1 APR 14 2003 11: 2 ANALYSIS 4 3 LOUDON FLAZA INTERNAL TEMP 22 BTEX STANDARD GAIN 19 250 MICKOLITERS COMPOUND NAME PEAK R.T. AREA/PPM UNKNOWN 1 37.6 840.4 MUS BENZENE 2 101.9 85.90 PPB TOLUNE 3 252.8 84.00 PPB					
3 STDP 4 509.0 SATFLE LIBERRY 1 APR 14 2003 11: 2 ANALYSIS 4 J LOUDON FLAZA INTERNAL TETP 22 DTEX STANDARD GRIN 19 250 HICROLITERS COMPOUND NAME PEAK R.T. AREA/PPH UNKNOUN 1 37.5 849.4 BENZENE 2 191.8 9.50 PFB TOLUNE 3 252.8 84.00 PFB	L			<u> </u>	2
I Image: Stop @ 500.0 STOP @ 500.0 Shiftle Librart 1 APR 14 2003 11: 2 ANALTSIS # 3 LOLDON PLAZA INTERNAL TEMP 22 BTEX STANDARD GAIN 10 250 HICROLITERS COMPOUND NAME PEAK R.T. AREA-PPN UNKNOUN 1 37.6 842.4 MOLINE 2 101.8 85.50 DENZENE 2 102.8 84.00		* 3 3			
SIDF 1 200.0 SIDF 2 200.0 SINTEL LIGERART 1 APR 14 2003 11: 2 ANALYSIS 3 3 LOUDON PLAZA INTERNAL TENP 22 BTEX STANDARD GAIN 19 250 HICROLITERS CONFOUND NAME PEAK R.T. AREA-PPH UNKNOUN 1 37.6 842.4 MUS BENZENE 2 101.6 85.80 PPB TOLUNE 3 252.8 84.00 PPB					
ANALTSIS # 3 LOUDON PLAZA INTERNAL TEMP 22 BTEX STANDARD GAIN 19 250 MICROLITERS COMPOUND NAME PEAK R.T. AREA-PPM UNKNOUN 1 37.6 849.4 MUS BENZENE 2 101.8 83.80 PPM TOLUNE 3 252.8 84.08 PPB	SATFLE LIGRARY	1 68	17 14 2	983 1	112
INTERNAL TETT 22 BTEX STANDARD GRIN 19 259 HICROLITERS COMPOUND NAME PEAK R.T. AREA/PPH UNKNOWN 1 37.6 849.4 MUS BENZENE 2 101.8 83.80 PPH TOLUNE 3 252.8 84.00 PPH	ANALYSIS #	3 L	OLIDON	PLAZA	• •
GAIN 19 250 HICROLITERS CONFOUND NAME PEAK R.T. AREA/PPH UNKNOWN 1 37.6 849.4 MUS BENZENE 2 191.8 85.80 PPH TOLUNE 3 252.8 84.00 PPH	INTERNAL TEMP 2	22 8	TEX ST	ANDARD	
COMPOUND NAME PEAK R. T. AREA/PPH UNKNOWN 1 37.6 849.4 mUS BENZENE 2 101.8 63.96 PPB TOLUNE 3 232.8 84.28 PPB	GAIN 1	9 2	50 MIC	ROLITE	29
UNKNOUN 1 37.5 848.4 MUS BENZENE 2 101.8 83.50 PPB TOLUNE 3 252.8 84.08 PPB	COMPOUND NAME	PEAK	R.T.	AREA	/PPM
BENZENE 2 191.6 65.80 PP5 TOLUNE 3 252.8 84.08 PP5	UNENDIN	1	37.8	848.4	mUS
TOLUNE 3 252.8 84.08 PPB		2	191.0	85.80	PP9
	BENZENE			94 09	PPA
	BENZENE	Э	252.8	07.20	11.14
	BENZENE	З	252.8	07.20	110

Ρ	H(DT	0	U	AC	

CALIBRATED PEAK 3, TOLUNE

SAMPLE LI BNALTSIS INTERNAL BAIN	IBRAR # TEMP	T 1 API 3 Li 22 B 18 2	R 14 20 DUDDN I FEX STI 50 mIC	203 1: PLAZA ANDARD ROLITER	1:5 RS
COMPOUND	NAME	PEAK	R.T.	AREA	/PPN
UNKNOWN		1	37.5	848.4	mUS
CIS-DCE		2	101.0	222.6	PPB
TOLUNE		з	252.8	30.00	PPB

_					
F	рНО	ТC)UI	AC	
L	CORPOUND	10 #	R. I.	LR	111
PERC		1	485.4	8.293	PPp
TCE		2	165,1	0,000	PP9
CIS-	OCE	3	91,6	0,009	PPP
BENS	ENE	4	111.4	0,000	PPP
TOLU	NE	5	252,9	0,098	PPB
ETHY	LBENZENE		552.5	8.009	PP8
11-F	XTLENE	2	338.0	0,056	67°B
D-XY	lene	8	713.6	0,000	PPP

PHOTOVAC
START
* 1
* 2
2 3
x 4 x 5 x 6
* 7
STOP & SOLO
ANALYSIS # 12 LOUDON PLATA
INTERNAL TEMP 24 STANDARD
230 MICROLITERS
COMPOUND NAME PEAK R.T. AREA/PPM
UNKNOWN 1 36,1 596,6 mile
BENZENE 2 98,7 75,45 PPB
THY BENZENC 3 248.3 76.63 PPB
1-P XTLENE 5 51 7 52 11 75
D-XTLENE 7 231.5 20.06 PPB

	PHO	TOVAC
--	-----	-------

CALIBRATED PEAK 3, TOLUNE

SAMPLE LIBRAR ANALTSIS # INTERNAL TEMP GAIN	T 1 / 12 24 10	PPR 14 2 LOUDON STANDAR 250 MIC	12:52 Flaia D Roliters
CONPOUND NAME	PEr	нК R.T.	AREA/PPD
UNKNOWN	,	36.1	596 6
BENZENE	2	38,7	58.92 PPR
TOLUNE	3	248,3	20.00 PPB
ETHYLBENZENE	5	563,1	57.52 PPB
D-P XTLENE	6	511.2	57.93 PPB
D-XTLENE	2	231.5	64.00 PPB

F	ЮЧ	TC)U	AC]
1	CONPOLING	10 4	f. 1.	LI	717
PERC		1	395.2	0,000	PPB
TCE		2	162.2	0.000	PPR
CIS-0	CE	3	38.8	8.888	PPR
BENZE	ENE	4	99.2	9.698	PPR
TOLUN	4E	5	248.3	8.000	Pee
ETHYL	BENSENE		542.7	8 888	PPR
C-P X	TLENE	2	587.4	0.000	PPM
תיא−ט.	ENE	8	728.3	0.000	PPE

HO OVA \supset

CALIBRATED PEAK 3, TOLUNE

SANPLE LIBRARY ANALYSIS # INTERNAL TENP GAIN	1 8 L0 18 L0 24 ST 18 25	R 14 20 GUDON M TANDARI 50 MICI	705 13 "LAZA) ROLITER	1:58 S
COMPOLIND NAME.	PEAK	R.T.	AREA/	PPD
UNKNOWN BENZENE FOLUNE ETHTLBENZENE M-R XVI ENE	1 2 3 5 6	35.8 99.0 247.3 561.1 607.9	558,8 49.34 55.00 45.53 44.25	mus PPB PPB PPB

ZENE	2	99.Ø	48.34	PP\$
LINE	з	247.3	55.00	FP#
TLBENZENE	5	561.1	45.53	FPB
XYLENE	6	697.9	44.25	PPB

PHO	TOVAC
1 COMPOUND	ID # R.T. LIDIT
PFRC	1 396,6 8.800 PPB
TCE	2 161.5 0.000 275
CIS-DEE	3 63.6 0.000 (75
BENZENE	4 98.8 8.908 PPB
TOLUNE	5 247.3 0.000 PPB
ETHYLBENZENE	5 340.5 8.000 228
D-P XTLENE	7 383.0 0.000 FPB
D-XTLENE	6 536.1 8.998 PPF

· · · · · · · · · · · · · · · · · · ·	
IPHO	TOUAC

CALIBRATED PEAK 3, TOLUNE

ANALTSIS # INTERNAL TEMP BAIN	21 25 12	LCUDON STANDAR 250 MIC	PLAZA D ROLITE	RS
COMPOUND NAME	PEA	K R.J.	AREA.	/PPH
UNKNOUN	1	36,3	236.8	ສປຣ
BENZENE	2	38.5	54.44	PPD
TOLUNE	3	246.8	55.08	PPB
ETHYLBENZENE	4	492.3	2,601	PPB
ETHTLBENZENE	5	559.1	43.79	PPO
N-P XTLENE	5	628.8	43.47	PPB

PHO	DTC)U	AC	\sum
1 COMPOLIN	# ΩI Q	R.T.	LI	111
PERC	1	395,8	Ø.000	P PB
CIS-DCE	3	89.4	8.999 8.999	PPB PPB
TOLUNE	4	38,6 246.8	8.000 0.000	PP8 PP8
ETHTLBENZENE	67	539,4 563,8	0.000 0.000	PP8 P28
-XTLENE	8	498.7	0.000	PPB

PHOTOVAC
STORT
a 2
* 3
STOP @ 335.5
SAMPLE LIBRART I APR 14 2029 16:24 ANALTSIS # 5 LOUDON PLATA INTERNAL TEMP 23 STANDARD BAIN 19 250 FUSAL TERP
COMPOUND NAME PEAK R.T. AREA/PPH
BENZENE 2 L05.7 13.05 PPB TOLLINE 3 260.3 11.72 PPB
r
PHOTOVAC
CALIBRATED PEAK 3, TOLUNE
SATIFLE LIBRARY 1 APR 14 2003 15:25 ANALYSTS # 5 LOUDON PLAZA INTERNAL TEHP 23 STANDARD QALN 19 258 MICROLITERS
CONFOUND NAME FEAK R.T. AREA/PPH
BENZENE 2 125.7 13.37 PPB TOLUNE 3 269.3 12.00 PPB
<u>FHUIUVAL</u>
I COMPOUND ID # R.T. LIGIT
TCE 2 122,0 8,000 PPB

PHO	TOVAC
1 COMPOUND	ID # R.T. LIMIT
PERC TCE CIS-DCE BENZENE TOLINE EIHTLBENZENE H-P XTLENE D-XTLENE D-XTLENE	1 417.5 2.000 PP5 2 172.0 2.000 PP5 3 94.3 2.000 PP5 4 104.0 2.000 PP5 5 269.3 0.000 PP5 5 368.3 0.000 PP5 6 358.3 0.000 PP5 7 615.7 9.000 PP5 7 234.8 0.000 PP5

PHOTOVAC	
START	
# 2	
* 3	
± 4	
* 5	
ſ	
STOP 9 200.0 SATIPLE LIBRART 1 APR 14 2003 18:53 ANALYSIS # 13 JOUDDA PLAZA	
INTERNAL TEMP 24 STANDARD GAIN 18 238 MICROLITERS	
COMPOUND NAME PEAK R.T. AREA/PPH	
BENZENE 2 192.3 15.40 PPB TOLUNE 3 253.8 12.33 PPB TOLUNE 5 272.1 1.00 000	
M-P XILENE 6 620.0 8.254 PPB	
	•
PHOTOVAC]	
PHOTOVAC	
CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRART 1 APR 14 2023 13: 0 ANALISIS 3 13 LOUDON PLAZA INTERNA 15HP 24 STANDARD	
CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRART 1 APR 14 2003 13: 0 ANNLTSIS 3 13 LOUDON PLAZA INTERNAL TEHP 24 STANDARD GAIN 19 259 MICROLITERS	
CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRART 1 APR 14 2003 13: 0 ANALTSIS 4 13 LOUDON PLAZA INTERNAL TEMP 24 STANDARD GAIN 10 250 MICROLITERS COMPOUND NAME PEAK R.T. AREA/PEN LINKNDUN 1 37.3 227.4 MUS ENTENDE 2 107.0 14 80 800	
CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRARY 1 APR 14 2003 13: 0 ANALYSIS 1 13 LOUDON PLARA INTERNAL TEMP 24 STANDARD GAIN 19 250 MICROLITERS CDIPPOUND NAME PEAK R.T. AREA/PPH UNKNDUM 1 37.9 222.4 mVS BENZENE 2 102.3 14.30 PPB TOLUNE 3 253.0 12.00 PPB ETMTJENENENE 5 572.1 2.924 PPB	
CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRARY 1 APR 14 2003 13: 0 ANALYSIS 1 LOUDON PLAZA INTERNAL TEMP 24 STANDARD GAIN 19 250 MICROLITERS CDIPPOUND NAME PEAK R.T. AREA/PM UNKNOWN 1 32.9 22.4 mVS BENZENE 2 12.3 14.9 9 PB TOLUNE 3 253.0 12.00 PB ETHYLBENZENE 5 572.1 7.924 PPB N-P XTLENE 6 820.0 8.030 PPB	
PHOTOVAC CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRART 1 APR 14 2003 13: 0 ANALISIS 3 13 LOUDON PLAZA INTERNAL TEMP 24 STANDARD GAIN 19 250 FICROLITERS CDIPPOUND NAME PEAK R.T. AREA/PPH UNKNDUN 1 32.3 222.4 mUS BENZENE 2 192.3 14.98 PFB TOLUNE 3 253.8 12.00 PFB THYLENE 6 820.0 8.030 PFB	
PHOTOVAC CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRART 1 APR 14 2003 13:0 ANALISIS 1 LOUDON PLAZA INTERNAL TEMP 24 STANDARD GAIN 13 LOUDON PLAZA INTERNAL TEMP 24 STANDARD GAIN 13 ANALISIS INTERNAL TEMP 24 STANDARD BENZENE 132.59 MILROLITERS CDTPOUND NAME PEAK R.T. AREA/PPH UNKNDUN 1 37.9 222.4 mUS BENZENE 2 122.3 14, 38 PPB TOLUNE 3 253.8 12,00 PPB HYTLENERENE 5 572.1 2, 524 PPB N-P XTLENE 6 828.0 8,039 PPB	
CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRART 1 APR 14 2003 13: 0 ANALTSIS 3 13 LOUGON PLAZA INTERNAL TETP 24 STANDARD GAIN 13 LOUGON PLAZA INTERNAL TETP 24 STANDARD GAIN 13 LOUGON PLAZA INTERNAL TETP 24 STANDARD GAIN 137.3 227.4 mVS BENZENE 2 LUNKNDAN 1 1 37.3 227.4 mVS BENZENE 2 STALLENE 3 STALLENE 5 STALLENE 6 SZ3.8 12.000 PPB ETHTLBENZENE 5 STALLENE 6 SZ3.8 0.030 PPB	
PHOTOVAC CALIBRATED PEAK 3, TOLUNE SAMPLE LIBRART 1 APR 14 2003 13: 0 ANNLTSIS 3 13 LOUDON PLAZA INTERNAL TETH 24 STANDARD GAIN 19 259 n12CR01 TERS COMPOUND NAME PEAK R.T. AREA/PPN UNKNOHN 1 37.3 227.4 mVS BENZENE 2 122.3 14.98 PPB TOLUNE 3 253.8 12.00 PPB EINTLBENZENE 5 572.1 7.924 PPB D-P XTLENE 6 820.2 8.839 PPB	

PERC	1	407.1	9,000	PPI
TCE	2	165.8	0,000	PPI
CIS-OCE	3	31.3	0,000	PFI
BENZENE	4	101.4	0,000	PPt
TOLUNE	5	253.8	0,000	PPt
ETHYLBENZENE	6	554.7	0.000	PPI
H-P XYLENE	7	600.3	0.000	PPI
D-XYLENE	9	718.5	9.000	PPE

ļ

ŀ

APPENDIX D

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY
CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Robert Gray III Date/Time Prepared 4/23 + 4/24/09
Preparer's Affiliation Northeastern Environmantphone No. 518-884-8545 Technologies Corp
Purpose of Investigation
1. OCCUPANT: Town Total Health / Tenant
Interviewed: Y/N
Last Name: Myers First Name: Kirk
Address: 350 Northern Blud.
County: Albany
Home Phone: Office Phone: <u>518-257-729</u> 4
Number of Occupants/persons at this location $\underline{8}$ Age of Occupants $\underline{33-52}$
2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed: Y / N
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School <u>Commercial/Multi-use</u> Industrial Church Other: <u>Pharmacy</u>

If the property is residential	, type? (Circle appropria	ate response)
Ranch Raised Ranch	2-Family Split Level	3-Family
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other: NA
If multiple units, how many?	?	
If the property is commercia	ll, type?	
Business Type(s) <u>6</u> e	neral Busin	<u>ness</u>
Does it include residences	s (i.e., multi-use)? Y	If yes, how many?
Other characteristics:		
Number of floors	Build	ling age
Is the building insulated	y/N How	air tight? Tight / (verage / Not Tight
4. AIRFLOW		
Use air current tubes or trac	er smoke to evaluate a	irflow patterns and qualitatively describe:
Airflow between floors		
Airflow near source		
Outdoor air infiltration		
4. #147-95. Wold, 42. 10.		
Infiltration into air ducts		

5. **BASEMENT AND CONSTRUCTION CHARACTERISTICS** (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	Y / N			
k. Water in sump? Y /	'N / not applicable			

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel used is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar	
Domestic hot water tank fueled by:	Electric		
Boiler/furnace located in: Base	ement Outdoors	Main Floor	Other Rocf
Air conditioning:	ral Air Window uni	ts Open Windows	None

Are there air distribution ducts present?	Y / N	none	readily	visible
---	-------	------	---------	---------

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

OCCUPANCY				
asement/lowes	level occupied? Full-time	Occasionally	Seldom	Almost Never
el <u>Ge</u>	<u>aeral Use of Each Floor (e.g., famil</u>	yroom, bedro	<u>om, laundry, wo</u>	orkshop, storage)
ient				
oor				
loor				
loor				
ACTORS THA	T MAY INFLUENCE INDOOR A	IR QUALITY		
OOR ACTORS THA Is there an atta Does the garag	T MAY INFLUENCE INDOOR A ached garage? ye have a separate heating unit?	IR QUALITY	Y N Y/N(NA)	
OOT ACTORS THA Is there an att Does the garas Are petroleum tored in the g	AT MAY INFLUENCE INDOOR A ached garage? ge have a separate heating unit? -powered machines or vehicles arage (e.g., lawnmower, atv, car)	IR QUALITY	Y/N NA Y/N NA Please specify_	
ACTORS THA Is there an atta Does the garag Are petroleum stored in the g Has the buildi	AT MAY INFLUENCE INDOOR A ached garage? ge have a separate heating unit? -powered machines or vehicles arage (e.g., lawnmower, atv, car) ag ever had a fire?	IR QUALITY	Y N Y N NA Y $/ N$ NA Please specify Y N $When?$	
FACTORS THA FACTORS THA Is there an atta Does the garag Are petroleum stored in the g Has the buildi Is a kerosene o	AT MAY INFLUENCE INDOOR A ached garage? ge have a separate heating unit? -powered machines or vehicles arage (e.g., lawnmower, atv, car) ang ever had a fire? r unvented gas space heater present	IR QUALITY	Y N NA Y / N NA Please specify_ Y N When? Y N Where?	
ACTORS THA ACTORS THA Is there an atta Does the garag Are petroleum stored in the g Has the buildi Is a kerosene o Is there a work	AT MAY INFLUENCE INDOOR A ached garage? ge have a separate heating unit? -powered machines or vehicles arage (e.g., lawnmower, atv, car) ag ever had a fire? r unvented gas space heater present shop or hobby/craft area?	IR QUALITY t? Y (N)	Y N Y N NA Y N NA Please specify Y N $When?$ Y N $Where?$ Where & Type?	
ACTORS THA Is there an atta Does the garag Are petroleum stored in the g Has the buildi Is a kerosene o Is there a work	AT MAY INFLUENCE INDOOR A ached garage? ge have a separate heating unit? -powered machines or vehicles arage (e.g., lawnmower, atv, car) ag ever had a fire? r unvented gas space heater present shop or hobby/craft area? ag in the building?	IR QUALITY t? Y (N) Y (N)	Y N Y N NA Y N NA Please specify_ Y N $When?_$ Y N $Where?$ Where & Type? How frequently	?

j. Has painting/	staining been done in the last 6 months?	Y (N) Where & When?
k. Is there new	carpet, drapes or other textiles?	Y (N) Where & When?
l. Have air fresł	eners been used recently?	(Y/N When & Type? Rathroom
m. Is there a kit	chen exhaust fan?	Y /N If yes, where vented?
n. Is there a ba	throom exhaust fan?	Y N If yes, where vented? <u>rcof</u>
o. Is there a clot	thes dryer?	Y N If yes, is it vented outside? Y / N
p. Has there bee	en a pesticide application?	Y N When & Type?
Are there odors If yes, please de	in the building? escribe:	Y/N
Do any of the buil (e.g., chemical man boiler mechanic, pe	ding occupants use solvents at work? ufacturing or laboratory, auto mechanic or esticide application, cosmetologist	Y (N) auto body shop, painting, fuel oil delivery,
If yes, what type	s of solvents are used?	
If yes, are their c	lothes washed at work?	Y / N
Do any of the build response)	ding occupants regularly use or work at	a dry-cleaning service? (Circle appropriate
Yes, use dr Yes, use dr Yes, work a	y-cleaning regularly (weekly) y-cleaning infrequently (monthly or less) at a dry-cleaning service	No Unknown
Is there a radon m Is the system activ	itigation system for the building/structure e or passive? Active/Passive	re? Y(N)Date of Installation:
9. WATER AND S	SEWAGE	
Water Supply:	Public Water Drilled Well Drive	en Well Dug Well Other:
Sewage Disposal:	Public Sewer Septic Tank Leac	h Field Dry Well Other:
10. RELOCATION	N INFORMATION (for oil spill resident	ial emergency)
a. Provide reas	ons why relocation is recommended:	N/H
b. Residents ch	to: remain in home relocate to fr	iends/family relocate to hotel/motel
c. Responsibili	ty for costs associated with reimburseme	nt explained? Y / N
d. Relocation p	ackage provided and explained to reside	ents? Y / N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Mini RE 3000

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
counter	Lysol Disinfectant Antibacterial Kithen clea	DO FI.O	U GOOD	Hikyl dimethylbenzyl ammonium chlorides	0,3	N
	Febreze	(3) 9702	and	none listed		
	cloret disinfecting spray	(2)				
		\sim				
bathroom	air sanitizer	(2) 10,02	getel	Triethelene Colycol	0.2	
	Aquanet hauspa	(1)	good	Typical Hair spray ingred		
	Souft + Dri decederant)(1) 602.	gad	annonium chloride		
		~				
shelves	Tresenne spray	(2) 1102	40	Typical		
For Sale	spray deaderants	(M) 602.	40	Typical		
	•			.,		
			-			

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Appendix E

PEL SOIL QUALITY REPORT

.

SOIL ANALYTICAL DATA (EPA Method 8260) Page 1 of 2

Loudon Plaza

350 Northern Blvd. Albany, NY 12204

		DEC Req. Soil					
PARAMETER	GP-6 S-4A	GP-7 S-3B	GP-8 S-4B	GP-9 S-4A	GP-10 S-1	GP-11 S-4B	Cleanup
Sample Type:	Grab	Grab	Grab	Grab	Grab	Grab	Objective
Date Sampled:	04/13/2009	04/13/2009	04/13/2009	04/14/2009	04/14/2009	04/15/2009	-
1, 1, 1, 2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	*
1, 1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	800
1, 1, 2, 2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	600
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	*
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	200
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	400
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	*
1,2,3-Trichlorobenzene	NĎ	ND	ND	ND	ND	ND	*
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	400
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	3,400
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	*
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	*
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	7.900
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	100
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	*
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	*
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	1.600
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	300
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	8,500
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	*
2-Chiorotoluene	ND	ND	ND	ND	ND	ND	*
2-Hexanone	ND	ND	ND	ND	ND	ND	*
2-isopropyltoluene	ND	ND	ND	ND	ND	ND	*
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	*
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND	1.000
Acetone	ND	ND	ND	ND	ND	ND	200
Acrylonitrile	ND	ND	ND	ND	ND	ND	
Benzene	ND	ND	ND	ND	ND	ND	60
Bromobenzene	ND	ND	ND	ND	ND	ND	*
Bromochloromethane	ND	ND	ND	ND	ND	ND	*
Bromodichloromethane	ND	ND	ND	ND	ND	ND	*
Bromoform	ND	ND	ND	ND	ND	ND	*
Bromomethane	ND	ND	ND	ND	ND	ND	*
Carbon Disulfide	ND	ND	ND	ND	ND	ND	2,700
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	600

Notes: All concentrations in ug/kg or ppm (parts per billion)

DEC = Required Soil Cleanup Objective, NYSDEC - TAGM - Determination of Soil Cleanup Objectives and Cleanup Levels, 1994

*= as per TAGM #4046; Total VOC <= 10ppm; Total SVOC <= 500ppm; Individual SVOC <= 50ppm

DEC* = Required Soil Cleanup Objective, as outline in General Remedial Program requirments Subpart 375-6.3 (SCOs for restricted commercial use)

_____*= SCOs for restricted commercial use were capped at a maximum value of 500,000 ppb

(NA)= Not Analyzed

(ND)= Not Detected
SOIL ANALYTICAL DATA (EPA Method 8260) Page 2 of 2

Loudon Plaza

350 Northern Blvd. Albany, NY 12204

SOIL SAMPLE DESCRIPTION						DEC Req. Soil	
PARAMETER	GP-6 S-4A	GP-7 S-3B	GP-8 S-4B	GP-9 S-4A	GP-10 S-1	GP-11 S-4B	Cleanup
Sample Type:	Grab	Grab	Grab	Grab	Grab	Grab	Objective
Date Sampled:	04/13/2009	04/13/2009	04/13/2009	04/14/2009	04/14/2009	04/15/2009	-
Chlorobenzene	ND	ND	ND	ND	ND	ND	1,700
Chloroethane	ND	ND	ND	ND	ND	ND	1,900
Chloroform	ND	ND	ND	ND	ND	ND	300
Chloromethane	ND	ND	ND	ND	ND	ND	*
cis-1,2-Dichloroethene	ND	ND	83	ND	ND	ND	*
cis-1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	*
Dibromochloromethane	ND	ND	ND	ND	ND	ND	*
Dibromoethane	ND	ND	ND	ND	ND	ND	
Dibromomethane	ND	ND	ND	ND	ND	ND	*
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	*
Ethylbenzene	ND	ND	ND	ND	ND	ND	5,500
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	*
Isopropylbenzene	ND	ND	ND	ND	ND	ND	*
m&p-Xylene	ND	ND	ND	ND	ND	ND	1,200
Methyl Ethyl Ketone	ND	ND	ND	ND	ND	ND	
Methyl t-butyl ether (MTBE)	ND	ND	ND	ND	ND	ND	1,000
Methylene Chloride	ND	ND	ND	ND	ND	ND	100
n-Butylbenzene	ND	ND	ND	ND	ND	ND	*
n-Propylbenzene	ND	ND	ND	ND	ND	ND	*
Napthalene	ND	ND	ND	ND	ND	ND	13,000
o-Xylene	ND	ND	ND	ND	ND	ND	1,200
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	*
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	*
Styrene	ND	ND	ND	ND	ND	ND	*
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	*
Tetrachloroethene	ND	ND	140	ND	35	22	1,400
Tetrahydrofuran (THF)	ND	ND	ND	ND	ND	ND	
Toluene	ND	ND	ND	ND	ND	ND	1,500
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	*
trans-1,4-dichloro-2-butene	ND	ND	ND	ND	ND	ND	
Trichloroethene	ND	ND	18	ND	ND	ND	700
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	*
Trichlorotrifluoroethane	ND	ND	ND	ND	ND	ND	
Vinyl chloride	ND	ND	ND	ND	ND	ND	200
Total VOCs (excluding TICs)	ND	ND	241	ND	35	22	

Notes: All concentrations in ug/kg or ppm (parts per million)

DEC = Required Soil Cleanup Objective, NYSDEC - TAGM - Determination of Soil Cleanup Objectives and Cleanup Levels, 1994

*= as per TAGM #4046; Total VOC <= 10ppm; Total SVOC <= 500ppm; Individual SVOC <= 50ppm

DEC* = Required Soil Cleanup Objective, as outline in General Remedial Program requirments Subpart 375-6.3 (SCOs for restricted commercial use)

_____*= SCOs for restricted commercial use were capped at a maximum value of 500,000 ppb

(ND)= Not Detected (NA)= Not Analyzed

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Sample Informa	ition	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		04/13/09	11:30
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.0.#:	08.1023054		-		

Laboratory Data

SDG I.D.: GAR59024 Phoenix I.D.: AR59024

Client ID: LOUDON PLAZA GP-6 S-4A

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	87		%	04/20/09		M-JL	E160.3
V <u>olatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,1,1-Trichloroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,1,2-Trichloroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloroethene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloropropene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2,3-Trichlorobenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2,3-Trichloropropane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2,4-Trichlorobenzene	NÐ	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2,4-Trimethylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2-Dichlorobenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2-Dichloroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,2-Dichloropropane	ND	5.7	ug/Kg	04/21/ 09		H/J	SW8260
1,3,5-Trimethylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,3-Dichlorobenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,3-Dichloropropane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
1,4-Dichlorobenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
2,2-Dichloropropane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
2-Chlorotoluene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
2-Hexanone	ND	29	ug/Kg	04/21/09		H/J	SW8260
2-lsopropyltoluene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
4-Chlorotoluene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
4-Methyl-2-pentanone	ND	29	ug/Kg	04/21/09		H/J	SW8260
Acetone	ND	29	ug/Kg	04/21/09		H/J	SW8260
Acrylonitrile	ND	11	ug/Kg	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP-6 S-4A

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Benzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Bromobenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Bromochloromethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Bromodichloromethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Bromoform	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Bromomethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Carbon Disulfide	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Carbon tetrachloride	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Chlorobenzene	ŇD	5.7	ug/Kg	04/21/09		H/J	SW8260
Chloroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Chloroform	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Chloromethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
cis-1,2-Dichloroethene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
cis-1,3-Dichloropropene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Dibromochloromethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Dibromoethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Dibromomethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Dichlorodifluoromethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Ethylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Hexachlorobutadiene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Isopropylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
m&p-Xylene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Methyl Ethyl Ketone	ND	29	ug/Kg	04/21/09		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	04/21/09		H/J	SW8260
Methylene chloride	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Naphthalene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
n-Butylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
n-Propylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
o-Xylene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
p-lsopropyltoluene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
sec-Butylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Styrene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
tert-Butylbenzene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Tetrachloroethene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Tetrahydrofuran (THF)	ND	11	ug/Kg	04/21/09		H/J	SW8260
Toluene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Total Xylenes	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
trans-1,2-Dichloroethene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
trans-1,3-Dichloropropene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	11	ug/Kg	04/21/09		H/J	SW8260
Trichloroethene	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Trichlorofluoromethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Trichlorotrifluoroethane	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
Vinyl chloride	ND	5.7	ug/Kg	04/21/09		H/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	04/21/09		H/J	SW8260
% Bromofluorobenzene	89		%	04/21/09		H/J	SW8260
% Dibromofluoromethane	100		%	04/21/09		H/J	SW8260
% Toluene-d8	98		%	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP-6 S-4A						hoenix	I.D.: AR59024
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

My Ulis

Phyllis Shiller, Laboratory Director April 22, 2009

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Sample Informa	ation	Custody Inform	nation	Date	Time	
Matrix:	SOIL	Collected by:		04/13/09	14:30	
Location Code:	NETC	Received by:	LB	04/18/09	8:40	
Rush Request:	RUSH	Analyzed by:	see "By" below			
P.0.#:	08.1023054					

Laboratory Data

SDG I.D.: GAR59024 Phoenix I.D.: AR59025

Client ID: LOUDON PLAZA GP-7 S-3B

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	77		%	04/20/09		M-JL	E160.3
Volatiles							
1.1.1.2-Tetrachloroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,1,1-Trichloroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,1,2-Trichloroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloroethene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloropropene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,2,3-Trichlorobenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,2,3-Trichloropropane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,2,4-Trichlorobenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,2,4-Trimethylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1.2-Dichlorobenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,2-Dichloroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1.2-Dichloropropane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1,3,5-Trimethylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1.3-Dichlorobenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1.3-Dichloropropane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
1_4-Dichlorobenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
2.2-Dichloropropane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
2-Chlorotoluene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
2-Hexanone	ND	32	ug/Kg	04/21/09		H/J	SW8260
2-jsopropyltoluene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
4-Chlorotoluene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
4-Methyl-2-pentanone	ND	32	ug/Kg	04/21/09		H/J	SW8260
Acetone	ND	32	ug/Kg	04/21/09		H/J	SW8260
Acrylonitrile	ND	13	ug/Kg	0 4/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP-7 S-3B

Parameter	Result	RL	Units	Date	Time	By	Reference
Benzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Bromobenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Bromochloromethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Bromodichloromethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Bromoform	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Bromomethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Carbon Disulfide	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Carbon tetrachloride	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Chlorobenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Chloroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Chloroform	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Chloromethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
cis-1,2-Dichloroethene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
cis-1,3-Dichloropropene	ND	6.5	ug/Kg	04/21/09	÷	H/J	SW8260
Dibromochloromethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Dibromoethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Dibromomethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Dichlorodifluoromethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Ethylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Hexachlorobutadiene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Isopropylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
m&p-Xylene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Methyl Ethyl Ketone	ND	32	ug/Kg	04/21/09		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	13	ug/Kg	04/21/09		H/J	SW8260
Methylene chloride	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Naphthalene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
n-Butylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
n-Propylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
o-Xylene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
p-Isopropyltoluene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
sec-Butylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Styrene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
tert-Butylbenzene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Tetrachloroethene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Tetrahydrofuran (THF)	ND	13	ug/Kg	04/21/09		H/J	SW8260
Toluene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Total Xylenes	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
trans-1,2-Dichloroethene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
trans-1,3-Dichloropropene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	13	ug/Kg	04/21/09		H/J	SW8260
Trichloroethene	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Trichlorofluoromethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Trichlorotrifluoroethane	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
Vinyl chloride	ND	6.5	ug/Kg	04/21/09		H/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	106		%	04/21/09		H/J	SW8260
% Bromofluorobenzene	85		%	04/21/09		H/J	SW8260
% Dibromofluoromethane	107		%	04/21/09		H/J	SW8260
% Toluene-d8	99		%	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP-7 S-3B					F	hoenix	I.D.: AR59025
Parameter	Result	RL	Units	Date	Time	By	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

by this

Phyllis Shiller, Laboratory Director April 22, 2009

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Ballston Spa, NY 12020 Custody Information

LB

DateTime04/13/0916:3004/18/098:40

Matrix:SOILLocation Code:NETCRush Request:RUSHP.O.#:08.1023054

Sample Information

Analyzed by:	see "By" below
Laboratory I	Data

Collected by:

Received by:

SDG I.D.: GAR59024 Phoenix I.D.: AR59026

Client ID: LOUDON PLAZA GP-8 S-4B

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	78		%	04/20/09		M-JL	E160.3
Volatiles							
1.1.1.2-Tetrachloroethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.1.1-Trichloroethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.1.2.2-Tetrachloroethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.1.2-Trichloroethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.1-Dichloroethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.1-Dichloroethene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.1-Dichloropropene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.2.3-Trichlorobenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.2.3-Trichloropropane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.2.4-Trichlorobenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.2.4-Trimethylbenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1.2-Dibromo-3-chloropropane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1 2-Dichlorobenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1 2-Dichloroethane	ND	6.4	ug /Kg	04/21/09		H/J	SW8260
1 2-Dichloropropane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1 3 5-Trimethylbenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1 3-Dichlorobenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1 3-Dichloropropane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
1 4-Dichlorobenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
22-Dichloropropane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
2-Chlorotoluene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
2-Hexanone	ND	32	ug/Kg	04/21/09		H/J	SW8260
2-Isopropyltoluene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
4-Chlorotoluene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
4-Methyl-2-pentanone	ND	32	ug/Kg	04/21/09		H/J	SW8260
Acetone	ND	32	ug/Kg	04/21/09		H/J	SW8260
Acrylonitrile	ND	13	ug/Kg	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP-8 S-4B

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Benzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Bromobenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Bromochloromethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Bromodichloromethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Bromoform	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Bromomethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Carbon Disulfide	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Carbon tetrachloride	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Chlorobenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Chloroethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Chloroform	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Chloromethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
cis-1 2-Dichloroethene	83	6.4	ug/Kg	04/21/09		H/J	SW8260
cis-1.3-Dichloropropene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Dibromochloromethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Dibromoethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Dibromomethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Dichlorodifluoromethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Ethylbenzene	ND	6.4	ug/Kg	04/21/09		H/J	ŚW8260
Hexachlorobutadiene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Isopropylbenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
m&p-Xvlene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Methyl Ethyl Ketone	ND	32	ug/Kg	04/21/09		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	13	ug/Kg	04/21/09		H/J	SW8260
Methylene chloride	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Naphthalene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
n-Butvlbenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
n-Propylbenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
o-Xviene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
p-Isopropyltoluene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
sec-Butylbenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Styrene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
tert-Butylbenzene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Tetrachloroethene	140	6.4	ug/Kg	04/21/09		H/J	SW8260
Tetrahydrofuran (THF)	ND	13	ug/Kg	04/21/09		H/J	SW8260
Toluene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Total Xylenes	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
trans-1,2-Dichloroethene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
trans-1,3-Dichloropropene	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	13	ug/Kg	04/21/09		H/J	SW8260
Trichloroethene	18	6.4	ug/Kg	04/21/09		H/J	SW8260
Trichlorofluoromethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Trichlorotrifluoroethane	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
Vinvl chloride	ND	6.4	ug/Kg	04/21/09		H/J	SW8260
OA/OC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	04/21/09		H/J	SW8260
% Bromofluorobenzene	90		%	04/21/09		H/J	SW8260
% Dibromofluoromethane	98		%	04/21/09		H/J	SW8260
% Toluene-d8	100		%	04/21/09		H/J	SW8260

Parameter Result RL Units Date Time By Reference	Client ID: LOUDON PLAZA GP-8 S-4B Phoenix I.D.: AR5902								
	Parameter	Result	RL	Units	Date	Time	Ву	Reference	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

My lis

Phyllis Shiller, Laboratory Director April 22, 2009

Time

10:40

8:40

Analysis Report

April 27, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

LB

Sample Information Matrix: SOIL

Location Code: NETC Rush Request: RUSH P.O.#: 08.1023054

Analyzed by:	see "By" below
Laboratory D	Data

Collected by:

Received by:

Custody Information

SDG I.D.: GAR59024 Phoenix I.D.: AR59027

Date

04/14/09

04/18/09

Client ID: LOUDON PLAZA GP-9 S-4A

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	83		%	04/20/09		M-JL	E160.3
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
1,1,1-Trichloroethane	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
1,1,2,2-Tetrachloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1,2-Trichloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloroethane	ND	6.0	ug/Kg	04/21/09		H/.I	SW8260
1,1-Dichloroethene	ND	6.0	ug/Kg	04/21/09		H/.I	SW8260
1,1-Dichloropropene	ND	6.0	ug/Kg	04/21/09		H/.I	SW8260
1,2,3-Trichlorobenzene	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
1,2,3-Trichloropropane	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
1,2,4-Trichlorobenzene	ND	6.0	ua/Ka	04/21/09		H/J	SW8260
1,2,4-Trimethylbenzene	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
1,2-Dibromo-3-chloropropane	ND	6.0	ua/Ka	04/21/09		H/J	SW8260
1,2-Dichlorobenzene	ND	6.0	ua/Ka	04/21/09		H/.1	SW8260
1,2-Dichloroethane	ND	6.0	ua/Ka	04/21/09		H/J	SW8260
1,2-Dichloropropane	ND	6.0	ua/Ka	04/21/09		H/1	SW8260
1,3,5-Trimethylbenzene	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
1,3-Dichlorobenzene	ND	6.0	ua/Ka	04/21/09		H/.1	SW8260
1,3-Dichloropropane	ND	6.0	ua/Ka	04/21/09		H/J	SW8260
1,4-Dichlorobenzene	ND	6.0	ua/Ka	04/21/09		H/J	SW8260
2,2-Dichloropropane	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
2-Chlorotoluene	ND	6.0	ua/Ka	04/21/09		H/.I	SW8260
2-Hexanone	ND	30	ua/Ka	04/21/09		H/J	SW8260
2-Isopropyltoluene	ND	6.0	ua/Ka	04/21/09		H/J	SW8260
4-Chlorotoluene	ND	6.0	ua/Ka	04/21/09		H/J	SW8260
4-Methyl-2-pentanone	ND	30	ua/Ka	04/21/09		H/J	SW8260
Acetone	ND	30	ug/Kg	04/21/09		H/.1	SW8260
Acrylonitrile	ND	12	ug/Kg	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP-9 S-4A

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Benzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromochloromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromodichloromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromoform	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromomethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Carbon Disulfide	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Carbon tetrachloride	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Chlorobenzene	ND	6.0	ug/Kg	04/21/09		H/.1	SW8260
Chloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Chloroform	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Chloromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
cis-1,2-Dichloroethene	ND	6.0	ug/Ka	04/21/09		H/.1	SW8260
cis-1,3-Dichloropropene	ND	6.0	ua/Ka	04/21/09		H/1	SW/8260
Dibromochloromethane	ND	6.0	ua/Ka	04/21/09		H/1	SW9260
Dibromoethane	ND	6.0	ua/Ka	04/21/09		н/1	SW8200
Dibromomethane	ND	6.0	ua/Ka	04/21/09		ни ј	SW0200
Dichlorodifluoromethane	ND	6.0	ua/Ka	04/21/09		ц/т	SW0200
Ethylbenzene	ND	6.0	ua/Ka	04/21/09		H/1	SW0200
Hexachlorobutadiene	ND	6.0	ua/Ka	04/21/09		нил Цил	SW0200
Isopropylbenzene	ND	6.0	ua/Ka	04/21/09		ц/т	SW8200
m&p-Xylene	ND	6.0	ug/Кg ид/Ка	04/21/09		ни л	SVV8200
Methyl Ethyl Ketone	ND	30	ug/Kg	04/21/09		11/J	500200
Methyl t-butyl ether (MTBE)	ND	12	ua/Ka	04/21/09		ни ни	SW0200
Methylene chloride	ND	6.0	ua/Ka	04/21/09		нил нил	SW0200
Naphthalene	ND	6.0	ua/Ka	04/21/09		цлі	SW0200
n-Butylbenzene	ND	6.0	ua/Ka	04/21/09		H/1	SW0200
n-Propylbenzene	ND	6.0	ua/Ka	04/21/09		H/1	500200
o-Xylene	ND	6.0	ua/Ka	04/21/09		H/3	SW8260
p-lsopropyltoluene	ND	6.0	ua/Ka	04/21/09		H/ (SW8260
sec-Butylbenzene	ND	6.0	ua/Ka	04/21/09		H/1	SW0200
Styrene	ND	6.0	ua/Ka	04/21/09		H/1	SW0200
tert-Butylbenzene	ND	6.0	ua/Ka	04/21/09		H/1	SW0200
Tetrachloroethene	ND	6.0	ua/Ka	04/21/09		H/1	SW8260
Tetrahydrofuran (THF)	ND	12	ua/Ka	04/21/09		нил 14/1	SW0200
Toluene	ND	6.0	ua/Ka	04/21/09		н/л	SW0200
Total Xylenes	ND	6.0	ug/.(g ug/Ka	04/21/09		циј Циј	SW8260
trans-1,2-Dichloroethene	ND	6.0	ua/Ka	04/21/09		ци Ци	SW0200
trans-1,3-Dichloropropene	ND	6.0	ug/Kg ug/Ka	04/21/09		ни ј	SW8200
trans-1,4-dichloro-2-butene	ND	12	ug/Kg ug/Kg	04/21/09		п/J	SW8200
Trichloroethene	ND	6.0	ug/Kg	04/21/09		nij Lici	SW8260
Trichlorofluoromethane	ND	6.0	ug/Kg	04/21/09		п/J ци	SW8200
Trichlorotrifluoroethane	ND	6.0	ug/Kg	04/21/09		nij Livi	SW8260
Vinyl chloride	ND	6.0	un/Ka	04/21/09		п/J ш/Т	SWACDU
QA/QC Surrogates			ugnity	0702 (103		ΠJ	SW820U
% 1,2-dichlorobenzene-d4	103		%	04/21/00			0140000
% Bromofluorobenzene	90		%	04/21/09		H/J	SW8260
% Dibromofluoromethane	103		70 0/2	04/21/09		H/J	SW8260
% Toluene-d8	99		70 0/_	04/21/00		H/J	SW8260
			/0	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP	Client ID: LOUDON PLAZA GP-9 S-4A						LD · AR59027
Parameter	Result	RL	Units	Date	Time	Bv	Reference
						- ,	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

April 27, 2009

Analysis Report

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

April 27, 2009

Sample Informa	ation	Custody Inforr	nation	Date	Time
Matrix: Location Code: Rush Request:	SOIL NETC RUSH	Collected by: Received by: Analyzed by:	LB see "By" below	04/14/09 04/18/09	12:45 8:40
P.0.#:	08.1023054				

Laboratory Data

SDG I.D.: GAR59024 Phoenix I.D.: AR59028

Client ID: LOUDON PLAZA GP-10 S-1

Parameter	Result	RL	Units	Date	Time	By	Reference
Percent Solid	74		%	04/20/09		M-JL	E160.3
Volatiles							
1,1,1,2-Tetrachloroethane	ND	6.8	μα/Κα	04/21/09		DU	514/9060
1,1,1-Trichloroethane	ND	6.8	ua/Ka	04/21/09		P/1	SW6200
1,1,2,2-Tetrachloroethane	ND	6.8	ua/Ka	04/21/09		17/3	SW6200
1,1,2-Trichloroethane	ND	6.8	ua/Ka	04/21/09			SVV820U SVV8200
1,1-Dichloroethane	ND	6.8	ua/Ka	04/21/09			SVV620U SVV8260
1,1-Dichloroethene	ND	6.8	ua/Ka	04/21/09		D/1	SVV020U
1,1-Dichloropropene	ND	6.8	ug/Ka	04/21/09			SW0200
1,2,3-Trichlorobenzene	ND	6.8	ug/Ka	04/21/09			SW8200
1,2,3-Trichloropropane	ND	6.8	ug/Ka	04/21/09		5VJ	SW8200
1,2,4-Trichlorobenzene	ND	6.8	ug/Kg ug/Kg	04/21/09		rvj D/J	SW8260
1,2,4-Trimethylbenzene	ND	6.8	ua/Ka	04/21/09			5008260
1,2-Dibromo-3-chloropropane	ND	6.8	ug/Kg	04/21/09		FVJ	SW8260
1,2-Dichlorobenzene	ND	6.8	ug/Kg	04/21/09			5008200
1,2-Dichloroethane	ND	6.8	ug/Kg	04/21/09			SVV8200
1,2-Dichloropropane	ND	6.8	ua/Ka	04/21/09			SVV82DU
1,3,5-Trimethylbenzene	ND	6.8	ug/Kg	04/21/09			SW8200
1,3-Dichlorobenzene	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
1,3-Dichloropropane	ND	6.8	ug/Kg	04/21/09		RVJ	SW8260
1,4-Dichlorobenzene	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
2,2-Dichloropropane	ND	6.8	ug/Ka	04/21/09			SW8260
2-Chlorotoluene	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
2-Hexanone	ND	34	ug/Kg	04/21/09			SVV8260
2-Isopropyltoluene	ND	6.8	ug/Kg ug/Kg	04/21/09			SW8260
4-Chlorotoluene	ND	6.8	ug/Kg ug/Kg	04/21/09		R/J	SW8260
4-Methyl-2-pentanone	ND	34	ug/Kg	04/21/09		R/J	SW8260
Acetone	ND	34	ug/Kg	04/21/09		R/J	SW8260
Acrylonitrile	ND	14	uo/Ka	04/21/09			SW826U
			Lynny	57/21/03		K/J	5118260

Client ID: LOUDON PLAZA GP-10 S-1

Parameter	Result	RL	Units	Date	Time	By	Reference
Benzene	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Bromobenzene	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Bromochloromethane	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Bromodichloromethane	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Bromoform	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Bromomethane	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Carbon Disulfide	ND	6.8	ug/Kg	04/21/09		R/.1	SW8260
Carbon tetrachloride	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Chlorobenzene	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Chloroethane	ND	6.8	ug/Kg	04/21/09		R/.I	SW8260
Chloroform	ND	6.8	ua/Ka	04/21/09		R/1	SW8260
Chloromethane	ND	6.8	ua/Ka	04/21/09		R/I	SW/8260
cis-1,2-Dichloroethene	ND	6.8	ug/Ka	04/21/09		R/I	SW8200
cis-1,3-Dichloropropene	ND	6.8	ua/Ka	04/21/09		R/1	SW0200
Dibromochloromethane	ND	6.8	ua/Ka	04/21/09		R/1	SW/8260
Dibromoethane	ND	6.8	ua/Ka	04/21/09		D/I	SW0200
Dibromomethane	ND	6.8	ua/Ka	04/21/09			SW0200
Dichlorodifluoromethane	ND	6.8	ua/Ka	04/21/09			SW8260
Ethylbenzene	ND	6.8	ua/Ka	04/21/09			SW0200
Hexachlorobutadiene	ND	6.8	ua/Ka	04/21/09		D/1	SW8200
Isopropylbenzene	ND	6.8	ug/Kg	04/21/09			SW8200
m&p-Xylene	ND	6.8	ua/Ka	04/21/09			5448200
Methyl Ethyl Ketone	ND	34	<u>-g</u> .τ.g μα/Κα	04/21/09			SVV820U
Methyl t-butyl ether (MTBE)	ND	14	ua/Ka	04/21/09			5446200
Methylene chloride	ND	6.8	ua/Ka	04/21/09		DU	SW0200
Naphthalene	ND	6.8	ua/Ka	04/21/09			SW8200
n-Butylbenzene	ND	6.8	ua/Ka	04/21/09		D/I	SW0200
n-Propylbenzene	ND	6.8	ua/Ka	04/21/09		D/1	SW0200
o-Xylene	ND	6.8	ua/Ka	04/21/09			SW8200
p-Isopropyltoluene	ND	6.8	ua/Ka	04/21/09			SW0200
sec-Butylbenzene	ND	6.8	ua/Ka	04/21/09		DI	5149260
Styrene	ND	6.8	ua/Ka	04/21/09		D/I	SVV8200
tert-Butylbenzene	ND	6.8	ua/Ka	04/21/09			SW0200
Tetrachloroethene	35	6.8	ua/Ka	04/21/09			SW02DU
Tetrahydrofuran (THF)	ND	14	ug/Kg	04/21/09			SW8200
Toluene	ND	6.8	ug/Kg	04/21/09		EVJ	SW8200
Total Xylenes	ND	6.8	ug/Kg ug/Kg	04/21/09			SW8260
trans-1,2-Dichloroethene	ND	6.8	ug/Kg un/Ka	04/21/09		rvj D/J	SW8260
trans-1,3-Dichloropropene	ND	6.8	ug/Kg	04/21/09		R/J D/J	SW8260
trans-1,4-dichloro-2-butene	ND	14	ug/Kg	04/21/09		R/J	SW8260
Trichloroethene	ND	6.8	ug/Kg	04/21/00		R/J	SW8260
Trichlorofluoromethane	ND	6.8	ug/Ka	04/21/09		R/J	SW8260
Trichlorotrifluoroethane	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
Vinyl chloride	ND	6.8	ug/Kg	04/21/09		R/J	SW8260
OA/OC Surrogates			ugniy	04/21/03		R/J	SW8260
% 1,2-dichlorobenzene-d4	99		%	04/21/00		D /1	011/0200
% Bromofluorobenzene	91		70 0/_	04/21/09		R/J	SW8260
% Dibromofluoromethane	99		70 0 <u>/</u>	04/21/09		K/J	SW8260
% Toluene-d8	100		70 0/_	04/21/09		R/J	SW8260
			/0	04/21/09		K/J	SW8260

Client ID: LOUDON PLAZA G	P-10 S-1				г)h:	
Parameter	Pocult			_	F	noenix	I.D.: AR59028
	nesult	RL	Units	Date	Time	By	Reference
						-	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

My Un

Phyllis Shiller, Laboratory Director April 27, 2009

Analysis Report

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

April 22, 2009

Sample Information		Custody Inform	nation	Date	Time
Matrix:	SOIL	Collected by:		04/15/09	9:50
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.0.#:	08.1023054		-		

Laboratory Data

SDG I.D.: GAR59024 Phoenix I.D.: AR59029

Client ID: LOUDON PLAZA GP-11 S-4B

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	83		%	04/20/09		M-JL	E160.3
Volatiles							
1,1,1,2-Tetrachloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1,1-Trichloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1,2-Trichloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloroethene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,1-Dichloropropene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2,3-Trichlorobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2,3-Trichloropropane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2,4-Trichlorobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2,4-Trimethylbenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2-Dichlorobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2-Dichloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,2-Dichloropropane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,3,5-Trimethylbenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,3-Dichlorobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,3-Dichloropropane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
1,4-Dichlorobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
2,2-Dichloropropane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
2-Chlorotoluene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
2-Hexanone	ND	30	ug/Kg	04/21/09		H/J	SW8260
2-lsopropyltoluene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
4-Chlorotoluene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
4-Methyl-2-pentanone	ND	30	ug/Kg	04/21/09		H/J	SW8260
Acetone	ND	30	ug/Kg	04/21/09		H/J	SW8260
Acrylonitrile	ND	12	ug/Kg	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA GP-11 S-4B

Parameter	Result	RL	Units	Date	Time	By	Reference
Benzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromochloromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromodichloromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromoform	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Bromomethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Carbon Disulfide	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Carbon tetrachloride	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Chlorobenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Chloroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Chloroform	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Chloromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
cis-1,2-Dichloroethene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
cis-1,3-Dichloropropene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Dibromochloromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Dibromoethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Dibromomethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Dichlorodifluoromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Ethvlbenzene	ND	6.0	ug/Kg	04/21/09	•	H/J	SW8260
Hexachlorobutadiene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Isopropylbenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
m&p-Xylene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	04/21/09		H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	04/21/09		H/J	SW8260
Methylene chloride	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Naphthalene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
n-Butylbenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
n-Propylbenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
o-Xylene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
p-Isopropyltoluene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
sec-Butylbenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Styrene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
tert-Butylbenzene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Tetrachloroethene	22	6.0	ug/Kg	04/21/09		H/J	SW8260
Tetrahydrofuran (THF)	ND	12	ug/Kg	04/21/09		H/J	SW8260
Toluene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Total Xylenes	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
trans-1,2-Dichloroethene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
trans-1,3-Dichloropropene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	04/21/09		H/J	SW8260
Trichloroethene	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Trichlorofluoromethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Trichlorotrifluoroethane	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
Vinyl chloride	ND	6.0	ug/Kg	04/21/09		H/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	04/21/09		H/J	SW8260
% Bromofluorobenzene	91		%	04/21/09		H/J	SW8260
% Dibromofluoromethane	95		%	04/21/09		H/J	SW8260
% Toluene-d8	103		%	04/21/09		H/J	SW8260

Client ID: LOUDON PLAZA G	P-11 S-4B				F	hoenix	I.D.: AR59029
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

My this

Phyllis Shiller, Laboratory Director April 22, 2009

QA/QC Report

April 22, 2009	QA/C	C Data			SDG I	.D.: GAR5	59024	
Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
QA/QC Batch 125403, QC Sample No:	: AR58848 (AR59024,	AR59025, AR	59026, AR5	9027, AR5	59029)			
Volatiles								
1.1.1.2-Tetrachloroethane	ND	92	88	4.4	90	92	2.2	
1.1.1-Trichloroethane	ND	92	88	4.4	92	95	3.2	
1.1.2.2-Tetrachloroethane	ND	86	85	1.2	81	79	2.5	
1.1.2-Trichloroethane	ND	95	96	1.0	97	97	0.0	
1.1-Dichloroethane	ND	101	98	3.0	103	105	1.9	
1.1-Dichloroethene	ND	89	90	1.1	102	108	5.7	
1.1-Dichloropropene	ND	92	91	1.1	100	102	2.0	
1.2.3-Trichlorobenzene	ND	83	91	9.2	77	87	12.2	
1.2.3-Trichloropropane	ND	104	99	4.9	96	102	6.1	
1,2,4-Trichlorobenzene	ND	80	83	3.7	71	79	10.7	
1.2.4-Trimethylbenzene	ND	95	93	2.1	90	92	2.2	
1,2-Dibromo-3-chloropropane	ND	83	96	14.5	89	99	10.6	
1,2-Dichlorobenzene	ND	92	92	0.0	88	91	3.4	
1,2-Dichloroethane	ND	87	87	0.0	87	87	0.0	
1,2-Dichloropropane	ND	102	99	3.0	103	102	1.0	
1,3,5-Trimethylbenzene	ND	95	91	4.3	93	93	0.0	
1,3-Dichlorobenzene	ND	91	90	1.1	86	89	3.4	
1,3-Dichloropropane	ND	96	93	3.2	98	97	1.0	
1,4-Dichlorobenzene	ND	90	89	1.1	84	90	6.9	
2,2-Dichloropropane	ND	89	86	3.4	88	89	1.1	
2-Chlorotoluene	ND	95	94	1.1	96	96	0.0	
2-Hexanone	ND	87	89	2.3	84	85	1.2	
2-Isopropyltoluene	ND	95	94	1.1	95	95	0.0	
4-Chlorotoluene	ND	94	92	2.2	91	90	1.1	
4-Methyl-2-pentanone	ND	92	94	2.2	95	96	1.0	
Acetone	ND	<70	71	NC	68	71	4.3	
Acrylonitrile	ND	101	100	1.0	102	105	2.9	
Benzene	ND	99	98	1.0	104	105	1.0	
Bromobenzene	ND	94	92	2.2	94	94	0.0	
Bromochloromethane	ND	96	94	2.1	98	103	5.0	
Bromodichloromethane	ND	93	93	0.0	87	89	2.3	
Bromoform	ND	83	86	3.6	85	90	5.7	
Bromomethane	ND	<70	88	NC	83	111	28.9	
Carbon Disulfide	ND	74	72	2.7	104	110	5.6	
Carbon tetrachloride	ND	83	83	0.0	85	88	3.5	
Chlorobenzene	ND	96	93	3.2	95	99	4.1	
Chloroethane	ND	92	92	0.0	103	113	9.3	
Chloroform	ND	96	93	3.2	95	97	2.1	

QA/QC Data

SDG I.D.: GAR59024

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
Chloromethane	ND	98	92	6.3	111	110	0.9	•
cis-1,2-Dichloroethene	ND	101	99	2.0	104	107	2.8	
cis-1,3-Dichloropropene	ND	92	91	1.1	93	94	1.1	
Dibromochloromethane	ND	86	87	1.2	87	88	1.1	
Dibromoethane	ND	93	94	1.1	95	96	1.0	
Dibromomethane	ND	90	91	1.1	91	94	3.2	
Dichlorodifluoromethane	ND	• 94	93	1.1	100	102	2.0	
Ethylbenzene	ND	98	95	3.1	98	101	3.0	
Hexachlorobutadiene	ND	86	90	4.5	84	87	3.5	
Isopropylbenzene	ND	96	91	5.3	102	100	2.0	
m &p-Xylene	ND	99	98	1.0	98	101	3.0	
Methyl ethyl ketone	ND	106	96	9.9	98	97	1.0	
Methyl t-butyl ether (MTBE)	ND	88	90	2.2	91	93	2.2	
Methylene chloride	ND	87	86	1.2	89	94	5.5	
Nanhthalene	ND	87	97	10.9	88	101	13.8	
n-Butylbenzene	ND	95	92	3.2	89	89	0.0	
n-Propylbenzene	ND	102	96	6.1	100	100	0.0	
o-Xviene	ND	97	95	2.1	97	101	4.0	
n-Isopropyltoluene	ND	97	95	2.1	90	92	2.2	
sec-Butylbenzene	ND	98	95	3.1	98	97	1.0	
Styrene	ND	98	97	1.0	96	100	4.1	
tert-Butylbenzene	ND	98	94	4.2	98	99	1.0	
Tetrachloroethene	ND	93	89	4.4	94	97	3.1	
Tetrahydrofuran (THF)	ND	100	98	2.0	102	105	2.9	
Toluene	ND	97	97	0.0	101	102	1.0	
trans-1,2-Dichloroethene	ND	93	94	1.1	102	105	2.9	
trans-1,3-Dichloropropene	ND	89	91	2.2	87	91	4.5	
trans-1,4-dichloro-2-butene	ND	83	89	7.0	79	85	7.3	
Trichloroethene	ND	96	97	1.0	106	113	6.4	
Trichlorofluoromethane	ND	93	90	3.3	93	97	4.2	
Trichlorotrifluoroethane	ND	91	89	2.2	97	100	3.0	
Vinyl chloride	ND	95	94	1.1	108	112	3.6	
% 1,2-dichlorobenzene-d4	98	98	98	0.0	102	100	2.0	
% Bromofluorobenzene	91	97	97	0.0	97	98	1.0	
% Dibromofluoromethane	95	101	105	3.9	104	100	3.9	
% Toluene-d8	100	101	103	2.0	101	102	1.0	
Comment:								
A blank MS/MSD was analzyed with	this batch.							
OA/OC Batch 125487, QC Sample	e No: AR58849 (AR59028)							
Volatiles								
1,1,1,2-Tetrachloroethane	ND	97	93	4.2	86	85	1.2	
1,1,1-Trichloroethane	ND	96	91	5.3	87	89	2.3	
1,1,2,2-Tetrachloroethane	ND	99	97	2.0	77	77	0.0	
1,1,2-Trichloroethane	ND	101	98	3.0	92	95	3.2	
1,1-Dichloroethane	ND	105	101	3.9	96	99	3.1	
1,1-Dichloroethene	ND	100	97	3.0	93	99	6.3	
1,1-Dichloropropene	ND	105	101	3.9	93	98	5.2	
1,2,3-Trichlorobenzene	ND	100	99	1.0	79	81	2.5	

QA/QC Data

SDG I.D.: GAR59024

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
1,2,3-Trichloropropane	ND	102	118	14.5	91	91	0.0
1,2,4-Trichlorobenzene	ND	96	94	2.1	69	73	5.6
1,2,4-Trimethylbenzene	ND	100	99	1.0	85	88	3.5
1,2-Dibromo-3-chloropropane	ND	102	106	3.8	92	96	4.3
1,2-Dichlorobenzene	ND	100	98	2.0	87	89	2.3
1,2-Dichloroethane	ND	90	87	3.4	78	82	5.0
1,2-Dichloropropane	ND	108	102	5.7	96	99	3.1
1,3,5-Trimethylbenzene	ND	101	97	4.0	87	88	1.1
1,3-Dichlorobenzene	ND	98	96	2.1	82	84	2.4
1,3-Dichloropropane	ND	102	99	3.0	93	95	2.1
1,4-Dichlorobenzene	ND	96	94	2.1	80	81	1.2
2,2-Dichloropropane	ND	95	91	4.3	81	85	4.8
2-Chlorotoluene	ND	103	100	3.0	91	91	0.0
2-Hexanone	ND	95	93	2.1	82	82	0.0
2-Isopropyltoluene	ND	99	97	2.0	89	90	1.1
4-Chlorotoluene	ND	101	98	3.0	83	83	0.0
4-Methyl-2-pentanone	ND	102	98	4.0	89	94	5.5
Acetone	ND	<70	<70	NC	59	63	6.6
Acrylonitrile	ND	107	104	2.8	97	102	5.0
Benzene	ND	107	105	1.9	97	103	6.0
Bromobenzene	ND	101	100	1.0	90	91	1.1
Bromochloromethane	ND	101	102	1.0	93	97	4.2
Bromodichloromethane	ND	98	94	4.2	81	85	4.8
Bromoform	ND	96	96	0.0	84	86	2.4
Bromomethane	ND	89	102	13.6	83	107	25.3
Carbon Disulfide	ND	102	99	3.0	94	98	4.2
Carbon tetrachloride	ND	89	88	1.1	80	84	4.9
Chlorobenzene	ND	102	99	3.0	91	93	2.2
Chloroethane	ND	104	102	1.9	96	99	3.1
Chloroform	ND	97	93	4.2	88	90	2.2
Chloromethane	ND	120	107	11.5	102	100	2.0
cis-1,2-Dichloroethene	ND	108	104	3.8	99	102	3.0
cis-1,3-Dichloropropene	ND	100	100	0.0	88	90	2.2
Dibromochloromethane	ND	93	93	0.0	85	85	0.0
Dibromoethane	ND	101	103	2.0	91	95	4.3
Dibromomethane	ND	96	96	0.0	84	90	0.9
Dichlorodifluoromethane	ND	127	123	3.2	95	99	4.1
Ethylbenzene	ND	103	102	1.0	93	90	2.1
Hexachlorobutadiene	ND	93	93	0.0	/9	64 07	1.0
lsopropylbenzene	ND	101	98	3.0	90	97	1.0
m&p-Xylene	ND	107	103	3.8	94	94	0.0
Methyl ethyl ketone	ND	113	90	10.3	94	80	0.9
Methyl t-butyl ether (MTBE)	ND	91	93	2.2	01	80	8.5 7 0
Methylene chloride	ND	90	91	1.1	دة 70	100	7.0 3.0
Naphthalene	ND	112	111	0.9	9/ 9/	92	3.0
n-Butylbenzene	ND	102	97	5.0	8U 01	05	J./
n-Propylbenzene	ND	107	105	1.9	0.3 A I	50 05	4.3
o-Xylene p-lsopropyltoluene	ND ND	102	9 9	3.0 1.0	93 84	3 5 87	3.5

QA/QC Data

SDG I.D.: GAR59024

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
es c.Butylbenzene	ND	101	99	2.0	93	94	1.1	
Churana	ND	104	103	1.0	94	96	2.1	
tort-Butylbenzene	ND	101	100	1.0	93	95	2.1	
	ND	101	96	5.1	92	90	2.2	
Tetrabydrofuran (THF)	ND	105	105	0.0	95	101	6.1	
Telione	ND	105	104	1.0	95	98	3.1	
Diuene	ND	104	104	0.0	92	97	5.3	
[[alls-1,2-bichloropropene	ND	97	97	0.0	81	87	7.1	
trans-1, 3-Dichloro-2-butene	ND	101	102	1.0	78	84	7.4	
	ND	103	99	4.0	102	106	3.8	
	ND	97	95	2.1	84	88	4.7	
	ND	94	94	0.0	92	95	3.2	
	ND	114	110	3.6	100	105	4.9	
Vinyi chiolide	101	99	100	1.0	100	101	1.0	
% 1,2-dichlorobenzene-u4	92	95	98	3.1	97	98	1.0	
% Bromofluorobenzene	92 Q <i>4</i>	103	105	1.9	97	105	7.9	
% Dibromonuoromeinane % Toluene-d8	101	102	102	0.0	99	101	2.0	
Comment:								

A blank MS/MSD was analyzed with this batch.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference LCS - Laboratory Control Sample LCSD - Laboratory Control Sample Duplicate MS - Matrix Spike MS Dup - Matrix Spike Duplicate NC - No Criteria

this

Phyllis/Shiller, Laboratory Director April 22, 2009

NY Temperature Narration

April 22, 2009

SDG I.D.: GAR59024

The samples in this delivery group were received at 8C. (Note acceptance criteria is above freezing up to 6C)

/ RECORD	Manchester, CT 06040 Har Henvery: Fax #:Fax #:	645-8726 [X Email: Tab ret & NYCel IV. ion	22A Project P.O: 08 . 1023054	Phone #: 884-8545	J:N. Fax#: BB4-9710		100 100 100 100 100 100 100 100 100 100	ari 1907 1907 1905 1905 1905 1905 1905 1905 1905 1905	20 20 20 20 20 20 20 20 20 20 20 20 20 2													I I I I I I I I <th>I I I I I I I <t< th=""><th>I I I I I I I <t< th=""><th>Image: Standard Standa</th></t<></th></t<></th>	I I I I I I I <t< th=""><th>I I I I I I I <t< th=""><th>Image: Standard Standa</th></t<></th></t<>	I I I I I I I <t< th=""><th>Image: Standard Standa</th></t<>	Image: Standard Standa
pike, P.O. Box 370, Manchester, CT 06040 noenixlabs.com Fax (860) 645-0823 ervices (860) 645-8726	ervices (860) 645-8726	ĺ	audon Phaza	NETC	Jess wine																	Time: Turnaround: 2 ZS 3 Davs* GA Mobility	Time: Tumaround: 2 2/5 2 2/5 2 Days* GB Mobility CT/RI 2 Days* GB Mobility CT/RI SW Protect.	Time: Turnaround: CT/RI Time: Turnaround: CT/RI Time: Turnaround: CT/RI Time: Turnaround: CT/RI Standard GM Protect. GM Protect. Other SW Protect. Ind. Vol. *SURCHARGE Res. Vol. Ind. Vol.	Time: Turnaround: Z Z Z S Z Z S Z Z Turnaround: 2 Days* G M Protect. 3 Days* G M Protect. CT/RI M M M M M M M M M M M M M
liddle Turnpike, P.O. Box 370, Manc service@phoenixlabs.com Fax (8		Client Services (860) 645	oject: Laudon PlazA	port to: NETC	vicu ひまで Dice to:	Ilysis																Image: Second condition Image: Second	Time: Turnaroun Time: Turnaroun Stands 3 Days OP40 2 LS	Time: Turnaroun Time: Turnaroun Time: 1 Day* Stands 2 2 Says Of Yo 2 Day* Of Hor 0 Of Hor Other Other	Time: Turnaroun Time: Turnaroun State whe Other State whe State whe
ヨイロン	587 East Middle Email: servi	Clie	Project:	Report	Invoice	Analysi	sanhay blat	- E	Time	ampled / / /	iampled	ampled X 1:30 X 8:30 N	iampled 1:30 X 8:30 N X	iampled 1:30 X 8:30 X 1:30 X 1:30 X	iampled 1:30 X 2:30 X 2:30 X 1:30 X 1:30 X 1:30 X 1:30 X	iampled 1:30 X 2:30 X 1:30 X 1:30 X 1:30 X 1:30 X 1:30 X 1:54 X	ampled 1:30 X 2:30 X 2:30 X 2:30 X 1:30 X 1:20 X 1:20 X 1:20 X 1:30 X	ampled 1:30 X X:30 X X:30 X X:30 X X:1:30 X 1:30 X 1:30 X 1:50 X	ampled 1:30 X 1:30 X	ampled 1:30 X 1:30 X 2:30 X 1:30 X 1:30 X 1:30 X 1:30 X 1:50 X	ampled 1:30 X X X X X X X X X X X X X X X X X X	ampled 1:30 X 2:30 X 1:30 X 1:10 X	ampled 1:30 X 2:30 X 1:30 X 1:130	ampled 1:30 X 1:30 X	ampled 1:30 X 1:30 X
		lC.			12020	lification	Date 7/.	O=other	ample Date	atrix Sampled S	Sampled S 5 1/3 1	atrix Sampled Si 5 1//3 1/ 5 1//3 5	atrix Sampled Si 5 1//3 1/ 5 1//3 5 5 1//3 1	atrix Sampled Si 5 1//3 1, 5 1//3 5 7//3 4 5 1//4 /	atrix Sampled Si 5 1//3 1/ 5 1//3 5 1//3 7 5 1//4 / 5 1//4 /	atrix Sampled Si 5 1/3 1 5 1/1/3 5 1/1/3 7 5 1/1/4 1 5 1/1/4 1 5 1/1/4 1	atrix Sampled Si 5 1/3 1/ 5 1//3 1 5 1//3 1 5 1//4 / 5 1//4 / 5 1//4 /	atrix Sampled Si 5 1/3 1/ 5 1/1/3 1 5 1/1/4 1 5 1/1/4 1 5 1/1/4 1 5 1/1/4 1 5 1/1/4 1 5 1/1/4 1 5 1/1/5 1 5 1/1	atrix Sampled Si 5 1/3 1/ 5 1/1/3 1 5 1/1/4 1 5 4/1/4 1 5 4/1/4 1 5 4/1/4 1 5 4/1/4 1	atrix Sampled Si 5 1/3 1 5 1/1/3 5 4/1/4 1 5 4/1/4 1 5 4/1/4 1 5 4/1/4 1 5 4/1/4 1 5 4/1/5 5 6 1/1/5 1 1 1/1/5	atrix Sampled 5: 5 1/3 1/ 5 1/1/3 5 4/1/3 5 4/1/4 1/ 5 4/1/4 1/ 5 4/1/5 5 4/1/5 5 4/1/5 1/ 5 4/1/5 1/ 5 4/1/5 1/ 5 4/1/5 1/ 5 4/1/5 1/ 5 4/1/5 1/ 5 4/1/5 1/ 5 5 4/1/5 1/ 5 6 4/1/5 1/ 5 7 4/15 1	atrix Sampled 5: 5 1/3 1/ 5 1/3 1/ 5 1/1/3 5 4/1/3 5 4/1/3 7 5 4/1/3 7 5 4/1/3 7 5 4/1/3 7 5 4/1/3 7 6 7 1/1/3 7 1/1/	atrix Sampled 5: 5 1/3 1/ 5 1/3 1/ 5 1/1/4 1/ 6 1/1/5 1/ 7 1/	atrix Sampled 55 55 1/3 1/3 1/3 55 1/1/4 1/3 5 5 1/1/4 1/3 5 5 1/1/4 1/3 5 1/1/5 5	atrix Sampled IS: 5 1/3 1/3 1/3 1/3 1/3 5 4/1/4 1/3 3 5 1/1/4 1
A TTT ATT	EINIX T	uu Laooratories, 17	7C	1450	SIGN SPA NY	nt Sample - Information - Iden	Gy DM	WW=wastewater S=soil/solld SL=sludge A=air	Customer Sample St Identification M		GP-6 5-4A "	6P-7 5-44 "	69-6 5-48 "	69-9 5-49 28-9 5-40 28-9 5-40	69-6 5-49 69-9 5-40 69-10 5-1	69-6 5-48 29-7 5-38 69-8 5-48 28-9 5-48 69-10 5-1 69-11 5-48	69-10 5-18 69-10 5-18 69-10 5-1 69-11 5-48 69-11 5-48	69-10 5-13 69-10 5-19 69-10 5-1 69-10 5-1 69-11 5-48 69-11 5-48	69-10 5-18 29-9 5-48 29-9 5-48 29-9 5-98 69-10 5-1 69-11 5-48	69-6 5-4A 58-9 5-40 58-9 5-40 69-10 5-1 69-11 5-4B	69-65-47 28-7 5-47 69-9 5-48 29-9 5-48 69-10 5-1 69-11 5-48	69-6 5-44 59-9 5-49 69-9 5-49 69-10 5-1 69-10 5-1 69-11 5-48 69-10 5-1 69-11 5-48	56-6 5-4A 56-9 5-4A 56-9 5-4A 56-9 5-4A 56-9 5-1 59-10 5-1 59-10 5-1 59-10 5-1	52-7 5-44 52-7 5-44 52-9 5-48 52-9 5-48 52-9 5-48 52-11 5-48 52-11 5-48 52-11 5-48 64 by: 64	52-7 5-44 52-7 5-44 52-9 5-46 52-9 5-49 52-9 5-49 52-9 5-49 52-1 5-48 52-1 5-48 52-1 5-48 60 by: C2P-1 5-48 C2P-10 5-1 5-48 C2P-10 5-100 C2P-10 5-100 C2P-
	INHO	1 uauiu 0110117	Customer: WE	Address: 1476	Bentie	Clien Sampler's	Signature	DW=drinking water GW=groundwater	Phoenix Sample #		590241	59024 (59024 (59025 6 59026 6	59024 (59025 6 59026 6	59024 (59025 6 59026 6 59027 6	59024 0 59025 0 59027 0 59027 0 59038 0	59024 59025 59027 59038 59038 59038	59024 59025 59027 59028 59028 59029 59029	59024 59025 59027 59038 59038 59039 59039 59039	59024 6 59025 6 59027 6 59028 6	59024 59025 59026 59028 59029 59029 59029	59024 0 59025 0 59021 6 59037 6 59038 0 59038 0 59039 0	59024 6 59025 6 59026 6 59037 6 59038 6 59038 6 59038 6 59038 6	59024 6 59025 6 59026 5 59037 6 59038 7 59038 6 59038 6 50038 6 50008 6 5000000000000000000000000000000000000	59025 59025 59026 59027 59028 59038 59038 59039 59039 59039 59039 59039 59039 59039 59039 59039 59039 59039 59039 59039 59037 50037 5007 500

APPENDIX F

PEL GROUNDWATER QUALITY REPORT

GROUNDWATER ANALYTICAL DATA (EPA Method 8260) Page 1 of 2

Loudon Plaza 350 Northern Blvd. Albany, NY 12204 Date: April 16, 2009

	GROUNDWATER SAMPLE DESCRIPTION										
PARAMETER	MW-1	MW-2	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	DEC
Date Sampled:	04/16/2009	D4/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<u> </u>
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND		3
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND				0.8
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<u>5</u>
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	£
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ō
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND			5 E*
2-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND		ND	5
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND		ND		5
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Acetone	ND	ND	ND	ND	ND	ND	ND	ND		ND	50
Acrylonitrile	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.7
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND		ND	U.1
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*

Notes: All concentrations are in ug/kg or ppb (parts per billion) DEC = Groundwater quality standards & guidelines (6NYCRR Part 703) and NYSDEC - TAGM - Determination of Soil Cleanup Objectives and Cleanup Levels, 1994. * Principal organic compound standard for groundwater is 5 ppb

GROUNDWATER ANALYTICAL DATA (EPA Method 8260) Page 2 of 2

Loudon Plaza

350 Northern Blvd. Albany, NY 12204

Date: April 16, 2009

				GROU	NDWATER S	AMPLE DESC	RIPTION				
PARAMETER	MW-1	MW-2	MW-4	MW-5	MW-6	MW-7	MVV-8	MW-9	MW-10	MW-11	DEC
Date Sampled:	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	04/16/2009	
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND		5*
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<u> </u>
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND		5
Chloroform	ND	ND	ND	ND	ND	ND	11	ND	ND	ND -	7
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*
cis-1,2-Dichloroethene	19 /	1.3 v	54	ND	ND	ND	200	ND	ND	ND	5
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4**
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<u>5</u>
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*
m&p-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<u> </u>
Methyl Ethyl Ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Methylene Chloride	NÐ	ND	ND	ND	ND	ND	ND	ND	ND		5
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND		0
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND		E
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	U
Tetrachloroethene (Perc)	100 .	170	1400 [^]	52	ND	ND	250	ND	71	34	5
Tetrahydrofuran (THF)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5*
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	1.8	ND			5
Trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4
Trans-1,4-dichloro-2-butene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4 £*
Trichloroethene (TCE)	11	3.0	34	ND	ND	ND	33	ND		ND	5
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Trichlorotrifluoroethane	ND	ND	ND	ND		ND ND	ND				5
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND				<u></u>
Total VOCs	130	174	1,488	52	0	0	496	0	71	<u>IU</u>	

Notes: All concentrations are in ug/kg or ppb (parts per billion) DEC = Groundwater quality standards & guidelines (6NYCRR Part 703) and NYSDEC - TAGM - Determination of Soil Cleanup Objectives and Cleanup Levels, 1994.

* Principal organic compound standard for groundwater is 5 ppb

Analysis Report

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

April 22, 2009

Sample Informa	ation	Custody Inform	nation	Date	Time
Matrix:	GROUND WATER	Collected by:		04/16/09	13:20
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.0.#:	08.1032054				0 4 10 5 00 4

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59041

Client ID: LOUDON PLAZA MW-1

Parameter	Result	RL	Units	Date	Time	By	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.1.1-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.1-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.2.4-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.2.4-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.2-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.3,5-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.3-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.3-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1.4-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2.2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
2-lsopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Acetone	ND	50	ug/L	04/20/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L	04/20/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/20/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-1

```
Phoenix I.D.: AR59041
```

Parameter	Result	RL	Units	Date	Time	By	Reference
Bromobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Bromoform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ug/L	04/20/09		R/J	SW8260
Carbon tetrachloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
cis-1,2-Dichloroethene	19	1.0	ug/L	04/20/09		R/J	SW8260
cis-1,3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dibromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Ethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	04/20/09		R/J	SW8260
Isopropylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
m&p-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Naphthalene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
o-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
p-lsopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/20/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Tetrachloroethene	100	10	ug/L	04/20/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/20/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	04/20/09		R/J	SW8260
Trichloroethene	11	1.0	, ug/L	04/20/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Vinyl chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	04/20/09		R/J	SW8260
% Bromofluorobenzene	87		%	04/20/09		R/J	SW8260
% Dibromofluoromethane	104		%	04/20/09		R/J	SW8260
% Toluene-d8	96		%	04/20/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-1					F	hoenix	I.D.: AR59041
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

My Ulis

Phyllis Shiller, Laboratory Director April 22, 2009

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Sample Informa	ation	Custody Inform	nation	Date	Time
Matrix:	GROUND WATER	Collected by:		04/16/09	12:48
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.0.#:	08.1032054				

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59042

Client ID: LOUDON PLAZA MW-2

Parameter	Result	RL	Units	Date	Time	By	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	04/20/09	-	R/J	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Acetone	ND	50	ug/L	04/20/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L	04/20/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/20/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-2

Client ID: LOUDON PLAZA MV	V-2.				•	10011	X1.D /(100042
Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Bromoform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ug/L	04/20/09		R/J	SW8260
Carbon tetrachloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
cis-12-Dichloroethene	1.3	1.0	ug/L	04/20/09		R/J	SW8260
cis-1.3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dibromomethane	ND	1.0	ua/L	04/20/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Ethylbenzene	ND	1.0	ua/L	04/20/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	ua/L	04/20/09		R/J	SW8260
Isonronylbenzene	ND	1.0	ua/L	04/20/09		R/J	SW8260
m&n-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Nanhthalene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Butvlbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
o-Xvlene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/20/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Tetrachloroethene	170	10	ug/L	04/20/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/20/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1.2-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1.3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
trans-1.4-dichloro-2-butene	ND	5.0	ug/L	04/20/09		R/J	SW8260
Trichloroethene	3.0	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Vinvl chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
OA/OC Surrogates			-				
% 1.2-dichlorobenzene-d4	102		%	04/20/09		R/J	SW8260
% Bromofluorobenzene	87		%	04/20/09		R/J	SW8260
% Dibromofluoromethane	99		%	04/20/09		R/J	SW8260
% Toluene-d8	96		%	04/20/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-2	PLAZA MW-2 Phoenix I.D.: AR5904						I.D.: AR59042
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

llis h

Phyllis Shiller, Laboratory Director April 22, 2009

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Sample Information **Custody Information** Date Time Collected by: 04/16/09 **GROUND WATER** 12:35 Matrix: Location Code: Received by: NETC 04/18/09 LB 8:40 **Rush Request:** RUSH Analyzed by: see "By" below P.0.#: 08.1032054

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59043

Client ID: LOUDON PLAZA MW-4

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Volatiles	n na sana ang kana a				<u> </u>		
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
2-lsopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Acetone	ND	50	ug/L	04/20/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L	04/20/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/20/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-4

يوريد ور

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Bromoform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ug/L	04/20/09		R/J	SW8260
Carbon tetrachloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
cis-1,2-Dichloroethene	54	10	ug/L	04/20/09		R/J	SW8260
cis-1,3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dibromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Ethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	04/20/09		R/J	SW8260
Isopropylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
m&p-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Naphthalene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
o-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/20/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Tetrachloroethene	1400	100	ug/L	04/20/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/20/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,2-Dichloroethene	ND	1.0	ua/L	04/20/09		R/J	SW8260
trans-1,3-Dichloropropene	ND	0.50	ua/L	04/20/09		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ua/L	04/20/09		R/J	SW8260
Trichloroethene	34	10	ua/L	04/20/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ua/L	04/20/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ua/L	04/20/09		R/J	SW8260
√inyl chloride	ND	1.0	ua/L	04/20/09		R/J	SW8260
OA/OC Surrogates			- 3				
% 1,2-dichlorobenzene-d4	102		%	04/20/09		R/I	SW8260
% Bromofluorobenzene	88		%	04/20/09		R/J	SW8260
% Dibromofluoromethane	105		%	04/20/09		R/J	SW8260
% Toluene-d8	94		%	04/20/09		R/J	SW8260
Client ID: LOUDON PLAZA MW-4					P	hoenix	I.D.: AR59043
------------------------------	--------	----	-------	------	------	--------	---------------
Parameter	Result	RL	Units	Date	Time	By	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

llis

Phyllis Shiller, Laboratory Director April 22, 2009

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

April 22, 2009

Sample Information		Custody Inform	nation	Date	Time
Matrix:	GROUND WATER	Collected by:		04/16/09	12:20
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.O.#:	08.1032054				

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59044

Parameter	Result	RL	Units	Date	Time	By	Reference
Volatiles				<u></u>			
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Acetone	ND	50	ug/L	04/20/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L	04/20/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/20/09		R/J	SW8260

Phoenix I.D.: AR59044

Parameter	Result	RL	Units	Date	Time	Вy	Reference
Bromobenzene	ND	1.0	ua/l	04/20/09		D/I	S/M/9260
Bromochloromethane	ND	1.0	ua/L	04/20/09		R/I	SW8260
Bromodichloromethane	ND	0.50	-3/- ua/L	04/20/09		P/1	SW/9260
Bromoform	ND	1.0	-3·-	04/20/09		D/1	SW0200
Bromomethane	ND	1.0	-3 ua/l	04/20/09		D/1	SW0200
Carbon Disulfide	ND	5.0	- <u>-</u>	04/20/09		D/I	SW0200
Carbon tetrachloride	ND	1.0	ua/i	04/20/09		D/1	SW0200
Chlorobenzene	ND	1.0	- <u>9</u> /- ua/l	04/20/09		D/I	SW0200
Chloroethane	ND	1.0	uo/l	04/20/09			SW0200
Chloroform	ND	1.0	- <u>9</u> .– ua/l	04/20/09		173	SW0200
Chloromethane	ND	1.0	ug/L	04/20/09			SW0200
cis-1,2-Dichloroethene	ND	1.0	ua/l	04/20/09			SW8260
cis-1,3-Dichloropropene	ND	0.50	ug/l	04/20/09			SW0200
Dibromochloromethane	ND	0.50	-g/-	04/20/09		D/I	SW0200
Dibromoethane	ND	1.0	ug/L	04/20/09			SW0200
Dibromomethane	ND	1.0	-g/-	04/20/09			SW0200
Dichlorodifluoromethane	ND	1.0	ug/L	04/20/09			5448200
Ethylbenzene	ND	1.0	-g/- uo/i	04/20/09		DU	SW0200
Hexachlorobutadiene	ND	0.40	ug/L	04/20/09		DI	SVV820U SVV8200
Isopropylbenzene	ND	1.0	ug/L	04/20/09			SW8200
m&p-Xylene	ND	1.0	uo/i	04/20/09			SW8200
Methyl ethyl ketone	ND	5.0	ug/L ug/l	04/20/09			SW8200
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/20/09			SW8200
Methylene chloride	ND	1.0	ua/L	04/20/09		D/I	SW6200
Naphthalene	ND	1.0	-9/- ua/l	04/20/09		D/I	SW0200
n-Butylbenzene	ND	1.0	-9/~ ua/l	04/20/09		D/I	SW0200
n-Propylbenzene	ND	1.0	ua/L	04/20/09		R/I	SW8260
o-Xylene	ND	1.0	ug/L	04/20/09		 В/Л	SW8260
p-lsopropyltoluene	ND	1.0	ua/L	04/20/09		R/1	SW8260
sec-Butylbenzene	ND	1.0	ua/L	04/20/09		R/1	SW8260
Styrene	ND	1.0	ug/L	04/20/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Tetrachloroethene	52	5.0	ug/L	04/20/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/20/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/20/09		R/.1	SW8260
Total Xylenes	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	04/20/09		R/J	SW8260
Trichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Vinyl chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
QA/QC Surrogates			-				
% 1,2-dichlorobenzene-d4	103		%	04/20/09	1	R/J	SW8260
% Bromofluorobenzene	85		%	04/20/09	i.	R/J	SW8260
% Dibromofluoromethane	99		%	04/20/09	ŗ	R/J	SW8260
% Toluene-d8	98		%	04/20/09	F		SW8260

Client ID: LOUDON PLAZA MW-5					Pł	noenix I.	D.: AR59044
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

lin

Phyllis Shiller, Laboratory Director April 22, 2009

......

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

April 22, 2009

Sample Information		Custody Inform	nation	Date	Time
Matrix:	GROUND WATER	Collected by:		04/16/09	13:05
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.0.#:	08.1032054		,		

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59045

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Volatiles		41					
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Acetone	ND	50	ug/L	04/20/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L	04/20/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/20/09		R/J	SW8260

Phoenix I.D.: AR59045

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Bromoform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ug/L	04/20/09		R/J	SW8260
Carbon tetrachloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
cis-1.2-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
cis-1,3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dibromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Ethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	04/20/09		R/J	SW8260
Isopropylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
m&p-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Naphthalene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
o-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/20/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Tetrachloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/20/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	04/20/09		R/J	SW8260
Trichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Vinyl chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
OA/OC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	04/20/09		R/J	SW8260
% Bromofluorobenzene	88		%	04/20/09		R/J	SW8260
% Dibromofluoromethane	99		%	04/20/09		R/J	SW8260
% Toluene-d8	99		%	04/20/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-6					Pł	noenix I.	D.: AR59045
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director April 22, 2009

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Sample Information **Custody Information** Date Time Matrix: **GROUND WATER** Collected by: 04/16/09 13:13 Location Code: NETC Received by: LB 04/18/09 8:40 **Rush Request:** RUSH Analyzed by: see "By" below P.O.#: 08.1032054

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59046

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Volatiles				·			
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/21/09		R/J	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/21/09		R/J	SW8260
Acetone	ND	50	ug/L	04/21/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L	04/21/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/21/09		R/J	SW8260

Phoenix I.D.: AR59046

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
Bromoform	ND	1.0	ug/L	04/21/09		R/J	SW8260
Bromomethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ug/L	04/21/09		R/J	SW8260
Carbon tetrachloride	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chloroform	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chloromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
cis-1,3-Dichloropropene	ND	0.50	ug/L	04/21/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Dibromomethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Ethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	04/21/09		R/J	SW8260
Isopropylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
m&p-Xylene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/21/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/21/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/21/09		R/J	SW8260
Naphthalene	ND	1.0	ug/L	04/21/09		R/J	SW8260
n-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
o-Xylene	ND	1.0	ug/L	04/21/09		R/J	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/21/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Tetrachloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/21/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/21/09		R/J	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
trans-1,3-Dichloropropene	ND	0.50	ug/L	04/21/09		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	04/21/09		R/J	SW8260
Trichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Vinyl chloride	ND	1.0	ug/L	04/21/09		R/J	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	04/21/09		R/J	SW8260
% Bromofluorobenzene	89		%	04/21/09		R/J	SW8260
% Dibromofluoromethane	104		%	04/21/09		R/J	SW8260
% Toluene-d8	99		%	04/21/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-7					F	hoenix	I.D.: AR59046
Parameter	Result	RL	Units	Date	Time	By	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director April 22, 2009

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Sample Information

	nion	Custody Inform	nation	Date	Time
Matrix:	GROUND WATER	Collected by:		04/16/09	13:30
Location Code:	NETC	Received by:	LB	04/18/09	8.40
Rush Request:	RUSH	Analyzed by:	see "By" below	0 11 101 00	0.40
P.O.#:	08.1032054	, , , , , , , , , , , , , , , , , , ,			

. .

.

.

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59047

Parameter	Result	RL	Units	Date	Time	By	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ua/l	04/20/09		DU	Olypaca
1,1,1-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L.	04/20/09		R/J	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	04/20/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L ug/l	04/20/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/20/09		R/J	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L ug/l	04/20/09		R/J	SW8260
Acetone	ND	50	ug/L	04/20/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L ug/l	04/20/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
			սց/՟	04/20/09		K/J	SW8260

Phoenix I.D.: AR59047

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Bromoform	ND	1.0	ug/L	04/20/09		R/J	SW8260
Bromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ug/L	04/20/09		R/J	SW8260
Carbon tetrachloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chlorobenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Chloroform	11	1.0	ug/L	04/20/09		R/J	SW8260
Chloromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
cis-1,2-Dichloroethene	200	20	ug/L	04/20/09		R/J	SW8260
cis-1.3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/20/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dibromomethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Fthvlbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	04/20/09		R/J	SW8260
Isopropylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
m&n-Xviene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/20/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/20/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
Naphthalene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
o-Xylene	ND	1.0	ug/L	04/20/09		R/J	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/20/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Tetrachloroethene	250	20	ug/L	04/20/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/20/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/20/09		R/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,2-Dichloroethene	1.8	1.0	ug/L	04/20/09		R/J	SW8260
trans-1,3-Dichloropropene	ND	0.50	ug/L	04/20/09		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	04/20/09		R/J	SW8260
Trichloroethene	33	20	ug/L	04/20/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/20/09		R/J	SW8260
Vinyl chloride	ND	1.0	ug/L	04/20/09		R/J	SW8260
OA/QC Surrogates							
% 1,2-dichlorobenzene-d4	105		%	04/20/09		R/J	SW8260
% Bromofluorobenzene	85		%	04/20/09		R/J	SW8260
% Dibromofluoromethane	105		%	04/20/09		R/J	SW8260
% Toluene-d8	92		%	04/20/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-	8				F	hoenix	I.D.: AR59047
Parameter	Result	RL	Units	Date	Time	By	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

this

Phyllis Shiller, Laboratory Director April 22, 2009

Environmental Laboratories, Inc. 587 East Middle Tumpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

April 22, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	GROUND WATER	Collected by:		04/16/09	12:58
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.O.#:	08.1032054		·		

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59048

Parameter	Result	RL	Units	Date	Time	By	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/21/09		R/J	SW8260
2-IsopropyItoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/21/09		R/J	SW8260
Acetone	ND	50	ug/L	04/21/09		R/J	SW8260
Acrylonitrile	ND	5.0	ug/L	04/21/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/2 1/09		R/J	SW8260

```
Phoenix I.D.: AR59048
```

Parameter	Result	RL	Units	Date	Time	Вy	Reference
Bromobenzene	ND	1.0	ug/L	04/21/09		B/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
Bromoform	ND	1.0	ua/L	04/21/09		R/.1	SW8260
Bromomethane	ND	1.0	ua/L	04/21/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ua/L	04/21/09		R/.1	SW8260
Carbon tetrachloride	ND	1.0	ua/L	04/21/09		R/.I	SW8260
Chlorobenzene	ND	1.0	ua/L	04/21/09		R/J	SW8260
Chloroethane	ND	1.0	ua/L	04/21/09		R/J	SW8260
Chloroform	ND	1.0	uo/L	04/21/09		R/1	SW/8260
Chloromethane	ND	1.0	-9/= ua/L	04/21/09		R/J	SW8260
cis-1,2-Dichloroethene	ND	1.0	-g/-	04/21/09		R/I	SW/8260
cis-1,3-Dichloropropene	ND	0.50	ua/l	04/21/09		R/1	SW8260
Dibromochloromethane	ND	0.50	ug/L un/l	04/21/09		D/1	511/9260
Dibromoethane	ND	1.0	-9/- 110/1	04/21/09		D/I	SW0200
Dibromomethane	ND	1.0	ug/L	04/21/09			SW8200
Dichlorodifluoromethane	ND	1.0	ug/L	04/21/09			5446200
Ethylbenzene	ND	1.0	ug/L	04/21/09			SW0200
Hexachlorobutadiene	ND	0.40	ug/L	04/21/09			SWAZOU
Isopropylbenzene	ND	1.0	ug/L	04/21/09			5008200
m&p-Xylene	ND	1.0	ug/c ug/l	04/21/09		EV.J	SW8200
Methyl ethyl ketone	ND	5.0	ug/L	04/21/09		rvj D/J	SW8200
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L ug/l	04/21/09			5008200
Methylene chloride	ND	1.0	ug/L	04/21/09			SW8260
Naphthalene	ND	1.0	ug/L ug/l	04/21/09			5008260
n-Butylbenzene	ND	1.0	ug/L	04/21/09			500200
n-Propylbenzene	ND	1.0	ug/L	04/21/09		D/I	5140200
o-Xylene	ND	1.0	ug/L	04/21/09		D/1	SW0200
p-lsopropyltoluene	ND	1.0	ug/L	04/21/09		D/I	SW0200
sec-Butylbenzene	ND	1.0	ug/L ug/l	04/21/09		R/1	SW/8260
Styrene	ND	1.0	ug/L	04/21/09		R/1	SW8260
tert-Butylbenzene	ND	1.0	un/l	04/21/09		D/1	SW/8260
Tetrachloroethene	ND	1.0	ug/L	04/21/09		D/1	SW0200
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/21/09		D/1	SW0200
Toluene	ND	1.0	ua/1	04/21/09		R/1	SW8260
Total Xylenes	ND	1.0	-9	04/21/09		R/I	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	04/21/09			SW8260
trans-1,3-Dichloropropene	ND	0.50	ug/L ug/l	04/21/09		D/1	SW8200
trans-1,4-dichloro-2-butene	ND	5.0	ug/L ug/l	04/21/09		R/1	5102200
Trichloroethene	ND	1.0	ug/L	04/21/09		R/I	SW/8260
Trichlorofluoromethane	ND	1.0	ug/L	04/21/09		D/1	SW/9260
Trichlorotrifluoroethane	ND	1.0	ug/L un/l	04/21/09		D/I	SW8200
Vinyl chloride	ND	1.0	ug/L	04/21/09		R/1	SW8200
OA/OC Surrogates			ugit	0		гvэ	300200
% 1,2-dichlorobenzene-d4	102		%	04/21/00		D /1	SWROOD
% Bromofluorobenzene	88		%	04/21/00		rvj DVJ	SWOOD
% Dibromofluoromethane	100		%	04/21/09		ועם	SW02CO
% Toluene-d8	98		%	04/21/00		ואס	SW8260
				07721103		rvj	SYV820U

Client ID: LOUDON PLAZA MW-9					F	hoenix	I.D.: AR59048
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

April 22, 2009

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

April 22, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	GROUND WATER	Collected by:		04/16/09	12:30
Location Code:	NETC	Received by:	LB	04/18/09	8:40
Rush Request:	RUSH	Analyzed by:	see "By" below		
P.0.#:	08.1032054			SDC ID -	CAD5004

Laboratory Data

SDG I.D.: GAR59041 Phoenix I.D.: AR59049

Parameter	Result	RL	Units	Date	Time	By	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.2.4-Trichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.2.4-Trimethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.2-Dibromo-3-chloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.2-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.2-Dichloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.2-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.3.5-Trimethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.3-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.3-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
1.4-Dichlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
2.2-Dichloropropane	ND	1.0	ug/L	04/21/09		R/J	SW8260
2-Chlorotoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
2-Hexanone	ND	5.0	ug/L	04/21/09		R/J	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
4-Chlorotoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	04/21/09		R/J	SW8260
Acetone	ND	50	ug/L	04/21/09		R/J	SW8260
Acrvlonitrile	ND	5.0	ug/L	04/21/09		R/J	SW8260
Benzene	ND	1.0	ug/L	04/21/09		R/J	SW8260

```
Phoenix I.D.: AR59049
```

Parameter	Dooult		1.1 11	_	F	IX I.D.: AR59049	
	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1.0	ua/l	04/21/09		D/1	
Bromochloromethane	ND	1.0	ua/L	04/21/09			SW8260
Bromodichloromethane	ND	0.50	ua/L	04/21/09			SW8260
Bromoform	ND	1.0	ua/L	04/21/09			SW8260
Bromomethane	ND	1.0	ua/L	04/21/09			SW8260
Carbon Disulfide	ND	5.0	э ua/L	04/21/09			SW8260
Carbon tetrachloride	ND	1.0	-9/~ uo/l	04/21/09		R/J	SW8260
Chlorobenzene	ND	1.0	-9/L ua/l	04/21/09		R/J	SW8260
Chloroethane	ND	1.0	-g/L un/l	04/21/09		R/J	SW8260
Chloroform	ND	1.0	ug/L ug/l	04/21/00		R/J	SW8260
Chloromethane	ND	1.0	ug/L un/l	04/21/09		R/J	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
cis-1,3-Dichloropropene	ND	0.50	ug/L	04/21/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Dibromomethane	ND	10	ug/L	04/21/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Ethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	uy/L	04/21/09		R/J	SW8260
Isopropylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
m&p-Xylene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/21/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/∟	04/21/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/21/09		R/J	SW8260
Naphthalene	ND	1.0	ug/L	04/21/09		R/J	SW8260
n-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
o-Xylene	ND	1.0	ug/L	04/21/09		R/J	SW8260
p-lsopropyltoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/21/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/21/09	I	R/J	SW8260
Tetrachloroethene	71	1.U E.O	ug/L	04/21/09	. I	R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/∟	04/21/09	1	₹/J	SW8260
Toluene	ND	1.0	ug/L	04/21/09	F	₹/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/21/09	ł	₹/J	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	04/21/09	F	٩Л	SW8260
trans-1,3-Dichloropropene	ND	1.0	ug/L "	04/21/09	F	₹/J	SW8260
trans-1.4-dichloro-2-butene	ND	0.50	ug/L	04/21/09	F	R/J :	SW8260
Trichloroethene	ND	5.0	ug/L	04/21/09	F	s/J :	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/21/09	F	หา เ	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/21/09	F	VJ S	SW8260
Vinvl chloride	ND	1.0	ug/L	04/21/09	R	/J 5	SW8260
OA/OC Surrogatas		1.0	ug/L	04/21/09	R	/J 5	SW8260
% 12-dichlorohenzono d4	104						
% Bromofluorobenzena	104		%	04/21/09	R	/J S	SW8260
% Dibromofluoromothana	80		%	04/21/09	R	/J S	SW8260
% Toluene-d8	100		%	04/21/09	R	/J s	W8260
	100		%	04/21/09	R/	J S	W8260

~

Client ID: LOUDON PLAZA MW-	10				F	Phoenix	I.D.: AR59049
Parameter	Result	RL	Units	Date	Time	By	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director April 22, 2009

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 22, 2009

FOR: Attn: Mr. Jeff Wink NETC PO Box 2167 Ballston Spa, NY 12020

Sample Information

Benzene

		Custody Inforr	nation	Dete	
Matrix:	GROUND WATER	Collecter		Date	Time
Location Code	NETO	Collected by:		04/16/09	13.30
Duch Dogwood	NETC	Received by:	LB	04/19/00	10.00
Rush Request:	RUSH	Analyzed by:		04/18/09	8:40
P.O.#:	08,1032054	and yzed by.	see "By" below		

Laboratory Data

ND

Client ID: LOUDON PLAZA MW-11

SDG I.D.: GAR59041 Phoenix I.D.: AR59050

R/J

R/J

SW8260

SW8260

Parameter	Result	RL	Units	Data	T:	5	-
Volatiles					1 ime	Ву	Reference
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	ND ND ND ND ND	1.0 1.0 0.50 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L	04/21/09 04/21/09 04/21/09 04/21/09 04/21/09		R/J R/J R/J R/J R/J	SW8260 SW8260 SW8260 SW8260 SW8260 SW8260
1, 1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ND ND	1.0 1.0	ug/L ug/L	04/21/09 04/21/09 04/21/09		R/J R/J R/J	SW8260 SW8260 SW8260
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND ND ND	1.0 1.0 1.0	ug/L ug/L ua/L	04/21/09 04/21/09 04/21/09		R/J R/J	SW8260 SW8260
1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane	ND ND ND	1.0 1.0	ug/L ug/L ug/L	04/21/09 04/21/09		R/J R/J R/J	SW8260 SW8260 SW8260
1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ND ND	1.0 1.0 1.0	ug/L ug/L ug/L	04/21/09 04/21/09 04/21/09		R/J R/J R/I	SW8260 SW8260 SW8260
1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND ND	1.0 1.0 1.0	ug/L ug/L ug/l	04/21/09 04/21/09 04/21/00	i	R/J R/J	SW8260 SW8260 SW8260
2,2-Dichloropropane 2-Chlorotoluene 2-Hexanone	ND ND	1.0 1.0	ug/L ug/L	04/21/09 04/21/09 04/21/09	F F	4\] 4\] 4\]	SW8260 SW8260 SW8260
2-Isopropyltoluene 4-Chlorotoluene 4-Methyl-2-pentanone	ND ND	5.0 1.0 1.0	ug/L ug/L ug/L	04/21/09 04/21/09 04/21/09	R R	VJ (SW8260 SW8260 SW8260
Acetone Acrylonitrile	ND ND ND	5.0 50 5.0	ug/L ug/L ug/L	04/21/09 04/21/09 04/21/09	R	/J 8 /J 8	SW8260 SW8260

ug/L

04/21/09

1.0

Phoenix I.D.: AR59050

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Bromobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Bromochloromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Bromodichloromethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
Bromoform	ND	1.0	ug/L	04/21/09		R/J	SW8260
Bromomethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Carbon Disulfide	ND	5.0	ug/L	04/21/09		R/J	SW8260
Carbon tetrachloride	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chlorobenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chloroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chloroform	ND	1.0	ug/L	04/21/09		R/J	SW8260
Chloromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
cis-1,3-Dichloropropene	ND	0.50	ug/L	04/21/09		R/J	SW8260
Dibromochloromethane	ND	0.50	ug/L	04/21/09		R/J	SW8260
Dibromoethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Dibromomethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Ethylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	04/21/09		R/J	SW8260
Isopropylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
m&p-Xylene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	04/21/09		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	04/21/09		R/J	SW8260
Methylene chloride	ND	1.0	ug/L	04/21/09		R/J	SW8260
Naphthalene	ND	1.0	ug/L	04/21/09		R/J	SW8260
n-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
n-Propylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
o-Xylene	ND	1.0	ug/L	04/21/09		R/J	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
sec-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Styrene	ND	1.0	ug/L	04/21/09		R/J	SW8260
tert-Butylbenzene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Tetrachloroethene	34	5.0	ug/L	04/21/09		R/J	SW8260
Tetrahydrofuran (THF)	ND	5.0	ug/L	04/21/09		R/J	SW8260
Toluene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Total Xylenes	ND	1.0	ug/L	04/21/09		R/J	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
trans-1,3-Dichloropropene	ND	0.50	ug/L	04/21/09		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	04/21/09		R/J	SW8260
Trichloroethene	ND	1.0	ug/L	04/21/09		R/J	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	04/21/09		R/J	SW8260
Vinyl chloride	ND	1.0	ug/L	04/21/09		R/J	SW8260
OA/OC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	04/21/09		R/J	SW8260
% Bromofluorobenzene	88		%	04/21/09		R/J	SW8260
% Dibromofluoromethane	95		%	04/21/09		R/J	SW8260
% Toluene-d8	97		%	04/21/09		R/J	SW8260

Client ID: LOUDON PLAZA MW-11	1				F	hoenix	I.D.: AR59050
Parameter	Result	RL	Units	Date	Time	Ву	Reference

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Level RL=Reporting Level

Myllis Shille

Phyllis Shiller, Laboratory Director April 22, 2009

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 23, 2009	QA/Q	QC Data			9041		
Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 125411, QC Sample	No: AR59041 (AR59041,	AR59043, AR	59045. AR5	9046. AR5	9049)		
Volatiles		,					
1.1.1.2-Tetrachloroethane	ND	QA	88	66	06	02	2.0
1.1.1-Trichloroethane	ND	83	79	0.0	90	93	3.2
1.1.2.2-Tetrachloroethane	ND	91	00	1.1	00	63 01	5.8
1,1,2-Trichloroethane	ND	97	00 03	1.1	101	91	1.1
1.1-Dichloroethane	ND	85	81 81	4.2	86	95 95	8.Z
1,1-Dichloroethene	ND	78	74	4.0	24	00 00	1.2
1,1-Dichloropropene	ND	84	76	10.0	04 97	02 04	2.4
1,2,3-Trichlorobenzene	ND	104	103	10.0	07	101	3.0
1,2,3-Trichloropropane	ND	92	96	1.0	97	80	10.4
1,2,4-Trichlorobenzene	ND	102	100	20	0/	69 100	2.3
1,2,4-Trimethylbenzene	ND	93	88	5.5	00	90	0.2
1,2-Dibromo-3-chloropropane	ND	95	92	3.2	Q1	90	0.0
1,2-Dichlorobenzene	ND	91	88	3.4	00	99	0.4
1,2-Dichloroethane	ND	91	87	4.5	94	90	12
1,2-Dichloropropane	ND	94	90	4.3	97	95	4.5
1,3,5-Trimethylbenzene	ND	91	85	6.8	97 97	88	2.1
1,3-Dichlorobenzene	ND	91	86	5.6	90	90	2.2
1,3-Dichloropropane	ND	99	96	3.1	94	99	5.2
1,4-Dichlorobenzene	ND	88	84	4.7	88	87	11
2,2-Dichloropropane	ND	91	84	8.0	76	73	1.1
2-Chlorotoluene	ND	89	84	5.8	89	88	11
2-Hexanone	ND	96	99	3.1	101	92	1.1
2-Isopropyitoluene	ND	90	86	4.5	89	89	0.0
4-Chlorotoluene	ND	95	89	6.5	93	95	21
4-Methyl-2-pentanone	ND	102	86	17.0	98	96	2.1
Acetone	ND	81	99	20.0	107	101	5.8
Acrylonitrile	ND	103	108	4.7	106	109	2.8
Benzene	ND	86	82	4.8	89	85	4.6
Bromobenzene	ND	91	87	4.5	92	92	4.0 0 0
Bromochloromethane	ND	90	91	1.1	96	95	1.0
Bromodichloromethane	ND	95	90	5.4	95	90	54
Bromoform	ND	91	90	1.1	100	100	0.4
Bromomethane	ND	122	113	7.7	111	129	15.0
Carbon Disulfide	ND	<70	<70	NC	82	83	12
Carbon tetrachloride	ND	86	79	8.5	94	86	8.9
Chlorobenzene	ND	89	83	7.0	90	88	22
Chloroethane	ND	95	91	4.3	87	87	0.0
Chloroform	ND	86	83	3.6	88	85	3.5

QA/QC Data

SDG I.D.: GAR59041

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD	
Chloromethane	ND	90	85	5.7	82	87	59	-
cis-1,2-Dichloroethene	ND	87	85	2.3	90	89	1 1	
cis-1,3-Dichloropropene	ND	96	91	5.3	96	94	21	
Dibromochloromethane	ND	95	97	2.1	99	99	0.0	
Dibromoethane	ND	94	93	1.1	101	104	2.0	
Dibromomethane	ND	93	89	4.4	94	Q1	2.5	
Dichlorodifluoromethane	ND	98	93	5.2	75	72	J.Z.	
Ethylbenzene	ND	91	84	8.0	90	87	4.1	
Hexachlorobutadiene	ND	90	85	57	86	88	3.4	
Isopropylbenzene	ND	87	83	4.7	91	Q1	2.5	
m&p-Xylene	ND	90	84	6.9	Q1	89	0.0	
Methyl ethyl ketone	ND	83	83	0.0	83	84	3.4	
Methyl t-butyl ether (MTBE)	ND	96	97	1.0	95	96	1.2	
Methylene chloride	ND	85	82	3.6	80	90	1.0	
Naphthalene	ND	101	98	3.0	83	100	1.1	
n-Butylbenzene	ND	93	86	7.8	. 87	87	18.0	
n-Propylbenzene	ND	92	85	7.0	07	80	0.0	
o-Xylene	ND	94	87	7.5	92 Q <i>A</i>	69	3.3	
p-lsopropyltoluene	ND	94	88	6.6	94 00	90	4.3	
sec-Butylbenzene	ND	88	83	5.8	90	69 86	1.1	
Styrene	ND	94	90	13	00	00	2.3	
tert-Butylbenzene	ND	92	85	70	90	94	4.2	
Tetrachloroethene	ND	87	78	10.0	30	09	1.1	
Tetrahydrofuran (THF)	ND	86	89	31	92	80	4.4	
Toluene	ND	88	83	5.4	00 00	83	2.4	
trans-1,2-Dichloroethene	ND	85	78	9.6 9.6	90 0E	85	5.7	
trans-1,3-Dichloropropene	ND	106	104	1.0	102	64 100	1.2	
trans-1,4-dichloro-2-butene	ND	104	104	3.0	103	102	1.0	
Trichloroethene	ND	89	81	5.9	93 02	100	7.3	
Trichlorofluoromethane	ND	84	80 80	J.0	90	87	6.7	
Trichlorotrifluoroethane	ND	84	70	4.3 6 1	00	01	6.0	
Vinyl chloride	ND	88	83 83	0.1 E 0	00	84	4.7	
% 1,2-dichlorobenzene-d4	105	101	00	2.0	100	79	2.5	
% Bromofluorobenzene	91	99	33 07	2.0	100	100	0.0	
% Dibromofluoromethane	107	100	97 101	2.0	100	98	1.0	
% Toluene-d8	99	100	100	1.0	102	101	1.0	
Comment:		100	100	0.0	101	99	2.0	
A blank MS/MSD was analyzed with thi	s hatch							
QA/QC Batch 125416, QC Sample N	lo: AR59042 (AR59042, A	R59044, AR59	047, AR590)48. AR59(050)			
Volatiles			,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			
1,1,1,2-Tetrachloroethane	ND	94	89	5.5	97	92	53	
1,1,1-Trichloroethane	ND	90	86	4.5	93	87	6.7	
1,1,2,2-Tetrachloroethane	ND	85	88	3.5	89	89	0.0	
1,1,2-Trichloroethane	ND	103	102	1.0	107	102	0.0 4 8	
1,1-Dichloroethane	ND	89	87	2.3	89	87	- 1 .0 2 2	
1,1-Dichloroethene	ND	83	81	2.4	92	86	2.J 6.7	
1,1-Dichloropropene	ND	85	82	3.6	95	87	0.7 8 9	
1,2,3-Trichlorobenzene	ND	123	121	1.6	93	113	19.4	

QA/QC Data

SDG I.D.: GAR59041

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
1,2,3-Trichloropropane	ND	104	106	1.9	92	100	83
1,2,4-Trichlorobenzene	ND	116	113	2.6	99	106	6.8
1,2,4-Trimethylbenzene	ND	100	97	3.0	99	94	5.2
1,2-Dibromo-3-chloropropane	ND	104	106	1.9	92	102	J.2 10.2
1,2-Dichlorobenzene	ND	94	93	1.1	95	92	10.5
1,2-Dichloroethane	ND	90	86	4.5	92	91	J.Z
1,2-Dichloropropane	ND	94	89	5.5	95	92	3.2
1,3,5-Trimethylbenzene	ND	98	93	5.2	98	92	5.2
1,3-Dichlorobenzene	ND	97	95	21	98	92	0.3
1,3-Dichloropropane	ND	95	98	3.1	95	92	3.2
1,4-Dichlorobenzene	ND	98	94	42	96	92	3.2
2,2-Dichloropropane	ND	93	88	5.5	80	92 74	4.3
2-Chlorotoluene	ND	95	93	2.1	07	74	7.8
2-Hexanone	ND	<70	90	NC	36	91	0.4
2-isopropyltoluene	ND	98	92	63	07	90	92.5
4-Chlorotoluene	ND	99	97	2.0	100	92	5.3
4-Methyl-2-pentanone	ND	85	86	1.0	00	91	9.4
Acetone	ND	88	97	0.7	90 0 <i>4</i>	02 84	9.3
Acrylonitrile	ND	91	95	13	94 97	04 97	11.2
Benzene	ND	86	83	4.J 3.6	07	87	0.0
Bromobenzene	ND	94	03	1 1	92	87 02	5.6
Bromochloromethane	ND	91	90	1.1	92	93	1.1
Bromodichloromethane	ND	95	93	2.1	94	90	4.3
Bromoform	ND	90	93	2.1	90 07	89	9.6
Bromomethane	ND	82	88	71	. 57	94	3.1
Carbon Disulfide	ND	<70	<70	NC	90 96	92	6.3
Carbon tetrachloride	ND	86	81	60	05	01	6.0
Chlorobenzene	ND	96	90	6.5	95 07	00	9.9
Chloroethane	ND	86	79	0.5 8 5	97	92	5.3
Chloroform	ND	89	85	4.6	04	76	7.4
Chloromethane	ND	87	88	11	30 90	00	4.5
cis-1,2-Dichloroethene	ND	90	20	1.1	04	00	3.6
cis-1,3-Dichloropropene	ND	94	95	1.1	94	90	4.3
Dibromochloromethane	ND	96	95	1.1	95 102	93	2.1
Dibromoethane	ND	100	96	1.0	102	96	4.0
Dibromomethane	ND	91	an	4.1	103	100	3.0
Dichlorodifluoromethane	ND	104	90	1.1 8 0	90	95	1.0
Ethylbenzene	ND	97	02	6.U 5.2	00	73	9.2
Hexachlorobutadiene	ND	100	92	J.J 1 1	99	93	6.3
Isopropylbenzene	ND	94	<u>an</u>	4.1	90 100	94	1.1
m&p-Xylene	ND	97	90 02	4.J	100	95	5.1
Methyl ethyl ketone	ND	78	92. 80	12.0	99	92	7.3
Methyl t-butyl ether (MTBE)	ND	94	03	13.2	98	83	16.6
Methylene chloride	ND	3 4 86	94 96	0.0	94	92	2.2
Naphthalene	ND	96	105	0.0	90	88	2.2
n-Butylbenzene	ND	101	06	9.U 5 1	/ð	92	16.5
n-Propylbenzene	ND	00	90 04	D. I	9/	90	7.5
o-Xylene	ND	99 00	94 02	5.Z	100	94	6.2
p-Isopropyltoluene	ND	103	92 98	7.3 5.0	101	96 93	5.1 7.3

QA/QC Data

SDG I.D.: GAR59041

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
sec-Butylbenzene	ND	97	92	5.3	98	91	74
Styrene	ND	98	93	5.2	101	96	5.1
tert-Butylbenzene	ND	99	94	5.2	100	94	6.2
Tetrachloroethene	ND	88	86	2.3	98	89	9.6
Tetrahydrofuran (THF)	ND	88	92	4.4	75	88	16.0
Toluene	ND	92	87	5.6	96	89	7.6
trans-1,2-Dichloroethene	ND	88	83	5.8	90	85	57
trans-1,3-Dichloropropene	ND	102	103	1.0	100	95	5.7
trans-1,4-dichloro-2-butene	ND	100	105	4.9	96	91	5.1
Trichloroethene	ND	90	86	4.5	97	89	3.3 8.6
Trichlorofluoromethane	ND	89	85	4.6	91	84	8.0
Trichlorotrifluoroethane	ND	90	84	6.9	94	88	6.0 6.6
Vinyl chloride	ND	91	85	6.8	89	83	0.0
% 1,2-dichlorobenzene-d4	100	101	101	0.0	100	98	7.0
% Bromofluorobenzene	90	101	97	4.0	100	100	2.0
% Dibromofluoromethane	99	100	99	1.0	101	100	0.0
% Toluene-d8	97	98	98	0.0	101	102	1.0
Comment:				0.0		100	1.0
A blank MS/MSD was analyzed with this batcl	٦.						

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis/Shiller, Laboratory Director April 23, 2009

					I	СНА	IN O	F CI	UST	DDY	RE	CORD				Ter	np	F	g	of
PH	JENIX 🛯	ALL.		Ę	587 Ea	st Mido	ile Turr	npike, F	P.O. Bo	x 370. I	Manch	ester CT (06040		Data	a Delive	erγ:			
Environm	ental Laboratories	5, Inc.			Em	ail: ser	vice@p	hoenix	dabs.co	m F	Fax (86	0) 645-08	23			Fax #:	·			
Customor NF	τ					CI	ient S	Servic	ces (8	360)	645-8	3726			Ď	Email:	Tubn	e+c 8	DA	x Call
Address: 147	6 Rr an		······································		-	Projec	t: <u> </u>	Loud	na	PINE	A			P	roject P.	.0: (12	103	20	<u></u>
Rev.	istor spa .1		. 20			Repor	t to:	\mathcal{N}	ETC					Р	hone #:	8	84-8	549		
	lient Sample - Information	<u> </u>	020			Invoice	∋ to:	~ بر	Test	w	ink			F	ax #:	-88	24-6	2710		
Sampler's 🔏	ment oumple - mormation-	Joentificati	on			nalve	ie			/ /		///	//		77		420	7	7	77
Signature	WO W	4/16/0	2 Date			Reque	st			/ /	/ /					N ³¹⁰	\rightarrow /	/ /		A noom
Matrix Code: DW=drinking wate GW=groundwater	er WW=wastewater S=soit SL=sludge A=air	/solid O =o	ther			/	1,37								etterol .	5. Ol	01 14515	L LO	1500ml	115000
Phoenix Sample #	Customer Sample Identification	Sample Matrix	Date Sampled	Time Sampled	/ 4	A B								SOIL OF	MC CH AND	ntaine Ji	NDET 100	1250 1250 1250	HNO32	om 250ml
	MW-1	GW	4/16/09	1:20	X										2	$\int $				<u>~~~</u>
	mw-z			12:48	x										2					
	mw-4			12:35	X										1					
	MW-S			12:20	X															
	MW-6			1:05	X			-							2					
	MW-7			1:12	x				<u>}</u>				╢┈┼╌							
	MW-8			1:30	X								╢──┤─		4		-	$\left \right $		
	MW-9			12:58	X			+					╢──┼─	_	0					
	MW-10			12:20	X								╢──┼─		1					
	(Mul-))			1.20	$\frac{x}{x}$															
	1 100 11			1.20											2					
								-			-			_						
// / Relinquis	néd by:	Accepte	d by		late.		T													
Comments, Special	Requirements or Regulations:	15 kz)	- 4/	<u>רו /</u> קרו	09	12	745		1 Da 2 Da 3 Da 5 Star	ay* ays* ays* ays* ndard er		Cert. Protect. Iobility Iobility Protect.	MA GV GV GV GV S-1	CP Cert. V-1 V-2 V-3			Form Excel PDF GIS/K EQuIS Other	at ey	
•		NET	< 5	DAY F	(0 <i>2)</i>	n			×	SURCH APPLI	ARGE ES here s	Amples v	vol. Vol. Criteria r vere coll	S-2 S-3 S-3 Oth	/RA eSM ler NY	/ ART		Packa ASP-A NJ Red NJ Ha: Phoen	duced zsite E ix Std	Deliv. * DD Report
1. #M # AMMANDE	g ²⁵														1			Other		

Appendix G

ULI TO-15 Air / Vapor Quality Report

TO-15 IMPLANT INTEGRITY CHECK

PROJECT.____Loudon Plaza____ CLIENT:____Sky Four, LLC.___

1

WEATHER: Cloudy +/- 50 degrees F

SERITY CHECK	04/24/2009	NA		AN	0.0	c		n c	0.0
G IMPLANT INTER	04/24/2009	NA		AN	11:12	11-20	40-1-1 40-1-1	11.11	11.26
POST SAMPLIN PID START TIME	04/24/2009	Ą		AN	11:09	11.29	110	41.11	11:23
ENCLOSURE PID	04/24/2009	NA	V IX	C.	18.4	17.8	10 8	180	16.3
1 IMPLANT PID	04/24/2009	AN	NA		0.0	0.0	04	0.0	0.1
AMBIENT AIR PIC	04/24/2009	NA	ΝA		0.0	0.0	1.8	0.0	0.0
IIME	04/24/2009	AN	AN		11:08	11:28	11:18	11:13	11:23
ERITY CHECK IMPLANT PID	04/23/2009	9.4	5.2		0.0	0.0	0.4	0.0	0.0
MPLANT INTEC	04/23/2009	11:35	11:27		00.01	13:41	12:09	12:02	11:56
PRE SAMPLING PID START TIME	04/23/2009	11:33	11:22	10.40	04.01	13:37	12:05	11:58	11:51
ENCLOSURE PID	04/23/2009	15.6	20.9	10.5	0.0	17.9	18.3	19.8	21.6
IMPLANT PID	04/23/2009	1.0	3.0	6	2	0.0	1.5	0.0	0.5
AMBIENT AIR PIC	04/23/2009	0.0	0.0	00		0.0	2.5	0.0	0.2
HME	04/23/2009	10:55	10:58	13.45		13:36	11:15	11:10	11:05
IMPLANT ID	Date	SS-1	SS-2	SS-1 (Repaired)	SS-2	(Repaired)	SS-3	SS-4	SS-5

TO-15 SAMPLE RUN TIMES

350 Northern Blvd.

Albany, New York

Sampled April 23 & 24, 2009

NETC Project # 08.1023054

Sample ID	Location	Sample Run Time
SS-1	KEM CLEANERS	20 HOURS 56 MINUTES
IA-1	KEM CLEANERS	20 HOURS 55 MINUTES
SS-2	VACANT SPACE	21 HOURS 16 MINUTES
IA-2	VACANT SPACE	21 HOURS 29 MINUTES
SS-3	REST ROOM	21 HOURS 29 MINUTES
IA-3	REST ROOM	21 HOURS 8 MINUTES
SS-4	SUITE 110	21 HOURS 10 MINUTES
IA-4	SUITE 110	21 HOURS 14 MINUTES
SS-5	TOWN TOTAL HEALTH	21 HOURS 0 MINUTES
IA-5	TOWN TOTAL HEALTH	20 HOURS 58 MINUTES
OA-1	OUTSIDE	19 HOURS 40 MINUTES

TABLE 1 VOLATILE ORGANICS DATA ANALYSIS (EPA METHOD TO-15) Louden Plaza, 350 Northern Blvd., Albany NY

NETC Project # 08.1023054

Page 1 of 4

PADAMETER		SAI	MPLE DESCR		un de la composition de la composition En la composition de la
PARAMELEN	SS-1	SS-2	[A-1	IA-2	OA-1
Location	r Kem	Office	Kem	Office	Outside
1,1,1-Trichloroethane	ND	1.1	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	2 Q	ND	ND	ND
1,2,4-Trimethylbenzene	ND	1.4 Q	ND	ND	ND
1,2-Dibromoethane	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND
1,3-Butadiene	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND
1,4-Dioxane	ND	ND	ND	ND	ND
2-Butanone (MEK)	7.2 Q	45 Q	ND	ND	ND
2-Hexanone	1.1	5.9 Q	ND	ND	ND
4-Ethyltoluene	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND	1.3	ND	ND	ND
Acetone	5.3 Q	37 Q	ND	ND	ND
Benzene	ND	0.94 Q	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND
Carbon disulfide	ND	1	ND	ND	ND
Carbon tetrachloride	0.58	0.51	ND	ND	0.59
Chlorobenzene	ND	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND	
hloroform	3.8	2.2			
hloromethane	ND	1	ND		
					ND ND

Notes: All concentrations are in ug/m3

Q=Outlying QC recoveries were associated with this analyte B = Analyte detected in the associated Methd Blank

J = Analyte detected below quantitation limits

TABLE 1 VOLATILE ORGANICS DATA ANALYSIS (EPA METHOD TO-15)

Louden Plaza, 350 Northern Blvd., Albany NY

NETC Project # 08.1023054 Page 2 of 4

	SAMPLE DESCRIPTION									
FARAMEIER	SS-1	SS-2	IA-1	IA-2	0A-1					
	rem T	Office	Kem	Office	Outside					
cis-1,2-Dichloroethene	5.6	ND	ND	ND	ND					
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND					
Cyclohexane	ND	ND	ND	ND	ND					
Dibromochloromethane	ND	ND	ND	ND	ND					
Ethanol	8.1 Q	22 Q	5.1 QB	24 QB	ND					
Ethyl acetate	33	36	53	30	29					
Ethylbenzene	ND	ND	ND	ND	ND					
Freon 11	ND	ND	ND	ND	ND					
Freon 114	ND	ND	ND	ND	ND					
Freon 12	ND	ND	ND	ND	ND					
Freon 113	ND	ND	ND	ND	ND					
Heptane	ND	ND	ND	ND	ND					
Hexachlorobutadiene	2.5 B	2.6 QB	ND	ND	28.08					
Hexane	ND	ND	ND	ND	ND					
Isopropyl Alcohol	ND	1.3 Q	ND	41 QB	ND					
m,p Xylene	ND	ND	ND	ND	ND					
Methyl tert-butyl ether	ND	ND	ND	ND	ND					
Methylene chloride	ND	ND	ND	ND	ND					
n-Heptane	ND	ND	ND	ND	ND					
o-Xylene	ND	ND	ND	ND	ND					
Propene	2.1	330		ND						
Styrene	ND	ND			ND					
Tetrachloroethene	3.8	110	27	ND						
Tetrahydrofuran	ND	1.0	<u>3.7</u>		ND					
Toluene	1	1.9		<u>ND</u>	ND					
trans-1.2-Dichloroethene	1.5		1.1 B	.84 8	ND					
trans-1.3-Dichloropropene	ND		ND	ND	ND					
Trichloroethene	<u> </u>		ND	ND	ND					
Vinvl acetate		11	ND	ND	0.22					
Vinyl chloride		1.2	ND	ND	ND					
TICs	ND	ND	ND	ND	ND					
	52.76	78.6	26.13 B	58 B	47					

Notes: All concentrations are in ug/m3 except for tentatively identified compounds (TICs) which are reported in ppv Q=Outlying QC recoveries were associated with this analyte B ≈ Analyte detected in the associated Methd Blank

J = Analyte detected below quantitation limits

Analytical Report	Date: 13-May-09								
CLIENT: NORTHEAST ENVIRONMENTAL		Clie	Client Sample ID: SS-1						
Location Loudon Plaza	Collection Date: 4/24/2009								
Project: U0904581		Ton H. 1067/200							
Lab 1D. F0904009-001 4	145 TV 100 HJ20								
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed			
TO-15 (VI+TICS)						Analyst: KI D			
1,1,1-Trichloroethane	ND	1.1		ua/m3	1	5/7/2009 9:25-00 PM			
1,1,2,2-Tetrachloroethane	ND	1.4		ua/m3	- 1	5/7/2009 9:25:00 PM			
1,1,2-Trichloroethane	ND	1.1		uq/m3	1	5/7/2009 9:25:00 PM			
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6		ug/m3	1	5/7/2009 9:25:00 PM			
1,1-Dichloroethane	ND	0.82		ug/m3	1	5/7/2009 9:25:00 PM			
1,1-Dichloroethene	ND	0.81		ua/m3	1	5/7/2009 9:25:00 PM			
1,2,4-Trichlorobenzene	ND	1.5		ug/m3	1	5/7/2009 9:25:00 PM			
1,2,4-Trimethylbenzene	ND	1.0		ug/m3	1	5/7/2009 9:25:00 PM			
1,2-Dibromoethane	ND	1.6		ua/m3	1	5/7/2009 9:25:00 PM			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.4		ua/m3	1	5/7/2009 9:25:00 PM			
1,2-Dichlorobenzene	ND	1.2		ua/m3	1	5/7/2009 9:25:00 PM			
1,2-Dichloroethane	ND	0.82		ua/m3	1	5/7/2009 9:25:00 PM			
1,2-Dichloropropane	ND	0.94		ua/m3	1	5/7/2009 9:25:00 PM			
1,3,5-Trimethylbenzene	ND	1.0		ua/m3	1	5/7/2009 9:25:00 PM			
1,3-Butadiene	ND	0.45		ua/m3	1	5/7/2009 9:25:00 PM			
1,3-Dichlorobenzene	ND	1.2		ua/m3	1	5/7/2009 9:25:00 PM			
1,4-Dichlorobenzene	ND	1.2		ua/m3	1	5/7/2009 9:25:00 PM			
1,4-Dioxane	ND	0.73		ug/m3	1	5/7/2009 9:25:00 PM			
2-Butanone (MEK)	7.2	0.60	Q	ug/m3	1	5/7/2009 9:25:00 PM			
2-Hexanone (*)	1.1	0.83		ug/m3	1	5/7/2009 9:25:00 PM			
4-Ethyltoluene (*)	ND	1.0		ug/m3	1	5/7/2009 9:25:00 PM			
I-Methyl-2-Pentanone (MIBK)	ND	0.83		ua/m3	1	5/7/2009 9:25:00 PM			
Acetone	5.3	4.8	Q	ug/m3	1	5/7/2009 9:25:00 PM			
Benzene	ND	0.65		ug/m3	1	5/7/2009 9:25:00 PM			
Senzyl chloride	ND	1.1		ug/m3	1	5/7/2009 9:25:00 PM			
Bromodichloromethane	ND	1.4		ua/m3	1	5/7/2009 9:25:00 PM			
Bromoform	ND	2.1		ug/m3	1	5/7/2009 9:25:00 PM			
Bromomethane	ND	0.79		ug/m3	1	5/7/2009 9:25:00 PM			
Carbon disulfide	ND	0.63		ug/m3	1	5/7/2009 9:25:00 PM			
Carbon tetrachloride	0.58	0.26		uq/m3	1	5/7/2009 9:25:00 PM			
hlorobenzene	ND	0.94		ug/m3	1	5/7/2009 9:25:00 PM			
hloroethane	ND	0.54		ug/m3	1	5/7/2009 9:25:00 PM			
hloroform	3.8	0.99		ug/m3	1	5/7/2009 9:25:00 PM			
hloromethane	ND	0.42		ug/m3	1	5/7/2009 9:25:00 PM			
is-1,2-Dichloroethene	5.6	0.81		ug/m3	1	5/7/2009 9:25:00 PM			
is-1,3-Dichloropropene	ND	0.92		ug/m3	1	5/7/2009 9-25-00 PM			
yclohexane	ND	0.70		ug/m3	1	5/7/2009 9:25:00 PM			
and the second	177 - E. C. Maria Sana ana					· · · · · · · · · · · · · · · · · · ·			

Qualifiers:

(*) Certification not offered by NYS for this compound

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Q Outlying QC recoveries were associated with this analyte

Analytical Keport	1707 Annual Contraction (1917)	Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL	Client Sample ID: SS-1 Collection Date: 4/24/2009								
Broloate 110004593									
110jeci. 00904381	Tag #: 1067/320 Matrix AIR								
Lab ID: E0904009-001A									
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed			
TO-15 (VI+TICS)				-		Annius 10 A			
Dibromochloromethane	ND	17		unim3	4	Analyst: KLP			
Dichlorodifluoromethane (Freon 12)	ND	10		ug/m3	1	5/7/2009 9:25:00 PN			
Ethanol (*)	8.1	3.8	0	unim3	י 1	5/7/2009 9.25.00 PM			
Ethyl acetate (*)	33	0.73	~~	un/m3	1	5/7/2009 9.25.00 PM			
Ethyl benzene	ND	0.88		un/m3	1	5/7/2009 9.20.00 PM			
Hexachlorobutadiene	2.5	2.2	в	ua/m3	1	5/7/2009 9:25:00 PM			
Hexane	ND	0.72		ua/m3	•	5/7/2000 9:25:00 PM			
Isopropanol	ND	5.0		ug/m3	1	5/7/2000 0-25-00 PM			
m,p-Xylene	ND	0.88		ua/m3	4	5/7/2009 5:25:00 PM			
Methyl tert-butyl ether (MTBE)	ND	0.73		uo/m3	4	5/7/2009 9:25:00 PM			
Methylene chloride	ND	0.71		uo/m3	1	5/7/2009 9:25:00 PM			
n-Heptane	ND	0.83		uo/m3	1	5/7/2009 9:25:00 PM			
o-Xylene	ND	0.88		uo/m3	1	5/7/2009 0:25:00 PM			
Propene (*)	2.1	0.35		uo/m3	1	5/7/2000 0:25:00 DM			
Styrene	ND	0.87		ua/m3	1	5/7/2009 0-25-00 PM			
Tetrachloroethene	3.8	1.4		ua/m3	1	5/7/2009 9-25 OD PM			
Tetrahydrofuran (*)	ND	0.60		ua/m3	1	5/7/2009 9·25·00 PM			
Toluene	1.0	0.77		ua/m3	1	5/7/2009 9:25:00 PM			
trans-1,2-Dichloroethene	1.5	0.81		ug/m3	1	5/7/2009 9:25:00 PM			
trans-1,3-Dichloropropene	ND	0.92		ua/m3	1	5/7/2009 9-25-00 PM			
Trichloroethene	5.2	0.22		ua/m3	1	5/7/2009 9:25:00 PM			
Trichlorofluoromethane (Freon 11)	ND	1.1		ua/m3	1	5/7/2009 9:25:00 PM			
Vinyl acetate	ND	0.72		ug/m3	1	5/7/2009 9:25-00 PM			
Vinyl chloride NOTES:	ND	0.52		ug/m3	1	5/7/2009 9:25:00 PM			

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- Certification not offered by NYS for this compound (*) Ε
 - Value above quantitation range J
 - Analyte detected below quantitation limits
 - S Spike Recovery outside accepted recovery limits

Date: 5-13-0"

- Analyte detected in the associated Method Blank 8
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Outlying QC recoveries were associated with this analyte Q

Analytical Report Date: 13-May-09						zy-09			
CLIENT: NORTHEAST ENVIRONMENTAL	Client Sample ID: SS-7								
Location Loudon Plaza		Collection Date: 4/04/0000							
Project: 10904581		Concernon Date: 4/24/2009							
		rag	#: 104	57/321					
Lao ID: E0904009-003A	Matrix AIR								
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed			
TO-15 (VI+TICS)									
1,1,1-Trichloroethane	1.1	1.1		unim3	4	Analyst: KLP			
1,1,2,2-Tetrachloroethane	ND	14		ugano ua/m3	1	5/7/2009 10:11:00 PM			
1,1,2-Trichloroethane	ND	1.1		un/m3	1	5/7/2009 10:11:00 PM			
1,1,2-Trilluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6		110/m3	1	5/7/2000 10:11:00 PM			
1,1-Dichloroethane	ND	0.82		ug/m3	•	5/7/2000 10:11:00 PM			
1,1-Dichloroethene	ND	0.81		uginio unim3	*	5/7/2009 10:11:00 PM			
1,2,4-Trichlorobenzene	20	15		ug/m3	, ,	5/7/2009 10.11:00 PM			
1,2,4-Trimethylbenzene	14	1:0		ug/m3	4	5/7/2009 10.11.00 PM			
1.2-Dibromoethane	ND	16		ug/m3	1 4	5/7/2009 10:11:00 PM			
1.2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.0		09/010	4	5/7/2009 10.11:00 PM			
1.2-Dichlorobenzene	ND	1.4		ug/m3	4	5/7/2009 10:11:00 PM			
1,2-Dichloroethane	ND	0.82		ug/m3	1	5/7/2009 10:11:00 PM			
1,2-Dichloropropane	ND	0.02		ugino	ा - स	5/7/2009 10:11:00 PM			
1,3,5-Trimethylbenzene	NO	1.0		ughino ua/m3	4	5/7/2009 10:11:00 PM			
1,3-Butadiene	ND	D 45		ugano ualm3	4	5/7/2009 10.11:00 PM			
1,3-Dichlorobenzene	ND	12		unim3	*	5/7/2009 10:11:00 PM			
1,4-Dichlorobenzene	ND	1 2		ugim2	4	5/7/2009 10.11.00 PM			
1,4-Dioxane	ND	0.73		uginit ugim2	ा	5/7/2009 10:11:00 PM			
2-Butanone (MEK)	45	0.10	0	uginits ugim2	3 4	5/7/2009 10:11:00 PM			
2-Hexanone (*)	50	0.00	w.	ug/m3	- 1 - 4	5/7/2009 10:11:00 PM			
4-Ethyltoluene (*)	NO	10		ug/m3	1	5/7/2009 10:11:00 PM			
4-Methyl-2-Pentanone (MIBK)	13	0.83		ug/mb	•	5/7/2009 10:11:00 PM			
Acetone	37	0.03 A R	0	ug/m3	4	5/7/2009 10:11:00 PM			
Benzene	0.94	0.65	~	ug/m3	1	5///2009 10:11:00 PM			
Benzyl chloride	ND	1 1		ug/m3	3 -1	5/7/2009 10:11:00 PM			
Bromodichloromethane	ND	1 4		ugim3	1	5/7/2009 10:11:00 PM			
Bromoform	ND	21		uginio uginio	ा न	5/7/2009 10:11:00 PM			
Bromomethane	ND	ñ 79		uginio	1 -r	5/7/2009 10:11:00 PM			
Carbon disulfide	10	0.73		uginta	1	5/7/2009 10:11:00 PM			
Carbon tetrachloride	0.51	0.00		uginis	1	5/7/2009 10:11:00 PM			
Chlorobenzene	NID	0.20		ugima	1	5/7/2009 10:11:00 PM			
Chloroethane	ND	0.94		ug/m3	Ĵ	5/7/2009 10:11:00 PM			
Chioroform	20	0.04		ug/m3	1	5/7/2009 10:11:00 PM			
Chloromethane	2.2 ND	0.33		ug/m3	1	5///2009 10:11:00 PM			
cis-1,2-Dichloroethene	ND	0.4∡ ∩ ⊵1		ug/m3	1	5///2009 10:11:00 PM			
cis-1,3-Dichloropropene	ND	0.01		ug/m3	1	5///2009 10:11:00 PM			
Cyclohexane	1.0	0.70		ug/m3 ug/m3	1	5/7/2009 10:11:00 PM			
Approved By:		Date:	5-1	3-199	•				

Approved By:

Qualifiers:

(*) Certification not offered by NYS for this compound

E Value above quantitation range

 \mathbf{r}

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

- Date: 5-13-09
 - В Analyte detected in the associated Method Blank
 - Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Outlying QC recoveries were associated with this analyte Q

Analytical Report			Date: 13-May-09					
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza Project: U0904581 Lab ID: E0904009-003A		Client Sample ID: S Collection Date: 4/2 Tag #: 1067/321 Matrix AIR			38-2 24/2009			
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed		
TO-15 (VI+TICS)						. .		
Dibromochloromethane	ND	17		unim 3	æ	Analyst: KLP		
Dichlorodifluoromethane (Freon 12)	ND	1.7		ugnito ug/m3	1	5/7/2009 10:11:00 PM		
Ethanol (*)	22	38	0	ugima	। न	5/7/2009 10,11,00 PM		
Ethyl acetate (*)	36	0.73	.	uginio unima	-1	5/7/2009 10:11:00 PM		
Ethyl benzene	ND	0.78		ug/m3	4	5/7/2009 10:11:00 PM		
Hexachlorobutadiene	2.6	22	R	un/m3	*	5/7/2008 10.11.00 PM		
Hexane	ND	0.72	ω.	ug/m3	4	5/7/2005 10.11.00 PM		
Isopropanol	13	50	0	ug/m3	1	5/7/2009 10.11:00 PM		
m,p-Xylene	ND	0.88	×	ug/m3	1	5/7/2009 10.11:00 PM		
Methyl tert-butyl ether (MTBE)	ND	0.00		ug/m3	1	5/7/2009 10.11.00 PM		
Methylene chloride	ND	0.71		uginio unim3	1	5/7/2009 10:11:00 PM		
n-Heptane	ND	0.83		noim3	1	5/7/2009 10.11.00 PM		
o-Xylene	ND	0.88		ug/m3	*	5/7/2009 10-11-00 PM		
Propene (*)	3.3	0.35		uo/m3	.1	5/7/2009 10:11:00 PM		
Styrene	ND	0.87		unim3	4	5/7/2000 10-11-00 PM		
Tetrachloroethene	110	14		uo/m3	1	5/7/2000 10-11-00 PM		
Tetrahydrofuran (*)	1.9	0.60		uo/m3	4	5/7/2000 10:11:00 PM		
Toluene	4.0	0.77		uaim3	1	5/7/2009 10.11:00 PM		
trans-1,2-Dichloroethene	ND	0.81		unimi	4	5/7/2009 10:11:00 PM		
trans-1,3-Dichloropropene	ND	0.92		ualm3	1 	5/7/2009 10:11:00 PM		
Trichloroethene	11	0.02		uginto uginto	4	5/7/2009 10:11:00 PM		
Trichlorofluoromethane (Freon 11)	ND	1 1		uginiti unim3	*	5/7/2009 10:11:00 PM		
Vinyl acetate	1.2	0.72		ugano unim3	*	5/7/2009 10:11:00 PM		
Vinyl chloride	ND	0.52		un/m3	1	5/7/2000 10:11:00 PM		
NOTES:				~9	,	STILLOUS INTELUU MM		

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits S
 - Spike Recovery outside accepted recovery limits

Date: 5-13-(

- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Outlying QC recoveries were associated with this analyte Q
| | Date: 13-May-09 | | | | | | | | |
|--|------------------------|------------|--------------------|----------|----------------------|--|--|--|--|
| CLIENT: NORTHEAST ENVIRONMENTAL | Client Sample ID: 1A-1 | | | | | | | | |
| Location Loudon Plaza | | Coll | 24/2009 |) | | | | | |
| Project: U0904581 | Tag #: 1067/130 | | | | | | | | |
| Lab ID: E0904009-002A | | Mat | rix AIR | | | | | | |
| Analyses | Result | Limit | Oual Units | DF | Date Analyzed | | | | |
| | | | ~ | | www.rumyzcu | | | | |
| 1.1.1-Trichloroethane | ND | | | | Analyst: KLF | | | | |
| 1,1,2,2-Tetrachloroethane | ND | 4.4
4 A | ug/m3 | 1 | 5/4/2009 | | | | |
| 1,1.2-Trichloroethane | ND | 4.4 | ug/ms | 1 | 5/4/2009 | | | | |
| 1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113) | ND | 1.1 | ug/mis | 1 | 5/4/2009 | | | | |
| 1,1-Dichloroethane | ND | 0.82 | uginia | 4 | 5/4/2009 | | | | |
| 1,1-Dichloroethene | ND | 0.81 | ug/m3 | 4 | 5/4/2009 | | | | |
| 1,2,4-Trichlorobenzene | ND | 15 | ugnno
ualm3 | र
त्र | 5/4/2009 | | | | |
| 1,2,4-Trimethylbenzene | NO | 1.0 | ug/mo | 1 | 5/4/2009 | | | | |
| 1,2-Dibromoethane | ND | 1.0 | ug/mu | 1 | 5/4/2009 | | | | |
| 1.2-Dichloro-1.1.2.2-tetrafluoroethane (Freon-114) | ND | 1.0 | ugmis
dor2 | 1 | 5/4/2009 | | | | |
| 1.2-Dichlorobenzene | ND | 1.7 | uyma | 4 | 0/4/2009 | | | | |
| .2-Dichloroethane | ND | 0.82 | ug/m3 | 4 | 5/4/2009 | | | | |
| 1,2-Dichloropropane | ND | 0.02 | ug/ma | 1 | 5/4/2009 | | | | |
| ,3,5-Trimethylbenzene | ND | 10 | ug/m3 | 1 | 5/4/2009 | | | | |
| ,3-Butadiene | ND | 0.45 | ugini.)
volm3 | i.
A | 3/4/2009 | | | | |
| ,3-Dichlorobenzene | ND | 1.2 | uynno. | 1 | 5/4/2009 | | | | |
| ,4-Dichlorobenzene | ND | 12 | ugini3 | 4 | 5/4/2009 | | | | |
| ,4-Dioxane | ND | 0.73 | ug/m3 | 1 | 5/4/2009 | | | | |
| -Butanone (MEK) | ND | 0.10 | ug/m3 | 1 | 5/4/2009 | | | | |
| -Hexanone (*) | ND | 0.00 | uginio
unim? | 1 | 5/4/2009 | | | | |
| -Ethyltoluene (*) | ND | 1 0 | ug/m3 | 4 | 5/4/2005 | | | | |
| -Methyl-2-Pentanone (MIBK) | ND | 0.83 | ug/m3 | 1
1 | 5/4/2009 | | | | |
| cetone | ND | 4.8 | ug/m3 | 4 | 5/4/2009 | | | | |
| enzene | ND | 0.65 | ug/m3 | 4 | 5/4/2009 | | | | |
| enzyl chloride | ND | 1.1 | ug/m3 | 1 | 5/4/2009 | | | | |
| romodichloromethane | ND | 1.4 | ug/m3 | 4 | 5/4/2009 | | | | |
| romoform | ND | 2.1 | ua/m3 | 4 | 5/4/2009 | | | | |
| romomethane | ND | 0.79 | Jin/m3 | 4 | 5/4/2000 | | | | |
| arbon disulfide | ND | 0.63 | ua/m3 | 1 | 5/4/2000 | | | | |
| arbon tetrachloride | ND | 0.26 | 10/m3 | 1 | 5/4/2000 | | | | |
| hlorobenzene | ND | 0.94 | 10/m3 | .1 | Sim Dada | | | | |
| hiorcethane | ND | 0.54 | un/m? | 1 | 5/4/2003
S/A/2000 | | | | |
| hloroform | ND | 0.99 | ugnito
Unim 3 | 1 | 5/4/2009 | | | | |
| nloromethane | ND | 0.42 | ugano
unim 2 | 1 | 5/2003 | | | | |
| s-1,2-Dichloroethene | ND | 0.72 | ugnito
tradació | 1 | 0/4/2009
5/4/2009 | | | | |
| s-1,3-Dichloropropene | ND | 0.01 | ugino | 1 | 0/4/2009
El//2009 | | | | |
| clohexane | ND | 0.70 | ug/m3 | 1 | 5/4/2009 | | | | |
| and a second | | - | | , | U(-1/2003 | | | | |

Qualifiers: (*) $\int_{-\infty}^{1} f$ Certification not offered by NYS for this compound

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Q Outlying QC recoveries were associated with this analyte

Analytical Report	Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza	Client Sample ID: IA-1 Collection Date: 4/24/2009							
Project: U0904581		Тая	#: 106	7/130				
Lab ID: E0904009-002A	Matrix AIR							
Analyses	Result	Limit Qu		Qual Units		Date Analyzed		
TO-15 (VI+TICS)					*******	A		
Dibromochloromethane	ND	17		ualmà	4	Analyst: KLP		
Dichlorodifluoromethane (Freon 12)	ND	10		ug/m3	1	5/4/2009		
Ethanol (*)	5.1	3.8	80	un/m3	+	5/4/2009		
Ethyl acetate (*)	53	0.73		ug/m3	1	5/4/2009		
Ethyl benzene	ND	0.88		un/m3	*	5/4/2003		
Hexachlorobutadiene	ND	2.2		ug/m3	+ 1	5/4/2009 6/4/2000		
Hexane	ND	0.72		ug/m3	1	5/4/2003		
Isopropanol	ND	50		ugimo	1	5/4/2009		
m,p-Xylene	ND	0.98		ug/m3	4	5/4/2009		
Methyl tert-butyl ether (MTBE)	ND	0.00		ug/m3	*	5/4/2009		
Methylene chloride	ND	0.71		uginis uaim3	1 -1	5/4/2009		
n-Heptane	ND	0.83		ug/m3	4	5/4/2005		
o-Xylene	ND	0.88		ug/m3	4	5/4/2005		
Propene (*)	ND	0.35		ug/m3	•	5/4/2008		
Styrene	ND	0.87		ug/m3	1	5/4/2009		
Tetrachloroethene	3.7	1.4		ua/m3	•	5/4/2009 5///2009		
Tetrahydrofuran (*)	ND	0.60		ua/m3	1	5/4/2000		
Toluene	1.1	0.77	B	unim?	4	5/4/2005		
trans-1,2-Dichloroethene	ND	0.81	÷	ualm?	4	5/4/2009		
trans-1,3-Dichloropropene	ND	0.92		ualm3	4	5/4/2009		
Trichloroethene	ND	0.22		ug/m3	4	5/4/2009		
Trichlorofluoromethane (Freon 11)	ND	11		uo/m3	1 1	5/4/2009 6/4/2000		
Vinyl acetate	ND	0.72		unima	1	51412009		
/inyl chloride	ND	0.52		unim3	• •	5/4/2000		
NOTES:				a Suna	1	JI TILLUUG		

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 5-13-09

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Q Outlying QC recoveries were associated with this analyte

Analytical Report		Date: 13-May-09 Client Sample ID: IA-2							
CLIENT: NORTHEAST ENVIRONMENTAL									
Location Loudon Plaza		Collection Date: 4/24/2000							
Project: 1/0904581	Teo #. 1067/260								
		1 ag	m. 1007/202						
Lab ID: 20904009-004A	Matrix AIR								
Analyses	Result	Limit	Qual Units	DF	Date Analyzed				
TO-15 (VI+TICS)					Analyst: KI				
1,1,1-Trichloroethane	ND	1.1	ua/m3	1	5/5/2009 1-21-00 AM				
1,1,2,2-Tetrachloroethane	ND	1.4	ua/m3	1	5/5/2009 1:21:00 AM				
1,1,2-Trichloroethane	ND	1.1	ua/m3	1	5/5/2009 1 21 00 AM				
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6	uo/m3	4	5/5/2009 1:21:00 AM				
1,1-Dichloroethane	ND	0.82	uo/m3	1	5/5/2009 1:21:00 AM				
1,1-Dichloroethene	ND	0.81	uo/m3	1	5/5/2009 1:21:00 AM				
1,2,4-Trichlorobenzene	ND	1.5	uo/m3	, 1	5/5/2009 1:21:00 AM				
1,2,4-Trimethylbenzene	ND	1.0	un/m3	1	5/5/2009 1/21-00 AM				
1,2-Dibromoethane	ND	1.6	un/m?	1	5/5/2000 1.21.00 AN				
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	14	ug/m3	4	5/5/2009 1.21.00 AW				
1,2-Dichlorobenzene	ND	12	ughta.		5/5/2009 1.21.00 AM				
1,2-Dichloroethane	ND	0.82	un/m3	1	5/5/2009 1.21:00 AM				
1,2-Dichloropropane	ND	0.94	ug/m3	1	5/5/2009 1.21.00 AM				
1,3,5-Trimethylbenzene	ND	10	uginio unim3	, 1	5/5/2000 1.21.00 AM				
,3-Butadiene	ND	0.45	ualm3	, 1	5/5/2009 1:21,00 AM				
I,3-Dichlorobenzene	ND	12	ug/m3	1	5/5/2009 1:21:00 AN				
,4-Dichlorobenzene	ND	12	ug/m3	1	5/5/2000 1:21:00 MM				
,4-Dioxane	ND	0.73	ug/m3	4	5/5/2009 1.21.00 AM				
-Butanone (MEK)	ND	0.00	ugima	। न	5/5/2009 1/21.00 AM				
-Hexanone (*)	ND	0.83	uginio uginio	1 4	5/5/2009 1:21:00 AM				
-Ethyltoluene (*)	ND	1.0	ug/m3	1	5/5/2009 1,21:00 AM				
-Methyl-2-Pentanone (MIBK)	ND	0.83	ugmo	ा - स	5/5/2009 1:21:00 AM				
cetone	ND	4.8	ugnito	। न	5/5/2009 1:21:00 AM				
lenzene	ND	0.65	ug/m3	4	5/5/2009 1.21.00 AM				
Senzyl chloride	ND	1 1	uginio uginio	1	5/5/2009 1.21.00 AM				
Iromodichioromethane	ND	14	ug/m3	4	5/5/2009 1.21.00 AM				
romoform	ND	24	ug/m3	1	5/5/2009 1/21/00 AM				
romomethane	ND	0 79	ugnita	4	5/5/2009 1/21/00 AM				
arbon disulfide	ND	0.75	uynno	+	SIGIZOUS EZTOU AM				
arbon tetrachloride	ND	0.00	ugnita 	1	SISIZUUS TIZTIOU AM				
hlorobenzene	ND	0.20	ugims	1	5/5/2009 1:21:00 AM				
hloroethane	NO	0.94	ug/m3	1	5/5/2009 1:21:00 AM				
hloroform	NO	0.04	ug/ms	1	5/5/2009 1:21:00 AM				
hloromethane	ND	0.99	ug/m3	1	5/5/2009 1:21:00 AM				
s-1.2-Dichloroethene		0.42	ug/m3	1	5/5/2009 1:21:00 AM				
s-1.3-Dichloropropene	ND.	0.01	ug/m3	1	5/5/2009 1:21:00 AM				
vclohexane		0.92	ug/m3	1	5/5/2009 1:21:00 AM				
	NU 	U.7U	ug/m3	1	5/5/2009 1:21:00 AM				

Qualifiers:

the second (*) Certification not offered by NYS for this compound

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

3-03

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Q

Outlying QC recoveries were associated with this analyte

Analytical Report	Date: 13-May-09					
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza		Clie Col	ent Sam lection	ple ID: 1 Date: 4/2	A-2 24/2009	
Project: U0904581		Tag	#: 106	7/262		
Lab ID: E0904009-004A		Mai	trix Al	R		
Analyses	Result	Limit Qual		Units	DF	Date Analyzed
TO-15 (VI+TICS)						Analysis (11 m
Dibromochloromethane	ND	17		nolm3	1	S/5/2000 1-21-00 AM
Dichlorodifluoromethane (Freon 12)	ND	1.0		ug/m3	1	5/5/2000 1:21:00 AM
Ethanol (*)	24	3.8	BO	ua/m3	1	5/5/2009 1-21-00 AM
Ethyl acetate (*)	30	0.73		ug/m3	1	5/5/2000 1-21-00 AM
Ethyl benzene	ND	0.88		ua/m3	1	5/5/2000 1-21-00 AM
Hexachlorobutadiene	ND	2.2		uginis ugim3	•	5/5/2009 1.21.00 AN
Hexane	ND	0 72		ug/m3	1	5/5/2009 1:21:00 AM
Isopropanol	41	5.0	BO	ug/m3	•	5/6/2005 1.21.00 AM
m,p-Xylene	ND	0.88		ua/m3	•	5/5/2009 1:21:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.73		un/m3	1	5/5/2000 1:21:00 AM
Methylene chloride	ND	0.71		ua/m3	1	5/5/2009 1:21:00 AM
n-Heptane	ND	0.83		uo/m3	1	5/5/2009 1:21:00 AM
o-Xylene	ND	0.88		ua/m3	1	5/5/2009 1:21:00 AM
Propene (*)	ND	0.35		ua/m3	1	5/5/2009 1-21-00 AM
Styrene	ND	0.87		ua/m3	1	5/5/2009 1:21:00 AM
Tetrachloroethene	ND	1.4		ua/m3	1	5/5/2009 1-21-00 AM
Tetrahydrofuran (*)	ND	0.60		ua/m3	1	5/5/2009 1:21:00 AM
Toluene	0.84	0.77	в	un/m3	1	5/5/2000 1-21-00 AM
trans-1,2-Dichloroethene	ND	0.81	-	uo/m3	1	5/5/2009 1:21:00 AM
trans-1,3-Dichloropropene	ND	0.92		ua/m3	1	5/5/2009 1:21:00 AM
Trichloroethene	ND	0.22		ua/m3	1	5/5/2009 1-21:00 AM
Trichlorofluoromethane (Freon 11)	ND	1.1		ua/m3	1	5/5/2009 1:21:00 AM
Vinyl acetate	ND	0.72		ua/m3	, 1	5/5/2009 1:21:00 AM
Vinyl chloride NOTES:	ND	0.52		ug/m3	1	5/5/2009 1:21:00 AM

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- Certification not offered by NYS for this compound (*)
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 13

- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit.
- Q Outlying QC recoveries were associated with this analyte

Analytical Report	eport Date: 13-May-09								
CLIENT: NORTHEAST ENVIRONMENTAL		Client Sample ID: OA-1							
Location Loudon Plaza		Coll	ection Date: 4/2	24/2009)				
Project: (1090458)		Tag #: 1067/287 Matrix AlR							
Lab 10- 50004000 0134									
Lab ID: E0904009-011A									
Analyses	Result	Limit	Qual Units	DF	Date Analyzed				
TO-15 (VI+TICS)					Analisati Kt D				
1,1,1-Trichloroethane	ND	1.1	ua/m3	1	5/7/2009 8:39-00 PM				
1,1,2,2-Tetrachloroethane	ND	1.4	ug/m3	1	5/7/2009 8:39:00 PM				
1,1,2-Trichloroethane	ND	1.1	iia/m3	1	5/7/2009 8:39:00 PM				
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6	ua/m3	1	5/7/2009 8:39:00 PM				
1,1-Dichloroethane	ND	0.82	uo/m3	4	5/7/2009 8:30-00 PM				
1,1-Dichloroethene	ND	0.81	ua/m3	1	5/7/2009 8:30-00 PM				
1,2,4-Trichlorobenzene	ND	1.5	uo/m3	1	5/7/2009 8:39:00 PM				
1,2,4-Trimethylbenzene	ND	1.0	ug/m3	1	5/7/2009 8:39:00 PM				
1,2-Dibromoethane	ND	1.6	ua/m3	1	5/7/2009 8:39:00 PM				
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.4	ua/m3	1	5/7/2009 8·39·00 PM				
,2-Dichlorobenzene	ND	1.2	ua/m3	1	5/7/2009 8:39:00 PM				
,2-Dichloroethane	ND	0.82	ua/m3	1	5/7/2009 8:39:00 PM				
,2-Dichloropropane	ND	0.94	ua/m3	1	5/7/2009 8:39-00 PM				
,3.5-Trimethylbenzene	ND	1.0	ua/m3	1	5/7/2009 8:39:00 PM				
,3-Butadiene	ND	0.45	ua/m3	1	5/7/2009 8:39:00 PM				
,3-Dichlorobenzene	ND	1.2	uo/m3	1	5/7/2009 8:39:00 PM				
,4-Dichlorobenzene	ND	12	ug/m3	1	5/7/2009 8:39:00 PM				
,4-Dioxane	ND	0.73	uo/m3	1	5/7/2009 8/39-00 PM				
-Butanone (MEK)	ND	0.60	un/m3	1	5/7/2009 8:30 00 PM				
2-Hexanone (*)	ND	0.83	ua/m3	- 4	5/7/2009 8:39:00 PM				
-Ethyltoluene (*)	ND	1.0	ua/m3	1	5/7/2009 8:39:00 PM				
-Methyl-2-Pentanone (MIBK)	ND	0.83	ua/m3	1	5/7/2009 8:39:00 PM				
cetone	ND	4.8	ua/m3	1	5/7/2009 8:39:00 PM				
enzene	ND	0.65	ua/m3	1	5/7/2009 8:39:00 PM				
enzyl chloride	ND	1.1	uq/m3	1	5/7/2009 8:39:00 PM				
romodichloromethane	ND	1.4	ug/m3	1	5/7/2009 8:39:00 PM				
iromoform	ND	2.1	ua/m3	1	5/7/2009 8:39:00 PM				
romomethane	ND	0.79	ua/m3	1	5/7/2009 8:39:00 PM				
arbon disulfide	ND	0.63	ua/m3	1	5/7/2009 8:39:00 PM				
arbon tetrachloride	0.58	0.26	ua/m3	1	5/7/2009 8:39:00 PM				
hlorobenzene	ND	0.94	ua/m3	1	5/7/2009 8:39:00 PM				
hloroethane	ND	0.54	ua/m3	1	5/7/2009 8:39 00 PM				
hloroform	ND	0.99	ua/m3	1	5/7/2009 8:39:00 PM				
hloromethane	ND	0.42	ua/m3	1	5/7/2009 8:39-00 PM				
s-1,2-Dichloroethene	ND	0.81	ua/m3	1	5/7/2009 8:39:00 PM				
s-1,3-Dichloropropene	ND	0.92	ua/m3	1	5/7/2009 8:39:00 PM				
yclohexane	ND	0.70	ug/m3	1	5/7/2009 8:39:00 PM				
Approved By:		Date:	5-13-0	q					

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Е Value above quantitation range

J

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

1. 9 ·····

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Q Outlying QC recoveries were associated with this analyte

Analytical Report	Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza Project: U0904581	Client Sample ID: OA-1 Collection Date: 4/24/2009 Tag #: 1067/287							
Lab ID: E0904009-0[1A	··· ••••	Mai	trix Al	R	- A - A Mar Adamaka	and a subscription of the		
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed		
TO-15 (VI+TICS)								
Dibromochloromethane	ND	17		unim?	.4	Analyst: KLP		
Dichlorodifluoromethane (Freon 12)	ND	10		ug/m3	1	5/7/2009 8:39:00 PM		
Ethanol (*)	ND	3.9		ug/ma	1	5/7/2009 8:39:00 PM		
Ethyl acetate (*)	29	0.73		uymia unim?	1	5/7/2009 8:39:00 PM		
Ethyl benzene	ND	0.75		ughno uaim3	-	5/7/2009 8:39:00 PM		
Hexachlorobutadiene	2.8	22	R	uginio unim3	4	5/7/2009 0:59:00 PM		
Hexane	ND	0.72	÷	unim?	1	5/7/2009 0.39.00 PM		
Isopropanol	NO	50		unim3	, 4	5/7/2009 0.39:00 PM		
m,p-Xylene	ND	0.88		ug/m3	- 4 - 4	5/7/2009 8:20:00 PM		
Methyl tert-butyl ether (MTBE)	ND	0.73		ug/m3	4	5/7/2009 8:39:00 PM		
Methylene chloride	ND	0.71		ug/m3	4	5/7/2009 9:30:00 PM		
n-Heptane	ND	0.83		uginio unim3	4	5/7/2009 0.39.00 PM		
o-Xylene	ND	0.88		uo/m3	1	5/7/2009 8:39:00 PM		
Propene (*)	ND	0.35		unim3	1	5/7/2009 0.59:00 PW		
Styrene	ND	0.87		unim2	, 1	5/7/2009 0.39.00 PM		
Tetrachloroethene	ND	1.4		ua/m3	1	5/7/2009 6:39:00 PM		
Tetrahydrofuran (*)	ND	0.60		uoim?	4	5/7/2009 0.39.00 PM		
Toluene	ND	0.77		ug/m3	4	5/7/2009 0:39:00 PNI		
trans-1,2-Dichloroethene	ND	0.81		unim3	1	5/7/2005 0.35.00 PN		
trans-1,3-Dichloropropene	ND	0.92		uginio ugini3	1	5/7/2009 0.39.00 PM		
Trichloroethene	0.22	0.22		uo/m3	4	5/7/2000 8-20-00 DM		
Trichlorofluoromethane (Freon 11)	ND	1.1		un/m3	1 1	5/7/2000 0.39.00 PM		
Vinyl acetate	ND	0.72		un/m3	, 1	5/7/2009 5.39.00 PM		
/inyl chloride	ND	0.52		ua/m3	י 1	5/7/2000 8:30:00 PM		
NOTES:				-3000	,	w neoda oraș.un Lin		

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By: 🌶

Qualificrs: (*)

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 5-13-04

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- $\bar{Q} = Outlying QC$ recoveries were associated with this analyte

TABLE 1 VOLATILE ORGANICS DATA ANALYSIS (EPA METHOD TO-15)

Louden Plaza, 350 Northern Blvd., Albany NY

NETC Project # 08.1023054

Page 3 of 4

	SAMPLE DESCRIPTION										
PARAMETER	SS-3	IA-3	SS-4	IA-4	SS-5	IA-5					
Locatio	n: Restroom	Restroom	Suite 110	Suite 110	Town Total	Town Total Health					
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND					
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND					
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND					
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND					
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND					
1,2,4-Trichlorobenzene	ND	ND	2.5 Q	ND	ND	ND					
1,2,4-Trimethylbenzene	ND	1.1	1.4 Q	ND	ND	ND					
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND					
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND					
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND					
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND					
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND					
1,3-Butadiene	ND	ND	ND	ND	ND	ND					
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND					
1,4-Dichlorobenzene	21	24	ND	ND	ND	ND					
1,4-Dioxane	ND	ND	ND	ND	ND	ND					
2-Butanone (MEK)	3.6Q	0.66 B	15	ND	6.7	ND					
2-Hexanone	1.7	ND	2 Q,B	ND	2.5	ND					
4-Ethyltoluene	ND	ND	ND	ND	ND	ND					
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND					
Acetone	ND	10 B,Q	10 Q,B	ND	24	8.4 Q					
Benzene	ND	2	ND	ND	0.78	ND					
Bromodichloromethane	ND	ND	ND	ND	ND	ND					
Bromoform	ND	ND	ND	ND	ND	ND					
Bromomethane	ND	ND	ND	ND	ND	ND					
Carbon disulfide	ND	ND	ND	ND	ND	ND					
Carbon tetrachloride	ND	ND	0.64 Q	0.51	0.64	0.58 Q					
Chlorobenzene	ND	ND	ND	ND	ND	ND					
Chloroethane	ND	ND	ND	ND	ND	ND					
Chloroform	ND	ND	ND	ND	ND	ND					
Chloromethane	ND	ND	ND	ND	ND	ND					

Notes: All concentrations are in ug/m3

Q=Outlying QC recoveries were associated with this analyte B = Analyte detected in the associated Methd Blank

J = Analyte detected below quantitation limits

TABLE 1 VOLATILE ORGANICS DATA ANALYSIS (EPA METHOD TO-15)

Louden Plaza, 350 Northern Blvd., Albany NY

NETC Project # 08.1023054 Page 4 of 4

		SAMPLE DESCRIPTION									
PARAMETER	SS-3	IA-3	SS-4	IA-4	SS-5	IA-5					
Locati	on: Restroom	Rest room	Suite 110	Suite 110	Town Total Health	Town Total Health					
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND					
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND					
Cyclohexane	ND	1.7	ND	ND	ND	ND					
Dibromochloromethane	ND	ND	ND	ND	ND	ND					
Ethanol	5.5 Q	61	42 Q	32 Q	ND	78 J					
Ethyl acetate	3.5 Q	34	28	22	29	28					
Ethylbenzene	ND	ND	ND	ND	ND	ND					
Freon 11	ND	ND	ND	ND	ND	ND					
Freon 114	ND	ND	ND	ND	ND	ND					
Freon 12	ND	NÐ	ND	ND	ND	ND					
Freon 113	ND	ND	ND	ND	ND	ND					
Heptane	ND	ND	ND	ND	ND	ND					
Hexachlorobutadiene	2.4 B	ND	2.9 B	2.6 B	2.5 B	2.6 B					
Hexane	ND	5.7	ND	ND	ND	ND					
Isopropyl Alcohol	ND	9.4 QB	23 QB	12 Q	ND	190 J					
m,p Xylene	ND	33	ND	ND	ND	ND					
Methyl tert-butyl ether	ND	ND	ND	ND	ND	ND					
Methylene chloride	ND	ND	ND	ND	ND	ND					
n-Heptane	ND	1.4	ND	ND	ND	ND					
o-Xylene	ND	0.93	ND	ND	ND	ND					
Propene	ND	ND	ND	ND	ND	ND					
Styrene	ND	ND	ND	ND	ND	ND					
Tetrachloroethene	5.7 Q	ND	4.4	4.5	11	1.5 Q					
Tetrahydrofuran	0	ND	ND	ND	ND	ND					
Toluene	2.1 Q	12 B	1.8 Q	ND	2.3	1.3 Q					
rans-1,2-Dichloroethene	ND	ND	1.8	ND	ND	ND					
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND					
richloroethene	ND	ND	0.6	0.44	0.33	0.27					
/inyl acetate	ND	ND	ND	ND	ND	ND					
inyl chloride	ND	ND	ND	ND	ND	ND					
ICs	29.23	46.59 B	104.4	61.3	42.27	87.6					

Notes: All concentrations are in ug/m3 except for tentatively identified compounds (TICs) which are reported in ppv Q=Outlying QC recoveries were associated with this analyte B = Analyte detected in the associated Methd Blank

 $\mathbf{J} = \mathbf{A}\mathbf{n}\mathbf{a}\mathbf{l}\mathbf{y}\mathbf{t}\mathbf{e}$ detected below quantitation limits

I٦

.

.

Analytical Report	Analytical Report Date: 13-May-09								
CLIENT: NORTHEAST ENVIRONMENTAL		Client Sample ID: SS-3							
Location Loudon Plaza		Col	lection]	24/2009)				
Project: U0904581	Tan #+ 1067/270								
Lab ID- E0004000-005A	tag #: 1007/279								
		IVIA				· · ··································			
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed			
TO-15 (VI+TICS)						Analyst: KI D			
1.1,1-Trichloroethane	ND	1.1		ug/m3	1	5/7/2009 10:58:00 PM			
1,1,2,2-Tetrachloroethane	ND	1.4		ug/m3	1	5/7/2009 10:58:00 PM			
1,1,2-Trichloroethane	ND	1.1		ug/m3	1	5/7/2009 10:58:00 PM			
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6		ug/m3	1	5/7/2009 10:58:00 PM			
1,1-Dichloroethane	ND	0.82		ug/m3	1	5/7/2009 10:58:00 PM			
1,1-Dichloroethene	ND	0.81		ug/m3	1	5/7/2009 10:58:00 PM			
1,2,4-Trichlorobenzene	ND	1.5		ug/m3	1	5/7/2009 10:58:00 PM			
1,2,4-Trimethylbenzene	ND	1.0		ug/m3	1	5/7/2009 10:58:00 PM			
1,2-Dibromoethane	ND	1.6		ug/m3	1	5/7/2009 10:58:00 PM			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.4		ug/m3	1	5/7/2009 10:58:00 PM			
1,2-Dichlorobenzene	ND	1.2		ug/m3	1	5/7/2009 10:58:00 PM			
1,2-Dichloroethane	ND	0.82		ug/m3	1	5/7/2009 10:58:00 PM			
1,2-Dichloropropane	ND	0.94		ug/m3	1	5/7/2009 10:58:00 PM			
1,3,5-Trimethylbenzene	ND	1.0		ug/m3	1	5/7/2009 10:58:00 PM			
1,3-Butadiene	ND	0.45		ug/m3	1	5/7/2009 10:58:00 PM			
1,3-Dichlorobenzene	ND	1.2		ug/m3	1	5/7/2009 10:58:00 PM			
1,4-Dichlorobenzene	21	1.2		ug/m3	1	5/7/2009 10:58:00 PM			
1,4-Dioxane	ND	0.73		ug/m3	1	5/7/2009 10:58:00 PM			
2-Butanone (MEK)	3.6	0.60	Q	ug/m3	1	5/7/2009 10:58:00 PM			
2-Hexanone (*)	1.7	0.83		ug/m3	1	5/7/2009 10:58:00 PM			
4-Ethyltoluene (*)	ND	1.0		ug/m3	1	5/7/2009 10:58:00 PM			
4-Methyl-2-Pentanone (MIBK)	ND	0.83		ug/m3	1	5/7/2009 10:58:00 PM			
Acetone	ND	4.8		ug/m3	1	5/7/2009 10:58:00 PM			
Benzene	ND	0.65		ug/m3	1	5/7/2009 10:58:00 PM			
Benzyl chloride	ND	1.1		ug/m3	1	5/7/2009 10:58:00 PM			
Bromodichloromethane	ND	1.4		ug/m3	1	5/7/2009 10:58:00 PM			
Bromoform	ND	2.1		ug/m3	1	5/7/2009 10:58:00 PM			
Bromomethane	ND	0.79		ug/m3	1	5/7/2009 10:58:00 PM			
Carbon disulfide	ND	0.63		ug/m3	1	5/7/2009 10:58:00 PM			
Carbon tetrachloride	ND	0.26		ug/m3	1	5/7/2009 10:58:00 PM			
Chlorobenzene	ND	0.94		ug/m3	1	5/7/2009 10:58:00 PM			
Chloroethane	ND	0.54		ug/m3	1	5/7/2009 10:58:00 PM			
Chloroform	ND	0.99		ug/m3	1	5/7/2009 10:58:00 PM			
Chloromethane	ND	0.42		ug/m3	1	5/7/2009 10:58:00 PM			
cis-1,2-Dichloroethene	ND	0.81		ug/m3	1	5/7/2009 10:58:00 PM			
cis-1,3-Dichloropropene	ND	0.92		ug/m3	1	5/7/2009 10:58:00 PM			
Jycionexane	ND	0.70		ug/m3	1	5/7/2009 10:58:00 PM			
Approved By:	and a second	Date:	5-5-	3-09	*** <>/- : : : : : : : : : : : : : : : : : : :	and a second			

Approved By:

Qualifiers: (*)

Certification not offered by NYS for this compound E

Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Outlying QC recoveries were associated with this analyte Q

....

Analytical Report	Date: 13-May-09					
CLIENT: NORTHEAST ENVIRONMENTAL		Clie	ent Sam	ple ID: S	SS-3	
Location Loudon Plaza		Col	lection	Date: 4/2	24/2009)
Project: U0904581		Tao	#• 106	7/279		
Lab ID: E0904009-005A		Ma	trix Al	R		
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TO-15 (VI+TICS)						Analysts Ki D
Dibromochloromethane	ND	1.7		ua/m3	1	5/7/2009 10:58:00 PM
Dichlorodifluoromethane (Freon 12)	ND	1.0		ua/m3	1	5/7/2009 10:58:00 PM
Ethanol (*)	5.5	3.8	Q	ua/m3	1	5/7/2009 10:58:00 PM
Ethyl acetate (*)	35	0.73		ua/m3	1	5/7/2009 10:58:00 PM
Ethyl benzene	ND	0.88		ua/m3	1	5/7/2009 10:58:00 PM
Hexachlorobutadiene	2.4	2.2	в	ug/m3	1	5/7/2009 10:58:00 PM
Hexane	ND	0.72		ug/m3	1	5/7/2009 10:58:00 PM
Isopropanol	ND	5.0		ug/m3	1	5/7/2009 10:58:00 PM
m,p-Xylene	ND	0.88		ug/m3	1	5/7/2009 10:58:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.73		ug/m3	1	5/7/2009 10:58:00 PM
Methylene chloride	ND	0.71		ug/m3	1	5/7/2009 10:58:00 PM
n-Heptane	ND	0.83		ug/m3	1	5/7/2009 10:58:00 PM
o-Xylene	ND	0.88		ug/m3	1	5/7/2009 10:58:00 PM
Propene (*)	ND	0,35		ug/m3	1	5/7/2009 10:58:00 PM
Styrene	ND	0.87		ug/m3	1	5/7/2009 10:58:00 PM
Tetrachloroethene	5.7	1.4		ug/m3	1	5/7/2009 10:58:00 PM
Tetrahydrofuran (*)	ND	0.60		ug/m3	1	5/7/2009 10:58:00 PM
Toluene	2.1	0.77		ug/m3	1	5/7/2009 10:58:00 PM
trans-1,2-Dichloroethene	ND	0.81		ug/m3	1	5/7/2009 10:58:00 PM
trans-1,3-Dichloropropene	ND	0.92		ug/m3	1	5/7/2009 10:58:00 PM
Trichloroethene	ND	0.22		ug/m3	1	5/7/2009 10:58:00 PM
Trichlorofluoromethane (Freon 11)	ND	1,1		ug/m3	1	5/7/2009 10:58:00 PM
Vinyl acetate	ND	0.72		ug/m3	1	5/7/2009 10:58:00 PM
Vinyl chloride	ND	0.52		ug/m3	.1	5/7/2009 10:58:00 PM
NOTES:				-		

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- (*) Certification not offered by NYS for this compound
 E Value above quantitation range
- E Value above quantitation rangeJ Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Q Outlying QC recoveries were associated with this analyte

Analytical Report			Date: 13-May-09						
CLIENT: NORTHEAST ENVIRONMENTAL		Client Sample ID: 1A-3 Collection Date: 4/24/2009							
Location Loudon Plaza									
Project: U0904581	Tag #: 1067/315								
Lab ID: E0904009-006A		Mat	rix All	R	1 N				
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed			
TO-15 (VI+TICS)						Analyst: KID			
1,1,1-Trichloroethane	ND	1.1		ua/m3	1	5/5/2009 2:07:00 AM			
1,1,2,2-Tetrachloroethane	ND	1.4		ua/m3	1	5/5/2009 2:07:00 AM			
1.1,2-Trichloroethane	ND	1.1		ug/m3	1	5/5/2009 2:07:00 AM			
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6		ug/m3	1	5/5/2009 2:07:00 AM			
1,1-Dichloroethane	ND	0.82		ug/m3	1	5/5/2009 2:07:00 AM			
1,1-Dichloroethene	ND	0.81		ug/m3	1	5/5/2009 2:07:00 AM			
1.2.4-Trichlorobenzene	ND	1.5		ug/m3	1	5/5/2009 2:07:00 AM			
1,2,4-Trimethylbenzene	1.1	1.0		ug/m3	1	5/5/2009 2:07:00 AM			
,2-Dibromoethane	ND	1.6		ug/m3	1	5/5/2009 2:07:00 AM			
,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.4		ug/m3	1	5/5/2009 2:07:00 AM			
,2-Dichlorobenzene	ND	1.2		ug/m3	1	5/5/2009 2:07:00 AM			
,2-Dichloroethane	ND	0.82		ug/m3	1	5/5/2009 2:07:00 AM			
,2-Dichloropropane	ND	0.94		ug/m3	1	5/5/2009 2:07:00 AM			
,3,5-Trimethylbenzene	ND	1.0		ug/m3	1	5/5/2009 2:07:00 AM			
3-Butadiene	ND	0.45		ug/m3	1	5/5/2009 2:07:00 AM			
.3-Dichlorobenzene	ND	1.2		ug/m3	1	5/5/2009 2:07:00 AM			
,4-Dichlorobenzene	24	1.2		ug/m3	1	5/5/2009 2:07:00 AM			
.4-Dioxane	ND	0.73		ug/m3	1	5/5/2009 2:07:00 AM			
-Butanone (MEK)	0.66	0.60	В	ug/m3	1	5/5/2009 2:07:00 AM			
-Hexanone (*)	ND	0.83		ug/m3	1	5/5/2009 2:07:00 AM			
	ND	1.0		ug/m3	1	5/5/2009 2:07:00 AM			
-weinyi-2-Pentanone (MIBK)	ND	0.83		ug/m3	1	5/5/2009 2:07:00 AM			
	10	4.8	BQ	ug/m3	1	5/5/2009 2:07:00 AM			
	2.0	0.65		ug/m3	1	5/5/2009 2:07:00 AM			
enzyl cmonde	ND	1.1		ug/m3	1	5/5/2009 2:07:00 AM			
	ND	1.4		ug/m3	1	5/5/2009 2:07:00 AM			
	ND	2.1		ug/m3	1	5/5/2009 2:07:00 AM			
omometnane	ND	0.79		ug/m3	1	5/5/2009 2:07:00 AM			
nour usumoo	ND	0.63		ug/m3	1	5/5/2009 2:07:00 AM			
alombeorene	ND	0.26		ug/m3	1	5/5/2009 2:07:00 AM			
loroothano	ND	0.94		ug/m3	1	5/5/2009 2:07:00 AM			
loroform	ND	0.54		ug/m3	1	5/5/2009 2:07:00 AM			
loromethane	ND	0.99		ug/m3	1	5/5/2009 2:07:00 AM			
-1 2-Dichloroethene	ND	0.42		ug/m3	1	5/5/2009 2:07:00 AM			
-1 3-Dichlomoronene	ND	0.81		ug/m3	1	5/5/2009 2:07:00 AM			
clohexane	ND 1.7	0.92		ug/m3	1	5/5/2009 2:07:00 AM			
	•• *	U./U		ugnina	1 1	0/0/2009 2:0/:00 AM			

Approved By:

Qualifiers:

(*) Certification not offered by NYS for this compound

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits в Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Outlying QC recoveries were associated with this analyte Q

Analytical Report	Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza Project: U0904581 Lab ID: E0904009-006A	Client Sample ID: 1A-3 Collection Date: 4/24/2009 Tag #: 1067/315 Matrix AIR							
Analyses	Result	Result Limit Qual Units		DF	DF Date Analyzed			
TO-15 (VI+TICS)						Analyst: KI D		
Dibromochloromethane	ND	1.7		ua/m3	1	5/5/2009-2:07:00 AM		
Dichlorodifluoromethane (Freon 12)	ND	1.0		ua/m3	•	5/5/2000 2:07:00 AM		
Ethanoi (*)	61	7.7		ua/m3	2	5/13/2009 2:42:00 AM		
Ethyl acetate (*)	34	0.73		ua/m3	1	5/5/2009 2:07:00 AM		
Ethyl benzene	ND	0.88		ua/m3	1	5/5/2009 2:07:00 AM		
Hexachlorobutadiene	ND	2.2		ug/m3	1	5/5/2009 2:07:00 AM		
Hexane	5.7	0.72		ug/m3	1	5/5/2009 2:07:00 AM		
Isopropanol	9.4	5.0	BQ	ug/m3	1	5/5/2009 2:07:00 AM		
m,p-Xylene	3.3	0.88		ug/m3	1	5/5/2009 2:07:00 AM		
Methyl tert-butyl ether (MTBE)	ND	0.73		ug/m3	1	5/5/2009 2:07:00 AM		
Methylene chloride	ND	0.71		uq/m3	1	5/5/2009 2:07:00 AM		
n-Heptane	1.4	0.83		ug/m3	1	5/5/2009 2:07:00 AM		
o-Xylene	0.93	0.88		ug/m3	1	5/5/2009 2:07:00 AM		
Propene (*)	ND	0.35		ug/m3	1	5/5/2009 2:07:00 AM		
Styrene	ND	0.87		ug/m3	1	5/5/2009 2:07:00 AM		
Tetrachloroethene	ND	1.4		ug/m3	1	5/5/2009 2:07:00 AM		
Tetrahydrofuran (*)	ND	0.60		ug/m3	1	5/5/2009 2:07:00 AM		
Toluene	12	0.77	6	ug/m3	1	5/5/2009 2:07:00 AM		
trans-1,2-Dichloroethene	ND	0.81		ug/m3	1	5/5/2009 2:07:00 AM		
trans-1,3-Dichloropropene	ND	0.92		ug/m3	1	5/5/2009 2:07:00 AM		
Trichloroethene	ND	0.22		ug/m3	1	5/5/2009 2:07:00 AM		
Trichlorofluoromethane (Freon 11)	ND	1.1		ug/m3	1	5/5/2009 2:07:00 AM		
vinyl acetate	ND	0.72		ug/m3	1	5/5/2009 2:07:00 AM		
Vinyl chloride NOTES:	ND	0.52		ug/m3	1	5/5/2009 2:07:00 AM		

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- (*) Certification not offered by NYS for this compound
 E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 6-13-09

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- $\bar{Q} = Outlying \, QC$ recoveries were associated with this analyte

Analytical Report			Date:	13-M	ay-09					
CLIENT: NORTHEAST ENVIRONMENTAL		Clie	nt Sample ID [,] S	S-4						
Location Loudon Plaza		Callection Date: ADA/2000								
Project: U0004591		Conjection Date: 4/24/2009								
		1 ag	#: 1067/295							
Lab ID: E0904009-007A		Matrix AIR								
Analyses	Result	Limit	Qual Units	DF	Date Analyzed					
TO-15 (VI+TICS)					Analyst KI F					
1,1,1-Trichloroethane	ND	1.1	ua/m3	1	5/12/2009 6:32:00 AM					
1,1,2,2-Tetrachloroethane	ND	1.4	ug/m3	1	5/12/2009 6:32:00 AM					
1,1,2-Trichloroethane	ND	1.1	ua/m3	1	5/12/2009 6:32:00 AM					
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6	ua/m3	1	5/12/2009 6:32:00 AM					
1,1-Dichloroethane	ND	0.82	ua/m3	1	5/12/2009 6:32:00 AM					
1,1-Dichloroethene	ND	0.81	ua/m3	1	5/12/2009 6:32:00 AM					
1,2,4-Trichlorobenzene	2.5	1.5	ug/m3	1	5/12/2009 6:32:00 AM					
1,2,4-Trimethylbenzene	1.4	1.0	ug/m3	1	5/12/2009 6:32:00 AM					
1,2-Dibromoethane	ND	1.6	ug/m3	1	5/12/2009 6:32:00 AM					
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.4	ug/m3	1	5/12/2009 6:32:00 AM					
1,2-Dichlorobenzene	ND	1.2	ug/m3	1	5/12/2009 6:32:00 AM					
1,2-Dichloroethane	ND	0.82	ug/m3	1	5/12/2009 6:32:00 AM					
1,2-Dichloropropane	ND	0.94	ug/m3	1	5/12/2009 6:32:00 AM					
1,3,5-Trimethylbenzene	ND	1.0	ug/m3	1	5/12/2009 6:32:00 AM					
1,3-Butadiene	ND	0.45	ug/m3	1	5/12/2009 6:32:00 AM					
1,3-Dichlorobenzene	ND	1.2	ug/m3	1	5/12/2009 6:32:00 AM					
1,4-Dichlorobenzene	ND	1.2	ug/m3	1	5/12/2009 6:32:00 AM					
1,4-Dioxane	ND	0.73	ug/m3	:1	5/12/2009 6:32:00 AM					
2-Butanone (MEK)	15	0.60	ug/m3	1	5/12/2009 6:32:00 AM					
2-Hexanone (*)	2.0	0.83	ug/m3	1	5/12/2009 6:32:00 AM					
t-Ethyltoluene (*)	ND	1.0	ug/m3	1	5/12/2009 6:32:00 AM					
I-Methyl-2-Pentanone (MIBK)	ND	0.83	ug/m3	1	5/12/2009 6:32:00 AM					
Acetone	10	4.8	ug/m3	1	5/12/2009 6:32:00 AM					
Senzene	ND	0.65	ug/m3	1	5/12/2009 6:32:00 AM					
Benzyl chloride	ND	1.1	ug/m3	1	5/12/2009 6:32:00 AM					
Bromodichloromethane	ND	1.4	ug/m3	1	5/12/2009 6:32:00 AM					
Bromoform	ND	2.1	ug/m3	1	5/12/2009 6:32:00 AM					
Bromomethane	ND	0.79	ug/m3	-1	5/12/2009 6:32:00 AM					
Carbon disulfide	ND	0.63	ug/m3	1	5/12/2009 6:32:00 AM					
Carbon tetrachloride	0.64	0.26	ug/m3	1	5/12/2009 6:32:00 AM					
hlorobenzene	ND	0.94	ug/m3	1	5/12/2009 6:32:00 AM					
hioroethane	ND	0.54	ug/m3	1	5/12/2009 6:32:00 AM					
hloroform	ND	0.99	ug/m3	1	5/12/2009 6:32:00 AM					
hloromethane	ND	0.42	ug/m3	1	5/12/2009 6:32:00 AM					
IS-1,2-Dichloroethene	ND	0.81	ug/m3	1	5/12/2009 6:32:00 AM					
is-1,3-Dichloropropene	ND	0.92	ug/m3	1	5/12/2009 6:32:00 AM					
yclohexane	ND	0.70	ug/m3	1	5/12/2009 6:32:00 AM					
Approved By:		Date:	5-13-19		ann an an an an ann an ann ann ann an an					

Qualifiers:

(*) Certification not offered by NYS for this compound

- E Value above quantitation range
- J Analyte detected below quantitation limits
- s Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Q Outlying QC recoveries were associated with this analyte

Analytical Report		Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza Project: U0904581	annan an a	Clie Coll Tag	ent Sam lection #: 106	ple ID: S Date: 4/2 7/295	S-4 4/2009				
Lab ID: E0904009-007A		Mat	rix Al	R					
Analyses	Result	Limit	Qual	Qual Units		Date Analyzed			
TO-15 (VI+TICS)						Ánalusti 20 D			
Dibromochloromethane	ND	17		iun/m3	4	Analyst: KLP			
Dichlorodifluoromethane (Freon 12)	ND	10		ug/m3	4	5/12/2009 0.32.00 AM			
Ethanol (*)	42	77		uginio ugim3	2	5/12/2009 0.32.00 AM			
Ethyl acetate (*)	28	0.73		un/m3	4	5/12/2003 5,20,00 AN			
Ethyl benzene	ND	0.88		un/m3	1	5/12/2009 0.32.00 AM			
Hexachlorobutadiene	2.9	22	R	unim3	, 1	5/12/2000 6-32:00 AM			
Hexane	ND	0.72	-	un/m3	1	5/12/2000 6-32-00 AM			
Isopropanol	23	5.0		ua/m3	•	5/12/2000 6-32-00 AM			
m,p-Xyiene	ND	0.88		ug/m3	1	5/12/2000 6:32:00 AM			
Methyl tert-butyl ether (MTBE)	ND	0.73		ua/m3	1	5/12/2009 6:32:00 AM			
Methylene chloride	ND	0.71		uo/m3	4	5/12/2009 6:32:00 AM			
n-Heptane	ND	0.83		ua/m3	1	5/12/2009 6:32:00 AM			
o-Xylene	ND	0.88		ug/m3	1	5/12/2000 6-32:00 AM			
Propene (*)	ND	0.35		ua/m3	1	5/12/2009 8:32:00 AM			
Styrene	ND	0.87		uo/m3	. 1	5/12/2000 6:22:00 AM			
Tetrachloroethene	4.4	1.4		ug/m3	.1	5/12/2009 6:32:00 AM			
Tetrahydrofuran (*)	ND	0.60		uo/m3	1	5/12/2000 6-22-00 AM			
Foluene	1.8	0.77		uo/m3	1	5/12/2009 6:32:00 AM			
rans-1,2-Dichloroethene	ND	0.81		ua/m3	1	5/12/2009 6-32-00 AM			
rans-1,3-Dichloropropene	ND	0.92		ua/m3	1	5/12/2009 6:32:00 AM			
Trichloroethene	0.60	0.22		ua/m3	1	5/12/2009 6:32:00 AM			
Trichlorofluoromethane (Freon 11)	ND	1.1		ua/m3	1	5/12/2009 6:32:00 AM			
/inyl acetate	ND	0.72		ua/m3	1	5/12/2009 6:32:00 AM			
/inyl chloride	ND	0.52	:	uq/m3	1	5/12/2009 6:32:00 AM			
NOTES:					•				

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- (*) Certification not offered by NYS for this compound
 E Value above quantitation range
- E Value above quantitation rangeJ Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 6-13-09

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Q Outlying QC recoveries were associated with this analyte

	10111101111111111111111111111111111111	Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL	2	Client Sample ID: IA-4							
Location Loudon Plaza		Collection Date: 4/24/2009							
Project: U0904581		Tag #: 1067/303							
Lab ID: E0904009-008A		Mateix AIR							
	······		······································	•		ana any afa da ang ang ang ang ang ang ang ang ang an			
Analyses	Kesult	Limit	Qual	Units	DF	Date Analyzed			
TO-15 (VI+TICS)						Analyst: KLP			
1,1,1-Trichloroethane	ND	1.1		ug/m3	1	5/7/2009 7:06:00 PM			
1,1,2,2-Tetrachloroethane	ND	1.4		ug/m3	1	5/7/2009 7:06:00 PM			
1,1,2-Trichloroethane	ND	1.1		ug/m3	1	5/7/2009 7:06:00 PM			
1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6		ug/m3	1	5/7/2009 7:06:00 PM			
1,1-Dichloroethane	ND	0.82		ug/m3	1	5/7/2009 7:06:00 PM			
1,1-Dichloroethene	ND	0.81		ug/m3	1	5/7/2009 7:06:00 PM			
1,2,4-Trichlorobenzene	ND	1.5		ug/m3	1	5/7/2009 7:06:00 PM			
1,2,4-Trimethylbenzene	ND	1.0		ug/m3	1	5/7/2009 7:06:00 PM			
1,2-Dibromoethane	ND	1.6		ug/m3	1	5/7/2009 7:06:00 PM			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.4		ug/m3	1	5/7/2009 7:06:00 PM			
1,2-Dichlorobenzene	ND	1.2		ug/m3	1	5/7/2009 7:06:00 PM			
1,2-Dichloroethane	ND	0.82		ug/m3	1	5/7/2009 7:06:00 PM			
1,2-Dichloropropane	ND	0.94		ug/m3	1	5/7/2009 7:06:00 PM			
1,3,5-Trimethylbenzene	ND	1.0		ug/m3	1	5/7/2009 7:06:00 PM			
1,3-Butadiene	ND	0.45		ug/m3	1	5/7/2009 7:06:00 PM			
1,3-Dichlorobenzene	ND	1.2		ug/m3	1	5/7/2009 7:06:00 PM			
1,4-Dichlorobenzene	ND	1.2		ug/m3	1	5/7/2009 7:06:00 PM			
1,4-Dioxane	ND	0.73		ug/m3	1	5/7/2009 7:06:00 PM			
2-Butanone (MEK)	ND	0.60		ug/m3	1	5/7/2009 7:06:00 PM			
2-Hexanone (*)	ND	0.83		ug/m3	1	5/7/2009 7:06:00 PM			
4-Ethyltoluene (*)	ND	1.0		uq/m3	1	5/7/2009 7:06:00 PM			
4-Methyl-2-Pentanone (MIBK)	ND	0.83		ug/m3	Ť	5/7/2009 7:06:00 PM			
Acetone	ND	4.8		ug/m3	1	5/7/2009 7:06:00 PM			
Senzene	ND	0.65		ug/m3	1	5/7/2009 7:06:00 PM			
Benzyl chloride	ND	1.1		ug/m3	1	5/7/2009 7:06:00 PM			
Bromodichloromethane	ND	1.4		ug/m3	1	5/7/2009 7:06:00 PM			
Bromoform	ND	2.1		ua/m3	1	5/7/2009 7:06:00 PM			
Bromomethane	ND	0.79		ua/m3	1	5/7/2009 7:06:00 PM			
Carbon disulfide	ND	0.63		ua/m3	1	5/7/2009 7:06:00 PM			
Carbon tetrachloride	0.51	0.26		ug/m3	1	5/7/2009 7:06:00 PM			
hlorobenzene	ND	0.94		ug/m3	1	5/7/2009 7:06:00 PM			
hiorcethane	ND	0.54		ug/m3	1	5/7/2009 7:06:00 PM			
hloraform	ND	0.99		ug/m3	1	5/7/2009 7:06:00 PM			
hloromethane	ND	0.42		ua/m3	1	5/7/2009 7:06:00 PM			
is-1,2-Dichloroethene	ND	0.81		ug/m3	1	5/7/2009 7:06:00 PM			
is-1,3-Dichloropropene	ND	0.92		ug/m3	1	5/7/2009 7:06:00 PM			
lvrinhevane	AID	0 70							

Approved By:

Qualifiers:

(*) Certification not offered by NYS for this compound

control of another

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 5-13-04

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Q Outlying QC recoveries were associated with this analyte

Analytical Report		Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza Project: U0904581 Lab ID: E0904009-008A	Client Sample ID: 1A-4 Collection Date: 4/24/2009 Tag #: 1067/303 Matrix AIR								
Analyses	Result	Limit Qual Units			DF	Date Analyzed			
TO-15 (VI+TICS)						Analusti KI D			
Dibromochloromethane	ND	17		un/m3	f	5/7/2000 7:06:00 DM			
Dichlorodifiuoromethane (Freon 12)	ND	1.0		un/m3	*	5/7/2009 7:06:00 PM			
Ethanol (*)	32	38	0	ua/m3	1	5/7/2000 7:00:00 PM			
Ethyl acetate (*)	22	0.73	~	ug/m3	1	5/7/2009 7:06:00 PM			
Ethyl benzene	ND	0.88		ua/m3	1	5/7/2009 7:06:00 PM			
Hexachlorobutadiene	2.6	2.2	в	ua/m3	1	5/7/2009 7:06:00 PM			
Hexane	ND	0.72		ua/m3	1	5/7/2009 7:06:00 PM			
Isopropanol	12	5.0	Q	ug/m3	1	5/7/2009 7:06:00 PM			
m,p-Xylene	ND	0.88		ug/m3	1	5/7/2009 7:06:00 PM			
Methyl tert-butyl ether (MTBE)	ND	0.73		ug/m3	1	5/7/2009 7:06:00 PM			
Methylene chloride	ND	0.71		ua/m3	1	5/7/2009 7:06:00 PM			
n-Heptane	ND	0.83		ug/m3	1	5/7/2009 7:06:00 PM			
o-Xylene	ND	0.88		ug/m3	1	5/7/2009 7:06:00 PM			
Propene (*)	ND	0.35		ug/m3	1	5/7/2009 7:06:00 PM			
Styrene	ND	0.87		ug/m3	1	5/7/2009 7:06:00 PM			
Tetrachloroethene	4.5	1.4		ug/m3	1	5/7/2009 7:06:00 PM			
Tetrahydrofuran (*)	ND	0.60		ug/m3	1	5/7/2009 7:06:00 PM			
Toluene	ND	0.77		ug/m3	1	5/7/2009 7:06:00 PM			
rans-1,2-Dichloroethene	ND	0.81		ug/m3	1	5/7/2009 7:06:00 PM			
rans-1,3-Dichloropropene	ND	0.92		ug/m3	1	5/7/2009 7:06:00 PM			
Trichloroethene	0.44	0.22		ug/m3	1	5/7/2009 7:06:00 PM			
Frichlorofluoromethane (Freon 11)	ND	1.1		ug/m3	1	5/7/2009 7:06:00 PM			
Jinyl acetale	ND	0.72		ug/m3	1	5/7/2009 7:06:00 PM			
Jinyl chloride	ND	0.52		ug/m3	1	5/7/2009 7:06:00 PM			
NOTES:									

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- (*) Certification not offered by NYS for this compound
 E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Q Outlying QC recoveries were associated with this analyte

Analytical Report		Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL		Clie	nt Sample	ID: S	S-5				
Location Loudon Plaza	Collection Date: 4/24/2009								
Project: 110904581	Tao #: 1067/337								
	Matrix AIR								
Analyses	Result	Limit	Qual U	nits	DF	Date Analyzed			
TO-15 (VI+TICS)						Analyst: KI D			
1,1,1-Trichloroethane	ND	1.1	U	a/m3	1	5/12/2009 7:18:00 AM			
1,1,2,2-Tetrachloroethane	ND	1.4	Lie Lie	2/m3	1	5/12/2009 7:18:00 AM			
1,1,2-Trichloroethane	ND	1.1	UK	a/m3	1	5/12/2009 7:18:00 AM			
1,1,2-Trifluoro-1,2,2-Trichioroethane (Freon 113)	ND	1.6	U	a/m3	1	5/12/2009 7:18:00 AM			
1,1-Dichloroethane	ND	0.82	u	- a/m3	1	5/12/2009 7:18:00 AM			
1,1-Dichloroethene	ND	0.81	u	1/m3	1	5/12/2009 7:18:00 AM			
1,2,4-Trichlorobenzene	ND	1.5	u	1/m3	1	5/12/2009 7:18:00 AM			
1,2,4-Trimethylbenzene	ND	1.0	uc	u/m3	1	5/12/2009 7:18:00 AM			
1,2-Dibromoethane	ND	1.6	u	1/m3	1	5/12/2009 7:18:00 AM			
1.2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-114)	ND	1.4	uc	1/m3	1	5/12/2009 7:18:00 AM			
1,2-Dichlorobenzene	ND	1.2	uc	1/m3	1:	5/12/2009 7:18:00 AM			
1,2-Dichloroethane	ND	0.82	uc	i/m3	1	5/12/2009 7:18:00 AM			
1,2-Dichloropropane	ND	0.94	uc	1/m3	1	5/12/2009 7:18:00 AM			
1,3,5-Trimethylbenzene	ND	1.0	uc	ı/m3	1	5/12/2009 7:18:00 AM			
1,3-Butadiene	ND	0.45	uc	1/m3	1	5/12/2009 7-18-00 AM			
1,3-Dichlorobenzene	ND	1.2	uc	/m3	1	5/12/2009 7:18:00 AM			
1,4-Dichlorobenzene	ND	1.2	uo	/m3	1	5/12/2009 7:18:00 AM			
1,4-Dioxane	ND	0.73	ug	/m3	1	5/12/2009 7:18:00 AM			
2-Butanone (MEK)	6.7	0.60	υq	/m3	1	5/12/2009 7:18:00 AM			
2-Hexanone (*)	2.5	0.83	ua	/m3	1	5/12/2009 7:18:00 AM			
4-Ethyltoluene (*)	ND	1.0	ua	/m3	1	5/12/2009 7:18:00 AM			
4-Methyl-2-Pentanone (MIBK)	ND	0.83	ua	/m3	1	5/12/2009 7:18:00 AM			
Acetone	24	4.8	uq	/m3	1	5/12/2009 7:18:00 AM			
Benzene	0.78	0.65	uq	/m3	1	5/12/2009 7:18:00 AM			
Benzyl chloride	ND	1.1	ug	/m3	1	5/12/2009 7:18:00 AM			
Bromodichloromethane	ND	1.4	ug	/m3	1	5/12/2009 7:18:00 AM			
Bromoform	ND	2.1	ua	/m3	1	5/12/2009 7:18:00 AM			
Bromomethane	ND	0.79	uq	/m3	1	5/12/2009 7:18:00 AM			
Carbon disulfide	ND	0.63	uq	/m3	1	5/12/2009 7:18:00 AM			
Carbon tetrachloride	0.64	0.26	ug	/m3	1	5/12/2009 7:18:00 AM			
Chlorobenzene	ND	0.94	uq	/m3	1	5/12/2009 7:18:00 AM			
Chloroethane	ND	0.54	ua	/m3	1	5/12/2009 7:18:00 AM			
Chloroform	ND	0.99	ua	/m3	1	5/12/2009 7:18:00 AM			
Chloromethane	ND	0.42	ມຕາມ	m3	1	5/12/2009 7-18-00 AM			
is-1,2-Dichloroethene	ND	0.81	-9. UD/	/m3	1	5/12/2009 7:18:00 AM			
is-1,3-Dichloropropene	ND	0.92	-99/ UD/	m3	1	5/12/2009 7:18:00 AM			
Syclohexane	ND	0.70		m3	1	5/12/2009 7:18:00 AM			
Annewed Buy 120		-	ES	AA	• 1919/05 - Saran - 111	· · · · · · · · · · · · · · · · · · ·			

Approved By:

Qualifiers:

(*) Certification not offered by NYS for this compound

 $\boldsymbol{E} = \boldsymbol{V} alue above quantitation range$

J Analyte detected below quantitation limits

S = Spike Recovery outside accepted recovery limits

Date: 9-13-04

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Q Outlying QC recoveries were associated with this analyte

Analytical Report		Date: 13-May-09							
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza		Clie Coll	nt Sam lection	ple ID: S Date: 4/2	S-5 4/2009	2 ⁻²			
Project: U0904581		Tag	#: 106	7/337					
Lab ID: E0904009-009A		Mat	trix All	R					
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed			
TO-15 (VI+TICS)						Analyst: KID			
Dibromochloromethane	ND	1.7		ua/m3	1	5/12/2009 7:18:00 AM			
Dichlorodifluoromethane (Freon 12)	ND	1.0		ua/m3	1	5/12/2009 7:18:00 AM			
Ethanol (*)	ND	3.8		ua/m3	1	5/12/2009 7:18:00 AM			
Ethyl acetate (*)	29	0.73		ua/m3	1	5/12/2009 7:18:00 AM			
Ethyl benzene	ND	0.88		ua/m3	1	5/12/2009 7:18:00 AM			
Hexachlorobutadiene	2.5	2.2	B	ua/m3	1	5/12/2009 7:18:00 AM			
Hexane	ND	0.72		ua/m3	1	5/12/2009 7-18:00 AM			
Isopropanol	ND	5.0		ua/m3	1	5/12/2009 7:18:00 AM			
m,p-Xylene	ND	0.88		ua/m3	1	5/12/2009 7:18:00 AM			
Methyl tert-butyl ether (MTBE)	ND	0.73		ua/m3	1	5/12/2009 7:18:00 AM			
Methylene chloride	ND	0.71		ua/m3	1	5/12/2009 7:18:00 AM			
n-Heptane	ND	0.83		ua/m3	1	5/12/2009 7:18:00 AM			
o-Xylene	ND	0.88		ua/m3	1	5/12/2009 7:18:00 AM			
Propene (*)	ND	0.35		ua/m3	1	5/12/2009 7:18:00 AM			
Styrene	ND	0.87		ua/m3	1	5/12/2009 7:18:00 AM			
Tetrachloroethene	11	1.4		ua/m3	1	5/12/2009 7:18:00 AM			
Tetrahydrofuran (*)	ND	0.60		ua/m3	1	5/12/2009 7:18:00 AM			
Toluene	2.3	0.77		ua/m3	1	5/12/2009 7:18:00 AM			
rans-1,2-Dichloroethene	ND	0.81		ug/m3	4	5/12/2009 7:18:00 AM			
rans-1,3-Dichloropropene	ND	0.92		ua/m3	1	5/12/2009 7·18·00 AM			
Frichloroethene	0.33	0.22		ua/m3	1	5/12/2009 7:18:00 AM			
frichlorofluoromethane (Freon 11)	ND	1.1		ua/m3	1	5/12/2009 7:18:00 AM			
/inyl acetate	ND	0.72		ug/m3	1	5/12/2009 7:18:00 AM			
Vinyl chloride	ND	0.52		ug/m3	1	5/12/2009 7:18:00 AM			

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By: « Date: 5-13 Qualifiers: (*) Certification not offered by NYS for this compound B Analyte detected in the associated Method Blank Ε Value above quantitation range Н Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit S Spike Recovery outside accepted recovery limits Outlying QC recoveries were associated with this analyte Q

Page 18 of 22

CLIENT: NORTHEAST ENVIRONMENTAL ocation Loudon Plaza roject: U0904581 .ab ID: E0904009-010A .nalyses O-15 (VI+TICS) .1,1-Trichloroethane .1,2,2-Tetrachloroethane	Result	Clie Coll Tag Mat Limit	nt Sam ection 1 #: 106 rix All Qual	ple ID: 1 Date: 4/2 7/283 R Unite	A-5 4/2009	
ocation Loudon Plaza roject: U0904581 ab ID: E0904009-010A nalyses O-15 (VI+TICS) ,1,1-Trichloroethane ,1,2,2-Tetrachloroethane	Result	Coll Tag Mat Limit	ection 1 #: 106 rix All Qual	Date: 4/2 7/283 R	24/2009	•
'roject: U0904581 .ab ID: E0904009-010A .nalyses O-15 (VI+TICS) .1,1-Trichloroethane .1,2,2-Tetrachloroethane	Result	Tag Mat Limit	#: 106 rix All Qual	7/283 R Unite		
ab ID: E0904009-010A nalyses O-15 (VI+TICS) ,1,1-Trichloroethane ,1,2,2-Tetrachloroethane	Result	Mat Limit	rix All Qual	R Inite		
O-15 (VI+TICS) ,1,1-Trichloroethane ,1,2,2-Tetrachloroethane	Result	Mat Limit	Qual	K Mnite		
O-15 (VI+TICS) ,1,1-Trichloroethane ,1,2,2-Tetrachloroethane	Result	Limit	Qual	l'inite	A.F. 1844	
O-15 (VI+TICS) ,1,1-Trichloroethane ,1,2,2-Tetrachloroethane				VIIIIJ	DF	Date Analyzed
,1,1-Trichloro et hane ,1,2,2-Tetrachloroethane						Analyst: KI
,1,2,2-Tetrachioroethane	ND	1.1		ug/m3	1	5/7/2009 7:53:00 PM
	ND	1.4		ug/m3	1	5/7/2009 7:53:00 PM
,1,2-Trichloroethane	ND	1.1		uq/m3	1	5/7/2009 7:53:00 PM
,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 113)	ND	1.6		ua/m3	1	5/7/2009 7:53:00 PM
,1-Dichloroethane	ND	0.82		uq/m3	1	5/7/2009 7:53:00 PM
,1-Dichloroethene	ND	0.81		ua/m3	1	5/7/2009 7:53:00 PM
,2,4-Trichlorobenzene	ND	1.5		ug/m3	1	5/7/2009 7:53:00 PM
,2,4-Trimethylbenzene	ND	1.0		ug/m3	1	5/7/2009 7:53:00 PM
2-Dibromoethane	ND	1.6		ua/m3	1	5/7/2009 7-53-00 PM
2-Dichloro-1,1,2,2-letrafluoroethane (Freon-114)	ND	1.4		ua/m3	1	5/7/2009 7:53:00 PM
2-Dichlorobenzene	ND	1.2		ug/m3	1	5/7/2000 7-53-00 DM
2-Dichloroethane	ND	0.82		uo/m3	•	6/7/2000 7-53-00 DM
2-Dichloropropane	ND	0.94		ua/m3	1	5/7/2000 7-52-00 DM
3,5-Trimethylbenzene	ND	10		ug/m3	*	5/7/2000 7-52-00 DM
3-Butadiene	ND	0.45		ug/m3	1	5/7/2003 7:52:00 PM
3-Dichlorobenzene	ND	12		ug/m3	4	5/7/2000 7:53:00 PM
4-Dichlorobenzene	ND	1.2		ug/m3	1	5/7/2009 7:53:00 PM
4-Dioxane	ND	0.73		ualm3	1	5/7/2000 7:63:00 PM
Butanone (MEK)	ND	0.60		ug/m3	, 1	5/7/2000 7:53-00 PM
Hexanone (*)	ND	0.83		ua/m3	1	5/7/2000 7:53:00 PM
Ethyltoluene (*)	ND	1.0		ug/m3	•	5/7/2000 7:53:00 PM
Methyl-2-Pentanone (MIBK)	ND	0.83		ualm3	*	5/7/2009 7:53:00 PM
cetone	8.4	4.8	0	ugano ugano	4	5/7/2009 7:53:00 PM
enzene	ND	0.65	~	ugim3	4	5/7/2009 7:53:00 PM
enzyl chloride	ND	1 1		ug/m3	4	5/7/2003 7.53.00 PM
omodichloromethane	ND	1 1		un/m?	1	5/7/2009 7.00.00 PM
omoform	ND	21		unim?	1	5/7/2009 7:53:00 PM
omomethane	ND	0.79		ua/m?	, 1	5/7/2009 7:03:00 PM
rbon disulfide	ND	0.63		ua/m?	1	5/7/2008 7:53:00 PM
rbon tetrachloride	0.58	0.26		10/m ²	1	6/7/2000 7-53-00 PM
lorobenzene	ND	0.94		ug/m³	1	5/7/2009 7:53:00 PM
loroethane	ND	0.54		unima	•	5/7/2000 7-52-00 PM
loroform	ND	0.99		unim?	, 1	5/7/2003 1.53.00 PM
loromethane	ND	n.42		unter?	•	5/7/2009 1:00:00 PM
-1.2-Dichloroethene	ND	0.42		ugano untero	1	5///2009 /:53:00 PM
-1.3-Dichloropropene	ND	0.01		ug/m3	1	5///2009 7:53:00 PM
clohexane	ND	0.32		ug/m3	1	5/7/2009 7:53:00 PM
	Uri	0.70	- 1	ug/m3	∳ ¹ · ·	5/772009 7:53:00 PM

(*) Certification not offered by NYS for this compound

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank 8
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Outlying QC recoveries were associated with this analyte Q

Analytical Report		Date: 13-May-09						
CLIENT: NORTHEAST ENVIRONMENTAL Location Loudon Plaza	,	Clie Coll	ent Sam	ple ID: 1 Date: 4/2	A-5 4/2009			
Project: U0904581		Тал	# 106	7/783				
Lab ID: E0904009-010A	Matrix AlR							
Analyses	Result	Limit Qual		Units	DF	Date Analyzed		
TO-15 (VI+TICS)						Analyst KID		
Dibromochloromethane	ND	1.7		ua/m3	1	5/7/2009 7:53:00 PM		
Dichlorodifluoromethane (Freon 12)	ND	1.0		ug/m3	1	5/7/2000 7:53-00 PM		
Ethanol (*)	78	310	.1	ua/m3	81.5	5/12/2009		
Ethyl acetate (*)	28	0.73		uo/m3	1	5/7/2009 7:53:00 PM		
Ethyl benzene	ND	0.88		ua/m3	1	5/7/2009 7:53:00 PM		
Hexachlorobutadiene	2.6	2.2	в	ug/m3	1	5/7/2009 7:53:00 PM		
Hexane	ND	0.72		ua/m3	1	5/7/2009 7:53:00 PM		
Isopropanol	190	400	J	ua/m3	81.5	5/12/2009		
m,p-Xylene	ND	0.88		ua/m3	1	5/7/2009 7:53:00 PM		
Methyl tert-butyl ether (MTBE)	ND	0.73		ua/m3	1	5/7/2009 7:53:00 PM		
Methylene chloride	ND	0.71		ug/m3	1	5/7/2009 7:53:00 PM		
n-Heptane	ND	0.83		ua/m3	1	5/7/2009 7:53:00 PM		
o-Xylene	ND	0.88		ua/m3	1	5/7/2009 7.53.00 PM		
Propene (*)	ND	0.35		ua/m3	1	5/7/2009 7:53:00 PM		
Styrene	ND	0.87		ua/m3	1	5/7/2009 7:53:00 PM		
Tetrachloroethene	1.5	1.4		uq/m3	1	5/7/2009 7:53:00 PM		
Tetrahydrofuran (*)	ND	0.60		ua/m3	1	5/7/2009 7:53:00 PM		
Toluene	1.3	0.77		ug/m3	1	5/7/2009 7:53:00 PM		
trans-1,2-Dichloroethene	ND	0.81		ug/m3	1	5/7/2009 7:53:00 PM		
trans-1,3-Dichloropropene	ND	0.92		ug/m3	1	5/7/2009 7:53:00 PM		
Trichloroethene	0.27	0.22		ug/m3	-1	5/7/2009 7:53:00 PM		
Trichlorofluoromethane (Freon 11)	ND	1.1		ug/m3	1	5/7/2009 7:53:00 PM		
Vinyl acetate	ND	0.72		ug/m3	1	5/7/2009 7:53:00 PM		
Vinyl chloride	ND	0.52		ug/m3	1	5/7/2009 7:53:00 PM		
NOTES:								

TICS are only reported in ppbv because unknowns cannot be converted to ug/m3.

Approved By:

Qualifiers:

- (*) Certification not offered by NYS for this compound
 E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 5-13-04

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Q Outlying QC recoveries were associated with this analyte

Page 20 of 22

*

Po # 4836

Chain of Custody

6034 Corporate Drive, East Syracuse, NY 13057 • Phone 315.437.0255 • Fax 315.437.1209 • www.upstatelabs.com

Page 1 of 2

Company: Northeast Environmental Tech. Corp,	Project Name: Loudon Plaza	Date:	
Address: 1476 Route 50	Customer Job Number: 8.1023054	4/21/2009	
City: Ballston Spa State: NY Zip: 12020	Location:	Work Order:	
Project Contact: Rob, Cell: 518-361-8556		1067 (Page 1 of 2)	
Phone: 518-884-8545 Fax: 518-884-9710	Shipper: Velocity	Turnaround Time:	
Email: robnetc@nycap.rr.com	Airbill Number:	10 Day	

			Ser	ial #'s			Sam	oling	****		Gauge		1
	Laboratory ID	Client Sample ID/Location	Can	Sampler	\$	Sample Sta	art	S	ample Fi	nish	At	Analysis Requested	
			Number	Number	Date	Time	Gauge	Date	Time	Gauge	Receipt	E 0904009	
U	904581-1	<u></u>	320	2677	4/23	2:46	-30	4/24	10.42	-41	0	TO-15, V.L + TICs, (0.25 & 1.0 ug/m3)	100
	3	JA-L.	130	2669	4/23	2:47	- 38	4/24	1042	-7	-7	TO-15, V.I. + TICs, (0.25 & 1.0 ug/m3)	100
	3	<u>\$5-2</u>	321	2671	1/23	207	-29	4/24	10.23	-3	-3	TO-15, V.I. + TICs, (0.25 & 1.0 ug/m3)	10
	Ч	IA-2 V	262	2713	4/23	1:53	29	1/24	10:22	-6	-6	TO-15, V.I. + TICs, (0.25 & 1.0 ug/m3)	10
	5	<u>35-3</u>	279	2666	4/23	2:23	-25	4/24	10:52	-4	-5	TO-15, V.I. + TICs, (0.25 & 1.0 ug/m3)	10
	6	IA-3 · /	315	2660	4/23	2:24	-29	4/24	10:32	-6	-6	TO-15, V.I. + TICs, (0.25 & 1.0 ua/m3)	100
		<u>55-4</u> · /	295	2674	4/23	2:16	-30	<i>4124</i>	10:24	-4	-4	TO-15, V.I. + TICs, (0.25 & 1.0 ug/m3)	les
	8	IN-4 /	303	2668	1/23	2:12	-30	4/24	10:26	-4	-4	TO-15, V.I. + TICs, (0.25 & 1.0 µa/m3)	00
	9	55-5 /	337	2672	4/25	2:36	- 29	4/24	10:36	-6%	-6	TO-15, V.I. + TICs, (0.25 & 1.0 ua/m3)	0
l		<u>ta-5</u>	283	2678	1/23	2:37	-30	4/24	10:35	-7	-7	TO-15, V.I. + TICs (0.25.8.1.0 µg/m3)	01

Relinguished by (elignatione)	Date	Time	Received By (signature)	Date	Time	Notes
Sak-	4/1/09	18:10	TO VELOCITY COURIERS			Enclosed are [11] Sampler Regulators numbers:
ME BAR	1/3/6	11:30	Mat Of	interlig	930 A	2665; 2713; 2666; 2671; 2678; 2674; 2660; 2669;
MAN Q	ypylog	Se	Banne	4/290	9 /25	2677; 2672; 2668.
- KCAINP	H/27/0	2'094	Fhistewott	Hala	1130	[5] Sub-slab, [5] Indoor ambient, [1] Outdoor ambient.
· · · · · · · · · · · · · · · · · · ·				1 1 '		DOH Vapor Intrusion Guidelines
andro, and a construction of the construction of the particular statements of the free database of the constru					~	Cont'd next page

Chain of Custody

aboratories, Inc. 6034 Corporate Drive, East Syracuse, NY 13057 • Phone 315.437.0255 • Fax 315.437.1209 • www.upstatelabs.com

Pa 2

'age	2	of	2
-	Australius,		

Company: Northeast Environ	mental Tech. Corp.	Project Name: Loudon Plaza	Date:	
Address: 1476 Route 50	Maring and Marine and M	Customer Job Number: 8.1023054	4/21/2009	
City: Ballston Spa	State: NY Zip: 12020	Location:	Work Order:	
Project Contact: Rob, Cell: 518-36	1-8556		1067 (Page 2 of 2)	
Phone: 518-884-8545	Fax: 518-884-9710	Shipper: Velocity	Turnaround Time:	
Email: robnetc@nycap.rr.com		Airbill Number:	10 Day	

Laboratory ID			Serial #'s		Sampling					****	Gauce	1	
		Client Sample ID/Location	Can	Sampler	Sample Start			Sample Finish			AI	Analysis Requested	
			Number	Number	Date	Time	Gauge	Date	Time	Gauge	Receipt		
UO	904587-11	04-1	287	aldes	4/23	3:09	-30	4/24	10199	-9	-8	TO-15, V.I. + TICs, (0.25 & 1.0 ug/m3)	τ
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•					
		an a shara shekara she											
		1999 (1999) 1999 - 1997 - 1997) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19											
													:
				~									
		· · · · · · · · · · · · · · · · · · ·											
	<u> </u>						T					n an	

Relinguiched by (signature)	Date	Time	Received By (signature)	Date	Time	Notes
Sat.	Halog	18:10	VELOCITY COURIER			Enclosed are [11] Sampler Regulators numbers:
Remon	4/24/07	11.30	Metty .	ikilon	9 ⁵⁰	2665; 2713; 2666; 2671; 2678; 2674; 2660; 2669;
11 Th	4/27/09	500	Kinino	1/2014	1475	2677; 2672; 2668.
- ACRIMP	4/29/0	1 890	5 Kustowiti	trib	1139	[5] Sub-slab, [5] Indoor ambient, [1] Outdoor ambient.
J						DOH Vapor Intrusion Guidelines

)//

Appendix H

IYER ENVIRONMENTAL DATA VALIDATION

IYER ENVIRONMENTAL GROUP, PLLC

CONSULTING ENGINEERS & SCIENTISTS

September 15, 2009

44 Rolling Hills Drive Orchard Park, NY 14127 e-mail: iegpllc@aol.com Phone: (716) 662-4157 Cell: (716) 445-9684 Fax: (716) 662-2118

Mr. Jeff Wink NETC P.O. Box 2167 Ballston Spa, NY 12020

<u>Subject</u>: Data Validation for Volatile Organics Analysis on Air Samples Collected at Loudon Plaza, 450 Northern Blvd., Albany, NY

Dear Jeff:

Per your request IEG performed analytical data validation for air samples collected on April 23 and April 24, 2009 at the above referenced site. The samples were analyzed by ENALYTIC (Syracuse, NY) using EPA Method TO-15. Data validation procures followed EPA guidelines for Method TO-15 and was limited to review of documents provided including data deliverables, holding times, chain of custody forms, and laboratory quality control (QC) data (CRQLs, LCSs, CCVs and method blanks) associated with the samples.

Based on our review, all data are considered useable with the qualifiers on the attached tables and as noted below:

- Eleven air samples were collected between April 23 and 24, 2009 and delivered by courier to Enalytic, LLC of East Syracuse on April 29.
- Samples were analyzed over a period of several days between May 4-12, 2009 (see attached Table 2). All samples were analyzed from ten to eighteen days after collection, which is within the allowed holding time of 30 days. QC data corresponding to the actual day of analysis was reviewed for each sample.
- Data deliverables from the lab included data analysis sheets; Tentatively Identified Compounds (TICs); and, Chain of Custody Sheets with corresponding Lab and NETC sample ID numbers and canister serial numbers noted. Quality Control data for CCVs, method blanks, LCS and CRQLs was provided by Enalytic for the days that samples were analyzed. Performance check and calibration data for laboratory equipment were not reviewed.
- A canister certification form from the lab stating the canisters were clean prior to testing was not available.
- According to NETC staff, leak tests were performed on all of the canisters at the start and finish of testing. The vacuum in the canisters at the start of testing ranged from 30 to 26 psi, and at the completion of testing from 7 to 1 psi. The leak test variation from start to completion of testing is within the acceptable range.

A COMMITMENT TO RESPONSIVENESS, TIMELINESS, QUALITY AND COST-EFFECTIVE SOLUTIONS

Mr. Jeff Wink, NETC Data Validation report, Louden Plaza, September 15, 2009, Page 2

- Percent recoveries for all analytes in the CRQL QC samples ranged from 60% to 3000%, while the normal acceptable limits range from 65% to 135%. The May 7, 2009 QC sample contained the largest variation in percent recoveries. Percent recoveries in the QC samples for analytes actually detected in the Loudon Plaza samples ranged from 80% for hexane to 2500% for toluene. Percent recoveries for LCS QC samples ranged from 49 to 130 percent, and for CCV samples ranged from 60 to 160 percent. Samples in the data table were flagged with a 'Q' indicating outlying QC recoveries for the corresponding analytes. The analytical results provided by the lab had some of the data flagged; other flags were added during the data validation process.
- Acetone, ethanol and isopropanol were detected in method blanks below quantitation limits. 1,2,4 trimethylbenzene, 2-butanone and hexachlorobutadiene were detected in methods above quantitation limits. Samples were flagged with a 'B' indicating that an analyte was detected in the method blank.

Conclusions and Recommendations

• In accordance with USEPA guidelines, all sample results are considered valid and useable with the data qualifiers included in the attached Table 1.

We appreciate this opportunity to provide you with data validation services. Please call me if you have any questions or need additional information.

Sincerely, IVER ENVIRONMENTAL GROUP, PLLC

Camapan

Dharmarajan R. lyer, Ph.D., P.E., CES

TABLE 2 SUMMARY OF AIR SAMPLE DATA REVIEWED LOUDEN PLAZA, 350 NORTHERN BLVD., ALBANY, NY SAMPLES COLLECTED APRIL 23 24, 2009

NETC Sample #	Lab	Cannister #	Start time / Finish time	Date analyzed by lab	Raw Data Available? (Y/N)	Holding time exceeded? (Y/N)	Reviewer	Comments
SS-1	Enalytic	320-2677	4/23/09 14:46 4/24/09 10:42	5/5/2009	Y	N	D. lyer	Acetone, ethanol and isopropanal were detected in method blanks below quantitations limits. Hexachlorobutadiene was detected above quantitations limits.
IA-1	Enalytic	130-2669	4/23/09 14:47 4/24/09 10:42	5/4/2009	Y	N	D. lyer	
SS-2	Enalytic	321-2671	4/23/09 14:07 4/24/09 10:23	5/7/2009	Y	N	D. lyer	Percent recovery was 2500% for tolune in QC sample. Analytical data for SS-2 indicated tolune at 4 ug/m3.
IA-2	Enalytic	262-2713	4/23/09 13:53 4/24/09 10:22	5/5/2009	Y	N	D. lyer	
SS-3	Enalytic	279-2666	4/23/09 14:23 4/24/09 10:52	5/7/2009	Y	N	D. lyer	Percent recovery was 2500% for tolune in QC sample. Analytical data for SS-3 indicated tolune at 2.1 ug/m3.
IA-3	Enalytic	315-2660	4/23/09 14:24 4/24/09 10:32	5/5/2009	Y	N	D. lyer	Acetone, ethanol and isopropanal were detected in method blanks below quantitations limits.
SS-4	Enalytic	295-2674	4/23/09 14:16 4/24/09 10:26	5/12/2009	Y	N	D. lyer	
IA-4	Enalytic	303-2668	4/23/09 14:12 4/24/09 10:26	5/7/2009	Y	N	D. lyer	
SS-5	Enalytic	337-2672	4/23/09 14:36 4/24/09 10:36	5/12/2009	Y	N	D. lyer	
IA-5	Enalytic	283-2678	4/23/09 14:27 4/24/09 10:35	5/7/2009	Y	N	D. lyer	
OA-1	Enalytic	287-2665	4/23/09 15:09 4/24/09 10:49	5/7/2009	Y	N	D. lyer	Outside Control sample taken. Sample shows levels of Carbon tetrachloride (also in SS-1,SS-2,SS-4, IA-4, SS- 5 & IA-5); ethyl acetate (also in all samples except SS- 4); hexachlorobutadiene (also in all SS-1, SS-2, SS-3, SS-4, SS-5, IA-4 & IA-5); and, trichloroethene (also in SS-1, SS-2, SS-4, SS-5 & IA-4).

APPENDIX I

NETC STATEMENT OF SERVICES

Northeastern Environmental Technologies Corporation (NETC)

"Site assessment through remediationNETC has the tools for your environmental and geotechnical project work"

Environmental, Test Drilling, DPT Probe Services & Remediation

For More Information Regarding NETC Services call (518) 884-8545 or E-mail jeffnetc@nycap.rr.com

1476 Route 50 (Shipping) - P.O. Box 2167 (Mail) Ballston Spa, NY 12020

Statement of Services

Northeastern Environmental Technologies Corporation (NETC) recognizes both environmental and business issues critical to corporate America. Guided by regulatory agencies, NETC's innovative problem solving approach preserved the delicate balance between our countries finite natural resources and the goals of business and industry. NETC's cost conscious alternatives are designed to ensure it's clients maximum flexibility when identifying and resolving regulatory and / or environmental issues. The following is an abbreviated list of NETC's Services.

ENVIRONMENTAL SITE ASSESSMENTS

- Site Assessments & Auditing
- Property Acquisition Divestiture Certification
- Phase 2 and 3 Site Assessments
- Mobile Laboratory Services

CONTAMINANT HYDROLOGY & HAZARDOUS MATERIAL MANAGEMENT

- Storage Tank Management, Testing & Closures
- State and Federal Regulatory compliance
- Remedial Investigation Feasibility Studies
- Remedial Alternative Technology Studies; QA/QC Design

GROUNDWATER RESOURCE MANAGEMENT

- Permitting
- Management & Source Development
- Well Head Protection
- Numerical and Analytical Modeling

GEOTECHNICAL EVALUATIONS

- Dewatering & Artificial Recharge
- Deposit Exploration
- Geophysics EM & GPR
- Ground Improvement Studies
- SPCC Compliance

SITE REMEDIATION AND MONITORING SERVICES

- UST/AST Closures
- Integrity Testing
- Waste Brokerage
- SPEDS Permitting & Compliance
- Excavation Services
- Soil Gas & Groundwater Recovery Systems

TEST DRILLING / DIRECT PUSH SAMPLING PROGRAMS

- Core Drilling Services
- Direct Push Soil & Groundwater Survey
- Standard Penetration Tests
- Shelby Tube Samples

ENVIRONMENTAL IMPACT STATEMENTS * EXPERT TESTIMONY * OSHA FIELD CERTIFIED