DURHAM SCHOOL SERVICES VAPOR INTRUSION (VI) SAMPLING REPORT

Former Norton Company/Nashua Tape Products Facility 2600 Seventh Avenue Watervliet, New York EPA ID No. NYD 066829599 NYSDEC Index Number: CO 4-20001205-3375

April 2015

Prepared for: Saint-Gobain Corporation 750 East Swedesford Road P.O. Box 860 Valley Forge, Pennsylvania 19482 (610) 594-3940

Prepared by: Forensic Environmental Services, Inc. 113 John Robert Thomas Drive Exton, Pennsylvania 19341 (610) 594-3940

TABLE OF CONTENTS DURHAM SCHOOL SERVICES VAPOR INTRUSION (VI) SAMPLING REPORT

Former Norton/Nashua Tape Products Facility 2600 Seventh Avenue, Watervliet, New York

		Page
SUI	3-SLAB VAPOR MONITORING POINT INSTALLATION	
1.1	Pre-Installation Survey and Selection of VMP Locations	1-1
1.1	VMP Installation	1-1
SUI	3-SLAB VAPOR AND INDOOR/OUTDOOR AIR SAMPLING	
2.1	Pre-Sampling Inspection	2-1
2.2	Sub-Slab VMP Sampling	2-3
2.3	Indoor/Outdoor Air Sampling	2-5
2.4	QA/QC Air Samples	2-7
SUI	3-SLAB VAPOR AND INDOOR/OUTDOOR AIR SAMPLING RESULTS	
3.1	March 2015 Sub-Slab Vapor Samples	3-1
3.2	March 2015 Ambient Air Samples	3-2
3.3	March 2015 Vapor/Air Sampling Review	3-3
3.4	Contingent Sub-Slab Vapor/Indoor Air Sampling	3-5
LA	BORATORY ANALYSIS	
4.1	Data Validation	4-1
4.2	Trip Blank and Duplicate Sample	4-2
ei ec		
	Vapor/Ambient Air Sampling Field Measurements	
	· · ·	
	A •	
	1.1 1.1 1.1 SUI 2.2 2.3 2.4 SUI 3.1 3.2 3.3 3.4 LAI 4.1 4.2 SLES 2-1 3-1 3-2	 2.2 Sub-Slab VMP Sampling 2.3 Indoor/Outdoor Air Sampling 2.4 QA/QC Air Samples SUB-SLAB VAPOR AND INDOOR/OUTDOOR AIR SAMPLING RESULTS 3.1 March 2015 Sub-Slab Vapor Samples 3.2 March 2015 Ambient Air Samples 3.3 March 2015 Vapor/Air Sampling Review 3.4 Contingent Sub-Slab Vapor/Indoor Air Sampling LABORATORY ANALYSIS 4.1 Data Validation 4.2 Trip Blank and Duplicate Sample

3-4 Facility Office Area Ambient Air/Vapor - 2009/2010 Vapor Analytical Data

FIGURES

- 1-1 Site Location Map
- 1-2 Vapor Intrusion Sampling Locations
- 3-1 Previous VI Samples

APPENDICES

- A VMP Construction Information
- B Photographic Log
- C Indoor Air Quality Questionnaire and Building Characteristics Inventory Form, Equipment Calibration Documentation, and Other Field Information
- D Pre-Sampling Informational Handout
- E Tracer Gas Monitoring Protocol (Appendix C of CMS 2008 Workplan)
- F Laboratory Report

SECTION 1.0 SUB-SLAB VAPOR MONITORING POINT (VMP) INSTALLATION

Per direction of NYSDEC/NYSDOH, a vapor intrusion (VI) study was required in the new Durham School Service (Durham) facilities at the Former Norton/Nashua site in Watervliet, NY (see Figure 1-1). Access was received from the current facility owner (Stone Management, Inc.; Stone) and Durham to install and sample two sub-slab vapor monitoring points (VMPs) and conduct a concurrent indoor and outdoor ambient air sampling event.

1.1 **Pre-Installation Survey and Selection of VMP Locations**

Durham and Stone requested that the VMPs not be placed in the Durham offices where new linoleum floors were recently installed. The proposed VMP locations (see Figure 1-2) were located: 1) in the bus repair area, adjacent to the Durham General Manager's office (DB-VMP-1); and 2) in Building #61, adjacent to the Durham "break room" and offices (DB-VMP-2). The concrete slab in these areas was inspected for water leaks, cracks, floor drains, and other penetrations, and field screened with a PID. No floor penetrations were noted. The proposed VMP locations were reviewed and approved by Stone, Durham, and NYSDEC/NYSDOH.

1.2 VMP Installation

Prior to VMP installation, facility inventory/equipment in the investigation areas was temporarily relocated. A 3.5-inch diameter "outer" hole was installed with a core saw through the concrete slab to accommodate a 3-inch diameter protective vault at each location. At DB-VMP-1, the protective vault extended to the base of the concrete slab (total thickness 6 inches); however, at DB-VMP-2, the concrete had a total thickness 11.75 inches, so the protective vault did not extend to the base of the concrete slab (see Appendix A for VMP construction diagrams).

A smaller diameter "inner" hole (3-inches in diameter) was installed with a core saw through the entire length of the slab at each location. At DB-VMP-1, the inner hole extended approximately 3.75 inches below the slab, and at DB-VMP-2, the inner hole extended approximately 2.75 inches below the slab (see Appendix A for VMP construction diagrams).

The VMP assembly generally followed the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). However, for VMP durability, sixinch long, 0.50-inch outer diameter (OD), stainless-steel vapor implants were installed in each VMP (see Appendix A for manufacturer specifications). The bottom of the VMP assembly extended approximately three inches below the base of the slab at DB-VMP-1 and two inches below the base of the slab at DB-VMP-2 (i.e., the top of each implant was below the top of the slab). The top of each implant was connected to 0.25-inch inner diameter (ID) Teflon tubing (see Appendix A for VMP construction diagrams).

Porous, inert backfill (glass beads) was placed around and above the implants. Each VMP assembly (implant and tubing) was sealed in place with bentonite by filling the annular space between the VMP assembly and the sleeve of the protective vault (see Appendix A for VMP construction diagrams). The end of the VMP assembly tubing was sealed with a plug and placed inside the protective vault at each VMP. Temporarily relocated facility inventory/equipment was returned to its original location until sampling.

Photographs of the VMP locations are provided in Appendix B, which also includes photos obtained during the pre-sampling inspection of the Durham facility (see Section 2.1).

1-2

SECTION 2.0

SUB-SLAB VAPOR AND INDOOR/OUTDOOR AIR SAMPLING

Following a pre-sampling inspection and site walkover at the Durham facility on March 2, 2015, sub-slab vapor and ambient indoor/outdoor air samples were collected on March 3, 2015. (Note: the vapor regulator failed on the outdoor Summa canister, so a replacement sample was collected on March 4, 2015, under similar ambient air conditions.)

Sub-slab vapor and ambient air sampling protocol was based upon the 2006 NYSDOH Guidance document. The March 3 sampling date was within the general operation period for heating systems specific in the NYSDOH Guidance, and the heating systems in the Durham facility were active on the day of the sampling event. Following third-party validation, the final laboratory data will be forwarded to NYSDEC & NYSDOH for review and discussion to determine if additional sampling will be required.

2.1 **Pre-Sampling Inspection**

A pre-sampling inspection was conducted at the Durham facility on March 2, 2015. During the pre-sampling inspection, an Indoor Air Quality Questionnaire and Building Characteristics Inventory form (IAQQ/BCIF), as provided in the 2006 NYSDOH Guidance, was completed. A copy of the IAQQ/BCIF is presented in Appendix C.

The pre-sampling inspection included: 1) brief interviews with the property owner (Stone) and facility manager (Durham); 2) preparation of a general floor plan and tracer smoke testing to determine air flow in the Durham facility; 3) PID field screening of the proposed sampling areas; 4) an inventory of potentially contributing substances in the proposed sampling areas. Information provided during the interviews was incorporated into the IAQQ/BCIF.

2-1

In addition to a natural gas powered furnace, with inlet and outlet vents in each room, the Durham facility has overhead space heaters, indoor/outdoor air exchangers, and a portable oil heater. Tracer smoke testing indicated: 1) strong air currents in and out of the offices via the heating ventilation system when the furnace blower was running; 2) strong infiltration of outdoor air at the large overhead doors; 3) strong infiltration of outdoor air when the doors on the north and east sides of the building were opened; 4) general upward flow near DB-VMP-1; and 5) a slight upward air flow near DB-VMP-2.

PID screening results indicated volatile organic compound levels were minimal (less than 0.5 parts per million; ppmv) near DB-VMP-2 and in the outdoor ambient air sample area, but PID readings ranging from 4.0 to 5.0 ppmv were obtained at various locations within the Durham facility on March 2, 2015. (Similar, or slightly higher PID field screening readings were obtained in the Durham facility during sampling activities on March 3, 2015.)

The goal of the inventory was to identify products (or other substances stored or present in the facility) that could potentially interfere with the testing and/or contribute site-specific compounds of concern (COCs) to the vapor samples. Because toluene is the primary site-specific COC identified in groundwater at the former Norton/Nashua Site, the inventory focused on potential toluene sources. Several potential toluene sources were noted, and where possible, seals on small containers of toluene-containing products were tightened. However, the facility is a working bus maintenance/repair shop, and these activities continued on the day of sampling. Due to low outside ambient air temperatures, no supplemental ventilation activities were conducted during the pre-sampling inspection (or on the day of sampling).

Following the pre-sampling inspection, the proposed sampling appointment time was confirmed. Durham had previously been sent a handout (adopted from NYSDOH, 2006, and other references) describing the sampling and asking the facility to refrain from the following activities during the 24 hours prior to testing (a copy of the handout is provided in Appendix D):

- opening any windows or vents (however, employees needed to use access doors to enter/leave the facility throughout the sampling period; extremely windy conditions were present on the afternoon of March 3)
- operating ventilation fans unless special arrangements are made (*operation of auxiliary ventilation fans in the bus repair area was not observed during the sampling event*)
- using auxiliary heating equipment (operation of a portable oil-fired heater in the bus repair area was not observed during the sampling event)
- smoking in the facility (smoking is not allowed in the facility, but employees smoke in outdoor areas and smoke odor on clothing was evident in the "break room")
- painting in the facility (bus parts were painted and paint odors were noticeable near DB-VMP-1 during the sampling event)
- using cosmetics, including hair spray, nail polish, nail polish remover, etc.
- using perfume/cologne (*perfume odors were noted in the "break room*")
- cleaning, waxing, or polishing furniture or floors with petroleum or oil-based products
- using air fresheners or odor eliminators (a scented candle was present in the office where DB-IA-1 was collected, which is adjacent to VMP-1)
- engaging in any other activities that use materials containing volatile organic compounds (VOCs)
- applying pesticides
- allowing containers of gasoline or oil to remain within the facility (there were open containers of oil and waste oil in the bus repair area during the sampling event)
- operating or storing automobiles in an attached garage (As previously noted, the Durham facility [DB-VMP-1, DB-IA1, DB-IA2] is an active bus maintenance/repair shop and these activities continued during the sampling event. The Stone facility [DB-VMP-2] is an active warehouse, and operation of propane-fueled forklifts and other equipment continued in the warehouse during the sampling event.)

2.2 Sub-Slab VMP Sampling

On the day of VMP sampling, a final site inspection and PID field screening survey was performed to document conditions at the time of sampling. Ambient air PID readings on March 3, 2015 were approximately 4.4 parts per million by volume (ppmv) in the vicinity of DB-VMP-1 (but as high as 12.4 ppmv were observed in the bus repair area); 0.13 ppmv in the vicinity of DB-VMP-2; 2.5 ppmv in the vicinity of DB-IA1; 0.68 ppmv in the vicinity of DB-IA2; and 0.10 ppmv in the vicinity of DB-AA (see Figure 1-2 for sample locations).

The integrity of each VMP was inspected prior to sampling. Small cracks in the surface of the bentonite seal were noted at DB-VMP-1 (see photo in Appendix B). The plug was removed from each VMP assembly and several feet of dedicated 0.25-inch ID Teflon tubing was connected.

A particulate filter and an 8-hour regulator preset by the laboratory were attached to each 6-liter (6L) Summa canister. The pre-sample vacuum of each Summa canister, which was previously recorded by the laboratory prior to shipping, was recorded. No vacuum loss was noted in any of the Summa canisters and the pre-sampling vacuum of all Summa canisters was greater than 25 inches of mercury (inHg). Summa canister information is provided in Table 2-1.

Immediately prior to VMP sampling, tracer gas monitoring was conducted per the 2006 NYSDOH guidance document to confirm the integrity of each VMP (and associated fittings). A copy of the approved tracer gas monitoring protocol is provided in Appendix E (Appendix C in the original document). The flux chamber at each VMP was charged with helium (He) gas until a reading of at least 25% He was obtained. Additional tracer gas data is provided in Table 2-1.

A low-flow peristaltic pump (i.e., flow rate 0.2 liters per minute or less) was connected to the open end of the Teflon tubing to purge approximately 1.5 VMP assembly volumes (0.05 to 0.06 liters per volume) from each VMP location. Following purging, a small vapor sample was collected from each VMP for tracer gas monitoring and PID field screening.

After tracer gas monitoring was completed, the air purging pump was deactivated. Tracer gas readings at both VMP locations were less than 0.1% (i.e., both samples were below the tracer gas test screening limit of 20%). Pre-test PID readings were 7.36 ppmv at DB-VMP-1 and 2.77 ppmv at DB-VMP-2 (see Table 2-1).

The Teflon tubing from the VMP was attached to the Summa canister and the canister valve was opened to begin sub-slab vapor collection at each VMP location. The VMP sub-slab samples were recovered approximately 8 hours later by closing the Summa canister valves, disconnecting the Teflon tubing from the VMP, and recording the remaining vacuum. All vacuum readings exceeded the required 2 inHg to allow the laboratory to check for leaks. All final field Summa vacuums were within 1.5 inHg of the vacuums recorded in the laboratory prior to analysis (see Table 2-1).

Immediately after VMP sampling was completed, tracer gas monitoring was conducted as described above (see Appendix E), and the VMP was plugged. (However, the flux chamber at DB-VMP-2 still contained significant tracer gas at the end of the test and was not recharged for tracer gas screening.)

Tracer gas readings were 7.8% at DB-VMP-1 and less than 0.1% at DB-VMP-2 (see Table 2-1). The tracer gas detected at DB-VMP-1 may be related to the cracks in the bentonite seal; however, post-test tracer gas concentrations in both VMP samples were well below the screening limit of 20%. Post-test PID readings were 3.27 ppmv at VMP-1 and 0.00 ppmv at VMP-2 (see Table 2-1).

VMP sub-slab samples were submitted to Accutest Laboratories of Dayton, New Jersey (Accutest) for analysis of VOCs via EPA Method TO-15 plus tentatively identified compounds (TICs) with a target reporting limit of 5.0 micrograms per cubic meter (μ g/m³). Accutest is an NYSDOH – Environmental Laboratory Approval Program (NYSDOH-ELAP) certified laboratory. All vapor samples were analyzed following NYSDEC, ASP (June 2000) CLP procedures with complete NYSDEC CLP/Category B laboratory deliverables including TICs. Results are discussed in Section 3.0.

2.3 Indoor/Outdoor Air Sampling

In conjunction with VMP sampling, concurrent ambient indoor air samples were collected (see Figure 1-2 for sample locations). A field duplicate was collected by co-locating two Summa canisters (DB-IA2 & DUP) with approximately equal initial vacuums. A concurrent ambient outdoor air sample was collected outside the office area (however, as previously noted, the vapor regulator failed on the outdoor Summa canister, so a replacement sample was collected on March 4, 2015, under similar ambient conditions).

Ambient indoor air samples were collected by placing certified-clean 6L Summa canisters, equipped with particulate filters and 8-hour regulators preset by the laboratory, in the center of each sampling area approximately three feet off the floor (i.e., on a desk) to collect a representative "breathing air" sample. The Summa canisters were not attached to any tubing.

Pre-sample vacuums of each Summa canister, which were previously recorded by the laboratory prior to shipping, were recorded. No vacuum loss was noted in any of the Summa canisters and the pre-sampling vacuums of all Summa canisters were greater than 25 inHg. Summa canister information is provided in Table 2-1.

The Summa canister valves were opened to begin indoor ambient air collection. A similar procedure was followed for collection of the outdoor ambient air sample. Indoor/outdoor temperatures and barometric pressure were recorded along with current weather conditions. Normal business activities continued at Durham during the air sampling event and employees were often present in the active sampling areas. Also, as noted previously, employees frequently entered/exited the facility via adjacent access doors.

Ambient air samples were recovered approximately 8 hours later. Summa canister regulator valves were closed and the vacuum reading for each canister was recorded. All vacuum readings exceeded the required 2 inHg. All final Summa vacuums for the indoor air samples were within 1.5 inHg of the vacuums recorded in the laboratory prior to analysis (see Table 2-1); however, the vacuum in the outdoor air sample decreased by more than 1.5 inHg (see Table 2-1), and, therefore, the data from this sample is suitable for qualitative purposes only.

Ambient indoor/outdoor air samples were submitted for laboratory analysis of VOCs via EPA Method TO-15 plus TICs with a target reporting limit of 0.25 μ g/m³. All air samples were analyzed following NYSDEC, ASP (June 2000) CLP procedures with complete NYSDEC CLP/Category B laboratory deliverables including TICs.

2.4 QA/QC Air Samples

The QA/QC program included the collection of trip blank and field duplicate samples. One trip blank sample was analyzed for VOC target parameters and TICs. The vapor trip blank was a prepared gas sample (laboratory certified "clean air") provided in a laboratory supplied Summa canister. The blank was transported and handled in the same manner as other vapor sampling equipment (i.e., Summa canisters) before analysis by the laboratory.

Collection of the indoor air field duplicate was discussed in Section 2.3. Trip blank and duplicate sample results are discussed in Section 4.2.

SECTION 3.0

SUB-SLAB VAPOR AND INDOOR/OUTDOOR AIR SAMPLING RESULTS

Per the direction of NYSDEC & NYSDOH, sub-slab vapor and indoor air samples were collected from the new Durham facility in March 2015. Results are discussed below and summarized in Table 3-1.

Previously, on-site vapor/air samples were collected (see Figure 3-1 for sample locations) at: 1) three sewer bedding wells in Building #61 in February 2004; 2) ambient air locations in Buildings #58 & #61 in December 2004; and 3) sub-slab vapor and ambient air locations in Building #59 in March 2009 & February 2010. Vapor sampling details and results were presented in the December 2007 RFI Report and the July 2014 Corrective Measures Study (CMS) Report. Copies of the summary tables are provided herein as Tables 3-2 through 3-4.

3.1 March 2015 Sub-Slab Vapor Samples

Vapor-phase toluene concentrations in DB-VMP1 and DB-VMP-2 in March 2015 were 59.5 μ g/m³ & 37 μ g/m³, respectively. Vapor-phase heptane concentrations in DB-VMP1 and DB-VMP-2 in March 2015 were 13 μ g/m³ & 8.1 μ g/m³, respectively (see Table 3-1). Vapor-phase toluene and heptane concentrations reported in the March 2015 VMP samples were lower than the toluene and heptane concentrations reported in the February 2004 MW-11 sewer bed well sample (which is now located in the Durham facility; see Figure 3-1 & Table 3-2).

In general, other VOC concentrations in March 2015 were higher in DB-VMP-1 than DB-VMP-2 (see Table 3-1) with the most significant exception being propylene (concentration $60.6 \mu g/m^3$ in DB-VMP-2, but not detected in DB-VMP-2). The source of the propylene detected at DB-VMP-1 is unknown, but propylene can be present in motor vehicle exhaust.

3.2 March 2015 Ambient Air Samples

Vapor-phase toluene concentrations in the March 2015 ambient indoor air samples (see Table 3-1) were 292 μ g/m³ (DB-IA1) & 298 μ g/m³ (DB-IA2/DUP). Vapor-phase heptane concentrations in the March 2015 ambient indoor air samples were 1,200 μ g/m³ (DB-IA1) & 1,910 μ g/m³ (DB-IA2/DUP). More VOC analytes were detected (25 vs. 20 or less), and the reported concentrations were generally higher, in the March 2015 indoor ambient air samples than in the 2003 & 2004 Stone warehouse ambient air samples and the 2009-2010 Stone office ambient air samples (see Figure 3-1 & Tables 3-2 through 3-4).

Overall, reported VOC concentrations were similar in DB-IA1 and DB-IA2 (see Table 3-1). However, the concentrations of cyclohexane: 223 μ g/m³ (DB-IA1) vs. non-detect (ND; DB-IA2); ethylbenzene: 30 μ g/m³ (DB-IA1) vs. 20 μ g/m³ (ND; DB-DUP); methyl isobutyl ketone (MIBK): 76.2 μ g/m³ (DB-IA1) vs. 48.8 μ g/m³ (ND; DB-DUP); and xylenes: 166 μ g/m³ (DB-IA1) vs. 108 μ g/m³ (ND; DB-DUP) were higher in DB-IA1 than in DB-IA2. In addition to motor fuels associated with the school buses, the pre-inventory survey identified products containing ethylbenzene, MIBK, and xylenes in the general vicinity of DB-IA1.

Conversely, the concentrations of ethanol: 618 μ g/m³ (DB-IA1) vs. 2,090 μ g/m³ (DB-IA2), isopropyl alcohol: ND (DB-IA1) vs. 49.9 μ g/m³ (DB-DUP), and tetrachloroethene (PCE): 8.1 μ g/m³ (DB-IA1) vs. 16 μ g/m³ (DB-IA2) were higher in DB-IA2 than in DB-IA1. Alcohols and PCE could be associated with office products and dry cleaned clothing, respectively.

As noted previously, due to a loss of vacuum during shipment, the results of the March 2015 outdoor ambient air sample are qualified and suitable for qualitative use only. A total of 12 VOC analytes were detected, including toluene (concentration 1.7 μ g/m³) and several other VOCs associated with motor fuel combustion (benzene, xylene, and trimethylbenzene), which occurred throughout the sampling period due to frequent school bus movement.

3.3 March 2015 Vapor/Air Sampling Review

Vapor-phase COC (and many other VOC) concentrations were significantly higher in the indoor air samples as compared to the sub-slab vapor samples indicating confounding source(s) are present at the Durham facility. This conclusion is supported by the pre-sample inventory, which indicates toluene and heptane are present in multiple products used at the facility, and PID screenings, which had background VOC concentrations ranging from 2 to 5 ppmv or higher.

March 2015 sub-slab vapor and indoor air samples were compared to the October 2006 NYSDOH Soil Vapor/Indoor Air Matrices. The March 2015 trichloroethene (TCE) results were compared to Matrix 1. (The other compounds assigned to Matrix 1, carbon tetrachloride and vinyl chloride, were not detected in any sub-slab vapor or indoor air samples, and therefore, no further action is indicated.) Sub-slab vapor TCE concentrations ranged from 6.4 μ g/m³ (DB-VMP2) to 9.7 μ g/m³ (DB-VMP1) and indoor air TCE concentrations results ranged from ND (DB-IA1) to 1.1 μ g/m³ (DB-IA2); however, the TCE concentration in the duplicate sample was ND. These results generate a Matrix 1 result of "monitor" or "no further action" using the duplicate sample. TCE has never been detected in the groundwater or soil at the Former Norton/Nashua site except for a trace soil detection of 12 micrograms per kilogram (μ g/kg) in one boring in Building #58 (see Figure 3-1).

The March 2015 1,1,1-trichloroethane (1,1,1-TCA) and PCE data were compared to Matrix 2. (The other compounds assigned to Matrix 2; 1,1-dichloroethene and cis-1,2-dichloroethene, were not detected in any vapor or air samples, and therefore, no further action is indicated.) 1,1,1-TCA was not detected in the indoor air samples resulting in a Matrix 2 result of "no further action". PCE results were less than 100 μ g/m³ and indoor air PCE results were between 3 and 30 μ g/m³, generating a Matrix 2 result of "take reasonable and practical actions to identify source(s) and reduce exposures". PCE has never been detected in the groundwater or soil at the Former Norton/Nashua site. Durham and Stone will be informed of the PCE results.

A total of 32 other VOCs were detected in the March 2015 soil vapor and indoor air samples. These compounds were compared to Matrix 2. Sixteen analytes had soil vapor concentrations of less than less than 100 μ g/m³ and indoor air concentrations of less than 3 μ g/m³, generating a Matrix 2 result of "no further action".

As noted previously, vapor-phase COC (toluene and heptane) concentrations were significantly higher in the indoor air samples as compared to the sub-slab vapor samples (COC concentrations less than 100 μ g/m³) resulting in a Matrix 2 result of "take reasonable and practical actions to identify source(s) and reduce exposures". The same concentration relationship (less than 100 μ g/m³ sub-slab vapor concentration, greater than 3 μ g/m³ indoor air concentration) applies to 7 VOCs where the indoor air concentrations were greater than the sub-slab vapor concentrations, and 4 VOCs where the sub-slab vapor concentrations were greater than the indoor air concentrations. Many of these VOCs have documented utilization at the Durham facility. Durham and Stone will be informed of these results.

The remaining 3 VOC analytes had sub-slab vapor concentrations greater than 100 μ g/m³: acetone, ethanol, and isopropyl alcohol. (However, acetone and ethanol concentrations were significantly higher in the indoor samples.) The source of these compounds, which are not site-specific COCs for the Former Norton/Nashua site (although acetone has occasionally been detected as a suspected laboratory contaminant), is unknown. Therefore, no further action is recommended for these compounds with regards to the Former Norton/Nashua site.

In conclusion, based on the March 2015 sub-slab vapor and indoor air samples, there is currently no unacceptable exposure via migration of vapor-phase COCs from groundwater to the Durham facility and on-site workers. As previously noted, the March 2015 sub-slab vapor and indoor air results will be provided to Durham and Stone for possible action.

3.4 Contingent Sub-Slab Vapor/Indoor Air Sampling

The March 2015 sub-slab vapor and ambient indoor/outdoor air sampling data will be reviewed and discussed with project representatives from the NYSDEC and the NYSDOH. This data assessment will determine whether additional VMP and/or ambient indoor air sampling locations (or the collection of additional samples from the existing VMPs) are needed to complete the evaluation of the potential vapor intrusion exposure pathway at the Durham facility.

SECTION 4.0

LABORATORY ANALYSIS

All vapor samples were submitted to Accutest for analysis via standard turn around

times. All samples were analyzed following NYSDEC, ASP (June 2000) CLP procedures with

complete NYSDEC CLP/Category B laboratory deliverables including TICs. The final laboratory

deliverables package for volatiles via Method TO-15 was requested to include the following:

- 1) Chain of custody forms;
- 2) Instrument run logs with time and date information;
- 3) A case narrative describing any QC problems encountered by the lab, in addition to a written statement with regard to sample holding times (30 days for Summa canisters);
- 4) CLP Form I for each sample analyzed plus total/extracted ion chromatographs;
- 5) CLP Form II, system monitoring compounds (surrogate recoveries);
- 6) CLP Form III, MS/MSD recoveries and RPDs;
- 7) CLP Form IV, system, field and trip blanks where applicable;
- 8) CLP Form V, GC/MS instrument performance check for bromofluorobenzene;
- 9) CLP Form VI, GC/MS initial calibration form;
- 10) CLP Form VII, GC/MS continuing calibration;
- 11) CLP Form VIII, internal standard area and retention time summaries; and
- 12) CLP Form IV, system, field and trip blanks where applicable.

4.1 Data Validation

Data validation will be performed by a third party reviewer retained by Saint-Gobain in accordance with the NYSDEC ASP (June 2000), the USEPA Region II document <u>CLP Organics</u> <u>Data Review and Preliminary Review</u> (SOP No. HW-6, Revision No. 8, January 1992), and <u>USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review</u> (February 1994). The data validation will include a comparison of QC checks to prescribed acceptance criteria and compliance with applicable performance criteria for the following major elements: trip blank, field duplicate sample, laboratory qualifiers, holding times, detection limits (practical quantitation limits need to meet the Contract Required Quantitation Limit (CRQL) per NYSDEC ASP), surrogate recoveries, GC/MS calibrations, and system performance checks.

All data will also be reviewed for precision, accuracy, representativeness, completeness, and comparability (PARCC). The final data validation package was not available at the time of this report, but any changes to the data made during the data validation process will be incorporated into the EQuIS database.

As part of the internal data review, the analytical data package was compared with the list of analyses requested on the chain-of-custody record and the project workplan to ensure all analyses were performed as requested. No analytical samples exceeded the method-specific holding time. In several instances, the laboratory estimated analyte concentrations when samples were below quantification limits by qualifying these concentrations with a "J", indicating they represent the laboratory's "best" estimate of a specific analyte concentration.

4.2 Trip Blank and Duplicate Sample

The trip blank sample was analyzed for the full VOC analyte list. All results were ND except acetone, a laboratory contaminant frequently detected in Summa canister samples, which was detected at a concentration of $0.48 \ \mu g/m^3$.

The field duplicate sample was collected by co-locating a second Summa canister at the IA2 location (see Figure 1-2). TCE was detected in DB-IA2 at a concentration of $1.1 \ \mu g/m^3$, but was not detected in the duplicate sample at a method detection limit (MDL) of $0.16 \ \mu g/m^3$, and carbon disulfide was detected in the duplicate sample at concentration of $1.1 \ \mu g/m^3$, but was not detected in DB-IA2 at an MDL of $0.097 \ \mu g/m^3$. Other results from the two samples were generally similar (see Table 3-1) except: acetone, which had a relative percent difference (RPD) of 28.7%; ethanol (RPD 16.6%); and isopropyl alcohol (RPD 44.1%). The reason for the variability in these three compounds, which are sometimes present as laboratory contaminants, is unknown. The average RPD for the indoor air sample pair without the above compounds was 6.1%, which is considered acceptable variation between Summa canister duplicate samples.

TABLES

Table 2-1Vapor/Ambient Air Sampling Field MeasurementsFormer Norton/Nashua Tape Products FacilityWatervliet, New York

Page 1 of 1

			Post-Sample				Tracer Gas (Helium) Monitoring			
	Initial	Post-Sample	Laboratory		Pre-Sample	Post-Sample	Pre-Sample	Pre-Sample	Post-Sample	Post-Sample
	Summa	Summa	Summa	Purge	PID	PID	Concentration	Concentration	Concentration	Concentration
Sample	Vacuum	Vacuum	Vacuum	Volume	Screening	Screening	(Flux Chamber)	(Tedlar Bag)	(Flux Chamber)	(Tedlar Bag)
Designation	(inHg)	(inHg)	(inHg)	(Liters)	(ppmv)	(ppmv)	(%)	(ppmv)	(%)	(ppmv)
DB-VMP-1	30.0	7.5	6.5	0.05	7.361	3.267	26.1%	550 (<0.1%)	26.9%	2.1% (7.8%)
DB-VMP-2	30.0	7.0	5.5	0.06	2.772	0.000	36.2%	750 (<0.1%)	6.9%	1300 (<0.1%)
DB-IA1	30.0	6.5	7.5							
DB-IA-2	28.8	6.0	7.0							
DB-DUP	30.0	8.5	7.0							
DB-AA	30.0	9.0	5.5							
DB-TB	29.4	29.4	29.4							

PID = photoionization detector; inHg = inches of mercury; ppmv = parts per million by volume; VMP = vapor monitoring point; IA = indoor air; DUP = duplicate; AA = outdoor ambient air; TB = trip blank.

The purge volume of each VMP assembly (point and tubing) ranged from 0.05 to 0.06 liters. Therefore, prior to sampling, each VMP was purged at a rate of approximately 200 milliliters per minute for approximately 30 seconds (approximately 1.5-2 purge volumes).

Table 3-1 Durham School Services - March 2015 Vapor Analytical Data Former Norton/Nashua Facility Watervliet, NY

Sample ID:	DB-VMP1	DB-IA1	DB-VMP2	DB-IA2	DB-DUP	DB-AA	DB-TB
Date Sampled:	3/3/2015	3/3/2015	3/3/2015	3/3/2015	3/3/2015	3/4/2015	3/4/2015
Acetone	129	4440	37.5	3970	5300	5.5	0.48
Benzene	4.5	2.0	2.9	2.8	2.3	0.73	ND (0.080)
Carbon disulfide	50.1	0.50 J	4.7	ND (0.097)	1.1	ND (0.097)	ND (0.097)
Chloromethane	0.39 J	1.2	ND (0.64)	1.5	1.5	1.0	ND (0.16)
Cyclohexane	2.7	223	ND (0.38)	ND (0.093)	ND (0.093)	ND (0.093)	ND (0.093)
1,1-Dichloroethane	0.61 J	ND (0.11)	ND (0.45)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)
DCDFM	2.2	2.3	2.2 J	2.3	2.3	2.6	ND (0.15)
trans-1,2-DCE	2.3	ND (0.28)	ND (1.1)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)
m-Dichlorobenzene	7.8	ND (0.20)	ND (0.78)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)
p-Dichlorobenzene	ND (0.22)	ND (0.22)	2.3 J	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)
Ethanol	614 E	618	252	2090	1770	3.2	ND (0.32)
Ethylbenzene	26	30	12	19	20	ND (0.15)	ND (0.15)
Ethyl Acetate	6.8	6.8	4.7	7.9	6.5	27	ND (0.22)
4-Ethyltoluene	9.3	4.6	3.6 J	4.1	4.3	ND (0.16)	ND (0.16)
Heptane	13	1200	8.2	1800	1910	ND (0.086)	ND (0.086)
Hexane	5.6	3.1	8.1	4.2	4.2	ND (0.15)	ND (0.15)
2-Hexanone	0.86	ND (0.26)	ND (1.1)	ND (0.26)	ND (0.26)	ND (0.26)	ND (0.26)
Isopropyl alcohol	897 E	ND (0.16)	415 E	45.2	49.9	1.1	ND (0.16)
Methylene chloride	1.0	0.73	ND (1.9)	0.83	1.3	ND (0.45)	ND (0.45)
Methyl ethyl ketone	61.3	7.4	9.4	6.2	6.8	1.1	ND (0.12)
MIBK	2.0	76.2	ND (0.70)	47.1	48.8	ND (0.17)	ND (0.17)
Propylene	ND (0.082)	ND (0.082)	60.6	ND (0.082)	ND (0.082)	ND (0.082)	ND (0.082)
Styrene	20	0.72 J	8.5	0.85	0.85	ND (0.14)	ND (0.14)
1,1,1-TCA	1.3	ND (0.13)	ND (0.53)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)
1,2,4-TMB	41	20	15	18	19	1.1	ND (0.14)
1,3,5-TMB	9.8	5.4	3.6 J	4.9	5.4	ND (0.14)	ND (0.14)
2,2,4-TMP	6.5	9.8	4.2	12	12	ND (0.12)	ND (0.12)
TBA	4.5	1.2	1.8 J	1.9	1.9	ND (0.13)	ND (0.13)
Tetrachloroethene	38	8.1	17	16	16	ND (0.25)	ND (0.25)
Tetrahydrofuran	98.5	0.68	5.0	0.83	0.88	ND (0.14)	ND (0.14)
Toluene	59.5	292	37	274	298	1.7	ND (0.11)
Trichloroethene	9.7	ND (0.16)	6.4	1.1	ND (0.16)	ND (0.16)	ND (0.16)
TCFM	1.6	1.4	ND (0.67)	1.3	1.5	1.4	ND (0.16)
m,p-Xylene	80.8	118	40	72.5	76.9	1.5	ND (0.30)
o-Xylene	32	48.2	14	29	31	ND (0.15)	ND (0.15)
Xylenes (total)	112	166	53.9	102	108	1.5	ND (0.15)
Total VOC TICs	182 J	579 J	67 J	739 J	589 J	0	0

All results presented in micrograms per cubic meter ($\mu g/m^3$) except total volatile organic compound (VOC) tentatively identified compounds (TICs), which are presented in parts per billion by volume (ppbv).

- DCDFM = dichlorodifluoromethane; DCE = dichloroethene; MIBK = methyl isobutyl ketone; TCA = trichloroethane; TMB = trimethylbenzene; TMP = trimethylpentane; TBA= tertiar
- E = laboratory estimated concentration; J = estimated concentration, compound detected below the quantitation limit;
 ND = not detected (laboratory detection limit); detections in boldface. VMP = vapor monitoring point;
 IA = indoor air; DUP = duplicate sample; AA = outdoor ambient air; TB = trip blank.
- All samples were analyzed for VOCs via EPA Method TO-15 plus TICs. Only detected analytes are listed above. A complete list of analytes is provided in the original laboratory report.

On-Site Vapor/Air	MW-11*	MW-12	DGC-12	MW-13	Ambient	Blank
Samples (2/18/04)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$
Heptane	49	<0.8	<0.8	20	<0.8	<0.8
Toluene	83	8	8	4	8	<0.8
Acetone	26	14	14	10	10	<2
Benzene	10	1 J	2 J	2 J	0.6 J	<0.6
2-Butanone	<1	3	3	<1	2 J	<1
Carbon Disulfide	3	<2	<2	3 J	<2	<2
Chloroethane	<0.5	<0.5	1 J	< 0.5	< 0.5	<0.5
Chloroform	5	<1	<1	3 J	<1	<1
Chloromethane	<0.4	1 J	2 J	12	2	<0.4
Dichlorodifluoromethane	2 J	2 J	2 J	2 J	2 J	<1
Ethylbenzene	4 J	1 J	1 J	0.9 J	<0.9	<0.9
4-Ethyltoluene	3 J	<1	1 J	1 J	<1	<1
Hexane	18	2 J	1 J	28	0.7 J	<0.7
Methyl Tertiary Butyl Ether	<0.7	<0.7	<0.7	79	<0.7	<0.7
Pentane	44	6	3	118 D	3	<0.6
Propene	14	13	11	67 D	4	<0.4
tert-Butyl Alcohol	<0.6	6	<0.6	<0.6	<0.6	<0.6
Tetrachloroethene	<1	3 J	2 J	14	<1	<1
1,1,1 Trichloroethane	<1	4 J	3 J	<1	<1	<1
Trichloroethene	1 J	<1	<1	<1	<1	<1
Trichlorofluoromethane	2 J	1 J	2 J	2 J	2 J	<1
1,2,4 Trimethylbenzene	3 J	1 J	1 J	1 J	<1	<1
m/p-Xylenes	9	4 J	3 J	3 J	<0.9	<0.9
o-Xylenes	3 J	1 J	1 J	1 J	<0.9	<0.9
Total VOC TICs	2,322	1,115	496	1,080	15	0
Total non-Methane VOCs	2,469	1,178	549	1,427	41	0
Methane	4,527 J	2,362 J	2,493 J	15,745	2,755 J	2,362 J

Table 3-2Facility Monitoring Wells - 2004 Vapor Analytical DataFormer Norton/Nashua, Watervliet, NY

* also detected at MW-11: acrolein (5 μ g/m³); acetonitrile (12 μ g/m³); 1,2-dichloroethane (1 J μ g/m³); methylene chloride (3 J μ g/m³); octane (3 J μ g/m³); and styrene (3 J μ g/m³).

All results presented in μ g/m³. Parts per billion by volume (ppbv) results in the original laboratory report were converted to μ g/m³ by multiplying by the m.w. (molecular weight) and dividing by an STP (25°C) conversion factor of 24.45. An m.w. of 119 was assumed to convert the total VOC TIC concentration.

 μ g/m³ = micrograms per cubic meter; TICs = tentatively identified compounds; VOCs = volatile organic compounds; D = laboratory qualified diluted sample; J = estimated concentration, compound detected below the quantitation limit; < ("less than") = analyte concentration below the laboratory detection limit.

DGC-12 was a blind field replicate of MW-12. The "ambient" sample was collected by placing the summa canister on the ground near MW-13.

All samples were analyzed for VOCs via EPA Method TO-15 plus TICs and methane via EPA Modified Method 18. Only detected analytes are listed above. A complete list of analytes is provided in the original laboratory report.

Table 3-3 Facility Ambient Air - 2003 Vapor Analytical Data Former Norton/Nashua Watervliet, NY

On-Site Air	M34-Bldg. 61	P14-Bldg. 58
Samples (12/4/03)	(µg/m ³)	(µg/m ³)
Heptane	3 J	3 J
Toluene	19	26
Acetone	12	7
Acrolein	5	2
Benzene	6	3
2-Butanone	<1.5	3
Carbon Tetrachloride	<1.3	<1.3
Chloroform	<1.0	<1.0
Chloromethane	1.0 J	1.2 J
Dichlorodifluoromethane	2 J	2 J
Ethylbenzene	3 J	4
4-Ethyltoluene	3 J	2 J
Hexane	4	2 J
Isooctane	2 J	2 J
Methyl Tertiary Butyl Ether	<0.7	<0.7
Methylene Chloride	<1.7	<1.7
Octane	1.9 J	<0.9
Pentane	9	6
Propene	103	86
Styrene	1.7 J	3 J
Tetrachloroethene	3 J	3 J
1,1,1-Trichloroethane	<1.1	<1.1
Trichlorofluoromethane	1.7 J	3 J
1,2,4-Trimethylbenzene	5	3 J
1,3,5-Trimethylbenzene	2 J	<1
m/p-Xylenes	9	17
o-Xylene	3 J	4
Total VOC analytes	199	182
Total VOC TICs	NA	NA

All results presented in micrograms per cubic meter ($\mu g/m^3$). Parts per billion by volume (ppbv) results in the original laboratory report were converted to $\mu g/m^3$ by multiplying by the m.w. (molecular weight) and dividing by an STP (25°C) conversion factor of 24.45.

TICs = tentatively identified compounds; VOCs = volatile organic compounds; J = estimated concentration, compound detected below the quantitation limit; < ("less than") = analyte conc. below the laboratory detection limit; NA = not analyzed for the indicated parameter.

All samples were analyzed for VOCs via EPA Method TO-15. Only detected and selected analytes are listed above. A complete list of analytes is provided in the original laboratory report.

Table 3-4 Facility Office Area Ambient Air/Vapor - 2009/2010 Vapor Analytical Data Former Norton/Nashua Watervliet, NY

On-Site	VMP-2*	IA-1 / Dup.	VMP-2*	IA-1 / Dup.**	Outdoor***
Air/Vapor	3/26/2009	3/26/2009	2/18/2010	2/18/2010	2/18/2010
Samples	$(\mu g/m^3)$	(µg/m ³)	(µg/m ³)	(µg/m ³)	$(\mu g/m^3)$
Heptane	5.4	<4.1/<4.1	<0.82	2.2 / <0.82	< 0.82
Toluene	39	44 / 42	3.7	14 / 13	0.37 J
Acetone	25	22 / 9.7	2.9	11/13	2.6
Benzene	3.7	<3.2/<3.2	0.51 J	2.3 / 2.7	0.54 J
2-Butanone	8.9	<5.9/<5.9	0.35 J	2.1 / 2.8	0.35 J
Carbon Tetrachloride	8.5	<6.3 / <6.3	11	0.63 J / 0.69 J	0.69 J
Chloromethane	<2.1	<2.1/<2.1	0.35 J	1.1 / 1.2	1.2
Ethanol	NA	NA	28.3	167 E / 190 E	2.4
Dichlorodifluoromethane	<4.9	<4.9/<4.9	2.9	2.7 / 3.0	3.3
Ethyl Acetate	<3.6	7.2 / 7.1	3.4	1.2 / 1.3	<0.72
Hexane	8.4	3.8 / 4.1	0.67 J	5.3 / 5.3	<0.70
Isopropyl Alcohol	NA	NA	3.7	22 / 21	<0.49
Methylene Chloride	<1.0	<1.0 / 1.1	1.3	2.1 / <0.69	<0.69
Pentane	15	12/12	NA	NA	NA
Propene	10	20 / 21	NA	NA	NA
Tetrachloroethene	<6.8	<6.8 / <6.8	1.3	14 / 12	0.75
1,1,1-Trichloroethane	<5.5	<5.5 / <5.5	0.60 J	<1.1/<1.1	<1.1
Trichlorofluoromethane	<5.6	<5.6/<5.6	1.9	2.2 / 2.4	1.8
m/p-Xylenes	8.6	6.2 / 7.2	0.74 J	6.9 / 7.8	<0.87
o-Xylene	<4.3	<4.3 / <4.3	0.74 J	2.9 / 3.4	<0.87
Total VOC analytes	143	130/133	66	274 / 299	15
Total VOC TICs	263 J	434 J / 438 J	87.1 J	218 J / 220 J	6.3 J

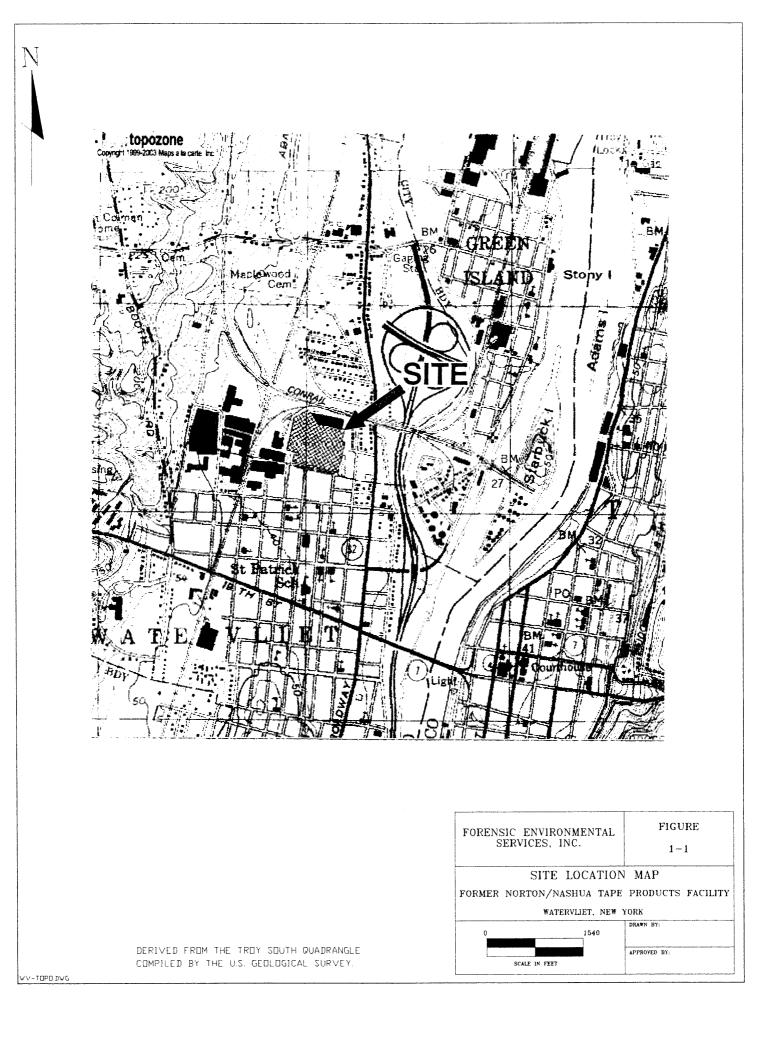
* also detected at VMP-2 on 3/26/09: carbon disulfide (10 µg/m³); on 2/18/10: propylene (1.9 µg/m³).

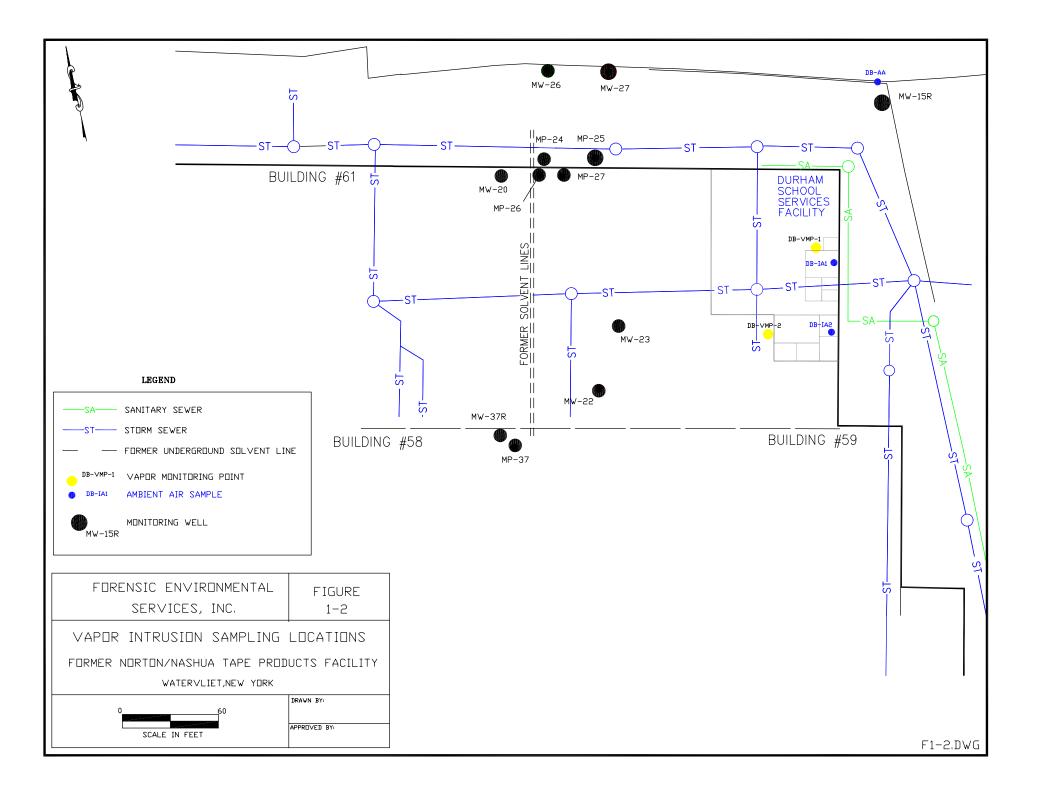
** also detected at IA-1/Dup. on 2/18/10: cyclohexane $(1.9/2.1 \ \mu g/m^3)$; ethylbenzene $(3.0/3.6 \ \mu g/m^3)$; cyclohexane $(1.9/2.1 \ \mu g/m^3)$; 4-ethyltoluene $(1.6/1.4 \ \mu g/m^3)$; methyl isobutyl ketone $(<0.82/0.70 \ J \ \mu g/m^3)$; methyl tert-butyl ether $(<0.72/0.58 \ J \ \mu g/m^3)$; styrene $(0.60 \ J/0.55 \ J \ \mu g/m^3)$; tert-butyl alcohol $(0.73/2.7 \ \mu g/m^3)$; 1,2,4-trimethylbenzene $(3.9/3.8 \ \mu g/m^3)$; 1,3.5-trimethylbenzene $(1.4/1.4 \ \mu g/m^3)$; 2,2,4-trimethylpentane $(1.2/1.2 \ \mu g/m^3)$; and vinyl acetate $(<0.70/1.6 \ \mu g/m^3)$.

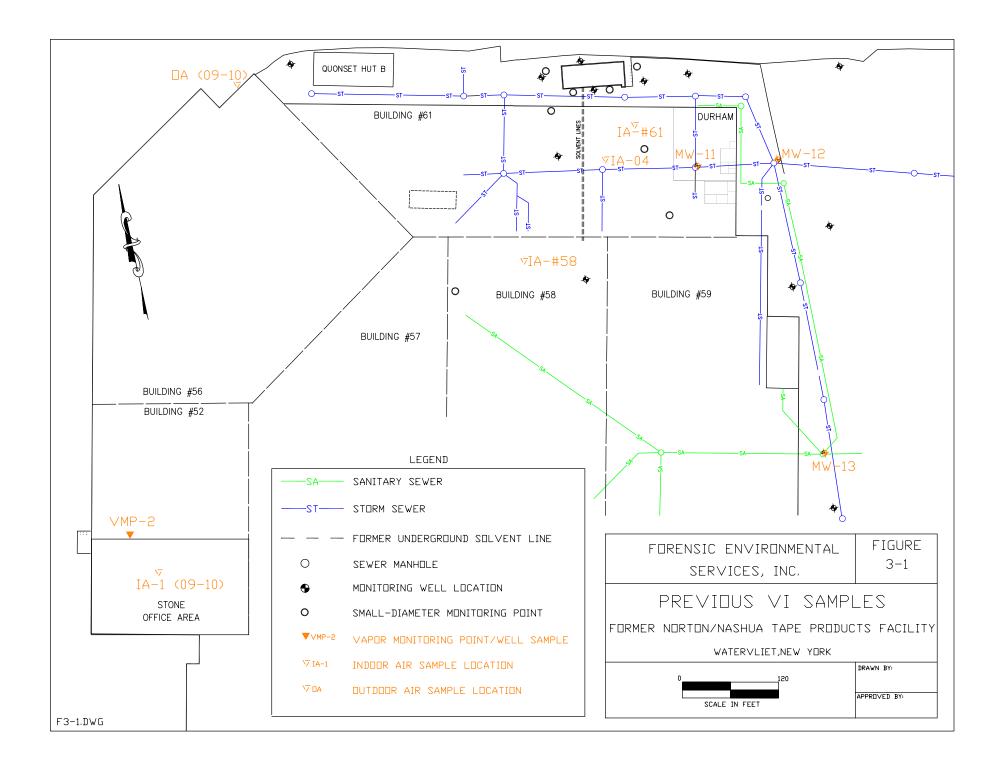
*** also detected in the 2/18/10 Outdoor Air sample: Freon 113 (0.77 J μ g/m³)

The only VOCs detected in the 3/26/09 Outdoor Ambient Air sample were: acetone $(19 \ \mu g/m^3)$ and TICs (51.6 J $\mu g/m^3$). The only VOCs detected in the 3/26/09 Trip Blank sample were: TICs (11.2 J $\mu g/m^3$).

 μ g/m³ = micrograms per cubic meter; VOC = volatile organic compound; TICs = tentatively identified compounds;

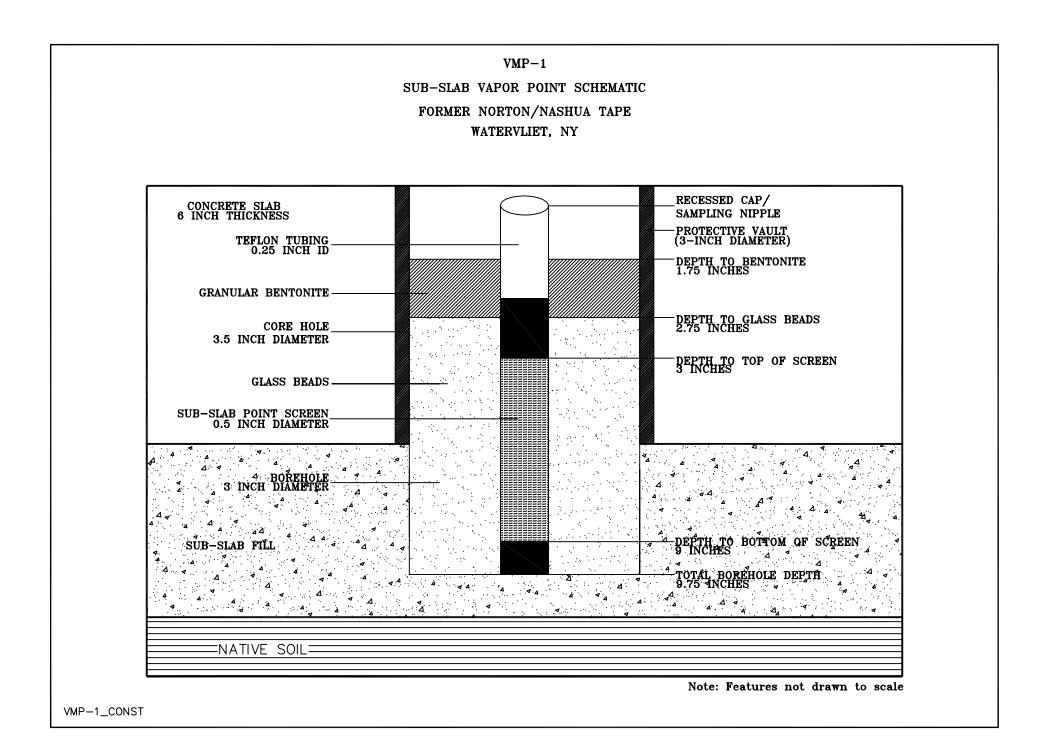

TICs = tentatively identified compounds; E = laboratory estimated concentration; J = estimated

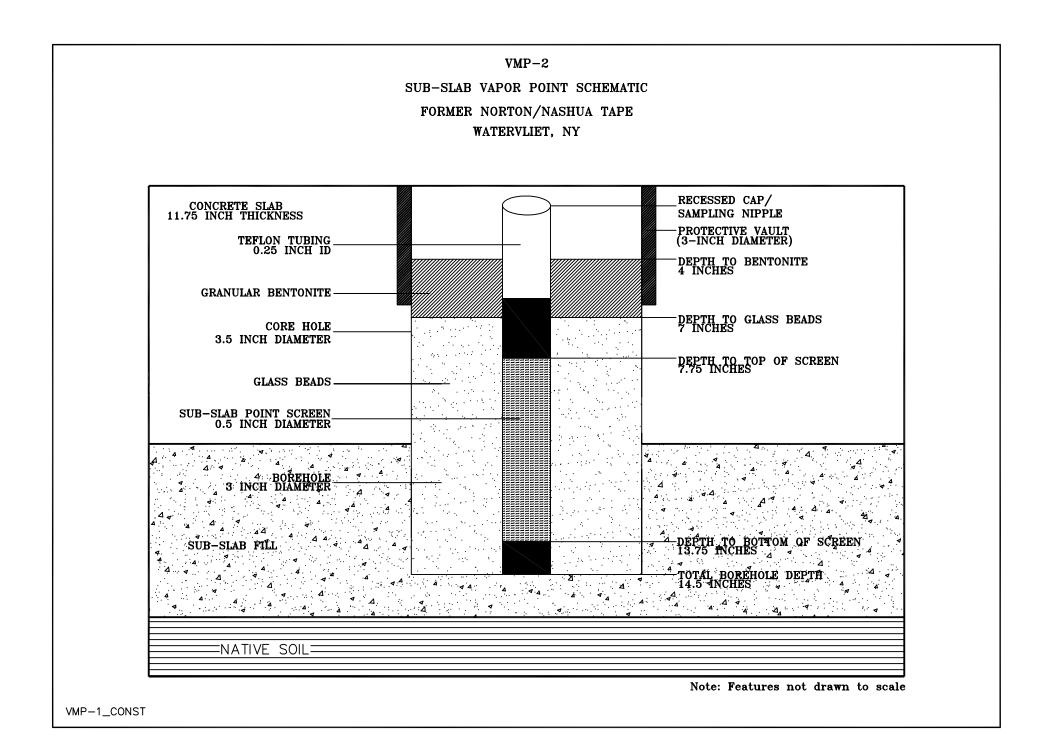

concentration, compound detected below the quantitation limit; < ("less than") = analyte concentration below the laboratory detection limit.


Additional notes for Table 3-4:

- All results presented in micrograms per cubic meter ($\mu g/m^{3}$). An average TIC molecular weight of 119 was assumed to convert the laboratory reported parts per billion by volume (ppbv) values to $\mu g/m^{3}$.
- All samples were analyzed for VOCs via EPA Method TO-15 plus TICs. Only detected analytes are listed above. A complete list of analytes is provided in the original laboratory report.

FIGURES





APPENDIX A

VMP CONSTRUCTION INFORMATION

Stainless Steel Vapor Implant

- Universal Barbed Fitting Accepts Tubing ID Sizes: .17-in, .25-in and .50-in
- Swagelock Fitting Available Accepts .25-in OD Tubing
- Solid End Allows for Anchor Point and Open-Hole Placement
- Constructed of Double Woven Stainless Steel Wire Screen
- All End Fittings are Stainless Steel
- Custom Lengths Available

Applications:

- •Permanent Soil Gas Monitoring
- •UST Monitoring
- •Groundwater Sampling
- •Air Sparging
- •Pressure Measurement Points in Vacuum Testing
- •Vapor Extraction Monitoring

Specifications:

Implant Length: 6-inches (152mm) Implant OD: 0.50-inch (12.7mm) Screen Pore Size: 0.0057-inches (.15mm) Max Depth: 100+ feet (30m)

Copyright © 2009, **ECT Manufacturing, Inc.** All rights reserved.

http://www.ectmfg.com/Product/DirectPushTooling/SoilVapor/CatSVSS.html

APPENDIX B

PHOTOGRAPHIC LOG

DB-VMP-1. DB-IA-1 was located in the office on the opposite side of the wall.

Close-up of DB-VMP-1. Note cracks in bentonite seal around outside of point

DB-VMP-2 (looking northeast).

Ceiling ductwork in main hallway.

Fluid storage in NE corner of building.

Additional fluid storage (haz-waste cabinet on opposite site of partition).

School bus repair area (note high ceiling).

Fluid storage in school bus repair area.

APPENDIX C

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING CHARACTERISTICS INVENTORY FORM, EQUIPMENT CALIBRATION DOCUMENTATION, and OTHER FIELD INFORMATION

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name ROBERT ZEI Date/Time Prepared 3/2/15 1:20Pm
Preparer's Affiliation FES OF SAINT-GOBAIN Phone No. (610) 594-3940
Purpose of Investigation New Offices in vicinity of Norton-NATHIA dissolved toluene plume
1. OCCUPANT: DURHAM SCHOOL SERVICES
Interviewed: YDN
Last Name: WIEGERS First Name: DEREK
Last Name: WIEGERS First Name: DEREK Address: 2721 2ND AJE: BLOG 61E WATERVILET NT 12189
County: ALSANY
Home Phone: V/A Office Phone: (518) 266-9330
Number of Occupants/persons at this location WORKERS Age of Occupants Generally over 10 but WORKERS Some Environe present a freen school 2. OWNER OR LANDLORD: (Check if same as occupant _) STONE MANAGEMENT INC.
2. OWNER OR LANDLORD: (Check if same as occupant _) STONE MMAGEMENT INC.
Interviewed: 🕥 N
Last Name: HELF First Name: BRIAN
Address: 2622 SEVENT AVE. WATERVIET NY 12109
County: <u>ALRANY</u>
Home Phone: $N A$ Office Phone: $(518) 272 - 2136$ X113
3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential Industrial School Church Commercial/Multi-use Other:

bus pepair / offices in Imger warehouse complex

2

If the property is residential, type? (Circle appropriate response) NA

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how many?	NK	
If the property is commercial,	type?	
Business Type(s)	reprin loffica	in whethere complex
Does it include residences (i.e., multi-use)? Y	\mathcal{V} If yes, how many? \mathcal{N}
Other characteristics:		
Number of floors	Build	ling age_55.+

4. AIRFLOW

Is the building insulated? Y(N)

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: USED AIR GURENT SMOKE TUBES

Airflow between floors NA AT UMP-2 (OUTSIDE DB OFFICES) - TO NORTH (CORNER) NO UP IN COPNER - SWIRLS - UP

How air tight? Tight / Average / Not Tight

A

Airflow near source - & FFICES NEW DR-VMP-1 TO SE CORNER BUT NOT UP - STAYS AT GROUND LEVEL NECORNER - UP WHEN HERE ON SLICHT UP WHEN HEAT OFF BUS MER - UP BUT MO CLEWR DIRECTION SLICHT UP IN "KITCHEN" LITTLE MOVEMENT IN RESTRODUS WHEN HEAT OFF

Outdoor air infiltration

Infiltration into air ducts DUCTS MONT CEICIM TO OFFICES VIA MAIN HALWAY EXCH OFFICE HAS DUTFION AND RETURN (INFROM) VONT ON CEILING LITTLE AN MOVEMENT WHEN HEAT OFF, STRONG WHEN HEAT ON (VENT - F VENT)

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

			ar	Dar Block
a. Above grade construction:	wood frame	concrete	stone	other REST OF WARE TO VIE
b. Basement type: N/A	full	crawlspace	slab	other REST OF WAREHOUSE
c. Basement floor: N/A	concrete	dirt	stone	other
d. Basement floor: N/K	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls: γ/k	poured	block	stone	other
g. Foundation walls: N/A	unsealed	sealed	sealed with	
h. The basement is: $N h$	wet	damp	dry	moldy
i. The basement is: N	finished	unfinished	partially finish	ned
j. Sump present?	Y / 🕅			
k. Water in sump? Y / N	/ not applicable			
Basement/Lowest level depth below	grade: 🜔	(feet) MAi	a FLOOR	

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

THERE ARE NO VISIBLE CLACKS IN THE CONCLETE FLOOR,	_
	٥.
THERE is A STORM SELVER MANHOLE IN THE BUS RETAINARCH W. SEVERAL MONITORING WELLS (ALL HAVE LIDS AND WELL CO	1294

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot water baseboard Radiant floor Outdoor wood boiler	GAI HEAS BANKS Other <u>ON CEILIN</u>
The primary type of fuel used	is:		
Natural Gas Electric Wood	Fuel Oil 🛣 Propane Coal		RTABLE SIL-FIRED HENTER NEAR BUSED
Domestic hot water tank fuele	ed by: NATURAL GAS	5 - "Kitcolen"	ITED ON CEILING
Boiler/furnace located in:	Basement Outdoors	Main Floor	Other
Air conditioning:	Central Air Window un	its Open Windows	None

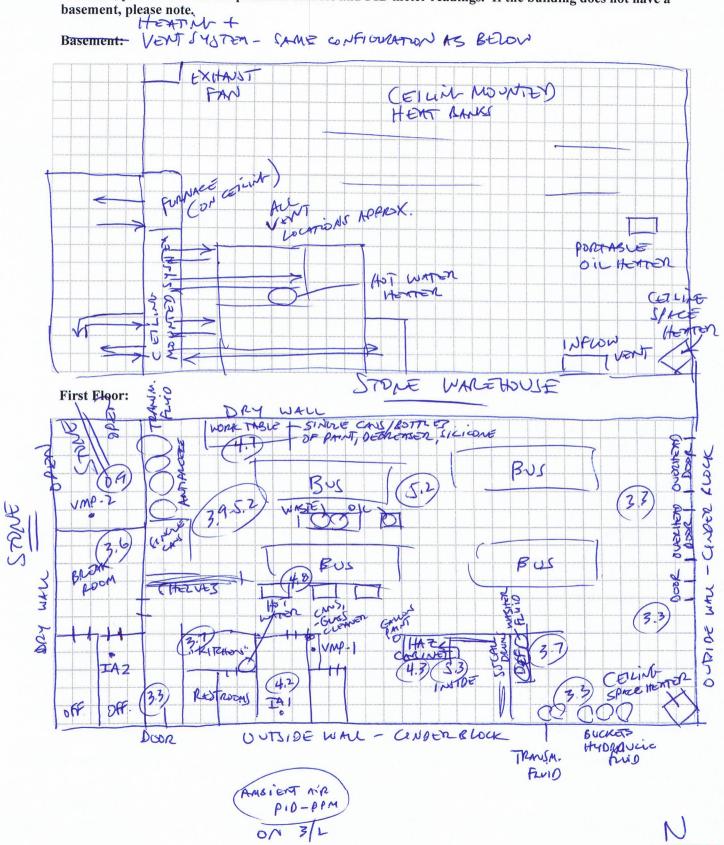
Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

- COLD/FRESH MR ENTERS ON EAST WALL NEAR NE BUDG CORNER EXHAUST VENT IN SW BUDG CORNER - MANUAL EXHAUST AS MEDED MAIN DUCTWORK ON CEILING IN MAIN HALLING W/ DUCIS TO EACH DARICE (COULD NOT TEST TIGHTMENT AT CEILING-HICH)

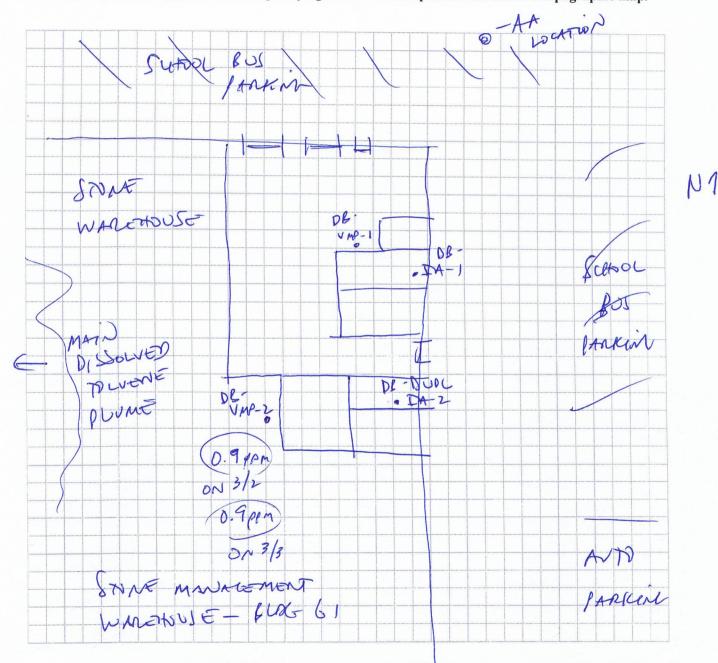
7. OCCUPANCY

Is basement/lo	west level occupied?	$\int AM - /PM$ Full-time M - F	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., fai	milyroom, bedro	oom, laundry	v, workshop, storage)
Basement	NIA				
1 st Floor	business -	- bus repair	in and off	fices	
2 nd Floor	NIA				
3 rd Floor	NIA				
4 th Floor	NIK				


8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Y / N
Y / N / NA
Y / N / NA Please specify
Y/N When? NA
YN Where? bus repair Area NE CORNER
YN Where & Type? ws reprin ,
Y N Where & Type? <u>bus Repain</u> <u>But heavy (moking</u> Y N How frequently? <u>Or Bide Facility</u>
Y / N When & Type?
Y/N When & Type? YN When & Type? N When & Type? N When & Type? N When & Type?

j. Has painting/sta	ining been done in the last 6 months?	(N Where & When? DRY WALL PAINTED IN	L
k. Is there new car	pet, drapes or other textiles?	Y N Where & When? (NEW LINDLOW FLOORS))
l. Have air freshen	ers been used recently?	(Y/N When & Type? Scanted Conduct in VMP-1 OFF	
m. Is there a kitch	en exhaust fan?	Y /N If yes, where vented? ν/\star	
n. Is there a bathr	room exhaust fan?	(Y) N If yes, where vented? DIRETLY ABOUE RETTAC	20/
o. Is there a clothe	s dryer?	Y $/N$ If yes, is it vented outside? $\frac{Y}{N}$	Г
p. Has there been a	a pesticide application?	Y N When & Type?	
Are there odors in If yes, please desc	the building? ribe: <u><u>CAINT diesels dor</u></u>	(8)/N 2, other petroleum odors	
(e.g., chemical manufa	ng occupants use solvents at work? acturing or laboratory, auto mechanic or cide application, cosmetologist	YN auto body shop, painting, fuel oil delivery,	
If yes, what types o	f solvents are used? jee list -	SMALL CAUS of degreasers, lubricants	
If yes, are their clot	hes washed at work?	YN	
Do any of the buildin response)	ng occupants regularly use or work at	a dry-cleaning service? (Circle appropriate	
Yes, use dry-	cleaning regularly (weekly) cleaning infrequently (monthly or less) a dry-cleaning service	No - weekly steam Unknown Cleaning Service	
Is there a radon miti Is the system active of	igation system for the building/structu or passive? Active/Passive	Ire? Y N Date of Installation: N/4	
9. WATER AND SE	WAGE		
Water Supply:	Public Water Drilled Well Driv	ven Well Dug Well Other:	
Sewage Disposal:	Public Sever Septic Tank Lea	ch Field Dry Well Other: Stone)	
10. RELOCATION	INFORMATION (for oil spill residen		
a. Provide reaso	ns why relocation is recommended: _	N/A	
b. Residents cho	ose to: remain in home relocate to	friends/family relocate to hotel/motel	
c. Responsibility	for costs associated with reimbursen	nent explained? Y N	
d. Relocation pa	ckage provided and explained to resid	dents? Y/N	
		\vee	


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

WIND ON 3/3/15 8: ZEAM W J-10 mph 10° 4:00 pm W 25-70 mph 23°

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ppb RAE pWS

List specific products found in the residence that have the potential to affect indoor air quality.

See Attached list for Additional defails

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
NECONNER	HYDRALYCOIL	3 r 5 gall	V	oile	3.25	general
N M	TRANSMISSION FUID	3 4	U	oils	3.32	photos
M N	VERMINE OIL	10 9611	U	21:0	3.74	~
0	PEF 15022241	27	\cup	WATER, VREA-32.5%	7.71	n,
	WASHER FLUID	stgall	U	wrter, methodol	3,10) 1
CABINET	CONDITIONER	3-4	U0 J	Kenosene, solvent NAMATHA, drefel fuel Additive	5.28-indid 437-0-t3,1	n y
11	BRAKE CUENNER	Ems	00/0	Acetonic, heptonic, ca	10	6
6)	MTT-SEIZE WBRICMT	Early	00/0	N-heptine - todant solvert priprie/1 sobutane/n-sulane oil Acctone proprie butane,	C,	¢,
(,	ECOSARE ENVEREL	2Y cans	00/0	4 cotone, propriet, butine, y-butiye testate, xy lene, MET	< 11	4
η	VINYL CEMENT	2 cms	00/0	Volvense, MEK, Acopone	4	11
• 1	CERLASTER	6 cms	00/0	methonol, ethyleneglycol,) N	4
4	RUBBONZOD. UNDERCOATING	10 CANS	00/0	CA CO3, folsent, nethyl perfate, peetone efe.	C ₁	4
1x	PROPERTOR	4 LANS	V0/0	NAPR-thenic oct heptone, pli/N-5, distillates	0	4
10	GLASS GEWER	+ sms	00/0	water 2-butoxyethinol	· (Ŋ
ч	STANADYNE WATER100	1 502	U D	NIA	4	4
1.(BLACK INSTANT GASKET	Ican	V	dinichylicilicant limestant		4
¥	PB PENETRATIAN CATALYST	1 cm	C	Petroleun Lipiloter NACh-sil, Nontric hydrocinons	4	4
٧	MISC. PAINTS	I EVERAL	- Uo/U	VARIOUS	u	11
"Kirchen"	MOPSHINE, COMET, BLEACH, SOAP	SEVERAL	00/0	VARION	3.72	4

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

and throughout bus report Most

Additional cars of the above located on dock next to oblive P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

Content Solution	Cocation Cocation
1 Engine oil / 15w40 motor oil	Shop spill pallet 2 of 55 gallon drums
2 Waste oil	pallet 2 of 55 gallon drums
3 Brake cleaner	Shop cabinet 24 of 1.3 Pounds
4 Yellow RTV Silicone	Shop cabinet 6 of 8 oz.
5 Black RTV Silicone	Shop cabinet 6 of 8 oz.
6 WD 40	Shop cabinet 12 of 12 oz.
7 Black spray paint	Shop cabinet 24 of 16 oz.
8 Yellow spray paint	Shop cabinet 24 of 16 or.
9 windshield deicer	Shop cabinet 24 of16 oz.
10 80 / 90 gear oil	shop floor area 1 of 120 LB drums
11 Chassis grease	shop floor area 1 of 120 LB drums
12 Vandal remover	Shop cabinet 6 of 16 oz.
13 Diesel 911 fuel additive	Shop cabinet 24 of 1 qt.
14 Brake fluid	Shop cabinet 6 of 8 oz.
15 GOJO hand cleaner	Shop sink 2 of 1 gallon
	Shop cabinet 12 of 16 or.
	Shop spill pallet. 1 of 55 gallon drug
	Shop spill pallet. 1 of 55 gallon dru Torch cart /
	shop 2 cylinders Torch cart /
19 acetylene	shop 2 cylinders
20 Oxygen	

Page # 1

MSDS / Table of Contents / Inventory

Book Tabie	Content	(ocation	dimment
000	15		Ours
21	Permatex / spray adhesive	Flammable Cabinet Flammable	6 cans
22	Imperial / Copper spray gasket	Cabinet Flammabi	6 cans
23	One-component polyurethane foam set	alant Cabinet Flammabl	3 cans e
24	PSI / Clear silicone	Cabinet Flammab	
25	HVP108 / Vinyl Fabric	Cabinet Flammab Cabinet	6 cans
26	Manus-bond / Adhesive / sealant	Flammab Cabinet	
27	Permatex / High tack Imperial Rubberized undercoating	Flammat	12 cans
28	Permatex / Brake caliper lube	Fiamma Cabinet Fiamma	12 Tubes
30	Permatex / Anti seize / Boz	Cabinet	Containers
31	Imperial / Battary Protector	Cabinet Fiamma	
32	Imperial / Threadlocker	Cabinet	abie
33	Permatex / Pipe thread sealant	Cabine	
34			
35			
36			
37			
38			
39			

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc.

92 North Main St, Building 20 Windsor, NJ 08561 Toll-free: (800) 301-9663

Pine Environmental Services, Inc.

Instrument ID	10604						· · · · · · ·
Description	PPBRAE PLU	s					
Calibrated	2/25/2015 4:4	3:16PM					
Manufacturer				State Certified	1		
Model Number				Status	s Pass		
Serial Number/ Lot Number	250-103227			Tem p °C	25.3		
Location Department	New Jersey			Humidity %	19		
	• 1111-12	Calibra	tion Specification	<u></u>			
Group Group Nar	# 1 nc lsobutylene		ŀ	Range Acc % Reading Acc %			
Stated Ac	cy Pct of Readi	ing		Plus/Minus			
<u>Nom in Val / In Val</u>	<u>Iп Туре</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	Lft Aş	Dev%	Pass/Fail
10.000 / 10.000	PPM	10.000	PPM	9.900	9.900	-1.00%	Pass
Test Instruments Used D	uring the Calib	ration				f_Cal Entr	
Test Standard ID Descrip	<u>tion</u>	<u>Manufacturer</u>	Model Number	<u>Serial Number</u> Lot Number	Last C	al Date/ Ex	<u>xt Cal Date /</u> piration Date
NJ ISO 10 NJ ISO EAO-248-10-11 EAO-2	10 48-10-11	Airgas	GP11006	EAO-248-1(<u>Opene</u>)-11		24/2018

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Cesar Sanchez

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc.

92 North Main St, Building 20 Windsor, NJ 08561 Toll-free: (800) 301-9663

Pine Environmental Services, Inc.

Instrun	nent ID 15520				
Desc	ription Radiodetection	MGD-2002 Mult	i-Gas Leak Locator		
	ibrated 2/25/2015 9:19				
	acturer Radiodetection			State Certified	and another the contract of the
	umber MGD-2002			Status	Pass
	er/ Lot 041372 Jumber			Temp °C	18.8
	ocation New Jersey			Humidity %	21
		<u>Cal</u> ibrat <u>i</u>	on Specifications		
	Group # 1 Dup Name Functional Te Yes As Found Re	est		As Left Result:]	Pass
Gro Test Performed:	Sup Name Functional Te	est esult: Pass		As Left Result:]	Pass (As Of Cal Entry Date)
Gro Test Performed:	Sup Name Functional Te Yes As Found Re	est esult: Pass		As Left Result:] Serial Number Lot Number	(As Of Cal Entry Date)

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Daniel Teller

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

A. GENERAL INFORMATION

Site Location: Fre North / Nashin "	GAR.
	Further NY
Field ID No: DIG-VMP1	Size of Canister: 6L
Sampling Date(s): 3/3/15	Canister Serial No: Aluzs
Shipping Date: 3/6/15	Flow Controller No:

B. SAMPLING INFORMATION

		TEMPERATURE (I	Fahrenheit)	
	Interior	Ambient	Maximum	Minima
Start	68	16	つう	16
Stop	66	24		

			RESSURE (inches of Hg)	
		Ambient		A in the second second
ſ	E tt	2002 (10 10 10 10 10 10 10 10 10 10 10 10 10 1		
ļ	Start	30.29	30.75	29,99
	Stop	25.55		
L		<u> </u>		

....

CANISTER PRESSURE (inches of Hg) FROM GAUGE

	and the second secon	where we want the second of the second se
Start		
Stop	7.5	

SAMPLING TIMES (24 hour clock)

		Elapsed Time Meter Reading
Start	900	8-6-5
Stop	יטערן	

Signature/Title of Investigator

C. LABORATORY INFORMATION

FLOW RATES (ml/min)

	Flow Controller Readout	
Shipping out from Lab		required (from lab record log) after return
Receiving in Lab		(if applicable)

CANISTER PRESSURE

	inches of lig	
Initial Pressure (to field)		required (from lab record log) after return
Final Pressure (from field)		required (from lab record log) after return

Data Shipped: Date Received: Individual Canister Certification (provide File #): Batch Certification (provide Batch ID#):

> Signature/Title GC/MS Analyst for TO-15

Λ. GENERAL INFORMATION

Site Location: For Nurba / Nashu	Torre
Site Address: 7600 7th Ave. Wet	whit Ny
Field ID No: Di3-VMP2	Size of Canister: (a)
Sampling Date(s): 3/3/15	Canister Serial No:
Shipping Date: 3/6/15	Flow Controller No:

В, SAMPLING INFORMATION

в.	SAMPLING INFORMAT	TON		
		<u>TEMPERATURE (I</u>	Fahrenheit)	
	Interior	Ambient	Maximum	Munimum
Start	W 48	16	27	16
Stop	<u>- 48</u> 48	24		

	PRESSURE (inches of Hg)					
	Ambient	Minimup				
Start	30.25	30.29 7995	(SAMAR)			
Stop	29.95	· · · · · · · · · · · · · · · · · · ·				

CANISTER PRESSURE (Inches of Hg) FROM GAUGE

Start	30	
Stop	7.0	

SAMPLING TIMES (24 hour clock)

	Local Lines	
Start		8-14
Stop		

Signature/Title of Investigator

C. LABORATORY INFORMATION

FLOW RATES (ml/min)

	Elow Controller Readout	
Shipping out from Lab		required (from lab record log) after return
Receiving in Lab		(if applicable)

CANISTER PRESSURE

		Inches of Hg	
Initial	Pressure (to field)		required (from lab record log) after return
Final	Pressure (from field)		required (from lab record log) after return

Data Shipped: Date Received: Individual Canister Certification (provide File #): Batch Certification (provide Batch 1D#):

> Signature/Title GC/MS Analyst for TO-15

Λ. **GENERAL INFORMATION**

GENERAL INFORMATION	
Site Location: For Norton	Nushing Taxe
Site Address: <u>2660</u> 7 th Ave	instervicet by
Field ID No: DB-1A1	Size of Canister: 61.
Sampling Date(s):3/_3/15	Canister Serial No:
Shipping Date: <u>3/6/15</u>	Flow Controller No:

В. SAMPLING INFORMATION

	TEMPERATURE (Fahrenheit)			
	Interior	Ambient	Maximum	Minimum
Start	702 72	16	27	16
Stop	64 72	24	-	

PRESSURE (inches of 11g)				
		Ambient	Maximum	Minimi
S	tart	30.29	30.29	74.99
	top	29.99		

CANISTER PRESSURE (inches of Hg) FROM GAUGE

	ara ya 1203 mwa 167 mwa	NEW CONTRACTOR OF A CONTRACT OF
Start	30	····
Stop	6.5	

SAMPLING TIMES (24 hour clock)

	Local Times	Elapsed Time Meter Reading
Start		8-h>
Stop		

С. LABORATORY INFORMATION

FLOW RATES (ml/min)

	Elow Controller Readout	
Shipping out from Lab		required (from lab record log) after return
Receiving in Lab		(if applicable)

CANISTER PRESSURE

_		Hereichen Buches oh He stellung	
	Initial Pressure (to field)		required (from lab record log) after return
	Final Pressure (from field)		required (from lab record log) after return

Data Shipped:

Date Received: Individual Canister Certification (provide File #): Batch Certification (provide Batch ID#):

> Signature/Title GC/MS Analyst for TO-15

Signature/Title of Investigator

A. GENERAL INFORMATION.

Site Location: For Norton Nost	un tone
Site Address: 2600 7th Ave	Webuliet NY
Field ID No: DB-IA2	Size of Canister: 6 L
Sampling Date(s): 3/3/15	Canister Serial No:
Shipping Date: <u>3/6/15</u>	Flow Controller No:

B. SAMPLING INFORMATION

	Interior	Ambient	Maximum	Minimean
Start	72	16	27	16
Stop	72	24	·	·

	P	RESSURE (inches of Hg)	
	Ambient	Maximum	Minimum
Start	30.24	30.29	29.99
Stop	29.99		

CANISTER PRESSURE (inches of Hg) FROM GAUGE

		NAME AND AND A DESCRIPTION OF A A DESCRIPTION OF A DESCRIPT
Start	28.8	-
Stop	6.0	

SAMPLING TIMES (24 hour clock)

	Jocal Times
Start	X-his
Stop	

C. LABORATORY INFORMATION

FLOW RATES (ml/min)

	Flow Controller Readout	
Shipping out from Lab		required (from lab record log) after return
Receiving in Lab		(if applicable)

CANISTER PRESSURE

		Inches of Hg	
Initial Pressu	are (to field)		required (from lab record log) after return
Final Pressu	re (from field)		required (from lab record log) after return

Data Shipped: Date Received: Individual Canister Certification (provide File #): Batch Certification (provide Batch ID#):

> Signature/Title GC/MS Analyst for TO-15

of Investigator

lignature.

A. GENERAL INFORMATION

Site Location: Fmr Norl	on Nashun Tare
Site Address: 2600 7th	Are Waterliet NY
Field ID No: 0B-DVP	Size of Canister: 6L
Sampling Date(s): 3/3/15	Canister Serial No:
Shipping Date: 3/6/15	Flow Controller No:

B. SAMPLING INFORMATION

	Interior	Ambient	Maximum	Minimum
Start	72	_ 16	ጚን	16
Stop	77	24		~

PRESSURE (inches of Hg)			
	Ambient	Maximum	Minum
Start	50.24	30.29	24.49
Stop	29.95		

CANISTER PRESSURE (inches of Hg) FROM GAUGE

Stop	<u> </u>	
Start	304	

SAMPLING TIMES (24 hour clock)

		<u> </u>
		B MARSHAR INC. MALENDERMIN
	ACAL ANCS	
Start		X then 1
1 Start		0 0 0 1
_		
Ston		
i Stop		
		L

Signature/Title of Investigator

C. LABORATORY INFORMATION

FLOW RATES (ml/mîn)

	Flow Controller Readout	
Shipping out from Lab		required (from lab record log) after return
Receiving in Lab		(if applicable)

CANISTER PRESSURE

	HAT PARAME ALCONOSU OLUMA 2 HIMPHIMALANA	
Initial Pressure (to field)		required (from lab record log) after return
Final Pressure (from field)		required (from lab record log) after return

Data Shipped:

Date Received:

Individual Canister Certification (provide File //): Batch Certification (provide Batch 1D#):

Signature/Title GC/MS Analyst for TO-15

DATELS I.

A. GENERAL INFORMATION

Site Location: Fre. Norton / Na	hua The
Site Address: 2600 7th Ave Wete	VIRT NY
Field ID No: DB-AA	Size of Canister: 6L
Sampling Date(s): $3/9/15$	Canister Serial No:
Shipping Date: 3/6/15	Flow Controller No:

B. SAMPLING INFORMATION TEMPERATURE (Fahrenheit)

IEMPEKATURE (Fahrenheit)						
	Interior	Ambient	Maximum	Minimum		
Start	-	37	32	*7		
Stop	~	33	-			

PRESSURE (inches of Hg)						
	Ambient	Maximum	Minteres Minteres			
Start	29.84	29.90	29.82			
Stop	29.90					

CANISTER PRESSURE (inches of Hg) FROM GAUGE

		en e
Start	704	
Stop	9-0	

SAMPLING TIMES (24 hour clock)

	Local Times	Elapsed Time Meter Reading
Start	(2:18	x-h-s
Stop	70:(8	

Signature/Title of Investigator

C. LABORATORY INFORMATION

FLOW RATES (ml/mln)

	Elow Controller Readout	
Shipping out from Lab		required (from lab record log) after return
Receiving in Lab		(if applicable)

CANISTER PRESSURE

	HERES OF A 2	
Initial Pressure (to field)		required (from lab record log) after return
Final Pressure (from field)		required (from lab record log) after return

Data Shipped: Date Received: Individual Canister Certification (provide File #): Batch Certification (provide Batch ID#):

> Signature/Title GC/MS Analyst for TO-15

Sub-Slab Sampling Field Readings Former Norton/Nashua Tape Products Facility Watervliet, New York

Sample Designation Location		Purge Volume (Liters)	Pre-Sample PID Screening (ppb)	Post-Sample PID Screening (ppb)	Initial SUMMA Vacuum (in/Hg)	Post-Sample SUMMA Vacuum (in/Hg)	Pre-Sample Temperature °F	Page 1 of 1 Post-Sample Temperature ⁶ F
		Vap	or Intrusion Inve	estigation (i), where	n Bus/Fin Nurthan	Khilip		
DB-VMP-1	Durhan Bus, Maintenance Aran	61	7.341	3.267	30 ⁺	7.5	68	66
DB-MAS	Stone Warehouse Adjunt to Bus offices	61	2.772	0.000	30	7.0	48	48
DB-IAI	Durhan Bus Office 1	6L	-	2.400	30	6.5	72	72
DB-1A2	Jushin Bus office 2	61	0.680	5. 670	S 8 8	6.0	72	72
DB-DUP	Durhan Bis office Z	62	0.680	5.670	30†	8.5	75	72
DB-TB	Trip Bah	61	-	-	N/A	N/4	NA	NIA
DB-AA	izus staginy Arec Ambient Air	61	0.130	υ	701	9.0	57	33

Notes:

1. NA = Not Applicable.

2. NM = Not Measured.

3. ppb = parts per billion.

APPENDIX D

PRE-SAMPLING INFORMATIONAL HANDOUT

Representatives of ______ will be collecting one or more indoor air samples from your building in the near future. Your assistance is requested during the sampling program in order to collect an indoor air sample that is both representative of indoor conditions and avoids the common background indoor air sources associated with occupant activities and consumer products.

Please follow the instructions below starting at least 48 hours prior to and during the indoor air sampling event:

- ☑ Operate your furnace and whole house air conditioner as appropriate for the current weather conditions
- ☑ Do not use wood stoves, fireplaces or auxiliary heating equipment
- \blacksquare Do not open windows or keep doors open.
- Avoid using window air conditioners, fans or vents
- \square Do not smoke in the building
- ☑ Do not use air fresheners or odor eliminators
- ☑ Do not use paints or varnishes (up to a week in advance, if possible)
- ☑ Do not use cleaning products (e.g., bathroom cleaners, furniture polish, appliance cleaners, all-purpose cleaners, floor cleaners)

- ☑ Do not use cosmetics, including hair spray, nail polish remover, perfume, etc.
- Avoid bringing freshly dry cleaned clothes into the building
- ☑ Do not engage in hobbies indoors that use solvents
- ☑ Do not apply pesticides
- ☑ Do not store containers of gasoline, oil or petroleum based or other solvents within the building or attached garages (except for fuel oil tanks)
- ☑ Do not operate or store automobiles in an attached garage
- ☑ Do not operate gasoline powered equipment within the building, attached garage or around the immediate perimeter of the building

You will be asked a series of questions about the structure, consumer products you store in your building, and occupant activities typically occurring in the building. These questions are designed to identify "background" sources of indoor air contamination. While this investigation is looking for a select number of chemicals related to the subsurface contamination, the laboratory will be analyzing the indoor air samples for a wide variety of chemicals. As a result, chemicals such as tetrachloroethene that is commonly used in dry cleaning or acetone found in nail polish remover might be detected in your sample results.

Your cooperation is greatly appreciated.

If you have any questions about these instructions, please feel free to contact

Typical air sampling canister

APPENDIX E

TRACER GAS MONITORING PROTOCOL (Appendix C of 2008 CMS Workplan)

APPENDIX C

Tracer Gas Monitoring Protocol

Tracer gas monitoring will be performed per the 2006 NYSDOH guidance document

immediately before and immediately after collection of environmental samples from the sub-slab

VMP to confirm the integrity of the VMP (and associated fittings). Pre-sampling tracer gas

monitoring will be performed as follows:

- Remove the VMP plug and connect the open end of approximately two to three feet of dedicated ¹/₄-inch ID Teflon tubing to the VMP compression fitting (or nipple). Use the VMP plug to seal the open end of the tubing.
- Insert the plugged end of the Teflon tubing through the opening on the top of the tracer gas flux chamber. Seal the tubing penetration with beeswax.
- Place a piece of plastic sheeting measuring approximately 2 feet by 2 feet over the VMP and seal the sheeting to the slab/floor with duct tape. Puncture the plastic sheeting to expose the VMP compression fitting (or nipple). Seal the flux chamber to the surface with beeswax.
- Open the inlet valve and outlet valve on the flux chamber and connect a short length of Teflon tubing to each.
- Connect the helium source to the inlet valve tubing and open the valve on the helium source allowing helium to enter the flux chamber. Any excess vapor pressure will be relieved via the outlet valve (see above).
- Activate the helium detector and connect it to the outlet valve tubing. Continue to introduce helium into the flux chamber until helium is detected at the outlet valve. Close the helium source valve and flux chamber inlet valve.
- Record the % helium in the flux chamber. Close the outlet valve.
- Unplug the sample tubing and connect to a low-flow peristaltic pump. Collect a oneliter (L) Tedlar bag sample at a flow rate of less than 0.2 liters per minute (lpm).
- After the Tedlar bag is filled, deactivate the pump, and seal the Tedlar bag.
- Connect the sample tubing to a 6L Summa canister positioned adjacent to the flux chamber in preparation for later sampling.

- Screen the Tedlar bag sample for helium by connecting it to the helium detector.
- If no helium is detected in the Tedlar bag sample (or if the ratio of the helium in the Tedlar bag versus the flux chamber is less than 1:5), seal the Tedlar bag sample and set it aside for later volatile organic compound (VOC) screening with a photoionization detector (PID). Proceed with VMP sampling.
- If pre-sampling tracer gas monitoring indicates a 20% leak by volume or greater, check the integrity of the VMP and all fittings, correct if possible, and return to the first step of pre-sampling tracer gas monitoring. If the integrity of the fitting cannot be corrected in the field (i.e., the VMP needs to be resealed or is defective), terminate VMP sampling (and any concurrent indoor air sampling) until the problem is corrected.

Post-sampling tracer gas monitoring will be performed as follows:

- Terminate VMP sampling by recording the post-sample vacuum, closing the Summa canister sample valve, and disconnecting and plugging the sampling tubing.
- Screen the flux chamber by connecting the helium detector to the outlet valve tubing and opening the outlet valve. If helium is not detected, recharge the flux chamber until helium is detected at the outlet valve. Close the helium source valve and flux chamber inlet and outlet valves.
- Unplug the VMP sample tubing and connect to a low-flow peristaltic pump. Collect a 1-L Tedlar bag sample at a flow rate of less than 0.2 lpm.
- After the Tedlar bag is filled, deactivate the pump, and seal the VMP and Tedlar bag.
- Screen the Tedlar bag sample for helium by connecting it to the helium detector.
- If no helium is detected in the Tedlar bag sample (or if the ratio of the helium in the Tedlar bag versus the flux chamber is less than 1:5), tracer gas monitoring is complete. Seal the Tedlar bag sample and set it aside for later VOC screening.
- Remove the sample tubing and plug the VMP. Restore the floor to its previous condition to the extent practicable. Submit the Summa canister for laboratory analysis.
- If post-sampling tracer gas monitoring indicates a 20% leak by volume or greater, set aside the Summa canister (and any concurrent ambient indoor air samples) for optional lab submittal. Check the integrity of the VMP and all fittings, correct if possible, and begin collection of a replacement VMP sample starting with <u>presample</u> tracer gas monitoring (or schedule a follow-up sampling date). If the integrity of the fittings cannot be corrected in the field (i.e., the VMP needs to be resealed or is defective), postpone additional sampling until the problem is corrected, and restore the sampling area as described above.

APPENDIX F

LABORATORY REPORT

03/27/15

Technical Report for

Forensic Environmental Services

Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY 029.08

Accutest Job Number: JB89441

Sampling Dates: 03/03/15 - 03/04/15

Report to:

Forensic Environmental Services

forensic@chesco.com

ATTN: Robert Zei

Total number of pages in report: 47

Mancy F. Cole

ts Nancy Cole Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Kelly Patterson 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TN, VA, WV, DoD ELAP (L-A-B L2248)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	13
4.1: JB89441-1: DB-VMP1	14
4.2: JB89441-2: DB-VMP2	17
4.3: JB89441-3: DB-IA1	20
4.4: JB89441-4: DB-IA2	23
4.5: JB89441-5: DB-DUP	26
4.6: JB89441-6: DB-TB	29
4.7: JB89441-7: DB-AA	32
Section 5: Misc. Forms	35
5.1: Chain of Custody	36
5.2: Summa Canister and Flow Controller Log	47

N

ω

4

G

Sample Summary

Forensic Environmental Services

Job No: JB89441

Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY Project No: 029.08

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JB89441-1	03/03/15	17:00 RW	03/06/15	AIR	Soil Vapor Comp.	DB-VMP1
JB89441-2	03/03/15	17:40 RW	03/06/15	AIR	Soil Vapor Comp.	DB-VMP2
JB89441-3	03/03/15	16:25 RW	03/06/15	AIR	Indoor Air Comp.	DB-IA1
JB89441-4	03/03/15	16:20 RW	03/06/15	AIR	Indoor Air Comp.	DB-IA2
JB89441-5	03/03/15	16:20 RW	03/06/15	AIR	Indoor Air Comp.	DB-DUP
JB89441-6	03/04/15	20:18 RW	03/06/15	AIR	Trip Blank Air	DB-TB
JB89441-7	03/04/15	20:18 RW	03/06/15	AIR	Ambient Air Comp.	DB-AA

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Forensic Environmental Services	Job No	JB89441
Site:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY	Report Date	3/26/2015 3:51:23 PM

On 03/06/2015, 6 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB89441 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method TO-15

	Matrix: AIR	Batch ID:	V3W1758			
-	All samples were analyzed within	he recommended metho	od holding time.			
	All method blanks for this batch m	eet method specific crite	eria.			
	Sample(s) JB90005-1DUP were u	sed as the QC samples i	ndicated.			
-	Sample(s) JB89441-1 have compo	ounds reported with "E"	qualifiers indicating estimated value exceeding calibration range.			
	Matrix: AIR	Batch ID:	V3W1759			
-	All samples were analyzed within	he recommended metho	bd holding time.			
-	All method blanks for this batch meet method specific criteria.					
-	Sample(s) JB90036-1DUP were u	sed as the QC samples i	ndicated.			
	Matrix: AIR	Batch ID:	V5W403			
-	All samples were analyzed within	he recommended metho	od holding time.			
	All method blanks for this batch m	eet method specific crite	eria.			

- Sample(s) JB89360-3DUP were used as the QC samples indicated.
- Sample(s) JB89441-2 have compounds reported with "E" qualifiers indicating estimated value exceeding calibration range.

		Matrix: AIR	Batch ID: V5W404	
--	--	-------------	------------------	--

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB89635-1DUP were used as the QC samples indicated.
- RPD(s) for Duplicate for cis-1,2-Dichloroethylene are outside in house control limits for sample JB89635-1DUP.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Ν

Summary of Hits

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JB89441-1 DB-VMP1					
Acetone	54.3	0.40	0.21	ppbv	TO-15
Benzene	1.4	0.20	0.025	ppbv	TO-15
Carbon disulfide	16.1	0.20	0.031	ppbv	TO-15
Chloromethane	0.19 J	0.20	0.079	ppbv	TO-15
Cyclohexane	0.77	0.20	0.027	ppbv	TO-15
1,1-Dichloroethane	0.15 J	0.20	0.027	ppbv	TO-15
Dichlorodifluoromethane	0.44	0.20	0.030	ppbv	TO-15
trans-1,2-Dichloroethylene	0.59	0.20	0.070	ppbv	TO-15
m-Dichlorobenzene	1.3	0.20	0.033	ppbv	TO-15
Ethanol	326 E	1.0	0.33	ppbv	TO-15
Ethylbenzene	6.1	0.20	0.035	ppbv	TO-15
Ethyl Acetate	1.9	0.20	0.061	ppbv	TO-15
4-Ethyltoluene	1.9	0.20	0.032	ppbv	TO-15
Heptane	3.1	0.20	0.021	ppbv	TO-15
Hexane	1.6	0.20	0.042	ppbv	TO-15
2-Hexanone	0.21	0.20	0.064	ppbv	TO-15
Isopropyl Alcohol	365 E	0.40	0.13	ppbv	TO-15
Methylene chloride	0.30	0.20	0.13	ppbv	TO-15
Methyl ethyl ketone	20.8	0.20	0.040	ppbv	TO-15
Methyl Isobutyl Ketone	0.49	0.20	0.042	ppbv	TO-15
Styrene	4.6	0.20	0.033	ppbv	TO-15
1,1,1-Trichloroethane	0.24	0.20	0.024	ppbv	TO-15
1,2,4-Trimethylbenzene	8.3	0.20	0.029	ppbv	TO-15
1,3,5-Trimethylbenzene	2.0	0.20	0.029	ppbv	TO-15
2,2,4-Trimethylpentane	1.4	0.20	0.025	ppbv	TO-15
Tertiary Butyl Alcohol	1.5	0.20	0.044	ppbv	TO-15
Tetrachloroethylene	5.6	0.040	0.037	ppbv	TO-15
Tetrahydrofuran	33.4	0.20	0.049	ppbv	TO-15
Toluene	15.8	0.20	0.030	ppbv	TO-15
Trichloroethylene	1.8	0.040	0.030	ppbv	TO-15
Trichlorofluoromethane	0.29	0.20	0.029	ppbv	TO-15
m,p-Xylene	18.6	0.20	0.069	ppbv	TO-15
o-Xylene	7.3	0.20	0.034	ppbv	TO-15
Xylenes (total)	25.9	0.20	0.034	ppbv	TO-15
Acetone	129	0.95	0.50	ug/m3	TO-15
Benzene	4.5	0.64	0.080	ug/m3	TO-15
Carbon disulfide	50.1	0.62	0.000	ug/m3	TO-15
Chloromethane	0.39 J	0.41	0.16	ug/m3	TO-15
Cyclohexane	2.7	0.69	0.093	ug/m3	TO-15
1,1-Dichloroethane	0.61 J	0.81	0.11	ug/m3	TO-15
Dichlorodifluoromethane	2.2	0.99	0.11	ug/m3	TO-15
trans-1,2-Dichloroethylene	2.2	0.79	0.13	ug/m3	TO-15 TO-15
m-Dichlorobenzene	7.8	1.2	0.28	ug/m3	TO-15 TO-15
	7.0	1.4	0.20	ug/1115	10-15

Summary of Hits

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Ethanol	614 E	1.9	0.62	ug/m3	TO-15
Ethylbenzene	26	0.87	0.15	ug/m3	TO-15
Ethyl Acetate	6.8	0.72	0.22	ug/m3	TO-15
4-Ethyltoluene	9.3	0.98	0.16	ug/m3	TO-15
Heptane	13	0.82	0.086	ug/m3	TO-15
Hexane	5.6	0.70	0.15	ug/m3	TO-15
2-Hexanone	0.86	0.82	0.26	ug/m3	TO-15
Isopropyl Alcohol	897 E	0.98	0.32	ug/m3	TO-15
Methylene chloride	1.0	0.69	0.45	ug/m3	TO-15
Methyl ethyl ketone	61.3	0.59	0.12	ug/m3	TO-15
Methyl Isobutyl Ketone	2.0	0.82	0.17	ug/m3	TO-15
Styrene	20	0.85	0.14	ug/m3	TO-15
1,1,1-Trichloroethane	1.3	1.1	0.13	ug/m3	TO-15
1,2,4-Trimethylbenzene	41	0.98	0.14	ug/m3	TO-15
1,3,5-Trimethylbenzene	9.8	0.98	0.14	ug/m3	TO-15
2,2,4-Trimethylpentane	6.5	0.93	0.12	ug/m3	TO-15
Tertiary Butyl Alcohol	4.5	0.61	0.13	ug/m3	TO-15
Tetrachloroethylene	38	0.27	0.25	ug/m3	TO-15
Tetrahydrofuran	98.5	0.59	0.14	ug/m3	TO-15
Toluene	59.5	0.75	0.11	ug/m3	TO-15
Trichloroethylene	9.7	0.21	0.16	ug/m3	TO-15
Trichlorofluoromethane	1.6	1.1	0.16	ug/m3	TO-15
m,p-Xylene	80.8	0.87	0.30	ug/m3	TO-15
o-Xylene	32	0.87	0.15	ug/m3	TO-15
Xylenes (total)	112	0.87	0.15	ug/m3	TO-15
Total TIC, Volatile	182.2 J	0.07	0.15	ppbv	10 15
JB89441-2 DB-VMP2					
Acetone	15.8	0.80	0.43	ppbv	TO-15
Benzene	0.92	0.80	0.099	ppbv	TO-15
Carbon disulfide	1.5	0.80	0.12	ppbv	TO-15
Dichlorodifluoromethane	0.45 J	0.80	0.12	ppbv	TO-15
p-Dichlorobenzene	0.38 J	0.80	0.15	ppbv	TO-15
Ethanol	134	2.0	0.66	ppbv	TO-15
Ethylbenzene	2.7	0.80	0.14	ppbv	TO-15
Ethyl Acetate	1.3	0.80	0.24	ppbv	TO-15
4-Ethyltoluene	0.74 J	0.80	0.13	ppbv	TO-15
Heptane	2.0	0.80	0.086	ppbv	TO-15
Hexane	2.3	0.80	0.17	ppbv	TO-15
Isopropyl Alcohol	169 E	0.80	0.27	ppbv	TO-15
Methyl ethyl ketone	3.2	0.80	0.16	ppbv	TO-15
Propylene	35.3	2.0	0.19	ppbv	TO-15
Styrene	2.0	0.80	0.13	ppbv	TO-15
1,2,4-Trimethylbenzene	3.0	0.80	0.12	ppbv	TO-15
-				~ ~	

ω

Summary of Hits

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method	
1,3,5-Trimethylbenzene	0.74 J	0.80	0.11	ppbv	TO-15	
2,2,4-Trimethylpentane	0.89	0.80	0.10	ppbv	TO-15	
Tertiary Butyl Alcohol	0.58 J	0.80	0.17	ppbv	TO-15	
Tetrachloroethylene	2.5	0.16	0.15	ppbv	TO-15	
Tetrahydrofuran	1.7	0.80	0.20	ppbv	TO-15	
Toluene	9.8	0.80	0.12	ppbv	TO-15	
Trichloroethylene	1.2	0.16	0.12	ppbv	TO-15	
m,p-Xylene	9.1	0.80	0.28	ppbv	TO-15	
o-Xylene	3.3	0.80	0.14	ppbv	TO-15	
Xylenes (total)	12.4	0.80	0.14	ppbv	TO-15	
Acetone	37.5	1.9	1.0	ug/m3	TO-15	
Benzene	2.9	2.6	0.32	ug/m3	TO-15	
Carbon disulfide	4.7	2.5	0.37	ug/m3	TO-15	
Dichlorodifluoromethane	2.2 J	4.0	0.59	ug/m3	TO-15	
p-Dichlorobenzene	2.3 J	4.8	0.90	ug/m3	TO-15	
Ethanol	252	3.8	1.2	ug/m3	TO-15	
Ethylbenzene	12	3.5	0.61	ug/m3	TO-15	
Ethyl Acetate	4.7	2.9	0.86	ug/m3	TO-15	
4-Ethyltoluene	3.6 J	3.9	0.64	ug/m3	TO-15	
Heptane	8.2	3.3	0.35	ug/m3	TO-15	
Hexane	8.1	2.8	0.60	ug/m3	TO-15	
Isopropyl Alcohol	415 E	2.0	0.66	ug/m3	TO-15	
Methyl ethyl ketone	9.4	2.4	0.47	ug/m3	TO-15	
Propylene	60.6	3.4	0.33	ug/m3	TO-15	
Styrene	8.5	3.4	0.55	ug/m3	TO-15	
1,2,4-Trimethylbenzene	15	3.9	0.59	ug/m3	TO-15	
1,3,5-Trimethylbenzene	3.6 J	3.9	0.54	ug/m3	TO-15	
2,2,4-Trimethylpentane	4.2	3.7	0.47	ug/m3	TO-15	
Tertiary Butyl Alcohol	1.8 J	2.4	0.52	ug/m3	TO-15	
Tetrachloroethylene	17	1.1	1.0	ug/m3	TO-15	
Tetrahydrofuran	5.0	2.4	0.59	ug/m3	TO-15	
Toluene	37	3.0	0.45	ug/m3	TO-15	
Trichloroethylene	6.4	0.86	0.64	ug/m3	TO-15	
m,p-Xylene	40	3.5	1.2	ug/m3	TO-15	
o-Xylene	14	3.5	0.61	ug/m3	TO-15	
Xylenes (total)	53.9	3.5	0.61	ug/m3	TO-15	
Total TIC, Volatile	67 J			ppbv		
JB89441-3 DB-IA1						
Acetone	1870	25	13	ppbv	TO-15	
Benzene	0.63	0.20	0.025	ppbv	TO-15	
Carbon disulfide	0.16 J	0.20	0.031	ppbv	TO-15	
Chloromethane	0.59	0.20	0.079	ppbv	TO-15	
Cyclohexane	64.7	25	3.4	ppbv	TO-15	
2				* *		

ω

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15

0.46 328 6.8 1.9 0.94 292 0.89 0.21	0.20 62 0.20 0.20 0.20 25	0.030 20 0.035	ppbv ppbv	TO-15 TO-15
6.8 1.9 0.94 292 0.89	0.20 0.20 0.20	0.035		$TO_{-}15$
1.9 0.94 292 0.89	0.20 0.20			10-15
0.94 292 0.89	0.20	0.041	ppbv	TO-15
292 0.89		0.061	ppbv	TO-15
0.89	25	0.032	ppbv	TO-15
	20	2.7	ppbv	TO-15
0.21	0.20	0.042	ppbv	TO-15
··	0.20	0.13	ppbv	TO-15
2.5	0.20	0.040	ppbv	TO-15
18.6	0.20	0.042	ppbv	TO-15
0.17 J	0.20	0.033	ppbv	TO-15
4.1	0.20	0.029	ppbv	TO-15
1.1	0.20	0.029	ppbv	TO-15
2.1	0.20	0.025	ppbv	TO-15
0.41	0.20	0.044	ppbv	TO-15
1.2	0.040	0.037	ppbv	TO-15
0.23	0.20	0.049	ppbv	TO-15
77.4	25	3.7	ppbv	TO-15
0.25	0.20	0.029	ppbv	TO-15
27.1	0.20	0.069	ppbv	TO-15
11.1	0.20	0.034	ppbv	TO-15
38.2	0.20	0.034	ppbv	TO-15
4440	59	31	ug/m3	TO-15
2.0	0.64	0.080	ug/m3	TO-15
				TO-15
			-	TO-15
				TO-15
			U	TO-15
			-	TO-15
				TO-15
			U	TO-15
				TO-15 TO-15
			-	TO-15 TO-15
				TO-15 TO-15
			ug/m3	TO-15 TO-15
	0.50 J 1.2 223 2.3 618 30 6.8 4.6 1200 3.1 0.73 7.4 76.2 0.72 J 20 5.4 9.8 1.2 8.1	$\begin{array}{ccccc} 0.50 \ J & 0.62 \\ 1.2 & 0.41 \\ 223 & 86 \\ 2.3 & 0.99 \\ 618 & 120 \\ 30 & 0.87 \\ 6.8 & 0.72 \\ 4.6 & 0.98 \\ 1200 & 100 \\ 3.1 & 0.70 \\ 0.73 & 0.69 \\ 7.4 & 0.59 \\ 76.2 & 0.82 \\ 0.72 \ J & 0.85 \\ 20 & 0.98 \\ 5.4 & 0.98 \\ 9.8 & 0.93 \\ 1.2 & 0.61 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Trichlorofluoromethane	1.4	1.1	0.16	ug/m3	TO-15
m,p-Xylene	118	0.87	0.30	ug/m3	TO-15
o-Xylene	48.2	0.87	0.15	ug/m3	TO-15
Xylenes (total)	166	0.87	0.15	ug/m3	TO-15
Total TIC, Volatile	579 J			ppbv	
JB89441-4 DB-IA2					
Acetone	1670	25	13	ppbv	TO-15
Benzene	0.88	0.20	0.025	ppbv	TO-15
Chloromethane	0.74	0.20	0.079	ppbv	TO-15
Dichlorodifluoromethane	0.47	0.20	0.030	ppbv	TO-15
Ethanol	1110	16	5.1	ppbv	TO-15
Ethylbenzene	4.3	0.20	0.035	ppbv	TO-15
Ethyl Acetate	2.2	0.20	0.061	ppbv	TO-15
4-Ethyltoluene	0.83	0.20	0.032	ppbv	TO-15
Heptane	439	6.2	0.66	ppbv	TO-15
Hexane	1.2	0.20	0.042	ppbv	TO-15
Isopropyl Alcohol	18.4	0.20	0.066	ppbv	TO-15
Methylene chloride	0.24	0.20	0.13	ppbv	TO-15
Methyl ethyl ketone	2.1	0.20	0.040	ppbv	TO-15
Methyl Isobutyl Ketone	11.5	0.20	0.042	ppbv	TO-15
Styrene	0.20	0.20	0.033	ppbv	TO-15
1,2,4-Trimethylbenzene	3.6	0.20	0.029	ppbv	TO-15
1,3,5-Trimethylbenzene	1.0	0.20	0.029	ppbv	TO-15
2,2,4-Trimethylpentane	2.5	0.20	0.025	ppbv	TO-15
Tertiary Butyl Alcohol	0.64	0.20	0.044	ppbv	TO-15
Tetrachloroethylene	2.4	0.040	0.037	ppbv	TO-15
Tetrahydrofuran	0.28	0.20	0.049	ppbv	TO-15
Toluene	72.8	6.2	0.94	ppbv	TO-15
Trichloroethylene	0.21	0.040	0.030	ppbv	TO-15
Trichlorofluoromethane	0.24	0.20	0.029	ppbv	TO-15
m,p-Xylene	16.7	0.20	0.069	ppbv	TO-15
o-Xylene	6.7	0.20	0.034	ppbv	TO-15
Xylenes (total)	23.5	0.20	0.034	ppbv	TO-15
Acetone	3970	59	31	ug/m3	TO-15
Benzene	2.8	0.64	0.080	ug/m3	TO-15
Chloromethane	1.5	0.41	0.16	ug/m3	TO-15
Dichlorodifluoromethane	2.3	0.99	0.15	ug/m3	TO-15
Ethanol	2090	30	9.6	ug/m3	TO-15
Ethylbenzene	19	0.87	0.15	ug/m3	TO-15
Ethyl Acetate	7.9	0.72	0.22	ug/m3	TO-15
4-Ethyltoluene	4.1	0.98	0.16	ug/m3	TO-15
Heptane	1800	25	2.7	ug/m3	TO-15
Hexane	4.2	0.70	0.15	ug/m3	TO-15

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

2,2,4-Trimethylpentane

Tertiary Butyl Alcohol

Trichlorofluoromethane

Tetrachloroethylene

Tetrahydrofuran

Toluene

3.8

1.1

2.5

0.63

2.4

0.30

79.1

0.26

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Isopropyl Alcohol	45.2	0.49	0.16	ug/m3	TO-15
Methylene chloride	0.83	0.69	0.45	ug/m3	TO-15
Methyl ethyl ketone	6.2	0.59	0.12	ug/m3	TO-15
Methyl Isobutyl Ketone	47.1	0.82	0.17	ug/m3	TO-15
Styrene	0.85	0.85	0.14	ug/m3	TO-15
1,2,4-Trimethylbenzene	18	0.98	0.14	ug/m3	TO-15
1,3,5-Trimethylbenzene	4.9	0.98	0.14	ug/m3	TO-15
2,2,4-Trimethylpentane	12	0.93	0.12	ug/m3	TO-15
Tertiary Butyl Alcohol	1.9	0.61	0.13	ug/m3	TO-15
Tetrachloroethylene	16	0.27	0.25	ug/m3	TO-15
Tetrahydrofuran	0.83	0.59	0.14	ug/m3	TO-15
Toluene	274	23	3.5	ug/m3	TO-15
Trichloroethylene	1.1	0.21	0.16	ug/m3	TO-15
Trichlorofluoromethane	1.3	1.1	0.16	ug/m3	TO-15
m,p-Xylene	72.5	0.87	0.30	ug/m3	TO-15
o-Xylene	29	0.87	0.15	ug/m3	TO-15
Xylenes (total)	102	0.87	0.15	ug/m3	TO-15
Total TIC, Volatile	739.1 J	0.07	0.15	ppbv	1010
JB89441-5 DB-DUP					
Acetone	2230	24	13	ppbv	TO-15
Benzene	0.73	0.20	0.025	ppbv	TO-15
Carbon disulfide	0.35	0.20	0.031	ppbv	TO-15
Chloromethane	0.71	0.20	0.079	ppbv	TO-15
Dichlorodifluoromethane	0.47	0.20	0.030	ppbv	TO-15
Ethanol	941	59	20	ppbv	TO-15
Ethylbenzene	4.5	0.20	0.035	ppbv	TO-15
Ethyl Acetate	1.8	0.20	0.061	ppbv	TO-15
4-Ethyltoluene	0.88	0.20	0.032	ppbv	TO-15
Heptane	466	5.9	0.63	ppbv	TO-15
Hexane	1.2	0.20	0.03	ppbv	TO-15
Isopropyl Alcohol	20.3	0.20	0.066	ppbv	TO-15 TO-15
Methylene chloride	0.36	0.20	0.13	ppbv	TO-15 TO-15
Methyl ethyl ketone	2.3	0.20	0.040	ppbv	TO-15 TO-15
Methyl Isobutyl Ketone	11.9	0.20	0.040	ppbv	TO-15
Styrene	0.20	0.20	0.042	ppbv ppbv	TO-15 TO-15
	0.20	0.20	0.055	ppov	TO-15

0.20

0.20

0.20

0.20

0.20

5.9

0.20

0.040

0.029

0.029

0.025

0.044

0.037

0.049

0.89

0.029

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

TO-15

TO-15

TO-15

TO-15 TO-15

TO-15

TO-15

TO-15

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15
9	

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
m,p-Xylene	17.7	0.20	0.069	ppbv	TO-15
o-Xylene	7.2	0.20	0.034	ppbv	TO-15
Xylenes (total)	24.9	0.20	0.034	ppbv	TO-15
Acetone	5300	57	31	ug/m3	TO-15
Benzene	2.3	0.64	0.080	ug/m3	TO-15
Carbon disulfide	1.1	0.62	0.097	ug/m3	TO-15
Chloromethane	1.5	0.41	0.16	ug/m3	TO-15
Dichlorodifluoromethane	2.3	0.99	0.15	ug/m3	TO-15
Ethanol	1770	110	38	ug/m3	TO-15
Ethylbenzene	20	0.87	0.15	ug/m3	TO-15
Ethyl Acetate	6.5	0.72	0.22	ug/m3	TO-15
4-Ethyltoluene	4.3	0.98	0.16	ug/m3	TO-15
Heptane	1910	24	2.6	ug/m3	TO-15
Hexane	4.2	0.70	0.15	ug/m3	TO-15
Isopropyl Alcohol	49.9	0.49	0.16	ug/m3	TO-15
Methylene chloride	1.3	0.69	0.45	ug/m3	TO-15
Methyl ethyl ketone	6.8	0.59	0.12	ug/m3	TO-15
Methyl Isobutyl Ketone	48.8	0.82	0.17	ug/m3	TO-15
Styrene	0.85	0.85	0.14	ug/m3	TO-15
1,2,4-Trimethylbenzene	19	0.98	0.14	ug/m3	TO-15
1,3,5-Trimethylbenzene	5.4	0.98	0.14	ug/m3	TO-15
2,2,4-Trimethylpentane	12	0.93	0.14	ug/m3	TO-15
Tertiary Butyl Alcohol	1.9	0.61	0.12	ug/m3	TO-15
Tetrachloroethylene	16	0.27	0.25	ug/m3	TO-15
Tetrahydrofuran	0.88	0.59	0.14	ug/m3	TO-15
Toluene	298	22	0.14 3.4	ug/m3	TO-15
Trichlorofluoromethane	1.5	1.1	0.16	ug/m3	TO-15
	76.9	0.87	0.10	-	TO-15
m,p-Xylene	31	0.87	0.30	ug/m3 ug/m3	TO-15
o-Xylene	108	0.87	0.15	-	TO-15
Xylenes (total)	588.5 J	0.87	0.15	ug/m3	10-15
Total TIC, Volatile	388.3 J			ppbv	
JB89441-6 DB-TB					
Acetone	0.20	0.20	0.11	ppbv	TO-15
Acetone	0.48	0.48	0.26	ug/m3	TO-15
JB89441-7 DB-AA					
Acetone	2.3	0.20	0.11	ppbv	TO-15
Benzene	0.23	0.20	0.025	ppbv	TO-15
Chloromethane	0.23	0.20	0.023	ppbv ppbv	TO-15
Dichlorodifluoromethane	0.49	0.20	0.079	ppbv ppbv	TO-15
Ethanol	1.7	0.20	0.030		TO-15
Ethyl Acetate	7.4	0.30	0.17	ppbv	TO-15
Luiyi Actiait	7.4	0.20	0.001	ppbv	10-15

Г

Job Number:	JB89441
Account:	Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Collected:	03/03/15 thru 03/04/15

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Isopropyl Alcohol	0.43	0.20	0.066	ppbv	TO-15
Methyl ethyl ketone	0.38	0.20	0.040	ppbv	TO-15
1,2,4-Trimethylbenzene	0.23	0.20	0.029	ppbv	TO-15
Toluene	0.46	0.20	0.030	ppbv	TO-15
Trichlorofluoromethane	0.25	0.20	0.029	ppbv	TO-15
m,p-Xylene	0.34	0.20	0.069	ppbv	TO-15
Xylenes (total)	0.34	0.20	0.034	ppbv	TO-15
Acetone	5.5	0.48	0.26	ug/m3	TO-15
Benzene	0.73	0.64	0.080	ug/m3	TO-15
Chloromethane	1.0	0.41	0.16	ug/m3	TO-15
Dichlorodifluoromethane	2.6	0.99	0.15	ug/m3	TO-15
Ethanol	3.2	0.94	0.32	ug/m3	TO-15
Ethyl Acetate	27	0.72	0.22	ug/m3	TO-15
Isopropyl Alcohol	1.1	0.49	0.16	ug/m3	TO-15
Methyl ethyl ketone	1.1	0.59	0.12	ug/m3	TO-15
1,2,4-Trimethylbenzene	1.1	0.98	0.14	ug/m3	TO-15
Toluene	1.7	0.75	0.11	ug/m3	TO-15
Trichlorofluoromethane	1.4	1.1	0.16	ug/m3	TO-15
m,p-Xylene	1.5	0.87	0.30	ug/m3	TO-15
Xylenes (total)	1.5	0.87	0.15	ug/m3	TO-15

Section 4

4

Sample Results

Report of Analysis

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JB AI TC)-15	Comp. Summ 2600 Seventh A	1	3/03/15 3/06/15 /a		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	5W10239.1	D 1	03/13/15	ML	n/a	n/a	V5W404
Run #2	3W46248.1	D 1	03/14/15	YMH	n/a	n/a	V3W1758
Run #1	Initial Vol 400 ml	ume					

Page 1 of 3

4.1

VOA TO15 List

200 ml

Run #2

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone	54.3 ^a	0.40	0.21	ppbv		129 ^a	0.95	0.50	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.034	ppbv		ND	0.44	0.075	ug/m3
71-43-2	78.11	Benzene	1.4	0.20	0.025	ppbv		4.5	0.64	0.080	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	0.029	ppbv		ND	1.3	0.19	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	0.035	ppbv		ND	2.1	0.36	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.033	ppbv		ND	0.78	0.13	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.035	ppbv		ND	0.87	0.15	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.047	ppbv		ND	1.0	0.24	ug/m3
75-15-0	76.14	Carbon disulfide	16.1	0.20	0.031	ppbv		50.1	0.62	0.097	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.034	ppbv		ND	0.92	0.16	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.042	ppbv		ND	0.53	0.11	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.024	ppbv		ND	0.98	0.12	ug/m3
74-87-3	50.49	Chloromethane	0.19	0.20	0.079	ppbv	J	0.39	0.41	0.16	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.037	ppbv		ND	0.63	0.12	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.032	ppbv		ND	1.0	0.17	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.025	ppbv		ND	1.3	0.16	ug/m3
110-82-7	84.16	Cyclohexane	0.77	0.20	0.027	ppbv		2.7	0.69	0.093	ug/m3
75-34-3	98.96	1,1-Dichloroethane	0.15	0.20	0.027	ppbv	J	0.61	0.81	0.11	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.052	ppbv		ND	0.79	0.21	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	0.027	ppbv		ND	1.5	0.21	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.023	ppbv		ND	0.81	0.093	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.029	ppbv		ND	0.92	0.13	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv		ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.44	0.20	0.030	ppbv		2.2	0.99	0.15	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	0.038	ppbv		ND	1.7	0.32	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	0.59	0.20	0.070	ppbv		2.3	0.79	0.28	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.023	ppbv		ND	0.79	0.091	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.025	ppbv		ND	0.91	0.11	ug/m3
541-73-1	147	m-Dichlorobenzene	1.3	0.20	0.033	ppbv		7.8	1.2	0.20	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	0.029	ppbv		ND	1.2	0.17	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	0.037	ppbv		ND	1.2	0.22	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.025	ppbv		ND	0.91	0.11	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID:	DB-VMP1		
Lab Sample ID:	JB89441-1	Date Sampled:	03/03/15
Matrix:	AIR - Soil Vapor Comp. Summa ID: A1025	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	326 ^a	1.0	0.33	ppbv	Е	614 ^a	1.9	0.62	ug/m3
100-41-4	106.2	Ethylbenzene	6.1	0.20	0.035			26	0.87	0.15	ug/m3
141-78-6	88	Ethyl Acetate	1.9	0.20	0.061			6.8	0.72	0.22	ug/m3
622-96-8	120.2	4-Ethyltoluene	1.9	0.20	0.032			9.3	0.98	0.16	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	0.040			ND	1.5	0.31	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	0.031	ppbv		ND	1.4	0.22	ug/m3
142-82-5	100.2	Heptane	3.1	0.20	0.021			13	0.82	0.086	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	0.051	ppbv		ND	2.1	0.54	ug/m3
110-54-3	86.17	Hexane	1.6	0.20	0.042	ppbv		5.6	0.70	0.15	ug/m3
591-78-6	100	2-Hexanone	0.21	0.20	0.064	ppbv		0.86	0.82	0.26	ug/m3
67-63-0	60.1	Isopropyl Alcohol	365 a	0.40	0.13	ppbv	Е	897 ^a	0.98	0.32	ug/m3
75-09-2	84.94	Methylene chloride	0.30	0.20	0.13	ppbv		1.0	0.69	0.45	ug/m3
78-93-3	72.11	Methyl ethyl ketone	20.8	0.20	0.040	ppbv		61.3	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	0.49	0.20	0.042	ppbv		2.0	0.82	0.17	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.041	ppbv		ND	0.72	0.15	ug/m3
80-62-6		Methylmethacrylate	ND	0.20	0.036	ppbv		ND	0.82	0.15	ug/m3
115-07-1	42	Propylene	ND	0.50	0.048	ppbv		ND	0.86	0.082	ug/m3
100-42-5	104.1	Styrene	4.6	0.20	0.033			20	0.85	0.14	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	0.24	0.20	0.024	ppbv		1.3	1.1	0.13	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	0.040			ND	1.4	0.27	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	0.035	ppbv		ND	1.1	0.19	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	0.061			ND	1.5	0.45	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	8.3	0.20	0.029	ppbv		41	0.98	0.14	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	2.0	0.20	0.029	ppbv		9.8	0.98	0.14	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	1.4	0.20	0.025	. .		6.5	0.93	0.12	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	1.5	0.20	0.044			4.5	0.61	0.13	ug/m3
127-18-4	165.8	Tetrachloroethylene	5.6	0.040	0.037			38	0.27	0.25	ug/m3
109-99-9	72.11	Tetrahydrofuran	33.4	0.20	0.049			98.5	0.59	0.14	ug/m3
108-88-3	92.14	Toluene	15.8	0.20	0.030			59.5	0.75	0.11	ug/m3
79-01-6	131.4	Trichloroethylene	1.8	0.040				9.7	0.21	0.16	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.29	0.20	0.029			1.6	1.1	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.031			ND	0.51	0.079	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.095	. .		ND	0.70	0.33	ug/m3
	106.2	m,p-Xylene	18.6	0.20	0.069			80.8	0.87	0.30	ug/m3
95-47-6	106.2	o-Xylene	7.3	0.20	0.034			32	0.87	0.15	ug/m3
1330-20-7	106.2	Xylenes (total)	25.9	0.20	0.034	ppbv		112	0.87	0.15	ug/m3
CAS No.	Surrog	ate Recoveries Run#	1 Run#	2 1	Limits						
460-00-4	4-Brom	nofluorobenzene 114%	106%	6	55-128%)					

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Accutest LabLink@09:02 27-Mar-2015

Client Sample ID:	DB-VMP1		
Lab Sample ID:	JB89441-1	Date Sampled:	03/03/15
Matrix:	AIR - Soil Vapor Comp. Summa ID: A1025	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		
110,000			

VOA TO15 List

alkane 4.31 15 ppbv	CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
C3 alkyl benzene19.785.1ppbv104-76-71-Hexanol, 2-ethyl-20.976.2ppbv5989-27-5D-Limonene21.28150ppbv1120-21-4alkane - Undecane22.325.9ppbv	5989-27-5	carbon dioxide alkane system artifact C3 alkyl benzene 1-Hexanol, 2-ethyl- D-Limonene alkane - Undecane system artifact	4.31 15.97 19.78 20.97 21.28 22.32	15 8.7 5.1 6.2 150 5.9 77	ppbv ppbv ppbv ppbv ppbv ppbv	J J J JN JN JN JN J J J J J J J J J J J

(a) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method: Project:	AI T()-15	r Comp. Sumn 2600 Seventh A		1175	Date Sampled:03Date Received:03Percent Solids:n/	
Run #1	File ID 5W10215.1	DF	Analyzed 03/13/15	By ML	Prep Date n/a	Prep Batch	Analytical Batch V5W403
Run #2	5 11 10215.1		03/13/13	ML	11/ u	ii) u	13 11 103
	Initial Vol						

Page 1 of 3

4.2

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone	15.8	0.80	0.43	ppbv	37.5	1.9	1.0	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.80	0.14	ppbv	ND	1.8	0.31	ug/m3
71-43-2	78.11	Benzene	0.92	0.80	0.099	ppbv	2.9	2.6	0.32	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.80	0.12	ppbv	ND	5.4	0.80	ug/m3
75-25-2	252.8	Bromoform	ND	0.80	0.14	ppbv	ND	8.3	1.4	ug/m3
74-83-9	94.94	Bromomethane	ND	0.80	0.13	ppbv	ND	3.1	0.50	ug/m3
593-60-2	106.9	Bromoethene	ND	0.80	0.14	ppbv	ND	3.5	0.61	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.80	0.19	ppbv	ND	4.1	0.98	ug/m3
75-15-0	76.14	Carbon disulfide	1.5	0.80	0.12	ppbv	4.7	2.5	0.37	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.80	0.14	ppbv	ND	3.7	0.64	ug/m3
75-00-3	64.52	Chloroethane	ND	0.80	0.17	ppbv	ND	2.1	0.45	ug/m3
67-66-3	119.4	Chloroform	ND	0.80	0.095	ppbv	ND	3.9	0.46	ug/m3
74-87-3	50.49	Chloromethane	ND	0.80	0.31	ppbv	ND	1.7	0.64	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.80	0.15	ppbv	ND	2.5	0.47	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.80	0.13	ppbv	ND	4.1	0.67	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.80	0.10	ppbv	ND	5.0	0.63	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.80	0.11	ppbv	ND	2.8	0.38	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.80	0.11	ppbv	ND	3.2	0.45	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.80	0.21	ppbv	ND	3.2	0.83	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.80	0.11	ppbv	ND	6.1	0.85	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.80	0.091	ppbv	ND	3.2	0.37	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.80	0.11	ppbv	ND	3.7	0.51	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.80	0.49	ppbv	ND	2.9	1.8	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.45	0.80	0.12	ppbv J	2.2	4.0	0.59	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.80	0.15	ppbv	ND	6.8	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.28	ppbv	ND	3.2	1.1	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.80	0.093	ppbv	ND	3.2	0.37	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.80	0.10	ppbv	ND	3.6	0.45	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.80	0.13	ppbv	ND	4.8	0.78	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.80	0.12	ppbv	ND	4.8	0.72	ug/m3
106-46-7	147	p-Dichlorobenzene	0.38	0.80	0.15	ppbv J	2.3	4.8	0.90	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.80	0.10	ppbv	ND	3.6	0.45	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Run #1

E = Indicates value exceeds calibration range

Client Sample II	D: DB-VMP2		
Lab Sample ID:	JB89441-2	Date Sampled:	03/03/15
Matrix:	AIR - Soil Vapor Comp. Summa ID: A1175	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	134	2.0	0.66	ppbv		252	3.8	1.2	ug/m3
100-41-4	106.2	Ethylbenzene	2.7	0.80	0.14	ppbv		12	3.5	0.61	ug/m3
141-78-6	88	Ethyl Acetate	1.3	0.80	0.24	ppbv		4.7	2.9	0.86	ug/m3
622-96-8	120.2	4-Ethyltoluene	0.74	0.80	0.13	ppbv	J	3.6	3.9	0.64	ug/m3
76-13-1	187.4	Freon 113	ND	0.80	0.16	ppbv		ND	6.1	1.2	ug/m3
76-14-2	170.9	Freon 114	ND	0.80	0.12	ppbv		ND	5.6	0.84	ug/m3
142-82-5	100.2	Heptane	2.0	0.80	0.086	ppbv		8.2	3.3	0.35	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.80	0.20	ppbv		ND	8.5	2.1	ug/m3
110-54-3	86.17	Hexane	2.3	0.80	0.17	ppbv		8.1	2.8	0.60	ug/m3
591-78-6	100	2-Hexanone	ND	0.80	0.26	ppbv		ND	3.3	1.1	ug/m3
67-63-0	60.1	Isopropyl Alcohol	169	0.80	0.27	ppbv	Е	415	2.0	0.66	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.80	0.54	ppbv		ND	2.8	1.9	ug/m3
78-93-3	72.11	Methyl ethyl ketone	3.2	0.80	0.16	ppbv		9.4	2.4	0.47	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.80	0.17	ppbv		ND	3.3	0.70	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.80	0.16	ppbv		ND	2.9	0.58	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.80	0.14	ppbv		ND	3.3	0.57	ug/m3
115-07-1	42	Propylene	35.3	2.0	0.19	ppbv		60.6	3.4	0.33	ug/m3
100-42-5	104.1	Styrene	2.0	0.80	0.13	ppbv		8.5	3.4	0.55	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.80	0.098	ppbv		ND	4.4	0.53	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.80	0.16	ppbv		ND	5.5	1.1	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.80	0.14	ppbv		ND	4.4	0.76	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.80	0.24	ppbv		ND	5.9	1.8	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	3.0	0.80	0.12	ppbv		15	3.9	0.59	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	0.74	0.80	0.11	ppbv	J	3.6	3.9	0.54	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.89	0.80	0.10	ppbv		4.2	3.7	0.47	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.58	0.80	0.17	ppbv	J	1.8	2.4	0.52	ug/m3
127-18-4	165.8	Tetrachloroethylene	2.5	0.16	0.15	ppbv		17	1.1	1.0	ug/m3
109-99-9	72.11	Tetrahydrofuran	1.7	0.80	0.20	ppbv		5.0	2.4	0.59	ug/m3
108-88-3	92.14	Toluene	9.8	0.80	0.12	ppbv		37	3.0	0.45	ug/m3
79-01-6	131.4	Trichloroethylene	1.2	0.16	0.12	ppbv		6.4	0.86	0.64	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.80	0.12	ppbv		ND	4.5	0.67	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.80	0.12	ppbv		ND	2.0	0.31	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.80	0.38	ppbv		ND	2.8	1.3	ug/m3
	106.2	m,p-Xylene	9.1	0.80	0.28	ppbv		40	3.5	1.2	ug/m3
95-47-6	106.2	o-Xylene	3.3	0.80	0.14	ppbv		14	3.5	0.61	ug/m3
1330-20-7	106.2	Xylenes (total)	12.4	0.80	0.14	ppbv		53.9	3.5	0.61	ug/m3
CAS No.	Surrog	ate Recoveries Run#	1 Run#	# 2	Limits						
460-00-4	4-Brom	ofluorobenzene 108%			65-128%)					

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Accutest LabLink@09:02 27-Mar-2015

Report of Analysis

Client Sample ID:	DB-VMP2		
Lab Sample ID:	JB89441-2	Date Sampled:	03/03/15
Matrix:	AIR - Soil Vapor Comp. Summa ID: A1175	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
124-38-9 5989-27-5	Carbon dioxide D-Limonene system artifact Total TIC, Volatile	3.83 21.28 23.00	2600 67 19 67	ppbv ppbv ppbv ppbv	J

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method: Project:	A T	0-15	r Comp. Summ 2600 Seventh A		,	Date Sampled:0Date Received:0Percent Solids:n	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
D //1	5W10216	.D 1	03/13/15	ML	n/a	n/a	V5W403
Run #1							
Run #1 Run #2	5W10240	.D 62	03/13/15	ML	n/a	n/a	V5W404

Run #2 200 ml

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone	1870 ^a	25	13	ppbv		4440 ^a	59	31	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.034	ppbv		ND	0.44	0.075	ug/m3
71-43-2	78.11	Benzene	0.63	0.20	0.025	ppbv		2.0	0.64	0.080	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	0.029	ppbv		ND	1.3	0.19	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	0.035	ppbv		ND	2.1	0.36	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.033	ppbv		ND	0.78	0.13	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.035	ppbv		ND	0.87	0.15	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.047	ppbv		ND	1.0	0.24	ug/m3
75-15-0	76.14	Carbon disulfide	0.16	0.20	0.031	ppbv	J	0.50	0.62	0.097	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.034			ND	0.92	0.16	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.042	ppbv		ND	0.53	0.11	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.024	ppbv		ND	0.98	0.12	ug/m3
74-87-3	50.49	Chloromethane	0.59	0.20	0.079	ppbv		1.2	0.41	0.16	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.037	ppbv		ND	0.63	0.12	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.032	ppbv		ND	1.0	0.17	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.025	ppbv		ND	1.3	0.16	ug/m3
110-82-7	84.16	Cyclohexane	64.7 ^a	25	3.4	ppbv		223 ^a	86	12	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.027	ppbv		ND	0.81	0.11	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.052	ppbv		ND	0.79	0.21	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	0.027	ppbv		ND	1.5	0.21	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.023	ppbv		ND	0.81	0.093	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.029	ppbv		ND	0.92	0.13	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv		ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.46	0.20	0.030	ppbv		2.3	0.99	0.15	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	0.038	ppbv		ND	1.7	0.32	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.070	T T		ND	0.79	0.28	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.023	ppbv		ND	0.79	0.091	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.025	ppbv		ND	0.91	0.11	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	0.033	ppbv		ND	1.2	0.20	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	0.029	ppbv		ND	1.2	0.17	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	0.037	ppbv		ND	1.2	0.22	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.025	ppbv		ND	0.91	0.11	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	DB-IA1			
Lab Sample ID:	JB89441-3		Date Sampled:	03/03/15
Matrix:	AIR - Indoor Air Comp.	Summa ID: A1061,A492	Date Received:	03/06/15
Method:	TO-15		Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seve	enth Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	328 ^a	62	20	ppbv	618 ^a	120	38	ug/m3
100-41-4	106.2	Ethylbenzene	6.8	0.20	0.035		30	0.87	0.15	ug/m3
141-78-6	88	Ethyl Acetate	1.9	0.20	0.061		6.8	0.72	0.22	ug/m3
622-96-8	120.2	4-Ethyltoluene	0.94	0.20	0.032		4.6	0.98	0.16	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	0.040		ND	1.5	0.31	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	0.031	ppbv	ND	1.4	0.22	ug/m3
142-82-5	100.2	Heptane	292 ^a	25	2.7	ppbv	1200 a	100	11	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	0.051	ppbv	ND	2.1	0.54	ug/m3
110-54-3	86.17	Hexane	0.89	0.20	0.042	ppbv	3.1	0.70	0.15	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.064	ppbv	ND	0.82	0.26	ug/m3
67-63-0	60.1	Isopropyl Alcohol	ND	0.20	0.066	ppbv	ND	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.21	0.20	0.13	ppbv	0.73	0.69	0.45	ug/m3
78-93-3	72.11	Methyl ethyl ketone	2.5	0.20	0.040	ppbv	7.4	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	18.6	0.20	0.042	ppbv	76.2	0.82	0.17	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.041		ND	0.72	0.15	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.036		ND	0.82	0.15	ug/m3
115-07-1	42	Propylene	ND	0.50	0.048	ppbv	ND	0.86	0.082	ug/m3
100-42-5	104.1	Styrene	0.17	0.20	0.033	ppbv J	0.72	0.85	0.14	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	0.024		ND	1.1	0.13	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	0.040		ND	1.4	0.27	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	0.035		ND	1.1	0.19	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	0.061		ND	1.5	0.45	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	4.1	0.20	0.029	ppbv	20	0.98	0.14	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	1.1	0.20	0.029	* *	5.4	0.98	0.14	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	2.1	0.20	0.025	11	9.8	0.93	0.12	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.41	0.20	0.044	11	1.2	0.61	0.13	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.2	0.040	0.037	* *	8.1	0.27	0.25	ug/m3
109-99-9	72.11	Tetrahydrofuran	0.23	0.20	0.049	ppbv	0.68	0.59	0.14	ug/m3
108-88-3	92.14	Toluene	77.4 ^a	25	3.7	ppbv	292 a	94	14	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.030	11	ND	0.21	0.16	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.25	0.20	0.029	* *	1.4	1.1	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.031	* *	ND	0.51	0.079	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.095	* *	ND	0.70	0.33	ug/m3
	106.2	m,p-Xylene	27.1	0.20	0.069		118	0.87	0.30	ug/m3
95-47-6	106.2	o-Xylene	11.1	0.20	0.034		48.2	0.87	0.15	ug/m3
1330-20-7	106.2	Xylenes (total)	38.2	0.20	0.034	ppbv	166	0.87	0.15	ug/m3
CAS No.	Surrog	ate Recoveries Run#	1 Run#	2 I	Limits					
460-00-4	4-Brom	nofluorobenzene 109%	107%	ϵ	55-128%	, D				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

565-59-3 alkane - Pentane, 2,3-dimethyl 589

alkane

carbon dioxide

alkane - Butane

VOA TO15 List

CAS No.

124-38-9

106-97-8

562-49-2

	······································			rr
565-59-3	alkane - Pentane, 2,3-dimethyl-	11.03	50	ppbv
589-34-4	alkane - Hexane, 3-methyl-	11.25	230	ppbv
2453-00-1	Cyclopentane, 1,3-dimethyl-	11.53	13	ppbv
	alkane	11.61	39	ppbv
108-87-2	Cyclohexane, methyl-	12.88	35	ppbv
	alkene	13.24	15	ppbv
123-86-4	Acetic acid, butyl ester	15.27	15	ppbv
124-18-5	alkane - Decane	20.69	6.8	ppbv
1120-21-4	alkane - Undecane	22.32	9.3	ppbv
	system artifact	23.00	23	ppbv
	C4 alkyl benzene	23.08	3.4	ppbv
112-40-3	alkane - Dodecane	23.59	5.8	ppbv
	Total TIC, Volatile		579	ppbv

(a) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Tentatively Identified Compounds

alkane - Pentane, 3,3-dimethyl-

Client Sample ID:	DB-IA1		
Lab Sample ID:	JB89441-3	Date Sampled:	03/03/15
Matrix:	AIR - Indoor Air Comp. Summa ID: A1061,A492	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

Report of Analysis

R.T.

3.81

4.31

4.58

10.54

Est. Conc. Units Q

ppbv

ppbv

ppbv

ppbv

JNB

J

JN

JN

JN

JN

JN J

JN

JN

JN

JN

J

J

J

JN

J

490

6.8

140

9.9

Page 3 of 3

Client Sample ID: DB-IA2 Lab Sample ID: JB89441-4 Date Sampled: 03/03/15 Matrix: AIR - Indoor Air Comp. Summa ID: A243, A542 Date Received: 03/06/15 Method: Percent Solids: TO-15 n/a **Project:** Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY File ID DF Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 5W10241.D 1.55 03/14/15 ML V5W404 n/a n/a Run #2 3W46270.D 1.55 03/16/15 YMH n/a n/a V3W1759 Run #3 62 03/16/15 V3W1759 3W46273.D YMH n/a n/a

Initial Volume

Run #1620 mlRun #220.0 mlRun #3200 ml

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone	1670 a	25	13	ppbv	3970 ^a	59	31	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.034	~ ~	ND	0.44	0.075	ug/m3
71-43-2	78.11	Benzene	0.88	0.20	0.025	~ ~	2.8	0.64	0.080	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	0.029	ppbv	ND	1.3	0.19	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	0.035		ND	2.1	0.36	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.033		ND	0.78	0.13	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.035		ND	0.87	0.15	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.047		ND	1.0	0.24	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.031		ND	0.62	0.097	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.034		ND	0.92	0.16	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.042	ppbv	ND	0.53	0.11	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.024		ND	0.98	0.12	ug/m3
74-87-3	50.49	Chloromethane	0.74	0.20	0.079	ppbv	1.5	0.41	0.16	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.037	ppbv	ND	0.63	0.12	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.032	ppbv	ND	1.0	0.17	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.025	ppbv	ND	1.3	0.16	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.027	ppbv	ND	0.69	0.093	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.027	ppbv	ND	0.81	0.11	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.052	ppbv	ND	0.79	0.21	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	0.027	ppbv	ND	1.5	0.21	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.023	ppbv	ND	0.81	0.093	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.029	ppbv	ND	0.92	0.13	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv	ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.47	0.20	0.030	ppbv	2.3	0.99	0.15	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	0.038	ppbv	ND	1.7	0.32	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.070	ppbv	ND	0.79	0.28	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.023	ppbv	ND	0.79	0.091	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.025		ND	0.91	0.11	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	0.033	· ·	ND	1.2	0.20	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	0.029		ND	1.2	0.17	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

E = Indicates value exceeds calibration range

	Report	of	Analys	is
--	--------	----	--------	----

Matrix:AIR - Indoor Air Comp.Summa ID: A243,A542Date Received:03/06/15Method:TO-15Percent Solids:n/a	Client Sample ID:	DB-IA2		
Method: TO-15 Percent Solids: n/a	Lab Sample ID:	JB89441-4	Date Sampled:	03/03/15
	Matrix:	AIR - Indoor Air Comp. Summa ID: A243,A542	Date Received:	03/06/15
Project: Watervliet NY 2600 Seventh Avenue Watervliet NY	Method:	TO-15	Percent Solids:	n/a
	Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
106-46-7	147	p-Dichlorobenzene	ND	0.20	0.037	ppbv	ND	1.2	0.22	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.025		ND	0.91	0.11	ug/m3
64-17-5	46.07	Ethanol	1110 ^b	16	5.1	ppbv	2090 b	30	9.6	ug/m3
100-41-4	106.2	Ethylbenzene	4.3	0.20	0.035		19	0.87	0.15	ug/m3
141-78-6	88	Ethyl Acetate	2.2	0.20	0.061	* *	7.9	0.72	0.22	ug/m3
622-96-8	120.2	4-Ethyltoluene	0.83	0.20	0.032		4.1	0.98	0.16	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	0.040	~ ~	ND	1.5	0.31	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	0.031	ppbv	ND	1.4	0.22	ug/m3
142-82-5	100.2	Heptane	439 ^b	6.2	0.66	ppbv	1800 ^b	25	2.7	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	0.051	ppbv	ND	2.1	0.54	ug/m3
110-54-3	86.17	Hexane	1.2	0.20	0.042	ppbv	4.2	0.70	0.15	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.064	ppbv	ND	0.82	0.26	ug/m3
67-63-0	60.1	Isopropyl Alcohol	18.4	0.20	0.066	ppbv	45.2	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.24	0.20	0.13	ppbv	0.83	0.69	0.45	ug/m3
78-93-3	72.11	Methyl ethyl ketone	2.1	0.20	0.040	ppbv	6.2	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	11.5	0.20	0.042	ppbv	47.1	0.82	0.17	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.041	ppbv	ND	0.72	0.15	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
115-07-1	42	Propylene	ND	0.50	0.048	ppbv	ND	0.86	0.082	ug/m3
100-42-5	104.1	Styrene	0.20	0.20	0.033	ppbv	0.85	0.85	0.14	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	0.024	ppbv	ND	1.1	0.13	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	0.040		ND	1.4	0.27	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	0.035	ppbv	ND	1.1	0.19	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	0.061	ppbv	ND	1.5	0.45	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	3.6	0.20	0.029	ppbv	18	0.98	0.14	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	1.0	0.20	0.029	ppbv	4.9	0.98	0.14	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	2.5	0.20	0.025	ppbv	12	0.93	0.12	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.64	0.20	0.044		1.9	0.61	0.13	ug/m3
127-18-4	165.8	Tetrachloroethylene	2.4	0.040	0.037	ppbv	16	0.27	0.25	ug/m3
109-99-9	72.11	Tetrahydrofuran	0.28	0.20	0.049	ppbv	0.83	0.59	0.14	ug/m3
108-88-3	92.14	Toluene	72.8 ^b	6.2	0.94	ppbv	274 ^b	23	3.5	ug/m3
79-01-6	131.4	Trichloroethylene	0.21	0.040		* *	1.1	0.21	0.16	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.24	0.20	0.029	ppbv	1.3	1.1	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.031	11	ND	0.51	0.079	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.095	ppbv	ND	0.70	0.33	ug/m3
	106.2	m,p-Xylene	16.7	0.20	0.069	ppbv	72.5	0.87	0.30	ug/m3
95-47-6	106.2	o-Xylene	6.7	0.20	0.034		29	0.87	0.15	ug/m3
1330-20-7	106.2	Xylenes (total)	23.5	0.20	0.034	ppbv	102	0.87	0.15	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

E = Indicates value exceeds calibration range

Client Sample ID: Lab Sample ID:	DB-IA2 JB89441-4	Date Sampled:	03/03/15
Matrix:	AIR - Indoor Air Comp. Summa ID: A243,A542	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits	
460-00-4	4-Bromofluorobenzene	106%	94%	89%	65-128	8%
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
124-38-9	Carbon dioxide alkane alkane alkane alkane alkane alkene alkane alkene alkene alkane		3.82 4.32 4.58 10.55 10.94 11.03 11.17 11.26 11.53 11.61	600 6.2 100 12 160 60 5.9 250 16 46	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	JNB J J J J J J J J J J J
108-87-2	Cyclohexane, methyl- alkene		12.88 13.24	43 17	ppbv ppbv	JN J
123-86-4	Acetic acid, butyl ester alkane alkane system artifact Total TIC, Volatile		15.27 20.69 22.32 23.01	8.1 6.3 8.6 36 739.1	ppbv ppbv ppbv ppbv ppbv	JN J J J J

(a) Result is from Run# 3

(b) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sample ID: DB-DUP Lab Sample ID: JB89441-5 Date Sampled: 03/03/15 Matrix: AIR - Indoor Air Comp. Summa ID: A731,A727 Date Received: 03/06/15 Method: Percent Solids: TO-15 n/a **Project:** Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY File ID DF Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 5W10245.D 03/14/15 ML V5W404 1 n/a n/a Run #2 3W46271.D 1.48 03/16/15 YMH n/a n/a V3W1759 Run #3 3W46275.D 59.2 03/16/15 V3W1759 YMH n/a n/a

Initial Volume

Run #1400 mlRun #220.0 mlRun #3200 ml

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone	2230 a	24	13	ppbv	5300 a	57	31	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.034	~ ~	ND	0.44	0.075	ug/m3
71-43-2	78.11	Benzene	0.73	0.20	0.025	ppbv	2.3	0.64	0.080	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	0.029	ppbv	ND	1.3	0.19	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	0.035	ppbv	ND	2.1	0.36	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.033	ppbv	ND	0.78	0.13	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.035	ppbv	ND	0.87	0.15	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.047	ppbv	ND	1.0	0.24	ug/m3
75-15-0	76.14	Carbon disulfide	0.35	0.20	0.031	ppbv	1.1	0.62	0.097	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.034	ppbv	ND	0.92	0.16	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.042	ppbv	ND	0.53	0.11	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.024	ppbv	ND	0.98	0.12	ug/m3
74-87-3	50.49	Chloromethane	0.71	0.20	0.079	ppbv	1.5	0.41	0.16	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.037	ppbv	ND	0.63	0.12	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.032	ppbv	ND	1.0	0.17	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.025	ppbv	ND	1.3	0.16	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.027	ppbv	ND	0.69	0.093	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.027		ND	0.81	0.11	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.052	ppbv	ND	0.79	0.21	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	0.027	ppbv	ND	1.5	0.21	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.023	ppbv	ND	0.81	0.093	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.029	ppbv	ND	0.92	0.13	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv	ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.47	0.20	0.030	ppbv	2.3	0.99	0.15	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	0.038	ppbv	ND	1.7	0.32	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.070	ppbv	ND	0.79	0.28	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.023	ppbv	ND	0.79	0.091	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.025	ppbv	ND	0.91	0.11	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	0.033	ppbv	ND	1.2	0.20	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	0.029	ppbv	ND	1.2	0.17	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	DB-DUP		
Lab Sample ID:	JB89441-5	Date Sampled:	03/03/15
Matrix:	AIR - Indoor Air Comp. Summa ID: A731,A727	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
106-46-7	147	p-Dichlorobenzene	ND	0.20	0.037	ppbv	ND	1.2	0.22	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.025	ppbv	ND	0.91	0.11	ug/m3
64-17-5	46.07	Ethanol	941 a	59	20	ppbv	1770 ^a	110	38	ug/m3
100-41-4	106.2	Ethylbenzene	4.5	0.20	0.035	ppbv	20	0.87	0.15	ug/m3
141-78-6	88	Ethyl Acetate	1.8	0.20	0.061	ppbv	6.5	0.72	0.22	ug/m3
622-96-8	120.2	4-Ethyltoluene	0.88	0.20	0.032	ppbv	4.3	0.98	0.16	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	0.040	ppbv	ND	1.5	0.31	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	0.031	ppbv	ND	1.4	0.22	ug/m3
142-82-5	100.2	Heptane	466 ^b	5.9	0.63	ppbv	1910 ^b	24	2.6	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	0.051	ppbv	ND	2.1	0.54	ug/m3
110-54-3	86.17	Hexane	1.2	0.20	0.042	ppbv	4.2	0.70	0.15	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.064	ppbv	ND	0.82	0.26	ug/m3
67-63-0	60.1	Isopropyl Alcohol	20.3	0.20	0.066	ppbv	49.9	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.36	0.20	0.13	ppbv	1.3	0.69	0.45	ug/m3
78-93-3	72.11	Methyl ethyl ketone	2.3	0.20	0.040	ppbv	6.8	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	11.9	0.20	0.042	ppbv	48.8	0.82	0.17	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.041	ppbv	ND	0.72	0.15	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
115-07-1	42	Propylene	ND	0.50	0.048	ppbv	ND	0.86	0.082	ug/m3
100-42-5	104.1	Styrene	0.20	0.20	0.033	ppbv	0.85	0.85	0.14	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	0.024	ppbv	ND	1.1	0.13	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	0.040	ppbv	ND	1.4	0.27	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	0.035	ppbv	ND	1.1	0.19	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	0.061	ppbv	ND	1.5	0.45	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	3.8	0.20	0.029	ppbv	19	0.98	0.14	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	1.1	0.20	0.029	ppbv	5.4	0.98	0.14	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	2.5	0.20	0.025	ppbv	12	0.93	0.12	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.63	0.20	0.044	ppbv	1.9	0.61	0.13	ug/m3
127-18-4	165.8	Tetrachloroethylene	2.4	0.040	0.037	ppbv	16	0.27	0.25	ug/m3
109-99-9	72.11	Tetrahydrofuran	0.30	0.20	0.049	ppbv	0.88	0.59	0.14	ug/m3
108-88-3	92.14	Toluene	79.1 ^b	5.9	0.89	ppbv	298 ^b	22	3.4	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.030	ppbv	ND	0.21	0.16	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.26	0.20	0.029	ppbv	1.5	1.1	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.031	ppbv	ND	0.51	0.079	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.095	ppbv	ND	0.70	0.33	ug/m3
	106.2	m,p-Xylene	17.7	0.20	0.069	ppbv	76.9	0.87	0.30	ug/m3
95-47-6	106.2	o-Xylene	7.2	0.20	0.034	ppbv	31	0.87	0.15	ug/m3
1330-20-7	106.2	Xylenes (total)	24.9	0.20	0.034	ppbv	108	0.87	0.15	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

4.5 4

E = Indicates value exceeds calibration range

Client Sample ID:	DB-DUP		
Lab Sample ID:	JB89441-5	Date Sampled:	03/03/15
Matrix:	AIR - Indoor Air Comp. Summa ID: A731,A727	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		
L			

VOA TO15 List

Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limit	8
4-Bromofluorobenzene	109%	94%	90%	65-128	3%
Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
Carbon dioxide alkane alkane alkane alkane alkene alkane alkene alkene alkene		3.81 4.32 4.58 10.55 11.03 11.18 11.26 11.53 11.62	620 6.3 100 13 62 5.5 250 16 48	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	JNB J J J J J J J J J J
Cyclohexane, methyl- alkene		12.88 13.24	42 18	ppbv ppbv	JN J
Acetic acid, butyl ester alkane alkane system artifact alkane Total TIC, Volatile		15.27 20.69 22.32 23.01 23.59	8.3 6.6 8.4 27 4.4 588.5	ppbv ppbv ppbv ppbv ppbv	JN J J J J J
	4-Bromofluorobenzene Tentatively Identified Compo Carbon dioxide alkane alkane alkane alkane alkane alkene alkane alkene alkane alkene alkane, methyl- alkene Acetic acid, butyl ester alkane alkane system artifact alkane	4-Bromofluorobenzene 109% Tentatively Identified Compounds Carbon dioxide alkane alkane alkane alkane alkane alkene alkane alkene alkane cyclohexane, methyl- alkene Acetic acid, butyl ester alkane alkane system artifact alkane	4-Bromofluorobenzene109%94%Tentatively Identified CompoundsR.T.Carbon dioxide3.81alkane4.32alkane4.58alkane10.55alkane11.03alkene11.18alkane11.26alkene11.53alkane/alkene11.62Cyclohexane, methyl-12.88alkene13.24Acetic acid, butyl ester15.27alkane20.69alkane22.32system artifact23.01alkane23.59	4-Bromofluorobenzene109%94%90%Tentatively Identified CompoundsR.T.Est. Conc.Carbon dioxide3.81620alkane4.326.3alkane4.58100alkane10.5513alkane11.0362alkene11.185.5alkane11.26250alkene11.6248Cyclohexane, methyl-12.8842alkene13.2418Acetic acid, butyl ester15.278.3alkane20.696.6alkane22.328.4system artifact23.0127alkane23.594.4	4-Bromofluorobenzene109%94%90%65-128Tentatively Identified CompoundsR.T.Est. Conc.UnitsCarbon dioxide3.81620ppbvalkane4.326.3ppbvalkane4.58100ppbvalkane10.5513ppbvalkane11.0362ppbvalkane11.185.5ppbvalkane11.26250ppbvalkane11.6248ppbvalkane/alkene11.6248ppbvalkene13.2418ppbvalkane20.696.6ppbvalkane22.328.4ppbvalkane23.0127ppbvalkane23.594.4ppbv

(a) Result is from Run# 3

(b) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method:	AIR - TO-1	Trip Blank	c Air Summa II) D P	ate Sampled:03ate Received:03ercent Solids:n/	
Project:			2600 Seventh A	,	,		
Due #1	File ID	DF	Analyzed 03/14/15	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	5W10243.D	1	03/14/13	ML	n/a	n/a	V5W404
	Initial Volum	e					

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone	0.20	0.20	0.11	ppbv	0.48	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.034	ppbv	ND	0.44	0.075	ug/m3
71-43-2	78.11	Benzene	ND	0.20	0.025	ppbv	ND	0.64	0.080	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	0.029	ppbv	ND	1.3	0.19	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	0.035	ppbv	ND	2.1	0.36	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.033	ppbv	ND	0.78	0.13	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.035	ppbv	ND	0.87	0.15	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.047	ppbv	ND	1.0	0.24	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.031	ppbv	ND	0.62	0.097	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.034	ppbv	ND	0.92	0.16	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.042	ppbv	ND	0.53	0.11	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.024	ppbv	ND	0.98	0.12	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.079	ppbv	ND	0.41	0.16	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.037	ppbv	ND	0.63	0.12	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.032	ppbv	ND	1.0	0.17	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.025	ppbv	ND	1.3	0.16	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.027	ppbv	ND	0.69	0.093	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.027	ppbv	ND	0.81	0.11	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.052	ppbv	ND	0.79	0.21	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	0.027	ppbv	ND	1.5	0.21	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.023	ppbv	ND	0.81	0.093	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.029	ppbv	ND	0.92	0.13	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv	ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	0.20	0.030	ppbv	ND	0.99	0.15	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	0.038	ppbv	ND	1.7	0.32	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.070	ppbv	ND	0.79	0.28	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.023	ppbv	ND	0.79	0.091	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.025	ppbv	ND	0.91	0.11	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	0.033	ppbv	ND	1.2	0.20	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	0.029	ppbv	ND	1.2	0.17	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	0.037	ppbv	ND	1.2	0.22	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.025	ppbv	ND	0.91	0.11	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	DB-TB		
Lab Sample ID:	JB89441-6	Date Sampled:	03/04/15
Matrix:	AIR - Trip Blank Air Summa ID: A1080	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	ND	0.50	0.17	ppbv	ND	0.94	0.32	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.20	0.035	ppbv	ND	0.87	0.15	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	0.061	ppbv	ND	0.72	0.22	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	0.20	0.032		ND	0.98	0.16	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	0.040	ppbv	ND	1.5	0.31	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	0.031	ppbv	ND	1.4	0.22	ug/m3
142-82-5	100.2	Heptane	ND	0.20	0.021	ppbv	ND	0.82	0.086	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	0.051	ppbv	ND	2.1	0.54	ug/m3
110-54-3	86.17	Hexane	ND	0.20	0.042	ppbv	ND	0.70	0.15	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.064	ppbv	ND	0.82	0.26	ug/m3
67-63-0	60.1	Isopropyl Alcohol	ND	0.20	0.066	ppbv	ND	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.20	0.13	ppbv	ND	0.69	0.45	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	0.20	0.040	ppbv	ND	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.042	ppbv	ND	0.82	0.17	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.041	ppbv	ND	0.72	0.15	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
115-07-1	42	Propylene	ND	0.50	0.048	ppbv	ND	0.86	0.082	ug/m3
100-42-5	104.1	Styrene	ND	0.20	0.033	ppbv	ND	0.85	0.14	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	0.024	ppbv	ND	1.1	0.13	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	0.040	ppbv	ND	1.4	0.27	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	0.035	ppbv	ND	1.1	0.19	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	0.061	ppbv	ND	1.5	0.45	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	ND	0.20	0.029	ppbv	ND	0.98	0.14	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	0.20	0.029	ppbv	ND	0.98	0.14	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	0.025	ppbv	ND	0.93	0.12	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	0.044	ppbv	ND	0.61	0.13	ug/m3
127-18-4	165.8	Tetrachloroethylene	ND	0.040	0.037	ppbv	ND	0.27	0.25	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.049	ppbv	ND	0.59	0.14	ug/m3
108-88-3	92.14	Toluene	ND	0.20	0.030	ppbv	ND	0.75	0.11	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.030	ppbv	ND	0.21	0.16	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.20	0.029	ppbv	ND	1.1	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.031	ppbv	ND	0.51	0.079	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.095	ppbv	ND	0.70	0.33	ug/m3
	106.2	m,p-Xylene	ND	0.20	0.069	ppbv	ND	0.87	0.30	ug/m3
95-47-6	106.2	o-Xylene	ND	0.20	0.034	ppbv	ND	0.87	0.15	ug/m3
1330-20-7	106.2	Xylenes (total)	ND	0.20	0.034	ppbv	ND	0.87	0.15	ug/m3
CAS No.	Surrog	ate Recoveries Run#	1 Run	‡2 I	Limits					
460-00-4	4-Brom	ofluorobenzene 107%		e	55-128%)				

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

4.6 4

Accutest LabLink@09:02 27-Mar-2015

Client Sample ID:	DB-TB		
Lab Sample ID:	JB89441-6	Date Sampled:	03/04/15
Matrix:	AIR - Trip Blank Air Summa ID: A1080	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
124-38-9	Carbon dioxide	3.79	110	ppbv	JN
	Total TIC, Volatile		0	ppbv	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

Lab Sam	-	39441-7				···· I	03/04/15
Matrix:	AI	R - Ambient A	Air Comp. Sum	ima ID: A	A1074 I	Date Received: (03/06/15
Method:	TC	-15]	Percent Solids: 1	n/a
Project:	Wa	tervliet, NY,	2600 Seventh A	venue, W	atervliet, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	5W10244.I) 1	03/14/15	ML	n/a	n/a	V5W404
itun ni							

VOA TO15 List

400 ml

Run #1

Run #2

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone	2.3	0.20	0.11	ppbv	5.5	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.034	ppbv	ND	0.44	0.075	ug/m3
71-43-2	78.11	Benzene	0.23	0.20	0.025	ppbv	0.73	0.64	0.080	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	0.029	ppbv	ND	1.3	0.19	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	0.035	ppbv	ND	2.1	0.36	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.033	ppbv	ND	0.78	0.13	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.035	ppbv	ND	0.87	0.15	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.047	ppbv	ND	1.0	0.24	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.031	ppbv	ND	0.62	0.097	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.034	ppbv	ND	0.92	0.16	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.042	ppbv	ND	0.53	0.11	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.024	ppbv	ND	0.98	0.12	ug/m3
74-87-3	50.49	Chloromethane	0.49	0.20	0.079	ppbv	1.0	0.41	0.16	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.037	ppbv	ND	0.63	0.12	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.032	ppbv	ND	1.0	0.17	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.025	ppbv	ND	1.3	0.16	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.027	ppbv	ND	0.69	0.093	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.027	ppbv	ND	0.81	0.11	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	0.052	ppbv	ND	0.79	0.21	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	0.027	ppbv	ND	1.5	0.21	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.023	ppbv	ND	0.81	0.093	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.029	ppbv	ND	0.92	0.13	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv	ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.53	0.20	0.030	ppbv	2.6	0.99	0.15	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	0.038	ppbv	ND	1.7	0.32	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.070	ppbv	ND	0.79	0.28	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.023	ppbv	ND	0.79	0.091	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.025	ppbv	ND	0.91	0.11	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	0.033	I I	ND	1.2	0.20	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	0.029	ppbv	ND	1.2	0.17	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	0.037	ppbv	ND	1.2	0.22	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.025	ppbv	ND	0.91	0.11	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 3

Client Sample ID:	DB-AA		
Lab Sample ID:	JB89441-7	Date Sampled:	03/04/15
Matrix:	AIR - Ambient Air Comp. Summa ID: A1074	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	1.7	0.50	0.17	ppbv	3.2	0.94	0.32	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.20	0.035		ND	0.87	0.15	ug/m3
141-78-6	88	Ethyl Acetate	7.4	0.20	0.061		27	0.72	0.22	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	0.20	0.032	ppbv	ND	0.98	0.16	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	0.040	ppbv	ND	1.5	0.31	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	0.031	ppbv	ND	1.4	0.22	ug/m3
142-82-5	100.2	Heptane	ND	0.20	0.021	ppbv	ND	0.82	0.086	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	0.051	ppbv	ND	2.1	0.54	ug/m3
110-54-3	86.17	Hexane	ND	0.20	0.042	ppbv	ND	0.70	0.15	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.064	ppbv	ND	0.82	0.26	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.43	0.20	0.066	ppbv	1.1	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.20	0.13	ppbv	ND	0.69	0.45	ug/m3
78-93-3	72.11	Methyl ethyl ketone	0.38	0.20	0.040	ppbv	1.1	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.042	ppbv	ND	0.82	0.17	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.041	ppbv	ND	0.72	0.15	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
115-07-1	42	Propylene	ND	0.50	0.048	ppbv	ND	0.86	0.082	ug/m3
100-42-5	104.1	Styrene	ND	0.20	0.033	ppbv	ND	0.85	0.14	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	0.024	ppbv	ND	1.1	0.13	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	0.040	ppbv	ND	1.4	0.27	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	0.035	ppbv	ND	1.1	0.19	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	0.061	ppbv	ND	1.5	0.45	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	0.23	0.20	0.029	ppbv	1.1	0.98	0.14	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	0.20	0.029	ppbv	ND	0.98	0.14	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	0.025	ppbv	ND	0.93	0.12	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	0.044	ppbv	ND	0.61	0.13	ug/m3
127-18-4	165.8	Tetrachloroethylene	ND	0.040	0.037	ppbv	ND	0.27	0.25	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.049	ppbv	ND	0.59	0.14	ug/m3
108-88-3	92.14	Toluene	0.46	0.20	0.030	ppbv	1.7	0.75	0.11	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.030	ppbv	ND	0.21	0.16	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.25	0.20	0.029	ppbv	1.4	1.1	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	0.031	ppbv	ND	0.51	0.079	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.095	ppbv	ND	0.70	0.33	ug/m3
	106.2	m,p-Xylene	0.34	0.20	0.069	ppbv	1.5	0.87	0.30	ug/m3
95-47-6	106.2	o-Xylene	ND	0.20	0.034	ppbv	ND	0.87	0.15	ug/m3
1330-20-7	106.2	Xylenes (total)	0.34	0.20	0.034	ppbv	1.5	0.87	0.15	ug/m3
CAS No.	Surrog	ate Recoveries Run#	1 Run#	±2 I	Limits					
460-00-4	4-Brom	ofluorobenzene 108%		e	55-128%)				

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest LabLink@09:02 27-Mar-2015

Report of Analysis

Client Sample ID:	DB-AA		
Lab Sample ID:	JB89441-7	Date Sampled:	03/04/15
Matrix:	AIR - Ambient Air Comp. Summa ID: A1074	Date Received:	03/06/15
Method:	TO-15	Percent Solids:	n/a
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY		

VOA TO15 List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
	carbon dioxide	3.79	760	ppbv	J
	Total TIC, Volatile		0	ppbv	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Section 5

S

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Summa Canister and Flow Controller Log

LERT AIR (AW)		
CHAIN OF CUSTOD Air Sampling Field Data Sheet Client / Reporting Information	Lab Quote #	Bagerorger Courters PAGE OF Inter-21/9/2017 PAGE OF Lab Job # JB 89 441 Bagerord Weather Parameters Bagerord
Address Forensic Environmental Services Address 113 John Robert Thomm, Dr. City Extan Project Contact Bob Zei forensize chesico com Project Contact Bob Zei forensize chesico com BID - 594-3940 Fax# Sampler(e) Name(e) Bob Zei, Jeff Christyhn	Street Street 2600 Scinth Avc City Watwhet NY Project # Client Purchase Order # 029.08	Temperature (Fahrenheit) Requested Anal Start: 10 ⁻⁵ Maximum: 400 Stop 3 Minimum: 3 ⁻⁵ Atmoshpheric Pressure (inches of Hg) Start: 3(2) Start: 3(2) Start: 3(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Standard - 15 Days	EC355 3-4-15 1218 30+ 37° JWC	NIT NA VV
10 Day Approved By: 5 Day 3 Day 2 Day Date: 0 Other Sample Custody must be docum	All NJDEP TO-15 is mandatory Eul Tr Comm A Comm A Comm B Reduced T2 Full T1 Other: rented below each time samples change possession, including col	Comments/Remarks Do not run DB-AA construct A759 fuulty regulatur led to inacurate culturen. FC652 (B) 3/6/15
1 Car The constraint 1	Relinquiping By: Relinquiping By: Relinguistics By: 4 Custody Seal #	Dato Time: Received By: 2/6/AS 300 Received By: 2/6/AS 300 Received By: 4

INITIAL ASESSMENT 4000

LABEL VERIFICATION JM

JB89441: Chain of Custody Page 1 of 11

5.<u>1</u>

UNUSED SUMMA CANISTER RETURN FORM	JOB# 5889441	# OF FLOW CONTROLLERS:	FLOW CONTROLLER NUMBERS				2	Date/time: $\sqrt[3]{6/15}$ 1823			5.1 5
UNUSED SUMMA (CLIENT: FORENSIE ENU.	# OF SUMMAS:	SUMMA CANISTER NUMBERS				RECEIVED VIA: ACLUTEST COURTER	RECEIVED BY:	Notes:		

JB89441: Chain of Custody Page 2 of 11

Accutest Laboratories Sample Receipt Summary

Accutest Job Number:	JB89441 C	lient:	Project:	
Date / Time Received:	3/6/2015 6:23:00 PM	Delivery Method:	Airbill #'s:	

Cooler Temps (Initial/Adjusted):

Cooler Security	Y or N	L		Y	or N	Sample Integrity - Documentation	Y	or	N	
			COC Present: npl Dates/Time OK	✓ ✓		 Sample labels present on bottles: Container labeling complete: 	>			
Cooler Temperature	Y	or N				3. Sample container label / COC agree:	✓			
1. Temp criteria achieved:	\checkmark					Sample Integrity - Condition	<u>Y</u>	or	<u>N</u>	
2. Cooler temp verification:						1. Sample recvd within HT:	\checkmark			
3. Cooler media:						2. All containers accounted for:	\checkmark			
4. No. Coolers:		0				3. Condition of sample:		Intac	t	
Quality Control Preservat	<u>io Y</u>	or N	N/A			Sample Integrity - Instructions	Y	or	N	N/A
1. Trip Blank present / cooler:		\checkmark				1. Analysis requested is clear:	\checkmark			
2. Trip Blank listed on COC:		\checkmark				2. Bottles received for unspecified tests			✓	
3. Samples preserved properl	y: 🖌					3. Sufficient volume recvd for analysis:	\checkmark			
4. VOCs headspace free:			\checkmark			4. Compositing instructions clear:				\checkmark
						5. Filtering instructions clear:				✓

Comments

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732.329.3499 Dayton, New Jersey www/accutest.com

JB89441: Chain of Custody Page 3 of 11

REP BATCH	#:	CPT	55			CAI	NISTE	R TY	PE:	TO-15	LL						-
						(chec	k one)			то-з							
										MINI- CAN				Test	Gaur	je ID: TG-	ц
						L					I	1		rest	Jaug	je 10. TO	
			-		CERTIFIC					I			T		INA	L VACUU	M (1)
CANISTER SERIAL #	INITIAL PSIG	INITIAL DATE		IITIAL FIME	FINAL PSIG (2)		NAL NTE	FIN		INITIALS	DIFF PSIG	PRIOR SAMPLE ID	Oven ID	DA	TE	INIT	mtorr(1
A478	21	2/12/15	310	uo P.M	7	2/20			одм	ML	14	5687853-17	10-	-	=		-
A342				1	4					1	17	-6	10-	-	-		
A885					5_1						e	-21	10-	-2/20	ə/15	Mи	10
A663					11						10	-15	10-		_		
ALGS			_		19						2	-11	10-	2/2	c/ /s	ML	10
A1097	<u> </u>				19		U.				2	-16	10-	-+			<u> </u>
A759					19		6/15		opm		2	-1	10-				<u> </u>
ASLI					21	2/20)	115	9:0	ogn	M	0 2		10-				╂┼
A231 Anio					14							-7 -8	10-		-		╉─-┼──
A672			+		20							5	10-		\vdash		+-+-
A245	15			1	19						2	-4	10-				
A=		·····	-			`							10-	`	K 	¥	<u>† </u>
													10-				1
													10-				
													10-				
			_										10-				
													10-				ļ
													10-				ļ
		•						_					10-				1

CERTIFICATION CANISTER ID: A 259 COMMENTS:

(1) Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.

(2) The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 08/14/13

JB89441: Chain of Custody Page 4 of 11

36

<u>ъ</u>

PREP BATCH	#:	CP75	54	-	CAN	STEP	TYPE	то	-15	66]					
					(check	one)		TO	11-		4		·			
					L			ICAI	N	1	1		Test C	auge	D: TG	- 4
			TER LEAK	CERTIFIC	ATION						7					
CANISTER SERIAL #	INITIAL PSIG	INITIAL DATE	INITIAL TIME	FINAL PSIG (2)	FINA DAT	· .	FINAL IME (3		IALS	DIFF PSIG	PRIOR SAMPLE ID	Oven ID		Т	VACUU	M (1)
A252	22	2/13/15	- 9: BM	22	2/19/		2:4001		L	U	1687879-8	10- F	DAT	_	INIT	mtor
A1054			/	22	1		1		1	e	5687858-1	10- F	2/14/	15	ML	110
A877				22						e	~4	10- F				
A637		/		21						1	5687681-3	10- F		+		\vdash
A283		_/_		22						0	-1	10- F				+ +
A1039			_/	21						1	-2	10-F			+	\vdash
A367				21						1	JO87664-15	10- 5				
A337			1	21			_			(-13	10- F				
A181 A1162				22			- ·			Ċ	-25	10- F		+		
A1175			+	21	1		+		6	1	1887539-1	10- F				
A305					2/14		200pm	41	t	D	JB 87664-19	10- F				
A305	4		*	21	2/19/15	112	! wPM	m	-	-1	Non	10- F	6		5	
												10-		+		0
												10-				
						1-						10-		1		· · · · · · · · · · · · · · · · · · ·
												10-				
												10-				
						1						10-				
												10-				
/								· · · · · · · · · · · · · · · · · · ·				10-				

<u>л</u> S

CERTIFICATION CANISTER ID: A1175 COMMENTS:

(1) Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.

(2) The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 06/14/13

39

JB89441: Chain of Custody Page 5 of 11

									_					
REP BATCH #:		CP7	558	_	CANIST	ER TYPE:	TO-15	LL						2
					(check one)		то-з							
							MINI-		1					
					I		CAN		1			Test Gau	ge ID: TG	
		CANIS	TER LEA	CERTIFIC	ATION							FINA	L VACUU	M (1)
	INITIAL PSIG	INITIAL DATE	INITIAL	FINAL	FINAL	FINAL		DIFF	PRIOR	Oven ID			1	T
	22.5		TIME	PSIG (2)	DATE	TIME (3) 5: adfr		PSIG	SAMPLE ID			DATE	INIT	mtorr(1)
A250 1485	7:2.1	2/17/15	9:0010	21.5	3/20/15	3:00PM	1-1-	1-		10- E		2/20/15	KU_	10
				205		- -	+	3.5		10- E				+
41033				22	2/19/15	Stoopm	yH	0.5		10-E		H-+	├ - ├	+
4882	+	<u>├</u>		20.5		S:00A		2		10-E			$\left - \right -$	- -
4484				14	1-1-2015	1	17	8.5						
1856				16	<u>├─}</u>			8.5		10-6 10-6				F F
288				10.5				-12		10-E				<u>├</u>
4736				22.5				6		10-E				\square
4710				13				9.5		10- E				
41087)6				6.5		10- E				
1449		Ţ	V	16	{			6.5		10- E	:			++-1
										10-		, <u> </u>		<u> </u>
										10-				
										10-				
										10-				
										10-				
										10-				
										10-				
										10-				
										10-				

CERTIFICATION CANISTER ID: ______A73] COMMENTS:

Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.
 The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 08/14/13

JB89441: Chain of Custody Page 6 of 11

43

5<u>.</u>1

	PREP BATCH	#:	_CF	75	59		-	CA	NIST	ER TYF	E:	TO-15	1L]							
								(cheo	k one))		то-з									
												MINI- CAN		1							
								L				CAN		1			les	t Gau	ge ID: 1	G-	
	CANISTER	INITIAL			_		CERTIFIC	-		T =			1					FINA	L VÁCL	JUM	(1)
	SERIAL #	PSIG	DAT		INIT TIN		FINAL PSIG (2)		VAL.	FIN/		INITIAL	DIFF PSIG	PRIOR SAMPLE ID	Oven ID			A.T.F.		. T	
1	A664	23	2/17	15	5:0	10 PM	23	2/2	3/15			RO	0	5087507-9	10- F			ATE	RD		$\frac{\text{mtorr}(1)}{\mathcal{D}}$
2	A 350					1	23	-)	1		1	0	-5	10- 5		4/	1	100		1
3	A 253						22						1	-19	10- <		\vdash			-+	
4	AIOLL						23						0	-16	10- F		-			+	
5	A1174	L_)			*		23						Õ	-13	10- F					+	
6	A847	(21						2	JBSB119-3(OL)	10- c					+	
7	A11060			\square			23						0	5687716-1	10- F						
8	A208		<i> </i>	\square			23	\rightarrow					0	M- 2/17 JOS7716-3	10- F						
9	A774						21				·		2	JB87716-4	10- F		1				
0	A647						23	$\frac{1}{\sqrt{2}}$	1-				0	-5	10- F						
1 2	A1025 A655		- +	-+			23		15	5-01		VH	D	- 2	10- F						
3	A 6.7-				· · · · ·		25	0/2	201	4:001	~m	K-D	0	JB38318-14	10-6	1					1
4															10-	i i					
ļ				-+											10-						
				-							+				10-						
ſ											+				10-						
s[+				10- 10-	ŀ			·····.		
Ľ											+				10-	ŀ					
															10-	ŀ				+	
L											1				10-	ŀ					

ALUGO replaced 21 ALLO; ALUGO -STEMOURS do

(1) Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.

(2) The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 08/14/13

JB89441: Chain of Custody

ister in

Page 7 of 11

44

5<u>.</u>1

S

Accu	test Labo	oratories			CAN	lis:1	ERS PRI	EPA	RATI	ION A	ANE) CEI	RTI	FICATI	ONLOG	a Noraiath ann	. 1.		- And Street		. 1.
PREF	ватсн	#:		CP7	561			СА	NISTE	RTY	PE:	то-1	5	62	1						,
				<u>U</u> , 1					ck one)			TO-3									
																		Test Ga	une IC	н тG.	1
		r		CANIS	TERI	EAK	CERTIFIC	ATIO	N						1						
CANI SERI/		INITIAL PSIG	IN			IAL	FINAL PSIG (2)	FII	NAL	FIN		INIT	ALS	DIFF PSIG	PRIOR SAMPLE ID	Oven ID		DATE			
A	196	23	2	17/5	Sia	ьAn			23/5		_	-		0	1887811-6	10- F.		2/23/5			mtorr(1)
AI	028			1		1	22.5		1		1			0.5	5887999-1	10- €		1	1-)	$\frac{\omega}{\gamma}$
A :	369						23							0				1 t	+		-/
1:	249						9)4	none	10- E			=		
A	1183				^		23							0	L	10- E		2/27/5	R	D	10
	1095			_			23							0	5858318-11	10- E		ì		{	/
	905						23							0	- 9	10-E					
Ai	201						23				<u>}</u>			0	-15	10- E					
	754				$ \rightarrow $		23 23				<u> </u>			0	-11	10-E					
	152											-		8	-10	10-E			$\downarrow \downarrow$		
	168				$ \rightarrow $		23	-11	alie	1		T	17	0	-13	10-E			++	·····	
/1	1661	V		, 	/		23	21'	9/15	4:20	PM	1	<u>m</u>	0	JO88036-2	10- E		1	+		
								*****								10-					
	:									-				******		10-					
	[10- 10-			+		
																10-			+		
																10-			+		i
								•								10-			+		
																10-			+		
																10-			1		

CERTIFICATION CANISTER ID: ______A[06] ____ COMMENTS:

(1) Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.

(2) The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 08/14/13

JB89441: Chain of Custody Page 8 of 11

46

5<u>.</u>1

_				10-	∇	12					L		11	1					
PF	REP BATCH	#:		([/	13	63	-	CA	NISTE	ER TYPE:	тс	-15	61	-					
								(che	ck one)		тс	****							
																	Test Gau	ae ID: TG	. 4
								1			197			-				90.0.10	
-		L					CERTIFIC	-					r				FINA	L VACUU	M (1)
	ANISTER ERIAL #		FIAL SIG	INITI/ DAT		INITIAL TIME	FINAL PSIG (2)		NAL ATE	FINAL TIME (3			DIFF	PRIOR SAMPLE ID	Oven ID		DATE	INIT	
	£116/	2		2/18/		9.:00AM	19			1:00fm		ZP	4	J887920 -)	10- E		DATE	INT	mtorr(
	1186	1		1	-	1	21		<u>a /</u> I	1	<u>†</u>	<u> </u>	a	3885036-1	10- E		2/23/15	RD	10
	11030						22	17					1	-4	10-E		<u> </u>	1	1
-	341						22				T		7	- 2	10-E			}	+
	1447						18				Τ		5	1-26878787	10-6				
6 A	1216						15						ð	5	10-E .				
7 A	4364						19						4	-2	10-E				ļ
8 /	1243						22	2	20/15	3:30 pm		YH	1	JB78000-1	10-E		2/2 7/5	R₹	0
9 <u>A</u>	843						22	2/2	3/5	Copm	9	D	1	-8	10- E			1	
10 <u>A</u>	1072						23		ſ			1	0	-7	10-E				
	1423				_		21			L_/			2	- 4	10- E				
12 <u>A</u>	4311		6	1		+	23	/		1	_	<u> </u>	0	-9	10- E	1	1		
3											-				10-				ļ
4										-					10-				ļ
5											-				10-				
6											-				10-				
					+										10-				ļ
8					-+						-	· ·			10-				
9					-+-										10-				
0															10-				

CERTIFICATION CANISTER ID: A 243 COMMENTS:

(1) Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.

(2) The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 06/14/13

JB89441: Chain of Custody Page 9 of 11

48

1 240

<u>ъ</u>

PREP BATCH	#:	(CP	757	3		CA	NISTE	ERT	YPE:	то-	15									
							(che	ck one)			то-	3		1							
							Ì											Tes	t Gau	ge ID: T	2_
											ICAI	¥	L	3							
CANISTER	INITIAL			INITI		CERTIFIC		NAL	E 1	NAL			DIFF	PRIOR		en ID	1		FINA	L VACU	JM (1)
ERIAL #	PSIG	DAT		TIM		PSIG (2)		ATE		IE (3)	INIT	IALS		SAMPLE ID				D,	ATE	INIT	mtorr(1
ALLOS	24	263	3/15	3:00	npm	23.5	2/	SUR		Bon	R	D	0.5	5 B88 346-4	10- E			2/2	6/3	£0	10
1831						27.5	zfi		↓	Ŵ	00		10.5	-1	10-				1	{	1
Alugo	<u> </u>					243	2/2	36/15	14	0 f.~	R	D	0	-3	10-						
A740	<u> </u>					24				1			0	2	10-						
A854	<u> </u>					23.5							0.5	-5	10-						
A235						23.5							0.5	-6	10-		-				
A1099	┼──┼──					23.5							9.2 	JB38262-1	10-						
1857		\vdash				23.5							2,0	5688293-3	10-						- <u> </u>
A1689 A671		\vdash				24				· · ·			0	1	10-						+
AG/1 178	+	\vdash		-+		23	-						1	-2	10-						
A342				\rightarrow		24	1		\vdash				0	none	10-						+-(-
	· ·			<u>-</u>					, ,						10-	<u> </u>				· · ·	
															10-						
															10-						
															10-						
															10-						
															10-						
															10-						
															10-						
(10-						

CERTIFICATION CANISTER ID: A 831 _____ COMMENTS:

(1) Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.

(2) The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 06/14/13

JB89441: Chain of Custody Page 10 of 11

8

<u>ъ</u>

PREP BATCH	м.	7f	27.	< 0	6									1						
FREP BAICH	#;	\underline{C}		20	92_		CA	NISTI	=R 1)	PE:	TO-1	5		-						
							(cheo	k one)			то-з									
											MINI- CAN	-					Terr		ie ID: TG	
											ICAN			1			Tes	Gaug	e ID: TG	-
				_		CERTIFIC]				FINA	- VACUL	JM (1)
CANISTER SERIAL #	INITIAL PSIG		TIAL ATE			FINAL PSIG (2)		NAL. NTE		NAL E (3)	INITI	ALS	DIFF PSIG	PRIOR SAMPLE ID	Oven ID]		ATE	INIT	mtorr(1
A863	23	2/	ארב	7:0	ьsm	22.5	3/6	:/is	1:00	phy	Pl	2	0.5	JB88452-5	10-	1	_	5/15	RD	/0
A1059	1					22.5		1	(1		0.5	-3	10-	1	17		1	1,
A483						22.5							0.5	-6	10-	1	H			+
4816						27							1	-4	10-	1				++-
4359						23							0	JB88305-2	10-	1				
A1071						22							1	-1	10-	1				+
A887						23							0	5188899-9	10-	1				+
4822						22.5							0.5	5688778-26	10-	1				++-
4829						22.5						c	0.5	JU88641-1	10-	1 .				+
41024	[]					225	3]	2/15	12	:Jop-	- YXA	D	15	JB82959-1	10-	1	3/2	15	RD)
1638				-		22.5	3/6	15	1:00	Ani	ŔD	c	0.5		10-			.113	RD	10
41123						22.5				1			0.5		10-]		\int)	11
															10-]				T
												\square			10-					
															10-					
												_			10-					
												\downarrow			10-					
															10-					
												-+			10-					
				,											10-					
											_				10-		1			

CERTIFICATION CANISTER ID: $A_{10}74$ COMMENTS:

(1) Final Vacuum must be < 50 mtorr. Note that 50 mtorr is equivalent to 0.05mm Hg as per EPA TO15 protocol for final vacuum.
 (2) The difference between the Initial psig and Final psig must be < 2psig.

(3) Final time must be at least 24 hours from the initial time.

Form: AT006-05, Rev Date: 08/14/13

JB89441: Chain of Custody Page 11 of 11

21

5

S

Summa Canister and Flow Controller Log

Job Number:	JB89441
Account:	FESPAE Forensic Environmental Services
Project:	Watervliet, NY, 2600 Seventh Avenue, Watervliet, NY
Received:	03/06/15

Shipping		NISTI	210				Receiving						
Summa ID	L	Vac '' Hg	Date Out	By	SCC Batch	SCC FileID	Sample Number	Date In	By	Vac '' Hg	Pres psig	Final psig	Dil Fac
A1025	6	29.4	02/27/15	RD	CP7559	5W9737.D	JB89441-1	03/06/15	RD	6.5			1
A1175	6	29.4	02/27/15	RD	CP7554	3W45689.D	JB89441-2	03/06/15	RD	5.5			1
A1061	6	29.4	02/27/15	RD	CP7561	W50315.D	JB89441-3	03/06/15	RD	7.5			1
A243	6	29.4	02/27/15	RD	CP7563	3W45772.D	JB89441-4	03/06/15	RD	7			1
A731	6	29.4	02/27/15	RD	CP7558	3W45749.D	JB89441-5	03/06/15	RD	7			1
A1080	6	29.4	02/27/15	RD	CP7573	5W9851.D	JB89441-6	03/06/15	RD	29.4		1	1
A1074	6	29.4	03/03/15	RD	CP7586	3W45980.D	JB89441-7	03/06/15	RD	5.5			1

FLOW C	ONTROL	LERS	/ OTH	ER				
Shipping	3				Receivin	g		
Flow	Date		cc/	Time	Date		cc/	
Crtl ID	Out	By	min	hrs.	In	By	min	Equipment Type
FC235	02/27/15	RD	9.4	8	03/06/15	RD	10.5	Flow Controller
FC248	02/27/15	RD	9.4	8	03/06/15	RD	9.9	Flow Controller
FC277	02/27/15	RD	9.4	8	03/06/15	RD	9.5	Flow Controller
FC355	03/03/15	RD	9.4	8	03/06/15	RD	9.6	Flow Controller
FC364	02/27/15	RD	9.4	8	03/06/15	RD	9.7	Flow Controller
FC635	02/27/15	RD	9.4	8	03/06/15	RD	9.9	Flow Controller
FC652	02/27/15	RD	9.4	8	03/06/15	RD	9.8	Flow Controller

Accutest Bottle Order(s):

MP-2/19/2015-7 MP-3/3/2015-8

Г

Prep Date	Room Temp(F)	Bar Pres ''Hg
02/27/15	70	29.92
03/03/15	70	29.92

5.2 5

