

SOIL VAPOR INTRUSION INVESTIGATION REPORT

Former ICC US Route 9 Hudson, Columbia County, New York NYS DEC Site No. 4-11-002

Report Completed: February 2010

Prepared For:

Mr. Michael Haggerty
Environmental Program Specialist
New York State Department of Environmental Conservation
Division of Environmental Remediation

625 Broadway Albany, New York 12233-7016

Prepared By:

PRECISION ENVIRONMENTAL SERVICES, INC.

831 NYS Route 67, Lot 38A Ballston Spa, New York 12020

TABLE OF CONTENTS

1.0 Introduction

This report was prepared pursuant to the request made by the New York State Department of Environmental Conservation (NYSDEC) and is meant to summarize information collected and the services performed by Precision Environmental Services, Inc. (PES) during the soil vapor intrusion investigation performed at the subject site; former Independent Concrete Corporation (former ICC) located on US Route 9, Hudson, Columbia County, New York. See Figure 1 – Site Location Map for details.

PES has been contracted by the NYSDEC to assess and investigate the occurrence of volatile organic compounds (VOCs) and chlorinated volatile organic compounds (CVOCs) in subsurface soil gas based upon constituents of concerns identified during previous site activities, environmental investigations, and remedial actions. This report presents field data, laboratory data, and a general commentary of procedures/protocols utilized during the performance of the soil vapor intrusion investigation performed on December 14 and 15, 2009.

1.1 Background:

Please Note: The following discussion is limited to PES findings as they relate solely to the limits of the authorized scope of work. Specifically, information presented addresses only those areas of the site where PES performed investigative/monitoring work (i.e. installed soil vapor probe locations). See Figure 2 – Site Map for site plan details.

According to the information provided to PES, the former ICC site was historically utilized as a cement plant. The ten acre site was operated by U.S. Steel until 1977, when it was purchased by the Independent Cement Corporation (ICC).

In July 1986, leaking petroleum drums and transformers were discovered, which prompted an environmental investigation initiated by the NYSDEC. ICC began a remedial action at that time resulting in the removal/disposal of all transformers and most of the contaminated soils.

Subsequent investigations done by ICC found residual soils with low level PCB contamination. In addition to petroleum and PCB contamination, relatively low levels of chlorinated solvents were detected in the vicinity of the former machine shop in both soil and groundwater. A record of decision was signed in March 1995 calling for a No Further Action subsequent to the removal of the remaining PCB contaminated soils as documented in the Remedial Action Report, *Removal of PCB Contaminated Soils*, dated July 1995.

Based on improvements in environmental assessment technologies and an increased awareness of soil vapor as a medium of concern for the potential for exposure to contaminants, a re-evaluation of the subject site has been deemed necessary.

PES was retained by the NYSDEC in November 2009 under Contract Number C100906 to conduct the investigative work relating to the existing soil vapor conditions onsite. In December 2009, PES mobilized to the Site to perform a soil vapor intrusion investigation focused on evaluating onsite environmental quality through the collection of soil vapor samples.

1.2 Site Description:

The subject site is located on US Route 9 in the town of Hudson, Columbia County, New York. Figure 1 – Site Location Map is an annotated United States Geological Survey Map (USGS 1980) depicting the site location and the local topography. In general, the site is relatively flat with a gentle slope to the west. The site is border to the east by the steeply sloping Becraft Hills. The Hudson River is located approximately two-miles to the west. The land surfaces at the site are covered by asphalt or manicured grass. The property is situated in a mixed residential and industrial area. Surface structures consist of a single multi-level industrial building. The eastern portion of the building (active portion), which is currently occupied by Holcim, is currently serviced by municipal gas, water, and

electric. The utilities that once serviced the eastern portion of the site (inactive portion) are said to be disconnected and/or abandoned.

2.0 Soil Vapor Intrusion Investigation

The focus of the investigative effort was to evaluate the occurrence of VOCs and CVOCs in the subsurface based upon constituents of concerns identified through previous site activities, environmental investigations, and remedial actions. Fieldwork consisted of the installation of eight (8) temporary soil vapor probes (SV-1, SV-2, SV-3, SV-4, SV-5, SV-6, SV-7, and SV-8). The locations of investigative data collection points in relation to permanent on-site structures are depicted on Figure 2 – Site Map.

2.1 Temporary Soil Vapor Sampling Probes Installation:

On December 14, 2009, eight (8) temporary soil vapor sampling probes were installed at the subject site. Temporary soil vapor sampling points were constructed of six-inch long, stainless steel, braided screen soil vapor implant probes with 3/16-inch barbs. Expendable, stainless steel points were advanced to a depth above the encountered water table elevation, as directed by the NYSDEC. Once the desired depth was achieved, the soil vapor implant probe and 1/4-inch outside diameter (3/16-inch inside diameter) Teflon tubing were inserted into the penetrating geoprobe rods and attached to the expendable, steel point. The geoprobe rods were removed and the borehole was filled to grade with the appropriate media. Glass bead (60-100 mesh) was added to the borehole annulus to create a porous media pack surrounding the implant probe. Granular bentonite was used to fill the remaining borehole annulus to surface grade. The Teflon tubes were capped above the surface grade, and the bentonite was allowed time to hydrate prior to sample acquisition. The Teflon tubing was removed from the implant probe following the acquisition of the soil vapor samples.

See Attachment A – Boring Logs for details regarding depth and well construction for installed/sampled temporary soil vapor probes.

3.0 Soil Vapor Intrusion Sampling

3.1 Soil Vapor Intrusion Sampling Procedure:

On December 15, 2009 a total of four (4) soil-vapor samples were collected (SV-1, SV-2, SV-3, and SV-5). One (1) ambient air sample and one (1) indoor air sample were also collected. Sample locations have been depicted in Figures 3 – Soil Vapor Contaminant Distribution Map. The subsurface soil vapor samples were obtained from a depth below surface grade of approximately three-feet to six-feet. All samples were collected for an approximate one-hour time period. The flow rates during sampling were set not to exceed 0.2 liters per minute in regulators supplied and calibrated by the laboratory. Sampling personnel avoided actions that could cause sample interference (i.e.: fueling vehicles, using permanent marking pens). All samples were collected in clean, 6-liter, laboratory-supplied and laboratory calibrated Summa canisters.

Soil vapor samples were not collected from SV-4 and SV-6 due to the lack of competent surface seals, as observed during confirmatory tracer gas monitoring. Soil vapor samples were not collected from SV-7 and SV-8 due to the presence of water observed in associated probe tubing.

3.2 Confirmatory Tracer Gas Monitoring:

In accordance with the NYSDOH Guidance Document for Evaluating Soil Vapor Intrusion in the State of New York, a helium-enriched shroud was employed over the soil vapor implant probe tube and bore hole. Soil vapor samples were then monitored in real time by a helium detector to ensure that a competent surface seal was maintained. This procedure promoted the collection of a representative soil vapor air sample.

Soil vapor probes were purged of a volume of approximately one (1) liter and collected in a Tedlar bag. The purged soil vapor was then screened for helium concentration and VOC headspace. During the collection of the soil vapor air samples, the concentration of helium within the purged soil vapor at the temporary soil vapor probe locations was recorded at concentration above the competent seal threshold in SV-4 (17% He) and SV-6 (27.3% He), while all remaining soil vapor probes were documented as indicating competent soil vapor probe construction and surface seal for shrouds enriched to 95% He. Headspace values collected for purged soil vapor were reported at concentrations ranging from 47 ppb (SV-5) to 1,193 ppb (SV-1).

See Table 1 – Summary of Soil Vapor Sampling Data for details regarding observations regarding tracer gas monitoring and relative sampling data. Refer to Table 2 – Summary of Laboratory Analytical Results and Table 3 – Summary of Indoor Air Laboratory Analytical Results for details regarding soil vapor sampling results. The Laboratory Analytical Reports have been included as Attachment B – Laboratory Analytical Reports.

4.0 Laboratory Analytical Testing Results

4.1 Soil Vapor Sampling Results:

Spectrum Analytical, Inc. of Agawam, Massachusetts provided the sampling media and performed the analysis on the samples. Soil vapor samples were analyzed for CVOCs and VOCs by EPA Method TO-15, which is capable of achieving a detection limit down to $1.0~\mu\text{g/m}^3$ for most analytes. The original laboratory report for the air samples has been provided in Attachment B – Laboratory Analytical Reports.

The data report provided by Spectrum is equivalent to an Analytical Services Protocol Category B deliverable package. As such, a Data Usability Summary Report (DUSR), which was prepared by Alpha Geoscience of Clifton Park, New York, has been provided in Attachment C. The results of the DUSR confirmed that no data was qualified as unusable.

Several compounds were detected in all four (4) soil vapor samples (SV-1, SV-2, SV-3, and SV-5) above the laboratory minimum reporting limits. Total compounds were detected at concentrations ranging from 87.82 $\mu g/m^3$ (SV-3) to 1,477.66 $\mu g/m^3$ (SV-1). PCE (tetrachloroethene) was detected in soil vapor samples SV-1, SV-2, SV-3 and SV-5 in concentrations ranging from 18.99 $\mu g/m^3$ (SV-5) to 990.05 $\mu g/m^3$ (SV-1). TCE (trichloroethene) and DCE (1,1-dichloroethene, cis-1,2-dichloroethene, and trans-1,2-dichloroethene) were not detected above the laboratory minimum detection limits in soil vapor samples SV-1, SV-2, and SV-5; however, a TCE concentration of 10.05 $\mu g/m^3$ was reported in soil vapor samples from SV-3 collected on December 15, 2009.

Similarly, several compounds were detected above the laboratory minimum reporting limits in the Upgradient Ambient sample collected on December 15, 2009. Total compounds were reported at a concentration of $30.71~\mu g/m^3$. PCE was detected in the Upgradient Ambient sample at a concentration of $0.68~\mu g/m^3$. DCE and TCE were not detected in the Upgradient Ambient sample. See Table 2 – Summary of Laboratory Analytical Results for details regarding soil vapor sampling results.

New York State currently does not have any standards, criteria or guidance values established for concentrations of compounds in subslab or subsurface vapors. Additionally, there are no databases available of background levels of volatile chemicals in soil vapor or for ambient air.

An Indoor Air sample was collected on December 15, 2009 in the basement of the active portion of the Former ICC building. The Indoor Air sample was collected adjacent to a floor sump set in the southeast corner of the basement. Several compounds were detected in the Indoor Air sample that were above the laboratory minimum reporting limits. Total compounds were reported at a concentration of 217.53 $\mu g/m^3$. PCE was reported at a concentration of 6.04 $\mu g/m^3$. DCE was reported at a concentration of 0.40 $\mu g/m^3$. TCE was reported at a concentration of 0.32 $\mu g/m^3$. All constituents of concern reported at concentrations above the laboratory minimum reporting limits were below indoor air guidance values established by the USEPA Building Assessment and Survey Evaluation (BASE 1994 – 1998), the NYSDOH letter dated October 31, 2003 from Kim D. Desnoyers of the

NYSDEC Division of Environmental Remediation, and the NYSDOH Bureau of toxic Substance Assessment Tetrachloroethylene Ambient Air Document (1997); except for the compound trichlorofluoromethane detected in the Indoor Air sample, which was reported at a concentration (52.77 μ g/m³) above the established indoor air guidance values. Refer to Table3 – Summary of Indoor Air Laboratory Analytical Results for details regarding indoor air sampling results.

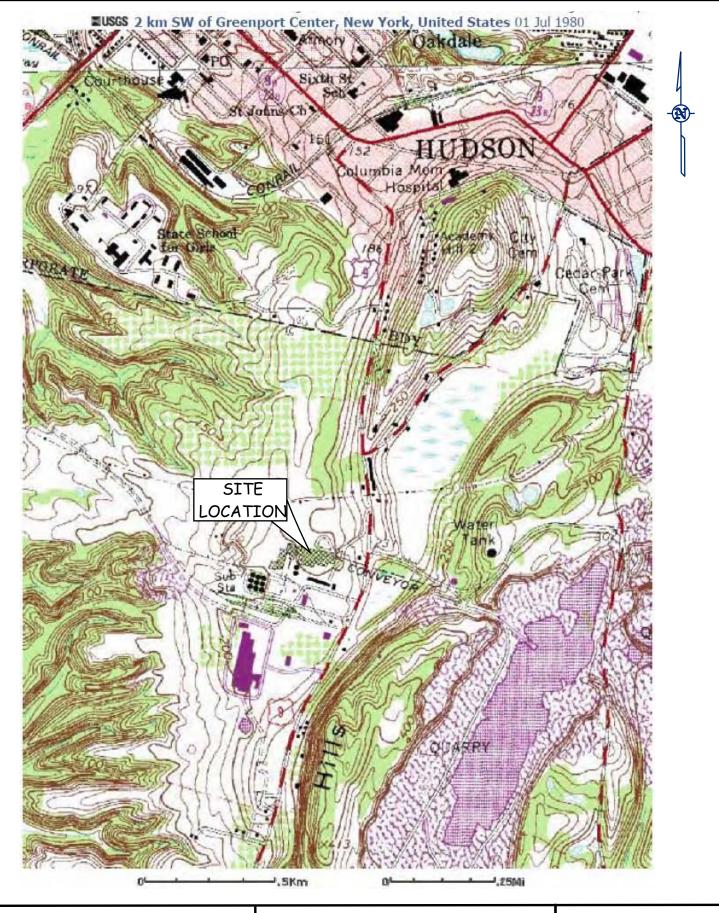
The distribution of total CVOCs and VOCs within the soil for the December 15, 2009 soil vapor probe sampling event is depicted on Figure 3 – Total Soil Contamination Distribution Map. The analytical report for the submitted soil samples is included within Attachment B – Laboratory Analytical Reports.

Any statement or opinion contained in this Report prepared by Precision Environmental Services, Inc. (PES) shall not be construed to create any warranty or representation that the real or personal property on which the investigation was conducted is free of pollution or complies with any or all applicable regulatory or statutory requirements, or that the property is fit for any particular purpose. Unless otherwise indicated in this Report, PES did not independently determine the compliance of present or past owners of the site with federal, state or local laws and regulations. The conclusions presented in this Report were based upon the services described, within the time and budgetary constraints imposed by the client, and not on scientific tasks or procedures beyond the scope of those described services. PES shall not be responsible for conditions or consequences arising from any facts that were concealed, withheld or not fully disclosed by any person at the time evaluation was performed.

Any person or entity considering the acquisition, use or other involvement or activity concerning the property that is the subject of this Report shall be solely responsible for determining the adequacy of the property for any and all such purposes. The person or entity should enter into any such acquisition or use relying solely on its own judgment and personal investigation of the property, and not upon reliance of any representation by PES regarding the property or the character, quality or value thereof.

The contents and conclusions of this Report and the information gathered in order to prepare the Report will remain confidential except to the parties or their representatives.

PES appreciates the opportunity to provide continuing environmental services to the NYSDEC. Should any questions arise concerning the submitted report, please contact the undersigned at (518) 885-4399. Thank you for your consideration.

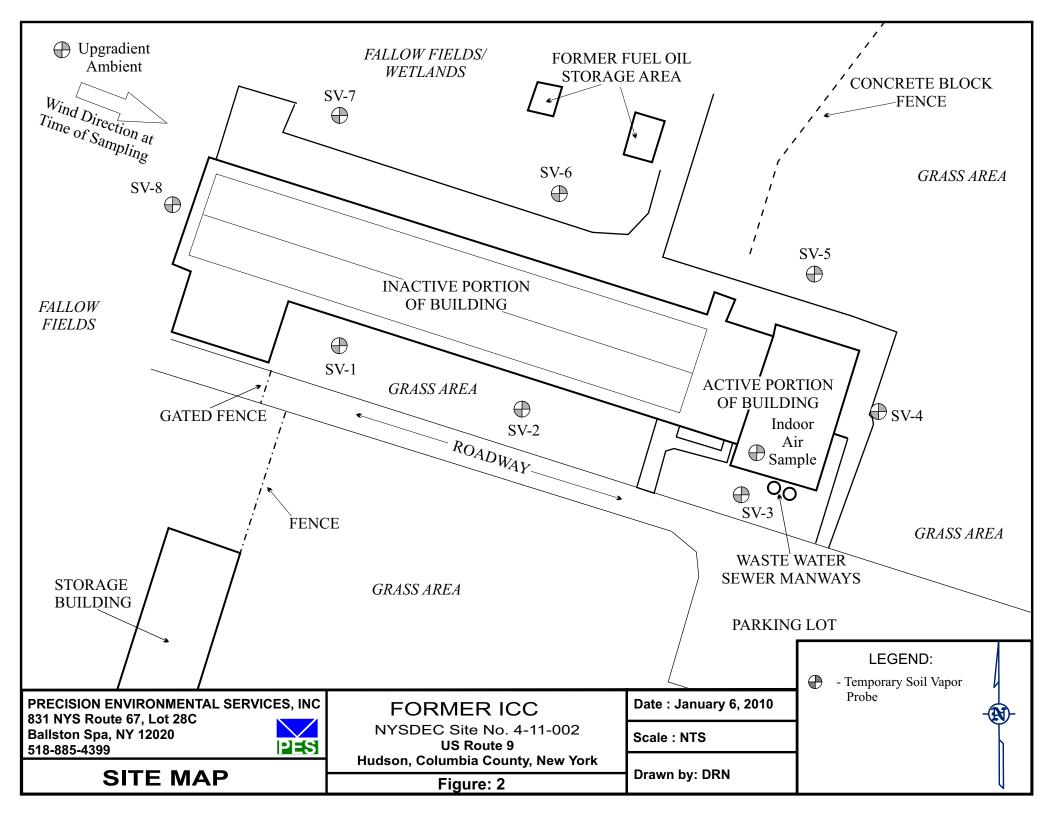

SINCERELY PRECISION ENVIRONMENTAL SERVICES, INC.

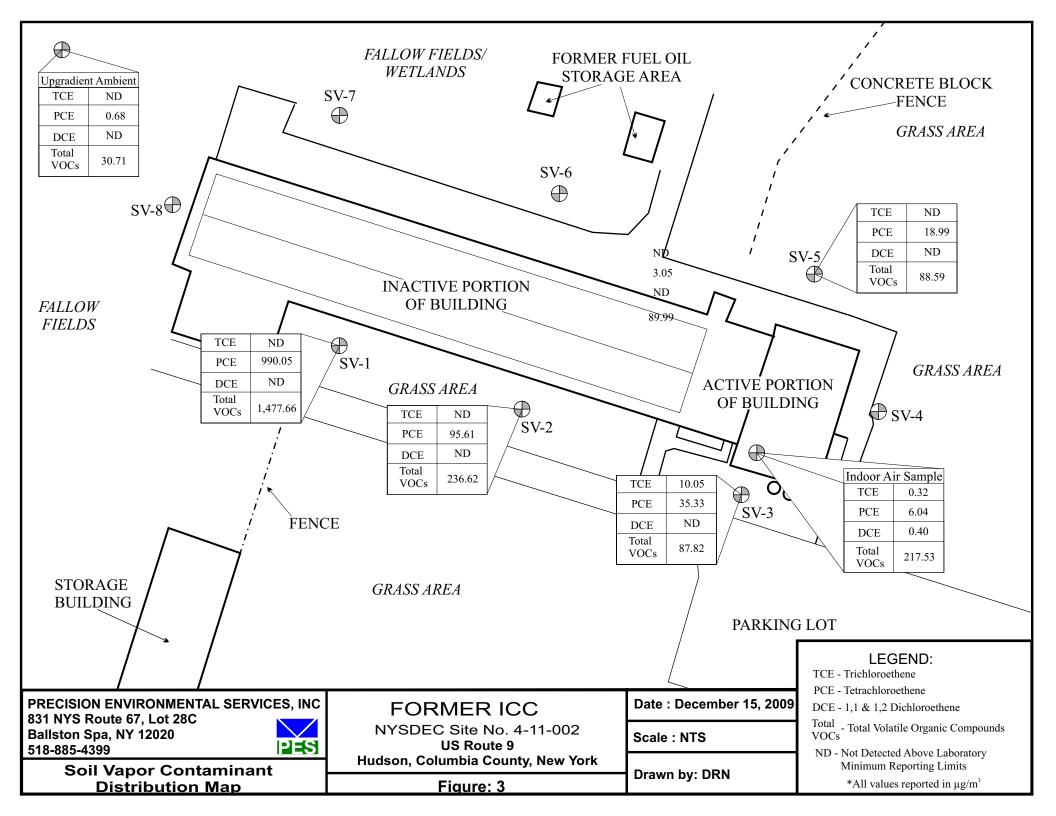
Daniel R. Nierenberg Project Manager/Geologist Steven M. Phelps Environmental Scientist

FIGURES

PRECISION ENVIRONMENTAL SERVICES, INC 831 NYS Route 67, Lot 28C Ballston Spa, NY 12020 518-885-4399

SITE LOCATION MAP


FORMER ICC


NYSDEC Site No. 4-11-002
US Route 9
Hudson, Columbia County, New York

Date: January 20106,

Map Courtesy of USGS

Figure: 1

TABLES

Table 1
Summary of Soil Vapor Sampling Data

Former ICC NYSDEC Site No. 4-11-002 US Route 9

Hudson, Columbia County, New York

Collected on December 15, 2009

Temporary Soil Vapor	SUMMA	Regulator	Time On	Time Off	He Shroud %	He Tedlar	Headspace Tedlar	Start	End	Ambient
Probe ID	Canister ID	ID	Time On	Time On	Tie Sin oud 70	Purge	Purge (ppb)	SUMMA	SUMMA	Temperature (°C)
SV-1	4638	37	10:48	11:19	95%	1350	1193	-28" Hg	-2" Hg	38
SV-2	1010	2869	11:15	11:42	95%	125	95	-28" Hg	-2" Hg	38
SV-3	0263	54	11:45	12:32	95%	0	118	> -30" Hg	-4" Hg	40
SV-4	N/A	N/A	N/A	N/A	95%	17%* ¹	623	N/A	N/A	40
SV-5	5582	2876	13:09	13:49	95%	87, 750	47	-27" Hg	-2" Hg	39
SV-6	N/A	N/A	N/A	N/A	95%	27.3%*1	682	N/A	N/A	39
SV-7* ²	N/A	N/A	N/A	N/A	95%	2.3%	51	N/A	N/A	38
SV-8* ²	N/A	N/A	N/A	N/A	95%	2,950	92	N/A	N/A	38
Indoor Air Sample	4613	2842	15:24	16:05	N/A	N/A	N/A	-25" Hg	-3" Hg	60
Upgradient Ambient	0271	49	12:46	13:40	N/A	N/A	N/A	-30" Hg	-2" Hg	39

Helium Detector : He Leak Detector - MGD-2002

Photo-ionization detector : ppbRae Plus PGM-7240

N/A indicates not applicable

^{*1} indicates lack of a competent surface seal as observed during confirmatory tracer gas monitoring; no soil vapor sample obtained

^{*2} indicates the presence of water observed in associated soil vapor probe tubing; no soil vapor sample obtained

Table 2 Summary of Laboratory Analytical Results

Former ICC NYSDEC Site No. 4-1	Temporary Soil Vapor Probe Identification							
US Route 9			Collected	on Decembe	r 15, 2009			
Hudson, Columbia County	SV-1	SV-2	SV-3	SV-5	Upgradient			
Parameters	Analysis		(9)			Ambient ND		
Propene Dichlorodifluoromethane	TO-15 TO-15	14.56 2.77 J	6.82 3.02	ND 3.07	ND 2.87	3.21		
Chloromethane	TO-15	ND	ND	ND	ND	1.51		
1,2-Dichlorotetrafluoraethane	TO-15	ND	ND	ND	ND	ND		
Vinyl Chloride	TO-15	ND	ND	ND	ND	ND		
1,3-Butadiene Bromomethane	TO-15 TO-15	ND ND	ND ND	ND ND	ND ND	ND ND		
Chloroethane	TO-15	ND	ND	ND	ND	ND		
Acetone	TO-15	13.16	8.53	5.99	11.05	6.08		
Trichlorofluoromethane	TO-15	ND	ND 0.42	ND	1.18	1.57		
Ethanol Acrylonitrile	TO-15 TO-15	1.43 J ND	9.43 ND	1.56 ND	1.64 ND	4.86 ND		
1,1-Dichloroethene (DCE)	TO-15	ND	ND	ND	ND	ND		
Methylene Chloride	TO-15	ND	2.78	ND	ND	0.35		
1,1,2-Trichlorotrifluoroethane	TO-15	ND	ND	ND	0.54 J	0.77		
Carbon Disulfide trans-1.2-Dichloroethene (DCE)	TO-15 TO-15	8.03 ND	2.49 ND	ND ND	0.50 J ND	ND ND		
1,1-Dichloroethane	TO-15	ND ND	ND ND	ND ND	2.87	ND ND		
Methyl tert-Butyl Ether	TO-15	ND	ND	ND	ND	ND		
Isopropyl Alcohol	TO-15	ND	3.78	ND	0.25 J	0.59 J		
2-Butanone (MEK)	TO-15 TO-15	10.03	1.27 J	4.39	8.70 BsH	1.06 DJ		
cis-1,2-Dichloroethene (DCE) Hexane	TO-15	ND 8.11	ND 17.45	ND 1.02 J	0.39	ND 2.93		
Ethyl Acetate	TO-15	ND	ND	ND	ND	ND		
Chloroform	TO-15	2,24 J	ND	ND	0.88	ND		
Tetrahydrofuran	TO-15	ND	ND	ND	0.68	ND		
1,2-Dichloroethane 1,1,1-Trichloroethane	TO-15 TO-15	ND ND	ND ND	ND 2.18 J	ND 0.71	ND ND		
Benzene	TO-15	35.09	2.33	0.99 J	0.71	1.37		
Carbon Tetrachloride	TO-15	ND	ND	ND	3.77	0.63		
Cyclohexane	TO-15	4.06	3.06	ND	ND	ND		
1,2-Dichloropropane	TO-15	ND ND	ND	ND	ND	ND		
Bromodichloromethane Trichloroethene (TCE)	TO-15 TO-15	ND ND	ND ND	ND 10.05	ND ND	ND ND		
1,4-Dioxane	TO-15	ND	ND	ND	ND	ND		
n-Heptane	TO-15	12.29	8.73	5.53	ND	0.41		
4-Methyl-2-Pentanone (MIBK)	TO-15	ND ND	ND	ND	ND	ND		
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	TO-15 TO-15	ND ND	ND ND	ND ND	ND ND	ND ND		
1,1,2- Trichloroethane	TO-15	ND	ND	ND	ND	ND		
Toluene	TO-15	269.79	24.26	7.30	4.40	3.05		
2-Hexanone (MBK)	TO-15	ND	ND	ND	ND	ND		
Dibromochloromethane 1,2-Dibromoethane (EDB)	TO-15 TO-15	ND ND	ND ND	ND ND	ND ND	ND ND		
Tetrachloroethene (PCE)	TO-15	990.05	95.61	35.33	18.99	0.68		
Chlorobenzene	TO-15	ND	ND	ND	ND	ND		
1,1,1,2-Tetrachloroethane	TO-15	ND	ND	ND	ND	ND		
Ethylbenzene m.p. Yylene	TO-15 TO-15	31.13 56.79	5.55	1.91 J	1.69 7.85	0.26 J 0.74		
m,p-Xylene Bromoform	TO-15	56.79 ND	20.16 ND	5.64 ND	ND	0.74 ND		
Styrene	TO-15	ND	ND	ND	ND	ND		
o-Xylene	TO-15	9.97	4.64	1.43	7.93 J	0.30 J		
1,1,2,2-Tetrachloroethane	TO-15	ND 5.01	ND 4.42	ND ND	ND 0.74	ND ND		
Isopropylbenzene 1,3,5-Trimethylbenzene	TO-15 TO-15	5.01 ND	4.42 2.51	ND ND	0.74 1.38	ND ND		
4-Ethyltoluene	TO-15	ND	2.90	ND	2.06	ND		
1,2,4-Trimethylbenzene	TO-15	3.15 J	6.88	1.43	6.98 J	0.34 J		
1,3-Dichlorobenzene	TO-15	ND	ND	ND	ND	ND		
Benzyl Chloride 1,4-Dichlorobenzene	TO-15 TO-15	ND ND	ND ND	ND ND	ND ND	ND ND		
sec-Butylbenzene	TO-15	ND ND	ND ND	ND ND	ND ND	ND ND		
4-Isopropyltoluene	TO-15	ND	ND	ND	ND	ND		
1,2-Dichlorobenzene	TO-15	ND	ND	ND	ND	ND		
n-Butylbenzene	TO-15	ND ND	ND ND	ND	ND	ND		
1,2,4-Trichlorobenzene Hexachlorobutadiene	TO-15 TO-15	ND ND	ND ND	ND ND	ND ND	ND ND		
Total TCE	TO-15	ND ND	ND	10.05	ND	ND ND		
Total PCE	TO-15	990.05	95.61	35.33	18.99	0.68		
Total DCE	TO-15	ND	ND	ND	ND	ND		
Total VOCs	TO-15	1,477.66	236.62	87.82	88.59	30.71		
All Values reported in micrograms pe	r cubic meters (µ	g/m ³)						

Analytical Facility - Spectrum Analytical, Inc. - Agawam, MA

Values in BOLD indicate values detected above laboratory minimum reporting limits

 (\mathbf{J}) indicates values detected above the laboratory method detection limits but below the minimum reporting limits

(BsH) indicates data for this analyte may be biased based on QC spike recoveries

 (\mathbf{DJ}) DUSR indicates analyte is present. The reported value may be associated with a higher

level of uncertainty than normally expected with the analytical method

ND indicates not detected above laboratory minimum reporting limits

⁽E) indicates values considered estimates

Summary of Indoor Air Laboratory Analytical Results

Former ICC		Indoor Air Sample Identification				
NYSDEC Site No. 4-1 US Route 9	1-002	Collected on December 15, 2009				
Hudson, Columbia County	. New York		Indoor Air Guidance			
Parameters	Analysis	Indoor Air Sample	Value* 1			
Propene	TO-15	ND	N/A			
Dichlorodifluoromethane	TO-15	3.16	16.50			
Chloromethane	TO-15	1.59	3.70			
1,2-Dichlorotetrafluoraethane Vinyl Chloride	TO-15 TO-15	ND ND	<6.80 <1.90			
1.3-Butadiene	TO-15	ND ND	<3.00			
Bromomethane	TO-15	ND	<1.70			
Chloroethane	TO-15	ND	<1.10			
Acetone	TO-15	19.49	98.90			
Trichlorofluoromethane	TO-15	52.77	18.10			
Ethanol	TO-15	57.53 DJ	210.00			
Acrylonitrile 1,1-Dichloroethene (DCE)	TO-15 TO-15	ND ND	N/A <1.40			
Methylene Chloride	TO-15	2.99	10.00			
1,1,2-Trichlorotrifluoroethane	TO-15	0.77	3.50			
Carbon Disulfide	TO-15	ND	4.20			
trans-1,2-Dichloroethene (DCE)	TO-15	ND	<1.90			
1,1-Dichloroethane	TO-15	ND	<0.70			
Methyl tert-Butyl Ether	TO-15	ND 9.47	11.50			
(sopropyl Alcohol 2-Butanone (MEK)	TO-15 TO-15	8.47 4.33 DJ	N/A 12.00			
cis-1,2-Dichloroethene (DCE)	TO-15	0.40	<1.90			
Hexane	TO-15	24.86	10.20			
Ethyl Acetate	TO-15	ND	5.40			
Chloroform	TO-15	ND	1.10			
Tetrahydrofuran	TO-15	1.47	N/A			
1,2-Dichloroethane	TO-15	ND ND	<0.90			
1,1,1-Trichloroethane Benzene	TO-15 TO-15	2.23	20.60 9.40			
Carbon Tetrachloride	TO-15	0.69	<1.30			
Cyclohexane	TO-15	0.83	N/A			
1,2-Dichloropropane	TO-15	ND	<1.60			
Bromodichloromethane	TO-15	ND	N/A			
Trichloroethene (TCE)	TO-15	0.32 J	5.00*2			
1,4-Dioxane	TO-15	ND	N/A			
n-Heptane 4-Methyl-2-Pentanone (MIBK)	TO-15 TO-15	3.32 ND	<3.6 6.00			
cis-1,3-Dichloropropene	TO-15	ND ND	<2.30			
rans-1,3-Dichloropropene	TO-15	ND	<1.30			
1,1,2- Trichloroethane	TO-15	ND	<1.5			
Γoluene	TO-15	14.94	43.00			
2-Hexanone (MBK)	TO-15	ND	N/A			
Dibromochloromethane	TO-15	ND	N/A			
1,2-Dibromoethane (EDB)	TO-15	ND	<1.50			
Tetrachloroethene (PCE) Chlorobenzene	TO-15	6.04 ND	100.00* 3			
1,1,1,2-Tetrachloroethane	TO-15 TO-15	ND ND	<0.90 N/A			
Ethylbenzene	TO-15	1.30	5.70			
n,p-Xylene	TO-15	4.47	22.20			
Bromoform	TO-15	ND	N/A			
Styrene	TO-15	0.89	1.90			
o-Xylene	TO-15	1.52	<7.3			
1,1,2,2-Tetrachloroethane Isopropylbenzene	TO-15 TO-15	ND ND	N/A N/A			
1,3,5-Trimethylbenzene	TO-15	0.59	3.70			
4-Ethyltoluene	TO-15	0.59	3.60			
1,2,4-Trimethylbenzene	TO-15	1.97	9.50			
1,3-Dichlorobenzene	TO-15	ND	<2.40			
Benzyl Chloride	TO-15	ND	<6.80			
,4-Dichlorobenzene	TO-15	ND	5.50			
sec-Butylbenzene	TO-15	ND ND	N/A			
4-Isopropyltoluene 1,2-Dichlorobenzene	TO-15 TO-15	ND ND	N/A <1.20			
n-Butylbenzene	TO-15	ND	<1.90			
1,2,4-Trichlorobenzene	TO-15	ND	<6.80			
Hexachlorobutadiene	TO-15	ND	<6.80			
Total TCE	TO-15	0.32				
Total PCE	TO-15	6.04				
Total DCE	TO-15	0.40				
Total VOCs	TO-15	217.53				

All Values reported in micrograms per cubic meters (µg/m³)

Analytical Facility - Spectrum Analytical, Inc. - Agawam, MA
ND indicates not detected above laboratory minimum reporting limits

Values in **BOLD** indicate values detected above laboratory minimum reporting limits N/A indicates value not available

(E) indicates values considered estimates
(J) indicates values detected above the laboratory method detection limits but below the minimum reporting limits
(BsH) indicates data for this analyte may be biased based on QC spike recoveries
(DJ) DUSR indicates analyte is present. The reported value may be associated with a higher

level of uncertainty than normally expected with the analytical method

 \ast^1 indicates indoor air guidance value established by USEPA Building Assessment and Survey Evaluation (BASE 1994-1998)

³ indicates NYSDOH, 1997, Tetrachloroethylene Ambient Air Document, Bureau of Toxic Substance Assessment

e² indicates NYSDOH, October 31, 2003 letter from Kim D. Desnoyers, NYSDEC Division of Environmental Remediation

ATTACHMENT - A Boring Logs

	PRF	CIS	I O N	Lot	28, Curtis Industrial Park 831 Route 67		Page <u>1</u> of <u>8</u>
PÉ	S Environm			В	Ballston Spa, NY 12020 TEL: 518 885-4399		DRILLING LOG
					FAX: 518 885-4416	_	Well/ Boring No.: SV-1
Project:	Former ICC		_ Client:		DEC - Central Office		
Project	No:4-11-002		Location:	F	Hudson, NY		
Driller:_	Mike Dudley		Logged by:_		Dan Nierenberg		
Drilling	Contractor: P	ES	Drilling Meth	nod:	Geoprobe/Direct Push		
	rilled: 12-14-2						See Site Map
	evation:						
Boring l	Diameter: 2.25	Screer	n Diameter:_	½"	Length: 10		
	ze:						
			Bead:	6'-4.5'	Bentonite Seal: 4.5' - 0	Grade	
Protecti	ve Casing:	N/A				L	
Depth (ft.)	Soil Vapor Probe	Soil Boring Details	Sample Type/#	PID (ppb)		Descr	iption / Soil Classification
(- /			1	(11)			
— o –							
_							
— 2 –	Bentonite				0-4": brown fir SAND mi		ID, well sorted, with some medium
_					0,410 1111	ixcu	
— 3 –							
_ 4 -							
	THE STATE OF THE S						
— 5 –	Glass						
	Bead				4-8': brown fir	ne SAN	ID, well sorted, with some medium
<u> </u>					SAND mi	ixed; ch	nanging to TILL, fine SAND/SILT, with
_ 7 _					little CLA	Y with	medium shale (bdrx) fragments
'							
_ 8 _							
					8-9': same as	above	
_ 9 _							
	6 "	D 1 0)/	41 411		. 5	·	
— 10 —		r Probe SV-	1 Installe	d at 6-fe	eet Ref	tusal at	9-feet below existing site grade
							le Groundwater observed at
<u> </u>	Glass bead pack from 6-feet to 4.5-feet below existing site grade						rom soil boring bottom
_ 12 <i>-</i>		bentonite from		et to ex	istina		
14 -	site grade				5		
— 13 –	Collected	soil vapor s	ample S	V-1 on			
	Decembe	er 15, 2009					
— 14 –	Soil vano	r probes we	re remov	ed and	backfilled		
	with bento	onite before	completi	on of wo	مداد	N/A	= No Sample Acquired
<u> </u>	performed	d on Decem	ber 15, 2	2009		ND	= No VOCs Detected By PID analysis

= Sample Submitted for Laboratory Analysis

*

	PRF	CISI	\cap N	Lot	28, Curtis Industrial Park 831 Route 67	Page 2_ of 8_
PF.S		ental Servic		B	allston Spa, NY 12020 TEL: 518 885-4399	DRILLING LOG
	_ LIIVII VIII	ciitai oci v.o	es, iiio.		FAX: 518 885-4416	Well/ Boring No.: SV-2
Project:_	Former ICC		_ Client:		DEC - Central Office	
Project N	lo: 4-11-002	L	ocation:	Н	ludson, NY	
Driller:	Mike Dudley					
_	Contractor: Pl				Geoprobe/Direct Push	[]
	led: 5-18-20		Date Develo			See Site Map
	vation: -					
	:				Length: 10"	
	Iemp Soil Vapor Pr				Bentonite Seal: 3' - Grade	
·		N/A	Jeau		Demonite Geal. 3 - Grade	
	7 Gueg.				<u> </u>	
Depth (ft.)	Soil Vapor Probe	Temp Monitoring Well	Sample Type/#	PID (ppb)	Desc	cription / Soil Classification
- o -						r Probe SV-2 Installed at 4.5-feet sting grade
_ 1 _	Bentonite				l	nd pack from 4.5-feet to 3-feet
_ 2 _						sting site grade
- з -					site grade	pentonite from 3-feet to existing
- 4 -	Glass Bead				Collected December	soil vapor sample SV-2 on r 15, 2009
- 5 - - 6 -	•				with bento	probes were removed and backfilled nite before completion of work on December 15, 2009
					<u>'</u>	· · ·
_ 7 _					Refusal at	6.5-feet below existing site grade
- 8 -						le groundwater was observed at elow existing site grade
_ 9 _						G G
— 10 —						
- 11 -						
_ 12 _						
- 13 -						
— 14 —						

N/A

ND

*

- 15

= No Sample Acquired

= No VOCs Detected By PID analysis

= Sample Submitted for Laboratory Analysis

PES	P R E Environm	CIS ental Servic			28, Curtis Industrial Park 831 Route 67 8allston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	Page 3 of 8 DRILLING LOG Well/ Boring No.: SV-3
Project:	Former ICC		Client:	NYS	DEC - Central Office	
	No: 4-11-002				Hudson, NY	
Driller:					Dan Nierenberg	
_	Contractor: P				Geoprobe/Direct Push	
_	illed: 12-14-2					See Site Map
	evation:					
Boring D	Diameter: 2.25	Screen	Diameter:_	1/2"	Length:10"	
Slot Size	e: -	Tubing	Diameter:_	3/8"OD, 3	/16"ID Length: 10'	
Type:	Temp Soil Vapor P	robe Glass I	Bead: 4'	- 2.5'	Bentonite Seal: 2.5' - Grade	
Protectiv	e Casing:	N/A				
Depth (ft.)	Soil Vapor Probe	Temp Monitoring Well	Sample Type/#	PID (ppb)	Des	cription / Soil Classification
- 0 1 2 3 4 5 6 7 8 9 10 11 12 -	Glass Bead				below ex Glass below ex Granula I site grade Collected December	or Probe SV-3 installed at 4-feet isting grade ad pack from 4-feet to 2.5-feet isting site grade bentonite from 2.5-feet to existing elementary of the state of t
— 12 — — 13 — — 14 —					grade Appreciat	id point to 12-feet below existing site ble groundwater was observed at 5.70- y existing site grade
					N/A	= No Sample Acquired

= No VOCs Detected By PID analysis

= Sample Submitted for Laboratory Analysis

ND *

	<u> </u>			. Lot	28, Curtis Industrial Park	Page4_of_8_
		CIS		E	831 Route 67 Ballston Spa, NY 12020	DRILLING LOG
PE	Environm	ental Servic	es, Inc.		TEL: 518 885-4399 FAX: 518 885-4416	Well/ Boring No.: SV-4
Project:_	Former ICC		_ Client:	NYS	DEC - Central Office	-
Project N	No: 4-11-002	L	ocation:	ŀ	Hudson, NY	
Driller:_	Mike Dudley	ι	ogged by:_		Dan Nierenberg	
_	Contractor: F		Drilling Meth	nod:	Geoprobe/Direct Push	_
	illed: 12-14-2		Date Develo			See Site Map
	vation: -		Total Depth			
	iameter: 2.25					
	e Temp Soil Vapor P				Bentonite Seal: 2' - Grade	
	e Casing:	N/A	30uu			-
Depth	Soil Vapor	Temp Monitoring Well	Sample Type/#	PID (ppb)	Des	scription / Soil Classification
(ft.)	Probe	Wiering Tren	Type/#	(ppb)		·
_ o _	П				Soil Van	or Probe SV-4 installed 3.5-feet
4						risting grade
— 1 —	Bentonite					
— 2 —					1	ead pack from 3.5-feet to 2-feet cisting site grade
2						
— 3 —	Glass Bead				1	bentonite from 2-feet to existing
					site grad	е
_ 4 _	•				SV-4 did i	not meet helium shroud competent
_					1	; found concentrations of helium above
— 5 —						elium shroud subsequent to helium nt and purging; failed three (3) separate
_ 6 <u>_</u>					seal tests	
Ŭ					Δs directe	ed by the NYSDEC, no soil vapor
_ 7 _					1	as collected at SV-4 location
					Soil vapor	r probes were removed and backfilled
— 8 —					with bento	onite before completion of work
_ 9 _					performed	d on December 15, 2009
Ŭ						
— 10 —						lid point to 9-feet below existing site
					grade	olo aroundurator was shoot at 5.5-st
— 11 —						ble groundwater was observed at 5-feet sting site grade
						
— 12 —						
— 13 —						
- 13 -						
— 14 —						
					N/A	= No Sample Acquired

ND

*

= No VOCs Detected By PID analysis

= Sample Submitted for Laboratory Analysis

	PRE	CISI	ON		28, Curtis Industrial Park 831 Route 67	Page <u>5</u> of <u>8</u> DRILLING LOG
	Environm				3allston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	
						Well/ Boring No.: SV-5
			_ Client: .ocation:		DEC - Central Office Hudson, NY	
Project Driller:	No: 4-11-002 Mike Dudley				Dan Nierenberg	
_					Geoprobe/Direct Push	
	illed: 12-14-2					See Site Map
					4'	. [
Boring [Diameter: 2.25	Screen	Diameter:_	1/2"	Length: 10"	
					3/16"ID Length: 10'	
			3ead: 4'-	- 2.5'	Bentonite Seal: 2.5' - Grade	
Protectiv	ve Casing:	N/A	-			
Depth (ft.)	Soil Vapor Probe	Temp Monitoring Well	Sample Type/#	PID (ppb)	Desc	cription / Soil Classification
— o –					Soil Vapo	r Probe SV-5 installed at 4-feet
_ 1 _						sting grade
1	Bentonite				Glass hea	ad pack from 4-feet to 2.5-feet
_ 2 _						sting site grade
	AND THE STATE OF T				Cranula h	or to with from 0.5 fact to evicting
_ 3 -	Glass				site grade	pentonite from 2.5-feet to existing
	Bead					,
— 4 <i>–</i>	•					
_ 5 _] ,					soil vapor sample SV-5 on
3					Decembe	er 15, 2009
_ 6 <u>_</u>					Soil vapor	probes were removed and backfilled
					with bento	nite before completion of work
<u> </u>					performed	on December 15, 2009
— 8 —						
_ 9 _						
— g —						
— 10 —						d point to 9-feet below existing site
					grade	
— 11 —						le groundwater was observed at 5-feet sting site grade
					~~	All gold grade
— 12 <i>—</i>						
40						
— 13 –						
— 14 —						
					N/A	= No Sample Acquired

= No VOCs Detected By PID analysis

= Sample Submitted for Laboratory Analysis

ND *

	PRE	CISI	ON		28, Curtis Industrial Park 831 Route 67	Page <u>6</u> of <u>8</u> DRILLING LOG
PE:	S Environm				3allston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	
					DEC - Central Office	Well/ Boring No.: SV-6
l ' '	Former ICC				Hudson, NY	
Project I Driller:	No: 4-11-002				Dan Nierenberg	
_	Contractor: F				Geoprobe/Direct Push	
	illed: 12-14-2					See Site Map
	evation:					
Boring D	Diameter: 2.25	Screen	Diameter:_	1/2"	Length:10"	
Slot Size	e:	Tubing	Diameter:_	3/8"OD, 3	3/16"ID Length: 7'	
Type:	Temp Soil Vapor P	robe Glass E			Bentonite Seal: 2.25' - Grade	
Protectiv	ve Casing:	N/A				
Depth (ft.)	Soil Vapor Probe	Temp Monitoring Well	Sample Type/#	PID (ppb)	Desc	cription / Soil Classification
- o -						r Probe SV-6 installed at 3-feet sting grade
- 1 - - 2 -	Bentonite				Glass bea	ad pack from 3-feet to 2.25-feet sting site grade
	Glass				Delow exi	sting site grade
— 3 —	Bead				Granular site grade	bentonite from 2.25-feet to existing
- 4 - - 5 -	-				seal tests; 10% in he	ot meet helium shroud competent found concentrations of helium above lium shroud subsequent to helium it and purging; failed two (2) separate
- 6 - -						d by the NYSDEC, no soil vapor as collected at SV-6 location
_ / _	-				·	
- 8 -					with bento	probes were removed and backfilled nite before completion of work on December 15, 2009
_ 9 _						
— 10 —					Drove soli grade	d point to 9-feet below existing site
— 11 —	-					le groundwater was observed at 3.8- v existing site grade
_ 12 _						
— 13 —						
— 14 —					N/A	= No Sample Acquired

= No VOCs Detected By PID analysis

= Sample Submitted for Laboratory Analysis

ND *

Driller: Mike Dudley Log Drilling Contractor: PES Drill Date Drilled: 12-14-2009 Date TOC Elevation: - Tota Boring Diameter: 2.25" Screen Diameter: Tubing Diameter	S, Inc. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416 Client: NYSDEC - Central Office cation: Hudson, NY gged by: Dan Nierenberg lling Method: Geoprobe/Direct Push te Developed: N/A al Depth of Hole: iameter: 1/2" Length: 10"	Page 7 of 8 DRILLING LOG Well/ Boring No.: SV-7 See Site Map
	Sample PID Description PID Description (ppb)	ription / Soil Classification
- 0 -	Glass bea below exis Granular besite grade Upon purging that the soil contained with the single contained with the singl	Probe SV-7 installed at 5.5-feet sting grade d pack from 5.5-feet to 4-feet sting site grade entonite from 4-feet to existing ong SV-7, it was observed/documented avapor probe and associated tubing stater. No soil vapor sample was a SV-7 location
- 7 -	with benton	orobes were removed and backfilled lite before completion of work on December 15, 2009
8 —	·	6.5-feet below existing site grade
_ 9 _	No appreci	able groundwater was observed
10		
<u> </u>		
_ 12 _		
_ 13 _		
_ 14 _		
<u> </u>	N/A ND	= No Sample Acquired= No VOCs Detected By PID analysis

*

= Sample Submitted for Laboratory Analysis

PE	P R E Environm	C I S I		_	28, Curtis Industrial Park 831 Route 67 38llston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416		Page 8 of 8 DRILLING LOG Well/ Boring No.: SV-8
Project:	Former ICC		Client:	NYS	DEC - Central Office		Vicin Bernig ito.: CV C
	No: 4-11-002		_ client .ocation:		Hudson, NY		
Driller:					Dan Nierenberg		
_	Contractor: F				Geoprobe/Direct Pusl	h	
Date Dr	illed:12-14-2	2009 [Date Develo	ped:	N/A		See Site Map
					4'		
					Length:		
					Bentonite Seal: 4'		
	ve Casing:		3ead:5.	- 4	_ Bentonite Seai:4_	-Grade	
	T				1		
Depth (ft.)	Soil Vapor Probe	Temp Monitoring Well	Sample Type/#	PID (ppb)		Desc	cription / Soil Classification
- o -							r Probe SV-8 installed at 4-feet sting grade
_ 2 _	Bentonite						nd pack from 4-feet to 2.5-feet sting site grade
_ 3 -					Gr	ranular l	bentonite from 2.5-feet to existing
_ 4 -	Glass Bead				sit	te grade	
— 5 —	•						
— 6 –					tha	t the so	ing SV-8, it was observed/documented il vapor probe and associated tubing
_ 7 _							water. No soil vapor sample was t SV-8 location
— 8 —					with	h bentoi	probes were removed and backfilled nite before completion of work on December 15, 2009
<u> </u>					Re	fusal at	5-feet below existing site grade
— 10 —					No	apprec	iable groundwater was observed
— 11 —							
_ 12 _							
— 13 —							
— 14 —						.	
— 15 —						N/A ND ★	= No Sample Acquired= No VOCs Detected By PID analysis= Sample Submitted for Laboratory Analysis

ATTACHMENT - B Laboratory Analytical Reports

Report Date: 04-Jan-10 11:20

Final Report
Re-Issued Report
Revised Report

HANIBAL TECHNOLOGY Laboratory Report

Precision Environmental Services, Inc. 831 Route 67, Lot 28 Ballston Spa, NY 12020

Attn: Daniel Nierenberg

Project: Former ICC - Greenport, NY

Project #: 4-11-002

Laboratory ID	Client Sample ID	Container	<u>Matrix</u>	Date Sampled	Date Received
SB05951-01	SV-2	Summa canister 6 liter	Soil Gas	15-Dec-09 11:42	18-Dec-09 13:40
SB05951-02	Upgradient Ambient	Summa canister 6 liter	Air	15-Dec-09 13:40	18-Dec-09 13:40
SB05951-03	Indoor Air Sample	Summa canister 6 liter	Air	15-Dec-09 16:05	18-Dec-09 13:40
SB05951-04	SV-1	Summa canister 6 liter	Soil Gas	15-Dec-09 11:19	18-Dec-09 13:40
SB05951-05	SV-3	Summa canister 6 liter	Soil Gas	15-Dec-09 12:32	18-Dec-09 13:40
SB05951-06	SV-5	Summa canister 6 liter	Soil Gas	15-Dec-09 13:49	18-Dec-09 13:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 22 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Samples are received and the pressure is recorded from the gauge on the canister. If a canister does not have a gauge, a vacuum gauge is attached to the valve and pressure is recorded. If the canister is below -10 psig, the can must be pressurized to 0 psig. Tedlar bags do not have the pressure recorded. The can pressure can be located within this report in the sample header information.

If a Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA TO-15

Calibration:

Calibration 0912035

The %RSD for analyte Benzyl chloride is 34.7%. The calculated %RSD for the RRF for each compound in the calibration must be less than 30% with at most two exceptions up to a limit of 40%. This affected the following samples:

Indoor Air Sample

SV-1

SV-2

SV-3

Laboratory Control Samples:

9122133 BS

2-Butanone (MEK) recovery (138%) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Indoor Air Sample

SV-5

Upgradient Ambient

9122133-BS1

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

1,2,4-Trichlorobenzene

4-Methyl-2-pentanone (MIBK)

Benzyl chloride

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Analyte passed in CCV.

2-Butanone (MEK)

EPA TO-15

Samples:

S912638-CCV1

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

1,2,4-Trichlorobenzene

SB05951-01

SV-2

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

SB05951-02

Upgradient Ambient

Data for this analyte may be biased high based on QC spike recoveries.

2-Butanone (MEK)

SB05951-03

Indoor Air Sample

Data for this analyte may be biased high based on QC spike recoveries.

2-Butanone (MEK)

The concentration indicated for this analyte is an estimated value. This value is considered an estimate (CLP E-flag).

Ethanol

SB05951-04

SV-1

This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample.

SB05951-05

SV-3

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

SB05951-06

SV-5

Data for this analyte may be biased high based on QC spike recoveries.

2-Butanone (MEK)

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 11:42

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert
Air Quali	ty Analyses									
EPA TO-	<u>15</u>	<u>ppbv</u>	Prepare	d 24-Dec-09 Dilu	tion: 1	R05	Can pressur	e: -6		
15-07-1	Propene	3.96	0.500	6.82	0.86		EPA TO-15	24-Dec-09	9121907	
5-71-8	Dichlorodifluoromethane (Freon12)	0.610	0.500	3.02	2.47		"	"	"	Х
4-87-3	Chloromethane	< 0.286	0.500	< 0.59	1.03	U	"	"	"	Χ
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.246	0.500	< 1.72	3.49	U	"	"	"	
5-01-4	Vinyl chloride	< 0.233	0.500	< 0.60	1.28	U	"	"	"	Х
06-99-0	1,3-Butadiene	< 0.256	0.500	< 0.57	1.10	U	"	"	"	Χ
4-83-9	Bromomethane	< 0.212	0.500	< 0.82	1.94	U	"	"	"	Χ
5-00-3	Chloroethane	< 0.270	0.500	< 0.71	1.32	U	"	"	"	Х
7-64-1	Acetone	3.59	0.500	8.53	1.19		"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	< 0.287	0.500	< 1.61	2.81	U	"	"	"	Χ
4-17-5	Ethanol	5.00	0.500	9.43	0.94		"	"	"	
07-13-1	Acrylonitrile	< 0.151	0.500	< 0.33	1.08	U	"	"	"	
5-35-4	1,1-Dichloroethene	< 0.198	0.500	< 0.79	1.98	U	"	"	"	Χ
5-09-2	Methylene chloride	0.800	0.500	2.78	1.74		"	"	"	Χ
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.225	0.500	< 1.72	3.83	U	"	"	"	Χ
5-15-0	Carbon disulfide	0.800	0.500	2.49	1.56		"	"	"	Χ
56-60-5	trans-1,2-Dichloroethene	< 0.191	0.500	< 0.76	1.98	U	"	"	"	Χ
5-34-3	1,1-Dichloroethane	< 0.191	0.500	< 0.77	2.02	U	"	"	"	Χ
634-04-4	Methyl tert-butyl ether	< 0.192	0.500	< 0.69	1.80	U	"	"	"	Х
7-63-0	Isopropyl alcohol	1.54	0.500	3.78	1.23		"	"	"	Х
3-93-3	2-Butanone (MEK)	0.430	0.500	1.27	1.47	J	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	< 0.135	0.500	< 0.54	1.98	U	"	"	"	Х
10-54-3	Hexane	4.95	0.500	17.45	1.76		"	"	"	Х
11-78-6	Ethyl acetate	< 0.194	0.500	< 0.70	1.80	U	"	"	"	
7-66-3	Chloroform	< 0.151	0.500	< 0.73	2.43	U	m .	"	"	Х
09-99-9	Tetrahydrofuran	< 0.225	0.500	< 0.66	1.47	U	m .	"	"	
07-06-2	1,2-Dichloroethane	< 0.142	0.500	< 0.57	2.02	U	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	< 0.137	0.500	< 0.75	2.73	U	m .	"	"	Х
1-43-2	Benzene	0.730	0.500	2.33	1.60		"	"	"	Х
6-23-5	Carbon tetrachloride	< 0.145	0.500	< 0.91	3.15	U	"	"	"	Х
10-82-7	Cyclohexane	0.890	0.500	3.06	1.72		"	"	"	Х
8-87-5	1,2-Dichloropropane	< 0.172	0.500	< 0.79	2.31	U	"	"	"	Х
5-27-4	Bromodichloromethane	< 0.180	0.500	< 1.21	3.35	U	"	"	"	Х
9-01-6	Trichloroethene	< 0.281	0.500	< 1.51	2.69	U	"	"	"	Х
23-91-1	1,4-Dioxane	< 0.391	0.500	< 1.41	1.80	U	"	"	"	
42-82-5	n-Heptane	2.13	0.500	8.73	2.05		"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	< 0.230	0.500	< 0.94	2.05	U	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	< 0.190	0.500	< 0.86	2.27	U	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	< 0.159	0.500	< 0.72	2.27	U	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	< 0.234	0.500	< 1.28	2.73	U	"	"	"	Х
08-88-3	Toluene	6.50	0.500	24.46	1.88		"	"	"	Х
91-78-6	2-Hexanone (MBK)	< 0.224	2.00	< 0.92	8.20	U	"	"	"	
24-48-1	Dibromochloromethane	< 0.193	0.500	< 1.64	4.26	U	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	< 0.150	0.500	< 1.15	3.84	U	"	"	"	Х
27-18-4	Tetrachloroethene	14.1	0.500	95.61	3.39		"	"	"	Х
08-90-7	Chlorobenzene	< 0.282	0.500	< 1.30	2.30	U	"	"	"	X
30-20-6	1,1,1,2-Tetrachloroethane	< 0.307	0.500	< 2.11	3.44	U	"	"		- •
00-41-4	Ethylbenzene	1.28	0.500	5.55	2.17		"	"	"	Х
	1 m,p-Xylene	4.65	0.500	20.16	2.17		"	"	"	X
5-25-2	Bromoform	< 0.316	0.500	< 3.27	5.17	U	"	"	"	X
00-42-5	Styrene	< 0.187	0.500	< 0.80	2.13	U	"		"	X

Sample Identification SV-2 SB05951-01

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 11:42

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
EPA TO-	<u>15</u>	<u>ppbv</u>	Prepare	d 24-Dec-09 Dilu	tion: 1	R05	Can pressu	re: -6		
95-47-6	o-Xylene	1.07	0.500	4.64	2.17		EPA TO-15	24-Dec-09	9121907	Х
9-34-5	1,1,2,2-Tetrachloroethane	< 0.436	0.500	< 2.99	3.43	U	"	"	"	Χ
8-82-8	Isopropylbenzene	0.900	0.500	4.42	2.46		"	"	"	
08-67-8	1,3,5-Trimethylbenzene	0.510	0.500	2.51	2.46		"	"	"	Χ
22-96-8	4-Ethyltoluene	0.590	0.500	2.90	2.46		"	"	"	
5-63-6	1,2,4-Trimethylbenzene	1.40	0.500	6.88	2.46		"	"	"	Χ
41-73-1	1,3-Dichlorobenzene	< 0.276	0.500	< 1.66	3.01	U	"	"	"	Χ
00-44-7	Benzyl chloride	< 0.247	0.500	< 1.27	2.58	U	n n	"	"	Χ
06-46-7	1,4-Dichlorobenzene	< 0.259	0.500	< 1.56	3.01	U	"	"	"	Χ
35-98-8	sec-Butylbenzene	< 0.264	0.500	< 1.45	2.74	U	n n	"	"	
9-87-6	4-Isopropyltoluene	< 0.245	0.500	< 1.31	2.68	U	n n	"	"	
5-50-1	1,2-Dichlorobenzene	< 0.227	0.500	< 1.36	3.01	U	m m	"	"	Х
04-51-8	n-Butylbenzene	< 0.213	0.500	< 1.17	2.74	U	m m	"	"	
20-82-1	1,2,4-Trichlorobenzene	< 0.160	0.500	< 1.19	3.71	U	"	"	"	Х
7-68-3	Hexachlorobutadiene	< 0.248	0.500	< 2.64	5.33	U	W .	"	"	Х
Surrogate	recoveries:									
160-00-4	4-Bromofluorobenzene	108	70-	-130 %			"	"	"	

<u>Client Project #</u> 4-11-002

Matrix Air Collection Date/Time 15-Dec-09 13:40

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert
Air Quali	ty Analyses									
EPA TO-	15 Low Level	ppbv	Prepared	d 30-Dec-09 Dilu	tion: 1		Can pressur	<u>e: +1</u>		
15-07-1	Propene	< 0.059621	0.10000	< 0.10	0.17	U	EPA TO-15	30-Dec-09	9122133	
5-71-8	Dichlorodifluoromethane (Freon12)	0.65000	0.10000	3.21	0.49		"	"	"	Χ
4-87-3	Chloromethane	0.73000	0.10000	1.51	0.21		"	"	"	Χ
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.050256	0.10000	< 0.35	0.70	U	"	"	"	
5-01-4	Vinyl chloride	< 0.053850	0.10000	< 0.14	0.26	U	"	"	"	Χ
06-99-0	1,3-Butadiene	< 0.050719	0.10000	< 0.11	0.22	U	"	"	"	Χ
4-83-9	Bromomethane	< 0.039878	0.10000	< 0.15	0.39	U	"	"	"	Χ
5-00-3	Chloroethane	< 0.056395	0.10000	< 0.15	0.26	U	"	"	"	Χ
7-64-1	Acetone	2.5600	0.50000	6.08	1.19		"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	0.28000	0.10000	1.57	0.56		"	"	"	Χ
4-17-5	Ethanol	2.5800	0.50000	4.86	0.94		"	"	"	
07-13-1	Acrylonitrile	< 0.029810	0.10000	< 0.06	0.22	U	"	"	"	
5-35-4	1,1-Dichloroethene	< 0.033504	0.10000	< 0.13	0.40	U	"	"	"	Х
5-09-2	Methylene chloride	0.10000	0.10000	0.35	0.35		"	"	"	Χ
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.10000	0.10000	0.77	0.77		"	"	"	Χ
5-15-0	Carbon disulfide	< 0.035536	0.50000	< 0.11	1.56	U	"	"	"	Χ
56-60-5	trans-1,2-Dichloroethene	< 0.035536	0.10000	< 0.14	0.40	U	"	"	"	Χ
5-34-3	1,1-Dichloroethane	< 0.035536	0.10000	< 0.14	0.40	U	"	"	"	Х
634-04-4	Methyl tert-butyl ether	< 0.043253	0.10000	< 0.16	0.36	U	"	"	"	Χ
7-63-0	Isopropyl alcohol	0.24000	0.50000	0.59	1.23	J	"	"	"	Х
3-93-3	2-Butanone (MEK)	0.36000	0.10000	1.06	0.29	BsH	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	< 0.024658	0.10000	< 0.10	0.40	U	"	"	"	Х
10-54-3	Hexane	0.83000	0.10000	2.93	0.35		"	"	"	Х
11-78-6	Ethyl acetate	< 0.036188	0.10000	< 0.13	0.36	U	"	"	"	
7-66-3	Chloroform	< 0.023691	0.10000	< 0.12	0.49	U	m .	"	"	Х
09-99-9	Tetrahydrofuran	< 0.046885	0.10000	< 0.14	0.29	U	m .	"	"	
07-06-2	1,2-Dichloroethane	< 0.028198	0.10000	< 0.11	0.40	U	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	< 0.024658	0.10000	< 0.13	0.55	U	m .	"	"	Х
1-43-2	Benzene	0.43000	0.10000	1.37	0.32		"	"	"	Х
6-23-5	Carbon tetrachloride	0.10000	0.10000	0.63	0.63		"	"	"	Х
10-82-7	Cyclohexane	< 0.097200	0.10000	< 0.33	0.34	U	"	"	"	Х
8-87-5	1,2-Dichloropropane	< 0.023691	0.10000	< 0.11	0.46	U	"	"	"	Х
5-27-4	Bromodichloromethane	< 0.035536	0.10000	< 0.24	0.67	U	"	"	"	Х
9-01-6	Trichloroethene	< 0.053414	0.10000	< 0.29	0.54	U	"	"	"	Х
23-91-1	1,4-Dioxane	< 0.021627	0.50000	< 0.08	1.80	U	"	"	"	
42-82-5	n-Heptane	0.10000	0.10000	0.41	0.41		"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	< 0.039287	0.10000	< 0.16	0.41	U	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	< 0.036188	0.10000	< 0.16	0.45	U	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	< 0.030585	0.10000	< 0.14	0.45	U	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	< 0.039287	0.10000	< 0.21	0.55	U	"	"	"	Х
08-88-3	Toluene	0.81000	0.10000	3.05	0.38		"	"	"	Х
91-78-6	2-Hexanone (MBK)	< 0.035536	0.20000	< 0.15	0.82	U	"	"	"	
24-48-1	Dibromochloromethane	< 0.044321	0.10000	< 0.38	0.85	U	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	< 0.030585	0.10000	< 0.24	0.77	U	"	"	"	Х
27-18-4	Tetrachloroethene	0.10000	0.10000	0.68	0.68		"	"	"	Х
08-90-7	Chlorobenzene	< 0.047873	0.10000	< 0.22	0.46	U	"	"	"	X
30-20-6	1,1,1,2-Tetrachloroethane	< 0.054282	0.10000	< 0.37	0.69	U	"	"	"	
00-41-4	Ethylbenzene	0.060000	0.10000	0.26	0.43	J	"	"	"	Х
	1 m,p-Xylene	0.17000	0.10000	0.74	0.43		"		"	X
5-25-2	Bromoform	< 0.067702	0.10000	< 0.70	1.03	U	"		"	X
00-42-5	Styrene	< 0.039287	0.10000	< 0.17	0.43	U	"			X

Sample Identification Upgradient Ambient SB05951-02

<u>Client Project #</u> 4-11-002

Matrix Air Collection Date/Time 15-Dec-09 13:40

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cer
Air Quali	ty Analyses									
EPA TO-	15 Low Level	ppbv	Prepared	d 30-Dec-09 Dilu	tion: 1		Can pressu	re: +1		
95-47-6	o-Xylene	0.070000	0.10000	0.30	0.43	J	EPA TO-15	30-Dec-09	9122133	Χ
79-34-5	1,1,2,2-Tetrachloroethane	< 0.080630	0.10000	< 0.55	0.69	U	"	· ·	"	Х
98-82-8	Isopropylbenzene	< 0.036188	0.10000	< 0.18	0.49	U	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	< 0.050256	0.10000	< 0.25	0.49	U	"	· ·	"	Х
622-96-8	4-Ethyltoluene	< 0.054282	0.10000	< 0.27	0.49	U	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	0.070000	0.10000	0.34	0.49	J	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 0.058432	0.10000	< 0.35	0.60	U	"	"	"	Х
100-44-7	Benzyl chloride	< 0.053850	0.10000	< 0.28	0.52	U	"	··	"	Х
106-46-7	1,4-Dichlorobenzene	< 0.042158	0.10000	< 0.25	0.60	U	"	"	"	Х
135-98-8	sec-Butylbenzene	< 0.047873	0.10000	< 0.26	0.55	U	"	"	"	
99-87-6	4-Isopropyltoluene	< 0.045877	0.10000	< 0.25	0.54	U	"	··	"	
95-50-1	1,2-Dichlorobenzene	< 0.042158	0.10000	< 0.25	0.60	U	n n	"	"	Х
104-51-8	n-Butylbenzene	< 0.038078	0.10000	< 0.21	0.55	U	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 0.024658	0.10000	< 0.18	0.74	U	"	"	"	Х
37-68-3	Hexachlorobutadiene	< 0.042158	0.10000	< 0.45	1.07	U	"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	97	70-	130 %			"	"	"	

<u>Client Project #</u> 4-11-002

Matrix Air Collection Date/Time 15-Dec-09 16:05

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Qualit	ty Analyses									
EPA TO-	<u>15</u>	ppbv	Prepared	d 24-Dec-09 Dilu	tion: 1		Can pressur	<u>e: -2</u>		
64-17-5	Ethanol	29.6	0.500	55.81	0.94		EPA TO-15	24-Dec-09	9121907	
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	100	70-	-130 %			"	"	"	
EPA TO-	15 Low Level	<u>ppbv</u>	Prepared	d 30-Dec-09 Dilu	tion: 1		Can pressur	<u>e: -2</u>		
115-07-1	Propene	< 0.059621	0.10000	< 0.10	0.17	U	"	30-Dec-09	9122133	
75-71-8	Dichlorodifluoromethane (Freon12)	0.64000	0.10000	3.16	0.49		"	"	"	Χ
74-87-3	Chloromethane	0.77000	0.10000	1.59	0.21		"	"	"	Х
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.050256	0.10000	< 0.35	0.70	U	"	"	"	
75-01-4	Vinyl chloride	< 0.053850	0.10000	< 0.14	0.26	U	"	"	"	Х
106-99-0	1,3-Butadiene	< 0.050719	0.10000	< 0.11	0.22	U 			"	X
74-83-9	Bromomethane	< 0.039878	0.10000	< 0.15	0.39	U		"	"	X
75-00-3	Chloroethane	< 0.056395	0.10000	< 0.15	0.26	U			"	X
67-64-1	Acetone	8.2000	0.50000	19.49	1.19					X
75-69-4	Trichlorofluoromethane (Freon 11)	9.3900	0.10000	52.77	0.56 0.94	Е		,,		Х
64-17-5	Ethanol	30.510	0.50000	57.53 < 0.06	0.94	U	"	,		
107-13-1	Acrylonitrile 1,1-Dichloroethene	< 0.029810 < 0.033504	0.10000 0.10000		0.40	U	"	"		V
75-35-4 75-09-2	Methylene chloride	0.86000	0.10000	< 0.13 2.99	0.40	U	"		,,	X X
75-09-2 76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.10000	0.10000	0.77	0.33		"	"		X
75-15-0	Carbon disulfide	< 0.035536	0.50000	< 0.11	1.56	U	"	"		X
156-60-5	trans-1,2-Dichloroethene	< 0.035536	0.10000	< 0.14	0.40	U	"	"		X
75-34-3	1,1-Dichloroethane	< 0.035536	0.10000	< 0.14	0.40	U	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 0.043253	0.10000	< 0.16	0.36	U	"	"	"	X
67-63-0	Isopropyl alcohol	3.4500	0.50000	8.47	1.23		"		"	Х
78-93-3	2-Butanone (MEK)	1.4700	0.10000	4.33	0.29	BsH	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	0.10000	0.10000	0.40	0.40		"	"	"	Х
110-54-3	Hexane	7.0500	0.10000	24.86	0.35		"	"	"	Х
141-78-6	Ethyl acetate	< 0.036188	0.10000	< 0.13	0.36	U	"	"	"	
67-66-3	Chloroform	< 0.023691	0.10000	< 0.12	0.49	U	"	"	"	Х
109-99-9	Tetrahydrofuran	0.50000	0.10000	1.47	0.29		"	"	"	
107-06-2	1,2-Dichloroethane	< 0.028198	0.10000	< 0.11	0.40	U	"	"	"	Χ
71-55-6	1,1,1-Trichloroethane	< 0.024658	0.10000	< 0.13	0.55	U	"	"	"	Χ
71-43-2	Benzene	0.70000	0.10000	2.23	0.32		"	"	"	Χ
56-23-5	Carbon tetrachloride	0.11000	0.10000	0.69	0.63		"	"	"	Χ
110-82-7	Cyclohexane	0.24000	0.10000	0.83	0.34		"	"	"	Χ
78-87-5	1,2-Dichloropropane	< 0.023691	0.10000	< 0.11	0.46	U	"	"	"	Χ
75-27-4	Bromodichloromethane	< 0.035536	0.10000	< 0.24	0.67	U	"	"	"	Χ
79-01-6	Trichloroethene	0.060000	0.10000	0.32	0.54	J	"	"	"	Χ
123-91-1	1,4-Dioxane	< 0.021627	0.50000	< 0.08	1.80	U	"	"	"	
142-82-5	n-Heptane	0.81000	0.10000	3.32	0.41		"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	< 0.039287	0.10000	< 0.16	0.41	U	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.036188	0.10000	< 0.16	0.45	U	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.030585	0.10000	< 0.14	0.45	U	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 0.039287	0.10000	< 0.21	0.55	U	"	"	"	X
108-88-3	Toluene	3.9700	0.10000	14.94	0.38					Х
591-78-6	2-Hexanone (MBK)	< 0.035536	0.20000	< 0.15	0.82	U	"	"	"	
124-48-1	Dibromochloromethane	< 0.044321	0.10000	< 0.38	0.85	U			"	X
106-93-4	1,2-Dibromoethane (EDB)	< 0.030585	0.10000	< 0.24	0.77	U				X
127-18-4	Tetrachloroethene	0.89000	0.10000	6.04	0.68		"		"	X
108-90-7	Chlorobenzene	< 0.047873	0.10000	< 0.22	0.46	U 				Х
30-20-6	1,1,1,2-Tetrachloroethane	< 0.054282	0.10000	< 0.37	0.69	U	"	"	"	

Sample Identification Indoor Air Sample SB05951-03

<u>Client Project #</u> 4-11-002

Matrix Air Collection Date/Time 15-Dec-09 16:05

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
EPA TO-	15 Low Level	ppbv	Prepared	d 30-Dec-09 Dilu	tion: 1		Can pressur	re: -2		
100-41-4	Ethylbenzene	0.30000	0.10000	1.30	0.43		EPA TO-15	30-Dec-09	9122133	Х
79601-23-	1 m,p-Xylene	1.0300	0.10000	4.47	0.43		"	"	"	Χ
5-25-2	Bromoform	< 0.067702	0.10000	< 0.70	1.03	U	"	"	"	Χ
00-42-5	Styrene	0.21000	0.10000	0.89	0.43		"	"	"	Χ
5-47-6	o-Xylene	0.35000	0.10000	1.52	0.43		"	"	"	Χ
9-34-5	1,1,2,2-Tetrachloroethane	< 0.080630	0.10000	< 0.55	0.69	U	"	"	"	Х
8-82-8	Isopropylbenzene	< 0.036188	0.10000	< 0.18	0.49	U	"	"	"	
08-67-8	1,3,5-Trimethylbenzene	0.12000	0.10000	0.59	0.49		"	"	"	Х
22-96-8	4-Ethyltoluene	0.12000	0.10000	0.59	0.49		"	"	"	
5-63-6	1,2,4-Trimethylbenzene	0.40000	0.10000	1.97	0.49		"	"	"	Χ
41-73-1	1,3-Dichlorobenzene	< 0.058432	0.10000	< 0.35	0.60	U	"	"	"	Х
00-44-7	Benzyl chloride	< 0.053850	0.10000	< 0.28	0.52	U	"	"	"	Χ
06-46-7	1,4-Dichlorobenzene	< 0.042158	0.10000	< 0.25	0.60	U	"	"	"	Χ
35-98-8	sec-Butylbenzene	< 0.047873	0.10000	< 0.26	0.55	U	"	"	"	
9-87-6	4-Isopropyltoluene	< 0.045877	0.10000	< 0.25	0.54	U	"	"	"	
5-50-1	1,2-Dichlorobenzene	< 0.042158	0.10000	< 0.25	0.60	U	"	"	"	Х
04-51-8	n-Butylbenzene	< 0.038078	0.10000	< 0.21	0.55	U	"	"	"	
20-82-1	1,2,4-Trichlorobenzene	< 0.024658	0.10000	< 0.18	0.74	U	m m	"	"	Χ
37-68-3	Hexachlorobutadiene	< 0.042158	0.10000	< 0.45	1.07	U	m m	"	"	Х
 Surrogate	recoveries:									
160-00-4	4-Bromofluorobenzene	100	70-	130 %			"	"	"	

SB05951-04

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 11:19

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cer
Air Qualit	y Analyses									
PA TO-1	<u>15</u>	<u>ppbv</u>	Prepare	d 24-Dec-09 Dilu	tion: 2	GS	Can pressur	<u>e: 0</u>		
15-07-1	Propene	8.46	1.00	14.56	1.72		EPA TO-15	24-Dec-09	9121907	
5-71-8	Dichlorodifluoromethane (Freon12)	0.560	1.00	2.77	4.94	J	"	"	"	X
4-87-3	Chloromethane	< 0.573	1.00	< 1.18	2.07	U	"	"	"	Х
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.493	1.00	< 3.45	6.99	U	"	"	"	
5-01-4	Vinyl chloride	< 0.465	1.00	< 1.19	2.56	U	"	"	"	Х
06-99-0	1,3-Butadiene	< 0.512	1.00	< 1.13	2.21	U	"	"	"	Х
1-83-9	Bromomethane	< 0.423	1.00	< 1.64	3.88	U	"	"	"	Х
5-00-3	Chloroethane	< 0.539	1.00	< 1.42	2.64	U	"	"	"	X
'-64-1	Acetone	5.54	1.00	13.16	2.38		"	"	"	X
5-69-4	Trichlorofluoromethane (Freon 11)	< 0.573	1.00	< 3.22	5.62	U	"	"	"	Х
- 17-5	Ethanol	0.760	1.00	1.43	1.89	J	"	"	"	
7-13-1	Acrylonitrile	< 0.303	1.00	< 0.66	2.17	U	"	"	"	
-35-4	1,1-Dichloroethene	< 0.396	1.00	< 1.57	3.97	U	"	"	"	Х
-09-2	Methylene chloride	< 0.508	1.00	< 1.76	3.47	U	"	"	"	×
5-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.450	1.00	< 3.45	7.66	U	"	"	"	×
5-15-0	Carbon disulfide	2.58	1.00	8.03	3.11		"	"	"	×
6-60-5	trans-1,2-Dichloroethene	< 0.382	1.00	< 1.51	3.97	U	"	"	"	>
5-34-3	1,1-Dichloroethane	< 0.382	1.00	< 1.55	4.05	U	"	"	"	>
34-04-4	Methyl tert-butyl ether	< 0.385	1.00	< 1.39	3.61	U	"	"	"	>
-63-0	Isopropyl alcohol	< 0.413	1.00	< 1.01	2.45	U	"	"	"	>
-93-3	2-Butanone (MEK)	3.40	1.00	10.03	2.95		"	"	"	>
6-59-2	cis-1,2-Dichloroethene	< 0.270	1.00	< 1.07	3.97	U	"	"	")
0-54-3	Hexane	2.30	1.00	8.11	3.53		"	"	")
1-78-6	Ethyl acetate	< 0.388	1.00	< 1.40	3.60	U	"	"	"	
-66-3	Chloroform	0.460	1.00	2.24	4.87	J	"	"	"	>
9-99-9	Tetrahydrofuran	< 0.449	1.00	< 1.32	2.95	U	"	"	"	
07-06-2	1,2-Dichloroethane	< 0.285	1.00	< 1.15	4.05	U	"	"	"	>
1-55-6	1,1,1-Trichloroethane	< 0.275	1.00	< 1.50	5.46	U	"	"	"	×
-43-2	Benzene	11.0	1.00	35.09	3.19		"	"	"	×
6-23-5	Carbon tetrachloride	< 0.290	1.00	< 1.82	6.29	U	"	"	"	X
0-82-7	Cyclohexane	1.18	1.00	4.06	3.44		"	"	"	×
8-87-5	1,2-Dichloropropane	< 0.343	1.00	< 1.59	4.62	U	"	"	"	×
-27-4	Bromodichloromethane	< 0.359	1.00	< 2.41	6.70	U	"	"	"	>
9-01-6	Trichloroethene	< 0.563	1.00	< 3.03	5.37	U	"	"	"	>
23-91-1	1,4-Dioxane	< 0.782	1.00	< 2.81	3.60	U	"	"	"	
2-82-5	n-Heptane	3.00	1.00	12.29	4.10		"	"	"	×
8-10-1	4-Methyl-2-pentanone (MIBK)	< 0.459	1.00	< 1.88	4.10	U	"	"	"	>
061-01-5	cis-1,3-Dichloropropene	< 0.381	1.00	< 1.73	4.54	U	"	"	"	>
0061-02-6	trans-1,3-Dichloropropene	< 0.318	1.00	< 1.44	4.54	U	"	"	"	>
9-00-5	1,1,2-Trichloroethane	< 0.468	1.00	< 2.55	5.46	U	"	"	"	>
8-88-3	Toluene	71.7	1.00	269.79	3.76		"	"	"	>
1-78-6	2-Hexanone (MBK)	< 0.447	4.00	< 1.83	16.39	U	"	"	"	
4-48-1	Dibromochloromethane	< 0.386	1.00	< 3.29	8.52	U	"	"	"	>
6-93-4	1,2-Dibromoethane (EDB)	< 0.300	1.00	< 2.31	7.69	U	"	"	"	>
7-18-4	Tetrachloroethene	146	1.00	990.05	6.78		"	"	"	>
8-90-7	Chlorobenzene	< 0.564	1.00	< 2.60	4.61	U	"	"	"	>
0-20-6	1,1,1,2-Tetrachloroethane	< 0.615	1.00	< 4.23	6.87	U	"	"	"	
0-41-4	Ethylbenzene	7.18	1.00	31.13	4.34		"	"	"	>
	m,p-Xylene	13.1	1.00	56.79	4.34		"	"	"	X
5-25-2	Bromoform	< 0.633	1.00	< 6.54	10.34	U	"	"	"	X
00-42-5	Styrene	< 0.374	1.00	< 1.59	4.25	U	"			Х

Sample Identification SV-1

SB05951-04

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 11:19

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
EPA TO-	<u>15</u>	<u>ppbv</u>	Prepare	d 24-Dec-09 Dilu	tion: 2	GS	Can pressu	<u>re: 0</u>		
95-47-6	o-Xylene	2.30	1.00	9.97	4.34		EPA TO-15	24-Dec-09	9121907	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.871	1.00	< 5.98	6.87	U	"	"	"	Х
8-82-8	Isopropylbenzene	1.02	1.00	5.01	4.92		"	"	"	
08-67-8	1,3,5-Trimethylbenzene	< 0.570	1.00	< 2.80	4.92	U	m m	"	"	Х
322-96-8	4-Ethyltoluene	< 0.559	1.00	< 2.75	4.92	U	"	"	"	
5-63-6	1,2,4-Trimethylbenzene	0.640	1.00	3.15	4.92	J	n n	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 0.553	1.00	< 3.32	6.01	U	"	"	"	Х
00-44-7	Benzyl chloride	< 0.493	1.00	< 2.54	5.15	U	n n	"	"	Х
06-46-7	1,4-Dichlorobenzene	< 0.519	1.00	< 3.12	6.01	U	"	"	"	Х
35-98-8	sec-Butylbenzene	< 0.529	1.00	< 2.90	5.49	U	n n	"	"	
9-87-6	4-Isopropyltoluene	< 0.491	1.00	< 2.63	5.37	U	m m	"	"	
5-50-1	1,2-Dichlorobenzene	< 0.454	1.00	< 2.73	6.01	U	m m	"	"	Х
04-51-8	n-Butylbenzene	< 0.426	1.00	< 2.34	5.49	U	n n	"	"	
20-82-1	1,2,4-Trichlorobenzene	< 0.319	1.00	< 2.37	7.42	U	"	"	"	Χ
37-68-3	Hexachlorobutadiene	< 0.496	1.00	< 5.29	10.66	U	"	"	•	X
Surrogate	recoveries:									
160-00-4	4-Bromofluorobenzene	102	70	-130 %			"	"		

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 12:32

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Qualit	y Analyses									
EPA TO-1	<u>15</u>	<u>ppbv</u>	Prepare	d 24-Dec-09 Dilu	tion: 1	R05	Can pressur	re: +1		
15-07-1	Propene	< 0.294	0.500	< 0.51	0.86	U	EPA TO-15	24-Dec-09	9121907	
5-71-8	Dichlorodifluoromethane (Freon12)	0.620	0.500	3.07	2.47		"	"	"	Χ
4-87-3	Chloromethane	< 0.286	0.500	< 0.59	1.03	U	"	"	"	Χ
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.246	0.500	< 1.72	3.49	U	"	"	"	
75-01-4	Vinyl chloride	< 0.233	0.500	< 0.60	1.28	U	"	"	"	Χ
106-99-0	1,3-Butadiene	< 0.256	0.500	< 0.57	1.10	U	"	"	"	Χ
74-83-9	Bromomethane	< 0.212	0.500	< 0.82	1.94	U	"	"	"	X
75-00-3	Chloroethane	< 0.270	0.500	< 0.71	1.32	U	"	"	"	Χ
67-64-1	Acetone	2.52	0.500	5.99	1.19		"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	< 0.287	0.500	< 1.61	2.81	U	"	"	"	X
64-17-5	Ethanol	0.830	0.500	1.56	0.94		"	"	"	
107-13-1	Acrylonitrile	< 0.151	0.500	< 0.33	1.08	U	"	"	"	
75-35-4	1,1-Dichloroethene	< 0.198	0.500	< 0.79	1.98	U	"	"	"	X
75-09-2	Methylene chloride	< 0.254	0.500	< 0.88	1.74	U	"	"	"	Χ
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.225	0.500	< 1.72	3.83	U	"	"	"	X
75-15-0	Carbon disulfide	< 0.186	0.500	< 0.58	1.56	U	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	< 0.191	0.500	< 0.76	1.98	U	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 0.191	0.500	< 0.77	2.02	U	"	"	"	X
1634-04-4	Methyl tert-butyl ether	< 0.192	0.500	< 0.69	1.80	U	m .	"	"	Х
67-63-0	Isopropyl alcohol	< 0.207	0.500	< 0.51	1.23	U	m .	"	"	Х
78-93-3	2-Butanone (MEK)	1.49	0.500	4.39	1.47		"	"	"	X
156-59-2	cis-1,2-Dichloroethene	< 0.135	0.500	< 0.54	1.98	U	"	"	"	Х
110-54-3	Hexane	0.290	0.500	1.02	1.76	J	"	"	"	Х
141-78-6	Ethyl acetate	< 0.194	0.500	< 0.70	1.80	U	"	"	"	
67-66-3	Chloroform	< 0.151	0.500	< 0.73	2.43	U	"	"	"	Χ
109-99-9	Tetrahydrofuran	< 0.225	0.500	< 0.66	1.47	U	"	"	"	
107-06-2	1,2-Dichloroethane	< 0.142	0.500	< 0.57	2.02	U	"	"	"	Х
71-55-6	1,1,1-Trichloroethane	0.400	0.500	2.18	2.73	J	"	"	"	Χ
71-43-2	Benzene	0.310	0.500	0.99	1.60	J	"	"	"	Х
56-23-5	Carbon tetrachloride	< 0.145	0.500	< 0.91	3.15	U	"	"	"	Х
110-82-7	Cyclohexane	< 0.214	0.500	< 0.74	1.72	U	"	"	"	Х
78-87-5	1,2-Dichloropropane	< 0.172	0.500	< 0.79	2.31	U	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.180	0.500	< 1.21	3.35	U	"	"	"	Х
79-01-6	Trichloroethene	1.87	0.500	10.05	2.69		"	"	"	Х
123-91-1	1,4-Dioxane	< 0.391	0.500	< 1.41	1.80	U	"	"	"	
142-82-5	n-Heptane	1.35	0.500	5.53	2.05		"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 0.230	0.500	< 0.94	2.05	U	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.190	0.500	< 0.86	2.27	U	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.159	0.500	< 0.72	2.27	U	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 0.234	0.500	< 1.28	2.73	U	"	"	"	Х
108-88-3	Toluene	1.94	0.500	7.30	1.88		"	"	"	Х
591-78-6	2-Hexanone (MBK)	< 0.224	2.00	< 0.92	8.20	U	"	"	"	
124-48-1	Dibromochloromethane	< 0.193	0.500	< 1.64	4.26	U	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.150	0.500	< 1.15	3.84	U	"	"	"	Х
127-18-4	Tetrachloroethene	5.21	0.500	35.33	3.39		"	"	"	X
108-90-7	Chlorobenzene	< 0.282	0.500	< 1.30	2.30	U	"	"	"	X
30-20-6	1,1,1,2-Tetrachloroethane	< 0.307	0.500	< 2.11	3.44	U	"		"	- •
00-41-4	Ethylbenzene	0.440	0.500	1.91	2.17	J	"	"	"	Х
	m,p-Xylene	1.30	0.500	5.64	2.17	Ŭ	"		"	X
75-25-2	Bromoform	< 0.316	0.500	< 3.27	5.17	U	"		"	X
	Di di ililia	~ 0.010	0.000	~ U.Z.I	0.17	_				^

Sample Identification SV-3 SB05951-05

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 12:32 Received 18-Dec-09

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert
Air Quali	ty Analyses									
EPA TO-	<u>15</u>	ppbv	Prepare	d 24-Dec-09 Dilu	tion: 1	R05	Can pressur	<u>re: +1</u>		
95-47-6	o-Xylene	0.330	0.500	1.43	2.17	J	EPA TO-15	24-Dec-09	9121907	Χ
9-34-5	1,1,2,2-Tetrachloroethane	< 0.436	0.500	< 2.99	3.43	U	"	"	"	Χ
8-82-8	Isopropylbenzene	< 0.259	0.500	< 1.27	2.46	U	"	"	"	
08-67-8	1,3,5-Trimethylbenzene	< 0.285	0.500	< 1.40	2.46	U	"	"	"	Χ
22-96-8	4-Ethyltoluene	< 0.280	0.500	< 1.38	2.46	U	"	"	"	
5-63-6	1,2,4-Trimethylbenzene	0.290	0.500	1.43	2.46	J	"	"	"	Χ
41-73-1	1,3-Dichlorobenzene	< 0.276	0.500	< 1.66	3.01	U	"	"	"	Χ
00-44-7	Benzyl chloride	< 0.247	0.500	< 1.27	2.58	U	"	"	"	Χ
06-46-7	1,4-Dichlorobenzene	< 0.259	0.500	< 1.56	3.01	U	"	"	"	Χ
35-98-8	sec-Butylbenzene	< 0.264	0.500	< 1.45	2.74	U	"	"	"	
9-87-6	4-Isopropyltoluene	< 0.245	0.500	< 1.31	2.68	U	"	"	"	
5-50-1	1,2-Dichlorobenzene	< 0.227	0.500	< 1.36	3.01	U	"	"	"	Χ
04-51-8	n-Butylbenzene	< 0.213	0.500	< 1.17	2.74	U	"	"	"	
20-82-1	1,2,4-Trichlorobenzene	< 0.160	0.500	< 1.19	3.71	U	"	"	"	Х
37-68-3	Hexachlorobutadiene	< 0.248	0.500	< 2.64	5.33	U	"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	100	70	-130 %			"	"	"	

SB05951-06

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 13:49 Received 18-Dec-09

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Qualit	y Analyses									
PA TO-1	15 Low Level	ppbv	Prepared	d 30-Dec-09 Dilu	tion: 1		Can pressur	e: +1		
15-07-1	Propene	< 0.059621	0.10000	< 0.10	0.17	U	EPA TO-15	31-Dec-09	9122133	
5-71-8	Dichlorodifluoromethane (Freon12)	0.58000	0.10000	2.87	0.49		"	"	"	Χ
4-87-3	Chloromethane	< 0.050719	0.10000	< 0.10	0.21	U	"	"	"	Χ
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.050256	0.10000	< 0.35	0.70	U	"	"	"	
5-01-4	Vinyl chloride	< 0.053850	0.10000	< 0.14	0.26	U	"	"	"	Χ
06-99-0	1,3-Butadiene	< 0.050719	0.10000	< 0.11	0.22	U	"	"	"	Χ
4-83-9	Bromomethane	< 0.039878	0.10000	< 0.15	0.39	U	"	"	"	Χ
5-00-3	Chloroethane	< 0.056395	0.10000	< 0.15	0.26	U	"	"	"	Χ
7-64-1	Acetone	4.6500	0.50000	11.05	1.19		"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	0.21000	0.10000	1.18	0.56		"	"	"	Χ
4-17-5	Ethanol	0.87000	0.50000	1.64	0.94		"	"	"	
07-13-1	Acrylonitrile	< 0.029810	0.10000	< 0.06	0.22	U	"	"	"	
5-35-4	1,1-Dichloroethene	< 0.033504	0.10000	< 0.13	0.40	U	"	"	"	Χ
5-09-2	Methylene chloride	< 0.050256	0.10000	< 0.17	0.35	U	"	"	"	Х
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.070000	0.10000	0.54	0.77	J	"	"	"	Χ
5-15-0	Carbon disulfide	0.16000	0.50000	0.50	1.56	J	"	"	"	Χ
56-60-5	trans-1,2-Dichloroethene	< 0.035536	0.10000	< 0.14	0.40	U	"	"	"	Х
5-34-3	1,1-Dichloroethane	0.71000	0.10000	2.87	0.40		"	"	"	Х
634-04-4	Methyl tert-butyl ether	< 0.043253	0.10000	< 0.16	0.36	U	"	"	"	Х
7-63-0	Isopropyl alcohol	0.10000	0.50000	0.25	1.23	J	"	"	"	Х
3-93-3	2-Butanone (MEK)	2.9500	0.10000	8.70	0.29	BsH	"	"	"	Х
6-59-2	cis-1,2-Dichloroethene	< 0.024658	0.10000	< 0.10	0.40	U	"		"	Х
10-54-3	Hexane	0.11000	0.10000	0.39	0.35		"		"	X
11-78-6	Ethyl acetate	< 0.036188	0.10000	< 0.13	0.36	U	"		"	
7-66-3	Chloroform	0.18000	0.10000	0.88	0.49		"		"	Х
09-99-9	Tetrahydrofuran	0.23000	0.10000	0.68	0.29		"		"	
07-06-2	1,2-Dichloroethane	< 0.028198	0.10000	< 0.11	0.40	U	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	0.13000	0.10000	0.71	0.55		"	"	"	X
1-43-2	Benzene	0.17000	0.10000	0.54	0.32		"	"	"	X
6-23-5	Carbon tetrachloride	0.60000	0.10000	3.77	0.63		"		"	Х
10-82-7	Cyclohexane	< 0.097200	0.10000	< 0.33	0.34	U	"		"	X
8-87-5	1,2-Dichloropropane	< 0.023691	0.10000	< 0.11	0.46	U	"		"	Х
5-27-4	Bromodichloromethane	< 0.025031	0.10000	< 0.24	0.40	U	"		,	X
9-01-6	Trichloroethene	< 0.053414	0.10000	< 0.29	0.54	U	"		"	X
	1,4-Dioxane	< 0.021627	0.50000	< 0.29	1.80	U	"		"	^
23-91-1	n-Heptane	< 0.021027 < 0.028198	0.30000	< 0.08	0.41	U	"		"	~
42-82-5 08-10-1	•	< 0.039287	0.10000	< 0.12	0.41	U	"		"	X X
	4-Methyl-2-pentanone (MIBK)					U	"		"	
0061-01-5	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	< 0.036188 < 0.030585	0.10000	< 0.16	0.45	U	"		"	X
0061-02-6			0.10000	< 0.14	0.45		"		"	X
9-00-5	1,1,2-Trichloroethane	< 0.039287	0.10000	< 0.21	0.55	U			"	X
8-88-3	Toluene	1.1700	0.10000	4.40	0.38				"	Х
91-78-6	2-Hexanone (MBK)	< 0.035536	0.20000	< 0.15	0.82	U				v
24-48-1	Dibromochloromethane	< 0.044321	0.10000	< 0.38	0.85	U				X
06-93-4	1,2-Dibromoethane (EDB)	< 0.030585	0.10000	< 0.24	0.77	U			"	X
27-18-4	Tetrachloroethene	2.8000	0.10000	18.99	0.68				"	X
08-90-7	Chlorobenzene	< 0.047873	0.10000	< 0.22	0.46	U	"	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	< 0.054282	0.10000	< 0.37	0.69	U	"	"	"	
00-41-4	Ethylbenzene	0.39000	0.10000	1.69	0.43		"	"	"	Х
79601-23-1	m,p-Xylene	1.8100	0.10000	7.85	0.43		"	"	"	Х
5-25-2	Bromoform	< 0.067702	0.10000	< 0.70	1.03	U	"	"	"	Χ
00-42-5	Styrene	< 0.039287	0.10000	< 0.17	0.43	U	"	"	"	Χ

Sample Identification SV-5 SB05951-06

<u>Client Project #</u> 4-11-002

Matrix Soil Gas Collection Date/Time 15-Dec-09 13:49 Received 18-Dec-09

CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
EPA TO-	15 Low Level	ppbv	Prepared	1 30-Dec-09 <u>Dilu</u>	tion: 1		Can pressur	<u>re: +1</u>		
95-47-6	o-Xylene	1.8300	0.10000	7.93	0.43		EPA TO-15	31-Dec-09	9122133	Χ
79-34-5	1,1,2,2-Tetrachloroethane	< 0.080630	0.10000	< 0.55	0.69	U	n n	"	"	Х
8-82-8	Isopropylbenzene	0.15000	0.10000	0.74	0.49		n n	"	"	
08-67-8	1,3,5-Trimethylbenzene	0.28000	0.10000	1.38	0.49		n n	"	"	Х
322-96-8	4-Ethyltoluene	0.42000	0.10000	2.06	0.49		"	"	"	
5-63-6	1,2,4-Trimethylbenzene	1.4200	0.10000	6.98	0.49		"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 0.058432	0.10000	< 0.35	0.60	U	n n	"	"	Х
100-44-7	Benzyl chloride	< 0.053850	0.10000	< 0.28	0.52	U	n n	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 0.042158	0.10000	< 0.25	0.60	U	"	"	"	Х
135-98-8	sec-Butylbenzene	< 0.047873	0.10000	< 0.26	0.55	U	"	"	"	
99-87-6	4-Isopropyltoluene	< 0.045877	0.10000	< 0.25	0.54	U	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 0.042158	0.10000	< 0.25	0.60	U	"	"	"	Χ
104-51-8	n-Butylbenzene	< 0.038078	0.10000	< 0.21	0.55	U	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 0.024658	0.10000	< 0.18	0.74	U	"	"	"	Χ
37-68-3	Hexachlorobutadiene	< 0.042158	0.10000	< 0.45	1.07	U	"	"	"	Χ
Surrogate	recoveries:									
160-00-4	4-Bromofluorobenzene	101	70-	130 %			"	"	"	

Analyte(s)	Result	*RDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9121907 - General Air Prep										
Blank (9121907-BLK1)				Prepared &	Analyzed:	24-Dec-09				
Propene	BRL	0.500	ppbv							U
Dichlorodifluoromethane (Freon12)	BRL	0.500	ppbv							U
Chloromethane	BRL	0.500								U
1,2-Dichlorotetrafluoroethane (Freon 114)	BRL	0.500	ppbv							U
Vinyl chloride	BRL	0.500	ppbv							U
1,3-Butadiene	BRL	0.500	ppbv							U
Bromomethane	BRL	0.500	ppbv							U
Chloroethane	BRL	0.500	ppbv							U
Acetone	BRL	0.500	ppbv							U
Trichlorofluoromethane (Freon 11)	BRL	0.500	ppbv							U
Ethanol	BRL	0.500	ppbv							U
Acrylonitrile	BRL	0.500	ppbv							U
1,1-Dichloroethene	BRL	0.500	ppbv							U
Methylene chloride	BRL	0.500	ppbv							U
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	0.500	ppbv							U
Carbon disulfide	BRL	0.500	ppbv							U
trans-1,2-Dichloroethene	BRL	0.500	ppbv							U
1,1-Dichloroethane	BRL	0.500	ppbv							U
Methyl tert-butyl ether	BRL	0.500	ppbv							U
Isopropyl alcohol	BRL	0.500	ppbv							U
2-Butanone (MEK)	BRL	0.500	ppbv							U
cis-1,2-Dichloroethene	BRL	0.500	ppbv							U
Hexane	BRL	0.500	ppbv							U
Ethyl acetate	BRL	0.500	ppbv							U
Chloroform	BRL	0.500	ppbv							U
Tetrahydrofuran	BRL	0.500	ppbv							U
1,2-Dichloroethane	BRL	0.500	ppbv							U
1,1,1-Trichloroethane	BRL	0.500	ppbv							U
Benzene	BRL	0.500	ppbv							U
Carbon tetrachloride	BRL	0.500								U
Cyclohexane	BRL	0.500	ppbv							U
1,2-Dichloropropane	BRL	0.500								U
Bromodichloromethane	BRL	0.500	ppbv							U
Trichloroethene	BRL	0.500	ppbv							U
1,4-Dioxane	BRL	0.500								U
n-Heptane	BRL	0.500	ppbv							U
4-Methyl-2-pentanone (MIBK)	BRL	0.500	ppbv							U
cis-1,3-Dichloropropene	BRL	0.500	ppbv							U
trans-1,3-Dichloropropene	BRL	0.500								U
1,1,2-Trichloroethane	BRL	0.500								U
Toluene	BRL	0.500								U
2-Hexanone (MBK)	BRL		ppbv							U
Dibromochloromethane	BRL	0.500								U
1,2-Dibromoethane (EDB)	BRL	0.500								U
Tetrachloroethene	BRL	0.500								U
Chlorobenzene	BRL	0.500								U
1,1,1,2-Tetrachloroethane	BRL	0.500								U
Ethylbenzene	BRL	0.500								U
m,p-Xylene	BRL	0.500								U
Bromoform	BRL	0.500								U
Styrene	BRL	0.500								U
o-Xylene	BRL	0.500								U
1,1,2,2-Tetrachloroethane	BRL	0.500								U
Isopropylbenzene	BRL	0.500	ppbv							U

Analyte(s)	Result	*RDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flaş
Batch 9121907 - General Air Prep										
Blank (9121907-BLK1)				Prepared &	Analyzed:	24-Dec-09				
1,3,5-Trimethylbenzene	BRL	0.500 p	pbv							U
4-Ethyltoluene	BRL	0.500 p	opbv							U
1,2,4-Trimethylbenzene	BRL	0.500 p	opbv							U
1,3-Dichlorobenzene	BRL	0.500 p	-							U
Benzyl chloride	BRL	0.500 p	-							U
1,4-Dichlorobenzene	BRL	0.500 p	-							U
sec-Butylbenzene	BRL	0.500 p	•							U
4-Isopropyltoluene	BRL	0.500 p	-							U
1,2-Dichlorobenzene	BRL	0.500 p								U
n-Butylbenzene	BRL	0.500 p	-							U
1,2,4-Trichlorobenzene	BRL	0.500 p	-							U
		-	-							U
Hexachlorobutadiene Surrogate: 4-Bromofluorobenzene	9.41	0.500 p	opbv opbv	10.0		94	70-130			
	2.41	ŀ	эроч				70-130			
LCS (9121907-BS1)	10.2		h.,	•	Analyzed:		70 120			
Propene	10.2		opbv	10.0		102	70-130			
Dichlorodifluoromethane (Freon12)	10.3		opbv	10.0		103	70-130			
Chloromethane	9.85		ppbv	10.0		98	70-130			
1,2-Dichlorotetrafluoroethane (Freon 114)	10.2		opbv	10.0		102	70-130			
Vinyl chloride	10.4	ŗ	opbv	10.0		104	70-130			
1,3-Butadiene	10.4	p	opbv	10.0		104	70-130			
Bromomethane	10.0	p	opbv	10.0		100	70-130			
Chloroethane	9.67	ŗ	opbv	10.0		97	70-130			
Acetone	10.5	p	opbv	10.0		105	70-130			
Trichlorofluoromethane (Freon 11)	9.80	ŗ	opbv	10.0		98	70-130			
Ethanol	12.2	p	opbv	10.0		122	68.6-138			
Acrylonitrile	8.73	ŗ	opbv	10.0		87	60-160			
1,1-Dichloroethene	9.89	ŗ	opbv	10.0		99	70-130			
Methylene chloride	9.62		pbv	10.0		96	70-130			
1,1,2-Trichlorotrifluoroethane (Freon 113)	9.78		pbv	10.0		98	70-130			
Carbon disulfide	9.54	-	opbv	10.0		95	70-130			
trans-1,2-Dichloroethene	9.71		pbv	10.0		97	70-130			
1,1-Dichloroethane	9.59		pbv	10.0		96	70-130			
	9.88					99	70-130			
Methyl tert-butyl ether	10.5		opbv opbv	10.0		105				
Isopropyl alcohol			opbv	10.0			70-130			
2-Butanone (MEK)	10.1		opbv	10.0		101	70-130			
cis-1,2-Dichloroethene	9.63		opbv	10.0		96	70-130			
Hexane	9.79		opbv	10.0		98	70-130			
Ethyl acetate	9.58		opbv	10.0		96	70-130			
Chloroform	9.59		opbv	10.0		96	70-130			
Tetrahydrofuran	10.3		opbv	10.0		103	70-130			
1,2-Dichloroethane	9.64		opbv	10.0		96	70-130			
1,1,1-Trichloroethane	9.93		opbv	10.0		99	70-130			
Benzene	9.46		opbv	10.0		95	70-130			
Carbon tetrachloride	9.71	ŗ	opbv	10.0		97	70-130			
Cyclohexane	9.73	ŗ	opbv	10.0		97	70-130			
1,2-Dichloropropane	9.93	ŗ	opbv	10.0		99	70-130			
Bromodichloromethane	9.77	ŗ	opbv	10.0		98	70-130			
Trichloroethene	10.1	p	opbv	10.0		101	70-130			
1,4-Dioxane	11.6		opbv	10.0		116	60-160			
n-Heptane	10.1		ppbv	10.0		101	70-130			
4-Methyl-2-pentanone (MIBK)	10.3		pbv	10.0		103	70-130			
cis-1,3-Dichloropropene	10.2		pbv	10.0		102	70-130			
trans-1,3-Dichloropropene	10.3		opbv	10.0		103	70-130			

Analyte(s)	Result	*RDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9121907 - General Air Prep										
LCS (9121907-BS1)				Prepared &	ኔ Analyzed:	24-Dec-09				
1,1,2-Trichloroethane	9.85	p	pbv	10.0		98	70-130			
Toluene	9.76	p	pbv	10.0		98	70-130			
2-Hexanone (MBK)	9.57	p	pbv	10.0		96	70-130			
Dibromochloromethane	9.19	p	pbv	10.0		92	70-130			
1,2-Dibromoethane (EDB)	9.92	p	pbv	10.0		99	70-130			
Tetrachloroethene	9.79	p	pbv	10.0		98	70-130			
Chlorobenzene	9.44	p	pbv	10.0		94	70-130			
1,1,1,2-Tetrachloroethane	9.29	p	pbv	10.0		93	60-160			
Ethylbenzene	9.63	p	pbv	10.0		96	70-130			
m,p-Xylene	19.6	p	pbv	20.0		98	70-130			
Bromoform	7.13	p	pbv	10.0		71	70-130			
Styrene	10.0	p	pbv	10.0		100	70-130			
o-Xylene	9.99	p	pbv	10.0		100	70-130			
1,1,2,2-Tetrachloroethane	9.44	p	pbv	10.0		94	70-130			
Isopropylbenzene	8.25	p	pbv	10.0		82	60-160			
1,3,5-Trimethylbenzene	9.89	p	pbv	10.0		99	70-130			
4-Ethyltoluene	9.84	p	pbv	10.0		98	70-130			
1,2,4-Trimethylbenzene	10.2	p	pbv	10.0		102	70-130			
1,3-Dichlorobenzene	9.73	p	pbv	10.0		97	70-130			
Benzyl chloride	11.1	p	pbv	10.0		111	70-130			
1,4-Dichlorobenzene	9.46	p	pbv	10.0		95	70-130			
sec-Butylbenzene	9.39	p	pbv	10.0		94	60-160			
4-Isopropyltoluene	8.33	p	pbv	10.0		83	60-160			
1,2-Dichlorobenzene	9.55	p	pbv	10.0		96	70-130			
n-Butylbenzene	8.08	p	pbv	10.0		81	60-160			
1,2,4-Trichlorobenzene	12.1	p	pbv	10.0		121	70-130			
Hexachlorobutadiene	9.74	p	pbv	10.0		97	70-130			
Surrogate: 4-Bromofluorobenzene	10.1	p	pbv	10.0		101	70-130			
Batch 9122133 - General Air Prep										
Blank (9122133-BLK1)				Prepared 8	ኔ Analyzed:	30-Dec-09				
Propene	BRL	0.10000 p	pbv							U
Dichlorodifluoromethane (Freon12)	BRL	0.10000 p	pbv							U
Chloromethane	BRL	0.10000 p	pbv							U
1,2-Dichlorotetrafluoroethane (Freon 114)	BRL	0.10000 p	pbv							U
Vinyl chloride	BRL	0.10000 p	pbv							U
1,3-Butadiene	BRL	0.10000 p	pbv							U
Bromomethane	BRL	0.10000 p								U
Chloroethane	BRL	0.10000 p	pbv							U
Acetone	BRL	0.50000 p	pbv							U
Trichlorofluoromethane (Freon 11)	BRL	0.10000 p	pbv							U
Ethanol	BRL	0.50000 p	pbv							U
Acrylonitrile	BRL	0.10000 p	pbv							U
1,1-Dichloroethene	BRL	0.10000 p	pbv							U
Methylene chloride	BRL	0.10000 p	pbv							U
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	0.10000 p	pbv							U
Carbon disulfide	BRL	0.50000 p	pbv							U
trans-1,2-Dichloroethene	BRL	0.10000 p	pbv							U
1,1-Dichloroethane	BRL	0.10000 p	pbv							U
Methyl tert-butyl ether	BRL	0.10000 p	pbv							U
Isopropyl alcohol	BRL	0.50000 p	pbv							U
2-Butanone (MEK)	BRL	0.10000 p	pbv							U
cis-1,2-Dichloroethene	BRL	0.10000 p	pbv							U
Hexane	BRL	0.10000 p	pbv							U

Analyte(s)	Result	*RDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9122133 - General Air Prep										
Blank (9122133-BLK1)				Prepared &	ά Analyzed:	30-Dec-09				
Ethyl acetate	BRL	0.10000	ppbv	1						U
Chloroform	BRL	0.10000	ppbv							U
Tetrahydrofuran	BRL	0.10000								U
1,2-Dichloroethane	BRL	0.10000	ppbv							U
1,1,1-Trichloroethane	BRL	0.10000	ppbv							U
Benzene	BRL	0.10000	ppbv							U
Carbon tetrachloride	BRL	0.10000	ppbv							U
Cyclohexane	BRL	0.10000	ppbv							U
1,2-Dichloropropane	BRL	0.10000	ppbv							U
Bromodichloromethane	BRL	0.10000	ppbv							U
Trichloroethene	BRL	0.10000	ppbv							U
1,4-Dioxane	BRL	0.50000	ppbv							U
n-Heptane	BRL	0.10000	ppbv							U
4-Methyl-2-pentanone (MIBK)	BRL	0.10000								U
cis-1,3-Dichloropropene	BRL	0.10000	ppbv							U
trans-1,3-Dichloropropene	BRL	0.10000	ppbv							U
1,1,2-Trichloroethane	BRL	0.10000								U
Toluene	BRL	0.10000								U
2-Hexanone (MBK)	BRL	0.20000	ppbv							U
Dibromochloromethane	BRL	0.10000								U
1,2-Dibromoethane (EDB)	BRL	0.10000								U
Tetrachloroethene	BRL	0.10000								U
Chlorobenzene	BRL	0.10000								U
1,1,1,2-Tetrachloroethane	BRL	0.10000								U
Ethylbenzene	BRL	0.10000								U
m,p-Xylene	BRL	0.10000								U
Bromoform	BRL	0.10000								U
Styrene	BRL	0.10000								U
o-Xylene	BRL	0.10000								U
1,1,2,2-Tetrachloroethane	BRL	0.10000								U
Isopropylbenzene	BRL	0.10000								U
1,3,5-Trimethylbenzene	BRL	0.10000								U
4-Ethyltoluene	BRL	0.10000								U
1,2,4-Trimethylbenzene	BRL	0.10000								U
1,3-Dichlorobenzene	BRL	0.10000								U
Benzyl chloride	BRL	0.10000								U
1,4-Dichlorobenzene	BRL	0.10000								U
sec-Butylbenzene	BRL	0.10000								U
4-Isopropyltoluene	BRL	0.10000								U
1,2-Dichlorobenzene	BRL	0.10000								U
n-Butylbenzene	BRL	0.10000								U
1,2,4-Trichlorobenzene	BRL	0.10000								U
Hexachlorobutadiene	BRL	0.10000								U
Surrogate: 4-Bromofluorobenzene	9.2600	0.10000	ppbv	10.0		93	70-130			
, and the second			PF -							
LCS (9122133-BS1)	2.2500		1	*	Analyzed:					
Propene	2.3500		ppbv	2.00		118	70-130			
Dichlorodifluoromethane (Freon12)	2.3000		ppbv	2.00		115	70-130			
Chloromethane	2.1700		ppbv	2.00		108	70-130			
1,2-Dichlorotetrafluoroethane (Freon 114)	2.2800		ppbv	2.00		114	70-130			
Vinyl chloride	2.3600		ppbv	2.00		118	70-130			
1,3-Butadiene	2.4400		ppbv	2.00		122	70-130			
Bromomethane	2.3200		ppbv	2.00		116	70-130			
Chloroethane	2.3000		ppbv	2.00		115	70-130			

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9122133 - General Air Prep									
LCS (9122133-BS1)			Prepared &	Analyzed:	30-Dec-09				
Acetone	2.4500	ppbv	2.00		122	70-130			
Trichlorofluoromethane (Freon 11)	2.1800	ppbv	2.00		109	70-130			
Ethanol	2.6900	ppbv	2.00		134	70-178			
Acrylonitrile	1.8300	ppbv	2.00		92	60-160			
1,1-Dichloroethene	2.4300	ppbv	2.00		122	70-130			
Methylene chloride	2.2800	ppbv	2.00		114	70-130			
1,1,2-Trichlorotrifluoroethane (Freon 113)	2.2800	ppbv	2.00		114	70-130			
Carbon disulfide	2.3500	ppbv	2.00		118	70-130			
trans-1,2-Dichloroethene	2.4400	ppbv	2.00		122	70-130			
1,1-Dichloroethane	2.3400	ppbv	2.00		117	70-130			
Methyl tert-butyl ether	2.5600	ppbv	2.00		128	70-130			
Isopropyl alcohol	2.4700	ppbv	2.00		124	70-130			
2-Butanone (MEK)	2.7700	ppbv	2.00		138	70-130			Z-2
cis-1,2-Dichloroethene	2.5100	ppbv	2.00		126	70-130			
Hexane	2.4300	ppbv	2.00		122	70-130			
Ethyl acetate	2.4500	ppbv	2.00		122	70-130			
Chloroform	2.2600	ppbv	2.00		113	70-130			
Tetrahydrofuran	2.3900	ppbv	2.00		120	70-130			
1,2-Dichloroethane	2.3200	ppbv	2.00		116	70-130			
1,1,1-Trichloroethane	2.3100	ppbv	2.00		116	70-130			
Benzene	2.3900	ppbv	2.00		120	70-130			
Carbon tetrachloride	2.2100	ppbv	2.00		110	70-130			
Cyclohexane	2.2400	ppbv	2.00		112	70-130			
1,2-Dichloropropane	2.4300	ppbv	2.00		122	70-130			
Bromodichloromethane	2.3000	ppbv	2.00		115	70-130			
Trichloroethene	2.4600	ppbv	2.00		123	70-130			
1,4-Dioxane	2.5600	ppbv	2.00		128	60-160			
n-Heptane	2.5800	ppbv	2.00		129	70-130			
4-Methyl-2-pentanone (MIBK)	2.7800	ppbv	2.00		139	70-130			QC
cis-1,3-Dichloropropene	2.7100	ppbv	2.00		136	70-130			QC
trans-1,3-Dichloropropene	2.8200	ppbv	2.00		141	70-130			QC
1,1,2-Trichloroethane	2.4100	ppbv	2.00		120	70-130			
Toluene	2.5500	ppbv	2.00		128	70-130			
2-Hexanone (MBK)	2.3300	ppbv	2.00		116	70-130			
Dibromochloromethane	2.1400	ppbv	2.00		107	70-130			
1,2-Dibromoethane (EDB)	2.4700	ppbv	2.00		124	70-130			
Tetrachloroethene	2.3700	ppbv	2.00		118	70-130			
Chlorobenzene	2.2300	ppbv	2.00		112	70-130			
1,1,1,2-Tetrachloroethane	1.7900	ppbv	2.00		90	60-160			
Ethylbenzene	2.5100	ppbv	2.00		126	70-130			
m,p-Xylene	4.9400	ppbv	4.00		124	70-130			
Bromoform	1.5200	ppbv	2.00		76	70-130			
Styrene	2.2400	ppbv	2.00		112	70-130			
o-Xylene	2.5000	ppbv	2.00		125	70-130			
1,1,2,2-Tetrachloroethane	2.2100	ppbv	2.00		110	70-130			
Isopropylbenzene	1.7300	ppbv	2.00		86	60-160			
1,3,5-Trimethylbenzene	2.5900	ppbv	2.00		130	70-130			
4-Ethyltoluene	2.4600	ppbv	2.00		123	70-130			
1,2,4-Trimethylbenzene	2.5900	ppbv	2.00		130	70-130			
1,3-Dichlorobenzene	2.3600	ppbv	2.00		118	70-130			
Benzyl chloride	2.7200	ppbv	2.00		136	70-130			QC
1,4-Dichlorobenzene	2.3100	ppbv	2.00		116	70-130			
sec-Butylbenzene	1.9000	ppbv	2.00		95	60-160			
4-Isopropyltoluene	1.6500	ppbv	2.00		82	60-160			

				Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
Batch 9122133 - General Air Prep										
LCS (9122133-BS1)				Prepared &	Analyzed:	30-Dec-09				
1,2-Dichlorobenzene	2.2700	pp	bv	2.00		114	70-130			
n-Butylbenzene	1.5700	pp	bv	2.00		78	60-160			
1,2,4-Trichlorobenzene	2.8400	pp	bv	2.00		142	70-130			QC2
Hexachlorobutadiene	2.1500	pp	bv	2.00		108	70-130			
Surrogate: 4-Bromofluorobenzene	9.8200	pr	bv	10.0		98	70-130			

Notes and Definitions

Z-2 Analyte passed in CCV.

U Analyte included in the analysis, but not detected

R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

GS This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target

analytes in the sample.

Е The concentration indicated for this analyte is an estimated value. This value is considered an estimate (CLP E-flag).

BsH Data for this analyte may be biased high based on QC spike recoveries.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

Sample results reported on a dry weight basis dry

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

> Validated by: Hanibal C. Tayeh, Ph.D. Nicole Leja

Chain of Custody Record/Field Test Data Sheets for Air Analyses

Special Handling:
Standard TAT - 7 to 10 business days
Rush TAT - Date Needed:

DE-mail results DNIERENBERG PRECISION	experience any technical difficulties or suspect any QC issue(s) with oir media.	Please courses S.4's dir Department introchinely at (800) 789-9115 (From	Company:	Requested by	Date of Request:	25	Use S	Client				10,0	11/12	0748	1730	H8SS	0101	7647 6	Can ID Si	Project Manager: DAN	101#: 51B		RALLSTON	188	Report To:	
	technic	2 2	Pr		SH	Stop	Start		55537	1000								19	Can Size (L)	ager:	1		415	276	Rea	N.H.
NIERE	ol difficulti	Dallston .	Precision	Day 1	12/4/09	40	41.5	Maximum	Ambi	rod Calo	75	ost e		101	STATE OF THE PARTY			30	Outgoing Carrister Pressure 'Hg) (Lab)		54-538		N SPA	4	RECISION	HANIBAL TECHNOLOGY
NEWY	es or snape	SPA N	Env.	Necenbers	1	nex a F	7		ent Temper	10 (6) - 10 (6) 500 (6)	363 313 314				1181	kra i			Incoming Canister Pressure ("Hg) (Lab)	NIERE	133	insk J	-	197	EMIRD.	NOLOGY
4 8 P	CONTRACTOR OF THE PERSON OF TH	Nediately at (8)		23		39	3	Mir	Ambient Temperature (Fahrenheit)		HET. LIGHT	3	1847	200	6h	2847	2869	58	Flow Reg.	NIERENBER	3	ejec 31 Jugi	2021 hy	22		D
COM	sme(s) with	201789-911	CI			9	38	Minimum	nhelt)	bid o si age are bid	Nez Line			20.2	80.5	22	79.9	80.5	Elow Controller Readout (ml/min)	26	Her		00		SVCS.	
2	air media.	5 If you	Flow	# Flov	# Sum	29	29	0.00 0.00 0.00	0.0			Eleva o	100		2 /		0		565	P.O. No.:	Attn:				Invoice To:	
7	6	Date Needed	Flow Rate/Setting	# Flow Controllers:	Summa Canisters:	29.93	29,88	Maximum	Amblent P	- Figure 1	1.02			in a	Pupa	sirit o	S	rote rote	_						To:	
On (6	ded:	ting:		1000	2	14	0400 0400 0400	Ambient Pressure (Inches of Hg)	mp led profesion i timpe d) 837 	HMAR	INDOOR AIR	insi)	AMBIENT	144)	<	Piliti Linux	Sample Ide	FORMER					Sad	iş.
Mestin	2	12/11 Relin	Hr.	6	16	29.90	29.88	Minimum	thes of Hg)	iq se tub mee	e II	-	-		101	ticu.	<u>-</u>	inc i	mple (s).	ICCRON:					N	-
0	5	Relinquished by:				0	00	OUE OUE	000	sdespiter tine file	(8) 1	00	2/15	i di se	2/15	ion st o	12/15	r hid	Sample	QN:	ksa ksa	1 199	0 42	305	0639	
		Printed:	Signed:	and agree to the	attest the	PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE	Spin 8	STA	Special In	a appea a appea ara Bet	1200 1100 1100		03	ori ka	109	200	109	u 9	Due(s)	18	i les	iles	i um	De j	Berry Inde	ŀ
		130	1		of that III		part part	TANDAR	struction	er Maan Francis	0 (g) 5,641		15:24	ofis.	12:46	fax	11:15	(pix)	Time Saut (24 hr clock)		Sampler (s):	Locatio	Site Name:	Project No.:		
? ,	1	mey		terms and conditions as listed on the	media re	成.	- C1	63	s/QC Re	stal nast esta e st esta est	orge cost		50.91 h	gr. go	13:	MON Styl	11:42	gray gray	a Time Stop k) (24 ltr clock	1. 166 SEAT		Location: GREEN PORT	11.00	No.: 5	दाम	ŗ
	1/	3	1	ondition	linquish	54) 30)	7 191	TA.	quireme		Н		1	-	-04		١.		~		NAU	EEN P	FORMER	1-1		
0	2	25	0 %	o as fish	ed from		hpe	7	ints & C	dy and Y a sast	16 I 15 II	qsq p	25	njaid dys	30	511	28	HP	Canister Pressure in Field ("Hg) (Start)	positi	NIE	ORT	X	11-0) Dist	
: ;	Born	Received by	1	d on the	I attest that that All media relinquished from Spectrum.	1.0	Ð	(-):	Special Instructions/QC Requirements & Comments:	81 D			S	C.E	-2	42	12		Canister Pressure in Field ("Hg)		SEN13		Hee	20		
		3 5		ack of this		VE VE	Su dis	nes	mir mir	d wager or	l . PER	nezi	600		W/4	i. 2 216	MA	ibes thou	Interior Temp. (F) (Start)		NIERENBERG	State: /	6			
				ck of this document."	tnatytical, Inc. have been received in good working condition	1.0	ppi Pek Parti	ants Dos		ec ida dae		9	600		2/2	200 200	M/M	bei bei	Interior Temp. (F) (Stop)	12 14	A. SHE	KN	No.			
12	12		10	110t y	been re	ied L C	ar-i	Jay Jay	। ताला संदर्भ	- 5			X		X	C (1)	X	2	III Carried to the control of	15	invo	Sir	n	1	4.5	
2/18/05		Date:	Date:		ceived in	6.01	2000 2000	W.	(DE)		o gar	0.1778 -1 60/87 (c.			0.01	1, 2	01' S		questiant c	, jásja	16.8	I pe	ystar	Nost	Analysis	
Ž.	0		12	interior Lista	good w] 01 5:01	14)6 16)6	dist.	(120) (120)	3 10	7/10				×				Indoor Amb	dent	15					
124	1000	Time:	-11		orking co.		PH Se	J 10					×				×		Soil Gas	neat .	117)				Matrix	
07	9	e .	3		ndition		, ,				1000			×		×		×	Check box if		_					

SPECTRUM ANALYTICAL, INC.
Francing

Chain of Custody Record/Field Test Data Sheets for Air Analyses

Special Handling:
Standard TAT - 7 to 10 business days
Rush TAT - Date Needed: 05951

All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.

миненсе а	Please con	ocation:	ompany:	equested by:	ate of Request:		Use	Client		88 H	282	895 4	0263	-38 h	0667	4430	1006	480	500	Can ID	roject Manager: Dan Nierenlese	5	120	SAUSTON	83	SPORT TO: PRECISION ENVIRO.	
y technic	s, pre soon	R.	30		12813	Stop	Start	Marie Control	-	_							1		4	Can C	nager:	18-5	12020	MALS		REC.	
sperience any technical difficulties or suspect any QC issue(s) with air me	Air Departs	Salkhon spe	Recision	MM N	12/4/09	NO	41.5	Maximum	Ambi	<u></u>									-30	Outgoing Camistor Pressure ("Hg) (Lub)	Dan	18-885-	124 14 24	SPA	RH 67	Sign	The second contract of the second
as or suspec	pottany pasto	100	EN.	Hierenber-		190 1905 1900	65 (C 6 9 9 3 3 3 5	um	int Tempera						TO TO	Total A				Incoming Canison Pressure "Hg) (Lab)	Mier	435	0.031	AN TE	10)	ENVIR	١
Tany QC is	South) er (80	NA	-	13		3	82	Min	Ambient Temperature (Fahrenheit)	5	2876	8	54	1314	2870	35	826	37	2967	Flow Reg.	eent	88	open or outgi	NEWYORK	82	100	
operience any technical difficulties or suspect any QC issue(s) with air media	Please contact SA's Air Department immediately at (800) 789-9115 if you		SEP CIT 92			39	8	Minimum	shelt)	80.3	80.2	80.2	80.	80.2	2.8	1.03	80.3	80.5	80.2	Flow Controller Readout (ml/min)	200	gert.		SIC		Sycs.	
rir media.	Wor(f)	1	Flow I	# Flow	# Summ	29.9	29	Ma		-	7 06	100 N	5 5		781 3 2 5 6 1074	170 m 180 m 191 m		10		15550	P.O. No.:	Attn:	7	-	- 1	Invoice To:	
0		Date Needed:	Flow Rate/Setting	# Flow Controllers:	# Summa Canisters	88	82 .	Maximum	mbleat Pres	112	SV-	19000 0 000 0 000	SK	での (での)	paga apa		pete pete	VS	out of	& greb sag	P.O. No.: FORMER ICE						
6		-				2	l,		Ambient Pressure (inches of Hg)	ei ja inde e ki	5	Here e rr	2	a ne upe	etvis Gree	póu ni x	1031	1	S di	iiple lid:	Tec					538	
2x	Relinquished by:	2/11	HP.	0	16	29.90	29.08	Minimum	of Hg)	E-light E-light	12/15		12/15		igen Gen	103	31.36	121	1246	Survivore de	RQN:	300	2.0			in i	10000
1	ed by:	Printed	Signed:	and ag	I attest	100		57.	Special		15/09		15/09		os B	ioje	21 - 108	12/15/09		nple Duto(s)	Th			insc	gip 1	lie:	45.000
	9	15	2	ree to the s	that that a	icr icr	100	STANDARD	Instructio	io id Gray	13:09	18/01	11:45	nter Clark Mark	ouic	8880	FWX		ipel	Time S (24 hr ch	91.	Sampler (s):	Location:	Site Name:	Project No.:		TO COLOR
1		aren	-	russ and c	media re	系術	Ext C	100.0	ns/QC Re	0. 48 0.00 1.48	9 13:49	ang:	-	E Byr L Tan miest	9+3: 8+3:	900 911 9 G	Laos roig r ba	61:11 8h:01	rotal rotal	Time Start Time Stop (24 hr clock) (24 hr clock)	e un RIAI					sda E	CT.
Im >	1	3	2/3	and agree to the Herms and conditions as listed on the back of this document.	I attest that that all media relinquished from Spectrum Analytical, Inc. have been received in good working condition	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	707	Special Instructions/QC Requirements & Comments:		17 -27	10 1	12:32 2-30	an	Trial	ons,	pile pose	9 -28	150 160 160 160	Canister Pressure in top Field ("Hg) ock) (Start)		DAN Nierenberg	GREENPORT	FORMER	4-11-002	plane	
TOTAL	Received by:	8616	2	s fisted on	from Speci	100	0	ight ingi	& Comm	17	(D 31	4-0	≏ Jr	like			3 -2		carister e in Pressure in Hg) Field ('Hg)		eres	2	Tec	202		
NO.	ed by:	4	1	the back o	rum Anal	136	000		ents:	(G)	2	110	W/	81	Ç	10	42	1	ber			chercy	State:	ì			VO. 201
iavi ans		(A		f this do	rical, In	88) A5	ter	Fed Pop	un pä		15	001 1 1 1 0	4	N.			erio e	7	lbez	laterior Temp. (F) 1 (Start))	ii ru				
		14	176	ситень	c. have	i C	F	GDI GDI	pio:	61 86	MA		N/A				\$98 860	MA	per	Interior Temp. (F) (Stop)			1				
120	1	dec (tec	100 J	CORRE PART ALITE	нен лес	100	200		in the	960	X		У	300	100	10	100	X	re i	To-	15		SIA	2		A	Section 1
8.9	Date:	gine grow	Date:		eived in ge	0	200	(10 (10 (10)	in in its	- (87)	S 00	el-qu	IDD	12.1	C27	000	N. B	NT 3	HJ. N	1950007111	0218	76	T 25	100	969	Analysis	Section 1
/		o q	1201	agh Agai	od workin	194		110	032 032	-	X		×				1 1	V		Indoor /Ami	bient	Air				M	
200	Time:	,	1-09		g conditio			1	1	E		×	-						1 1		Š.					Matrix	

ATTACHMENT - C Data Usability Summary Report

Geology

Hydrology

Remediation

Water Supply

January 22, 2010

Mr. Dan Nierenberg Precision Environmental Services, Inc. Curtis Industrial Park 831 Rt. 67, Lot 28. Ballston Spa, New York 12020

Re:

Data Usability Summary Report

Former ICC Project

December 2009 Air Sampling Event

Dear Mr. Nierenberg:

The data usability summary report and data validation summary are attached to this letter for the Former ICC, December 2009 air sampling event. The data for Spectrum Analytical, Inc., SDG# 05951 were mostly acceptable with some issues that are identified and discussed in the validation summaries. There were no data that were qualified as unusable (R) in the data pack.

A list of common data validation acronyms and data validation qualifers is attached to this letter to assist you interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Precision Environmental Services, Inc.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Z:\projects\2010\10600-10620\10602- former icc\former icc-101.ltr.wpd

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for Spectrum Analytical, Inc., SDG# 05951

6 Summa Air Samples Collected December 15, 2009

Prepared by: Donald Anné January 22, 2010

The data package contains the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of TO-15 volatile analysis for 6 summa air samples.

The overall performances of the analyses are acceptable. Spectrum Analytical, Inc. did fulfill the requirements of the analytical method.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- The volatile result for ethanol in sample Indoor Air Sample was quantitated using data that
 were extrapolated beyond the highest calibration standard and flagged "E" by the laboratory.
 The result for ethanol marked "E" in the low level sample was qualified as estimated (J).
- The positive volatile results for 2-butanone were flagged as "estimated" (J) in samples
 Upgradient Ambient, Indoor Air Sample (low level), and SV-5 because the percent recovery
 for 2-butanone was above QC limits for the associated LCS.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2010\10600-10620\10602- former icc\05951.dus.wpd

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of TO-15 Volatiles Data for Spectrum Analytical, Inc., SDG# 05951

6 Summa Air Samples Collected December 15, 2009

Prepared by: Donald Anné January 22, 2010

Holding Times: Samples were analyzed within the EPA recommended holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for target compounds were above the allowable minimum (0.050), as required.

The %RSDs for ethyl acetate and benzyl chloride were above the allowable maximum (30%) for Air1 on 12-16-09. The %RSDs for ethanol, ethyl acetate, tetrahydrofuran, 2-hexanone, styrene, and benzyl chloride were above the allowable maximum (30%) for Air1 on 12-29-09. Positive results of these compounds should be considered estimated (J) in associated samples.

Continuing Calibration: The RRF50s for target compounds were above the allowable minimum (0.050), as required.

The %D for 1,2,4-trichlorobenzene was above the allowable maximum (30%) on 12-24-09 (A35320.D). Positive results of 1,2,4-trichlorobenzene should be considered estimated (J) in associated samples.

Blanks: The analyses of method blanks reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for air samples and trip blank.

<u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for target compounds were within QC limits for LCS 9121907-BS1.

The %Rs for 2-butanone, 4-methyl-2-pentanone, cis-1,2-dichloropropene, trans-1,2-dichloropropene, benzyl chloride, and 1,2,4-trichlorobenzene were above QC limits for LCS 9122133-BS1. Positive results for these compounds should be considered estimated (J) in associated samples.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

There are results for ethanol in sample Indoor Air Sample that was quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The result for ethanol is flagged as 'E' in the low level sample should be considered estimated (J). It is recommended that the higher level result for ethanol in sample Indoor Air Sample be used. The lower level results for samples Indoor Air Sample should be used for all other compounds.

LETTER OF TRANSMITTAL

ALPHA GEOSCIENCE

679 Plank Road Clifton Park, NY 12065 (518) 348 -6995 Phone (518) 348-6966 FAX

ALPH	IA NCE		18) 348 -699 518) 348-696		
TO:	Curtis Indus 831 Rt. 67,	invironmental Services, Inc strial Park	FROM: DATE: SUBJECT:	Don Anne' 1/22/2010 Data Validation Former ICC December 2009 Air S	Samples
	RANSMITTI OWING ITEI		_ Photograph _ Maps/Plans _ Report(s)		Letter(s) Disk(s) Other: Data Pack
Originals 1	Copies	Spectrum Analytical, Inc. Da		scription of Materials 6# 05951	
	These Materi	ials are Transmitted: _For your use _For your approval _For your review and comme	ent		Approved as submitted Approved as noted K Returned after loaned to us Returned for revision
Please:		Return original to us Submit after revision			Retain for your files Other
REMARKS		pon completion of data valida	ation.		
ADDITION	AL COPIES	то:		SIGNATURE: Donald	Anné