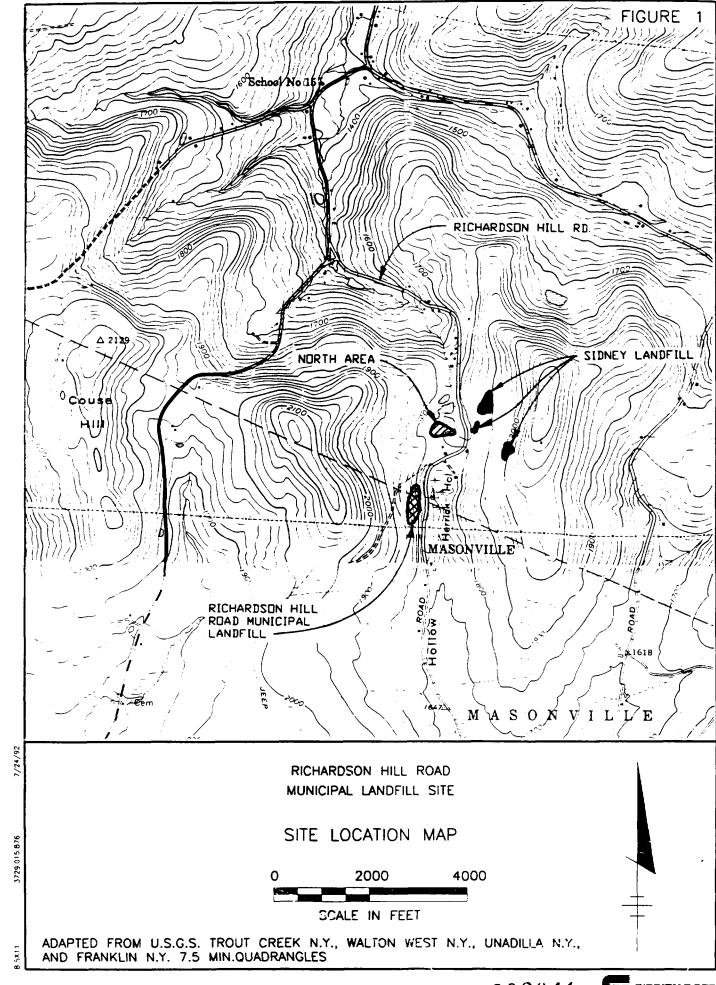
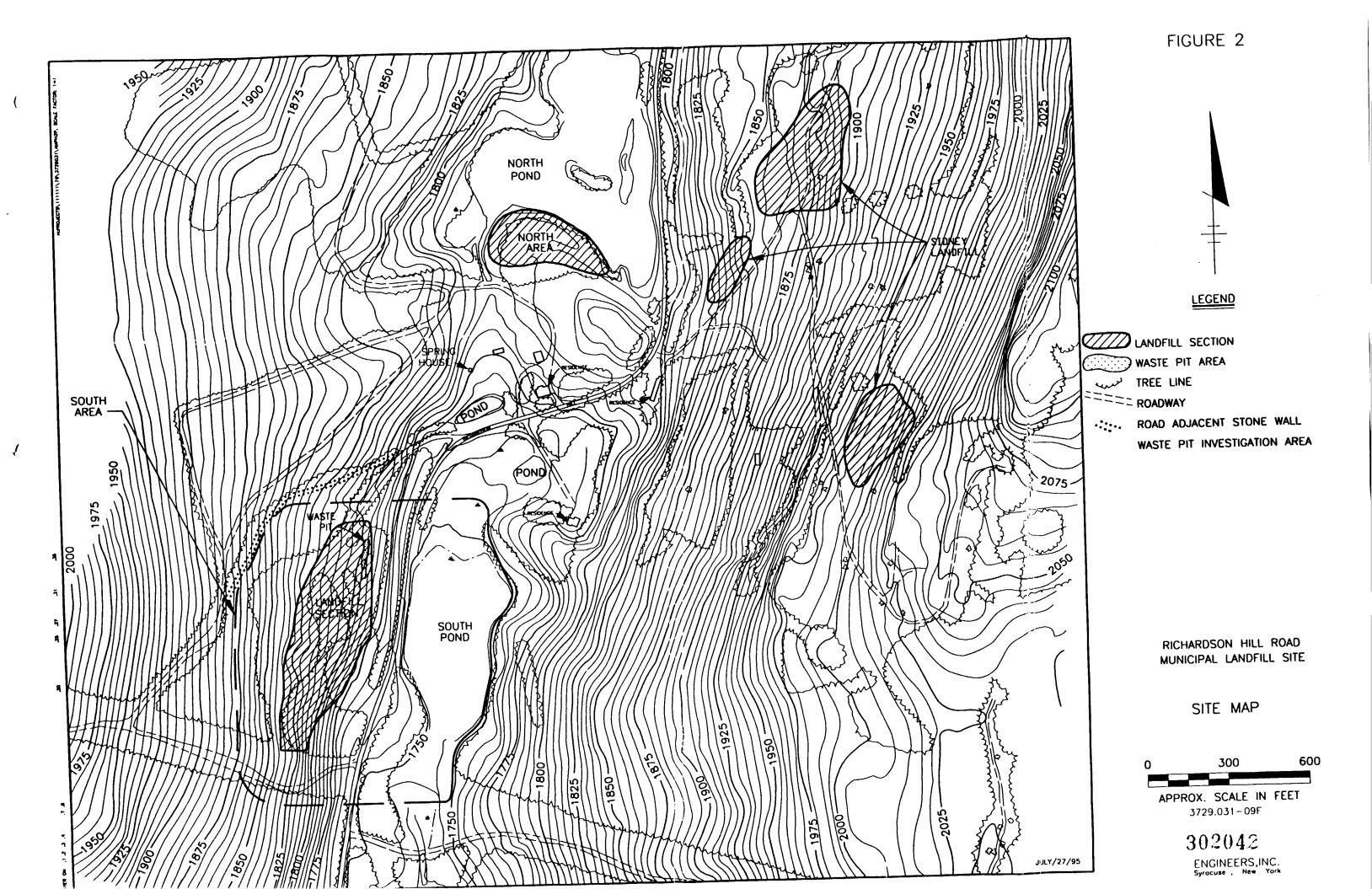
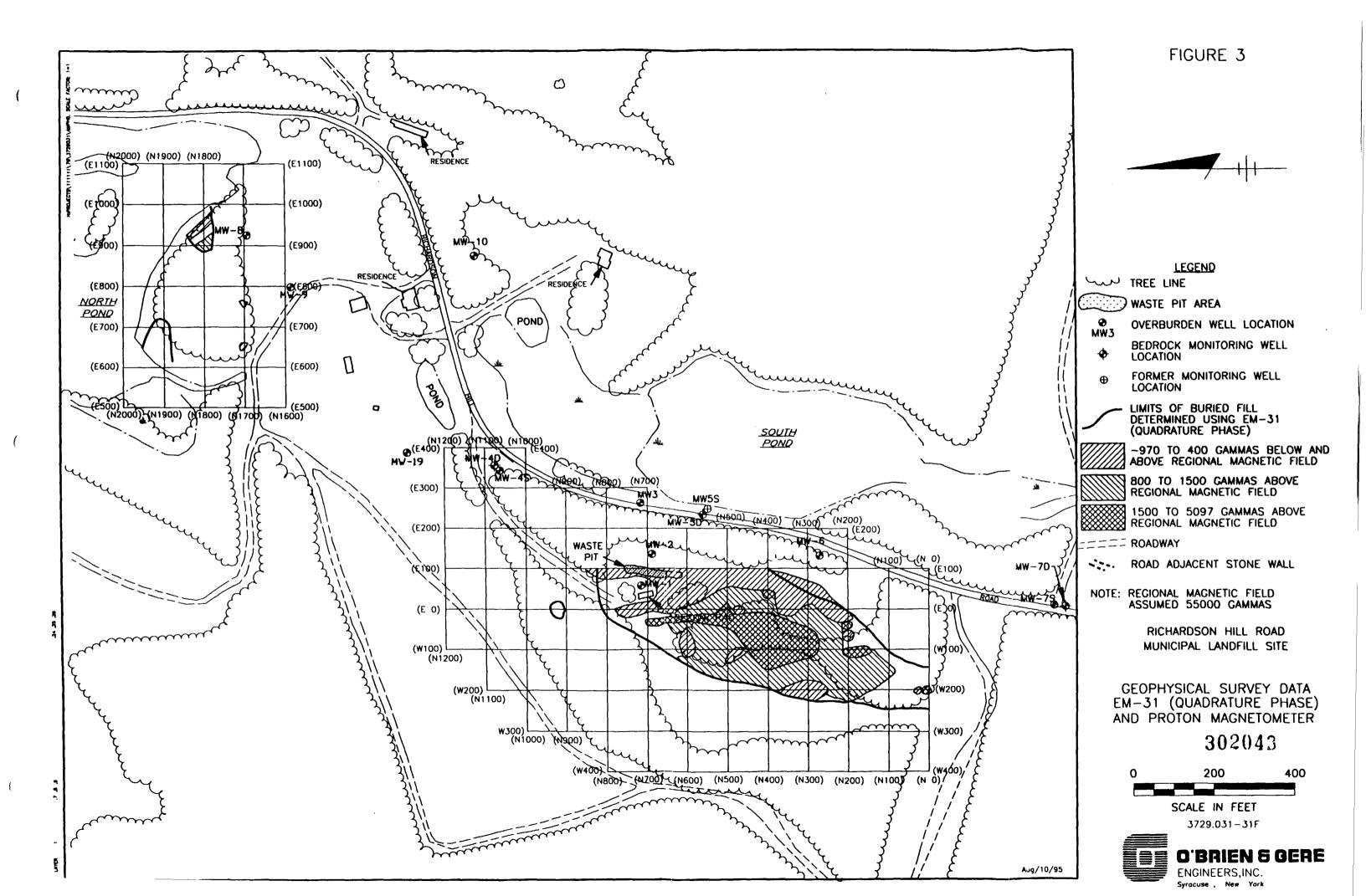
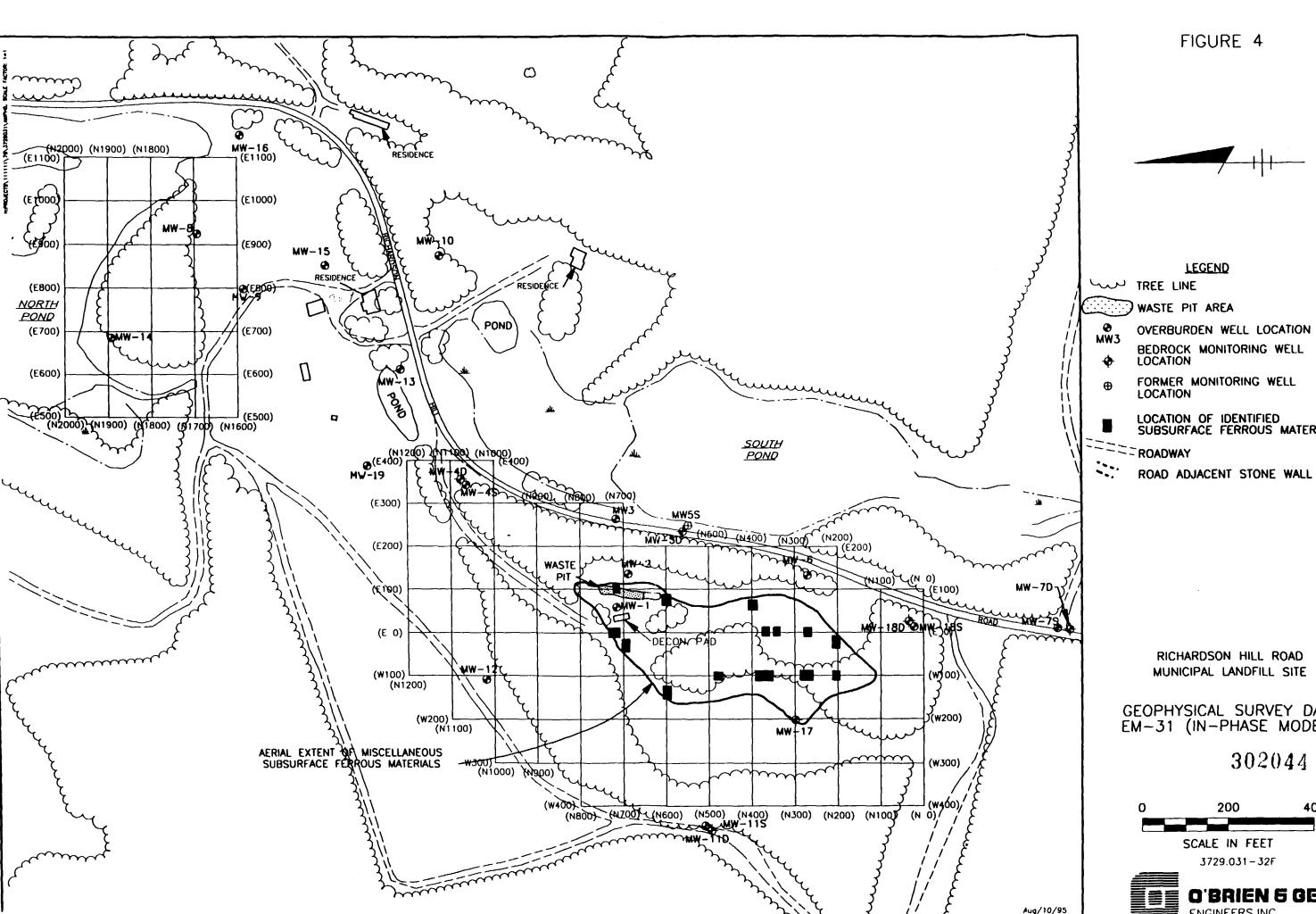
Report

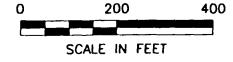

49185


Remedial Investigation


Richardson Hill Road Municipal Landfill Sidney, New York

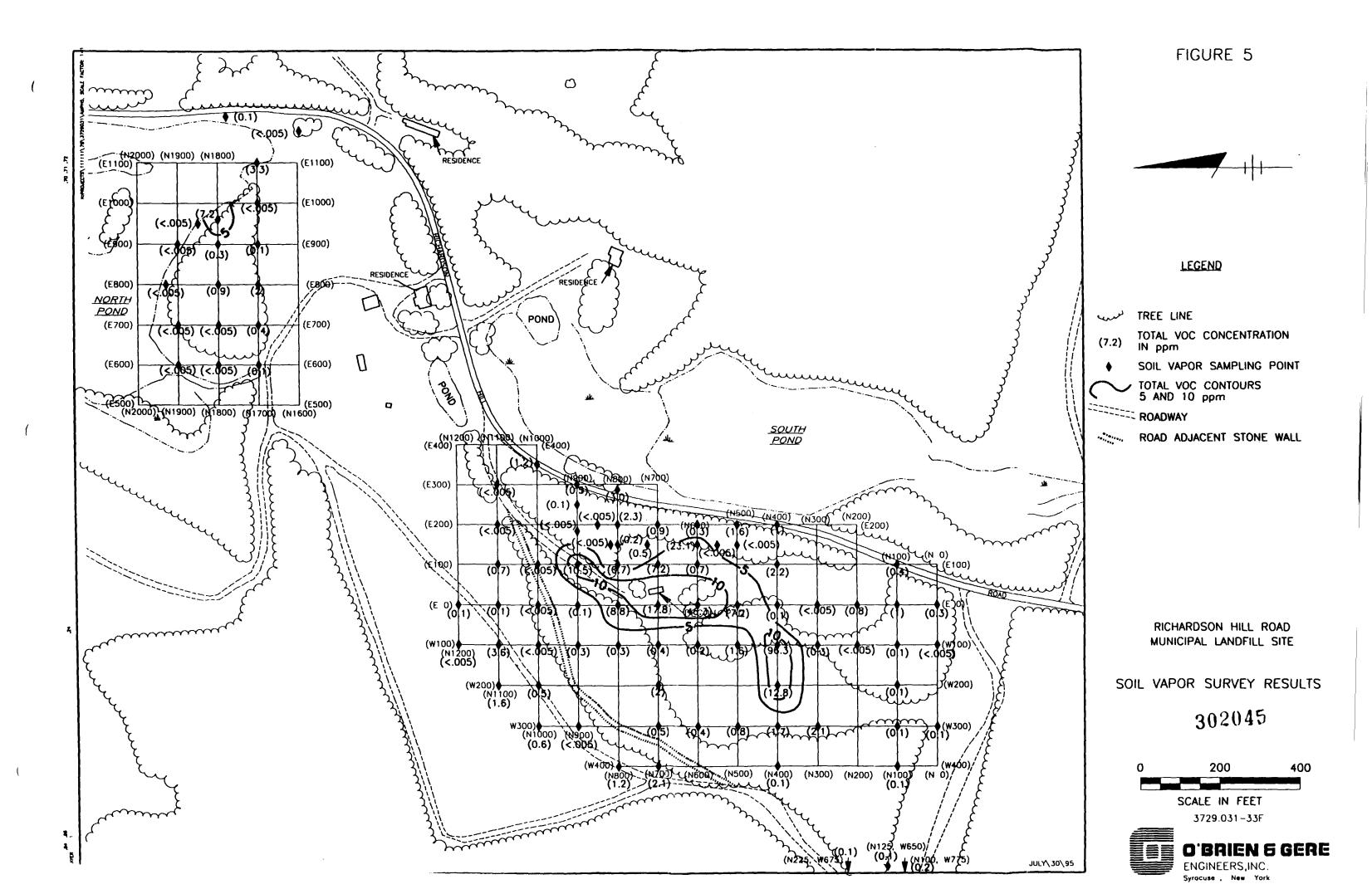

Revised: March 1997

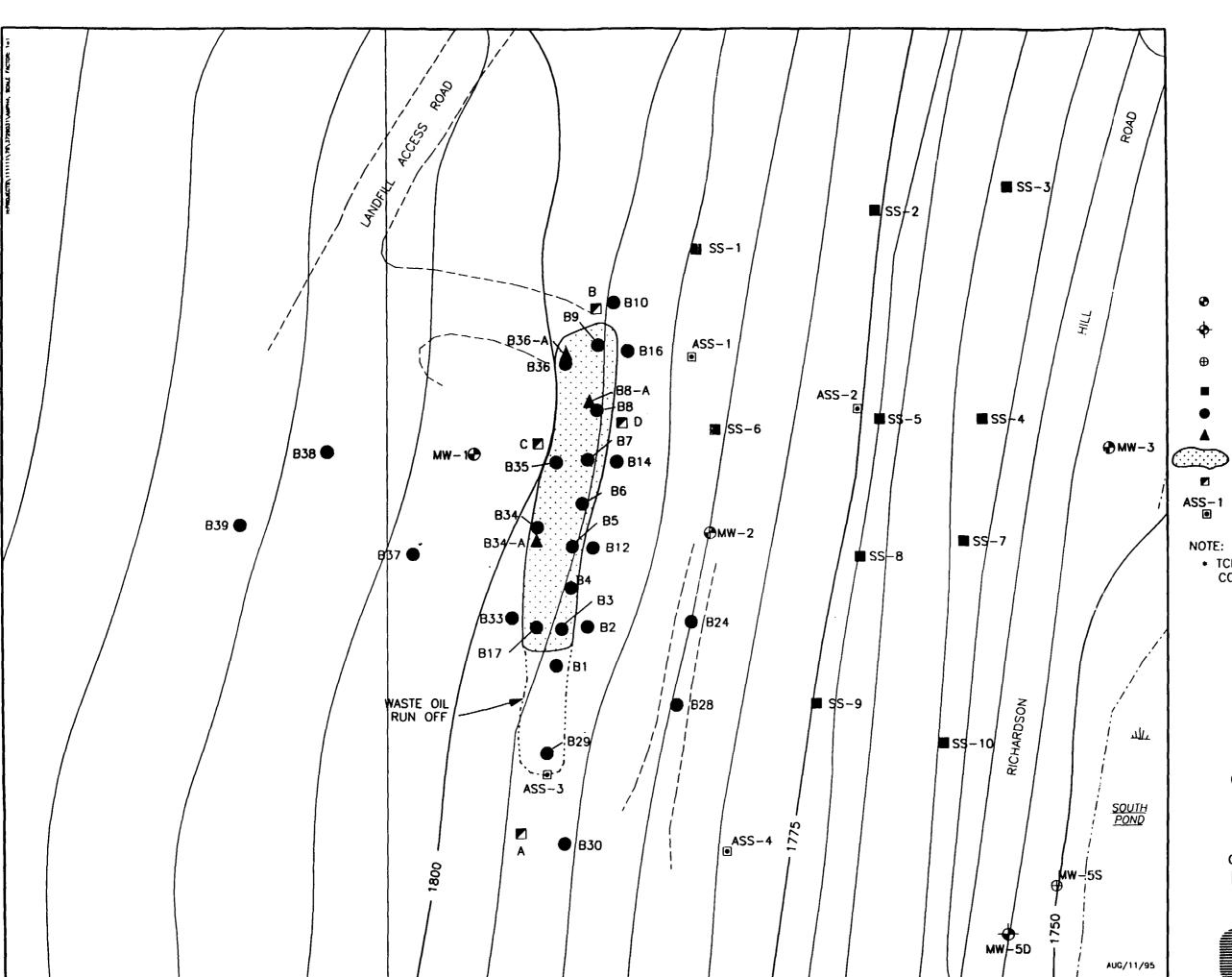
5000 Brittonfield Parkway P.O. Box 4873 Syracuse, New York 13221


OVERBURDEN WELL LOCATION

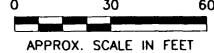
LOCATION OF IDENTIFIED SUBSURFACE FERROUS MATERIAL

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE


GEOPHYSICAL SURVEY DATA EM-31 (IN-PHASE MODE)

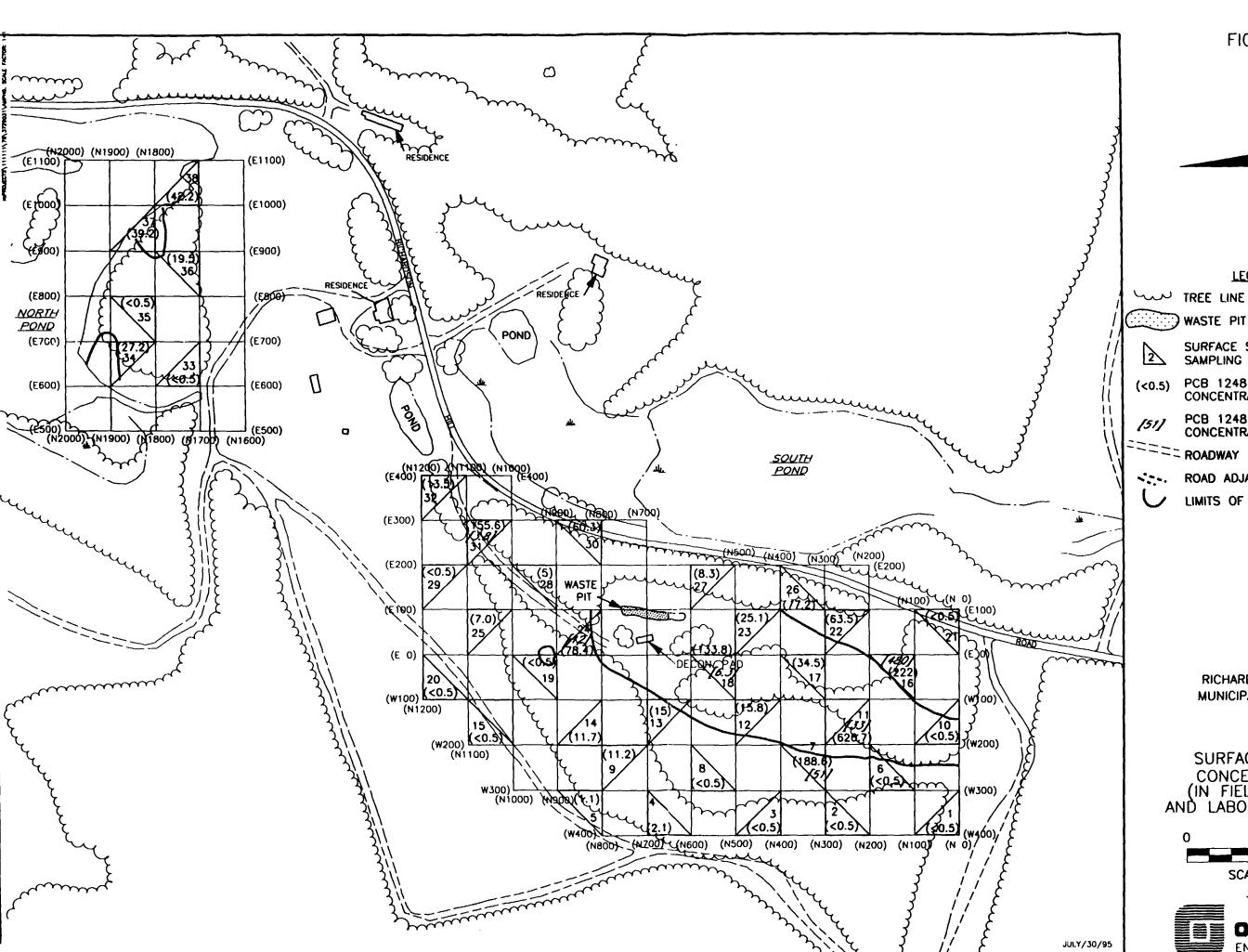

302044

3729.031 - 32F


- OVERBURDEN WELL LOCATION
- BEDROCK MONITORING WELL LOCATION
- ⊕ FORMER MONITORING WELL LOCATION
- SURFACE SOIL SAMPLE LOCATION
- BORING LOCATION
- ▲ TCL SAMPLE LOCATION
- WASTE PIT AREA
- AIR MONITORING LOCATIONS
- ASS-1 SRI SURFACE SOIL SAMPLE LOCATIONS

• TCL SOIL SAMPLES WERE ALSO COLLECTED IN BORING B6 AND B7

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE


WASTE OIL PIT CHARACTERIZATION MAP

302046

3729.031 – 029F

LEGEND

WASTE PIT AREA

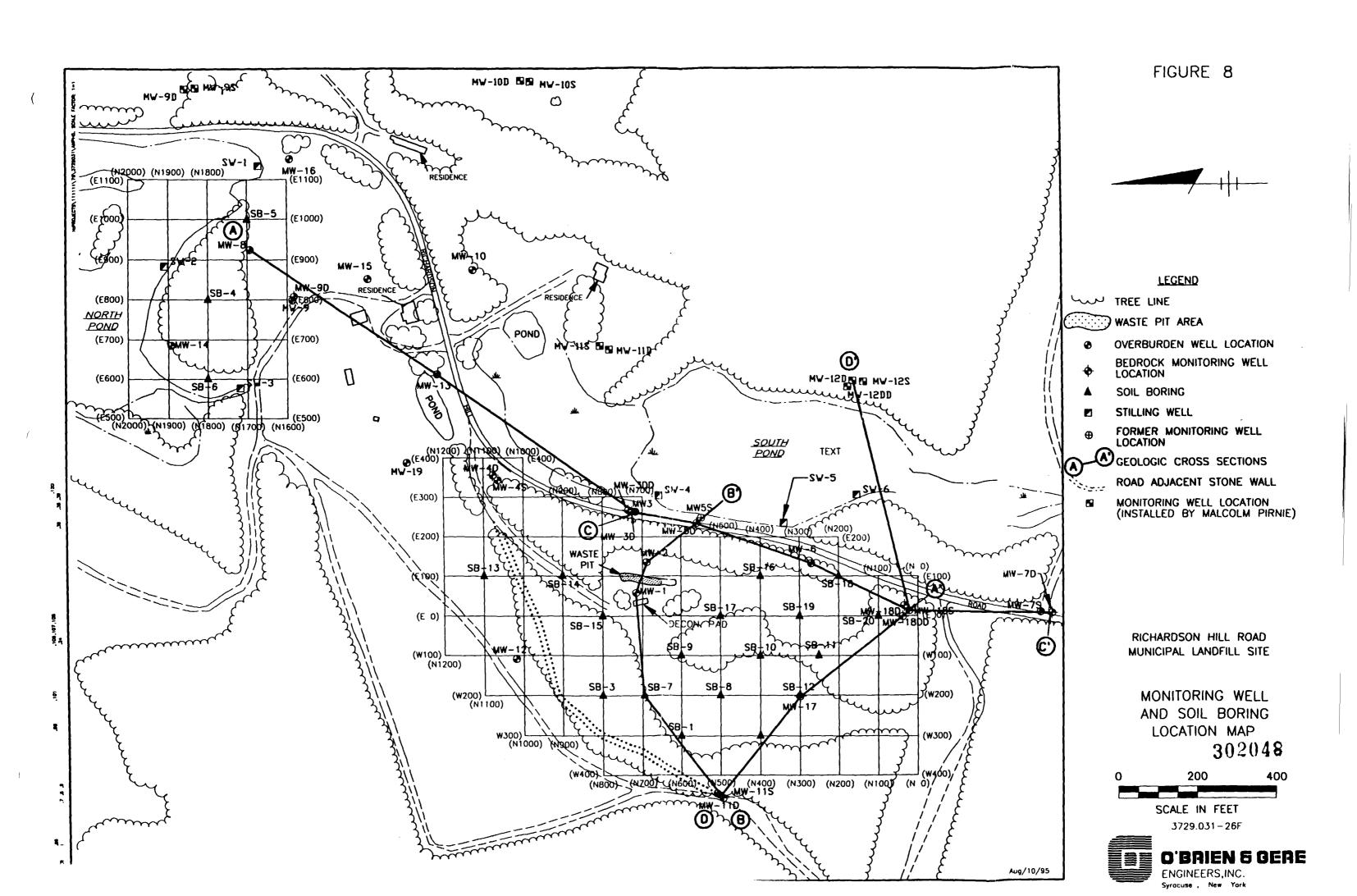
SURFACE SOIL COMPOSITE SAMPLING AREA

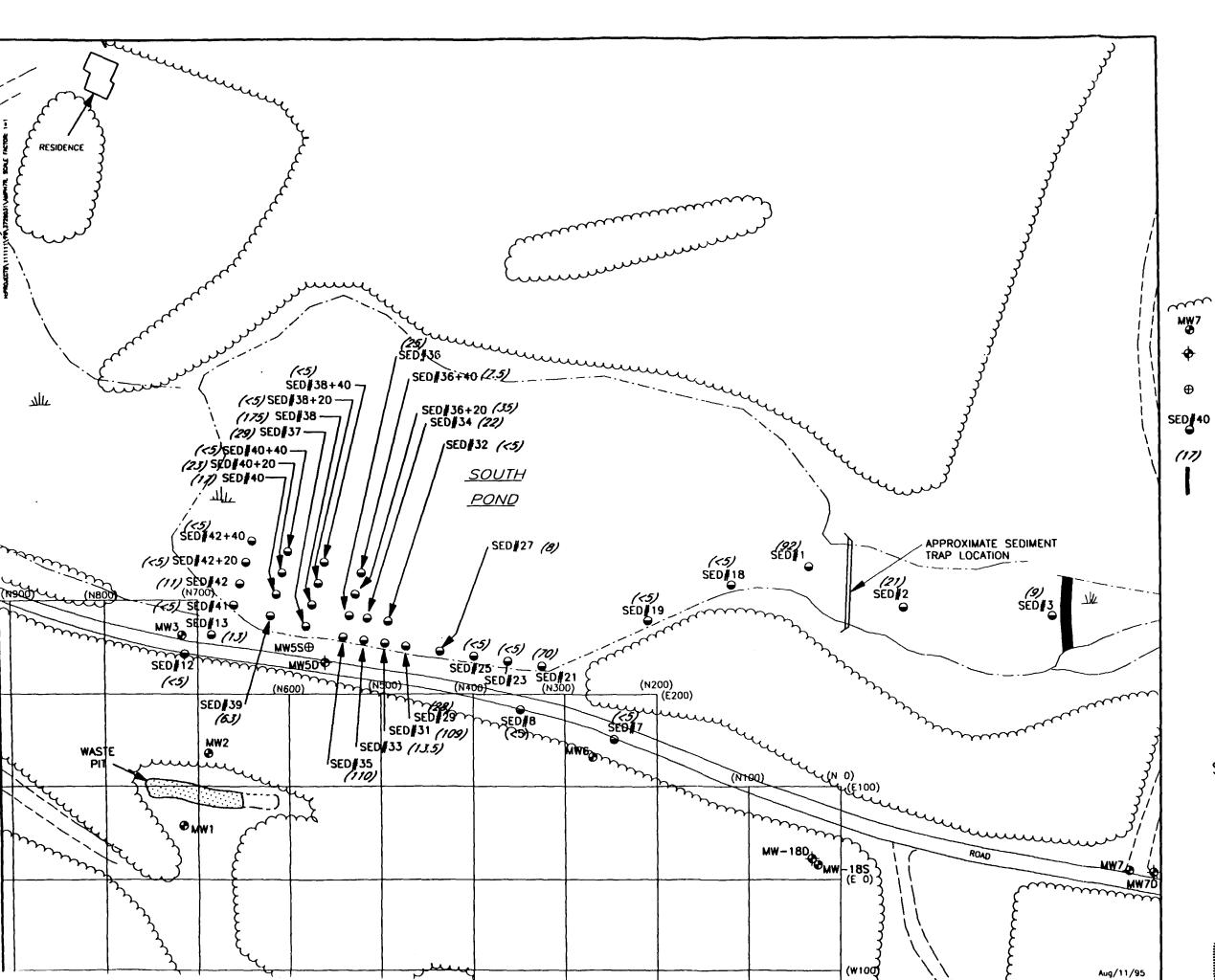
PCB 1248 SCREENING CONCENTRATION (PPM)

PCB 1248 LABORATORY CONCENTRATION (PPM)

ROAD ADJACENT STONE WALL

LIMITS OF BURIED FILL


RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE 302047


SURFACE SOIL PCB CONCENTRATIONS
(IN FIELD SCREENING
AND LABORATORY RESULTS)

200

SCALE IN FEET 3729.031-34F

LEGEND

TREE LINE

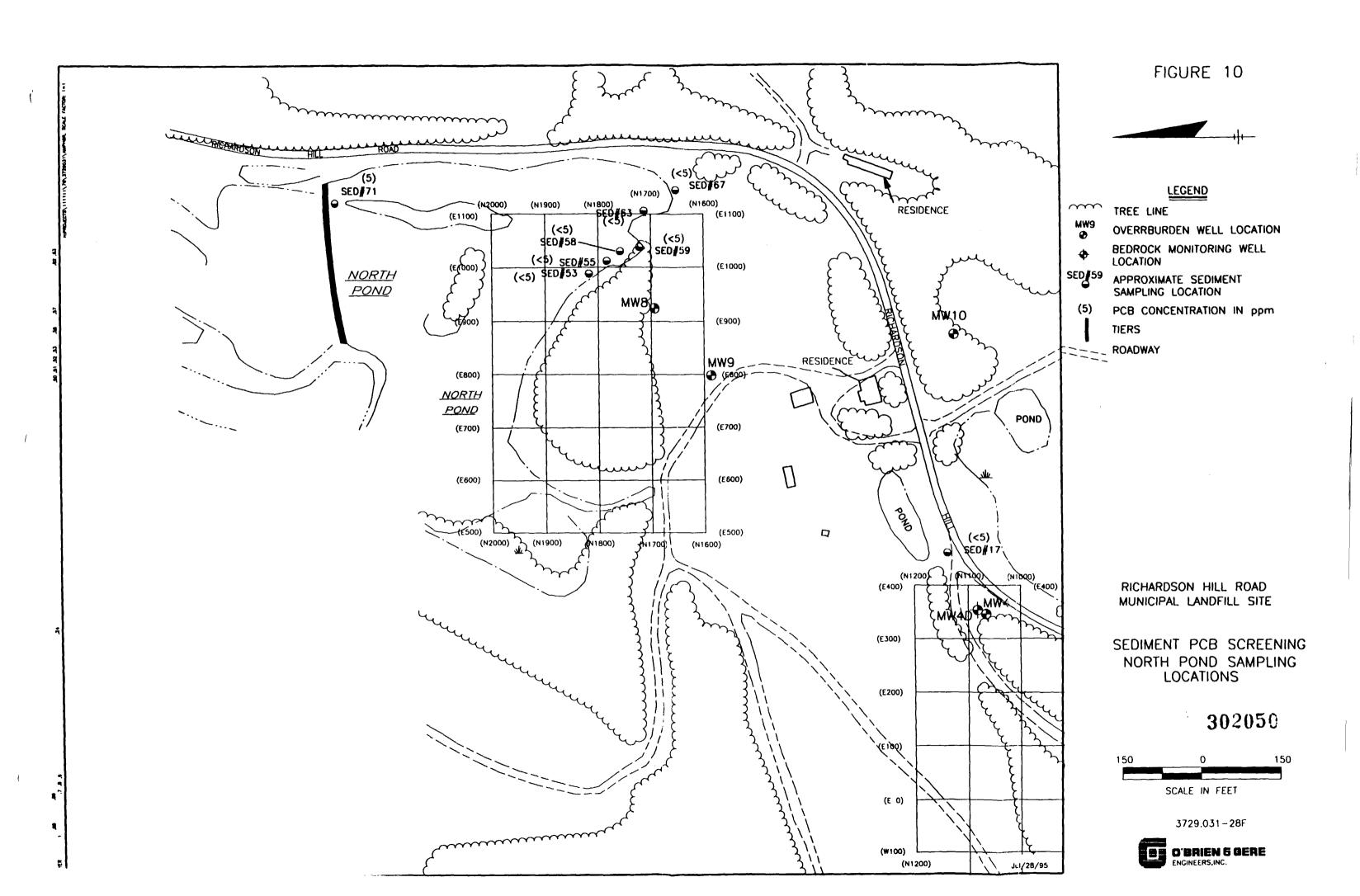
OVERBURDEN WELL LOCATION

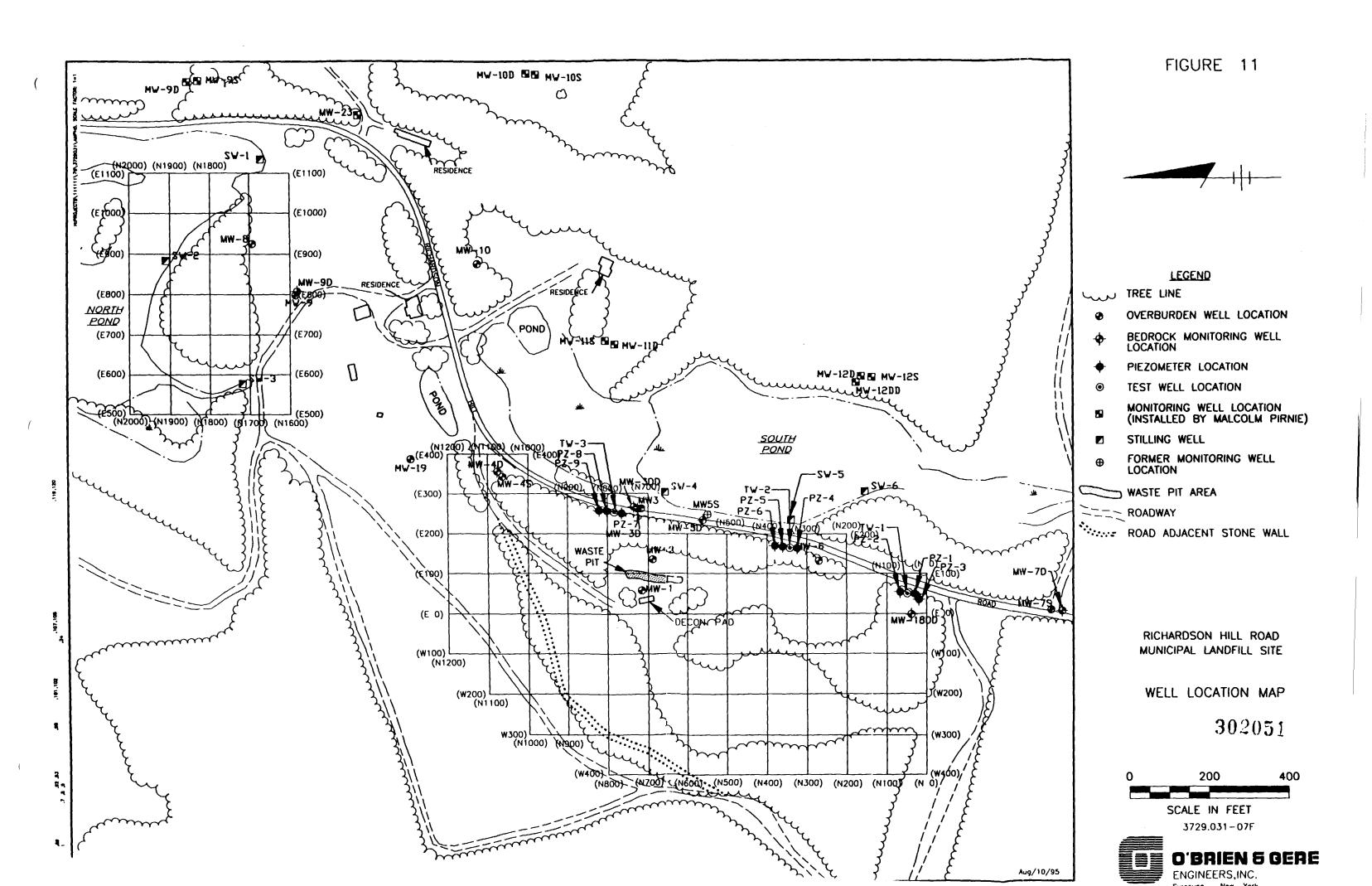
BEDROCK MONITORING WELL LOCATION

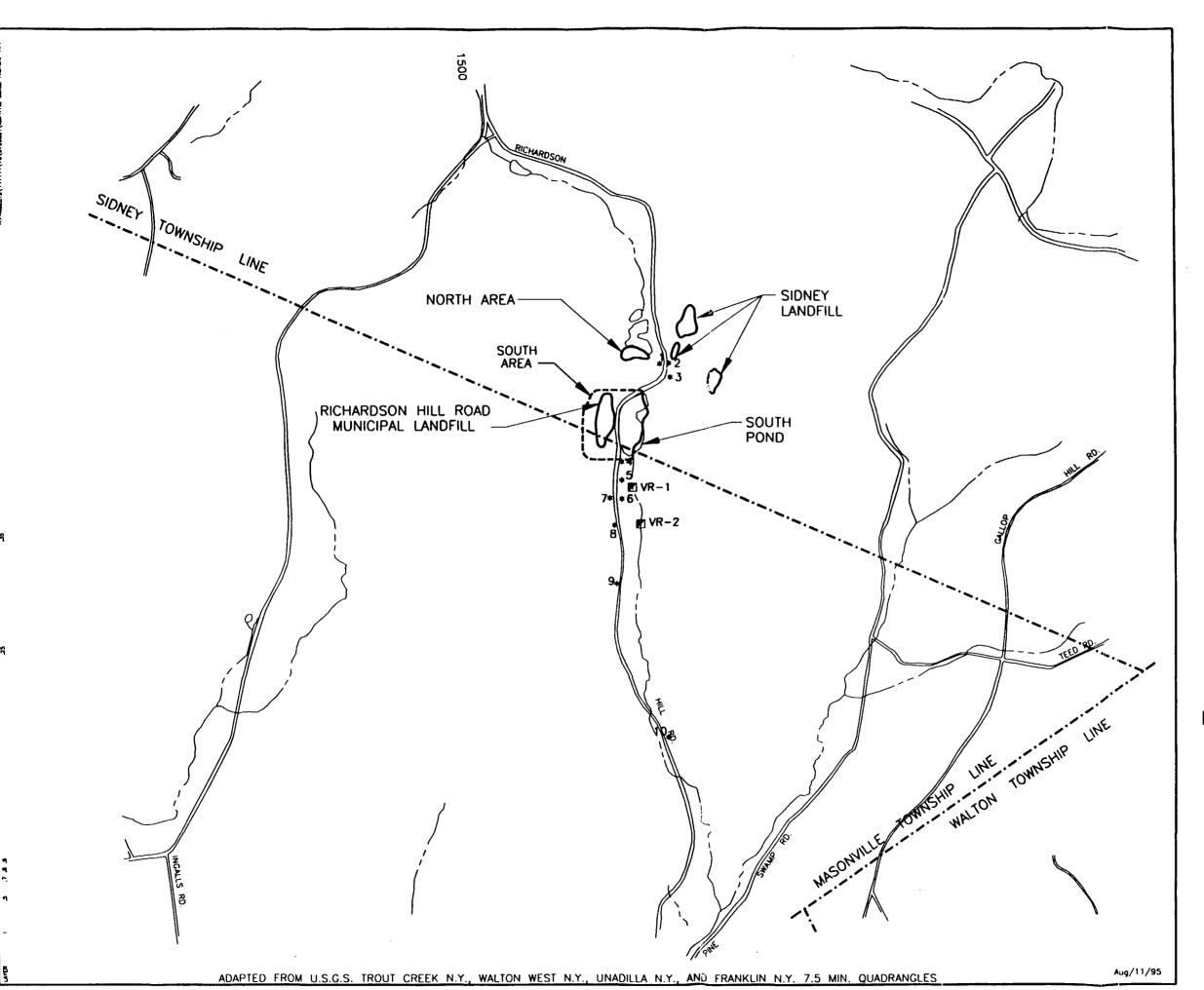
⊕ FORMER MONITORING WELL LOCATION

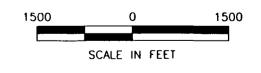

ED#40 APPROXIMATE SEDIMENT SAMPLING LOCATION

PCB CONCENTRATION IN ppm


TIERS

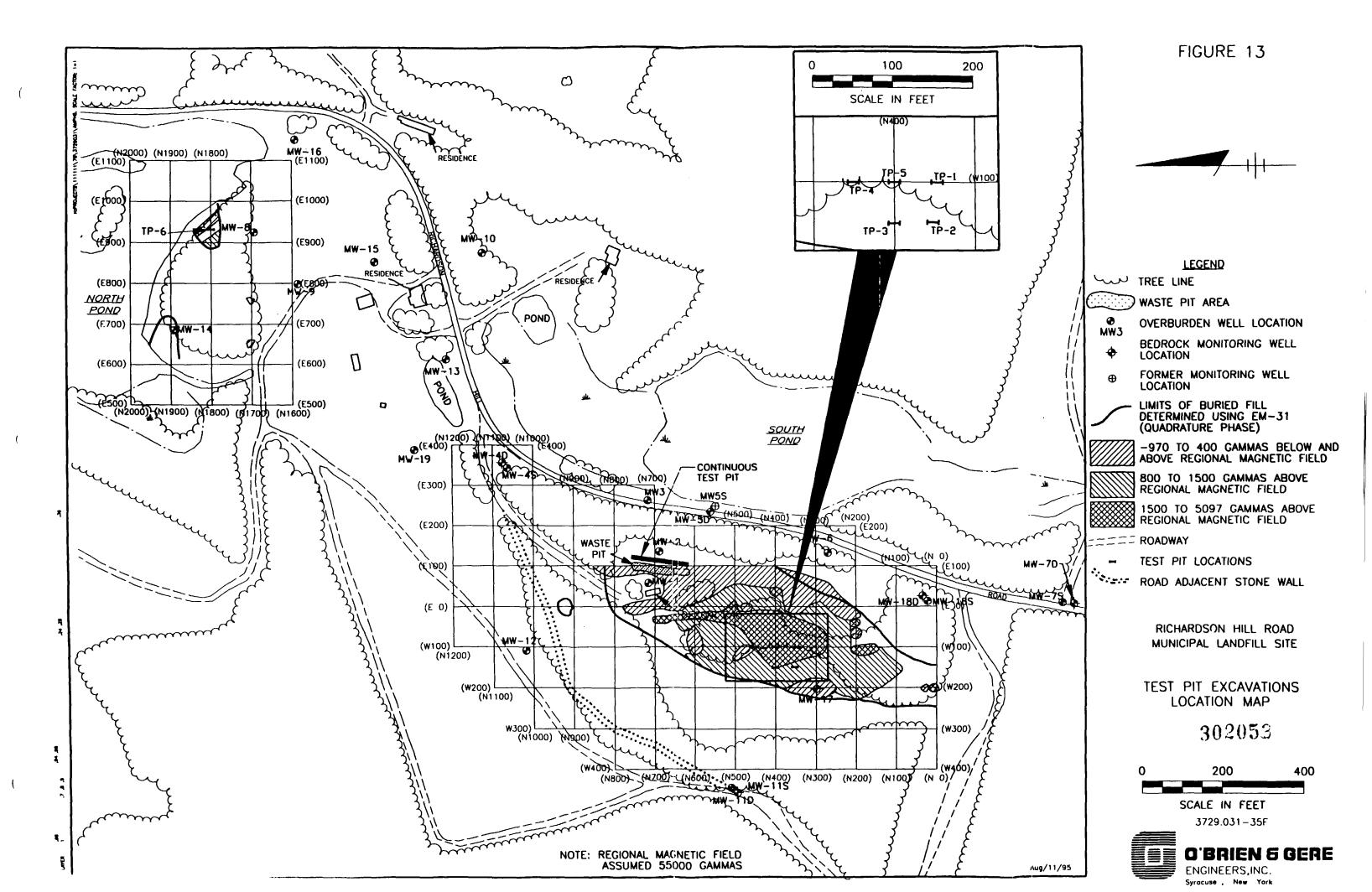

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE

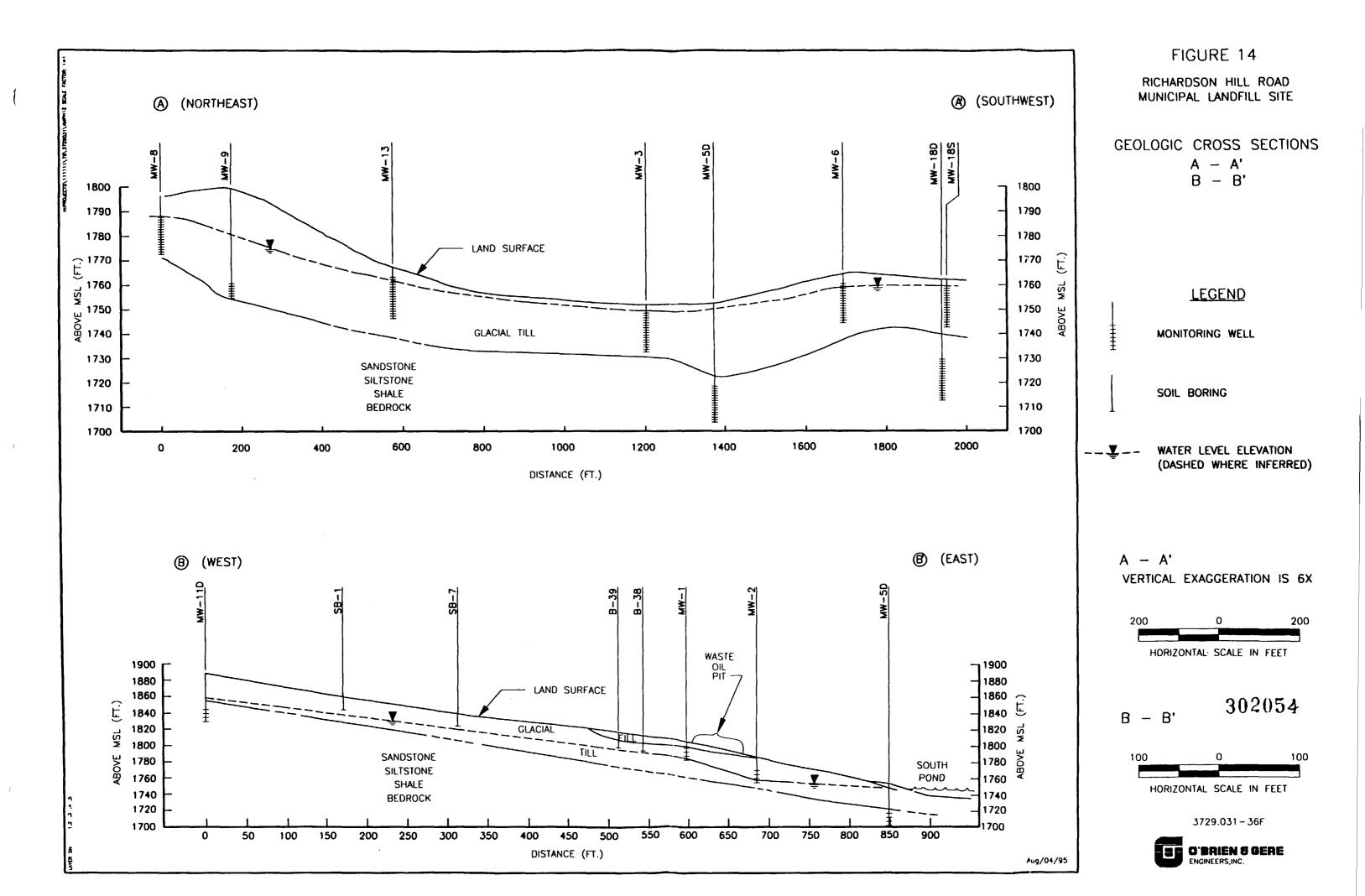

SEDIMENT PCB SCREENING SOUTH POND SAMPLING LOCATION 302049

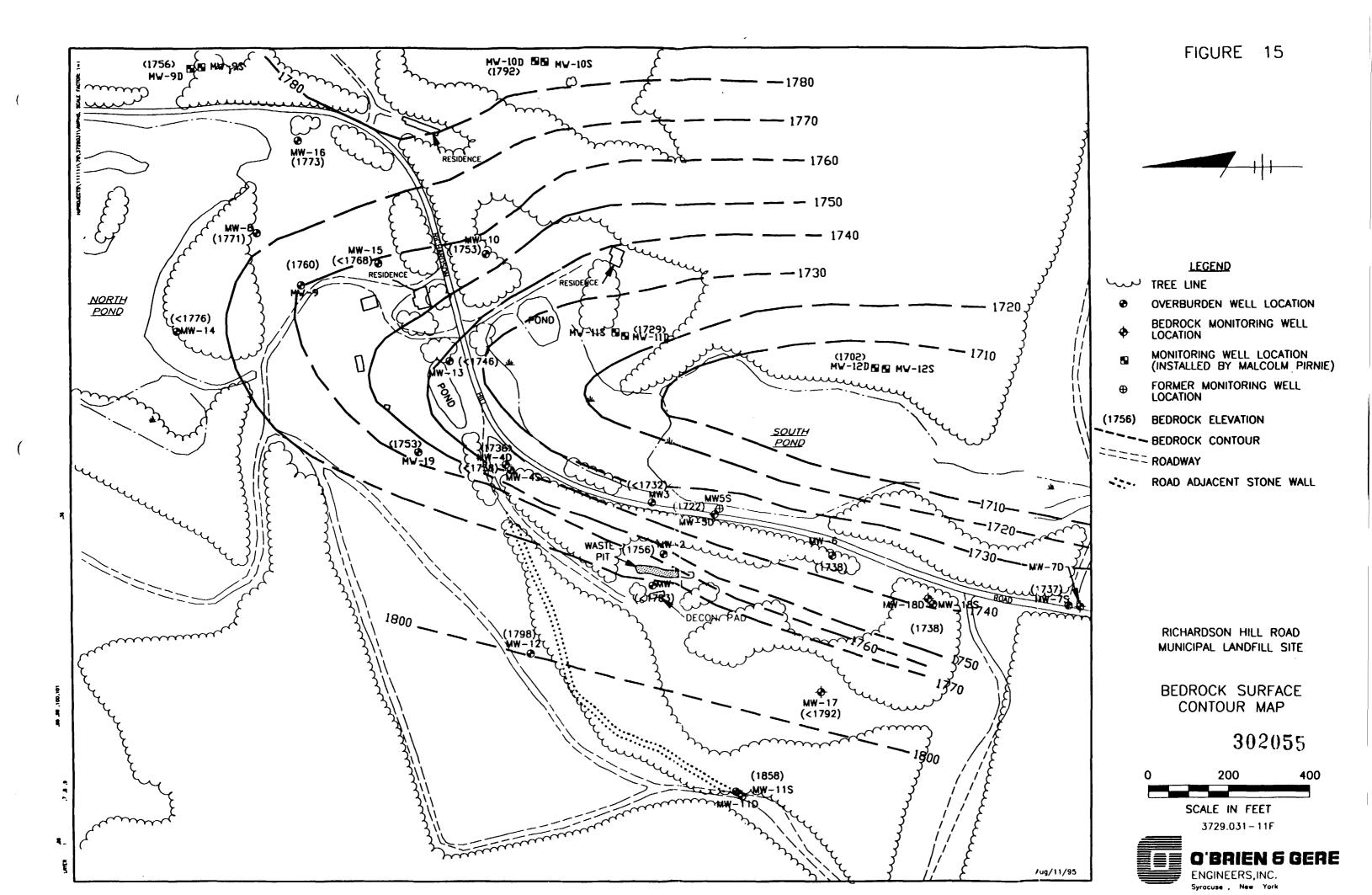

- LEGEND
- * HOUSE/MOBILE HOME
- STREAM FLOW MEASUREMENT STATION

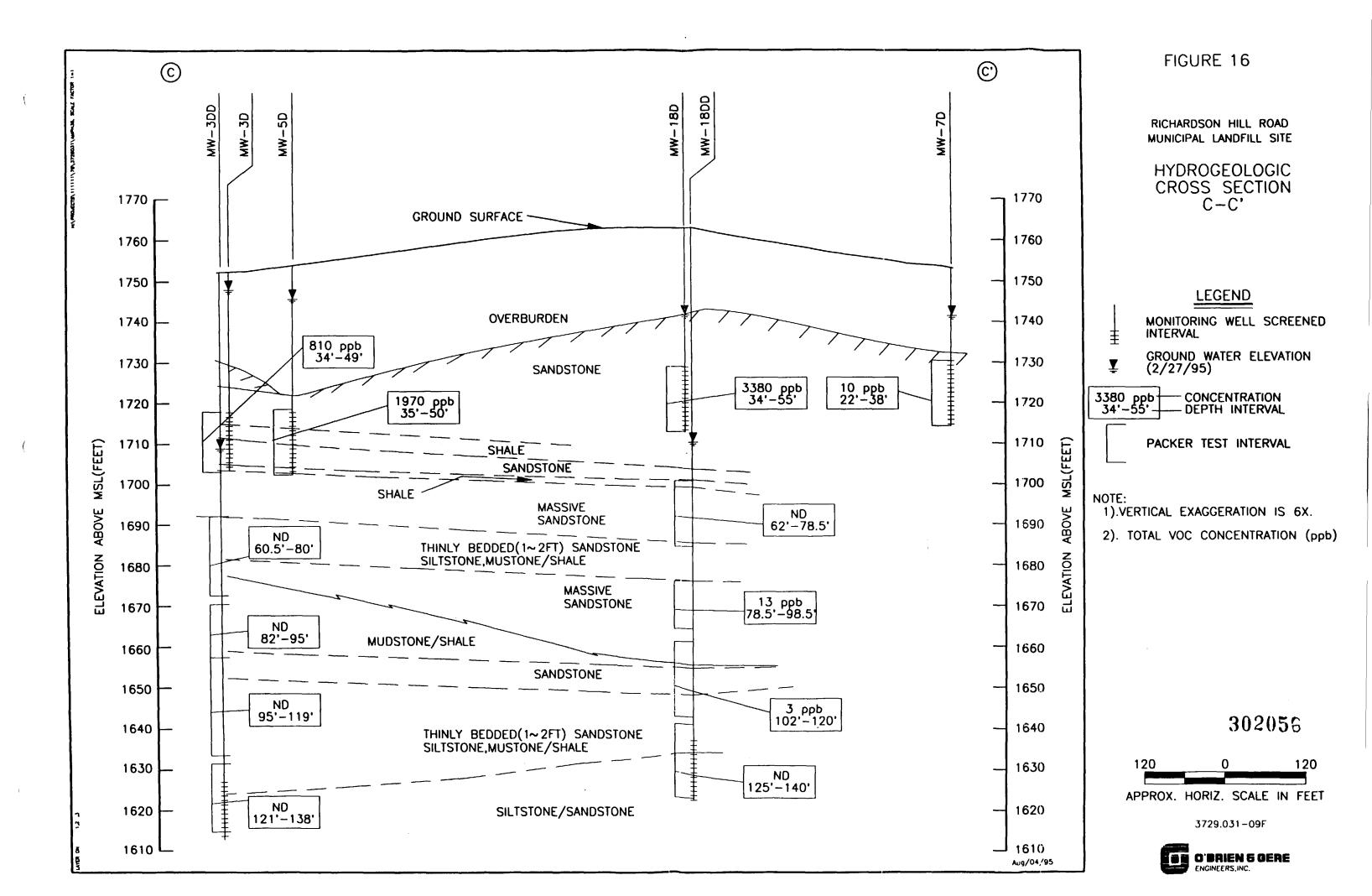
HOMEOWNER NAMES

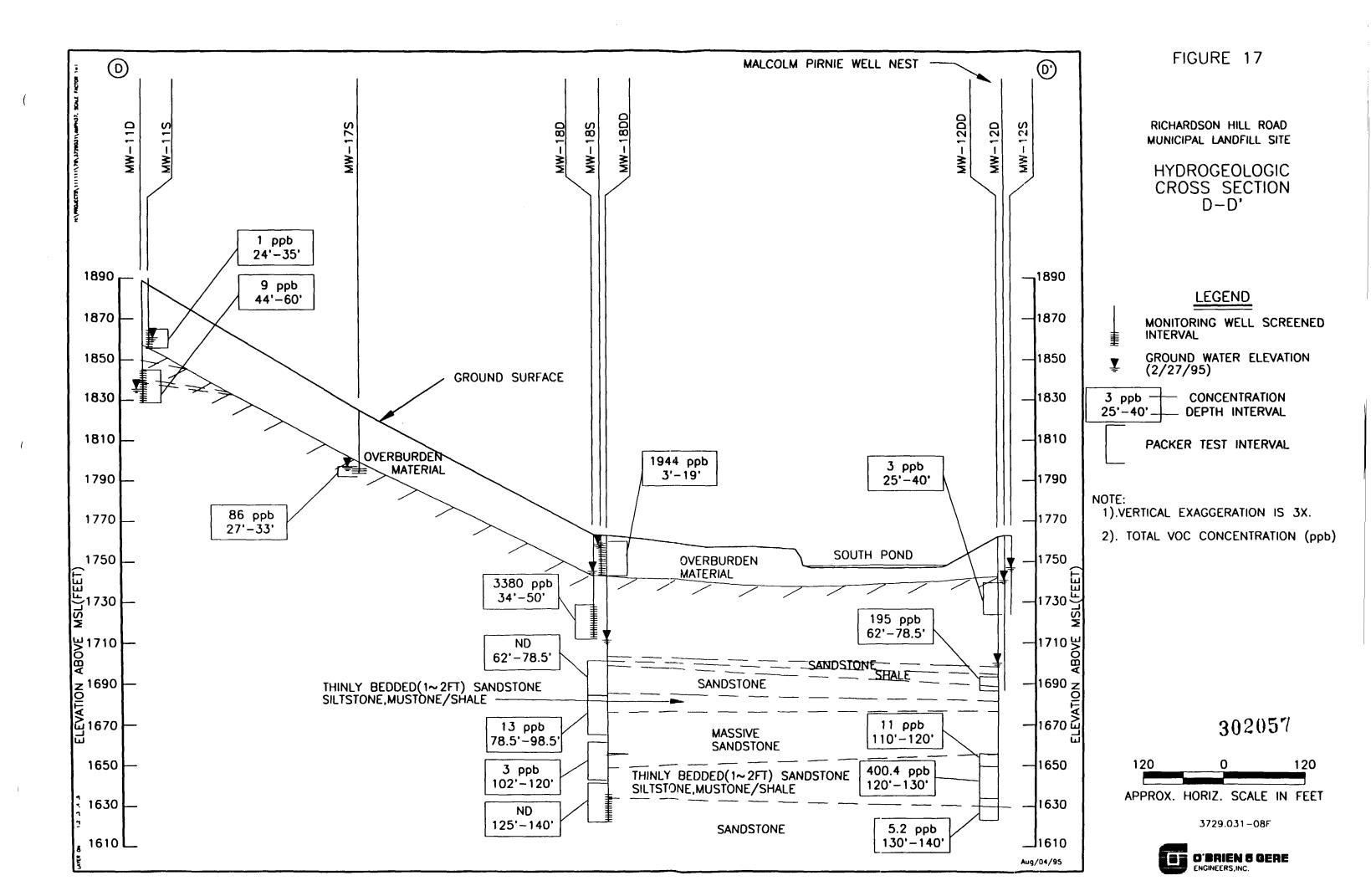
- *1 SPIZZIRI
- ***2 WHITEHURST**
- *3 WYATT
- +4 S. SMITH
- •5 ABANDONED
- *6 COUTAVOS
- +7 A. MULDER
- *8 VERPAULT
- ***9** UNKNOWN
- *10 F. HANES

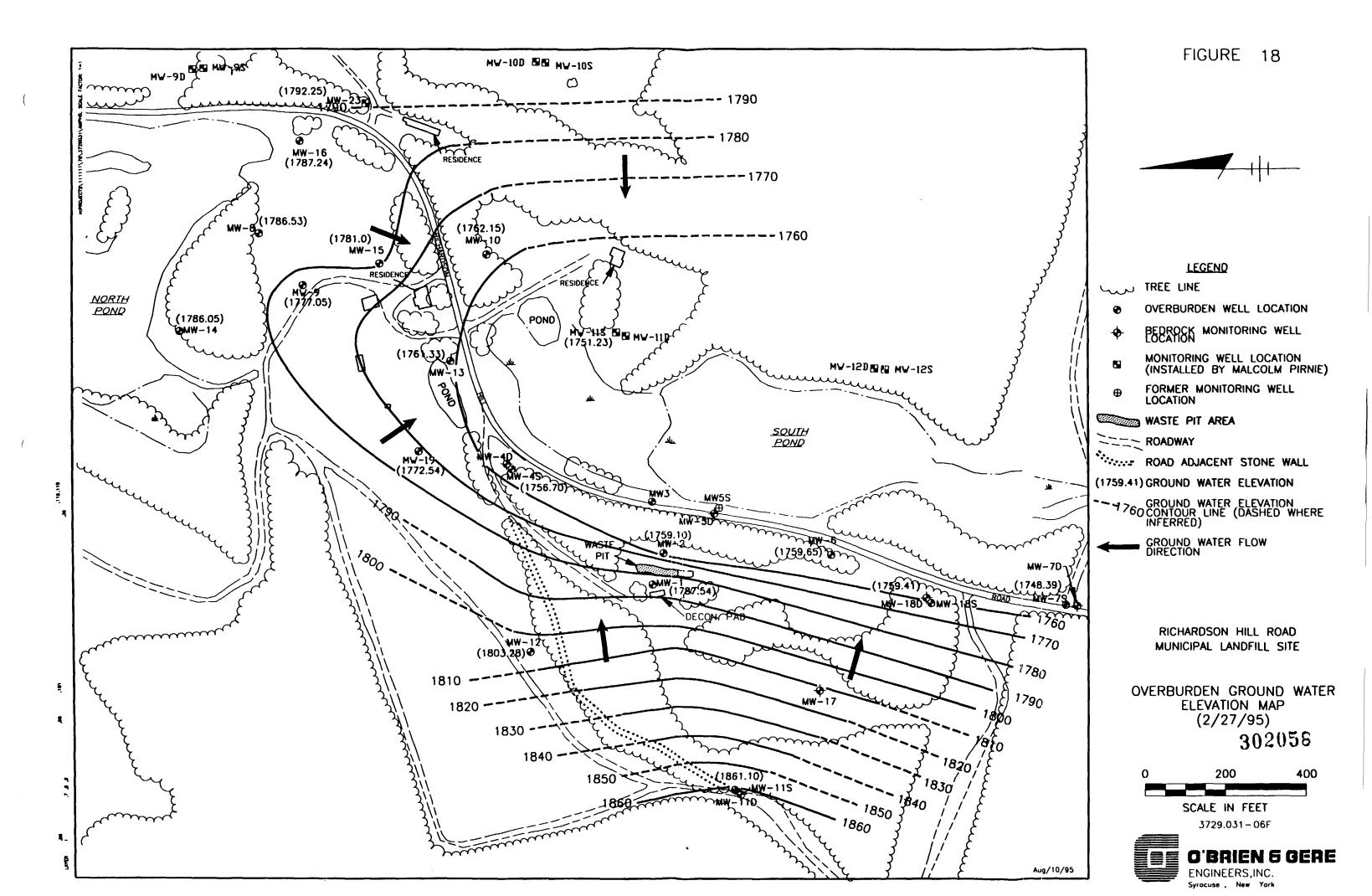

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE

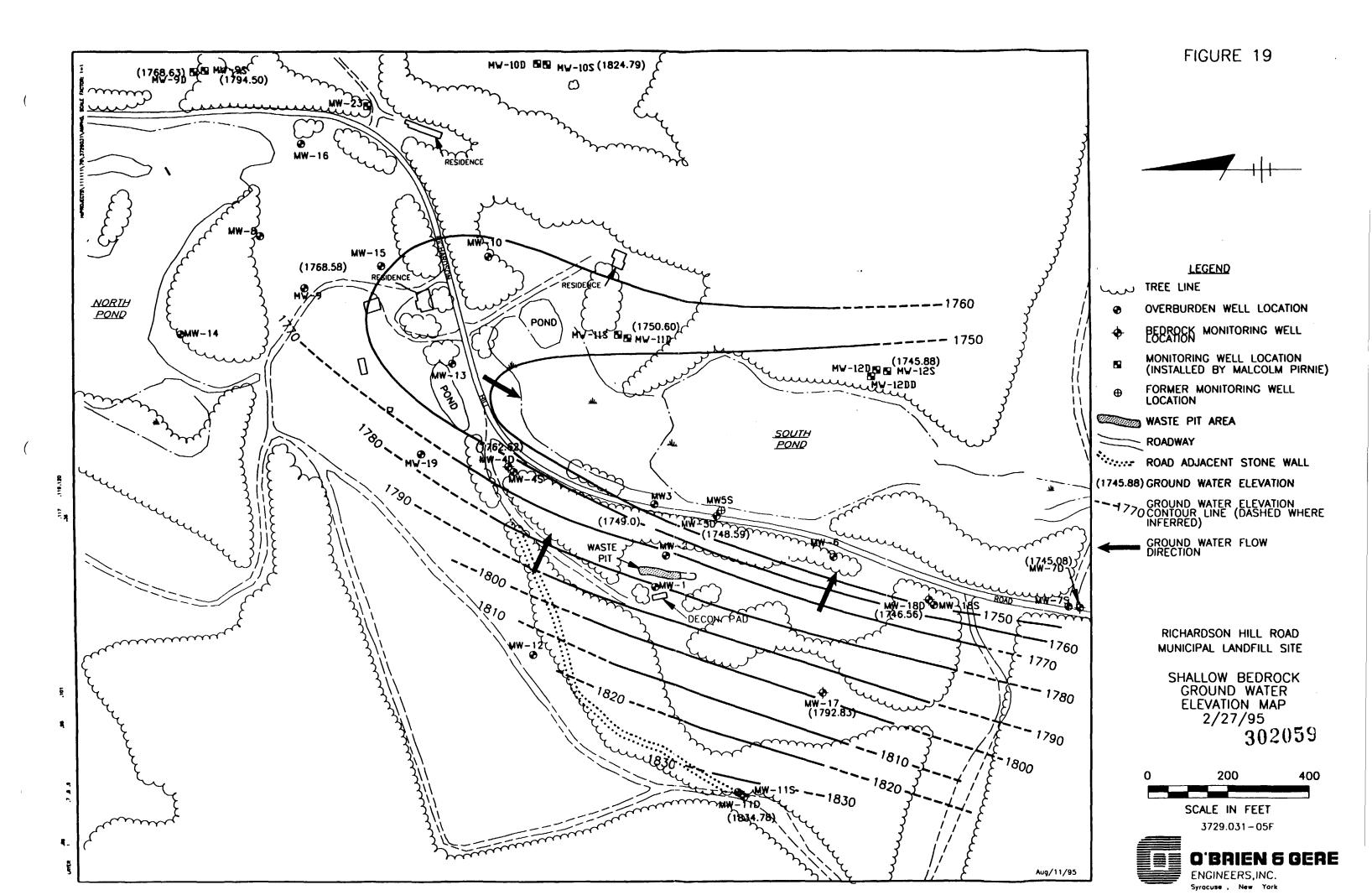

RESIDENCES WITHIN 1-MILE DOWNSTREAM OF THE RICHARDSON HILL ROAD MUNICIPAL LANDFILL 302052

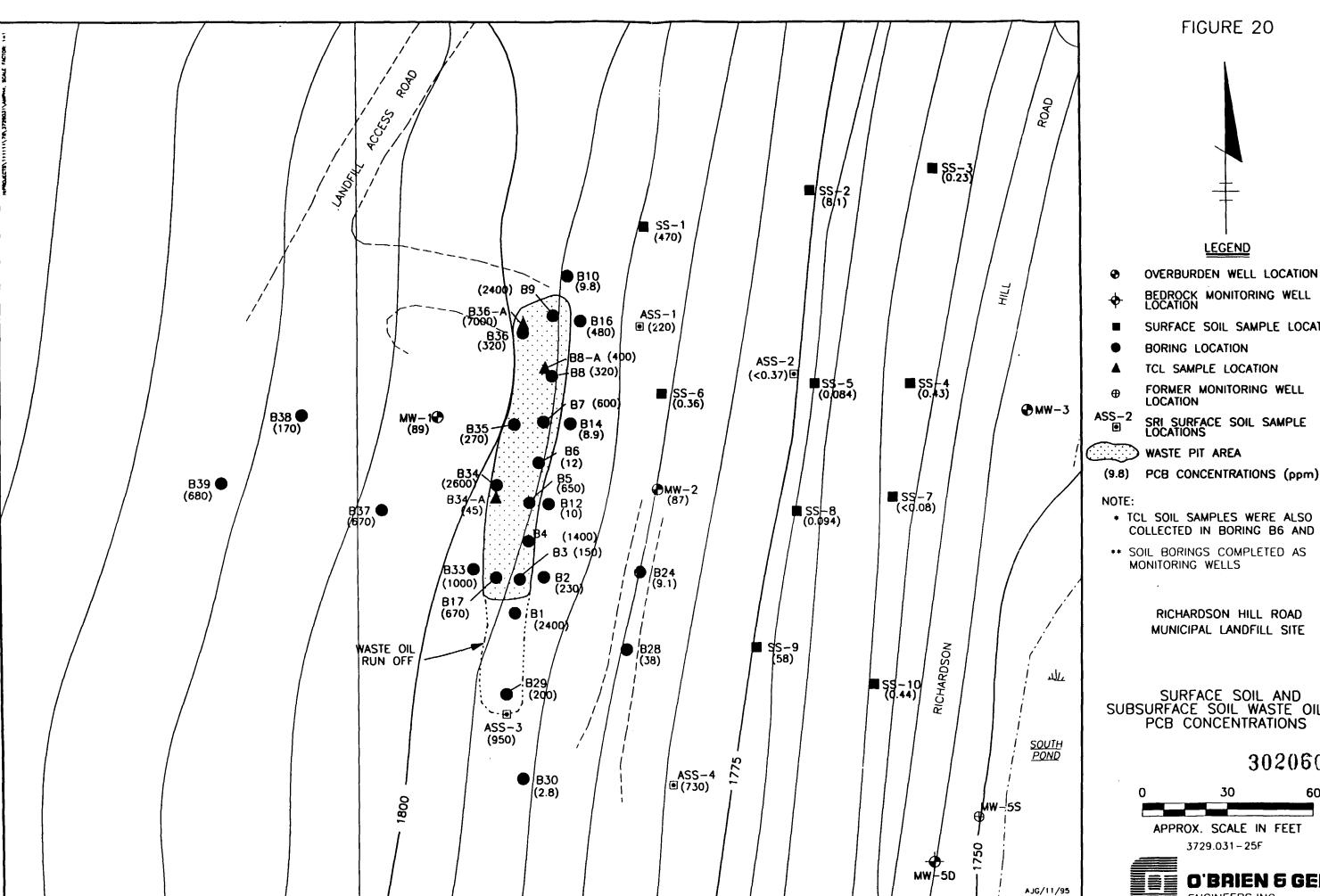


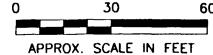

3729.031 - 30F

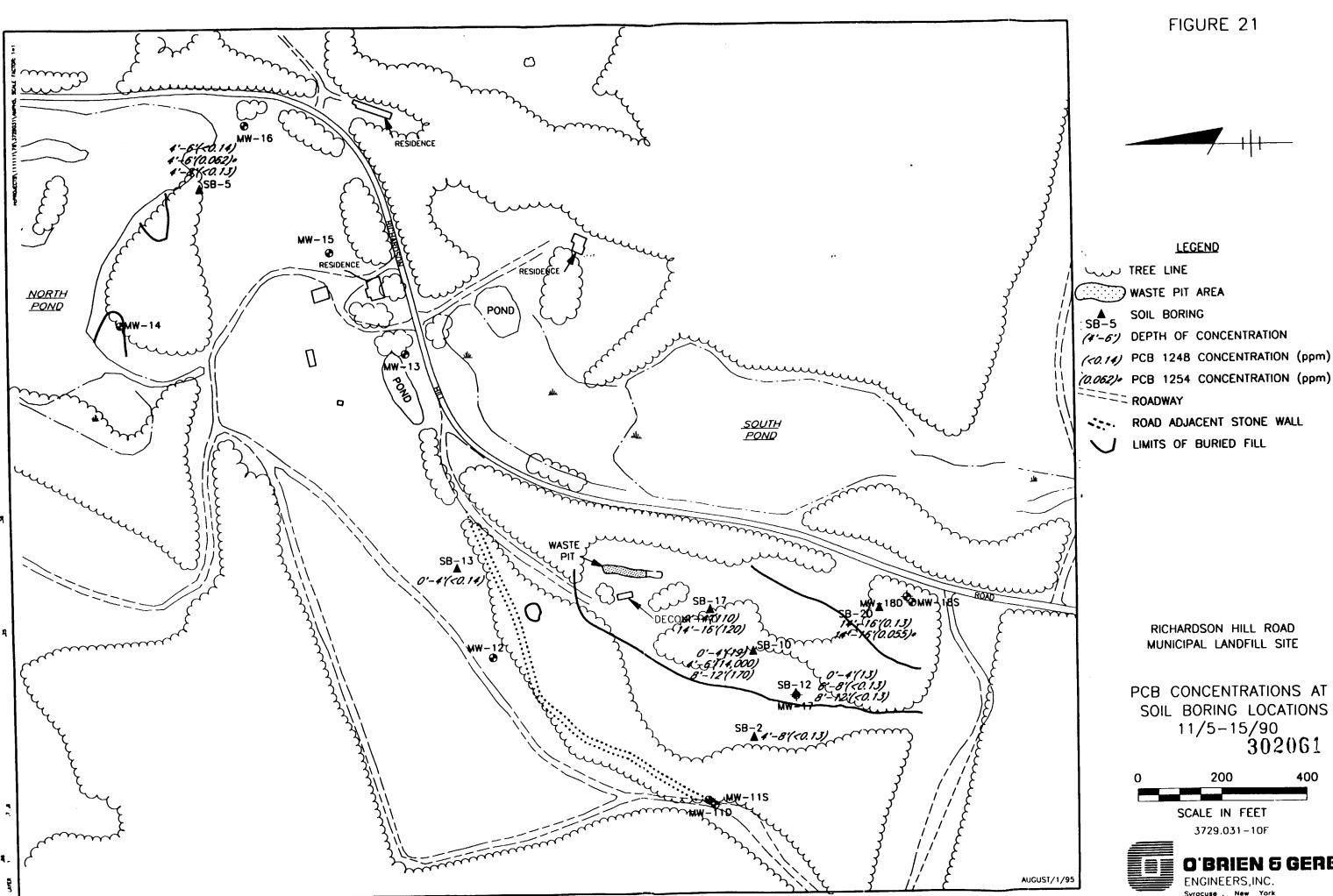






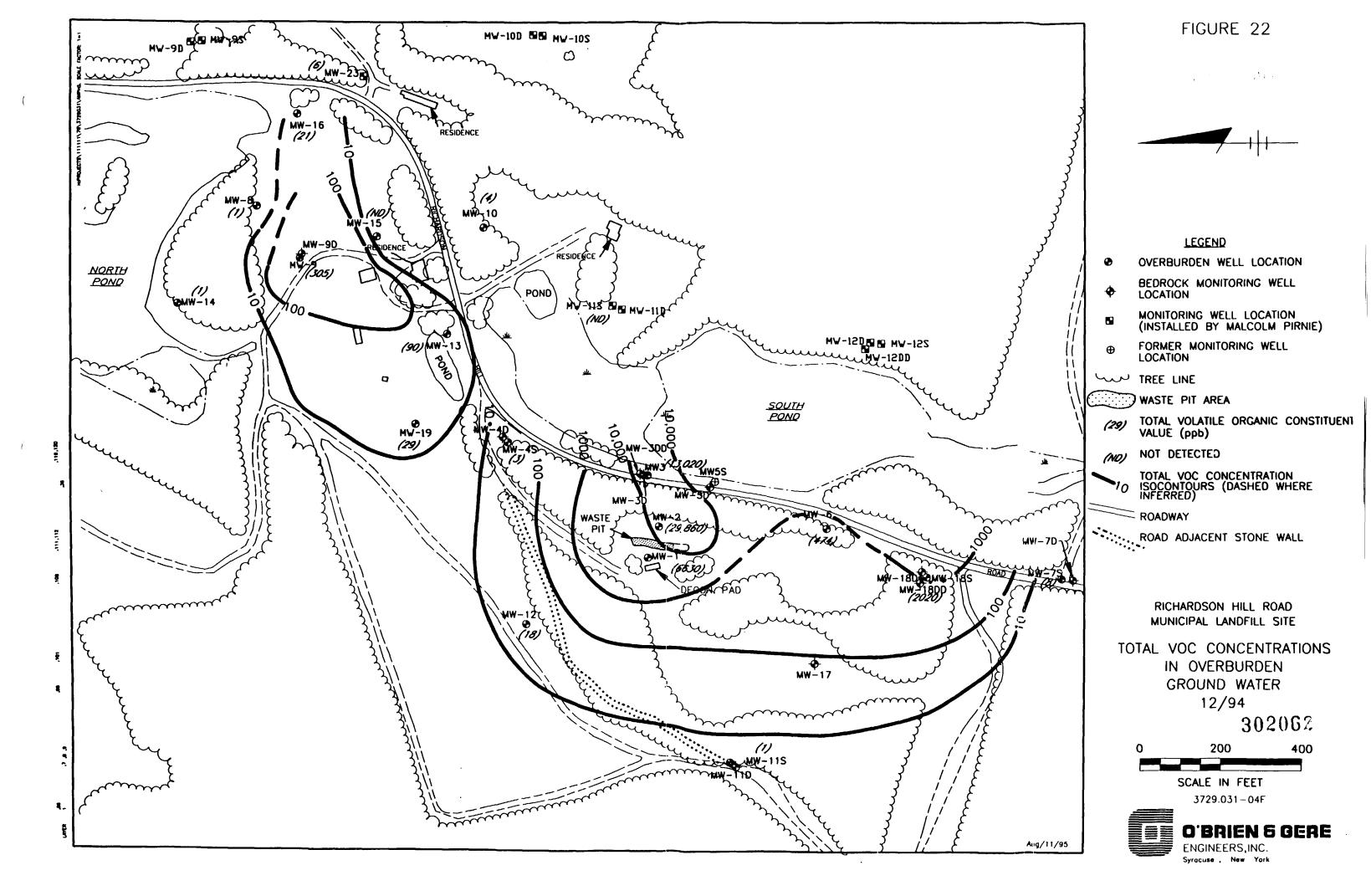




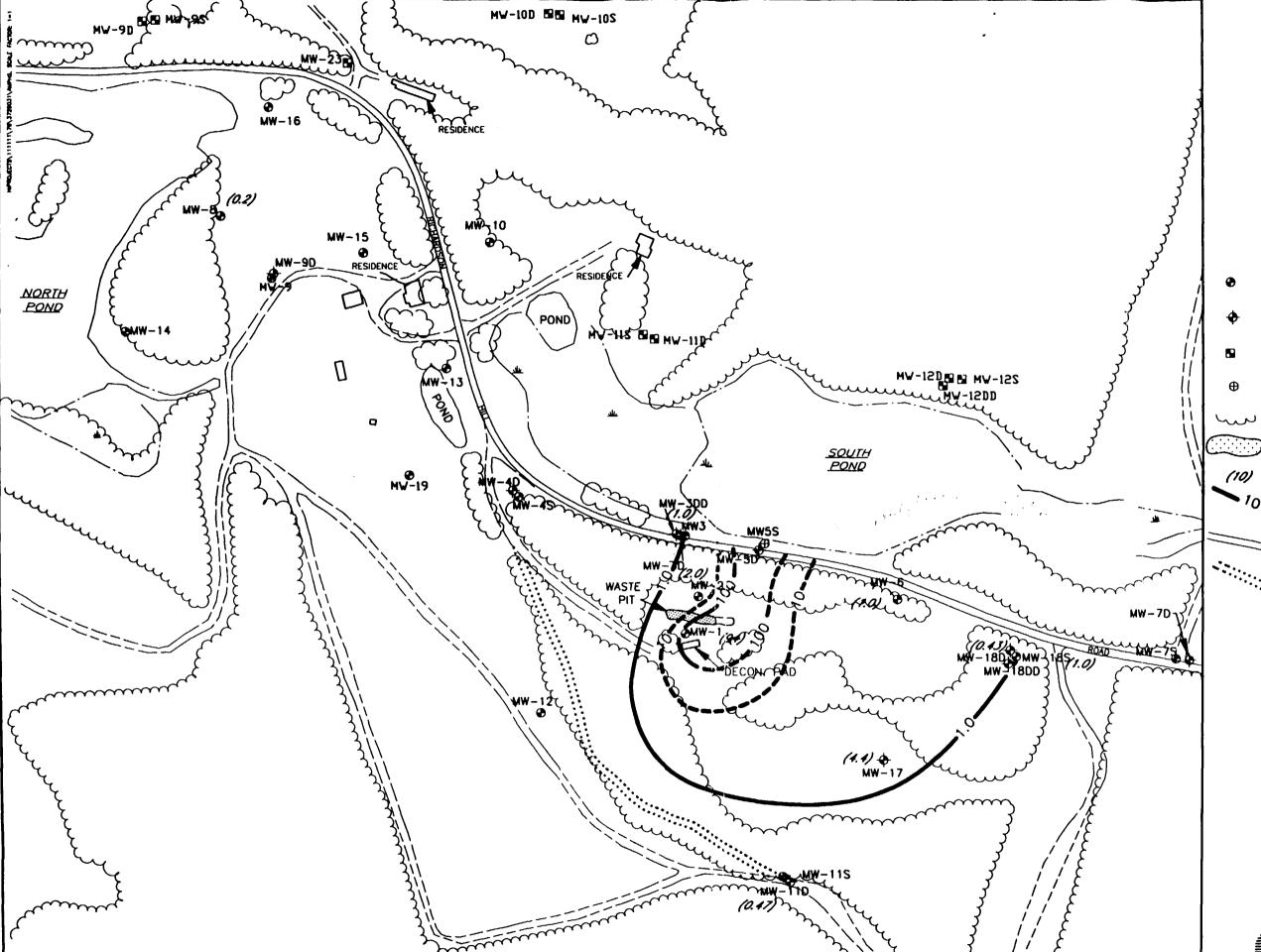

- SURFACE SOIL SAMPLE LOCATION
- FORMER MONITORING WELL
- SRI SURFACE SOIL SAMPLE LOCATIONS
- (9.8) PCB CONCENTRATIONS (ppm)
- TCL SOIL SAMPLES WERE ALSO COLLECTED IN BORING B6 AND B7

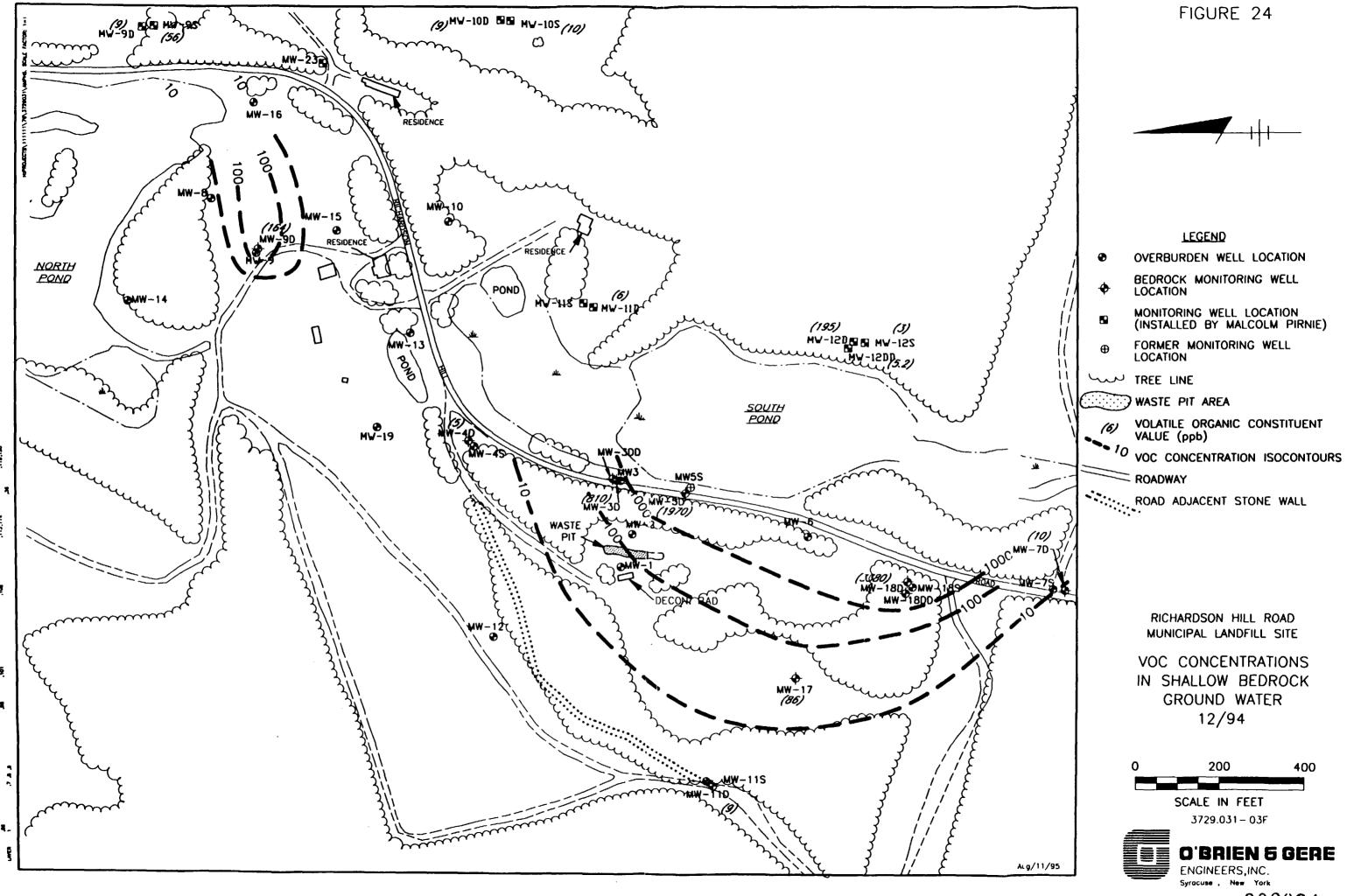
RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE

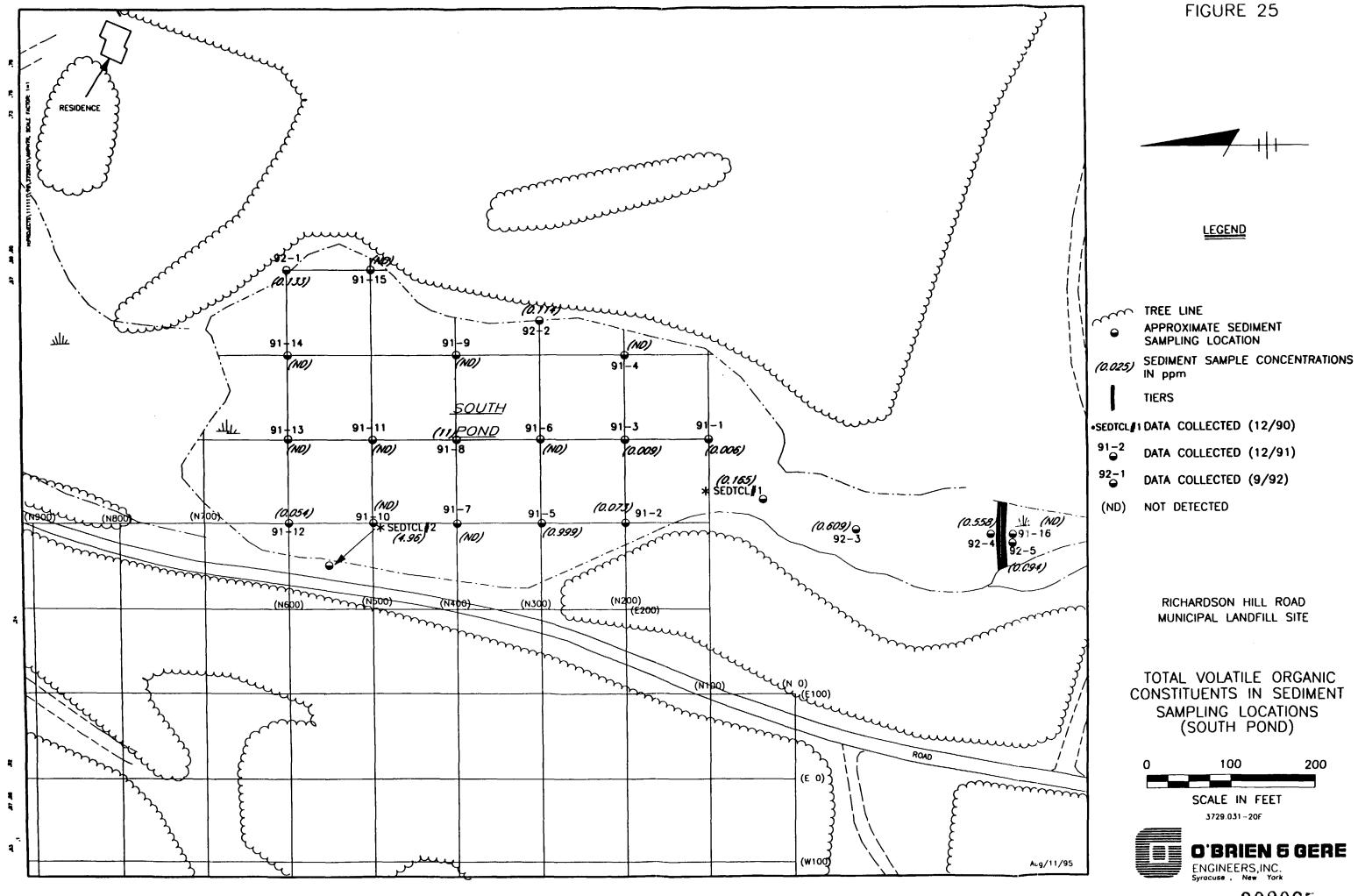
SURFACE SOIL AND SUBSURFACE SOIL WASTE OIL PIT PCB CONCENTRATIONS

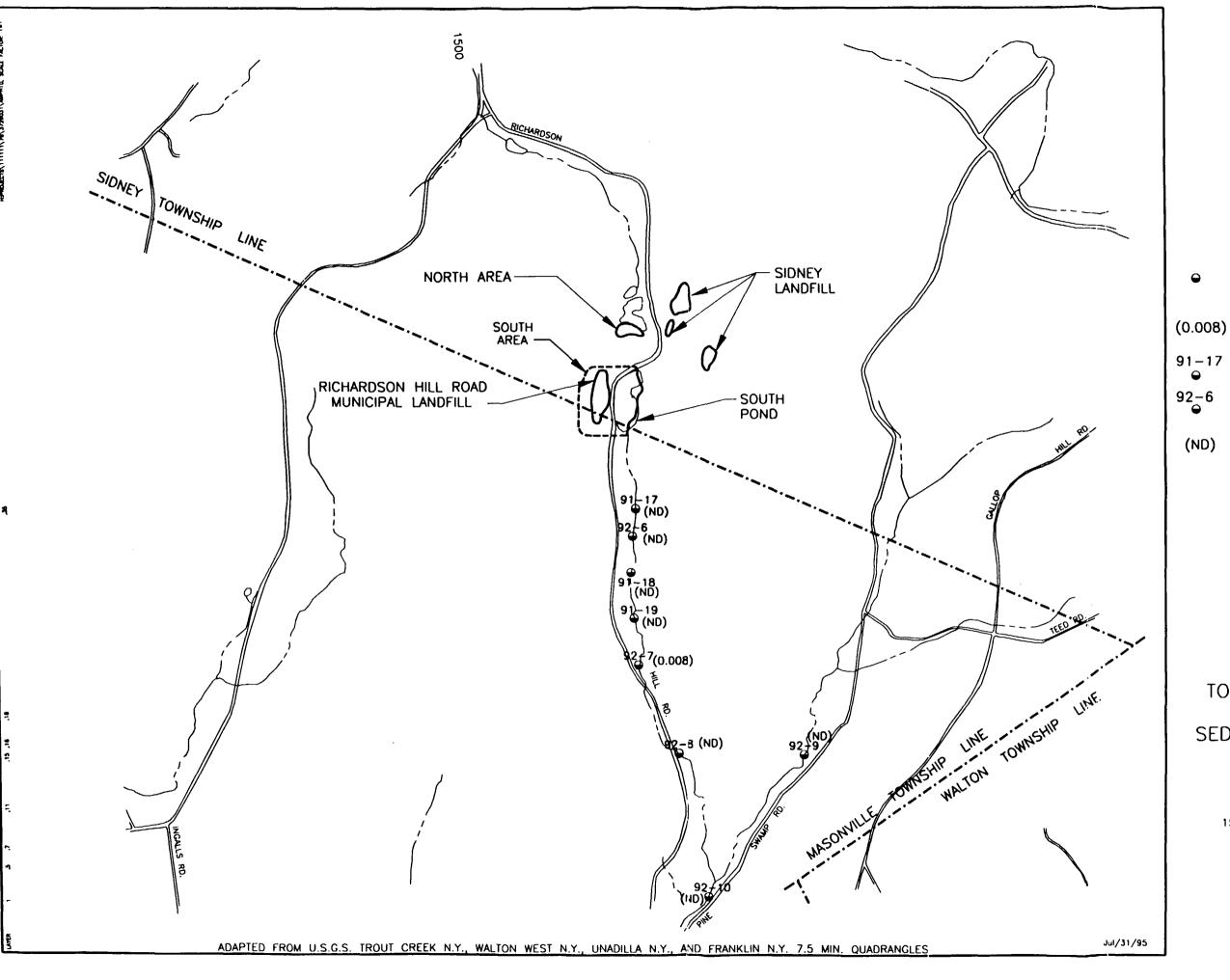


SCALE IN FEET 3729.031-10F






O'BRIEN & GERE


ENGINEERS,INC.
Syrocuse . New York

Aug/11/95

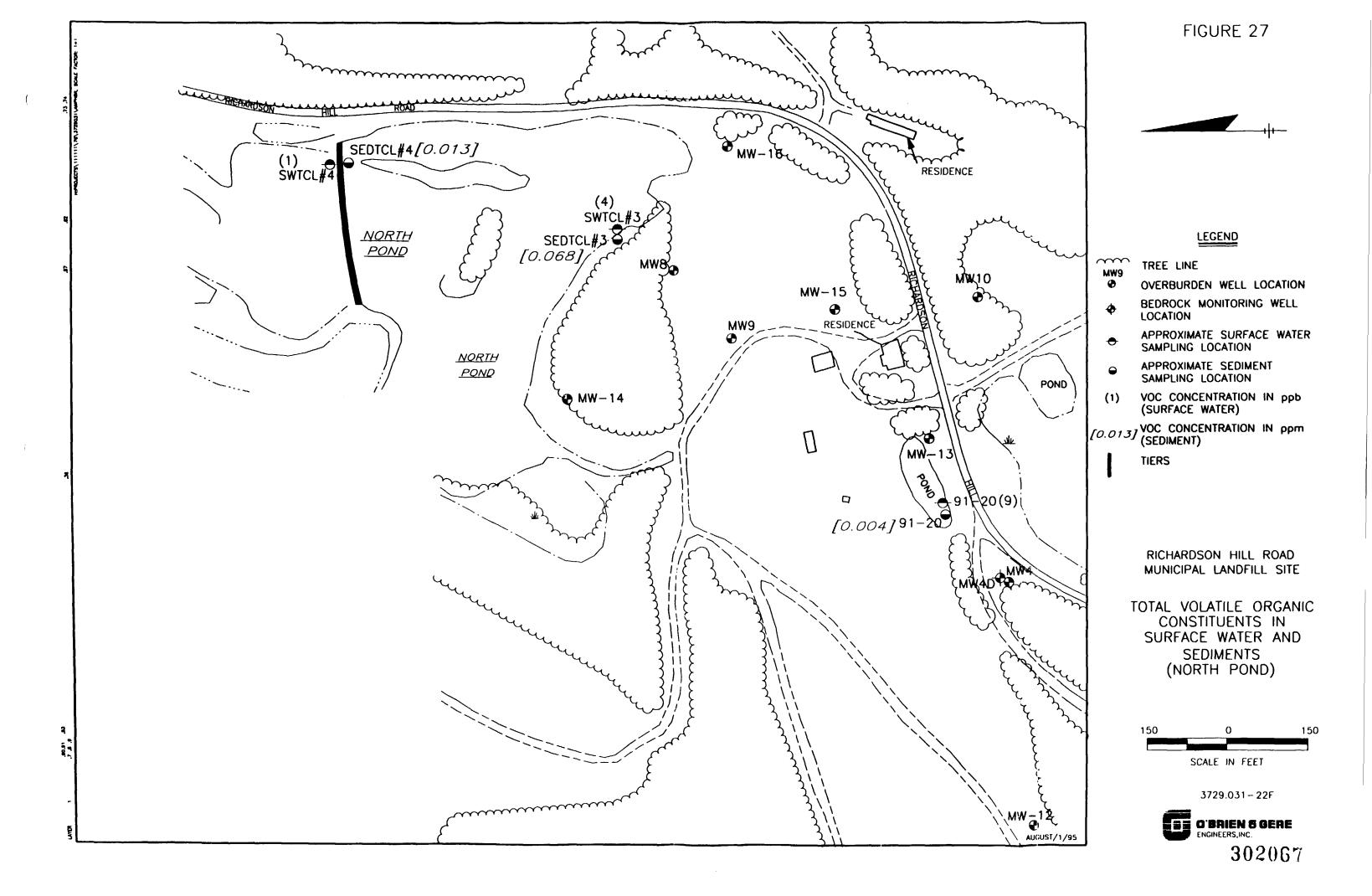
LEGEND

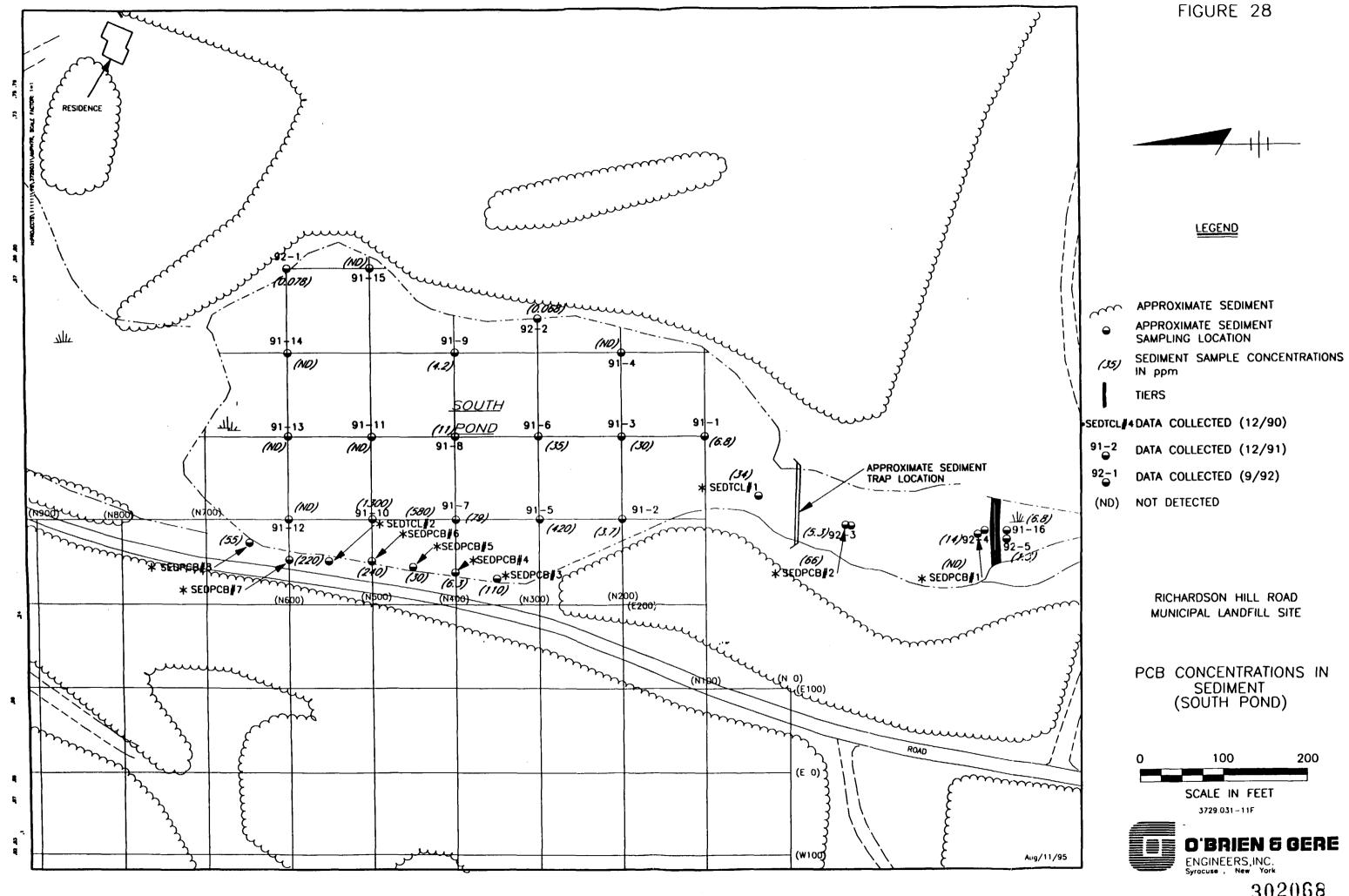
APPROXIMATE SEDIMENT SAMPLE LOCATION

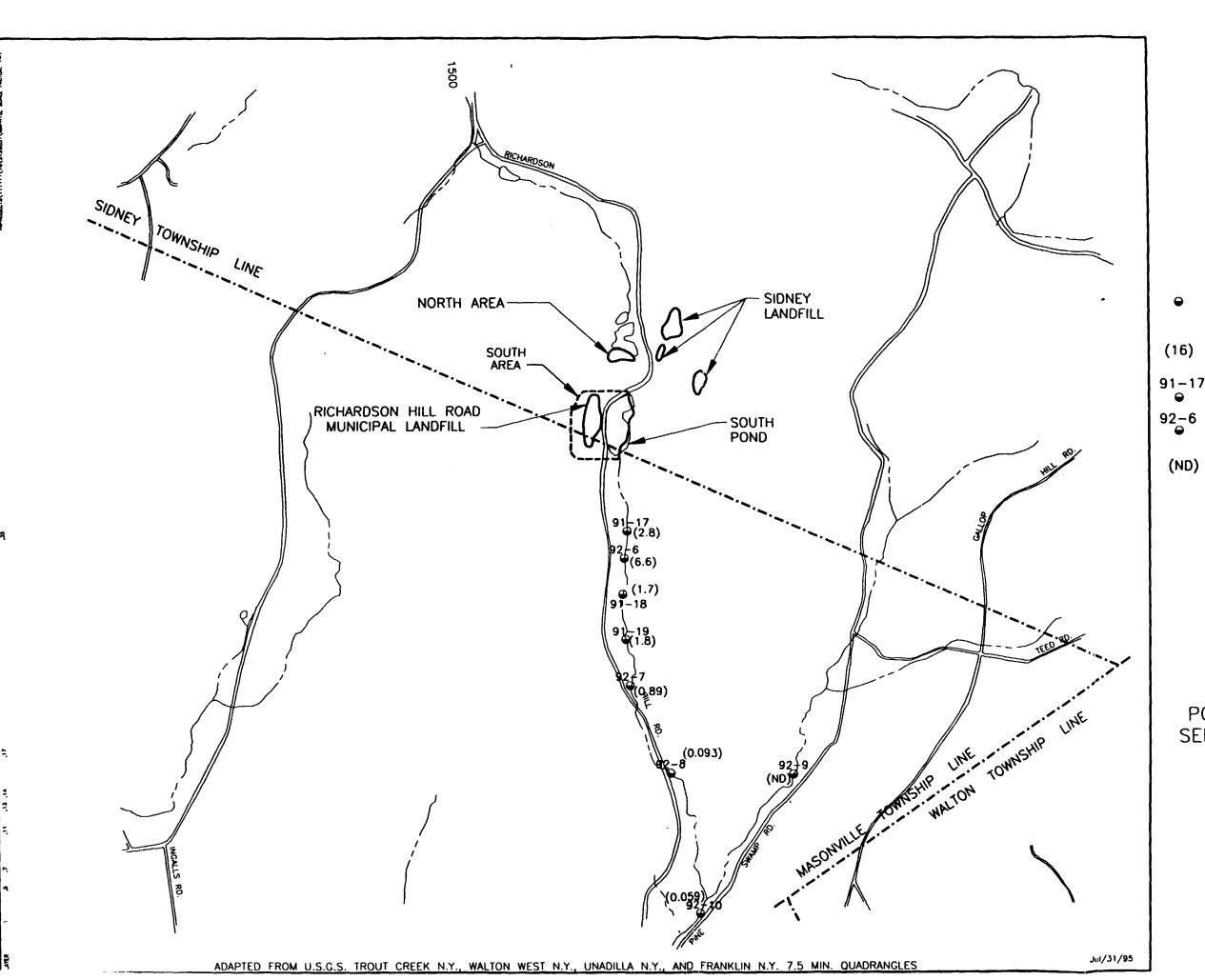
(0.008) SEDIMENT SAMPLE CONCENTRATION IN (ppm)

 $^{2-6}$ DATA COLLECTED (9/92)

(ND) NOT DETECTED


RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE


TOTAL VOLATILE ORGANIC
CONSTITUENTS IN
SEDIMENT DOWNSTREAM OF
THE SOUTH POND



3729.031-21F

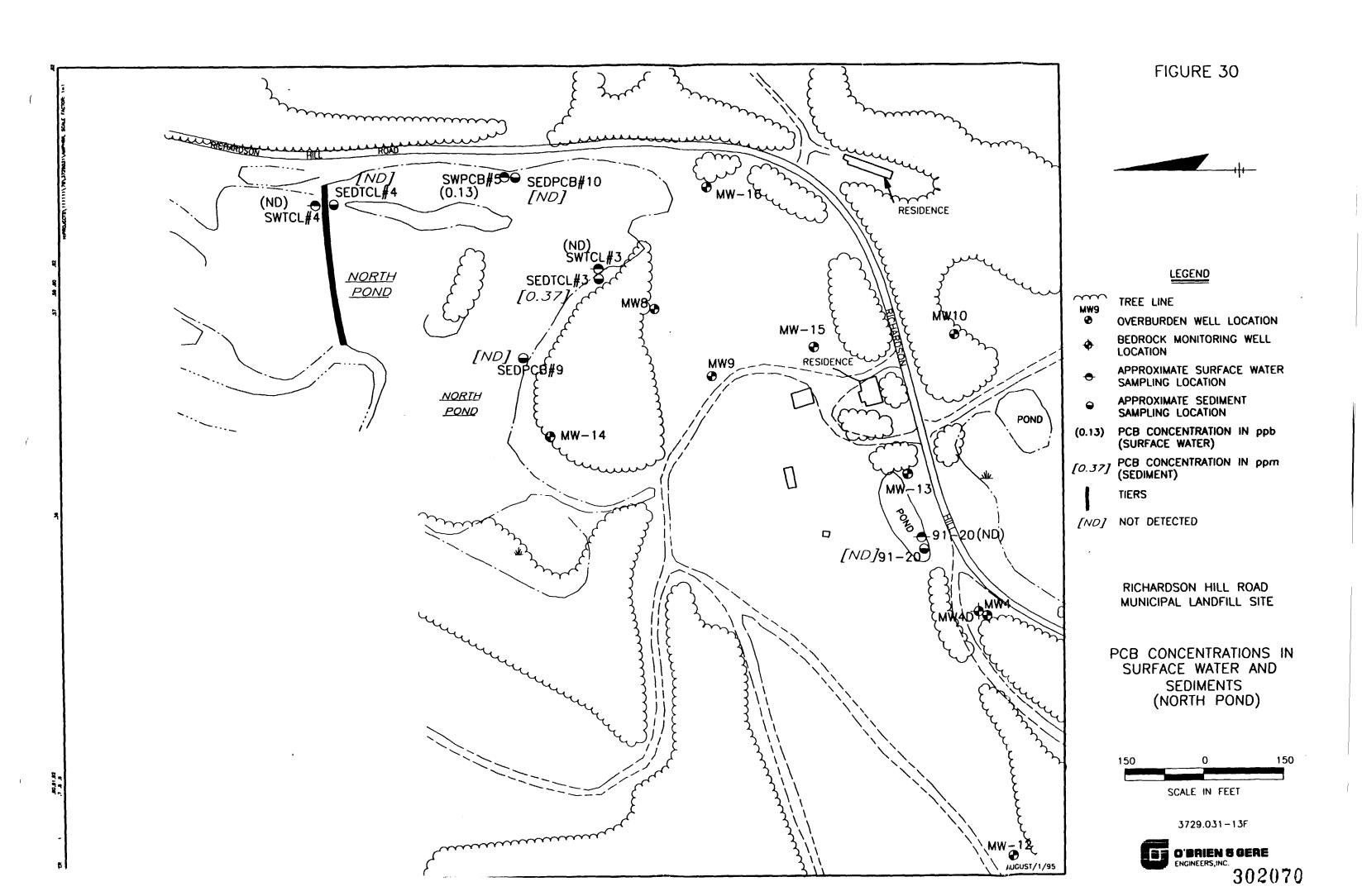
APPROXIMATE SEDIMENT SAMPLE LOCATION

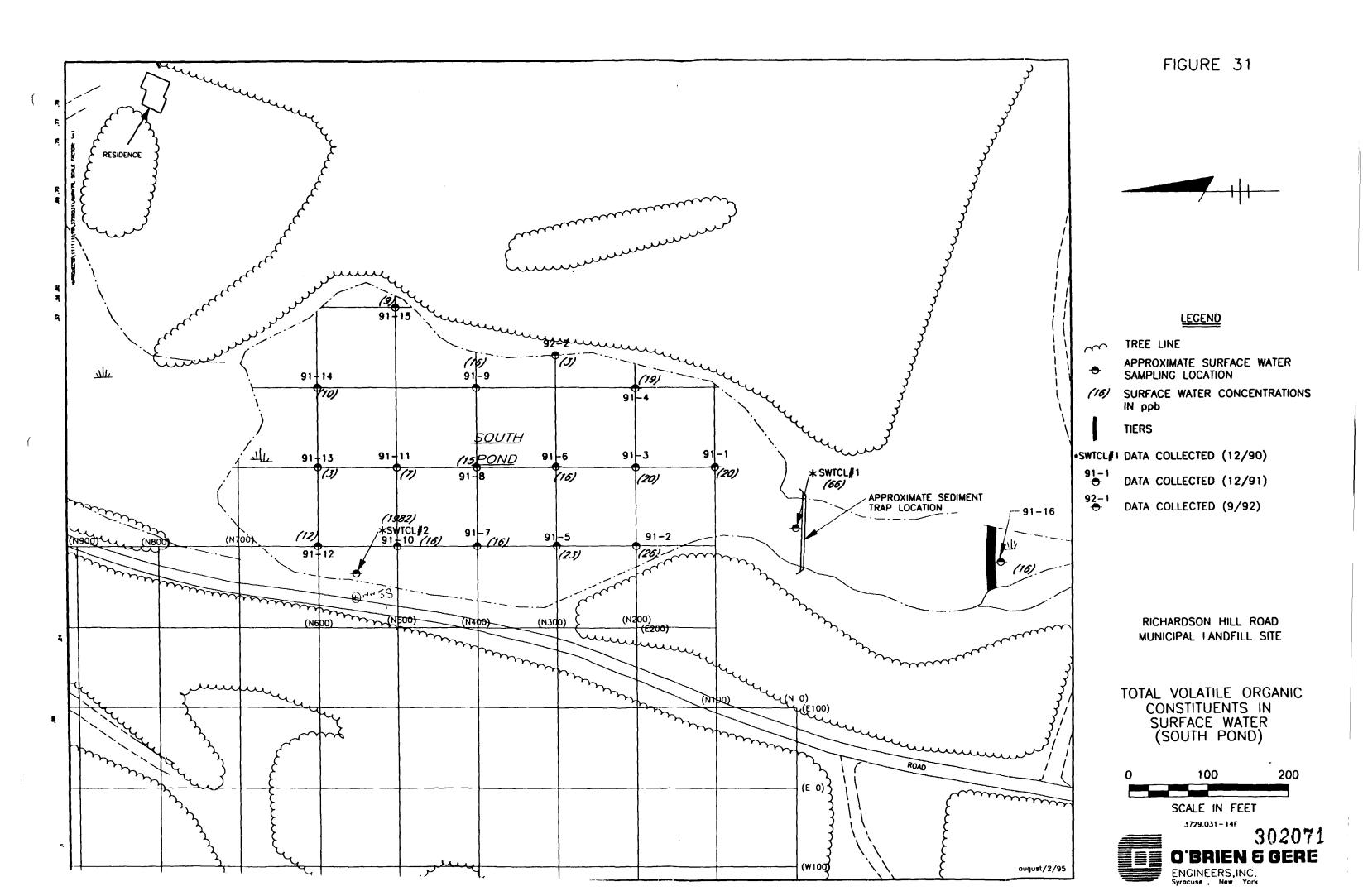
SEDIMENT SAMPLE CONCENTRATION IN ppm

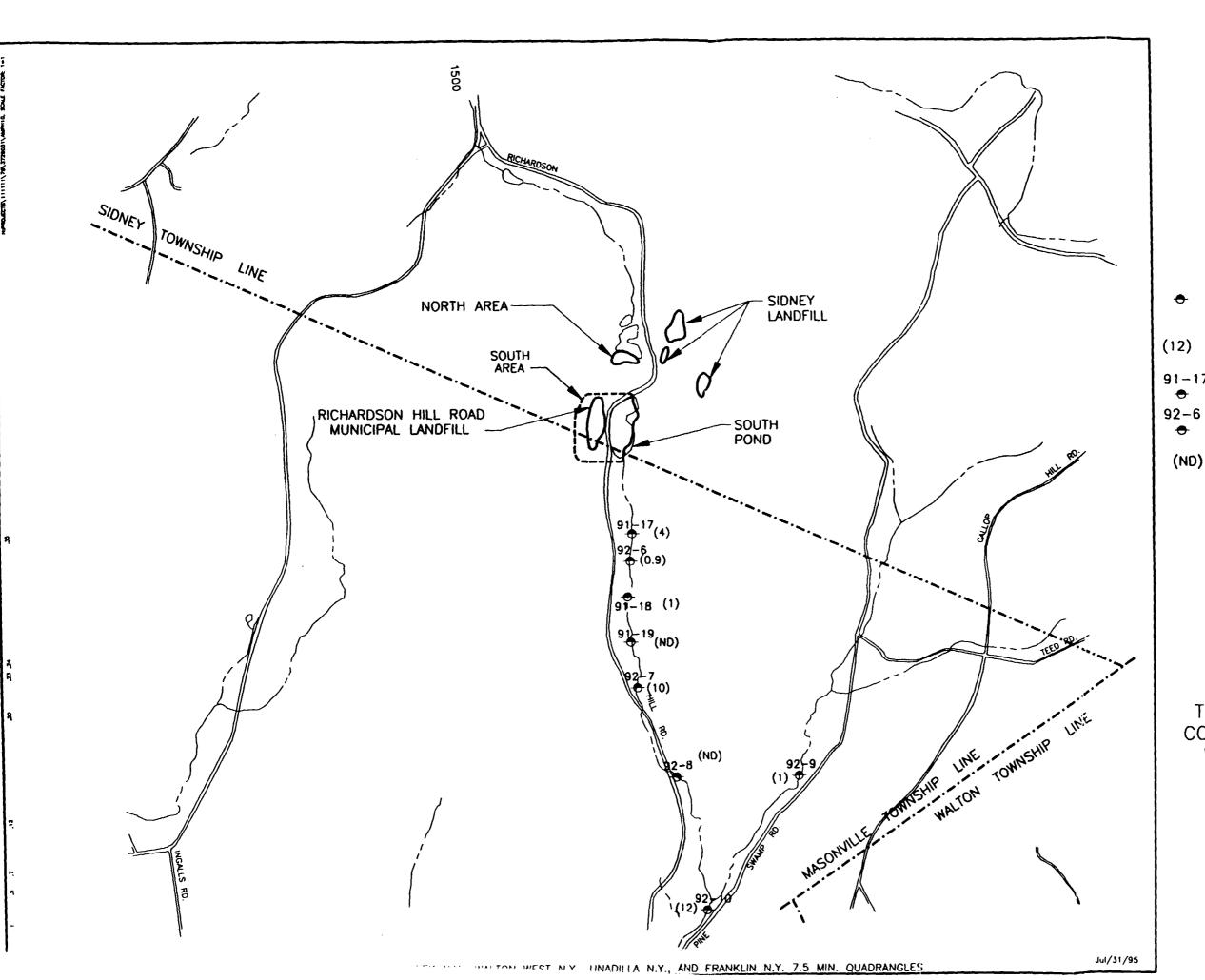

DATA COLLECTED (12/91)

DATA COLLECTED (9/92)

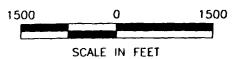
NOT DETECTED


RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE


PCB CONCENTRATIONS IN SEDIMENT DOWNSTREAM OF THE SOUTH POND

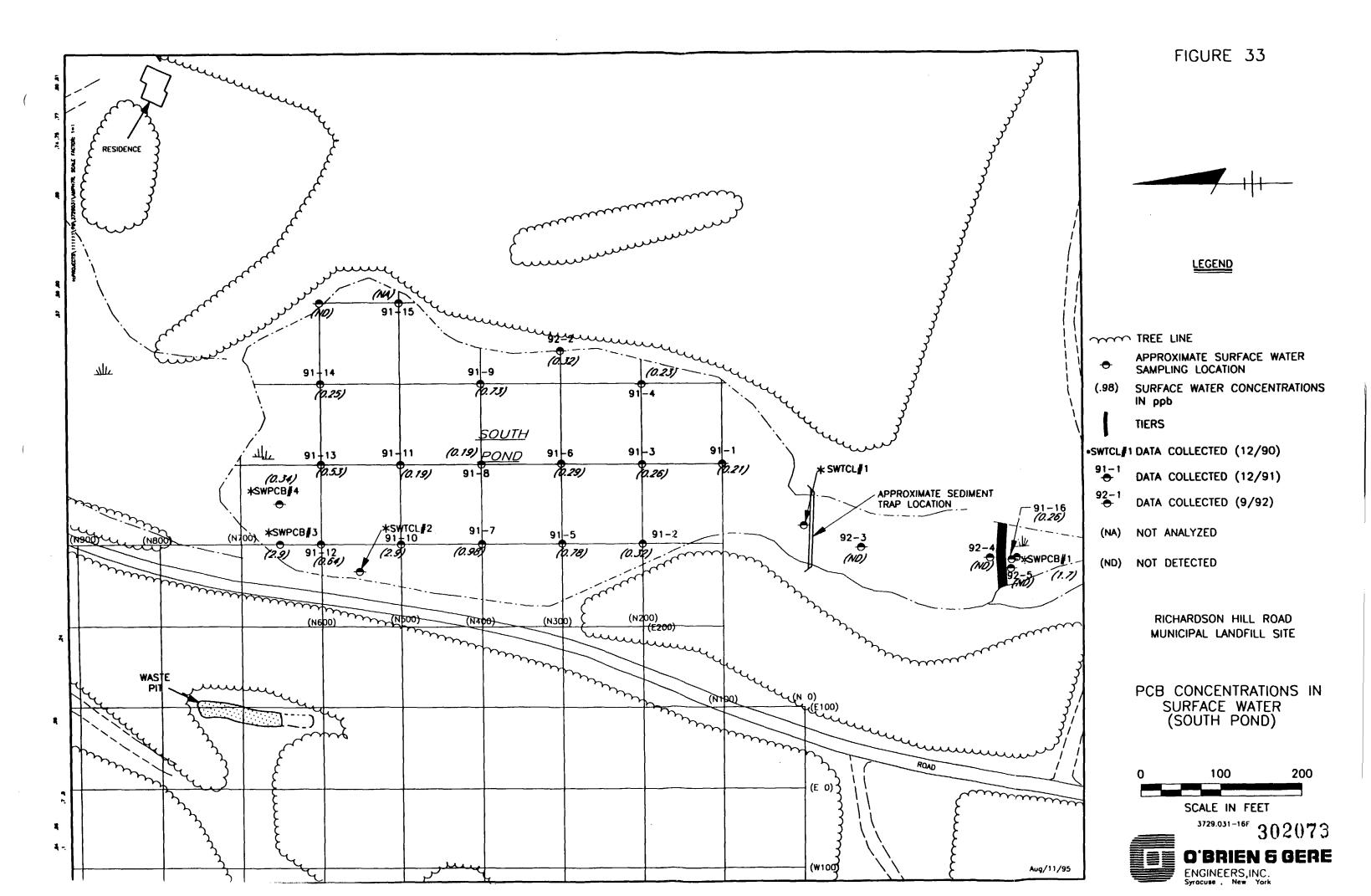


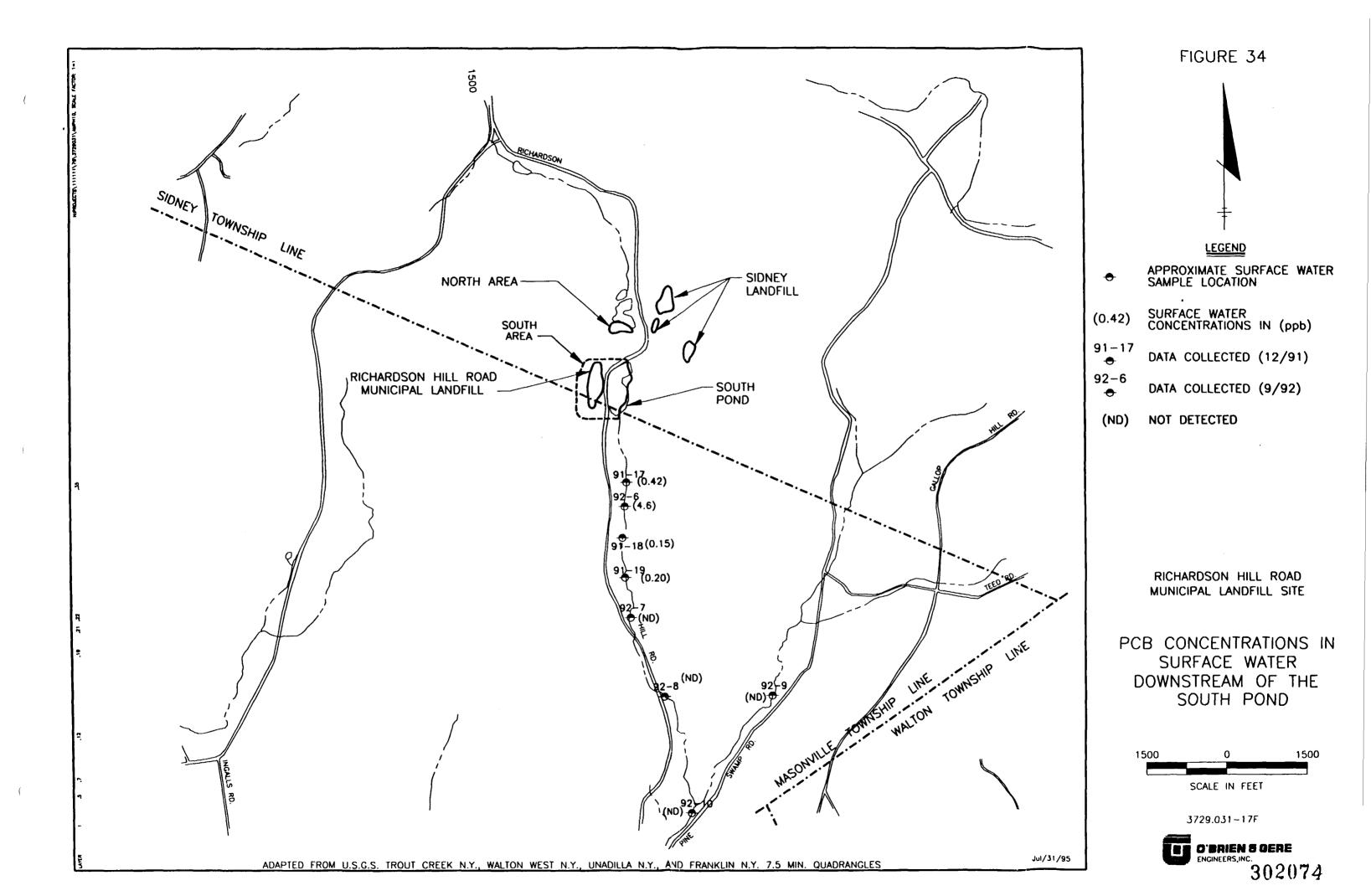
3729.031-12F

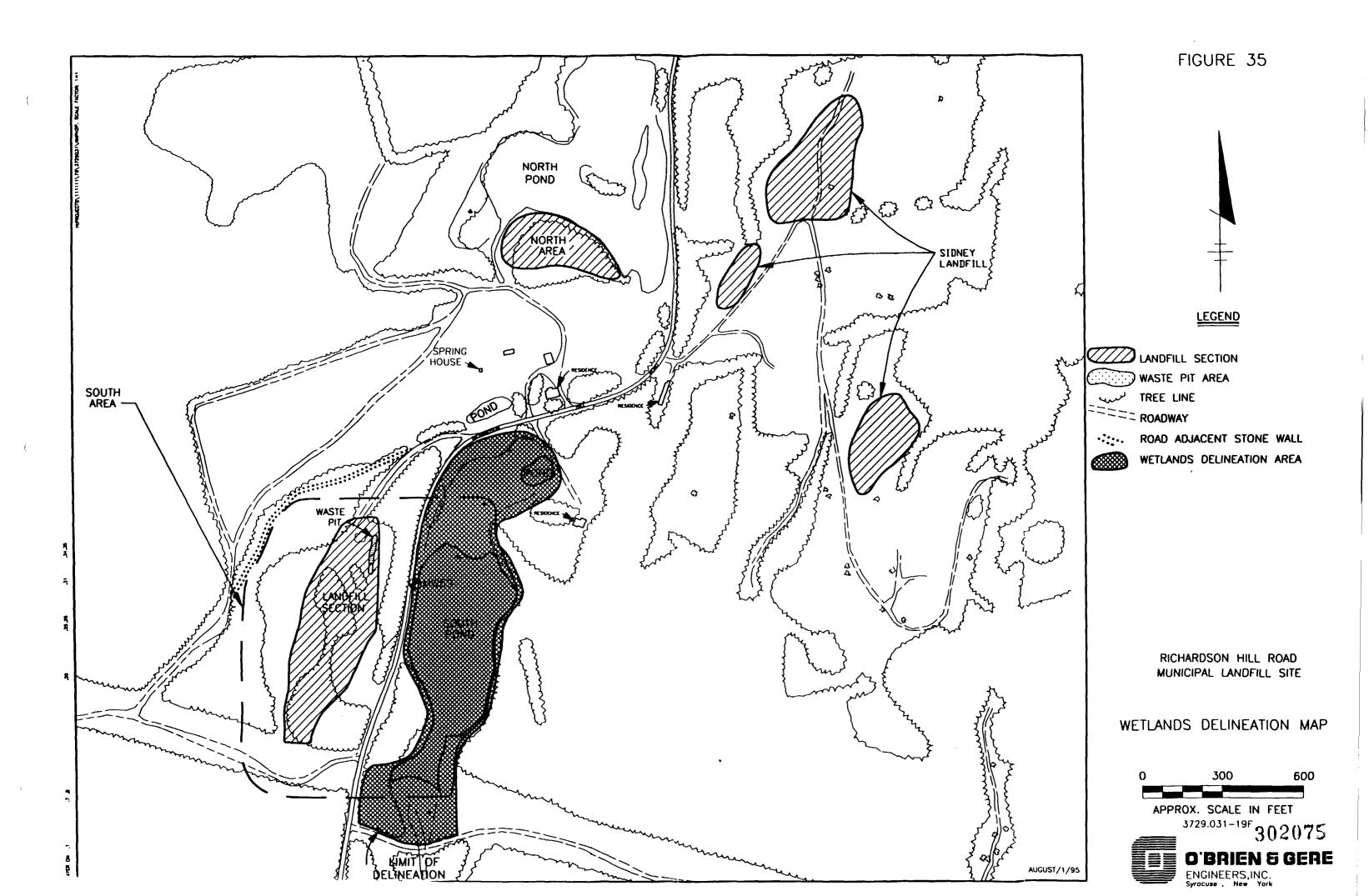


LEGEND

- APPROXIMATE SURFACE WATER SAMPLE LOCATION
- (12) SURFACE WATER SAMPLE CONCENTRATIONS IN (ppb)
- DATA COLLECTED (12/91)
- 92-6 DATA COLLECTED (9/92)
- (ND) NOT DETECTED


RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE


TOTAL VOLATILE ORGANIC CONSTITUENTS IN SURFACE WATER DOWNSTREAM OF THE SOUTH POND



3729.031 - 15F

ADAPTED FROM U.S.C.S. TROUT CREEK N.Y., WALTON WEST N.Y., UNADILLA N.Y., AND FRANKLIN N.Y. 7.5 MIN. QUADRANGLES

FIGURE 36

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE

LOCATIONS OF SAMPLED SURFACE WATER BODIES

NOT TO SCALE

3729.028

302076

Oct/06/95

LEGEND

WWW TREE LINE

MIXED HARDWOOD FOREST

SUCCESSIONAL OLD FIELD/ SHRUBLAND

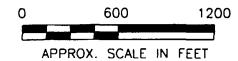
CROPLAND

PINE PLANTATION

MOWED PATHWAY

LANDFILL

OTHER CULTURAL


WETLAND

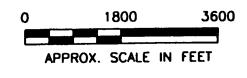
OPEN WATER

STREAM (Exaggerated Scale)

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE

COVERTYPE MAP

3729.028 302077


LEGEND

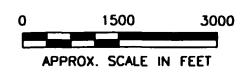
PF01A

NWI WETLAND

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE

NATIONAL WETLAND INVENTORY MAP

3729.028


LEGEND

NEW YORK STATE FRESHWATER WETLAND BOUNDARY

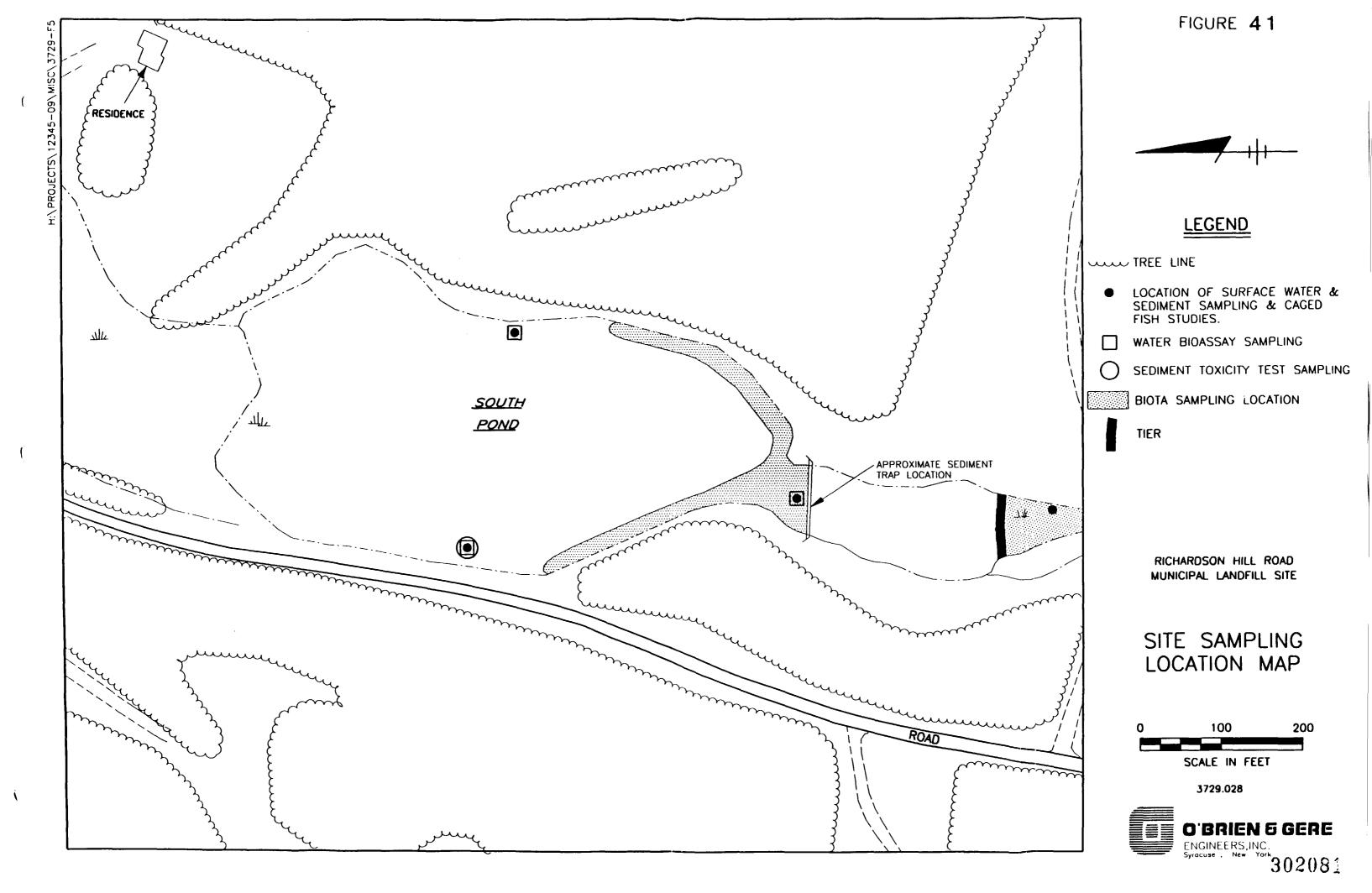
RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE

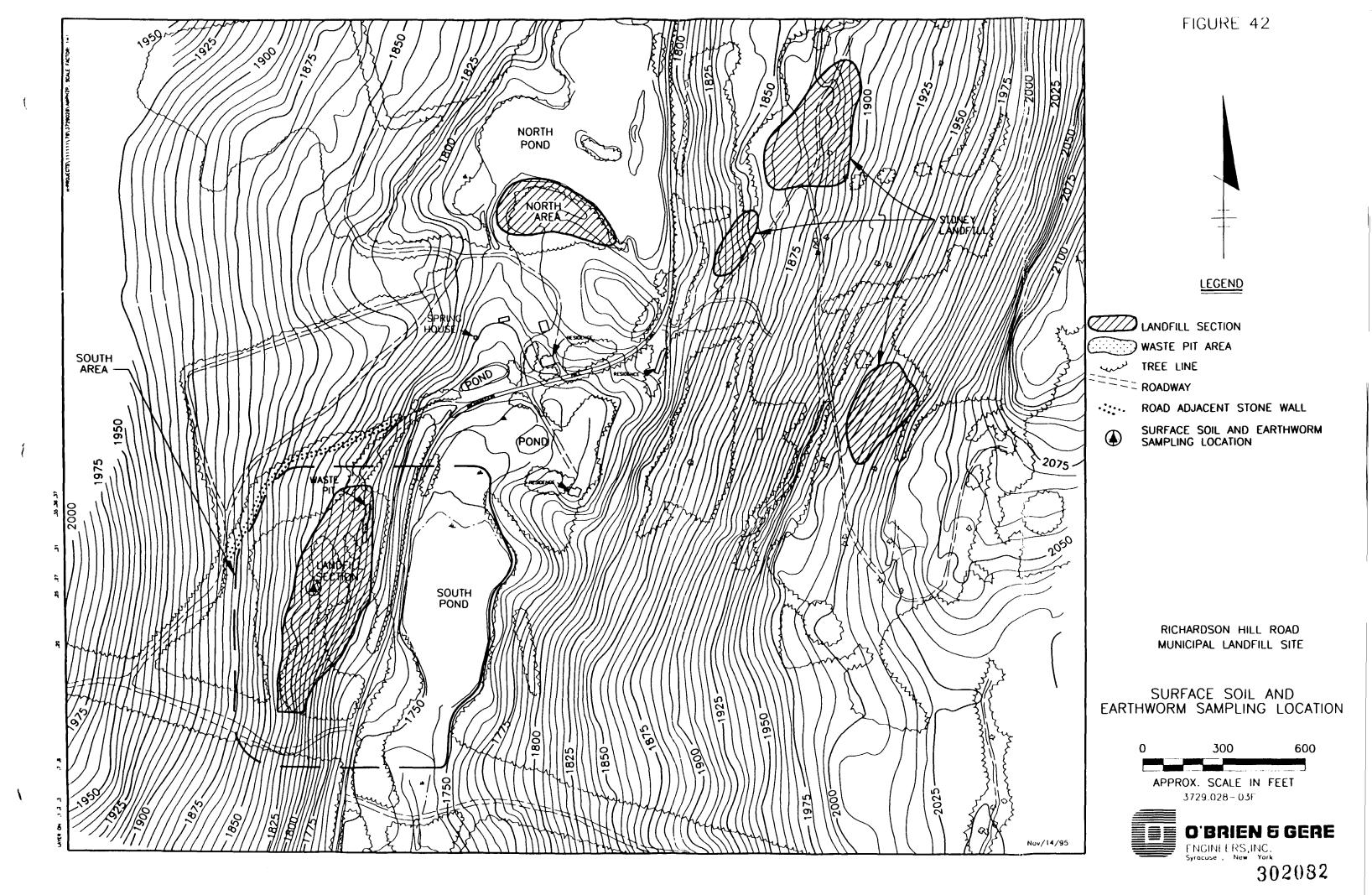
NEW YORK STATE FRESHWATER WETLANDS

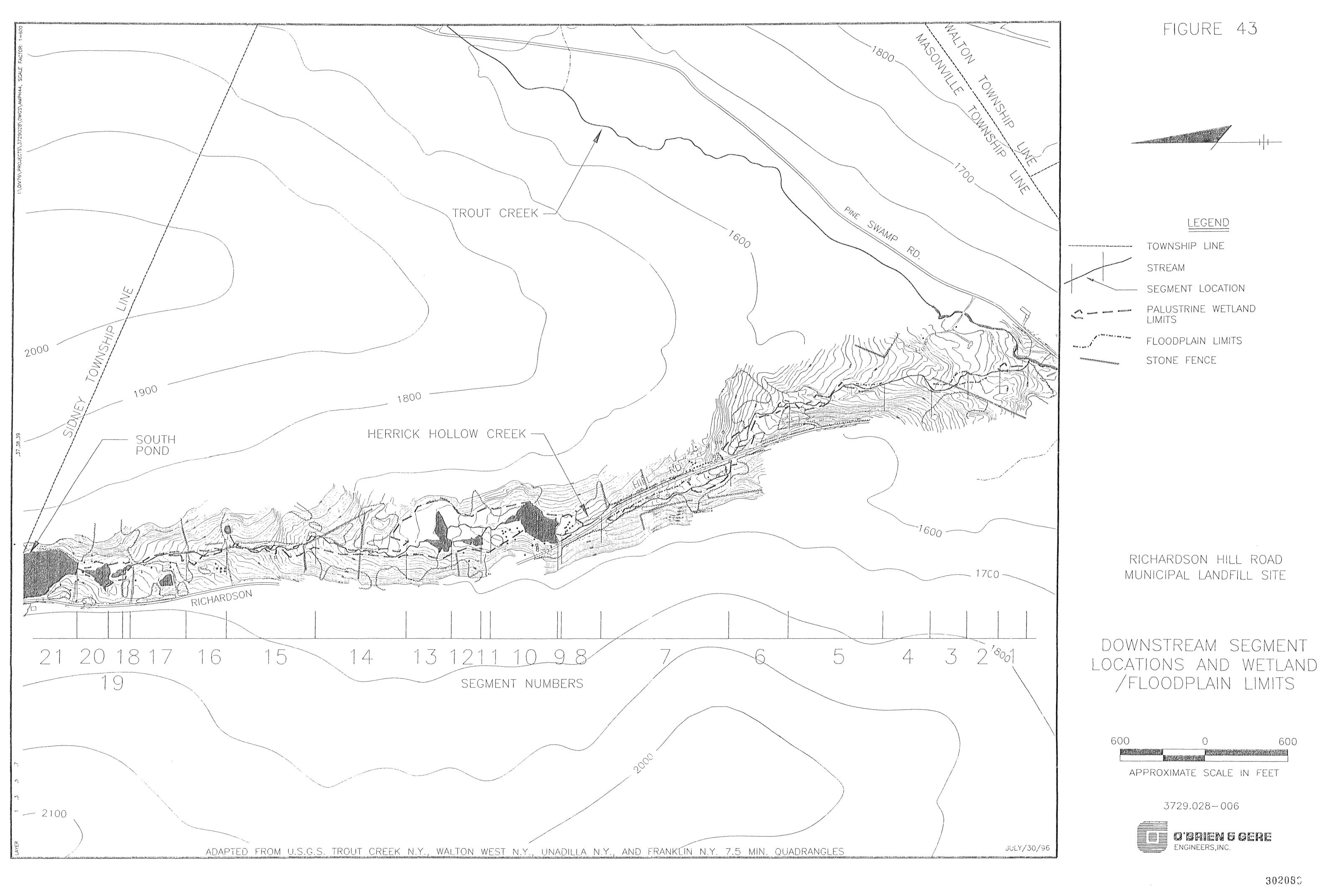
3729.028

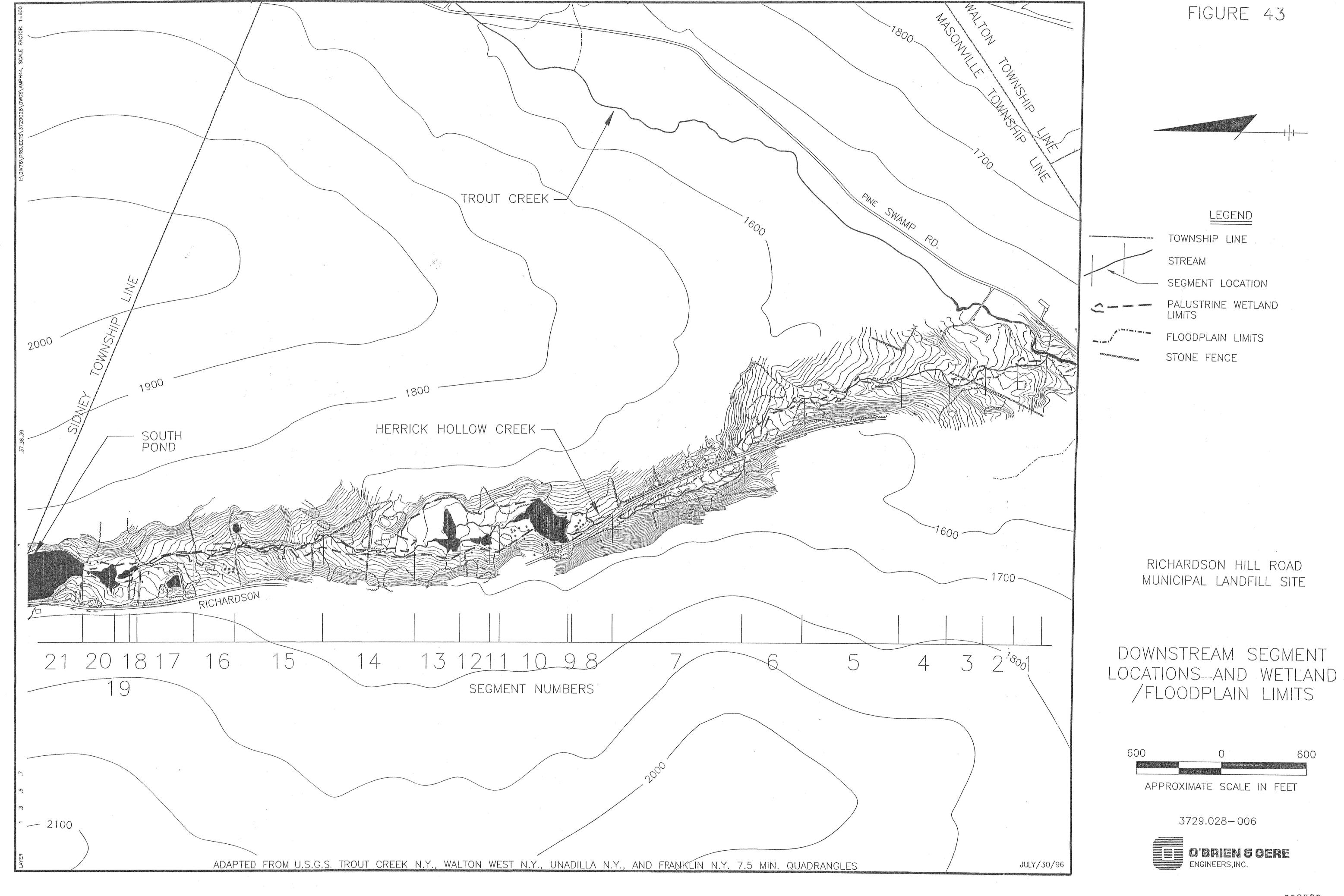
LEGEND

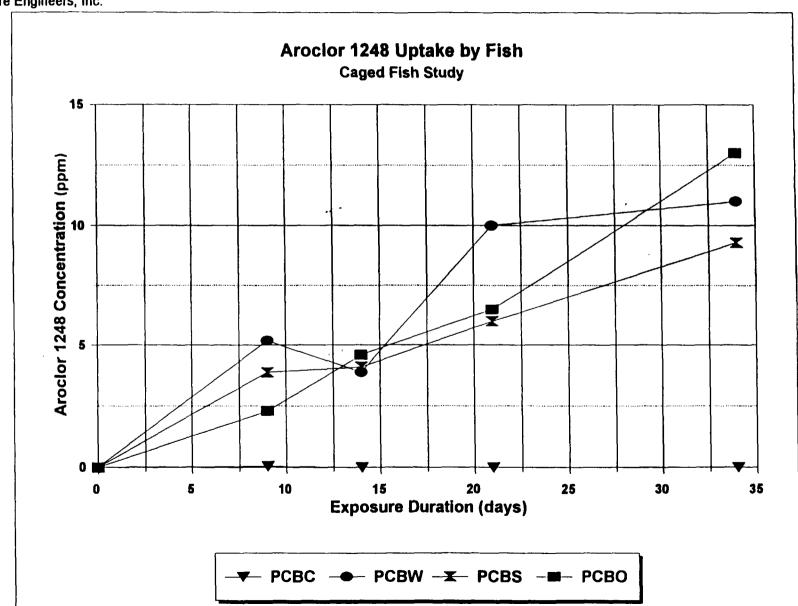
• REFERENCE SITE LOCATION

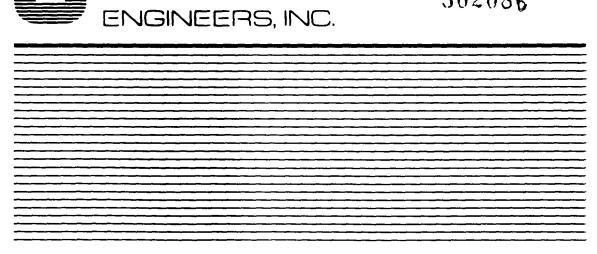

RICHARDSON HILL ROAD MUNICIPAL LANDFILL SITE


REFERENCE SITE LOCATION MAP


0 150000 300000 APPROX. SCALE IN FEET 3729.028




SOURCE: NEW YORK STATE GAZETEER.


APPENDICES

Remedial Investigation

Richardson Hill Road Municipal Landfill Sidney, New York

August 1995

APPENDIX A GEOPHYSICAL SURVEY DATA

	EH-31 (QUAD, PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR BELOW	55,000 SAMMAS)
TRAVERSE LINE N-17	TO R-17		******
H-17	11.5	60	
M-17 + 20	19.5	614	
H-17 + 40	(0	461	
M-17 + 60	(0	1147	
M-17 + 80	3.2	798	
N-17	3.4	428	
N-17 + 20	(0	685	
N-17 + 40	(0	1707	
N-17 + 60	7.2	366	
N-17 + 80	6.4	505	
0-17	6.2	587	
0-17 + 20	6.4	644	
0-17 + 40	6.4	652	
0-17 + 60	6.6	662	
0-17 + 80	6.4	677	
P-17	6.6	673	
P-17 + 20	6. 9- 7.0	685	
P-17 + 40	6.6	684	
P-17 + 60	6. 4	705	
P-17 + 80	6.2	692	
Q-17	6.1	704	
Q-17 + 20	6.2	700	
Q-17 + 40	6.6	717	
Q-17 + 60	2.0	712	
Q-17 + 80	6.6	683	
R-17	6.4	697	
TRAVERSE LINE M-17			
H-17	11.0	-28	
4-17 + 20 4-17 + 40	15.0	-314	
1-17 + 60	11.0	-19	
+17 + 80	(0	339	
f-16	(0	687	
+16 + 20	7.8	456	
F-16 + 40	7.2	330	
1-16 + 60	8.2	319	
I-15 + 80	8.2	306	
F15 . 60	7.2	339	
-15 + 20	7.2	335	
-15 + 40	7.0	299	
-15 + 60	6.7	278	
-15 + 80	7.7	306	
-14	8.0	382	
-14 + 20	8.0	428	
-14 + 40	8.0 7.5	44 8	
-14 + 60	8.3	504 ADE	
-14 + 80	7.8	495 579	
-13	7.8 8.8	539	
-13 + 20	3.8	566	
-13 + 40	11.0	46 9	20000
-13 + 60	8.5	6 33 788	30208
-13 + 80	0, J	7 00	

	EM-31 (QUAD, PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR BELOW 55,000 GAMMAS)
		
H12	6.8	683
TRAVERSE LINE M-17 TO		
←17	12.0	253
H17 + 20	0-0.2	553
(- 17 + 40	13.0	464
(- 17 + 60	1.3	1331
F-17 + 80	2.6	704
- 18	8.2	-6 69
⊢18 + 20	1.1	275
- 18 + 40	4.0	353
-18 + 60	4.8	530
-18 + 80	5.4	635
-19	5.6.	711
-19 + 20	5. 3	728
-19 + 4 0	5.3	7 44
-19 + 60	7.2	789
-19 + 80	7.4	7 27
-20	2.8	743
-20 + 20	6.6	769
-20 + 40	6.0	763
20 + 60	6.2	771
-20 + 80	6.2	177
-21	6.2	767
21 + 20	6.0	777
21 + 40	6.2	776
-21 + 60	6.0	775
NAVERSE LINE P-20 TO		,,,,
-20	4.2	622
20 + 2 0	4.1	627
20 + 40	4.2	621
20 + 60	4.0	617
-20 + 80	3.2	595
-19	4, 4	587
-19 + 20	4.3	594
-13 + 40	5.0	572
-13 + 40 -13 + 60	4.6	618
-13 + 80 -13 + 80	4.2	603
-15 + 60 -18	4.2	503 591
-18 + 20		
	4.6	588
-18 + 40 -18 + 60	4.6	584
-18 + 60	4.6	607
-18 + 80	4.4	591
-17	4.6	597
-17 + 20	5. 0	532
-17 + 40	5.2	584
-17 + 60	5.0	583
-17 + 80	5.2	572
-16	5. ú	570

	EH −31	PROTON MAGNETOMETER
	(QUAD, PHASE)	(VALUE ABOVE OR BELOW 55,000 GA
	100104 FINOL	THESE ROOTE ON SECUN 33,000 ON
P-16 + 20	4.6	561
P-16 + 40	4.4	550
P-16 + 60	4. 4	551
P-16 + 80	4.4	518
P-15	4.8	511
P-15 + 20	5.1	492
P-15 + 40	5.3	474
P-15 + 60	5.0	46 0
P-15 + 80	5.2	467
P-14	5.5	440
P-14 + 20	5. 7	444
P-14 + 40	6.0	406
P-14 + 60	6.9	312
P-14 + 80	14.0	
P-13		-449 106
P-13 + 20	9.0	196
	12.0	62
P-13 + 40	3.5	204
P-13 + 60	8.8	851
2-13 + 80	4.2	834
P-12	(0	1009
2-12 + 20	(0	1023
7-12 + 40	(0	322
-12 + 60	(0	613
-12 + 80	10	505
⊢11	(0	556
-11 + 20	0-1.7	490
-11 + 40	7.1	4 77
-11 + 60	4.7	577
-11 + 80	. (0	319
-10	(0	1203
RAVERSE LINE R-16 T		
-16	5.0	653
-16 + 20	4.7	661
-16 + 40	4.8	644
-16 + 60	4.0	653
1-16 + 80	4.3	641
-16	4.0	657
-16 + 20	4.0	651
H16 + 40	4.4	641
-16 + 60	4.4	650
1-16 + 80	5.0	607
- 16	4.9	605
-16 + 20	4.8	588
-16 + 40	5. 4	550
-16 + 60	5.6	453
-16 + 80	₹0	850
-16	2.6-2.8	183

304

0-16 + 30

60 (0 1128 80 (0 2057		EM-31	PROTON MAGNETOMETER	
60 (0 1128 80 (0 2057		(QUAD. PHASE)	(VALUE ABOVE OR BELDH 55,000	GAMMAS)
60 (0 1128 80 (0 2057	-16 + 40	th.	188	
80 (0 2057 (0 981	⊢16 + 60			
(0 981 20 10.5 22 40 18.0 -336 60 0 0 324 80 0.1-2.4 213 7.0-9.0 416 E LINE M-15 TO R-15 5.8 321 20 6.2 -170 40 0 -497 60 18.0 1049 80 18.0 1588 0 0 18.0 1588 0 0 18.0 1588 0 0 18.20 1028 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 18.0 1588 80 60 18.1 577 20 10 128 80 10 5.2 473 4.6 552 80 4.1 579 80 4.4 597 80 4.4 597 80 4.4 649 80 4.9 649 80 4.9 649 80 4.4 649 80 4.8 638 LINE R-14 TO M-14 4.8 669 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 663)-16 + 80			
20	- 16			
40	-16 + 20			
60	-16 + 40			
80	1-16 + 60			
7.0-9.0 416 E LINE M-15 TO R-15 5.8 321 20 6.2 -170 40 00 -497 60 18.0 1049 80 18.0 1588 00 1841 20 0 0 1841 20 0 0 1841 20 0 0 1900 60 10 1128 80 0 1377 20 0 1377 20 0 1377 20 0 0 1377 20 0 139 60 0 474 60 5.0 318 60 5.2 473 4.6 552 20 4.1 579 60 4.4 597 60 4.4 639 0 4.6 639 0 4.6 639 0 4.8 669 0 5.0 659 0 4.4 663 0 4.8 665 0 4.4 655				
5.8 321 20 6.2 -170 40 0 -497 50 18.0 1049 80 18.0 1588 0 18.1 1588 0 18.1 1588 0 18.1 1588 0 19.0 1654 40 0 19.0 1654 40 0 19.0 1654 40 0 19.0 1654 40 0 19.0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 177 20 0 18.1 157 20 177 20 187	⊢16 + 80			
5.8 321 20 6.2 -170 40 0 -497 56 18.0 1049 80 18.0 1588 0 18.0 1588 0 18.1 0 1654 0 1900 50 0 1900 50 0 1128 30 0 10 610 0 1377 20 0 1377 20 0 1379 40 0 474 50 5.2 473 4.6 552 473 4.6 552 40 4.1 579 40 4.4 597 60 4.0 625 60 4.1 579 60 4.0 625 60 4.1 639 60 4.4 646 60 4.9 649 60 60 60 60 60 60 60 60 60 60 60 60 60 6	-16		416	
20				
40	-15 -15 / 20			
18.0 1049 80 18.0 1588 (0 1841 20 (0 1654 40 (0 1900 50 (0 1128 60 (1 1377 20 (0 1377 20 (1 139 60 (0 474 50 5.0 318 60 5.0 318 60 5.0 318 60 5.2 473 60 5.2 473 60 4.1 579 60 4.1 579 60 4.1 579 60 4.4 597 60 4.4 639 60 4.6 623 60 4.4 646 60 4.9 649 60 4.9 649 60 4.8 656 60 5.0 659 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663	-15 + 20			
80	-15 + 40			
(0 1841 20 (0 1654 40 (0 1900 50 (0 1128 30 (0 610 60 (0 1377 20 (0 1377 20 (0 139 40 (0 474 50 5.0 318 5.2 473 4.5 552 20 4.1 579 40 4.4 597 40 4.0 625 40 4.1 579 40 4.0 625 40 4.1 639 70 4.6 629 60 4.4 639 70 4.6 629 60 4.4 646 60 4.9 649 60 4.8 638 LINE R-14 TO M-14 4.8 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663	-15 + 60			
20	-15 + 80			
00	-15			
60	-15 + 20			
00 0 0 0 1377 00 0 1377 00 0 1379 00 0 139 00 0 474 00 5.0 318 00 5.2 473 00 4.5 552 00 4.1 579 00 4.4 597 00 4.0 625 00 4.0 625 00 4.1 639 00 4.4 646 00 4.9 649 00 4.4 649 00 4.8 659 00 4.6 675 00 4.6 675 00 4.6 675 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663 00 4.4 663	-15 + 40		1900	
(0 1377 20 (0 139 40 (0 474 50 5.0 318 50 5.2 473 4.6 552 20 4.1 579 40 4.4 597 60 4.0 625 60 4.0 625 60 4.4 639 60 4.4 646 60 4.9 649 60 4.4 649 60 4.8 659 60 4.4 663 60 4.4 663 60 4.4 663 60 4.4 663 60 4.6 675 60 4.6 675 60 4.4 663 60 4.4 656 60 4.4 656 60 4.4 656 60 4.4 656 60 4.4 656 60 4.4 656 60 4.4 656 60 4.4 656 60 4.4 656 60 4.4 657 60 4.4 657 60 4.4 658	-15 + 60	(0	1128	
20	15 + 80	(0	610	
60	15	(0	1377	
5.0	15 + 20	⟨0	139	
5.2 473 4.6 552 80 4.1 579 80 4.4 597 80 4.0 625 80 4.0 625 80 4.0 629 80 4.4 639 80 4.4 646 80 4.9 649 80 4.4 649 80 4.8 638 LINE R-14 TO M-14 4.8 669 80 5.0 659 80 4.4 663 80 4.4 663 80 4.4 663 80 4.4 656 80 4.4 656 80 4.4 656 80 4.4 657 80 4.4 637 80 4.4 612 80 4.4 613 80 613	15 + 40		474	
4.6 552 80 4.1 579 80 4.4 597 80 4.0 625 80 4.0 625 80 4.4 639 80 4.6 629 80 4.4 646 80 4.9 649 80 4.4 649 80 4.8 638 8 LINE R-14 TD M-14 4.8 669 8 669 8 675 8 0 4.6 675 8 0 4.6 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663 8 0 4.4 663	5 + 60		318	
4.1 579 40 4.4 597 40 4.4 597 40 4.0 625 40 4.0 624 4.4 639 40 4.5 629 4.4 646 4.3 649 4.4 649 4.8 638 LINE R-14 TD M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 663 0 4.4 656 0 4.4 657 0 4.4 657 0 4.4 637 0 4.4 613 0 4.8 571	15 + 80	5, 2	473	
4.4 597 4.0 4.0 625 60 4.0 624 4.4 639 70 4.6 623 70 4.6 623 70 4.4 646 70 4.3 649 70 4.4 649 70 4.8 638 LINE R-14 TO M-14 4.8 669 70 5.0 659 70 4.6 675 70 4.4 663 70 4.4 656 70 4.4 657 70 4.4 637 70 4.4 612 70 4.4 613 70 4.8 571	15	4.6	552	
4.0 625 4.0 4.0 624 4.4 639 0 4.6 623 0 4.4 646 0 4.3 649 0 4.4 649 4.8 638 LINE R-14 TD M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	15 + 20	4.1	573	
4.0 624 4.4 633 0 4.6 623 0 4.4 646 0 4.3 649 0 4.4 649 4.8 638 LINE R-14 TD M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	15 + 40	4.4	597	
4.4 639 0 4.6 623 0 4.4 646 0 4.9 649 0 4.8 638 LINE R-14 TO M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 0 4.4 657 0 4.4 657 0 4.4 657 0 4.4 657 0 4.4 657 0 4.4 657 0 4.4 657 0 4.4 657	15 + 60	4.0	625	
0 4.6 623 0 4.4 646 0 4.9 649 0 4.8 638 LINE R-14 TO M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	5 + 80	4.0	624	
0 4.4 646 0 4.9 649 0 4.4 649 0 4.8 638 LINE R-14 TO M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	5	4.4	639	
0 4.3 643 0 4.4 643 4.8 638 LINE R-14 TD M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	15 + 20	4.6	623	
0 4.4 643 4.8 638 LINE R-14 TO M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	15 + 40	4.4	646	
0 4.4 643 4.8 638 LINE R-14 TO M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	15 + 60	4.3	643	
4.8 638 LINE R-14 TD M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	15 + 80			
LINE R-14 TO M-14 4.8 669 0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.8 571	15			
0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	WERSE LINE R-14 TO M-1			
0 5.0 659 0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	4	4.8	669	
0 4.6 675 0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	14 + 20			
0 4.4 663 0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	14 + 40			
0 4.4 656 4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	14 + 60			
4.6 640 0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	4 + 80			
0 4.4 637 0 4.4 612 0 4.4 613 0 4.8 571	4			
0 4.4 612 0 4.4 613 0 4.8 571	4 + 20			
0 4.4 613 0 4.8 571	4 + 40			
0 4.8 571	4 + 60			
5.2	4 + 80			
ವ್ಯವ್ರ ನಚಿನ)	5.5	515	

	EM-31 (QUAD, PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR BELOW 55,000 GAMMAS)	
P-14 + 20	7.2	404	- 11 -
P-14 + 40	0.5-1.9	732	
P-14 + 60	(0	1709	
P-14 + 80	(0	655	
0-14	16.0	1552	
0-14 + 20	(0	1250	
0-14 + 40	11.0	1237	
0-14 + 60	14.0	1592	
0-14 + 80	5.0	1637	
N-14	(0	991	
N-14 + 20	(0	- 814	
N-14 + 40	(0	2879	
N-14 + 60	(0	-17	
N-14 + 80	(0	-116	
H-14	6.6	407	
TRAVERSE LINE M-13 TO	R-13		
H-13	7.1	576	
M-13 + 20	6.4	469	
₩-13 + 40	4.1	312	
M-13 + 60	(0	75	
M-13 + 80	(0	816	
N-13	(0	483	
N-13 + 20	(0	1159	
N-13 + 40	(0	1007	
N-13 + 60	(0	1673	
N-13 + 80	3.0	1423	
0-13	3.2-7.0	1824	
0-13 + 20	(0	2227	
0-13 + 40	(0	1307	
0-13 + 60	(0	678	
0-13 + 80 F-13	(0	364	
P-13 + 20	6.7	260	
P-13 + 40	6.7	477 E7E	
P-13 + 60	6. 0 5. 3	575	
P-13 + 80	5.8	613 650	
9-13 + 60 9-13	5.8	653	
Q-13 + 20	5.8	673	
G-13 + 40	5.7		
G-13 + 60	5. 7 5. 8	675 680	
G-13 + 80	5. 8	685	
R-13 + 60	5.9	687	
TRAVERSE LINE R-12 TO		567	
R-12	3.4	711	
R-12 + 20	3.4	687	
R-12 + 40	3.4	710	200022
R-12 + 60	3.4	721	302092
R-12 + 80	3.6	709.	

	en-31 (Quad. Phase)	PROTON MAGNETOMETER (VALUE ABOVE OR BELOW 55,000	GAMMAS)
7-12	3.6	705	
2-12 + 20	3.8	70 3	
2- 12 + 40	3.6	660	
1-12 + 60	4.0	659	
1-12 + 80	6.0	521	
- 12	(0	1247	
- 12 + 20	(0	866	
P-12 + 40	(0	1404	
-12 + 60	3.6-4.2	1418	
P-12 + 80	(0	1222	
) - 12	(0	1875	
F12 + 20	(0	542	
H12 + 40	(0	-9	
H12 + 60	(0	2234	
F12 + 80	11.0	47	
-12 + 60 -12	7.0-8.0	561	
⊢12 + 20			
	7.6	557	
H12 + 40	6.8	636	
-12 + 60	6.8	657	
-12 + 80	7.6	661	
-12	3.0	700	
RAVERSE LINE N-11 TO			
-11	8.0	663	
-11 + 20	7.0	662	
-11 + 40	7.4	615	
-11 + 60	6.4	580	
-11 + 80	6.2	585	
-11	5.3	633	
-11 + 20	3.5	657	
-11 + 40	5.4	831	
-11 + 60	5. 4	334	
-11 + 80	5.8	664	
-11	(0	824	
-11 + 20	(0	881	
-11 + 40	5.8	690	
-11 + 60	5.6	684	
-11 + 80	5. 4	718	
-11	5.4	697	
-11 + 20	5. 4	722	
-11 + 40	5.0	694	
-11 + 60	5.4	719	
-11 + 80	5.4	738	
-11	5. 6	765	
raverse line M-18 TO		707	
-18	(0	-970	
-18 + 20	(0		302
-18 + 20 -18 + 40	3.0	1365 518	304
-10 T 90	٥.٥	219	

	EM-31 (QUAD, PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR BELOW 55,000 GAMMA	(S)
1 –18 + 80	2.2	585	
\ -18	4.2	618	
+ -18 + 20	(0	648	
V-18 + 4 0	4.8	552	
⊢ 18 + 60	3.8	649	
V-18 + 80	4.0	647	
) - 18	4.2	653	
) - 18 + 20	4.5	667	
J-18 + 40	4.8	663	
3-18 + 60	4.8	669	
J-18 + 80	4.6	663	
7-18	4.4	691	
F-18 + 20	4.2	673	
-18 + 40	4.4	678	
P-18 + 60	4.2	675	
-18 + 80	4.8	672	
⊢18	6.0	663	
RAVERSE LINE P-19			
-13	4.4	692	
-19 + 20	3.8	695	
-13 + 40	4.0	703	
-19 + 60	4.8	700	
-13 + 80	4.4	693	
-19	4.0	688	
-19 + 20	4.0	686	
-13 + 40	4.2	6 36	:
-19 + 60	4.1	697	
-19 + 80	4.0	702	
-13	4.4	736	
-13 + 20	3.2	57 4	
-13 + 40	4.4	715	
-19 + 60	4.8	686	
-19 + 80	4.6	671	
-19	4.6	641	
RAVERSE LINE M-20		041	
-20	4.8	664	
-20 + 20	4.6	683	
-20 + 40	4.2	692	•
-20 + 60	4.2	674	
-20 + 80	4.3	688	
-20 + 60	4.2	691	
-20 + 20	4.2	682	
-20 + 20 -20 + 40			
-20 + 40 -20 + 60	4.4	6 93	
-20 + 80 -20 + 80	4.2	678	020
-20 + 80 -20	4.2	000	
	4.0	687	
RAVERSE LINE M-17	10 L=17 + 40		

	EM-31 (QUAD, PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR BELOW 55, 000 GAMMAS)	
H-17 + 20	(2.8	481	
M-17 + 40	5.8	484	
M-17 + 60	4.4	540	
M-17 + 80	4.4	621	
L-17	4.6	680	
L-17 + 20	5.1	696	
L-17 + 40	11.5	793	
TRAVERSE LINE N-20		***	
N-20	5.8	626	
N-20 + 20	5.0	644	
N-20 + 40	7.2	544	
N-20 + 60	(0	340	
N-20 + 80	(0	571	
1 -13	6.2	677	
N-13 + 20	6.2	640	
N-13 + 40	6.2	619	
N-19 + 60	5. 7	442	
V-13 + 8 0	4.4	555	
N-18	6. 0	548	
N-18 + 20	5.4	555	
V- 18 + 40	7.0	425	
V- 18 + 60	(0	-708	
1- 18 + 80	(0	-353	
V- 17	1.1-1.4	346	
N-17 + 20	(0	791	
V- 17 + 40	(0	33	:
1 −17 + 60	(0	72	
1-17 + 80	17.0	894	
⊢ 16	(0	300	
I-16 + 20	(0	1059	
 -16 + 40	2.0-2.9	1015	
V-16 + 60	(0	1333	
t-16 + 80	(0	1771	
- 15	(0	1581	
(- 15 + 20			
	(0	606	
i-15 + 40	0.1-2.0	29	
(-15 + 60	(0	1218	
H15 + 80	4.4	941	
H14	(0	349	
H14 + 20	(0	1373	
-14 + 40	(0	-189	
-14 + 60	(0	377	
[-14 + 80 ·	(0	428	
⊢13	(0	324	
⊢13 + 20	(0	815	
 -13 + 40	(0	401	
+ 13 + 60	3.8	⁻¹⁵ 3(209
V-13 + 80	(0	172	, - • •

	EM-31 (QUAD. PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR BELOW 55,000 GAMMAS	•
	(QUAD) PTPISE/	TVHEDE HOUVE OR BELOW 33,000 BHFFFS	
V- 12	8.4	504	
1 -12 + 20	8.8	433	
N-12 + 40	8 . 5-9. 0	440	
1 -12 + 60	9.0	562	
V- 12 + 80	9.6	591	
4-11	8.2	573	
TRAVERSE LINE 0-11	TO 0-19		
D-11	5.5	616	
J-11 + 20	(0	815	
J-11 + 40	(0	1299	
J-11 + 60	(0	2298	
J-11 + 80	(0	1872	
1-12	(0	1688	
J-12 + 20	9.4	1253	
12 + 40	13.0	305	
)-12 + 60	13.0	1196	
)-12 + 80	(0	1999	
-13	(0	1812	
9-13 + 20	16.5		
		2242	
H13 + 40	13.5	2166	
-13 + 60	(0	5097	
1-13 + 80	9.6	1607	
H14	19.0	1570	
-14 + 20	14.0	1573	
1-14 + 40	17.0	306	,
-14 + 60	(0	417	
-14 + 80	(0	932	
-15	(0	1516	
-15 + 20	(0	809	
-15 + 40	(0	1009	
-15 + 60	(0	438	
-15 + 80	(0	322	
-16	4.4	251	
-16 + 20	(0	561	
-16 + 40	(0	551	
-16 + 60	4.5	481	
-16 + 80	4.3	556	
-17	4.3	608	
-17 + 20	4.3	634	
-17 + 40	4.2	697	
-17 + 60	4.8	712	
-17 + 80	4.4	713	
-18	4.2	715	
-18 + 20	4.0	774	
-18 + 40	3.3	732 3	0209
-18 + 6 0	3. S	731	U ~ U U
-18 + 80	3.8	731	
~10 T D(/	J. 0	130	

	EM-31 (QUAD, PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR RELOW 55,000 GAMMAS)
TRAVERSE LINE F-26 TO	F-29	
26	5.6	707
-26 + 20	5.4	732
-26 + 40	5.2	724
-26 + 60	5.2	743
-26 + 80	5.2	735
:-27	4.8	692
-27 + 20	4.8	747
-27 + 40	4.8	748
-27 + 60	4.6	750
7-27 + 80	4.7	744
-28	4.8	740
-28 + 20	4.8	736
-28 + 40	5.4	718
-28 + 60	4.3	731
-28 + 80	5. 3	706
-29 + 60	5. 4	727
-23 RAVERSE LINE F-29 TOW		121
-29	5.4	
-29 + 20		686
	5.4	
29 + 40	5.6	666
29 + 60	6.6	650
AVERSE LINE F-29 TO (
23	5.3	
29 + 20	5.6	637
29 + 40	6.1	573
23 + 60	5. 3	531
29 + 80	0.2-0.8	692
-53	6.0	711
29 + 20	7.2	493
29 + 40	(0	435
29 + 60	(0	702
AVERSE LINE F-28 TO 1	E-28 + 80	
28	4.8	705
28 + 20	4.9	693
28 + 40	5.2	715
28 + 60	4.8	790
28 + 80	7.2	743
28	(0	870
-28 + 20	(0	1075
2B + 40	16.0	478
-28 + 60	13.0	310
-28 + 80	(0	138
RAVERSE LINE F-28 TO F		100
-28	4.7	657
-28 + 20	4.8	657 678 3 (
-28 + 40	4.8	653
-28 + 60	4.5	710
20 T BV	4.3	710

	EM-31 (QUAD. PHASE)	PROTON MAGNETOMETER (VALUE ABOVE OR RELOW 55,000 GAMMAS)
F-28 + 80	5.4	670
6-28	5.4	679
6-28 + 20	4.8	684
6-28 + 40	4.B	688
G-28 + 60	5.2	668
6- 28 + 80	. 5.4	663
H-28	6.0	671
TRAVERSE LINE F-27 TO	D-27 + 60	
F-27	4.B	635
F-27 + 20	5.0	686
F-27 + 40	5.0	706
F-27 + 60	4.8	686
F-27 + 80	5. 4	697
E-27	5.4	688
E-27 + 20	5.8	653
E-27 + 40	6.4	677
E-27 + 60	4.8	724
E-27 + 80	5.8	722
D-27	5.8	700
D-27 + 20	6.2	695
D-27 + 40	7.0	689
D-27 + 60	7.6	694
TRAVERSE LINE F-27 TO I	+- 27	
F-27	4.6	624
F-27 + 20	6.7	577
F-27 + 40	2.6	830
F-27 + 60	5.2	630
F-27 + 80	5.5	629
G-27	5.4	564
6-27 + 20	5.8	630
G-27 + 40	4.8	136
G-27 + 60	6.6	548
G-27 + 80	6.4	602
H-27	8.4	633

APPENDIX B GROUND PENETRATING RADAR SURVEY FINAL REPORT

FINAL REPORT

GROUND-PENETRATING RADAR SURVEY

RICHARDSON HILL ROAD MUNICIPAL LANDFILL AND NORTH AREA

Prepared for:

O'BRIEN & GERE ENGINEERS, INC.

Syracuse, New York

Report No. 316-92

June 30, 1992

DETECTION SCIENCES, INC.
496 HEALD ROAD
CARLISLE, MASSACHUSETTS 01741

Phone: (508) 369-7999

FAX: (508) 264-9680

496 HEALD ROAD

CARLISLE, MASSACHUSETTS 01741

(508) 369-7999

TELEX: 495-2806

FAX: (508) 264-9680

FINAL REPORT

GROUND-PENETRATING RADAR SURVEY

RICHARDSON HILL ROAD MUNICIPAL LANDFILL AND NORTH AREA SIDNEY, NEW YORK

Prepared for:

O'BRIEN & GERE ENGINEERS, INC. 5000 Brittonfield Parkway Syracuse, New York 13221

Report No. 316-92

TABLE OF CONTENTS

INTRODU	CTION AND SUMMARY	1
DESCRIPT	TION OF THE SURVEY	2
GPR S	Survey Grid	2
METHODO	DLOGY	5
Drum S	ignature	7
Isolated	Drums	7
Buried S	Scrap Metal	7
PRINCIPL	ES OF OPERATION	8
Velocit	y and Depth	8
Subsurf	ace Reflections	8
Subsurf	ace Materials	8
Use of I	Borings	9
Penetrat	tion Depth	9
RADAR EQ	QUIPMENT1	0
	OF THE SURVEY1	
Buried 1	Drums	1
Radar A	nomalies1	1
Benign	Areas	1
_	IONS AND RECOMMENDATIONS	
Test Pits	s1	3
	Figures	
Figure 1	120 MHz RADAR ANTENNA	3
Figure 2	CHART RECORDER AND RADAR CONTROLS	4
Figure 3	HYPERBOLA SIGNATURE	6

TABLE OF CONTENTS (Cont.)

Tables

			
Table I	GRID COORDINA	TES OF RADAR ANOMALIES	12
Table II	GRID COORDINATES OF PROPOSED TEST PITS		
		<u>Drawings</u>	
Drawing Nu	mber 316-92-01	RADAR SURVEY MAP, RICHARDSON HILL ROAD	14
Drawing Nu	mber 316-92-02	RADAR SURVEY MAP, NORTH AREA	15

INTRODUCTION AND SUMMARY

On May 28, 1992, Detection Sciences, Inc. performed a ground-penetrating radar (GPR) survey at the Richardson Hill Road Municipal Landfill, Sidney, New York. The survey was performed in accordance with O'Brien & Gere Engineers, Inc. Agreement for Services dated March 1, 1988, File No. 3068.005. The field work was performed under the supervision of Mr. Dennis R. Theoret, C.P.G., of O'Brien & Gere.

The survey utilized the high-performance ground-penetrating radar equipment we have developed over the past twelve years. Starting with a commercial GSSI SIR System-8 purchased in 1980, we have incorporated various proprietary design modifications that have increased the penetration depth by nearly an order of magnitude, with comparable improvements in the clarity and resolution of the radar records.

The purpose of the ground-penetrating radar survey was to investigate anomalies in the magnetic fields at two former landfill sites to determine if any concentrations of drums had been buried on site. The survey investigated the Richardson Hill Road Municipal Landfill, and a smaller landfill to the north that is designated as the North Area.

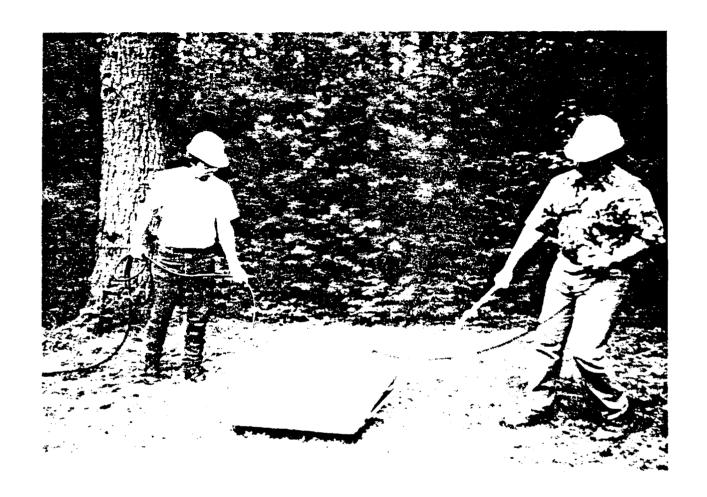
The survey utilized the survey grids established on site by O'Brien & Gere in accordance with the O'Brien & Gere WORK PLANS dated March 1992. The survey grid has principal grid stations located at intervals of 100 feet. Radar survey lines were laid out in a "star" pattern positioned over the magnetic anomalies. At the Richardson Hill Road Municipal Landfill, the star pattern was centered at grid station N400, W100. At the North Area, the star pattern was centered at grid station N1800, E900. The "footprint" of each survey line covers a path nearly 5 feet wide at the surface of the ground, becoming progressively wider with greater depth. (The radar beam spreads about 20° on either side, or approximately 40° total beam angle measured from side-to-side.)

The survey was run with a 120 MHz radar antenna hand-pulled over the surface of the ground. A survey van set up as a mobile laboratory carried all the electronic controls, power supplies and recording equipment. The radar instrument was set to probe to a depth of 24 feet.

Within the area covered by the radar survey, we do not observe any radar anomalies that would indicate the presence of a concentration of buried drums.

The radar data shows two locations on the Richardson Hill Road Municipal Landfill that indicate the presence of non-ionic liquids in pore space of the soil. The locations of the radar survey lines and the radar anomalies within the Richardson Hill Road Municipal Landfill are shown on Drawing Number 316-92-01, titled "RADAR SURVEY MAP, RICHARDSON HILL ROAD MUNICIPAL LANDFILL". The location of the radar survey lines within the North Area is shown on Drawing Number 316-92-02, titled "RADAR SURVEY MAP, NORTH AREA". For convenience, the grid coordinates of the radar anomalies are tabulated in Table I, titled "GRID COORDINATES OF RADAR ANOMALIES, RICHARDSON HILL ROAD MUNICIPAL LANDFILL". No radar anomalies were found in the North Area; however, a location for a test pit to provide a representative sample of the fill material in this area is shown on Drawing Number 316-92-02 and is listed in Table II, titled "GRID COORDINATES OF PROPOSED TEST PITS".

DESCRIPTION OF THE SURVEY


For most ground-penetrating radar survey work, the radar antenna is towed by a vehicle that is set up as a mobile laboratory to carry all the electronic controls, power supplies and recording equipment. For this site, where we used a star-shaped pattern of coverage rather than a rectilinear grid, we elected to manually pull the 120 MHz radar antenna over the ground. Figure 1 shows the 120 MHz radar antenna being-hand pulled by the operator. A van parked close to the survey lines held all the electronic support equipment. A scanning chart-recorder provided a hard-copy display of the radar data, as shown in Figure 2. All the radar data were tape-recorded for subsequent laboratory analysis and interpretation. (These magnetic tapes are permanently stored in our project archives.)

Using an electronically generated time window, the radar system was calibrated to display a total depth of 24 feet. The radar graphic charts that displayed the real-time data in the field are 6 inches in height, with a vertical scale factor of 1 inch = 4 feet. Upon returning to the laboratory, the tape-recorded data was played back to generate expanded-scale radar graphic charts that are 12 inches in height, having a vertical scale factor of 1 inch = 2 feet. These expanded-scale charts were used for the interpretation and analysis of the radar data.

A surveyor's tape laid along the ground was used to establish the grid locations. Each 5-foot grid station was recorded as a "tick-mark" along the top of the radar vertical-profile chart by means of a manually operated event-marker switch mounted on the handle of the radar antenna. This method of using a surveyor's tape and electronically recording grid locations makes it possible to maintain ground position accuracy to a tolerance of about ± 1 foot.

GPR Survey Grid

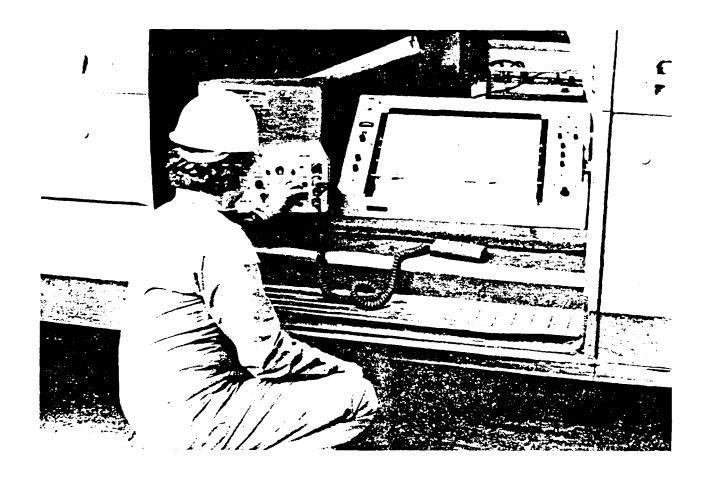

The survey was based on the survey grids established on site by O'Brien & Gere in accordance with the O'Brien & Gere WORK PLANS dated March 1992. The principal grid stations are established at intervals of 100 feet. Starting from a center point, the radar survey lines were laid out in an 8-point "star" pattern designed to investigate the magnetic anomalies that had been previously found at the two sites. The center point of the GPR survey at the Richardson Hill Road Municipal Landfill was located at N400, W100. The center point of the GPR survey at the North Area was located at N1800, E900. At both locations, the 8-point star search pattern extended for a distance of 100 feet from the center point, running along the principal grid lines as well as fanning out at an angle of 45 degrees with respect to the principal grid lines.

Figure 1.

120 MHz RADAR ANTENNA

The operator is guiding the deep-penetrating 120 MHz radar antenna along the surface of the ground. The operator has an event-marker switch to electronically annotate the ground locations on the radar charts. Extending to the left is the coaxial cable assembly (100 feet in length) which connects the radar antenna to the radar controls, power supplies, tape recorder and the graphics recording equipment.

Figure 2.

CHART RECORDER AND RADAR CONTROLS

The EPC scanning chart recorder (right foreground) produces the hard-copy vertical-profile radar records. All data is tape-recorded on the four-channel Hewlett-Packard instrumentation tape recorder (rear left). The radar control unit (left foreground) also provides the operator with a CRT display. The power supply (right background) provides a.c. electrical power for the system.

METHODOLOGY

The use of ground-penetrating radar to locate hazardous waste has been well established over the past decade.^{1,2} Historically, ground-penetrating radar has been concerned with echo-location techniques to locate buried objects or geological strata. The instrument works much like a marine "Fish-Finder," except that ground-penetrating radar uses radio waves instead of sound waves. Detection Sciences has also pioneered other aspects ground-penetrating radar. There are four fundamental types of investigation: 1) observation of discrete objects buried below the surface of the ground; 2) observation of changes in the physical properties of the soil caused by the presence of contamination; 3) observation of the disruption of the natural horizons, or layering, of the soil; and, 4) observation that none of these conditions are present in the ground. The latter observation is not trivial; it establishes that natural background conditions are present in the ground with no significant contamination or any evidence of an excavation or burial.

The physical properties to which the radar responds are the dielectric constant and the electrical conductivity. The electrical conductivity determines the attenuation, or rate of signal loss, as the radar wave (radio wave) penetrates the ground. Any liquids that ionize, such as acids, bases, or salt solutions, increase the electrical conductivity of the host material. This increase can be observed as a lighter-than-normal contrast with respect to uncontaminated soils.

The dielectric constant determines the velocity of the radar wave as it propagates into the ground. The abrupt change in the dielectric constant from layer to layer determines the strength of the radar reflections. Non-ionic liquids, such as petroleum products, solvents, pesticides and organic chemicals modify the dielectric constant of the host material, producing darker-than-normal contrast with respect to uncontaminated soils.

The burial of a discrete object produces a characteristic radar signature resulting from the geometry of the wide-beam radar antenna passing over the buried object. This characteristic signature is an inverted hyperbola, or upward pointing "comet" on the radar record, and is the means by which discrete objects may be identified. Figure 3 shows how the beam geometry generates the hyperbola signature. A small object ("point target") generates a true hyperbola. A larger target, such as a flat-top storage tank, generates a flat-top reflection with distinct hyperbolic "edge effects." Each end of a flat-top tank is observed as one half of a hyperbola. A cylindrical tank, on the other hand, generates a single stretched, or extended, hyperbola. Conversely, where no buried target exists, we see no hyperbolas in the radar record. An underground tank search, therefore, is largely a matter of looking for stretched or flat-top hyperbolas in the radar record. For each radar vertical profile that crosses over the underground tank, the lateral extent of the hyperbola signature is plotted on a map in plan view. When the plotting is completed, the lateral extent of all the individual hyperbolas shows the outline of the buried tank.

Stanfill, D.F. III and McMillan, K.S., "Inspection of Hazardous Waste Sites Using Ground-Penetrating Radar (GPR)," *Proc. National Conference on Hazardous Waste and Environmental Emergencies*, p. 244-249, Hazardous Materials Control Research Institute (H.M.C.R.I.), Cincinnati, OH, May, 1985.

Stanfill, D.F. III and McMillan, K.S., "Radar-Mapping of Gasoline and Other Hydrocarbons in the Ground", Proc. 6th National Conference on Management of Uncontrolled Hazardous Waste Sites, p. 269-274, Hazardous Materials Control Research Institute (H.M.C.R.I.), Washington, D.C., November, 1985.

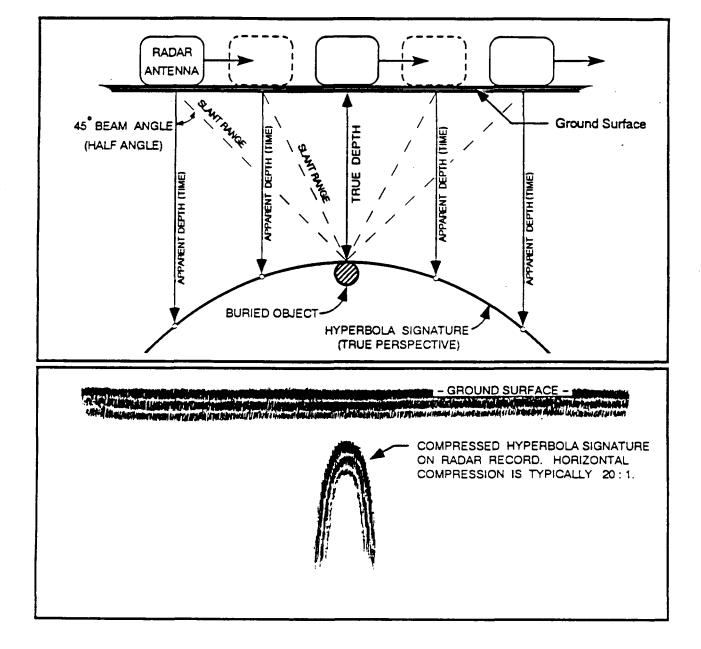


Figure 3.

HYPERBOLA SIGNATURE

Buried objects are characterized by their hyperbola signature. As the radar antenna moves across the ground (upper drawing), the radar beam picks up a buried object about 45° ahead of the antenna, continuing to view the object until it is about 45° behind the antenna. The echoes from the buried object trace out a hyperbola. On the radar graphic record (lower drawing), the hyperbola is horizontally compressed (typically about 20:1).

METHODOLOGY (Cont.)

Drum Signatures

The ability of the radar to locate a buried drum is based on the size and shape of the buried target. The drum must be intact to be recognizable as a drum; otherwise, a crushed drum can only be identified as buried scrap metal. An intact drum produces a geometrically symmetrical hyperbola signature, as illustrated in Figure 3. Buried pipes or other objects having cylindrical geometry also produce a geometrically symmetrical hyperbola. By examining the size of the observed hyperbolas we can rule out small objects and relatively large objects. An occasional or sporadic observation of a suspicious hyperbola is not as much a concern as a cluster of hyperbolas. The criteria by which we identify the burial of a significant quantity of buried drums is to look for a cluster of closely packed hyperbolas all having the size of a drum. The observation of such a closely packed cluster would be sufficient reason to call for the excavation of the suspect area.

Isolated Drums

The 120 MHz radar antenna used for this survey has a "footprint" nearly 5 feet wide at the surface of the ground. The radar beam becomes progressively wider as it penetrates into the ground. If we were to run parallel survey line spaced 5 feet apart, we would achieve 100 percent volumetric inspection of the subsurface materials. A more widely spaced search pattern, such as running survey lines at intervals of 10 or 20 feet, can reduce the cost of the survey and provide a statistically valid method for assessing site conditions. Running survey lines at an interval of 10 feet, for example, provides a 50 percent sample of a site. An interval of 20 feet provides a 25 percent sample. When using any sampling method, however, it is possible that isolated drums could be located in the areas not covered by the radar survey lines.

If there is a cluster of drums extending over a significant distance, it is likely that one or more radar lines would pass over the cluster. For example, a search pattern consisting of parallel lines spaced 10 feet apart would leave a narrow strip less than 5 feet wide that would not be observed with the radar. Unless the drums were buried in a narrow trench that was almost exactly aligned with the radar survey lines (an unlikely occurrence), the drums would be observed on one or both of the lines straddling the trench. For a star pattern, there is a decreasing probability of detection in relation to the distance from the center of the star. The probability of detection increases, however, with the size of the cluster. Thus, an 8-point star pattern run over relatively short distances (no more than 100 feet) is an efficient way to sample a specific location.

Experience has also shown that a relatively large percentage of individual drum-like signatures will prove to be objects other than a drum. Hot water heaters, a roll of metal fencing, a piece of corrugated drain pipe, etc., all produce hyperbolas about the size of a drum. To be conservative, therefore, we would call for the excavation of any target suspected of being a drum.

Buried Scrap Metal

Buried scrap metal produces characteristic radar signatures that an experienced operator can easily identify as buried metal. Because crushed drums do not produce the characteristic hyperbola signature, they appear to the radar as buried metal. Experience gained in more than a decade of performing GPR surveys on hazardous waste sites and landfills, including Superfund sites, has shown a propensity on the part of site operators to crush drums before burial. For this reason, the presence of buried scrap metal could possibly include crushed drums. If an intact drum were found among crushed drums, it would probably be identified as a drum. Otherwise, crushed drums appear to the radar to be nothing more than scrap metal. When a concentration of buried metal is detected, therefore, it is our policy to call for the excavation the buried metal if there is reason to suspect that the buried metal may contain crushed drums.

302110

PRINCIPLES OF OPERATION

The ground-penetrating radar system is an echo-location system that emits a brief impulse of radio energy lasting only a few billionths of a second. The time it takes for the radar echoes to return to the radar antenna corresponds to the depth below the surface. By recording these depth-dependent echoes on a scanning time-based chart recorder, a vertical profile of the ground is generated. This vertical profile shows the longitudinal distribution of subsurface strata and other features over which the radar antenna has passed.

Velocity and Depth

The radar impulse travels into the ground at an average speed of about 40 percent of the speed of light. The exact speed depends on the nature of the material through which the impulse is traveling. The slowest medium is water, where the speed is about 11 percent of the speed of light. The fastest material is dry sand, where the speed is about 50 percent of the speed of light. In air, such as an underground cavity, the radar impulse travels almost exactly at the speed of light, taking one nanosecond (one billionth of a second) to travel one foot.

The ground-penetrating radar equipment is designed to measure and display the time-based echoes down to a fraction of a nanosecond. To convert to depth, it is necessary to know the exact velocity of the radar impulse as it travels through the ground. Over the past decade, Detection Sciences has developed a proprietary database of the radar velocities of various materials. With this database we are able to electronically calibrate the radar system within about 1 percent of local depth. Borings, test trenches and the common point method (a time-based geometric triangulation method) can also be used to depth-calibrate the radar. The ultimate limit of accuracy is determined by lateral variations in soil moisture content and the inhomogeneity of soil materials. Because of these limits, we have come to rely on electronic calibration. This method has proven to be at least as good as, or better than, the accuracy of depth measurements based on soil borings.

Subsurface Reflections

At the interface of two materials, the radar impulse typically undergoes an abrupt change in velocity. It is this change in velocity that causes some of the radar energy to be reflected back to the surface of the ground where it is detected by the antenna. The amount of energy that is reflected, or the reflection coefficient, depends on the contrast between the two materials; i.e., the difference between their respective radar velocities. Because the radar velocity is proportional to the inverse square root of the dielectric constant, the fundamental parameter to which the radar is responding is the difference in the dielectric constants at the reflecting surface.

All materials with the exception of metals are relatively transparent to the passage of radar energy. Metals reflect all the energy striking their surface; buried metal objects like pipes or metal containers are therefore excellent targets. The fact that most materials are relatively transparent means that the radar impulse can continue to send back reflection after reflection as it propagates downward into the ground, thus revealing the various subsurface strata and profiles.

Subsurface Materials

In effect, the radar functions as a "difference meter" by drawing a boundary at the interface of two different materials. The "texture" of the radar reflections also vary with different type of materials. With experience it is possible to interpret the radar reflections to accurately identify common subsurface materials such as clay, peat, glacial till, and bedrock. Certain special situations, such as ionic chemicals, non-ionic chemicals, and gasoline in the soil that are also relatively easy to identify. Other situations such as interspersed layers of organic silt, silty sands, etc., are impossible to identify without direct visual inspection by means of a test trench or core sample.

Use of Borings

The radar can be "calibrated" by using available boring logs to identify the types of subsurface materials. The best strategy is to first perform the radar survey and then use the radar data to specify the locations for a few strategically placed borings. Although borings are useful for direct physical examination of subsurface materials and for confirming suspected low-density zones, the use of radar can largely supplant the use of borings. In this regard, it is useful to think of the radar system as a means of making a continuous profile of "electronic borings" spaced 1 to 3 inches apart. Each radar impulse and its successive train of echoes constitute a single scan, or sounding. At a rate of 52 vertical soundings per second, the radar is capable of generating millions of "electronic boreholes" in the course of a day. Using radar in conjunction with a few diagnostic borings is more economical than a complete schedule of borings. Radar also provides continuous subsurface profiles that are much more accurate than having to interpolate between borings.

Penetration Depth

The penetration depth of the radar system depends on the operating frequency and the electrical conductivity of the ground. For shallow penetration of a few feet, the optimum choice is an operating frequency of 600 MHz. This small, lightweight antenna can penetrate to a depth of about 5 feet under the most adverse ground conditions, and as much as 25 to 30 feet under good conditions. "Adverse" refers to highly conductive materials having a resistivity of less than 10 ohm-meters. "Good" radar conditions are resistivities of several hundred ohm-meters or more.

Shifting to a lower operating frequency provides greater penetration, the improvement being the square root of the ratio of the respective wavelength. An operating frequency of 120 MHz is a good general-purpose frequency for reaching depths that are beyond the capability of the 600 MHz antenna. We routinely use this antenna to probe to a depth of 48 feet. The 48-foot depth setting provides a convenient vertical scale of 1 inch = 4 feet on the 12-inch vertical profile strip charts. In general, we tend to work in multiples of 12 feet so that the vertical scale factor on 12-inch charts will correspond to a convenient engineering scale (instead of using arbitrary time-based scales that have long been the custom in this field).

Although lower-frequency antennas provide greater depth of penetration, there is a corresponding loss of detail, or spatial resolution, due to the longer wavelength. The optimum is to use as high an operating frequency as possible consistent with the depth requirements, thus providing the best possible detail under the operating conditions. The useful range of ground-penetrating radar frequencies is limited to about 10 MHz at the lower end, up to a maximum of about 1200 MHz (1.2 GHz) at the upper end. The penetration of the 1.2 GHz antenna is limited to a few inches. The 10 MHz antenna can penetrate hundreds of feet into the ground but the corresponding loss of detail limits its usefulness to large features such as geologic strata. Fortunately, the most demanding spatial resolution requirements are usually small, near-surface targets such as wire reinforcing-mesh in concrete or the shallow burial of electric wires. The more deeply buried targets are nearly always larger objects such as sewer pipes or storm drains.

The discussion regarding penetration depth assumes that all antennas have the same power. The penetration depth at any given frequency can be improved with increased power, but the improvement suffers from inverse-square losses as a function of depth, so that a quantum jump in power is necessary to gain any significant improvement. For this reason, Detection Sciences, Inc. has focused its research efforts on improving the sensitivity of the radar receiver and reducing the internal noise of the receiver. These efforts have paid off by increasing the penetration depth of our equipment by about a factor of 5 compared to standard, commercially available systems. This improved capability allows Detection Sciences, Inc. to obtain data under conditions that were previously impossible for ground-penetrating radar.

RADAR EQUIPMENT

The radar equipment consists of a custom-modified GSSI SIR System-8 Subsurface Interface Radar. Detection Sciences has developed proprietary circuit designs and other proprietary modifications that have increased the depth of penetration by nearly an order of magnitude compared to the original commercial equipment purchased in 1980. There are also corresponding improvements in spatial resolution and the clarity of the radar records. A major advantage of our modified radar system is its ability to penetrate clay and work in other difficult environments that have high electrical conductivity (ionic materials) where it would otherwise be impossible to obtain data with an ordinary, unmodified radar system.

All data is tape-recorded on a Hewlett-Packard Model 3964A Instrumentation Tape Recorder. These magnetic data tapes are kept in permanent storage in our archives. The radar graphic charts ("hard-copy" charts) consist of vertical-profile strip charts generated on a scanning graphic chart recorder. To facilitate analysis, the radar graphic charts, or strip charts, are calibrated with a vertical scale showing feet of depth (rather than using arbitrary time scales for vertical depth). The specific list of radar equipment is:

CONTROL UNIT. The control unit is a custom-modified GSSI Model 4800. This unit contains the bulk of all the radar electronics and system controls, and has an oscilloscope that shows the amplitude of each radar impulse and its corresponding echoes.

MOTOROLA MODEL M68MM01A MONOBOARD MICROCOMPUTER. The microcomputer has real-time processing capability for background removal, digital filtering, running averages, stacking and other radar signal-processing algorithms.

HEWLETT-PACKARD MODEL 3964A TAPE RECORDER. This high quality, four-channel instrumentation tape recorder provides master tapes of all data recorded in the field.

EPC LABORATORIES, INC. MODEL 2200S CHART RECORDER.
This high-resolution electrostatic scanning chart recorder generates 12-inch hard-copy radar graphic charts (vertical profiles) which are used to interpret the radar data.

EPC LABORATORIES, INC. MODEL 8700 CHART RECORDER.

Our high-speed thermal scanning chart recorder can generate hard-copy radar graphic charts (vertical profiles) to facilitate "live" interpretation in real time in the field.

RADAR ANTENNA UNITS. The custom-designed radar antennas have proprietary high-performance electronic circuits. The antennas operate at different frequencies; the depth requirements determine the operating frequency selected for the survey.

[] 900 MHz [] 600 MHz [] 300 MHz [X] 120 MHz [] 80 MHz [] 10 MHz

TRIPPE 550VA SOLID STATE INVERTER. This power supply unit provides 120 volt ac power as well as 12 volt dc power for operating all field equipment from the survey vehicle's electrical system.

REMOTE STOP/START UNIT. The remote stop/start feature allows the operator to control the radar system from the antenna location.

ODOMETER WHEEL ASSEMBLY. The custom-built, 20-inch diameter "fifth wheel" odometer attached to the rear bumper of the survey vehicle provides automatic logging of 5-foot increments traveled along the survey path. Each 5-foot increment is recorded as a "tick mark" along the top of the radar chart.

SUPPORT EQUIPMENT. The various support equipment includes the Microcomputer Control Box, the Remote Control/Marker Unit, Hand-held Marker Unit, towing sled, towing harness and miscellaneous electrical cables and connectors.

RESULTS OF THE SURVEY

Buried Drums

The radar data showed no evidence of the hyperbola signatures that are characteristic of intact drums. In particular, there are no tightly spaced clusters of hyperbola signatures that would be characteristic of a cache of buried drums. Lacking any radar evidence of intact drums buried on the site, it is possible that drums were originally delivered to the landfill and crushed, the liquid contents having been poured out or lost when the drums were crushed and buried. If this were the case, the liquid contents could migrate down into the ground water. If any significant quantity of hazardous leachate has migrated into the ground water, monitoring wells should reveal this problem.

Radar Anomalies

The radar data shows two locations on the Richardson Hill Road Municipal Landfill that indicate the presence of nonionic liquids in the pore space of the soil. For convenience, the grid coordinates of the radar anomalies are tabulated in Table I, titled "GRID COORDINATES OF RADAR ANOMALIES, RICHARDSON HILL ROAD MUNICIPAL LANDFILL". Locations for proposed test pits are tabulated in Table II, titled "GRID COORDINATES OF PROPOSED TEST PITS". The locations of the radar survey lines within the Richardson Hill Road Municipal Landfill and the location of the non-ionic radar anomalies are shown on Drawing Number 316-92-01, titled "RADAR SURVEY MAP. RICHARDSON HILL ROAD MUNICIPAL LANDFILL". The locations of the radar survey lines within the North Area are shown on Drawing Number 316-92-02, titled "RADAR" SURVEY MAP, NORTH AREA". No radar anomalies were found in the North Area, however, a location for a test pit to provide a representative sample of the fill material in this area is listed in Table II, and is shown on Drawing Number 316-92-02.

Benign Areas

Most of the areas covered by the radar survey showed nothing abnormal. The areas that are devoid of any evidence of a burial are designated as "benign."

The fact that nothing abnormal was observed in the benign areas should not be viewed as lack of evidence. The ability of the radar system to locate anomalies in both of the areas shows that the radar system is capable of finding an anomaly should one exist. In areas where no anomaly is observed, therefore, the lack of an anomaly can be viewed as positive evidence that no anomaly exists in the area.

Table I.

GRID COORDINATES OF RADAR ANOMALIES RICHARDSON HILL ROAD MUNICIPAL LANDFILL

Survey Line	Start of Anomaly	End of Anomaly	Type of Anomaly
#5	47' from center point	60' from center point	Non-Ionic
#7	68' from center point	74' from center point	Non-Ionic

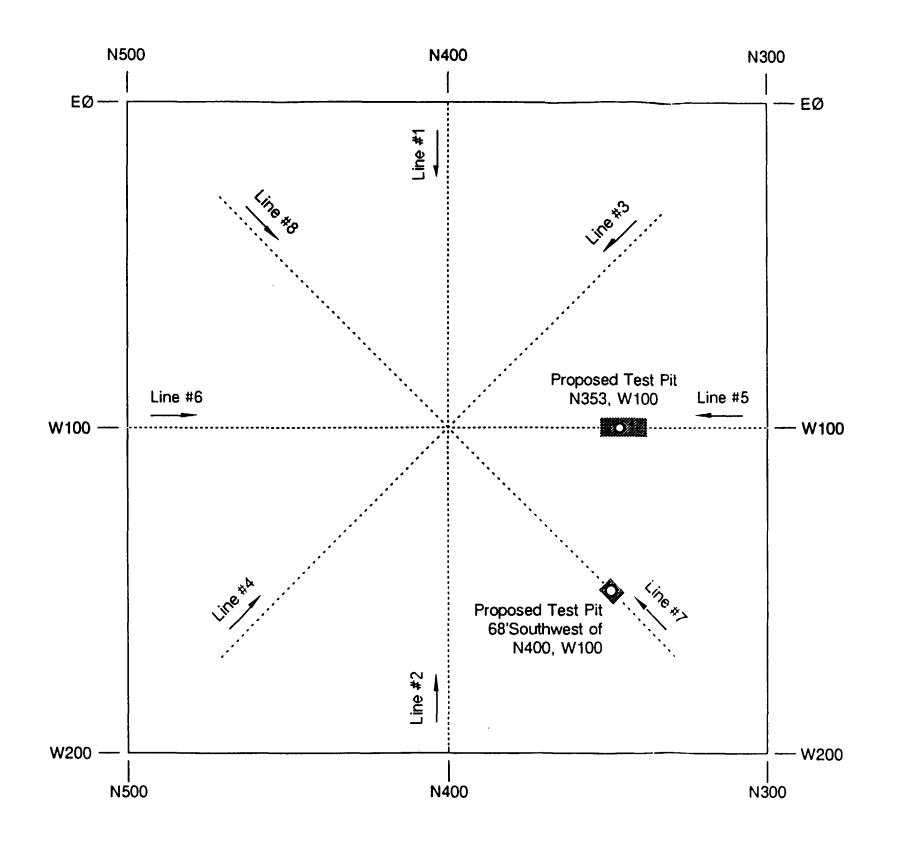
.....

Table II.

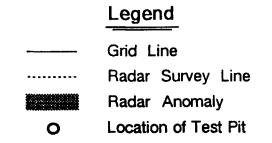
GRID COORDINATES OF PROPOSED TEST PITS

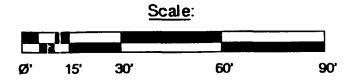
Survey Line	Survey Area	Location of Test Pit
#5	Richardson Hill Road	53' from center point
#7	Richardson Hill Road	71' from center point
#12	North Area	45' from center point

CONCLUSIONS

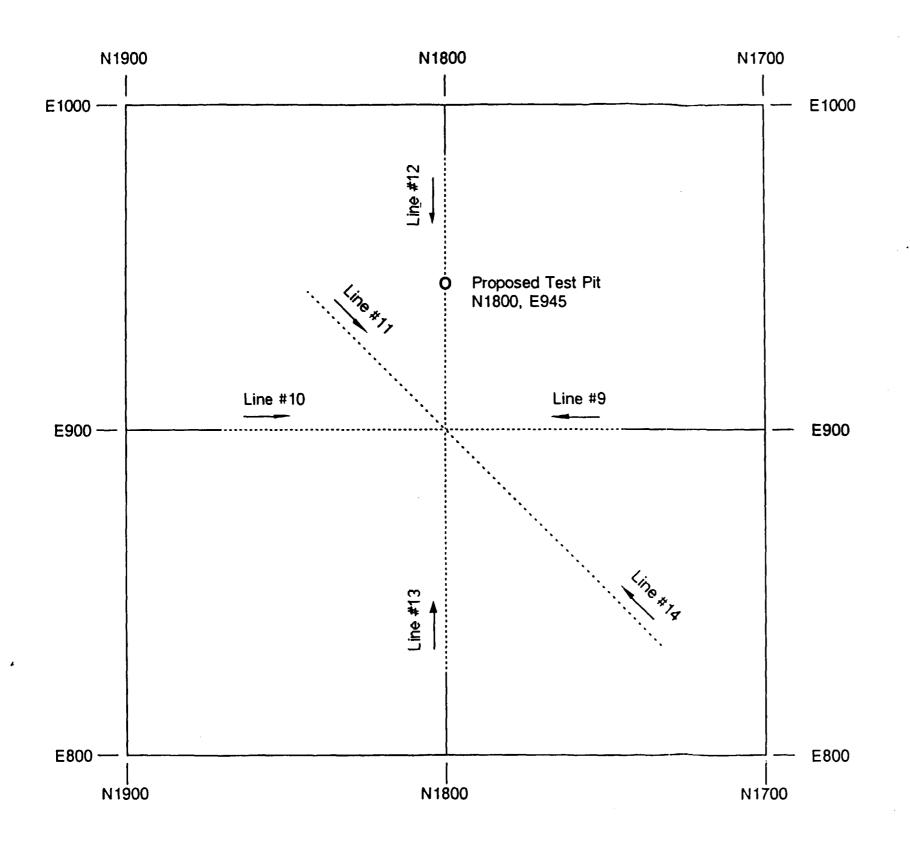

Test Pits

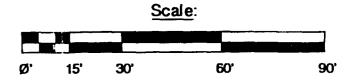
Because we did not find any tightly clustered hyperbola signatures that would suggest the burial of a cache of drums, we find no reason to make any excavations for the purpose of investigating buried drums. This conclusion is drawn from field experience gained in twelve years of performing ground-penetrating radar surveys on hazardous waste sites.

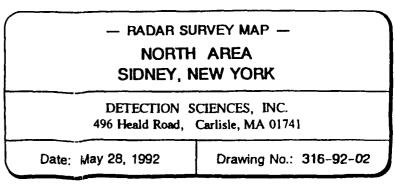

A cluster of crushed drums appears to the radar as a concentration of scrap metal. It is our policy, therefore, to take a conservative approach and recommend backhoe excavation whenever we find a concentration of scrap metal. No such concentration of scrap metal suggestive of crushed drums was observed on this radar survey.


There are, however, two locations that indicate the presence of non-ionic liquids in the pore space of the soil. Test pits or core samples at these locations (Table II) should reveal the specific cause of the non-ionic radar signatures.

No radar anomalies were found in the North Area; however, a location has been selected which would provide a representative sample of the fill material (Table II).






— RADAR SURVEY MAP — RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK DETECTION SCIENCES, INC. 496 Heald Road, Carlisle, MA 01741 Date: May 28, 1992 Drawing No.: 316-92-01

Grid Line
Radar Survey Line
Radar Anomaly
Cocation of Test Pit

APPENDIX C SOIL BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

D'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-1 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS
Client: Amphenol Corporation
Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.476 Date Fall: 30*

Boring Co.: Farratt Wolff, Inc. Foreman: Glenn Lansing

Boring Location: Grid Q 16 Ground Elevation:

OBG Ge						Ground Elevation: Dates: Started: 11/2/	90	Ende	ed: 11	/2/90		
			Sample			Sample	Stratum Change	Equipment	Fie	d Test	ing	R
Depth	No	Depth			"N" Value	Description	General Descript	Installed	рН	Sp Cond	HNU	k S
0	1	0-21	4-11-	21/21	27	Brown, damp, very fine to fine SAND, some silt, little fine to medium gravel, trace						
			16-15	1		organic debris	İ					
	2	2-41	18-28-	21/21	60	Damp, dark to medium brown, very fine to fine SAND, little silt, trace fine to med-						
			32-24			ium gravel, trace clay						
	3	4-61	9-19-	21/21	47	Same as above						•
5			28-34	<u> </u>								
	4	6-8'	38-50/0.4	1'/0.8'		Damp, dark to medium brown, very fine to fine SAND, some medium to coarse gravel, little silt, trace clay						
	5	8-10'	19-50/0.4	1'/0.8'		Same as above						
10	6	10-121	!	21/21	61	Damp, dark to medium brown to brownish gray, very fine to medium SAND, little						
			32-33	<u> </u>		silt, little medium to coarse gravel, trace clay						
	7	12-14'	28-50/0.1	0.7/0.6		Same as above						
	8	14-16'	32-34-	1.4/1.4		Same as above						
15			50/0.4			Bottom of boring 15.4 ft.	15.41					į
						Bottom Of Boring 13.4 16.						
]]			
											i	
				1								
				<u> </u>								
			<u> </u>	<u> </u>								
				<u> </u>								١
							1		(
	\vdash	·					•					
	H								1			
	\vdash											
	\vdash		! !	<u> </u>			•		((!			
	\vdash		 									

SB1.KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. 58-2 Sheet I of I TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Type: Split Spoon 3° Hammer: 140 lbs. Bround Water Depth
Depth
File No.: 3729.013.476 Date Date Fall: 30"

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing

Boring Location: Grid Q 14
Ground Elevation:

BG Geologist: Mark J.	ogist: Mark J. Roma				Dates: Started: 11/5/	Stratum		Ended: 11/5/90			
Γ		Sample			Cample		Fauirment	Fiel	d Test	ing	R
No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рН	Sp Cond	HNU	k
1	0-21	5-13-	21/21		fine, medium SAND, little silt, little						
		<u> </u>	<u> </u>	<u> </u>							
2	2-41	24-20-	21/21	63	Same as above					1	
		43-35	<u> </u>								
3	4-61	23-24-	2' /2'	45	Dark brown to reddish brown, very fine to						
		21-23			fine to medium gravel						
4	6-8'	32-34-	21/21	67	Damp, brown to grayish brown, very fine to fine SAND, some silt, trace clay.						
		33-35			trace fine to medium gravel						
5	B-10°	9-19-	21/21	45	fine to medium gravel	!					
		26-28	-28 fine to medium gravel								
6	10-121	14-26-	21/21	49	No recovery, small fragment of greenish gray sandstone (~0.5" thick)						
		23-58									
7	12-14'	50/2	21/0.11								
8	14-161	14-50/0.4	1'/1'		Eatham of haming to 9 ft	14. 91					
					rottom of botting 17,5 ft.	İ					
						(
]					
1			<u> </u>	<u> </u>							
	No 1 2 3 3 4 4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	No Depth 1 0-2' 2 2-4' 3 4-6' 4 6-8' 5 8-10' 7 12-14'	Sample No Depth Blows /6"	Sample Sample Sample	Sample No Depth Blows Persetr/ "N" Recovry Value	Sample Sample Sample Sample Sample Sample Sample Sample Sample Description	Sample Sample Sample Sample Change Stratum Change Semple Sample Sa	Sample	Sample Sample Sample Sample Sample Description Stratum Change Chan	Sample	Sample S

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-3 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York Ground Water Depth
Depth
File No.: 3729.013.476 SAMPLER Date Type: Split Spoon 3" Hammer: 140 lbs. Date Fall: 30°

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing

Boring Location: Grid P 18 Ground Elevation:

	Man: Glenn Lansing Geologist: Mark J. Roma Sample h Blows Penetr/ "					Ground Elevat Dates: Starte			Ende	ed: 1	/5/90		
			Sample			Sample		ratum	Faui amant	Fie	d Test	ing	R
epth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Description	. Ser	ange neral script	Equipment Installed	рН	Sp Co nd	HNU	K 5
0	1	0-21	5-5-6-13	21/0.91	11	Blackish brown to brown, damp, very to fine SAND, some silt, trace clay							
						organics (plant stems, roots), trac- gravel	e fine	į					İ
	2	2-41	16-17-	21 /21	31	Dark to medium brown, damp, very fifine SAND, some silt, trace clay, t	ne to						١
			18-20			organics, trace fine gravel	race						
	3	4-61	11-18-	21/21	36	Same as above							
5			18-22	· -			į						1
	4	6-81	47-41-	21/21	68	Damp to moist, dark to medium brown. fine to fine SAND and SILT, trace c	very						
			27-34			trace fine to medium gravel	lay,						
	5	8-10'	45-46-	21 /21	79	Damp, dark to medium brown, very fir	ne to						
			33-43			medium SAND, little silt, trace clar fine to medium gravel	y, trace						
10	6	10-121	36-40-	1.4/1.81		Same as above							
			50/0.4				İ						1
	7	12-141	13-27-	21 /21	48	Damp, dark to medium brown to reddi very fine to medium SAND and SILT,	sh brown						
			21-20			clay, trace fine to medium gravel	111112						
	8	14-16'	24-53-	1.21/11		Damp, brown to golden brown, very fi fine SAND and SILT, trace clay, trace	ine to	İ					I
15			50/0.3			gravel	15. 3	,,					
						Bottom of boring 15.2 ft.	15.2						
				-				İ					
							1						1
									·				
								į					
							į						İ
							į						
													-
				_				İ					
								ļ					J

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-4 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth Date Sidney, New York Fall: 30" File No.: 3729.013.476

Boring Co.: Parratt Holff, Inc.

| Boring Location: Grid F 28 (North area)

Forema OBG Ge	n: 6 olog	lern La ist: Ma	nsing rk J. Roma			,	Ground Elevation: Dates: Started: 11/6/	3 0	End	ed: 11	1/6/90	
			Sample			6.5	*ple	Stratum Change	Equipment	Fiel	ld Tes	ting
Depth	No	Depth	Plows /6"	Penetr/ Recovry	"N" Value	Desci	ription	General Descript	Installed	рH	Sp Cond	1 1
0	1	0-21	26-46-	21/0.91	63	Damp, medium brown,	very fine to fine SAND ace fine to medium				!	
•			17-6			gravel, trace organic	25				!	
	5	2-41	7-11-	21/21	39	Same as above						
			28-45									
	3	4-61	45-50/0.3	0.9/0.81		fine SAND. some silt.	brown to grayish brown trace clay, trace					
5						fine to medium grave	l, trace organics					
	4	6-8'	50/0.4	1'/0.6'		Damp, medium brown, little silt, trace c	very fine to fine SAND, lay, trace fine gravel					
	5	8-101	40-50/0.1	0.7/0.5		Same as above						
10	6	10-12'	29-50/0.3	0.9/0.5		Poor recovery, large gray SANDSTDNE, then ing wet at bottom of	fragments of greenish same as above, turn- spoon					
	7	12-141	15-50/0.4	1' /0.5'		Wet, brown SILT, some fine to medium grave! sandstone	e very fine sand, trace , large fragment of					
	В	14-161	6-26-	21/0.41	63	Same as above						
15			37-41									
						Bottom of boring	16 ft.	16.01				
		-										
		_										
_												
											•	
		_										
:												
-							i					
						<u> </u>						
											! 	
												$\perp \perp$

SB4.KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-5 Sheet I of 1 TEST BORING LOG Froject Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.476 Date Fall: 30* Roming Co . Darrett Holff Inc. 1 Boring Location: Grid D 27 (North area)

	•		Sample				Stratum	-	Fiel	d Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Sample Description	Change General Descript	Equipment Installed	pН	Sp Cond		k S
0	1	0-21	1-2-2-2	2' /1. 3'	4	Light to medium brown, moist, very fine to fine SAND and SILT, trace clay, trace fine						
	2	2-41	33-50/0.4	1'/1.5'		Dark to medium brown, moist, very fine to fine SAND, some silt, trace clay, trace fine to medium gravel						
	3	4-61	25-39-	1.9/0.7	79	Boulder from 2.9-4.8 ¹ Dark to medium brown to reddish brown, very						
5			40-50/0.4			fine to medium SAND and SILT, little clay, fragments of dark gray siltstone and shale						
	4	6-81	40-50/0.4	1' /0.7'		Dark brown, wet, very fine to fine SAND and SILT, little clay, several large fraguents of both greenish gray sandstone and dark						
	5	8-101	28-38-	2' /1.3'	79	gray shale Dark brown to reddish brown, wet, SILT,						
	٦		41-48	L /1.5		some very fine to fine sand, some clay, little fine to medium gravel						
10	6	10-121	12-28-	21/0.61	50	Same as above						
			22-20									
	7	12-141	23-27-	1.9/0.9	60	Dark to medium brown, fine to medium SAND, some silt, little clay, large fragments						
			33-50/0.4			of silty shale and greenish gray sandstone						
	В	14-16'		1.3/0.8		Same as above						
15			33-50/0.4			Bottom of boring 15.3 ft.	15.3'					
	\vdash											
						·						
									1		1	1

SB5. KJF

D'EBIEN & GERE ENGINEERS, INC. Report of Boring No. 158-6 TEST BORING LOG Project Location: RHRLS
Client: Amphenol Corporation
Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth Date File No.: 3729.013.476 Fall: 30"

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

| Boring Location: Grid H 28 (North area) | Ground Elevation: | Dates: Started: 11/6/90

Ended: 11/6/90

ORG Ge	Geologist: Mark J. Roma Sample					Dates: Started: 11/6/	90	End	ed: 11	/6/90		
	L	1		,	,	Sample	Stratum Change	Equipment	Fiel	d Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рН	Sp Cond	HNU	k 5*
0	1	0-21	2-3-5-7	21/21	8	Brown, damp, very fine to fine SAND, some silt, trace fine to medium gravel, trace organics		-				
	2	2-41	11-38-	1.3/0.2	 	Poor recovery with large fragments of green						
			50/0.3			gray sandstone, some damp, brown, very fine to fine SAND and SILT						
	3	4-61	38-40-	21/21	71	Dark to medium brown, damp, fine to medium SAND, some silt, trace clay, trace fine						
5			31-39			to medium gravel						
	4	6-8'	42-50/0.4	1' /2'		Same as above						
	5	8-10'	18-23-	21 /21	48	Dark to medium brown, very fine to fine SAND and SILT, trace clay, trace fine to						
			25-29			medium gravel						
10	6	10-121	 	21/21	63	Same as above						
_	1 1		30-27									
	7	12-141	50/0.3	0.3/0.3		Dark brown, damp, very fine to fine SAND and SILT, little clay, trace fine to medium gravel, large greenish gray sandstone frag-						
	8	14-161	49-50/0.3	0.9/0.5		ments Same as above	14.81					
15						Bottom of boring 14.8 ft.						
		· 										
_												
	H	-										
	نــا		i	İ			<u>i</u>	Ĺ <u>. </u>]	丄

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SE-7 Sheet I of I TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York Ground Water Depth Depth SAMPLER Date Type: Split Spoon 3° Hammer: 140 lbs. Date Fall: 30" File No.: 3729.013.476

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing DBG Geologist: Mark J. Roma

Boring Location: Grid P 17 Ground Elevation: Dates: Started: 11/7/90

Ended: 11/7/90

000 05	0100	Sample				vates: Started: 11/4	730	Enu	-0: 11	77790		
		Depth Blows Penetr/ Recovry V				Sample	Stratum Change	Equipment	Fiel	d Test	ing	R
Depth	No	Depth			"N" Value	Description	General Descript	Installed	На	Sp Cond	HINU	lk
0	1	0-21	4-10-	21/21	24	Dark to medium brown, damp, very fine to fine SAND, some silt, little clay, little						Γ
			14-19			fine to medium gravel, trace organics						
	2	2-41	35-37-	21/21	65	Same as above						
	Ш		28-35									
	3	4-61	12-21-	21/21	54	Dark to medium brown, damp, very fine to fine SAND, some silt, little clay, trace						
5			33-36			fine gravel						
	4	6-81	23-29-	21/21	63	Dark to medium to reddish brown, very fine to medium SAND and SILT; little clay, trace						
			34-24			fine to medium gravel						
	5	8-10'	12-13-	1.8'/1'	30	Medium brown to golden brown, very fine to medium SAND and SILT, little clay, trace						
			17-50/0.4			fine to medium gravel						
10	6	10-121				No recovery - spoon refusal on boulder				:		
												
	7	12-14'		21/21	60	Medium brown, damp, fine to medium SAND, little silt, trace clay, trace fine gravel,						
		·	27-29			large sandstone fragment						
	8	14-161	ļ	1.6/1.1	95	Brown to grayish brown, medium SAND, little silt, trace clay, trace medium gravel	1					
15			49-50/0.1			Bottom of boring 15.6 ft.	15.61					
					<u> </u>						İ	Ì
				_								
	H											
				<u> </u>								
											ŀ	
·			ļ 									
						·					L	

Project Location: RHRLS
Client: Amphenol Corporation
Sidney, New York

TEST BORING LDG

Report of Boring No. SB-8
Sheet I of 1

Report of Boring No. SB-8
Sheet I of 1

Report of Boring No. SB-8
Sheet I of 1

SAMPLER
Type: Split Spoon 3"
File No.: 3729.013.476

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBS Geologist: Mark J. Roma Boring Location: Grid P 15 Ground Elevation: Dates: Started: 11/7/90

Dates: Started: 11/7/90

Ended: 11/7/90

			Sample			01-	Stratum	Fautanas	Fie	d Test	ing	
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Sample Description	Change General Descript	Equipment Installed	рH	Sp Cond	HNU	æ k 5#
0	1	0-21	4-7-15-14	21/21	52	Dark to medium brown, damp to moist, very fine to fine SAND, little silt, trace clay trace organics						
	2	2-4'	11-25-	21 /21	46	Same as above						
	П		21-29									
	3	4-61	21-27-	21/21	48	Dark to medium brown, damp, fine to medium SAND and SILT, little clay, trace to medium						
5			21-20			gravel						
	4	6-81	15-25-	21 /21	48	Dark to medium brown, very fine to fine SAND, little silt, trace clay, trace fine						
			23-22			to medium gravel						
	5	8-10'	21-16-	21 /21	31	Same as above						
			15-22									
10	6	10-121	18-50/0.4	1'/1.9'		Dark to medium brown, very fine to fine SAND, some silt, little clay, trace fine to medium gravel, large greenish gray sand-						
	7	12-141	48-42-	1.1/0.6		stone fragments Dark to medium brown, damp, very fine to						
			50/0.1		•	medium SAND, little silt, trace clay, trace fine to medium gravel, small fragments of						
	В	14-161	29-50/0.4	1'/1'		red-brown shale and green-gray sandstone						
15						Dark to medium brown, damp, fine to medium SAND, little silt, little medium gravel, orange-yellow deposits of silt mixed with sand						
						Bottom of boring 14.9 ft.	14.91					
											<u> </u>	
											l	
		-										
	H											
	\vdash				-							
	H											
	H				-							
					-							

SB8. KJF

O'BRIEN & GERE ENGINEERS, INC.	TEST BORING LOG	Report of Boring No. 58-9 Sheet I of 1
Project Location: RHRLS Client: Amphenol Corporation Sidney, New York	SAMPLER Type: Split Spoon 3" Hammer: 140 lbs. Fall: 30"	Ground Water Depth Date Depth Date File No.: 3729.013.476

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

| Boring Location: Grid o 16 | Ground Elevation: | Dates: Started: 11/7/90

1/7/90 Ended: 11/7/90

096 Ge	Geologist: Mark J. Roma Sample					Dates: Started: 11/7	/90	End	ed: 11	/7/ 9 0		
		Blows Penetr/ "				Sample	Stratum Change	Equipment	Fiel	d Test	ing	R
Depth	No	Depth		Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рH	Sp Cond	HNU	k 5#
0	1	0-21	5-11-9-6	21/21	20	Dark to medium brown, very fine to fine SAND, some silt, little clay, mottled golden fine sand and dark brown to black						
		2-41	0.40	0 // (1	1	silt						
	2	2-4	9-10-	2' /1. 1'	21	Same as above						
	Ш		11-12									
	3	4-6'	2-7-3-4	21/21	10	Yellow-brown to brown, moist to wet, very fine to medium SAND, some silt, trace clay,						
5						trace fine to medium gravel						
	4	6-8'	15-25-	21/21	58	Dark to medium to golden brown and greenish gray, fine to medium SAND and SILT, little						
			33-35			člay, little fine to medium gravel						
	5	8-10'	50/0.4	0.4/0.3		Same as above						
10	6	10-121	17-17-	21/11	29	Dark to medium brown to greenish gray, moist to wet, very fine to fine SAND and SILT, little fine to medium gravel, trace						
			<u> </u>			clay						
	7	12-14'	11-18-	21/0.81	45	Same as above						
			28-35				j		1 1			
	8	14-161	38-45-	1.2/0.4		Poor recovery. Dark to medium brown, fine to medium SAND, little silt, trace clay,						
15			50/0.2			large fragments of greenish gray sandstone	15.21				Ì	
						Bottom of boring 15.2 ft.	<u> </u>					
												
			<u> </u>									
	_						}					
	П											
							i i					

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-10 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Depth File No.: 3729.013.476 Type: Split Spoon 3" Hammer: 140 lbs. Date Fall: 30°

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing

Boring Location: Grid 0 14 Ground Elevation:

DBG Ge	ojoi	jist: Ma	rk J. Roma	ì		Dates: Started:	11/8/90	Enc	jed: 11	1/8/90		
_			Sample		,	Sample	Strat Chang	e Equipment		d Tes	ing	R
Depth	No	Depth	81 ows /6"	Penetr/ Recovry	Value	Description	Gener Descr	al Installed	рН	Sp Co nd	HNU	k 54
0	1	0-21	3-4-7-9	2'/1.8'	11	Damp, dark brown to gray, very fine t SAND, some silt,	o fine					
					ļ							
	2	2-41	12-9-8-7	2' /0. 1'	17	Poor to no recovery (trash)						
	3	4-61	3-2-2-3	21/21	4	Damp, dark brown, fine SAND and SILT, trace clay, trace fine to medium grav	0]					
5						(trash)	£1					
	4	6-81	2-2-2-2	21/21	4	Same as above						
_	5	8-101	2-2-3-3	21/0.61	5	Dark gravish brown to black. moist. v	erv					
						Dark grayish brown to black, moist, v fine to fine SAND and SILT, little cl trace fine gravel (trash)	ay,		,			
10	6	10-12'	2-3-5-7	21/21	8	Same as above						
	7	12-14'		21/01	21	No recovery						
	В	14-16'	12-13 8-12-	2' /0. 1'		Dank marrich brown to blank your fin	. +0					
15	0	14-10	54-48	2 70.1	00	Dark grayish brown to black, very fin fine SAND and SILT (trash)						
						Bottom of boring 16.0 ft.						
		-										
										Ì		
		-										

(NO composite samples for 12-16')

SB10.KJF

O'BRIEN , SERE. Report of Boring No. 58-11 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.476 Date Fall: 30°

Boring Co.: Parratt Holff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

| Boring Location: 51' North of Grid 0 12 | Ground Elevation: | Dates: Started: 11/8/90

Ended: 11/8/90

086 6e	olog	gist: Ma	rk J. Roma	t		Dates: Started: 11/8	/ 9 0	End	ed: 1:	1/8/90		
			Sample			Sample	Stratum Change	Equipment	Fie.	ld Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рН	Sp Cond	HNU	k s#
0	1	0-21	2-2-3-3	2' /0.9'	5	Moist to wet, dark to medium brown, very fine to fine SAND, some silt, little fine gravel, trace organics						
	<u>i </u>		<u> </u>	<u> </u>	<u> </u>	·		·	Ì		1	
	2	2-41	2-3-2-5	2' /2'	5	Moist to wet, dark to medium brown to gray. fine SAND and SILT, little clay, (little trash)		·				
	3	4-61	7-5-3-3	21/0.81	8	Wet, brick red to brown, fine to medium SAND, little silt (trash)						
5									Ì			
	4	6-81	2-1-1-2	21/11	2	Same as above			ļ ļ			
	5	8-10'	1-9-3-6	21/0.31	12	Damp, dark to medium brown, very fine to fine SAND, some silt, trace fine to medium gravel, (trace trash)						
10	6	10-121	3-4-4-6	21/0.31	8	Same as above						
	7	12-141	7-12- 9-14	21/0.151	21	Poor recovery, dark brown to brick red to black, very fine to medium SAND and SILT little clay, trace medium gravel (little						
			<u> </u>		4.5	trash)						
15	В	14-16'	7-6-7-7	2' /2'	13	Same as above						
 						Bottom of boring 15.0 ft.						
								!				
·												
							<u> </u>			l		

SB11.KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SE-12 Sheet I of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.476 Date Fall: 30"

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

| Boring Location: Grid P 13 | Ground Elevation: | Dates: Started: 11/8/90 Ended: 11/8/90

OBG Ge	olo	gist: Ma	rk J. Roma			Dates: Started: 11/8/	90	End	ed: 11	/8/90		
			Sample			Camala	Stratum	Enuisment	Fiel	d Tes	ting	
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Sample Description	Change Seneral Descript	Equipment Installed	рН	Sp Cond	HNU	k 51
0	1	י2-0	7-12-	21/1.91	46	Dark brown to brown, very fine to fine SANI and SILT, trace fine to medium gravel						
			34-25									
	5	2-41	22-50/0.4	1'/1'	_	Same with large fragments of sandstone						
	3	4-61	13-17-	21/21	34	Damp to moist, dark to medium brown, very						
5			17-30			fine to fine SAND, some silt, little clay, little very fine to fine gravel						
	4	6-81	20-25-	2'/1'	46	Damp, olive green SILT and CLAY, some fine gravel, little fragments of greenish gray						
			21-21			sandstone						
	5	8-10*	10-16-	21/21	36	Medium to dark reddish brown, very fine to fine SAND and SILT, some olive green clay, little fine gravel						
10	6	10-121		1.41/11		Same as above						
			50/0.4	 								
	7	12-14'	33-28-	21 /21	59	Moist, dark to medium brown, very fine to fine SAND and SILT, little dark reddish						
			31-22	1	•	brown clay, little fine gravel						
	8	14-161	24-48-	2'/1.5'	81	Same as above						
15			33-25									
						Bottom of boring 16.0 ft.						
		_		-								
					-							
										·		
_										Ì	Ì	İ
					ļ							
		_		-								
	\vdash		-		-							
	i		İ	i	i		1	<u> </u>	1	[İ	1

SB12.KJF

O'BRIEN & GERE ENGINEERS, INC.	TEST BORING LOG	Report of Boring No. SE-13 Sheet 1 of 1
Project Location: RHRLS Client: Amphenol Corporation Sidney, New York	SAMPLER Type: Split Spoon 3" Hammer: 140 lbs. Fall: 30"	Ground Water Depth Date Depth Date File No.: 3729.013.476
5 5 5 11 11 177 7		

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing ORG Geologist: Mark J. Roma | Boring Location: Grid M 21 | Ground Elevation: | Dates: Started: 11/9/90

s: Started: 11/9/90 Ended: 11/9/90

OLU UL	0105	iter: ue:	rk J. Koma			pates: Started: 11/9.	50	Enu	PU: 1.	1/9/90		
	L		Sample	<u></u>		Sample	Stratum Change	Equipment	Fie	ld Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рН	Sp Cond	HNU	k Si
0	1	0-21	1-2-3-4	21/21	5	Damp, brown, very fine SAND and SILT, lit- tle clay, trace fine gravel, trace organic						T
	2	2-41	7-18-	21 /21	44	Same as above						
			26-32									
	3	4-61	23-42-	21/0.81	81	Damp, brown, very fine to medium SAND,						
5			39-44			some silt, little clay, large fragments of greenish sandstone, small chips of reddish						
	4	6-81	35-34-	21/11	52	Dark brown to greenish gray, very fine to						
			18-17			medium SAND, some silt, little clay, trace fine to medium gravel						
	5	8-10'	15-13-	21/21	41	Dark to medium brown, fine to medium SAND and SILT, little clay, little medium grave						
			28-21			and Sici, little clay, little medium grave						
10	6	10-12'	21-20-	21/21	37	Same as above						
		•	17-21									
	7	12-14"	30-41-	1.9'/1'	79	Same as above				·		
			38-50/.4									
	8	14-161	40-42-	21/21	77	Dark brown to reddish brown, fine to mediu SAND, some silt, little clay, large frag-						
15			35-41			ments of greenish gray sandstone						
				•								
						Bottom of boring 16.0 ft.						
							ļ					
						•						
	Ш											
	Ш											
	Ш											
	Ш											

SB13.KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-14 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.476 Date Fall: 30"

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

| Boring Location: Grid M 19 | Ground Elevation: | Dates: Started: 11/9/90

Ended: 11/9/90

086 Ge	oloi	gist: Man	rķ J. Roma	l		Dates: Started: 11/9	/90	End	ed: 11	/9/90		
	Γ		Sample			Sample	Stratum Change	Equipment	Fie	d Tes		R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Sample Description	General Descript	Installed	рH	Sp Cond)	k S#
0	1	0-21	7-16-	2' /1.8'	48	Damp, dark to medium brown, very fine to fine SAND, some silt, trace organics,						
	Ш		32-28			trace fine to medium gravel						
	2	2-41	36-42-	21/21	81	Same as above						
			39-45	<u></u>								
	3	4-61	20-30-	21/21	65	Damp, dark to medium brown, very fine to medium SAND, some silt, little clay, trace			,			
5			35-29			fine to medium gravel						
	4	6-81	29-21-	21/21	54	Damp, medium brown, very fine SAND and SILT, little clay, trace fine to medium						
			33-27		<u> </u>	gravel						
	5	8-101	14-19-	2' /2'	40	Same as above						
			21-29						}			
10	6	10-12'	18-21-	21/21	44	Moist to wet, dark to medium brown, fine to medium SAND, some silt and clay, trace fine						
			23-30		<u> </u>	to medium gravel						
	7	12-141	23-27-	21/21	52	Moist to wet, dark to medium brown, fine to coarse SAND and SILT, little clay, trace						
			25-32			fine to medium gravel						
	8	14-16'	15-12-	21/21	33	Same as above						
15			17-38							İ		
						Bottom of boring 16.0 ft.						
				<u> </u>								
			·									
					ļ			1				
					ļ							
			· 									
	\square											
	Ц		·									ĺ
	\vdash						:					
					<u> </u>				<u></u>		<u> </u>	L

O'BRIEN & GERE ENGINEERS, INC.	TEST BORING LOG	Report of Boring No. 5B-15 Sheet 1 of 1
Project Location: RHRLS Client: Amphenol Corporation Sidney, New York	SAMPLER Type: Split Spoon 3" Hammer: 140 lbs. Fall: 30"	Ground Water Depth Date Depth Date File No.: 3729.013.476
Boring Co.: Parratt Wolff, Inc.	Boring Location: Ground Elevation:	

BG Ge	olog	Glenn La gist: Ma	nsing rk J. Roma				ound Elevation: es: Started: 11/9	/90	Ende	ed: 1	1/9/90		
			Sample			Sample		Stratum	Cautanant	Fie	ld Tes	ting	
epth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Descripti	on	Change General Descript	Equipment Installed	pН	Sp Cond	HNU	14
Ú	1	0-21	6-5-7-7	21/1.41	12	Damp, medium brown, very and SILT, little clay, tr gravel, trace organics, p	ace fine to medium						
	2	2-41	6-22-	1.41/11	_	Damp, dark to medium brow SAND, some silt, little o	m, fine to medium						
			50/0.4			medium gravel							
	3	4-61	26-50/0.4	11 /21		Same as above							
i 													
	4	6-81	23-32-	1.71/11	78	Same as above							
			46-50/0.2	1			i			i	ŀ		
	5	8-101	29-48-	21/21	81	Damp, dark to medium brow brown, very fine to fine	m to reddish SAND and SILT.						
			33-50			littlé clay, trace fine t	o medium gravél						ļ
0	6	10-121	32-37-	21 /21	68	Same as above							
			31-33										
-	7	12-141	21-23-	21/21	45	Dark to medium brown to r fine to medium SAND and S	ILT, some clay,						
			22-24			trace fine to medium grav	el						
	В	14-16'	39-26-	1.2/1.2		Same as above							
5			50/0.2								}		
						Bottom of boring 15	.2 ft.					}	
					ļ 							<u> </u>	
													
	Ц												
									,				
											Į.		i

SB15. KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-16 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.476 Date Fall: 30°

Roring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

| Boring Location: Grid M 14 | Ground Elevation: | Dates: Started: 11/12/90

Ended: 11/12/90

שט טפט	0100	15t: Ma	rk J. Roma			Dates: Started: 11/12	790	Endi	ed: 1)	/12/90		
			Sample		,	Sample	Stratum Change	Equipment	Fie	d Tes	ting	R
Depth	No	Depth	81cws /6"	Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рH	Sp Cond	HNU	k 54
0	1	0-21	6-6-15-17	21/0.91	21	Moist to wet, dark to medium brown, very fine to fine SAND and SILT, little clay, trace fine to medium gravel						
	2	2-41	16-50/0.4	0.9/0.5		Same as above		-				
	3	4-61	12-24-	21/1.41	· 60	Het, dark to medium brown, very fine to medium SAND, some silt and clay, large						
5			36-42	<u> </u>		sandstone fragments						
	4	6-8'	50/0.4	0.4/0.1		Same as above						
	5	8-10'	50/0.4	0.4/0.21		Wet, dark to medium brown, fine to medium SAND and SILT, little clay, trace fine gravel						
10	6	10-121	28-50/0.1	0.7/0.41		Same as above						
	7	12-14'	16-50/0.1	0.6/0.2		Wet, dark to medium brown, very fine to fine SAND and SILT, little clay, trace fine to medium gravel		l				
	8	14-161	18-29-	1.1/0.91		Same as above	15.0'					
15			50/0.1			Bottom of boring 15.0 ft.	13.0					
		, <u> </u>										
							!					
												
		_ 										

D'BRIEN & GERE
ENGINEERS, INC.

TEST BORING LOG

Report of Boring No. SB-17
Sheet 1 of 1

Project Location: RHRLS
Client: Amphenol Corporation
Sidney, New York

Type: Split Spoon 3°
Hammer: 140 lbs.
Fall: 30°
File No.: 3729.013.476

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing | Boring Location: Grid N 15 | Ground Elevation: | Dates: Started: 11/12/90

round Elevation: lates: Started: 11/12/90 Ended: 11/12/90

	٠.٠;	1121. UE	rk J. Roma			Dates: Started: 11/12	790	Enu	FG: 11	/12/90		
			Sample		Γ	Sample	Stratum Change	Equipment	Fie	d Test	ing	100
epth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рΗ	Sp Cond	HNU	k 5
0	1	0-21	1-2-1-1	21/0.21	3	Moist, large greenish gray SANDSTONE frag- ment, dark brown, very fine to fine SAND and SILT, little clay, trace organics						
	2	2-41	1-1-2-2	2' /0.3'	3	Same but bottom of spoon hit small amount of trash						
5	3	4-61	2-3-6-9	2'/1'	9	Saturated brown fine SAND and SILT, trace clay, trace fine to medium gravel (mixed		i				
<u></u>	4	6-81	7-6-7-9	21/0.21	13	with trash) Same with large sandstone fragment						
	5	8-101	5-12-	2' /0.2'	41	Same as above without sandstone						
10	6	10-12'	29-39 8-8-12-13	21/0.71	21	Saturated, dark brown to brick red to yellow, fine SAND and SILT (trash)						
	7	12-14'	15-14-	2' /2'		Same as above						
		44.463	17-14									
15	8	14-16'	50/0.21	1.2/0.1		Same as above Bottom of boring 15.2 ft.	15. 21					Ì

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-18 Sheet I of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York Ground Water Depth SAMPLER Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.476 Date Fall: 30"

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBS Geologist: Mark J. Roma

Boring Location: Grid M 12 Ground Elevation: Dates: Started: 11/12/90 Endad: 11/12/90

OBG Ge	oloi	pist: Ma	rk J. Roma			Dates: Started: 11/1	.2/90	End	ed: 11	/12/90		
		·· -	Sample			01-	Stratum	F	Fiel	d Tes	ting	
Depth	No	Depth	Blons /6"	Penetr/ Recovry	"N" Value	Sample Description	Change General Descript	Equipment Installed	рН	Sp Cond	HNU	k s*
0	1	0-21	37-50/0.3	0.8/0.1	_	Large sandstone fragment then, damp, dark brown, very fine to fine SAND and SILT,						
						little organics (plant and roots), (trace surface trash)						
	2	2-41	18-25-	21/21	46	reddish brown, very fine to fine SAND and						
			21-10			SILT, little clay, trace fine to medium						
	3	4-61	34-32-	21 /21	61	Same but moist to wet						
5			29-33									
	4	6-81	12-21-	21/21	48	Damp to wet, dark to medium brown, very fine to medium SAND, some silt, little						
			27-78			clay, trace fine to medium gravel						
	5	8-101	19-28-	21 /21	47	Same as above						
			18-42	<u> </u>								
10	6	10-121	12-21-	2' /0.3'	41	Moist, dark reddish to medium brown, very fine SAND and SILT, some clay, little fine						
			20-31			to medium gravel						
	7	12-14'	25-38-	1.8/0.5	86	Same as above						
			48-50/0.3									
							15.2 1					
15						Bottom of boring 15.2 ft.						
	1											
-												
	\sqcap											

SB18.KJF

C'ERIENA. GERE. Report of Boring No. 15B-19 TEST BORING LOG Ground Water Depth Project Location: RHRLS SAMPLER Date Client: Amphenol Corporation Type: Split Spoon 3" Depth Date Sidney, New York Hammer: 140 lbs. Fall: 30* File No.: 3729.013.476 Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing DBG Geologist: Mark J. Roma Boring Location: Grid N 13 Ground Elevation: Dates: Started: 11/14/90 Ended: 11/14/90 Stratum Field Testing Sample Change Equipment Sample *N* Sp Seneral Depth Blows Penetr/ Description Installed HNU No Depth **/6*** Recovry Value Descript Cond 5# Damp, ash to brick red, very fine to fine SAND, (with trash), some silt, trace organics, trace fine gravel 0-21 2-3-3-2 21/11 1 6 2-41 2-14-21/0.21 2 Poor recovery, same as above 15-26 9-14-Moist wood and glass, some fine to medium SAND, little silt, trace fine gravel 4-61 21/0.21 30 5 16-26 Natural materials Moist, dark to medium brown, very fine to fine SAND and SILT, little clay, trace 7-26-21/1.51 6-81 28-45 medium gravel 8-101 1.31/11 5 18-42-Same as above 50/0.31 10-121 42-32-21/21 56 Same as above 24-16 Dark brown to greenish gray, fine to medium SAND, some silt, trace clay, trace fine to medium gravel 12-141 24-16-21/1.81 16-38 50/0.41 0.4/0.2 14-16 Same as above 15 Bottom of boring 15.4 ft.

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. SB-20 Sheet I of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York Ground Water Depth Depth File No.: 3729.013.476 SAMPLER Date Type: Split Spoon 3" Hammer: 140 lbs. Date Fall: 30°

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing

| Boring Location: Grid N 11 | Ground Elevation:

0BG 6e	olo	gist: Ma	rk J. Roma	i		Dates: Started: 11/14	1/90	End	ed: 1:	/14/90		
			Sample	,		Sample	Stratum Change	Equipment	Fie	d Test	ing	R
epth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Description	General Descript	Installed	рH	Sp Cond	HNU	k
0	1	0-21	2-3-4-6	21/21	7	Damp, dark to golden brown, mottled SILT and CLAY, some very fine to fine sand, large sandstone fragments						
	2	2-41	7-32-	21/21	56	Same as above						
			24-18									
	3	4-61	9-12-	21/21	28	Same, with little sand						
5			16-19									
	4	6-81	17-12-	21/21	25	Moist to wet, dark to reddish brown, very fine to fine SAND, some silt and clay,						
			13-16			little fine to medium gravel						
	5	8-10'	5-12-	21/21	33	Moist, dark olive brown, fine to medium SAND, some silt, little clay, several						
			21-32			fragments of dark gray silty shale						
10	6	10-121	9-37-	21/21	61	Wet, dark to medium brown, very fine to medium SAND and SILT, little clay, trace						
			24-24			fine to medium gravel						۱
	7	12-141	16-28-	21/21	52	Same as above						Ì
			24-18									
	8	14-161	10-41-	1.3/1.1		Same as above						1
15			50/0.31			Bottom of boring 15.3 ft.	15. 3'					
						bottom of boring 13.5 it.						
												-
			<u></u>									
												1
		-										
							•					
												İ
									\ 			1
	\Box			}								1

SB20. KJF

O'BRIEN & GERE ENGINEERS, INC.						TEST BORING LOG Report of Boring No. TCL Locations Sheet 1 of 1						
Project Location: RHRLS Client: Amphenol Corporation Sidney, New York						SAMPLER Type: Split Spoon 3° Hammer: 140 lbs. Fall: 30°	ļ	Ground Water Depth Date Depth Date File No.: 3729.013.476				
Foreman	n: G	ilerm La	t Wolff, nsing rk J. Roma			Boring Location: Ground Elevation: Dates: Started: 11	14/90	End	led:		- , _ -	
			Sample			Sample	Stratum Change	Equipment	Fiel	ield Testing		
Depth	No	Depth	Blces /6"	Penetr/ Recovry	Value	Description	General Descript	Installed	рН	Sp Cond	HNU	I
TCL	31	4-61	3-2-3-6	2' /0.1'		Het, dark gray to black very fine SAND ar SILT, little medium gravel, (trash)	nd					
SB 10		6-81		21/0.21		Bottom of boring 8 ft.						
TOL	#2	4-61	17-75/0.3	0.9/0.7		Wet, dark to medium brown, very fine to fine SAND and SILT, some fine to medium						-
SB 5						gravel						
						Bottom of boring 4.8 ft.						
	*3	14-161		1.3/0.7		Wet, dark red brown, very fine to fine SF and SILT, little clay, large fragments of	MD					-
SB 20		16-18'	60/0.3	/1'		dark red brown weathered shale Bottom of boring 15.3 ft.						
Ta.	#4	14-16	5-16-	21/21		Wet, dark gray to black and clive brown (trash) them, bottom of speem, brown, ver	y					1
SR 17	_		21-31			fine to medium SAND, some silt, little cl trace fine to medium gravel	ay					
						Bottom of boring 16.0 ft.						
TCL	#5	6-8'	21-20-	21 /21		Damp, olive green SILT and CLAY, some fir gravel, little fragments green gray sand-	ie					-
SB 12			29-28			stone						
-	-					Rottom of boring 8.0 ft.		1				
	-											Ì
	\dashv											ĺ
							İ				į	į
	-										ļ	į
	-										İ	į
	\dashv											
	-							1				
	\dashv											
												-
	-	-				•-						
								·				
										TC	L.KJ	n

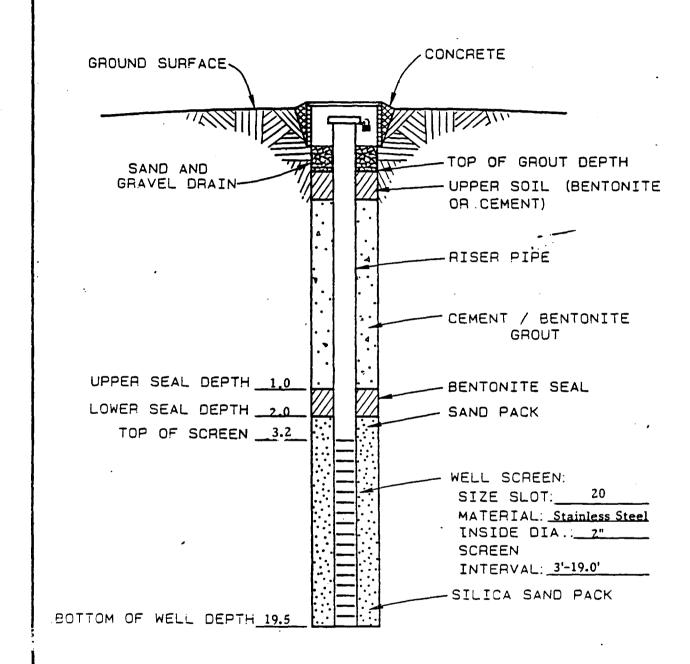
D' BRIEN & GERE Report of Boring No. MW-1 TEST BORING LOG ENGINEERS, INC. Sheet 1 of 1 Project Location: Richardson Hill Municipal SAMPLER Ground Water Depth Date Landfill Site Type: Split Spoon Depth Date Hammer: 140 lbs. Fall: 30" File No.: 3729-009-330 Client: Amphenol Corporation Boring Co.: Parrat-Wolff Foreman: N. Thurston Boring Location: Upgradient from Waste Oil Pit Ground Elevation: 1805.5 ft. Dates: Started: 10/25/88 OBG Geologist: W. J. Gabriel Ended: 10/26/88 Testing Sample Stratum Field Sample Change Equipment Blows /6" "N" Description General Installed Depth Penetr/ Sp Recovry Descript ρН Cond HNU Depth Valve 5# No Light brown, very moist, SILT, some very fine sand and fine gravel. 0-2 grab Misc. FILL and saturated TRASH, some very fine sand and silt, fine gravel. 2 2-4 3 4-6 Same as above. 5 6-B Poor to no recovery. 5 8-10 Gray to reddish-brown, saturated, SILT, some very fine sand, little fine gravel, trace of clay, oily, odor present. 10 6 Grayish-brown, moist, SILT, some very fine sand and gravel (fragments), little clay. 10-12 12-14 Same as above. Reddish-brown to gray, moist, SILT, some very fine sand and fine to medium gravel, 8 14-16 15 trace of clay. 20 21-23 9 Same as above. BOH @ 23 ft.

AMPHMU1.KJK

· .	MW-1
	•
CEMENT PAD	PROTECTIVE STEEL
GROUND SURFACE	CASING AND LOCK
\ _ _	INSIDE DIAMETER 4 IN.
// //////////////////////////////////	
1	<u> </u>
	RISER PIPE
1:.1	MATERIAL: Stainless Steel
	SCHEDULE: 5 INSIDE DIA: 2 IN
[.]	INSIDE DIA 2 IN.
	CEMENT / BENTONITE GROUT
	اندا
DEPTH:	
TOP OF SEAL 4.0 FT.	BENTONITE SEAL
TOP OF SAND 5.0 FT.	SAND PACK
TOP OF SCREEN 6.2 FT.	SAND FROM
	SLOTTED SCREEN
	MATERIAL: Stainless Steel
	SCHEDULE:5
	INSIDE DIA .: 2 IN.
	SLOT NO .:
BOT. OF SCREEN 22.5 FT.	
	DIA. OF BOREHOLE: 8 IN.
, i	
1	0
	I.T.S.

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. MH-2 Sheet 1 of 1 TEST BORING LOG Ground Water Depth Depth File No.: 3729-009-330 Project Location: Richardson Hill Municipal SAMPLER Date Landfill Site Client: Amphenol Corporation Type: Split Spoon Hammer: 140 lbs. Date Fall: 30* | Boring Location: Down gradient of Waste Oil Pit Ground Elevation: 1785.6 ft.

Boring Co.: Parrat-Wolff Foreman: N. Thurston

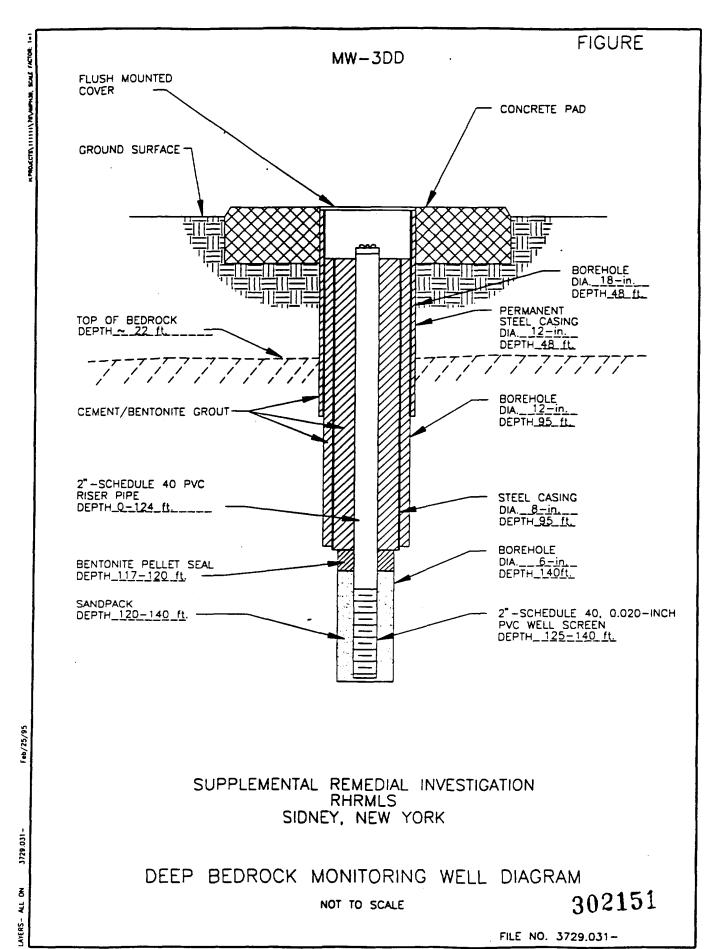

Foreman: N. Thurston OBG Geologist: W. J. Gabriel						Ground Elevation: 1785,6 ft. Dates: Started: 11/26/88 Ended:11/26/8							
Depth			Sample			Sample Description Reddish-brown, damp, very fine SAND, some silt and fine, medium, coarse gravel (fragments), trace of roots, plant stems.		Stratum		Field Testing R			
	No	Depth	Blows /6"	Penetr/ Recovry	"N" Valve			Change General Descript	Equipment Installed	рН	Sp Cond	HNU	k 5
0	1	0-2											
	2	2-4				Reddish-brown, moist, gravel (fragments), l							
	3	4-6				Frace of clay. Same as above.			 				
5													١
•	4	6-8				Gray to reddish-brown fine SAND, some fine trace of clay, fuel o	gravel, silt and						
	5	8-10				Same as above.							
10	6	10-12				Gray to light brown, silt and fine sand, s coarse gravel (fragme	some fine, medium						
	7	12-14				No recovery - Spoon r							
	8	14-16				Maddiah basa ba awas	sich bussen dama CNT						-
15	0	14-16				and very fine SAND, s coarse gravel (fragme fuel oil odor.	rish-brown, damp, SILT some fine, medium, ents), trace of clay,						
			-			1027 017 0201	i						
20	9	20-22				Reddish-brown, moist fine SAND and SILT, s	to saturated, very						
						coarse gravel (fragme	ents), little clay.				<u> </u>		
25	10	25-27				Same as above. Satura	ated, poor recovery.						
								29.51					
30				-	<u> </u>	Auger refusal	e 29.5°	£3.3'					

AMPHMH2.KJK 12/16/88

	MW-2
CEMENT PAD	✓PROTECTIVE STEEL
	CASING AND LOCK
GROUND SURFACE	INSIDE DIAMETER 4 IN.
\ \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
1.	1 • • • • • • • • • • • • • • • • •
1	RISER PIPE
<u>.</u>	MATERIAL: Stainless Steel
	SCHEDULE:5
٧	INSIDE DIA .: 2_IN.
1.	
	CEMENT / BENTONITE GROUT
DEPTH: .	
	•
TOP OF SEAL 90 FT.	BENTONITE SEAL
TOP OF SAND 11.0 FT.	SAND PACK
TOP OF SCREEN 13.2 FT.	
	SLOTTED SCREEN
	MATERIAL: Stainless Steel
	SCHEDULE:5
	INSIDE DIA. 2 IN.
	SLOT NO .: 20
· [:	
BOT. OF SCREEN 29.5 FT.	DIA. OF BOREHOLE IN.
	DIA. OF BURELOGE IN.
_	
1	
1	
	N.T.S.
	·
	•
KL	

Report of Boring No. Sheet I of 1 O'BRIEN & GERE ENGINEERS, INC. TEST BORING LOG SAMPLER Project Location: Richardson Hill Municipal Ground Water Depth Date Depth Landfill Site Type: Split Spoon Date Hammer: 140 lbs. Fall: 30" File No.: 3729-009-330 Client: Amphenol Corporation Boring Location: Along Richardson Hill Rd. between MW-4 & MW-5 Ground Elevation: 1752.4 ft. Boring Co.: Parrat-Wolff Foreman: N. Thurston Ended:11/8/88 OBG Geologist: W. J. Gabriel Dates: Started: 11/7/88 Field Testing Stratum Sample Change Equipment. Sample "N" Sp Installed Description Depth Blows Penetr/ General Cond HNU No Depth Recovry Valve Descript рΗ 5+ Medium to dark brown, very moist, very fine to fine SAND, some silt and clay, trace of 1 0-2 0 Grab fine to medium gravel, root and plant stems 2 2-4 Grab Same as above. Medium brown, very moist to saturated very fine to fine SAND, some silt and clay, little fine, medium, coarse gravel (primar-3 4-6 5 ily fragments) Reddish-brown, saturated, very fine to fine SAND, some silt, little clay and fine to 6-B medium gravel, some gray and orange mottles fuel oil odor. 5 8-10 Same as above. Reddish-brown, with green, gray and orange mottles, moist, SILT, some very fine sand, little clay and fine to medium gravel, few 6 10-12 black organic (oil) stains. 12-14 15 Same as above. Reddish-brown to gray, moist, SILT, some very fine sand, some fine, medium, 8 14-15 coarse gravel with fragments, little clay. Medium to olive brown, saturated fine, med-ium, coarse SAND, some fine, medium. coarse gravel and silt, little clay, trace of peat 18-20 20.01 BOH € 201

> AMPHMW3. KJK 12/16/88


NOT TO SCALE

O'PT	IEAR	& GET) E ENI/	MEEDE	INC	TEST BORING LOG	, AEPC	ORT OF MW-3D		ING
Client				GINEERS,		Sampler: NX Core	Page 1 o			
Cii o iit.	•	Ampire		poration/m	INMES	Sampler. NX Core	Location			
Proj. L	.oc:	Sidney	, New Y	ork		Hammer: NA		40/00	(0.4	
File No	o.:	3729.0	31	٠		Fall: NA		•: 12/29/ •: 12/30/		
Boring Forem OBG 0	an:	npany:		darrington			Screen Riser	= \	Ground Sand Bento	Pac
Depth Below Grade		Depth	RQD	Penetr/ Recovery	Date	Sample Description	Stratum Change General Descript	Equip.	Ter	eld sting
0							<u> </u>			\Box
28	1	28-33	83%	3.0/5.0	12/29/94 Run #1	Fine grained SANDSTONE, soft (unrecovered) zone 31.5 to 32.5 ft.				
33	2	33-38	46%	2.2/5.0	12/29/94 Run #2	SANDSTONE as above, soft mudstone in end of core barrel approximately 0.2 ft.				
							}			
38	3	38-43	NA	0/5.0	12/29/94 Run #3	Recovered approximately 2.5 ft. from run #2 to 35.5 ft. Run #3 was 35.5 to 40.5 ft. but no recovery due to worn out core catcher.				
40.5	4	40.5-45.	63%	5.0/5.0	12/30/94 Run #4	Gray fine grained SANDSTONE to approximately 41.1 ft., to broken GRAVEL, red			<u> </u>	
					11011 # 4	to green to gray sandstone fragments to				
						approximately 41.3 ft., to gray SANDSTONE as				
						above, organic seam at approximately 41.6 and 41.9 ft.				
										
							l			
	_								1	
		<u>-</u>						!		
									}	
							ļ			
						1				
						1				
							1			
1		n: 0.020-				1	1		1	<u></u>

205 O'BRIEN 6 OERE

O'BR	IEN	& GEF	RE ENG	SINEERS,	INC.	TEST BORING LOG	REPO	RT OF MW-3D		ING
Client:		Amphe	nol Cor	poration/Rh	IRMLS	Sampler: NX Core	Page 1 o			
Proj. L	.oc:	Sidney	, New Y	ork		Hammer: NA	Location Start Dat		5	
File N		3729.0				Fall: NA	End Date	: 2/9/95		
Boring Forem OBG (an:	npany:	Parratt Ron Bu DJ Car	sh			Screen Riser		Grout Sand Bento	Pac
Depth Below		Depth		Penetr/		Sample Description	Stratum Change General	Equip.		eld sting
Grade 0	No.	(feet)	RQD	Recovery	Date		Descript	Installed		
								i		
60.5	1	60.5-65	90%	4.4/4.5	01/23/95 Run #1	Dark gray (N3) MUDSTONE to approximately 62.6 ft., to greenish black (5GY2/1)		1 1		
					(Call #1	SANDSTONE fine grained with black organics				
						(coal) to 65.0 ft.		1 1		
65	2	65-65.4	NA	0.4/0.4	01/23/95 Bun #2	Core black at 65.35 ft., SANDSTONE as above.		1 1		
6F 1		65.4-70	71%	4.844.5	01/00	Dode con (NO) OII TOTONIC/AI IDOTONIC		1 1		
65.4	3	65.4-70	/1%	4.6/4.6	01/23/95 Run #3	Dark gray (N3) SILTSTONE/MUDSTONE to approximately 67.1 ft., to greenish black				
						(5GY2/1) fine grained SANDSTONE with black		il li		
						organic (coal) to approximately 68.4 ft., to SILTSTONE/MUDSTONE to 70 ft.		1 1		
70	4	70-70.7	NA	0.7/0.7	01/23/95	Core barrel blocked at approximately 70.7 ft.		1 1		
					Run #4			1 1		
								1 1		
70.7	5	70.7-75	68%	3.7/4.3	2.7/4.3	Greenish black (5GY2/1) fine grained				
					Run #5	SANDSTONE, some organics, water producing	:	1 1		
						fracture from 74.4-74.6 ft.		11 11		
75	6	75-75.5	NA	0.5/0.5	01/24/95	Core blacked, soft shale.				
					Run #6			1 1		
	-									
75.5	7	75.5-80	85%	3.3/4.5	01/24/95	Dark gray (N3) SILTSTONE/MUDSTONE to 80.0		illi		
					Run #7	ft., rock broken at approximately 75.8 and		\ \ \		
						80.6 ft.				
80	8	80-85	98%	4.9/5.0	01/25/95	Dark gray (N3) MUDSTONE, fracture at		$ \mathbf{x} = \mathbf{x} $		
					Run #8	approximately 82.8 and 83.8 ft.		\ \ \		
								$ \cdot $		
85	9	85-90	77%	4.9/5.0	01/25/95	Dark gray (N3) MUDSTONE/SHALE more fissil,		1 1		
					Run #9	fractures at approximately 85.5, 87.5 and 88.5 to 89.5 ft.		1 1		
								illi		
90	10	90-95	52%	4.4/5.0	01/25/95	Dark gray (N3) SHALE/MUDSTONE fractured		\ \ \		
					Run #10	from approximately 90.0 to 91.0 ft., very soft, clayey at 90.5 to 90.8 ft., fractured		\		
						91.5 to 91.7 ft., 93.0 to 93.4 ft. to medium		$ \mathbf{i} = \mathbf{i} $		
						light gray (N6) fine grained SANDSTONE to		1 1		
						95.0 ft., sandstone fractured at 45 degree from approximately 94.0 to 94.2 ft.		\		
						,		$ \mathbf{x} = \mathbf{x} $		
						1	1	1 1		<u>L</u>

O'BB	IEN	& GERF	ENGI	NEERS, II	NC.	TEST BORING LOG	REPO	ORT OF	BORING
Client				ration/RHR	7,111,111,111,111	Sampler: NX Core	Page 2 o		
D 1		Cidney N	lanı Van	ما		Hamman NA	Location	:	
Proj. L		-	IOW YOR	K.		Hammer: NA		e: 1/23/9	
File N		3729.031 npany:	Parratt	-Wolff		Fall: NA	End Date		Grout
Foren	an:		Ron Bu	ısh			Riser		Sand Pack
OBG (Seolo	gist:	DJ Car	nevale	,	Y	0		Bentonite
Depth							Stratum		Field Testing
Below		Depth		Penetr/		Sample Description	General	Equip.	_
Grade		(feet)	RQD	Recovery	Date		Descript	Installed	
95	11	95-100	95%	4.8/5.0	02/01/95 Run #11	Dark gray green (5GY4/1) fine to medium grained SANDSTONE to 100.0 ft., broken at		[\] [\	
	-				Aun #11	approxmately 99.1 ft. with olive brown silt		\	
						in break.		N N	
100	12	100-105	98%	5.0/5.0	02/06/95	Gray SILTSTONE with quartz, well cemented,))	
					Run #12	with only mechanical fractues.			
105.5	13	105.5-108.5	58%	3.0/3.0	02/07/95	Gray SILTSTONE, light, buff colored rounded		lil li	
					Run #13	clasts 0.9 to 1.1 ft., organic rich stringers		1 1	
						1.1 to 3.3 ft., many fractures parallel to stringers.			
					<u> </u>	108.0 to 119.0 - 2/7/95			
						Roller bit due to inability to recover cores.	1	1 1	
108	14	108-109	NA.	NA NA	02/07/95	SANDSTONE/SILTSTONE.			
108	14	106-109	I INA	130	02/07/95	SANDSTONE/SICTSTONE.			
								1 1	
109	15	109-115	NA	NA	02/07/95	Gray/black fissile SHALE with much native			
						carbon.			.
115	16	115-117.5	NA	NA	02/07/95	Gray SANDSTONE.		1 1	
117.5	17	117.5-119	NA NA	NA NA	02/07/95	Gray SHALE, less carbon than 109.0 to		, ,	i l
						115.0 ft.			
119	18	119-123	86%	4.0/4.0	02/09/95	. Gray SILTSTONE/SHALE calcite cemented.			
,,,		110 120	30%	4.0/4.0		some pyrite, few remnant fossils.			
123	19	123-128	85%	5.0/5.0	02/09/95	Gray SILTSTONE with a few thin shale beds.		[88] [88	
120	- 19	120-120		3.0/3.0	Run #15	dray Sie 157 Site with a low thin shall beds.		I I - I	
						·		=	
128	20	128-133	93%	4.8/5.0	02/00/05	Gray SILTSTONE/fine SANDSTONE, shells and			
120		120-133	93 70	7.0/3.0		some clasts from 0.1 to 0.25 ft., 1.2 to		-	
						1.3 ft., 2.6 to 2.75 ft., and 3.7 to 3.8 ft.,		-	
						calcite cemented, appears to produce more		=	.
						water than above.		=]
133	21	133-138	91%	5.2/5.0	02/09/95	Gray SILTSTONE grading to gray sandtone,		-	
					Run #17	carbonate cement, few carbon rich shell		-	
		<u> </u>				partings, 3 fractures parallel to partings.		-	
139								=	
				I			1]

EST O'BRIEN 6 GERE

		GERE S, INC.				TEST B	DRING LOG	Repor	rt of Boring Sheet I	No. M of 1	H-4		
•			Richardson Landfill (Corporation	Site	nicipal	SA Type: Split Spoon Hammer: 140 lbs.	PLER Fall: 30	Ground Wate	er Depth Depth 3729-009-330	Dat Dat		-	
Foresa	n: N	l. Thurs	t-Wolff ton J. Gabrie	1			Boring Location: Alons Ground Elevation: 1760 Dates: Started: 10/10	0.4 ft.	Hill Rd. 0	_andfi	ill Acc Ended:		
	L		Sample			Sa	mole .	Stratum Change	Equipment	Fie	ld Tes	ting I	R
Depth	No	Depth		Penetr/ Recovry	Asja6		ription	General Descript	Installed	рH	Sp Cond	HNU	k S¥
0	1	0-2	4/8/17/28			Medium brown, damp, little silt and fine	very fine to fine SAND,						T
					1 1	trace of clay, root ablack and orange mot	and plant stems, few						
	2	2-4	20/43/			Orange-brown, moist (GIIT. some medium to						
			40/ 54/4		 	coarse rock fragment: fine sand.	s, little clay, very						
5	3	4-6				Red-brown, moist, SII	T and fine SAND, some gravel, little silt,						
						trace of clay.	graver, livere sire,						
	4	6-8			├ ──┤	Light to medium brown very fine sand, and o gravel (fragments), s	fine, medium, coarse						
_	5	8-10				Same as above.							
10													
	6	10-12				Reddish-brown, very of fine SAND, fine, meditace of clay.	noist, SILT and very ium, coarse gravel,						
	7	12-14			 ;	Light reddish-brown, and fine, medium, co- silt, trace of clay,	saturated, fine SAND		•				
15	8	14-16				Light reddish-brown,	saturated, fine to medium, coarse GRAVEL						
20	9	20-22				Light-medium brown, s SAND and SILT, some gravel (fragments),	fine, medium, coarse little clay, some red						
						člay fragments (shale	e).						
						BOH 0 23 ft.					į		
	H												

	Mary 4
	MW-4
CEMENT PAD	PROTECTIVE STEEL
GROUND SURFACE	CASING AND LOCK
	INSIDE DIAMETER _4 IN.
1	
4.1	· · }
]::	RISER PIPE
	MATERIAL: Stainless Steel
	SCHEDULE: 5
[.]	INSIDE DIA .: 2 IN.
	CEMENT / BENTONITE GROUT
	14
DEPTH: .	
TOP OF SEAL 4.0 FT.	BENTONITE SEAL
TOP OF SAND 5.0 FT.	SAND PACK
TOP OF SCREEN 6.2 FT.	
	SLOTTED SCREEN
	MATERIAL: Stainless Steel
	SCHEDULE:5
	INSIDE DIA .: _2_IN
	SLOT NO .:
BOT. OF SCREEN 22.5 FT.	DIA. OF BOREHOLE: 3_IN.
	THE STATE OF SOME HOLE.
1	
}	
	N.T.S.
•	·
	302158

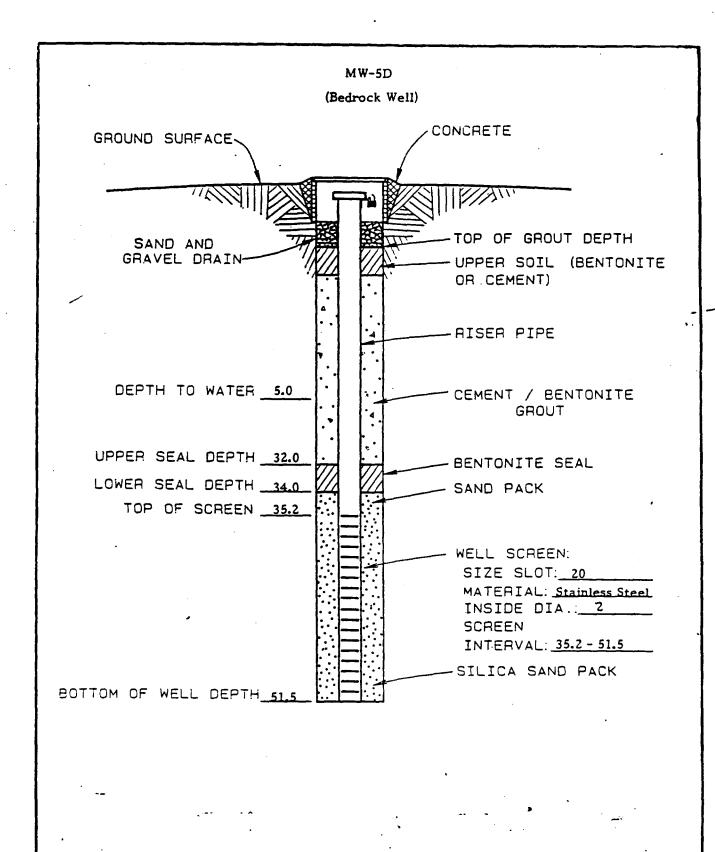
O'BRI	EN	& GERE	ENGINE	ERS, INC.		TEST BORING LOG	REPORT OF	BORING MW-4D
CLIENT	:	Amphen	ol Corporati	on		SAMPLER: Split Spoon, Roller Bit	LOCATION:	
PROJEC	T LO	CATION:	Sidney, Ne	w York		HAMMER: 140 (be	START DATE	: 12/4/91
Richard	nost	Hill Road	l Municipal I			EALL. 205	END DATE:	12/5/91
FILE NO		3729.015	Parratt-We	olff, Inc.		FALL: 30"	LEGEND:	Grout == Screen
FOREM	AN:	Glenn La	ansing					Sand Pack Riser
OBG GE	OLO	GIST:	Paul Gottle	er '	Γ		STRATUM	Pellets FIELD TESTING
DEPTH		DEPTH	BLOWS	PENETRV	*N*	SAMPLE DESCRIPTION	CHANGE GENERAL	EQUIPMENT
GRADE		(FEET)	BLOWS	RECOVERY		1	DESCRIPT	INSTALLED
0						For description to 25 ft., see log MW-4S		
2			-	 				
4	_		 -					
6								
8								
-			-					
10								
12								
14				ļ				
16			 					
18			 					
20								
22			-					
24						Weathered, red SHALE BEDROCK	25'	
26								
28					_	Advanced roller bit to 47 ft. below grade		
								
30			 	-				
32								
34			 					
36				-				
38				<u> </u>				
40		· · · · · · · · · · · · · · · · · · ·	-	 -				
								===
42				-	ļ			
44								
46								
							7	
			<u> </u>	<u>.L</u>		L	1	

		GERE , INC.				TEST B	DRING LDG	Repor	rt of Boring Sheet 1		N- 5\$		
•			Richardso Landfill Corporatio	Site	micipal	Type: Split Spoon Hammer: 140 lbs.	PLER Fall: 30"	Ground Wate	r Depth Depth 3729-009-330	Dat Dat			
oring orema	Co.	: Parra	t-Wolff			.1	Boring Location: Along Ground Elevation: 175 Dates: Started: 10/19	3.6 ft.	Hill Rd., a	djacer	t to P		1/8
-			Sample			Sa	mole	Stratum Change	Equipment	Fiel	d Tes	ting	F
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N"		ription	General Descript	Installed	рН	Sp Cond	HNU	9
0	1	0-2			$\vdash \vdash$	medium, coarse SAND,	h-brown, moist, fine, some fine, medium, e silt, trace of clay,						
	2	2-4				Same as above.							
5	3	4-6			 	medium SAND, some fi	ck, very moist, fine to ne, medium, coarse trace of clay, cinders						-
	4	6-8				SAND and fine, mediu	n-brown, saturated fine m, coarse GRAVEL (frag- broken rock fragments						
10	5	8-10				Light gray to orange- medium, coarse SAND, coarse gravel and si strong petroleum odo	lt, trace of clay,						
	6	10-12				Greenish-gray to red fine SAND, some fine, and silt, little cla	dish-brown, saturated , medium, coarse gravel y, poor recovery.						
	7	12-14				Same as above.							
15	В	14-15		ļ		Maddish bussab	abad Eina COM						
	8	14-16			 	Reddish-brown, satur and SILT, fine, medi trace of clay, petro	um, coarse gravel.						
20	9	20- 22				No recovery. Spoon re	efusal.						
						BOH @ a	22 ft.						

MW-5S CONCRETE GROUND SURFACE. TOP OF GROUT DEPTH SAND AND GRAVEL DRAIN-UPPER SOIL (BENTONITE OR CEMENT) -AISER PIPE CEMENT / BENTONITE GROUT UPPER SEAL DEPTH __1.2 BENTONITE SEAL SAND PACK WELL SCREEN: SIZE SLOT: 20 MATERIAL: Stainless Steel INSIDE DIA .: 2 SCREEN INTERVAL:___ SILICA SAND PACK BOTTOM OF WELL DEPTH 18.5 NOT TO SCALE

302156

		GERE S, INC.				TEST B	DRING LOG	Repor	t of Boring Sheet I	No. of 2	#N-5D		_
(*			Richardso Landfill Corporatio	Site	nicipa.	Type: Split Spoon Hammer: 140 lbs.		Ground Wate File No.:	r Depth Depth 3729-009-330	Da:			
Foresa	n: I	: Parra 1. Thurs pist: W.		el .			Boring Location: Along Ground Elevation: 1759 Dates: Started: 10/19/).6 ft.	Hill Rd., a	djace	nt to Pi		/88
			Sample	1			ple	Stratum Change	Equipment	Fie	ld Test	ting	R
Depth	No	Depth	Blows /6*	Penetr/ Recovry	"N" Valve	Descr	iption	General Descript	Installed	рН	Sp Cond	HNU	k 54
0	1	0-2				Dark brown to reddish medium, coarse SAND, coarse gravel, little few cinders (fill)	n-brown, moist, fine, some fine, medium, s silt, trace of clay,						
	2	2-4				Same as above.							
5	3	4-6			-	medium SAND, some fir	ck, very moist, fine to me, medium, coarse trace of clay, cinders						
	4	6-8				SAND and fine, medium	n-brown, saturated fine n, coarse GRAVEL (frag- broken rock fragments						
10	5	8-10				medium, coarse SAND, coarse gravel and sil	t, trace of clay,						
						strong petroleum odor	, iron stained.						
	6	10-12				fine SAND, some fine, and silt, little clay	ish-brown, saturated medium, coarse gravel , poor recovery.						
45	7	12-14				Same as above.							
15	8	14-16				Reddish-brown, satura and SILT, fine, medic							
						trace of clay, petrol	eum odor and sheen.						
20	9	20-22				No recovery. Spoon re	ofues)						
						no recovery: upon re	,, 4241						
	H												
		· ·											
	H			-									
	H												
	П												


O'BRIEN & GERE ENGINEERS, INC.	TEST BORING LOG	Report of Boring No. MW-5D Sheet 2 of 2
Project Location: Richardson Hill Municipal Landfill Site Client: Amphenol Corporation	SAMPLER Type: HX core barrel (5') Hammer: NA Fall: NA	Ground Water Depth Date Depth Date File No.:
Boring Co.: Parrat-Wolff Foreman: N. Thurston	Boring Location: Alor Ground Elevation: 175	ng Richardson Hill Rd., Adjacent to Pond 53.9 ft.

1			Sample	2		•	Stratus		Field Testing				
pth	No	Depth	Blows /6"	Penetr/ Recovry	Aajve "W.	Sample Description	Change General Descript	Equipment Installed	рH	Sp Cond	-		
25		25-27				Greenish-gray to reddish brown, fine SAND, some fine, medium, coarse gravel, little silt, trace clay with weathered rock.		·					
						•							
30	\Box	30-32				Same as above.							
	1					Auger refusal @ 321.							
	\exists					Gray sandstone.				E:			
	\dashv					Reddish-brown clay filled fracture - 34.8		·					
35	\dashv												
	+												
	-					39'-39.2' Fracture zone with some iron stains and mottling.							
Ю		-				Dark gray shale. 40.3'-40.8' Vuggy, fossiliferous, sandy shale with some marl filled voids. 40.8' Greenish-gray fractured shale.							
	4												
	\dashv					43.8'-44.2' - 2" Fracture shale changing to medium to coarse grained gray sandstone 6" vertical clay filled (pyritized) frac-				·			
5						ture. Massive unfractured sandstone 44.21-471							
						Massive, medium coarse, gray sandstone to							
	\perp					491.							
	1			ļ		Fractured from 49-49.4', changing to green- ish gray to black shale. Fossiliferous,							
_	1		 	<u> </u>		alge, etc. Fractures at 49.10'-50.2'							
0	\dashv			-		50.10' - Pyritized fracture with thin coal seam. Massize to 52.0'							
	1					BOH @ 52.01							
	T												
-	\dashv												

HX Core runs: \$1 (32-37') \$2 (37-42') \$3 (42-47') \$4 (47-52')

302158

amphinisb. KJK 3/21/89

NOT TO SCALE

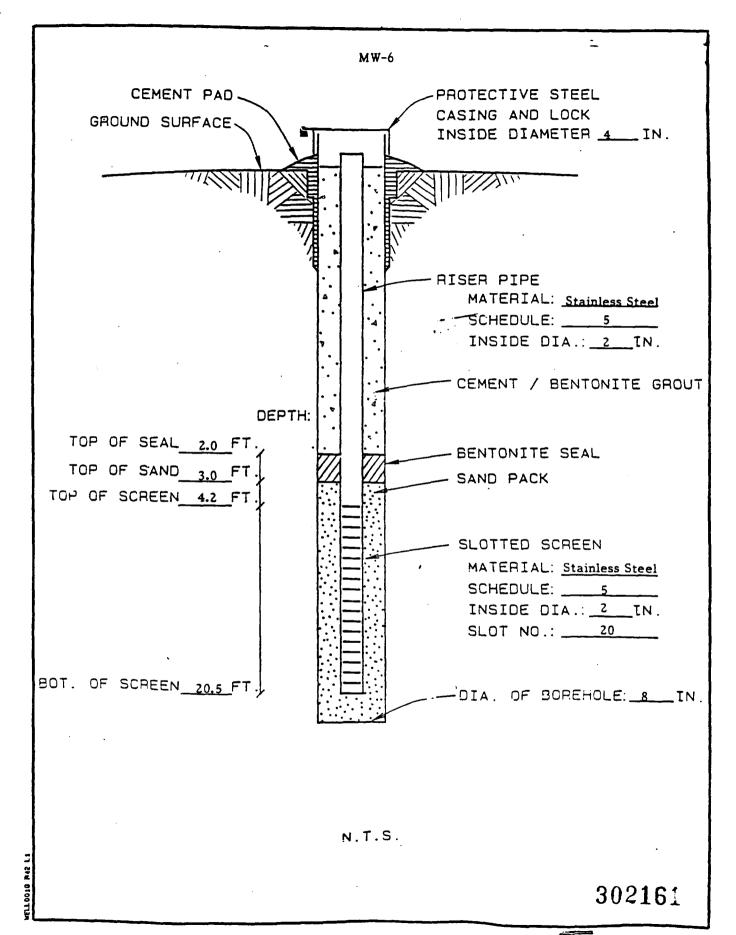
302159

O'BRIEN & GERE
ENGINEERS, INC.

TEST BORING LOG

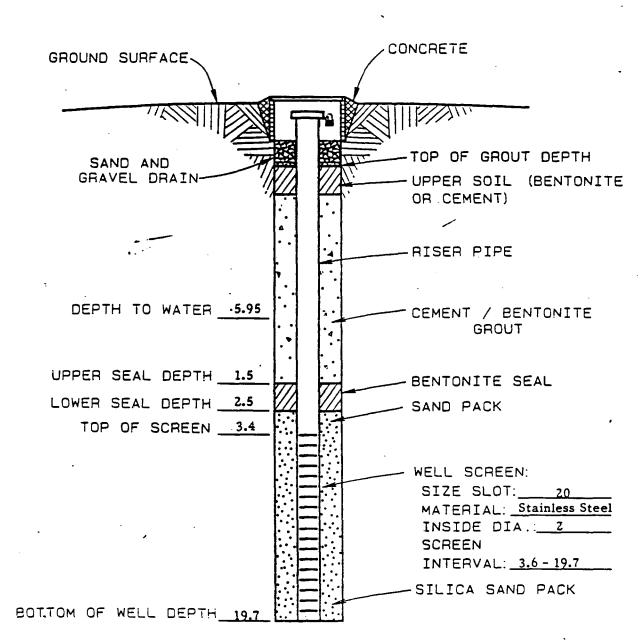
Report of Boring No. MW-6
Sheet 1 of 1

Project Location: Richardson Hill Municipal
Landfill Site
Client: Amphenol Corporation


Test BORING LOG

SAMPLER
Type: Split Spoon
Hammer: 140 lbs.
Fall: 30"
File No.: 3729-009-330

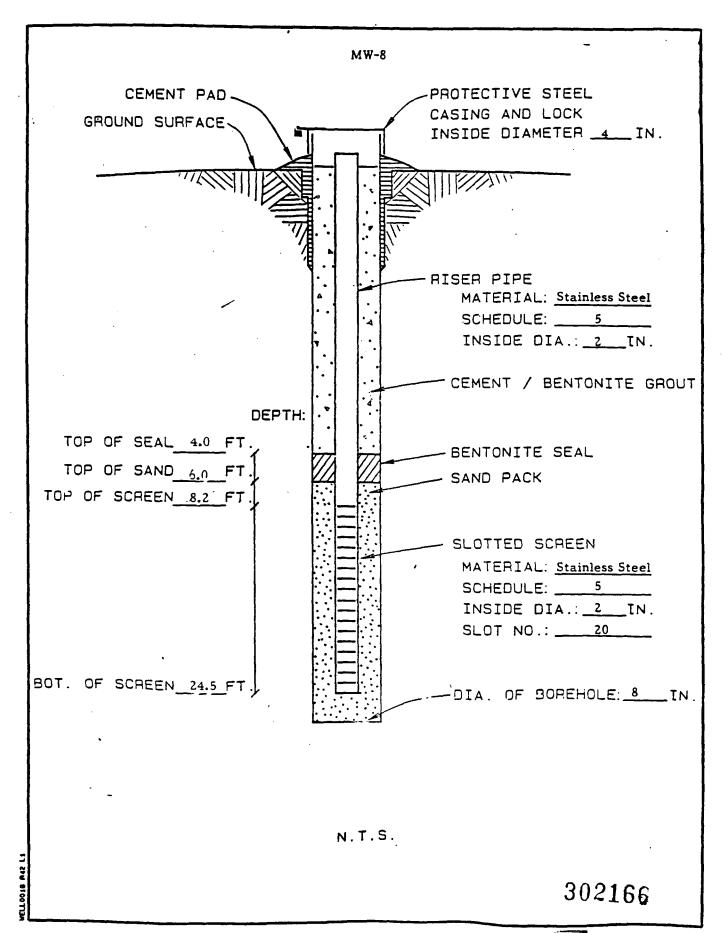
Boring Co.: Parrat-Wolff Foreman: N. Thurston OBG Geologist: W. J. Gabriel Boring Location: About 50' W. of Rich Hill Rd, between Wells 5&7. Ground Elevation: 1765.1 ft.
Dates: Started: 10/12/88 Ended:10/12/88


000 00	0.05	120	3. OGD: 10	••		DETES: 0-8: 10/10	, 00			LINCO.		, 66
	L		Sample	2		Sample	Stratum Change	Equipment	Fie	ld Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Valve	Description	Seneral Descript	Installed	рH	Sp Cond	HNU	k 5±
0	1	0-2		6rab		Light to dark brown, moist, fine SAND and SILT, some medium to coarse gravel (fragments) trace of clay, root and plant stems						
	2	2-4				Light to dark brown, damp, fine SAND, some fine, medium, coarse gravel (fragments), little silt, trace of clay (Sample from 2-3 then spoon refusal).						
5	3	4-6				Greenish-gray to reddish-brown, very moist to saturated, fine SILT and very fine SAND, some fine, medium, coarse gravel (frag- ments), trace of clay, oily sheen @ 5 ft., odor.						
	4	6-8				Reddish-brown, moist, SILT, some very fine sand and fine to medium gravel, little clay						
10	5	8-10				Medium brown to reddish-brown, very fine SAND, some silt, little fine, medium, coarse gravel, trace of clay.						
	6	10-12				Reddish-brown and grayish-brown, very moist to saturated, SILT and very fine SILT, some fine. medium. coarse gravel, little clay						
	7	12-14				(petroleum odor in till fracture). Same as aboye.						
15	8	14-16				Medium brown to reddish-brown, very moist to saturated (in partings), SILT and fine		i I				
						SAND, some fine, medium, coarse gravel (fragments), trace of clay. No noticeable odor.						
20	9	50-55				Same as above with an increase in rock fragments.						
25	10	25-26				Reddish-brown, saturated, SILT and very						
						fine to fine SAND, some fine, medium, coarse gravel (large fragments), little clay.						
					-	Auger refusal 0 27.5	27.5					

AMPHINIG. KJK 12/16/88

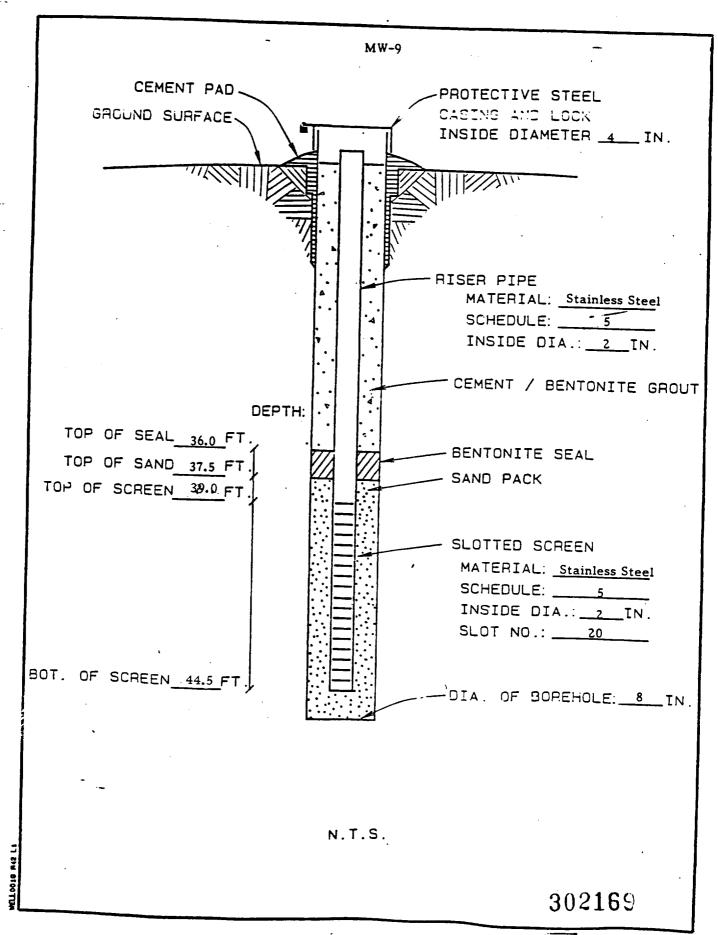
O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. MM-7 Sheet 1 of 1 TEST BORING LOG Project Location: Richardson Hill Municipal SAMPLER Ground Water Depth Date Type: Split Spoon Landfill Site Depth Date Fall: 30" Client: Amphenol Corporation Hammer: 140 lbs. File No.: 3729-009-330 Boring Location: Along Richardson Hill Rd. South of Landfill Ground Elevation: 1754.7 ft. Boring Co.: Parrat-Wolff Foreman: N. Thurston Dates: Started: 10/24/88 Ended: 9/29/88 OBG Geologist: W. J. Gabriel Field Testing Stratum Sample Change Equi pment Sample Installed Blows /6" "N" Description General Sp Depth Penetr/ pН HNU Valve Descript Cond 5 No Depth Recovry Medium brown, moist, SILT and very fine SAND, some fine, medium, coarse gravel, 1 0-2 trace of clay. 2 2-4 Same as above. Medium gray to reddish-brown, very moist to saturated, SIIT and very fine SAND, fine, 3 4-6 medium, coarse gravel. 5 6-8 Same as above. Light brown to red-brown, damp, very fine SAND, some fine, medium, coarse gravel (fragments) and silt, little clay. 5 8-10 10 10-12 6 Same as above. Medium gray to reddish-brown, moist to saturated, SILT and very fine SAND, some fine, medium, coarse grave, trace of clay. 12-14 Reddish-brown, saturated, fine SILT and very fine SAND, fine, medium, coarse gravel 8 14-16 15 and silt, trace of clay. 20 20-22 Same as above with greenish-gray shale. Auger refusal @ 22'

302162 AMPHONIT, KJK 12/16/88

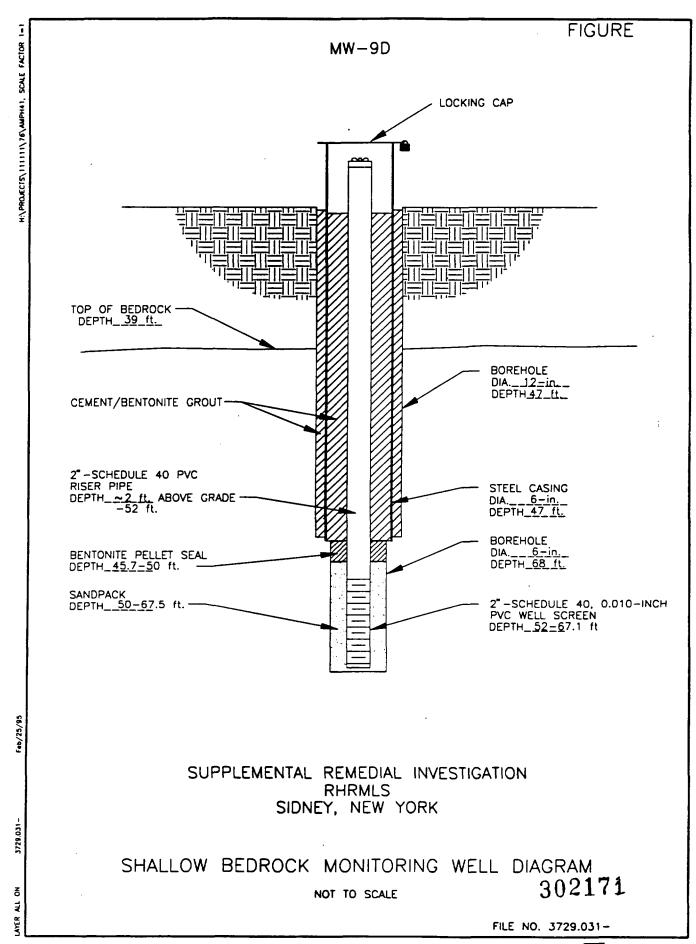


NOT TO SCALE

302163


O'BBI	FN.	& GFRF	ENGINE	ERS, INC.		TEST BORING LOG	PAGE 1 OF	BORING MW	/ - 7D
CLIENT:			Ol Corporati			SAMPLER: Split Spoon, Roller Bit	LOCATION:	•	
			Sidney, Ne Municipal I	ew York Landfill Site		HAMMER: 140 lbs	START DATE		
FILE NO		3729.015				FALL: 30°			
		IPANY:	Parratt-We	olff, Inc.			LEGEND:	Grout	== Screen
FOREMA OBG GE		Glenn La sist:	nsing Paul Gottle	er				Sand Pack Pellets	Riser
DEPTH							STRATUM	1	FIELD TESTIN
BELOW		DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N"	SAMPLE DESCRIPTION	GENERAL DESCRIPT	EQUIPMENT	PID HEAD
0	110.	(, 221)		MESOVERY	**************************************	For descriptions to 18 ft., see log MW-7S	JEGG1111 1		
2									
4				 -					
									1
6									
8									
10	_								
									ļ.
12									
14				<u> </u>					
1-7				1		·			
16									
18		-	-			BEDROCK, green-gray green, medium to fine sandstone	18'		
20						Advanced roller bit to 40 ft. below grade.			İ
			-					===	
22									
24			-,.					===	
26								===	
								===	
28								===	
30				 				===	
32								===	
24				 					
34									
36							Ì		1
38									
40							\dashv		
- 70	لـــــا			1		<u> </u>			

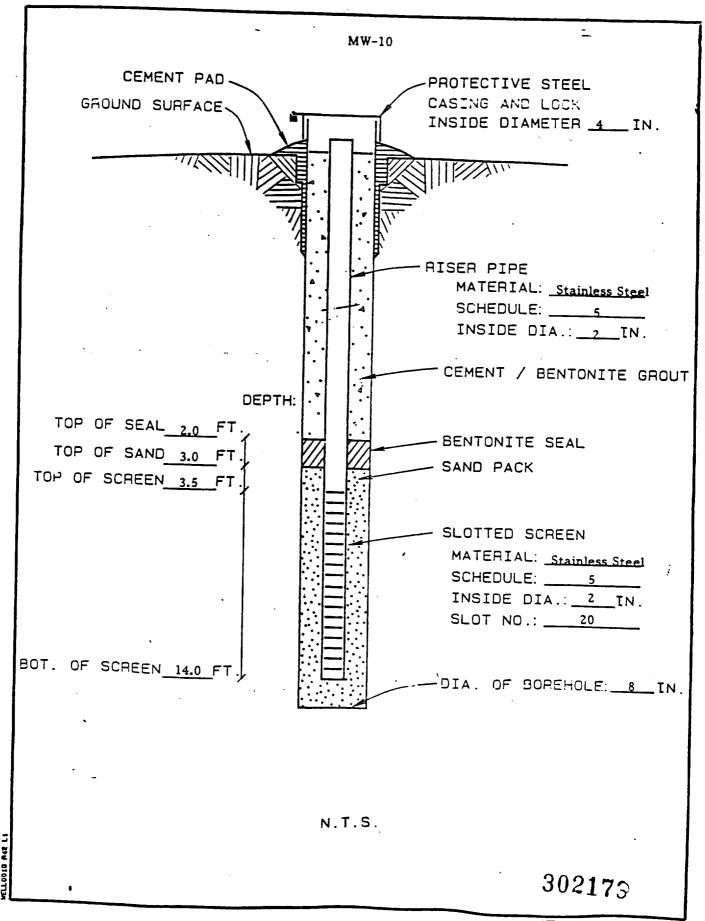
O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. MM-8 Sheet I of 1 TEST BORING LOG Project Location: Richardson Hill Municipal SAMPLER Ground Water Depth Date Type: Split Spoon Hammer: 140 lbs. Landfill Site Depth Date Client: Amphenol Corporation Fall: 30" File No.: 3729-009-330 Boring Co.: Parrat-Wolff Foreman: N. Thurston Boring Location: North Area, in abandoned borrow pit. Ground Elevation: 1796.2 ft. OBG Geologist: W. J. Gabriel Dates: Started: 10/18/88 Ended: 10/18/88 Field Testing Sample Stratum Sample Change Equipment *N* Description Sp Depth Blows Penetr/ General Installed /6" Cond HNU Depth Recovry Valve Descript рΗ 5# Reddish-brown, moist, SILT and very fine SAND, some fine, medium, coarse gravel and 0 0-2 1 **Grab** silt, trace of clay. 2 2-4 Same as above. Poor recovery. Red-brown, dry, very fine SAND, some fine, medium, coarse gravel, little silt, trace 3 4-6 5 of clay. 6-8 Same as above. Reddish-brown and gray ROCK FRAGMENTS, lit-tle fine silt and very fine sand. 5 8-10 Reddish-brown, damp, SILT and very fine SAND, some fine gravel, little silt and 10 6 10-12 clay. 12-14 Same as above. 14-16 Spoon refusal. No recovery. 15 Medium gray, saturated, SILT, little very fine sand, trace of clay. 50 9 50-55 25 Auger refusal @ 25'



Project Location: Richardson Hill Municipal Landfill Site Client: Amphenol Corporation Boring Co.: Parrat-Wolff Foreman: N. Thurston UBG Geologist: W. J. Gabriel Sample Depth No Depth /6" Recovry Valve 0 1 0-2 Reddish-orange-brown da some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine to ments), few root and place some silt, and fine some silt, and fine some silt, and fine some silt, and fine some silt, and fine some silt, and fine some silt, and fine some silt, and fine some trace of clay. Light to medium brown, of fine some some silt, race of clay. Light to medium to reddish-brown, of fine some some silt, and very fine SNND, some coarse gravel, trace of clay. Light to medium brown, of fine some some silt, and very fine sNND, some coarse gravel, trace of clay. Light to medium brown, of fine some some some some some some some som	TEST BORING LOG		Repor	rt of Boring Sheet I		9							
•			Landfill	Site	nicipal	(Type: Split Spoon		Ground Wate	r Depth Depth 3729-009-330	Dai Dai			
Project Locat Client: Amphe Boring Co.: P Foreman: N. T DBG Geologist Depth No De 0 1 0	. Thurst	on	el		Boring Location: Ground Elevation Dates: Started:	: 1799							
Foreman: OBG Geolo Depth						Sample		Stratum Change	Equipment Installed	Fie	d Tes	ting	R
Depth	No	Depth			Valve			General Descript	Installed	pH	Sp Cond	HNU	5
0	1	0-2	<u></u>		┼	Reddish-orange-brown damp, very fine S some silt, and fine to medium gravel (ments), few root and plant stems.	AND, frag-						
	5	2-4				Same as above without root or plant st	eus.			-			
_	3	4-6				ight to medium brown, dry, SILT and very		•					
5					+	fine SAND, some fine, medium, coarse g	ravel						
	4	6-8				Light to medium brown, moist, SILT and fine to fine SAND, some fine medium, coarse gravel, trace of clay.	l very						
	5	8-10			+	•							
10	6	10-12			──	Medium to reddish-brown damp, SILT and very fine SAND, fine, medium, coarse gr	d ravel		: 				
	7	12-14				Light brown to grayish-brown, moist, S. and very fine SAND, some fine, medium, coarse gravel, trace of clay.	ILT						
	8	14-16				Light to medium brown, damp, SILT and the sand, some fine, medium, coarse,	very prav-		,				
15				-		el (fragments), trace of clay.			!				
-													
20	9	20-22				Medium to reddish-brown, damp, SILT and fine to very fine SAND, some fine to w	d edium						
	\Box					gravel, trace of clay.							
									,				
	46	05.63											
ය	10	<i>⊆</i> 3−27		-		no recovery.							

O' BRI ENGIN	EN A	GERE , INC.				TEST BO	DRING LOG	Repor	t of Boring Sheet 2	No. M	4-9		
!			Richardso Landfill Corporatio	Site	nicipal	Type: Split Spoon Hammer: 140 lbs.	PLER Fall: 30	Ground Wate	r Depth Depth	Dat Dat		•	
Foresa	n: N	. Thurs	t-Wolff ton J. Gabrie)			Boring Location: On H Ground Elevation: 179 Dates: Started: 10/17.	9.5 ft.	pizzari Prop	-	Ended:	10/17	788
			Sample		,	Sam	nole	Stratum Change	Equipment	Fiel	d Tes	ting l	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Valve	Descr	iption	General Descript	Installed	рН	Sp Cond	HNU	łk
30	11	30-32				Medium to reddish-bro very fine to fine SAN coarse gravel (fragme	own, damp, SILT and (D, some fine, medium, ents), trace of clay.						
35	12	35-37				No recovery.							
40	13	40-42				Reddish-brown, satura little silt, clay and shale.	ted SHALE, bedrock and fine sand, weathered						
								451					
						Auger refusal 8	1 45¹						

O'BRIEN & GERE ENGINEERS, INC. Client: Amphaenic Corporation/RHRMLS Proj. Locs: Sidney, New York Hammer: NA File No.: 3729,031 Boring Company: ADT Foreman: Marty Harrington DD Gareologist: DD poth Balow No. (feet) O							TEST BORING LOG	REPO	ORT OF	BOR	ING
Proj. Loc: Sidney, New York	O'BR	IEN	& GEF	RE ENC	SINEERS,	INC.			MW-9D)	
File No.: 3729.031	ł		•		•	HAMLS		Location	:	OA.	
Poreman: OBG Geologist: DJ Carnevale							Fall: NA				
Depth Below Grade No. (feet) RQD Recovery Date Sample Description Change General Descript Installed	Forem	an:		Marty I				Riser		Sand Bento	Pack onite
48 1 48-53 31% 4.5/5.0 12/27/94 Dark greenish gray (5GY4/1) very fine sandy SILT STONE. 53 2 53-58 42% 4.2/5.0 12/28/94 Same as above to approximately 56.1 ft. to a dark yellowish brown (10YR4/2) to grayish olive (10Y4/2) fine grained SANDSTONE (subrounded qtz), sandy seams appear to be washed out. 58 3 58-63 31% 4.5/5.0 12/28/94 58.0 to 58.7 ft same as above. 58.8 to 60.6 ft SANDSTONE as above. 60.8 to 61.0 ft SILT STONE as above. 61.0 to 63.0 ft SAND STONE as above. 63 4 63-68 1.5/5.0 12/28/94 SANDSTONE as above.	Below Grade			1	1	Date	Sample Description	Change General		Ter	
Run #2 dark yellowish brown (10YR4/2) to grayish olive (10Y4/2) fine grained SANDSTONE (subrounded qtz), sandy seams appear to be washed out. 58 3 58-63 31% 4.5/5.0 12/28/94 58.0 to 58.7 ft same as above. 58.7 to 58.8 ft Dark gray SILT STONE. 58.8 to 60.6 ft SANDSTONE as above. 60.8 to 61.0 ft SILT STONE as above. 61.0 to 63.0 ft SAND STONE as above. 63 4 63-68 1.5/5.0 12/28/94 SANDSTONE as above. SANDSTONE as above.		1	48-53	31%	4.5/5.0						
washed out.	53	2	53-58	42%	4.2/5.0		dark yellowish brown (10YR4/2) to grayish olive (10Y4/2) fine grained SANDSTONE				
63 4 63-68 1.5/5.0 12/28/94 SANDSTONE as above.	58	3	58-63	31%	4.5/5.0		washed out. 58.0 to 58.7 ft same as above. 58.7 to 58.8 ft Dark gray SILT STONE. 58.8 to 60.6 ft SANDSTONE as above.				
	63	4	63-68		1.5/5.0		61.0 to 63.0 ft SAND STONE as above.				


O'BRIEN 5 DERE

O'BRIEN & SERE ENGINEERS, INC. Report of Boring No. Mi-10 Sheet 1 of 1 TEST BORING LOG Project Location: Richardson Hill Municipal Landfill Site Client: Amphenol Corporation SAMPLER Ground Water Depth Date Type: Split Spoon Hammer: 140 lbs. Depth File No.: 3729-009-330 Date Fall: 30"

Boring Co.: Parrat-Wolff Forewan: N. Thurston 1086 Geologist: W. J. Gabriel

Boring Location: Wyatt property, Along Drainage Area East of Pond Bround Elevation: 1763.3 ft. Dates: Started: 11/18/88 Ended:11/18/88

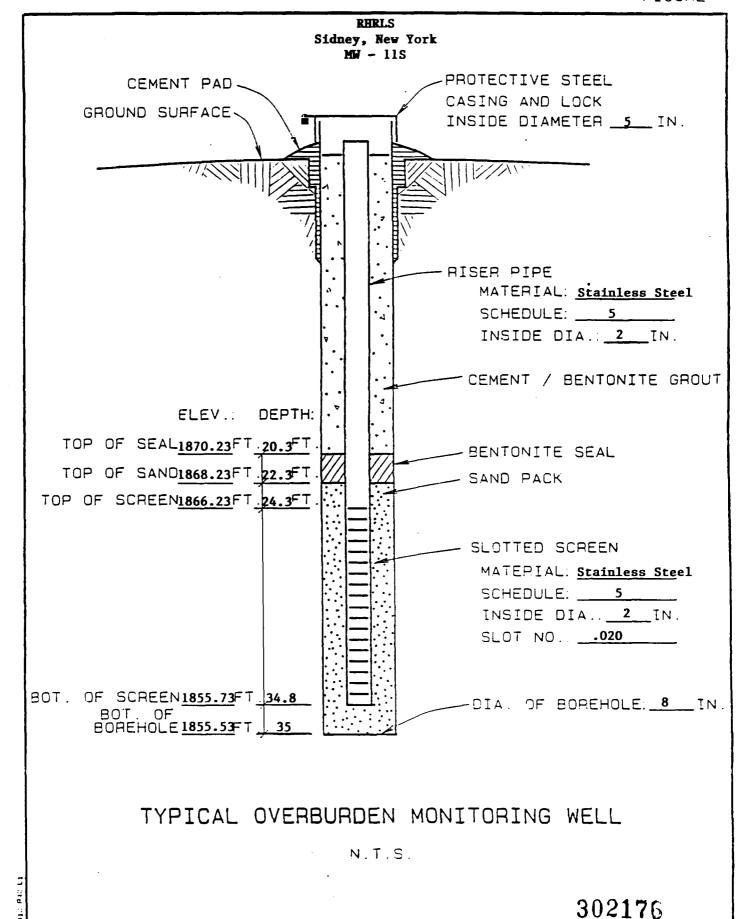
086 Ge	olo	gist: W.	J. Gabrie	1		Dates: Started: 11/18	/88			Ended:	11/18	/88
			Sample	,	·	Sample	Stratum Change	Equipment	Fie	ld Tes	ting	
Depth	No	Depth	Blows /6"	Penetr/ Recovry	Valve Na	Description	General Descript	Installed	рН	Sp Cond	HNU	k 5
0	1	0–2				Reddish-brown to greenish-gray, saturated, very fine to fine SAMD and SILT, little						
	_				<u> </u>	fine to medium gravel and clay, root and plant stems.						
	2	2-4				Medium gray to reddish-gray, saturated, very fine to fine SAND, some silt, little						
						clay and fine to medium gravel.						
5	3	4-6				Reddish-brown, saturated, SILT and very fine SAND, some fine, medium, coarse gravel little clay.						
					-							
	4	6-8	ļ		-	Reddish-brown and grayish-brown, saturated, SILT and very fine to fine SAND, some fine,						
					<u> </u>	medium, coarse gravel with fragments, lit- tle clay.						
				 	<u> </u>							
10	5	8-10			L	Same as above.			1		{	
	6	10-12				Reddish-brown, dry to moist, weathered SHALE.						
	7	12-14				Medium gray, weathered SANDSTONE with clay and silt filled portings.						
15						90H @ 15 ft.						
						buil 6 13 16.						
						·		,				
					1						1	
20				<u> </u>					}		}	1
-			,									
									}			
	П											
	Н											
	H										1	
	Н			<u> </u>								
	Н			-	 							
	Н											
	, 1		1	ı	ì	1	1	1	1	1		

O'BRIEN & GERE
ENGINEERS, INC.

Project Location: RHRLS
Client: Amphenol Corporation
Sidney, New York

TEST BORING LOG

Report of Boring No. 2MM-11S


SAMPLER
Ground Water Depth
Date
Depth
Depth
Date
File No.: 3729.013.576

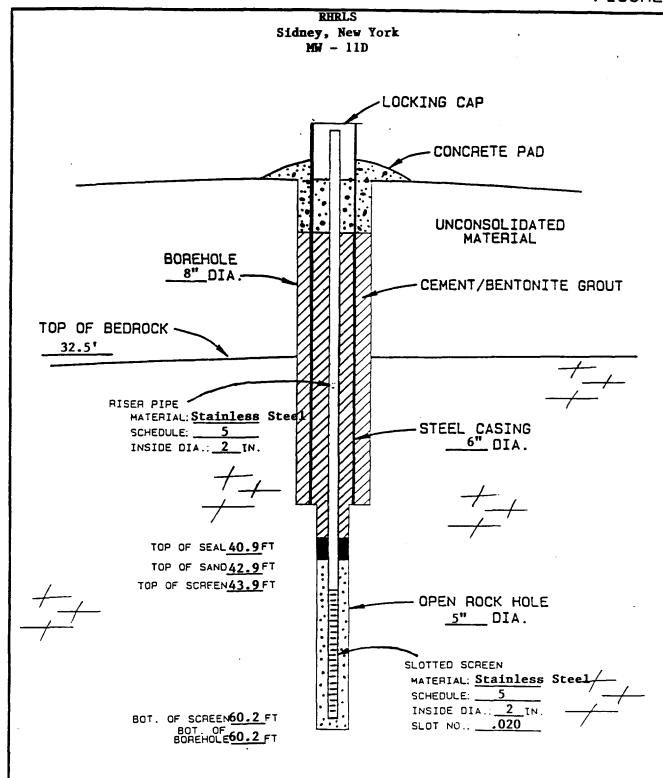
Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing DBG Geologist: Mark J. Roma Boring Location: Approx. 450' west of MW-1 along landfill Ground Elevation: access road Dates: Started: 10/18/90 Ended: 10/18/90

000 06	0100	1126: UG	rk J. Koma			<u>i</u>	Dates: Started: 10/10		LINI	Ed. 1,	0/10/30		
			Sample			Samp	1)0	Stratum Change	Equipment	Fie	ld Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Descri		General Descript	Installed	рH	Sp Cond	HNU	k st
0	1	0-21	3-3-3-5	21/0.51	6	Damp, dark to medium to SAND, some silt, trace organics (plants, root	: me dium gravel, trace					0	
	2	2-41	3-12-	21/11	34	Damp, dark brown, fine	to very fine SAND					0	
			22-25	-		and SILT, trace organi light green/gray sands	i cs, fragme nts of s tone, la rge fragments						
	3	4-61	20-24-	21/11	44	Damp, red/brown to oli fine to fine SAND, lit	ve green brown, very					0	
5			20-19			small fragments of gre							
	4	6-81	21-25-	2' /0.9'	65	Damp, dark brown, very some silt, green/gray	fine to fine SAND, weathered shale.				1	0	
			40-33			trace reddish brown si	lty clay				}		
	5	8-10'		2' /2'		Damp, dark to medium b silt, trace red/brown fine gravel	prown, fine SAND, some silty clay, trace					0	
10	6	10-121	50/0.3	0.31/01		No recovery						o	
	7	12-141	17-27-55	1.5'/1'	_	Brown to olive green, greenish gray sandston	fine SAND, some silt,					0	
	8	14-161	16-15	1'/1'	-	Moist, brown, fine SAN clay and gravel, fragm	D, some silt, trace					0	
15						sandstone	• • • •						
20	9	20-221	40-50/0.3	0.9/0.9		Damp, brown to olive g fine SAND, some silt, green/gray sandstone	r een, very fine to l arge fragments of					0	
1						Boulder 22-23 ft.							
25	10	25-27'	32-50/0.2	0.8/0.8		Damp, brown to olive g tle brown silt, sandst small chips to 1" diam	one framments from					0	
30	11	30-321	22-50/0.4	יו/יי		Same as above						0	

1MW11S.KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. Sheet 2 of 2 MH-11S TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth Date File No.: 3729.013.576 Fall: 30" Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma Boring Location: Ground Elevation: Ended: 10/18/90 Dates: Started: 10/18/90 Field Testing Sample Stratum Sample Change Equipment Blows Penetr/ "N" Description General Installed Sp Depth Descript рH /6° Value HNU Depth Recovry Cond No. 54 0.2/0.21 Damp to moist, olive green to dark brown, weathered sandstone fragments 35 12 35-371 50/0.21 0 Bottom of boring 35.2 ft. 34.5-24' 35-21.8' 21.8-19.8' .020 stainless screen Gravel pack Bentonite 2MW11S. KJF Cement/bentonite grout 19.8-0

SE OBRIEN SCERE


O'BRIEN & SERE ENGINEERS, INC. Report of Boring No. MW-11D TEST BORING LOG Page l of l SAMPLER Project Location: RHRLS Ground Water Depth Date Type: Split Spoon 3" & HX Core Barrell Hammer: 140 lbs. Fall: 30" Client: Amphenol Corporation Depth Date Sidney, New York File No.: 3729.013.576

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

Boring Location: Top of landfill access road, approx. 10' Ground Elevation: north of MW-11S Dates: Started: 10/18/90 Ended: 10/18/9 Ended: 10/18/90

UDG 66	0100	12: US	rk J. ROM				Dates: Started: 10/10/	· 50	Enu		10/10/3	<u> </u>	
		· · · · · · · · · · · · · · · · · · ·	Sample	2		Sa	mple	Stratum Change	Equipment	Fie	ld Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Desc	ription	General Descript	Installed	рН	Sp Cond	HNU	k 51
						For depths to 32.	5 ft. see Log MH-11S						
		32.51				Top of bedrock							
				 									
	H			-	-								
35	H			-	-	1							
		35-401			<u> </u>	 E1 UV come barrell :	una ka umuifu mammakank						
	H				<u> </u>	bedrock	run to verify competent						
		36.71		ļ		Fracture 37.2-37.5' Weathered	zone consisting of						
				<u> </u>	ļ	green/gray SILT and trace brown silt	SANDSTONE fragments,						
				<u> </u>		Casing set	at 40 ft						
40		40-451				Core #1 40-45' 0-0.7' Solid green	1						
						}							
	П			1		silt, sandstone an	d zone with green/gray d silty shale						
	\Box			<u> </u>		0.95-3.6' Numerous	fractures, changing to						
				 		dark green/gray si brown crystalline i	lty shale with golden residue in partings						
						3.6-4.6' Very fract	t ured, dark gray silty				}		j
	$\left \cdot \right $			+	-	shale, golden cryst partings	talline coating in						
45	H	45-501		 	-	Core #2 45-50 ft.	5,251 recovery						
				-		0-0.1' Weathered ze	one of gray silt and f core is fractured						
				-		with same crystall: Average fractures	ine coating						
				 	<u> </u>	HVERAGE TRACEGRES A	:-3						
					<u> </u>								
			· · · · · · · · · · · · · · · · · · ·										
50		50-551	_			Core #3 50-55 ft. 0-0.15' Fractured (
						0.152' Weathered 0.2-0.8' Dark gray	green/gray sandstone shale						
		1				0.8-1 Weathered zo	one filled with gray dark gray shale frags.						
						1-1.7' Fractured () 1.7-2.1 As above	nor. and vert.) shale			İ			
·						2.1-3.85' Remainder	r of recovery is frac-				į		
				1		out sample have gra	ale. Fractures through- ay and brown silt and		ı				
55				1		clay in partings]		
			· <u>·</u>			Roller bit 55-60'							
					 					}	}		
	H			-	1	Bottom of bor	cinn 60 ft						
	((1	1	200000 0. 00.	3	i		Į.	1	I	1

.020 stainless steel screen 60-441 Gravel pack 60-43' Bentonite seal 43-41' Cement/bentonite 41-0

TYPICAL BEDROCK MONITORING WELL (NOT TO SCALE)

302178

31.07.17.01.1

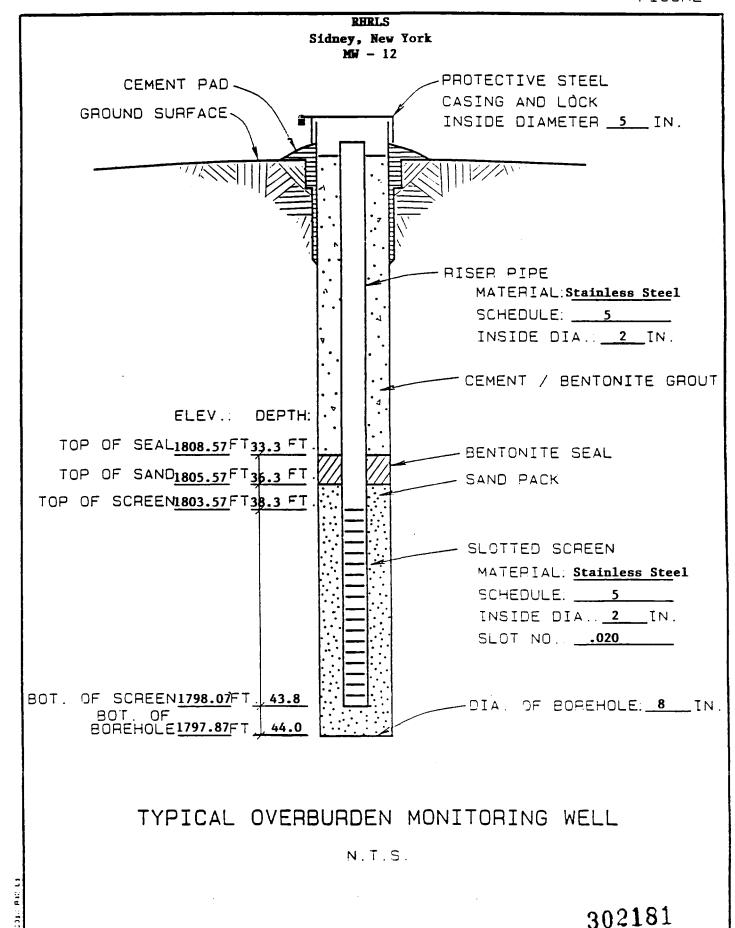
O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. Sheet 1 of 2 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.576 Date Fall: 30"

Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

Boring Location: Approx. 320' NM of MM-1 Ground Elevation: Dates: Started: 10/19/90 Ended: 10/22/90

0 1 (Sample				Stratum		Fiel			ı IR	
epth	No	Depth	Blows /6*	Penetr/ Recovry	"N" Value	Sample Description	Change General Descript	Equipment Installed	р Н	Sp	HNU	m k
0	1	0-21	1-1-2-8	21/21	3	Damp, dark to medium brown, very fine to fine SAND, some silt, little organics (plant stems and roots)					0.2	
	2	2-41	10-13-	2' /1.8'	31	Moist, brown, very fine SAND, some silt, little medium sand, mottled with light					0	
			18-28			gray medium sand and red brown silt, trace clay						
	3	4-6'	12-24-	21/21	46	Damp, dark to medium brown, very fine to fine SAND and SILT, some fine gravel, same				'	0	
5			22-21			mottling as above						
	4	6-81	52-50/0.4	1'/0.3'	_	Dark to medium brown, weathered SANDSTONE, some silt and fine sand, trace fine gravel	:				0	
	5	8-10'	13-20-	21/11	40	Same as 4-6 ft. depth		·			0	
			20-31									
10	6	10-12'	8-21-	21/1.11	47	Same as above, deposits of fine sand, red-					0	
			26-29			dish brown clay, mottled appearance						
	7	12-14'	30-31-	21/11	67	Same as above					0	İ
		-	36-30			Boulder 14.5-15.5 ft.						
15	8	14-161	55/0.21	0.2/0.2		Same as above with large fragments of med- ium grained green/brown sandstone					0	
						Boulder 17-17.5 ft.						
20	9	20-221	9-14-	21/21	29	Same as above					0	
			15-23									
25	10	25-271	21-30-	2'/1.8'		Damp, dark brown, very fine to fine SAND, some silt, trace fine gravel, some mottling					0	
			40-42			of dark red/brown silt and clay, light green/gray medium sand, fragments of green/ gray sandstone						
						3/						
					1					! ∤		-

22-22


1MW12. KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. MM-12 Sheet 2 of 2 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Bround Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.576 Date Fall: 30" Boring Co.: Parratt Wolff, Inc. | Boring Location: Approx. 320' NW of MW-1

orema OEG Ge	olog	lenn La ist: Ma	rk J. Roma				Bround Elevation: Dates: Started: 10/18/	/90	Endi	ed: 1	0/18/90	,	
Depth	No	Depth	Sample Blows /6"	Penetr/ Recovry	"N" Value	Descr	ple iption	Stratum Change General Descript	Equipment Installed	Fiel pH	d Test Sp Cond	ing HNU	k k
						Damp, brown, very fin silt and fine gravel, clay, same intermixed	e to medium SAND, some little deposits of appearance						
35	12	35-37'	24-23- 22-507.05	1.5/1.5	45	Same as above Boulder 36.5-38 ft.			•			1.8	
40	13	4(1-421	15-50/0.3	0.3/0.5		Moist, brown to green SAND, little dark bro gravel, some mottled Boulder 40.5-41.5 ft						0	
	14	441	50/0.21	0.2/0.1		Wet, green/gray weath SANDSTONE Bottom of boring 44	ered wedium grained					0	
							. :						
-		· ·											

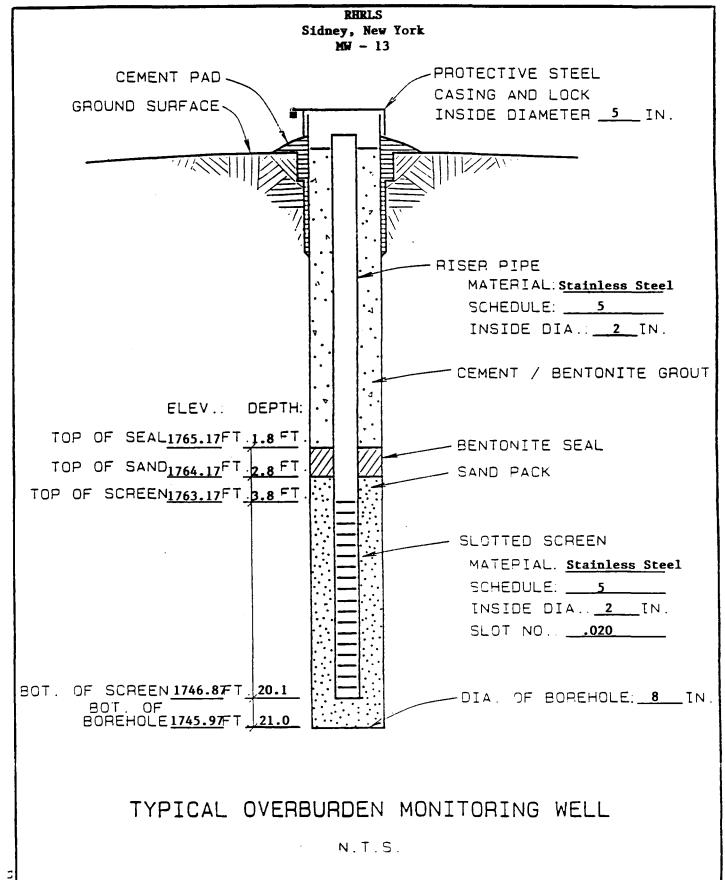
2" ID .020 slot stainless steel screen 43.5-38' Gravel pack 44-36' Bentonite slurry 36-33' Cement/bentonite grout 33-0'

2MW12.KJF

OBRIEN SCERE

O'BRIEN & GERE Report of Boring No. 381-13 Sheet I of 1 ENGINEERS, INC. TEST BORING LOG SOMPLER Type: Split Spoon 3" Hammer: 140 lbs. Ground Water Depth Depth File No.: 3729.013.576 Project Location: RHRLS Client: Amphenol Corporation Date Date Fall: 30" Sidney, New York

Roring Co.: Parratt Wolff, Inc. Foreman: Glern Lansing UBG Geologist: Mark J. Roma


Boring Location: Approx. 300' Northeast of MA-4 Ground Elevation: Dates: Started: 11/22/90 Ended: Ended: 10/22/90

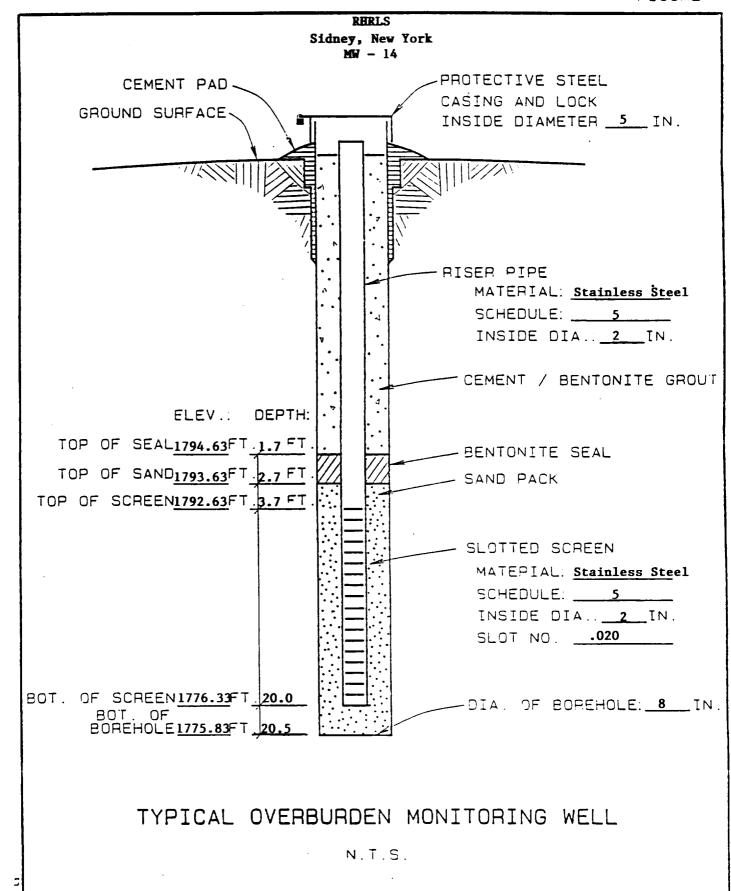
OBG Ge	olog	gist: Ma	rk J. Roma			Dates: Started: 11/22	/90	End	ed: 10	0/22/90		
	Π		Sample			Same la	Stratum	Envisore	Fie	d Tes	ting	
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Sample Description	Change General Descript	Equipment Installed	рН	Sp Cond	HNU	# \$#
0	1	()-21	2-9-6-5	21 /0.31	15	Dark to medium brown, very fine SAND, some silt, little organic debris (plant stems					0	
						and roots)						ĺ
	5	2-41	5-5-5-4	21/1.21	10	Damp, dark brown to red/brownish crange, slightly mottled, very fine to fine SAND, some silt, trace clay and fine gravel,					0.4	
	3	4-6'	4-3-18-13	2'/1'	27	trace weathered sandstone fragments Wet, dark brown to golden, fine to medium SAND and SILT, some medium gravel					0	
5	Ш					Encountered water 5.5						
,	4	6-81	4-9-11-23	21/21	20	Wet, dark brown, red/brown, golden and green/gray, very fine to fine SILT, little clay, little very fine sand, mottled trace					0.2	
	5	8-10'	14-35-	21/21	64	medium gravel Wet, dark brown, red/brown to green/gray, very fine to fine SOND, some silt, little					0.3	
			29-43			clay, mottled, little medium gravel, frags. of weathered sandstone and red/brown shale						
10	6	10-121	ļ	21/21	63	Same as above					0.35	
			31-25									
	7	12-141	24-37-	21/11	63	Wet, mottled constituents as above Bottom 6" weathered green/gray SANDSTONE					2.4	
			26-25			and dark gray weathered shale					l	
15	8	14-16	13-50/0.4	11/2.61		Wet, red/brown, orange, green/gray SILT and CLAY, little very fine sand, trace fine to medium gravel					5.1	
	H			<u> </u>		,	:					
20	3	20-221	18-19-	1.1/0.8		Dark to medium brown, very fine SAND and SILT, trace clay, large fragments of dark					6.5	
			50/0.1			gray shale	21.0					
						Bottom of boring 21.0 ft.						
												}
		:							<u> </u>			
				-								

.020 slot stainless steel screen 20-4.0' Gravel pack 20-3' Bentomite seal 3-2'

Cement/bentonite grout 2-0

MH13. KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. NW-14 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3" Hammer: 140 lbs. Depth File No.: 3729.013.576 Date Fall: 30*


Boring Co.: Parratt Holff, Inc. Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

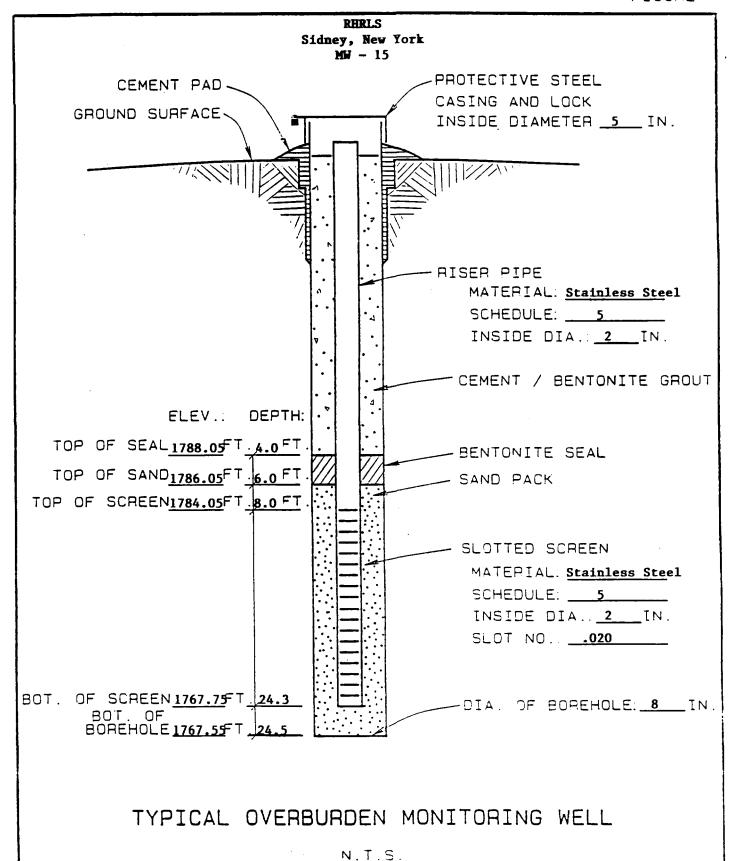
Boring Location: Approx. 320' NW of MW-8 Ground Elevation: Dates: Started: 11/23/90 Ended: 11/23/90

036 Ge	ojoi	gist: Ma	rk J. Roma			Dates: Started: 11/23	/90	End	ed: 1	/23/90		
	L		Sample		7	Sample	Stratum Change	Equipment	Fie	d Tes	ting	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	Value	Description	General Descript	Installed	рН	Sp Cond	HNU	k 5#
0	1	0-21	3-2-15-26	2'/1'	17	Moist, medium brown SILT, trace red/brown clay, trace medium gravel, trace organics					3.0	
	Ц					(plant stems, roots)					ľ	
	2	2-41	39-43-	1.8/1.8	85	Damp, dark brown to medium brown, very fine SAND and SILT, trace clay, large fragments					1.4	
			42-50/0.4			of greenish gray sandstone and dark gray and red/brown shale fragments						
	3	4-61	29-52/4	יו/יו		Same as above					1.4	
5						Boulder 6-7.5 ft.	•					
	4	6-81	31-48-	1.5'/1'	80	Damp, dark red/brown SHALE and green brown, weathered SANDSTONE, trace silt and clay					0.6	
		: 	32-50/0		<u> </u>							
	5	8-10'	14-31-	2'/1.2'	75	Damp, medium brown SILT, little clay, large fragments of green/brown to gray sandstone					0.5	i
			44-36	<u> </u>		and red/brown shale	•					
10	6	10-121	13-13-	21 /21	38	Wet, dark to medium brown, very fine to medium SAND, some silt, trace clay, little	•				1.4	
			19-25			fine to medium gravel, mottled Water encountered 11.0 ft.						
	7	12-14	33-32-	21/11	60	Same as above with little clay					0.8	1
			28-44									
	8	14-16	18-24-	1.4/0.8		Same as above					0.3	1
15			50/0.4									
			1									
							Ì	Ì				
			1									
20	3	20-221	60/0.31	0.3/0.3		Wet, medium brown SILT, some clay, little very fine to fine sand, large fragments of					0.4	
-					-	green gray sandstone	20.51					
						Bottom of boring 20.5 ft.		<u> </u>	İ			
					i							
			_									
	\bigsqcup	:										
	\square											
			<u> </u>	<u> </u>	<u> </u>		<u> </u>	L		<u> </u>	1	į

Screen 20-4.0' Gravel 20.5-3' Bentonite 3-2' Grout 2-0

MW14.KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. MW-15 Sheet 1 of 1 TEST BORING LOG SAMPLER Type: Split Spoon 3st Hammer: 140 lbs. Project Location: RHRLS Client: Amphenol Corporation Ground Water Depth Depth File No.: 3729.013.576 Date Sidney, New York Fall: 30"


Boring Co.: Parratt Wolff, Inc. Foreman: Glern Lansing

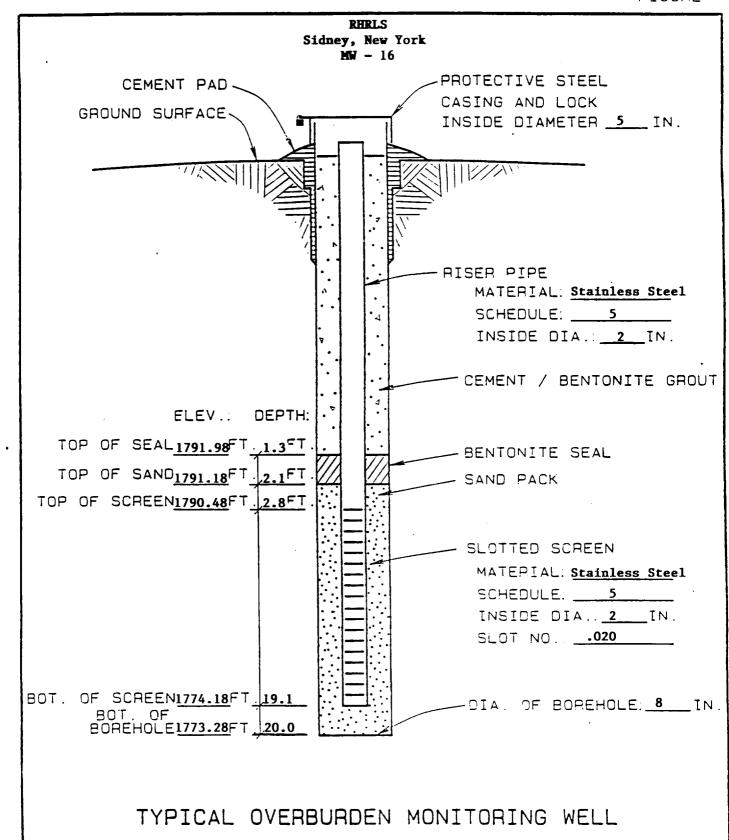
| Boring Location: Approx. 220' North of MW-10 | Bround Elevation: | Dates Started: 10/23/20 | Fee

OBG Ge	ojog	gist: Ma	rk J. Roma			Dates: Started: 10/23	3/90	End	ed: 10	0/23/30		
_			Sample			Comple	Stratum	E	Fie	d Tes	ing	F
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"N" Value	Sample Description	Change General Descript	Equipment Installed	рH	Sp Cond	HNU	
0	1	0-21	1-2-3-9	21/11	5	Moist, medium brown, very fine to fine SANI					0.1	1
						some silt, trace clay and fine gravel, little organic debris (plant stems, roots)						į
	2	2-41	8-17-	21/1.21	45	Moist, medium brown, very fine to fine SANI					0.3	
			28-22			and SILT, trace clay, trace fine to medium gravel, fragments of red/brown shale and						
-	3	4-61	17-21-	21/1.51	52	green/gray sandstone Same as above, more gravel and sandstone					0	
5			31-42									
	4	6-81	24-25-	1.41/11		Damp, dark to medium brown SILT, little					0.4	
			50/0.4			clay, trace very fine sand and fine to medium gravel						
	5	8-101	23-25-	21/1.51	44	Damp, medium brown, very fine to fine SAND,					0.3	ì
			19-21			little silt, trace clay, mostly fragments of green/gray to brown medium grained SAND-	-					
10	6	10-121	15-21-	21/11	38	STONE and red/brown silty shale Damp, dark to medium brown and red/brown,					1.8	
			17-13			very fine to fine SAND and SILT, some rock fragments of sandstone, unconsolidated con-						
-	7	12-141	17-16-	1.11/11		stituents have a mottled appearance						
			50/0.1		1 0	Water encountered 13.0') Boulder 13.1-14.8' Wet, mottled, dark to medium brown, very	1				0.4	
-	8	14-16	31-50/0.3	0.3/0.4		fine to medium SANO, little dark red/brown silt, trace clay and fine gravel and rock					0.5	
15						Wet, dark to medium brown, very fine to fine SAND and SILT, little clay, trace fine	•				0.5	
						gravel, mottled			Ì			
20	3	20-221	30-50/0.4	יו/יו		Same with large fragments of dark gray weathered shale					0.6	
						MERVIE EN SIBIE						
							•					-
							İ					
	10	24-261	59/0.41	0.4/0.3		Same as above	24.5'				1.5	,
25						Bottom of boring 24.5 ft.						
		, .								<u> </u>		
							1			!	1	
											_	

Screen 24-8'
Gravel 24.5-6'
Bentonite 6-4'
Cement/bentonite grout 4-0

MH15.KJF

Report of Boring No. NW-16 Sheet 1 of 1 D'BRIEN & GERE. TEST BORING LDG Project Location: RHRLS SAMPLER Ground Water Depth Date Type: Split Spoon 3° Hammer: 140 lbs. Client: Amphenol Corporation Depth File No.: 3729.013.576 Date Sidney, New York Fall: 30"


Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing

Boring Location: Approx. 270' South East of MH-8 Ground Elevation:

			rk J. Roma			Dates: Started: 10/24	/90	Ende	ed: 10	7/24/90		
			Sample			Sample	Stratum Change	Equipment	Fie	d Test	ing	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	"M" Value	Description	General Descript	Installed	рH	Sp Cond	HNU	k 5
0	1	0-21	3-5-17-6	21/1.41	22	Moist dark to medium brown, very fine to fine SAND and SILT, some medium to coarse					0.4	Γ
			4			gravel, trace clay, trace organics (plant stems, roots)						
	2	2-41	13-17-	21/1.57	35	Same with large fragments of green/gray sandstone					1.6	
			18-32			Water encountered 3.7 ft.						
	3	4-61	11-29-	21/1.81	68	Het, dark brown, very fine to fine SAND and					0	
5			39-43			SILT, trace clay, fragments of green/brown sandstone and dark red/brown shale						
	4	י8-6	54/0.21	0.2/0.21		Greenish gray fragments of SANDSTONE					0	
	5	8-10'	12-13-	21/11	40	Wet, dark to medium brown, very fine to					0	
<u></u>	1 1		21-14			fine SAND and SILT, little fine to medium gravel, trace red/brown clay, mottled						
10	6	10-12'	11-15-	21/0.61	28	Same as above					0	
			13-16									
	7	12-14	7 -9- 13-12	21/0.51	55	Same as above with a 3" layer of dark gray weatherd siltstone					0	
.,	8	14-16'	14-55/0.3	0.9/0.3		Wet, fragments of dark gray weathered SILT-					0.2	
15						STONE, trace brown silt and very fine sand						
							20.01					
20	3	20-221	50/0.21	0.2/0.21		Wet, dark red/brown weathered silty SHALE					0.1	
			!			Bottom of boring 20.0 ft.					} } }	-
			1									-
	Ц											
	\sqcup											
	Н											

.020 slot stainless screen 19-3.0' Gravel pack 20-2.3' Bentomite 2.3-1.5' Cement/grout 1.5-0

MII6.KJF

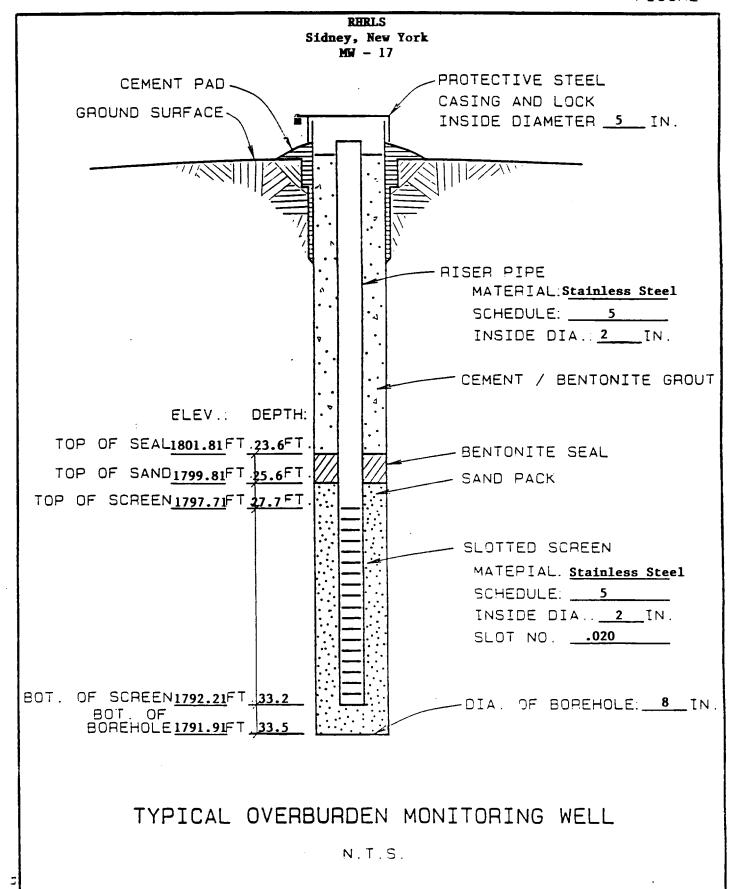
N.T.S.

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. MW-17 Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS Client: Amphenol Corporation Sidney, New York SAMPLER Ground Water Depth Date Type: Split Spoon 3* Hammer: 140 lbs. Depth File No.: 3729.013.576 Date Fall: 30"

Boring Co.: Parratt Wolff, Inc.

Foreman: Glenn Lansing OBG Geologist: Mark J. Roma

| Boring Location: Approx. 340 | West of MM-6 Ground Elevation: | Dates: Started: 10/24/90 | E


Ended: 10/24/30

050 06	0100	15 %: Ma	rk J. Roma				Sample Change Equipment Sp PH Cond		7				
			Sample			Sa	m)e		Equipment	Fie	ld Tes	ting I	R
Depth	No	Depth	Blows /6"	Penetr/ Recovry	Yalue	Descr	•	General		рН		HNU	1
Û	1	0-21	5-12-	21/1.11	23	Damp, dark to medium and SILT, little fine	brown, very fine SAND					1.2	1
			11-10			little clay, trace or roots), fragments of	manics (plant stems,						1
	2	2-41	12-19-	21 /0.71	40	Same with large same red/brown weathered	istone fragments, trace					0	-
			21-13			TEG/ BI ONIT MEGATIC: CO	27012						1
	3	4-61	8-3-10-15	21/11	13	Moist, dark to medium fine SAND and SILT, 1						0	1
5				<u> </u>		very fine to fine gra							
	4	6-81	13-16-	21/11.	33	Damp, clive green SIL	T and CLAY, some fine dark green brown sand-	!				0.4	•
			17-24			stone	30. N. g. 22. N. 20. N. 30. N.			1	<u> </u>	1	1
	5	8-10"	13-14-	21 /0.81	33	Damp, dark to medium	red brown, olive green LT, some clay, little					1.5	5
			19-17			fine gravel	seri seme erayi ravvae			1			
10	6	10-12'	14-20-	21/0.31	34	Same as above						0.2	2
			14-15							1			1
	7	12-14"	11-10-	21/11	23	Moist, dark to medium	brown, very fine SAND med brown clay, little					1.0	1
		 	13-12			fine gravel					-		i
	8	14-161	15-22-	21/0.81	46	Same as above							
15			24-32							1	1		-
													1
										1	1		-
		<u>.</u>											
20	3	50-55,	21-32-	1.8/0.8	66	Damp, brown, very fir dark red brown clay,	e SAND and SILT, trace trace fine gravel					0.5	1
			34-50/0.3				_			1			
						 Boulder 24-25.51				1			-
													ļ
25	10	25-271	50/0.1	0.1/0.1		Large fragments of greed SANDSTONE	reen/gray medium grain-				}		
													1
										!			
										1			
30	11	30-321	50/0.21	0.21/0		Same as above, small	·				<u> </u>		_

Screen 33.3-28.1' Gravel 33.5-26' Bentonite 26-24' Cement/bentonite grout 24-0

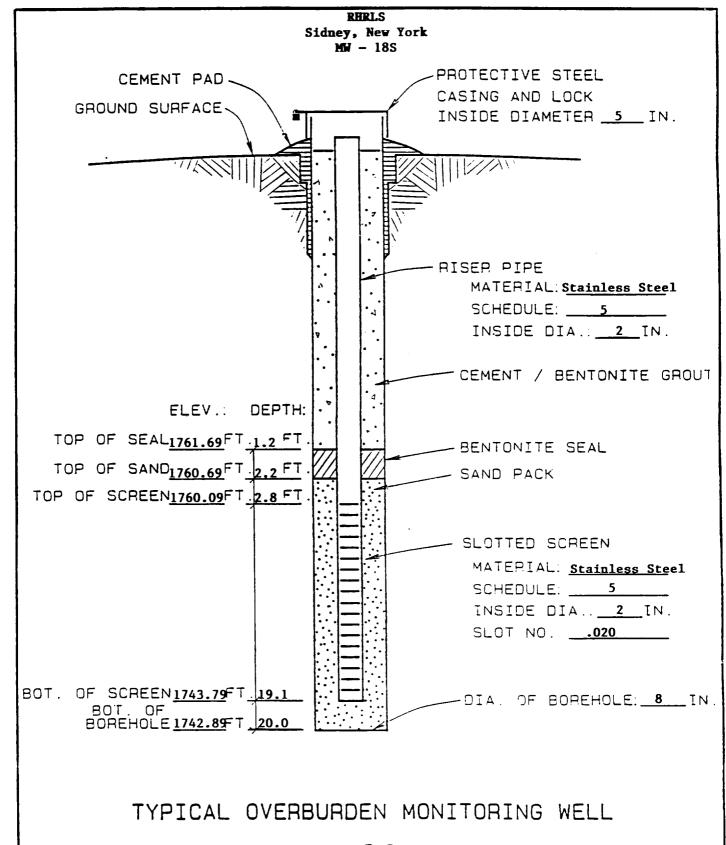
Water encountered at 32.0 ft. Bottom of boring 33.5 ft.

MN17.KJF

O'BRIEN & GERE ENGINEERS, INC. Report of Boring No. MH-18s Sheet 1 of 1 TEST BORING LOG Project Location: RHRLS SAMPLER Ground Water Depth Date Client: Amphenol Corporation Sidney, New York Type: Split Spoon 3" Hammer: 140 lbs. Depth Fall: 30" File No.: 3729.013.576

Boring Co.: Parratt Wolff, Inc. Foreman: Glern Lansing OBG Geologist: Mark J. Roma

Boring Location: Approx. 350' North of MM-7 Ground Elevation: Dates: Started: 10/25/90 Enc

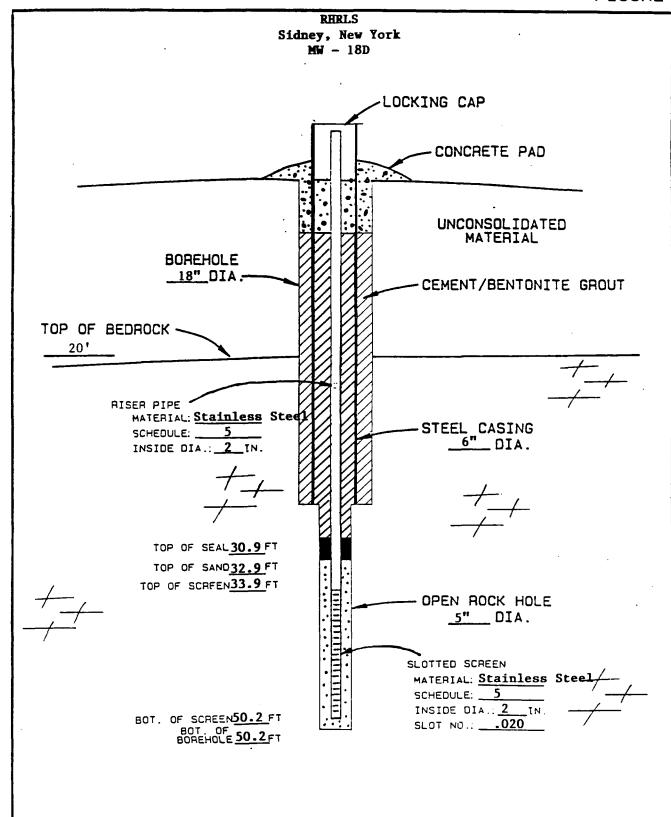

Ended: 10/25/90

OBG Ge	ojoi	gist: Ma	rk J. Roma			Dates: Started:	10/25/	90	End	ed: 10	0/25/90		
	Ì		Sample			Samala		Stratum Change	Equipment	Fie	ld Tes	ting	R
Depth	No	Depth	Blows /6"	Peretr/ Recovry	"N" Value	Sample Description	1 1	General Descript	Installed	рН	Sp Cond	HNU	k 5
0	1	0-21	6-8-16-20	21/1.21	24	Moist, gray brown to dark red brown SIL and CLAY, the medium to golden brown, fi	Tine					3.2	T
				<u> </u>		to medium SAND, small fragments of green gray sandstone	m						-
	2	2-41	12-11-	י70.7י	21	Damp, dark to medium brown, very fine to fine SAND and SILT, some clay, trace fin	0					0.25	İ
			10-10			gravel							
	3	4-61	8-15-	21/11	39	Same, but wet, more green-gray sandston	ne		:			0	
5			24-26			Water encounterd 5.5 ft.							
	4	6-81	15-20-	21/0.81	42	Moist to wet, dark to medium brown, very fine to fine SAND and SILT, little dark	y					0.4	
			22-18			red brown clay, little medium to coarse gravel							
	5	8-101	15-16-	21/0.81	39	Same with large fragments (1-2") of graph sandstone	.561;	İ				0.7	١
			23-26			g, ay samestoria							
10	6	10-12'	8-14-8-9	21/0.51	32	Wet, dark red-brown SILT and CLAY, some medium brown fine sand, little medium to			i			1.0	
					<u> </u>	coarse gravel							
	7	12-14'		21/0.51	26	Same as above						0.5	1
			14-15		ļ								ļ
	8	14-16'	50/0.7	0.7/0.6		Het, dark red-brown SILT and CLAY, some mottled shale	·					0.52	
15		_		<u></u>									
			<u></u>										
			-	<u></u>									
			<u> </u>		ļ								
				<u></u>	<u> </u>			0.0					
30	3	2(1-221	34-50/0.2	0.2/0.1		Green gray fragments of weathered SANDS	STONE					0.8	
					-	Bottom of boring 20.0 ft.							
													ļ
					<u> </u>								
					<u> </u>			į					
					-								
			<u> </u>										
	Ц	,			ļ						[-
	Ш		-	<u> </u>	<u> </u>								
			<u> </u>								1	1	Ì

.020. slot stainless steel screen 19.1-3.1' Gravel pack 3.1-2.5' Bentomite seal 2.5-1.5'

Cement/Bentonite grout 1.5-0

MH18S.KJF


N.T.S.

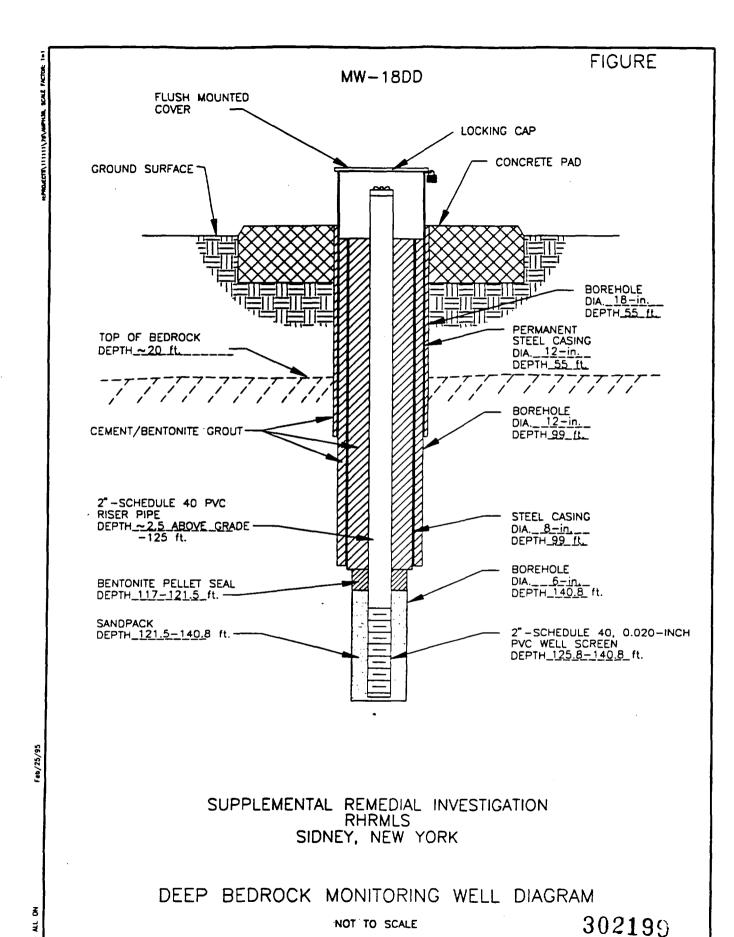
D'BRIEN & GERE Report of Boring No. MH-18D ENGINEERS, INC. TEST BORING LOG Sheet 1 of 1 SAMPLER Project Location: RHRLS Ground Water Depth Date Client: Amphenol Corporation Type: Split Spoom 3" Depth Date Hammer: 140 lbs. Sidney, New York Fall: 30" File No.: 3729.013.576 Boring Location: Approx. 340' North of M4-7 Ground Elevation: Boring Co.: Parratt Wolff, Inc. Foreman: Glenn Lansing DBG Geologist: Mark J. Roma Dates: Started: 10/29/90 Ended: 11/1/30 Sample Stratum Field Testing R Change Equipment Sample "N" Blows Installed Depth Penetr/ Description General Sp Depth /6* Value Descript pН Cond HNU No Recovry For depths to 20 ft. See Log MH 18S 25 25-27 50/0.51 0.51/0 Small chips of green gray SANDSTONE 30 Core barrel 25-30' 0.55-1 Fractured zones with brown SILT in partings Fracture with gold/brown cryst-1.35 alline substance 1.95-5 Green gray SANDSTONE Casing set at 30 ft. 35 40 45 Roller bit to 50.0 ft. 50 50.21 Bottom of boring 50.2 ft. .020 slot stainless steel screen 50-34' Gravel 50.2-33' Bentonite 33-31'

Cement/Bentonite grout 31-0

MN18D. KJF

TYPICAL BEDROCK MONITORING WELL (NOT TO SCALE)

302195


OBRIENSGERE
ENGINEERS, INC.

31-u :: 'C3'13

O'BR	IEN	& GER	E ENG	INEERS,	INC.	TEST BORING LOG		MW-18		ING
Client:	:	Ampher	nol Corp	oration/RH	RMLS	Sampler: NX Core	Page 1 o			-
Proj. L	.oc:	Sidney,	New Yo	ork		Hammer: NA	Location Start Dat	•	95	
File No		3729.03	-	10.00		Fall: NA	End Date	: 1/31/	95	
Boring Forem OBG G	an:	npany:	Parratt Ron Bu DJ Car	ısh			Screen Riser		Grou Sand Bento	l Paci
Depth Below Grade		Depth (feet)	RQD	Penetr/ Recovery	Date	Sample Description	Stratum Change General Descript	Equip.	Te	eld sting
0								1		
60	1	60-63.5	70%	3.4/3.5	01/18/95	Dark greenish gray (5GY 4/1) fine grained		[`	
					Run #1	SANDSTONE, fracture from 60.75 to 61.0 ft.,	ŧ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
						61.9 to 62.1 ft., oxidation in fractures,		\	\	
			!			fine to medium rock embedded in sandstone	1		1	1
63.5		63.5-68.5	86%	5.0/5.0	01/18/95	(conglomerate). Grayish black (N2), SHALE broken fracture at		$\begin{bmatrix} 1 \end{bmatrix}$	`	
					Run #2	approximately 64.0 ft., SHALE to		$ \dot{\mathbf{A}} $		ſ
						approximately 64.1 ft., to dark greenish gray		1 .	\	
			<u> </u>			(5GY 4/1) fine grain sandstone matrix	Ì		`	
						conglomerate, fracture at approximately 64.4 ft., clay/lined, fracture at approximately			`	
$\overline{}$						64.4 .8 ft coal and pyrite/lined fracture at		N I		
						approximately 67.5 ft., coal and		1	\	
						pyrite/lined, 67.5 to 68.5 ft., coal with				1
68.5	3	68.5-73.5	78%	4.8/5.0	01/18/95	pyrite rims noted on outside of core. Dark greenish gray (5GY 4/1), fine grained		$\left[\begin{array}{ccc} 1 \\ \end{array}\right]$		
					Run #3	SANDSTONE, vertical clay lined fracture at				
						approximately 69.0 to 69.3 ft., grayish black		١ ١	\	
73.5	4	73.5-78.5	95%	5,0/5.0	01/19/05	(N2), coal seams very thin to 73.5 ft.				
73.5	4	73.5-76.5	8370	5.0/5.0	01/18/95 Run #4	Medium dark gray (N4) fine gray SANDSTONE to approximately 77.5 ft., some medium clasts of				
\neg			l			pyritized black organics (coal?), clay lined		[i]		
						fractures at approximately 74.1, 75.2 and		1	١	
						75.8 ft., grayish black (N2) SILTSTONE to		\		
78.5	5	78.5-83.5	92%	4.9/5.0	01/19/95	78.5 ft., Medium dark gray (N4), fine grained		[
-		1010 0010		7.070.0	Run #5	SANDSTONE to approximately 80.6 ft., to	}		`	
						grayish black (N2) SILTSTONE at 80.9 ft.,		\	\	1
						fractured siltstone fragments, perpendicular		\		
\longrightarrow						to core axis, siltstone to 81.0 ft., to medium gray (N5), fine grained sandstone,		$ \cdot $		
		-				fracture with iron oxidation at approximately		i l		
						45.0 ft. from core axis at approximately		1	\	
83.5	6	83.5-88.5	99%	5.0/5.0	01/10/0F	81.4 ft. Medium dark gray (NA) fine grained			\	
03.5	- 0	<i>აა.э-</i> ₀6.5	3370	5.0/5.0	01/19/95 Run #6	Medium dark gray (N4) fine grained SANDSTONE to approximately 86.9 ft., break at	1		`	1
\dashv		-	 			86.1 ft. with coal lining, grayish black (N2)	1		\	
						SILTSTONE (fractured) from 86.9 to 87.05 ft.,		١	١	
						SANDSTONE as above to 88.5 ft., some				
			-			entrained black organic (coal?) fragments.	1		`	1
88.5	7	88.5-93.5	100%	5.0/5.0	01/19/95	Dark gray (N6) fine grained SANDSTONE with	1		i	
					Run #7	black clasts fracture at approximately 91.0	1		١	
						ft., with oxidation in break.	1		·	
}		 -	 							
			-			1				
										

Client:				INEERS, oration/RH		Sampler: NX Core	Page 2 o	MW-18	SDL
						•	Location		
Proj. L	.oc:	Sidney,	New Yo	rk		Hammer: NA			
File No		3729.03				Fall: NA	Start Date	: 1/31/9	95
Boring Forem OBG 0	an:	npany:	Parratt Ron Bu DJ Car	ısh		·	Screen Riser		S
OBG C	1000	gist.	DO Car	1104910	<u> </u>		Stratum		۲
Depth Below		Depth		Penetr/		Sample Description	Change General	Equip.	
Grade	No.	(feet)	RQD	Recovery	Date		Descript	Installed	1
93.5	8	93.5-98.5	83%	4.6/5.0	01/19/95 Run #8	Medium dark gray (N4) fine grained SANDSTONE		[` [`	1
			ļ		Hun #6	to 98.5 ft., clay lined fracture at approximately 95.2 ft., fractures at 95.4 and			
						95.8 ft. contain pyrite, fractures at 96.0		ki ki	
						and 96.2 ft. are oriented at approximately			
						45 degrees from core axis and contain brown			-
						sit and pyrite. Black organics throughout	}		1
100	_	100 105	926	4050	01 102 22	run within sandstone.	1	[\] [\	
100	9	100-105	83%	4.9/5.0	01/26/95 Run #9	Medium dark gray (N4) fine grained sandstone, fracture at approximately 100.6 ft. at		$ \cdot $	
					nun ##	approximately 45 degrees to core axis,		$ \cdot $	
-						pyrite, coal and reddish brown silt line			
						fracture, fractures at 102.1, 102.4, 102.6,		1 1	
						103.1 and 103.9 ft., containing coal along		1 1	
						breaks, 102.1 to 103.1 ft. contains clasts of		[] []	1
105	10	105-105.5	NA	0.5/0.5	01/26/95	shale. Core blacked in barrel, fine grained		[] [] ;	
,,,,,	10	100-100.5	130	5.5,5.5	Run #10	SANDSTONE.		$ \cdot $	
105.5	11	105.5-110	87%	4.5/4.5	01/27/95	Water producing fracture at approximately			-
					Run #11	108.0 ft. noted during drilling, 105.5 ft.		[] []	
						oxidized breaks, medium dark gray (N4) fine grain SANDSTONE with fine to medium pale		$[\cdot] = [\cdot]$	
						yellowish brown (10YR 6/2) clay clasts to			
						approximately 107.3 ft., to fine grained		1 1	
						sandstone with dark gray (N3) organic silt		1 1	-
			1.000/		2112242	clasts, dark gray shale at 108.0 to 108.2 ft.			1
110	12	110-115	100%	5.2/5.2	01/27/95 Run #12	Dark greenish gray (5GY 4/1) fine grained sandstone to 120.0 ft. with few clay clasts,			١
					1140 #12	1 break at approximately 114.3 ft. along clay			
				- :		clast.			
115	13	115-120	80%	4.9/5.0	01/27/95	Grayish black (N2) MUDSTONE/SHALE to			
					Run #13	approximately 115.2 ft., to dark greenish			1
						gray (5GY 4/1) SANDSTONE to approximately 115.6 ft., to MUDSTONE to 116.0 to		[] []	1
						SANDSTONE to 117.1 ft. with very thin seams			
						of mudstone, MUDSTONE to approximately 118.	1		
						ft., SANDSTONE to 120.0 ft., fractured at			
						115.0 to 115.2, 115.7 to 115.9, 117.2 to	l		
		100 :==			****	118.4, and 118.9 ft.			
120	14	120-125	69%	4.3/5.0	01/30/95	Dark greenish gray, fine grained SANDSTONE to			
					Run #14	approximately 121.75 ft., to grayish black (N2) SHALE/MUDSTONE to approximately 123.0			Ī
						ft., SANDSTONE to approximately 125.0 ft.	}		
		-				with thin seam of mudstone at approximately			
Ì						123.4 to 123.5 ft., fractures at 122.1 to			
			-			122.3 ft., 122.8 to 123.8 ft., mainly at	1		
						contact of mudstone and sandstone or within	1		1

O'BR	IEN	& GER	E ENG	INEERS,	INC.	TEST BORING LOG	NEP	MW-18	BORING DD
Client:				oration/RH		Sampler: NX Core	Page 3 o	f 3	
							Location	:	
Proj. L	.oc:	Sidney,	New Yo	ork		Hammer: NA	Start Dat	a. 1/19/0	.
File No	o.:	3729.03	1			Fall: NA	End Date	e: 1/18/99 : 1/31/99	
		прапу:	Parratt	-Wolff		11 - 11	Screen		Grout
Forem		•	Ron Bu				Riser	1 1	Sand Pac
OBG G	eolo	gist:	DJ Car	nevale	Т		Ot - it -		Bentonite
Depth							Stratum Change		Field Testing
Below		Depth		Penetr/		Sample Description	General	Equip.	
Grade	No.	(feet)	RQD	Recovery	Date		Descript	Installed	
125	15	125-130	79%	5.0/5.0		Grayish black (N2) MUDSTONE to 128.9 ft., to		=	
					Run #15	SANDSTONE to 130.0 ft., fractured from 125.2 to 125.6 ft., 126.0 to 126.2 ft., 127.3,		-	
					<u> </u>	127.7, 128.6, and 128.8 ft., sandstone has		_	
_						few small clasts of tan shale.	1	=	
130	16	130-135	97%	5.1/5.1	01/30/95	Dark greenish gray (5GY 4/1) fine grained	1	-	
				<u> </u>	Run #16	SANDSTONE to 135.0 ft., fractured at 130.2		-	
						and 131.5 ft.		=	
135	17	135-140	95%	5.1/5.1	01/31/95	Dark greenish gray (5GY 4/1) fine grained		-	
		-			Rune #17	SANDSTONE to 140.0 ft., fractured at		=	1
						approximately 136.0, 136.4, 137.5 ft. with		=	
						olive brown silt lining, 139.0, 139.5, 139.9 ft.		=	
140									1
				<u> </u>		Bottom of boring at 140.4 ft.		enal Res	
							1		
					ļ				
							1		
									1
]				ļ					
									1
									.
				<u> </u>					
					<u> </u>				
					<u>. </u>				
				<u> </u>			1		
		·		 	 	i	1		1

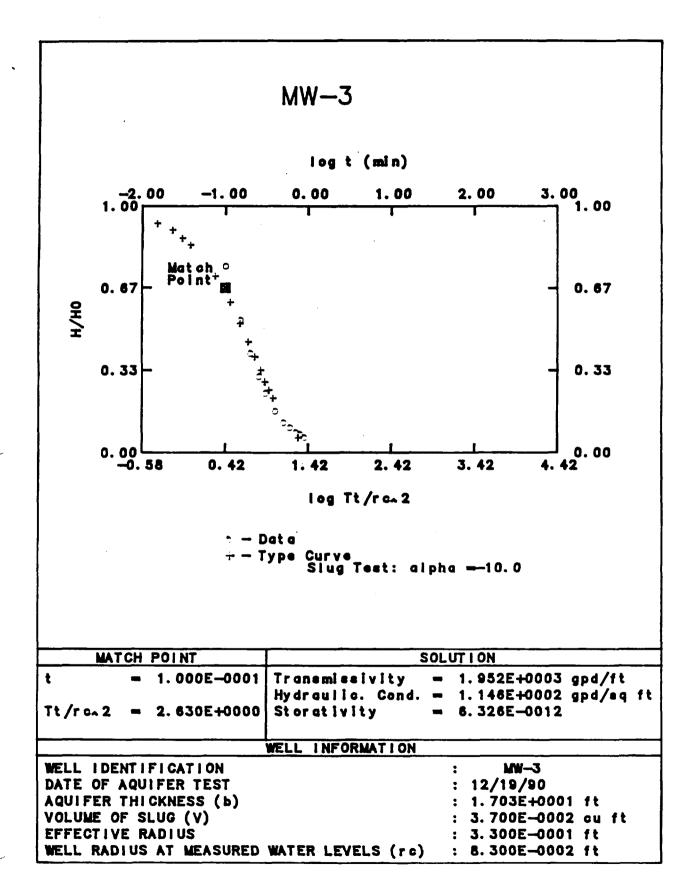
LAYERS- ALL

D'BRIEN 8 GERE

FILE NO. 3729.031-

O'DD!		·		TOO INC		TEST BORING LOG	REPORT OF		g MW	-19
O.RHI	EN	& GEHE	ENGINE	=H5, INC.			PAGE 1 OF 2	!		
CLIENT	:	Amphen	ol Corporati	on		SAMPLER: Split Spoon, Automated	LOCATION:	131' 8	W of spri	ng house
PROJEC	T LO	CATION:	Sidney, Ne	w York		HAMMER: 140 lbs	START DATE	: 12/5/9	11	
1			Municipal I	_andfill Site	1		END DATE:	12/5/9)1	
FILE NO		3729.015	Parratt-Wo	olff loo		FALL: 30"	LEGEND:	1 10	rout	== Screen
		Glenn La		om, mc.			LEGENO:		rout and Pack	== Screen
OBG GE			Paul Gottle	er					ellets	
							STRATUM		F	IELD TESTING
DEPTH		DEPTH	BLOWS	PENETR	*N*	SAMPLE DESCRIPTION	GENERAL	EQUI	PMENT	HNu
GRADE	NO.	(FEET)	/6*	RECOVERY	VALUE		DESCRIPT	INST/	WLED	(ppm)
0	1	0-2	3-5-	2'/1'	19	Damp SOD to	0.2'	1		0
	_	<u></u>	14-16			Damp, brown-red CLAY and SILT to	0.5'	∤	10.1	
1					 	Dry, gray DIAMICTON, GRAVEL with sand,			1 1	
<u> </u>	2	2.4	5/0.2'	0.31/01	NI A	little silt, trace clay, massive, clast supported			11	NT A
2	-	2-4	3/0.2	0.2'/0'	NA	Boulder at 2–3 ft.				NA.
3							Overali			
<u> </u>					 	1 ·	Distribution			
4	3	4-6	16-21-	2'/1.6'	47	Dry, red-brown SILT and CLAY with subround	2-12 ft.			0
			26-23			to angular, coarse to fine gravel, matrix	60% gravel			
5						supported	30% sitt			
				1		·	7% clay			
6	4	6-8	16-20-	2'/1.1'	45	Dry, as above, gravel weathered gray Arkose,	3% sand			0
7			25-19	-	<u> </u>	elitatione and gray sandstone, littl coarse to				
<u> </u>					 	fine sand	1			
8	5	8-10	5-18-	1.4'/1'	18	Dry, as above, some purple clay				0
			50/0.41							
9					-					
									1.1	
10	6	10-12	32-27-	2'/1.3'	60	Dry, as above, matrix red, gravel gray-green,				0
<u> </u>	_		33-25			tends toward subround			1 1	1
11										
12	7	12-14	18-19-	2'/1.5'	44	Dry, as above (more sand), most gravel fine to	increased sand after			0
	<u> </u>		25-31			medium fine	12 ft.			•
13										
14	8	14-16	14-24-	2'/1.4'	45	Dry, as above				0
<u> </u>			21-12							
15										
16	9	16-18	20-22-	2'/1.6'	46	Dry, as above (no odor/stain)				0
10	7	10-10	24-21	271.0	70	pory, as above (no odor/statif)				"
17				İ					1. 1	-
18	10	18-20	15-31-	2'/1.7'	62	Damp, as above				0
			31-22							
19										
				-						
			<u> </u>	L		1	1	1_1_		
						•				

O'BRI	EN	& GERE	ENGINE	ERS, INC.		TEST BORING LOG	REPORT OF PAGE 2 OF 2	BORING MW-	19
CLIENT:	:	Ampheno	l Corporation	on		SAMPLER: Split Spoon, Automated	LOCATION:	131' SW of apring	, house
PROJEC	TLO	CATION:	Sidney, Ne	w York		HAMMER: 140 lbs	START DATE	: 12/5/91	
Richard	dson		-	andfill Site			END DATE:	12/5/91	
FILE NO		3729.015				FALL: 30°			1 - 1 -
BORING			Parratt-Wo	olff, Inc.			LEGEND:	Grout Send Pack	== Screen
OBG GE		Glenn La	Paul Gottle	er				Pellets	
					j	·	STRATUM	FIE	LD TESTIN
DEPTH	İ	near.	BLOWS	DENIETR/	'N'	CAMBI E DECOURTION	CHANGE GENERAL	EQUIPMENT	HNu
BELOW GRADE		DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	1 ''	SAMPLE DESCRIPTION	DESCRIPT	INSTALLED	(ppm)
20	11	20-22	30-19-	2'/1.7'	39	Damp, as above (faceted, medium pebbles)			0
			20-14						1
21									ļ
			25. 27	A			1	20000 Dans	
22	12	22-24	28-27-	2'/1.8'	56	Moist, as above (gray precipitate in fractures)			0
23	-		29-21	 			}		
دع	-			 	 	·			
24	13	24-26	43-25-	1.4'/1.4'	25	Saturated, as above			0
			65/0.4'						
25							Į.		
26	14	26–28	70-	0.7'/0.7'	70	Damp/saturated, red-dark red diamicton, GRA-			0
27			50/0.2'		<u> </u>	VEL ~60%, coarse to fine, A-axis horizontal,			- 1
27				ļ	 	sand ~20%, coarse to fine, red and brown silt ~10%, red clay ~10% (FeO in fractures)	:		
28	15	28-30	48-	0.7'/0.7'	48	As above (Diamicton, massive, matrix supported)			٥
			50/0.21			, , , , , , , , , , , , , , , , , , , ,			
29									
30	16	30-32	20-47-	1.4'/1.1'	47	As above with increased proportion of clay			0
31			50/0.4		 	and silt and increasing black and green gravel		===	
21				 	 				Ì
32	17	32-34	50/0.3'	0.3'/0.3'	50	As above	İ	===	0
					l				İ
33									
					1				
34	18	34-36	31-54- 50/0.3'	1.3'/1'	54	As above			0
35			50/0.3	 	-			===	
36	19	36-38	44-17-	1.3'/1'	17	As above with increasing weathered red shale			0
			50/0.31						
37					-				
38	20	38-40	50/0.2	0.2'/0.2'	50	As above		===	0
	20	30 40	30,0.2	0.2 /0.2					
39									
40	21	40-40.8	27-	0.81/	27	Weathered, green SANDSTONE to	40.3']	0
			70/0.3		-	Weathered, red SHALE	-		
41	-					Bottom of boring 40.8 ft.			
		3					•		


						TEST BORING LOG	REPORT OF		ING T	est W	ell #1
O'BRI	EN	& GERE	ENGINE	ERS, INC.	- · · · · · · · · · · · · · · · · · · ·		PAGE 1 OF 1	l			
LIENT:	:	Ampheno	ol Corporati	on		SAMPLER: Cuttings Analyses	LOCATION:				
			Sidney, No			HAMMER:	START DATE				
Richard		Hill Road 3729.015		Landfill Site		FALL:	END DATE:	12/	13/91		
		APANY:	Parratt-W	olff, Inc.		PALL	LEGEND:	Τ	Grout		= Scree
		Glenn La		,					Sand P		Riser
OBG GE	OLO	GIST:	Paul Gottle	er	<u> </u>				Pellets		
DEPTH							STRATUM		UIPMEN TALLEC		TESTIN
BELOW	ļ	DEPTH	BLOWS	PENETR	-N-	SAMPLE DESCRIPTION	GENERAL			PID	HEAD
GRADE	1	(FEET)	16"	RECOVERY	VALUE		DESCRIPT	$oldsymbol{\perp}$	<u> </u>		SPAC
0	1	0-13		ļ		Dry, brown-gray coarse to fine, subround GRA-					
				 		VEL with sand and silt and little clay, facets and striations common					
1			<u> </u>	+		and striations common					
2				-		-					}
3											
4				<u> </u>							
5							1				
6				+					===		
7											-
				ļ							l
8				-							ŀ
9											ł
10							1				
									===		
11											
12				 			i				
13	2	13-15				Saturated, brown GRAVEL with silt and clay,					
						some sand					
14				-			1				
15						SUM SUM SUM SUM SUM SUM SUM SUM SUM SUM	-	-	=== :	4	
15						Dry, red-brown SHALE bedrock	1				
16				-		1					
				 							
17											
18											
19						1					
17						1					
20			<u> </u>				1				
			·	4		<u> </u>	<u></u>				

O'BRI	EN	& GERE	ENGINE	ERS, INC.		TEST BORING LOG	PAGE 1 OF		NG	Tes	st We	ill #2
CLIENT: Amphenol Corporation						SAMPLER: Cuttings Analyses	LOCATION: W side of Richardson Hill Rd.					
			Sidney, Ne Municipal I	ew York Landfill Site		HAMMER:	START DATE		8/91 9/91			
FILE NO		3729.015				FALL:		.,				
		PANY:	Parratt-We	oiff, Inc.			LEGEND:	****	Grou			Scree
DBG GE		Glenn La	nsing Paul Gottle	ar				2000	Sand Pelle		* ∟	Riser
DBG GE	T T		1 20. 00	<u> </u>	<u> </u>		STRATUM	EQ			FIELD	TESTIA
DEPTH	İ						CHANGE	INS	TALL	ED		
BELOW		DEPTH	BLOWS	PENETR	"N"	SAMPLE DESCRIPTION	GENERAL				PID	HEAL
GRADE	_	(FEET)	/6"	RECOVERY	VALUE	B. Hababaan OBANEL side	DESCRIPT	+-		\vdash		SPAC
0	1	0-14				Dry, light brown GRAVEL with coarse to fine						j
	-			-		sand, little silt, trace clay		-				
1				 				Ì				
2				 	<u> </u>	-						
				 	 		ŀ	1				1
3												
				 		·	-					
4				 	<u> </u>							
<u>`</u>												1
5				<u> </u>				1				
								1				
6		_		 				1				
		_		1								
7												
8												
9												
10												
						·						
11				 	<u></u>							
- 12						 		350,503		65.00		
12				 								
13				<u> </u>								
1.0				 								
14	2	14-31		 		Damp to moist GRAVEL with silt, sand and clay						1
	-					The state of the s						
15				1		1						
				†		1						
16			<u>,</u>	†		1						
						1						
17												
								1				
18									===			
19												
				1	I		1	1883				1

O'BRIEN & GERE ENGINEERS, INC.						TEST BORING LOG	REPORT OF BORING Test Well #2 PAGE 2 OF 2				
PROJECT LOCATION: Sidney, New York Richardson Hill Road Municipal Landfill Site						SAMPLER: Cuttings Analyses HAMMER: FALL:	LOCATION: W side of Richardson Hill Rd. START DATE: 12/18/91 END DATE: 12/19/91				
BORING FOREMA OBG GE	AN:	Glenn La	Parratt-Winsing Paul Gottle				LEGEND:	Grout Screet Sand Pack Riser Pellets			
DEPTH BELOW GRADE		DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	"N" VALUE	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL DESCRIPT	FIELD TESTIN EQUIPMENT PID HEAD INSTALLED SPAC			
20											
21											
22											
23											
24											
25											
26											
27								===			
28						·					
29				ļ				===			
30											
31	3	31-34			_	Moist, brown-red brown GRAVEL with silt, sand		===			
32						and clay					
32											
33											
34						BEDROCK	_				
35				-		Brown-red brown SHALE					
36				 							
37											
38											
39											
40		<u> </u>	L	1	L		<u> </u>				

O'BRIEN & GERE ENGINEERS, INC.					*	TEST BORING LOG	REPORT OF BORING Test Well #3 PAGE 1 OF 1					
CLIENT: Amphenol Corporation						SAMPLER: Cuttings Analyses	LOCATION:					
PROJECT LOCATION: Sidney, New York						HAMMER:	START DATE	E: 12	/19/91			
				andfill Site			END DATE:	12	20/91			
FILE NO		3729.015	Parratt-Wo	olff. Inc.		FALL:	LEGEND:	<u> </u>	Grou	nt	1	Screen
		Glenn La		,					Sand	l Pack	<u> </u>	Riser
OBG GE	OLO	GIST:	Paul Gottle	er			STRATUM	FC	Pelie		IEI D	TESTING
DEPTH							CHANGE	- 1	STALL			
BELOW GRADE	NO	DEPTH (FEET)	BLOWS	PENETRY	"N"	SAMPLE DESCRIPTION	GENERAL DESCRIPT				PID	HEAD
0	1	0-5		11200 1211	VALUE	Dry, gray GRAVEL with sand, silt and clay	0.000.111	\top	1			
	Ĺ. <u></u>							5.0.0	en .			
1	-			 								
2				<u> </u>								
3		-										
4												!
						•						}
5	2	5-7	20-13-	2'/1.1'	27	Damp to moist GRAVEL with coarse to fine						}
6			14-12			sand, some silt, little clay, massive, matrix						
				 		supported diamicton			===			
7												
									===			
. 8						Boulder 8-9.5 ft.						
9		-										
												!
10	3	10-12	50/0.31	0.3'/0'		Boulder 10-11 ft.						
11												
								14.5				
12												
13	4	13-15	4-22-	1.4'/1.1'	22	Saturated, brown-gray, green and red, gravel			===			
		13 13	50/0.41	1.471.1		rich diamicton, massive, matrix supported,						
14						matrix sand rich with some silt, little cohesive						
15				<u> </u>		clay, some gray precipitate in fractures						
- 13												
16												
												1
17				-		1						
18				 	<u>.</u>	1						
19	5	19-20	50/0.4	0.4'/0.2'		Saturated, green SANDSTONE cobble						
20						1						
]						
21												
22			·	 								
		22.8	μ.			BEDROCK	-	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
,				,		4	1		••			i

APPENDIX D IN SITU HYDRAULIC CONDUCTIVITY TEST LOGS

SLUG

IN-SITU PERMEABILITY TEST FIELD LOG

PROJECT <u>Richardson Hill Road</u> Land Fill WELL NUMBER 11.1-45


DATE 12/19/90

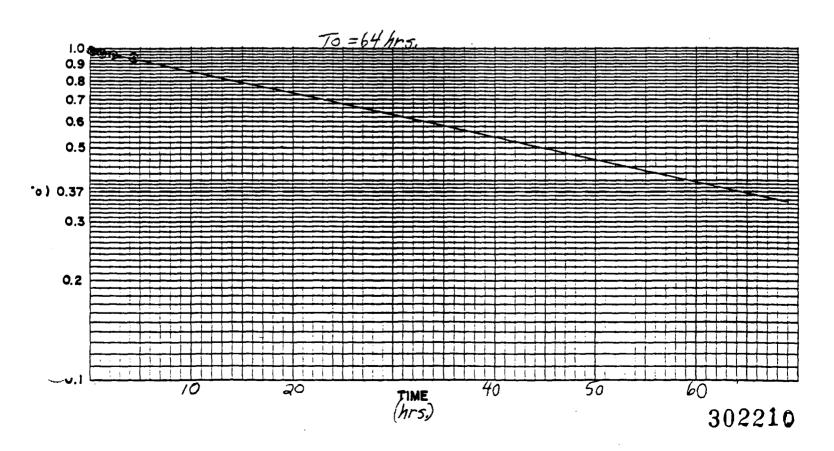
LOCATION Sidney, New York.
ELEVATION

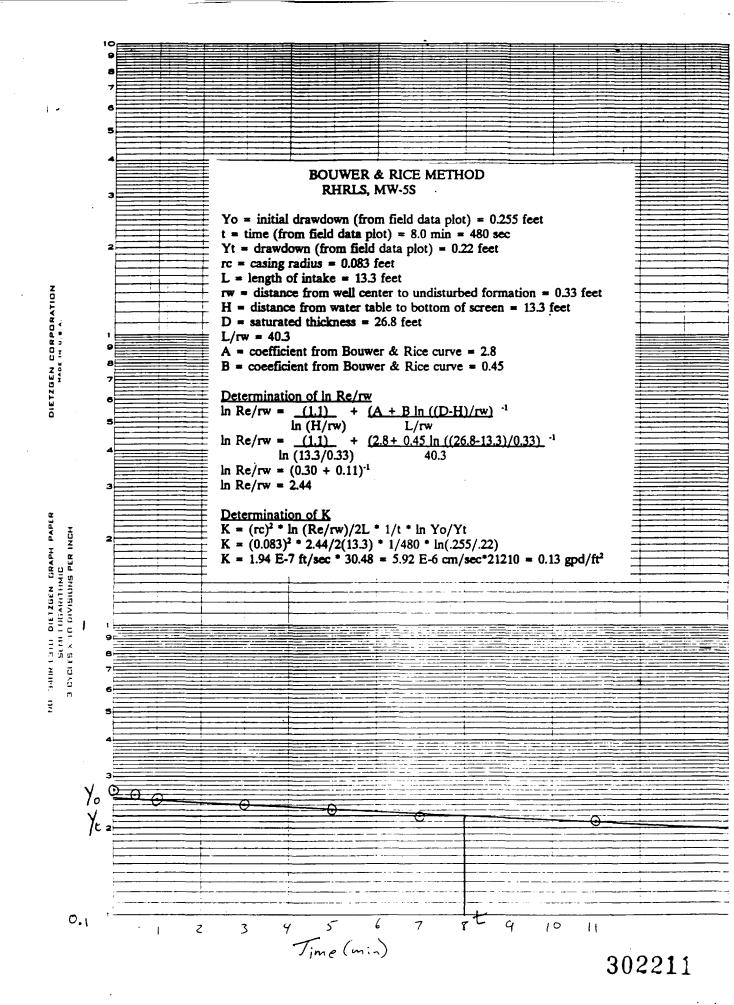
RECOVERY

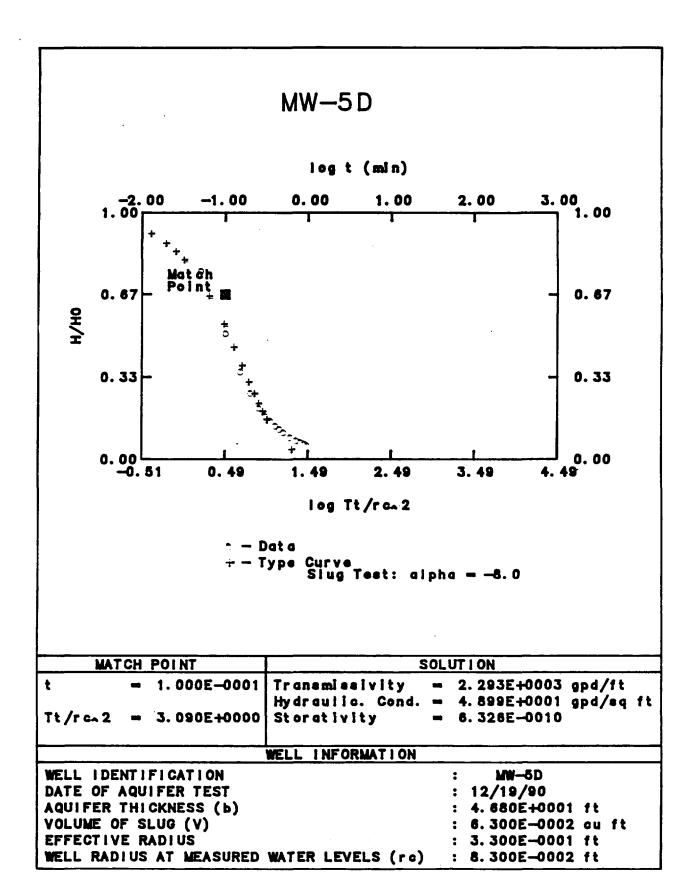
—→ }—-r		·
	STATIC HEAD (H)	15.92
- t= ∞	PIPE RADIUS (r)	0.033
	SCREEN RADIUS (R)	0,33
	SCREEN LENGTH (L)	16.3
H t=0	INITIAL HEAD (Ho)	17.71
I TOTAL T	HYDRAULIC CONDUCT	TVITY:
	$K=r^2 ln(L/R)$	
	2LTo	3 / `\

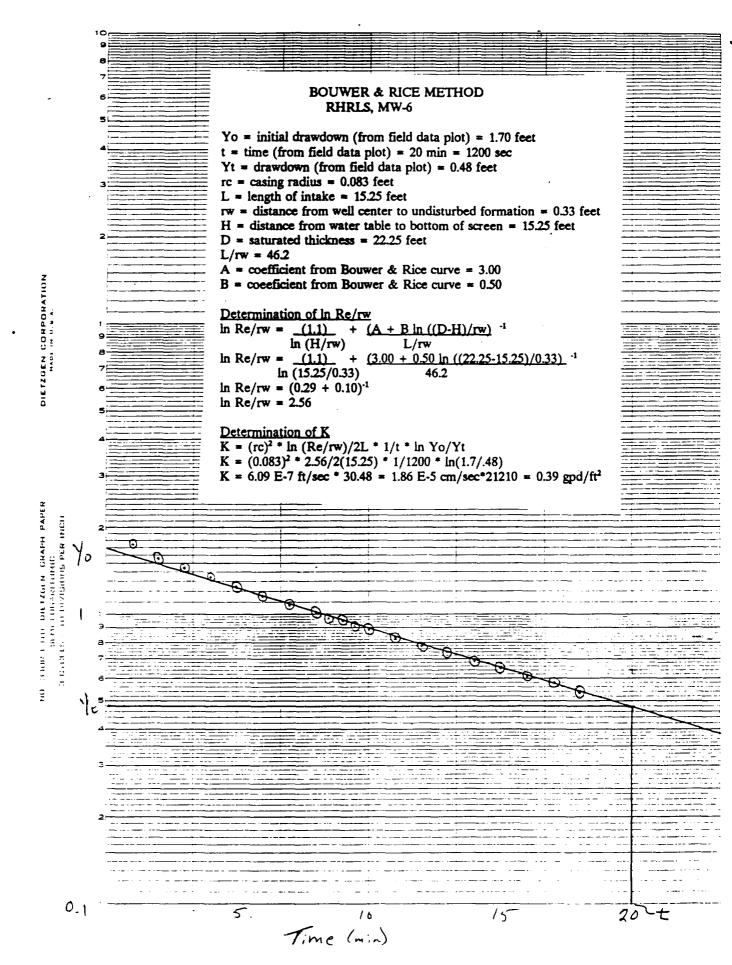
TIME	h	H-h H-Ho	h	H-h H-Ho
. 0			17.71	
0.55			17.17	0.70
2.1			16-31	0.50
2.15			16.56	0.3%
0.2			16.3R	2.26
2.25			10.27	0.20
2.3			16.19	0.15
0.25			16.14	5.12
2.4			16.07	0.18

IN-SITU PERMEABILITY TEST FIELD LOG


PROJÈCT: Richardson Hilli Rd. WELL NUMBER: MW-4D

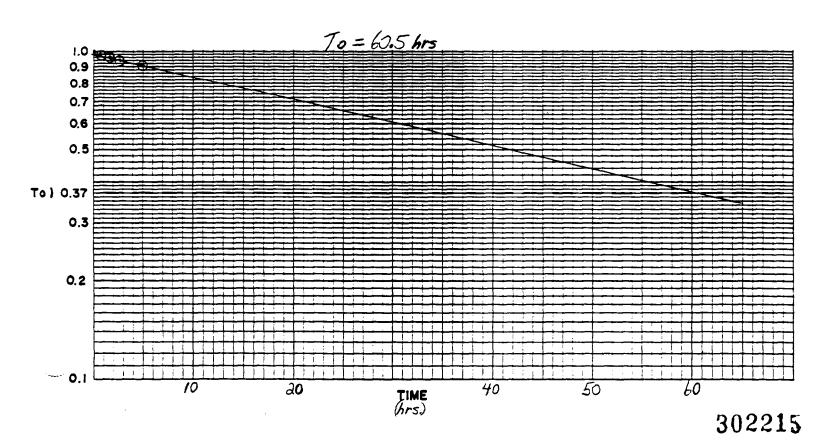

DATE: 6/2/92

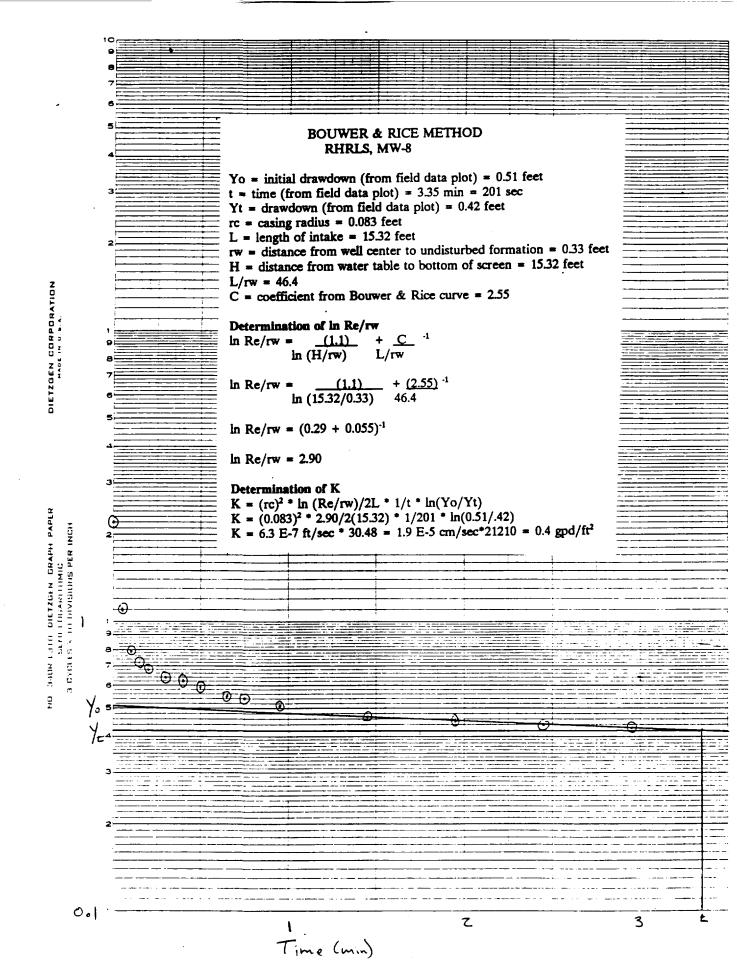

EVACUATION METHOD: Bailer PERSONNEL: Moore/Loretto


DATUM USED FOR CALCULATIONS: Top Of Stainless Steel

			TIME	Depth to	i	H-h
STATIC HEAD (H) =	6.12	ft	(min)	Water	h j	H-Ho
PIPE RADIUS (r) =	0.083	ft	1 1	8.19	8.19	0.99
••			1 2	8.19	8.19	0.99
SCREEN RADIUS (R)	0.5	ft	3	8.18	8.18	0.98
			5	8.18	8.18	0.98
SCREEN LENGTH (L)	18.0	ft	10	8.18	8.18	0.98
50,122,122,124,14			j 72	8.16	8.16	0.97
INITIAL HEAD (Ho)=	8.22	ft	134	8.13	8.13	0.96
100111121121211			274	8.09	8.09	0.94
To (from graph) =	3840	min	i	i i	1	
to (nom graph)	230400	Sec	· i	i 1	1	
			i	i	1	
			i	i	1	
			i	i i	i	
HYDRAULIC CONDUC	ידועודי		i	i	i	
HYDRAULIC CONDUC	,		1	1	i	
. A.O. I // 150			1	; . ;	i	
r^2 In(L/R)	0.05.00	41000	1] 1	i	
:	3.0E-09		•	1 1	1	
2LTo	9.1E-08	Cm/Sec	1	1,	1	

IN-SITU PERMEABILITY TEST FIELD LOG

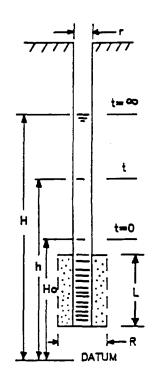

PROJECT: Richardson Hill Rd. WELL NUMBER: MW-7D


DATE: 6/2/92

EVACUATION METHOD: Bailer PERSONNEL: Moore/Loretto

DATUM USED FOR CALCULATIONS: Top Of Stainless Steel

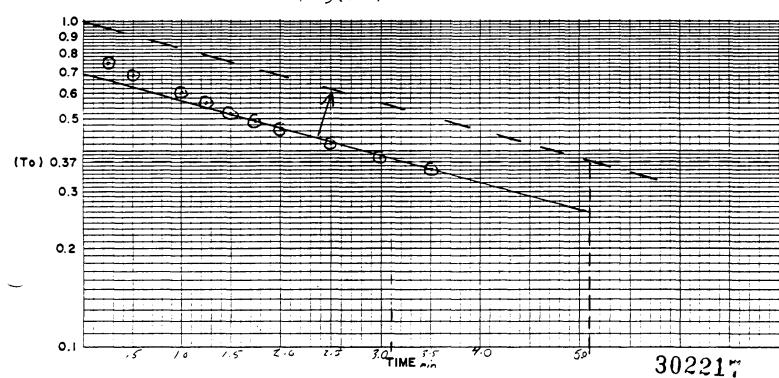
				TIME	Depth to		H-h
	STATIC HEAD (H) =	8.42	ft	(min)) Water) h	H-Ho
	PIPE RADIUS (r) =	0.083	ft	1	12.57	12.57	0.99
				3.25	12.55	12.55	0.99
	SCREEN RADIUS (R)	0.5	tt	4	1 12.55	12.55	0.99
		•		5	12.55	12.55	0.99
	SCREEN LENGTH (L)	17.7	tt	1 10	12.52	12.52	0.98
	••••••			96	12.42	12.42	0.96
	INITIAL HEAD (Ho)=	12.6	ft	159	12.36	[12.36 [0.94
		_		301	12.24	12.24	0.91
	To (from graph) =	3630	min	i	i	1	
	10 (ii otti gi apii)	217800		i	İ	i i	
				i	·	i	
				į	i	i t	
				i	i	i i	
	HYDRAULIC CONDUC	TIV/ITV		1	ŀ	, . !	
	HYDRAULIC CONDUC	114111		1	1	, , , , , , , , , , , , , , , , , , ,	
				!	1	, , 1 1	
_	r^2 In(L/R)	2 25 00	4 /200	J t	1	, , (l	
=		3.2E-09		I	1	, ! , !	
	2LTo	9.7E-08	cm/sec	1	1	, t	

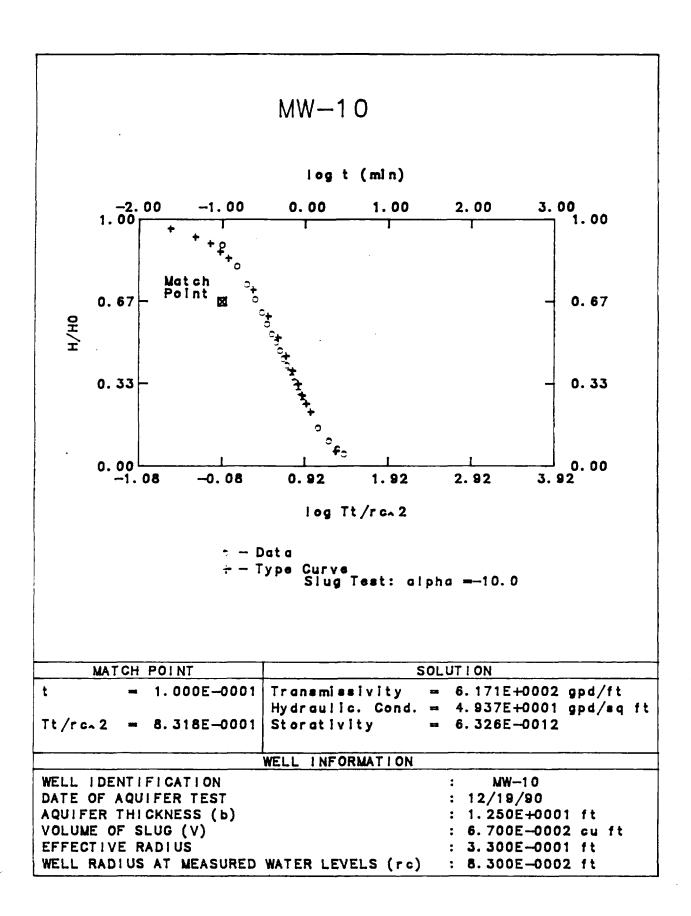


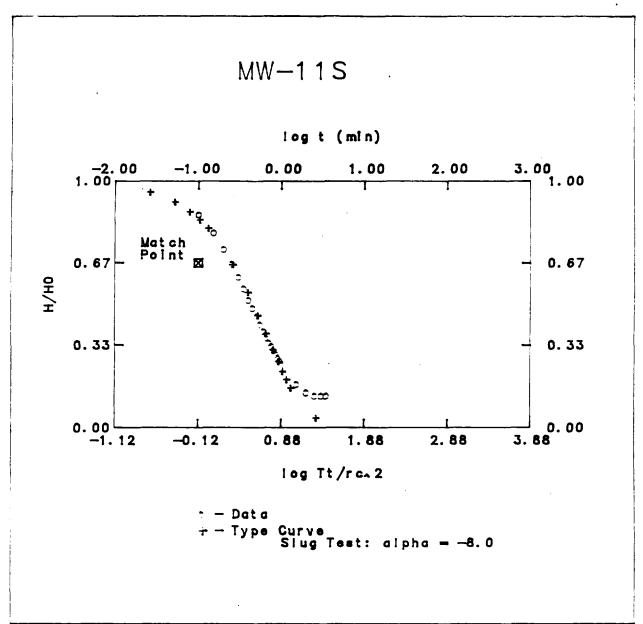
IN-SITU PERMEABILITY TEST FIELD LOG

PROJECT Richardon Hill Red Landfill WELL NUMBER MW-9 DATE

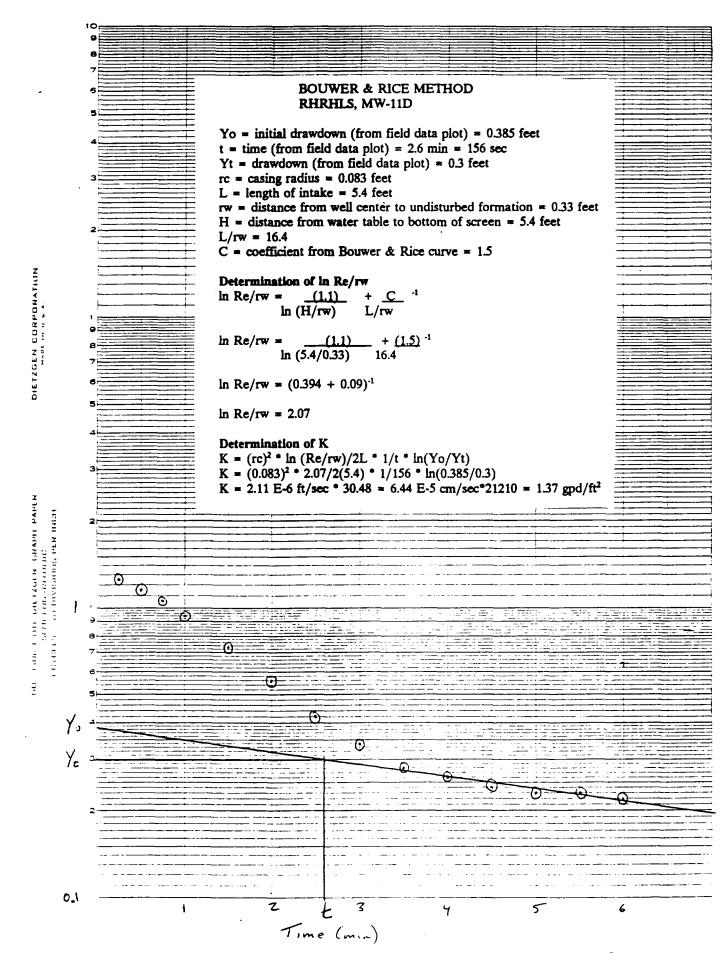
LOCATION Sidney, New York ELEVATION _


WATER

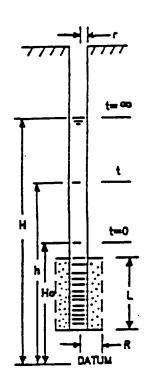



well Depth - 45.88 Static level - 21.51 STATIC HEAD (H) 2437 PIPE RADIUS (r) .083 SCREEN RADIUS (R) 33 SCREEN LENGTH (L) 5.0 INITIAL HEAD (Ho) 19.15 HYDRAULIC CONDUCTIVITY: $\frac{K=r^2ln(L/R)}{2LTo}$

				<u>n-n</u>
TIME	DEPTH	tain	h	H-Ho
10.27	2773	0	18.15	1,0
10:27:15	26.09	. 25	19.79	.74
10:27:30	25.76	,5	20.12	.68
10:28	25.22	1.0	20.66	,60
10:37:15	24.97	1.25	20.91	.56
10:18:30	24.76	1,5	21.12	.5Z
16:78:45		1.75	21.30	.49
10:59	24.41	2.0	21.47	.47
10-29:30	24.//	2.5	71.77	.42
10:30	23.88	3.0	22.00	.38
10:30:30	23.66	3.5	27.22	-35
10:31	23.49	4.0	22.39	.32
10:32	23.20	5.0	27.68	.27
10:33	22.98	6.0	27.90	-24
10:34	27.79	7. 🔿	23.69	,21


$$K = \frac{(.083)^4 \ln (5.0/.33)}{2(5.0)(306)}$$

MATCH POINT			SOLUTION			
t	=	1.000E-0001			5.628E+0002 gpd/ft 2.278E+0001 gpd/sq ft	
Tt/rc.2	=	7.586E-0001	Storativity	=	6.326E-0010	
			WELL INFORMATION			
WELL IDE	NT I	FICATION			: MW-11S	
DATE OF AQUIFER TEST					: 12/19/90	
AQUIFER THICKNESS (b)					: 2.471E+0001 ft	
VOLUME OF SLUG (V)					: 9.100E-0002 cu ft	
EFFECTIVE RADIUS					: 3.300E-0001 ft	
WELL RADIUS AT MEASURED			WATER LEVELS (rc)	+	: 8.300E-0002 ft	



IN-SITU PERMEABILITY TEST FIELD LOG

PROJECT Richard Hill Road Landfill WELL NUMBER NW-12. DATE

LOCATION Sidmy N.Y.

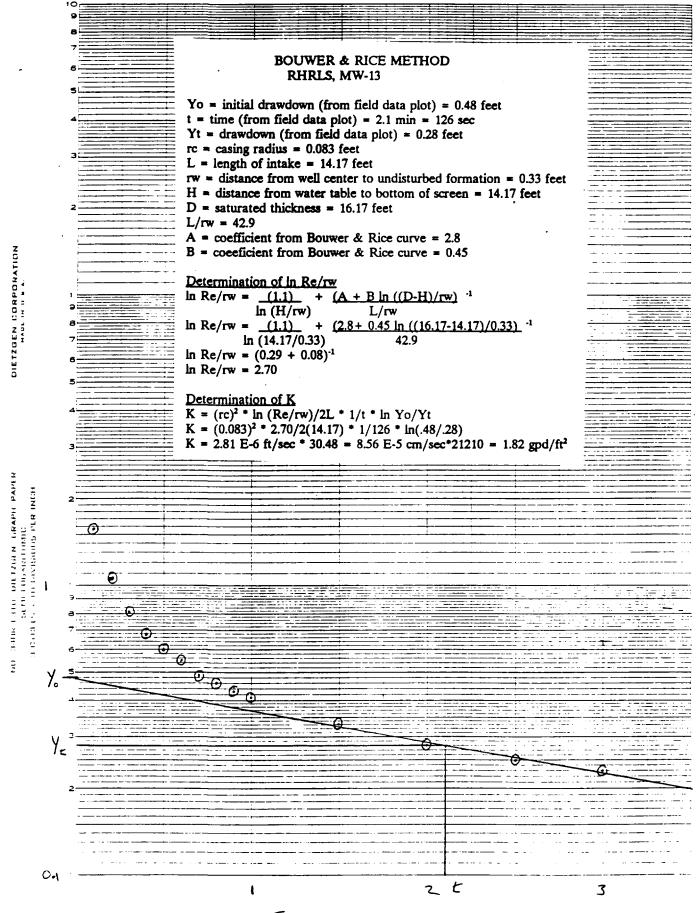
STATIC HEAD (H) $\frac{5.69}{}$

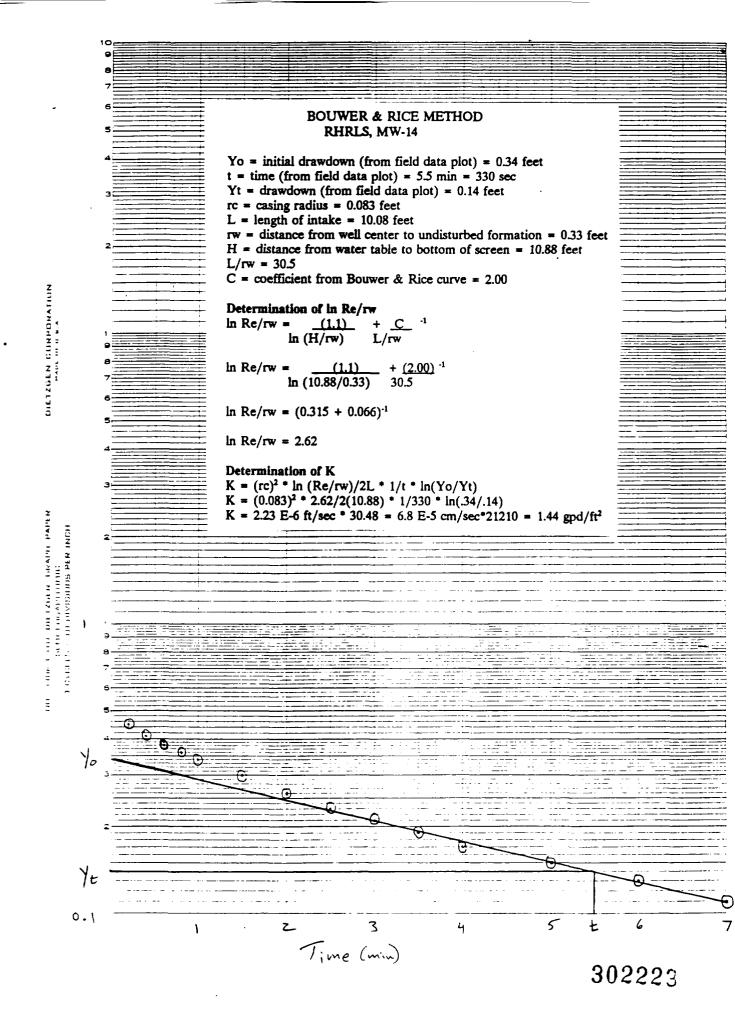
PIPE RADIUS (r) 0.0%3

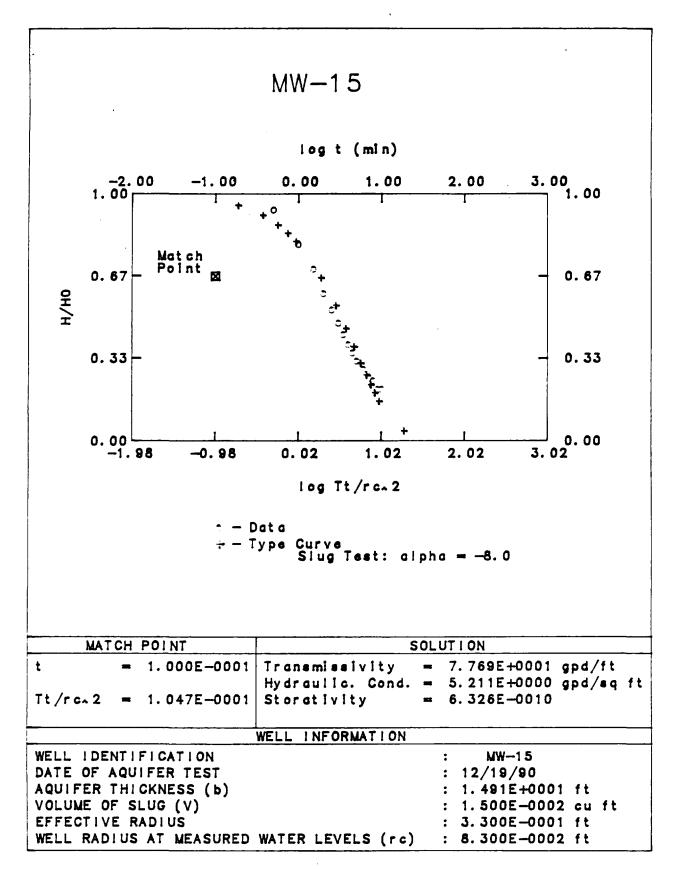
SCREEN RADIUS (R) 0.23

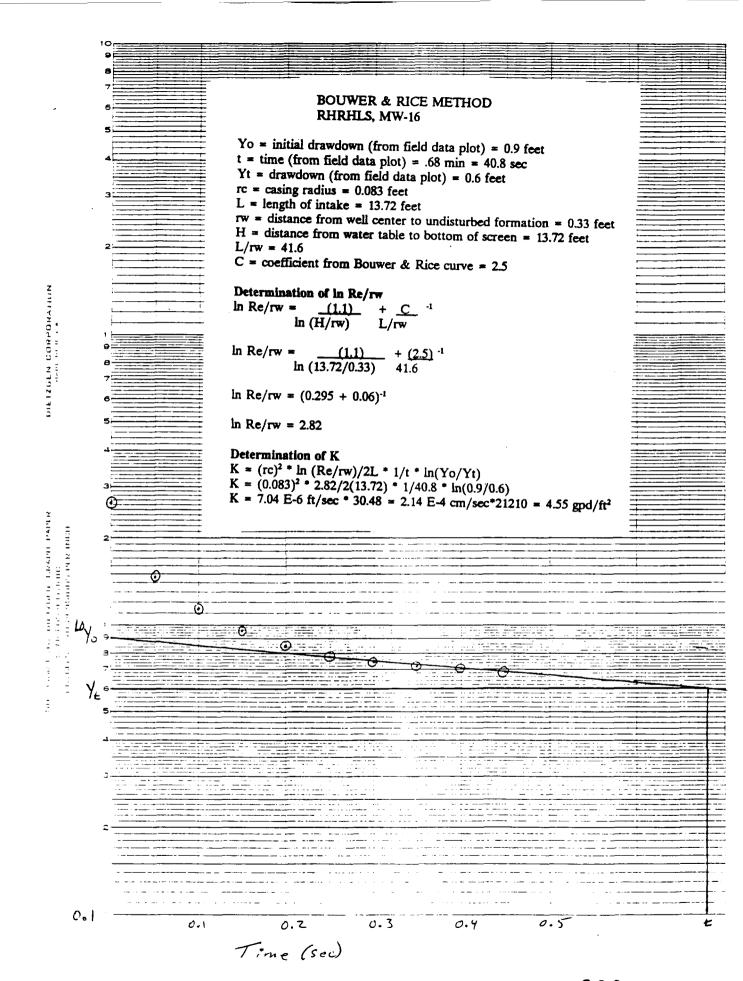
SCREEN LENGTH (L) 5.5

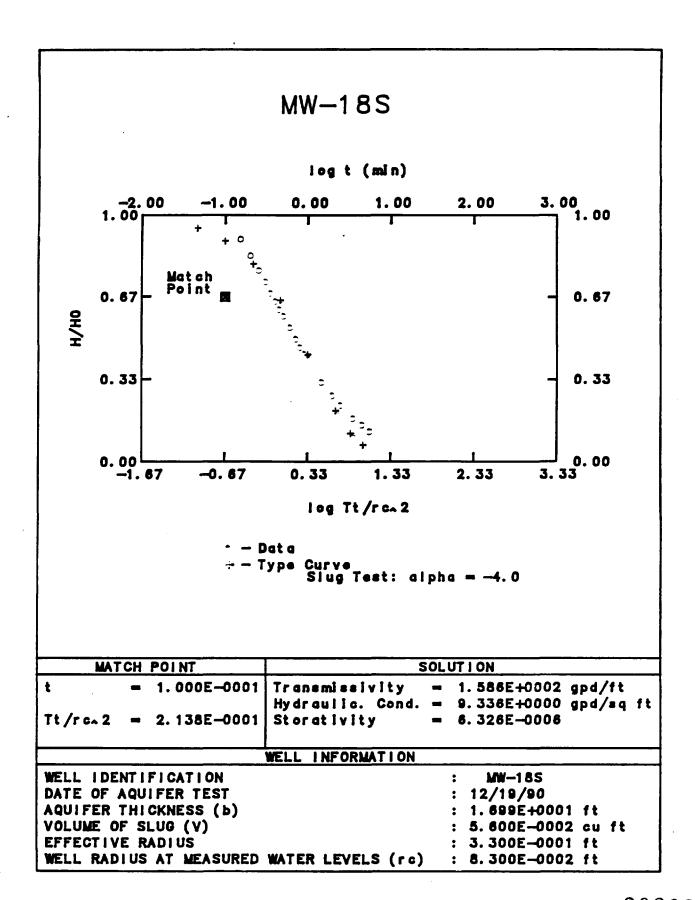
INITIAL HEAD (Ho)

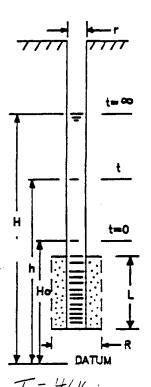

HYDRAULIC CONDUCTIVITY:


 $\frac{K=r^2in(L/R)}{2LTo}$


K= (0.083) / 1 (5.5/0.23) = 2.5 x.10 7 t/sec = 7.62 x 10 cm/sec


TIME h H-h h H-h 0 9.75 1 0.05 9.73 2.3	
0.05 9.73 9.3	
	7
0.2 9.70 0.9	9
0.4 9.62 0.9	8
0.55 9,64 0.9	7
0.7 9.53 0.7	7
1,4 9.57 0.9	,
3.4 7,49 0.7	1
6.4 7,47 3,9	0
9.4 9.39 9.7	
17.9 7.04 0.8	7
18.9 9.23 0.8	7


(0.2 god/fez) To=117.5 min 0.8 0.7 0.6 0.5 To) 0.37 0.3 2



IN-SITU PERMEABILITY TEST FIELD LOG

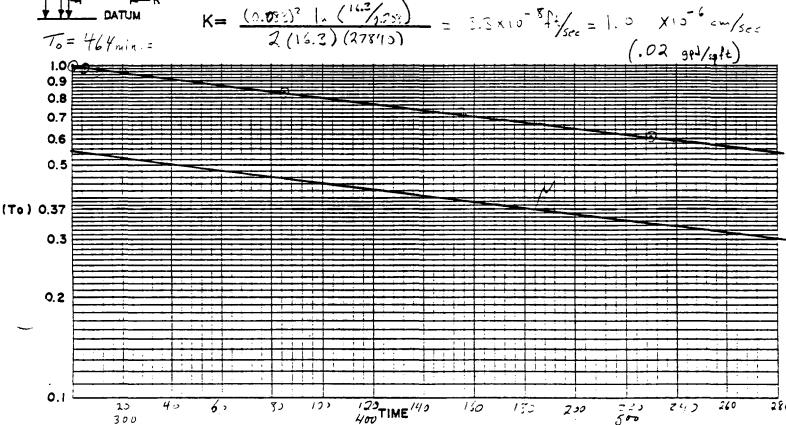
PROJECT Richardson Hill Road Landfill 11-6-90 DATE

Well Depth - 51.99 static level - 17.11

STATIC HEAD (H) 34.88

PIPE RADIUS (r) .083

SCREEN RADIUS (R) . Z08


SCREEN LENGTH (L) 16.3

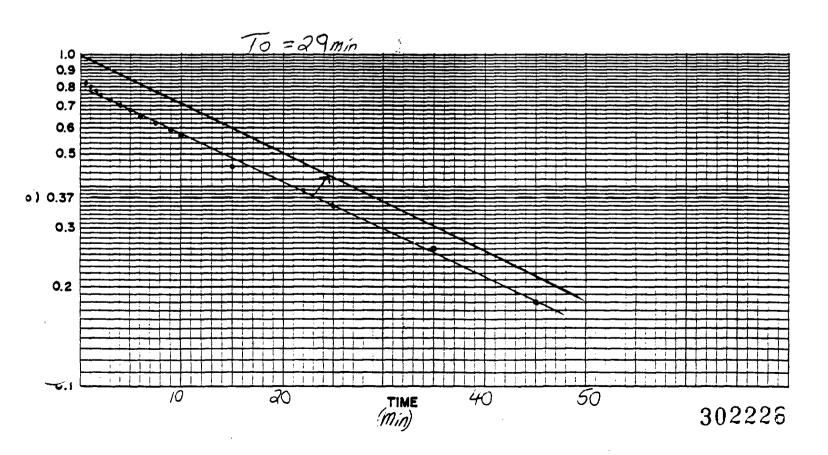
INITIAL HEAD (Ho) 14.28

HYDRAULIC CONDUCTIVITY:

 $\frac{K=r^2ln(L/R)}{2LTo}$

	WATER		•	H-h
TIME	DEPTH	trio	h	HHo
1135	37.7/	0	14.28	
11:36	37.56	1	14.43	0.99
11:37	37.40	ζ	14.59	0.98
11:38	37 34		14.65	9,98
11:39	37.27	4	14.72	9.73
11:40	37.21	3	14.78	2.98
11:45	36.17	10	15.02	0.93
11:55	36.61	20	15.38	5,95
13:00	34.32	85	17.67	0.84
14:10	31.78	155	20.21	2.71
15:15	29.69	230	22.30	9.51

IN-SITU PERMEABILITY TEST FIELD LOG


PROJECT: Richardson Hill Rd. WELL NUMBER: MW-19

DATE: 6/2/92

EVACUATION METHOD: Bailer PERSONNEL: Moore/Loretto

DATUM USED FOR CALCULATIONS: Top Of Stainless Steel

				ITIME	Depth to	į l	H-h
	STATIC HEAD (H) =	23.02	ft	(min)	Water	h	H-Ho
	PIPE RADIUS (r) =	0.083	ft	0.5	26.04	26.04	0.82
				1 1	25.95	25.95	0.80
	SCREEN RADIUS (R)	0.667	ft	1.5	25.88	25.88	0.78
				1 2	25.82	25.82	0.76
	SCREEN LENGTH (L)	17.7	ft	3	25.71	25.71	0.73
				1 4	25.61	25.61	0.70
	INITIAL HEAD (Ho)=	26.7	ft	5	25.51	25.51	0.68
				(6	25.43	25.43	0.65
	To (from graph) =	29	min	7.5	25.31	25.31	0.62
		1740	SOC	. 8	25.26	25.26	0.61
				9	25.19	25.19	0.59
				1 10	25.11	25.11	0.57
				15	24.73	24.73	0.46
	HYDRAULIC CONDUCT	ΠνπΥ		22	24.45	24.45	0.39
				25	24.31	24.31	0.35
	r^2 In(L/R)			35	23.97	23.97	0.26
K=		3.7E-07	ft/sec	45	23.69	23.69	0.18
-	2LTo	1.1E-05	cm/sec	i i	1	}	Į.

APPENDIX E GROUND WATER SAMPLING LOGS

Samp	le Location Amphenol-RHRLS (South Section), Well No. MW1
Samp	led by W. J. Gebriel + J. A. Moore Date 11/18/08 Time 11:33
Weat	her Sunny, 40'-50' Sampled with Bailer 55 Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) 23 40 ft. (top of casing) ft.
· •	Depth to water table: Water table elevation: ft. (below top of casing) /7.25 ft.
	Length of water column (LWC) ft. /
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{1.00}{0.00}$ gallons = 0.653 X (LWC) = $\frac{1.00}{0.00}$ gallons = 0.653 X (LWC) = $\frac{1.00}{0.00}$ gallons = 0.653 X (LWC) = $\frac{1.00}{0.00}$
В.	PHYSICAL APPEARANCE AT START:
	Color Mel Brown Odor Strong Strol Turbidity mod
	Was an oil film or layer apparent? us
C.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling 6gallons.
	· · · · · · · · · · · · · · · · · · ·
D.	Did well go dry? PHYSICAL APPEARANCE DURING SAMPLING:
D.	PHYSICAL APPEARANCE DURING SAMPLING:
D.	PHYSICAL APPEARANCE DURING SAMPLING:
D. ε.	PHYSICAL APPEARANCE DURING SAMPLING:
	PHYSICAL APPEARANCE DURING SAMPLING: Color of brown clouds Odor strong - critics. Turbidity med Was an oil film or layer apparent?
ε.	PHYSICAL APPEARANCE DURING SAMPLING: Color of hames clouds Odor strong - f. to. Turbidity mod Was an oil film or layer apparent? CONCUCTIVITY Houmhos
ε. F.	PHYSICAL APPEARANCE DURING SAMPLING: Color of bange clouds Odor strong - fitte. Turbidity med Was an oil film or layer apparent? CONCUCTIVITY Houmbos ph 6.8
E. F.	PHYSICAL APPEARANCE DURING SAMPLING: Color (t house clouds Odor strong - p. to Turbidity mod Was an oil film or layer apparent? CONCUCTIVITY Houmbos PH 6.8 TEMPERATURE 9°C
E. F.	PHYSICAL APPEARANCE DURING SAMPLING: Color (t house clouds Odor strong - p. to Turbidity mod Was an oil film or layer apparent? CONCUCTIVITY Houmbos PH 6.8 TEMPERATURE 9°C
E. F.	PHYSICAL APPEARANCE DURING SAMPLING: Color (t house clouds Odor strong - p. to Turbidity mod Was an oil film or layer apparent? CONCUCTIVITY Houmbos PH 6.8 TEMPERATURE 9°C
E. F.	PHYSICAL APPEARANCE DURING SAMPLING: Color (t house clouds Odor strong - p. to Turbidity mod Was an oil film or layer apparent? CONCUCTIVITY Houmbos PH 6.8 TEMPERATURE 9°C
E. F.	PHYSICAL APPEARANCE DURING SAMPLING: Color (t house clouds Odor strong - p. to Turbidity mod Was an oil film or layer apparent? CONCUCTIVITY Houmbos PH 6.8 TEMPERATURE 9°C
E. F.	PHYSICAL APPEARANCE DURING SAMPLING: Color (t house clouds Odor strong - p. to Turbidity mod Was an oil film or layer apparent? CONCUCTIVITY Houmbos PH 6.8 TEMPERATURE 9°C

Samp	le Location Amphenol-RHELS (South Section) Well No. M1/2
Samp	led By J. Mirre + W. J. Ga Loe Date 11/17/81 Time 16:15
	her Overcast dusk 35-45° Sampled with Bailer 55 Pump
A.	WATER TABLE:
	Well depth: (below top of casing) 30.71 ft. Well elevation: (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 15:34 ft.
	Length of water column (LWC)ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{2.51}{}$ gallons = $\frac{3.51}{}$ gallons = $\frac{3.51}{}$ gallons = $\frac{3.51}{}$ gallons = $\frac{3.51}{}$ gallons = $\frac{3.51}{}$ gallons = $\frac{3.51}{}$
В.	PHYSICAL APPEARANCE AT START:
	Color Brown Odor Yes Turbidity Slight to Mad
	Was an oil film or layer apparent? <u>Yes</u>
C.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling $\ensuremath{\mathscr{E}}$ gallons.
	Did well go dry? 4es
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Cloudy Odor Strong - petrol Turbidity low Was an oil film or layer apparent? Strate is mod.
	Was an oil film or layer apparent? slight is mod.
Ε.	CONDUCTIVITY 50 ymhis
F.	рн <u>6.9</u>
G.	TEMPERATURE 8° C 302231
н.	WELL SAMPLING NOTES:
•••	

Length of water column (LWC) 17.34 ft. Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 2.8 gallons 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons B. PHYSICAL APPEARANCE AT START: Color Clear Odor yes Turbidity slight Was an oil film or layer apparent? yes C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 25 gallons. Did well go dry? No D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Journ Odor Mone Turbidity Might— Was an oil film or layer apparent? No E. CONDUCTIVITY // Lymbos F. pH 68 G. TEMPERATURE 9'c		her Clouds 45-50'K Sampled with Bailer Pump cose Con
(below top of casing) 19.5 ft. (top of casing) f Depth to water table: Water table elevation: f (below top of casing) 2.16 ft. Length of water column (LWC) 17.34 ft. Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 2.8 gallons 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons B. PHYSICAL APPEARANCE AT START: Color Clear Odor yes Turbidity slight Was an oil film or layer apparent? yes C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 25 gallons. Did well go dry? No D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Loren Odor More Turbidity Light Was an oil film or layer apparent? No E. CONDUCTIVITY 16 umhos F. ph 6.8 G. TEMPERATURE 9'C	Α.	WATER TABLE:
Depth to water table: (below top of casing) 2.16 ft. Length of water column (LWC) 17.34 ft. Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 2.8 gallons 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons B. PHYSICAL APPEARANCE AT START: Color Clear Odor yes Turbidity slight Was an oil film or layer apparent? yes C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 25 gallons. Did well go dry? No D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Joseph Odor Mone Turbidity Mas an oil film or layer apparent? No E. CONDUCTIVITY 16 umhos F. ph 6.8 G. TEMPERATURE 9'C		Well depth: Well elevation: (below top of casing) ft. (top of casing) ft.
Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 2.8 gallons 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons B. PHYSICAL APPEARANCE AT START: Color Clear Odor yes Turbidity slight Was an oil film or layer apparent? yes C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 25 gallons. Did well go dry? No D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Loam Odor Mone Turbidity Mas an oil film or layer apparent? No E. CONDUCTIVITY /6 umbos F. pH 6.8 G. TEMPERATURE 9'C	-	Depth to water table: Water table elevation: ft. (below top of casing) 2.16 ft.
2" diameter wells = 0.163 x (LWC) = 2.8 gallons 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons 8. PHYSICAL APPEARANCE AT START: Color Clear Odor yes Turbidity slight Was an oil film or layer apparent? yes C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 25 gallons. Did well go dry? No D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Loam Odor Mone Turbidity Mas an oil film or layer apparent? No E. CONDUCTIVITY /6 umbos F. ph 68 G. TEMPERATURE 9'C		Length of water column (LWC) 17.34 ft.
B. PHYSICAL APPEARANCE AT START: Color Clear Odor yes Turbidity slight Was an oil film or layer apparent? yes C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 25 gallons. Did well go dry? No D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Lorn Odor Mone Turbidity Slight Was an oil film or layer apparent? No E. CONDUCTIVITY /6 umbos F. ph 68 G. TEMPERATURE 9'C		
Color Clear Odor yes Turbidity slight Was an oil film or layer apparent? yes C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 25 gallons. Did well go dry? No D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Soun Odor Mone Turbidity Slight- Was an oil film or layer apparent? No E. CONDUCTIVITY 16 µmhos F. ph 68 G. TEMPERATURE 9'C		2" diameter wells = 0.163 x (LWC) = $\frac{2.8}{4}$ gallons = $\frac{2.8}{6}$ diameter wells = 0.653 X (LWC) = $\frac{2.8}{6}$ gallons = $\frac{2.8}{6}$ gallons
Was an oil film or layer apparent?	В.	PHYSICAL APPEARANCE AT START:
Was an oil film or layer apparent?		Color <u>Clear</u> Odor <u>yes</u> Turbidity <u>slight</u>
C. PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling		Was an oil film or layer apparent? <u>yes</u>
Did well go dry?	С.	$\prime\prime$
D. PHYSICAL APPEARANCE DURING SAMPLING: Color At Lorn Odor Mone Turbidity Light- Was an oil film or layer apparent? No E. CONDUCTIVITY 16 μmhos F. pH 6.8 G. TEMPERATURE 9'C		Amount of water removed before sampling gallons.
Color At beam Odor Mone Turbidity Light. Was an oil film or layer apparent? No E. CONDUCTIVITY 16 Mmhos F. pH 63 G. TEMPERATURE 9'C		Did well go dry?
Was an oil film or layer apparent?	D.	PHYSICAL APPEARANCE DURING SAMPLING:
Was an oil film or layer apparent?		Color At bearn Odor Mone Turbidity Shift-my
F. pH 6.8 G. TEMPERATURE 9'C		Was an oil film or layer apparent?
G. TEMPERATURE 9'C	٤.	CONDUCTIVITY 16 mmhos
G. TEMPERATURE 9'C	F.	pH 6.8
	U .	
H. WELL SAMPLING NOTES: 3022	н.	WELL SAMPLING NOTES: 302233

Samp	ole Location Ampheno/-RHRLS (South Section) Well No. Mind old By W. Gibrul Date 11/16/18 Time 1200
Śamp	oled By W. J. Gehard Date 11/16/18 Time 12.00
Weat	ther Ormant, cloudy 45-500 Sampled with Bailer 55. Pump evac.
A.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) ft. (top of casing) ft.
•	Depth to water table: Water table elevation: ft. (below top of casing) 4.75 ft.
	Length of water column (LWC) 14.78 ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $2 + 4$ gallons = 4" diameter wells = 0.653 X (LWC) = $2 + 4$ gallons = $2 + 4$ gallons = $2 + 4$ gallons = $2 + 4$ gallons = $2 + 4$ gallons
В.	PHYSICAL APPEARANCE AT START:
	Color <u>Rellud Brown</u> Odor No Turbidity 5 oht
	Was an oil film or layer apparent?
C.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling 25 gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color It brown Odor None Turbidity Live at tomes
	Was an oil film or layer apparent? No
Ε.	CONDUCTIVITY 3 umbes
F.	pH
6.	TEMPERATURE9°C
Ħ.	WELL SAMPLING NOTES: 30223;
• •	30223

Samp	le Location Amphenal-RHRIS (South-Section) Well No. MWSS.
\$amp	led Ey 4.9 Haber - J.A. More Date 11/16/89 Time 15:55
	her Cloudy, windy 45-50 = Sampled with Bailer 55 Pump (centri)
·	
A.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) ft. (top of casing) ft.
•	Depth to water table: Water table elevation: ft. (below top of casing) 48 ft.
	Length of water column (LWC) 142 ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{2.37}{}$ gallons = 4" diameter wells = 0.653 X (LWC) = $\frac{2.37}{}$ gallons = 6" diameter wells = 1.469 X (LWC) = $\frac{2.37}{}$ gallons
В.	PHYSICAL APPEARANCE AT START:
	Color Brown Odor No Turbidity Mod.
	Was an oil film or layer apparent? <u>Yes</u>
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry? <u>Yes</u>
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	color Redding-brown Odor module (petrol) urbidity mod-ligh
	Was an oil film or layer apparent? Slight
Ε.	CONCUCTIVITY 34 4 sorbes
F.	pH <u>6.8</u>
G.	TEMPERATURE 9°E
н.	WELL SAMPLING NOTES: 302234

Samp	ole Location <u>Amphenol-RHELS</u> (South Sec	din)	Well !	No. MW5d(Bodies
Samp	pled By W 7 Gabriel Da	ite 11/16	/K T	Ime _15 15
Weat	ther Marks wish, 45-50's Sa	umpled wit	th Bailer	SS Pump Pente
Α.	WATER TABLE:			•
-	Well depth: (below top of casing) <u>5.30</u> ft.	We (t	ell elevat top of cas	ion: ing) ft.
	Depth to water table: (below top of casing) 4.65 ft.			
	Length of water column (LWC) 48.3			
	Volume of water in well:	·		
	2" diameter wells = 0.163 x 4" diameter wells = 0.653 X 6" diameter wells = 1.469 X	(LWC) = (LWC) = [7.8	gallons - gallons . gallons
В.	PHYSICAL APPEARANCE AT START:			
	Color Char Odor N	0	Turbi	dity No
	Was an oil film or layer apparent?	<u> </u>	es	
C.	PREPARATION OF WELL FOR SAMPLING:			
	Amount of water removed before sampling	ng3	35	gallons.
	Did well go dry?			
D.	PHYSICAL APPEARANCE DURING SAMPLING:			
	Color Mes sligtth lador 11m		Turbid	ity La-non
	Was an oil film or layer apparent?	. ! ;		
Ε.	CONDUCTIVITY 114 mhos			
F.	pH			
G.	TEMPERATURE 92			
	WELL SAMPLING NOTES:			302235
н.	WELL SAMPLING NOTES:			
				
٠.				

Samp	le Location Amphenol-RHELS (South-Sortin) Well No. MUG
	led By W.J Gabriel + J. A. Move Date 11/17/88 Time 14:00
	ther Partly Cloudy - 35-45° Sampled with Bailer 55 Pump evac
Α.	WATER TABLE:
۸.	
	Well depth: (below top of casing) 20.0 ft. (top of casing)ft.
· •	Depth to water table: Water table elevation: ft. (below top of casing) 594 ft.
	Length of water column (LWC) 14.06 ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{2.29}{}$ gallons = $\frac{2.29}{}$ gallons = $\frac{2.29}{}$ gallons = $\frac{2.29}{}$ gallons = $\frac{2.29}{}$ gallons = $\frac{2.29}{}$ gallons = $\frac{2.29}{}$
В.	PHYSICAL APPEARANCE AT START:
	Color Brown Odor 4es Turbidity Slight
	Was an oil film or layer apparent? 4es.
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling /2 gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING: Color <u>filled Linix</u> Odor <u>Mrd-pettid</u> . Turbidity <u>High</u> Was an oil film or layer apparent? <u>Yes</u>
Ε.	CONDUCTIVITY 30 MA
F.	рн6 9
G.	TEMPERATURE 8°C
	302236
Н.	WELL SAMPLING NOTES:
	pumped - 12 callons would not clear up.
	project - 12 gallons would net clear up.

Samp	le Location Amphenol-24215 Well No. Mult
Samp	led By 1/16/88 Time 16:30
Weat	led By William Date 11/16/88 Time 16 30 ther Cloudy windy 45-50' Sampled with Bailer 55. Pump evac
A.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) /9 o ft. (top of casing) ft.
-	Depth to water table: Water table elevation:ft.
	Length of water column (LWC) 13.91 ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{2/4}{}$ gallons = 0.653 X (LWC) = $\frac{2/4}{}$ gallons = 0.653 X (LWC) = $\frac{2/4}{}$ gallons = 0.653 X (LWC) = $\frac{2/4}{}$ gallons = 0.653 X (LWC) = $\frac{2/4}{}$
В.	PHYSICAL APPEARANCE AT START:
	Color Brown Odor No Turbidity 5/154f
	Was an oil film or layer apparent?
٥.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry?
٥.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color frank brown Odor slight Turbidity moderate
	Was an oil film or layer apparent? slight
Ε.	CONDUCTIVITY 21 MAN
f.	pH 7.6
G.	TEMPERATURE 9°C
н.	WELL SAMPLING NOTES:

Samp	le Location Amphenol-RIRES (North Section) Well No. Mule
Samp	led By w. Ababil + A More Date 11/18/88 Time 10.30
Weat	her Party Cloudy, cool, 35-45' Sampled with Bailer 55 Pump evac.
A.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) 23.0 ft. (top of casing) ft.
•	Depth to water table: Water table elevation: ft. (below top of casing) 10.44 ft.
	Length of water column (LWC) 12.56 ft.
	Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 2.04 gallons - 4" diameter wells = 0.653 X (LWC) = gallons - gallons
В.	PHYSICAL APPEARANCE AT START:
	Color <u>Clear to Cloudy</u> Odor <u>No</u> Turbidity <u>Slight</u>
	Was an oil film or layer apparent?
C.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling
D.	PHYSICAL APPEARANCE DURING SAMPLING: Color Class to cloudy Odor None Turbidity None # slight Was an oil film or Payer apparent? No
٤.	CONDUCTIVITY 542
F.	pH
6.	TEMPERATURE 9'C
н.	WELL SAMPLING NOTES: 302238

Samp	le Location Amphenol-RHRLK (North Section) Well No. Mug
Samp?	led By W.J. G. band + J.A Moore Date 11/16/88 Time 17:05
Weat	ner Deik closely with y 40-45° Sampled with Bailer 55 Pump evac
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) 40.00 ft. (top of casing) ft.
` .	Depth to water table: Water table elevation:ft.
	Length of water column (LWC) 20.90 ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = 3.26 gallons = 4" diameter wells = 0.653 X (LWC) = 3.26 gallons = 6" diameter wells = 1.469 X (LWC) = 3.26 gallons = 3.26
В.	PHYSICAL APPEARANCE AT START:
	Color St-mel brown Odor 1/2 Turbidity slight
	Was an oil film or layer apparent?
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Kt. med hown Odor none Turbidity moderate
	Was an oil film or layer apparent?
Ε.	CONDUCTIVITY 10 4 mhos
F.	pH
G.	TEMPERATURE 9°C
н.	WELL SAMPLING NOTES: 302239

Samp	le Location Amphens/-RHELS (Wgott Property) Well No. MW10 led By Wightel + J. A. Moore. Date 11/16/58 Time 12:15
Samp	led by Washiel + J. A. Moore. Date 11/16/81 Time 12/5
weati	her Durent 45-50° Sampled with Bailer 55 Pump Evac.
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) // ft. (top of casing) ft.
•	Depth to water table: Water table elevation: ft. (below top of casing) 335 ft.
	Length of water column (LWC)ft. Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{2}{3}$ gallons = 4" diameter wells = 0.653 X (LWC) = $\frac{2}{3}$ gallons = 6" diameter wells = 1.469 X (LWC) = $\frac{2}{3}$ gallons
В.	PHYSICAL APPEARANCE AT START:
	Color to Color No Turbidity Mod
	Was an oil film or layer apparent?
C.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling /2 gallons. Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING: Color 14 6 0 0 0 0 Turbidity 5/15/4 Was an oil film or layer apparent? No
Ε.	CONDUCTIVITY 700 4 mbos
F.	pH
G.	TEMPERATURE 8°C
н.	WELL SAMPLING NOTES: 302240 Evanualed of pump (centrif)
	<u> </u>

.mp	ole Location RHRLS - Amphenol Con	rp	Well No.	MW -1
Samp	oled By DRT / JAM	Date 8	/30/90 Time	8:45 AM
Weat	ther sunny, 70°F	Sampled	with Bailer	Pump
A.	WATER TABLE: Well depth: (below top of casing) 25.16 ft. Depth to water table: (below top of casing) 21.08 ft.		Well elevation: (top of casing) table elevation:	ft.
	Length of water column (LWC)			
	Volume of water in well: 2 diameter wells = 0.163 4 diameter wells = 0.653 6 diameter wells = 1.469	x (LWC)	· 0.67	allons 2 gal. allons allons
В.	PHYSICAL APPEARANCE AT START: Color <u>clear</u> Odor — Was an oil film or layer apparent?			1.0
C.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry?	ling	3	gallons.
D.	PHYSICAL APPEARANCE DURING SAMPLING Color <u>liakt brown</u> Odor — Was an oil film or layer apparent?		Turbidity	moderale
E.	CONDUCTIVITY 280			
F.	рн 6.0			
G.	TEMPERATURE 11-12.C	_		
н.	WELL SAMPLING NOTES: Calibrated AH and S.C. notes	po Cile	Sumpling	302241
um,				

· π Þ	ie Location RHRLS - Amphem Corp.	Well No. MW-2
	led By DRT, CPO	· · · · · · · · · · · · · · · · · · ·
	her Sunny 75'F	
	WATER TABLE:	•
	Well depth: (below top of casing) 30.71 ft.	Well elevation: (top of casing) ft.
	(below top of casing) 29.71 ft.	Water table elevation: ft.
	Length of water column (LWC)	2ft.
	Volume of water in well:	
	diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	3 x (LWC) = 0.33 gallons / gallons 3 x (LWC) = gallons gallons
В.	PHYSICAL APPEARANCE AT START:	
	Color clear Odor	Turbidity low
	Was an oil film or layer apparent?	no
Č.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry?^	oling gallons.
D.	PHYSICAL APPEARANCE DURING SAMPLING Color claw / light bown Odor Was an oil film or layer apparent?	Turbidity 100
E.	CONDUCTIVITY 360	
F.	рн <u>6</u> .8	
G.	TEMPERATURE 11'C	302242
н.	WELL SAMPLING NOTES: Calibrated pH and S.C. meters	before sampling. John Glover (Versur)
	collected splits at this well	location (3 VOA's and 2 QTs.)
_		

:mp	e Location RHRLS - Amphenel Corp. Well No. MW-3
	ed By DRT / CPO Date 8/30/90 Time 9:30 Am
	er Sunny 75°F Sampled with Bailer Pump
Α.	WATER TABLE: Well depth: Well elevation:
	Well depth: (below top of casing) 18.41 ft. Well elevation: (top of casing) ft.
	Depth to water table: (below top of casing) 2.61 ft. Water table elevation: ft.
	Length of water column (LWC) $/5.8$ ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{2.58}{4}$ gallons 7.75 gallons 6" diameter wells = 0.653 X (LWC) = $\frac{2.58}{5}$ gallons gallons
В.	PHYSICAL APPEARANCE AT START:
	Color clear- light brown Odor slight Turbidity low
	Was an oil film or layer apparent?
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry?no
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color brown Odor slight Turbidity moderale - high
	Was an oil film or layer apparent?
E.	CONDUCTIVITY 100
F.	pH 6.1
G.	TEMPERATURE 11-12'C 302243
н.	WELL SAMPLING NOTES:
	Calibrated pH and S.C. makers before sampling. John Glover (Verser)
	Calibrated pH and S.C. maters before sampling. John Glover (Versar) collected sylits at this well location (3 VOR's and 2 QTS).
_	

:mp	ple Location RHRLS - Ampleaul Con	ρ	Well No.	_MW-4
	pled By DRT/CPO Dat	e g / 29	Well No.	3:30 Pm
Weat			h Bailer 🗸	
Α.	WATER TABLE:	-		
	Well depth: (below top of casing) 22.53 ft.	We (t	ll elevation: op of casing)	ft.
	Depth to water table: (below top of casing) 6.88 ft.	ater tab	le elevation:	ft.
	Length of water column (LWC)	ft	•	
	Volume of water in well:			
	2 diameter wells = 0.163 x (4 diameter wells = 0.653 X (6 diameter wells = 1.469 X (LWC) = ⁻		allons 7.45 allons allons
В.	PHYSICAL APPEARANCE AT START:			
	Color brown Odor hone		Turbidity	low
	Was an oil film or layer apparent?h	<u> </u>		
	PREPARATION OF WELL FOR SAMPLING:			•
	Amount of water removed before sampling		8	gallons.
	Did well go dry?h.			,
D.	PHYSICAL APPEARANCE DURING SAMPLING:			
	color brown Odor none	<u>-</u>	Turbidity	hiah
	Was an oil film or layer apparent?			J
E.	CONDUCTIVITY 30-30			
F.	pH <u>5.7</u>			
G.	TEMPERATURE 13° E			222244
н.	WELL SAMPLING NOTES:			302244
	Callbrated pH and S.C. meters he fore sam	pling,		·
	·	· · ·		
·				
			-	

Sample Location RHRLS- Amphino Corp.	Well No. Mw - 5s
Sampled By DRT / CPo	Date 8/30/90 Time 11:20 Am
Weather Sunny 800F	Sampled with Bailer Pump
A. WATER TABLE:	
Well depth: (below top of casing) 17.96 ft.	Well elevation: (top of casing) ft.
Depth to water table: $(below top of casing) = 5.40?$ ft.	Water table elevation: ft.
Length of water column (LWC)/2	<u>.56</u> ft.
Volume of water in well:	
(2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	3 x (LWC) = 9.05 gallons 6.15 gal 3 X (LWC) = gallons 3 X (LWC) = gallons
B. PHYSICAL APPEARANCE AT START:	
Color <u>clear</u> / product driples Odor	Turbidity low
Was an oil film or layer apparent?	<u>Yes</u> ≈ ½ - ½
C. PREPARATION OF WELL FOR SAMPLING:	•
Amount of water removed before samp	pling 6.5 gallons.
Did well go dry? h.	· ·
D. PHYSICAL APPEARANCE DURING SAMPLING	• 1
Color brown Odor	Turbidity high
Was an oil film or layer apparent?	ho
E. CONDUCTIVITY 180	
F. pH <u>6.9</u>	
G. TEMPERATURE 14°C	
H. WELL SAMPLING NOTES: Calibrated pH and S.C. melens	below sampling, John Glover (Versor)
cultocked splik at this will lication	(5 voAs and 3 Ots.)
·	
•	
	

πρ	le Location RHRLS - Ampleo C	orp.		Well No.	MW - 51
~Samp	red by NRT / CDo	Date _3	129 /90	Time	5:30 Pm
Weat	her <u>clady</u> 75°F	Sampled	with Ba	iler 📈	Pump
Α.	WATER TABLE:	•			
	Well depth: (below top of casing) 51.47 ft.	• • •	Well e	elevation: of casing)	ft.
	Depth to water table: (below top of casing) 4.53 ft.	Water	table e	levation:	ft.
	Length of water column (LWC)				
	Volume of water in well:				
	diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	x (LWC) X (LWC)		.65 9	allons 22.95gal allons allons
В.	PHYSICAL APPEARANCE AT START:				
	Color redeigh hour leany Odor w	ine		Turbidity	low/cloan
	Was an oil film or layer apparent?	m			· · · · · · · · · · · · · · · · · · ·
C.	PREPARATION OF WELL FOR SAMPLING:			-	•
	Amount of water removed before samp	ling	24		gallons.
	Did well go dry? _ No				,
D.	PHYSICAL APPEARANCE DURING SAMPLING	:			
	Color elec Odor he		7	urbidity	her lane
	Was an oil film or layer apparent?	ho		_	
Ε.	CONDUCTIVITY 100				
F.	pH 6.5	_			
G.	TEMPERATURE \\'C	 ,			
					302246
H.	WELL SAMPLING NOTES:	1			
	Calibrated pott and S. C. herten he	Gre sampli	g.		
 -		······································			
					

mple Loca	tion RHRLS	- Amplea.	1 Cap	We]	7 No. /	MW-6	•
	DRT / CPO		Date 8	130 190	Time	7:50 An	7
-	vany, 65° F		<u> </u>		_		
WATER	TABLE:						
Well (below	epth: top of casing)	22.32 ft.	• • •	Well elev	ation: asing)_		ft.
Depth (below	to water table: top of casing) _	7.43 ft.	Water	table elev	ation:	·	ft.
	of water column			_ft.			
Vo 1 ume	of water in well 2 diameter w 4 diameter w 6 diameter w	mells = 0.163 mells = 0.653	A (LRC)		ga ga	1 1002	.لمو 8
PHYSI	AL APPEARANCE AT	START:					
Color	clear fruity colored	Odor	slight	Tur	bidity	low .	
	oil film or laye		•				
PREPA	ATION OF WELL FOR	SAMPLING:				•	
Amount	of water removed	before samp	ling	8		_ gallons	S •
Did we	ell go dry? <u>ho</u>					* •	
PHYSI	AL APPEARANCE DUR	RING SAMPLING	i:				
Color	brown	Odor	slight	Turi	oidity _	high	
Was as	oil film or laye	er apparent?	Sheen	noted			
. כסאסטו	TIVITY 240						
. pH							
	PATURE 14°C						
						30	2247
	SAMPLING NOTES:		١ ٥	1	c li	1.1	
Rh	librated pH and al Duplicale Sample	J. C. melers	<u>betere</u>	sampling	C o He	cled	
	CO DABLECTIC STANDED	al this we	10Canm	·			
				· · · · · · · · · · · · · · · · · · ·	·		-
							
							

Samp	le Location RHRLS - Ampleo	Corp.	Wel	1 No.	Mw-7
		Date 8	129 /90	Time	1:30 Pm
			with Baile		
Α.	WATER TABLE:	•. •.			
	Well depth: (below top of casing) 19.31 ft.		(top of	vation: casing)	ft.
	Depth to water table: $(below top of casing) = 5.92$ ft.	Water	table elev	vation:	ft.
	Length of water column (LWC)	13.39	_ft.		
	Volume of water in well:				Λ
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	X (LWC)	=	SP 9	11ons 6.55 gal. 11ons 11ons
В.	PHYSICAL APPEARANCE AT START:				
	Color clar/light bries Odor her	·	Tu	rbidity	very lim
	Was an oil film or layer apparent?				
C.	PREPARATION OF WELL FOR SAMPLING:				•
	Amount of water removed before samp	ling		7	gallons.
	Did well go dry?				
D.	PHYSICAL APPEARANCE DURING SAMPLING				
	Color dark brown Odor h		Tur	bidity	hial
	Was an oil film or layer apparent?			_	
£.	CONDUCTIVITY 120				
_		_			•
F.	pH <u>7.4</u>				
6.	TEMPERATURE 12°C				
н.	WELL SAMPLING NOTES:				302248
	Calibrated pH and S.C. meles bo	Com samp	ling		
	<u> </u>	·	<u> </u>		
	——————————————————————————————————————			·	
					

Samo'	le Location RHRLS - Auphinol Corp. Well No. MW-8
	led By DRT, CPO Date 8/21/90 Time 2:15 Pm
	ner Sunny 85°F Sampled with Bailer V Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (top of casing) 26.83 ft. (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) //.05 ft.
	Length of water column (LWC)ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{2.57}{4}$ gallons 7.72 gallons 6" diameter wells = 0.653 X (LWC) = $\frac{2.57}{4}$ gallons gallons
В.	PHYSICAL APPEARANCE AT START:
	Color clear / light home Odor home Turbidity boy low
	Was an oil film or layer apparent? ho
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling $\underline{\qquad}$ gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color brown Odor home Turbidity high
	Was an oil film or layer apparent?
E.	CONDUCTIVITY 30-40
F.	pH 7.2
G.	TEMPERATURE 12°C 302249
н.	Calibrated pH and S. C. meter the fore sampling.
	
**	

mp	le Location RHRLS - Amphend Corp.	Well No. Mw-9
Samp	led By DRT/CP3	Date 9/29/90 Time 4:30 /m
Weat	her cloudy 80°F	Sampled with Railer Pump
A.	WATER TABLE: Well depth: (below top of casing) 45.51 Depth to water table: (below top of casing) 23.23 ft. Length of water column (LWC) 2 Volume of water in well:	Well elevation: (top of casing) ft. Water table elevation: ft.
В.		none Turbidity clear low
c.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry?ho	pling 12 gallons.
D.	PHYSICAL APPEARAGE DURING SAMPLING Color dark brown Odor Was an oil film or layer apparent?	none Turbidity high
E.	CONDUCTIVITY 60	•
F.	pH 7.1	
G.	TEMPERATURE 12-C	
н.	WELL SAMPLING NOTES: Calibrated pH and S.C. mater, le form Spike and Matrix Spike Diplicate at-	re rampling. Collected Matrix We LL Location.
*		

атр	le Location RHRLS - Amplead	Corp.	Well No.	M W-10
Samp	led By DRT/CPO	Date 8/29 /	90 Time	2:145 Pm
	ther sunny 85°F	· · · · · · · · · · · · · · · · · · ·		
Α.	WATER TABLE:			
	Well depth: (below top of casing)/5.87 ft.	Wel (to	l elevation: p of casing)	ft.
	Depth to water table: (below top of casing) 3.91 ft.	Water tabl	e elevation:	ft.
	Length of water column (LWC)//			
	Volume of water in well:			A
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	x (LWC) = X (LWC) =	gg gg	allons 5.85 gal allons allons
В.	PHYSICAL APPEARANCE AT START:			1
	Color c lear Odor h	•ne	Turbidity	Very lim
	Was an oil film or layer apparent?			
C.	PREPARATION OF WELL FOR SAMPLING:			•
••	Amount of water removed before samp	lina	G	en 13 en e
	Did well go dry? h.			gallons.
_				
D.	PHYSICAL APPEARANCE DURING SAMPLING			1 1
	Color light brown Odor		_ Turbidity .	modera le
	Was an oil film or layer apparent?	No		
E.	CONDUCTIVITY 100			
F.	рн 6.6			
G.	TEMPERATURE 13-14°C			302251
н.	WELL SAMPLING NOTES:			
	Calibrated pH and S.C. meters bet	fore sumplian.		
				
-				· · · · · · · · · · · · · · · · · · ·

Sample Location <u>PHELS AMPHOUSE</u> Well No. MW-1				
Samp	pled By MARK ROMA J. MOORE Date 12-12-90 Tim	e 1050		
Weat	ther Cook SUMMY 40°F Sampled with Bailer			
Α.	Depth to water table: Water table elevation (below top of casing) 17.24 ft. Length of water column (LWC) 5.26 ft.	g) ft.		
	Volume of water in well: 2 diameter wells = 0.163 x (LWC) =	gallons & & BAKS		
В.	PHYSICAL APPEARANCE AT START: Color CLEAR Odor CILENT Turbidit Was an oil film or layer apparent? NO	ity Low		
C.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling	gallons.		
D.	PHYSICAL APPEARANCE DURING SAMPLING: Color Cuar Ton Odor S Turbidi Was an oil film or layer apparent? SHEEN	ty Confinance IC		
Ε.	CONDUCTIVITY 430			
F.	pH			
G. H.	TEMPERATURE	302259		
п.	SAMPLED AT 100 12-12-90 VUBIS + F	KB15		

Samp	le Location KHKLS AMPHENOL Well No. MW-Z
	oled By MARK ROMA / J. MODE Date 12-12-94 Time 1/20
Weat	ther Cook Sundy 40th Sampled with Bailer X Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) ft. (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) <u>36.54</u> ft.
	Length of water column (LWC)96 ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = gallons , \mathcal{AT} 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons \mathcal{AT}
В.	PHYSICAL APPEARANCE AT START:
	Color CLEAR Odor YES SLEET Turbidity (and
	Was an oil film or layer apparent? YES SULWI SHEEN
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	color MILLY Odor YES SUEET Turbidity MODERATE
	Was an oil film or layer apparent? SUBBT SHEED
E.	CONDUCTIVITY 580
F.	pH 6.6
	302250
G.	TEMPERATURE
н.	WELL SAMPLING NOTES:
	SAMPLED AT 1/25 12-12-90 LOA'S + PCB'S

Samp	ole Location <u>Amphinol</u> RHRLS Well No. Mw-3
Samp	ther Classif (1) 70° Sampled with Bailer Y Pump
Weat	ther <u>Classif Add 70°</u> Sampled with Bailer <u>Y</u> Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing)ft. (top of casing)ft.
	Depth to water table: Water table elevation: ft. (below top of casing) ft.
	Length of water column (LWC) 16.55 ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{2 \cdot 7}{4}$ gallons $\frac{3 \cdot 7}{6}$ diameter wells = 0.653 X (LWC) = $\frac{2 \cdot 7}{6}$ gallons gallons
В.	PHYSICAL APPEARANCE AT START:
	Color Brown Odor YES SIGHT-EDOR Turbidity MED
	Was an oil film or layer apparent?
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling 835 gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
٥.	Color Brown Odor YES MOD-ODER Turbidity MED
	Was an oil film or layer apparent?
E	CONDUCTIVITY 150
_	
F.	рн <u> З.</u> <u>Б</u>
G.	TEMPERATURE 30225
н.	WELL SAMPLING NOTES:
	SAMPLED AT 1255 12-11-90 VOA'S + PCB'S
	SAMPLED AT 1255 12-11-90, VUA'S + PUB'S (BLUED DUP /INCLUDED)

Samp	mple Location <u>Amphenol</u> RHRLS	Well No. MM-4
Samp	mpled By MARIC Royal Sim Mair Date eather Clouds I all 20° Samp	17:11-90 Time 11:00
Weat	eather <u>Closely (ald 20°</u> Samp	oled with Bailer Pump
		•
Α.		Nall alouations
	Well depth: (below top of casing) <u>ZZSZ</u> ft.	Well elevation: (top of casing) ft.
	Depth to water table: (below top of casing) $\frac{4.00}{4.10}$ ft.	
	Length of water column (LWC) 19.72	<u>Z</u> ft.
	Volume of water in well:	
	2" diameter wells = 0.163 x (l 4" diameter wells = 0.653 X (l 6" diameter wells = 1.469 X (l	LWC) = gallons 4.2 LWC) = gallons LWC) = gallons
В.	<i>A</i>	
	Color <u>Krown</u> Odor <u>//</u>	Turbidity # 1
	Was an oil film or layer apparent?	No
С.	PREPARATION OF WELL FOR SAMPLING:	
	Amount of water removed before sampling	95 gallons.
	Did well go dry?	
D.	,, =	1//
	Color Branco Odor 20	
	Was an oil film or layer apparent?	
Ε.	. CONDUCTIVITY	
F.	. pH	
G.	. TEMPERATURE	30225
н.	. WELL SAMPLING NOTES:	
		en 12-11-80 for UDA's & Pal
		·

0 - (le Location <u>PHCLS AMPHENE</u> Well No. <u>MW-55</u>
Samp	led By MARK Rama (J. Moope Date 12-12-90 Time 1400
Weat	her <u>CCOL</u> Survay 40 Sampled with Bailer Pump
A.	WATER TABLE:
	Well depth: Well elevation: (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 5/12 ft.
	Length of water column (LWC)ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{2.2}{4}$ gallons 6.3 4" diameter wells = 0.653 X (LWC) = $\frac{2.2}{4}$ gallons 6 gallons $\frac{2.3}{4}$
В.	PHYSICAL APPEARANCE AT START:
	Color <u>CLEAR</u> Odor <u>Sweet</u> Turbidity <u>Lw</u>
	Was an oil film or layer apparent? YES SULVI SHEEN
C.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
D.	PHYSICAL APPEARANCE DURING SAMPLING: Color Odor Turbidity Made 4TE
D.	,
	Color Mas an oil film or layer apparent? Sucht Shaw
	Color Moder Odor Sweet Turbidity Madette Was an oil film or layer apparent? Sucht Shaw CONDUCTIVITY 500
E.	Color Mas an oil film or layer apparent? Sucht Shaw
E F.	Color Mas an oil film or layer apparent? Sucht Shaw CONDUCTIVITY Sov PH 7.2 TEMPERATURE 302250
E.	Color Mas an oil film or layer apparent? Sucht Shaw CONDUCTIVITY Sov PH 7.2 TEMPERATURE 30225(
E F.	Color Mas an oil film or layer apparent? Sucht Shaw CONDUCTIVITY Sov PH 7.2 TEMPERATURE 302250
E F.	Color Mas an oil film or layer apparent? Sucht Shaw CONDUCTIVITY Sov PH 7.2 TEMPERATURE 30225(
E F.	Color Mas an oil film or layer apparent? Sucht Shaw CONDUCTIVITY Sov PH 7.2 TEMPERATURE 30225(
E F.	Color Mas an oil film or layer apparent? Sucht Shaw CONDUCTIVITY Sou PH 7.2 TEMPERATURE 302250 WELL SAMPLING NOTES: SAMPLED AT 1430 12-12-90 1455 + 768'5
E F.	Color Mas an oil film or layer apparent? Sucht Shaw CONDUCTIVITY Sou PH 7.2 TEMPERATURE 302250 WELL SAMPLING NOTES: SAMPLED AT 1430 12-12-90 1455 + 768'5

Samp	ole Location PHRLS AMPHENOL Well No. MW-SD
Samp	oled By MARK Boms J. Mooks Date 12-12-90 Time 1500
Weat	ther COOK, SUWWY 100F Sampled with Bailer 20 Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 4.27 ft.
	Length of water column (LWC) 47.21 ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{7.7}{4}$ gallons $\frac{23.0}{6}$ diameter wells = 0.653 X (LWC) = $\frac{7.7}{6}$ gallons $\frac{23.0}{6}$ diameter wells = 1.469 X (LWC) = $\frac{7.7}{6}$ gallons $\frac{20.0}{6}$
В.	PHYSICAL APPEARANCE AT START:
	color <u>CLEAR</u> Odor <u>Name</u> Turbidity (on)
	Was an oil film or layer apparent? No
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Tov Odor Nont Turbidity Middle Turbidity
	Was an oil film or layer apparent?
Ε.	CONDUCTIVITY /30
F.	pH
G.	TEMPERATURE
н.	WELL SAMPLING NOTES:
	SIMPLED AT 1535, 12-12-90, VIA'S SOMI-VOLATILES
	SIMPLED AT 1535, 12-12-90, VOA'S SOMI-VOLATILES PCB'S TOL METALS (FYLE)
	MS MSD USED AT MW-5D
	THIS BAILER WAS USED PRIOR FOR EQUIPMENT BLANK #3
	•

	led By Profest In Paris			/£:/)
	her <u>least well</u>			
				 .
ı •	WATER TABLE:			
	Well depth: (below top of casing) ft.	Well (top	elevation: of casing)	ft.
	Depth to water table: (below top of casing) 7.35 ft.			ft.
	Length of water column (LWC)	17 ft.		
	Volume of water in well:			- 1
	diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	x (LWC) = X (LWC) =	ga ga	llons llons
	PHYSICAL APPEARANCE AT START:			,
	Color BRUNN EST Odor I			Hutt
	Was an oil film or layer apparent?	Suit 3	Mostly	
:.	PREPARATION OF WELL FOR SAMPLING:			
	Amount of water removed before samp	ling $\overline{\mathcal{A}}$	13	gallons.
	Did well go dry?/_			
).	PHYSICAL APPEARANCE DURING SAMPLING	:		
	Color Control Odor			the state of the s
	Was an oil film or layer apparent?	14677	Little C'	
	CONDUCTIVITY See			
:.	рН			30225€
3 .	TEMPERATURE			
1.	WELL SAMPLING NOTES: SAMPLED AT 1015 12	2-11-90 V	045 4 PCA	کے د
	SAMPLES HI 1012 10	= 11-10	011- 7702	
				

	pled By MREECHA TIMORE.					
at	ther <u>confide</u>	Sampled	with E	Bailer <u> </u>	Pump _	
	MATER TARKE					
	WATER TABLE:		11.23			
	Well depth: (below top of casing) /7 // ft	•	(top	elevation of casing) }	ft
	Depth to water table: (below top of casing) 5-9/ ft	Water			:	
	Length of water column (LWC)/	3.7	_ft.			
	Volume of water in well:					_
	2" diameter wells = 0.16 4" diameter wells = 0.65 6" diameter wells = 1.46	3 x (LWC) 3 X (LWC) 9 X (LWC)	*	2	gallons gallons gallons	€.7
	PHYSICAL APPEARANCE AT START:					•
	ColorOdor	<u> </u>		_ Turbidit	y <u>//</u> -	
	Was an oil film or layer apparent?	<u>~</u>		_		
	PREPARATION OF WELL FOR SAMPLING:					
	Amount of water removed before sam	pling	<u> </u>		gallo	ns.
	Did well go dry?		_	· · · · · · · · · · · · · · · · · · ·		
	PHYSICAL APPEARANCE DURING SAMPLIN	G:				
	ColorOdor		·	Turbidity	/ <u> </u>	
	Was an oil film or layer apparent?					
	CONDUCTIVITY 200					
	рН					
	·				302	250
	TEMPERATURE					
	WELL SAMPLING NOTES:				_	
	SMARED AT 0145 R-1	1-90	1/c4-	+ X2'	<u> </u>	····
						
						
				· · · · · · · · · · · · · · · · · · ·		
					 	
	4					

	WATER TABLE:
	Well depth: Well elevation: (below top of casing) <u>26.81</u> ft. (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 10.53 ft.
	Length of water column (LWC) /6.28 ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{27}{4}$ gallons $\frac{8.0}{4}$ diameter wells = 0.653 X (LWC) = $\frac{27}{4}$ gallons $\frac{8.0}{4}$ diameter wells = 1.469 X (LWC) = $\frac{27}{4}$ gallons $\frac{27}{4}$
	PHYSICAL APPEARANCE AT START:
	Color Graf Odor None Turbidity HIGH
	Was an oil film or layer apparent?
	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling 8.5 gallons.
	Did well go dry?
,	PHYSICAL APPEARANCE DURING SAMPLING:
	Color BAY Odor FINE Turbidity HIGH
	Was an oil film or layer apparent?
	CONDUCTIVITY 060% Jim
•	
	304200
,	TEMPERATURE
•	WELL SAMPLING NOTES:
	S'AMPLED AT 0925, 12-12-90, VOA'S + PCB'S

Samp Weat	led By Mark Pana T. Moure Date 12-12-90 Time 0930 ther Cool, Clerk, 35°F Sampled with Bailer X Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) 45.85 ft. (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) of ft.
	Length of water column (LWC) 25.04 ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{4.1}{2}$ gallons $\frac{1}{2}$. $\frac{4}{2}$ diameter wells = 0.653 X (LWC) = $\frac{4}{2}$ gallons gallons $\frac{1}{2}$ RAKE
В.	PHYSICAL APPEARANCE AT START:
	Color CLEAR Odor NONE Turbidity LOW
	Was an oil film or layer apparent?
C.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons. Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Town Odor None Turbidity Mess
	Was an oil film or layer apparent?
Ε.	CONDUCTIVITY 090% JA
F.	pH <u>8.2</u> 302261
G.	TEMPERATURE
н.	WELL SAMPLING NOTES:
	SAMPLED AT 0955 12-12-90 VUALS TRB'S

Sampl	e Location RHRLS Ampitoria Well No. MW-10
Sampl	ed By MACK RIMS J. MODE Date 12-11-90 Time 1315
Weath	ner <u>Cock</u> 35° Sampled with Bailer × Pump
Α.	WATER TABLE:
	Well depth: (below top of casing) 16.00 ft. Well elevation: (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) ft.
	Length of water column (LWC) 12.53 ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = 26 gallons 6.1 4" diameter wells = 0.653 X (LWC) = 6 gallons gallons 6 ga
В.	PHYSICAL APPEARANCE AT START:
	Color Odor Turbidity
	Was an oil film or layer apparent?
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling6.5gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color TAN / BROWN Odor NONE Turbidity MED
	Was an oil film or layer apparent? No
Ε.	CONDUCTIVITY 120
F.	pH
G.	TEMPERATURE 302260
н.	WELL SAMPLED NOTES: SAMPLED AT 1325 12-11-90 VEA'S +PCB'S
	SAMPLES 171 1303 12-11 10 VOY 3 1 1CZ

לוויםי	Pled By MACK ROMA TO MODRE Date 12-11-90 Time 1203
reat	ther Copi (County 30. F Sampled with Bailer > Pump
١.	WATER TABLE:
	Hell death.
	(below top of casing) 36.69 ft. (top of casing) ft
	Depth to water table: Water table elevation: ft (below top of casing) ft.
	Length of water column (LWC) $247/$ ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{4.0}{100}$ gallons $\frac{12.0}{100}$ diameter wells = 0.653 x (LWC) = $\frac{4.0}{100}$ gallons $\frac{12.0}{100}$ gallons $\frac{12.0}{100}$
3.	
	Color (LEAK/TIN Odor NOWE Turbidity (CW)
	Was an oil film or layer apparent? No
Ξ.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling 12.0 gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Tan Odor Non Turbidity MED
	Was an oil film or layer apparent?
Ε.	CONDUCTIVITY CEO
F.	рн <u>9.</u> 3
	30226
3.	TEMPERATURE
Η.	WELL SAMPLING NOTES:
	SOMPLED AT 1217 12-11-90, VOR'S + PCB'S

at	her <u>COOL</u> , 35°F/CLOADT Sampled with Bailer Pump
	WATER TABLE:
	Well depth: Well elevation: (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 56.72 ft.
	Length of water column (LWC) 5.38 ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = $\frac{88}{100}$ gallons 2.6 4" diameter wells = 0.653 X (LWC) = $\frac{88}{100}$ gallons $\frac{88}{100}$ gallons $\frac{88}{100}$
	PHYSICAL APPEARANCE AT START:
	Color This Odor Nont Turbidity MOUDEATE
	Was an oil film or layer apparent?
	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry? No
	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Jan Odor WANT Turbidity MODESCATE
	Was an oil film or layer apparent?
	CONDUCTIVITY 240
	O a
ı	рн 30226.
	TEMPERATURE
	WELL SAMPLING NOTES:
	SAMPUD AT 1615 12-12-90 WAS SOMI VOLATIO
	12-13-90 -> 0850 PCB'S TU METALS
	FICTORIO /

Sampl	e Location Amphenoi RHRLS Well No. MW-12
Samp1	led By mark Roma / Jan Moon Date 12 11-50 Time 1/40
Weath	ner closely lead 20° Sampled with Bailer X Pump
A.	WATER TABLE: .
	Well depth: Well elevation: (below top of casing) 4567 ft. (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 37.58 ft.
	Length of water column (LWC) <u>F. 29</u> ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = $\frac{1.3}{2}$ gallons $\frac{2.3}{2}$ 4" diameter wells = 0.653 X (LWC) = $\frac{1.3}{2}$ gallons $\frac{2.3}{2}$ gallons
В.	PHYSICAL APPEARANCE AT START:
	Color Tow / BROW Odor NONE Turbidity HIGH
	Color Mont Turbidity HIGH Was an oil film or layer apparent? No
C.	PREPARATION OF WELL FOR SAMPLING:
•	Amount of water removed before sampling gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
υ.	Color Tom Brun Odor None Turbidity HIGH
	Was an oil film or layer apparent?
Ε.	CONDUCTIVITY 670
-	
F.	рн <u>87</u> 302265
G.	TEMPERATURE
н.	WELL SAMPLING NOTES:
	SAMPLED AT 1150 12 1150 WA'S + PCB'S
	··

Samp	le Location <u>PHRIS AMPHENOL</u> Well No. MW-13
Samp	led By Mark Roma / T. MORE Date /2-11-90 Time 1340
Weat	led By Mark Roma / T. MWRE Date 12-11-90 Time 1340 her CCCL 35°F Sampled with Bailer X Pump
Α.	WATER TABLE:
	Well depth: 22.02 Well elevation: (below top of casing)ft. (top of casing)ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 7.19 ft.
	Length of water column (LWC) 14.83 ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = 2.4 gallons 7.3 4" diameter wells = 0.653 X (LWC) = 3.4 gallons 3.284 6" diameter wells = 1.469 X (LWC) = 3.4 gallons 3.284
В.	PHYSICAL APPEARANCE AT START:
	Color Jan Odor wat Turbidity MOD
	Was an oil film or layer apparent?
C.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling 7.5 gallons. Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Beown Odor Work Turbidity HIGH
	Was an oil film or layer apparent? 100
Ε.	CONDUCTIVITY <u>CSC</u>
F.	
	004400
G.	TEMPERATURE
н.	WELL SAMPLING NOTES: SAMPLED AT 1365 12-11-90 VOA'S TREB'S

ם.	led Bv	MARKE	POMF / /	· MODEE	uate /	1-12-70	Time	1005
ti	her	COCL	CLEAR	<i>C</i>	Sampled			
	Well de (below Depth to (below Length)	pth: top of constant top of constant of water	table: table: casing) r column r in wel	<u>// 7/</u> f (LWC)	t. Water t. <u>1047</u>	table el	casing) evation:	f
		4" d' 6" d'	ameter iameter	wells = 0.6 wells = 1.4	53 X (LWC) 69 X (LWC)	*	g:	allons 3.1 allons allons 16.8
		L APPEAL	RANCE AT	START:				Modera
	Was an	oil film	n or lay	er apparent	.!			
	PREPARA Amount	TION OF	WELL FO	R SAMPLING:	mpling	6,0		gallons.
	PREPARA Amount Did we' PHYSICA Color	ATION OF of water 11 go dr: AL APPEA BEAU	WELL FO r remove y?/\(\lambda\) RANCE DU	R SAMPLING:	mpling NG: NOTE	Tu		
	PREPARA Amount Did we' PHYSICA Color Was an	ATION OF of water 11 go dr: AL APPEA BEAU	WELL FO r remove y?	R SAMPLING: d before sa ORING SAMPLI Odor	mpling NG: NOTE	Tu		
	PREPARA Amount Did we' PHYSICA Color Was an CONDUCT PH	of water of water of AL APPEAR Oil file	WELL FO r remove y?/\lambda RANCE DU \lambda m or lay	R SAMPLING: d before sa ORING SAMPLI Odor	mpling NG: NOTE	Tu		
	PREPARA Amount Did we' PHYSICA Color Was an CONDUCT PH TEMPER WELL S	ATION OF of water of water AL APPEAR Oil file TIVITY	WELL FO r remove y?/\(\lambda\) RANCE DU \(\lambda\) m or lay _/30	R SAMPLING: d before sa ORING SAMPLI Odor	mpling	Tυ	rbidity	<i>})&#</i> 30226″</td></tr><tr><td></td><td>PREPARA Amount Did we' PHYSICA Color Was an CONDUCT PH TEMPER WELL S</td><td>ATION OF of water of water AL APPEAR Oil file TIVITY</td><td>WELL FO
r remove
y?/\(\lambda\)
RANCE DU
\(\lambda\)
m or lay
_/30</td><td>R SAMPLING: d before sa RING SAMPLI Odor er apparent</td><td>mpling</td><td>Tυ</td><td>rbidity</td><td><i>})&</i>#
30226″</td></tr><tr><td></td><td>PREPARA Amount Did we' PHYSICA Color Was an CONDUCT PH TEMPER WELL S</td><td>ATION OF of water of water AL APPEAR Oil file TIVITY</td><td>WELL FO
r remove
y?/\(\lambda\)
RANCE DU
\(\lambda\)
m or lay
_/30</td><td>R SAMPLING: d before sa RING SAMPLI Odor er apparent</td><td>mpling</td><td>Tυ</td><td>rbidity</td><td><i>})&</i>#
30226″</td></tr><tr><td></td><td>PREPARA Amount Did we' PHYSICA Color Was an CONDUCT PH TEMPER WELL S</td><td>ATION OF of water of water AL APPEAR Oil file TIVITY</td><td>WELL FO
r remove
y?/\(\lambda\)
RANCE DU
\(\lambda\)
m or lay
_/30</td><td>R SAMPLING: d before sa RING SAMPLI Odor er apparent</td><td>mpling</td><td>Tυ</td><td>rbidity</td><td><i>HICH</i>
30226"</td></tr></tbody></table></i>

	WATER TABLE:
•	Well depth: Well elevation: (below top of casing) f
	Depth to water table: Water table elevation: f (below top of casing) 11.69 ft.
	Length of water column (LWC) 14.91 ft.
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = 2.4 gallons 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons
•	PHYSICAL APPEARANCE AT START: Color Blown Odor None Turbidity 1464
	Was an oil film or layer apparent? Wo
•	
	Amount of water removed before sampling
•	
	Color BRUNN Odor NONE Turbidity HIGH
	Was an oil film or layer apparent? No
	CONDUCTIVITY JOD
	лн <i>9.3</i>
	TEMPERATURE 30220
•	TEMPERATURE
•	WELL SAMPLING NOTES:
	SAMPLED AT 1920 12-11-90, 1/045 + PCB'S

Sampl	le Location RHCLS AMPHENIX- Well No. MW-16
Samp	led By MARK COMA / T. MOOKE Date 12-12-90 Time 25 CE 25
Weath	ner Cow Coppe 250 Sampled with Bailer X Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (top of casing) ft.
	Depth to water table: (below top of casing) 6.80 ft. Water table elevation: ft.
	Length of water column (LWC) 14.35 ft.
	Volume of water in well: 2" diameter wells = 0.163 x (LWC) = $\frac{2.3}{4}$ gallons 7.0 4" diameter wells = 0.653 X (LWC) = $\frac{2.3}{3}$ gallons $\frac{7.0}{3}$ gallons $\frac{7.0}{3}$ gallons $\frac{7.0}{3}$
В.	PHYSICAL APPEARANCE AT START:
	Color FROWN Odor NORES Turbidity HIGH
	Was an oil film or layer apparent?
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling $\frac{7.5}{}$ gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color Blown Odor NEWE Turbidity HIGH
	Was an oil film or layer apparent? 105
E.	CONDUCTIVITY 100'
F.	рн 302269
G.	TEMPERATURE
н.	WELL SAMPLING NOTES: SAMPLED AT OFFICE 12-12-90, VEA'S +728'S

-	
Samo	le Location Amphenol RHRLS Well No. MW-17
Samp	led By WERK ROMA SIM More Date 12-11-90 Time 1050
	her <u>Cloudy</u> cold 150 Sampled with Bailer & Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) 35.75 ft. (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 33-44 ft.
	Length of water column (LWC)ft.
	Volume of water in well:
	2" diameter wells = 0.163 x (LWC) = gallons 4" diameter wells = 0.653 X (LWC) = gallons 6" diameter wells = 1.469 X (LWC) = gallons
В.	PHYSICAL APPEARANCE AT START:
	Color Gran-Ton Odor None Turbidity HIGH
	Was an oil film or layer apparent?
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color GREDNI-TAN Odor NONE Turbidity HIGH
	Was an oil film or layer apparent?
Ε.	CONDUCTIVITY 470
F.	pH <u> </u>
	2027(
G.	TEMPERATURE
н.	WELL SAMPLING NOTES:
	AMPLED AT 1045 12-11-80 VOAS + FRB"S

. WATER Well (below Depth (below Length Volume . PHYSI Color Was a . PREPA Amoun Did w . PHYSI Color Was a . CONDU . pH . TEMPE . WELL	depth: v top of casing) to water table: v top of casing) n of water column e of water in we	### A /5 ft. ### A /5 ft. ### (LWC)	Water x (LWC) X (LWC) X (LWC)	Well e (top o table e ft.	levation: f casing) levation: \frac{77}{9} \text{g} Turbidity	Pumpft ft ft allons allons
. WATER Well (below Depth (below Length Volume . PHYSI Color Was a . PREPA Amoun Did w . PHYSI Color Was a . CONDU . pH TEMPE . WELL	TABLE: depth: v top of casing) to water table: v top of casing) n of water column of water in we 2 diameter 4 diameter 6 diameter CAL APPEARANCE A n oil film or la RATION OF WELL F t of water remove ell go dry?	### A 15 ft. ### A 15 ft. ### Con (LWC)	Water x (LWC) X (LWC) X (LWC)	Well e (top o table e ft.	levation: f casing) levation:	allons & 5
Well (below below below below below below below below below below below below below below below by the below	depth: v top of casing) to water table: v top of casing) n of water column e of water in we 2 diameter 4 diameter 6 diameter CAL APPEARANCE A n oil film or la RATION OF WELL F t of water remove ell go dry?	ft. in (LWC) il: wells = 0.163 wells = 1.469 it START: Odor yer apparent? for SAMPLING: yed before samp	x (LWC) X (LWC) X (LWC)	(top or table e	f casing) levation:	allons 8.5
Depth (below Length Volume Vol	to water table: v top of casing) n of water column of water in we 2 diameter 4 diameter 6 diameter CAL APPEARANCE A n oil film or la RATION OF WELL F t of water removes	ft. in (LWC) il: wells = 0.163 wells = 1.469 it START: Odor yer apparent? for SAMPLING: yed before samp	x (LWC) X (LWC) X (LWC)	(top or table e	f casing) levation:	allons 8.5
Length Volume PHYSI Color Was a PREPA Amoun Did w PHYSI Color Was a CONDU PH TEMPE WELL	of water column of water in we diameter 4" diameter 6" diameter CAL APPEARANCE A coil film or la RATION OF WELL Fot of water removell go dry?	wells = 0.163 wells = 0.653 wells = 1.469 T START: Odor yer apparent? TOR SAMPLING: yed before samp	x (LWC) X (LWC) X (LWC)	_ ft.	$\frac{\cancel{\cancel{7}}\cancel{\cancel{7}}}{\cancel{\cancel{9}}}$ g	allons S. 5 allons allons
PHYSI Color Was a PREPA Amoun Did w PHYSI Color Was a CONDU	e of water in we 2 diameter 4" diameter 6" diameter CAL APPEARANCE A n oil film or la RATION OF WELL F t of water removell go dry?	wells = 0.163 wells = 0.653 wells = 1.469 T START: Odor yer apparent? OR SAMPLING: yed before samp	x (LWC) X (LWC) X (LWC)	*	Turbidity	
PHYSI Color Was a PREPA Amoun Did w PHYSI Color Was a CONDU PH TEMPE	diameter 4" diameter 6" diameter CAL APPEARANCE A n oil film or la RATION OF WELL F t of water removell go dry?	wells = 0.163 wells = 0.653 wells = 1.469 T START: Odor yer apparent? TOR SAMPLING: yed before samp	ling		Turbidity	
Color Was a PREPA Amoun Did w PHYSI Color Was a CONDU PH TEMPE	CAL APPEARANCE A n oil film or la RATION OF WELL F t of water remove ell go dry?	Odor Odor yer apparent? OR SAMPLING: ed before samp	ling		Turbidity	
Color Was a PREPA Amoun Did w PHYSI Color Was a CONDU PH TEMPE	CAL APPEARANCE A n oil film or la RATION OF WELL F t of water remove ell go dry?	Odor Odor yer apparent? OR SAMPLING: ed before samp	ling		Turbidity	
Was a PREPA Amoun Did w PHYSI Color Was a CONDU PH TEMPE	n oil film or la RATION OF WELL F t of water remov ell go dry?	yer apparent? OR SAMPLING: ed before samp	ling			
Was a PREPA Amoun Did w PHYSI Color Was a CONDU PH TEMPE	n oil film or la RATION OF WELL F t of water remov ell go dry?	yer apparent? OR SAMPLING: ed before samp	ling			
Amoun Did w . PHYSI Color Was a . CONDU . pH TEMPE . WELL	t of water removell go dry?	ed before samp				gallons.
Amoun Did w . PHYSI Color Was a . CONDU . pH TEMPE . WELL	t of water removell go dry?	ed before samp		· · · · · · · · · · · · · · · · · · ·	 -	gallons.
Did w . PHYSI Color Was a . CONDU . pH TEMPE . WELL	ell go dry?	·				
Color Was a . CONDU . pH TEMPE . WELL	CAL APPEARANCE D	OURING SAMPLING				
Color Was a . CONDU . pH TEMPE . WELL			:			
Was a . CONDU . pH TEMPE . WELL		Odor	<u>.</u>	T	urbidity	
. pH TEMPE	n oil film or la					
. pH TEMPE	CTIVITY	-				
. TEMPE						
. WELL						30227
. WELL	RATURE					
_	SAMPLING NOTES:			 .	wais .	2.05
	MPLED AT	1005 12-	11-90 /	ex 1	WF 5 F	PCB -
_/H/	S BAILER WA	S ASED TH	IOK POK	- Equi	MEN B	THIS TO
						
					 	

Samp	le Location <u>PHELS AMPHENOL</u> Well No. <u>MW-18D</u>
Samp	led By MARK POMA J. MODE Date 12-12-90 Time 1630
Weat	her <u>Cook</u> , Suwar, 40° Sampled with Bailer N Pump
Α.	WATER TABLE:
	Well depth: Well elevation: (below top of casing) 5/99 ft. (top of casing) ft.
	Depth to water table: Water table elevation: ft. (below top of casing) 16.67 ft.
	Length of water column (LWC)ft
	Volume of water in well:
	diameter wells = 0.163 x (LWC) = 5.8 gallons 7.3 4" diameter wells = 0.653 X (LWC) = $\frac{5.8}{2}$ gallons $\frac{7.3}{2}$ 6" diameter wells = 1.469 X (LWC) = $\frac{5.8}{2}$ gallons $\frac{7.3}{2}$
В.	PHYSICAL APPEARANCE AT START:
	color TAN/BROW Odor Nont Turbidity Modeste
	Was an oil film or layer apparent? No
c.	PREPARATION OF WELL FOR SAMPLING:
	Amount of water removed before sampling gallons.
	Did well go dry?
D.	PHYSICAL APPEARANCE DURING SAMPLING:
	Color TW/ BROWN Odor NONE Turbidity MODERATE
	Was an oil film or layer apparent?
Ε.	CONDUCTIVITY 560
F.	0 2
	TEMPERATURE 30227
G.	
н.	WELL SAMPLING NOTES: -/3-
	SAMPLED AT GRO 12-12-90 WA'S, SOMI-WHATES
	HBS ICLIMETAIS
	TETAL & WATERLES

Samp	le Location (PHELS) PICHARIXON HILL R	BOAD LANDAUL Well No. /	1W-5D
Samp	led By TAMES A. MODE	Date 12-5-9/ Time	1230
Weat	ther <u>COLD</u> S	Sampled with Bailer X	Pump
Α.	WATER TABLE:		4.11
	Well depth: (below top of casing) <u>57.79</u> ft.	<pre>Well elevation: (top of casing) _</pre>	ft.
	Depth to water table: (below top of casing) 407 ft.	Water table elevation: _	ft.
	Length of water column (LWC)	7.72 ft.	
	Volume of water in well:		
	diameter wells = 0.163 : 4" diameter wells = 0.653 : 6" diameter wells = 1.469 :	x (LWC) = 7.78 gal X (LWC) = gal X (LWC) = gal	lons 23.34g4 lons lons
B.	PHYSICAL APPEARANCE AT START:		
	Color Colocless Odor N	JOUE Turbidity	Lu
	Was an oil film or layer apparent? _		
C.	PREPARATION OF WELL FOR SAMPLING:		
	Amount of water removed before sampli	ing <u>34.0</u>	gallons.
	Did well go dry?		
D.	PHYSICAL APPEARANCE DURING SAMPLING:		
	Color IN/LIGHT BROWN Odor 4	(csTurbidity	MODERATIS
Ε.	Was an oil film or layer apparent? 694 1394 1897 2457 CONDUCTIVITY 60, 100 130, 120		
	•		302270
F.	pH 7.0 7.0 7.0 7.0		
G.	TEMPERATURE	_	
н.	WELL SAMPLING NOTES:		
	SAMPLED AT 1315		
	•	•	

	le Location (PHRLS) RICHARDSON HU	I KOAD	CAWDILL	Well	No.	MW-//)
Samp	led By JAMES A. MODE	Date	12-5-	91	Time -	1115
Weat	her <u>Cub</u>	Sample	i with	Bailer	X	Pump
Α.	WATER TABLE:					·
	Well depth: (below top of casing) 61.68 ft.			eleva of ca		ft.
	Depth to water table: (below top of casing) <u>56.67</u> ft.					ft.
	Length of water column (LWC)		ft.			
	Volume of water in well:					,
	diameter wells = 0.163 diameter wells = 0.653 diameter wells = 1.469	X (LWC) X (LWC)	=	81	ga ga	llons 2.45gd llons llons
B.	PHYSICAL APPEARANCE AT START:					
	Color Lighthan /Bann Odor	JNE		_ Turb	idity	Hish
	Was an oil film or layer apparent?	No				
C.	PREPARATION OF WELL FOR SAMPLING:					
	Amount of water removed before samp	ling	1,5			gallons.
	Did well go dry?Yes		<u>.</u>			
D.	PHYSICAL APPEARANCE DURING SAMPLING	:				
	Color Odor	160				
		PONE		Turbi	di ty	MODERATE
	Was an oil film or layer apparent?		No	Turbi	dity _	MODERATE
E.	Was an oil film or layer apparent? CONDUCTIVITY 240 180			Turbi	dity _	MODERATE
E. F.	Was an oil film or layer apparent?			Turbi	dity _ 	MODERATE
	Was an oil film or layer apparent? CONDUCTIVITY 240 180			Turbi 	•	
F.	Was an oil film or layer apparent? CONDUCTIVITY 340 180 pH 70 70 TEMPERATURE	——————————————————————————————————————		Turbi	•	1227.
F.	Was an oil film or layer apparent? CONDUCTIVITY 240 1800 pH 20 70 TEMPERATURE — — WELL SAMPLING NOTES:	——————————————————————————————————————	_N∘	Turbi	•	
F.	Was an oil film or layer apparent? CONDUCTIVITY 340 180 pH 70 70 TEMPERATURE	——————————————————————————————————————	_N∘	Turbi	•	
F.	Was an oil film or layer apparent? CONDUCTIVITY 240 1800 pH 20 70 TEMPERATURE — — WELL SAMPLING NOTES:	——————————————————————————————————————	_N∘	Turbi	•	
F.	Was an oil film or layer apparent? CONDUCTIVITY 240 1800 pH 20 70 TEMPERATURE — — WELL SAMPLING NOTES:	——————————————————————————————————————	_N∘	Turbi	•	

Samp	ole Location (PHELS) PICHARDSON HILL ROAD LANDFILL Well No	1355
	ther Sampled with Bailer X	
Α.	WATER TABLE:	
	Well depth: Well elevation: (below top of casing) _57.58 ft. (top of casing) _	ft.
	Depth to water table: Water table elevation:	ft.
	Length of water column (LWC) 35 // ft.	
	Volume of water in well:	
	diameter wells = 0.163 x (LWC) = 5.7 gal 4" diameter wells = 0.653 X (LWC) = gal 6" diameter wells = 1.469 X (LWC) = gal	lons 17.19gu lons lons
В.	PHYSICAL APPEARANCE AT START:	
	Color Cowers /TN Odor Nove Turbidity	Lun
	Was an oil film or layer apparent?	,
C.	PREPARATION OF WELL FOR SAMPLING:	
	Amount of water removed before sampling	gallons.
	Did well go dry?Y	•
D.	PHYSICAL APPEARANCE DURING SAMPLING:	
	Color Tan Odor Nave Turbidity	Low
	Was an oil film or layer apparent?	
E.	CONDUCTIVITY 140 = 410	
F.	pH 7 P* 7,0	
G.	TEMPERATURE AM	0000
н.	WELL SAMPLING NOTES:	302275
	SAMPLED AT 1535	

San	ple Location Richardson Hill Rd. Lande	:il s;	Te		Well	No.	MW-	75
San	pled By DRT, PSL	Date	5/4	192		Time	3:00	PM
Wea	ther cloudy, windy, 45°F	Samp 1	ed wi	ith E	lailer	<u>/</u>	_ Pump	
A.	WATER TABLE: Well depth: (below top of casing) 19.39 ft. Depth to water table: (below top of casing) 5.94 ft. Length of water column (LHC) 13.4 Volume of water in well:	Wat	W (er ta	lell top ble	eleya of ca eleya	tion: sing) tion:		ft
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	X (LW	C) =			g	allons allons allons	
B.	PHYSICAL APPEARANCE AT START:					_	very	
	Color how Odor how	L			Turb	idity	1 1/	
	Was an oil film or layer apparent? _	ho						
C.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Old well go dry? No	ing _	<i>8</i>				_ gallo	ons.
D.	PHYSICAL APPEARANCE DURING SAMPLING:				•		rear	
	Color brim Odor h	one		•	Turbio	ii ty	hig I	
	Was an oil film or layer apparent?							
E.	CONDUCTIVITY 190 ms/cm 220 ms/a 200 m	S/cm :	200 - 5/	len				
	pH 9.56 9.20 8.95 9.0	-						
	TEMPERATURE 46'F 44'F 43,9'F 43,8'	F				•	3022'	7 C
H.	WELL SAMPLING NOTES: HNU reading over well = 0.1 ppm		kgn.	md)				· (,
	<u>Collected</u> ms and mso at	75						
	Turhidity > 100 NTUs							
		···					- · · · · · · · · · · · · · · · · · · ·	

Sam	ple Location Richardson HII Rd Landson pled By ORT, PTL ther partly synny 50°F	Date 5	14/9	Well No.	MW-4 d 3:50 PM	
Wea	ther partly sunny 50°F	Samp 1 ed	with	Bailer <u>/</u>	Pump	
A.	WATER TABLE:					
	Well depth: (below top of casing) 48.65 ft.		(top) _	f
	Depth to water table: (below top of casing) 2.85 ft.	Water	table	elevation	•	- f
	Length of water column (LWC)					
	Volume of water in well: 2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	x (LWC) X (LWC)	<u>7</u>	47	gallons gallons gallons	
l.	PHYSICAL APPEARANCE AT START: Color Odor A Was an oil film or layer apparent?	o he		_ Turbidity	very low	-
	and the same of the same of the same of	- 10		•		
•	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp		45	16	gallons	•
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry? YES PHYSICAL APPEARANCE DURING SAMPLING.	ling				•
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry? YES PHYSICAL APPEARANCE DURING SAMPLING. Colorc/earOdorho~~c	ling				•
•	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry? YES PHYSICAL APPEARANCE DURING SAMPLING. Color _ c/ear Odor home Was an oil film or layer apparent? CONDUCTIVITY 420.5 \(\text{L} \) 400.5 \(\text{L} \) 420.1 ph _ 9.09 _ 9.24 _ 9.25	ling				•
•	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry? YES PHYSICAL APPEARANCE DURING SAMPLING. Colorc/earOdorho~~c	ling				•
•	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry? YES PHYSICAL APPEARANCE DURING SAMPLING. Colorc/ear Odor home Was an oil film or layer apparent? CONDUCTIVITY 420.5 \(\text{400.05} \) \(\text{400.0} \) PHYSICAL APPEARANCE DURING SAMPLING. Colorc/ear Odor home Temperature \(\frac{52.7^{\text{f}}}{52.5^{\text{f}}} \) \(\frac{52.7^{\text{f}}}{52.7^{\text{f}}} \) TEMPERATURE \(\frac{52.7^{\text{f}}}{52.5^{\text{f}}} \) \(\frac{52.7^{\text{f}}}{52.7^{\text{f}}} \) WELL SAMPLING NOTES:	ho S/cm		Turbidity	very low	•
•	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp Did well go dry? YES PHYSICAL APPEARANCE DURING SAMPLING. Color _ c/ear Odor home Was an oil film or layer apparent? CONDUCTIVITY 420.5 / 400.5 /cm 420.0 ph _ 9.09 9.24 9.25 TEMPERATURE 52.7 52.6 F 52.7 F	ho S/cm Background	> /00	Turbidity NTU	very low	•

Sam	ple Location Richardan Hill Rd Lan	• • • • • • • • • • • • • • • • • • • •		Well	No.	nw-11d	
	pled By DRT, PJL	Date 5	14/9:	۲ '	Time	12.55 P	
Wea	ther cloudy 50°F	Sampled	with	Bailer	_/	Pump	
	WATER TABLE:						
	Well depth: (below top of casing) 61.98 ft	•	Well (top	eleva:	tion: sing)		ft.
	Depth to water table: 56.64 ft (below top of casing)	Water	table	eleya	tion:		ft.
	Length of water column (LHC) $\underline{5}$.	34					
	Volume of water in well:						
	2" diameter wells = 0.16 4" diameter wells = 0.65 6" diameter wells = 1.46	3 X (LWC)	=		ga	allons allons allons	
B.	PHYSICAL APPEARANCE AT START:						
	Color clear Odor	none		Turbi	dity	100	
	Was an oil film or layer apparent?						
C.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before samp	ol fn a	1.5			gallons	
	Old well go dry? Yes					ga i iuiis	•
D.	Did well go dry?						•
۵.	PHYSICAL APPEARANCE DURING SAMPLING			Turbid	i ty		•
D.	PHYSICAL APPEARANCE DURING SAMPLING	 i: ne		Turbid	ity _		
	PHYSICAL APPEARANCE DURING SAMPLING	i: nc		Turbid	ity _		
Ε.	PHYSICAL APPEARANCE DURING SAMPLING Color C/cAR	i: nc		Turbid	ity _		
E. F.	PHYSICAL APPEARANCE DURING SAMPLING Color	he houstonston		Turbid		low	
E. F.	PHYSICAL APPEARANCE DURING SAMPLING Color	tous/cm		Turbid			
E. F. G.	PHYSICAL APPEARANCE DURING SAMPLING Color	tous/cm		Turbid		low	
E. F. G.	PHYSICAL APPEARANCE DURING SAMPLING Color	tous/cm		Turbid		low	

- -	ole Location Richards Hill Rd Landfill			_ MG11	wa.	וון שוון	
щÞ	oled By <u>ORT, PTL</u>	Date	5/4/9	2	Time	1:25 1	m
t	ther cloudy 50°F	Sampled	with	Bailer		Pump _	
	WATER TABLE:						
	Well depth: (below top of casing) 36.54 ft.		Well (top	eleya	tion: sing)		,
	Depth to water table: (below top of casing)ft.	Water	table	e]eya	tion:		_
	Length of water column (LWC) 25						
	Volume of water in well:						
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	x (LWC) x (LWC)	*	4.12		llons llons llons	
	PHYSICAL APPEARANCE AT START:						
	Color dark gray Odor n	one		Turbi	ditu	mo de RAT	
							L
,	Was an oil film or layer apparent? _						
		<i>ት</i> ፡				_ gallon	
	Was an oil film or layer apparent? _ PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl	ing					
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Old well go dry?	ing	/3			_ gallon	
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Did well go dry?	ing	/3	Turbid		_ gallon	
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Did well go dry?	ing	/3	Turbid		_ gallon	
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Did well go dry?	ing	/3	Turbid		_ gallon	
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Did well go dry?	ing	/3	Turbid	if ty <u>A</u>	_ gallon	5.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampled well go dry? PHYSICAL APPEARANCE DURING SAMPLING: Color 900 Odor 1000 Was an oil film or layer apparent? CONDUCTIVITY 5045/cm, 5045/	no 2.5/ch 4+1.7 F	13 50u s/	Turbid	if ty <u>A</u>	gallon	s.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampling well go dry? PHYSICAL APPEARANCE DURING SAMPLING: Color 9 cay Odor hone Was an oil film or layer apparent? CONDUCTIVITY 50 S/cm 50 S/cm 50 pH 48.5 - 8.62 8.54 8.53 8.5 TEMPERATURE 48.5 F 45.9 F 45 F	no 2.5/ch 4+1.7 F	13 50u s/	Turbid	if ty <u>A</u>	gallon	s.

•	d By DAT, PJL	Date 5	14/9	Well No.	12:201	'n
the	f sunny SO°F	Sampled	with	Bailer 🗸	Pump _	
W	ATER TABLE:					
H	ell depth: below top of casing) 22.71 ft.		Well (top	elevation of casing	1: 1)	
0 (epth to water table: 3.50 ft.	Water	table	elevation	1:	-
L	ength of water column (LWC) 19:	21	ft.			
Vo	olume of water in well:		_			
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	X (LWC)	=		gallons gallons gallons	
Co	SICAL APPEARANCE AT START: Slor	hone		_ Turbidit	y <u>/.</u>	
						_
Am	EPARATION OF WELL FOR SAMPLING: bount of water removed before sampled well go dry?	ing	,	o	gallor	ns.
Am Di PH Co	ount of water removed before sample dependent of water removed before sample dependent of the sample	ne			<u> </u>	ns.
Am Di PH Co Wa	bunt of water removed before sampled well go dry?	ne no			<u> </u>	ns
Am Di PH Co Wa	bunt of water removed before sampled well go dry?	ne no			<u> </u>	ns.
Am Di PH Co Wa	wount of water removed before sample dependence of the sample of the sam	ne no			<u> </u>	ns
Am Di PH Co Wa:	wount of water removed before sample dependence of the sample of the sam	ne no			<u> </u>	
Am Di PH Co Wa CO pH TEI	bunt of water removed before sampled well go dry?	ne no /cm 43.8, 45	(,2°F)		low	

	ple Location Richardin Hill Rd Landf		Well No.	MW-5d
Sam	pled By ORT PTL	Date _	5/5/92 Time	11:00 AM
Wea		·	with Bailer	
A.	WATER TABLE:		·	
	Well depth: (below top of casing) 52.05 ft.		Well elevation (top of casing	
	Depth to water table: 3.76 (below top of casing) 0000 ft.		table elevation	: ft.
	Length of water column (LWC) $\frac{48}{}$.	<u> </u>	_ft.	
	Volume of water in well:		¬ 47	
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	X (LWC)	8	gallons gallons gallons
B.	PHYSICAL APPEARANCE AT START:			
	Color light gray Odor	hone	Turbidit	y lon
	Was an oil film or layer apparent?	カロ		
C.	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Did well go dry? ho	ing	25	gallons.
٥.	PHYSICAL APPEARANCE DURING SAMPLING: Color Odor	one	Turbidity	lon
	Was an oil film or layer apparent? _	40		· · · · · · · · · · · · · · · · · · ·
E.	CONDUCTIVITY 90 150 153	_		
F.	pH 11,28° 11.2 10.93	_	_	00001
G.	TEMPERATURE 46,5° × 46.5° × 46.5	e F		302281
н.	HNU reading notes:	ern (Background)	
	Jurbidity 100 NIUS			

Sam	ple Location Richardson Hill Rd Lands	• //:	¥	lell No.	MW-55
Sam	pled By DRT, PJL	Date 5	15/92	Time	11:30 Am
Wea	ther snow, 35°F	Sampled	with Bai	ler /	Pum
	WATER TABLE:				
,,,	Well depth: (below top of casing) 18.50 ft.	•	Well el (top of	evation: casing)	ft.
	Depth to water table: \$5.10 ft.	Water	table el	evation:	ft.
	Length of water column (LNC) 13.	4	_ft.		
	Volume of water in well:				
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	x (LWC) x (LWC)	2,1	<u>8</u> g g	allons allons allons
B.	PHYSICAL APPEARANCE AT START:				/
	Color brown Odor YE	`\$	To	urbidity	moderate/him
	Was an oil film or layer apparent?	YES (0.	3/ Ft. thick	leyer)	
	PREPARATION OF WELL FOR SAMPLING: Amount of water removed before sampl Did well go dry?				gallons.
D.	PHYSICAL APPEARANCE DURING SAMPLING: Color brown Odor Y & Was an oil film or layer apparent? CONDUCTIVITY 510 AS/C 500.5 L 5 ph 12.2, 11.9, 12.1 TEMPERATURE 42,3°F 42.4°F 42.5				
	Color brive Odor YE	: 5	Tu	bidity	n. dra a te/ha
	Was an oil film or layer apparent?	ho s/:a	ht sheen	`	13
Ε.	CONDUCTIVITY 510 .5/c. 500 5/. 5	00 ns/cm			
_	12 2 1/9 10 1	_			
F.	ph 12.2, 11.1, 12.1				30000
G.	TEMPERATURE 42,3°F 424°F 42.5	<u>.</u>		č	30228 ©
H.	HELL SAMPLING NOTES: HNU reading on- well = 0.1 p Turbidity > 100 NTU:		ckground)	
	Turbidity > 100 NTU:				
	, , , , , , , , , , , , , , , , , , ,	.			

Sam	ple Location Richardson Hill Rol L	and Fill Site		Well No.	mw- 7.	/
Sam	pled By ORT / PIL	Date5/	4/92	Time	2:250	m
Wea	ther cloudy 50°F	Sampled	with !	Bailer 🗸	Pump	
A.	WATER TABLE:	·				
	Well depth: (below top of casing) 37.56	ft.	Well (top	<pre>elevation: of casing)</pre>		ft.
·	Depth to water table: 6.78	Water ft.		elevation:		
	Length of water column (LWC)		ft.			
	Volume of water in well:					
	2" diameter wells = 0. 4" diameter wells = 0. 6" diameter wells = 1.	M33 L II W4) 1		-	111000	
B.	PHYSICAL APPEARANCE AT START: Color c/can / 2/2 t			Turbidity	very low	
C.	PREPARATION OF WELL FOR SAMPLING Amount of water removed before so Did well go dry?		14		_ gallons	i .
٥.	PHYSICAL APPEARANCE DURING SAMPLE					
	Color light gray Odor	hone		Turbidity _	mo de RaTe	
	Was an oil film or layer apparent	,				
E.	CONDUCTIVITY 290 5/cm , 24 0 5/c	n 370 a S/cm , 3	360.5/	Ch		
G.	TEMPERATURE 50°F, 46.5°F, 45.7°	°F		3(0228 0	
н.	WELL SAMPLING NOTES:					
	Turbidity > 100 NTUs					
	HNU realize over well = 0.1	PPA (Bac	kgr. u.	. 1)	·	
	Split Samples w/ Versar Collected Blind Duplicate	rep. Pete	K	amisk j		
	Collected Blind Duplicate	AT MW-7	1			

	Park Bus NOT 6	7 - 1	804-		9 n 🕳		$\Delta a = 1$	_
= + (ile Location Ridurd	J L	UATE	5/3/	<u> </u>	Time _	9:45	A)
2 4	TIEL 2 40 to 7 2 1		Sampled	MICH	Bailer		Pump _	
	WATER TABLE:							
	Well depth: (below top of cast	ing) 21.05	ft.	Well (top	elevat	ion: ing)		
	Depth to water tait (below top of cast	ole: 3.75 . 1	Water Ft.	tzble	eleyat	ion:		_
	Length of water co		17.3	_ft.				
	Volume of water in							
	2" diame 4" diame 6" diame	eter wells = 0.1 eter wells = 0.6 eter wells = 1.4	.63 x (LWC) :53 X (LWC) .69 X (LWC)	= 2		ga ga	llons	
	PHYSICAL APPEARANC	E AT START:					,	
	- 1						1.1	
	Color <u>brown</u> Was an oil film or PREPARATION OF WEL	layer apparent	? none		_ Turbi	dity _	high	
!	was an oil film or	layer apparent L FOR SAMPLING: moved before sam	? none		<u> </u>		high gallon	s .
1	Was an oil film or PREPARATION OF WELL Amount of water red Did well go dry?PHYSICAL APPEARANCE	layer apparent L FOR SAMPLING: moved before sampling ho E DURING SAMPLING	none mpling NG:				_ gallon	s.
	Was an oil film or PREPARATION OF WELL Amount of water resold well go dry?	layer apparent L FOR SAMPLING: moved before sampling buring SAMPLING Odor	none mpling NG:		<u> </u>		_ gallon	s.
	Was an oil film or PREPARATION OF WELL Amount of water resold well go dry?	layer apparent L FOR SAMPLING: moved before sampling buring SAMPLING Odor	none mpling NG:				_ gallon	s.
	Was an oil film or PREPARATION OF WELL Amount of water resold well go dry?	layer apparent L FOR SAMPLING: moved before sampling buring SAMPLING Odor	none mpling NG:				_ gallon	s.
	Nas an oil film or PREPARATION OF WELL Amount of water red Did well go dry? PHYSICAL APPEARANCE Color brown Was an oil film or CONDUCTIVITY 350	layer apparent L FOR SAMPLING: moved before sampling ho E DURING SAMPLING Odor layer apparent: 290,300	none mpling NG:				_ gallon	s.
	PREPARATION OF WELL Amount of water res Did well go dry? PHYSICAL APPEARANCE Color brown Was an oil film or CONDUCTIVITY 350 ph 8.52 8.25	layer apparent L FOR SAMPLING: moved before sampling ho E DURING SAMPLING Odor layer apparent: 290,300 8.1	none mpling NG:			i ty _/	_ gallon	s.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PREPARATION OF WELL Amount of water re Did well go dry? PHYSICAL APPEARANCE Color brown Was an oil film or CONDUCTIVITY 350 PH 8.52 8.25 TEMPERATURE 43.51 WELL SAMPLING NOTES	layer apparent L FOR SAMPLING: moved before sampling ho E DURING SAMPLING Odor layer apparent: 290,300 8.1 - 42.3°F 41.8	none mpling NG: ho none	9		i ty _/	gallon	5.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PREPARATION OF WELL Amount of water red Did well go dry? PHYSICAL APPEARANCE Color brown Was an oil film or CONDUCTIVITY 350 pH 8.52 ,8.25 TEMPERATURE 43.5	layer apparent L FOR SAMPLING: moved before sampling ho E DURING SAMPLING Odor layer apparent: 290,300 8.1 - 42.3°F 41.8	none mpling NG: ho none	9		i ty _/	gallon	5.

imple Lo	peation Richardson Hill Rd	Landh!	-15 10 :	dell No.	Mw-18 d
	Show 35°F		•	Time	10:05 AM
_		oump i Ca	WICH DE	1 161 <u>/</u>	
WATE	ER TABLE:				
(bei	depth: fow top of casing) $5/.89$ ft.			evation: fcasing)	
	ow cop of casing) 16.56 ft.	Water		evation:	
	th of water column (LNC) 35.	33	ft.	•	
Volu	me of water in well:		_	7 /	
	2" diameter wells = 0.163 4" diameter wells = 0.653 6" diameter wells = 1.469	X (LHC)	*	9	allons allons allons
	ICAL APPEARANCE AT START:				,
Colo	r Clear Odor non	e	1	urbidity	very low
	an oil film or layer apparent? _		<u> </u>		
Amour	ARATION OF WELL FOR SAMPLING: nt of water removed before sample well go dry? $\underline{485}$	ing	4		gallons.
PHYSI	ICAL APPEARANCE DURING SAMPLING:				
Color	r <u>C/car / light gray</u> Odor <u>ho</u> an oil film or layer apparent? _	he	Tu	rbidity	low_
Was a	n oil film or layer apparent? _	ho		- i - i - i - i - i - i - i - i - i - i	· · · · · · · · · · · · · · · · · · ·
CONDI	SCTIVITY 460'45/cm 50045/cm 510	Ous/cm	,		
pH	8.02, 7.85 7.85				
TEMPE	8.02, 7.85, 7.85 RATURE 44°F, 43.8°F, 43.5°F	-		3	02285
WELL	SAMPLING NOTES:				
HNu	I CACIAG DVFF Wil - IIII IN - I IDACA	A /			
HNu	reading over will = 0.1 ppm (Back chol w/ Turbidineter > 100	NTU	.		

ple Location Withham	In 1711 Fol Landkill	21.75		Well	No.	mw-19	
pled By DRT, P	T L	Date	5/4/9	2	lime	11:00 AM	1
ther sonny 50'F		Sampied	with	Bailer	<u> </u>	Pump	
WATER TABLE:		·					
Well depth: (below top of casi:	ng) 42.0/ ft.		Well (top	elevat	ion:		ft.
Depth to water tabl	ia•						_
Length of water col	LHC) 20.36	·	_ft.				
4. Glamet	27 Wells = U.D34 72		=		62	allone	
Color Light tan	Odor here			_ Turbi	dity	1	
PREPARATION OF WELL Amount of water rem Old well go dry?	FOR SAMPLING: oved before sampli		10			gallon:	5.
Amount of water rem Did well go dry? PHYSICAL APPEARANCE	FOR SAMPLING: oved before sampli oved before sampli oved before sampling:	ng					5.
Amount of water rem Did well go dry? PHYSICAL APPEARANCE Color	FOR SAMPLING: oved before sampli no DURING SAMPLING: Odorhome	ng		Turbid			5.
Amount of water rem Did well go dry? PHYSICAL APPEARANCE Color	FOR SAMPLING: oved before sampli no DURING SAMPLING: Odor home layer apparent?	ng		Turbid	ity _		5.
Amount of water rem Did well go dry? PHYSICAL APPEARANCE Color	FOR SAMPLING: oved before sampli no DURING SAMPLING: Odor home layer apparent? (m, 570 u 5/cu, 1/0 u 5/cu, 8, 20, 8, 2 4	ng	S/cz, ,	Turbid	ity _		5.
Amount of water rem Did well go dry? PHYSICAL APPEARANCE Color	FOR SAMPLING: oved before sampli no DURING SAMPLING: Odor home layer apparent? (m, 570 u 5/cu, 1/0 u 5/cu, 8, 20, 8, 2 4	ng	S/cz, ,	Turbid	ity _		
Amount of water rem Did well go dry? PHYSICAL APPEARANCE Color	FOR SAMPLING: Oved before sampli No DURING SAMPLING: Odor home layer apparent? (m, 570 u 5/cu , 1/0 u 5/cu -, 8, 20, 8, 2 L 50.2°F, 51.0°F, 4	ng	5/cz, 1	Turbid	ity _	h., h	
Amount of water rem Did well go dry? PHYSICAL APPEARANCE Color	FOR SAMPLING: oved before sampli no DURING SAMPLING: Odor home layer apparent? (m, 570 m 5/cm 1/0 m 5/cm 78, 20, 8, 2 L 50.2°F, 51.0°F, 6 (r w, //= 0.1	ng	5/cz, 1	Turbid	ity _	h., h	
Amount of water rem Did well go dry? PHYSICAL APPEARANCE Color tan Was an oil film or 1 CONDUCTIVITY 1000 LS/c, PH 894, 6,97, 8.22 TEMPERATURE 54.9°F, WELL SAMPLING NOTES: HN u reading o	FOR SAMPLING: oved before sampli no DURING SAMPLING: Odor home layer apparent? (m, 570 m 5/cm 1/0 m 5/cm 78, 20, 8, 2 L 50.2°F, 51.0°F, 6 (r w, //= 0.1	ng	5/cz, 1	Turbid	ity _	h., h	
	WATER TABLE: Well depth: (below top of casis Depth to water tab (below top of casis Length of water col Volume of water in 2" diames 4" diames 6" diames PHYSICAL APPEARANCE Color Light tan	WATER TABLE: Well depth: (below top of casing) 42.0/ ft. Depth to water table: (below top of casing) 21.65 ft. Length of water column (LNC) 20.36 Volume of water in well: 2" diameter wells = 0.163 x 4" diameter wells = 0.653 x 6" diameter wells = 1.469 x PHYSICAL APPEARANCE AT START: Color Light tan Odor home	WATER TABLE: Well depth: (below top of casing) 42.0/ ft. Depth to water table: (below top of casing) 21.65 ft. Length of water column (LWC) 20.36 Volume of water in well: 2" diameter wells = 0.653 x (LWC) 4" diameter wells = 1.469 x (LWC) 6" diameter wells = 1.469 x (LWC) PHYSICAL APPEARANCE AT START: Color Light tan Odor how	WATER TABLE: Well depth: (below top of casing) 42.0/ ft. (top Depth to water table: (below top of casing) 21.65 ft. Length of water column (LHC) 20.36 ft. Volume of water in well: 2" diameter wells = 0.163 x (LHC) = 3.4" diameter wells = 0.653 X (LHC) = 6" diameter wells = 1.469 X (LHC) = 9 PHYSICAL APPEARANCE AT START:	WATER TABLE: Well depth: (below top of casing) 42.0/ ft. (top of casing) 42.0/ ft. Depth to water table: (below top of casing) 2/.65 ft. Length of water column (LWC) 20.36 ft. Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 3.32 4" diameter wells = 0.653 X (LWC) = 6" diameter wells = 1.469 X (LWC) = PHYSICAL APPEARANCE AT START: Color 1.54 + 147 Odor 1000 Turbi	WATER TABLE: Well depth: (below top of casing) 42.0/ ft. (top of casing) Depth to water table: (below top of casing) 21.65 ft. Length of water column (LWC) 20.36 ft. Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 3.32 gr 4" diameter wells = 0.653 x (LWC) = gr 6" diameter wells = 1.469 x (LWC) = gr PHYSICAL APPEARANCE AT START: Color Light table Turbidity	Well depth: (below top of casing) 42.0/ ft. (top of casing) Depth to water table: (below top of casing) 2/.65 ft. Length of water column (LWC) 20.36 ft. Volume of water in well: 2" diameter wells = 0.163 x (LWC) = 3.32 gallons 4" diameter wells = 0.653 x (LWC) = gallons 6" diameter wells = 1.469 x (LWC) = gallons PHYSICAL APPEARANCE AT START: Color Light table elevation: (top of casing) Water table elevation: (tup of casing) Water table elevation: (LWC) = 3.32 gallons gallons Turbidity /

Ground Water Sampling Low Flow Purge Evacuation Data Sidney, New York

Time	Water	Temperature	pH(1)	pH(2)	Conductivity	Oxidation	Dissolved	Turbidity	Flow Rat
(Min)	Level	(°C)			(pS/cm)	Reduction	Oxygen	(NTU)	Gal./Min.
	(ft)			-	·····	Potential(mV)	(mg/L)	 	
MW-1									
2.8 gal		9.3	6.29		0.302	18	2.6	44	•
MAY 0									
MW-2 3	_	11.4	6.08		0.286	1	1.15	75	
6		11.9	6.10		0.286	-15	1.15	75 74	
9	_	12.3	6.13		0.355	-29	1.0	56	
12	29.28	12.5	6.13		0.416	-36			
							1.0	44	
15	29.19	13.1	6.15		0.421	-39	1.2	40	
18	29.05	13.3	6.15		0.421	-40	1.4	38	
21	28.91	13.2	6.16		0.42	-40	1.4	38	0.08
MW-3									
3	2.84	10.3	5.64	5.7	0.116	88	1.2	>100	
6	2.84	10.6	5.68	5.7	0.116	62	1.1	88.2	
9	2.84	10.7	5.63	5.7	0.117	74	1.1	48	
12	2.79	10.6	5.62	5.7	0.116	84	1.1	37	
15	2.79	10.6	5.63	5.7	0.116	87	1.2	39	
18	2.78	10.8	5.7	5.7	0.117	85	1.1	36	0.15
MW-3D 0	3.86	_				_	_		
3	3.92	5.6	6.57		0.052	237	4.52	780	
6	3.89	5.5	6.59		0.052	220	3.82	835	
11	4.01	5.3	6.45		0.066	190	4.40	>1000	
16	3.96	6.8	6.59		0.021	148	5.37	>1000	
19	3.94	6.5	6.58		0.021	156	6.13	>1000	
25	4.00	8.0	6.58		0.075	137	7.64	>1000	
28 31	4.01 4.00	8.8 8.7	6.57 6.49		0.074 0.06 9	121 130	6.30	>1000	0.06
31	4.00	6.7	0.48		0.069	130	5.80	>1000	Ų. 0 6
MW-3DD									
0	38.80	-	-					_	
3	44.60	7.7	11.30		0.069	-56	3.46	21.0	
7	44.88	7.4	11.35		0.180	-79	2.97	18.0	
9	44.93	6.9	11.34		0.190	-85	2.82	18.0	
12	45.00	6.4	11.35		0.187	-91	2.75	26.0	
15	45.10	6.2	11.38		0.179	-97	2.55	23.0	
18	45.19	5.8	11.38		0.173	-102	2.52	28.0	
21	45.28	5.7	11.33		0.172	-110	2.39	37.8	
24	45.35	5.7	11.30		0.165	-121	2.16	84.4	
27	45.36	5.7	11.26		0.170	-136	2.19	163.0	•
30	45.38	5.7	11.30		0.176	-148	1.90	375.0	
33	45.34	5.6	11.25		0.154	-153	1.85	824.0	
36	45.32	5.5	11.25		0.156	-164	1.51	>1000	0.03
		-							
MW-4S	2.05								
0	3.95	-	-					-	
3	4.04	8.4	8.3		0.029	2.22	11.5	69	
6	4.04	8.5	8.2		0.029	2.33	10.0	51	
9	4.04	8.5	7.5		0.028	2.42	9.6	43	
12	4.02	8.5	7.5		0.028	2.49	9.4	41	
15	4.02	8.4	7.6		0.028	2.53	9.4	38	
18	4.02	8.4	7.6		0.028	2.58	9.2	38	0.25

Ground Water Sampling Low Flow Purge Evacuation Data Sidney, New York

Time (Min)	Water Level	Temperature (℃)	pH(1)	pH(2)	Conductivity (pS/cm)	Oxidation Reduction	Dissolved Oxygen	Turbidity (NTU)	Flow Rate Gal./Min.
(141111)	(ft)	('4)			(Jus/ GLL)	Potential(mV)	(mg/L)	(1410)	Gai./Will.
MW-4D									
3	12.42	9.6	_		0.181	1.30	4.6	39	
6	16.34	9.7	_		0.181	1.29	4.8	35	
9	18.21	9.8			0.183	1.29	4.8	34	
12	19.89	9.5			0.180	1.36	6.4	34	
15	25.21	9.6	8.92		0.183	1.36	5.4	34	
18	26.91	9.6	8.91		0.179	1.37	4.2	33	
21	27.52	9.3	8.91		0.177	1.39	4.2	34	
24	28.56	9.6	8.90		0.186	1.33	4.4	34	0.15
MW-5D									
3	5.03	9.4	5.93	6.2	0.051	223	7.3	40	
7	5.05	9.7	5.82	6.1	0.054	210	6.8	35	
10	5.06	9.8	5.79	6.1	0.055	202	6.7	34	
13	5.06	9.9	5.84	6	0.056	186	6.6	35	
16	5.07	9.9	5.89	6	0.058	178	6.5	35	0.18
MW-6									
3	8.13	7.4	6.28	6.8	0.208	83	2.25	>100	
6	8.35	7.2	6.28	6.8	0.212	75	1.8	>100	
9	8.69	8.2	6.29	6.8	0.217	66	1.2	>100	
12	8.82	8.0	6.29	6.8	0.213	59	1.3	72	
15	8.86	7.9	6.29	6.8	0.215	55	1.45	65	
18	9.05	8.0	6.29	6.8	0.214	56	1.55	54	
22	9.26	8.0	6.28	6.8	0.223	56	1.2	49	
25	9.57	9.6	6.28	6.8	0.221	50	1	44	
27	9.68	9.3	6.28	6.8	0.218	48	0.9	40	0.13
MW-7S									
0	5.77				-	_			
3	6.18	9.0	7.9		0.113	2.03	7.0	>100	
6	6.18	10.2	8.2		0.117	2.05	5.9	>100	
9	6.23	10.7	8.0		0.119	2.07	5.7	>100	
12	6.23	10.5	7.8		0.118	2.12	5.8	>100	
15	6.32	11.2	7.7 7.7		0.120	2.13	5.5	>100	
18	6.30	11.1	7.7 7.6		0.120	2.15	5.5	>100	
21	6.31	10.9	7.6		0.120	2.19	5.6	>100	
24	6.32	11.1	7.5		0.120	2.19	5.6 5.6		
27	6.36	11.2	7.5 7.5					>100	
30	6.36	11.1	7.5 7.5		0.120 0.119	2.24 2.24	5.3 5.4	>100 >100	0.13
/W-7D									
0	6.62	-	-			-		_	
3	15.19	9.7	9.5		0.095	1.13	3.8	97	
6	17.46	10.0	9.8		0.095	1.07	3.4	60	
9	20.61	10.8	9.1		0.098	1.05	5.0	49	
12	24.78	11.0	9.3		0.098	1.05	5.6	44	
15	26.02	11.0	9.3		0.098	1.04	6.0	66	
18	27.29	11.8	9.2		0.100	0.96	5.7	95	
21	_	11.9	9.2		0.100	0.86	5.0	78	
23	_	10.8	9.2		0.097	0.81	4.9	76	0.10

Ground Water Sampling Low Flow Purge Evacuation Data Sidney, New York

Time (Min)	Water Level (ft)	Temperature (℃)	pH(1)	pH(2)	Conductivity (pS/cm)	Oxidation Reduction Potential(mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Flow Rate Gal./Min.
MW-8				_					
0	10.80	-	_			-	_		
3	10.88	9.2	7.7		0.038	1.94	12.2	92	
6	10.88	10.1	7.5		0.039	1.99	12.0	71	
9	10.89	10.7	7.4		0.039	2.05	11.6	57	
12	10.89	11.0	7.4		0.040	2.14	11.2	49	0.20
MW-9									
0	21.92		-	_	_	_		_	
3	22.98	7.3	6.11	7.4	0.004	181	12.1	>100	
6	23.12	7.6	5.92	7.3	0.037	186	11.4	>100	
9	23.15	8.3	5.92	7.3	0.037	185	11.4	85	
12	23.18	8.9	5.93	7.4	0.047	188	10.8	71	
15	23.19	9.5	5.93	7.4	0.035	193	10.4	61	
18	23.20	9.6	5.91	7.4	0.042	195	10.2	55	
22	23.23	9.7	5.88	7.4	0.042	202	10.3	52	0.07
MW-9D									
0	33.18					_			
3	33.93	7.8	6.51		0.061	157	5.49 .	67	
6	33.91	7.0	6.47		0.061	161	5.39	65	
9	33.91	6.9	6.44		0.061	164	5.41	39	
12	33.91	6.9	6.43		0.062	169	5.28	33	
15	33.91	7.3	6.47		0.062	174	5.20	27	
18	33.91	7.4	6.48		0.063	182	5.17	22	
21	33.91	7.7	6.47		0.063	186	5.16	19	
24	33.91	7.7	6.48		0.063	189	5.18	16	0.08
MW-10									
0	3.43								
3	5.07	6.7	7.4		0.063	1.64	6.2	>100	
6	5.12	7.3	7.4		0.064	1.67	6.2	>100	
9	5.37	7.6	7.5		0.064	1.92	6.2	>100	
12	5.21	7.6	7.5		0.065	2.00	6.2	>100	
15	5.02	7.7	7.5		0.066	2.07	6.2	86	
18	5.09	7.8	7.5		0.067	2.09	6.3	79	
21	5.22	7.8	7.4		0.067	2.13	6.3	71	
24	5.23	7.8	7.4		0.067	2.17	6.3	65	0.27
MW-11S									
0	12.71		_		_	-		_	
3	13.20	8.5	7.6		0.030	2.08	15.8	34	
6	13.17	8.2	7.5		0.030	2.23	12.6	31	
9	13.17	8.1	7.5		0.030	2.36	12.2	31	
12	13.17	8.1	7.5		0.030	2.47	12.0	31	
15	13.18	8.2	7.5		0.030	2.54	11.8	30	0.29
MW-11D									
1.25 gai	_	5.8	7.17		0.134	160	7.1	>100	*

Appendix E
RHRMLS Supplemental Remedial Investigation
12/94 - 3/95

Ground Water Sampling Low Flow Purge Evacuation Data Sidney, New York

Time (Min)	Water Level (ft)	Temperature (°C)	pH(1)	pH(2)	Conductivity (nS/cm)	Oxidation Reduction Potential(mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Flow Rate Gal./Min.
0	37.66		_		-			_	
3	41.71	8.6	8.50		0.157	-0.222	6.8	>100	
7	42.37	8.6	8.75		0.165	-0.226	6.1	>100	
10	42.57	8.6	8.87		0.170	-0.223	6.2	>100	
13	42.74	8.4	8.91		0.175	-0.223	6.0	>100	
16	42.99	8.5	8.94		0.182	-0.226	5.9	>100	0.02
MW-13									
0	6.95	_				_	-	_	
3	7.61	4.2	7.83		0.025	192	4.2	>100	
6	7.62	4.4	7.3		0.025	207	4.2	>100	
. 9	7.63	4.4	7.3		0.025	213	4.2	93	
12	7.64	4.6	7.42		0.025	226	4.3	57	
15	7.62	4.5	7.35		0.024	234	4.2	50.5	
18	7.63	4.5	7.3		0.025	237	4.2	45	0.35
MW-14									
1.5 gal	_	7.5	5.95		0.042	193	8.5	>100	
4.0 gal		7.5	5.64		0.043	230	7.4	>100	
5.1 gai	-	7.6	5.62		0.038	240	7.6	>100	•
MW-15									
3	11.31	8.8	7.7		0.026	2.67	10.2	42	
6	11.42	9.1	7.8		0.025	2.68	9.7	36	
9	11.58	9.7	7.8		0.026	, 2.98	9.1	35	
12	11.58	9.8	7.7		0.027	3.00	9.1	37	
15	11.58	9.7	7.7		0.026	3.02	9.1	37	0.15
MW-16									
2.25 gal	_	6.5	5.47		0.059	228	9.4	>100	
4.50 gal	-	7.0	5.47		0.059	241	9.1	>100	
6.75 gal		7.0	5.43		0.056	252	8.7	>100	•
MW-17									
0.25 gal	34.22	8.0	7.20		0.280	164	12.5	>100	*
MW-18S									
0	4.63	-	-		-	-		-	
7	5.42	8.2	6.13	6.9	0.225	27	4.0	>100	
12	5.51	8.3	6.14	6.9	0.213	18	2.9	>100	
16	5.55	8.5	6.20	6.9	0.209	38	1.75	>100	
21	5.56	8.7	6.24	7.0	0.213	56	1.8	>100	
23	5.38	8.4	6.23	7.1	0.040	70	2.7	>100	
31	5.36	8.4	6.22	7.1	0.041	70	2.7	>100	
35	5.55	10.2	6.20	7.1	0.202	67	2.2	>100	
39	5.61	10.0	6.20	7.1	0.202	64	2.1	>100	0.05

Ground Water Sampling Low Flow Purge Evacuation Data Sidney, New York

Time (Min)	Water Level	Temperature (℃)	pH(1)	pH(2)	Conductivity (pS/em)	Oxidation Reduction	Dissolved Oxygen	Turbidity (NTU)	Flow Rate Gal./Min.
	(ft)				<u> </u>	Potential(mV)	(mg/L)		
MW-18D									
0	15.93	_	_	_	_		_	_	
6	19.54	7.2	6.41	7.4	0.043	126	8.2	>100	
9	19.93	7.3	6.39	7.2	0.029	119	6.4	>100	
13	20.17	7.2	6.38	6.9	0.031	113	6.2	>100	
16	20.38	6.9	6.37	6.9	0.026	111	5.8	>100	
20	20.39	6.9	6.36	6.9	0.029	110	5.9	>100	
23	20.5	6.7	6.36	6.9	0.053	110	6.1	>100	
26	20.64	6.4	6.36	6.9	0.051	111	6.0	>100	
29	21.00	5.8	6.36	6.9	0.047	110	6.5	>100	
32	21.28	6.1	6.35	6.9	0.051	107	6.0	>100	
35	21.41	6.2	6.36	6.9	0.062	101	6.0	>100	
38	21.76	6.1	6.36	6.9	0.055	98	6.1	>100	0.10

AW-18DD					•				
0	55.13	_			_				
3	55.17	7.4	7.81		0.145	-124	0.52	9	
6	55.18	7.8	7.67		0.145	-176	0.27	4	
9	55.17	7.9	7.63		0.144	-264	0.20	4	
12	55.18	8.1	7.64		0.143	-297	0.19	2	
15	55.18	8.2	7.63		0.144	-311	0.16	2	0.11
IW-19									
0	21.92	-	-		_	_			
2	26.13	7.3	6.69		0.030	113	9.8	>100	
6	26.68	6.6	6.53		0.030	85	9.4	>100	
9	26.70	6.2	6.39		0.029	49	9.3	>100	
12	26.75	5.7	6.29		0.029	49	9.1	>100	
15	26.85	5.9	6.23		0.031	40	8.9	>100	
18	26.95	6.5	6.19		0.031	46	8.7	>100	
21	27.02	6.9	6.19		0.031	52	8.6	>100	
25	26.99	6.7	6.13		0.029	70	8.8	>100	
28	27.18	6.5	6.11		0.008	93	9.5	>100	
31	27.29	6.9	6.11		0.007	95	9.3	>100	
34	27.43	6.8	6.12		0.008	98	9.4	>100	
37	27.52	6.7	6.11		0.007	101	9.2	>100	0.07

Notes:

^{(*) =} Monitoring well was sampled with stainless steel bailer due to the inability to install a submersible pump or insufficient water column in well.

^{-- =} Data was not recorded.

^{(1) =} pH recorded with YSI 3500.

^{(2) =} pH recorded with Corning PS15.