F-1

IMMUNOASSY FIELD TEST KIT SUMMARY

STRATEGIC DIAGNOSTICS INC.

RaPID Assay® PCB Test Kit A00133/A00134

Intended Use

The RaPID Assay® PCB Test Kit can be used as a quantitative, semi-quantitative or qualitative enzyme analysis immunoassay (EIA) for the of PCB (polychlorinated biphenyl) in water (groundwater, surface water, well water). For applications in other matrices please contact our Technical Service department or refer to the soil application procedure provided. The RaPID Assay® PCB Test Kit allows reliable and rapid screening for PCB (measured and reported as Aroclor 1254), with quantitation between 0.5 and 10 ppb (as Aroclor 1254), in water. The minimum detection level of the kit is 0.2 ppb (as Aroclor 1254.)

Test Principles

The PCB RaPID Assay® kit applies the principles of enzyme linked immunosorbent assay (ELISA) to the The determination of PCB and related compounds. sample to be tested is added, along with an enzyme conjugate, to a disposable test tube, followed by paramagnetic particles with antibodies specific to PCB attached. Both PCB (which may be in the sample) and the enzyme labeled PCB (the enzyme conjugate) compete for antibody binding sites on the magnetic particles. At the end of an incubation period, a magnetic field is applied to hold the paramagnetic particles (with PCB and labeled PCB analog bound to the antibodies on the particles, in proportion to their original concentration) in the tube and allow the unbound reagents to be decanted. After decanting, the particles are washed with Washing Solution.

The presence of PCB is detected by adding the enzyme substrate (hydrogen peroxide) and the chromogen (3,3',5,5' - tetramethylbenzidine). The enzyme labeled PCB analog bound to the PCB antibody catalyzes the conversion of the substrate/chromogen mixture to a colored product. After an incubation period, the reaction is stopped and stabilized by the addition of acid. Since the labeled PCB (conjugate) was in competition with the unlabeled PCB (sample) for the antibody sites, the color

developed is inversely proportional to the concentration of PCB in the sample.

NOTE: Color development is inversely proportional to the PCB concentration.

Darker color = lower concentration Lighter color = higher concentration

The determination of the PCB level in an unknown sample is interpreted relative to the standard curve generated from kit standards after reading with a spectrophotometer.

Performance Characteristics

The PCB RaPID Assay® will detect different PCB Aroclors to different degrees. Refer to the table below for data on several of these. The PCB RaPID Assay® kit provides screening results. As with any analytical technique (GC, HPLC, etc.) positive results requiring some action should be confirmed by an alternative method.

The PCB RaPID Assay® immunoassay test does not differentiate between PCB and other related compounds. The table below shows compounds at the method detection limit (MDL) which is the lowest concentration of the compound, in water, that can be picked up in the assay. The limit of quantitation (LOQ) is an approximate concentration, in water, required to yield a positive result at the lowest standard. This is the lowest concentration of the compound that can be quantified in the assay. The IC50 is the concentration required to, inhibit one half of the color produced by the negative control. It is also used to calculate cross-reactivity values to similar compounds.

Compound	MDL	LOQ	IC50
	(ppb)	(ppb)	(ppb)
Aroclor 1254	0.20	0.50	3.6
Aroclor 1260	0.20	0.32	2.3
Aroclor 1248	0.22	0.59	4.22

Aroclor 1242	0.34	1.22	8.8
Aroclor 1262	0.36	0.66	4.74
Aroclor 1232	0.84	2.61	18.76
Aroclor 1268	0.92	3.03	21.80
Aroclor 1016	0.94	3.56	25.60
Aroclor 1221	13.54	22.58	162.60

*The following compounds demonstrated no reactivity in the PCB RaPID Assay® test kit at concentrations up to 10,000 ppb: Biphenyl, 2,5-Dichlorophenol, 2,3,5-Trichlorophenol, Di-n-octyl-phthalate.

The presence of the following substances up to 250 ppm were found to have no significant effect on PCB RaPID Assay® results: copper, nickel, zinc, mercury, manganese, phosphate, sulfate, sulfite, magnesium, calcium, nitrate and thiosulfate. Humic acid up to 25 ppm and iron to 100 ppm were found to have no significant effect. In addition, sodium chloride concentrations up to 1.0 M showed no effect on results.

Precautions

- Training is strongly recommended prior to using the RaPID Assay® test system. Contact Strategic Diagnostics for additional information.
- Treat PCB, solutions that contain PCB, and potentially contaminated samples as hazardous materials.
- Use gloves, proper protective clothing, and methods to contain and handle hazardous material where appropriate.
- Reagents must be added in a consistent manner to the entire rack. A consistent technique is the key to optimal performance. Be sure to treat each tube in an identical manner.
- Water samples should be at a neutral pH prior to analysis. Samples containing gross particulate should be filtered (e.g. 0.2 um Anotop[™] 25 Plus, Whatman, Inc.) to remove particles.
- Store all test kit components at 2°C to 8°C (36°F to 46°F). Storage at ambient temperature (18°C to 27°C or 64°F to 81°F) on the day of use is acceptable. Test tubes require no special storage and may be stored separately to conserve refrigerator space.
- Allow all reagents to reach ambient temperature (18°C to 27°C or 64°F to 81°F) before beginning the test.

This typically requires at <u>least</u> 1 hour to warm from recommended storage conditions.

- Do not freeze test kit components or expose them to temperatures above 100°F (39°C).
- Do not use test kit components after the expiration date.
- Do not use reagents or test tubes from one test kit with reagents or test tubes from a different test kit.
- Do not mix reagents from kits of different lot numbers.
- Use approved methodologies to confirm any positive results.
- Do not under any circumstances attempt to disassemble the base of the magnetic rack. Magnets will be violently attracted to each other.
- Adequate sample number and distribution are the responsibility of the analyst.
- The photometer provided in the accessory kit requires electricity and comes with a 110V adapter. Adapters for 220V are available. Do not attempt to operate with a car adaptor.
- Do not expose color solution to direct sunlight.
- Do not dilute or adulterate test reagents or use samples not called for in the test procedure; this may give inaccurate results.
- Tightly recap the standard vials when not in use to prevent evaporative loss.

Materials Provided

• Antibody Coupled Paramagnetic Particles in buffered saline containing preservative and stabilizers.

30 test kit: one 20 mL vial 100 test kit: one 65 mL vial

- Enzyme Conjugate. 30 test kit: one 10 mL vial 100 test kit: one 35 mL vial
- Standards

2_

Three concentrations (0.25, 1.0 and 5.0 ppb) of PCB standards (as Aroclor 1254) in buffered saline containing preservative and stabilizers are supplied. Each vial contains 4 mL.

Control

A concentration (approximately 3 ppb) of PCB (as Aroclor 1254) in buffered saline containing preservative and stabilizers. A 4 mL volume is supplied in one vial.

• Diluent/Zero Standard

Buffered saline containing preservative and stabilizers without any detectable PCB.

30 test kit: one 10 mL vial 100 test kit: one 35 mL vial

Color Solution containing hydrogen peroxide and .
 3,3',5,5'-tetramethylbenzidine in an organic base.

30 test kit: one 20 mL vial 100 test kit: one 65 mL vial

Stop Solution containing a solution of 2M sulfuric acid.

30 test kit: one 20 mL vial 100 test kit: one 60 mL vial

• Washing Solution containing preserved deionized water.

30 test kit: one 70 mL vial 100 test kit: one 250 mL vial

Polystyrene test tubes

30 test kit: one 36 tube box 100 test kit: three 36 tube boxes

• User's Guide

Materials Required and Ordered Separately

See "Ordering Information" for the appropriate catalogue numbers.

Rapid Assay® Accessory Kit

Accessory equipment may be rented or purchased from Strategic Diagnostics. See "Ordering Information" for the appropriate catalogue numbers. The accessory kit contains the following items:

- Adjustable Volume Pipet
- EppendorfTM Repeater[®] Pipettor
- Electronic timer
- Portable balance capable of weighing 10 g (for soil samples)
- Vortex mixer
- Magnetic separation rack
- RPA-I RaPID Analyzer (or equivalent spectrophotometer capable of reading 450 nm in a 1 mL sample size).

Other Items

- 12.5 mL Combitips[®] for the Repeater pipettor for 0.25 mL to 1.25 mL dispensing volumes (5)
- Pipet tips for adjustable volume pipet (100-1000 uL)
- **NOTE:** Order replacement Combitips[®] and pipet tips separately. See the "Ordering Information" section.

Materials Required but Not Provided

- Methanol (HPLC grade or equivalent) for water analysis
- Protective clothing (e.g., latex gloves)
- Absorbent paper for blotting test tubes
- Liquid and solid waste containers
- Marking pen
- Instructional video (optional)

Suggestions for Pipettor Use

- Practice using both pipettes (adjustable volume and Repeater pipettor) with water and extra tips before you analyze your samples.
- Use a new tip each time you use the Repeater pipettor to pipette a different reagent to avoid reagent crosscontamination. Tips can be rinsed thoroughly, dried completely and reused. By using the same tip to dispense the same reagent each time you can avoid cross contamination.

NOTE: Repeator tips should be changed periodically (after ~10 uses) since precision deteriorates with use.

- Draw the desired reagent volume into the Repeater pipettor and dispense one portion of the reagent back into the container to properly engage the ratchet mechanism. If you do not do this, the first volume delivered may be inaccurate.
- To add reagents using the Repeater pipettor, pipette down the side of the test tube just below the rim.
- When adding samples and standard using the positive displacement pipettor, always pipette into the bottom of the tube without touching the sides or bottom of the tube.
- Use a new adjustable volume pipet tip each time you pipette a new unknown.

Assay Procedure

Prior to performing your first Rapid Assay®, please take time to read the package inserts in their entirety and review the videotape if available. On site training is strongly recommended for new users of this test system. Please contact your account manager for further information. This procedure is designed for quantitative analysis. For running the kit semi-quantitatively or qualitatively, please contact Technical Support.

Collect/Store the Sample

The following steps explain how to properly collect and store your samples.

1. Water samples should be collected in glass vessels with teflon cap liners). Immediately upon collection, water samples should be diluted with an equal volume (1:1) of methanol (HPLC grade) to prevent adsorptive losses to the glass containers. This is a 2x dilution, which must be accounted for when interpreting results. See "Results Interpretation", Section 3a for further details. Use this diluted sample as "sample" in "Perform the Test".

NOTE: This 2x dilution is <u>not</u> required for soil samples.

2. Samples should be collected in appropriately sized and labeled containers.

- 3. If testing soil samples, follow the SDI Sample Extraction Kit User's Guide or the appropriate technical bulletin to properly collect and store your sample.
- Samples should be tested as soon as possible after collection. If this is not possible, storage at 4°C (39°F) is recommended to minimize evaporative losses.

Set Up

- 1. Remove kits from refrigerator. All reagents must be allowed to come to room temperature prior to analysis. Remove reagents from packaging and place at room temperature <u>at least</u> 1 hour prior to testing.
- 2. Turn on the RPA-1 or other spectrophotometer. The RPA-1 should be warmed up for at least 30 minutes prior to the run.
- 3. Label five 12.5 mL Combitips "Conjugate", "Particles", "Wash", "Color" and "Stop". In addition, add the name of the compound you are testing for to each Combitip.
- Remove nine clean blank test tubes for standards and control and one test tube for each sample (if testing in singlicate). Label the test tubes according to contents as follows.

<u>Tube #</u>	Contents
1	Negative control (replicate 1)
2	Negative control (replicate 2)
3	Standard 1 (replicate 1)
4	Standard 1 (replicate 2)
5	Standard 2 (replicate 1)
6	Standard 2 (replicate 2)
7	Standard 3 (replicate 1)
8	Standard 3 (replicate 2)
9	Control
10	Sample 1
11	Etc.

*Label at top of tubes to avoid interference with reading of tubes in photometer

Sample Extraction, Filtration and Dilution

Filtration may be necessary to remove gross particulate from the water sample. If testing samples at levels higher than standard kit level is desired, contact SDI for special instructions. Water samples should be diluted 1:1 in methanol as described in "Collect/Store the Sample".

4

RaPID Assay PCB Test Kit

Please follow the instructions from the SDI Sample Extraction Kit to prepare and dilute the soil extract prior to running the assay.

Perform the Test

- 1. Separate the upper rack from the magnetic base. Place labeled test tubes into the rack.
- 2. Add 200 uL of standards, control or samples to the appropriate tubes using the adjustable volume pipet with the dial set on 0200. The negative control, standards and control must be run with each batch of samples.

NOTE: Sample should be added to the bottom of the tube by inserting the pipet tip into the tube without touching the sides or the bottom of the tube. Take care not to contact sample with pipette tip once dispensed into bottom of the tube.

- 3. Using the Repeater Pipettor with the "Conjugate" tip attached and the dial set on "1", add 250 uL of Enzyme conjugate down the **inside wall** of each tube. (Aim the pipet tip 1/4" to 1/2" below the tube rim or tube wall; deliver liquid gently to avoid splashback.)
- 4. Thoroughly mix the magnetic particles by swirling (avoid vigorous shaking) and attach the "Particles" tip to the Repeater Pipettor. With the dial set on "2" add 500 uL of magnetic particles to each tube, aiming down the side of the tube as described above. Vortex, mixing each tube 1 to 2 seconds at low speed to minimize foaming. Pipetting of magnetic particles should be kept to 2 minutes or less.
- 5. Incubate 15 minutes at room temperature.
- 6. After the incubation, combine the upper rack with the magnetic base and press all tubes into the base; allow 2 minutes for the particles to separate.
- 7. With the upper rack and magnetic base combined, use a smooth motion to invert the combined rack assembly over a sink and pour out the tube contents.

NOTE: If the rack assembly inadvertently comes apart when lifting to pour out tube contents, recombine and wait an additional 2 minutes to allow particles to separate.

- 8. Keep the rack inverted and gently blot the test tube rims on several layers of paper towels. It is important to remove as much liquid as possible but **do not bang** the rack or you may dislodge the magnetic particles and affect the results.
- Set the Repeater Pipettor dial to "4" and put on the tip labeled "Wash". Add 1 mL of Washing Solution down the inside wall of each tube by using the technique described earlier. <u>Vortex tubes for 1-2</u> <u>seconds</u>. Wait 2 minutes and pour out the tube contents as described previously. Repeat this step one more time.

NOTE: The number of washes and wash volume are important in ensuring accurate results.

- 10. Remove the upper rack (with its tubes) from the magnetic base. With the "Color" tip attached to the Repeater Pipet and the dial set to "2" add 500 uL of Color Reagent down the inside wall of each tube as described previously. Vortex 1 to 2 seconds (at low speed).
- 11. Incubate 20 minutes at room temperature. During this period, add approximately 1 mL of Washing solution to a clean tube for use as an instrument blank for "Results Interpretation".
- 12. After the incubation, position the Repeater pipettor at Setting "2" and use the "Stop" tip to add 500 uL of Stop solution to all test tubes.
- 13. Proceed with results interpretation.

WARNING: Stop solution contains 2M sulfuric acid. Handle carefully.

Results Interpretation

- 1. After addition of Stop Solution to the test tubes, results should be read within 15 minutes.
- 2. Wipe the outside of all antibody coated tubes prior to photometric analysis to remove fingerprints and smudges.

Photometric Interpretation Using the RPA-I

1. The RPA-I photometer (provided in the Rapid Assay® Accessory kit) can be used to calculate and store calibration curves. It is preprogrammed with

RaPID A		v® protocols. kit, parameter s		EVALUATING TUBE, REMOVE TUBE (Beep)	solution. Remove tube
follows: Data Redu	ıct: L	in. Regression		CAL #1, REP. #1, INSERT TUBE,	Insert Tube #1
Xformatic		n/LogitB		EVALUATING TUBE, REMOVE TUBE (Beep)	Remove tube
Read Mod	le :	Absorband	æ	REMOVE TODE (beep)	Remove tube
Waveleng	th: 4	50 nm		Follow prompts to read tubes.	
Units	:	PPB		NOTE: Tube order is import	ant. The RPA-I expects to
# Rgt Bik	: :	0		see the standards in asce starting with the negative co	
Calibrator				Following evaluation of all sta display:	ndards, the instrument will
# of Cals # of Reps				PRINTING DATA,	Data will print
# of Reps Concentr #1:				PRINTING CURVE	Curve will print only if programmed to print (See RPA1 User's Manual).
#2: #3: #4:	0.25 ppb 1.00 ppb 5.00 ppb		· .	CTRL #1 REP #1, INSERT TUBE, EVALUATING TUBE,	Insert Control Tube
Range	3.00 pps	0.10 - 5.0	0	REMOVE TUBE (Beep)	Remove Tube
Correlation Rep. %C		0.990		EDIT CALIBRATORS YES/NO	Press NO (if editing is necessary press YES and refer to the RPA1
NOTE: Prio be thorough instructions.	r to analysis ly reviewed	the RPA-I User's for more deta	Manual should iled operation	SPL #1 REP#1 INSERT TUBE	User's Manual). Insert first sample tube

2. Follow the instrument prompts to read the absorbance of all tubes:

6

Instrument Display	Operator Response
SELECT COMMAND	Press RUN
RUN PROTOCOL	Scroll using the YES [] or NO [] keys until the desired protocol appears. Then press ENTER
SPL. REPLICATES (1-5)	Press 1 (for analysis of samples in singlicate.) Press ENTER
BLANK TUBE,	Insert blank tube
INSERT TUBE,	containing 1mL wash

Continue to follow prompts. After all samples have been read, press STOP.

Remove tube

Expected Results:

EVALUATING TUBE

REMOVE TUBE (Beep)

- %CV (coefficient of variation) between standard duplicates of 10% or less.
- Absorbance reading for the 0 ppb standard should be between 0.8 and 2.0 for all assays.
- Correlation (r) of 0.990 or greater for all assays.
- Kit control within range specified on vial.

• Absorbance of negative control and standards should be as follows:

Negative Control>Std. 1>Std. 2>Std. 3.

- 3. Concentrations will be indicated for all samples on the RPA-I printout.
 - a) The concentration, as indicated on the printout, is multiplied by the appropriate dilution factor (if applicable) introduced in the procedure. The quantitation range of the kit is also multiplied by this factor.

EXAMPLE: Water samples were diluted 2-fold with methanol upon collection (see "Collect/Store the Sample" in this User's Guide). As a result, the concentrations listed on the printout should be multiplied by 2 to determine the sample concentration. The standard concentrations are also multiplied by 2 to give a quantitation range in water for this test kit of 0.5 to 10 ppb.

- b) Samples with an "nd" and no concentration listed have an absorbance greater than the negative control; therefore, no concentration can be computed for these samples. Results must be reported as < 0.5 ppb (or Standard 1 multiplied by the dilution factor.)
- c) Samples with an "nd" next to a listed concentration have an estimated concentration below the minimum detection level of the test kit. Results must be reported as <0.5 ppb (or Standard 1 multiplied by the dilution factor.)

NOTE: Any samples with concentrations determined to be lower than Standard 1 (the limit of quantitation) must be reported as < 0.5 (or Standard 1 multiplied by the dilution factor.) Quantitation is not possible below this standard as this is outside the linear range of the assay.

d) Similarly, samples with a "hi" next to a listed concentration have an estimated concentration higher than Standard 3 and must be reported as >10 ppb (or Standard 3 multiplied by the dilution factor.) NOTE: In order to determine the concentration of samples with concentrations greater than Standard 3, they must be subjected to repeat testing using a diluted sample. A ten-fold or greater dilution of the sample is recommended with an appropriate amount of PCB diluent. This additional dilution must then be taken into account when calculating the concentration. Please contact technical support for assistance in performing dilutions.

Photometric Interpretation Using Other Photometers

Other photometers may also be used to interpret results obtained from the RPA-I photometer. It is important that the photometer be able to read absorbance at 450nm and that the instrument can read at a 1 mL fill volume. Absorbances obtained from other spectrophotometers (reading at 450 nm) may be used to manually calculate sample concentrations as outlined below.

- 1. Calculate the mean absorbance for each of the three standards and the negative control.
- Determine the standard deviation and %CV (coefficient of variation) of each standard and ensure %CV is less than 10% for each.
- 3. Calculate the %B/Bo for each standard by dividing the mean absorbance value for the standard by the mean absorbance value for the negative control and multiplying the results by 100.
- 4. Construct a standard curve by plotting the %B/Bo for each standard on the vertical logit (y) axis versus the corresponding analyte concentration on the horizontal logarithmic (x) axis on the graph paper provided in the test kit. Graph papers are specific for each method. Use only the graph paper supplied with each kit.
- 5. Draw the best straight line through all points. Using the %B/Bo of the sample, the concentration can be interpolated from the standard curve.
- 6. Multiply results by the appropriate dilution factor (if applicable) introduced in the procedure. For example, if the sample was diluted 10-fold to increase the detection levels of the kit then the results must be multiplied by 10. This dilution also changes the range of the assay (standards) by the same factor.

7

NOTE: Do not forget to account for the 2x dilution introduced in the "Collect/Store the Sample" procedure for water samples.

Limitations of the Procedure

The Rapid Assay® PCB Test Kit is a screening test only. Sampling error may significantly affect testing reliability. Adequate sample number and distribution are the responsibility of the analyst.

Ordering Information

Description	Catalogue Number
Rapid Assay® PCB Kit	A00133/A00134
Rapid Assay® Accessory Kit**	6050100
Adjustable Volume Pipet Tips (100-1000 uL)	A00013
12.5 mL Combitip for Repeating Pipette (1 each)	A00009
PCB Diluent	A00136
PCB Soil Proficiency Sample	A00175
Rapid Assay® Accessory Kit Rental	6997010
** To obtain part numbers and pricing for individual ite	ms in the Accessory Kit contact SDI a

the number below.

Ordering/Technical Assistance

Should you have any questions regarding this procedure prior to analysis contact Technical Service to avoid costly mistakes.

To Place an Order or Receive Technical Assistance, please call Strategic Diagnostics Inc. at:

Call toll-free 800-544-8881`

Or 302-456-6789 Phone 302-456-6782 Fax Web site: <u>www.sdix.com</u> E-mail: techservice@sdix.com

General Limited Warranty

SDI's products are manufactured under strict quality control guidelines and are warranted to be free from defects in materials and workmanship. New instruments and related non-expendable items are warranted for one year from date of shipment against defective materials or workmanship under normal use and service.

Warranty obligation is limited to repair or replacement of the defective product or to refund of the purchase price, at the discretion of SDI. Other warranties, express or implied, are disclaimed. SDI's liability under any warranty claim shall not exceed the refund of the purchase price paid by the customer. Under no circumstances shall SDI be liable for special, indirect or consequential damages.

Safety

To receive an MSDS for this product, visit our web site at www.sdix.com.

Copyright© 1997, Strategic Diagnostics Inc.,

Z00245.1, Rev 4/4/00

Operation of the Repeater Pipet

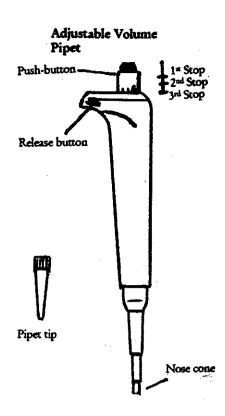
To Set or Adjust Volume

To determine the pipetting volume, the dial setting (1-5) is multiplied by the minimum pipetting volume of the tip (indicated on the side of the Combitip, e.g. 1~100 uL.) To Assemble Pipet Tip

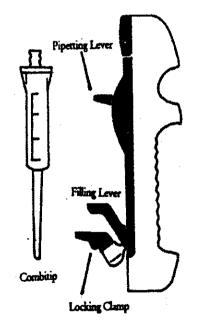
Slide filling lever down until it stops. Then raise the locking clamp and insert the tip until it clicks into position. Be sure the tip plunger is fully inserted into the barrel before lowering the locking clamp to affix the tip in

To Fill Tip

place.


With tip mounted in position on pipet, immerse end of tip into solution. Slide filling lever upward slowly. Combitip will fill with liquid.

To Dispense Sample


Check the volume selection dial to ensure pipetting volume. Place tip inside test tube so that tip touches the inner wall of tube. Completely depress the pipetting lever to deliver sample. NOTE: Dispense one portion of reagent back into the container to engage the ratchet mechanism and ensure accuracy.

To Eject Tip

Empty tip of any remaining solution into appropriate container by pushing filling lever down. Raise locking clamp upward, and remove the Combitip.

Repeater Pipet

Operation of the **Adjustable Volume Pipet**

To Set or Adjust Volume

Press release button on side of pipette and turn the push-button to adjust volume up or down. Volume setting is displayed on top of pipet. See kit instructions for appropriate setting. Pipet will accurately dispense volumes between 100 and 1000 uL.

To Assemble Pipet Tip

Gently push nose cone of pipet firmly into a pipet tip contained in the pipet tip rack. **To Withdraw Sample**

Keep pipet almost vertical. With tip mounted in position on pipet, press push-button to 1st stop and hold it. Place tip at bottom of liquid sample and slowly release push-button to withdraw measured sample. Ensure that no air bubbles exist in the pipette tip. If bubbles exist, dispense sample and re-withdraw. Slide tip out along the inside of the vessel.

To Dispense Sample

Wipe any liquid from outside of tip taking care not to touch orifice. Place tip into tube, almost to the bottom, and slowly press push-button to 2nd stop. Hold push-button at 2nd stop when removing tip from tube.

To Eject Tip

Press push-button to 3rd stop. Tip is ejected.

STRATEGIC DIAGNOSTICS INC.

RaPID Assay® PCB In Soil Application

Intended Use

For detection of Polychlorinated Biphenyls (PCB's) (as Aroclor 1254) in soil. For testing in other matrices, please contact our technical support department at 1-800-544-8881.

Materials Required but Not Provided

SDI Sample Extraction Kit (Part Number: A00137EA/A00137EB)

Procedural Notes and Precautions

- Prepare soil samples for analysis according to the procedure in the SDI Sample Extraction Kit Users Guide.
- After extraction and dilution of samples, follow the immunoassay procedure as described in the Rapid Assay **®** PCB Test Kit User's Guide.
- The initial 2x dilution described for water samples in Step 1 of "Collect/Store the Sample" does not need to be performed for soil samples.

Quality Control

A control solution at approximately 3 ppb (as Aroclor 1254) is provided with the PCB RaPID Assay® Kit. It is recommended that it be included in every run and treated in the same manner as unknown samples. If running standard soil procedures an acceptable result should be 2000 times the value stated on the control vial (i.e. 6.0 + or - 1.2 ppm) when the control results are corrected for the dilution factors (see Results section below).

Results Interpretation

Interpret soil sample results as described in the RaPID Assay® PCB Test Kit procedure, accounting for the total dilution factor indicated in the table of the SDI Sample Extraction Kit Users Guide. Alternatively, program the RPA-1 Analyzer as listed below to automatically correct for this dilution factor.

1. The RPA-I photometer (provided in the Rapid Assay® Accessory kit) can be used to calculate and store calibration curves. To obtain soil results from the PCB Rapid Assay® test kit on the RPA-I the following parameter settings are recommended:

Data Reduct:	Lin. Regression		
Xformation :	Ln/LogitB		
Read Mode	:	Absorbance	
Wavelength :	450 nm	L	
Units	:	PPM	
# Rgt Blk	:	0	

Calibrators:

# of Cals	:	4
# of Reps	:	2

Concentrations:

#1:	0.00 PPM	
#2:	0.50 PPM	
#3:	2.00 PPM	
#4:	10.00 PPM	
Range	:	0.5 - 10.00
Correlati	on :	0.990
Rep. %C	V :	10%

Performance Data

The PCB RaPID Assay® does not differentiate between PCB and other related compounds. The table below shows compounds at the method detection limit (MDL) which is the lowest concentration of the compound in soil that can be picked up in the assay. The limit of quantitation (LOQ) is an approximate concentration required to yield a positive result at the lowest standard, this is the lowest concentration of the compound in soil that can be quantified in the assay. The IC50 is the concentration in soil required to inhibit one half of the color produced by the negative control. It is also used to calculate cross-reactivity values to similar compounds.

Compound	MDL	LOQ	IC50
•	(ppm)	(ppm)	(ppm)
Aroclor 1254	0.20	0.5	3.60
Aroclor 1260	0.20	0.3	2.30
Aroclor 1248	0.22	0.6	4.22
Aroclor 1242	0.34	1.2	8.80
Aroclor 1262	0.36	0.7	4.74
Aroclor 1232	0.84	2.6	18.76
Aroclor 1268	0.92	3.0	21.80
Aroclor 1016	0.94	3.6	25.60
Aroclor 1221	13.54	22.6	162.6

Soil Contaminants

Some contaminants found in soils that also contain PCB's can interfere with the analysis and cause false positives, false negatives or both when the compound is present at elevated concentrations. Interferences were assessed by adding increasing concentrations of some relevant contaminants to blank and PCB spiked soils prior to the extraction procedure. The concentration of the compound shown below produced no evidence of interference in a positive or negative direction in the 500 ppb to 10 ppm detection range of the procedure described above.

soil contaminant

concentration in soil producing no interference

trichloroethylene gasoline transformer oil 1-chloronapthalene 1,2,4 trichlorobenzene diesel fuel 100,000 ppm or 10% 25,000 ppm or 2.5% 5,000 ppm or 0.5% 2,000 ppm or 0.2% 1,000 ppm or 0.1% 1,000 ppm or 0.1%

If additional dilutions of the soil extract are made to detect soil PCB concentrations greater than 10 ppm, these interferences are diminished in direct proportions to the dilution made.

Z00254.1 Rev. 4/10/00

Range of Detection

The PCB RaPID Assay® has a range of detection in soil of 500 ppb to 10 ppm (as Aroclor 1254) when used in conjunction with the SDI Sample Extraction Kit.

Recovery

PCB recoveries will vary depending on soil type, retention mechanism, solvent and extraction apparatus used, length of extraction period and levels of potentially interfering substances in the soil.

RaPID Assays® Application Procedure

T00078

DEWATERING OF MOIST SEDIMENTS AND SOILS FOR APPLICATION TO RaPID Prep™ AND RaPID ASSAYS® PROCEDURES

BACKGROUND

High moisture content (>30% by weight) can significantly lower concentrations of analytes detected in the RaPID Prep soil methods. In these methods, water associated with a sample will increase the volume of the extraction solution (liquid phase) and decrease the amount of soil (solid phase) in a weighed sample. In some cases, water may also decrease the extraction efficiency of the extracting solvents, lowering recovery even further. The incremental contribution of soil water to the final volume of soil extract can be corrected by adjusting the dilution factor used with the procedure. Estimation of and correction for loss of extraction efficiency, however, is a more complex task. In situations where volatile chemicals are to be analyzed, air drying of moist samples is not feasible because analyte will be lost to vaporization. For these reasons, determination and correction of moisture content is not practical in many field testing situations.

The procedure described below is a quick and simple approach to reducing the moisture content of most soils and sediments to less than 30% for processing in the RaPID Prep Soil Collection and Sample Extraction kits prior to analysis by the RaPID Assays. For some analytes, it may be appropriate to also test the water phase of a moist sediment or soil sample. We recommend sampling the water phase prior to dewatering the sample for soil analysis.

Sediment or soil samples with greater than 30% moisture content

MATERIALS

MATRIX

Ohmicron RaPID Prep Soil Collection kit and the appropriate RaPID Prep Sample Extraction kit.

UNBLEACHED

Materials: Coffee filters (e.g. Mr. Coffee@ #2 cone filters), paper towels and disposable plastic teaspoons, gloves, and disposable plastic cups (optional)

SAMPLE PREPARATION

Measure 4 teaspoons of moist soil or sediment sample into a coffee filter. Squeeze the sample within the coffee filter using gloved hands. A disposable plastic cup can be used to collect water from the sample as it drains. Paper towels can be wrapped around the outside of the coffee filter to assist in absorbing water. Remove as much moisture as possible from the sample.

Open up the coffee filter and remove a 10 gram sample of the treated sediment or soil. Process the soil according to the directions on the package inserts of the Soil Collection kit or the Sample Extraction kit. In most cases, no correction for moisture content is required when calculating the analyte concentration (refer to procedural notes).

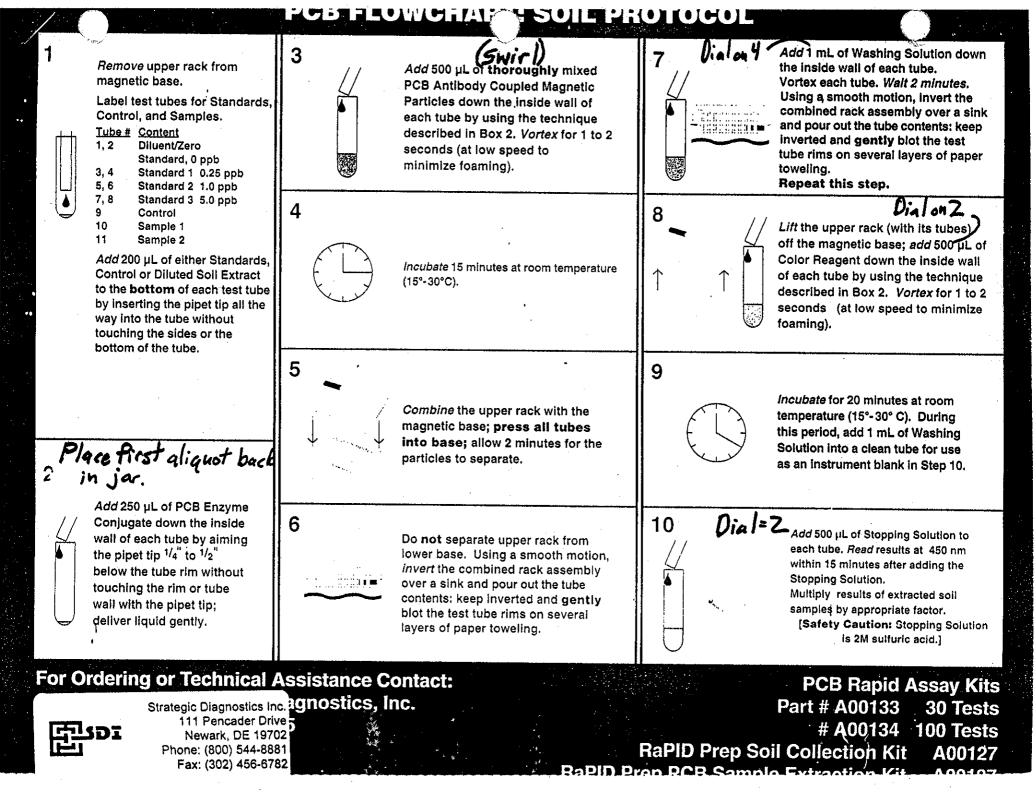
315-698-7378

PROCEDURAL NOTES

Sediments or soils high in organic matter content (>40%) may have greater than 30% moisture content after performing the above procedure. For organic samples, we recommend following the above procedure and adjusting the dilution factor for moisture content. Moisture content can be determined or estimated for site representative samples prior to analysis.

EXPECTED RESULTS

The RaPID Assay system was used to determine the PCB concentration of three samples which originally contained >40% moisture. Results were compared on split samples that were either dewatered according to the above procedure or air dried to remove moisture. Results were as follows:


% Moisture Content of	PCB soil concentration (ppm)		
Dewatered Sediment	Dewatered Sediment	Air dried Sediment	
18.4	1.3	1.5	
21.4	30.0	34.3	
15.4	100.0	110.6	

TECHNICAL ASSISTANCE

STRATEGIC DIAGNOSTICS INC. 128 Sandy Drive Newark DE 19713

(800) 544-8881 (302) 456-6789 FAX (302)456-6782

R060597

.

4a DILUTION SCHEME

For samples 500 ppb to 10 ppm: Add 25 µL of filtered extract to a vial of PCB Extract Diluent (25 mL). Cap and mix by by inverting several times. Factor = 2000.

DILUTION SCHEME

Add 25 µL of filtered

Add 25 µL of diluted extract (from 1st dilution) to 2.5 mL of PCB RaPiD

Assay Diluent. Mix thoroughly. Factor = 200,000.

1000 ppm:

For samples 50 ppm to

extract to a vial of PCB Extract Diluent (25 mL).

Disregard Soil Extraction Steps 1 – 3, refer to User's Guide included in Sample Extraction Kit.

5 ASSAY

Mix.

X4b

Analyze diluted extract as "sample" according to the PCB RaPID Assay procedure (see reverse).

Multiply results of extracted soil samples by appropriate factor.

For Ordering or Technical Assistance Contact:

昏spi

Strategic Diagnostics Inc. 111 Pencader Drive Newark, DE 19702 Phone: (800) 544-8881 Fax: (302) 456-6782 PCB Rapid Assay Kits Part # A00133 30 Tests # A00134 100 Tests RaPID Prep Soil Collection Kit A00127 RaPID Prep PCB Sample Extraction Kit A00137

SDI Products for Remediation Applications

Immunoassay Test Kit Product Line Guide

Application	· ·			
Format Guide	D TECH®	EnSys	EnviroGard [®]	RaPID Assay [®]
Technology	latex particle	coated tube	coated tube	magnetic particle
Data Format	qualitative & semi-quantitative	semi- quantitative	semi- quantitative	quantitative & semi-quantitative
Sample Throughput	1 - 4 samples / run	1 - 10 samples / run	1 - 14 samples / run	1 - 50 samples / run
Analysis Time	20 minutes / run	30 minutes / run	30 minutes / run	60 minutes / run

Application Matrix & Detection Limits

Analyte	Application	D TECH®	EnSys	EnviroGard [®]	RaPID Assay®
PCB	Soil	0.5 ppm	0.5 ppm	1 ppm	< 0.5 ppm
	Water	n/a	50 ppb*	1 ppm	0.2 ppb
	Wipes	10 μg/wipe	5 µg/wipe	10 μg/wipe	< 5 μg/wipe
	Concrete/Cable	n/a	0.5 ppm	n/a	0.5 ppm
	Oil	n/a	3 ppm	n/a	n/a
BTEX	Soil Water	2.5 ppm 0.6 ppm	n/a n/a	2 ppm 0.1 ppm	 0.9 ppm 0.09 ppm
ТРН	Soil	25 ppm (as Jet A)	10 ppm (as fuel)	5 ppm (as нно)	10 ppm (as fuel)
	Water	6ppm (as Jet A)	n/a	0.1 ppm (as нно)	1 ppm (as fuel)
РАН	Soil	0.6 ppm	1 ppm	1 ppm	0.2 ppm
	Water	8 ppb	15 ppb*	2 ppb	0.9 ppb
Carcinogenic	Soil	n/a	n/a	n/a	10 ррb
PAH	Water	n/a	n/a	n/a	0.2 ррb
TNT	Soil	0.5 ppm	0.7 ppm	n/a	0.25 ppm
	Water	5 ppb	0.9 ppb*	n/a	0.07 ppb
RDX	Soil Water	0.5 ppm 5 ppb	Non-immunoassay 0.8 ppm 3.8 ppb*	n/a n/a	n/a n/a
РСР	Soil	n/a	0.5 ppm	n/a	0.1 ppm
	Water	n/a	5 ppb	n/a	0.06 ppb
Pesticides	Kits		ous pesticide analytic for the MDL's for va	tes in soil & water matr arious analytes.	ices.

* Protocol Not Validated.

STRATEGIC DIAGNOSTICS INC. - 111 PENCADER DRIVE, NEWARK, DE 19702 - Phone: (800) 544-8881 - Fax: (302) 456-6782

4/29/98

RICHARDSON HILL ROAD SITE SIDNEY, NY IMMUNOASSAY FIELD TEST KIT QA/QC DATA

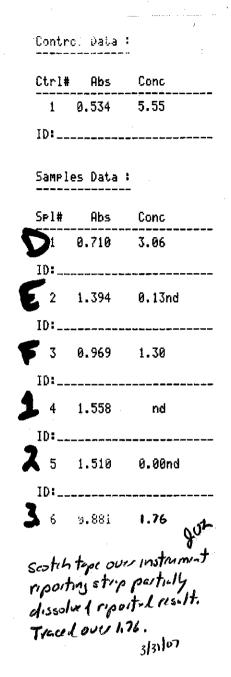
	Sample Information				Absorbance				Percent Coeffic	ient of Variation		Control	Correlation
Field Detek	Dur Data	Osmala Lassijan	Maan Nanstina Oantral	Mean 0.5 ppm Standard	Mean 2 ppm Standard	Mean 10 ppm Standard Ne	g Con > Std. 1 > Std.		0.50 mm. Oten dand	0.00 mm Otan dand	40.00 mmm Otan dand	1 <i>(</i>), 2 ,	O amalatian n
Field Batch	Run Date	Sample Location	Mean Negative Control	(Std. 1)	(Std. 2)	(Std. 3)	2 > Std. 3	Negative Control ⁽²⁾	0.50 ppm Standard	2.00 ppm Standard	10.00 ppm Standard	Kit Control ⁽³⁾	Correlation r
	QA/ QC Expected Resul	t ⁽¹⁾	0.8 - 2.0				Yes	0 - 10%	0 - 10%	0 - 10%	0 - 10%	4.8 - 7.2	> 0.990
2004 Field Batch 1	6/12/2004	South Pond	0.910	0.744	0.501	0.258	Yes	15.6%	0.2%	7.2%	9.5%	7.46	0.9967
2004 Field Batch 2	6/15/2004	South Pond	1.137	0.989	0.676	0.360	Yes	10.9%	7.8%	2.2%	5.4%	7.10	0.9927
2004 Field Batch 3	6/17/2004	South Pond	1.048	0.826	0.582	0.273	Yes	11.2%	2.0%	1.2%	10.2%	5.61	1.0000
2004 Field Batch 4	6/18/2004	South Pond	0.915	0.926	0.622	0.315	Yes	54.3%	0.5%	4.5%	2.9%	5.77	1.0000
2004 Field Batch 5	6/22/2004	Segment 20	1.115	0.817	0.538	0.281	Yes	0.3%	0.8%	3.3%	7.6%	5.97	0.9982
2004 Field Batch 6	6/25/2004	Segment 20	1.005	0.732	0.476	0.229	Yes	2.2%	0.3%	5.2%	1.7%	5.22	0.9994
2004 Field Batch 7	6/26/2004	South Pond	1.309	1.083	0.759	0.378	Yes	2.5%	0.8%	11.9%	2.8%	5.71	0.9989
2004 Field Batch 8	6/28/2004	Segment 20, S. Pond	1.026	0.723	0.480	0.256	Yes	2.6%	3.0%	2.9%	10.7%	6.04	0.9987
2004 Field Batch 9	6/29/2004	Seg 18, 19, S. Pond	1.082	0.763	0.539	0.277	Yes	1.1%	0.8%	5.1%	1.4%	5.79	0.9998
2004 Field Batch 10	6/29/2004	Seg 18, 19, S. Pond	1.068	0.909	0.572	0.297	Yes	2.4%	14.3%	2.6%	3.1%	5.75	0.9887
2004 Field Batch 11	7/1/2004	Segments 19, 20	1.130	0.796	0.567	0.279	Yes	0.3%	1.4%	5.8%	1.0%	5.49	0.9994
2004 Field Batch 12	7/1/2004	Segments 18, 19, 20	1.116 1.113	0.812	0.552	0.279	Yes	2.5% 0.9%	1.3%	4.6%	2.3%	4.46 5.69	0.9998
2004 Field Batch 13 2004 Field Batch 14	7/14/2004 7/14/2004	Segment 17 Segment 17	1.113	0.823	0.579 0.702	0.288	Yes Yes	0.9%	0.4%	0.3%	2.5% 6.3%	4.92	0.9960
2004 Field Batch 15	7/14/2004	Segment 17	0.977	0.987	0.702	0.254	Yes	3.0%	2.3%	7.4%	4.0%	6.00	0.9900
2004 Field Batch 16	7/14/2008	Segment 16, Work Plat.	1.096	0.708	0.569	0.306	Yes	0.1%	1.2%	1.6%	4.0% 8.6%	6.84	1.0000
2004 Field Batch 17	7/23/2004	Segments 15, 16	1.088	0.806	0.617	0.293	Yes	0.8%	4.4%	0.2%	5.7%	5.76	0.9956
2004 Field Batch 18	7/29/2004	Segment 15	1.078	0.680	0.494	0.245	Yes	3.2%	5.1%	9.2%	0.4%	5.14	0.9973
2004 Field Batch 19	7/30/2004	Segment 15	1.089	0.771	0.542	0.308	Yes	3.6%	8.5%	5.7%	2.1%	4.51	0.9985
2004 Field Batch 20	8/2/2004	Segment 15	1.081	0.770	0.589	0.302	Yes	1.0%	4.6%	0.4%	6.0%	6.13	0.9966
2004 Field Batch 21	8/3/2004	Segment 15	1.083	0.787	0.544	0.291	Yes	7.1%	1.5%	3.0%	5.7%	5.97	0.9995
2004 Field Batch 22	8/5/2004	Segment 15	1.027	0.706	0.490	0.256	Yes	0.7%	3.1%	3.1%	4.6%	5.63	1.0000
2004 Field Batch 23	8/5/2004	Segment 15	0.971	0.662	0.470	0.244	Yes	1.0%	3.0%	1.5%	40%	5.67	0.9998
2004 Field Batch 24	8/18/2004	Work Platform	1.104	0.785	0.565	0.315	Yes	5.9%	0.1%	7.2%	1.9%	6.11	1.0000
2004 Field Batch 25	8/20/2004	Trench Spoil Basins	1.048	0.776	0.554	0.302	Yes	0.8%	3.5%	0.5%	3.2%	5.98	0.9999
2004 Field Batch 26	8/23/2004	Segment 14	1.050	0.736	0.495	0.272	Yes	3.7%	0.5%	1.6%	2.7%	5.84	0.9986
2004 Field Batch 27	8/24/2004	Segment 14	1.257	0.914	0.647	0.359	Yes	1.3%	4.0%	3.6%	7.6%	6.12	0.9996
2004 Field Batch 28	8/25/2004	Segment 14	1.212	0.984	0.634	0.345	Yes	7.0%	4.5%	1.1%	5.5%	5.97	0.9918
2004 Field Batch 29	8/31/2004 9/1/2004	Segment 14	1.258 1.172	0.913 0.930	0.615 0.699	0.321 0.289	Yes	6.7% 3.1%	0.2% 3.8%	2.6%	7.1% 0.3%	5.96 6.46	0.9992 0.9963
2004 Field Batch 30 2004 Field Batch 31	9/1/2004	Segment 14	1.172	0.930	0.699	0.289	Yes Yes	3.1%	3.8%	0.3%	0.3%	5.78	0.9963
2004 Field Batch 32	9/2/2004	Segment 14 Segment 13	1.017	0.942	0.525	0.294	Yes	4.1%	0.6%	0.2%	0.2%	<u> </u>	0.9978
2004 Field Batch 33	9/14/2004	Segment 13	0.960	0.676	0.447	0.273	Yes	0.1%	9.3%	2.0%	9.3%	5.00	0.9933
2004 Field Batch 34	9/14/2004	Segment 13	1.124	0.853	0.566	0.296	Yes	1.1%	5.7%	7.3%	11.5%	5.20	0.9978
2004 Field Batch 35	9/15/2004	N-2	1.263	0.965	0.663	0.363	Yes	1.3%	2.9%	7.7%	3.9%	6.26	0.9982
2004 Field Batch 36	9/16/2004	N-2, Segment 13	1.174	0.881	0.595	0.307	Yes	4.8%	4.8%	7.4%	1.1%	5.60	0.9990
2004 Field Batch 37	9/17/2004	N-2, Segment 13	1.286	0.889	0.599	0.301	Yes	5.0%	4.0%	4.2%	0.0%	5.94	0.9999
2004 Field Batch 38	9/21/2004	N-1, N-2	1.216	0.911	0.652	0.343	Yes	0.0%	2.8%	12.4%	6.0%	5.78	1.0000
2004 Field Batch 39	9/22/2004	Segment 12	1.209	0.942	0.690	0.398	Yes	3.1%	2.2%	4.4%	4.8%	7.50	0.9993
2004 Field Batch 40	9/23/2004	N-3, N-1	1.422	1.045	0.742	0.419	Yes	2.5%	0.8%	2.4%	0.6%	5.63	0.9994
2004 Field Batch 41	9/24/2004	Segment 12, N-3	0.924	0.831	0.483	0.297	Yes	4.7%	0.2%	3.1%	0.2%	8.17	0.9593
2004 Field Batch 42	9/26/2004	Segment 12	1.362	1.050	0.717	0.387	Yes	0.6%	1.0%	1.0%	1.6%	5.88	0.9980
2004 Field Batch 43	9/27/2004	Segment 11	1.387	1.017	0.800	0.440	Yes	4.4%	3.9%	0.5%	0.0%	9.64	0.9969
2004 Field Batch 44	9/30/2006	Segment 10	1.324	0.979	0.691	0.363	Yes	2.7%	0.7%	0.1%	0.4%	5.83	0.9999
2004 Field Batch 45	10/1/2004 10/5/2004	Segment 10	1.270 1.042	0.922	0.604 0.501	0.315 0.307	Yes Yes	0.2%	0.1%	1.9% 3.2%	0.0% 2.5%	5.15 7.72	0.9983
2004 Field Batch 46 2004 Field Batch 47	10/5/2004	Segment 10 Segment 10	0.983	0.760	0.501	0.307	Yes	1.1% 0.0%	0.1%	3.2%	0.2%	6.30	0.9920 0.9997
2004 Field Batch 47 2004 Field Batch 48	10/6/2004	Segment 10 Segment 10, L-5	0.983	0.661	0.473	0.279	Yes	0.0%	0.1%	0.1%	0.2%	6.30 7.55	0.9997
2004 Field Batch 49	10/11/2004	Segment 10, L-5	0.940	0.594	0.374	0.205	Yes	0.2%	0.0%	0.1%	0.2%	4.94	0.9989
2004 Field Batch 50	10/12/2004	Segment 10	0.925	0.634	0.665	0.256	Yes	0.1%	3.7%	4.1%	0.2%	4.18	0.9937
2004 Field Batch 51	10/13/2004	Segment 10, L-5	0.784	0.486	0.383	0.204	Yes	0.0%	0.3%	1.4%	0.5%	7.58	0.9913
2004 Field Batch 52	10/14/2004	Segment 9, Road, HHC	1.003	0.702	0.491	0.262	Yes	5.2%	0.9%	1.9%	1.5%	5.69	1.0000
2004 Field Batch 53	11/6/2004	South Pond	0.869	0.643	0.415	0.243	Yes	2.9%	0.8%	2.2%	6.4%	5.90	0.9925
										; •			

Notes:
1. Expected result from Strategic Diagnostics, Inc. Tech Manual for RaPID Assay PCB Test Kit A00133/A00134.
2. Percent Coefficient of Variation greater than 10% in initial samples attributed to pipetting method used for first standard in each run which may have resulted in air bubbles. Following review of initial QA/QC data, procedure modified to eliminate air bubbles.
3. Several kit control results outside expected range. Coefficient of variation for standards generally within expected range, including the 0.5 ppm and 2 ppm Standards, which bracket site clean-up standards, and comparison to laboratory data on a go / no go basis for excavation also good.

F-2

IMMUNOASSY FIELD TEST KIT DATA

2003 Field Batch #1


PCB Field Test Data			
Project:	Richardson Hill Road		
	Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Date	-7/15/03 and 7/17/03 002		
PCB Measurement	Arcolor 1254		
Test Level	<1ppm		
Test Date:	7/15/03		
Test Run By:	· · · · · · · · · · · · · · · · · · ·		

Field Test Results			
Sample ID	Location	Test Result (ppm)	
L5D-071503	L5 Area	3.06	
L5E-071503	L5 Area	<0.5	
L5F-071503	L5 Area	1.30	
SPC1-071503	Sediment Area	<0,5	
SPC2-071503	Sediment Area	<0.5	
SPC3-071503	Sediment Area	1.76	
	· · · · · · · · · · · · · · · · · · ·		

Remarks

Confirmatory Tests: L5 Area and South End of 50-500 ppm Sediment Area (Samples SPC 1, 2, 3)

ĕ?≁15-	03 (5:3	2:09	
*****	**** S	Dï*	******
PROTOC	0L :	I	PCB
LOT #	D TE:		
Vianma	educt:L tion: ode : n9th : :		Pression Ln/L9tB Sorbance 450 nm PPM
	ON OF L = ept = ^) =		812 79 100
Transf(ormed D	ata :	
-0.69 -0.69 0.69 2.30		Abs .343 .214 .090	
Calibra	ator Dat	ta:	
Conc	Abs Diff	XCV	Predic XDify
0.00	1.514		
Mean	1.519	0.5	
0.50 Mean	1.198 0.016 1.212 -0.017 1.205 -0.001	0.8	0.52 3.0 0.48 -3.5 0.50 -0.1
2.00	0.877 -0.219 0.805 0.254		1.78 -12.3 2.25 11.3
Mean	0.841 0.005	6.0	2.01 0.3
10.00	0.400 -0.717 0.365		9.28 -7.7 10.77 7.2 9.99 -0.1

2003 Field Batch #2

PCB Field Test Data			
Project:	Richardson Hill Road		
-	Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Date	9/09/03		
PCB Measurement	Arcolor 1254		
Test Level	<1ppm		
Test Date:	9/09/03		
Test Run By:			

Field Test Results			
Sample ID	Location	Test Result (ppm)	
RE1-090903	Road Excavation North Wall	<0.5	
RE2-090903	Road Excavation North Wall	<0.5	
		L	
		<u> </u>	
		<u> </u>	
		·	
		<u> </u>	
		<u> </u>	
		L	
		<u> </u>	

Remarks

Confirmatory Tests North Wall of Road Excavation for Waste Removal

*******	دەھە، «مەن ي ل ك
PROTOCOL :	PCB
LOT # :	
Data Reduct Xformation: Read Mode Wavelen9th Units	Absorbance

3:90145

11-6-06

EQUATION OF LINE : Slope = -0.768 Intercept = 0.720 Corr (r) = 1.0000

Transformed Data :

Conc	Abs
-0.69	1.248
0.69	0.194
2.30	-1.051

Calibrator Data:

Conc	Abs Diff	XCV	Predic %Diff
0.00	1.459		
Mean	1.437	2.2	
0.50	1.088		0.58
•	0.080 1.145		13.8 0.43
Mean	-0.069	3.6	-16.0
	0.002		0.4
2.00	0.786 -0.006		1.99 -0.3
	0.789		1.97 -1.3
Mean	0.788	8. 2.	1.98
	-0.016		-0.8
10.00	0.383 -0.467		9.53
			(R. 57
ľ			.8.04 0.4

Ctrl#	Abs	Conc
1	0.476	6.36
10: 		
		lenge
5ampl∉	es Data	:h * 4 4 4
		WALL
	Abs	Conc
		WALL
5p1#	Abs	Conc

Scotch tope over instrument riporting strip dissoluted ink and reported result. 3/3:107

PCB Field Test Data			
Project:	Richardson Hill Road		
	Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Date	9/12/03		
PCB Measurement	Arcolor 1254		
Test Level	<1ppm		
Test Date:	9/12/03		
Test Run By:			

Field Test Results			
Sample ID	Location	Test Result (ppm)	
1A-091203	South Pond Reroute Trench	<0.5	
1B-091203	South Pond Reroute Trench	.55	
2A-091203	South Pond Reroute Trench	[`] <0.5	
2B-091203	South Pond Reroute Trench	<0.5	
3A-091203	South Pond Reroute Trench	<0.5	
3B-091203	South Pond Reroute Trench	<0.5	
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·		
Domorico		ليستسبب	

Remarks Confirmatory Tests: South Pond Reroute Trench

RE- 09-12-	80 9300 Roste 83 87:4		GUCH FUL 50. PONS
*****	**** S	D I **	*****
PROTOC	0L :	·	.cв
LOT #	D		
Data R Xforma Read M Wavele Units	educt:L tion: ode : n9th : :	in.Reg Abs	Pression Ln/L9tB Sorbance 450 nm PPM
EQUATI	ON OF L	INE :	
Slope Interce Corr ()	= ept = ^) =	-0.7 0.6 0.99	89
Transf	ormed Da	ata :	
Cond	5	<u> Abs</u>	
-0.69 0.69 2.30	9 1. 9 0. 9 -1.	238 131 089	
Calibra	tor Dat	.a:	
Conc			
	Abs Diff	XCU	Predic %Diff
0.00	Diff 1.130	200	Predic %Diff
0.00 Mean	Diff		Predic %Diff
	Diff 1.130 1.060 1.095 0.814 0.118 0.884		2Diff 0.62 19.2 0.38
Mean	Diff 1.130 1.060 1.095 0.814 0.118		%Diff 0.62 19.2
Mean 0.50	Diff 1.130 1.060 1.095 0.814 0.118 0.884 -0.117 0.849 -0.007 0.612 -0.205	4.5	2Diff 0.62 19.2 0.38 -30.4 0.49 -1.4 1.80 -11.4
Mean 0.50 Mean	Diff 1.130 1.060 1.095 0.814 0.118 0.884 -0.117 0.849 -0.007 0.612	4.5	2Diff 0.62 19.2 0.38 -30.4 0.49 -1.4 1.80
Mean 0.50 Mean 2.00 Mean 10.00	Diff 1.130 1.060 1.095 0.814 0.118 0.884 -0.117 0.849 -0.007 0.612 -0.205 0.555 0.346 0.583	4.5 5.9	2Diff 0.62 19.2 0.38 -30.4 0.49 -1.4 1.80 -11.4 2.35 14.8 2.05

Control	Data :	
611 <i>8</i>	0 6 -	C
Ctrl#	H05	LONC
i 0	.365	5.93
ID:		
Samples	Data :	
Sel#	Abs	Conc
14 1	.066	0.02nd
ID:		
1 <i>R</i> 0	.831	0.55
		0.27nd
10:		
	.092	
3 A 1	.196	nd
ID:		
36 2	949	9 22nd
de .		

2003 Field Batch #4

PCB Field Test Data				
Project:	Richardson Hill Road			
-	Landfill			
Client:	Honeywell			
Project Location:	Sidney, NY			
Sample Matrix:	Soil			
Sample Date	9/23/03			
PCB Measurement	Arcolor 1254			
Test Level	<1ppm			
Test Date:	9/23/03			
Test Run By:				

F	ield Test Results	
Sample ID	Location	Test Result (ppm)
SS1-092303	South Pond South End	<0.5
SS1 DUP- 092303	South Pond South End	<0.5
SS2-092303	South Pond South End	<0.5
SS3-092303	South Pond South End	<0.5
SS4-092303	South Pond East Side	<0.5
SS5-092303	South Pond East Side	<0.5
SS6-092303	South Pond East Side	<0.5
SS6 DUP- 092303	South Pond East Side	<0.5
······································		
· · · · · · · · · · · · · · · · · · ·		
······		
· · · · · · · · · · · · · · · · · · ·		

Confirmatory Tests South Pond

09-23 - 0	3 28:15	1.	
******	*** S D	I **	*****
PROTOCO	1:	P	CB
TECH ID LOT # EXP DAT	:		
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de : 9th : ;	n.Re9 Abs	ression Ln/L9tB orbance 450 nm PPM
EQUATIO	N OF LI	NE :	
Slope Interce Corr (r	= pt =) =	-0.7 0.9 0.99	19
Transfo	rmed Da	ta :	
Conc		Abs	
-0.69 0.69 2.30	1. 0. -0.	431 435 914	
Calibra	tor Dat	ai	
Conc	Abs Diff	%CV	Predic %Diff
0.00	1.564		
Mean	1.556	0.4	
0.50	1.260 0.019		0.52 3.6
Mean	1.259 0.023 1.259 0.021	0.1	3.6 0.52 4.3 0.52 4.0
2.00	0.980 -0.346		1.65 -20.9
Mean	0.914 0.076 0.947 -0.145	4.9	2.08 3.6 1.85 -7.8
10.00	0.447 0.355 0.447 0.355		10.36 3.4 10.36 3.4
78 8)	F	•	3.4 19.32 3.4

u Graf Histori	ol Vacc	-
Ctr1#	Abs	Conc
1	0.601	5.87
ID:		
Sampl	es Data	-
S⊳1#	Abs	Conc
1	1.591	nd
ID:	<u>SS</u>	1
	1.564	
ID:	55	1 (009)
		0.46nd
ID:	SS	2
	1.393	0.22nd
ID:	ss	3
5	1.395	0.21nd
ID:	<u>SS (</u>	<u>-1</u>
	1.598	nd
ID:	<u> </u>	5
7	1.588	nd
ID:	SS Q	<u> </u>
ĉ		a mind
		SS 6 (are)

PCB Field	d Test Data
Project:	Richardson Hill
-	Road Landfill
Client:	Honeywell
Project Location:	Sidney, NY
Sample Matrix:	Soil
Sample Date	11/05/03
PCB Measurement	Arcolor 1254
Test Level	<1ppm
Test Date:	11/05/03
Test Run By:	

7

Field Test Results			
Sample ID	Location	Test Result (ppm)	
L5-01-110503	L5 Area	<0.5	
L5-02-110503	L5 Area	.51	
L5-03-110503	L5 Area	<0.5	
L5-04-110503	L5 Area	<0.5	
L5-05-110503	L5 Area	<0.5	
L5-06-110503	L5 Area	<0.5	
	•		
	·		

Remarks Confirmatory Tests L5 Area

11-35-03 06:25:55				
*****	*** 5 0) <u>I</u> **)	*****	
PROTOCO	IL :	P	CB	
LOT #) 			
U.P	de 😫		ression Ln/L9tB Drbance 450 nm PPM	
EQUATIO	N OF LI	NE :		
Slope Interce Corr (r	= ept = >) =	-0.42 0.42 0.92	25	
Transfo	ormed Da	ata :		
-0.69 -0.69) 0.) -8.	Abs 885 178 409		
2.30	-Q.	407		
	tor Dat			
			Predic ZDiff	
Calibra	Abs Diff 0.384	.a: %CV	Predic ZDiff	
Calibra Conc 0.00	Abs Diff 0.384 0.372 0.378 0.378 0.229		2Diff 	
Calibra Conc 0.00 Mean	Abs Diff 0.384 0.372 0.378	.a: %CV	2Diff 0.98 49.1 0.09 -453.0	
Calibra Conc 0.00 Mean 0.50	Abs Diff 0.384 0.372 0.378 0.378 0.378 0.378 0.378 0.376 -0.410 0.268 -0.410 0.268 -0.162 0.171 2.321 0.174	-a: %CV 2.2	2Diff 0.98 49.1 0.09 -453.0 0.34 -47.8 4.32 53.7 3.96	
Calibra Conc 0.00 Mean 0.50 Mean	Abs Diff 0.384 0.372 0.378 0.229 0.378 0.229 0.483 0.410 0.268 -0.162 0.171 2.321	-a: %CV 2.2	2Diff 0.98 49.1 0.39 -453.0 0.34 -47.8 4.32 53.7	
Calibra Conc 0.00 Mean 0.50 Mean 2.00	Abs Diff 0.384 0.372 0.378 0.378 0.229 0.483 0.376 0.229 0.483 0.306 -0.410 0.268 -0.162 0.171 2.321 0.174 1.962 0.172	20.3*	20.98 49.1 0.09 -453.0 0.34 -47.8 4.32 53.7 3.96 4.14	

Contr	ol Data	
Ctrl#	Abs	Conc
1	0.127	13.55Hi
ID:	<u>L5</u>	
5ampl	es Data	
5el#	Abs	Conc
1	0.282	0.21nd
ID:	<u>L5</u>	- 01
2	0.253	0.51
ID:	(' .	- 07
3		0.09nd
ID:	- 11	- 03
4	0.280	0.23nd
ID:	<u> </u>	09
5	0.351	0.01nd
10:	., -	05
6	0.371	0.00nd
		06.

			х	Ctrl# Abs Conc
• Project:	eld Test Data Richardson	មោ	· · · · · · · · · · · · · · · · · · ·	1 0.293 7.46
Project:	Road Landf		PROTOCOL : PCB GT2 64	
Client:	Honeywell	<u> </u>	PROTOCOL : PCB	ID:
Project Location:	Sidney, NY		TECH ID : WRB	SOUTH POND
Sample Matrix:	Soil	·····	LOT # : <u>4E1060</u> EXP DATE: <u>4</u> 25	Samples Data : GRID>
Sample Date	6/12/2004	· · · · · · · · · · · · · · · · · · ·		
PCB Measurement	Arcolor 12	54	Data Resolution.Regression	Sel# Abs Conc
Test Level	<1ppm		Xformation: Ln/L9tB Read Mode : Absorbance	
Test Date:	6/12/2004		Wavelength: 450 nm	
Test Run By:	WRB		Units : PPM	10: <u>G-6</u>
Field	Test Results		EQUATION OF LINE :	2 0.960 nd
		Test		ID: G = 7
Sample ID	Location	Result	Slope = -0.808 Intercept = 0.878	10
		(ppm)	Corr(r) = 0.9967	30.944 nd
SP-G6-061204	South Pond	2.41	Turneformed Details	10: <u>G-8</u>
SP-G7-061204	South Pond	nd	Transformed Data :	10
SP-G8-061204	South Pond	nd	·	4 1.009 nd
SP-G9-061204	South Pond	nd	Conc Abs	10: <u>G-9</u>
SP-G10-061204	South Pond	nd	-0.69 1.500	
SP-G11-061204	South Pond	nd	0.69 0.204 2.30 -0.930	5 1.020 nd
SP-G12-061204	South Pond	.07nd	2.36 0.336	ID: G-10
SP-G13-061204	South Pond	nd		
SP-G14-061204	South Pond	nd	Calibrator Data:	6 0.945 nd
SP-H7-061204	South Pond	nd		ID: <u>G-11</u>
SP-H8-061204	South Pond	nd nd	Conc Abs %CV Predic Diff %Diff	
SP-H9-061204	South Pond South Pond	nd nd		7 0.868 0.07nd
SP-H10-061204 SP-H11-061204	South Pond	nd	0.00 0.810 1.010	10: <u>G-12</u>
SP-H12-061204	South Pond	nd	Mean 0.910 15.6*	
SP-H13-061204	South Pond	nd		8 1.096 nd
51-1115-001204	bouti i oliu	114	<u>0.50</u> 0.745 0.46 -0.041 -8.9	10: G-13
			0.743 0.47	
	-		-0.032 -6.9 Mean 0.744 0.2 0.46	9 1.214 nd
Remarks			-0.037 -7.9	10: <i>G-14</i>
South Pond Confirm	natory Samples		2.00 0.527 2.00	
			-0.000 -0.0	10 1.297 nd
			0.476 2.65 0.649 24.5	ID: <u>1+'7</u>
			Mean 0.501 7.2 2.30	11 0.974 nd
,			0.303 13.2	
			10.00 0.275 8.36	10: <u>1+-8</u>
			-1.637 -19.6	12 0.957 nd
			0.240 10,54 0.543 5.1	<i></i> 0
· ·			Mean 0.258 9.5 9.37	тр: <u>H-9</u>
			-0.632 -6.8	13 1.013 nd
				10: <u>H-10</u>
				14 1.040 nd
				11 11
			· · · · · · · · · · · · · · · · · · ·	10: <u>H-</u> 11
		· .		15 1.114 nd
				11 10
	ald Datch #1			↓ ID: <u>H</u> - <u>T</u> <u>C</u>
2004 F	ield Batch #1	• . * •	ř	16 1.036 nd
		.:		11-12
				ID: <u>H~13</u>
			,	
				1

Project:	Richardson Read Landf		
C1 :	Road Landf	111	6/1 SOUTH POND
Client: Project Location:	Honeywell Sidney, NY	6/1500TH POND 00 10 04 11-1200 5R18	
Sample Matrix:	Soil	i	*********** 5 D I *******
Sample Date	6/15/2004	(112104	ተተተተተቀቀቀቀቀቀ ጋ ሀ 1 ተተተተተተቀቀቀ
PCB Measurement	Arcolor 12		PROTOCOL : PCB
Test Level	<ippm< td=""><td><u> </u></td><td>TEAL IN A MORA SHIDOW</td></ippm<>	<u> </u>	TEAL IN A MORA SHIDOW
Test Date:	<u>6/15/2004</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	101 # : 4Elobo
Test Run By:	WRB./NM	3	TECH ID : NORT SULOCK LOT # :_451060 EXP DATE:465
			Data Reduct:Lin.Regression
Field 7	fest Results		Xformation: Ln/L9tB
		Test	Xformation: Ln/L9tB Read Mode : Absorbance Wavelen9th : 450 nm Units : PPM
Sample ID	Location	Result	Units : PPM
•		(ppm)	
SP-E7-061504	South Pond	.79	
SP-E8-061504	South Pond	9.67	EQUATION OF LINE :
SP-E9-061504	South Pond	.06nd	5lope = -0.885 Intercept = 1.180 Corr (r) = 0.9927
SP-E10-061504	South Pond	.81	Intercept = 1.180 Corr (r) = 9 9927
SP-E11-061504	South Pond	.13nd	
SP-E12-061504	South Pond	.59	Transformed Data :
SP-E13-061504	South Pond	.01nd	
SP-E14-061504	South Pond	nd	Conc Abs
SP-E15-061504	South Pond	1.54	 _5 29 1 00/
SP-F5-061504	South Pond	nd	-0.69 1.894 0.69 0.380
SP-F6-061504	South Pond	nd	2.30 -0.771
SP-F7-061504	South Pond	nd	
SP-F8-061504	South Pond	nd	Calibrator Data:
SP-F9-061504	South Pond	.28nd	
SP-F10-061504	South Pond	.02nd	Conc Abs 200 Predic
SP-F11-061504	South Pond	.12nd	Diff 2Diff
SP-F12-061504	South Pond	nd	0.00 1.050
SP-F13-061504	South Pond	.06nd	1.225
SP-F14-061504	South Pond	nd	Mean 1.137 10.9∗
SP-F15-061504	South Pond	.05nd	8.50 1.043 0.25
Remarks			-0.249 -99.4
South Pond Confirm	atory Samples		0.934 0.68 0.177 26.2
			0.1// 26.2 Mean 0.989 7.8 0.45
			-0.054 -12.0
			2.00 0.686 2.36
			0.362 15.3
			0.665 2.58 0.580 22.5
			Mean 0.676 2.2 2.47
	Fle Copy 3)81	mp	0.469 19.0
trom 1	NC -17	۲	10.00 0.373 8.52
: مالية الم	1		-1.482 -17.4
Contro	-		0.346 9.67 0.3 4 0
1	0.415 7.1	<i>(U</i>)	Mean 5.4
			Samples Data :
	-		
		· · ·	C-38 06- C
	• •		Spl# Abs Conc
			: 1 0.911 0.79
2004 Field	Batch #2	х 1	in. E-7
·			ID:
	÷	:	2 0.346 9.67
		{	TD. E8 9.67

	1.108 <u>E-9</u>	0.06nd	.
	0.907 <u>E-IC</u>	0.81	
ā :		0.13nd	
_	0.953 <u>E-1</u>	0.59 <u>2</u>	• :
	i.130 E - J	0.01nd 3	
8	1.149 E - 1	nd	
9	0.785 E <i>15</i>	<u>.</u> 	
	1.222 F-		
	1.256 F-4	nd	
12	1.163	nd 7	1
13	1.321 F-8	nd	· .
	1.035 F-9		
15 ID:		0.02nd	· · ·
16 ID:_		02r+ [
17 ID:_	1.212	nd 2	
18 D:_	1.110 <u>F-</u> J	0,06nd	
19 ID:_	1.268 F-1	nd 4	<u> </u>
20 10:	1.114 F-1	0.05nd 5	

PCB Fie	eld Test Data				
Project:	Richardson	Hill			
	Road Land	fill			
Client:	Honeywell				
Project Location:	Sidney, NY				
Sample Matrix:	Soil	<u> </u>			
Sample Date	6/17/2004				
PCB Measurement	Arcolor 12	.54			
Test Level	<1ppm				
Test Date:	6/17/2004				
Test Run By:	WRB				
Field	Test Results				
		Test			
Sample ID	Location	Result			
		(ppm)			
SP-D7-061704	South Pond	nd			
SP-D8-061704	South Pond	nd			
SP-D9-061704	South Pond	1.11			
SP-D10-061704	South Pond	.12nd			
SP-D11-061704	South Pond	nd			
SP-D12-061704	South Pond	nd			
SP-D13-061704	South Pond	.06nd			
SP-D14-061704	South Pond	nd			
SP-D15-061704	South Pond	nd			
SP-C8-061704	South Pond	nd			
SP-C9-061704	South Pond	1.29			
SP-C10-061704	South Pond	.13nd			
SP-C11-061704	South Pond	1.04			
SP-C12-061704	South Pond	nd			

lease Wa 16-17-04	it 30 12:26:5	Minute 51	s ke
16-17-04	14:15:	18	
******	⊧* S D	[****	*****
PROTOCOL	:	PCE	}
TECH ID LOT # EXP DATE			
Data Red Xformati Read Mod Waveleng Units	uct:Lin on: e : th :	i. Regri Li Absoi	ession n/L9tB ~bance 450 nm PPM
EQUATION			_
Slope Intercep Corr (r)	t. = =	-0.78 0.76 1.000	8
Transfor	med Dat	ta :	
Conc		Abs	
-0.69 0.69 2.30	1. 8. -1.	315 222 044	
Calibrat	or Dat	a: 	
Conc	Abs Diff	2CU	Predic %Diff
0.00	0.965		
Mean	1.131 1.048	11.2*	
	0.838 -0.042		0.46 -9.2
Mean.	0.815 0.043 0.826 -0.000	2.0	0.54 7.9 0.50 -0.1
2.00	0.587 -0.044 0.577 0.051		1.96 -2.3 2.05 2.5
Mean	0.582 0.003	1.2	2.00 0.2
10.00	0.253 1.345 0.293		11.34 11.9 8.85
Mean	-1.146 0.273 -0.007	10.2*	-12.9 9.99 -0.1

Ctrl#	Abs	Conc	
1	0.374	5.61	
ID:			
- ·			·
5aMP1.	es Data : 		
Spl#	Abs	Conc	
	1.067	nd	
ID:	<u>D7</u>		
		nd	
ID:	<u> </u>	a _	
3	0.697	1.11	
ID:	D.9		
4	0.966	0.12nd	and the second second
ID:	DID		
5	1.087	nd	
ID:	D11		
6	1.069	nd	· .
ID:	DIZ		
7	1.000	0.06nd	
ID:	D13		
8	1.054	nd	
ID:	D14		
9	1.049	nd	
ID:	DIS		
	1.185		
ID:	<u>C8</u>		
11	0.669		
ID:_	<u>C9</u>		
- 12	0.960		
ID:_	CIO		-
13	0.708	1.04	
ID: C	$\underline{C11}$; 	
	1.103		
ID:	<u>C12</u>		
TND	OF RUN		\$ 11
36-1	.7-04 14:2	0:30	
1			

PCB Fie	eld Test Data	
Project:	Richardson	Hill
-	Road Landf	<u>ill</u>
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Date	6/17/2004	
PCB Measurement	Arcolor 12	54
Test Level	<1ppm	
Test Date:	6/18/2004	
Test Run By:	WRB/NMS	
Field '	Test Results	
		Test
Sample ID	Location	Result
		(ppm)
SP-B4-061704	South Pond	nd
SP-B5-061704	South Pond	nd
SP-B6-061704	South Pond	nd
SP-B7-061704	South Pond	nd
SP-B8-061704	South Pond	nd
SP-B9-061704	South Pond	nd
SP-B10-061704	South Pond	nd
SP-B11-061704	South Pond	nd
SP-C5-061704	South Pond	nd
SP-C6-061704	South Pond	.18nd
SP-C7-061704	South Pond	nd
SP-D5-061704	South Pond	nd
SP-D6-061704	South Pond	.10nd
SP-E5-061704	South Pond	nd
SP-E6-061704	South Pond	nd
Demarks		

Remarks

South Pond Confirmatory Samples

06-18-04 08:11:17 ***** PROTOCOL : PCB Q 461040 Data Reduct:Lin.Regression Xformation: Ln/L9tB Read Mode : Absorbance Wavelen9th ∶ 450 nm PPM Units EQUATION OF LINE : Slope -0.868 1.355 Intercept = Corr(r) =Transformed Data : Abs Conc 0.69 0.753 2.30 -0.644Calibrator Data: Conc Predic Abs 200 Diff ZDiff 0.564 0.00 1.267 0.915 54.3* Mean 0.922 0.50 nd 0.929 nd 0.926 0.5 Mean nd 2.00 0.642 1.78 -12.3 2.24 -0.219 0.603 0.237 0.622 10.6 4.5 2.00 Mean 0.000 0.0 0.322 -0.357 0.309 0.374 0.315 9.64 -3.7 10.37 3.6 10.00 2.9 10.00 Mean -0.000-0.0

Please Wait 30 Minutes 06-18-04 06:08:49 Control Data : Abs Conc Ctrl# 0.420 5.77 1 ID:_ Samples Data : Sel# Abs Conc 1.276 1 nd B4 ID: 2 1.083 nd B5 ID: 1.208 3 nd 10: B6 1.322 4 nd B7 10: 5 1.290 nd BF ID:_ 6 1.219 nd B9 ID: 1.303 7 nd B)0 1D:_ 8 0.954 nd BII ID:__ 0.923 9 nd <u>C5</u> ID:___ 0.865 0.18nd 10 <u>C6</u> ID:__ 1.311 nd 11 ID: 1.223 12 nd 05 10: 13 0.885 0.19nd D6 10: 1.053 14 nd E5 ID: 1.362 15 nd E6 ID:

	ield Test Data Richardson	Hill		
Project:			SEG 20	
Cliant.	Honeywell	<u> </u>	SEG 20	a Nama na kata
Client:		<u> </u>	06-24-04 13:42:04	
Project Location:	Sidney, NY		C. D. J. A. David and detailed	Ctrl# Abs Conc
Sample Matrix:	Soil	<u> </u>	********** S D I ********	
Sample Date	6/22/2004		PROTOCOL : PCB	1 0.355 5.97
PCB Measurement		54	-	ID:
Test Level	<1ppm		TECH ID : WRB LOT # :- 451060	10
Test Date:	6/24/2004		EXP DATE: <u>4/01</u>	
Test Run By:	W. R. B.			Samples Data :
Field	l Test Results		Data Reduct:Lin.Regression Xformation: Ln/LgtB	
		Test	Read Mode : Absorbance	Spl# Abs Conc
Sample ID	Location	Result	Wavelength: 450 nm Units: PPM	1 0.630 1.38
Sample 1D	Docution	(ppm)	00102 * 0.00	
Segment20-B1-		UPP ^{AIL}		10: <u>Bl</u>
062204	Segment 20	1.38	EQUATION OF LINE :	2 1.033 0.05
Segment20-B2-	Jogmont 20	1.50	Slope = -0.699	
062204	Segment 20	.05nd	Intercept = 0.488	10: <u>B2</u>
		.0.5110	Corr (r) = 0.9982	:
Segment20-B3- 062204	Segment 20	1.33	Insuctionmed Data 1	3 0.637 1.33
	Segment 20	1.55	Transformed Data :	1D: <u>3</u> 3
Segment20-B4-	Soment 30	.42nd		1672-2
062204	Segment 20	.42110	Conc Abs	4 0.836 0.42
Segment20-B5-	Sie	1.25	-0.69 1.012	ID: B4
062204	Segment 20	1.35	0.69 -0.070	10:12-7
Segment20-B6-	Q ++ QQ	.96	2.30 -1.087	5 0.634 1.35
062204	Segment 20	.90		
Segment20-B7-	G	16-1	Calibrator Data:	ID: <u>B5</u>
062204	Segment 20	.16nd		6 0.699 0.96
Segment20-B8-		L	· · ·	
062204	Segment 20	.04nd	Conc Abs %CV Predic Diff %Diff	10: <u>B6</u>
Segment20-B9-	a			-
062204	Segment 20	.69	0.00 1.112	7 0.952 0.16
Segment20-			1.117 Mean 1.115 0.3	10: <u>B7</u>
B10-062204	Segment 20	1.30	(169) 1:110 0:0	+v• 4 ~
Segment20-			0.50 0.813 0.49	(aga) 8 1.046 0.04
B11-062204	Segment 20	.26nd	-0.012 -2.5	n no
Segment20-			0.822 0.46 -0.042 -9.2	10: <u>J38</u>
B12-062204	Segment 20	.11nd	Mean 0.817 0.8 0.47	9 0.755 0.69
		<u> </u>	-0.027 -5.8	
	<u> </u>		2.00 0.550 2.08	тв: <u>В9</u>
·······			0.034 4.0	10 0 / 40 1 70
			0.525 2.37	10 0.642 1.30
			0.368 15.5 Mean 0.538 3.3 2.22	ID: <u>BIO</u>
			0.221 10.0	
	A			11 0.900 0.26
				10: BII
Remarks			l -1.395 -16.2 0.266 10.58	10: <u>311</u>
Remarks Confirmatory Sar	mples		10.00 0.296 8.60 -1.395 -16.2 0.266 10.58 0.584 5.5 Mean 0.281 7.6 9.53	ID: <u>311</u> 12 0.983 0.11

END OF RUN 06-24-04 13:46:37

~~ \/

Project:	ield Test Data Richardson			
~	Road Land	<u>fill</u>	- -	
Client:	Honeywell			-
Project Location:	Sidney, NY	-	********** 5 D I ********	- Ctrl# Abs Conc
Sample Matrix:	Soil			1 0.319 5.22 🕳
Sample Date	6/24/2004		PROTOCOL : PCB	
PCB Measurement	Arcolor 12	.54	TECH ID : URB	ID:
Fest Level	<1ppm		LUT # : 461060	
Test Date:	6/25/2004		EXP DATE:4/05	Samples Data :
Test Run By:	W. R. B.		Data Reduct:Lin.Regression	
Field	l Test Results		Xformation: Ln/LgtB Read Mode : Absorbance	S⊳l# Abs Conc
		Test	Wavelen9th : 450 nm Units : PPM	1 0.945 0.04nd
Sample ID	Location	Result	1111	10: <u>W-1</u>
		(ppm)		10:KV
Segment 20-			EQUATION OF LINE :	2 1.070 nd
W1-062404	Segment 20	.04nd	51ope = -0.736	
Segment 20-			Slope = -0.736 Intercept = 0.449 Corr (r) = 0.9994 ━	1D: W-2
W2-062404	Segment 20	nd	oora (n) - 0,9994 🖜	3 1.051 nd
Segment 20-			Transformed Data :	-
W3-062404	Segment 20	nd		10: <u>w-3</u>
Segment 20-			Conc Abs	4 1.083 nd
W4-062404	Segment 20	nd		
Segment 20-			-0.69 0.983 0.69 -0.107 2.30 -1.224	ID: W-4
B13-062404	Segment 20	nd	2.30 -1.224	5 1.040 nd
Segment 20-	a			
B14-062404	Segment 20	.03nd	Palibuston Data.	1D: <u>B13</u>
Segment 20-		1 1 1 1	Calibrator Data:	
B15-062404	Segment 20	.17nd		6 0.960 0.03nd
Segment 20-	D	15-1	Conc Abs %CV Predic Diff %Diff	ID: <u>B14</u>
B16-062404	Segment 20	.15nd		
Segment 20-	Segment 20	.98		7 0.858 0.17nd
B17-062404	Segment 20	.70	0.990 Mean 1.005⊕2.2 ━	1D: BIS
Segment 20- B18-062404	Segment 20	nd		
Segment 20-	Lognon 20		0.50 0.733 0.48 -0.021 -4.4	8 0.866 0.15nd
B19-062404	Segment 20	.32nd	0.730 0.49	10: <u>B16</u>
Segment 20-			-0.012 -2.4	
B20-062404	Segment 20	nd	Mean 0.732 0.3 🖝 0.48 -0.016 -3.4	9 0.618 0.98
Segment 20-	````````````````````````````````			10: B17
B21-062404	Segment 20	.02nd	2.00 0.494 1.93 -0.066 -3.4	
	,		0.458 2.34	10 1.062 nd
			0.341 14.6	ID: 18
			Mean 0.476 5.2 🖝 2.13 0.128 6.0	· · · · · · · · · · · · · · · · · · ·
				11 0.789 0.32nd
				10: B 19
			-0.486 -5.1 0.226 9.93	1V• <i>12</i>
			-0,073 -0.7	12 1.108 nd
Remarks	• • • • • • • • • • • • • • • • • • • •		Mean 0.229 1.7 - 9.72 -0.283 -2.9	ID: B20
Confirmatory Sar	nples		01100 212	ID: <u>B20</u>
· ·			· · · · · · · · · · · · · · · · · · ·	13 0.969 0.02nd
			(F31 - P -	* I

Project:Richardson Hill Road LandfillClient:HoneywellProject Location:Sidney, NYSample Matrix:SoilSample Dates $6/24/04$ PCB Measurement Test LevelArcolor 1254Test Level<1ppmTest Date: $6/26/04$ Test Run By:NMSField Test ResultsField Test ResultsSample IDLocationSample IDTest Result (ppm)SP-C6-062404South Pond5.13SP-D6-062404South Pond3.77SP-Stockpile 1- 062404South Pond<0.5SP-Stockpile 2- 062404South Pond<0.5SP-Stockpile 3- 062404South Pond.70Client PointSouth Pond<0.5SP-Stockpile 3- 062404South Pond.70Client PointInternetInternetClient PointInternetInternetClient PointInternetInternetClient PointInternetInternetClient PointInternetInternetClient PointInternetInternetClient PointInternetInternetClient PointInternetInternetSuth PointInternetInternetSuth PointInternetInternetSuth PointInternetInternetInternetInternetInternetInternetInternetInternetInternet	PCB Field	l Test Data					
Road LandfillClient:HoneywellProject Location:Sidney, NYSample Matrix:SoilSample Dates $6/24/04$ PCB MeasurementArcolor 1254Test Date: $6/26/04$ Test Date: $6/26/04$ Test Run By:NMSField Test ResultsTest Sample IDLocationTest ResultsSample IDLocationSP-C6-062404South PondSP-C6-062404South PondSP-Stockpile 1- 062404South PondSouth PondSouth PondSP-Stockpile 2- 062404South PondSouth Pond <td cols<="" td=""><td></td><td colspan="5"></td></td>	<td></td> <td colspan="5"></td>						
Client:HoneywellProject Location:Sidney, NYSample Matrix:SoilSample Dates $6/24/04$ PCB MeasurementArcolor 1254Test Level $<1ppm$ Test Date: $6/26/04$ Test Run By:NMSField Test ResultsSample IDLocationResultSample IDLocationSP-C6-062404South PondS.13SP-D6-062404South PondSP-Stockpile 1- 062404South PondSP-Stockpile 2- 062404South PondSP-Stockpile 3-South PondSP-Stockpile 3-South PondSouth PondSample ID							
Project Location:Sidney, NYSample Matrix:SoilSample Dates $6/24/04$ PCB MeasurementArcolor 1254Test Level $<1ppm$ Test Date: $6/26/04$ Test Run By:NMSField Test ResultsSample IDLocationResultSample IDLocationSP-C6-062404South Pond5.13SP-C6-062404South PondSouth PondSouth PondSouth PondSouth PondSouth PondSP-Stockpile 2- 062404South PondSouth Pond <td cols<="" td=""><td>Client:</td><td></td><td>·····</td></td>	<td>Client:</td> <td></td> <td>·····</td>	Client:		·····			
Sample Matrix:SoilSample Dates $6/24/04$ PCB MeasurementArcolor 1254Test Level $<1ppm$ Test Date: $6/26/04$ Test Run By:NMSField Test ResultsTest Run By:NMSField Test ResultsSample IDLocationResultSP-C6-062404South Pond5.13SP-D6-062404South PondSP-Stockpile 1- 062404South PondSouth PondSouth PondSP-Stockpile 2- 062404South PondSouth Pond							
Sample Dates6/24/04PCB MeasurementArcolor 1254Test Level<1ppm							
PCB Measurement Test LevelArcolor 1254Test Level<1ppm	-						
Test Level<1ppmTest Date:6/26/04Test Date:NMSField Test ResultsField Test ResultsSample IDSP-C6-062404South PondSP-C6-062404South PondSP-Stockpile 1- 062404South PondSP-Stockpile 2- 062404South PondSP-Stockpile 3-South PondSP-Stockpile 3-South PondSP-Stockpile 3-South PondSP-Stockpile 3-South PondSP-Stockpile 3-South PondSouth Pond<0.5	-		54				
Test Date:6/26/04Test Run By:NMSField Test ResultsField Test ResultsSample IDLocationSP-C6-062404South Pond5.13SP-D6-062404South Pond3.77SP-Stockpile 1- 062404South Pond3.77SP-Stockpile 1- 062404South Pond<0.5							
Test Run By:NMSField Test ResultsField Test ResultsSample IDLocationTest Result (ppm)SP-C6-062404South Pond5.13SP-D6-062404South Pond3.77SP-Stockpile 1- 062404South Pond<0.5	Test Date:						
Field Test ResultsSample IDLocationTest Result (ppm)SP-C6-062404South Pond5.13SP-D6-062404South Pond3.77SP-Stockpile 1- 062404South Pond<0.5							
Sample IDLocationResult (ppm)SP-C6-062404South Pond5.13SP-D6-062404South Pond3.77SP-Stockpile 1- 062404South Pond<0.5		st Results					
SP-C6-062404 South Pond 5.13 SP-D6-062404 South Pond 3.77 SP-Stockpile 1- 062404 South Pond <0.5			Test				
SP-C6-062404South Pond5.13SP-D6-062404South Pond3.77SP-Stockpile 1- 062404South Pond<0.5	Sample ID	Location					
SP-D6-062404South Pond3.77SP-Stockpile 1- 062404South Pond<0.5							
SP-Stockpile 1- 062404South Pond<0.5SP-Stockpile 2- 062404South Pond<0.5							
062404South Pond<0.5SP-Stockpile 2- 062404South Pond<0.5	SP-D6-062404	South Pond	3.77				
062404 South Pond <0.5		South Pond	<0.5				
SP-Stockpile 3- South Pond 70		South Pond	<0.5				
	SP-Stockpile 3-	South Pond	.70				
			· ·				
		.					
	·····						
	<u> </u>						
	L	<u> </u>					

Remarks Retest Of South Pond Grids C6 and D6

06-26-04 07:32:57
************** 5 D I **********
PROTOCOL : PCB
TECH ID : DCD
LOT # : EXP DATE:
Noto Reduct: I in Regressio
Xformation: Ln/L91 Read Mode : Absorbance Wavelength : 450 nm
Wavelength : 450 nm Units : PPM
EQUATION OF LINE :
Slope = -0,823 Intercept = 0,960 Corr (r) = 0.9989-
Intercept = 0.960 Corr (r) = 0.9989-
Transformed Data :
Conc Abs
-0.69 1.566
-0.69 1.566 0.69 0.322 2.30 -0.903
Calibrator Data:
Conc Abs %CV Predic Diff %Diff
0.00 1.332 1.286
Bo Mean 1.309-2.5- 76
0.50 1.077 - 20.50 -0.003 B. 6 -0.6
-0.003 B/B -0.6 1.089 0.46 -0.040 -8.6
Q. Mean 1.083 0.8 🗕 0.48
2.00 0.823 -0.306 -0.306 -0.306 -18.1 0.695 -2.76 0.761 27.6 -0.759 11.9 $-2.17-2.17-2.17-2.17-2.17$
$0.695 \cdot \mu 50 2.76$ 0.761 27.6
Br Mean 0.759 11.9%) 2.17 0.171 7.9
10.00 0.385
-0.696 2"7.5 0.370 0 9.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
/ -8.010 -0.7
Control Data :

Ctr1#	Abs	Conc
1	0.503	5.71 🛹
ID:		
Sample	es Data 3	. .
Spl#	Abs	Conc
1	0.530	5.13
ID:	<u> </u>	
2	0.612	3.77
ID:	06	
3	1.123	0.36nd
10:	<u> </u>	<u>LE (</u>
4	1.098	0.43nd
ID: S	Jock T	<u>, LE Z</u>
5	1.018	0.70
10:_\$	TOCK	PILE 3

7

FND OF RUN

	eld Test Data				3ر	6				
Project:	Richardson				Sé	with loved				
	Road Land		e salar an si si s	· ··· · ·· .	·•					
Client:	Honeywell		******	•** S D	<u> </u>	****		1	0.319	6.04
Project Location:	Sidney, NY					_		TŇa		
Sample Matrix:	Soil		PROTOCOL					10:		
Sample Date	6/28/2004		TECH ID	· (N	LB					
PCB Measurement	Arcolor 12	254	LOT #	:4	<u>E 106</u>	<u>Q</u>		Sampl	es Data :	
Test Level	_<1ppm		EXP DATE	E:4	105		1			-
Test Date:	6/28/2004		Data Rec	kuct:⊧ii	n.₽o⊈r	ession		5e]#	Abs	Conc
Test Run By:	WRB		Vfannati	0.00	1	n d Ot D				
Field	Test Results		Read Mod	je : 1+6 :	Abso	rbance 450 pm		1	0.751	0.39nd
	i est Results		Read Mod Wavelen Units	368 ·		PPM		ID:	<u>B22</u>	
	.	Test								A 40 1
Sample ID	Location	Result	EQUATIO	ເດຣາກ	NF .				0.889	
		(ppm)						īb:	B24	
Segment 20 -B22-	0	20-1	Slope							
062804	Segment 20	.39nd	Interce Corr (r)	이는 =) =	0.35 0.999	57 17		3	0.955	0.03nd
Segment 20 -B24-	a		0011 11.	,	01070			10-	B25	
062804	Segment 20	.10nd	Transfo	rmed Da	ta :				•	
Segment 20 -B25-	G	02.1						4	0.837	0.19nd
062804	Segment 20	.03nd	Conc	:	Abs			T 0 -	R26	
Segment 20 -B26-	G	10-1						10:	020	
062804	Segment 20	.19nd	-0.69 0.69	0. -0.	874 177			5	1,012	0.00nd
Segment 20-W5- 062804	Second 20	02-4	2.30						15	
	Segment 20	.03nd						ID:	<u></u>	
Segment 20-W6- 062804	Secondart 20	a d	Calibra.					- 6	1.042	nd
	Segment 20 South Pond	nd .00nd	Calibra		d• 			1		
SP-C5-062804								ID:	<u> </u>	
SP-C6-062804	South Pond	nd	Conc	<u> Abs</u>	2CV	Predic			0,965	0.03nd
		.		Diff		20iff				
			9.00	1.045				ID:_	<u> </u>	
			Maan	1.007 1.026	22				4 047	
			nean	1.020	2.0		1	1	1.047	·
		· · · · · · · · · · · · · · · · · · ·	0.50	0.708		0.53		ID:_	16	
				0.031 0.739		5.8 0.43		•		
				-0.073		-17.1		1	05 DUU	
			Mean	0.723	3.0	0.48		1 ENU 1 06-2	OF RUN 8−04 15∷	14:21
		·····		-0.023	·	-4.9			0 0, 10,	
			2.00	0.490		2.06	- ÷			
				0.059		2.9				
Remarks				0.470 0.320		$2.32 \\ 13.8$		-	· · ·	
Segment 20 Cónfirm			Mean	0,480	2.9	. 2.19.		:	1	
South Pond Confirm	natory Retest O	F Grids C5 and		0.186		8.5				
			10.00	Ø.275		8,27				
	·			-1.734		-21.0	····· ·			
			3	0.237		11.23				
			Mean	1.230 0.256	10.7*	11.0				

-

***** S D I : COL : D :4月 ATE:4月		
	PCB	
	z	
	1060	
ITE:47	05	
,		
Reduct:Lin.R	eyression Ln/L9t8	
iode A	lbsorbance	
ation: Node : A Angth :	450 nm PPM	
•	1111	
LON OF LINE	:	
 = -0		
= -0 cept = 0 (r) = 0.	428	
.r) = 0.	7770	
formed Data	:	
	•	
nc Abs		
59 0.873 59 -0.007 30 -1.095	5	
50 -1.095	5	
rator Data:		
t Abs %C Diff	W Predic	
	40111	ŀ
0 1.073		
1.091 n 1.082 1.	1	
1 11002 11		
0.768	0,49	
-0.007 0.759	-1.4 0.52	
0.024	4.6	
n 0.763 0. 0.008	.8 0.51 1.7	
0,000	i∎i	
0 0.558	1.74	
-0.261 0.520	-15.0 2.16	
0.161	7.5	
n 0.539 5.	.1 1.94	
-0.062	-3.2	
0 0.274	9.94	
-0.061	-0.6	
0.358	10.36	
n 0.271 1.	.4 10.15	
0.146	1.4	·
a	-0.061 0.269 0.358	-0.061 -0.6 0.269 10.36 0.358 3.5 an 0.271 1.4 10.15 0.146 1.4

Ctrl#

1

<u>Abs</u>

0.353

Conc

5.79

p: SP 09 1.071 0.00nd 4 D: SP DIO 5 1.108 nd D: SEGIR B4 0.02nd 1.035 6 D: SEG 18 WI 1.105 7 nd D: SEG 18 WZ 8 1.092 nd B9 D: SEG 19 1.111 nd 9 D: SEG 19 BIO 1,043 0.01nd 10 D: SEG 19 B13 1.089 11 nd D:SEG19 W1 0.608 12 1.32 D: SEG19 WZ

Abs

1.111

sρ

1.094

1.066

SP C9

Conc

<u>C 8</u>

nd

nd

0.00nd

SAN OF OUN

	eld Test Data					
Project:	Richardson			· ·		
	Road Land	611	***) ī skole	******
Client:	Honeywell	<u></u>			1	
Project Location:	Sidney, NY	,	PROTOCO	L:	Pi	38
Sample Matrix:	Soil			1.1	DR	
Sample Date	6/29/2004		TECH ID LOT # EXP DAT	<u>- IVI</u>	NFIN	60
PCB Measurement	Arcolor 12	54	EXP DAT	E:	4105	×
Test Level	<1ppm					
Test Date:	6/30/2004		Data Re			1 - 1 - 5
Test Run By:	W. R. B.		Xformat Read Mo	de :	<u>A</u> bs:	orbance
	Test Results		Xformat Read Mo Wavelen Units	i9th∶ ∶		450 nm PPM
		Test				
Sample ID	Location	Result	EQUATIO	N OF LI	INE :	
		(ppm)	Slapa		 ان ۾_	97
SP-C7-062904	South Pond	nd	Slope Interce Corr (r	et =	0.0 0.9	93
SP-C11-062904	South Pond	.00nd	Corr (r) =	0.98	87**
SP-D6-062904	South Pond	nd	Ť	und D		
SP-E8-062904	South Pond	nd	Transfo	rmed Va	ata : 	
SP-E15-062904	South Pond	.02nd				
SP-G6-062904	South Pond	nd	Conc		Abs	
Segment 18-B1-			-0.69		738	
062904	Segment 18	nd	0.69	1. 0.	140	
Segment 19-B1-	Begment 10	110	2.30	ı −0.	953	
062904	Segment 19	nd				
Segment 19-B2-	Segment 17		Calibra	tor Dat	:	
062904	Segment 19	.33nd				
Segment 19-B10-	Segment 19	.5510	_			
062904	Secondart 10	nd	Conc	Abs	2CV	
Segment 19-B11-	Segment 19	пц		Diff		%Diff
062904	Soomant 10	nd	0.00	1.050		
	Segment 19	DH	Maan	1.087 1.068	Э л	
Segment 19-B14-	Geomet 10	4 10	nean	1.000	4.4	
062904	Segment 19	4.19	0.50			0.15
				-0.350		-234.1
······				0.817 0.314		0.81 38.6
				0.909	14.3*	0.43
				-0.066		-15,1
			2.00	0.582		2.49
			T100	0.489		19.6
				0.561		2.72
			Mean	0.716 0.572	2.6	26.4 2.60
			neall	0.600	T10	23.1
· · · · · · · · · · · · · · · · · · ·			10.00	A		.
Remarks			10,00	0.291 -0.833		9.17 -9.1
Segments 18 and 19	Confirmatory Sa	imples.		0.304		8.56
South Pond Confirma	atory Retest of C	drids C7,	بد	-1.440		-16.8
D6, E8, E15, and G6	•	-	Mean	0.297 -1.143	3.1	8.86 -12.9
· · · · ·				11149		-12.7

Control Data :

Ctrl#

1 ĉ.

Abs

-----0.387 Conc

5.75

Spl	# Abs	Conc	
1	1.122		
ID:	SEG	<u>18 F</u>	51
	1.173		
ID:	SEG	19 6	51
	0.938		
10:	SEG	<u> 19 </u>	<u>, 2</u>
4	1.163	nd	
ID:	SEG	<u>19 E</u>	<u> </u>
5	1.116	nd	
ID:	SEG	<u>19</u>	311
6	0.458	4.19	
ID:	SEG	<u>19</u> ß	14
7	1.189	nd	
ID:	SP	<u>C7</u>	
8	1.067	0.00r	id
ID:	<u>SP</u>	<u>C 11</u>	
9			
ID:	<u>sp</u>	<u> </u>	
10	1.147	nd	
ID:	<u>sp</u>	<u>E8</u>	
11	1.054	0.02r	nd
ID:	<u>sp</u>	EI	5
12	1.160	nd	k.
ID:	<u>sp</u>	<u>G6</u>	
-			

Samples Data 🗄

END OF RUN 06-30-04 08:31:14

PCB Fi	eld Test Data		
Project:	Richardson	Hill	
110,000	Road Land		
Client:	Honeywell		
Project Location:	Sidney, NY	-	-
Sample Matrix:	Soil		-
Sample Date	6/30/2004		÷
-		5.4	1
PCB Measurement	Arcolor 12	.54	
Test Level	<1ppm		
Test Date:	7/1/04		
Test Run By:	W. R. B.		÷.
Field	Test Results		-
		Test	<u></u>
Sample ID	Location	Result	
1		(ppm)	
Segment 19-B3-			
063004	Segment 19	nd	
Segment 20-B1-			
063004	Segment 20	nd	
Segment 20-B3-	Segment 20	114	
063004	Segment 20	nd	
Segment 20-B7-	Segment 20	nq	
Segment 20-Б7- 063004	Sament 20		
	Segment 20	nd	
Segment 20-B8-	0		
063004	Segment 20	nd	
Segment 20-B9-	~		
063004	Segment 20	nd	
Segment 20-B10-			
063004	Segment 20	nd	
Segment 20-B12-			
063004	Segment 20	nd	
Segment 20-B17-			
063004	Segment 20	.00nd	
Segment 20-B6-	· · · · · · · · · · · · · · · · · · ·		
063004	Segment 20	nd	
Segment 20-B23-			
063004	Segment 20	nd	
Segment 20-B28-	······································		
063004	Segment 20	nd	
1	_		
· · · · · · · · · · · · · · · · · · ·	· · · · ·		
· · · · · · · · · · · · · · · · · · ·			
<u> </u>	· · · · ·		
	· · ···· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Remarks			

Remarks

Segments 19 and 20 Confirmatory Samples. Confirmatory Retest of Segment 20 Grids B1, B3, B6, B7, B8, B9, B10, B12, B17

07-01-04 06:44:12 ********** 5 0 1 ******** PROTOCOL : PCB £ الم TECH ID : 1060 LOT # 1 ____ EXP DATE:____ 105--Data Reduct:Lin.Regression Xformation: Ln/L9tB Absorbance Read Mode : 450 nm PPM ₩avelen9th : Units ł EQUATION OF LINE : Slope = -0.663Intercept = 0.428 Corr (r) = 0.9994 Transformed Data : Conc Abs. 0.866 -0.690.69 0.008 2.30-1.116 Calibrator Data: Predic %Diff Abş Conc 200 Diff 0.00 1.133 1.128 Nean 1.130 0.3 0.54 7.9 0.50 0.788 0.043 0.49 0.804 -1.9 -0.009 Mean 0.796 1.4 0.52 0.016 3.20.591 2.00 1.66 -0.338 -20.3 2.14 0.544 0.136 Mean 0.567 6.4 5.8 1.88 -0.116 -6.2 0.281 10.00 10.13 0.129 0.277 1.3 10.43 0.435 0.279 0.280 10.28 1.0 Mean 2.7 Control Data : Ctrl# Abs Conc

8,375

1

5.49

liv ter kara 5p1# Abs. Conc 1 1.175 nd ID: SEG19 <u>B</u>3 2 1.174 nd SEG ZO B6 ID:_. 3 1.151 nd ID: SEG 20 BI 4 1.223 nd 10: SEG 20 B3 1.188 5 nd β7 ID: SEG 20 1.183 6 nd 10: SEG 20 B8 7 1.154 nd B9 10: SEG 20 1.162 8 nd <u>B10</u> ID: SEG 20 9 1.136 nd ID: SEG 20 BIZ 1.129 10 0.00nd ID: SEG20 <u>B17</u> 1.145 11 nd ID: <u>SEG 20</u> B23 12 1.160 nd ID: SEG 20 B28 END OF RUN

й7-й1-й4 06:47:21

PCB Field Test Data			
Project:	Richardson	Hill	
-	Road Land	fill	
Client:	Honeywell		
Project Location:	Sidney, NY	r	
Sample Matrix:	Soil		
Sample Date	6/30/2004		
PCB Measurement	Arcolor 12	.54	
Test Level	<1ppm		
Test Date:	7/1/2004	······································	
Test Run By:	W. R. B.	w	
l	Test Results		
	· · · · · · · · · · · · · · · · · · ·	Test	
Sample ID	Location	Result	
	Location	(ppm)	
Segment 18-B2-			
063004	Segment 18	nd	
Segment 18-B3-			
063004	Segment 18	nd	
Segment 19-B7-			
063004	Segment 19	.00nd	
Segment 19-B8-			
063004	Segment 19	nd	
Segment 19-B14-			
063004	Segment 19	nd	
Segment 19-W2-			
063004	Segment 19	.73	
Segment 20-B5-			
063004	Segment 20	nd	
Segment 20-B27-			
063004	Segment 20	.16nd	
Segment 20-B29-			
063004	Segment 20	nd	
Remarks			

Confirmatory Tests Segments 18, 19 and 20. Confirmatory Retest of Segment 19 Grids B14 and W2. Segment 20 Grid B5

	******		· ***	*****
	PROTOCOL	. :	PC	В
	TECH ID LOT # EXP DATE	:	K B TE Too Tos_	<u>_0</u>
	Data Red Xformat: Read Mod Wavelen Units	ion: de : 9th :	L Abso	ession n/L9t8 rbance 450 nm PPM
	EQUATIO	N OF LI		
	Slope Interce Corr (r)	= pt =) =	-0.69 0.48 0.999	7
	Transfo	rmed Da	ta ; 	
	Conc		Abs	
	-0.69 0.69 2.30	-0,1	0Z1	
	Calibrat	tor Dat	a: 	
	Conc	Abs Diff	XCU	Predic %Diff
	0.00	1.136		
	Mean	1.096 1.116	2.5	
	0.50	0.805		9.51
	Mean	0.819 -0.033 0.812 -0.010	1.3	0.47 -7.0 0.49 -2.0
	2.00	0.570 -0.107		1.89 -5.7
	Mean	0.534 0.278 0.552 0.077	4.6	2.28 12.2 2.08 3.7
	10.00	0.283 -0.470 0.274		9.53 -4.9 10.14
	Mean	0.274 0.137 0.279 -0.173	2.3	1.4 9.83 -1.8
	Control	Data :		
	Ctr1#	Abs	Conc	
•	i 0	.408	4.46	

T

-		-
Spl#	Abs	Conc
1	1.170	nd
ID:	<u>SEG 18</u>	β2
2	1.174	nd
ID:	SEG 18	<u>β3</u>
3	1.104	0.00nd
ID:	SEG19	<u>B7</u>
4	1.138	nd
ID:	SEG-19	<u> </u>
5	1.147	nd
ID:	SEG 1°	<u>B14</u>
6	0.748	0.73
ID:	<u>SEG 19</u>	W2
7	1.174	nd
ID:	<u>SEG 2</u>	<u>o BS</u>
8	0.952	0.16nd
ID:	<u>JEG-2</u>	<u>o B27</u>
9	1.172	nd
ID:	<u>SEG 2</u>	<u>0 B29</u>

vala i

END OF RUN 07-01-04 09:12:00

PCB Field Test Data		
Project:	Richardson	Hill
	Road Land	fill
Client:	Honeywell	
Project Location:	Sidney, NY	7
Sample Matrix:	Soil	
Sample Date	7/14/04	
PCB Measurement	Arcolor 12	254
Test Level	<1ppm	
Test Date:	7/14/04	
Test Run By:	W. R. B.	
		1
Field	Test Results	
		Test
Sample ID	Location	Result
		(ppm)
Segment 17-B1-		
071404	Segment 17	nd
Segment 17-B3-		
071404	Segment 17	.01nd
Segment 17-B4-		
071404	Segment 17	.01nd
Segment 17-B5-		
071404	Segment 17	1.00
Segment 17-B7-		
071404	Segment 17	.09 nd
Segment 17-B8-		
071404	Segment 17	.27 nd
Segment 17-B9-		
071404	Segment 17	.15nd
Segment 17-B10-		
071404	Segment 17	2.74
Segment 17-W1-		
071404	Segment 17	nd
Segment 17-W2-	~	
071404	Segment 17	.04nd
Segment 17-W4-	A	
071404	Segment 17	nd
Segment 17-W5-	a	
071404	Segment 17	nd
		<u> </u>
· · · · · · · · · · · · · · · · · · ·		
Remarks		

Confirmatory Tests Segment 17

********** 5 [) [******** PROTOCOL : PCB TECH ID :_____ LOT # :_____ EXP DATE:_____ Data Reduct:Lin.Regression Xformation: Ln/L9tB Read Mode : Absorbance 450 nm PPM Wavelen9th : Units . EQUATION OF LINE : Slope = ' Intercept = ⁰-0.698 0.559 Corr (r) = 1.0000 Transformed Data : Conc Abs. _____ -----0.69 0.69 2.30 1.040 0.079 Calibrator Data: _____ %CV Predic %Diff Conc <u>Abs</u> Diff _____ 0.00 1.120 1.106 Mean 1.113 0.9 0.50 0,820 0.51 1.9 0.49 -1.3 0.50 0.010 0.825 -0.006 Mean 0.823 0.002 8.4 0.3 2.00 0.580 1.97 -0.027 0.577 -1.3 2.00 0.1 1.99 0.002 Mean 0.579 0.3 -0.012 -0.6 10.00 0.293 -0.311 0.283 0.385 9.69 -3.2 10.39 3.7 10.03 Mean 0.288 2.5 0.029 0.3 _____ Control Data : _____

Ctrl# Abs Conc 1 0.380 5.69

	Samples Data :			
	Spl#	Abs	Conc	
		1.161	nd	-
	ID:_	<u>SE6 [</u>	7 – 1	<u>.</u>
			0.01nd	
	د:10	SEG 1	<u> </u>	
	3	1.084	0.01nd	
	، بي ID:	SEG 17	<u> </u>	
		0.709		
	I0:_s	<u>SEG 17</u>	- 5	
		1.003		
	ID:	<u>SEG17</u>	7	
	6	0.90 4	0.27nd	
-	ID:	SEG 1	7-8	-
	7	0.969	0.15nd	
	ID:	SEG 17	-9	-
	8	0.516	2.74	
	ID:9	SEGIT	<u> </u>	_
	9	1.192	nd	
	ID:	<u>EG 17</u>	ωI	-
	10	1.049	0.04nd	
	10:_\$	<u>EG17</u>	WZ	
		1.115		
	10: <u>5</u>	<u>EG17</u>	<u>w4</u>	
	12	1.145	nd	
	ID:3	<u>EG 17</u>	<u>w5</u>	
			di tan	

11

END OF PHW

 \geq

PCB Fi Project:	eld Test Data Richardson	
	Road Land	fill
Client:	Honeywell	
Project Location:	Sidney, NY	r
Sample Matrix:	Soil	
Sample Date	7/14/04	<u>, </u>
PCB Measurement	Arcolor 12	54
Test Level	<1ppm	
Test Date:	7/14/04	
Test Run By:	W. R. B.	<u> </u>
Test Kall By.	W. R. D.	
Field '	Test Results	:
Sample ID	Location	Test Result (ppm)
Segment 17-B2-		
071404	Segment 17	.09nd
Segment 17-B6-		
071404	Segment 17	.16nd
Segment 17-B11-		
071404	Segment 17	.45nd
Segment 17-B12-		
071404	Segment 17	.11nd
Segment 17-B14-	· · · · · · · · · · · · · · · · · · ·	
071404	Segment 17	.04nd
Segment 17-B16-		
071404	Segment 17	.72
Segment 17-W3-		
071404	Segment 17	.nd
Segment 17-W6-		
071404	Segment 17	2.51
Segment 17-W7- 071404	Segment 17	nd
Segment 17-W8-		
071404	Segment 17	.00nd
Segment 17-W9-		
071404	Segment 17	nd
		· · · · · · · · · · · · · · · · · · ·
		····
· · · · · · · · · · · · · · · · · · ·		
Domostro		

Remarks Confirmatory Tests Segment 17

ተት ተቀሳ የማሳት ነው።	eren 🖬 🤅	· -	
PROTOCOL	ί:	P	СВ
TECH ID Lot # Exp date	- <u>al</u>	<u>u</u> Ş	_
Data Re Xformat Read Mod Wavelen Units	duct:Li ion: de : 9th : <i>C-ME</i>	l Abs(_n/L9tB orbance 450 nm PPM
EQUATION	N OF LI	NE :	
Slope Interce Corr (r)			34 13 50
Transfo	rmed Da	ita :	
-0.69 -0.69 0.69	1. 0. -0.	Abs 066 118	
Calibrat			
Conc	Abs Diff	200	Predic %Diff
0.00	1.319		
Mean	1.333 1.326	0.7	
	0.976 -0.007 0.997		0.49 -1.4 0.43
	-0.071 0.987 -0.040	1.5	-16.6 0.46 -8.6
2.00	0.704 0.309 0.700		2.31 13.4 2.36
Mean	0.359 0.702 0.334	0.4	15.2 2.33 14.3
10.00	0.423 0.451 0.463		10.45 4.3 8.32
Mean .	-1.684 0.443 -0.689	6.3	-20.3 9.31 -7.4
Control	Data :		
Ctrl#	Abs	Conc	
10.	. 558	4.92	
10: <u>5e</u>	Gre	<u>-</u> []	

	·	
	Abs	
	1.753	nd
ID:		<u>N3</u>
2	0.688	2.51
1D:	52617	W6
_	1.355	nd
ID:	<u>SEG 17</u>	W7_
	1.300	
ID:	segn	<u>w8</u>
5	1.340	nd
ID:_	<u>5EG 17</u>	N9
6	1,168	0.09nd
ID:	52617	32
-	1,118	
ID:_	52417	86
8	0.990	0.45nd
ID:_	SEGIT	<u>B ((</u>
~ <u>9</u>	1.153	0.11nd
ID:	SEG M	BIZ
10	1.225	0.04nd
ID:	52917	13 14
	0.917	
ID:	52617	1316
	. –	ENT 17
END 97-	OF RUN 14-04 15:	15:46

Project:	Richardson	Hill
110,000.	Road Land	
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Date	7/14/04	, <u>, ,</u> , , , , , , , , , , , , , , , ,
PCB Measurement	Arcolor 12	54
Test Level	<1ppm	
Test Date:	7/15/04	
Test Run By:	W. R. B.	
Field	Test Results	
		Test
Sample ID	Location	Result
-		(ppm)
Segment 17-B13-		
071404	Segment 17	.49nd
Segment 17-B15-		
071404	Segment 17	2.25
Segment 17-B17-	G 17	111
071404	Segment 17	.11nd
Segment 17-B18- 071404	Segment 17	.34nd
Segment 17-W10-		
071404	Segment 17	nd
· · · ·		
	· · · · · · · · · · · · · · · · · · ·	
		ļ <u> </u>
	ļ	
, ······		
	·····	

1944 			
*****	*** S D	<u> </u>	******
PROTOCO		PC	
TECH ID Lot # EXP DAT	:[л] :4е Е:4	LB 1060 1105	>
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de : 9th : :	n.Regr L Abso	ession .n/L9tB orbance 450 nm PPM
EQUATIO Slope Interce Corr (r	=	NE : -0.67 0.51 0.999	.0
Transfo	rned Da	ta : 	
-0.69 0.69 2.30		Abs 959 074 047	
Calibra	tor Dat	a: 	
Conc	Abs Diff	XCV	Predic %Diff
0.00 Mean	0.998 0.955 0.977	3.0	
0.50	0.717 -0.031		0.47 -6.7
Mean	0.694 0.058 0.706 0.012	2.3	0.56 10.3 0.51 2.3
2.00	0.533 -0.373 0.480		1.63 -22.9 2.25
Mean .	0.253 0.506 -0.085	7.4	11.2 1.92 -4.4
10.00	0.261 -0.363 0.246		9.64 -3.8
Nean	0.254 0.254 0.203	4.0	10.81 7.5 10.20 2.0
Control	Data :		
Ctr1#		Conc	
1 0.	.326	6.00	
-			2

Samples Data :

Abs Conc 5p1# 0.49nd 0.712 i 10: SEG 17 B13 0.480 2.25 2 10: SEG 17 BIS 3 0.857 0.11nd SID: SEG17 B17 4 0.755 0.34nd 10: SEG17 B18 5 1.029 nd W10 10: SEG17

END OF RHN

2004 Field Batch #15

店

PCB Field Test Data		
Project:	Richardson	Hill
•	Road Land	611
Client:	Honeywell	
Project Location:	Sidney, NY	•
Sample Matrix:	Soil	
Sample Date	7/21/04	
PCB Measurement	Arcolor 12	54
Test Level	<1ppm	
Test Date:	7/22/04	
Test Run By:	W. R. B.	
Field T	est Results	
		Test
Sample ID	Location	Result
		(ppm)
Segment 16-B1-	Segment 16	
072104		1.07
Segment 16-B2-	Segment 16	
072104		<.05
Segment 16-B3-	Segment 16	
072104		<.05
Segment 16-B4-	Segment 16	
072104		<.05
Segment 16-B5-	Segment 16	
072104	-	<.05
Segment 16-B6-	Segment 16	
072104	Ū	<.05
Segment 16-W1-	Segment 16	
072104		<.05
Segment 16-W2-	Segment 16	
072104	U I	<.05
Segment 16-W3-	Segment 16	<u> </u>
072104		5.19
Segment 16-W4-	Segment 16	
072104		2.71
Segment 16-W5-	Segment 16	
072104		<.05
Segment 16-W6-	Segment 16	
072104		<.05
	Work	
WP 9+50 to 9+0	Platform	<.05
	Work	
WP 10+50 to 10+0	Platform	<.05
· · · · · · · · · · · · · · · · · · ·		
· .		
·····		
	i	
	<u> </u>	
Remarks	I.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

-0.641 0.524 Intercert = Corr(r) =1.0000 Transformed Data : _____ Abs Conc _____ 0.972 -0.69 0.69 2.30 0.074 -0.950 Calibrator Data: _____ Abs %CV Predic Diff %Diff Conc Diff ____ 1.0971.0960.00 0.1 Mean 1.096 0.47 -5.6 0.52 4.3 0.50 0.50 0.802 -0.026 0.788 0.023 Mean 0.795 -0.002 1.2 -0.5 2.00 0.575 -0.057 1.94 -2.9 2.09 4.5 0.562 0.094 0.569 0.017 2.02 0.8 1.6 Mean 10.00 0.324 -1.249 0.287 1.394 Mean 0.306 -0.039 8,75 -14,3 11.39 12.2 8.6 9.96 -0.4 Control Data : _____ Ctrl# Abs. Conc ____ ----0.362 6,84 1 5EG 16

ID.

...... ; **

Ln/L9t8

Absorbance 450 nm PPM

PCB

TECH ID :_____ LOT # :_____ EXP DATE:_____

Data Reduct:Lin.Regression

÷

EQUATION OF LINE :

Ξ

PROTOCOL :

Xformation: Read Mode

Wavelen9th :

Slope

Units

	_	1	
	Sel# 	Abs	Conc
		0.677	1 m
	ID:	SEG	6 Bt
	2	0.931	0.15nd
	ID:	<u>tı</u>	<u>B2</u>
	3	0.804	0.47nd
	ID:		<u>B 3</u>
		1.035	
	ID:	<u>(</u> (<u> </u>
	5	0.919 💉	0.17nd
	ID:		BT
	6		8.39nd 🦕 👘
	ID:	. (<u>(</u>	Blo
1	7	1.229	nd >
	ID:	۱۱	<u>w1</u>
	8	0.980	0.08nd
	ID:		<u>w2</u>
	9	0.406	5.19
	ID:	(\	<u>w3</u>
· · · · · · · · · · · · · · · · · · ·		0.516	,
	ID:	<u>((</u>	<u>wy</u>
	11	1.085	0.00nd
	ID:	(1	605
		Ø.897	
	ID:	<u> </u>	<u>ما تمان</u>
	13	1.182	nd
			0 9+50-9+0
	14	1.122	nd 10+56~10+0
	ID:	W/	10+50-10+0

Confirmatory Tests Segment 16. Work platform quality surveillance check.

PCB Field Test Data			
Project:	Richardson Hill		
5	Road Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY	,	
Sample Matrix:	Soil		
Sample Date	7/22/04		
PCB Measurement	Arcolor 12	54	
Test Level	<1ppm		
Test Date:	7/23/04		
Test Run By:	W. R. B.	·····	
	est Results		
		Test	
Sample ID	Location	Result	
Germant 16 D1		(ppm)	
Segment 16-B1- 072204	Segment 16	<.05	
Segment 16-W3- 072204	Segment 16	<.05	
Segment 16-W4- 072204	Segment 16	<.05	
Segment 15-B1-	Segment 15		
072304	0 10	<.05	
Segment 15-B2- 072304	Segment 15	<.05	
Segment 15-B3- 072304	Segment 15	<.05	
Segment 15-W1- 072304	Segment 15	<.05	
Segment 15-W2-	Segment 15		
072304		<.05	
, ,			
	· · · ·		
- · · · · · · · · · · · · · · · · · · ·			
	·		
Remarks	Ľ	<u> </u>	
Confirmatory retest of and excavation sidew Confirmatory tests S	valls W3, W4.	Grid B1	

ችኞችዋዋዋዋ	א ב יוייני	.	
PROTOCOL	. :	PCE	3
TECH ()) Lot # EXP date	;		
Data Red Xformati Read Mod Wavelen9 Units	on: le :	Li Absor	ession n/L9tB rbance 450 nm PPM
EQUATION Slope Intercep Corr (r)	= = >t. =	NE : -0.63 0.63 0.995	4
Transfor	med Da	ta :	
Conc -0.69 0.69 2.30	 1.	Abs 051 270 000	
Calibra	tor Dat	a: 	
Conc	Abs Diff	%CV	Predic %Diff
0.00	1.094 1.082		
Mean	1.088	0.8	
0.50	0.831 -0.043		0.46 -9.5
Mean	0.781 0.146 0.806 0.046	4.4	0.65 22.6 0.55 8.4
2.00	0.616 -0.294		1.71 -17.3
Mean	0.618 -0.307 0.617 -0.301	8.2	1.69 -18.1 1.70 -17.7
10.00	0.304 -0.034		9.97 -0.3
Mean	0.281 1.691 0.293 0.783	5.7	11.69 14.5 10.78 7.3
Control	Data :	 -	
Ctrl#	Abs	Conc	
10	. 394	5.76	· · · · · · · · · · · · · · · · · · ·

Samples Data : Sel# <u>Abs</u> Conc 1 1.134 nd ID: SEGILE <u>B1</u> 2 1.241 nd ID: SEG 16 W3 3 1.123 nd 10: SEG 16 W4 4 🥍 0.829 0.46nd 10: SEG 15 B1 5 0.871 0.33nd ID: SEG 15 B2 6 0.952 0.15nd ID: SEG 15 B3 7 1.041 0.03nd ID: SEG 15 WI 8 1.101 nd ID: SEGIS W2

END OF RUN 07-23-04 08:45:38

PCB Fie	eld Test Data			
Project:	Richardson			
	Road Land	Road Landfill		
Client:	Honeywell			
Project Location:	Sidney, NY	Sidney, NY		
Sample Matrix:	Soil			
Sample Date	7/28/04			
PCB Measurement	Arcolor 12	54		
Test Level	<1ppm			
Test Date:	7/29/04			
Test Run By:	W. R. B.			
Field	Fest Results			
		Test		
Sample ID	Location	Result		
-		(ppm)		
Segment 15-B4- 072804	Segment 15	<.05		
Segment 15-B5- 072804	Segment 15	<.05		
Segment 15-B6- 072804	Segment 15	0.69 0.69		
Segment 15-B7- 072804	Segment 15	3.96		
Segment 15-W3- 072804	Segment 15	<.05		
Segment 15-W4- 072804	Segment 15	<.05		
Segment 15-W5- 072804	Segment 15	1.28		
Segment 15-W6- 072804	Segment 15	1.18		
Remarks				

Confirmatory tests Segment 15.

	ችቾችች ችውውው	~~ ~ ~ ~	<u>-</u> · .	
	PROTOCOL	. :	PCB	:
	TECH ID LOT # EXP DATE	1		
	Data Red Xformati Read Mod Wavelen9 Units	uct:Lir on: e : lth : i	1.Regre Lr Absor	ession VL9tB Vbance 150 nm PPM
	EQUATION Slope Intercep Corr (r)		-0.588 0.169 0.9973	} 5
	Transfor		.a : 	
	Conc -0.69 0.69 2.30	 0.5	abs 533 68 224	
	Calibrat	or Data		
	Conc	Abs Diff	2CV F	^o redic ZDiff
		1.102 1.054 1.078	7.0	
	Mean 0.50	0.655	3.2	0.63
		0.130 0.704 0.048 0.680 0.035	5.1	20.7 0.45 -10.5 0.54 6.6
	2.00	0.526 0.561		1.44 -39.0
	Mean .	0.462 0.164 0.494 0.237	9.2	2.16 7.6 1.76 -13.4
đ	10.90	0.244 0.667 0.246		10.67 6.3 10.54
	Mean	0.536 0.245 0.601	0.4	5.1 10.60 5.7
	Control	Data :		
	Ctr1#	Abs	Conc	
	i 0.	.335	5.14	

Spl#	Abs	Conc
	0.887	
ID:	seg is	<u>B4</u>
2	0.909	0.08nd
ID:	SEG- 15	<u>\$5</u>
3	0.641	0.69
ID;	JEG-1	<u>5 B6</u>
4	0.371	3.96
ID:	SEG lle	<u> </u>
5	1.018	0.01nd
ID:	SEG 16	<u> </u>
	0.980	
ID:_	<u>SEG 1</u>	<u>w4</u>
7		
ID:_	<u>SEG J</u>	<u>45</u>
	0.558	
ID:_	SEG H	2 W6
	OF RUN	- / • /C

PCB Field Test Data			
Project:	Richardson Hill		
	Road Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Date	7/30/04		
PCB Measurement	Arcolor 12	54	
Test Level	<1ppm		
Test Date:	7/30/04		
Test Run By:	W. R. B.		
Field T	est Results	14 A.	
		Test	
Sample ID	Location	Result	
-		(ppm)	
Segment 15-B7- 073004	Segment 15	<.05	
Segment 15-B8- 073004	Segment 15	2.82	
Segment 15-B9- 073004	Segment 15	<.05	
Segment 15-B10- 073004	Segment 15	<.05	
Segment 15-B11- 073004	Segment 15	2.29	
Segment 15-B12- 073004	Segment 15	1.22	
Segment 15-W5- 073004	Segment 15	19.38	
Segment 15-W6- 073004	Segment 15	<.05	
Segment 15-W7- 073004	Segment 15	<.05	
Segment 15-W8- 073004	Segment 15	5.55	
Segment 15-W9- 073004	Segment 15	<.05	
Segment 15-W10- 073004	Segment 15	2,16	
]			
	I		

Remarks Confirmatory tests Segment 15. Retest of Grids B7, sidewalls W5, and W6

07-30-0	04 13:2	2:40	
*****	**** 5	D I **	*****
PROTOC	OL :	P	СВ
TECH I Lot # EXP Da	D TE		
			ression Ln/L9tB orbance 450 nm PPM
EQUATI	DN OF L	INE :	
Slope Interc Corr (ept =	-0.5 0.3 0.99	05
Transf	ormed D	ata :	
Con- -0.6 0.6 2.3		Abs .643 .011 .929	
Calibra	ator Da	ta:	
Conc	Abs Diff	%CV	Predic %Diff
Conc 0.00	Diff 1.117	%CV	
	Diff		
0.00	Diff 1.117 1.061 1.089 0.757 -0.126		2Diff 0.37 -33.7
0.00 Mean	Diff 1.117 1.061 1.089 0.757		2Diff 0.37
0.00 Mean 0.50	Diff 1.117 1.061 1.089 0.757 -0.126 0.671 0.226 0.714 0.026 0.563 -0.435	3.6	201ff
0.00 Mean 0.50 Mean	Diff 1.117 1.061 1.089 0.757 -0.126 0.671 0.226 0.714 0.026 0.563	3.6	201ff -33.7 0.73 31.1 0.53 4.9 1.57
0.00 Mean 0.50 Mean 2.00	Diff 1.117 1.061 1.089 0.757 -0.126 0.714 0.226 0.714 0.026 0.563 -0.435 0.520 0.121 0.542 -0.178 0.313 0.048	3.6 8.5	2014 -33.7 -33.7 0.73 31.1 0.53 4.9 1.57 -27.8 2.12 5.7 1.82 -9.8 10.05 0.5
0.00 Mean 0.50 Mean 2.00 Mean	Diff 1.117 1.061 1.089 0.757 -0.126 0.671 0.226 0.714 0.026 0.563 -0.435 0.563 0.520 0.121 0.542 -0.178 0.313	3.6 8.5	2014 0.37 -33.7 0.73 31.1 0.53 4.9 1.57 -27.8 2.12 5.7 1.82 -9.8 10.05
0.00 Mean 0.50 Mean 2.00 Mean 10.00	Diff 1.117 1.061 1.089 0.757 -0.126 0.671 0.226 0.714 0.026 0.563 -0.4350 0.121 0.542 -0.178 0.313 0.048 0.304 0.304 0.308 0.308 0.441 	3.6 8.5 5.7 2.1	201ff
0.00 Mean 0.50 Mean 2.00 Mean 10.00 Mean	Diff 1.117 1.061 1.089 0.757 -0.126 0.671 0.226 0.714 0.026 0.714 0.026 0.563 -0.435 0.543 0.543 0.542 -0.178 0.313 0.048 0.304	3.6 8.5 5.7 2.1	201ff

		-
Sp1#	Abs	Conc
	0.777	
ID:_	SEG 1	<u>5 B7</u>
2	0.479	2.82
ID:_	<u>SEG 15</u>	<u> </u>
3	1.163	nd
ID:_	SEG IS	<u> </u>
4	0.724	0.49nd
1D:_	SEG 15	<u>B10</u>
5	0.509	2.29
ID:_	SEG 15	BII
6	0.599	1.22
ID:_	SEG 19	5 <u>B12</u>
7	0.242	19.38Hi
ID:	<u>SEG 15</u>	W5
8	1.102	nd
ID:	<u>SEG 15</u>	<u>w6</u>
9	1.238	nd
ID:	SEG IS	<u>w7</u>
10	0.387	5.55
ID:	SEC-15	5 128
11	0.975	0.03nd
ID:	SEG IS	<u> </u>
12	0,517	2.16
ID:_s	<u>SEG-15</u>	WID

PCB Fie	ld Test Data			
Project:	Richardson	Hill		
	Road Landfill			
Client: Honeywell				
Project Location: Sidney, NY				
Sample Matrix: Soil				
Sample Date	-			
PCB Measurement Arcolor 1254				
Test Level	<1ppm			
Test Date:	8/2/04			
Test Run By:	W. R. B.			
Field T	est Results			
Sample ID	Location	Test Result (ppm)		
Segment 15-B8- 080204	Segment 15	<.05		
Segment 15-B11- 080204	Segment 15	<.05		
Segment 15-B12- 080204	Segment 15	.77		
Segment 15-B14- 080204	Segment 15	2.74		
Segment 15-W5- 080204	Segment 15	<.05		
Segment 15-W8- 080204	Segment 15	<.05		

Segment 15

Confirmatory tests Segment 15 B14. Retest of Grids B8, B11, B12 and sidewalls

10.39

Segment 15-W10-080204

Remarks

W5, W8, W10

PROTOC	0L :	F	°C8
LOT #	D : TE:		
- Xforma			Pression Ln/L9t8 orbance 450 nm PPM
EQUATI	ON OF L	INE :	
Slope Interc Corr (= ept = r) =	-0.6 0.5 0.99	22
Transf	ormed D	ata :	
Con-		Abs	
-0.6 0.69 2.3(90	.905 .181 .948	
Calibr:	ator Da	ta:	
Conc	Abs Diff	%CU	Predic ZDiff
0.00	1.089	•• • •	
Mean	1.073 1.081	1.0	
0.50	0.795 -0.052		0.45 -11.5
Mean	0.745 0.144 0.770 0.040	4.6	0.64 22.4 0.54 7.4
2.00	0.591 -0.283		1.72 -16.5
Mean	0.587 -0.247 0.589 -0.265	0.4	1.75 -14.1 1.73 -15.3
10.00	0.315 -0.271 0.289		9.73 -2.8
Mean	0.289 1.755 0.302 0.681	6.0	11.76 14.9 10.68 ☆ 6.4
Control	Data :		
Ctrl#	Abs	Conc	
°°°•€0	.382	6,13	:
•	7	 1	1

i) [********

****** 5

Samples Data :			
Sel#	Abs	Conc	
1	1.071	0.00nd	
ID:	<u>SEG 1</u>	<u>5 B8</u>	
2	1.040	0.01nd	
ID:	SEG IN	<u>5 BII</u>	
3	0.718	0.77	
ID:	<u>SEG 1</u>	<u>5 B12</u>	
4	0.513	2.74	
ID:	SEG IS	5 B14	
5	1.147	nd	
ای: ۲D:	SEG IS	<u> </u>	
6	1.022	0.02nd	
ID:	SEG 15	ω 8	
7	0.306	10.39Hi	
10:_S	EG-15	W 10	

PCB Fiel	d Test Data			
Project:	Richardson Hill			
	Road Landfill			
Client:	Honeywell			
Project Location:	Sidney, NY			
Sample Matrix:	Soil			
Sample Dates	8/3/04			
<u>r</u>	8/4/04			
PCB Measurement	Arcolor 125	54		
Test Level	<1ppm			
Test Date:	8/4/04			
Test Run By:	WRB			
Field To	est Results			
	1	Test		
Sample ID	Location	Result		
Sumple IIS		(ppm)		
Segment 15-B13-	1.			
080304	Segment 15	<0.5		
Segment 15-B14-				
080304	Segment 15	<0.5		
Segment 15-B15-	G	00		
080304	Segment 15	.89		
Segment 15-B16-	0	-0.5		
080304	Segment 15	<0.5		
Segment 15-B17-		07		
080404	Segment 15	.87		
Segment 15-B18-	0 . 15	-0.5		
080404	Segment 15	<0.5		
Segment 15-W10-	Rooment 15	~0 F		
080304	Segment 15	<0.5		
Segment 15-W11-	Roomant 1F	-0 F		
080404	Segment 15	<0.5		
Segment 15-W12-	Sammart 1F	2.05		
080404	Segment 15	2.25		
· · · · · · ·	1			
	1			
,, , ,, ,, ,, ,, ,, ,,	1			
	1			
	1			
Remarks	I	I		
Confirmatory Tests S	egment 15			
Retest Of Segment 15		1		
Sidewall W10		-		
gravman of LV				

0.46 -9.1 0.52 2.9 0.49 -2.9 0.779 0.015 Mean 0.787 -0.014 1.5 2.00 0.533 0.248 0.556 $2.25 \\ 11.0$ 1.98 -0.022-1.1 2.11 Mean 0.544 3.0 0.108 10.00 0.303 8.99 -11.3 -1.014 0.280 10.62 0.621 5.8 Mean 0.291 -0.241 9.76 -2.5 5.7 Control Data : Ctrl# Abs Conc 1 0.365 5.97

08-04-04 11:39:33

PROTOCOL :

Xformation:

Read Mode :

Wavelength :

Slope =

Intercept = Corr(r) =

Conc

-0.69

0.69

2.30

Conc

0.00

Calibrator Data:

Abs

Diff

1.137 1.029

Mean 1.083 7.1

0.50 0.795 -0.042

Units

TECH ID :_____ LOT # :_____ EXP DATE:_____

********** 5 D I *******

Data Reduct:Lin.Regression

:

EQUATION OF LINE :

Transformed Data :

PCB

Ln/L9t8

450 nm PPM

Absorbance

-0.659 0.503

0.9995

<u>Abs</u>

ZCV

Predic 4Diff

5.1

0.979

0.011

-0.999

Sp1# <u> </u>
Ĥbs Conc 0.967 i 0.09nd 10: SEG 15 B13 2 0.952 0.11nd ID: SEGIS BI4 0.694 3 0.89 BIS ID: SEGIS 0.905 0.18nd 4 ID: SEGIS BILO 5 0.699 0.87 ID: SEGIS BIT 0.814 🛒 0.40nd 6 10: SEGIS B18 7 1.133 nd ID: SEGIS WID 8 0.911 0.17nd ID: SEGIS WILL 9 0.533 2.25 ID: SEGIS WIZ

∋ampies Data :

END OF RUN ومنعد

Road LandfillClient:HoneywellProject Location:Sidney, NYSample Matrix:SoilSample Dates $8/4/04$ PCB MeasurementArcolor 1254PCB MeasurementStatePCB MeasurementArcolor 1254PCB MeasurementArcolor 1254PCB MeasurementArcolor 1254PCB MeasurementStatePCB MeasurementStatePCB MeasurementInterventionPCB MeasurementSegment 15PCB Measurement		Richardson H	1111		
Client: Honeywell Project Location: Sidney, NY Sample Matrix: Soil Sample Dates 8/4/04 PCB Measurement Arcolor 1254 Fest Level <1ppm					
Sidney, NY Sample Matrix: Soil Sample Dates 8/4/04 PCB Measurement Arcolor 1254 Fest Level <1ppm	lient [.]				
Sample Matrix: Soil Sample Dates 8/4/04 PCB Measurement Arcolor 1254 Test Level <1ppm					
Sample Dates 8/4/04 PCB Measurement Arcolor 1254 Test Level <1ppm					
Arcolor 1254 Test Level <1ppm					
Test Level <1ppm			4		
Sample ID 8/5/04 Sample ID Location Test Results Segment 15-B19- 080404 Segment 15 <0.5		· · · · · · · · · · · · · · · · · · ·			
Test Run By: WRB Field Test Results Test Results Sample ID Location Test Results Segment 15-B19- 080404 Segment 15 <0.5					
Field Test Results Sample ID Location Test Results Segment 15-B19- 080404 Segment 15 <0.5					
Sample ID Location Test Resul (ppm) Segment 15-B19- 080404 Segment 15 <0.5					
Sample ID Location Resul (ppm) Segment 15-B19- 080404 Segment 15 <0.5					
Segment 15-B19- 080404 Segment 15 <0.5	a 1 m	T			
Segment 15-B19- 080404 Segment 15 <0.5 Segment 15-B20- 080404 Segment 15 <0.5	Sample ID	Location			
080404 Segment 15 <0.5 Segment 15-B20- 080404 Segment 15 <0.5			(ppm)		
080404 Segment 15 <0.3 Segment 15- W13- 080404 Segment 15 1.17 Segment 15- W14- 080404 Segment 15 <0.5	080404	Segment 15	<0.5		
Segment 15- W13- 080404 Segment 15 1.17 Segment 15- W14- 080404 Segment 15 <0.5		Segment 15	<0.5		
Segment 15- W14- 080404 Segment 15 <0.5	Segment 15- W13-	Segment 15	1.17		
	Segment 15- W14-	Segment 15	<0.5		
······································					
	<u>,</u>				
	1877-2-1				
Remarks		1	1		

•			
ጥጥጥጥጥጥጥ	ጥጥጥ ጋ ህ	1 ***	*****
PROTOCO	L:	PC	В
LOT #	E:		
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de gth :	n.Re9r L Abso	ession n/L9tB rbance 450 nm PPM
EQUATIO	N ÖF LI	NE :	
Slope Interce Corr (r	= •pt = •) =	-0.63 0.34 1.000	1 9 0
Transfo	rmed Da	ita :	
Conc -0.69 0.69 2.30	0. -0. -1.	Abs 788 092 102	
Calibra	tor Dat	a;	
Conc	Abs Diff	XCV	Predic %Diff
0.00	1.032		
Nean	1.022 1.027	Ø.7	
0.50	0.690 0.056 0.721		0.56 10.1 0.45
Mean	-0.055 0.706 -0.002	3.1	-12.3 0.50 -0.3
2.00	0.479 0.150 0.501		2.15 7.0 1.88
Mean	-0.117 0.490 0.012	3.i	-6.2 2.01 0.6
10.00	0.264 -0.679 0.248		9.32 -7.3 10.69
Mean	0.686 0.256 -0.028	4.6	6.4 9.97 -0.3
Control	Data :		
Ctrl#	Abs	Conc	
1 0	.331	5.63	
· ·			ал

Spl#	Abs	Conc
i	0.741	0.38nd
ID:_:	<u>SEG 15</u>	βιγ
2	0.809	0.22nd
ID:	SEG 15	<u>B20</u>
3	0.578	1.17
ا د :ID	SEG-15	W 13
4	1.009	0.00nd
ID: 2	SEG IS	WIY
END	OF RUN	н 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11

PCB Field Test Data		
Project:	Richardson Hill	
	Road Landfill	
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Dates	8/5/04	
PCB Measurement	Arcolor 1254	
Test Level	<1ppm	
Test Date:	8/5/04	
Test Run By:	WRB	
Field Test Results		

I IOIG I OST KOSUILS			
Sample ID	Location	Test Result (ppm)	
Segment 15-B15- 080504	Segment 15	<0.5	
Segment 15-B17- 080504	Segment 15	<0.5	
Segment 15-W12- 080504	Segment 15	<0.5	
Segment 15-W13- 080404	Segment 15	<0.5	
·····			
· · · · · · · · · · · · · · · · · · ·			
<u> </u>			

Retests Segment 15 Grids B15, 17 and Sidewalls W12, W13

FROTOCO	_ 1	PC	8
LOT #	E	_	
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de : gth : ;	n.Regr L Abso	ession n/L9tB rbance 450 nm PPM
EQUATIO	N OF LI	NE :	
	= Pt =) =	-0.61 0.34 0.999	-3
Transfo	rmed Da	ta :	
Conc -0.69 0.69 2.30	0. -0.	Abs 761 063 093	
Calibra	tor Dat	a:	
Conc	Abs Diff	%CV	Predic %Diff
0.00	0.964 0.978		
Mean	0.978 0.971	1.0	
0.50 Mean	0.648 0.068 0.676 -0.043 0.662 0.810	3.0	0.57 11.9 0.46 -9.4 0.51 1.9
2.00	0.475 -0.133		1.87
Nean	-0.133 -0.465 -0.009 0.470 -0.072	1.5	-7.1 1.99 -0.4 1.93 -3.7
10.00	0.251 -0.426		9.57 -4.5
Mean	0.237 0.817 0.244 0.171	4.0	10.82 7.6 10.17 1.7
Control	Data :		
Ctrl#	Abs	Conc	
10	.315	5.67	

Samples Data :

Sp1#	Abs	Conc
1	0.962	0.00nd
ID:	<u>seg is</u>	<u>w12</u>
2	0.909	0.02nd
ID:	reg 15	<u>W13</u>
3	0.798	0.15nd
10: <u>\$</u>	<u>EG15</u>	1315
4	0.906	0.02nd
ID:	SEG-15	<u>- B17</u>

END OF RUN 23-05-04 13:54:18

PCB Fiel	PCB Field Test Data			
Project:	Richardson Hill			
F	Road Landfi	11		
Client:	Honeywell			
Project Location:	Sidney, NY			
Sample Matrix:	Soil			
Sample Dates	8/18/04			
PCB Measurement	Arcolor 125	54		
Test Level	<1ppm			
Test Date:	8/18/04			
Test Run By:	NMS			
Field Test Results				
· · · ·	1	Test		
Sample ID	Location	Result		
		(ppm)		
WP 1+50 To 1+0-	Work	<0.5		
081804	Platform	-0.2		
WP 2+50 To 2+0-	Work	<0.5		
081804	Platform			
WP 3+50 To 3+0-	Work	<0.5		
081804	Platform			
· · · · · · · · · · · · · · · · · · ·	1			
	<u> </u>			
	1			
		ļ		
		<u> </u>		
		 		
		ļ		
	+			
		 		
		 		
· · · · · · · · · · · · · · · · · · ·		 		

QC check on work platform soil used for fill material in Herrick Hollow Creek. Samples obtained at stations 1+0 through 3+50.

08-10-04 12.02.20 ********* 5 0 1 ******** PROTOCOL : PCB TECH ID :_____ LOT # :_____ EXP DATE:_____ Data Reduct:Lin.Regression Xformation: Read Mode Wavelen9th Ln/L9tB Absorbance 450 nm PPM Units 1 EQUATION OF LINE : _____ Slope = -0.6070.475 Intercept = Corr(r) =1.0000 Transformed Data : ----Conc Ĥbs. ____ _____ -0.69 0.900 0.69 2.30 0.047 -0.919 Calibrator Data: ----Conc Abs %CV Predic

	Diff		%Diff
0.00	1.058		
Mean		5.9	
0.50	0.786 -0.006 0.784 -0.001		0.49 -1.1 0.50 -0.1
Mean	0.785 -0.003	0.1	-0.1 0.50 -0.6
2.00	0.594 -0.295 0.536 0.402		1.71 -17.3 2.40 16.7
Mean	0.565 0.024	7.2	2.02
10.00	0.319 -0.351 0.311		9.65 -3.6 10.25 2.5
Mean	0.252 0.315 -0.055	1.9	2.5 9.95 -0.6
Control	Data :		
Ctrl#	Abs	Conc	
1 0	.385	6.11	
a Vitana ang pangangang pangang pangangang pangang pangang pangang pangang pangang pangang pangang pangang pangan Pangang pangang			; ; ;
÷.			1

Bane Lob Islava _____________ Spl# Ĥbs. Conc

			-
1	1.165	nd	
ID:_3	NP Its	<u>e - 1+0</u>	_
2	1.209	nd	
ID:	WP 2+	<u>50 - Z+O</u>	-
3	1.221	nd	
ID:	WP3t	50 - 3+0	2
END	DF RUN		

1

PCB Field Test Data			
Project:	Richardson Hill Road		
	Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Dates	8/20/04		
PCB Measurement	Arcolor 1254	1	
Test Level	<1ppm		
Test Date:	8/20/04		
Test Run By:	WRB		
· · · · · · · · · · · · · · · · · · ·	Test Results		
	· · · · · · · · · · · · · · · · · · ·	Test	
Sample ID	Location	Result	
pampic no	induon	(ppm)	
	North Trench		
NB-B1-082004	Spoil Basin	<0.5	
ND-D1-062004	North Trench		
NB-B2-082004	Spoil Basin	<0.5	
NB-East W1-	North Trench	<0.5	
082004	Spoil Basin	~0.5	
NB-East W2-	North Trench	<0.5	
NB-East w2- 082004	Spoil Basin	~0.5	
NB-West W1-	North Trench	<0.5	
NB-west w1- 082004	Spoil Basin	~0.5	
NB-West W2-	North Trench	<0.5	
082004	Spoil Basin		
002004	South Trench	<0.5	
SB-B1-082004	Spoil Basin	~0.5	
3D-D1-082004	South Trench	<0.5	
SB-B2-082004	Spoil Basin	-0.5	
SB-East W1-	South Trench	<0.5	
082004	Spoil Basin		
SB-East W2-	South Trench	<0.5	
082004	Spoil Basin		
SB-West W1-	South Trench	<0.5	
082004	Spoil Basin		
SB-West W2-	South Trench	<0.5	
082004	Spoil Basin		
		[]	
		<u> </u>	
	<u> </u>	<u> </u>]	
		<u> </u>	
		<u> </u>]	
	l	<u> </u>]	
L	I	<u> </u>	

QC check on extraction trench spoil basin.

******** S D	I *****	
PROTOCOL :	PCB	
TECH ID : LOT # : EXP DATE:		
Data Reduct:Li Xformation: Read Mode : Wavelen9th : Units :	n.Regression Ln/L9tB Absorbance 450 nm PPM	
EQUATION OF LI		
Slope = Intercept = Corr (r) =	-0.652 0.588 0.9999	
Transformed Da	ta : 	
	Abs 050 116 906	
Calibrator Dat	a: 	
Conc Abs Diff	%CV Predic %Diff	
0.00 1.042 1.054		
Mean 1.048	0.8	
0.50 0.757 0.067 0.795 -0.076 Mean 0.776	0.57 11.8 0.42 -17.8 3.5 0.49	
-0.008	-1.6	
2.00 0.552 0.085 0.556	2.08 4.1 2.03	
0.035 Mean 0.554 0.060	2.83 1.7 0.5 2.06 2.9	
10.00 0.295 0.366 0.309	10.37 _3_5	
0.309 -0.606 Mean 0.302 -0.135	9.39 -6.5 3.2 9.86 -1.4	
Control Data :		
Ctrl# Abs	Conc	
1 0.376	5.98	

pameies Vala : Abs Conc Spl# 0.984 0.04nd 1 ID: NB EAST WI 1.031 0.00nd 2 ID: NB EAST W2 3 1.052 nd ID: NB BI 4 1.096 : j nd ID: NB B2 1.015 0.01nd 5 ID: NB WESTWZ 1.054 6 nd ID: NB WEST WI 7 0.865 0.23nd ID: SB WEST WI 1.000 8 0.02nd ID: SB EAST W2 0.993 9 0.03nd ID: <u>SB</u>BI 0.953 0.07nd 10 ID: SB WEST W2 0.969 0.05nd 11 10: SB B2 1.094 nd 12 ID: SB EAST WI

PCB Fi	eld Test Data		
Project:	Richardson I	Hill Road	
2	Landfill		
Client:	Honeywell		*****
Project Location:	Sidney, NY	····	PROTOC
Sample Matrix:	Soil		
Sample Dates	8/23/04		TECH I
PCB Measurement	Arcolor 125	4	EXP DI
Test Level	<1ppm		
Test Date:	8/24/04		Data Xform
Test Run By:	NMS	<u></u>	Read
			Wavel Units
Field	Test Results		, onrop
		Test	·
Sample ID	Location	Result	EQUAT
_		(ppm)	Slope
Segment 14-B1-	Segment 14	.66	Inter
082304	Segment 14	.00	Corr
Segment 14-B2-	Segment 14	2.51	Trans
082304		2.31	
Segment 14-B3-	Segment 14	.60	Co
082304			
Segment 14-B4-	Segment 14	.70	-0. 0.
082304			2.
Segment 14-B5-	Segment 14	<0.5	
082304			Calib
Segment 14-B6-	Segment 14	.63	
082304			
Segment 14-W1- 082304	Segment 14	1.56	Cor
Segment 14-W2-	-		
082304	Segment 14	<0.5	0.0
Segment 14-W3-	<u> </u>	<u> </u>	Меа
082304	Segment 14	<0.5	0.5
Segment 14-W4-		+{	0
082304	Segment 14	<0.5	-
Segment 14-W5-			Mea
082304	Segment 14	<0.5	
Segment 14-W6-	G 114		2.0
082304	Segment 14	.53	
			Me
			19.
			:
			Me
Remarks			Cont

Segment 14 Confirmatory Tests

*****	** S D	I ****	(*本水水字
ROTOCOL	:	PCE	}
ECH ID .OT # EXP DATE	 		
)ata Red {formati Read Mod Javelen9 Jnits			
			7
Slope Intercep Corr (r)	= >t = =	-0.63 0.38 0.998	2
Transfor	med Dat	.a :	
Conc		lbs	
-0.69 0.69 2.30	0,8 -0,1 -1.(351 115 349	
Calibra	tor Data	8:	
Conc	Abs Diff	200	Predic %Diff
	1.078 1.022		
	1.050	3.7	-
Mean	0.733 -0.014 0.739 -0.033 0.736	0.5	0.49 -2.9 0.47 -7.1 0.48
	-0.024		-5.0
2.00 Mean	0.489 0.264 0.501 0.118 0.495	i.6	2.26 11.7 2.12 5.6 2.19
10.00	0.190 0.278		8.7 9.21
10.00	-0.790 0.267		-8.6 9.99 -0.1
Mean	-0.012 0.272 -0.412	2.7	-0.1 9.59 -4.3
Control	Data :	 .	
Ctrl#	Abs	Conc	
1 0	.340	5.84	

		•
Sel#	Abs	Conc
	0.688	
ID: 🤶	<u>SEG 14</u>	<u>B1</u>
2	0.472	2.51
ID: S	EG 14	37
3	0.703	0.60
1D:5	<u>EG14</u>	<u>133</u>
4	0.680	0.70
ID: S	2614	<u>B4</u>
5	0.959	0.04nd
ID:	52414	<u> </u>
-6	0.695	0.63
1D: 5	EG 14	<u> </u>
	0.551	
10: 5	5EG14	<u></u>
8	1.082	nd
ID:_4	SEGIA	W2
9	1.027	0.00nd
10: _	SEGU	t w3
10	1.017	0.01nd
ID: ≤	<u>5EG14</u>	. w4
		9.00nd
ID: _	52614	w5
12	0.722	0.53
ID: S	EG 14	<u>6</u>

ates a s

END OF RUN 08-24-04 06:33:32

	eld Test Data Richardson F	till Doad
Project:	Landfill	IIII Koau
Client:	Honeywell	
Project Location:	Sidney, NY	<u> </u>
Sample Matrix:	Soil	
Sample Dates	8/24/04	
PCB Measurement	Arcolor 125	4
Test Level	<1ppm	
Test Date:	8/24/04	
Test Run By:	WRB	
Field	Test Results	
Sample ID	Location	Test Result (ppm)
Segment 14-B2- 082404	Segment 14	<0.5
Segment 14-B7- 082404	Segment 14	<0.5
Segment 14-B8- 082404	Segment 14	<0.5
Segment 14-B9- 082404	Segment 14	<0.5
Segment 14-B10- 082404	Segment 14	<0.5
Segment 14-W1- 082404	Segment 14	0.59
Segment 14-W7- 082404	Segment 14	<0.5
Segment 14-W8- 082404	Segment 14	<0.5
Segment 14-W9- 082404	Segment 14	<0.5
Segment 14-W10- 082404	Segment 14	<0.5
		
		+
	 	
		<u> </u>
		+
		1 1
Remarks		

Segment 14 Confirmatory tests and a retest of Grid B2 and Sidewall W1

08-24-04 13:08:52					
*****	************ 5 D I *********				
PROTOCOL	. 1	. PC	В		
TECH ID LOT # EXP DATI	:				
Data Re Xformat Read Mo Wavelen Units	duct:Lir ion: de : gth : ;	1.Re9r L Abso	ession n/L9t8 orbance 450 nm PPM		
EQUATIO	N OF LI				
Slope Interce Corr (r	= Pt =) =	-0.6 0.5 0.999	26		
Transfo	rmed Dat	ta : 			
Conc	. 1	Abs			
-0.69 0.69 2.30	Й.(980 958 917			
2:00	er.	211			
Calibra	tor Dat	8:			
Conc	Abs Diff	%CV	Predic %Diff		
0.00	1.269 1.245				
Mean	1.257	i.3			
0.50	0.888		0.57 12.5 0.41		
Mean	0.940 -0.087 0.914 -0.012	4.0	-21.0 0.49 -2.5		
2.00	-0.074		1.93 -3.8		
Mean	0.630 0.276 0.647 0.094	3.6	2.28 12.1 2.09 4.5		
10.00	0.378 -1.295 0.340		8.71 -14.9 11.85		
Mean	1.050 0.359 -0.211	7.6	9.5 9.79 -2.2		
	l Data :	•	-		
Ctrl#	Abs	Conc			
1	0.440	6.12	· · · · · · · · · · · ·		

Conc Spl# Abs 1 1.357 nd BZ SEG 14 ID:_ 1,364 nd 2 10: SEG 14 ß7 nd 1.262 3 <u>B8</u> 10: SEG 14 1.259 nd 4 10: SEG 14 1.296 nd 5 10: SEG 14 BIO 0.59 0.884 Ġ٠ IDESJEG 14 WI 7 1.274 nd 10: SEG 14 W7____ 1.129 0.07nd 8 10: SEG 14 WS 9 1.387 nd. 10: SEG 14 W 0.922 10 0.46nd SEG jų <u>wio</u> ID:_ END OF RUN 15

PCB Field Test Data				
Project:	Richardson Hill Road			
	Landfill			
Client:	Honeywell			
Project Location:	Sidney, NY			
Sample Matrix:	Soil			
Sample Dates	8/25/04			
PCB Measurement	Arcolor 1254			
Test Level	<1ppm			
Test Date:	8/25/04			
Test Run By:	WRB			

Field Test Results					
Sample ID	Location	Test Result (ppm)			
Segment 14-B11- 082504	Segment 14	<0.5			
Segment 14-B12- 082504	Segment 14	<0.5			
Segment 14-B13- 082504	Segment 14	<0.5			
Segment 14-B14- 082504	Segment 14	<0.5			
Segment 14-W11- 082504	Segment 14	<0.5			
Segment 14-W12- 082504	Segment 14	<0.5			
Segment 14-W13- 082504	Segment 14	<0.5			
Segment 14-W14- 082504	Segment 14	<0.5			
	· · · · · · · ·				

Segment 14 Confirmatory Tests.

08-25-04 12:36	14
********* 5 D	I *****
PROTOCOL :	PCB
TECH ID : LOT # : EXP DATE:	
Data Reduct:Li Xformation: Read Mode : Wavelen9th : Units :	n.Regression Ln/LgtB Absorbance 450 nm PPM
EQUATION OF LI	NE :
Slope = Intercept = Corr (r) =	-0.792 0.821 0.9918
Transformed Da	ta :
	Abs 465 095 922
Calibrator Dat	a!
Conc Abs Diff	%CV Predic %Diff
0.00 1.218	
1.205 Mean 1.212	0.7
0.50 0.953 0.044	0.54 8.1
1.016 -0.147 Mean 0.984 -0.056	0.35 -41.5 4.5 0.44 -12.7
2.00 0.639 0.450	2.45 18.4
0.630 0.551 Mean 0.634 0.500	2.55 21.6 1.1 2.50 20.0
10.00 0.358	8.43 -18.7
-1.575 0.331 -0.330 Mean 0.345 -0.981	9.67 -3.4 5.5 9.02 -10.9
Control Data :	
Ctrl# Abs	Conc
1 0.431	5.97
ID:	
- -	

Samples Data :

		-
Sp1#	Abs	Conc
	1.392	nd
ID:	SEG LI	<u>IB11</u>
	1.367	
10:		<u> 312</u>
3	1.136	0.09nd
ID:		<u> </u>
	1.076	
ID:		<u> B14</u>
5	i.545	nd
ID:_		<u>w11</u>
6	1.323	nd
ID:_		<u>618</u>
7	1.414	nd
10:_		<u> W13</u>
8	1.382	nd
ID:		Luit H

END OF RUN 08-25-04 12:39:05

PCB Fi Project:	eld Test Data Richardson I	Hill Road	
	Landfill		
Client:	Honeywell	<u>.</u>	ananti i j
Project Location:	Sidney, NY		PROTOCOL : PCB
Sample Matrix:	Soil		TEON IN .
Sample Dates	8/31/04	<u></u>	TECH ID : LOT # :
PCB Measurement	Arcolor 125		EXP DATE:
Test Level		·	
	<1ppm		Data Reduct:Lin.Regressic Xformation: Ln/Lgt
Test Date:	8/31/04	·	Read Mode : Absorbanc
Test Run By:	WRB		wead Mode : Absorbanc wavelength : 450 r Units : PF
Field	Test Results		Units : PF
		Test	EQUATION OF LINE :
Sample ID	Location	Result	
-		(ppm)	5lope = -0.681
Segment 14-B15- 083104	Segment 14	<0.5	5lope = -0.681 Intercept = 0.476 Corr (r) = 0.9992
Segment 14-B16- 083104	Segment 14	<0.5	Transformed Data :
Segment 14-B17- 083104	Segment 14	<0.5	Conc Abs
Segment 14-B18- 083104	Segment 14	<0.5	-0.69 0.974 0.69 -0.043 2.30 -1.070
Segment 14-B19- 083104	Segment 14	<0.5	
Segment 14-W15- 083104	Segment 14	<0.5	Calibrator Data:
Segment 14-W16- 083104	Segment 14	<0.5	Conc Abs 2CV Predi Diff 2Dif
Segment 14-W17- 083104	Segment 14	<0.5	0.00 1.317 1.198 Mean 1.258 6.7
Segment 14-W18- 083104	Segment 14	<0.5	0.50 0.912 0.4
			-0.015 -3. 0.914 0.4 -0.021 -4. Mean 0.913 0.2 0.4 -0.018 -3.
·····	· · · · · · · · · · · · · · · · · · ·		2.00 0.627 2.0 0.033 1.
	·····		0.604 2.2 0.261 11. Mean 0.615 2.6 2.1 0.144 6.
	·····	+	10.00 0.338 8.7
Remarks Segment 14 Confirn	natory Tests.	L,	-1.220 -13 0.305 10.7 0.716 6. Mean 0.321 7.1 9.6 -0.316 -3.

Control Data :

Abs

0.407

Conc

5.96

Ctr1#

1

Spl#	Abs	Conc
1	1.354	nd
ID:	SEG I	4 B15
	1.305	
ID:		BIG
3	1.266	nd
ID:		<u>B17</u>
4	1.164	0.05nd
ID:		<u>B 18</u>
	1.363	nd
ID:		BIR
6	1.243	0.00nd
ID:	SEG)	4 W15
7 1	1.367	nd
ID:		<u>ما بن</u>
	1.288	nd
ID:		WP7
		0.15nd
ID:		W 18
eus e		

PCB Fig Project:	eld Test Data Richardson H Landfill	lill Road						· _		
Client:	Honeywell						e en			
Project Location:	Sidney, NY						e di se			
Sample Matrix:	Soil			•••••••••••••••••••••••••••••••••••••••	· ·		and the second s			
Sample Dates	9/1/04	<u> </u>	PROTO	:OL :		PCB				
PCB Measurement	Arcolor 125	1								
Test Level	<1ppm	<u> </u>	10T #	(D :						
Test Date:	9/1/04		ÊXP Di	TE:				• - 1 ¹¹⁴		
Test Run By:	WRB	<u>, ``</u>)l 1 + I						
	Test Results		Xform:	tion: lode 19th :		9ression Ln/L9tB sorbance				
Sample ID	Location	Test Result (ppm)	Units	i		450 nm PPM		1	Abs 1.225	nd
Segment 14-B20- 090104	Segment 14	<0.5	5lope	ON OF L =	 Й. (325				14 <u>B</u> 20
Segment 14-B21- 090104	Segment 14	<0.5	Interc Corr (.ерt = r) =	0.1 0.99	342 963			1.118	0.07nd <u>B21</u>
Segment 14-B22- 090104	Segment 14	<0.5	Transf 	ormed C	ata :				1.107	
Segment 14-B23- 090104	Segment 14	<0.5		C 			1. Jan 1977			· · ·
Segment 14-W19- 090104	Segment 14	<0.5	· 0.6		.348 .392 .116				1.227	
Segment 14-W20- 090104	Segment 14	<0.5	Caliba	ator Da	4 - •				1,178	
Segment 14-W22- 090104	Segment 14	<0.5						ID:	SEG	14 W19
Segment 14-W23- 090104	Segment 14	<0.5	Conc	Abs Diff	2CV	Predic %Diff			1.220	1.50
Segment 14-W24- 090104	Segment 14	<0.5		$1.198 \\ 1.146 \\ 1.172$				ID: 7	1.293	
Segment 14-W25- 090104	Segment 14	1.55		0.905		0.63		•		wer
	<u> </u>			0.131 0.955 -0.041		20.8 0.46 -9.0		8	1.233	nd -
			Nean	0.930 0.041	3.8	0.54 7.7		ID:_:		<u> W23</u>
	· · · · · · · · · · · · · · · · · · ·	<u> </u>						. 9	1.265	nd
		 		0.701 -0.286		1.71 -16.7		ID:		W24
				0.698		1.73		10=		
, <u></u> , <u>_</u> _, <u>_</u> , <u>_</u> _, <u>_</u> , <u>_</u> _, <u>_</u> , <u>_</u> _, <u>_</u> _, <u>_</u> , <u>_</u> _, <u>_</u> , <u>_</u>		<u> </u>	Mean	-0.265 0.699	0.3	-15.3 1.72		10	0.723	1.55
		1		-0.276		-16.0		īñ:		25 W
		<u> </u>	10.00	0.289		10.75		10		
Remarks				0.752 0.290		7.0				
Segment 14 Confirm Note sample location		stent.	Mean	0.670 0.289	0.3	10.67 6.3 10.71		÷	· ·	an a
				0.711		6.6				
			Control	Data :						
			Ctr1#	Abs	Conc					
			<u>,</u> 1 .й.	.389	6.46					
2004 Field B	Batch #30			s 		n de la del				

Project:	Richardson H	Iill Road		
	Landfill		· ·	
Client:	Honeywell		*****	
Project Location:	Sidney, NY		PROTOCOL : PCB	
Sample Matrix:	Soil		• · · · · · · · · · · · · · · · · · · ·	- · ·
Sample Dates	9/2/04		TECH ID :	
PCB Measurement	Arcolor 125	4	EXP DATE:	
Test Level	<1ppm		B. L. B. Luckeling Decomposition	
Test Date:	9/2/04	,	Data Reduct:Lin.Re9ression Xformation: Ln/L9tB	
Test Run By:	WRB		Read Mode : Absorbance	Samples Data :
Field 7	Test Results		Wavelength: 450 nm Units: PPM	
I		Test		SPl# Abs Conc
Sample ID	Location	Result	EQUATION OF LINE :	1 1.234 0.02nd
Sampie ID	LANAHOM	(ppm)		
Segment 14-B24-			Slope = -0.728 Intercept = 0.487 Corr (r) = 0.9978	ID: SEG- 14 B2
090204	Segment 14	<0.5	Corr (r) = 0.9978	2 1.374 nd
Segment 14-B25-	0 11	-0.5		
090204	Segment 14	<0.5	Transformed Data :	1D:B25
Segment 14-B26-	Segment 14	<0.5		3 1.230 0.02nd
090204	Segment 14		Conc Abs	тр: <u>В 20</u>
Segment 14-B27-	Segment 14	<0.5	– 9.69 1.038	10: <i>D</i>
090204	Segment 14		0.69 -0.102 2.30 -1.150	4 1.410 nd
Segment 14-W25-	Segment 14	<0.5	2.30 -1.130	тр: В 27
090204				10
Segment 14-W26-	Segment 14	<0.5	Calibrator Data:	5 1.303 nd
090204				ID: SEG 14 W25
Segment 14-W27-	Segment 14	<0.5	Conc Abs %CV Predic Diff %Diff	10
090204 Segment 14-W28-				6 1.412 nd
090204	Segment 14	<0.5	0.00 1.310 1.241	10: <u>26</u> W26
Segment 14-W29-			Mean 1.276 3.8	
090204	Segment 14	.71		7 1.087 0.18nd
	<u> </u>	1	0.50 0.929 0.50 0.004 0.8	ID:ω2'
			0.955 0.44	
			-0.063 -14.4 Mean 0.942 1.9 0.47	8 1.414 nd
			-0.030 -6.4	10:W2
			2,00 0.606 2.24	
			0.240 i8.7	9 0.862 0.71
			0.605 2.25 0.253 11.2	10: W2
			Mean 0.605 0.2 2.25	
			0.246 11.0	
			10.00 0.307 9.50	
			-0.504 -5.3 0.307 9.46	i.
Remarks			-0.543 -5.7	
Segment 14 Confirm			Mean 0.307 0.2 9.48	
Includes a retest of	sidewall W25		-0.524 -5.5	•
			Control Data :	
			_	
			Ctrl# Abs Conc	

2004 Field Batch #31

~

1 0.398

5.78

PCB Fi Project:	ield Test Data Richardson I Landfill	Hill Road	
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Dates	9/11/04		
PCB Measurement	Arcolor 125	4	
Test Level	<1ppm	•	
Test Date:		9/13/04	
Test Run By:	WRB	······	
	Test Results		
Sample ID	Location	Test Result (ppm)	
Segment 13-B1- 091304	Segment 13	<0.5	
Segment 13-B2- 091304	Segment 13	<0.5	
Segment 13-B3- 091304	Segment 13	<0.5	
Segment 13-B4- 091304	Segment 13	<0.5	
Segment 13-W1- 091304	Segment 13	<0.5	
Segment 13-W2- 091304	Segment 13	<0.5	
Segment 13-W3- 091304	Segment 13	<0.5	
Segment 13-W4- 091304	Segment 13	<0.5	
	<u> </u>	····	
Remarks		L]	

00-17-0/	4 06:28	:57	
09-13-04 06:28:52 *********** 5 D I *********			
PROTOCOL		PC	
TECH ID			
LOT # EXP DRT	E:		
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de : 9th : :	n.Re9r L Abso	ession n/L9tB rbance 450 nm PPM
EQUATIO	N OF LI	NE :	
Slope Interce Corr (r	 = Pt =) =	 -0.57 0.42 0.999	0 7 5
Transfo			
Conc		Abs	
-0.69 0.69 2.30	0. 0. -0.	800 064 901	
		201	
Calibra	tor Dat	a: 	
Conc	Abs Diff	XCV	Predic ZDiff
0.00	1.047 0.987		
Mean	1.017	4.1	
0.50	0.700		0.53
	0.027 0.706		5.i
Nean	0.027 0.706 0.804	0.6	5.1 0.50 0.8 0.52
	0.027 0.706 0.004 0.703 0.015	0.6	5.1 0.50 0.8 0.52 3.0
2 00	0.027 9.706 0.004 9.703 9.015 0.524	8.6	5.1 0.50 0.8 0.52 3.0 1.90 -5.3
2.00	0.027 0.706 0.004 0.703 0.015 0.524 -0.100 0.525 -0.118 0.525	0.6 0.2	5.1 0.50 0.8 0.52 3.0 1.90 -5.3 1.88 -6.3 1.89
2.00 Mean	0.027 0.706 0.004 0.703 0.015 0.524 -0.100 -0.100 -0.118 0.525 -0.109		5.1 0.50 0.8 3.0 -5.3 -6.3 -5.8
2.00	0.027 0.706 0.804 0.703 0.015 0.524 -0.100 0.525 -0.118 0.525 -0.118 0.525 -0.109 0.294 0.234		5.1 0.50 0.8 0.52 3.0 1.90 -5.3 1.88 -6.3 1.89 -5.8 10.23 2.3
2.00 Mean 10.00	0.027 0.706 0.804 0.703 0.015 0.524 -0.100 0.525 -0.118 0.525 -0.109 0.294 0.293 0.293	0.2	5.1 0.50 0.8 9.52 3.0 1.90 -5.3 1.88 -6.3 1.89 -5.8 10.23 10.23 10.23 2.8
2.00 Mean	0.027 0.706 0.804 0.703 0.015 0.524 -0.100 0.525 -0.118 0.525 -0.109 0.294 0.294 0.293		5.1 0.50 0.8 0.52 3.0 1.90 -5.3 1.88 -6.3 1.89 -5.8 10.23 2.3
2.00 Mean 10.00	0.027 0.706 0.804 0.703 0.524 -0.100 0.525 -0.109 0.294 0.294 0.293 0.294	0.2 0.2	5.1 0.50 0.8 9.52 3.0 1.90 -5.3 1.88 -6.3 1.89 -5.8 10.23 10.23 10.23 2.8
2.00 Mean 10.00 Mean	0.027 0.706 0.804 0.703 0.015 0.524 -0.100 0.525 -0.118 0.525 -0.109 0.294 0.293 0.293 0.293 0.294 0.293 0.294 0.294 0.293 0.294 0.294 0.294 0.293 0.294	0.2 0.2	5.1 0.50 0.8 0.52 3.0 1.90 -5.3 1.88 -6.3 1.89 -5.8 10.23 10.23 10.29 2.8 10.26 2.6
2.00 Mean 10.00 Mean Control	0.027 0.706 0.804 0.703 0.015 0.524 -0.100 0.525 -0.118 0.525 -0.109 0.294 0.293 0.293 0.293 0.294 0.293 0.294 0.294 0.293 0.294 0.294 0.294 0.293 0.294	0.2 0.2	5.1 0.50 0.8 0.52 3.0 1.90 -5.3 1.88 -6.3 1.89 -5.8 10.23 10.23 10.29 2.8 10.26 2.6

1V"		
	GANE es Data	
Sel#	Abs	Conc
1	1.065	nd
10:_2	DEG 13	BI
2	1.088	nd
ID:	· `	137
3	0.910	0.05nd
ID:		83
4	1.132	nd
ID:	• •	134
5	1.127	nd
1D:	4.5	
6	1,030	nd
10:		wz.
7	1.152	nd
ID:		W3
8	0.984	0.01nd
ID:	ر د	w4
6 ID: 7 ID: 8	1.030 ., 1.152 .(0.984	nd <u>WZ</u> nd <u>W3</u> 0.01nd

PCB Field Test Data			
Project:	Richardson Hill Road		
_	Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Dates	9/14/04		
PCB Measurement	Arcolor 125	4	
Test Level	<1ppm		
Test Date:	9/15/04		
Test Run By:	WRB	. <u> </u>	
Field	Test Results		
		Test	
Sample ID	Location	Result	
Sumpro 10	Boouton	(ppm)	
Segment 13-B5-			
091404	Segment 13	<0.5	
Segment 13-B6-			
091404	Segment 13	<0.5	
Segment 13-B7-			
091404	Segment 13	<0.5	
Segment 13-B8-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
091404	Segment 13	<0.5	
Segment 13-B9-	G + 10		
091404	Segment 13	<0.5	
Segment 13-B10-	6	-0.5	
091404	Segment 13	<0.5	
Segment 13-B15-	Sacronant 12	-0.5	
091404	Segment 13	<0.5	
Segment 13-W5-	Segment 12	<0.5	
091404	Segment 13	~0.5	
Segment 13-W6-	Segment 13	<0.5	
091404	Segment 15	~0.5	
Segment 13-W7-	Segment 13	<0.5	
091404	Segment 15	-0.5	
Segment 13-W8-	Segment 13	<0.5	
091404	begineint 15		
Segment 13-W10-	Segment 13	<0.5	
091404		-0.5	

	·		
Domorko			

-0.594 0.392 0.9933 Slope = Intercept = Corr(r) =Transformed Data : Conc Abs _____ _____ 0.868 -0.139 -0.921 -0.69 0.69 2.30 Calibrator Data: _____ Abs %CV Predic Diff %Diff Conc ____ 0.00 0.960 0.960 Mean 0.960 0.1 0.632 0.143 0.721 0.64 0.500.30 -65.3 0.45 -0.197 Mean 0.676 9.3 -0.051 -11.4 2.55 21.7 2.34 14.5 2.00 0.440 0.555 0.453 0.341 Mean 0.447 0.445 2.45 18.2 2.0 7.83 -27.7 10.67 6.3 10.00 0.291 -2.170 0.668 Mean 0.273 9.11 -9.7 9.3

-0.888

Abs

0.348

Conc

5.00

__________ Control Data : ____**___**

Ctrl#

...

t.

 \sim

Spl#	Abs	Čonc
-	0.895	
ID:	SEG	<u>3 B5</u>
	0.974	nd n
ID:		<u> </u>
	0.798	
ID:		<u>B7</u>
	0.969	nd
ID:		<u>B&_</u>
	0.958	
ID:		<u> </u>
	1.084	nd
ID:_		<u>B10</u>
	0.989	. 0.5
1D:_		513
		0.03nd
ID:_	SEG	13 WS
9	0.883	0.03nd
1D:_		W6
10	0.937	0.00nd
ID:		<u> </u>
11	0.909	0,02nd
ID:		<u> </u>
12	1.054	nd
ID:		<u>lu10</u>

ŝ

ં તે • ંદ્ર

PCB

Ln/L9tB Absorbance 450 nm PPM

*********** 5 D I *******

TECH ID :_____ LOT # :_____ EXP DATE:_____

Data Reduct:Lin.Regression

:

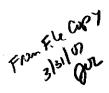
EQUATION OF LINE : -----

02 10

PROTOCOL :

Xformation: Read Mode :

Wavelen9th : Units


Remarks Segment 13 Confirmatory Tests.

	D' 1 1 1	C11 D 1
t:	Richardson H	uii Road
	Landfill	
	Honeywell	ad
t Location:	Sidney, NY	
e Matrix:	Soil	. <u></u>
e Dates	9/14/04	-
leasurement	Arcolor 125	1
evel	<1ppm	
ate:	9/15/04	
un By:	WRB	
Field T	st Results	
mple ID	Location	Test Result (ppm)
ent 13-B11- 4	Segment 13	<0.5
ent 13-B12- 4	Segment 13	<0.5
ent 13-B18- 4	Segment 13	<0.5
ent 13-W9- 4	Segment 13	<0.5
ent 13-W12- 4	Segment 13	<0.5
ent 13-W14- 4	Segment 13	<0.5
ent 13-W16- 4	Segment 13	<0.5
4 ent 13-W12- 4 ent 13-W14- 4 ent 13-W16-	Segment 13 Segment 13	<0.5

Segment 13 Confirmatory Tests.

		T and the second	ሳጣካ ማን ማንዋን	
PROTOCOL	1	PCB		
TECH ID : LOT # : EXP DATE:				
Data Red Xformati Read Mod Wavelen9 Units	uct:Lir on: ie : ith : :).Re9re Lr Absor	ssion /L9tB bance 50 nm PPM	
EQUATION Slope Intercep Corr (r)	 = >t =	IE : 0.723 0.599 0.9978	}	
Transfor	med Dat	ta:		
Conc -0.69 0.69 2.30	 1.			
Calibra	tor Dat	a: 		
Conc	Abs Diff	%CV	Predic %Diff	
0.00 Mean	1.133 1.115 1.124	1.1		
0.50	0.818 0.087 0.887		0.59 14.8 0.37	
Mean	-0.132 0.853 -0.030	5.7	-35.7 0.47 -6.4	
2.00	0.595 -0.056 0.536 0.595		1.94 -2.9 2.60 22.9	
Mean	0.566 0.246	7.3	2.25 10.9	
10.00	0.320 -1.838 0.272		8.16 -22.5 11.09	
Mean	1.094	11.5*	, 9.9	
Control Data :				
Ctrl#	Abs	Conc		
1, 0	.400	5,20	· · ·	

Samp]	les Data	t '
Spl#	Abs	Conc
	1.255	
ID:	<u>SEG</u>	13 W9
2	1.194	nd
ID:_		W12
3	1.194	nd
ID:_		W14
4	1.234	nd
-		· . 11
5	1.248	nd
1D:_	SEG	13 BII
	1.126	nd
ID:		BIZ
		0.00nd
ID:		<u>B18</u>
END	OF RUN 15-04 07:	

DCP F:	eld Test Data	
Project:	Richardson I	Hill Road
110,000.	Landfill	
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Dates	9/15/04	
PCB Measurement	Arcolor 125	4
Test Level	<1ppm	
Test Date:	9/16/04	
Test Run By:	WRB	
Field	Test Results	
Sample ID	Location	Test Result (ppm)
N2-B1-091504	North Area	<0.5
N2-B2-091504	North Area	<0.5
N2-B3-091504	North Area	<0.5
N2-B4-091504	North Area	<0.5

N2-B1-091504	North Area	<0.5
N2-B2-091504	North Area	<0.5
N2-B3-091504	North Area	<0.5
N2-B4-091504	North Area	<0.5
N2-B5-091504	North Area	<0.5
N2-B6-091504	North Area	21.51
N2-B7-091504	North Area	<0.5
N2-B8-091504	North Area	8.58
N2-W1-091504	North Area	<0.5
N2-W2-091504	North Area	<0.5
N2-W3-091504	North Area	<0.5
· · · · · · · · · · · · · · · · · · ·		
1	· · · · · ·	
	· ·	

North Area Excavation Site N2 Confirmatory Tests.

********** 5 D I ********

Please Wait 30 Minutes · 09-16-04 04:07:04

09-16-04 06:02:45

********** 5 D I ********

PROTOCOL	Ĩ	PC8
TECH ID : LOT # :		
EXP DATE:		

Data Reduct:Lin	Regression.
Xformation:	Ln/L9t8
Read Mode :	Absorbance
Wavelength :	450 nm
Units :	PPM

EQUATION OF LINE : ------

Slope = Intercept = Corr (r) = -0.694 0.655 0.9982

Transformed Data :

Conc	Abs.
-0.69	1.175
0.69	0.102
2.30	-0.908

Calibrator Data:

Conc	Abs Diff	20V	Predic %Diff
0.00	1.251		
Mean	$1.274 \\ 1.263$	1.3	
0.50	0.984 -0.084 0.945		0.42 -20.2 0.53
Mean	0.034 0.965 -0.027	2.9	6.4 0.47 -5.8
2.00	0.699 -0.117 0.628		1.88 -6.2 2.62
Mean	0.617 0.663 0.221	7.7	23.6 2.22 9.9
10.00	0.373 -0.986 0.353		9.01 -10.9 10.08
Mean	0,079 0,363 -0.473	3.9	0.8 9.53 -5.0
Contro	Data :		·····
Ctrl#	Abs	Conc	
1 0	.443	6.24	

ID:_____

Samples Data :		
Sel#	Abs	Conc
1	1.368	nd
ID:_/	<u>v2</u>	<u>- BI</u>
	1.396	nd
1D:		B2
	1.303	nd
ID:		<u>B3*</u>
4	1.343	ndi
ID:		<u> </u>
	1.316	nd
ID:		<u>B5</u>
	0.235	
ID:		<u> </u>
	1.346	
1D:_		<u> </u>
		8,58
ID:_	:	<u> 88</u>
	1.349	nd
ID:_	<u>N 2</u>	<u>- WI</u>
	1.291	
ID:_		<u> </u>
11	1.323	nd
ID:		W3

END OF RUN 09-16-04 06:05:25

PCB Field Test Data		
Project:	Richardson H	lill Road
-	Landfill	
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Dates	9/16/04	
PCB Measurement	Arcolor 1254	4
Test Level	<1ppm	
Test Date:	9/16/04	
Test Run By:	WRB	
	Test Results	
		Test
Sample ID	Location	Result
		(ppm)
Segment 13-B13-	a	
091604	Segment 13	<0.5
Segment 13-B14-	G	-0.5
091604	Segment 13	<0.5
Segment 13-B16-	0	-0.5
091604	Segment 13	<0.5
Segment 13-B17-	Commont 12	<0.5
091604	Segment 13	<0.5
Segment 13-B19-	Segment 12	<0.5
091604	Segment 13	~0.5
Segment 13-B20-	Segment 12	<0.5
091604	Segment 13	~0.5
Segment 13-B21-	Segment 12	<0.5
091604	Segment 13	-0.5
Segment 13-B22-	Sogmont 12	<0.5
091604	Segment 13	V.J
Segment 13-W11-	Segment 13	<0.5
091604	Segment 13	~0.5
Segment 13-W13-	Segment 13	<0.5
091604	ocgment 15	~0.5
Segment 13-W15-	Segment 13	4.36
091604		4 ,50
N2-B6-091604	North Area	<0.5
N2-B8-091604	North Area	20.3
		ļ
	·	
	l	•

Segment 13 Confirmatory Tests. Retest of North Area Excavation Site N2-B6 and N2-B8

07-16-0	4 14.20	• 00	
*****	*** S D	∐ ** **	*****
PROTOCO	L:	PC	В
TECH ID LOT # EXP DAT	E:		
Data Re Xfornat Read No Wavelen Units	duct:Li ion: de : 9th : :	n.Regr L Abso	ession n/L9tB rbance 450 nm PPM
EQUATIO	N OF LI	NE :	
Slope Interce Corr (r	= pt =) =	-0.71 0.57 0.999	7
Transfo	rmed Da	ta : 	
Conc -0.69 0.69 2.30		Abs 101 027 039	
Calibra	tor Dat	a: 	
Conc	Abs Diff	XCU	Predic %Diff
0.00	1.214 1.134		
Mean	1.174	4.8	
0.50	0.851 0.077		0.58 13.4
Mean	0.911 -0.107 0.881 -0.021	4.8	0.39 -27.2 0.48 -4.3
2.00	0.626 -0.137 0.564		1.86 -7.3 2.51
Mean	0.508 0.595 0.162	7.4	20.3 2.16 7.5
10.00	0.304 -0.209		9.79 -2.1
Mean	0.309 -0.497 0.307 -0.354	1.1	-2.1 9.50 -5.2 9.65 -3.7
Control	Data :		
Ctrl#	Abs	Conc	
1 0	.402	5.60	
ID:			

09-16-04 14:28:08

Samp	les Data]]
Spl#	Abs	Conc
	0.989	0.21nd
ID:_	<u>N2</u>	<u>B6</u>
		20.30Hi
ĨD:	NZ	<u></u>
3	1.210	nd
ID:	SEG :	13 11 11
	1.214	
ID:		<u>[] [] [] [] [] [] [] [] [] [] [] [] [] [</u>
5	0.451	4.36
ID:		<u> </u>
6	0.946	0.30nd
ID:	SEG	<u>13 B13</u>
		0.00nd
ID:		<u> </u>
8	1.205	nd
ID:		<u> </u>
	1.218	nd
ID:		β17
		9.44nd
ID:		<u> </u>
11	1.177	nd
ID:		<u> Bzo</u>
12	1.293	nd
ID:		<u> β21</u>
	1.115	0.04nd
ID:		<u> </u>

END OF RUN 09-16-04 14:31:38

PCB Field Test Data Pichardson Hill Bo

Project:	Richardson Hill Road
	Landfill
Client:	Honeywell
Project Location:	Sidney, NY
Sample Matrix:	Soil
Sample Dates	9/16/04 & 9/17/04
PCB Measurement	Arcolor 1254
Test Level	<1ppm
Test Date:	9/17/04
Test Run By:	WRB

Field Test Results		
Sample ID	Location	Test Result (ppm)
N2-B9-091604	North Area	<0.5
N2-B10-091604	North Area	<0.5
N2-B11-091604	North Area	<0.5
N2-B12-091604	North Area	<0.5
N2-W4-091604	North Area	<0.5
N2-W5-091604	North Area	<0.5
N2-W6-091604	North Area	<0.5
Segment 13-B23- 091704	Segment 13	<0.5
Segment 13-W13- 091704	Segment 13	<0.5
Segment 13-W15- 091704	Segment 13	<0.5

Remarks

North Area Excavation Site N2 Confirmatory Tests.

Retest of Segment 13 Sidewall W15 Retest of Segment 13 Sidewall W13 Confirmatory test of Segment 13 Grid B23

09-17-04	¥ 09:4	6:07	
******	** * S	D I **	*****
PROTOCOL	. :	P	CB
TECH ID Lot # EXP Date	E		
Data Rev Xformat Read Mov Wavelen Units	duct:L ion: de : 9th : :	in.Re9 Abs	ression Ln/L9tB orbance 450 nm PPM
EQUATIO Slope Interce Corr (r			35
Transfo	rned [)ata :	
Conc -0.69 0.69 2.30		Abs 0.803 0.139 1.186	•
Calibra	tor Da	ata:	
Conc	Abs Difi	s %CV f	Predic %Diff
0.00 Mean	1.33 1.24 1.28	2 1 6 5.0	
0.50	0.863 0.06 0.913 -0.07	5	0.57 11.7 0.43 -16.4
Mean	0.88 -0.00	3 4.0	0.49 -1.2
2.00	0.61 -0.12 0.58	2	1.88 -6.5 2.22
Mean	0.22 0.59 0.04	4 9 4.2	10.1 2.04 2.1
10.00	0.30	8	9.90 -1.0
Mean	0.30 -0.09 0.30 -0.09	8 1 0.0	9,90 -1.0 9.90 -1.0
Control	Data		

Ctrl#	Abs	Conc	
1	0.386	5.94	
10:			

Samp	les Data	<u>.</u>
S⊳l#	Abs	Conc
1	1.275	0.00nd
ID:_	NZ	<u> </u>
2	1.316	nd
ID:_	h 	<u>65</u>
3		
ID:_	<u> </u>	w6
4	1.170	0.05nd
ID:_	<u>2 N</u>	139
5	1.379	nd
ID:_		<u>B10</u>
6	1.317	nd
ID:_		<u>BII</u>
7	1.363	nd
ID:_	t <u>i</u>	<u></u>
8	1.312	nd
ID:_	SEG	13 B23
	1.383	· · ·
ID:_	SEG I	3 1013
10	1.339	nd
ID:_		<u> 618</u>

END OF RUN 09-17-04 09:49:31

PCB Fi Project:	eld Test Data Richardson F	Hill Road
	Landfill	
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Dates	9/21/04	
PCB Measurement	Arcolor 125	4
Test Level	_<1ppm	
Test Date:	9/21/04	. <u></u>
Test Run By:	WRB	
Field	Test Results	
Sample ID	Location	Test Result (ppm)
N1-B1-092104	North Area	<0.5
N1-B2-092104	North Area	<0.5
N1-B3-092104	North Area	<0.5
N1-B4-092104	North Area	<0.5
N1-B5-092104	North Area	<0.5
N1-B6-092104	North Area	<0.5
N1-B7-092104	North Area	<0.5
N1-B8-092104	North Area	<0.5
N1-W1-092104	North Area	<0.5
N1-W2-092104	North Area	<0.5
N1-W3-092104	North Area	<0.5
N1-W4-092104	North Area	1.35
N2-B8-092104	North Area	<0.5

North Area Excavation Site N1 Confirmatory Tests.

Retest Of North Area Excavation Site N2 B8

09-21-04 12:38:45 ********** 5 D I ******** PROTOCOL : PCB TECH ID :_____ LOT # :_____ EXP DATE:____ * * _____ Data Reduct:Lin.Regression Xformation: Ln/L9tB Absorbance 450 nm PPM Read Mode : Wavelength : Units : EQUATION OF LINE : -0.677 0.622 Slope = Intercept = Corr (r) = 1.0000 Transformed Data : -----Conc Abs. -0.69 1.095 0.69 2.30 0.145 -0.934 Calibrator Data: Predic %Diff Abs Conc 200 Diff ----1.216 0.00 1.216 1.216 Mean 0.0 0.50 0.893 0.560.057 0.929 10.2 0.44 -0.058-13.2 Mean 0.911 -0.003 2.8 0.50 -0.6 2.00 0.709 1.53 -0.473 0.595 31.0 2.67 0.668 Mean 0.652 12.4* 0.022 2.02 1.1 10.00 0.358 9.13 -9.5 -0.869 0.329 10.87 8.0 9.95 -0.5 0.865 Mean 0.343 6.0 -0.051 Control Data : -----Ctrl# Abs Conc

1

0.440

ID:_____

5.78

SP1# Abs Conc 1 1.260 nd ß 10: <u>N</u>/ 2 1.297 nd BZ ID:____ 3 1.299 nd ßЗ 10:___ 4 1.383 nd ßЧ ID:_____ 5 1.284 nd ßS ID:_ 1.364 6 nd <u>B6</u> ID:____ 7 1.270 nd ß7 ID:_____ 8 1.341 nđ **B**8 10:_

Samples Data :

ID:		<u> </u>
12	1.195	0.01nd
ID:		<u>3</u>
13	Ø.734	
ID:		<u>64</u>
	DF_RUN_	

1.273

NZ

1.374

1.298

p1

nd

nd

nd

w l

w2

<u>B8</u>

9

ID:

10

ID:_

11

E 09-21-04 12:42:32

PCB Field Test Data		
Project:	Richardson Hill Road	
	_Landfill	
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Dates	9/22/04	
PCB Measurement	Arcolor 1254	
Test Level	<1ppm	
Test Date:	9/23/04	
Test Run By:	NMS	

Field Test Results

Sample ID	Location	Test Result (ppm)
N3-B1-092204	North Area	<0.5
N3-B2-092204	North Area	<0.5
N3-B3-092204	North Area	<0.5
N3-B4-092204	North Area	<0.5
N3-W1-092204	North Area	<0.5
N3-W2-092204	North Area	<0.5
N3-W3-092204	North Area	<0.5
N1-W4-092204	North Area	.71
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	·····	

Remarks

North Area Excavation Site N3 Confirmatory Tests.

Retest Of North Area Excavation Site N1 W4

******	*** 5 D	<u>1</u> ***	******
PROTOCOL	. :	P(:В
TECH ID LOT # EXP DATE	:		
Data Rec Xformati Read Moc Wavelens Units			
EQUATION	I OF LI	NE :	
Slope Intercer Corr (r)	= =t =) =	-0.63 0.50 0.999	52
Transfor	rmed Da	ta : 	
Conc -0.69 0.69 2.30		Abs 018 089 871	
Calibrat	tor Dat	a:	
Conc	Abs Diff	2CV	Predic %Diff
0.00	1.447		
Mean	1.397 1.422	2.5	
Mean	1.051 -0.032 1.038 0.002 1.045 -0.015	0.8	0.47 -6.9 0.50 0.4 0.48 -3.2
2.00	0.755		2,00
Mean	0.002 0.730 0.244 0.742 0.119	2.4	2.88 0.1 2.24 10.9 2.12 5.6
10.00	0.421 -0.355		9.65 -3.7
Mean -	0.418 -0.174 0.419 -0.265	0.6	9.83 -1.8 9.74 -2.7
Control	Data :		
Ctrl#	Abs	Conc	
i 0.	.528	5.63	••

10:____

09-23-04 07:18:16

Samples Data 🗄 Spl# Abs Conc 1 1.400 0.00nd ID: <u>N3</u> BI 2 1.473 nd ID:_____ B2 3 1.591 nd 17 133 ID:_____ 4 1.486 nd 11 **B**4 ID:____ 5 1.577 nd ID:_____11 WI 6 1.644 nd 11 10:_____ WZ 7 1.606 nd s1 W3 ID:_____ 8 0.973 0.71 10: NI <u>____4</u>

END OF RUN 09-23-04 07:22:11

PCB Field Test Data			
Project:	Richardson I	Hill Road	
5	Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Dates	9/22/04		
PCB Measurement	Arcolor 125	4	
Test Level	<1ppm		
Test Date:	9/23/04		
Test Run By:	NMS		
Field	Test Results		
Sample ID	Location	Test Result	
		(ppm)	
SEGMENT 12- B1-092204	Segment 12	<0.5	
SEGMENT 12- B2-092204	Segment 12	<0.5	
SEGMENT 12- B3-092204	Segment 12	<0.5	
SEGMENT 12- B4-092204	Segment 12	<0.5	
SEGMENT 12- W1-092204	Segment 12	2.22	
SEGMENT 12- W2-092204	Segment 12	<0.5	
SEGMENT 12- W3-092204	Segment 12	<0.5	
SEGMENT 12- W4-092204	Segment 12	<0.5	

Segment 12 Confirmatory Tests.

09-23-0	14 05:52	2:13	
*****	*** 5 [) [**	****
PROTOCO)[:	P	CB
TECH IC Lot # Exp dat	E		
Data Re Xfornat Read Mc Waveler Units	duct:Li ion: de : 9th : :	in.Re9 Abs	ression Ln/L9tB orbance 450 nm PPM
EQUATIO Slope Interce Corr (r			57 81 93
Transfo	ormed Da	ata :	
-0.69 0.69 0.69 2.30	1 0 -0	Abs 258 283 712	
Calibra	tor Dat	.a:	
Conc	Abs Diff	2CV	Predic ZDiff
0.00	1.183		
Mean	1.236	3.1	
	0.927 0.036 0.956		0.54 6.7 0.43 -15.3
Mean	-0.066 0.942 -0.017	2.2	-15.3 0.48 -3.5
2.00	0.668 0.379 0.711		2.38 15.9 1.91 -4.8
Mean	-0.091 0.690 0.132	4.4	-4.8 2.13 6.2
10.00	0.385 0.490		10.49 4.7
Mean	0.411 -1.004 0.398 -0.292	4.8	9.00 -11.2 9.71 -3.0
Control	Data :		
<u>Ctrl#</u> 1 0.	Abs .445	Conc 7.50	
ID:			

Sampl	es Data :	
Spl#	Abs	Conc
1	1.333	nd
ID:_ 5	EG/Z	Bl
2	1.330	nd
ID:		<u> </u>
3	1,292	nd
ID:		B3
	1.325	nd
		_
10:		<u>B4</u>
	0.682	
5	0.682	
5 1D: 2	0.682	2.22
5 ID: 2	0.682 E <u>G IZ</u> 1.401	2.22 ////
5 ID: 2 6 ID:	0.682 E <u>G IZ</u> 1.401	2.22
5 ID: 2 6 ID: 7	0.682 E <u>G IZ</u> 1.401 1.357	2.22 M / nd M 2
5 ID: 6 ID: 7 ID:	0.682 E <u>G IZ</u> 1.401 1.357	2.22 nd Nd Nd Nd
5 ID:∠ ID: 7 ID: 8	0.682 E <u>G IZ</u> 1.401 1.357	2.22 nd nd M2 nd M3 nd

END OF RUN 09-23-04 05:55:53

PCB Field Test Data		
Project:	Richardson Hill Road	
-	Landfill	
Client:	Honeywell	
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Dates	9/23/04	
PCB Measurement	Arcolor 1254	
Test Level	<1ppm	
Test Date:	9/24/04	
Test Run By:	NMS	

Field Test Results		
Sample ID	Location	Test Result (ppm)
Segment 12-B5- 092304	Segment 12	1.24
Segment 12-B6- 092304	Segment 12	<0.5
Segment 12-W1- 092304	Segment 12	<0.5
Segment 12-W5- 092304	Segment 12	<0.5
Segment 12-W6- 092304	Segment 12	<0.5
N3-B5-092304	North Area	<0.5
N3-B6-092304	North Area	<0.5
N3-B7-092304	North Area	<0.5
N3-B8-092304	North Area	<0.5
N3-W4-092304	North Area	<0.5
N3-W5-092304	North Area	<0.5
N3-W6-092304	North Area	<0.5
	,	

Segment 12 Confirmatory Tests. retest of Segment 12 Sidewall W1 North Area Excavation Site N3 Confirmatory Tests.

07 24 0	4 07:(9(*18	
******	*** 5	0 I *	*****
PROTOCO	L:	I	PCB
TECH ID LOT # EXP DAT	: :		
Data Re Xformat Read Mo Wavelen Units	duct: ion: de : 9th : ;	_in.Re Ab	9ression Ln/L9tB sorbance 450 nm PPM
EQUATIO Slope	 =	 -й.9	968
Interce Corr (r	et =) =	1. 0.9	255 593**
Transfo	rmed	Data :	
Conc		Abs	
-0.69 0.69 2.30		2.191 3.091 0.746	-
Calibra	tor D	ata: 	
Conc		 s %CV	Predic %Diff
	Ab: Dif 0.95 0.89	 s %CV f 4	Predic %Diff
Conc 0.00	Ab: Dif 0.95 0.89 0.92 0.83 -0.11	 f 4 3 4 4.7 8 5	Diff
Conc 9.00 Nean	Ab: Dif 0.95 0.89 0.92 0.83	s %CV f 3 4 ~4.7 8 5 5 5 1 0.2	2Diff
Conc 0.00 Nean 0.50	Ab: Dif 0.95 0.95 0.92 0.92 0.83 -0.11 0.83 -0.12 0.12 -0.12 0.12 -0.12 0.12 -0.12 0.12 -0.12 0.12 -0.12 0.12 -0.12 0.12 -0.12 0.12 -0.12 0.12 -0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	 f 3 4 5 5 1 0.2 0 4 2 2 2 2 2 2 2 2 2 2 2 4 4 2	2Diff 0.39 -29.8 0.38 -33.2 0.38 -31.5 3.17 36.9
Conc 0.00 Mean 0.50 Mean	Ab. Dif 0.95 0.92 0.92 0.83 -0.11 0.83 -0.12 0.83 -0.12 0.83 -0.12 0.83 -0.12	5 %CV f 3 4 4.7 8 5 5 2 5 0.2 5 0.2 4 2 2 2 1 3.1	2Diff
Conc 0.00 Nean 0.50 Nean 2.00	Ab. Dif 0.95 0.92 0.92 0.833 -0.11 0.833 -0.12 0.83 -0.12 0.83 -0.12 0.49 1.17 0.47 1.49 0.48 1.32 0.29 -2.11	 f 4 4 5 5 2 5 1 8 2 1 3 3 3 3 3 1 8 3 3 3	2Diff 0.39 -29.8 0.38 -33.2 0.38 -31.5 3.17 36.9 3.49 42.7 3.33 39.9 7.89 -26.8
Conc Ø.00 Mean Ø.50 Mean 2.00 Mean	Ab Dif 0.92 0.83 0.92 0.83 0.92 0.83 -0.11 0.83 0.83 -0.12 0.83 -0.12 0.83 -0.12 0.83 -0.12 0.83 -0.12 0.83 1.17 0.49 1.17 0.49 1.17 0.49 1.17 0.92 0.29	 s %CV f f 4 4 4 5 2 2 5 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 3 3 3 1 0 2 2 5 1 0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	2Diff

Control Data :

Ctrl#	Abs	Conc
1	0.291	8.17
ID:		

Sampl	es Data :	
S⊳l#	Abs	Conc
1	0.683	1.24
ID:	SEGIZ	B5
2	1.091	nd
ID:	ıt	<u>B6</u>
3	0.898	0.09nd
ID:	<i>د</i> ر کر	WI
	1.252	nd
10:	<u>1</u>	WS
	0.906	
ID:	1)	W6
6	0.901	0.08nd
ID:	<u>N3</u>	B5
	0.872	
ID:	い	<u> </u>
8	0.966	nd
ID:	υ	137
9	1.000	nd
ID:	<u>ر</u> ا 	B8
	0.951	nd
ID:	<u>N3</u>	w4_
11	0.940	nd
ID:_	<u>u</u>	W5
	0.954	nd
ID:_	ц 	<u>~6</u>

END OF RUN 09-24-04 07:11:11

PCB Field Test Data				
Project:	Richardson Hill Road			
	Landfill			
Client:	Honeywell			
Project Location:	Sidney, NY			
Sample Matrix:	Soil			
Sample Dates	9/25/04			
PCB Measurement	Arcolor 1254	ļ		
Test Level	<1ppm			
Test Date:	9/25/04			
Test Run By:	NMS			
Field	est Results			
		Test		
Sample ID	Location	Result		
~		(ppm)		
Segment 12-B5- 092504	Segment 12	<0.5		
Segment 12-B7- 092504	Segment 12	<0.5		
Segment 12-B8- 092504	Segment 12	<0.5		
Segment 12-B9- 092504	Segment 12	<0.5		
Segment 12-B10- 092504	Segment 12	<0.5		
Segment 12-B11- 092504	Segment 12	<0.5		
Segment 12-B12- 092504	Segment 12	<0.5		
Segment 12-W7- 092504	Segment 12	<0.5		
Segment 12-W8- 092504	Segment 12	<0.5		
Segment 12-W9- 092504	Segment 12	<0.5		
Segment 12-W10- 092504	Segment 12	<0.5		
		11		
		<u> </u>		
Remarks	l	1		

Segment 12 Confirmatory Tests. Retest of Segment 12 Grid B5

09-25-0	4 11:42	:01	
*****	*** S D	I **>	******
PROTOCO	L:	P	38
TECH ID Lot # EXP Dat	E:		
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de : 9th : :	n.Re9i I Abs(ression Ln/L9tB orbance 450 nm PPM
EQUATIO	N OF LI	NE :	
Slope Interce Corr (r	= Pt =) =	-0.7; 0.6 0.99;	78
Transfo	rmed Da	ita :	
Conc		Abs	
-0.67 0.69 2.30	1. 0. -0.	213 106 924	
Calibra	tor Dat	,a:	
Conc	Abs Diff	%CV	Predic ZDiff
0.00	1.368 1.356		
Mean	1.362	0.6	
0.50	1.042 -0.008		0.49 -1.6
Mean	1.058 -0.050 1.050 -0.029	1.0	0.45 -11.0 0.47 -6.1
2.00	0.712 0.283 0.722		2.28 12.4 2.19
Mean	0.187 0.717 0.235	1.0	8.6 2.23 10.5
10.00	0.391 -0.713		9.29
Mean	0.382 -0.281 0.387 -0.500	1.6	9.72 -2.9 9.50 -5.3
Control	Data :	 -	
Ctrl#	Abs	Conc	

0.488

1 ĭD:__ 5.88

5p1#	Abs	Conc
	1.555	nd
		<u>z BS</u>
-	1.486	
		137
	1.564	nd
ID:	<u>ر ۱</u>	138
		0.02nd
ID:	<u></u>	<u>B9</u>
	1.493	nd
ID:	r.\	<u>B10</u>
6	1.452	nd
ID:	، د	BIL
	1.550	nd
ID:_	۴۲ 	BIZ
	1.560	nd
ID:_	• (W7
	1.526	nd
1D:_	11	<u>w 8</u>
10	i.556	nd
ID:_	t !	<u>N9</u>
11	1.490	nd
ID:_	<u>r</u>	W10

Samples Data :

END OF RUN 09-25-04 11:45:46

PCB Field Test Data Richardson Hill Road Project: Landfill Client: Honeywell Project Location: Sidney, NY Sample Matrix: Soil Sample Dates 9/27/04 **PCB** Measurement Arcolor 1254 Test Level <1ppm Test Date: 9/27/04 Test Run By: NMS

Field Test Results			
Sample ID	Location	Test Result (ppm)	
Segment 11-B1- 092704	Segment 11	<0.5	
Segment 11-B2- 092704	Segment 11	<0.5	
Segment 11-B3- 092704	Segment 11	<0.5	
Segment 11-B4- 092704	Segment 11	<0.5	
Segment 11-B5- 092704	Segment 11	<0.5	
Segment 11-B6- 092704	Segment 11	<0.5	
Segment 11-W1- 092704	Segment 11	<0.5	
Segment 11-W2- 092704	Segment 11	<0.5	
· · ·			

Remarks

Segment 11 Confirmatory Tests.

09-27-04 14:36:11

********* 5 D I ******* PROTOCOL : PC6 TECH ID :_____ LOT # :_____ EXP DATE:_____ Data Reduct:Lin.Regression Xformation: Read Mode Ln/L9tB Absorbance Wavelen9th : 450 nm PPM Units : EQUATION OF LINE : Slope = -0.595 Intercept = 0.643 Corr (r) = 0.9969 Transformed Data : Conc Abs -0.69 1.012 0.69 0.312 2.30 -0.765 Calibrator Data: Conc 2CV Predic 2Diff <u>Abs</u> Diff 0.00 1.430 1.343 Mean 1.387 4.4 0.50 1.045 0.45 -11.3 -0.051 0.989 0.64 0.139 21.7 1.017 Mean 3.9 0.54 0.038 7.1 2.00 0.804 -0.282 1.72 -16.40.797 -0.228 1.77 -12.9 1.75 Mean 0.800 0.5 -0.255 -14.6 10.00 0.440 10.65 0.651 6.1 0.440 10.65 0.651 6.1 Mean 0.440 0.0 10.65 0.651 6.i Control Data : Ctrl# Abs Conc 0.458 1-9.64 TD:_____

Samples Data :			
Sel#	Abs .	Conc	
1	1.591	nd	
ID: _	<u>52611</u>	BI	
2	1.401	nd	
ID:		<u> </u>	
3	1.417	nd	
ID:		33	
4	1.440	nd	
ID:		<u>B4</u>	
	1.531		
1D:		<u>B5</u>	
6	1.513	nd	
1D:		136	
7	1.450	กต่	
ID:		\mathbb{W}	
	1.448	nd	
ID:		WZ	

END OF RUN 09-27-04 14:39:20

PCB Field Test Data

Project:	Richardson Hill Road
	Landfill
Client:	Honeywell
Project Location:	Sidney, NY
Sample Matrix:	Soil
Sample Dates	9/30/04
PCB Measurement	Arcolor 1254
Test Level	<1ppm
Test Date:	9/30/04
Test Run By:	NMS

Field Test Results Test Sample ID Location Result (ppm) Segment 10-B10-Segment 10 < 0.5 093004 Segment 10-B11-Segment 10 < 0.5 093004 Segment 10-B12-Segment 10 < 0.5 093004 Segment 10-B13-Segment 10 < 0.5 093004 Segment 10-B14-Segment 10 <0.5 093004 Segment 10-W1-Segment 10 < 0.5 093004 Segment 10-W2-Segment 10 < 0.5 093004 Segment 10-W3-Segment 10 < 0.5 093004 Segment 10-W4-Segment 10 <0.5 093004

Remarks

Segment 10 Confirmatory Tests.

09-30-0	4 13:39	:: A9	

PROTOCO	. – –	P	
	-		
TECH ID LOT # EXP DAT	E:		
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de : 9th : :	n.Reg Abs	ression Ln/LgtB orbance 450 nm PPM
EQUATIO	N OF LI	NE :	
Slope Interce Corr (r	= pt =) =	-0.6 0.5 0.99	73 69 99
Transfo	rmed Da	ita :	
Conc		Abs	
-0.69	1. 0.	042	
-0.69 0.69 2.30	0. -й.	089 974	
Calibra	tor Dat	a:	
Conc	Abs Diff	2CV	Predic %Diff
Conc 0.00	Diff 1.349	%CV	Predic ZDiff
	Diff		Predic ZDiff
0.00 Mean 0.50	Diff 1.349 1.299 1.324 0.973 0.010 0.984		2Diff 0.51 1.9 0.48
0.00 Mean 0.50 Mean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979	2.7	2Diff 0.51 1.9 0.48 -4.2 0.49
0.00 Mean 0.50 Mean	Diff 1.349 1.299 1.324 0.973 0.910 0.984 -0.020 0.979 -0.005		2Diff 0.51 1.9 0.48 -4.2
0.00 Mean 0.50 Mean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979	2.7	2Diff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.8
0.00 Mean 0.50 Mean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.691	2.7	2Diff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.8 2.04
0.00 Mean 0.50 Mean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.036	2.7	2.0iff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.8 2.04 2.1 2.04
0.00 Mean 0.50 Mean 2.00 Mean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.036 0.691 0.043 0.640	2.7 0.7	2.04 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.8 2.04 2.04 1.9 1.9
0.00 Mean 0.50 Mean 2.00 Mean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.692 0.043 0.691 0.043 0.691 0.040 0.362 -0.032	2.7 0.7	2Diff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.8 2.04 2.1 2.04 1.9 9.97 -0.3
0.00 Mean 0.50 Mean 2.00 Mean 10.00	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.691 0.043 0.691 0.043 0.691 0.040 0.362 -0.032 0.364	2.7 0.7 0.1	2.01ff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.9 9.97 -0.3 9.85 -1.5
0.00 Mean 0.50 Mean 2.00 Mean 10.00	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.692 0.036 0.691 0.043 0.691 0.043 0.691 0.040 0.362 -0.032	2.7 0.7	2.0iff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.8 2.04 2.1 2.04 1.9 9.97 -0.3 9.85
0.00 Mean 0.50 Mean 2.00 Mean 10.00 Nean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.692 0.0364 0.043 0.691 0.040 0.362 -0.0324 0.364 0.363 -0.090	2.7 0.7 0.1	2Diff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.9 9.97 -0.3 9.97 -0.3 9.97 -0.5 9.91
0.00 Mean 0.50 Mean 2.00 Mean 10.00	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.692 0.0364 0.043 0.691 0.040 0.362 -0.0324 0.364 0.363 -0.090	2.7 0.7 0.1	2Diff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.9 9.97 -0.3 9.97 -0.3 9.97 -0.5 9.91
0.00 Mean 0.50 Mean 2.00 Mean 10.00 Nean	Diff 1.349 1.299 1.324 0.973 0.010 0.984 -0.020 0.979 -0.005 0.692 0.692 0.0364 0.043 0.691 0.040 0.362 -0.0324 0.364 0.363 -0.090	2.7 0.7 0.1	2Diff 0.51 1.9 0.48 -4.2 0.49 -1.1 2.04 1.9 9.97 -0.3 9.97 -0.3 9.97 -0.5 9.91

TD:

Same	·les Data	
Sp1#	Abs	Conc
	1.469	
ID:_	SEGI	0 7310
2	1.392	nd
ID:_	+ [†]	<u> </u>
	1.470	nd
ID:_	יר 	512
	1.320	
ID:_	<u>ر ا</u>	<u>B13</u>
	1.441	nd
ID:)۱	<u>B14</u>
	1.348	nd
ID:	د(
	1.497	nd
ID:	•(
8	1.394	nd
ID:	· اک	<u>w3</u>
9	1.284	0.01nd
ID:	1 f	w4

END OF RUN 09-30-04 13:41:02

	ld Test Data			
Project:	Richardson Hill Road			
Client	Landfill			
Client: Project Location:	Honeywell Sidney, NY			
Sample Matrix:	Soil			
Sample Dates	and the second se	10/1/04		
PCB Measurement	Arcolor 125	•		
Test Level	<1ppm	<u> </u>		
Test Date:	10/2/04			
Test Run By:	NMS			
Field 7	Fest Results			
Sample ID	Location	Test Result (ppm)		
Segment 10-B7- 100104	Segment 10	<0.5		
Segment 10-B8- 100104	Segment 10	<0.5		
Segment 10-B9- 100104	Segment 10	<0.5		
Segment 10-W5- 100104	Segment 10	<0.5		
Segment 10-W6- 100104	Segment 10	<0.5		
Segment 10-W7- 100104	Segment 10	<0.5		
Segment 10-W8- 100104	Segment 10	<0.5		
		- · · · · ·		
Remarks Segment 10 Confirm	natory Tests.	<u>L</u>		

0-02-04	06:45:4	5	
*****	* 5 D I	****	****
ROTOCOL	:	PCB	
ECH ID OT # EXP DATE			
)ata Redu (formati: Read Mod Javelen9 Units	uct:Lin. on: e : th :	Regre: Ln. Absorl 4	ssion /LgtB bance 50 nm PPM
EQUATION			
Slope Intercep Corr (r)	t = =	-0.695 0.459 0.9983	L
Transfor	med Dat	a :	
Conc	F	lbs	
-0.69 0.69 2.30	0.9 -0.9 -1.1	978 194 108	
Calibra	tor Data	9:	
Conc	0hc	 2011 - 1	Predic
	Abs Diff		7Diff
	1.270 1.267		
Mean	1.268	0.2	
	-0.029		0.47 -6.0
Mean	0.921 -0.025 0.922 -0.027	0.1	0.48 -5.2 0.47 -5.6
2.00	0.596 0.296		2.30 12.9
Mean	0.612 0.136 0.604 0.215	1.9	2.14 6.4 2.21 9.7
10.00	0.315		9.54 -4.8
Mean	0.315 -0.461 0.315 -0.461	0.0	9.54 -4.8 9.54 -4.8
Contro	l Data :		
Ctrl#	Abs	Conc	
1 (3.427	5.15	
ID:		··	

SEGRAEJT (0 Samples Data :			
Spl#	Abs	Conc	
1	1,348	nd	
ID: 🗲	<u>50G10</u>	<u> </u>	
2	1.357	nd	
TD:	63	BY	
3	1.402	nd	
ID:	L [†]	<u> </u>	
đ	1.339	nd	
ID:	۰۱ 	W5	
5	1.354	nd	
ID:		<u></u>	
	1.316	nd	
ID:	<u></u>	<u>w7</u>	
7	1.400	nd	
ID:_		<u>w8</u>	

END OF RUN 10-02-04 06:48:30

PCB Field Test Data			
Project:	Richardson Hill Road		
2	Landfill		
Client:	Honeywell		
Project Location:	Sidney, NY		
Sample Matrix:	Soil		
Sample Dates	10/4/04		
-		4	
PCB Measurement	Arcolor 1254	+	
Test Level	<1ppm		
Test Date:	10/5/04		
Test Run By:	WRB		
Field 7	fest Results		
Sample ID	Location	Test Result (ppm)	
Segment 10-A5- 100404	Segment 10	<0.5	
Segment 10-B4- 100404	Segment 10	<0.5	
Segment 10-B5- 100404	Segment 10	<0.5	
Segment 10-B6- 100404	Segment 10	<0.5	
Segment 10-C4- 100404	Segment 10	<0.5	
Segment 10-C5- 100404	Segment 10	<0.5	
Segment 10-C6- 100404	Segment 10	<0.5	
Segment 10-W10- 100404	Segment 10	<0.5	
Segment 10-W12- 100404	Segment 10	<0.5	
Segment 10-W14A -100404	Segment 10	<0.5	
Segment 10-W14B -100404	Segment 10	<0.5	
Signintio - D6 10 by by	Sesmin +10	20.5	
Remarks			

******	*** S ()	· <u>I</u> ***	*****
PROTOCOL	.:	PC	:B
TECH ID Lot # EXP DAT	1		
Data Re Xformat Read Mo Wavelen Units	duct:Li ion: de : gth : ;	n.Re9r l Abso	ession n/L9tB orbance 450 nm PPM
EQUATIO			
Slope Interce Corr (r	= Ft =) =	-0.61 0.48 0.992	.9 38 20
Transfo	rmed Da	ata :	
Conc		Abs	
-0.69 0.69 2.30	0. -0. -0.	990 078 875	
Calibra	tor Dat	a:	
Conc	Abs Diff	2CV	Predic %Diff
0.00	1.050 1.034		
Mean	1.042	1.1	
	0.768 -0.083 0.752 -0.027		0.42 -19.8 0.47
Mean	0.760 0.760 -0.056	1.5	-5.8 0.44 -12.5
2.00	0.489 0.674 0.512		2.67 25.2 2.32
Mean	0.321 0.501 0.491	3.2	13.8 2.49 19.7
10.00	0.312 -1.329 0.301		8.67 -15.3 9.42
Mean	-0.583 0.307 -0.966	2.5	-6.2 9.03 -10.7
Control	Data :	····	
Ctr1#	Abs	Conc	
<u>t</u> .Й.	328	7.72	

		-	
	Splŧ	+ Abs	Conc
	1	1.085	nd
	ID:_	SEGI	3 <u>A5</u>
		1.074	
	ID:_		<u>B5</u>
	3	1.080	nd
	ID:_	((<u> </u>
	4	0.925	0.03nd
	ID:		<u> </u>
.,	5	1.052	nd
	ÌD:	t,	<u>C5</u>
		0.911	
	ID:	ii	Cle
	7	1.145	nd
	ID:	<u>[t</u>	L
	8	1.104	nd
	ID:	(WIO
	9	1.158	nd
	ID:	(+	W12
	10	1.098	nd
]	[D:	<u> </u>	<u>B4</u>
	11	1.129	nd
Ĩ	D:	t<	WIY A
	12	1.094	nd
I	D:	h	WIY B

TUN OF DUN

P

Segment 10 Confirmatory Tests.

PCB Fie Project:	eld Test Data Richardson H	Hill Road	
	Landfill		10.07-04.05+47+05
Client:	Honeywell		10-06-04 05:43:05
Project Location:	Sidney, NY		********* S D I *
Sample Matrix:	Soil		PROTOCOL :
Sample Dates	10/5/04		
PCB Measurement	Arcolor 125	4	TECH ID : LOT # :
Test Level	<1ppm		LOT # : EXP DATE:
Test Date:	10/6/04		
Test Run By:	WRB		Data Reduct:Lin.Re Xformation:
Field	Fest Results		Read Mode : Ab Wavelen9th : Units :
		Test	UNICS ,
Sample ID	Location	Result	
· · · ·		(ppm)	EQUATION OF LINE :
Segment 10-C3- 100504	Segment 10	<0.5	Slope = -0. Intercept = 0. Corr (r) = 0.9
Segment 10-D3- 100504	Segment 10	<0.5	Transformed Data :
Segment 10-D4- 100504	Segment 10	<0.5	Conc Abs
Segment 10-D5- 100504	Segment 10	<0.5	-0.69 0.722 0.69 -0.077 2.30 -0.924
Segment 10-E3- 100504	Segment 10	<0.5	Calibrator Data:
Segment 10-E2- 100504	Segment 10	<0.5	Conc Abs %CU Diff
Segment 10-F1- 100504	Segment 10	<0.5	0.00 0.983 0.982
Segment 10-W16- 100504	Segment 10	<0.5	Mean 0.983 0.0 0.50 0.662 -0.015
Segment 10-W18- 100504	Segment 10	<0.5	-9.013 8.661 -0.009 Mean 0.661 0.1 -0.012
Segment 10-W20 - 100504	Segment 10	<0.5	2.00 0.476 0.033
			0.469 0.151
<u> </u>			Mean 0.473 1.1 0.091
			10.00 0.280 -0.235
		┞───┤	0.279 ~0.174
			Mean 0.279 0.2 -0.205
Remarks Segment 10 Confirm	L	<u> </u>	Control Data :

t:Lin.Regression Ln/LgtB ÷ Absorbance 450 nm PPM ł ;)F LINE : Ξ -0.549 0.328 Ξ = 0.9997 d Data : Ĥbs 0.722 -0.077 -0.924 Data: _ -- -- --Predic %Diff Abs Diff 200 ----____ 983 982 983 0.0 662 015 0.49 -3.0 661 009 0.49 -1.8 661 012 0.49 -2.4 0.1 476 033 469 151 473 091 2.03 1.6 2.15 7.0 2.09 1.1 4.4 280 235 279 174 279 9.76 -2.4 9.83 -1.8 9.80 Ø.2 205 -2.1

S D I ******** PCB

Control Data : ______ Ctrl# Abs Conc ______ 1 0.330 6.30

	1	÷	0.330	6.30	
T	D:				

Spl# Abs Conc 1 1.047 nd <u>3</u> ID: 2 1.115 nd 3 ID:_____ 0.989 3 nd 4 ID:_____ 1.060 4 nd 5 D ID:_____ 1.049 5 nd <u>E 2</u> ID:_ 6 1.110 nd 3 ID:_ 1.051 7 nd _ 10:_ 1.013 8 nd WIL ID:____ 1.111 9 nd W18 ID:____ 10 1.053 nd W 20 1D:_

END OF RUN 10-06-04 05:46:05

Samples Data :

PCB Fie Project:	eld Test Data Richardson H	lill Road	
	Landfill		
Client:	Honeywell		- 10-08-04 08:43:16
Project Location:	Sidney, NY		10-00-04 00:43:10
Sample Matrix:	Soil		********* 5 D I ********
-		10 10 4	
Sample Dates	10/7/04 & 10		PROTOCOL : PCB
PCB Measurement	Arcolor 125	4	TECH ID :
Test Level	<1ppm		- LOT # :
Test Date:	10/8/04		EXP DATE:
Test Run By:	WRB		ם Data Reduct:Lin.Regression
Field	Fest Results		Xformation: Ln/L9tB
Sample ID	Location	Test Result (ppm)	Units : PPM
Segment 10-E4- 100704	Segment 10	<0.5	EQUATION OF LINE : Slore = -0.470 Intercept = 0.164
Segment 10-E5- 100704	Segment 10	<0.5	Intercept = 0.164 Corr (r) = 0.9989 Transformed Data :
Segment 10-E6- 100704	Segment 10	<0.5	 Conc Abs
Segment 10-F2- 100704	Segment 10	<0.5	-0.69 0.470 0.69 -0.125 2.30 -0.937
Segment 10-F4- 100804	Segment 10	<0.5	Calibrator Data:
Segment 10-F5- 100804	Segment 10	<0.5	Conc Abs %CV Predic
Segment 10-F6- 100704	Segment 10	<0.5	Diff %Diff 0.00 0.942
Segment 10-G1- 100704	Segment 10	<0.5	0.939 Mean 0.940 0.2 0.50 0.576 0.54
Segment 10-G5- 100804	Segment 10	<0.5	0.036 6.7 0.581 0.51 0.008 1.6
Segment 10-G6- 100804	Segment 10	<0.5	Mean 0.579 0.7 0.52 0.022 4.2 2.00 0.441 1.84
SVE-B3-100804	SVE Stockpile	1.78	- 2.00 0.441 1.84 -0.159 -8.6 0.440 1.85 0.147 -7.9
SVE-B4-100804	SVE Stockpile	7.95	Mean 0.441 0.1 1.85 -0.153 -8.3
SVE-B5-100804	SVE Stockpile	31.15	10.00 0.265 10.33 0.335 3.2 0.264 10.41
			0.415 4.0 Mean 0.265 0.2 10.37 0.375 3.6
Remarks			Control Data :

PROTOCO)L :	P	СВ
LOT #) 		
			ression Ln/L9tB orbance 450 nm PPM
	N OF L		
Slope Interce Corr (r	= ept = ·) =	-0.4 0.1 0.99	64
Transfo	ormed D	ata : 	
Conc	,	Abs	
-0,69 0,69 2,30) -0,) -0,) -0,	470 125 937	
Calibra	itor Dai	ta:	
Conc	Abs Diff	%CV	Predic ZDiff
0.00	0.942		
Mean	0.939 0.940	0.2	
0.50	0.576 0.036		0.54 6.7
Mean	0.581 0.008 0.579 0.022	0.7	0.51 1.6 0.52 4.2
2.00	0.441 -0.159		1.84 -8.6
Mean	0.440 -0.147 0.441 -0.153	0.1	1.85 -7.9 1.85 -8.3
10.00	0.265 0.335 0.264		10.33 3.2 10.41
Nean	0.204 0.265 0.375	0.2	4.0 10.37 3.6
Control	Data :		···
Ctrl#	Abs	Conc	
	. 294	7.55	

ID:__

Samp1	es Data	: -	
S₽1#	Abs	Conc	
	1.004	Conc nd	
ID:		<u>E4</u>	
		0.00nd	
ID:		ES	
		0.00nd	
ID:		E6	
	0.941	nd	
ID:		<u>F2</u>	
5	0.901	0.00nd	
ID:		<u> </u>	
6	0.864	0.0ind	
ID:		FS_	
		0.06nd	
ID:		F6	
		0.00nd	
ID:		GL	
- 9	0.845	0.0ind	
ID:		<u>G5</u>	
		0.24nd	
ID:		<u> </u>	
11	0.445	1.78	/
ID:	SVE	<u>B3</u>	(15)
* *			
ID:	SUE	B4	(15)
. –			
10:	SVE	31.15Hi <u>B</u> 5	(15)
	1 1 Ma		

END OF RUN 10-08-04 08:46:28

Segment 10 Confirmatory Tests. SVE Stockpile Location Confirmatory Tests

2004 Field Batch #48

PCB Fie Project:	ld Test Data Richardson H Landfill	ill Road
Client:	Honeywell	<u>-</u>
Project Location:	Sidney, NY	<u> </u>
Sample Matrix:	Soil	
Sample Dates	10/9/04 & 10	/11/04
PCB Measurement	Arcolor 1254	
Test Level	<1ppm	
Test Date:	10/11/04	
Test Run By:	WRB	
Field 7	fest Results	
		Test
Sample ID	Location	Result
		(ppm)
Segment 10-J1- 101104	Segment 10	<0.5
Segment 10-K1- 101104	Segment 10	<0.5
Segment 10-L1- 101104	Segment 10	<0.5
Segment 10-L2- 101104	Segment 10	<0.5
Segment 10-L3- 101104	Segment 10	<0.5
Segment 10-W13- 101104	Segment 10	<0.5
Segment 10-W15- 101104	Segment 10	<0.5
Segment 10-W17- 101104	Segment 10	<0.5
Segment 10-W19- 101104	Segment 10	<0.5
SVE-B3-100904	SVE Stockpile Site	1.82
SVE-B4-100904	SVE Stockpile Site	1.75
SVE-B5-100904	SVE Stockpile Site	1.23
· · · · · · · · · · · · · · · · · · ·		
Bomorka		

Remarks

Segment 10 Confirmatory Tests. SVE Stockpile Location Retest

10 11 0	10:17	.00	
******	*** S D	ì ***	*****
PROTOCOL	.:	PC	В
TECH ID Lot # EXP Dati	1		
Data Red Xformat Read Mod Wavelen Units	• •	1	ession n/L9tB rbance 450 nm PPM
EQUATION Slope Interce Corr (r		NE: -0.60 0.29 0.990	5
Transfo	rmed Da	ta : 	
Conc -0.69 0.69 2.30	 0. -0.	269	
Calibra	tor Dat	a: 	
Conc	Abs Diff	200	Predic %Diff
0.00	0.865 0.862		
Mean	0.864	0.2	
	0.594 -0.060 0.594 -0.060 8.594 -0.060	0.0	0.44 -13.6 0.44 -13.6 0.44 -13.6
2.00	0.374 0.537 0.374 0.537		2.54 21.2 2.54 21.2
Mean	0.374 0.537	0.0	$2.54 \\ 21.2$
10.00	0.227 -1.072 0.226		8.93 -12.0
Mean	-1.011 0.227 -1.042	0.2	8.99 -11.2 8.96 -11.6
Control	Data :	· · · · · · · · · · · · ·	
Ctr1#	Abs	Conc	

0.292

· 1 ID:_ 4.94

10-11-04 10:17:00

Samp]	les Data	:
Spl#	Abs	Conc
1	0.948	nd
ID:	SE6	10 JI
2	0.892	nd
ID:		<u>KI</u>
3	0.846	0.00nd
ID:		<u>L I</u>
	0.883	nd
ID:		L2
	0.873	nd
ID:		L3
6	0.853	9.00nd
1D:		<u> </u>
	0.875	nd
ID:		W15
8	0.929	nd
ID:		<u></u>
9	0.882	. nd
ID:		<u>w19</u>
		1.82
ID:	SVE	B3 10 9 04
11	0.422	1.75
ID:	SVE	B4 10/9/04
12	0.469	1.23
ID:	SVE	<u>B5 10 904</u>

END OF RUN 10-11-04 10:20:21

Kichardson J	Hill Road
Landfill	
	<u></u>
	4
	·
······	
WRB	
Test Results	
Location	Test Result (ppm)
Segment 10	<0.5
	Honeywell Sidney, NY Soil 10/11/04 & Arcolor 125 <1ppm 10/12/04 WRB Test Results Location Segment 10 Segment 10

10-12-	04 08:4	5:35	
****	**** 5	DI*	*****
PROTOC	OL :	I	PCB
TECH I Lot # Exp da	D : : TE:		
VCarrows	educt:L tion: ode : n9th : ;		Bression Ln/L9tB Sorbance 450 nm PPN
EQUATIO	DN OF LI	INE :	
Slope Interce Corr (H	= 2Pt = ~) ·=	-0.5 0.3 0.99	577 517 537
Transf	ormed Da	ata :	
Cond -0.69 0.69 2.30		Abs .777	
2.30	3 -0. 3 -0.	. 196 . 960	
Calibra	ator Dat	a:	
Conc	Abs Diff	XCV	Predic %Diff
0.00	0.924		
Mean	0.926 0.925	0.1	
0.50	0.650 -0.111		0.39 -28.5
Mean	0.617 0.019 0.634 -0.050	3.7	-28.5 0.52 3.6 0.45 -11.1
2.00	0.429 0.220 0.405		2.22 9.9 2.66
Mean	0.665 0.417 0.431	4.1	2.66 24.9 2.43 17.7
10.00	0.255 -0.805 0.257		9.19 -8.8 9.08
Mean	-0.923 0.256 -0.864	0,4	-10.2 9.14 -9.5
Control	Data :		
Ctrl#	Abs	Conc	
·i 0.	347	4.18	-

ID:_____

Samp	les Data	:
Spl#	Abs	Conc
1	0.900	0.00nd
ID:	SEG	<u>10 F3</u>
	1.181	
ID:		<u>G2</u>
	1.108	nd
ID:		<u>G3</u>
	1.018	nd ,
1D:		<u> </u>
		0.00nd
ID:		H_L
	8.987	nd
ID:		<u> </u>
	0,943	nd
ID:		<u>H 3</u>
		0.08nd
ID:		<u> </u>
		0.02nd
ID:		<u> </u>
10	0.973	nd
ID:		3
11	1.179	nd TT o
ID:		<u> </u>
	1.077	nd
ID:		<u> </u>
	1.025	nd
ID:		<u>KZ</u>
	0.958	nd
ID:		<u>K3</u>
	0.936	nd
ID:		<u>K4</u>

END OF RUN 10-12-04 08:48:30

Remarks

Segment 10 Confirmatory Tests.

2004 Field Batch #50

PCB Fig Project:	eld Test Data Richardson Hi Landfill	ll Road
Client:	Honeywell	<u> </u>
Project Location:	Sidney, NY	
Sample Matrix:	Soil	
Sample Dates	10/12/04	
PCB Measurement	Arcolor 1254	·····
Test Level	<1ppm	
Test Date:	10/13/04	
Test Run By:	WRB	
	Test Results	
Sample ID	Location	Test Result (ppm)
Segment 10-H4- 101204	Segment 10	<0.5
Segment 10-H5- 101204	Segment 10	<0.5
Segment 10-I4- 101204	Segment 10	<0.5
Segment 10-15- 101204	Segment 10	<0.5
Segment 10-J4- 101204	Segment 10	<0.5
Segment 10-W11- 101204	Segment 10	<0.5
Segment 10-W9- 101204	Segment 10	<0.5
SVE-B3-101204	SVE Stockpile Location	<0.5
SVE-B4-101204	SVE Stockpile Location	<0.5
SVE-B5-101204	SVE Stockpile Location	<0.5
Remarks		

Segment 10 Confirmatory Tests. SVE Stockpile Location Retests

	[********
PROTOCOL :	PCB
TECH ID : LOT # : EXP DATE:	
Data Reduct:Li Xformation: Read Mode : Wavelen9th : Units :	n.Regression Ln/L9tB Absorbance 450 nm PPM
EQUATION OF LI	NE :
Slope = Intercept = Corr (r) =	-0.514 0.194 0.9913
Transformed Da	ta :
	Abs
-0.69 0. 0.69 -0. 2.30 -1.	487 044 843
Calibrator Dat	a:
Conc Abs Diff	%CV Predic %Diff
0.00 0.784 0.784 Mean 0.784	
Mean 0.784 0.50 0.487	0.0 0.56
0.060 0.485 0.072 Mean 0.486	10.6 0.57 12.6 0.3 0.57
	11.6
2.00 0.380 -0.349 0.387 -0.469	1.55 -21.2 1.53 -30.7
Mean 0.383 -0.410	1.4 1.59 -25.8
10.09 0.295 1.023	11.02 9.3
0.204 1.221 Mean 0.204 1.122	11.22 10.9 0.5 11.12 10.1
Control Data :	••••••••••••••••••••••••••••••••••••••
Ctrl# Abs	Conc
1 0.235	7.58

Jummies Data : Sel# Abs Conc 0.544 0.30nd 1 SEG 10 HHID:___ 0.574 0.21nd 2 <u>H5</u> ID:_____ 0.580 0.19nd 3 4 T ID:___ 0.519 0.39nd 4 <u>I5</u> ID:_____ 0.736 5 0.01nd ID:____ 0.700 6 0.02nd W9 ID:____ 7 0.617 0.11nd WI ID:_____ 0.793 nd 8 SVE B3 ---ID:_ 0.661 0.06nd 9 B4 SVE ID:_ 0.730 10 0.01nd SVE ß 5 10: END OF RUN 10-13-04 05:14:11

2004 Field Batch #51

PCB Fid Project:	eld Test Data Richardson Hil	H Dood	10-14-04 05:42:40
riojeci.	Landfill	li Koau	*********** 5 D I *******
Client:	Honeywell		PROTOCOL : PCB
Project Location:	Sidney, NY		rKUIULUL · 768
Sample Matrix:	Soil		TECH ID :
Sample Dates	10/13/04	·····	LOT # : EXP DATE:
PCB Measurement	Arcolor 1254		EAF VHICT
Test Level	<1ppm		Data Reduct:Lin.Regression
Test Date:	10/14/04		Xformation: Ln/L9tB
Test Run By:	WRB		Kead node : Hosorbance Wavelen9th : 450 nm Units : PPM
Field	Test Results		Units : PPM
a 1 m	T .1	Test	
Sample ID	Location	Result (ppm)	EQUATION OF LINE :
		(Ppm)	Slope = -0.630
Segment 9-B1- 101304	Segment 9	<0.5	Intercept = 0.405 Corr (r) = 1.0000
101304			
Segment 9-B2- 101304	Segment 9	<0.5	Transformed Data :
			0
Segment 9-B3- 101304	Segment 9	<0.5	Conc Abs
	<u> </u>		-0.69 0.847 0.69 -0.042
Segment 9-B4-	Segment 9	<0.5	0.69 -0.042 2.30 -1.042
101304			
Segment 9-B5-	Segment 9	<0.5	Palibustan P. L.
101304	Segment 7		Calibrator Data:
Segment 9-B6-			
101304	Segment 9	<0.5	Conc Abs %CV Predic
	1		Diff %Diff
Segment 9-B7- 101304	Segment 9	<0.5	0.00 1.040
	ļ		0.966 Mean 1.003 5.2
Segment 9-W1-	Segment 9	<0.5	Nean 1.003 J.2
101304	Segment y		0.50 0.707 0.48
Segment 9-W2-	0	-0.5	-0.021 -4.3 0.698 0.51
101304	Segment 9	<0.5	0.013 2.5
AR-1-101304	Access Road	<0.5	Mean 0.702 0.9 0.50 -0.004 -0.9
AR-2-101304	Access Road	<0.5	2.00 0.498 1.95
· · · · · · · ·	A D 4	-0.5	-0.051 -2.6
AR-3-101304	Access Road	<0.5	0.485 2.12 0.118 5.6
AR-4-101304	Access Road	<0.5	Mean 0.491 1.9 2.03
AR-5-101304	Access Road	.64	0.032 1.6
	Herrick		10.00 0.259 10.16
HHC-1-101304	Hollow Creek	<0.5	0.155 1.5
	Herrick	~0.5	0.264 9.71 -0.295 -3.0
HHC-2-101304	Hollow Creek	<0.5	Mean 0.262 1.5 9.93
HHC 3 101204	Herrick	<0.5	-0.073 -0.7
HHC-3-101304	Hollow Creek	<u> </u>	
HHC-4-101304	Herrick	<0.5	Control Data :
	Hollow Creek Herrick	<u> </u>	
HHC-5-101304	Hollow Creek	<0.5	Ctrl# Abs Conc
· _ ·	Herrick		± • • •
HHC-6-101304	Hollow Creek	<0.5	1 0.335 5.69
	Herrick	-0.5	
HHC-7-101304	Hollow Creek	<0.5	Spl# Abs Conc
Confirmatory Tests Fo			1 1.073 nd
Segment 9, Constructi		nd	
Herrick Hollow Creek	۲		ID: SEG9 WI
			2 0.993 0.00nd
2004 Field Ba	tch #52		
			ID: <u>[J] 2</u>

3	1.096	nd
ID:		<u>BI</u>
	1.014	nd
ID:		<u>B2</u>
	0.973	
ID:		<u>B3</u>
6	0.935	0.03nd
ID:		<u> </u>
	1.078	nd
ID:	· 	<u>B5</u>
8	0.953	0.02nd
ID:		<u> </u>
9	1,066	nd
ID:		<u> </u>
10	0.760	0.31nd
ID:_	ACLESS	<u>RD I</u>
	0.813	
ID:_		2
12	0.979	0.0ind
ID:_	<u>/(</u> /	3
13	8.722	0.43nd
ID:_	<u>[(</u>	4
	0.668	
ID:_		<u> </u>
15	0.705	0.49nd
ID:_	<u>ННС</u>	<u> </u>
16	0.937	0.03nd
ID:_	<u></u>	2
17	0.711	0.46nd
ID:_	۱ <u>۲</u>	3
	0.984	
ID:	(i	<u> </u>
	0.994	
ID:	<i>u</i>	5
20	1.040	nd
ID:	ři	6
21	0.976	0.01nd
		7
ENC 10-) OF RUN 14-04 05:	46:35

PCB Field Test Data					
Project:	Richardson Hill Road				
2	Landfill				
Client:	Honeywell				
Project Location:	Sidney, NY				
Sample Matrix:	Soil				
Sample Dates	11/06/04				
PCB Measurement	Arcolor 1254				
Test Level	<1ppm				
Test Date:	11/06/04				
Test Run By:	WRB				
Field Test Results					

Sample ID	Location	Test Result (ppm)
SP-B1-110604	South Pond Weir	<0.5
Confirmatory Test Fo	or South Pond Weir	Location.

PROTOCOL : PCB TECH ID :_____ LOT # :_____ EXP DATE:_____ Data Reduct:Lin.Regression Xformation: _____Ln/LgtB Xformation: Read Mode : Wayelen9th : Absorbance 450 nm PPM Ünits : EQUATION OF LINE : Slope = -0.660Intercept = 0.508 Corr(r) =0.9925 Transformed Data : Conc Ĥbs ____ -0.69 1.042 0.69 2.30 -0.090 -0.947 Calibrator Data: ____ %CV Predic %Diff Abs Conc Diff -----0.00 0.852 0.887 Mean 0.869 2.9 0.50 0.646 -0.068 0.639 0.43 -15.7 0.46 -8.7 -0.040Mean 0.643 0.8 -0.054 0.45 -12.1 2.00 0.422 0.364 0.409 0.590 2.36 15.4 2.59 2.8 2.47 12.2 Mean 0.415 0.474 2.2 10.00 0.254 -1.753 0.232 -0.016 8.25 -21.3 9.98 -0.2 Mean 0.243 6.4 9.06

<u>ጥጥ</u>ጥቸቾቾ

Ctrl# Ĥbs Conc 1 0.295 5.90 ID:_____ Samples Jata : S⊵l# Abs Conc ____ i 0.813 0.04nd ID: SOUTH POND WEIR END OF RUN 11-06-04 08:29:29

F-3

CONFIRMATORY LABORATORY DATA (SAMPLES COLLECTED BY PARSONS)

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill		Certification NY No.: 10155			
Proj. Desc: Package#: 5476					
Sample: $A 6014$	Collected:	05/27/03	Matrix: Solid		
Sample Description: L-2 Excavation Area	Received:	05/29/03	QC Batch: 053003S2		
Instrument: HP5890-89	Prepared:	05/30/03	%Solids: 74.0		
Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Sample Size: 30 g Primary: Y		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 2.3	U	.31	2.3	100	06/04/03
PCB-1221	< 2.3	U	.43	2.3	100	06/04/03
PCB-1232	< 2.3	U	.56	2.3	100	06/04/03
PCB-1242	< 2.3	υ	.22	2.3	100	06/04/03
PCB-1248	14.	Р	.62	2.3	100	06/04/03 6
PCB-1254	< 2.3	U	.41	2.3	100	06/04/03
PCB-1260	< 2.3	U	.27	2.3	100	06/04/03

Surrogate	۶R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

.

- 6: Altered aroclor.
- 6: Altered aroclor.
- 38: Surrogate was diluted
- 38: Surrogate was diluted

Authorized:

Date: June 18, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

ß

mg/Kg Dry weight

Project:

Proj. Desc:

Instrument:

Number of analytes: 7

Units:

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill Package#: 5476 05/27/03 Sample: A 6014 Collected: Matrix: Solid Sample Description: L-2 Excavation Area Received: 05/29/03 QC Batch: 053003S2 HP5890-89 Prepared: 05/30/03 %Solids: 74.0

Column Name: RTXCLP, 30m x .53mmID

Job No.: 6750.004.62306 Certification NY No.: 10155

Sample Size: 30 g

Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 2.3	U	.31	2.3	100	06/04/03
PCB-1221	< 2.3	U	.43	2.3	100	06/04/03
PCB-1232	< 2.3	U	.56	2.3	100	06/04/03
PCB-1242	< 2.3	U	.22	2.3	100	06/04/03
PCB-1248	9.7	Р	. 62	2.3	100	06/04/03 6
PCB-1254	< 2.3	U	.41	2.3	100	06/04/03
PCB-1260	< 2.3	U	.27	2.3	100	06/04/03

			*R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

- 6: Altered aroclor.
- 6: Altered aroclor.
- 38: Surrogate was diluted
- 38: Surrogate was diluted

Authorized:

Date: June 18, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 5644 Sample: A 7058 Sample Description: L1-001 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID	Collected: Received: Prepared:	06/17/03 06/18/03 06/18/03	Matrix: Solid QC Batch: 061803S1 %Solids: 71.0 Sample Size: 30 g Primary: Y
Number of analytes: / Column Name: RTXCLP2, 30m x .53mmID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .024	υ	.0032	.024	1	06/19/03
PCB-1221	< .024	υ	.0044	.024	1	06/19/03
PCB-1232	< .024	U	.0057	.024	1	06/19/03
PCB-1242	< .024	U	.0022	.024	1	06/19/03
PCB-1248	.19		.0064	.024	1	06/19/03 6
PCB-1254	< .024	U	.0042	.024	1	06/19/03
PCB-1260	< .024	U	.0027	.024	1	06/19/03

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	85.		30-150	
Decachlorobiphenyl (surrogate)	91.		30-150	

Notes:

Project:

6: Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level. J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

NOM Authorized:

Date: June 20, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 5644 Sample: A 7058 Sample Description: L1-001 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID	Received: 06 Prepared: 06	5/17/03 5/18/03 5/18/03	Matrix: Solid QC Batch: 061803S1 %Solids: 71.0 Sample Size: 30 g Primary: N
Number of analytes: 7 Column Name: RIXCLP, 30m X.53mmID			Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .024	U	.0032	.024	1	06/19/03
PCB-1221	< .024	U	.0044	.024	1	06/19/03
PCB-1232	< .024	υ	.0057	.024	1	06/19/03
PCB-1242	< .024	U	.0022	.024	1	06/19/03
PCB-1248	.13		P .0064	.024	1	06/19/03 6
PCB-1254	< .024	U	.0042	.024	1	06/19/03
PCB~1260	< .024	U	.0027	.024	1	06/19/03

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	80.		30-150	
Decachlorobiphenyl (surrogate)	81.		30-150	

Notes:

Project:

- 6: Altered aroclor.
- 6: Altered aroclor.

Authorized:

Date: July 9, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc:				
Package#: 5769				
Sample: A 7697	Collected:	06/26/03	Matrix: Solid	
Sample Description: L2-001	Received:	06/27/03	QC Batch: 070103S2	
Instrument: HP5890-89	Prepared:	07/01/03	%Solids: 88.0	
Units: mg/Kg Dry weight			Sample Size: 30 g	
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .19	U	.026	.19	10	07/01/03
PCB-1221	< .19	U	.036	.19	10	07/01/03
PCB-1232	< .19	σ	.047	.19	10	07/01/03
PCB-1242	< .19	U	.018	.19	10	07/01/03
PCB-1248	.49		.052	.19	10	07/01/03
PCB-1254	< .19	U	.034	.19	10	07/01/03
PCB-1260	< .19	υ	.022	.19	10	07/01/03

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	98.		30-150	38
Decachlorobiphenyl (surrogate)	90.		30-150	38

Notes:

38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: July 1, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 5769 Sample: A 7697 Sample Description: L2-001 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID

Collected: 06/26/03 Matrix:

Received:

Prepared:

 06/26/03
 Matrix: Solid

 06/27/03
 QC Batch: 070103S2

 07/01/03
 %Solids: 88.0

 Sample Size: 30 g
 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .19	U	.026	.19	10	07/02/03
PCB-1221	< .19	U	.036	.19	10	07/02/03
PCB-1232	< .19	υ	.047	.19	10	07/02/03
PCB-1242	< .19	U	.018	.19	10	07/02/03
PCB-1248	.55		.052	.19	10	07/02/03
PCB-1254	< .19	σ	.034	.19	10	07/02/03
PCB-1260	< .19	υ	.022	.19	10	07/02/03

			%R	
Surrogate	१R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	96.		30-150	38
Decachlorobiphenyl (surrogate)	90.		30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

۰.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: July 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proi. Desc: Package#: 5918 07/16/03 Collected: Matrix: Solid Sample: A 8534 Received: 07/18/03 Sample Description: QC Batch: 072203S3 TP-1 Prepared: Instrument: HP5890-90 07/22/03 %Solids: 93.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 37.	Ŭ	3.2	37	2000	07/24/03
PCB-1221	< 37.	U	11.	37	2000	07/24/03
PCB-1232	< 37.	U	7.5	37	2000	07/24/03
PCB-1242	< 37.	U	4.6	37	2000	07/24/03
PCB-1248	64.		1.8	37	2000	07/24/03
PCB-1254	< 37.	U	3.7	37	2000	07/24/03
PCB-1260	< 37.	U	4.5	37	2000	07/24/03

Commence and the	<u> </u>		%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	0	#	30-150	38
Decachlorobiphenyl (surrogate)	0	#	30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

Authorized: Thomas Allerand

Date: August 11, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill		Certification NY No.: 10155			
Proj. Desc:					
Package#: 5918					
Sample: A 8534	Collected:	07/16/03	Matrix: Solid		
Sample Description: TP-1	Received:	07/18/03	QC Batch: 072203S3		
Instrument: HP5890-90	Prepared:	07/22/03	%Solids: 93.0		
Units: mg/Kg Dry weight			Sample Size: 30 g		
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 37.	U	3.2	37	2000	07/24/03
PCB-1221	< 37.	U	11.	37	2000	07/24/03
PCB-1232	< 37.	U	7.5	37	2000	07/24/03
PCB-1242	< 37.	U	4.6	37	2000	07/24/03
PCB-1248	64.		1.8	37	2000	07/24/03
PCB-1254	< 37.	U	3.7	37	2000	07/24/03
PCB-1260	< 37.	U	4.5	37	2000	07/24/03

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	0	#	30-150	38
Decachlorobiphenyl (surrogate)	0	#	30-150	38

Notes:

38: Surrogate was diluted

38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: August 11, 2003

Thomas Alexander

7

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc:				
Package#: 5918				
Sample: A 8535	Collected:	07/16/03	Matrix: Solid	
Sample Description: TP-4	Received:	07/18/03	QC Batch: 072203S3	
Instrument: HP5890-90	Prepared:	07/22/03	%Solids: 94.0	
Units: mg/Kg Dry weight			Sample Size: 30 g	
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .036	U	.0032	.036	2	07/24/03
PCB-1221	< .036	U	.011	.036	2	07/24/03
PCB-1232	< .036	U	.0074	.036	2	07/24/03
PCB-1242	< .036	U	.0045	.036	2	07/24/03
PCB-1248	.14		.0018	.036	2	07/24/03
PCB-1254	< .036	Ŭ	.0037	.036	2	07/24/03
PCB-1260	< .036	U	.0044	.036	2	07/24/03

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	102.		30-150	38
Decachlorobiphenyl (surrogate)	134.		30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

Authorized: Thema Chlerap

Date: July 25, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

rdson Hill Road Landfill Certification NY No.: 1015		
C-11-+++-4-	07/16/03	Matrix: Solid
	07/18/03	QC Batch: 072203S3
Prepared:	07/22/03	%Solids: 94.0
		Sample Size: 30 g
		Primary: N
	Collected: Received: Prepared:	Collected: 07/16/03 Received: 07/18/03 Prepared: 07/22/03

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .036	U	.0032	.036	2	07/24/03
PCB-1221	< .036	U	.011	.036	2	07/24/03
PCB-1232	< .036	U	.0074	.036	2	07/24/03
PCB-1242	< .036	U	.0045	.036	2	07/24/03
PCB-1248	.13		.0018	.036	2	07/24/03
PCB-1254	< .036	U	.0037	.036	2	07/24/03
PCB-1260	< .036	U	.0044	.036	2	07/24/03

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	115.		30-150	38
Decachlorobiphenyl (surrogate)	101.		30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank. Authorized:

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Homeballum

Date: July 25, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 . 62306 n NY No.: 10155
Package#: 6651 Sample: B2500	Collected:	10/28/03	Matrix: Solid
Sample Description: WOP B-1 Instrument: HP5890-90	Received: Prepared:	10/28/03 10/29/03	QC Batch: 102903S2 %Solids: 95.0
Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 36.	U	3.2	36	2000	10/30/03
PCB-1221	< 36.	U	11.	36	2000	10/30/03
PCB-1232	< 36.	U	7.3	36	2000	10/30/03
PCB-1242	< 36.	U	4.5	36	2000	10/30/03
PCB-1248	230.	•	1.8	36	2000	10/30/03 6
PCB-1254	< 36.	U	3.6	36	2000	10/30/03
PCB-1260	< 36.	Ū	4.4	36	2000	10/30/03

			१R	
Surrogate	8R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

- 6: Altered aroclor.
- 6: Altered aroclor.
- 38: Surrogate was diluted
- 38: Surrogate was diluted

homas a lefande Authorized

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

stimated.

Date: November 3, 2003

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc:				
Package#: 6651				
Sample: B 2500	Collected:	10/28/03	Matrix: Solid	
Sample Description: WOP B-1	Received:	10/28/03	QC Batch: 102903S2	
Instrument: HP5890-90	Prepared:	10/29/03	%Solids: 95.0	
Units: mg/Kg Dry weight			Sample Size: 30 g	
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 36.	U	3.2	36	2000	10/30/03
PCB-1221	< 36.	U	11.	36	2000	10/30/03
PCB-1232	< 36.	U	7.3	36	2000	10/30/03
PCB-1242	< 36.	U	4.5	36	2000	10/30/03
PCB-1248	230.		1.8	36	2000	10/30/03 6
PCB-1254	< 36.	U	3.6	36	2000	10/30/03
PCB-1260	< 36.	U	4.4	36	2000	10/30/03

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

- 6: Altered aroclor.
- 6: Altered aroclor.
- 38: Surrogate was diluted
- 38: Surrogate was diluted

Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level. J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 5, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 6651 10/28/03 Sample: B2501 Collected: Matrix: Solid Received: 10/28/03 Sample Description: WOP B-2 QC Batch: 102903S2 Instrument: HP5890-90 Prepared: 10/29/03 %Solids: 95.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 18.	U	1.6	18	1000	10/31/03
PCB-1221	< 18.	U	5.5	18	1000	10/31/03
PCB-1232	< 18.	U	3.7	18	1000	10/31/03
PCB-1242	< 18.	U	2.2	18	1000	10/31/03
PCB-1248	86.		.89	18	1000	10/31/03
PCB-1254	< 18.	U	1.8	18	1000	10/31/03
PCB-1260	< 18.	U	2.2	18	1000	10/31/03

_			÷R.		
Surrogate	*R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38	
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38	

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Thomas a alefande

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No · 6750 004 62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Certification NY No.: 10155			
Package#: 6651 Sample: B 2501 Sample Description: WOP B-2 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	10/28/03 10/28/03 10/29/03	Matrix: Solid QC Batch: 102903S2 %Solids: 95.0 Sample Size: 30 g Primary: N	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes	
PCB-1016	< 18.	Ω.	1.6	18	1000	10/31/03	
PCB-1221	< 18.	υ	5.5	18	1000	10/31/03	
PCB-1232	< 18.	U	3.7	18	1000	10/31/03	
PCB-1242	< 18.	U	2.2	18	1000	10/31/03	
PCB-1248	90.		.89	18	1000	10/31/03	
PCB-1254	< 18.	U	1.8	18	1000	10/31/03	
PCB-1260	< 18.	U	2.2	18	1000	10/31/03	

Surrogate	&R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

thomas U lefande Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 6651			
Sample: B 2502	Collected:	10/28/03	Matrix: Solid
Sample Description: WOP B-3	Received:	10/28/03	QC Batch: 102903S2
Instrument: HP5890-90	Prepared:	10/29/03	%Solids: 91.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y
-			, -

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 19.	U	1.6	19	1000	10/31/03
PCB-1221	< 19.	υ	5.8	19	1000	10/31/03
PCB-1232	< 19.	U	3.8	19	1000	10/31/03
PCB-1242	< 19.	U	2.3	19	1000	10/31/03
PCB-1248	120.		.93	19	1000	10/31/03
PCB-1254	< 19.	U	1.9	19	1000	10/31/03
PCB-1260	< 19.	U	2.3	19	1000	10/31/03

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

Project:

38: Surrogate was diluted 38: Surrogate was diluted

> fand homas Authorized:

Date: November 3, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 6651 10/28/03 Collected: B 2502 Sample: Received: 10/28/03 Sample Description: WOP B-3 Prepared: 10/29/03 Instrument: HP5890-90 Units: mg/Kg Dry weight Column Name: DB-1701, 30m x .53mm ID Number of analytes: 7

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 19.	υ	1.6	19	1000	10/31/03
PCB-1221	< 19.	U	5.8	19	1000	10/31/03
PCB-1232	< 19.	U	3.8	19	1000	10/31/03
PCB-1242	< 19.	U.	2.3	19	1000	10/31/03
PCB-1248	120.		. 93	19	1000	10/31/03
PCB-1254	< 19.	U	1.9	19	1000	10/31/03
PCB-1260	< 19.	U	2.3	19	1000	10/31/03

Surrogate	₽R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

11

Matrix: Solid QC Batch: 102903S2 %Solids: 91.0 Sample Size: 30 g

Primary: N

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc:				
Package#: 6651	Collected:	10/28/03	Matrix: Solid	
Sample: B2503				
Sample Description: WOP B-4	Received:	10/28/03	QC Batch: 102903S2	
Instrument: HP5890-90	Prepared:	10/29/03	%Solids: 90.0	
Units: mg/Kg Dry weight			Sample Size: 30 g	
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 38.	U	3.3	38	2000	10/31/03
PCB-1221	< 38.	U	12.	38	2000	10/31/03
PCB-1232	< 38.	U	7.7	38	2000	10/31/03
PCB-1242	< 38.	U	4.7	38 .	2000	10/31/03
PCB-1248	140.		1.9	38	2000	10/31/03
PCB-1254	< 38.	U	3.8	38	2000	10/31/03
PCB-1260	< 38.	U	4.6	38	2000	10/31/03

-			%R	
Surrogate	۶R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

5%

38: Surrogate was diluted 38: Surrogate was diluted

ande Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:		Certificatio	
Package#: 6651			
Sample: B2503	Collected:	10/28/03	Matrix: Solid
Sample Description: WOP B-4	Received:	10/28/03	QC Batch: 102903S2
Instrument: HP5890-90	Prepared:	10/29/03	%Solids: 90.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 38.	υ	3.3	38	2000	10/31/03
PCB-1221	< 38,	υ	12.	38	2000	10/31/03
PCB-1232	< 38.	U	7.7	38	2000	10/31/03
PCB-1242	< 38.	U	4.7	38	2000	10/31/03
PCB-1248	140.		1.9	38	2000	10/31/03
PCB-1254	< 38.	U	3.8	38	2000	10/31/03
PCB-1260	< 38.	U	4.6	38	2000	10/31/03

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

n...: n....

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 6651 Sample: B 2504 Sample Description: WOP B-5 Instrument: HP5890-90 Units: mg/Kg Dry weight Number 2 Column Marter DB (08, 20m m 62mm ID)	Collected: Received: Prepared:	10/28/03 10/28/03 10/29/03	Matrix: Solid QC Batch: 102903S2 %Solids: 95.0 Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 3.6	U	.32	3.6	200	10/31/03
PCB-1221	< 3.6	U	1.1	3.6	200	10/31/03
PCB-1232	< 3.6	υ	.73	3.6	200	10/31/03
PCB-1242	< 3.6	U	.45	3.6	200	10/31/03
PCB-1248	14.		.18	3.6	200	10/31/03
PCB-1254	< 3.6	U	.36	3.6	200	10/31/03
PCB-1260	< 3.6	U	.44	3.6	200	10/31/03

		*R			
Surrogate	%R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38	
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38	

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

thomas U alefande Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certificatio	n NY No.: 10155
Package#: 6651 Sample: B2504 Sample Description: WOP B-5 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	10/28/03 10/28/03 10/29/03	Matrix: Solid QC Batch: 102903S2 %Solids: 95.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 3.6	U	.32	3.6	200	10/31/03
PCB-1221	< 3.6	U	1.1	3.6	200	10/31/03
PCB-1232	< 3.6	υ	.73	3.6	200	10/31/03
PCB-1242	< 3.6	U	.45	3.6	200	10/31/03
PCB-1248	14.		.18	3.6	200	10/31/03
PCB-1254	< 3.6	U	.36	3.6	200	10/31/03
PCB-1260	< 3.6	U	.44	3.6	200	10/31/03

Common and the			%R		
Surrogate	%R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38	
Decachlorobiphenyl (surrogate)	<0.0	ŧ	30-150	38	

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

ande Authorized: Date: November 3, 2003

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750, 004, 62306

Project: Amphenol Richardson Hill Road Landfill		Certification NY No.: 10155			
Proj. Desc:					
Package#: 6651	A N A A	10/28/02			
Sample: B2505	Collected:	10/28/03	Matrix: Solid		
Sample Description: WOP B-6	Received:	10/28/03	QC Batch: 102903S2		
Instrument: HP5890-90	Prepared:	10/29/03	%Solids: 94.0		
Units: mg/Kg Dry weight			Sample Size: 30 g		
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 36.	U	3.2	36	2000	10/31/03
PCB-1221	< 36.	U	11.	36	2000	10/31/03
PCB-1232	< 36.	U	7.4	36	2000	10/31/03
PCB-1242	< 36.	U	4.5	36	2000	10/31/03
PCB-1248	110.		1.8	36	2000	10/31/03
PCB-1254	< 36.	U	3.7	36	2000	10/31/03
PCB-1260	< 36.	U	4.4	36	2000	10/31/03

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

thomas le elande Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.	Job No.: 6750.004.62306				
Project: Amphenol Richardson Hill Road Landfill		Certification NY No.: 10155			
Proj. Desc:					
Package#: 6651					
Sample: B2505	Collected:	10/28/03	Matrix: Solid		
Sample Description: WOP B-6	Received:	10/28/03	QC Batch: 102903S2		
Instrument: HP5890-90	Prepared:	10/29/03	%Solids: 94.0		
Units: mg/Kg Dry weight			Sample Size: 30 g		
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 36.	υ	3.2	36	2000	10/31/03
PCB-1221	< 36.	U.	11.	36	2000	10/31/03
PCB-1232	< 36.	υ	7.4	36	2000	10/31/03
PCB-1242	< 36.	U	4.5	36	2000	10/31/03
PCB-1248	110.		1.8	36	2000	10/31/03
PCB-1254	< 36.	υ	3.7	36	2000	10/31/03
PCB-1260	< 36.	U	4.4	36	2000	10/31/03

			8R	-	
Surrogate	₽R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38	
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38	

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

efande Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:		
Package#: 6651	10/28/03	
Sample: B 2506 Collected:		Matrix: Solid
Sample Description: WOP E-1 Received:		QC Batch: 102903S2
Instrument: HP5890-90 Prepared:	10/29/03	%Solids: 84.0
Units: mg/Kg Dry weight		Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID		Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 20.	U	1.8	20	1000	10/31/03
PCB-1221	< 20.	U	6.3	20	1000	10/31/03
PCB-1232	< 20.	υ	4.1	20	1000	10/31/03
PCB-1242	< 20.	U	2.5	20	1000	10/31/03
PCB-1248	100.		1.0	20	1000	10/31/03
PCB-1254	< 20.	U	2.1	20	1000	10/31/03
PCB-1260	< 20.	U	2.5	20	1000	10/31/03

Surrogate	8R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

Alefande thomasle Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 6651 10/28/03 Collected: Matrix: Solid B2506 Sample: Received: 10/28/03 QC Batch: 102903S2 Sample Description: WOP E-1 Prepared: 10/29/03 Instrument: HP5890-90 %Solids: 84.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: DB-1701, 30m x .53mm ID Number of analytes: 7 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 20.	U	1.8	20	1000	10/31/03
PCB-1221	< 20.	U	6.3	20	1000	10/31/03
PCB-1232	< 20.	U	4.1	20	1000	10/31/03
PCB-1242	< 20.	U	2.5	20	1000	10/31/03
PCB-1248	100.		1.0	20	1000	10/31/03
PCB-1254	< 20.	U	2.1	20	1000	10/31/03
PCB-1260	< 20.	U	2.5	20	1000	10/31/03

			*R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

۰.

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

thomas a lefande Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 6651 Sample: B2507 Sample Description: WOP E-2 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	10/28/03 10/28/03 10/29/03	Matrix: Solid QC Batch: 102903S2 %Solids: 93.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 3.7	U	.32	3.7	200	10/31/03
PCB-1221	< 3.7	U	1.1	3.7	200	10/31/03
PCB-1232	< 3.7	U	.75	3.7	200	10/31/03
PCB-1242	< 3.7	U	.46	3.7	200	10/31/03
PCB-1248	15.		.18	3.7	200	10/31/03
PCB-1254	< 3.7	U	.37	3.7	200	10/31/03
PCB-1260	< 3.7	U	.45	3.7	200	10/31/03

			8R.		
Surrogate	%R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38	
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38	

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

elande Authorized:

Date: November 3, 2003

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 6651 Collected: 10/28/03 Matrix: Solid Sample: B2507 Received: 10/28/03 QC Batch: 102903S2 Sample Description: WOP E-2 Prepared: Instrument: HP5890-90 10/29/03 %Solids: 93.0 Units: mg/Kg Dry weight Column Name: DB-1701, 30m x .53mm ID Number of analytes: 7

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 3.7	U	.32	3.7	200	10/31/03
PCB-1221	< 3.7	U	1.1	3.7	200	10/31/03
PCB-1232	< 3.7	υ	.75	3.7	200	10/31/03
PCB-1242	< 3.7	υ	.46	3.7	200	10/31/03
PCB-1248	15.		.18	3.7	200	10/31/03
PCB-1254	< 3.7	U	.37	3.7	200	10/31/03
PCB-1260	< 3.7	U	.45	3.7	200	10/31/03

Surrogate	۶R	Oual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	ŧ	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: November 3, 2003

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Sample Size: 30 g Primary: N

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:		Centification	NT 110 10155
Package#: 6651 Sample: B 2508 Sample Description: WOP E-3	Collected: Received: Prepared:	10/28/03 10/28/03	Matrix: Solid QC Batch: 102903S2
Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name	: DB-608, 30m x .53mm ID	10/29/03	%Solids: 86.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 9.9	U	.87	9.9	500	10/31/03
PCB-1221	< 9.9	U	3.1	9.9	500	10/31/03
PCB-1232	< 9.9	U	2.0	9.9	500	10/31/03
PCB-1242	< 9.9	U	1.2	9.9	500	10/31/03
PCB-1248	55.		.49	9.9	500	10/31/03
PCB-1254	< 9.9	U	1.0	9.9	500	10/31/03
PCB-1260	< 9.9	U	1.2	9.9	500	10/31/03

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

Authorized: Thomas a Alefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 0155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		
Proj. Desc:			
Package#: 6651		10,000,000	
Sample: B 2508	Collected:	10/28/03	Matrix: Solid
Sample Description: WOP E-3	Received:	10/28/03	QC Batch: 102903S2
Instrument: HP5890-90	Prepared:	10/29/03	%Solids: 86.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 9.9	υ	.87	9.9	500	10/31/03
PCB-1221	< 9.9	υ	3.1	9.9	500	10/31/03
PCB-1232	< 9.9	U	2.0	9.9	500	10/31/03
PCB-1242	< 9.9	U	1.2	9.9	500	10/31/03
PCB-1248	56.		.49	9.9	500	10/31/03
PCB-1254	< 9.9	U	1.0	9.9	500	10/31/03
PCB-1260	< 9.9	U	1.2	9.9	500	10/31/03

			% R	
Surrogate	8 R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

> honds Authorized:

Date: November 3, 2003

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 6651 10/28/03 Collected: Matrix: Solid B 2509 Sample: Received: 10/28/03 Sample Description: WOP W-1 QC Batch: 102903S2 Prepared: Instrument: HP5890-89 10/29/03 %Solids: 87.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: RTXCLP2, 30m x .53mmID Number of analytes: 7 Primary: Y

Parameter	Result	Qual	MDL.	PQL	Dil	Analyzed Notes
PCB-1016	< 39.	U	3.4	39	2000	10/31/03
PCB-1221	< 39.	U	12.	39	2000	10/31/03
PCB-1232	< 39.	U	8.0	39	2000	10/31/03
PCB-1242	< 39.	U	4.9	39	2000	10/31/03
PCB-1248	290.		2.0	39	2000	10/31/03
PCB-1254	< 39.	U	4.0	39	2000	10/31/03
PCB-1260	< 39.	U	4.8	39	2000	10/31/03

		%R		
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

Thomas a Clefande

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: _____ Date: November 3, 2003

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 6651 10/28/03 B 2509 Collected: Sample: Matrix: Solid Received: Sample Description: WOP W-1 10/28/03 QC Batch: 102903S2 Instrument: Prepared: HP5890-89 10/29/03 %Solids: 87.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: RTXCLP, 30m x .53mmID Number of analytes: 7 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 39.	U	3.4	39	2000	10/31/03
PCB-1221	< 39.	U	12.	39	2000	10/31/03
PCB-1232	< 39.	U	8.0	39	2000	10/31/03
PCB-1242	< 39.	U	4.9	39	2000	10/31/03
PCB-1248	290.		2.0	39	2000	10/31/03
PCB-1254	< 39.	U	4.0	39	2000	10/31/03
PCB-1260	< 39.	U	4.8	39	2000	10/31/03

			₽R	
Surrogate	۶R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

homasla Authorized:

Date: November 3, 2003

Thomas Alexander

Proj. Desc:

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Package#: 6651 Sample: B2510 Sample Description: WOP W-2 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	10/28/03 10/28/03 10/29/03	Matrix: Solid QC Batch: 102903S2 %Solids: 86.0 Sample Size: 30 g Primary: Y
---	--------------------------------------	----------------------------------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 20.	U	1.7	20	1000	10/31/03
PCB-1221	< 20.	U	6.1	20	1000	10/31/03
PCB-1232	< 20.	U	4.0	20	1000	10/31/03
PCB-1242	< 20.	U	2.5	20	1000	i0/31/03
PCB-1248	71.		.99	20	1000	10/31/03
PCB-1254	< 20.	U	2.0	20	1000	10/31/03
PCB-1260	< 20.	U	2.4	20	1000	10/31/03

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	ŧ	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

۰.

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 20.	U	1.7	20	1000	10/31/03
PCB-1221	< 20.	U	6.1	20	1000	10/31/03
PCB-1232	< 20.	U	4.0	20	1000	10/31/03
PCB-1242	< 20.	U	2.5	20	1000	10/31/03
PCB-1248	73.		.99	20	1000	10/31/03
PCB-1254	< 20.	U	2.0	20	1000	10/31/03
PCB-1260	< 20.	υ	2.4	20	1000	10/31/03

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

homas a lefande Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 3, 2003

۰.

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

		Certificatio	IIINI 100., 10133
Proj. Desc:			
Package#: 6651			
Sample: B2511	Collected:	10/28/03	Matrix: Solid
Sample Description: WOP W-3	Received:	10/28/03	QC Batch: 102903S2
Instrument: HP5890-89	Prepared:	10/29/03	%Solids: 84.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 20.	U	1.8	20	1000	10/31/03
PCB-1221	< 20.	U	6.3	20	1000	10/31/03
PCB-1232	< 20.	U	4.1	20	1000	10/31/03
PCB-1242	< 20.	U	2.5	20	1000	10/31/03
PCB-1248	77.		1.0	20	1000	10/31/03
PCB-1254	< 20.	U	2.1	20	1000	10/31/03
PCB-1260	< 20.	U	2.5	20	1000	10/31/03

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted
38: Surrogate was diluted

Authorized:

Date: November 3, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:		oundand	
Package#: 6651 Sample: B2511 Sample Description: WOP W-3 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID	Collected: Received: Prepared:	10/28/03 10/28/03 10/29/03	Matrix: Solid QC Batch: 102903S2 %Solids: 84.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 20.	U	1.8	20	1000	10/31/03
PCB-1221	< 20.	U	6.3	20	1000	10/31/03
PCB-1232	< 20.	U	4.1	20	1000	10/31/03
PCB-1242	< 20.	U	2.5	20	1000	10/31/03
PCB-1248	75.		1.0	20	1000	10/31/03
PCB-1254	< 20.	υ	2.1	20	1000	10/31/03
PCB-1260	< 20.	υ	2.5	20	1000	10/31/03

			8R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38: Surrogate was diluted 38: Surrogate was diluted

Authorized: Momas a Defand

Date: November 3, 2003

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill		Job No.: 6750.004.62306 Certification NY No.: 10155			
Proj. Desc:					
Package#: 8153					
Sample: E 1480	Collected:	06/12/04	Matrix: Solid		
Sample Description: SP-G6-061204	Received:	06/15/04	QC Batch: 061504S3		
Instrument: HP5890-89	Prepared:	06/15/04	%Solids: 70.0		
Units: mg/Kg Dry weight			Sample Size: 30 g		
Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmlD			Primary: Y		

Parameter	Result	Qual MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.049 U	.0043	.049	2	06/16/04
PCB-1221	< .049 U	.015	.049	2	06/16/04
PCB-1232	< .049 U	.0099	.049	2	06/16/04
PCB-1242	< .049 U	.0061	.049	2	06/16/04
PCB-1248	.33	.0024	.049	2	06/16/04 6
PCB-1254	.14	P .0049	.049	2	06/16/04 6
PCB-1260	<.049 U	.0059	.049	2	06/16/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	68.		30-150	. 38
Decachlorobiphenyl (surrogate)	72.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: July 6, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Job No.: 6750.004.62306 Certification NY No.: 10155			
Package#: 8153				
0	Collected:	06/12/04		
Sample: E1480			Matrix: Solid	
Sample Description: SP-G6-061204	Received:	06/15/04	QC Batch: 061504S3	
Instrument: HP5890-89	Prepared:	06/15/04	%Solids: 70.0	
Units: mg/Kg Dry weight			Sample Size: 30 g	

Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID

Primary: N

Parameter	Result Qu	al MDL :	PQL Dil	Analyzed Notes
PCB-1016	<.049 U	.0043 .049	2	06/16/04
PCB-1221	< .049 U	.015 .049	. 2	06/16/04
PCB-1232	<.049 U	.0099 .049	2	06/16/04
PCB-1242	< .049 U	.0061 .049	2	06/16/04
PCB-1248	.37	.0024 .049	2	06/16/04 6
PCB-1254	.11 P	.0049 .049	2	06/16/04 6
PCB-1260	< .049 U	.0059 .049	2	06/16/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	81.		30-150	38
Decachlorobiphenyl (surrogate)	71.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 Surrogate was diluted
- 38 Surrogate was diluted :

B - Analyte detected above the PQL in the associated Prep Blank.

#- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

nel. Authorized: Date: July 6, 2004

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill	andfill Certification NY No.: 10155		n NY No.: 10155
Proj. Desc:			
Package#: 8153			
Sample: E1481	Collected:	06/12/04	Matrix: Solid
Sample Description: SP-H8-061204	Received:	06/15/04	QC Batch: 061504S3
Instrument: HP5890-89	Prepared:	06/15/04	%Solids: 77.0
Units: mg/Kg Dry weight	· .		Sample Size: 30 g
Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes	
PCB1016	< .11	U	.0097	.11	5	06/17/04	
PCB-1221	< .11	U	.034	.11	5	06/17/04	
PCB-1232	< .11	U	.023	.11	5	06/17/04	
PCB-1242	< .11	U	.014	.11	5	06/17/04	
PCB-1248	.57		.0055	.11	5	06/17/04 6	
PCB-1254	.17		.011	.11	5	06/17/04 6	
PCB-1260	< .11	U	.014	.11	5	06/17/04	

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	89.		30-150	38
Decachlorobiphenyl (surrogate)	85.		30-150	38

Notes:

- 6 : Altered aroclor.
- : Altered aroclor. 6
- Surrogate was diluted 38 :
- 38 : Surrogate was diluted

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: July 6, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8153 06/12/04 Sample: E1481 Collected: Matrix: Solid Received: 06/15/04 Sample Description: SP-H8-061204 QC Batch: 061504S3 Prepared: Instrument: HP5890-89 06/15/04 %Solids: 77.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: RTXCLP2, 30m x .53mmID Number of analytes: 7 Primary: N

Parameter	Result Qu	al MDL	PQL Dil	Analyzed Notes
PCB-1016	< .11 U	.0097 .1	1 5	06/17/04
PCB-1221	< .11 U	.034 .1	1 5	06/17/04
PCB-1232	< .11 U	.023 .1	1 5	06/17/04
PCB-1242	< .11 U	.014 .1	1 5	06/17/04
PCB-1248	- 63	.0055 .13	1 5	06/17/04 6
PCB-1254	.18	.011 .11	1 5	06/17/04 6
PCB-1260	< .11 U	.014 .13	1 5	06/17/04

Surrogate	ŧR	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	117.	-	30-150	38
Decachlorobiphenyl (surrogate)	93.		30-150	38

Notes:

- 6 : Altered aroclor.
- : Altered aroclor. 6
- 38 Surrogate was diluted : 38
- Surrogate was diluted :

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized:

Date: July 6, 2004

Thomas Afexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#:8213Sample:E 1964Sample Description:SP-22-E15-061504Instrument:HP5890-90Units:mg/Kg Dry weightNumber of analytes:7Column Name:DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/15/04 06/18/04 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 83.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .41	U	.036	.41	20	06/22/04
PCB-1221	< .41	U	.13	.41	20	06/22/04
PCB-1232	< .41	U	.084	.41	20	06/22/04
PCB-1242	< .41	υ	.051	.41	20	06/22/04
PCB-1248	2.6	P	.020	.41	20	06/22/04 6
PCB-1254	< .41	U	.042	.41	20	06/22/04
PCB-1260	< .41	U	.050	.41	. 20	06/22/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.		30-150	38
Decachlorobiphenyl (surrogate)	76.		30-150	38

Notes:

6 : Altered aroclor.

- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Thomas Alekander Date: July 3, 2004

43

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Project: Proj. Desc: Package#: 8213 Collected: 06/15/04 Matrix: Solid Sample: E1964 Received: 06/18/04 QC Batch: 062104S1 Sample Description: SP-22-E15-061504 Prepared: 06/21/04 Instrument: HP5890-90 %Solids: 83.0 Units: mg/Kg Dry weight Sample Size: 30 g

Column Name: DB-608, 30m x .53mm ID Number of analytes: 7

Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .41	U	.036	.41	20	06/22/04
PCB-1221	< .41	υ	.13	.41	20	06/22/04
PCB-1232	< .41	U	.084	.41	20	06/22/04
PCB-1242	< .41	υ	.051	.41	20	06/22/04
PCB-1248	2.1	Р	.020	.41	20	06/22/04 6
PCB-1254	< .41	υ	.042	.41	20	06/22/04
PCB-1260	< .41	U.	.050	.41	20	06/22/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38
Decachlorobiphenyl (surrogate)	73.		30-150	38

Notes:

- : Altered aroclor. 6
- : Altered aroclor. 6
- 38 Surrogate was diluted
- Surrogate was diluted 38

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

homas Authorized:

Date: July 3, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Job No.: 6750.004.62306 Certification NY No.: 10155			
Package#: 8213 Sample: E1963 Sample Description: SP-21-E08-061504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/15/04 06/18/04 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 73.0 Sample Size: 30 g Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .23	U	.020	.23	10	06/22/04
PCB-1221	< .23	U	.071	.23	10	06/22/04
PCB-1232	< .23	U	.047	.23	10	06/22/04
PCB-1242	< .23	U	.029	.23	10	06/22/04
PCB-1248	1.7		.011	.23	10	06/22/04
PCB-1254	< .23	U	.023	.23	10	06/22/04
PCB-1260	< .23	υ	.028	.23	10	06/22/04

Surrogate	%R	Qual	Limits	Notes
2, 4,5,6-Tetrachloro-m-Xylene (surrogate)	89.		30-150	38
Decachlorobiphenyl (surrogate)	76.		30-150	38

Notes:

- Surrogate was diluted 38
- Surrogate was diluted 38

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized: Thomas Alexander Date: July 3, 200

40

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Job No.: 6750.004.62306 Certification NY No.: 10155				
Package#: 8213 Sample: E 1963 Sample Description: SP-21-E08-061504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/15/04 06/18/04 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 73.0 Sample Size: 30 g Primary: N			

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .23	U	.020	.23	10	06/22/04
PCB-1221	< .23	U	.071	.23	10	06/22/04
PCB-1232	< .23	υ	.047	.23	10	06/22/04
PCB-1242	< .23	U	.029	.23	10	06/22/04
PCB-1248	1.6		.011	.23	10	06/22/04
PCB-1254	< .23	U	.023	.23	10	06/22/04
PCB-1260	< .23	U	.028	.23	10	06/22/04

Surrogate	%R	Qual	%R Limíts	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	90.		30-150	38
Decachlorobiphenyl (surrogate)	75.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Thomas a alefande

Date: July 3, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 8213 Sample: E1965 Sample Description: SP-15-D09-061504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: 06/17/04 Received: 06/18/04 Prepared: 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 72.0 Sample Size: 30 g Primary: N		

Parameter	Result Qu	al MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .47 U	.042	.47	20	06/22/04
PCB-1221	< .47 U	.15	. 47	20	06/22/04
PCB-1232	<.47 U	.096	.47	20	06/22/04
PCB-1242	<.47 U	.059	.47	20	06/22/04
PCB-1248	3.3	.024	.47	20	06/22/04
PCB-1254	< .47 U	.048	.47	20	06/22/04
PCB-1260	<.47 U	.058	.47	20	06/22/04
					N

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.		30-150	38 .
Decachlorobiphenyl (surrogate)	72.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

	Λ	01	7.
			11 A
Authorized:	Thomas	SH CE	fande
Date July 3	2004	Thomas Alex	ander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750,004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8213 06/17/04 Collected: Matrix: Solid Sample: E1965 Received: 06/18/04 Sample Description: SP-15-D09-061504 Prepared: 06/21/04 Instrument: HP5890-90 %Solids: 72.0 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .47	Ū	.042	.47	20	06/22/04
PCB-1221	< .47	U	.15	.47	20	06/22/04
PCB-1232	< .47	U	.096	. 47	20	06/22/04
PCB-1242	< .47	U	.059	.47	20	06/22/04
PCB-1248	3.6		.024	.47	20	06/22/04
PCB-1254	< .47	U	.048	.47	20	06/22/04
PCB-1260	< .47	U	.058	.47	20	06/22/04

Surrogate	~ %R	Oual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	89.		30-150	38
Decachlorobiphenyl (surrogate)	72.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

	Λ	n An	
Authorized:	A	.]] [][]]]	·
Date: July 3	, 2004 WARD	Thomas Alexande	All

QC Batch: 062104S1 Sample Size: 30 g Primary: Y

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill			6750 . 004 . 62306 n NY No.: 10155
Proj. Desc:			
Package#: 8213	Callested	06/17/04	Matrix: Solid
Sample: E 1966	Collected:		
Sample Description: SP-16-C09-061504	Received:	06/18/04	QC Batch: 062104S1
Instrument: HP5890-90	Prepared:	06/21/04	%Solids: 77.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .022	υ	.0019	.022	1	06/22/04
PCB-1221	< .022	U	.0068	.022	1	06/22/04
PCB-1232	< .022	U	.0045	.022	1	06/22/04
PCB-1242	< .022	υ	.0028	.022	1	06/22/04
PCB-1248	.10		.0011	.022	1	06/22/04 6
PCB-1254	< .022	υ	.0022	.022	1	06/22/04
PCB-1260	< .022	υ	.0027	.022	1	06/22/04

Surrogate	&R	Qual	*K Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	108.		30-150	<u></u>
Decachlorobiphenyl (surrogate)	75.		30-150	

Notes:

6 Altered aroclor. •

Altered aroclor. 6

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

homas Authorized:

Date: July 3, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill		Certification NY No.: 10155			
Proj. Desc: Package#: 8213					
Sample: E 1966 Sample Description: SP-16-C09-061504 Instrument: HP5890-90 Units: mg/Kg Dry weight	Collected: Received: Prepared:	06/17/04 06/18/04 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 77.0 Sample Size: 30 g		
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .022	υ	.0019	.022	1	06/22/04
PCB-1221	< .022	U	.0068	.022	. 1	06/22/04
PCB-1232	< .022	U	.0045	.022	1	06/22/04
PCB-1242	< .022	U	.0028	.022	1	06/22/04
PCB-1248	.10		.0011	.022	1	06/22/04 6
PCB-1254	< .022	σ	.0022	.022	1	06/22/04
PCB-1260	< .022	U	.0027	.022	1	06/22/04

Surrogate	%R	Qual	tR Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	113.		30-150	· ·
Decachlorobiphenyl (surrogate)	77.		30-150	

Notes:

- Altered aroclor. 6
- Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

ande Authorized: Thomas Alexander Date: July 3, 200

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:		0014/10440	
Package#: 8213 Sample: E1967 Sample Description: SP-17-C11-061504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/17/04 06/18/04 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 74.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .11	U	.010	.11	5	06/22/04
PCB-1221	< .11	υ	.036	.11	5	06/22/04
PCB-1232	< .11	υ	.023	.11	5	06/22/04
PCB-1242	< .11	υ	.014	.11	5	06/22/04
PCB-1248	.46		.0057	.11	5	06/22/04
PCB-1254	< .11	U	.012	.11	5	06/22/04
PCB-1260	< .11	U	.014	.11	5	06/22/04

Surrogate	*R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	99		30-150	38
Decachlorobiphenyl (surrogate)	79.		30-150	38

Notes:

- 38 Surrogate was diluted
- 38 Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Date: July 3, 2004

fhomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:		
Package#: 8213 Sample: E 1967 Sample Description: SP-17-C11-0615 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column N	04 Collect Receiv Prepar Jame: DB-608, 30m x .53mm ID	ed: 06/18/04 QC Batch: 062104S1

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .11	U	.010	.11	5	06/22/04
PCB-1221	< .11	U	.036	.11	5	06/22/04
PCB-1232	< .11	υ	.023	.11	5	06/22/04
PCB-1242	< .11	υ	.014	.11	5	06/22/04
PCB-1248	.47		.0057	.11	5	06/22/04
PCB-1254	< .11	U	.012	.11	5	06/22/04
PCB-1260	< .11	U	.014	.11	5	06/22/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	95.		30-150	38
Decachlorobiphenyl (surrogate)	78.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Thomas G Authorized:

Date: July 3, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750,004,62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Certification NY No.: 10155			
Package#: 8213 Sample: E1968 Sample Description: SP-33-B07-061504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/17/04 06/18/04 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 85.0 Sample Size: 30 g Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .10	υ	.0088	.1	5	06/22/04
PCB-1221	< .10	υ	.031	.1	5	06/22/04
PCB-1232	< .10	U	.020	.1	5	06/22/04
PCB-1242	< .10	U	.013	.1	5	06/22/04
PCB-1248	.46		.0050	.1	· 5	06/22/04
PCB-1254	< .10	υ	.010	.1	5	06/22/04
PCB-1260	< .10	U	.012	.1	5	06/22/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	94.		30-150	38
Decachlorobiphenyl (surrogate)	78.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Date: July 3, 2004 Thomas Alexander

Number of analytes: 7

Analytical Results Method: 8082

Job No.: 6750.004.62306 Client: Parsons Engineering Science, Inc. Certification NY No.: 10155 Amphenol Richardson Hill Road Landfill Project: Proj. Desc: Package#: 8213 06/17/04 Matrix: Solid Collected: E1968 Sample: QC Batch: 062104S1 Received: 06/18/04 SP-33-B07-061504 Sample Description: Prepared: 06/21/04 %Solids: 85.0 HP5890-90 Instrument: Sample Size: 30 g Units: mg/Kg Dry weight Column Name: DB-1701, 30m x .53mm ID Primary: N

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .10 U	.0088	.1	5	06/22/04
PCB-1221	< .10 U	.031	.1	5	06/22/04
PCB-1221	< .10 U	.020	.1	5	06/22/04
PCB-1232 PCB-1242	< .10 U	.013	.1	5	06/22/04
	.46	.0050	.1	5	06/22/04
PCB-1248	< .10 U	.010	-1	5	06/22/04
PCB-1254		.010	.1	5	06/22/04
PCB-1260	< .10 U	.012	• 土	5	00/22/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	98.		30-150	38
Decachlorobiphenyl (surrogate)	79.		30-150	38

Notes:

Surrogate was diluted 38 : 38 Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

homasi Authorized:

Date: July 3, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 8213 Sample: E 1969 Sample Description: SP-34-C05-061504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/17/04 06/18/04 06/21/04	Matrix: Solid QC Batch: 062104S1 %Solids: 80.0 Sample Size: 30 g Primary: Y	

Parameter	Result Q	ual MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.42 U	.038	.42	20	06/22/04
PCB-1221	<.4.2 U	.13	.42	20	06/22/04
PCB-1232	<.42 U	.087	.42	20	06/22/04
PCB-1242	<.42 U	.053	.42	20	06/22/04
PCB-1248	2.3	.021	.42	20	06/22/04
PCB-1254	<.42 U	.043	.42	20	06/22/04
PCB-1260	<.42 U	.052	- 42	20	06/22/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	90.	-,	30-150	38
Decachlorobiphenyl (surrogate)	76.		30-150	38

Notes:

- 38 Surrogate was diluted :
- 38 Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: July 3, 2004

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8213			
Sample: E 1969	Collected:	06/17/04	Matrix: Solid
Sample Description: SP-34-C05-061504	Received:	06/18/04	QC Batch: 062104S1
Instrument: HP5890-90	Prepared:	06/21/04	%Solids: 80.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016 -	·< .42	υ	.038	.42	20	06/22/04
PCB-1221	< .42	U	.13	.42	20	06/22/04
PCB-1232	< .42	υ	.087	.42	20	06/22/04
PCB-1242	< .42	υ	.053	.42	20	06/22/04
PCB-1248	2.3		.021	.42	20	06/22/04
PCB-1254	< .42	υ	.043	.42	20	06/22/04
PCB-1260	< .42	υ	.052	.42	20	06/22/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	91.		30-150	38
Decachlorobiphenyl (surrogate)	80.		30-150	38

Notes:

38 : Surrogate was diluted

38-: Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas G Authorized: Date: July 3, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306
Project: Amphenol Richardson Hill Road Landfill		Certificatio	n NY No.: 10155
Proj. Desc:			··· .
Package#: 8295	0 N . 1	06/24/04	
Sample: E 2548	Collected:		Matrix: Solid
Sample Description: Segment 20-B1 062404	Received:	06/25/04	QC Batch: 062604S1
Instrument: HP5890-90	Prepared:	06/26/04	%Solids: 80.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: Y

Parameter	Result Qual	L MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 1.1 U	.14	1.1	50	06/28/04
PCB-1221	< 1.1 U	.18	1.1	50	06/28/04
PCB-1232	< 1.1 U	.12	1.1	50	06/28/04
PCB-1242	< 1.1 U	.090	1.1	50	06/28/04
PCB-1248	5.5	.071	1.1	50	06/28/04
PCB-1254	< 1.1 U	.042	1.1	50	06/28/04
PCB-1260	< 1.1 U	.069	1.1	50	06/28/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	80.		30-150	38
Decachlorobiphenyl (surrogate)	85.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 Surrogate was diluted :

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas a U

Authorized: Date: June 30, 2004

Thomas Alexander

Q

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:		
Package#: 8295		
Sample: E2548	Collected: 06/24/04	Matrix: Solid
Sample Description: Segment 20-B1 062404	Received: 06/25/04	QC Batch: 062604S1
Instrument: HP5890-90	Prepared: 06/26/04	%Solids: 80.0
Units: mg/Kg Dry weight	· .	Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID		Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 1.1	υ	.14	1.1	50	06/28/04
PCB-1221	< 1.1	U	.18	1.1	50	06/28/04
PCB-1232	< 1.1	υ	.12	1.1	50	06/28/04
PCB-1242	< 1.1	U	.090	1.1	50	06/28/04
PCB-1248	4.8		.071	1.1	50	06/28/04
PCB-1254	< 1.1	U	.042	1.1	50	06/28/04
PCB-1260	< 1.1	υ	.069	1.1	50	06/28/04

Surrogate		% R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	-	85.		30-150	38
Decachlorobiphenyl (surrogate)		69.		30-150	38

Notes:

38 : Surrogate was diluted 38 : Surrogate was diluted

thomas a lefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Parameter	Result Qu	al MDL	PQL Dil	Analyzed Notes
PCB-1016	<.18 U	.024 .18	10	06/28/04
PCB-1221	< .18 U	.031 .18	10	06/28/04
PCB-1232	< .18 U	.021 .18	10	06/28/04
PCB-1242	< .18 U	.015 .18	10	06/28/04
PCB-1248	.48	P.012.18	10	06/28/04 6
PCB-1254	< .18 U	.0072 .18	10	06/28/04
PCB-1260	< .18 U	.012 .18	10	06/28/04

			. TK	,
Surrogate	8 R ∕	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38
Decachlorobiphenyl (surrogate)	92.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 Surrogate was diluted :
- 38 Surrogate was diluted :

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Thomas Alexander

Date: July 7, 2004

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

	ohenol Richa	rdson Hill Road L	andfill	Certification NY No.: 10155		
Instrument:	549 ption: Segr HP5890-90 g Dry weight		4 DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 93.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .18	U	.024	.18	10	06/28/04
PCB-1221	< .18	U	.031	.18	10	06/28/04
PCB-1232	< .18	U	.021	.18	10	06/28/04
PCB-1242	< .18	U	.015	.18	10	06/28/04
PCB-1248	.37	Р	.012	.18	10	06/28/04 6
PCB-1254	< .18	U	.0072	.18	10	06/28/04
PCB-1260	< .18	U	.012	.18	10	06/28/04

•			*R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	187.	#	30-150	38
Decachlorobiphenyl (surrogate)	83.	•	30-150	38

Notes:

- : Altered aroclor. 6
- : Altered aroclor. 6
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

homasle

Authorized: Date: July 7, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306
Project: Amphenol Richardson Hill Road Landfill		Certificatio	n NY No.: 10155
Proj. Desc:			
Package#: 8295		06/04/04	
Sample: E 2550	Collected:	06/24/04	Matrix: Solid
Sample Description: Segment 20-B3 062404	Received:	06/25/04	QC Batch: 062604S1
Instrument: HP5890-90	Prepared:	06/26/04	%Solids: 78.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: Y

Parameter	 Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .44	U	.057	.44	20	06/28/04
PCB-1221	< .44	U	.074	.44	20	06/28/04
PCB-1232	< .44	U	.050	.44	20	06/28/04
PCB-1242	< .44	U	.037	.44	20	06/28/04
PCB-1248	 4.0		.029	.44	20	06/28/04
PCB-1254	< .44	U	.017	.44	20	06/28/04
PCB-1260	< .44	U	.028	.44	20	06/28/04

			8R	
Surrogate	ŧR	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	79.		30-150	38
Decachlorobiphenyl (surrogate)	90.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

thomas la

Authorized: ______ Date: June 30, 2004

•

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 . 62306 n NY No.: 10155
Package#: 8295 Sample: E2550 Sample Description: Segment 20-B3 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 78.0 Sample Size: 30 g Primary: N

Parameter	Result (Qual MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.44 U	.057	.44	20	06/28/04
PCB-1221	<.44 U	.074	. 44	20	06/28/04
PCB-1232	<.44 U	.050	.44	20	06/28/04
PCB-1242	<.44 U	.037	.44	20	06/28/04
PCB-1248	3.6	.029	.44	20	06/28/04
PCB-1254	<.44 U	.017	.44	20	06/28/04
PCB-1260	<.44 U	.028	.44	20	06/28/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	73.		30-150	38 .
Decachlorobiphenyl (surrogate)	77.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

thomas a Defande

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8295 06/24/04 Collected: Matrix: Solid Sample: E 2551 Received: 06/25/04 Sample Description: Segment 20-B4 062404 QC Batch: 062604S1 Prepared: Instrument: HP5890-90 06/26/04 %Solids: 91.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .093	U	.012	.093	5	06/28/04
PCB-1221	< .093	U	.016	.093	5	06/28/04
PCB-1232	< .093	U	.011	.093	5	06/28/04
PCB-1242	< .093	U	.0079	.093	5	06/28/04
PCB-1248	.69		.0062	.093	5	06/28/04
PCB-1254	< .093	υ	.0037	.093	5	06/28/04
PCB-1260	< .093	υ	.0060	.093	5	06/28/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	69.		30-150	38
Decachlorobiphenyl (surrogate)	75.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a alefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No · 10155

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certification NY No.: 10			
Package#:8295Sample:E 2551Sample Description:Segment 20-B4 062404Instrument:HP5890-90Units:mg/Kg Dry weightNumber of analytes:7Column Name:DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 91.0 Sample Size: 30 g Primary: N		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016 <	.093	U	.012	.093	5	06/28/04
PCB-1221 <	.093	U	.016	.093	5	06/28/04
PCB-1232 <	.093	U	.011	.093	5	06/28/04
PCB-1242 <	.093	U	.0079	.093	5	06/28/04
PCB-1248	.58		.0062	.093	5	06/28/04
PCB-1254 <	.093	U	.0037	.093	5	06/28/04
PCB-1260 <	.093	U	.0060	.093	5	06/28/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate	e) 74.		30-150	38
Decachlorobiphenyl (surrogate)	68.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a lefande

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill		Certificatio	n NY No.: 10155
Proj. Desc:			
Package#: 8295		OCIDAIÓA	
Sample: E2552	Collected:	06/24/04	Matrix: Solid
Sample Description: Segment 20-B5 062404	Received:	06/25/04	QC Batch: 062604S1
Instrument: HP5890-90	Prepared:	06/26/04	%Solids: 79.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: Y

Parameter	Result Qu	al MDL	PQL Dil	Analyzed Notes
PCB-1016	< .11 U	.014 .13	. 5	06/28/04
PCB-1221	<.11 U	.018 .11	. 5	06/28/04
PCB-1232	< .11 U	.012 .11	. 5	06/28/04
PCB-1242	< .11 U	.0091 .11	. 5	06/28/04
PCB-1248	.90	.0072 .11	. 5	06/28/04
PCB-1254	< .11 U	.0042 .11	. 5	06/28/04
PCB-1260	< .11 U	.0070 .11	. 5	06/28/04

Surrogate	₹R	Qual	<pre>%R Limits</pre>	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	94.		30-150	38
Decachlorobiphenyl (surrogate)	97.		30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

thomas a alefande

Authorized: / Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8295 06/24/04 Sample: E2552 Collected: Matrix: Solid Received: Sample Description: 06/25/04 QC Batch: 062604S1 Segment 20-B5 062404 HP5890-90 Prepared: Instrument: 06/26/04 %Solids: 79.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .11	υ	.014	.11	5	06/28/04
PCB-1221	< .11	U	.018	.11	5	06/28/04
PCB-1232	< .11	U	.012	.11	5	06/28/04
PCB-1242	. < .11	U	.0091	.11	5	06/28/04
PCB-1248	.80		.0072	.11	5	06/28/04
PCB-1254	< .11	U	.0042	.11	5	06/28/04
PCB-1260	< .11	U	.0070	.11	5	06/28/04

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	91.		30-150	38
Decachlorobiphenyl (surrogate)	88.		30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

Thomas a alefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill		Certification NY No.: 10155			
Proj. Desc: Package#: 8295 Sample: E2553 Sample Description: Segment 20-B6 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 87.0 Sample Size: 30 g Primary: Y		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .39 t	U	.051	.39	20	06/28/04
PCB-1221	< .39 1	ט	.066	.39	20	06/28/04
PCB-1232	< .39 t	ט	.045	.39	20	06/28/04
PCB-1242	< .39 T	IJ	.033	.39	- 20	06/28/04
PCB-1248	1.9		.026	.39	20	06/28/04
PCB-1254	< .39 t	U	.015	.39	20	06/28/04
PCB-1260	< .39 1	Ü	.025	.39	20	06/28/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	90.	. · ·	30-150	38
Decachlorobiphenyl (surrogate)	95.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

thomas a lefande

Authorized: _____ Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8295 06/24/04 Collected: Matrix: Solid Sample: E2553 Received: 06/25/04 QC Batch: 062604S1 Sample Description: Segment 20-B6 062404 Prepared: 06/26/04 Instrument: HP5890-90 %Solids: 87.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: DB-608, 30m x .53mm ID Number of analytes: 7 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .39	U	.051	.39	20	06/28/04
PCB-1221	< .39	U	.066	.39	20	06/28/04
PCB-1232	< .39	U	.045	.39	20	06/28/04
PCB-1242	< .39	U	.033	.39	20	06/28/04
PCB-1248	1.8		.026	.39	20	06/28/04
PCB-1254	< .39	U	.015	.39	20	06/28/04
PCB-1260	< .39	υ	.025	.39	20	06/28/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		30-150	38
Decachlorobiphenyl (surrogate)	86.		30-150	38

Notes:

38 Surrogate was diluted :

38 Surrogate was diluted :

Thomas a alefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8295 Sample: E 2554 Sample Description: Segment 20-B7 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 69.0 Sample Size: 30 g Primary: Y
---	--------------------------------------	----------------------------------	---

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .25 U	.032	.25	10	06/28/04
PCB-1221	<.25 U	.042	.25	10	06/28/04
PCB-1232	<.25 U	.028	.25	10	06/28/04
PCB-1242	<.25 U	.021	.25	10	06/28/04
PCB-1248	1.5	.016	.25	10	06/28/04 6
PCB-1254	<.25 U	.0097	.25	10	06/28/04
PCB-1260	<.25 U	.016	.25	10	06/28/04

Surrogate	ŧR	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	79.		30-150	38
Decachlorobiphenyl (surrogate)	88.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a alefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: June 30, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8295 Sample: E 2554 Sample Description: Segment 20-B7 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 69.0 Sample Size: 30 g Primary: N
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .25	U	.032	.25	10	06/28/04
PCB-1221	< .25	U	.042	.25	10	06/28/04
PCB-1232	< .25	U	.028	.25	10	06/28/04
PCB-1242	< .25	U	.021	.25	10	06/28/04
PCB-1248	1.4		.016	.25	10	06/28/04 6
PCB-1254	< .25	U	.0097	.25	10	06/28/04
PCB-1260	< .25	U	.016	.25	10	06/28/04

Surrogate	%R	Qual	tR Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	76.		30-150	38
Decachlorobiphenyl (surrogate)	81.		30-150	38 [·]

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

morras a alefande

Authorized: _____ Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certificatio	n NY No.: 10155
Package#: 8295 Sample: E2555 Sample Description: Segment 20-B8 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 82.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .10	υ	.014	.1	5	06/28/04
PCB-1221	< .10	U	.018	.1	5	06/28/04
PCB-1232	< .10	U	.012	.1	5	06/28/04
PCB-1242	< .10	U	.0088	.1	5	06/28/04
PCB-1248	.73		.0069	.1	5	06/28/04
PCB-1254	< .10	υ	.0041	.1	5	06/28/04
PCB-1260	< .10	U	.0067	.1	5	06/28/04

Surrogate	۴R	Qual	¥R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	89.		30-150	38
Decachlorobiphenyl (surrogate)	95.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

thomas & leg rele

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	ill Certification NY No.: 10155	
Proj. Desc: Package#: 8295 Sample: E2555 Sample Description: Segment 20-B8 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: 06/24/04 Matrix: Solid Received: 06/25/04 QC Batch: 062 Prepared: 06/26/04 %Solids: 82.0 Sample Size: 3 Primary: N	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .10	ប	.014	.1	5	06/28/04
PCB-1221	< .10	υ	.018	.1	5	06/28/04
PCB-1232	< .10	U	.012	.1	5	06/28/04
PCB-1242	< .10	U	.0088	.1	5	06/28/04
PCB-1248	. 67		.0069	.1	5	06/28/04
PCB-1254	< .10	ΰ	.0041	.1	5	06/28/04
PCB-1260	< .10	U	.0067	.1	5	06/28/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	84.		30-150	38
Decachlorobiphenyl (surrogate)	89.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a lefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Date: June 30, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NV No - 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		n NY No.: 10155
Proj. Desc: Package#: 8295 Sample: E2556 Sample Description: Segment 20-B9 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 75.0 Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .23	U	.030	.23	10	06/28/04
PCB-1221	< .23	υ	.039	.23	10	06/28/04
PCB-1232	< .23	U	.026	.23	10	06/28/04
PCB-1242	< .23	U	.019	.23	10	06/28/04
PCB-1248	1.4		.015	.23	10	06/28/04 6
PCB-1254	< .23	υ	.0089	.23	10	06/28/04
PCB-1260	< .23	U	.015	.23	10	06/28/04
PCB-1242 PCB-1248 PCB-1254	< .23 1.4 < .23	บ บ	.019 .015 .0089	.23 .23 .23	10 10 10	06/28/04 06/28/04 6 06/28/04

Surrogate	- %R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	84.		30-150	38
Decachlorobiphenyl (surrogate)	94.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- : Surrogate was diluted 38
- Surrogate was diluted 38 .

thomasle Jande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Job No.: 6750 . 004 . 62306 Certification NY No.: 10155			
Package#: 8295 Sample: E2556 Sample Description: Segment 20-B9 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 75.0 Sample Size: 30 g Primary: N	

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .23 U	.030	.23	10	06/28/04
PCB-1221	<.23 U	.039	.23	10	06/28/04
PCB-1232	< .23 U	.026	.23	10	06/28/04
PCB-1242	< .23 U	.019	.23	10	06/28/04
PCB-1248	1.2	.015	.23	10	06/28/04 6
PCB-1254	< .23 U	.0089	.23	10	06/28/04
PCB-1260	<.23 U	.015	.23	10	06/28/04

Surrogate	*R	Oual	%R Limits	Notes
<u>Juriogade</u>	710	Quar		Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	80.		30-150	38
Decachlorobiphenyl (surrogate)	86.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a Clefande

Authorized:_____ Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 8295 06/24/04 Matrix: Solid Collected: Sample: E2557 Received: 06/25/04 QC Batch: 062604S1 Sample Description: Segment 20-B10 062404 Prepared: 06/26/04 Instrument: HP5890-90 %Solids: 78.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: DB-1701, 30m x .53mm ID Number of analytes: 7 Primary: Y

Parameter	· .	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016		< .44	U	.057	.44	20	06/28/04
PCB-1221		< .44	U	.074	.44	20	06/28/04
PCB-1232		< .44	U	.050	.44	20	06/28/04
PCB-1242		< .44	U	.037	.44	20	06/28/04
PCB-1248		3.4	P	.029	. 4 4	20	06/28/04 6
PCB-1254		< .44	Ŭ	.017	.44	20	06/28/04
PCB-1260	. *	< .44	U	.028	.44	20	06/28/04

Surrogate	*R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	84.		30-150	38
Decachlorobiphenyl (surrogate)	97.		30-150	38

Notes:

- 6 : Altered aroclor.
- : Altered aroclor. 6
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a alefande

Authorized: Date: July 7, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.: 6750.004.62306			
Project: Amphenol Richardson Hill Road Landfill		Certificatio	on NY No.: 10155		
Proj. Desc:					
Package#: 8295 Sample: E2557 Sample Description: Segment 20-B10 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Coilected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 78.0 Sample Size: 30 g		
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .44	U	.057	.44	20	06/28/04
PCB-1221	< .44	υ	.074	.44	20	06/28/04
PCB-1232	< .44	U	.050	.44	20	06/28/04
PCB-1242	< .44	U	.037	.44	20	06/28/04
PCB-1248	2.6	P	.029	. 4 4	20	06/28/04 6
PCB-1254	< .44	υ	.017	.44	20	06/28/04
PCB-1260	< .44	U	.028	.44	20	06/28/04

			₽R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	- 79.		30-150	38
Decachlorobiphenyl (surrogate)	88.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a alefande

Authorized: Date: July 7, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.			6750.004.62306
Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		
Proj. Desc:			
Package#: 8295	Collected:	06/24/04	Matrix: Solid
Sample: E2558	Received:	06/25/04	QC Batch: 062604S1
Sample Description: Segment 20-B11 062404		• • • • • • •	•
Instrument: HP5890-90	Prepared:	06/26/04	%Solids: 80.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID		·	Primary: Y

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .11 U	.014	.11	5	06/28/04
PCB-1221	< .11 U	.018	.11	5	06/28/04
PCB-1232	< .11 U	.012	.11	5	06/28/04
PCB-1242	< .11 U	.0090	.11	5	06/28/04
PCB-1248	.85	.0071	.11	5	06/28/04
PCB-1254	< .11 U	.0042	.11	5	06/28/04
PCB-1260	< .11 U	.0069	.11	5	06/28/04
PCB-1260	U 11. >	.0069	• 1 7	5	00720704

Surrogate	۴R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	89.		30-150	38
Decachlorobiphenyl (surrogate)	93.		30-150	38

Notes:

- 38 : Surrogate was diluted
- Surrogate was diluted 38 :

homasle Defande

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 8295 Sample: E 2558 Sample Description: Segment 20-B11 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 80.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual MI	L PQL	. Dil	Analyzed Notes
PCB-1016	< .11 (.014	.11	5	06/28/04
PCB-1221	< .11 t	.018	.11	5	06/28/04
PCB-1232	< .11 (J.012	.11	5	06/28/04
PCB-1242	< .11 t	J .0090	.11	5	06/28/04
PCB-1248	.75	.0071	.11	5	06/28/04
PCB-1254	< .11 t	J.0042	.11	5	06/28/04
PCB-1260	< .11 U	.0069	.11	5	06/28/04

			*R	
Surrogate	δR	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38
Decachlorobiphenyl (surrogate)	88.	r.	30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

el. Date: June 30, 2004

Authorized:

Thomas a alefande

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

2

이 방법이 이 가격한 것은 이상을 통하게 한국.

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8295 Sample: E2559 Sample Description: Segment 20-B12 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 85.0 Sample Size: 30 g Primary: Y
---	--------------------------------------	----------------------------------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .20	U	.026	.2	10	06/28/04
PCB-1221	< .20	υ	.034	.2	10	06/28/04
PCB-1232	< .20	U	.023	.2	10	06/28/04
PCB-1242	< .20	U	.017	.2	10	06/28/04
PCB-1248	1.3	P	.013	.2	10	06/28/04 6
PCB-1254	< .20	U	.0079	.2	10	06/28/04
PCB-1260	< .20	υ	.013	.2	10	06/28/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	80.		30-150	38
Decachlorobiphenyl (surrogate)	90.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

thomas a lefande

Authorized: Date: July 7, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8295 Sample: E 2559 Sample Description: Segment 20-B12 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 85.0 Sample Size: 30 g Primary: N
---	--------------------------------------	----------------------------------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .20	U	.026	.2	10	06/28/04
PCB-1221	< .20	υ	.034	.2	10	06/28/04
PCB-1232	< .20	U	.023	.2	10	06/28/04
PCB-1242	< .20	U	.017	.2	10	06/28/04
PCB-1248	1.0	P	.013	.2	10	06/28/04 6
PCB-1254	< .20	U	.0079	.2	10	06/28/04
PCB-1260	< .20	U	.013	.2	10	06/28/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	76.		30-150	38
Decachlorobiphenyl (surrogate)	84.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a Alefande

Authorized: Date: July 7, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill		Job No.: 6750.004.62306 Certification NY No.: 10155		
Proj. Desc: Package#: 8295				
Sample: E 2569	Collected:	06/24/04	Matrix: Solid	
Sample Description: Segment 20-W1 062404 Instrument: HP5890-90	Received: Prepared:	06/25/04 06/28/04	QC Batch: 062804S1 %Solids: 81.0	
Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Sample Size: 30 g Primary: Y	

Parameter	Result	Qual	MDL	POL	Dil	Analyzed Notes
PCB-1016	< .21	U	.028	.21	10	06/29/04
PCB-1221	< .21	U	.036	.21	10	06/29/04
PCB-1232	< .21	U	.024	.21	10	06/29/04
PCB-1242	< .21	U	.018	.21	10	06/29/04
PCB-1248	.71		.014	.21	10	06/29/04
PCB-1254	< .21	U	.0083	.21	10	06/29/04
PCB-1260	< .21	U	.014	.21	10	06/29/04

Surrogate	***R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	85.		30-150	- 38
Decachlorobiphenyl (surrogate)	93.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Thomas a Defande

Authorized: Date: June 30, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

=

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:Package#:8295Sample:E 2569Sample Description:Segment 20-W1 062404Instrument:HP5890-90Units:mg/Kg Dry weightNumber of analytes:7Column Name:DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/28/04	Matrix: Solid QC Batch: 062804S1 %Solids: 81.0 Sample Size: 30 g Primary: N
--	--------------------------------------	----------------------------------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .21 U	J .	.028	.21	10	06/29/04
PCB-1221	< .21 U	Ĵ	.036	.21	10	06/29/04
PCB-1232	< .21 U	J	.024	.21	10	06/29/04
PCB-1242	< .21 U	J	.018	.21	10	06/29/04
PCB-1248	.71		.014	.21	10	06/29/04
PCB-1254	< .21 U	J	.0083	.21	10	06/29/04
PCB-1260	< .21 U	1	.014	.21	10	05/29/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	97.		30-150	38
Decachlorobiphenyl (surrogate)	91.		30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

Authorized: Thomas a alefande

Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8295 Sample: E2570	Collected: 06/24/04	Matrix: Solid
Sample Description: Segment 20-W2 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Received: 06/25/04 Prepared: 06/28/04	QC Batch: 062804S1 %Solids: 71.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .024	υ	.0032	.024	1	06/29/04
PCB-1221	< .024	υ	.0041	.024	1	06/29/04
PCB-1232	< .024	U	.0027	.024	1	06/29/04
PCB-1242	< .024	U	.0020	.024	1	06/29/04
PCB-1248	.018	J	.0016	.024	1	06/29/04 6
PCB-1254	< .024	U	.00094	.024	1	06/29/04
PCB-1260	< .024	U	.0015	.024	1	06/29/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	103.		30-150	
Decachlorobiphenyl (surrogate)	93.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas & elande

Authorized:_____ Date: June 30, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

....

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8295 06/24/04 Collected: Matrix: Solid Sample: E2570 Received: 06/25/04 OC Batch: 062804S1 Sample Description: Segment 20-W2 062404 Prepared: 06/28/04 Instrument: HP5890-90 %Solids: 71.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: DB-608, 30m x .53mm ID Number of analytes: 7 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .024	U	.0032	.024	1	06/29/04
PCB-1221	< .024	U	.0041	.024	1	06/29/04
PCB-1232	< .024	υ	.0027	.024	1	06/29/04
PCB-1242	< .024	U	.0020	.024	1	06/29/04
PCB-1248	.017	J	.0016	.024	1	06/29/04 6
PCB-1254	< .024	U	.00094	.024	1	06/29/04
PCB-1260	< .024	U	.0015	.024	1	06/29/04

Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	98.		30-150	
Decachlorobiphenyl (surrogate)	87.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Thomas a lefande

Authorized: _____ Date: June 30, 2004

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 8295 Sample: E2571 Sample Description: Segment 20-W3 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/28/04	Matrix: Solid QC Batch: 062804S1 %Solids: 78.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .022	ΰ	.0029	.022	1	06/29/04
PCB-1221	< .022	U	.0037	.022	1	06/29/04
PCB-1232	< .022	υ	.0025	.022	1	06/29/04
PCB-1242	< .022	U	.0018	022	1	06/29/04
PCB-1248	.025		.0014	.022	1	06/29/04 6
PCB-1254	< .022	U	.00086	.022	1	06/29/04
PCB-1260	< .022	U	.0014	.022	1	06/29/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	109.		30-150	
Decachlorobiphenyl (surrogate)	97.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Thomas a alefande

B - Analyte detected above the PQL in the associated Prep Blank.

#- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: June 30, 2004

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

	x: Solid atch: 062804S1
Units: mg/Kg Dry weight Samp	ids: 78.0 ble Size: 30 g ary: N

Parameter	Result Qual	MDL	PQL Dil	Analyzed Notes
PCB-1016	<.022 U	.0029 .022	1	06/29/04
PCB-1221	<.022 U	.0037 .022	1	06/29/04
PCB-1232	<.022 U	.0025 .022	1	06/29/04
PCB-1242	<.022 U	.0018 .022	1	06/29/04
PCB-1248	.023	.0014 .022	1	06/29/04 6
PCB-1254	<.022 U	.00086 .022	1	06/29/04
PCB-1260	<.022 U	.0014 .022	1	06/29/04

			8R	
Surrogate	άR	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	103.		30-150	
Decachlorobiphenyl (surrogate)	96.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Thomas a alefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 0

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certificatio	on NY No.: 10155
Package#: 8295 Sample: E2572 Sample Description: Segment 20-W4 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/28/04	Matrix: Solid QC Batch: 062804S1 %Solids: 75.0 Sample Size: 30 g Primary: Y

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.023 U	.0030	.023	1	06/29/04
PCB-1221	<.023 U	.0039	.023	1	06/29/04
PCB-1232	<.023 U	.0026	.023	1	06/29/04
PCB-1242	<.023 U	.0019	.023	1	06/29/04
PCB-1248	.024	.0015	.023	1	06/29/04 6
PCB-1254	< .023 U	.00089	.023	1	06/29/04
PCB-1260	<.023 U	.0015	.023	1	06/29/04
1 A A					

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	109.		30-150	
Decachlorobiphenyl (surrogate)	. 101.		30-150	

Notes:

- 6 : Altered aroclor.
- Altered aroclor.

Thomas a Clefande

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8295 06/24/04 Collected: Matrix: Solid Sample: E2572 Received: 06/25/04 QC Batch: 062804S1 Sample Description: Segment 20-W4 062404 Prepared: 06/28/04 Instrument: HP5890-90 %Solids: 75.0 Sample Size: 30 g Units: mg/Kg Dry weight Column Name: DB-608, 30m x .53mm ID Number of analytes: 7 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .023	U	.0030	.023	1	06/29/04
PCB-1221	< .023	U	.0039	.023	1	06/29/04
PCB-1232	< .023	υ	.0026	.023	1	06/29/04
PCB-1242	< .023	U	.0019	.023 [.]	1	06/29/04
PCB-1248	.029		.0015	.023	1	06/29/04 6
PCB-1254	< .023	ΰ	.00089	.023	. 1	06/29/04
PCB-1260	< .023	U	.0015	.023	1	06/29/04

Surrogate	%R	Qual	tR Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	103.		30-150	
Decachlorobiphenyl (surrogate)	91.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

alefande homasle

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 88.0 Sample Size: 30 g Primary: Y
	06/25/04

PCB-1016 < .019	Parameter	Result Qual	MDL PQL	Dil	Analyzed Notes
PCB-1221	PCB-1016	<.019 U	.0025 .019	1	06/28/04
	PCB-1221	< .019 U	.0033 .019	1	06/28/04
PCB-1232 < .019 U .0022 .019 1 06/28/04		< .019 U	.0022 .019	1	06/28/04
PCB-1242 < .019 U .0016 .019 1 06/28/04		< .019 U	.0016 .019	1	06/28/04
		.019	.0013 .019	1	06/28/04 6
PCB-1254 < .019 U .00076 .019 1 06/28/04		< .019 U	.00076 .019	1	06/28/04
PCB-1260 < .019 U .0012 .019 1 06/28/04	• •	< .019 U	.0012 .019	1	06/28/04

Surrogate	*R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	105.		30-150	
Decachlorobiphenyl (surrogate)	95.		30-150	

Notes:

6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas a l

Authorized: // Date: June 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 . 62306 on NY No.: 10155
Package#: 8295 Sample: E2560 Sample Description: Segment 20-B13 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 88.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .019	U	.0025	.019	1	06/28/04
PCB-1221	< .019	U	.0033	.019	1	06/28/04
PCB-1232	< .019	U	.0022	.019	1	06/28/04
PCB-1242	< .019	U	.0016	.019	1	06/28/04
PCB-1248	.023		.0013	.019	1	06/28/04
PCB-1254	< .019	U	.00076	.019	1	06/28/04
PCB-1260	< .019	U	.0012	.019	1	06/28/04

			*R	
Surrogate	8R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	100.		30-150	
Decachlorobiphenyl (surrogate)	84.		30-150	

Notes:

6 : Altered aroclor.

Thomas a lefande

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Certification NY No.: 10155			
Package#: 8295 Sample: E2561 Sample Description: Segment 20-B14 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 85.0 Sample Size: 30 g Primary: Y	

Parameter	Result Qua	1 MDL PQL	Dil	Analyzed Notes
PCB-1016	<.040 U	.0053 .04	2	06/29/04
PCB-1221	<.040 U	.0068 .04	2	06/29/04
PCB-1232	< .040 U	.0046 .04	2	06/29/04
PCB-1242	<.040 U	.0034 .04	2	06/29/04
PCB-1248	.22	.0027 .04	2	06/29/04 6
PCB-1254	<.040 U	.0016 .04	2	06/29/04
PCB-1260	<.040 U	.0026 .04	2	06/29/04

Surrogate	8 R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	95.		30-150	38
Decachlorobiphenyl (surrogate)	94.		30-150	38

Notes:

- : Altered aroclor. 6
- : Altered aroclor. 6
- Surrogate was diluted 38 :
- 38 Surrogate was diluted •

thomas a alefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 8295 Sample: E2561 Sample Description: Segment 20-B14 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: 06/24/04 Matrix: Solid Received: 06/25/04 QC Batch: 062604S1 Prepared: 06/26/04 %Solids: 85.0 Sample Size: 30 g Primary: N			

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .040	U	.0053	.04	2	06/29/04
PCB-1221	< .040	U	.0068	.04	2	06/29/04
PCB-1232	< .040	U	.0046	.04	2	06/29/04
PCB-1242	< .040	Ŭ	.0034	.04	2	06/29/04
PCB-1248	.18		.0027	.04	2	06/29/04 6
PCB-1254	< .040	U	.0016	.04	2	06/29/04
PCB-1260	< .040	U	.0026	.04	2	06/29/04

Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		30-150	38
Decachlorobiphenyl (surrogate)	87.	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Thomas a Defande

Authorized: // Date: June 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill 8295 06/24/04 Collected: Matrix: Solid E2562 Received: 06/25/04 QC Batch: 062604S1 Sample Description: Segment 20-B15 062404 Prepared: 06/26/04 HP5890-90 %Solids: 86.0

Project:

Sample:

Proj. Desc: Package#:

Instrument:

Job No.: 6750.004.62306 Certification NY No.: 10155

Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID						Sample Size: 30 g Primary: Y		
Parameter		Result	Qual	MDL		PQL	Dil	Analyzed Notes
PCB-1016		< .20	U	.026	.2		10	06/28/04
PCB-1221		< .20	U	.034	.2		10	06/28/04
PCB-1232		< .20	U	.023	.2		10	06/28/04
PCB-1242		< .20	U	.017	.2		10	06/28/04
PCB-1248		.84		.013	.2		10	06/28/04
PCB-1254		< .20	U	.0078	.2		10	06/28/04
PCB-1260		< .20	U	.013	.2		10	06/28/04

Surrogate	*R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		30-150	38
Decachlorobiphenyl (surrogate)	94.		30-150	38

Notes:

38 : Surrogate was diluted

38 Surrogate was diluted :

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas a lefande

Authorized: Date: June 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306	
Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc:			· · · · ·	
Package#: 8295 Sample: E 2562 Sample Description: Segment 20-B15 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 86.0 Sample Size: 30 g Primary: N	

Parameter		Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016		< .20	U	.026	.2	10	06/28/04
PCB-1221		< .20	U	.034	.2	10	06/28/04
PCB-1232	· · · · ·	< .20	U	.023	.2	10	06/28/04
PCB-1242		< .20	U	.017	.2	10	06/28/04
PCB-1248		.73		.013	.2	10	06/28/04
PCB-1254		< .20	U	.0078	.2	10	06/28/04
PCB-1260		< .20	U	.013	.2	10	06/28/04

Surrogate	۶R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	84.		30-150	38
Decachlorobiphenyl (surrogate)	90.		30-150	38

Notes:

: Surrogate was diluted 38

38 : Surrogate was diluted

Thomas a lefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: June 30, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750,004,62306 Charles Alex NEV NT 10100

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 8295 Sample: E2563 Sample Description: Segment 20-B16 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: (Received: (06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 81.0 Sample Size: 30 g Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .10	U	.014	.1	-5	06/28/04
PCB-1221	< .10	U	.018	.1	5	06/28/04
PCB-1232	< .10	U	.012	.1	5	06/28/04
PCB-1242	< .10	U	.0089	.1	5	06/28/04
PCB-1248	.68	P	.0070	.1	5	06/28/04 6
PCB-1254	< .10	U	.0041	.1	5	06/28/04
PCB-1260	< .10	U	.0068	.1	5	06/28/04

Surrogate	۴R	Qual	tR Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.		30-150	38
Decachlorobiphenyl (surrogate)	93.		30-150	38

Notes:

- 6 : Altered aroclor.
- Altered aroclor. 6 :
- 38 Surrogate was diluted :
- 38 Surrogate was diluted :

homas a lefande

Authorized: Date: July 7, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750,004,62306 Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 8295 06/24/04 E2563 Collected: Matrix: Solid Received: 06/25/04 QC Batch: 062604S1 Sample Description: Segment 20-B16 062404 Prepared: 06/26/04 HP5890-90 %Solids: 81.0

Units: mg/Kg Dry weight

Number of analytes: 7

Project:

Sample:

Proj. Desc: Package#:

Instrument:

Column Name: DB-

3-608, 30m :	x .53mm II	D	00/20/04	Sam	nds: ple Si nary:]	ize:	g
D14	0 1) OT			-		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .10	U	.014	.1	5	06/28/04
PCB-1221	< .10	U	.018	.1	5	06/28/04
PCB-1232	< .10	U	.012	.1	5	06/28/04
PCB-1242	< .10	U	.0089	.1	5	06/28/04
PCB-1248	. 52	Р	.0070	.1	5	06/28/04 6
PCB-1254	< .10	U	.0041	.1	5	06/28/04
PCB-1260	< .10	U	.0068	.1	5.	06/28/04

Surrogate	۶R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	82.		30-150	38
Decachlorobiphenyl (surrogate)	89.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a lefande

Authorized: Date: July 7, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill Certificati			ion NY No.: 10155		
Proj. Desc: Package#: 8295 Sample: E 2564 Sample Description: Segment 20-B17 062404	Collected: Received: Prepared:	Certificatio 06/24/04 06/25/04 06/26/04	n NY No.: 10155 Matrix: Solid QC Batch: 062604S1 %Solids: 61.0 Sample Size: 30 g Primary: Y		
			·		

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.56 U	.073	.56	20	06/28/04
PCB-1221	<.56 U	.095	.56	20	06/28/04
PCB-1232	<.56 U	.064	.56	`20	06/28/04
PCB-1242	<.56 U	.047	.56	20	06/28/04
PCB-1248	2.4	.037	.56	20	06/28/04 6
PCB-1254	<.56 U	.022	.56	20	06/28/04
PCB-1260	<.56 U	.036	.56	20	06/28/04

Surrogate	% R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38
Decachlorobiphenyl (surrogate)	94.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a lefande

Authorized:_____ Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill			6750 . 004 . 62306 n NY No.: 10155
Proj. Desc:			
Package#: 8295 Sample: E2564 Sample Description: Segment 20-B17 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 61.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .56	U	.073	.56	20	06/28/04
PCB-1221	< .56	σ	.095	.56	20	06/28/04
PCB-1232	< .56	U	.064	.56	20	06/28/04
PCB-1242	< .56	U	.047	.56	20	06/28/04
PCB-1248	2.1		.037	.56	20	06/28/04 6
PCB-1254	< .56	U	.022	.56	20	06/28/04
PCB-1260	< .56	υ	.036	.56	20	06/28/04

Surrogate	*R	Qual	*R Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	81.		30-150	38	
Decachlorobiphenyl (surrogate)	90.		30-150	38	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank. Authorized:

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Thomas a Defande

Date: June 30, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

÷
Matrix: Solid QC Batch: 062604S1 %Solids: 75.0 Sample Size: 30 g Primary: Y

Parameter	Result Qua	1 MDL PQL	Dil	Analyzed Notes
PCB-1016	<.045 U	.0060 .045	2	06/29/04
PCB-1221	<.045 U	.0077 .045	2	06/29/04
PCB-1232	<.045 U	.0052 .045	2	06/29/04
PCB-1242	<.045 U	.0038 .045	2	06/29/04
PCB-1248	.22	.0030 .045	2	06/29/04 6
PCB-1254	< .045 U	.0018 .045	2	06/29/04
PCB-1260	<.045 U	.0029 .045	2	06/29/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		30-150	38
Decachlorobiphenyl (surrogate)	84.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

momas a alefande

Authorized: ______ Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NV No + 10155

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Certification NY No.: 10155			
Package#: 8295 Sample: E 2565 Sample Description: Segment 20-B18 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 75.0 Sample Size: 30 g Primary: N	

Parameter	Result Qual	. MDL PQL	Dil	Analyzed Notes
PCB-1016	<.045 U	.0060 .045	2	06/29/04
PCB-1221	<.045 U	.0077 .045	2	06/29/04
PCB-1232	<.045 U	.0052 .045	2	06/29/04
PCB-1242	<.045 U	.0038 .045	2	06/29/04
PCB-1248	.21	.0030 .045	2	06/29/04 6
PCB-1254	<.045 U	.0018 .045	2	06/29/04
PCB-1260	<.045 U	.0029 .045	2	06/29/04

			₽R	
Surrogate	<u> </u>	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	80.		30-150	38
Decachlorobiphenyl (surrogate)	73.		30-150	38

Notes:

- : Altered aroclor. 6
- : Altered aroclor. 6
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a lefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 8295 Sample: E2566 Sample Description: Segment 20-B19 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 83.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL		PQL	Dil	Analyzed Notes
PCB-1016	< .10	U.	.013	.1		5	06/28/04
PCB-1221	< .10	υ	.017	.1		5	06/28/04
PCB-1232	< .10	U	.012	.1		5	06/28/04
PCB-1242	< .10	U	.0087	.1		5	06/28/04
PCB-1248	.69		.0068	.1		5	06/28/04
PCB-1254	< .10	U	.0040	.1		5	06/28/04
PCB-1260	< .10	U	.0066	.1		5	06/28/04

Surrogate	₽R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	95.		30-150	38
Decachlorobiphenyl (surrogate)	102.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a lefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Proj. Desc:Package#:8295Sample:E 2566Sample Description:Segment 20-B19 062404Instrument:HP5890-90Collected:06/25/04O6/26/04%Solids:83.0	Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		
Units:mg/Kg Dry weightSample Size: 30 gNumber of analytes:7Column Name:DB-608, 30m x .53mm IDPrimary: N	Proj. Desc: Package#: 8295 Sample: E 2566 Sample Description: Segment 20-B19 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight	Received:	06/24/04 06/25/04	Matrix: Solid QC Batch: 062604S1 %Solids: 83.0 Sample Size: 30 g

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .10	ប	.013	.1	5	06/28/04
PCB-1221	< .10	U	.017	.1	5	06/28/04
PCB-1232	< .10	U	.012	.1	5	06/28/04
PCB-1242	< .10	U	.0087	.1	5	06/28/04
PCB-1248	- 57		.0068	.1	5	06/28/04
PCB-1254	< .10	υ	.0040	.1	5	06/28/04
PCB-1260	< .10	U	.0066	.1	5	06/28/04

Surrogate	*R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.		30-150	38
Decachlorobiphenyl (surrogate)	95.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

thomas U

Authorized: Date: June 30, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

B - Analyte detected above the PQL in the associated Prep Blank.

E - Concentration exceeded the calibration range and is estimated.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Job No.: 6750.004.62306 Certification NY No.: 10155			
Package#: 8295 Sample: E2567 Sample Description: Segment 20-B20 062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 88.0 Sample Size: 30 g Primary: Y		

<u>Parameter</u>	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .019	υ	.0025	.019	1	06/28/04
PCB-1221	< .019	υ	.0033	.019	1	06/28/04
PCB-1232	< .019	U	.0022	.019	1	06/28/04
PCB-1242	< .019	υ	.0016	.019	1	06/28/04
PCB-1248	.019		.0013	.019	1	06/28/04 6
PCB-1254	< .019	υ	.00076	.019	1	06/28/04
PCB-1260	< .019	ប	.0012	.019	1	06/28/04

Surrogate	₹R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	108.		30-150	
Decachlorobiphenyl (surrogate)	100.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Thomas a lefand

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.6		6750.004.62306		
		Certification NY No.: 10155		
Proj. Desc:				
Package#: 8295 Sample: E2567 Sample Description: Segment 20-B20 062404 Instrument: HP5890-90	Collected: Received: Prepared:	96/24/04 06/25/04 06/26/04	Matrix: Solid QC Batch: 062604S1 %Solids: 88.0	
Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Sample Size: 30 g Primary: N	

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .019 U	.0025	.019	1	06/29/04
PCB-1221	< .019 U	.0033	.019	1	06/29/04
PCB-1232	< .019 U	.0022	.019	1	06/29/04
PCB-1242	< .019 U	.0016	.019	1	06/29/04
PCB-1248	.018 J	.0013	.019	1	06/29/04 6
PCB-1254	<.019 U	.00076	.019	1	06/29/04
PCB-1260	<.019 U	.0012	.019	1	06/29/04

Surrogate	۶R	Qual	*R Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	103.		30-150	•	
Decachlorobiphenyl (surrogate)	91.		30-150		

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: June 30, 2004

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 8295 Sample: E 2568	Collected:	06/24/04	Matrix: Solid
Sample: E 2568 Sample Description: Segment 20-B21 062404	Received:	06/25/04	QC Batch: 062804S1
Instrument: HP5890-90	Prepared:	06/28/04	%Solids: 82.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021	U	.0027	.021	1	06/29/04
PCB-1221	< .021	υ	.0035	.021	1	06/29/04
PCB-1232	< .021	U	.0024	.021	1	06/29/04
PCB-1242	< .021	U	.0018	.021	1	06/29/04
PCB-1248	.17		.0014	.021	1	06/29/04 6
PCB-1254	< .021	U	.00082	.021	1	06/29/04
PCB-1260	< .021	U	.0013	.021	1	06/29/04

Surrogate	۶R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	103.		30-150	
Decachlorobiphenyl (surrogate)	91.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Thomas Authorized:

Date: June 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306	
Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc:				
Package#: 8295	Collected:	06/24/04	Matrix: Solid	
Sample: E2568	Received:	06/25/04	QC Batch: 062804S1	
Sample Description: Segment 20-B21 062404	Prepared:		-	
Instrument: HP5890-90	Flepateu:	06/28/04	%Solids: 82.0	
Units: mg/Kg Dry weight			Sample Size: 30 g	
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N	

Parameter	Result Q	ual MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021 U	.0027	.021	1	06/29/04
PCB-1221	< .021 U	.0035	.021	1	06/29/04
PCB-1232	<.021 U	.0024	.021	1	06/29/04
PCB-1242	<.021 U	.0018	.021	1	06/29/04
PCB-1248	.15	.0014	.021	1	06/29/04 6
PCB-1254	< .021 U	.00082	.021	1	06/29/04
PCB-1260	< .021 U	.0013	.021	1	06/29/04

			8R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	93.		30-150	
Decachlorobiphenyl (surrogate)	85.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

Thomas a lefande

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certification NY No.: 10155				
Package#: 8295 Sample: E2573 Sample Description: SP-C6-062404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/28/04	Matrix: Solid QC Batch: 062804S1 %Solids: 71.0 Sample Size: 30 g Primary: Y			

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 2.4	U	.32	2.4	100	06/29/04
PCB-1221	< 2.4	υ	.41	2.4	100	06/29/04
PCB-1232	< 2.4	υ	.27	2.4	100	06/29/04
PCB-1242	< 2.4	υ	.20	2.4	100	06/29/04
PCB-1248	9.2		.16	2.4	100	06/29/04
PCB-1254	< 2.4	U	.094	2.4	100	06/29/04
PCB-1260	< 2.4	U	.15	2.4	100	06/29/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	84.		30-150	38
Decachlorobiphenyl (surrogate)	95.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a Clefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: June 30, 2004

Thomas Alexander

mg/Kg Dry weight

Number of analytes: 7

Project: Proj. Desc: Package#:

Sample:

Units:

Instrument:

Analytical Results Method: 8082

Job No.: 6750,004.62306 Client: Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 8295 06/24/04 Matrix: Solid Collected: E2573 Received: 06/25/04 QC Batch: 062804S1 Sample Description: SP-C6-062404 Prepared: 06/28/04 %Solids: 71.0 HP5890-90

Parameter Result Qual MDL PQL Dil Analyzed Notes U .32 2.4 100 06/29/04 < 2.4 PCB-1016 06/29/04 PCB-1221 < 2.4 U .41 2.4 100 .27 2.4 100 06/29/04 < 2.4 U PCB-1232 .20 2.4 100 06/29/04 < 2.4 U PCB-1242 06/29/04 2.4 100 PCB-1248 9.7 .16 < 2.4U .094 2.4 100 06/29/04 PCB-1254 100 06/29/04 PCB-1260 < 2.4 U .15 2.4

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	92.		30-150	38
Decachlorobiphenyl (surrogate)	84.		30-150	38

Column Name: DB-608, 30m x .53mm ID

Notes:

38 Surrogate was diluted :

38 Surrogate was diluted

Thomas a lefande

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized: Date: June 30, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Sample Size: 30 g Primary: N

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Certification NY No.: 10155			
Package#:8295Sample:E 2574Sample Description:SP-D6-062404Instrument:HP5890-90Units:mg/Kg Dry weightNumber of analytes:7Column Name:DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	06/24/04 06/25/04 06/28/04	Matrix: Solid QC Batch: 062804S1 %Solids: 72.0 Sample Size: 30 g Primary: Y	

Parameter	Result	. Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 1.2	U	.16	1.2	50	06/29/04
PCB-1221	< 1.2	U	.20	1.2	50	06/29/04
PCB-1232	< 1.2	U	.13	1.2	50	06/29/04
PCB-1242	< 1.2	U	.10	1.2	50	06/29/04
PCB-1248	5.1		.078	1.2	50	06/29/04
PCB-1254	< 1.2	U	.047	1.2	50	06/29/04
PCB-1260	< 1.2	U	.076	1.2	50	06/29/04

		*R			
Surrogate	%R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38	
Decachlorobiphenyl (surrogate)	93.		30-150	38	

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

Thomas a alefande

Authorized: Date: June 30, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Client: Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill Project: Proj. Desc: Package#: 8295 Collected: 06/24/04 Matrix: Solid Sample: E2574 OC Batch: 062804S1 Received: 06/25/04 SP-D6-062404 Sample Description: Prepared: 06/28/04 %Solids: 72.0 Instrument: HP5890-90 Sample Size: 30 g Units: mg/Kg Dry weight Column Name: DB-608, 30m x .53mm ID Primary: N Number of analytes: 7

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 1.2	U	.16	1.2	50	06/29/04
PCB-1221	< 1.2	U	.20	1.2	50	06/29/04
PCB-1232	< 1.2	U	.13	1.2	50	06/29/04
PCB-1242	< 1.2	U	.10	1.2	50	06/29/04
PCB-1248	5.3		.078	1.2	50	06/29/04
PCB-1254	< 1.2	U	.047	1.2	50	06/29/04
PCB-1260	< 1.2	υ	.076	1.2	50	06/29/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	86.		30-150	38
Decachlorobiphenyl (surrogate)	89.		30-150	38

Notes:

: Surrogate was diluted 38 Surrogate was diluted 38

thomas a Clefande

Authorized: Date: June 30, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NV No + 10155

Project: Amphenol Richardson Hill Road Landfill Certific Proj. Desc:		Certificatio	cation NY No.: 10155		
Package#: 8332 Sample: E 2797 Sample Description: SEGMENT 18-B2-070104 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	07/01/04 07/02/04 07/02/04	Matrix: Solid QC Batch: 070204S1 %Solids: 83.0 Sample Size: 30 g Primary: Y		

Parameter		Result	Qual	MDL	PQL	Dil	Analyzed N	otes
PCB-1016		< .020	U	.0027	.02	1	07/03/04	
PCB-1221		< .020	U	.0035	.02	1	07/03/04	
PCB-1232		< .020	U	.0023	.02	1	07/03/04	
PCB-1242		< .020	U	.0017	.02	1	07/03/04	
PCB-1248	•	.0026	J.P	.0014	.02	1	07/03/04	6
PCB-1254		< .020	U	.00081	.02	1	07/03/04	
PCB-1260		< .020	υ	.0013	.02	1	07/03/04	

Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	96.		30-150	
Decachlorobiphenyl (surrogate)	80.		30-150	

Notes:

6 : Altered aroclor.

thomas G alande.

Authorized: Date: July 14, 2004

0. T

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8332 Sample: E2797 Sample Description: SEGMENT 18-B2-070104 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	07/01/04 07/02/04 07/02/04	Matrix: Solid QC Batch: 070204S1 %Solids: 83.0 Sample Size: 30 g Primary: N
--	--------------------------------------	----------------------------------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .020	U	.0027	.02	1	07/03/04
PCB-1221	< .020	U	.0035	.02	1	07/03/04
PCB-1232	< .020	U	.0023	.02	. 1	07/03/04
PCB-1242	< .020	U	.0017	.02	1	07/03/04
PCB-1248	.0050	JР	.0014	.02	1	07/03/04
PCB-1254	< .020	U	.00081	.02	1	07/03/04
PCB-1260	< .020	U	.0013	.02	1	07/03/04

Surrogate		*R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	Υ.	101.		30-150	
Decachlorobiphenyl (surrogate)		91.		30-150	

Notes:

6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas &

Authorized: _____ Date: July 14, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			on NY No.: 10155
Package#: 8332 Sample: E 2798 Sample Description: SEGMENT 18-B3-070104 Instrument: HP5890-90 Units: mg/Kg Dry weight	Collected: Received: Prepared:	07/01/04 07/02/04 07/02/04	Matrix: Solid QC Batch: 070204S1 %Solids: 85.0 Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analvzed Notes
PCB-1016	< .020	υ	.0026	.02	1	07/03/04
PCB-1221	< .020	U	.0034	.02	1	07/03/04
PCB-1232	< .020	U	.0023	- 02	1	07/03/04
PCB-1242	< .020	U	.0017	.02	1	07/03/04
PCB-1248	< .020	U	.0013	.02	1	07/03/04
PCB-1254	< .020	U	.00079	.02	1	07/03/04
PCB-1260	< .020	U	.0013	.02	1	07/03/04

Surrogate	ŧR	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	103.		30-150	
Decachlorobiphenyl (surrogate)	83.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Thomas de

Authorized: Date: July 6, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			Job No.: 6750.004.62306 Certification NY No.: 10155				
	Package#: 8332 Sample: E 2796 Sample Description: SEGMENT 19-B14-070104 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	07/01/04 07/02/04 07/02/04	Matrix: Solid QC Batch: 070204S1 • %Solids: 92.0 Sample Size: 30 g Primary: Y			

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .018	υ	.0024	.018	<u></u>	07/03/04
PCB-1221	< .018	U	.0031	.018	1	07/03/04
PCB-1232	< .018	U	.0021	.018	1	07/03/04
PCB-1242	< .018	U	.0016	.018	1	07/03/04
PCB-1248	< .018	U	.0012	.018	1	07/03/04
PCB-1254	< .018	U	.00073	.018	1	07/03/04
PCB-1260	< .018	U	.0012	.018	1	07/03/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	97.	· · · · · · · · · · · · · · · · · · ·	30-150	
Decachlorobiphenyl (surrogate)	79.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: July 6, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155
Proj. Desc:	
Package#: 8377 Sample: E3036 Sample Description: F1A-01-070804 Instrument: HP5890-90	Collected:07/08/04Matrix:SolidReceived:07/09/04QC Batch:071204S2Prepared:07/12/04%Solids:28.0Seconda Sizer20
Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53n	nm ID Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .30	U	.040	.3	5	07/19/04
PCB-1221	< .30	υ	.052	.3	5	07/19/04
PCB-1232	< .30	U	.035	.3	5	07/19/04
PCB-1242	< .30	U	.026	.3	5	07/19/04
PCB-1248	1.3		.020	.3	5	07/19/04 6
PCB-1254	< .30	U	.012	.3	5	07/19/04
PCB-1260	< .30	U	.020	.3	5	07/19/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	98.		30-150	38
Decachlorobiphenyl (surrogate)	110.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

homas a Defande

Authorized:_____ Date: August 4, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8377 Sample: E 3036 Collected: 07/08	fication NY No.: 10155
•	
Sample Description:F1A-01-070804Received:07/09Instrument:HP5890-90Prepared:07/12Units:mg/Kg Dry weightOlumn Name:DB-1701, 30m x .53mm ID	04 QC Batch: 071204S2

Parameter	Result	Qual	MDL		PQL	Dil	Analyzed Notes
PCB-1016	< .30	U	.040	.3		5	07/19/04
PCB-1221	< .30	U	.052	.3		5	07/19/04
PCB-1232	< .30	U	.035	.3		5	07/19/04
PCB-1242	< .30	υ	.026	.3		5	07/19/04
PC3-1248	1.6		.020	.3		5	07/19/04 6
PCB-1254	< .30	U	.012	.3	4	5	07/19/04
PCB-1260	< .30	U	.020	.3		5	07/19/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	105.		- 30-150	38
Decachlorobiphenyl (surrogate)	104.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

thomas a alefande

Authorized: Date: August 4, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155
Project: Amphenol Richardson Hin Road Landin Proj. Desc: Package#: 8377 Sample: E3037 Sample Description: F1A-02-070804 Instrument: HP5890-90 Units: mg/Kg Dry weight	Collected: 07/08/04 Matrix: Solid Received: 07/09/04 QC Batch: 071204S2 Prepared: 07/12/04 %Solids: 26.0 Sample Size: 30 g
Number of analytes: 7 Column Name: DB-6	. 0

Parameter	Result Qu	al MDL PQL	Dil	Analyzed Notes
PCB-1016	< .065 U	.0086 .065	1	07/15/04
PCB-1221	<.065 U	.011 .065	1	07/15/04
PCB-1232	< .065 U	.0075 .065	1	07/15/04
PCB-1242	< .065 U	.0055 .065	1	07/15/04
PCB-1248	.37	.0043 .065	1	07/15/04 6
PCB-1254	< .065 U	.0026 .065	1	07/15/04
PCB-1260	<.065 U	.0042 .065	1	07/15/04

Surrogate	&R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	94.		30-150	
Decachlorobiphenyl (surrogate)	84.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Authorized:

Date: July 16, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		
Proj. Desc:			
Package#: 8377			×
Sample: E 3037	Collected:	07/08/04	Matrix: Solid
Sample Description: F1A-02-070804	Received:	07/09/04	QC Batch: 071204S2
Instrument: HP5890-90	Prepared:	07/12/04	%Solids: 26.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: N

Parameter		Result	. Qual	MDL	PQL	Dil	Analyzed No [.]	tes
PCB-1016		< .065	U	.0086	.065	1	07/15/04	
PCB-1221		< .065	U	.011	.065	1	07/15/04	
PCB-1232		< .065	U	.0075	.065	1	07/15/04	
PCB-1242		< .065	U	.0055	065	1.	07/15/04	
PCB-1248		.43		.0043	.065	1	07/15/04	6 ·
PCB-1254	1	< .065	U	.0026	.065	1	07/15/04	
PCB-1260		< .065	U	.0042	.065	1	07/15/04	

Surrogate	&R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	101.		30-150	
Decachlorobiphenyl (surrogate)	84.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

homedle Authorized:

Date: July 16, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.			5750.004.62306
Project: Amphenol Richardson Hill Road Landfill		Certification	NY No.: 10155
Proj. Desc: Package#: 8377			
Sample: E 3038	Collected:	07/08/04	Matrix: Solid
Sample Description: F1A-03-070804	Received:	07/09/04	QC Batch: 071204S2
Instrument: HP5890-90	Prepared:	07/12/04	%Solids: 34.0
Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Sample Size: 30 g Primary: Y

Parameter	Result Q	ual MDL	PQL Dil	Analyzed Notes
PCB-1016	<.050 U	.0066 .05	.1	07/15/04
PCB-1221	<.050 Ū	.0085 .05	1	07/15/04
PCB-1232	<.050 U	.0057 .05	1	07/15/04
PCB-1242	< .050 U	.0042 .05	. 1	07/15/04
PCB-1248	.040 J	P .0033 .05	1	07/15/04 6
PCB-1254	<.050 U	.0020 .05	1	07/15/04
PCB-1260	<.050 U	.0032 .05	1	07/15/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	100.	······	30-150	
Decachlorobiphenyl (surrogate)	87.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Thomas a Defande

Authorized: Date: July 16, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

10

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750, 004, 62306 Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 8377 07/08/04 Sample: E3038 Collected: Matrix: Solid Received: 07/09/04 QC Batch: 071204S2 Sample Description: F1A-03-070804 Prepared: 07/12/04 Instrument: HP5890-90 %Solids: 34.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: DB-1701, 30m x .53mm ID Number of analytes: 7 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .050	U	.0066	.05	1	07/15/04
PCB-1221	< .050	U	.0085	.05	1	07/15/04
PCB-1232	< .050	U	.0057	.05	1	07/15/04
PCB-1242	< .050	U	.0042	.05	1	07/15/04
PCB-1248	.053	Р	.0033	.05	1	07/15/04 6
PCB-1254	< .050	U	.0020	.05	1	07/15/04
PCB-1260	< .050	U	.0032	.05	1	07/15/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	104.		30-150	
Decachlorobiphenyl (surrogate)	86.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Thomas a Defande

Authorized: Date: July 16, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 8377 07/08/04 Collected: Matrix: Solid Sample: E 3039 Received: 07/09/04 QC Batch: 071204S2 Sample Description: F1A-04-070804 Prepared: Instrument: HP5890-90 07/12/04 %Solids: 30.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: DB-608, 30m x .53mm ID Number of analytes: 7 Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .28	U	.037	.28	5	07/19/04
PCB-1221	< .28	U	.048	.28	5	07/19/04
PCB-1232	< .28	υ	.032	.28	5	07/19/04
PCB-1242	< .28	U	.024	.28	5	07/19/04
PCB-1248	1.2		.019	.28	5	07/19/04 6
PCB-1254	< .28	υ	.011	.28	5	07/19/04
PCB-1260	< .28	U	.018	.28	5	07/19/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38
Decachlorobiphenyl (surrogate)	97.		30-150	38

- Notes:
 - 6 : Altered aroclor.
 - 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized:

Date: August 4, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 8377 Sample: E 3039 Sample Description: F1A-04-070804 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: 07/08/04 Matrix: Solid Received: 07/09/04 QC Batch: 071204S2 Prepared: 07/12/04 %Solids: 30.0 Sample Size: 30 g Primary: N			

Parameter	Result Qu	ual MDL	PQL Dil	Analyzed Notes
PCB-1016	<.28 U	.037 .28	5	07/19/04
PCB-1221	<.28 U	.048 .28	5	07/19/04
PCB-1232	<.28 U	.032 .28	5	07/19/04
PCB-1242	<.28 U	.024 .28	5	07/19/04
PCB-1248	1.4	.019 .28	5	07/19/04 6
PCB-1254	<.28 U	.011 .28	5	07/19/04
PCB-1260	<.28 U	.018 .28	5	07/19/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	90.		30-150	38
Decachlorobiphenyl (surrogate)	90.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Authorized Thomas a Defande

Date: August 4, 2004

Thomas Alexander

13

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Landfill Certification NY No.: 10155		
Proj. Desc: Package#: 8377 Sample: E 3040 Sample Description: F1A-05-070804 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	07/08/04 07/09/04 07/12/04	Matrix: Solid QC Batch: 071204S2 %Solids: 39.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .044	U	.0057	.044	1	07/15/04
PCB-1221	< .044	U	.0074	.044	1	07/15/04
PCB-1232	< .044	U	.0050	.044	1	07/15/04
PCB-1242	< .044	U	.0037	.044	1	07/15/04
PCB-1248	.19	P	.0029	.044	1	07/15/04 6
PCB-1254	< .044	U	.0017	.044	1	07/15/04
PCB-1260	< .044	U	.0028	.044	1	07/15/04

			₹K.			
Surrogate	8R.	Qual	Limits	Notes		
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	97.		30-150			
Decachlorobiphenyl (surrogate)	87.		30-150			

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Thomas a Defande

Authorized: Date: July 16, 2004

0 5

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

14

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 8377 Sample: E 3040 Sample Description: F1A-05-070804 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	07/08/04 07/09/04 07/12/04	Matrix: Solid QC Batch: 071204S2 %Solids: 39.0 Sample Size: 30 g Primary: N	

Parameter	Resi	ult Qual	MDL	PQL	Dil	Analyzed No	otes
PCB-1016	< .04	4 U	.0057	.044	1	07/15/04	
PCB-1221	< .04	4 U	.0074	.044	1	07/15/04	
PCB-1232	< .04	4 U	.0050	.044	1	07/15/04	
PCB-1242	< .04	4 U	.0037	.044	1	07/15/04	
PCB-1248	.2	25 P	.0029	.044	1	07/15/04	6
PCB-1254	< .04	14 U	.0017	.044	1	07/15/04	
PCB-1260	< .04	14 U	.0028	.044	1	07/15/04	

Surrogate	&R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	104.		30-150	
Decachlorobiphenyl (surrogate)	89.		30-150	

- Notes:
 - 6 : Altered aroclor.
 - 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized:

Date: July 16, 2004

8-D

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 8377 Sample: E 3041 Sample Description: F1A-06-070804 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	07/08/04 07/09/04 07/12/04	Matrix: Solid QC Batch: 071204S2 %Solids: 30.0 Sample Size: 30 g Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.057 U	[.0075	.057	1	07/15/04
PCB-1221	<.057 U	ſ	.0096	.057	1	07/15/04
PCB-1232	< .057 U	ļ	.0065	.057	1	07/15/04
PCB-1242	< .057 U	t	.0048	.057	1	07/15/04
PCB-1248	.011 J	P	.0038	.057	1	07/15/04 6
PCB-1254	< .057 U	ī	.0022	.057	1	07/15/04
PCB-1260	< .057 U	ſ	.0037	.057	1	07/15/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	97.		30-150	
Decachlorobiphenyl (surrogate)	90.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas &

Authorized: _____ Date: July 16, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certification NY No.: 10155				
Package#: 8377 Sample: E 3041 Sample Description: F1A-06-070804 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	07/08/04 07/09/04 07/12/04	Matrix: Solid QC Batch: 071204S2 %Solids: 30.0 Sample Size: 30 g Primary: N			

Parameter	Result	Qual	. MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .057	U	.0075	.057	1	07/15/04
PCB-1221	< .057	U	.0096	.057	1	07/15/04
PCB-1232	< .057	U	.0065	.057	1	07/15/04
PCB-1242	< .057	U	.0048	.057	1	07/15/04
PCB-1248	.016	JР	.0038	.057	1	07/15/04 6
PCB-1254	< .057	U	.0022	.057	1	07/15/04
PCB-1260	< .057	U	.0037	.057	1	07/15/04

Surrogate	*R	Oual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	102.	L	30-150	
Decachlorobiphenyl (surrogate)	93.		30-150	

Notes:

6 : Altered aroclor.

: Altered aroclor. 6

thomas a Olefande

Authorized: Date: July 16, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Project:

Proj. Desc:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Sample Description: SEGMENT 17-B5-071604 Instrument: HP5890-90 Units: mg/Kg Dry weight	Collected: Received: Prepared:	07/16/04	Matrix: Solid QC Batch: 071704S1 %Solids: 68.0 Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< _025	U	.0033	.025	1	07/19/04
PCB-1221	< .025	υ	.0042	.025	1	07/19/04
PCB-1232	< .025	υ	.0029	.025	1	07/19/04
PCB-1242	< .025	υ	.0021	.025	1	07/19/04
PCB-1248	.23	Р	.0017	.025	i	07/19/04 6
PCB-1254	< .025	U	.00098	.025	1	07/19/04
PCB-1260	< .025	U	.0016	.025	l	07/19/04

Surrogate	%R	Qual	TR Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	81.		30-150	
Decachlorobiphenyl (surrogate)	90.		30-150	

Notes:

6 : Altered aroclor.

5 - Altered aroclor.

Thomas & alefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: July 19, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill			6750 . 004 . 62306 m NY No.: 10155
Proj. Desc: Package#: 8436 Sample: E3313 Sample Description: SEGMENT 17-B5-071604 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	07/16/04 07/16/04 07/17/04	Matrix: Solid QC Batch: 071704S1 %Solids: 68.0 Sample Size: 30 g Primary: N

Parameter	Result	. Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .025	υ	.0033	.025	1	07/19/04
PCB-1221	< .025	υ	.0042	.025 /	1	07/19/04
PCB-1232	< .025	υ	.0029	.025	1	07/19/04
PCB-1242	< .025	υ	.0021	.025	1	07/19/04
PCB-1248	.29	Р	.0017	.025	1	07/19/04 6
PCB-1254	< .025	υ	.00098	.025	1	07/19/04
PCB-1260	< .025	U	.0016	.025	1	07/19/04

			*R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	. 87.		30-150	
Decachlorobiphenyl (surrogate)	80.		30-150	

Notes:

- 6 Altered aroclor.
- 6 : Altered aroclor.

Thomas a lefande

Authorized: Date: July 19, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 . 62306 n NY No.: 10155
Package#: 8436 Sample: E 3314 Sample Description: SEGMENT 17-B10-071604 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	07/16/04 07/16/04 07/17/04	Matrix: Solid QC Batch: 071704S1 %Solids: 83.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .020	Ū	.0027	.02	1	07/19/04
PCB-1221	< .020	υ	.0035	.02	1	07/19/04
PCB-1232	< .020	U	.0023	.02	1	07/19/04
PCB-1242	< .020	U	.0017	.02	1	07/19/04
PCB-1248	.092	P	.0014	.02	1	07/19/04 6
PCB-1254	< .020	υ	.00081	.02	1	07/19/04
PCB-1260	< .020	U	.0013	.02	1	07/19/04
		•				•

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	92.	<u></u>	30-150	
Decachlorobiphenyl (surrogate)	98.		30-150	

Notes:

- Altered aroclor. 6 •
- Altered aroclor. •

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Date: July 19, 2004

Thomas Alexander

 $O \cap$

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill – Proj. Desc:	·		6750 . 004 .62306 n NY No.: 10155
Package#: 8436 Sample: E3314 Sample Description: SEGMENT 17-B10-071604 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	07/16/04 07/16/04 07/17/04	Matrix: Solid QC Batch: 071704S1 %Solids: 83.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .020	U	.0027	.02	1	07/19/04
PCB-1221	< .020	U	.0035	.02	1	07/19/04
PCB-1232	< .020	U	.0023	.02	1	07/19/04
PCB-1242	< .020	U	.0017	.02	1	07/19/04
PCB-1248	.12	P	.0014	.02	1	07/19/04 6
PCB-1254	< .020	U	.00081	.02	1	07/19/04
PCB-1260	< .020	U	.0013	.02	1	07/19/04

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	97.		30-150	
Decachlorobiphenyl (surrogate)	86.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

mome A alefande

Authorized: Date: July 19, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

6 .L

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306
Project: Amphenol Richardson Hill Road Landfill		Certificatio	n NY No.: 10155
Proj. Desc:			
Package#: 8436		07/16/04	Matrix: Solid
Sample: E3315	Collected:		
Sample Description: SEGMENT 17-B15-071604	Received:	07/16/04	QC Batch: 071704S1
Instrument: HP5890-90	Prepared:	07/17/04	%Solids: 86.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .020	υ	.0026	.02	1	07/19/04
PCB-1221	< .020	U	.0033	.02	1	07/19/04
PCB-1232	< .020	U	.0022	.02	1	07/19/04
PCB-1242	< .020	υ.	.0017	.02	1	07/19/04
PCB-1248	< .020	U 🖌	.0013	.02	1	07/19/04
PCB-1254	< .020	U	.00077	.02	1	07/19/04
PCB-1260	< .020	U	.0013	.02	1	07/19/04

			*K	
Surrogate	%R	Qual	Limits	Notes 🦯
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	105.		30-150	
Decachlorobiphenyl (surrogate)	101.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: July 19, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill	Certific	ation NY No.: 10155
Proj. Desc: Package#: 8436 Sample: E3316 Sample Description: SEGMENT 17-W6-071604 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: 07/16/04 Received: 07/16/04 Prepared: 07/17/04	4 QC Batch: 071704S1

Parameter	Result Qual	. MDL	PQL Dil	Analyzed Notes
PCE-1016	< .27 U	.036 .2	7 10	07/19/04
PCB-1221	< 27 U	.047 .2	7 10	07/19/04
PCB-1232	< .27 U	.031 .2	7 10	07/19/04
PCB-1242	< .27 U	.023 .2	7 10	07/19/04
PCB-1248	.61 P	.018 .2	7 10	07/19/04 6
PCB-1254	< .27 U	.011 .2	7 10	07/19/04
PCB-1260	<.27 U	.018 .2	7 10	07/19/04

Surrogate	%R	Qual	tk Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	71.		30-150	38
Decachlorobiphenyl (surrogate)	92.		30-150	38

Notes:

- : Altered aroclor. 6
- · Altered aroclor. 6
- Surrogate was diluted 38
- 38 Surrogate was diluted

Thomas & Defandi

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: July 19, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

23

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill		Certificatio	on NY No.: 10155
Proj. Desc: Package#: 8436 Sample: E3316 Sample Description: SEGMENT 17-W6-071604 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	07/16/04 07/16/04 07/17/04	Matrix: Solid QC Batch: 071704S1 %Solids: 62.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .27	U	.036	.27	10	07/19/04
PCB-1221	< .27	U	.047	.27	10	07/19/04
PCB-1232	< .27	U	.031	.27	10	07/19/04
PCB-1242	< _27	U.	.023	.27	10	07/19/04
PCB-1248	.95	P	.018	.27	10	07/19/04 6
PCB-1254	< .27	U .	.011	.27	10	07/19/04
PCB-1260	< .27	U	.018	.27	10	07/19/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	77.		30-150	38
Decachlorobiphenyl (surrogate)	81.		30-150	38

Notes:

- : Altered aroclor. 6
- Altered aroclor. 6
- 38 Surrogate was diluted
- 38 Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: July 19, 2004

homes

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

24

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 .62306 n NY No.: 10155
Package#: 8488 Sample: E3590 Sample Description: SEGMENT 16-W3-072104 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID	Collected: Received: Prepared:	07/22/04 07/23/04 07/23/04	Matrix: Solid QC Batch: 072304S1 %Solids: 57.0 Sample Size: 30 g Primary: Y

Parameter		Result	Qual MDI	L PQL	Dil	Analyzed Notes
PCB-1016		< 1.5 U	.20	1.5	50	07/26/04
PCB-1221	ч. П	< 1.5 U	.25	1.5	50	07/26/04
PCB-1232		< 1.5 U	.17	1.5	50	07/26/04
PCB-1242		< 1.5 U	.13	1.5	50	07/26/04
PCB-1248		4.2	.099	1.5	50	07/26/04 6
PCB-1254	·	< 1.5 U	.059	1.5	50	07/26/04
PCB-1260		< 1.5 U	.096	1.5	50	07/26/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38.
Decachlorobiphenyl (surrogate)	39.		30-150	38

Notes:

- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 Surrogate was diluted :

thomas a lefande

Authorized: Date: August 4, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill		Certificatio	n NY No.: 10155
Project: Amphenol Richardson Hill Road Landhil Proj. Desc: Package#: 8488 Sample: E 3590 Sample Description: SEGMENT 16-W3-072104 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID	Collected: Received: Prepared:	07/22/04 07/23/04 07/23/04	Matrix: Solid QC Batch: 072304S1 %Solids: 57.0 Sample Size: 30 g Primary: N
			·

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 1.5	υ	.20	1.5	50	07/26/04
PCB-1221	< 1.5	υ	.25	1.5	50	07/26/04
PCB-1232	< 1.5	U	.17	1.5	50	07/26/04
PCB-1242	< 1.5	U	.13	1.5	50	07/26/04
PCB-1248	4.8		.099	1.5	50	07/26/04 6
PCB-1254	< 1.5	U	.059	1.5	50	07/26/04
PCB-1260	< 1.5	U	.096	1.5	50	07/26/04

Surrogate	% R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	119.	2004 1	30-150	38
Decachlorobiphenyl (surrogate)	38.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a alefand

Authorized: Date: August 4, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750,004,62306 Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 8488 07/22/04 Collected: Matrix: Solid Sample: E3591 Received: 07/23/04 QC Batch: 072304S1 Sample Description: SEGMENT 16-W4-072104 Prepared: 07/23/04 Instrument: HP5890-89 %Solids: 77.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: RTXCLP, 30m x .53mmID Number of analytes: 7 Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .022	υ	.0029	.022	1	07/26/04
PCB-1221	< .022	U	.0038	.022	1	07/26/04
PCB-1232	< .022	υ	.0025	.022	1	07/26/04
PCB-1242	< .022	U	.0019	.022	1	07/26/04
PCB-1248	.058		.0015	.022	1	07/26/04 6
PCB-1254 ·	< .022	U	.00087	.022	1	07/26/04
PCB-1260	< .022	U	.0014	.022	1	07/26/04

Surrogate	%R	Oual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	74.		30-150	
Decachlorobiphenyl (surrogate)	83.		30-150	

Notes:

- Altered aroclor. 6 •
- Altered aroclor.

thomas a lefande

Date: August 4, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized:

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:Package#:8488Sample:E3591Sample Description:SEGMENT 16-W4-072104Instrument:HP5890-89Units:mg/Kg Dry weightCollected:07/23/04Or/23/04%Solids:Or/23/04%Solids:Prepared:07/23/04Or/23/04%Solids:Prepared:07/23/04Pr	Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		
Number of analytes: 7 Column Name. RTACH 2, John & John MB	Proj. Desc: Package#: 8488 Sample: E 3591 Sample Description: SEGMENT 16-W4-072104 Instrument: HP5890-89	Received: Prepared:	07/23/04	QC Batch: 072304S1 %Solids: 77.0

Parameter	Result Qual	MDL	PQL	Dil	<u>Analyzed Notes</u>
PCB-1016	< .022 U	.0029	.022	1	07/26/04
PCB-1221	<.022 U	.0038	.022	1	07/26/04
PCB-1232	<.022 U	.0025	.022	1	07/26/04
PCB-1242	< .022 U	.0019	.022	1	07/26/04
PCB-1248	.073	.0015	.022	1	07/26/04 6
PCB-1254	< .022 U	.00087	.022	1	07/26/04
PCB-1254	< .022 U	.0014	.022	1	07/26/04

			%R	
Surrogate	%R	Qual	<u>Limits</u>	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	
Decachlorobiphenyl (surrogate)	79.		30-150	

Notes:

- Altered aroclor. б
- Altered aroclor.

thomas a alefande

Authorized: Date: August 4, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			5750 . 004 . 62306 1 NY No.: 10155
Package#: 8539 Sample: E3828 Sample Description: SEGMENT 15-B7-072804 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID	Collected: Received: Prepared:	07/29/04 07/30/04 07/30/04	Matrix: Solid QC Batch: 073004S3 %Solids: 61.0 Sample Size: 30 g Primary: Y

Parameter	Result Qua	1 MDL	PQL Dil	Analyzed Notes
PCB-1016	<.56 U	.073 .56	20	08/02/04
PCB-1221	<.56 U	.095 .56	20	08/02/04
PCB-1232	<.56 U	.064 .56	20	08/02/04
PCB-1242	<.56 U	.047 .56	20	08/02/04
PCB-1248	3.9 P	.037 .56	20	08/02/04 6
PCB-1254	<.56 U	.022 .56	20	08/02/04
PCB-1260	<.56 U	.036 .56	20	08/02/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	94.		30-150	38
Decachlorobiphenyl (surrogate)	77.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a alefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: August 11, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

ſ

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 8539 Sample: 07/29/04 E3828 Collected: Matrix: Solid Sample Description: SEGMENT 15-B7-072804 Received: 07/30/04 QC Batch: 073004S3 Instrument: HP5890-89 Prepared: 07/30/04 %Solids: 61.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID Primary: N

Job No.: 6750, 004.62306 Certification NY No.: 10155

Parameter	Result Qual	MDL	PQL Dil	Analyzed Notes
PCB-1016	<.56 U	.073 .56		08/02/04
PCB-1221	<.56 U	.095 .50	5 20	08/02/04
PCB-1232	<.56 U	.064 .56	5 20	08/02/04
PCB-1242	<.56 U	.047 .56	5 20	08/02/04
PCB-1248	3.1 P	.037 .56	5 20	08/02/04 6
PCB-1254	<.56 U	.022 .56	5 20	08/02/04
PCB-1260	<.56 U	.036 .56	5 20	08/02/04

Surrogate	*R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	75.		30-150	38
Decachlorobiphenyl (surrogate)	74.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- Surrogate was diluted 38 ٠

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

homes a lefe Authorized:

Date: August 11, 2004

Thomas Alexander

Proj. Desc:

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Package#: 8539 Sample: E3829 Sample Description: SEGMENT 15-W5-072104 Instrument: HP5890-89		07/29/04 07/30/04 07/30/04	Matrix: Solid QC Batch: 073004S3 %Solids: 66.0
Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID		07/30/04	%Solids: 66.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .26	υ	.034	.26	10	08/02/04
PCB-1221	<26	υ	.044	.26	10	08/02/04
PCB-1232	< .26	U	.029	.26	10	08/02/04
PCB-1242	< .26	U	.022	.26	10	08/02/04
PCB-1248	1.2		.017	.26	10	08/02/04 6
PCB-1254	< .26	U	.010	.26	10	08/02/04
PCB-1260	< .26	U	.017	.26	10	08/02/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	97.		30-150	38
Decachlorobiphenyl (surrogate)	78.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

nona Authorized:

Date: August 11, 2004

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			Certificatio	MINT NO.: 10155
Package#: 8539 Sample: E3829 Sample Description: SEGMENT Instrument: HP5890-89	15-W5-072104	Collected: Received: Prepared:	07/29/04 07/30/04 07/30/04	Matrix: Solid QC Batch: 073004S3 %Solids: 66.0
Units: mg/Kg Dry weight Number of analytes: 7 Colum	nn Name: RTXCLP, 30m x .53mmID			Sample Size: 30 g Primary: N

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.26 U	.034	.26	10	08/02/04
PCB-1221	<.26 U	.044	.26	10	08/02/04
PCB-1232	<.26 U	.029	.26	10	08/02/04
PCB-1242	<.26 U	.022	.26	10	08/02/04
PCB-1248	1.1	.017	.26	10	08/02/04 6
PCB-1254	<.26 U	.010	.26	10	08/02/04
PCB-1260	<.26 U	.017	.26	10	08/02/04

Surrogate		Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	70.		30-150	38
Decachlorobiphenyl (surrogate)	81.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

thomas a Defande Authorized:

Date: August 11, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Ccrtification NY No.: 10155

Proj. De	sc:	· · · · · · · · · · · · · · · · · · ·			Certificatio	m 141 140., 10155
Packages Sample: Sample I Instrume Units:	#: 8564 E 3969 Description: SEG	t	0204 RTXCLP2, 30m x .53mmID	Collected: Received: Prepared:	08/03/04 08/04/04 08/06/04	Matrix: Solid QC Batch: 080604S1 %Solids: 69.0 Sample Size: 30 g Primary: Y

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.25 U	.032	.25	10	08/06/04
PCB-1221	< .25 U	.042	.25	10	08/06/04
PCB-1232	<.25 U	.028	.25	10	08/06/04
PCB-1242	<.25 U	.021	.25	10	08/06/04
PCB-1248	<.25 U	.016	.25	10	08/06/04
PCB-1254	.84	.0097	.25	10	08/06/04 6
PCB-1260	<.25 U	.016	.25	10	08/06/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	93.		30-150	38
Decachlorobiphenyl (surrogate)	82.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted.

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized:

Date: August 9, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

A A

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750,004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill Certification] Proj. Desc:		n NY No.: 10155	
Package#:8564Sample:E 3969Sample Description:SEGMENT 15-B14-080204Instrument:HP5890-90Units:mg/Kg Dry weightNumber of analytes:7Column Name:DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/03/04 08/04/04 08/06/04	Matrix: Solid QC Batch: 080604S1 %Solids: 69.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .25	U	.032	.25	10	08/06/04
PCB-1221	< .25	U	.042	.25	10	08/06/04
PCB-1232	< .25	U	.028	.25	10	08/06/04
PCB-1242	< .25	U	.021	.25	10	08/06/04
PCB-1248	< .25	υ	.016	.25	10	08/06/04
PCB-1254	1.0		.0097	.25	10	08/06/04 6
PCB-1260	< .25	U	.016	.25	10	08/06/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	96.		30-150	38
Decachlorobiphenyl (surrogate)	98.		30-150	38

Notes:

- 6 Altered aroclor. •
- 6 Altered aroclor. •
- 38 Surrogate was diluted
- 38 Surrogate was diluted

Thomas

Authorized: Date: August 9, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

D....! D..

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8564			
Sample: E3970	Collected:	08/03/04	Matrix: Solid
Sample Description: SEGMENT 15-W10-080204	Received:	08/04/04	QC Batch: 080604S1
Instrument: HP5890-89	Prepared:	08/06/04	%Solids: 75.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .23	υ	.030	.23	10	08/06/04
PCB-1221	< .23	υ	.039	.23	10	08/06/04
PCB-1232	< .23	υ	.026	.23	10	08/06/04
PCB-1242	< .23	υ	.019	.23	10	08/06/04
PCB-1248	< .23	U	.015	.23	10	08/06/04
PCB-1254	1.4		.0089	.23	10	08/06/04 6
PCB-1260	< .23	U	.015	.23	10	08/06/04

Surrogate	*R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	93.		30-150	38
Decachlorobiphenyl (surrogate)	80.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Authorized: Thomas & Alefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: August 9, 2004

Thomas Alexander

17

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750, 004, 62306 Certification NY No · 10155

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certification NY No.: 10155			
Package#: 8564 Sample: E 3970 Sample Description: SEGMENT 15-W10-080204 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/03/04 08/04/04 08/06/04	Matrix: Solid QC Batch: 080604S1 %Solids: 75.0 Sample Size: 30 g Primary: N		

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.23 U	.030	.23	10	08/06/04
PCB-1221	<.23 U	.039	.23	10	08/06/04
PCB-1232	< .23 U	.026	.23	10	08/06/04
PCB-1242	<.23 U	.019	.23	10	08/06/04
PCB-1248	< .23 U	.015	.23	10	08/06/04
PCB-1254	1.7	.0089	.23	10	08/06/04 6
PCB-1260	<.23 U	.015	.23	10	08/06/04

Surrogate	۶R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	96.		30-150	38
Decachlorobiphenyl (surrogate)	101.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- : Surrogate was diluted 38
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Wer. Authorized:

Date: August 9, 2004

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 8582			
Sample: E 4048	Collected:	08/05/04	Matrix: Solid
Sample Description: SEGMENT 15-W12-080404	Received:	08/06/04	QC Batch: 080604S1
Instrument: HP5890-89	Prepared:	08/06/04	%Solids: 63.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Primary: Y
			2

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .13 U	.018	.13	5	08/09/04
PCB-1221	< .13 U	.023	.13	5	08/09/04
PCB-1232	< .13 U	.015	. 13	5	08/09/04
PCB-1242	< .13 U	.011	.13	5	08/09/04
PCB-1248	< .13 U	.0090	.13	5	08/09/04
PCB-1254	.48 P	.0053	.13	5	08/09/04 6
PCB-1260	< .13 U	.0087	.13	5	08/09/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	97.		30-150	38
Decachlorobiphenyl (surrogate)	88.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: August 11, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8582 Sample: E 4048 Sample Description: SEGMENT 15-W12-080404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/05/04 08/06/04 08/06/04	Matrix: Solid QC Batch: 080604S1 %Solids: 63.0 Sample Size: 30 g Primary: N
--	--------------------------------------	----------------------------------	---

Parameter	Result Qual	1 MDL 3	PQL Dil	Analyzed Notes
PCB-1016	< .13 U	.018 .13	5	08/09/04
PCB-1221	< .13 U	.023 .13	5	08/09/04
PCB-1232	< .13 U	.015 .13	5	08/09/04
PCB-1242	< .13 U	.011 .13	5	08/09/04
PCB-1248	< .13 U	.0090 .13	5	08/09/04
PCB-1254	.86 P	.0053 .13	5	08/09/04 6
PCB-1260	< .13 U	.0087 .13	5	08/09/04
	,			

		%R			
Surrogate	%R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	105.		30-150	38	
Decachlorobiphenyl (surrogate)	105.		30-150	38	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas a Defande

Authorized: Date: August 11, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 8582			
Sample: E 4049	Collected:	08/05/04	Matrix: Solid
Sample Description: SEGMENT 15-W13-080404	Received:	08/06/04	QC Batch: 080604S1
Instrument: HP5890-89	Prepared:	08/06/04	%Solids: 62.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Primary: Y

Parameter	Resu	lt Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .55	U	.072	.55	20	08/09/04
PCB-1221	< .55	U	.093	-55	20	08/09/04
PCB-1232	< .55	U	.063	.55	20	08/09/04
PCB-1242	. < .55	U	.046	.55	20	08/09/04
PCB-1248	< .55	U	.036	.55	20	08/09/04
PCB-1254	2.7	P	.022	.55	20	08/09/04 6
PCB-1260	< .55	U	.035	.55	20	08/09/04

Surrogate	۶R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	106.		30-150	38
Decachlorobiphenyl (surrogate)	88.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Thomas a alefande

Authorized: Date: August 11, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Proj. Desc:

Client: Parsons Engineering Science, Inc.

Project: Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Package#:8582Sample:E 4049Sample Description:SEGMENT 15-W13-080404Instrument:HP5890-90Units:mg/Kg Dry weightNumber of analytes:7Column Name:DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/06/04	Matrix: Solid QC Batch: 080604S1 %Solids: 62.0 Sample Size: 30 g Primary: N
---	--------------------------------------	----------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .55	U	.072	.55	20	08/09/04
PCB-1221	< .55	υ	.093	.55	20	08/09/04
PCB-1232	< .55	U	.063	.55	20	08/09/04
PCB-1242	< .55	υ	.046	.55	20	08/09/04
PCB-1248	< .55	U	.036	.55	20	08/09/04
PCB-1254	3.7	P	.022	.55	20	08/09/04 6
PCB-1260	< .55	U	.035	.55	20	08/09/04

			*R	•
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	100.		30-150	38
Decachlorobiphenyl (surrogate)	110.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: 1 s and

Date: August 11, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		
Proj. Desc:			
Package#: 8703		00/00/01	
Sample: E 5256	Collected:	08/20/04	Matrix: Solid
Sample Description: NB-B1-082004	Received:	08/24/04	QC Batch: 082704S1
Instrument: HP5890-90	Prepared:	08/27/04	%Solids: 87.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: Y

Parameter	Result Qu	al MDL	PQL Dil	Analyzed Notes
PCB-1016	<.020 U	.0026 .02	1	08/27/04
PCB-1221	<.020 U	.0033 .02	1	08/27/04
PCB-1232	<.020 U	.0022 .02	. 1	08/27/04
PCB-1242	<.020 U	.0017 .02	1	08/27/04
PCB-1248	.036	.0013 .02	1	08/27/04
PCB-1254	<.020 U	.00077 .02	1	08/27/04
PCB-1260	< .020 U	.0013 .02	1	08/27/04

•			%R			
Surrogate		Qual	Limits	Notes		
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	96.		30-150			
Decachlorobiphenyl (surrogate)	86.		30-150			

Notes:

TASM Authorized:

Date: August 27, 2004

Thomas Alexander

05

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8703 Sample: E 5256 Sample Description: NB-B1-082004 Instrument: HP5890-90 Units: mg/Kg Dry weight	Collected: Received: Prepared:	08/20/04 08/24/04 08/27/04	Matrix: Solid QC Batch: 082704S1 %Solids: 87.0 Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.020 t	Ü	.0026	.02	1	08/27/04
PCB-1221	<.020 t	U .	.0033	.02	1	08/27/04
PCB-1232	< .020 t	υ	.0022	.02	1	08/27/04
PCB-1242	< .020 t	U	.0017	.02	1	08/27/04
PCB-1248	.035		.0013	.02	1	08/27/04
PCB-1254	< .020 t	U	.00077	.02	1	08/27/04
PCB-1260	< .020 0	U	.0013	.02	1	08/27/04

			%R	
Surrogate	₽R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	98.		30-150	
Decachlorobiphenyl (surrogate)	93.		30-150	

Notes:

ale

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Date: September 22, 2004

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8703 Sample: E 5257 Sample Description: SB-B1-082004 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/20/04 08/24/04 08/27/04	Matrix: Solid QC Batch: 082704S1 %Solids: 85.0 Sample Size: 30 g Primary: Y
---	--------------------------------------	----------------------------------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .020	U	.0026	.02	1	08/27/04
PCB-1221	< .020	υ	.0034	.02	1.	08/27/04
PCB-1232	< .020	U	.0023	.02	1	08/27/04
PCB-1242	< .020	U	.0017	.02	1	08/27/04
PCB-1248	.18		.0013	.02	1	08/27/04
PCB-1254	< .020	U	.00079	.02	1	08/27/04
PCB-1260	< .020	U	.0013	.02	1	08/27/04

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	94.		30-150	
Decachlorobiphenyl (surrogate)	85.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

rnde

Authorized: ______ Date: August 27, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750, 004, 62306 Certification NY No.: 10155

-

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .020	υ	.0026	.02	1	08/27/04
PCB-1221	< .020	U	:0034	.02	1	08/27/04
PCB-1232	< .020	U	.0023	.02	1	08/27/04
PCB-1242	< .020	U	.0017	.02	1	08/27/04
PCB-1248	.17		.0013	.02	1	08/27/04
PCB-1254	< .020	U	.00079	.02	1	08/27/04
PCB-1260	< .020	ប	.0013	.02	1	08/27/04

			*R	
Surrogate	۶R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	89.		30-150	
Decachlorobiphenyl (surrogate)	91.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated,

P - RPD>40% between primary and confirmation.

thomas a lefand Authorized: Date: September 22, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

 $\mathbf{08}$

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc: Package#: 8725 Sample: E 5398 Sample Description: SEGMENT 14-B2-082304 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/24/04 08/26/04 08/27/04	Matrix: Solid QC Batch: 082704S1 %Solids: 74.0 Sample Size: 30 g Primary: Y
---	--------------------------------------	----------------------------------	---

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .23	U	.030	.23	10	08/27/04
PCB-1221	< .23	U	.039	.23	10	08/27/04
PCB-1232	< .23	υ	.026	.23	10	08/27/04
PCB-1242	< .23	U	.019	.23	10	08/27/04
PCB-1248	< .23	U	.015	.23	10	08/27/04
PCB-1254	. 67	Р	.0091	.23	10	08/27/04 6
PCB-1260	< .23	U	.015	.23	10	08/27/04

			%R		
Surrogate	8R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	82.		30-150	38	
Decachlorobiphenyl (surrogate)	90.		30-150	38	

Notes:

- : Altered aroclor. 6
- 6 : Altered aroclor.
- Surrogate was diluted 38 :
- 38 Surrogate was diluted ٠

rnel

Authorized:

Date: September 22, 2004

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Parameter	Result Qua	1 MDL	PQL Dil	Analyzed Notes
PCB-1016	< .23 U	.030 .23	10	08/27/04
PCB-1221	<.23 U	.039 .23	10	08/27/04
	<.23 U	.026 .23	10	08/27/04
	<.23 U	.019 .23	10	08/27/04
	< .23 U	.015 .23	10	08/27/04
	1.3 P	.0091 .23	10	08/27/04 6
PCB-1260	< .23 U	.015 .23	10	08/27/04
PCB-1232 PCB-1242 PCB-1248 PCB-1254	< .23 U < .23 U < .23 U < .23 U 1.3 P	.026 .23 .019 .23 .015 .23 .0091 .23	10 10 10 10	08/27/04 08/27/04 08/27/04 08/27/04

			8R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	77.		30-150	38
Decachlorobiphenvl (surrogate)	89.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Thomas & Defande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Project: Proj. Desc: Package#: 8725 08/24/04 Matrix: Solid Collected: E 5397 Sample: Received: 08/26/04 Sample Description: SEGMENT 14-W1-082304 Prepared: 08/27/04 %Solids: 77.0 Instrument: HP5890-90 Units: mg/Kg Dry weight Column Name: DB-1701, 30m x .53mm ID Number of analytes: 7

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .22	U	.029	.22	10	08/27/04
PCB-1221	< .22	ប	.038	.22	10	08/27/04
PCB-1232	< .22	U	.025	.22	10	08/27/04
PCB-1242	< .22	U	.019	.22	10	08/27/04
PCB-1248	< .22	U	.015	.22	10	08/27/04
PCB-1254	1.5		.0087	.22	10	08/27/04 6
PCB-1260	< .22	U	.014	.22	10	08/27/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	74.		30-150	38
Decachlorobiphenyl (surrogate)	89.		30-150	38

Notes:

- : Altered aroclor. 6
- : Altered aroclor. 6
- 38 : Surrogate was diluted
- · Surrogate was diluted 38

Authorized:

Date: August 31, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level. J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

09

QC Batch: 082704S1 Sample Size: 30 g Primary: Y

Job No.: 6750.004.62306

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155
Proj. Desc:Package#:8725Sample:E 5397Sample Description:SEGMENT 14-W1-082304Rec	llected: 08/24/04 Matrix: Solid ceived: 08/26/04 QC Batch: 082704S1 epared: 08/27/04 %Solids: 77.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .22	U	.029	.22	10	08/27/04
PCB-1221	< .22	U	.038	.22	10	08/27/04
PCB-1232	< .22	υ	.025	.22	10	08/27/04
PCB-1242	< .22	U	.019	.22	10	08/27/04
PCB-1248	< .22	U	.015	.22	10	08/27/04
PCB-1254	1.7		.0087	.22	10	08/27/04 6
PCB-1260	< .22	υ	.014	.22	10	08/27/04

			8R	
Surrogate	۶R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	65.		30-150	38
Decachlorobiphenyl (surrogate)	85.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Authorized: Thomas a Clefrand

B - Analyte detected above the PQL in the associated Prep Blank.Authorized:# - Outside control limits.U - Undetected at the reported level.Date: August 3

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: August 31, 2004 Th

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750_004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		n NY No.: 10155
Proj. Desc: Package#: 8725 Sample: E 5399 Sample Description: SEGMENT 14-B10-082404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/24/04 08/26/04 08/27/04	Matrix: Solid QC Batch: 082704S1 %Solids: 75.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .023	U	.0030	.023	1	08/27/04
PCB-1221	< .023	U	.0039	.023	1	08/27/04
PCB-1232	< .023	υ	.0026	.023	1	08/27/04
PCB-1242	< .023	U	.0019	.023	1	08/27/04
PCB-1248	< .023	υ	.0015	.023	1	08/27/04
PCB-1254	.049	P	.00089	.023	1	08/27/04 6
	< .023	U	.0015	.023	1	08/27/04

	*8					
Surrogate	%R	Qual	Limits	Notes		
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	95.		30-150			
Decachlorobiphenyl (surrogate)	86.		30-150			

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

Authorized:

Date: September 22, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill		Certificatio	n NY NO.: 10155
Proj. Desc:			
Package#: 8725 Sample: E5399 Sample Description: SEGMENT 14-B10-082404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	08/24/04 08/26/04 08/27/04	Matrix: Solid QC Batch: 082704S1 %Solids: 75.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .023	U	.0030	.023	1	08/27/04
PCB-1221	< .023	υ	.0039	.023	1	08/27/04
PCB-1232	< .023	U	.0026	.023	1	08/27/04
PCB-1242	< .023	U	.0019	.023	1	08/27/04
PCB-1248	< .023	U	.0015	.023	1	08/27/04
PCB-1254	.086	P	.00089	.023	1	08/27/04 6
PCB-1260	< .023	U	.0015	.023	1	08/27/04

Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	93.		30-150	
Decachlorobiphenyl (surrogate)	93.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: 10.54740 (2 Date: September 22, 2004 Thor

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Sample: E 5599 Sample Description: SEGMENT 14-W14-082504 Instrument: HP5890-89 Units: mg/Kg Dry weight	Collected: Received: Prepared:	08/26/04 08/27/04 08/27/04	Matrix: Solid QC Batch: 082704S1 %Solids: 67.0 Sample Size: 30 g Primary: Y
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Primary: Y

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.025 U	.0033	.025	1	08/31/04
PCB-1221	<.025 U	.0043	.025	1	08/31/04
PCB-1232	<.025 U	.0029	.025	1	08/31/04
PCB-1242	<.025 U	.0021	.025	1	08/31/04
PCB-1248	< .025 U	.0017	.025	1	08/31/04
PCB-1240 PCB-1254	< .025 U	.0010	.025	1	08/31/04
PCB-1254 PCB-1260	< .025 U	.0016	.025	1	08/31/04

	%R						
Surrogate	8R	Qual	Limits	Notes			
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	75.		30-150				
Decachlorobiphenvl (surrogate)	77.		30-150				

Notes:

Inde Authorized:/

vel. Date: August 31, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

	Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill			750 . 004 . 62306 NY No.: 10155
•	Proj. Desc: Package#: 8816 Sample: E 6123 Sample Description: SEGMENT 14-B19-083104 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	08/31/04 09/03/04 09/08/04	Matrix: Solid QC Batch: 090804S1 %Solids: 69.0 Sample Size: 30 g Primary: Y

Parameter		Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016		< .025	U ·	.0032	.025	1	09/09/04
PCB-1221		< .025	.U	.0042	.025	1	09/09/04
PCB-1232	4	< .025	U	.0028	.025	1	09/09/04
PCB-1242		< .025	U	.0021	.025	1	09/09/04
PCB-1248		< .025	U	.0016	.025	1	09/09/04
PCB-1254		.013	JP	.00097	.025	1	09/09/04 6
PCB-1260		< .025	U	.0016	.025	1	09/09/04

Surrogate	۶R	Qual	*R Limits Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	93.		30-150	
Decachlorobiphenyl (surrogate)	97.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Authorized: _____ Date: October 7, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

B - Analyte detected above the PQL in the associated Prep Blank.

E - Concentration exceeded the calibration range and is estimated.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.: 6	750.004.62306
Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		
Proj. Desc:			
Package#: 8816 Sample: E6123 Sample Description: SEGMENT 14-B19-083104 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	08/31/04 09/03/04 09/08/04	Matrix: Solid QC Batch: 090804S1 %Solids: 69.0 Sample Size: 30 g Primary: N

Parameter			Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	• .		< .025	U	.0032	.025	1	09/09/04
PCB-1221			< .025	U	.0042	.025	1	09/09/04
PCB-1232			< .025	U	.0028	.025	1	09/09/04
PCB-1242		,	< .025	U	.0021	.025	1	09/09/04
PCB-1248			< .025	U	.0016	.025	1	09/09/04
PCB-1254			.0099	JP	.00097	.025	1	09/09/04 6
PCB-1260			< .025	U	.0016	.025	1	09/09/04

Surrogate	%R	Qual	*R Limits	Notes
2, 4, 5, 6-Tetrachloro-m-Xylene (surrogate)	102.		30-150	
Decachlorobiphenyl (surrogate)	104.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: October 7, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.: 6	750.004.62306
Project: Amphenol Richardson Hill Road Landfill		Certification	NY No.: 10155
Proj. Desc:			
Package#: 8816 Sample: E 6124 Sample Description: SEGMENT 14-W25-090104 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	09/01/04 09/03/04 N 09/08/04	Matrix: Solid QC Batch: 090804S1 %Solids: 68:0 Sample Size: 30 g Primary: Y

Parameter	 Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .050	U	.0066	.05	2	09/09/04
PCB-1221	< .050	U	.0085	.05	2	09/09/04
PCB-1232	< .050	U	.0057	.05	2	09/09/04
PCB-1242	< .050	υ	.0042	.05	2	09/09/04
PCB-1248	< .050	U	.0033	.05	2	09/09/04
PCB-1254	.41	Р	.0020	.05	2	09/09/04
PCB-1260	< .050	U	.0032	.05	2	09/09/04

			ðΚ	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38
Decachlorobiphenyl (surrogate)	96.		-30-150	- 38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: September 9, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

~

NQ

Analytical Results Method: 8082

%Solids: 68.0

Primary: N

Sample Size: 30 g

Client: Parsons Engineering Science, Inc. Job No.: 6750,004.62306 Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 09/01/04 Collected: Matrix: Solid Received: 09/03/04 \ QC Batch: 090804S1 SEGMENT 14-W25-090104 Prepared: 09/08/04

 $\left| \right\rangle$

Instrument: HP5890-90 mg/Kg Dry weight Units:

8816

E 6124

Sample Description:

Project:

Sample:

Proj. Desc: Package#:

Column Name: DB-1701, 30m x .53mm ID Number of analytes: 7

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .050	Ŭ	.0066	.05	2	09/09/04
PCB-1221	< .050	U	.0085	.05	2	09/09/04
PCB-1232	< .050	U	.0057	.05	2	09/09/04
PCB-1242	< .050	σ	.0042	.05	2	09/09/04
PCB-1248	< .050	U	.0033	.05	2	09/09/04
PCB-1254	.24	P	.0020	.05	2	09/09/04
PCB-1260	< .050	U	.0032	.05	2	09/09/04

			%R	
Surrogate	8R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	95.		30-150	38
Decachlorobiphenyl (surrogate)	102.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 Surrogate was diluted ٠

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: September 9, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.: 6	5750.004.62306
Project: Amphenol Richardson Hill Road Landfill		Certification	1 NY No.: 10155
Proj. Desc:			
Package#: 8816 Sample: E 6125 Sample Description: SEGMENT 14-W28-090204 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	09/02/04 09/03/04 N 09/08/04	Matrix: Solid QC Batch: 090804S1 %Solids: 72.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .024	U	.0031	.024	1	09/09/04
PCB-1221	< .024	U	.0040	.024	1	09/09/04
PCB-1232	< .024	U	.0027	.024	1	09/09/04
PCB-1242	< .024	U	.0020	.024	1	09/09/04
PCB-1248	< .024	U	.0016	.024	1	09/09/04
PCB-1254	.0041	J	.00093	.024	1	09/09/04 6
PCB-1260	< .024	υ	.0015	.024	1	09/09/04

Surrogate		%R	Qual	*R Limits	Notes
2, 4, 5, 6-Tetrachloro-m-Xylene	(surrogate)	96.		30-150	
Decachlorobiphenyl (surrogate	2)	97.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

rall Authorized:

Date: October 7, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Sample:E 6125Collection:Sample Description:SEGMENT 14-W28-090204ReceitInstrument:HP5890-90PrepaUnits:mg/Kg Dry weightNumber of analytes:7Number of analytes:7Column Name:DB-608, 30m x .53mm ID		Matrix: Solid QC Batch: 090804S1 %Solids: 72.0 Sample Size: 30 g Primary: Y
---	--	---

Parameter	Result Qual	MDL PQL	Dil	Analyzed Notes
PCB-1016	< .024 U	.0031 .024	1	09/09/04
PCB-1221	<.024 U	.0040 .024	1	09/09/04
PCB-1232	<.024 U	.0027 .024	1	09/09/04
PCB-1242	< .024 U	.0020 .024	1	09/09/04
PCB-1248	<.024 U	.0016 .024	1	09/09/04
PCB-1254	.0042 J	.00093 .024	1	09/09/04 6
PCB-1260	<.024 U	.0015 .024	1	09/09/04

Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		. 30-150	
Decachlorobiphenyl (surrogate)	92.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

Gande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation:.

Authorized: Date: October 7, 2004

о. т

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Package#:8927Collected:09/13/04Matrix:SolidSample:E 6760Collected:09/13/04QC Batch:092204S1Sample Description:SEGMENT 13-W3-091304Received:09/17/04QC Batch:092204S1Instrument:HP5890-90Prepared:09/22/04%Solids:69.0Units:mg/Kg Dry weightSample Size:30 gNumber of analytes:7Column Name:DB-1701, 30m x .53mm IDPrimary:Y	Proj. Desc:			
	Package#: 8927 Sample: E 6760 Sample Description: SEGMENT 13-W3-091304 Instrument: HP5890-90 Units: mg/Kg Dry weight	Received:	09/17/04	QC Batch: 092204S1 %Solids: 69.0 Sample Size: 30 g

Parameter	Result Qual	MDL PQL	Dil Analyzed Notes
PCB-1016	<.025 U	.0032 .025	1 09/24/04
PCB-1221	<.025 U	.0042 .025	1 09/24/04
PCB-1232	< .025 U	.0028 .025	1 09/24/04
PCB-1242	<.025 U	.0021 .025	1 09/24/04
PCB-1248	.015 J	.0016 .025	1 09/24/04 é
PCB-1254	< .025 U	.00097 .025	1 .09/24/04
PCB-1260	< .025 U	.0016 .025	1 09/24/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	99.		30-150	
Decachlorobiphenyl (surrogate)	73-		30-150	

Notes:

- 6 : Altered aroclor.
- 5 : Altered aroclor.

Jusmas a Defrade

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: October 16, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client:	Parsons Engineering Science, Inc.		Job No.: 6	5750.004.62306
Project:	Amphenol Richardson Hill Road Landfill		Certification	NY No.: 10155
Proj. De	sc:			
Package	#: 8927		00/12/04	
Sample:	E 6760	Collected:	09/13/04	Matrix: Solid
Sample	Description: SEGMENT 13-W3-091304	Received:	09/17/04 n	QC Batch: 092204S1
Instrume	ent: HP5890-90	Prepared:	09/22/04	%Solids: 69.0
Units:	mg/Kg Dry weight			Sample Size: 30 g
Number	of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N

Parameter	 Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .025	U	.0032	.025	1	09/24/04
PCB-1221	< .025	U	.0042	.025	1	09/24/04
PCB-1232	< .025	υ	.0028	.025	1	09/24/04
PCB-1242	< .025	U	.0021	.025	1	09/24/04
PCB-1248	.013	J	.0016	.025	1	09/24/04 6
PCB-1254	< .025	U	.00097	.025	1	09/24/04
PCB-1260	< .025	U	.0016	.025	1	09/24/04

Surrogate	۶R	Qual	∛K Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.	-	30-150	
Decachlorobiphenyl (surrogate)	63.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

Thomas & Definde

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: ______ Date: October 16, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

1.0

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NV No · 10155

Project: Amphenol Richardson Hill Road Landfill		Certification	NY No.: 10155
 Proj. Desc: Package#: 8927 Sample: E 6761 Sample Description: SEGMENT 13-W10-091404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	09/14/04 09/17/04 09/22/04	Matrix: Solid QC Batch: 092204S1 %Solids: 85.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .020	U	.0026	.02	1	09/24/04
PCB-1221	< .020	U	.0034	.02	1	09/24/04
PCB-1232	< .020	U	.0023	.02	1	09/24/04
PCB-1242	< .020	υ	.0017	.02	1	09/24/04
PCB-1248	< .020	U	.0013	.02	1	09/24/04
PCB-1254	< .020	U	.00079	.02	1	09/24/04
PCB-1260	< .020	U	.0013	.02	1	09/24/04

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	109.		30-150	
Decachlorobiphenyl (surrogate)	86.		30-150	

Notes:

Johnde Monna & Authorized:

Date: October 16, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.	Job No.: 6750.004.62306
Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155
Proj. Desc:	
Package#: 8927 Sample: E 6762 Sample Description: SEGMENT 13-B12-091404 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: 09/14/04 Received: 09/17/04 Prepared: 09/22/04 Matrix: Solid QC Batch: 092204S1 %Solids: 78.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .022	U	.0029	.022	1	09/24/04
PC3-1221	< .022	U	.0037	.022	1	09/24/04
PCB-1232	< .022	U	.0025	.022	1	09/24/04
PCB-1242	< .022	Ω	.0019	.022	1	09/24/04
PCB-1248	.020	J	.0014	.022	1	09/24/04 6
PCB-1254	< .022	U	.00086	.022	1	09/24/04
PCB-1260	< .022	U	.0014	.022	1	09/24/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	105.		30-150	
Decachlorobiphenyl (surrogate)	82.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor

ale Authorized:

Date: September 28, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.				Job No.:	67:	50.004.62306
Project: Amphenol Richardson Hill Road La	ndfill			Certifica	tion N	VY No.: 10155
Proj. Desc: Package#: 8927 Sample: E 6762 Sample Description: SEGMENT 13-B12-091 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name:		x .53mm II	Collected: Received: Prepared:	09/14/04 09/17/04 09/22/04	_	Matrix: Solid QC Batch: 092204S1 %Solids: 78.0 Sample Size: 30 g Primary: N
Number of analytes: 7 Column Name:	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCP=1016	< .022	U.	0029 .022		1	09/24/04

PCB-1016	< .022	U	.0029	.022	1	09/24/04	
PCB-1221	< .022	Ū	.0037	.022	1 .	09/24/04	
PCB-1232	< .022	U	.0025	.022	1	09/24/04	
PCB-1242	< .022	U	.0018	.022	1	09/24/04	
PCB-1248	.022		.0014	.022	1	09/24/04	6
PCB-1254	< .022	υ	.00086	.022	1	09/24/04	
PCB-1260	· < .022	U	.0014	.022	1	09/24/04	

			*R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	95.		30-150	
Decachlorobiphenyl (surrogate)	75.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

Human & Defande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: September 28, 2004 The

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

1 <u>C</u>

Analytical Results Method: 8082

fication NY No.: 10155
 Matrix: Solid QC Batch: 092204S1 %Solids: 92.0
Sample Size: 30 g Primary: Y
/

Parameter	Result Qua	al MDL PÇ		Analyzed Notes
PCB-1016	< 37. U	4.9 37	2000	09/24/04
PCB-1221	< 37. U	6.3 37	2000	09/24/04
PCB-1232	< 37. U	4.2 37	2000	09/24/04
PCB-1242	< 37. U	3.1 37	2000	09/24/04
PCB-1248	92.	2.5 37	2000	09/24/04
PCB-1254	< 37. U	1.5 37	2000	09/24/04
PCB-1260	< 37. U	2.4 37	2000	09/24/04
102 1200				

Course and a	۶R	Oual	*K Limits	Notes
Surrogate 2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

Authorized: Marris & alefrade

Date: September 28, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level. J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road L Proj. Desc:	andfill				50 . 004 .62306 IY No.: 10155
Package#: 8927 Sample: E 6763 Sample Description: N2-B6-091504 Instrument: HP5890-90 Units: mg/Kg Dry weight	DB-608, 30m x .53mm ID	Collected: Received: Prepared:	09/15/04 09/17/04 09/22/04	١	Matrix: Solid QC Batch: 092204S1 %Solids: 92.0 Sample Size: 30 g Primary: N
Parameter	Result Qual	MDL	PQL	Dil 2000	Analyzed Notes

PCB-1016	< 37.	U	4.9	37	2000	09/24/04	
PCB-1221	< 37.	U	6.3	37	2000	09/24/04	
PCB-1221 PCB-1232	< 37.	U	4.2	37	2000	09/24/04	
	< 37.	U U	3.1	37	2000	09/24/04	
PCB-1242	89.	0	2.5	37	2000	09/24/04	
PCB-1248	< 37.	U	1.5	37	2000	09/24/04	
PCB-1254	< 37.	U	2.4	37	2000	09/24/04	
PCB-1260	< 51.	U	2.3	5.			

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

Cornes & Defende

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: September 28, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

PCB-1016		< .62	U .(.62		20	09/24/04
Parameter		Result	Qual	MDL	PQL	Dil	Analyzed Notes
Proj. Desc: Package#: 8927 Sample: E 6764 Sample Description: SEGN Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7	AENT 13-W15-0916 Column Name: Dl		1 x .53mm I	Collected: Received: Prepared: D	09/16/04 09/17/04 09/22/04	١	Matrix: Solid QC Batch: 092204S1 %Solids: 55.0 Sample Size: 30 g Primary: Y
Client: Parsons Engineering Project: Amphenol Richard	; Science, Inc. Ison Hill Road Land	fill					50 . 004 . 62306 VY No.: 10155

100 10	10								
PCB-12	21	< .62	U		.11	.62	20	09/24/04	
PCB-12	32	< .62	U		.071	.62	20	09/24/04	
PCB-12		< .62	U		.052	.62	20	09/24/04	
PCB~12		5.1		P	.041	.62	20	09/24/04	6
PCB-12		< .62	U		.024	.62	20	09/24/04	
PCB-12		.81		Ρ	.040	.62	20	09/24/04	6

			%R	
Surrogate	8R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	81.		30-150	38
Decachlorobiphenyl (surrogate)	83.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Authorized: There is a allefande

Date: September 28, 2004

Thomas Alexander

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level. J - Reported value is estimated. D - Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306
Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155		n NY No.: 10155
Proj. Desc:			
Package#: 8927	Collected:	09/16/04	Matrix: Solid
Sample: E 6764			
Sample Description: SEGMENT 13-W15-091604	Received:	09/17/04	QC Batch: 092204S1
Instrument: HP5890-90	Prepared:	09/22/04	%Solids: 55.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N
Percentor Pocult (12)	MT)1		il Applyrod Notos

Parameter	resarc	Quar		т <i>Х</i> л		MIATYZEU NOLES
PCB-1016	< .62	U	.081	.62	20	09/24/04
PCB-1221	< .62	U	.11	. 62	20	09/24/04
PCB-1232	< .62	U	.071	.62	20	09/24/04
PCB-1242	< .62	U	.052	.62	- 20	09/24/04
PCB-1248	3.0	Р	.041	.62	20	09/24/04 6
PCB-1254	< .62	U	.024	.62	20	09/24/04
PCB-1260	. 40	Р	.073	.62	20	09/24/04 6

			%R	
Surrogate	&R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	69.		30-150	38
Decachlorobiphenyl (surrogate)	67.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

- Regise & Defrad

Date: September 28, 2004

Authorized:

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

2000

09/24/04

			··				
Client: Parsons Engineering Science, Inc.					Job No.	: 675	50.004.62306
Project: Amphenol Richardson Hill Road Landf	511				Certifica	tion N	IY No.: 10155
Proj. Desc:							
Package#: 8927							
Sample: E 6765				Collected:	09/16/04		Matrix: Solid
Sample Description: N2-B8-091604				Received:	09/17/04		QC Batch: 092204S1
Instrument: HP5890-90				Prepared:	09/22/04		%Solids: 93.0
Units: mg/Kg Dry weight							Sample Size: 30 g
Number of analytes: 7 Column Name: DE	3-1701, 30r	n x .53m	m ID				Primary: Y
Parameter	Result	Qual	м	DL	PQL	Dil	Analyzed Notes
Parameter PCB-1016	Result	Qual	M 4.8	DL 37		Dil 2000	Analyzed Notes
							···· · ·
PCB-1016	< 37.	U	4.8	37		2000	09/24/04
PCB-1016 PCB-1221	< 37. < 37.	0 0	4.8 6.2	37 37		2000 2000	09/24/04 09/24/04
PCB-1016 PCB-1221 PCB-1232	< 37. < 37. < 37.	U U U	4.8 6.2 4.2	37 37 37		2000 2000 2000	09/24/04 09/24/04 09/24/04

U

2.4

37

			. *R	•
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

< 37.

Notes:

PCB~1260

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Maria a alefande

Authorized:

Date: September 28, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science,	Inc.			Job No.:	6750.004.62306		
Project: Amphenol Richardson Hill F	Road Landfill			Certificatio	n NY No.: 10155		
Proj. Desc:							
Package#: 8927				09/16/04	M () 0 11		
Sample: E 6765		Collected:			Matrix: Solid		
Sample Description: N2-B8-091604			Received:		QC Batch: 092204S1		
Instrument: HP5890-90			Prepared:	09/22/04	%Solids: 93.0		
Units: mg/Kg Dry weight					Sample Size: 30 g		
omo. mong bij noigin							
Number of analytes: 7 Column N	Name: DB-608, 30m	x .53mm ID			· •		
0 3 7 8	Name: DB-608, 30m	x .53mm ID			Primary: N		
0 0 7 0	Name: DB-608,30m Result		MDL	PQL D:	Primary: N		
Number of analytes: 7 Column N Parameter	Result			PQL D: 20	Primary: N		
Number of analytes: 7 Column N Parameter PCB-1016	Result < 37.	Qual	37		Primary: N il Analyzed Notes 00 09/24/04		
Number of analytes: 7 Column N Parameter PCB-1016 PCB-1221	Result < 37. < 37.	Qual 1 U 4.8	37 37	20	Primary: N 1 Analyzed Notes 00 09/24/04 00 09/24/04		
Number of analytes: 7 Column N Parameter PCB-1016 PCB-1221 PCB-1232	Result < 37. < 37. < 37.	Qual 1 U 4.8 U 6.2	37 37 37	20 20	Primary: N 1 Analyzed Notes 00 09/24/04 00 09/24/04 00 09/24/04		
Number of analytes: 7 Column N Parameter PCB-1016 PCB-1221 PCB-1232 PCB-1242	Result < 37. < 37. < 37. < 37.	Qual 1 U 4.8 U 6.2 U 4.2	37 37 37	20 20 20	Primary: N il Analyzed Notes 00 09/24/04 00 09/24/04 00 09/24/04 00 09/24/04		
Number of analytes: 7 Column N	Result < 37. < 37. < 37. < 37. < 37. 85.	Qual 1 U 4.8 U 6.2 U 4.2 U 3.1	37 37 37 37 37	20 20 20 20	Primary: N il Analyzed Notes 00 09/24/04 00 09/24/04 00 09/24/04 00 09/24/04 00 09/24/04		

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	<0.0	#	30-150	38
Decachlorobiphenyl (surrogate)	<0.0	#	30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

- Marine & Marade

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: September 28, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 8976 Collected: 09/21/04 Sample: Matrix: Solid E7022 Sample Description: N1-B1-092104 Received: 09/24/04 QC Batch: 092704S1 HP5890-90 Prepared: Instrument: 09/27/04 %Solids: 80.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021	U	.0028	.021	1	09/29/04
PCB-1221	< .021	U	.0036	.021	1	09/29/04
PCB-1232	< .021	U	.0024	.021	1	09/29/04
PCB-1242	< .021	U	.0018	.021	1	09/29/04
PCB-1248	.055		.0014	.021	1	09/29/04
PCB-1254	< .021	U	.00084	.021	1	09/29/04
PCB-1260	< .021	U	.0014	.021	l	09/29/04

		_	8R .	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	94.		30-150	
Decachlorobiphenyl (surrogate)	67.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Juimes a Definde

Authorized: Date: September 30, 2004

2004 Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

ite 300, Box 4942 / Syracuse, NY 13221 / (31)

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Job No.: 6750 . 004 . 62306 Certification NY No.: 10155				
Package#: 8976 Sample: E 7022	Collected:	09/21/04	Matrix: Solid		
Sample Description: N1-B1-092104 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Received: Prepared:	09/24/04 09/27/04	QC Batch: 092704S1 %Solids: 80.0 Sample Size: 30 g Primary: N		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021 1	υ	.0028	.021	1	09/29/04
PCB-1221	< .021 4	υ	.0036	.021	1	09/29/04
PCB-1232	< .021 0	σ	.0024	.021	1	09/29/04
PCB-1242	< .021 t	J	.0018	.021	1	09/29/04
PCB-1248	.066		.0014	.021	1	09/29/04
PCB-1254	< .021 t	3	.00084	.021	1	09/29/04
PCB-1260	< .021 (J	.0014	.021	1	09/29/04

Surrogate	*R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		30-150	
Decachlorobiphenyl (surrogate)	68.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: September 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill 09/21/04 Collected: Matrix: Solid Received: 09/24/04 QC Batch: 092704S1 Prepared: 09/27/04

Sample: E7021 Sample Description: N1-W4-092104 HP5890-90 Instrument: Units: mg/Kg Dry weight Number of analytes: 7

8976

Project:

Proj. Desc: Package#:

Column Name: DB-1701, 30m x .53mm ID

Job No.: 6750.004.62306 Certification NY No.: 10155

%Solids: 86.0

Primary: Y

Sample Size: 30 g

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 4.0 U	.5	2 4		200	09/29/04
PCB-1221	< 4.0 U	. 6	7 4		200	09/29/04
PCB-1232	< 4.0 U	_ 4	5 4		200	09/29/04
PCB-1242	< 4.0 U	.3	3 4		200	09/29/04
PCB-1248	18.	.2	6 4		200	09/29/04
PCB-1254	< 4.0 U	.1	5 4		200	09/29/04
PCB-1260	< 4.0 U	.2	5 4		200	09/29/04

· · · · · · · · · · · · · · · · · · ·	***R						
Surrogate	%R	Qual	Limits	Notes			
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	94.		30-150	38			
Decachlorobiphenyl (surrogate)	68.		30-150	38			

Notes:

- 38 Surrogate was diluted
- 38 Surrogate was diluted

homas a Defande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: September 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306	
Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc:				
Package#: 8976 Sample: E 7021 Sample Description: N1-W4-092104	Collected: Received: Prepared:	09/21/04 09/24/04 09/27/04	Matrix: Solid QC Batch: 092704S1	
Instrument: HP5890-90	Tiepareo.	09/2//04	%Solids: 86.0	
Units: mg/Kg Dry weight			Sample Size: 30 g	
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 4.0	U	.52	4	200	09/29/04
PCB-1221	< 4.0	U.	.67	4	200	09/29/04
PCB~1232	< 4.0	U	.45	4	200	09/29/04
PCB-1242	< 4.0	U	.33	4	200	09/29/04
PCB-1248	18.		.26	4	200	09/29/04
PCB-1254	< 4.0	U	.16	4	200	09/29/04
PCB-1260	< 4.0	U	.26	4	200	09/29/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro~m-Xylene (surrogate)	91.		30-150	38
Decachlorobiphenyl (surrogate)	83.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

tionio a lefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: September 30, 2004 Thon

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Job No.: 6750.004.62306 Certification NY No.: 10155			
Package#: 8976 Sample: E 7023 Sample Description: N3-B4-092204 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	09/22/04 09/24/04 09/27/04	Matrix: Solid QC Batch: 092704S1 %Solids: 90.0 Sample Size: 30 g Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .038	U	.0050	.038	2	09/30/04
PCB-1221	< .038	U	.0064	.038	2	09/30/04
PCB-1232	< .038	U	.0043	.038	2	09/30/04
PCB-1242	< .038	υ	.0032	.038	2	09/30/04
PCB-1248	.27		.0025	.038	2	09/30/04
PCB-1254	< .038	U	.0015	.038	2	09/30/04
PCB-1260	< .038	υ	.0024	.038	2	09/30/04

- Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	92.		30-150	38
Decachlorobiphenyl (surrogate)	70.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

and

Authorized: ______ Date: September 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306
Project: Amphenol Richardson Hill Road Landfill			n NY No.: 10155
Proj. Desc:			
Package#: 8976			
Sample: E 7023	Collected:	09/22/04	Matrix: Solid
Sample Description: N3-B4-092204	Received:	09/24/04	QC Batch: 092704S1
Instrument: HP5890-90	Prepared:	09/27/04	%Solids: 90.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .038	U	.0050	.038	2	09/30/04
PCB-1221	< .038	U	.0064	.038	2	09/30/04
PCB-1232	< .038	U	.0043	.038	2	09/30/04
PCB-1242	< .038	U	.0032	.038	2	09/30/04
PCB-1248	.22		.0025	.038	2	09/30/04
PCB-1254	< .038	U	.0015	.038	2	09/30/04
PCB-1260	< .038	U	.0024	.038	2	09/30/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	80.		30-150	38
Decachlorobiphenyl (surrogate)	61.		30-150	38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

rade

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized: Date: September 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Job No.: 6750 . 004 . 62306 Certification NY No.: 10155				
Package#: 8976 Sample: E 7024 Sample Description: SEGMENT 12-W1-092204 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	09/22/04 09/24/04 09/27/04	Matrix: Solid QC Batch: 092704S1 %Solids: 54.0 Sample Size: 30 g Primary: Y			

Parameter	Result	. Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 1.6	U	.21	1.6	50	09/29/04
PCB-1221	< 1.6	U	.27	1.6	50	09/29/04
PCB-1232	< 1.6	U	.18	1.6	50	09/29/04
PCB-1242	< 1.6	U	.13	1.6	50	09/29/04
PCB-1248	5.6	Р	.10	1.6	50	09/29/04 6
PCB-1254	< 1.6	U	.062	1.6	50	09/29/04
PCB-1260	< 1.6	σ	.10	1.6	50	09/29/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		30-150	38
Decachlorobiphenyl (surrogate)	74.		30-150	38

Notes:

- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Asing a alphale

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: September 30, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306
Project: Amphenol Richardson Hill Road Landfill			n NY No.: 10155
Proj. Desc:			·
Package#: 8976			
Sample: E 7024	Collected:	09/22/04	Matrix: Solid
Sample Description: SEGMENT 12-W1-092204	Received:	09/24/04	QC Batch: 092704S1
Instrument: HP5890-90	Prepared:	09/27/04	%Solids: 54.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N
\$			

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< 1.6	U	.21	1.6	50	09/29/04
PCB-1221	< 1.6	U	.27	1.6	50	09/29/04
PCB-1232	< 1.6	U	.18	1.6	50	09/29/04
PCB-1242	< 1.6	U	.13	1.6	50	09/29/04
PCB-1248	3.8	Р	.10	1.6	50	09/29/04
PCB-1254	< 1.6	U	.062	1.6	50	09/29/04
PCB-1260	< 1.6	U	.10	1.6	50	09/29/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	38
Decachlorobiphenyl (surrogate)	80.		30-150	38

Notes:

- 6 : Altered aroclor.
- 38 : Surrogate was diluted 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Alerade

Authorized: Date: September 30, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 9011 Sample: E 7298 Sample Description: SEGMENT 12-B5-092304 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	09/23/04 09/28/04 10/01/04	Matrix: Solid QC Batch: 100104S2 %Solids: 75.0 Sample Size: 30 g Primary: Y	
,			Timary. 1	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .11	U	.015	.11	5	10/04/04
PCB-1221	< .11	U	.019	.11	5	10/04/04
PCB-1232	< .11	U	.013	.11	5	10/04/04
PCB-1242	< .11	U	.0096	.11	5	10/04/04
PCB-1248	.80	Р	.0075	.11	5	10/04/04 6
PCB-1254	< .11	U	.0045	.11	5	10/04/04
PCB-1260	< .11	U	.0073	.11	5	10/04/04

Surrogate	%R	Qual	[%] त Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	86.		30-150	38	
Decachlorobiphenyl (surrogate)	75.		30-150	38	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized: _____ Date: October 29, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Job No.: 6750 . 004 . 62306 Certification NY No.: 10155				
Package#: 9011 Sample: E 7298 Sample Description: SEGMENT 12-B5-092304 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	09/23/04 09/28/04 10/01/04	Matrix: Solid QC Batch: 100104S2 %Solids: 75.0 Sample Size: 30 g Primary: N		

Parameter	Result Q	ual MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .11 U	.015	.11	5	10/04/04
PCB-1221	< .11 U	.019	.11	5	10/04/04
PCB-1232	< .11 U	.013	.11	5	10/04/04
PCB-1242	< .11 U	.0096	.11	5	10/04/04
PCB-1248	.40	P .0075	.11	5	10/04/04 6
PCB-1254	< .11 U	.0045	.11	5	10/04/04
PCB-1260	< .11 U	.0073	.11	5	10/04/04

Surrogate	<i></i>	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)		73.		30-150	38
Decachlorobiphenyl (surrogate)		59.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Jasined alefende

- B Analyte detected above the PQL in the associated Prep Blank.
- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

Authorized: ______ Date: October 29, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155				
Proj. Desc:					
Package#: 9011					
Sample: E 7301	Collected:	09/23/04	Matrix: Solid		
Sample Description: N3-W5-092304	Received:	09/28/04	QC Batch: 100104S2		
Instrument: HP5890-90	Prepared:	10/01/04	%Solids: 78.0		
Units: mg/Kg Dry weight			Sample Size: 30 g		
Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID			Primary: Y		

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.022 U	.0029	.022	1	10/04/04
PCB-1221	<.022 U	.0037	.022	1	10/04/04
PCB-1232	<.022 U	.0025	.022	1	10/04/04
PCB-1242	< .022 U	.0018	.022	1	10/04/04
PCB-1248	.047	.0014	.022	1	10/04/04
PCB~1254	<.022 U	.00086	.022	1	10/04/04
PCB-1260	< .022 U	.0014	.022	1	10/04/04

Surrogate		%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)		92.		30-150	
Decachlorobiphenyl (surrogate)	54	70.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

142 Authorized:

Date: October 4, 2004

Thomas Mexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 9011 09/23/04 Sample: E7301 Collected: Matrix: Solid Sample Description: N3-W5-092304 Received: 09/28/04 QC Batch: 100104S2 Prepared: Instrument: HP5890-90 10/01/04 %Solids: 78.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .022	U	.0029	.022	1	10/04/04
PCB-1221	< .022	U	.0037	.022	1	10/04/04
PCB-1232	< .022	U	.0025	.022	1	10/04/04
PCB-1242	< .022	U	.0018	.022	1	10/04/04
PCB-1248	.045		.0014	.022	1	10/04/04
PCB-1254	< .022	U	.00086	.022	1	10/04/04
PCB-1260	< .022	U	.0014	.022	1	10/04/04

-		-	*K .	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	83.		30-150	
Decachlorobiphenyl (surrogate)	53.		30-150	

Notes:

bonned alfrade

Authorized: Date: October 29, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Job No.: 6750.004.62306 Certification NY No.: 10155			
Package#:9011Sample:E 7299Sample Description:SEGMENT 12-B10-092504Instrument:HP5890-90Units:mg/Kg Dry weightNumber of analytes:7Column Name:DB-1701, 30m x .53mm ID	Collected: Received: Prepared:	09/25/04 09/28/04 10/01/04	Matrix: Solid QC Batch: 100104S2 %Solids: 81.0 Sample Size: 30 g Primary: Y		

Parameter	Result	Qual	MDL	PQL	Dil	Analvzed Notes
PCB-1016	< .042	υ	.0055	.042	2	10/04/04
PCB-1221	< .042	υ	.0071	.042	2	10/04/04
PCB-1232	< .042	U	.0048	.042	2	10/04/04
PCB-1242	< .042	U	.0036	.042	2	10/04/04
PCB-1248	.11	Р	.0028	.042	2	10/04/04 6
PCB-1254	< .042	U	.0017	.042	2	10/04/04
PCB-1260	< .042	U	.0027	.042	2	10/04/04

Surrogate	₽R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	92.		30-150	38
Decachlorobiphenyl (surrogate)	72.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

rade Authorized:

Date: October 29, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 . 62306 n NY No.: 10155
Package#: 9011 Sample: E 7299 Sample Description: SEGMENT 12-B10-092504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	09/25/04 09/28/04 10/01/04	Matrix: Solid QC Batch: 100104S2 %Solids: 81.0 Sample Size: 30 g Primary: N

Parameter	Result (Qual MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.042 U	.0055	.042	2	10/04/04
PCB-1221	<.042 U	.0071	.042	2	10/04/04
PCB-1232	<.042 U	.0048	.042	2	10/04/04
PCB-1242	<.042 U	.0036	.042	2	10/04/04
PCB-1248	.069	P .0028	.042	2	10/04/04 6
PCB-1254	<.042 U	.0017	.042	2	10/04/04
PCB-1260	<.042 U	.0027	.042	2	10/04/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	82.		30-150	38
Decachlorobiphenyl (surrogate)	55.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- Surrogate was diluted 38 :
- 38 Surrogate was diluted •

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

lefande

Authorized: Date: October 29, 2004

Thomas Alexander

Project:

Proj. Desc:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Package#: 9011 Sample: E 7300 Sample Description: SEGMENT 12-B11-092504 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-1701, 30m x .53mm ID	Received:	09/25/04 09/28/04 10/01/04	Matrix: Solid QC Batch: 100104S2 %Solids: 76.0 Sample Size: 30 g Primary: Y
---	-----------	----------------------------------	---

Parameter	Result Qu	al MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.022 U	.0029	.022	1	10/04/04
PCB-1221	<.022 U	.0038	.022	1	10/04/04
PCB-1232	<.022 U	.0026	.022	1	10/04/04
PCB-1242	<.022 U	.0019	.022	1	10/04/04
PCB-1248	.092 E	.0015	.022	1	10/04/04 6
PCB-1254	< .022 U	.00088	.022	1	10/04/04
PCB-1260	<.022 U	.0014	.022	1	10/04/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	95.		30-150	
Decachlorobiphenyl (surrogate)	69.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: bent

Date: October 29, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill			6750 . 004 .62306 n NY No.: 10155
Proj. Desc:			· · · · · ·
Package#: 9011	Callented	09/25/04	
Sample: E 7300	Collected:		Matrix: Solid
Sample Description: SEGMENT 12-B11-092504	Received:	09/28/04	QC Batch: 100104S2
Instrument: HP5890-90	Prepared:	10/01/04	%Solids: 76.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID			Primary: N

Parameter	Result Q	ual MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.022 U	.0029	.022	1	10/04/04
PCB-1221	< .022 U	.0038	.022	1	10/04/04
PCB-1232	< .022 U	.0026	.022	1	10/04/04
PCB-1242	<.022 U	.0019	.022	1	10/04/04
PCB-1248	.061	P .0015	.022	<u>1</u>	10/04/04 6
PCB-1254	<.022 U	.00088	.022	1	10/04/04
PCB-1260	<.022 U	.0014	.022	1	10/04/04

Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	85.		30-150	
Decachlorobiphenyl (surrogate)	55.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: October 29, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

1 Q

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.: (6750.004.62306
Project: Amphenol Richardson Hill Road Landfill	chardson Hill Road Landfill Certification NY No.: 10155		n NY No.: 10155
Proj. Desc:			
Sample Description: SEGMENT 11-B4-092704	Collected: Received: Prepared:	09/27/04 09/30/04 10/01/04	Matrix: Solid QC Batch: 100104S2 %Solids: 74.0 Sample Size: 30 g Primary: Y

Parameter	Result Qu	al MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .023 U	.0030	.023	1	10/04/04
PCB-1221	< .023 U	.0039	.023	1	10/04/04
PCB-1232	<.023 U	.0026	.023	1	10/04/04
PCB-1242	< .023 U	.0019	.023	1	10/04/04
PCB-1248	.043	P .0015	.023	1	10/04/04 6
PCB-1254	< .023 U	.00090	.023	1	10/04/04
PCB-1260	<.023 U	.0015	.023	1	10/04/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	85.		30-150	
Decachlorobiphenyl (surrogate)	64.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: October 29, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 9022 09/27/04 Collected: Matrix: Solid Sample: E7415 Received: 09/30/04 QC Batch: 100104S2 Sample Description: SEGMENT 11-B4-092704 Prepared: HP5890-90 10/01/04 Instrument: %Solids: 74.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: DB-608, 30m x .53mm ID Number of analytes: 7 Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .023	U	.0030	.023	1	10/04/04
PCB-1221	< .023	U	.0039	.023	1	10/04/04
PCB-1232	< .023	U	.0026	.023	1	10/04/04
PCB-1242	< .023	U	.0019	.023	1	10/04/04
PCB-1248	.027	Р	.0015	.023	1	10/04/04 6
PCB-1254	< .023	U	.00090	.023	l	10/04/04
PCB-1260	< .023	υ	.0015	.023	1	10/04/04

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	78.		30-150	
Decachlorobiphenyl (surrogate)	49.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: October 29, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill		Certificatio	n NY No.: 10155
Proj. Desc: Package#: 9052 Sample: E 7645 Sample Description: SEGMENT 10-B10-093004 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID	Collected: Received: Prepared:	09/30/04 10/05/04 10/12/04	Matrix: Solid QC Batch: 101204S2 %Solids: 80.0 Sample Size: 30 g Primary: Y

Parameter	 Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021	U	.0028	.021	1	10/13/04
PCB-1221	< .021	U	.0036	.021	1	10/13/04
PCB-1232	< .021	U	.0024	.021	1	10/13/04
PCB-1242	< .021	U	.0018	.021	1	10/13/04
PCB-1248	< .021	ับ	.0014	.021	1	10/13/04
PCB-1254	< .021	U	.00084	.021	1	10/13/04
PCB-1260	< .021	υ	.0014	.021	1	10/13/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	74.		30-150	
Decachlorobiphenyl (surrogate)	58.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: October 29, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 . 62306 n NY No.: 10155
Package#: 9052 Sample: E 7646 Sample Description: SEGMENT 10-B7-100104 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID	Collected: Received: Prepared:	10/01/04 10/05/04 10/12/04	Matrix: Solid QC Batch: 101204S2 %Solids: 75.0 Sample Size: 30 g Primary: Y

Parameter	Result Qu	al MDL P	QL Dil Analyzed Note	es
PCB-1016	<.023 U	.0030 .023	1 10/13/04	
PCB-1221	<.023 U	.0039 .023	1 10/13/04	
PCB-1232	<.023 U	.0026 .023	1 10/13/04	
PCB-1242	<.023 U	.0019 .023	1 10/13/04	
PCB-1248	<.023 U	.0015 .023	1 10/13/04	
PCB-1254	.024	.00089 .023	1 10/13/04	6
PCB-1260	<.023 U	.0015 .023	1 10/13/04	

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	76.		30-150	
Decachlorobiphenyl (surrogate)	62.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

 ${\bf E}$ - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: October 29, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

vi 18

Analytical Results Method: 8082

Job No.: 6750.004.62306 Client: Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill Project: Certification NY No.: 10155 Proj. Desc: Package#: 9052 10/01/04 Matrix: Solid Collected: E 7646 Sample: Received: 10/05/04 QC Batch: 101204S2 Sample Description: SEGMENT 10-B7-100104 Prepared: 10/12/04 Instrument: HP5890-89 %Solids: 75.0 mg/Kg Dry weight Sample Size: 30 g Units: Column Name: RTXCLP2, 30m x .53mmID Number of analytes: 7 Primary: N

Parameter	Result Qual	MDL PQL	Dil	Analyzed Notes
PCB-1016	< .023 U	.0030 .023	1	10/13/04
PCB-1221	< .023 U	.0039 .023	1.	10/13/04
PCB-1232	< .023 U	.0026 .023	1	10/13/04
PCB-1242	<.023 U	.0019 .023	1	10/13/04
PCB-1248	<.023 U	.0015 .023	1	10/13/04
PCB-1254	.029	.00089 .023	1	10/13/04 6
PCB-1260	<.023 U	.0015 .023	1	10/13/04

			%R 1 Limits Notes 30-150 30-150	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	77.		30-150	
Decachlorobiphenyl (surrogate)	58.		30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: October 29, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

te. - 19

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7647 Sample Description: SVE-B1-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

10/04/04	Matrix: Solid
10/05/04	QC Batch: 100604S3
10/06/04	%Solids: 80.0
	Sample Size: 5.01 g Dilution: 1
	10/05/04

Parameter	Result	Qual	MDL	PQL	Analyzed Notes
Dichlorodifluoromethane	<6.	U	.56	6.	10/06/04
Chloromethane	<6.	U	.22	6.	10/06/04
Vinyl chloride	<6.	U	.17	6.	10/06/04
Bromomethane	<6.	U	.26	6.	10/06/04
Chloroethane	<6.	υ	.21	6.	10/06/04
Trichlorofluoromethane	<6.	U	.075	6.	10/06/04
Acetone	J 2.	J	1.9	12.	10/06/04
1,1-Dichloroethene	<3.	U	.14	3.	10/06/04
Methylene chloride	J.9	J	в.49	6.	10/06/04
trans-1,2~Dichloroethene	<3.	U	.10	3.	10/06/04
1,1-Dichloroethane	<3.	υ	.11	3.	10/06/04
2-Butanone	<12.	U	.76	12.	10/06/04
cis-1,2-Dichloroethene	4.		.10	3.	10/06/04
Bromochloromethane	<3.	U	.25	3.	10/06/04
Chloroform	<3.	U	.10	3.	10/06/04
2,2-Dichloropropane	<3.	U	.14	3.	10/06/04
1,2-Dichloroethane	<3.	U	.12	3.	10/06/04
1,1,1-Trichloroethane	<3.	U	.11	3.	10/06/04
1,1-Dichloropropene	<3.	Ū	.57	3.	10/06/04
Carbon tetrachloride	· <3.	U	.14	3.	10/06/04
Benzene	<3.	σ	.10	3.	10/06/04
Dibromomethane	<3.	U	.19	3.	10/06/04
1,2-Dichloropropane	<3.	υ	.35	з.	10/06/04
Trichloroethene	5.		.14	3.	10/06/04
Bromodichloromethane	<3.	υ	.22	3.	10/06/04
cis-1,3-Dichloropropene	<3.	U	.11	3.	10/06/04
4-Methyl-2-pentanone	<6.	U	.60	6.	10/06/04
trans-1,3-Dichloropropene	<3.	U	.12	3.	10/06/04
1,1,2-Trichloroethane	<3.	υ	.24	3.	10/06/04
Toluene	J.7	J	.21	3.	10/06/04
1,3-Dichloropropane	<3.	U	.15	3.	10/06/04
Dibromochloromethane	<3.	U	.16	3.	10/06/04
2-Hexanone	<6.	U	.57	6.	10/06/04

0.84

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits U - Undetected at the reported level.

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: _____ Date: November 5, 2004

Thomas Alexander

08

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7647 Sample Description: SVE-B1-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected:	10/04/04	Matrix: Solid
Received:	10/05/04	QC Batch: 100604S3
Prepared:	10/06/04	%Solids: 80.0
		Sample Size: 5.01 g Dilution: 1

Parameter	Result	Qual	MDL	PQL	Analyzed Notes
1,2-Dibromoethane	<3.	U	.15	3.	10/06/04
Tetrachloroethene	<3.	U	.14	3.	10/06/04
1,1,1,2-Tetrachloroethane	<3.	U	.15	3.	10/06/04
Chlorobenzene	<3.	U	.087	3.	10/06/04
Ethylbenzene	<3.	U	.10	3.	10/06/04
Bromoform	<3.	U	.19	3.	10/06/04
Xylene (total)	<3.	U	.20	3.	10/06/04
Styrene	<3.	U	.087	з.	10/06/04
1,1,2,2-Tetrachloroethane	<3.	U	.21	3.	10/06/04
1,2,3-Trichloropropane	<3.	U	.41	3.	10/06/04
Isopropylbenzene	´ <3.	υ	.087	3.	10/06/04
Bromobenzene	<3.	U	.25	3.	10/06/04
n-Propylbenzene	<3.	U	.12	3.	10/06/04
2-Chlorotoluene	<3.	U	.10	3.	10/06/04
4-Chlorotoluene	<3.	U	.087	3.	10/06/04
1,3,5-Trimethylbenzene	<3.	U	.35	3.	10/06/04
tert-Butylbenzene	<3.	U	.087	3.	10/06/04
n-Butylbenzene	<3.	U	.15	3.	10/06/04
1,2,4-Trimethylbenzene	J 1.	J	.12	3.	10/06/04
sec-Butylbenzene	<3.	U	.44	3.	10/06/04
1,3-Dichlorobenzene	<3.	U	.14	3.	10/06/04
1,4-Dichlorobenzene	J 1.	J	.29	3.	10/06/04
p-Isopropyltoluene	<3.	U	.12	3.	10/06/04
1,2-Dichlorobenzene	<3.	U	.12	3.	10/06/04
1,2-Dibromo-3-chloropropane	<6.	υ	.30	6.	10/06/04
1,2,4-Trichlorobenzene	<6.	υ	.25	6.	10/06/04
Naphthalene	<6.	υ	.21	6.	10/06/04
Hexachlorobutadiene	<6.	U	.64	6.	10/06/04
1,2,3-Trichlorobenzene	<6.	U	.22	6.	10/06/04

B - Analyte detected above the PQL in the associated Prep Blank.

Authorized: Date: November 5, 2004

Thomas Alexander

- Outside control limits U - Undetected at the reported level. J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

v 09

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7647 Sample Description: SVE-B1-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected: Received: Prepared:	10/04/04 10/05/04 10/06/04	Matrix: Solid QC Batch: 100604S3 %Solids: 80.0 Sample Size: 5.01 g
		Sample Size: 5.01 g Dilution: 1

			*R
Surrogate	۶R	Qual	Limits
Dibromofluoromethane (surrogate)	114		76-124
1,2-Dichloroethane-d4 (surrogate)	107		70-121
Toluene-d8 (surrogate)	106		84-138
Bromofluorobenzene (surrogate)	101		59-113

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits U - Undetected at the reported level. J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Date: November 5, 2004

Thomas Alexander

. 10

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7648 Sample Description: SVE-B2-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected: Received: Prepared:	10/04/04 10/05/04 10/06/04	Matrix: Solid QC Batch: 100604S3 %Solids: 86.0 Sample Size: 5.03 g Dilution: 1
		Dilution: 1

Parameter	Result	<u>Q</u> ual	MDL	PQL	Analyzed Notes
Dichlorodifluoromethane	<6.	U	.52	6.	10/06/04
Chloromethane	<6.	U	.21	6.	10/06/04
Vinyl chloride	<6.	U	.16	6.	10/06/04
Bromomethane	<6.	υ	.24	б.	10/06/04
Chloroethane	<6.	U	.20	6.	10/06/04
Trichlorofluoromethane	<6.	υ	.069	6.	10/06/04
Acetone	49.		1.8	12.	10/06/04
1,1-Dichloroethene	<3.	U	.13	3.	10/06/04
Methylene chloride	J 2.	J	в.45	6.	10/06/04
trans-1,2-Dichloroethene	J.8	J	.092	3.	10/06/04
1,1-Dichloroethane	J 1.	J	.10	3.	10/06/04
2-Butanone	J 9.	J	.71	12.	10/06/04
cis-1,2-Dichloroethene	180.		.092	3.	10/06/04
Bromochloromethane	<3.	U	.23	3.	10/06/04
Chloroform	<3.	U	.092	3.	10/06/04
2,2-Dichloropropane	<3.	U	.13	3.	10/06/04
1,2-Dichloroethane	<3.	U	.12	3.	10/06/04
1,1,1-Trichloroethane	<3.	U	.10	3.	10/06/04
1,1-Dichloropropene	<3.	U	.53	3.	10/06/04
Carbon tetrachloride	<3.	U	.13	3.	10/06/04
Benzene	<3.	U	.092	3.	10/06/04
Dibromomethane	<3.	U	.17	3.	10/06/04
1,2-Dichloropropane	<3.	U	.32	3.	10/06/04
Trichloroethene	1200.		E .13	3.	10/06/04
Bromodichloromethane	<3.	U	.21	з.	10/06/04
cis-1,3-Dichloropropene	<3.	υ	.10	3.	10/06/04
4-Methyl-2-pentanone	<6.	U	.55	6.	10/06/04
trans-1,3-Dichloropropene	<3.	U	.12	3.	10/06/04
1,1,2-Trichloroethane	<3.	U	.22	3.	10/06/04
Toluene	1000.		E.20	3.	10/06/04
1,3-Dichloropropane	<3.	U	.14	3.	10/06/04
Dibromochloromethane	<3.	U	.15	3.	10/06/04
2-Hexanone	<6.	U	.53	6.	10/06/04

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits U - Undetected at the reported level.

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Jouriel Defrad

Authorized:_____ Date: November 5, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7648 Sample Description: SVE-B2-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected:	10/04/04	Matrix: Solid
Received:	10/05/04	QC Batch: 100604S3
Prepared:	10/06/04	%Solids: 86.0
		Sample Size: 5.03 g
		Dilution: 1

Parameter	Result	Qual		MDL	PQL	Analyzed Notes
1,2-Dibromoethane	<3.	υ		.14	3.	10/06/04
Tetrachloroethene	6.			.13	3.	10/06/04
1,1,1,2-Tetrachloroethane	<3.	U		.14	3.	10/06/04
Chlorobenzene	29.			.081	3.	10/06/04
Ethylbenzene	550.		Е	.092	3.	10/06/04
Bromoform	<3.	U		.17	3	10/06/04
Xylene (total)	490.			.18	3.	10/06/04
Styrene	63.			.081	3.	10/06/04
1,1,2,2-Tetrachloroethane	<3.	U		.20	3.	10/06/04
1,2,3-Trichloropropane	<3.	U		.38	3.	10/06/04
Isopropylbenzene	17.			.081	3.	10/06/04
Bromobenzene	<3.	U		.23	3.	10/06/04
n-Propylbenzene	41.			.12	3.	10/06/04
2-Chlorotoluene	<3.	U		.092	3.	10/06/04
4-Chlorotoluene	<3.	U		.081	3.	10/06/04
1,3,5-Trimethylbenzene	220.			.32	3.	10/06/04
tert-Butylbenzene	<3.	υ		.081	3.	10/06/04
n-Butylbenzene	46.			.14	3.	10/06/04
1,2,4-Trimethylbenzene	830.		Е	.12	3.	10/06/04
sec-Butylbenzene	32.			.40	3.	10/06/04
1,3-Dichlorobenzene	<3.	U		.13	3.	10/06/04
l,4-Dichlorobenzene	180.			.27	3.	10/06/04
p-Isopropyltoluene	77.			.12	3.	10/06/04
1,2-Dichlorobenzene	<3.	υ		.12	3.	10/06/04
1,2-Dibromo-3-chloropropane	<6.	U		.28	6.	10/06/04
1,2,4-Trichlorobenzene	13.			.23	6.	10/06/04
Naphthalene	68.			.20	6.	10/06/04
Hexachlorobutadiene	<6.	U		.59	6.	10/06/04
1,2,3-Trichlorobenzene	J4.	J		.21	6.	10/06/04

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits U - Undetected at the reported level.

Authorized:

Date: November 5, 2004

Thomas Alexander

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7648 Sample Description: SVE-B2-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected: Received: Prepared:	10/04/04 10/05/04 10/06/04	Matrix: Solid QC Batch: 100604S3 %Solids: 86.0 Sample Size: 5.03 g
		Dilution: 1

			*R
Surrogate	%R	Qual	Limits
Dibromofluoromethane (surrogate)	111		76-124
1,2-Dichloroethane-d4 (surrogate)	108		70-121
Toluene-d8 (surrogate)	103		84-138
Bromofluorobenzene (surrogate)	118	#	59-113

Notes:

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits U - Undetected at the reported level.

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200.

Authorized:

Date: November 5, 2004

Thomas Alexander

- UX - 1

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7648 DL Sample Description: SVE-B2-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected:	10/04/04	Matrix: Solid
Received:	10/05/04	QC Batch: 100604S3
Prepared:	10/06/04	%Solids: 86.0
		Sample Size: .51 g
		Dilution: 1

Parameter	Result	Qua	al	MDL	PQL	Analyzed Notes
Dichlorodifluoromethane	<57.	U		5.1	57.	10/06/04
Chloromethane	<57.	U		2.1	57.	10/06/04
Vinyl chloride	<57.	U		1.6	57.	10/06/04
Bromomethane	<57.	U		2.4	57.	10/06/04
Chloroethane	<57.	U		1.9	57.	10/06/04
Trichlorofluoromethane	<57.	U		.68	57.	10/06/04
Acetone	J 84.	J	Ð	17.	110.	10/06/04
1,1-Dichloroethene	<28.	U		1.3	28.	10/06/04
Methylene chloride	J 20.	J	DВ	4.4	57.	10/06/04
trans-1,2-Dichloroethene	<28.	U		.91	28.	10/06/04
1,1-Dichloroethane	<28.	U		1.0	28.	10/06/04
2-Butanone	<110.	U		7.0	110.	10/06/04
cis-1,2-Dichloroethene	200.		D	.91	28.	10/06/04
Bromochloromethane	<28.	U		2.3	28.	10/06/04
Chloroform	<28.	U		.91	28.	10/06/04
2,2-Dichloropropane	<28.	υ		1.3	28.	10/06/04
1,2-Dichloroethane	<28.	υ		1.1	28.	10/06/04
1,1,1-Trichloroethane	<28.	U		1.0	28.	10/06/04
1,1-Dichloropropene	<28.	U		5.2	28.	10/06/04
Carbon tetrachloride	<28.	U		1.3	28.	10/06/04
Benzene	<28.	U		.91	28.	10/06/04
Dibromomethane	<28.	U		1.7	28.	10/06/04
1,2-Dichloropropane	<28.	U		3.2	28.	10/06/04
Trichloroethene	2000.		D	1.3	28.	10/06/04
Bromodichloromethane	<28.	U		2.1	28.	10/06/04
cis-1,3-Dichloropropene	<28.	U		1.0	28.	10/06/04
4-Methyl-2-pentanone	<57.	U		5.5	57.	10/06/04
trans-1,3-Dichloropropene	<28.	U		1.1	28.	10/06/04
1,1,2-Trichloroethane	<28.	U		2.2	28.	10/06/04
Toluene	2200.		D	1.9	28.	10/06/04
1,3-Dichloropropane	<28.	U		1.4	28.	10/06/04
Dibromochloromethane	<28.	U	÷	1.5	28.	10/06/04
2-Hexanone	<57.	U		5.2	57.	10/06/04

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits U - Undetected at the reported level.

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Date: November 5, 2004 Thomas

Authorized:

Thomas Alexander

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9052 Sample: E7648 DL Sample Description: SVE-B2-100404 Instrument: HP5973 GCMS#3 Units: ug/Kg Dry weight Number of analytes: 62

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected:	10/04/04	Matrix: Solid
Received:	10/05/04	QC Batch: 100604S3
Prepared:	10/06/04	%Solids: 86.0
		Sample Size: .51 g
		Dilution: 1

Parameter	r Result Qual		al	MDL	PQL	Analyzed Notes
1,2-Dibromoethane	<28.	U		1.4	28.	10/06/04
Tetrachloroethene	J 12.	J	D	1.3	28.	10/06/04
1,1,1,2-Tetrachloroethane	<28.	υ		1.4	28.	10/06/04
Chlorobenzene	57.		D	.80	28.	10/06/04
Ethylbenzene	1500.		D	.91	28.	10/06/04
Bromoform	<28.	U		1.7	28.	10/06/04
Xylene (total)	1200.		D	1.8	28.	10/06/04
Styrene	150.		D	.80	28.	10/06/04
1,1,2,2-Tetrachloroethane	<28.	U		1.9	28.	10/06/04
1,2,3-Trichloropropane	<28.	υ		3.8	28.	10/06/04
Isopropylbenzene	34.		D	.80	28.	10/06/04
Bromobenzene	<28.	U		2.3	28.	10/06/04
n-Propylbenzene	83.		D	1.1	28.	10/06/04
2-Chlorotoluene	<28.	U		.91	28.	10/06/04
4-Chlorotoluene	<28.	U		.80	28.	10/06/04
1,3,5-Trimethylbenzene	460.		D	3.2	28.	10/06/04
tert-Butylbenzene	<28.	U		.80	28.	10/06/04
n-Butylbenzene	96.		D	1.4	28.	10/06/04
1,2,4-Trimethylbenzene	1700.		D	1.1	28.	10/06/04
sec-Butylbenzene	70.		D	4.0	28.	10/06/04
1,3-Dichlorobenzene	<28.	U		1.3	28.	10/06/04
1,4-Dichlorobenzene	450.		D	2.6	28.	10/06/04
p-Isopropyltoluene	180.		D	1.1	28.	10/06/04
1,2-Dichlorobenzene	<28.	U		1.1	28.	10/06/04
1,2-Dibromo-3-chloropropane	<57.	υ	۰.	2.7	57.	10/06/04
1,2,4-Trichlorobenzene	J 38.	J	D	2.3	57.	10/06/04
Naphthalene	. 200.		D	1.9	57.	10/06/04
Hexachlorobutadiene	<57.	U		5.8	57.	10/06/04
1,2,3-Trichlorobenzene	J 13.	J	D	2.1	57.	10/06/04

B - Analyte detected above the PQL in the associated Prep Blank.

Authorized: Date: November 5, 2004

Thomas Alexander

- Outside control limits $\,$ U - Undetected at the reported level.

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8260

0.00

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected:	10/04/04	Matrix: Solid
Received:	10/05/04	QC Batch: 100604S3
Prepared:	10/06/04	%Solids: 86.0
		Sample Size: 51 g
		Dilution: 1
	Received:	Received: 10/05/04

Surrogate	۶R	Qual	*R Limits
Dibromofluoromethane (surrogate)	115		76-124
1,2-Dichloroethane-d4 (surrogate)	118		70-121
Toluene-d8 (surrogate)	107		84-138
Bromofluorobenzene (surrogate)	112		59-113

Notes:

Project:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits U - Undetected at the reported level. J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: Thomas & alefane

Date: November 5, 2004

Thomas Alexander

ม

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750,004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certificatio	on NY No.: 10155
Package#: 9090 Samole: E 7847 Sample Description: SEGMENT 10-C4-100404 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID	Collected: Received: Prepared:	10/04/04 10/08/04 10/12/04	Matrix: Solid QC Batch: 101204S2 %Solids: 81.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021	U	.0028	.021	1	10/13/04
PCB-1221	< .021	U	.0036	.021	1	10/13/04
PCB-1232	< .021	U	.0024	.021	1	10/13/04
PCB-1242	< .021	U	.0018	.021	1	10/13/04
PCB-1248	< .021	U	.0014	.021	. 1	10/13/04
PCB-1254	< .021	U	.00083	.021	1	10/13/04
PCB-1260	< .021	υ	.0014	.021	1	10/13/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	72.		30-150	
Decachlorobiphenyl (surrogate)	59.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

dow Authorized:

Date: October 29, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:	Certification NY No.: 10155
Package#: 9090 Sample: E 7848 Sample Description: SEGMENT 10-E3-100504 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x	Collected: 10/05/04 Matrix: Solid Received: 10/08/04 QC Batch: 101204S2 Prepared: 10/12/04 %Solids: 81.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021	U	.0028	.021	1	10/13/04
PCB-1221	< .021	U	.0036	.021	1	10/13/04
PCB-1232	< .021	U	.0024	.021	1	10/13/04
PCB-1242	< .021	U	.0018	.021	1	10/13/04
PCB-1248	< .021	U	.0014	.021	1	10/13/04
PCB-1254	< .021	U	.00083	.021	1	10/13/04
PCB-1260	< .021	U	.0014	.021	l	10/13/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	69.		30-150	
Decachlorobiphenyl (surrogate)	.57.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized:

Date: October 29, 2004

Thomas Alexander

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750_004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 9090			· .
Sample: E 7849	Collected:	10/07/04	Matrix: Solid
Sample Description: SEGMENT 10-G1-100704	Received:	10/08/04	QC Batch: 101204S2
Instrument: HP5890-89	Prepared:	10/12/04	%Solids: 76.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID			Primary: Y

Parameter	Result Qual	MDL	PQL Dil	Analyzed Notes
PCB-1016	< .022 U	.0029 .022	1	10/13/04
PCB-1221	< .022 U	.0038 .022	1	10/13/04
PCB-1232	< .022 U	.0026 .022	1	10/13/04
PCB-1242	< .022 Ŭ	.0019 .022	_ 1	10/13/04
PCB-1248	< .022 U	.0015 .022	1	10/13/04
PCB-1254	<.022 U	.00088 .022	1	10/13/04
PCB-1260	<.022 U	.0014 .022	1	10/13/04

			%R		
Surrogate	۶R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	73.		30-150		
Decachlorobiphenyl (surrogate)	60.		30-150		

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: 11

Date: October 29, 2004

Thomas Alexander

Analytical Results Method: 8082

Job No.: 6750,004.62306

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 9090 10/08/04 Collected: Matrix: Solid Sample: E7850 Received: 10/08/04 QC Batch: 101204S2 Sample Description: SVE-B3-100804 Prepared: 10/12/04 Instrument: HP5890-89 %Solids: 91.0 Units: mg/Kg Dry weight Sample Size: 30 g Column Name: RTXCLP, 30m x .53mmID Number of analytes: 7 Primary: Y

Parameter	Result Qu	al MDL	PQL Dil	Analyzed Notes
PCB-1016	< .92 U	.12 .92	50	10/13/04
PCB-1221	<.92 U	.16 .92	50	10/13/04
PCB-1232	<.92 U	.11 .92	50	10/13/04
PCB-1242	<.92 U	.078 .92	50	10/13/04
PCB-1248	8.1	.061 .92	50	10/13/04
PCB-1254	<.92 U	.036 .92	50	10/13/04
PCB-1260	<.92 U	.060 .92	50	10/13/04

Surrogate	₹R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	260.	#	30-150	38
Decachlorobiphenyl (surrogate)	156.	#	30-150	38

Notes:

Surrogate was diluted 38 •

38 Surrogate was diluted 1

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

1.Um Authorized:

Date: October 29, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill	Certification NY No.: 10155			
Proj. Desc: Package#: 9090	Collected: 10/08/04	Matrix: Solid		
Sample: E 7850 Sample Description: SVE-B3-100804 Instrument: HP5890-89 Units: mg/Kg Dry weight	Received: 10/08/04 Prepared: 10/07/04	QC Batch: 100704S2 %Solids: 91.0 Sample Size: 30 g		
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID		Primary: Y		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .92	U	.12	. 92	50	10/13/04
PCB-1221	< .92	U	.16	.92	50	10/13/04
PCB-1232	< .92	U	.11	.92	50	10/13/04
PCB-1242	< .92	υ	.078	.92	50	10/13/04
PCB-1248	7.0		.061	.92	50	10/13/04
PCB-1254	< .92	υ	.036	. 92	50	10/13/04
PCB-1260	< .92	ប	.060	.92	50	10/13/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	187.	#	30-150	38
Decachlorobiphenyl (surrogate)	166.	#	30-150	38

Notes:

38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

(NOV? Authorized:

Date: October 14, 2004

Thomas Alexander

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750, 004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 9121 10/09/04 Collected: Matrix: Solid Sample: E8001 Received: 10/14/04 QC Batch: 101404S1 Sample Description: SVE-B3-100904 Prepared: 10/14/04 Instrument: HP5890-89 %Solids: 94.0 mg/Kg Dry weight Units: Sample Size: 30 g Column Name: RTXCLP2, 30m x .53mmID Number of analytes: 7 Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .90	U	.12	.9	50	10/22/04
PCB-1221	< .90	U	.15	.9	50	10/22/04
PCB-1232	< .90	U	.10	.9	50	10/22/04
PCB-1242	< .90	U	.077	.9	50	10/22/04
PCB-1248	3.8		.060	.9	50	10/22/04
PCB-1254	< .90	U	.036	.9	50	10/22/04
PCB-1260	< .90	U	.059	.9	50	10/22/04

			%R		
Surrogate	%R	Qual	Limits	Notes	
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	104.		30-150	38	
Decachlorobiphenyl (surrogate)	106.		30-150	38	

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

homas Authorized:

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Date: November 8, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 9121 10/09/04 Collected: Matrix: Solid Sample: E8001 Received: 10/14/04 QC Batch: 101404S1 Sample Description: SVE-B3-100904 Prepared: 10/14/04 HP5890-89 Instrument: %Solids: 94.0 mg/Kg Dry weight Units: Sample Size: 30 g

Number of analytes: 7

Column Name: RTXCLP, 30m x .53mmID

Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .90	U	.12	.9	50	10/22/04
PCB-1221	< .90	U	.15	.9	50	10/22/04
PCB-1232	< .90	υ	.10	.9	50	10/22/04
PCB-1242	< .90	U	.077	.9	50	10/22/04
PCB-1248	. 3.9		.060	.9	50	10/22/04
PCB-1254	< .90	U	.036	.9	50	10/22/04
PCB-1260	< .90	U	.059	.9	50	10/22/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	142.		30-150	38
Decachlorobiphenyl (surrogate)	81.		30-150	-38

Notes:

- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

Authorized:

Date: November 8, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

B - Analyte detected above the PQL in the associated Prep Blank.

E - Concentration exceeded the calibration range and is estimated.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

P - RPD>40% between primary and confirmation.

Project:

Client: Parsons Engineering Science, Inc.

Amphenol Richardson Hill Road Landfill

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Proj. Desc:			
Package#: 9121 Sample: E 8002 Sample Description: SEGMENT 10-L3-101104 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID	•	10/11/04 10/14/04 10/14/04	Matrix: Solid QC Batch: 101404S1 %Solids: 77.0 Sample Size: 30 g Primary: Y

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .022 U	.0029	.022	1	10/22/04
PCB-1221	< .022 U	.0038	.022	1	10/22/04
PCB-1232	<.022 U	.0025	.022	1	10/22/04
PCB-1242	< .022 U	.0019	.022	1	10/22/04
PCB-1248	<.022 U	.0015	.022	1	10/22/04
PCB-1254	< .022 U	.00087	.022	1	10/22/04
PCB-1260	<.022 U	.0014	.022	1	10/22/04

Surrogate	۶R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.	·	30-150	
Decachlorobiphenyl (surrogate)	70.		30-150	

Notes:

toomasle

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: ______ Date: November 8, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.: 6	750.004.62306
Project: Amphenol Richardson Hill Road Landfill		Certification	NY No.: 10155
Proj. Desc:			
Package#: 9121 Sample: E 8003	Collected:	10/12/04	Matrix: Solid
Sample Description: SEGMENT 10-K3-101204	Received: Prepared:	10/14/04 10/14/04	QC Batch: 101404S1 %Solids: 73.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .023	U	.0031	.023	1	10/22/04
PCB-1221	< .023	U	.0040	.023	1	10/22/04
PCB-1232	< .023	U	.0027	.023	1	10/22/04
PCB-1242	< .023	U	.0020	.023	1	10/22/04
PCB-1248	.032		.0015	.023	1	10/22/04 6
PCB-1254	< .023	υ	.00092	.023	1	10/22/04
PCB-1260	< .023	U	.0015	.023	1	10/22/04

Surrogate	۶R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	87.		30-150	
Decachlorobiphenyl (surrogate)	65.		30-150	

Notes:

6 : Altered aroclor.

: Altered aroclor. 6

thomas & Clefrade

Authorized: Date: November 8, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level. J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			5750 . 004 . 62306 1 NY No.: 10155
Package#: 9121 Sample: E 8003 Sample Description: SEGMENT 10-K3-101204 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID	Collected: Received: Prepared:	10/12/04 10/14/04 10/14/04	Matrix: Solid QC Batch: 101404S1 %Solids: 73.0 Sample Size: 30 g Primary: N

Parameter	Result Q	ual MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .023 U	.0031	.023	1	10/22/04
PCB-1221	<.023 U	.0040	.023	1	10/22/04
PCB-1232	<.023 U	.0027	.023	1	10/22/04
PCB-1242	< .023 U	.0020	.023	1	10/22/04
PCB-1248	.035	.0015	.023	1	10/22/04 6
PCB-1254	<.023 U	.00092	.023	1	10/22/04
PCB-1260	<.023 U	.0015	.023	1	10/22/04

			*R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	75.		30-150	
Decachlorobiphenyl (surrogate)	58.		30-150	

Notes:

6 : Altered aroclor.

6 : Altered aroclor.

Thomas a alefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill			5750 . 004 .62306 1 NY No.: 10155
Proj. Desc:			
Package#: 9121 Sample: E 8004 Sample Description: SEGMENT 10-K4-101204 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID	Collected: Received: Prepared:	10/12/04 10/14/04 10/14/04	Matrix: Solid QC Batch: 101404S1 %Solids: 64.0 Sample Size: 30 g Primary: Y

Result Qual MDL PQL Dil Analyzed Notes Parameter 10/22/04 < .053 .0070 .053 2 PCB-1016 U PCB-1221 < .053 U. .0090 .053 2 10/22/04 10/22/04 < .053 .0061 .053 2 PCB-1232 U .053 2 10/22/04 < .053 U .0045 PCB-1242 .29 .0035 .053 2 10/22/04 PCB-1248 2 10/22/04 < .053 U .0021 .053 PCB-1254 PCB-1260 < .053 υ .0034 .053 2 10/22/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	79.		30-150	38
Decachlorobiphenyl (surrogate)	57.		30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

Thomas a alefrade

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: ______ Date: November 8, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.: 6750_004.62306			
Project: Amphenol Richardson Hill Road Landfill		Certification NY No.: 10155			
Proj. Desc:					
Package#: 9121					
Sample: E 8004	Collected:	10/12/04	Matrix: Solid		
Sample Description: SEGMENT 10-K4-101204	Received:	10/14/04	QC Batch: 101404S1		
Instrument: HP5890-89	Prepared:	10/14/04	%Solids: 64.0		
Units: mg/Kg Dry weight			Sample Size: 30 g		
Number of analytes: 7 Column Name: RTXCLP, 30m x .53mmID			Primary: N		

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .053	U	.0070	.053	2	10/22/04
PCB-1221	< .053	U	.0090	.053	2	10/22/04
PCB-1232	< .053	U	.0061	.053	2	10/22/04
PCB-1242	< .053	U	.0045	.053	2	10/22/04
PCB-1248	.31		.0035	.053	2	10/22/04
PCB-1254	< .053	U	.0021	.053	2	10/22/04
PCB-1260	< .053	U	.0034	.053	2	10/22/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	76.		30-150	38
Decachlorobiphenyl (surrogate)	56.		30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

Tourdo G Authorized:

Date: November 8, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750, 004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 9121 Collected: 10/12/04 Matrix: Solid E 8005 Sample: Received: 10/14/04 QC Batch: 101404S1 Sample Description: SEGMENT 10-J4-101204 Prepared: 10/14/04 %Solids: 80.0 Instrument: HP5890-89 Sample Size: 30 g Units: mg/Kg Dry weight Column Name: RTXCLP2, 30m x .53mmID Number of analytes: 7 Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .021	U	.0028	.021	1	10/22/04
PCB-1221	< .021	U	.0036	.021	Ŧ	10/22/04
PCB-1232	< .021	υ	.0024	.021	1	10/22/04
PCB-1242	< .021	U	.0018	.021	1	10/22/04
PCB-1248	< .021	Ū	.0014	.021	1	10/22/04
PCB-1254	< .021	U	.00084	.021	1	10/22/04
PCB-1260	< .021	U	.0014	.021	1	10/22/04

			%R	
Surrogate	%R	Qual	Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.		30-150	
Decachlorobiphenyl (surrogate)	72.		30-150	

Notes:

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level. J - Reported value is estimated. D - Result is diluted.

J - Reported value is estimated. D - Result is unuted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: TUBINAD a Clefrade

Date: November 8, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8260

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9121 Sample: E8006 Sample Description: SVE-B2-101304 Instrument: HP5970 GC/MS#2 Units: ug/Kg Dry weight Number of analytes: 58 Job No.: 6750.004.62306 Certification NY No.: 10155

Collected: 10/13/04 Matrix: Solid Received: 10/14/04 QC Batch: 101504S2 Prepared: 10/15/04 %Solids: 92.0 Sample Size: 5.16 g Dilution: 1

Parameter	Result	Qual	MDL	PQL	Analyzed Notes
Dichlorodifluoromethane	<5.	U	.47	5.	10/15/04
Chloromethane	<5.	U	.19	5.	10/15/04
Vinyl chloride	<5.	U	.15	5.	10/15/04
Bromomethane	<5.	U	.22	5.	10/15/04
Chloroethane	<5.	U,	.18	5.	10/15/04
Trichlorofluoromethane	<5.	U	.063	5.	10/15/04
1,1-Dichloroethene	<3.	U	.12	3.	10/15/04
Methylene chloride	J 1.	J	B.41	5.	10/15/04
trans-1,2-Dichloroethene	<3.	U	.084	3.	10/15/04
1,1-Dichloroethane	<3.	U	.095	з.	10/15/04
cis-1,2-Dichloroethene	<3.	U	.084	3.	10/15/04
Bromochloromethane	<3.	U	.21	з.	10/15/04
Chloroform	<3.	U	-084	3.	10/15/04
2,2-Dichloropropane	<3.	U	.12	з.	10/15/04
1,2-Dichloroethane	<3.	U	.11	З.	10/15/04
1,1,1-Trichloroethane	<3.	U	.095	3.	10/15/04
1,1-Dichloropropene	<3.	U	.48	3.	10/15/04
Carbon tetrachloride	<3.	U	.12	З.	10/15/04
Benzene	<3.	U	.084	3.	10/15/04
Dibromomethane	<3.	U	.16	3.	10/15/04
1,2-Dichloropropane	<3.	U	.29	3.	10/15/04
Trichloroethene	<3.	U	.12	3.	10/15/04
Bromodichloromethane	<3.	U	.19	з.	10/15/04
cis-1,3-Dichloropropene	<3.	ប	.095	3.	10/15/04
trans-1,3-Dichloropropene	<3.	U	.11	з.	10/15/04
1,1,2-Trichloroethane	<3.	ប	.20	з.	10/15/04
Toluene	<3.	ប	.18	З.	10/15/04
1,3-Dichloropropane	<3.	U	.13	3.	10/15/04
Dibromochloromethane	<3.	U	.14	3.	10/15/04
1,2-Dibromoethane	<3.	U	.13	3.	10/15/04
Tetrachloroethene	<3.	U	.12	3.	10/15/04
1,1,1,2-Tetrachloroethane	<3.	U	.13	3.	10/15/04
Chlorobenzene	<3.	U	074	З.	10/15/04

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits U Undetected at the reported level.
- J reported value is estimated. D Result is diluted.
- E concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized:

Date: November 16, 2004

Thomas Alexander

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9121 Sample: E8006 Sample Description: SVE-B2-101304 Instrument: HP5970 GC/MS#2 Units: ug/Kg Dry weight

Number of analytes: 58

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected: 10/13/04 Received: 10/14/04 Prepared: 10/15/04

Matrix: Solid QC Batch: 101504S2 %Solids: 92.0 Sample Size: 5.16 g Dilution: 1

Parameter	Result	Qual	MDL	PQL	Analyzed Notes
Ethylbenzene	<3.	U	.084	3.	10/15/04
Bromoform	<3.	υ	.16	3.	10/15/04
Xylene (total)	<3.	U	.17	з.	10/15/04
Styrene	<3.	υ	.074	3.	10/15/04
1,1,2,2-Tetrachloroethane	<3.	U	.18	з.	10/15/04
1,2,3-Trichloropropane	<3.	U	.35	3.	10/15/04
Isopropylbenzene	<3.	U	.074	3.	10/15/04
Bromobenzene	<3.	U	.21	3.	10/15/04
n-Propylbenzene	<3.	U .	.11	3.	10/15/04
2-Chlorotoluene	<3.	U	.084	3.	10/15/04
4-Chlorotoluene	<3.	U	.074	3.	10/15/04
1,3,5-Trimethylbenzene	<3.	U	.29	з.	10/15/04
tert-Butylbenzene	<3.	U	.074	3.	10/15/04
n-Butylbenzene	<3.	U	.13	з.	10/15/04
1,2,4-Trimethylbenzene	<3.	U	.11	.3.	10/15/04
sec-Butylbenzene	<3.	U	.37	3.	10/15/04
1,3-Dichlorobenzene	<3.	U	.12	3.	10/15/04
1,4-Dichlorobenzene	<3.	U	.24	3.	10/15/04
p-Isopropyltoluene	<3.	U	.11	3.	10/15/04
1,2-Dichlorobenzene	<3.	U	.11	3.	10/15/04
1,2-Dibromo-3-chloropropane	<5.	U	.25	5.	10/15/04
1,2,4-Trichlorobenzene	<5.	U	.21	5.	10/15/04
Naphthalene	<5.	U	.18	5.	10/15/04
Hexachlorobutadiene	<5.	ប	.54	5.	10/15/04
1,2,3-Trichlorobenzene	<5.	U	.19	5.	10/15/04

Surrogate	%R	Qual	%R Limits
Dibromofluoromethane (surrogate)	102		76-124
1,2-Dichloroethane-d4 (surrogate)	109		70-121
Toluene-d8 (surrogate)	95		84-138

thomasa

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits U - Undetected at the reported level.

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Authorized: ______ Date: November 16, 2004

Thomas Alexander

Notes:

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9121 Samole: E8006 Sample Description: SVE-B2-101304 Instrument: HP5970 GC/MS#2 Units: ug/Kg Dry weight Number of analytes: 58

Analytical Results Method: 8260

Job No.: 6750.004.62306 Certification NY No.: 10155

Collected: 10/13/04 M Received: 10/14/04 (Prepared: 10/15/04

Matrix: Solid QC Batch: 101504S2 %Solids: 92.0 Sample Size: 5.16 g Dilution: 1

Surrogate	%R	Qual	%R Limits
Bromofluorobenzene (surrogate)	93		59-113

B - Analyte detected above the PQL in the associated Prep Blank. # - Outside control limits U - Undetected at the reported level. Authorized: TUSVIAS a lefane

Date: November 16, 2004

Thomas Alexander

J - reported value is estimated. D - Result is diluted.

E - concentration exceeded the calibration range and is estimated.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc.		Job No.:	6750.004.62306
Project: Amphenol Richardson Hill Road Landfill			n NY No.: 10155
Proj. Desc:			
Package#: 9127			
Sample: E 8033	Collected:	10/13/04	Matrix: Solid
Sample Description: SEGMENT 9-W1-101304	Received:	10/15/04	QC Batch: 101504S3
Instrument: HP5890-89	Prepared:	10/15/04	%Solids: 59.0
Units: mg/Kg Dry weight			Sample Size: 30 g
Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID			Primary: Y

Parameter	Result Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.029 U	.0038	.029	1	10/21/04
PCB-1221	<.029 U	.0049	.029	1	10/21/04
PCB-1232	<.029 U	.0033	.029	1	10/21/04
PCB-1242	<.029 U	.0024	.029	1	10/21/04
PCB-1248	< .029 U	.0019	.029	1	10/21/04
PCB-1254	.014 J P	.0011	.029	1	10/21/04 6
PCB-1260	< .029 U	.0019	.029	1	10/21/04

Surrogate	१R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	84.		30-150	·
Decachlorobiphenyl (surrogate)	62.	÷ •	30-150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.
- P RPD>40% between primary and confirmation.

trosmas a lefande

Date: November 9, 2004

Authorized:

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306

Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			on NY No.: 10155
Package#: 9127 Sample: E 8033 Sample Description: SEGMENT 9-W1-101304 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	10/13/04 10/15/04 10/15/04	Matrix: Solid QC Batch: 101504S3 %Solids: 59.0 Sample Size: 30 g Primary: N

Parameter	Result (Qual MDL	PQL	Dil	Analyzed Notes
PCB-1016	<.029 U	.0038	.029	1	11/09/04
PCB-1221	< .029 U	.0049	.029	1	11/09/04
PCB-1232	<.029 U	.0033	.029	1	11/09/04
PCB-1242	<.029 U	.0024	.029	1	11/09/04
PCB-1248	<.029 U	.0019	.029	1	11/09/04
PCB-1254	.022 J	P .0011	.029	l	11/09/04 6
PCB-1260	<.029 U	.0019	.029	1	11/09/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	78.		30-150	
Decachlorobiphenyl (surrogate)	59.		30-150	

Notes:

6 : Altered aroclor.

Altered aroclor. 6

homas a lefande

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: November 9, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill - Proj. Desc:	Job No.: 6750 . 004 . 62306 Certification NY No.: 10155			
Package#: 9127 Sample: E 8034 Sample Description: AR-2-101304	Collected: Received:	10/13/04 10/15/04	Matrix: Solid QC Batch: 101504S3	
Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID	Prepared:	10/15/04	%Solids: 98.0 Sample Size: 30 g Primary: Y	

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016 0	< .035	υ	.0046	.035	2	10/21/04
PCB-1221	< .035	υ	.0059	.035	2	10/21/04
PCB-1232	< .035	U	.0040	.035	2	10/21/04
PCB-1242	< .035	U	.0029	.035	2	10/21/04
PCB-1248	.19	P	.0023	.035	2	10/21/04
PCB-1254	< .035	υ	.0014	.035	2	10/21/04
PCB-1260	< .035	U	.0022	.035	2	10/21/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	75.		30-150	38
Decachlorobiphenyl (surrogate)	54.		30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: ______ Date: November 9, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Job No.: 6750.004.62306 Project: Amphenol Richardson Hill Road Landfill Certification NY No.: 10155 Proj. Desc: Package#: 9127 Collected: 10/13/04 Matrix: Solid Sample: E 8034 Received: 10/15/04 Sample Description: QC Batch: 101504S3 AR-2-101304 Prepared: Instrument: HP5890-90 10/15/04 %Solids: 98.0 Units: mg/Kg Dry weight Sample Size: 30 g Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID Primary: N

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .035	U	.0046	.035	2	11/09/04
PCB-1221	< .035	U	.0059	.035	2	11/09/04
PCB-1232	< .035	U	.0040	.035	2	11/09/04
PCB-1242	< .035	U	.0029	.035	2	11/09/04
PCB-1248	.15	P	.0023	035 ُ	2	11/09/04
PCB-1254	< .035	U	.0014	.035	2	11/09/04
PCB-1260	< .035	U	.0022	.035	2	11/09/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	64.		30~150	38
Decachlorobiphenyl (surrogate)	52.		30-150	38

Notes:

38 : Surrogate was diluted

38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

rimary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

lefande Thorn Authorized:

Date: November 9, 2004

9, 2004 👘 Thomas Alexander

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

•	Project: Amphenol Richardson Hill Road Landfill Proj. Desc:		Certification	n NY No.: 10155
	Package#: 9127 Sample: E 8035 Sample Description: HHC-6-101304 Instrument: HP5890-89 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: RTXCLP2, 30m x .53mmID	Collected: Received: Prepared:	10/13/04 10/15/04 10/15/04	Matrix: Solid QC Batch: 101504S3 %Solids: 94.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .018	υ	.0024	.018	1	10/21/04
PCB-1221	< .018	U	.0031	.018	1	10/21/04
PCB-1232	< .018	U	.0021	.018	1	10/21/04
PCB-1242	< .018	U	.0015	.018	1	10/21/04
PCB-1248 .	< .018	υ	.0012	.018	l	10/21/04
PCB~1254	.0058	JP	.00071	.018	1	10/21/04 6
PCB-1260 .	< .018	U	.0012	.018	1	10/21/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	92.		30-150	
Decachlorobiphenyl (surrogate)	71.		30~150	

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Idrade Authorized:

Date: November 9, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

.0 A

Analytical Results Method: 8082

Client: Parsons Engineering Science, Inc. Project: Amphenol Richardson Hill Road Landfill Proj. Desc:			6750 . 004 . 62306 m NY No.: 10155
Package#: 9127 Sample: E8035 Sample Description: HHC-6-101304 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	10/13/04 10/15/04 10/15/04	Matrix: Solid QC Batch: 101504S3 %Solids: 94.0 Sample Size: 30 g Primary: N

Parameter	Result	Qual MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .018 U	J.0024	.018	1	11/09/04
PCB-1221	< .018 t	J .0031	.018	1	11/09/04
PCB-1232	< .018 U	J.0021	.018	l	11/09/04
PCB-1242	< .018 U	.0015	-018	1	11/09/04
PCB-1248	< .018 U	J.0012	.018	1	11/09/04
PCB-1254	.0085 3	J P .00071	.018	1	11/09/04 6
PCB-1260	< .018 ŭ	.0012	.018	1	11/09/04

Surrogate	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	88.		30-150	
Decachlorobiphenyl (surrogate)	66.		30-150	

Notes:

Altered aroclor. 6 •

Altered aroclor. б

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Date: November 9, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Client: Parsons Engineering Science, Inc.

Analytical Results Method: 8082

Job No.: 6750.004.62306 Certification NY No.: 10155

Project: Amphenol Richardson Hill Road Landfill		Certificatio	on NY No.: 10155
Proj. Desc: Package#: 9305 Sample: E9120 Sample Description: SP-B1-110604 Instrument: HP5890-90 Units: mg/Kg Dry weight Number of analytes: 7 Column Name: DB-608, 30m x .53mm ID	Collected: Received: Prepared:	11/06/04 11/09/04	Matrix: Solid QC Batch: 111104S1 %Solids: 74.0 Sample Size: 30 g Primary: Y

Parameter	Result	Qual	MDL	PQL	Dil	Analyzed Notes
PCB-1016	< .11	U	.015	.11	5	11/12/04
PCB-1221	< ,11	U	.020	.11	5	11/12/04
PCB-1232	< .11	U	.013	.11	5	11/12/04
PCB-1242	< .11	Ū	.0097	.11	5	11/12/04
PCB-1248	.20		.0076	.11	5	11/12/04 6
PCB-1254	< .11	U	.0045	.11	5	11/12/04
PCB-1260	< .11	U	.0074	.11	5	11/12/04

Surrogate	%R	Qual	*R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	78.		30-150	38
Decachlorobiphenyl (surrogate)	94.		30-150	38

Notes:

- 6 : Altered aroclor.
- 6 : Altered aroclor.
- 38 : Surrogate was diluted
- 38 : Surrogate was diluted

B - Analyte detected above the PQL in the associated Prep Blank.

- # Outside control limits. U Undetected at the reported level.
- J Reported value is estimated. D Result is diluted.
- E Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

Authorized: Morren Obland

Date: November 17, 2004

Thomas Alexander

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

- A C

Project:

Sample:

PCB-1016 PCB-1221 PCB-1232 PCB-1242

PCB-1248

PCB-1254

PCB-1260

Analytical Results Method: 8082

5

5

.11

.11

.0045

.0074

Sample Size: 30 g

11/12/04

11/12/04

Job No.: 6750 004.62306 Client: Parsons Engineering Science, Inc. Certification NY No.: 10155 Amphenol Richardson Hill Road Landfill Proj. Desc: Package#: 9305 11/06/04 Matrix: Solid Collected: E9120 Received: 11/09/04 QC Batch: 111104S1 Sample Description: SP-B1-110604 Prepared: 11/11/04 %Solids: 74.0 Instrument: HP5890-90

mg/Kg Dry weight Units: Number o

Number of analytes: 7	Column Name:	DB-1701, 30n	n x .53m	m ID	Primary: N			
Parameter		Result	Qual	MDL	PQL	Dil	Analyzed Notes	
CB-1016		< .11	υ	.015	.11	5	11/12/04	
CB-1010		< .11	U	.020	.11	5	11/12/04	
CB-1232		< .11	U	.013	.11	5	11/12/04	
CB-1232			υ	.0097	.11	5	11/12/04	
DD-1242		.23	-	.0076	.11	5	11/12/04 6	

U

υ

Surrogate	2	%R	Qual	%R Limits	Notes
2,4,5,6-Tetrachloro-m-Xylene (surrogate)	•••••••	93.		30-150	38
Decachlorobiphenyl (surrogate)		94.		30-150	38

< .11

< .11

Notes:

- : Altered aroclor. 6
- : Altered aroclor. 6
- : Surrogate was diluted 38
- : Surrogate was diluted 38.

1At Authorized:

Date: November 17, 2004

Thomas Alexander

B - Analyte detected above the PQL in the associated Prep Blank.

- Outside control limits. U - Undetected at the reported level.

J - Reported value is estimated. D - Result is diluted.

E - Concentration exceeded the calibration range and is estimated.

P - RPD>40% between primary and confirmation.

5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

	J'Brien & G 000 Brittonfield Parky	vay		ies, Inc.	A	naly	tical Result
E E	ast Syracuse, NY 130	57 (315) 437-6100		Stat	eCerti	No: 10155
CLIENT:	Parsons Engineering S	cience, Inc.		Lab ID:	` 05	04162-	-001A
Project:	Amphenol Richardson	Hill Road Lan	dfill	Client Sa	mple ID: Al	R-1	
W Order:	0504162			Collectio	n Date: 4/2	28/05	
Matrix:	SOLID			Date Rec	eived: 4/2	29/05	
Inst. ID:	GC90 20D	Sample Size	:30 g	PrepDate	e: 5/2	/05 12	:50:43 PM
ColumnID:	DB-1701	%Moisture:	16.2	BatchNo	: 502	2/R107	0
Revision:	5/17/05 [.] 9:02:43 AM	TestCode:	8082SE	FileID:	E:\	90MA	Y05\D050439.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	(SW355	50B)
Aroclor 1016		ND	0.014	0.099	mg/Kg-dry		5/5/05 9:53:53 AM
Arocior 1221		ND	0.017	0.099	mg/Kg-dry	/ 5	5/5/05 9:53:53 AM
Aroclor 1232		ND	0.012	0.099	mg/Kg-dry	/ 5	5/5/05 9:53:53 AM
Aroclor 1242		ND	0.0086	0.099	mg/Kg-dry	5	5/5/05 9:53:53 AM
Aroclor 1248		0.37	0.0067	0.099	mg/Kg-dry	5	5/5/05 9:53:53 AM
Aroclor 1254		ND	0.0040	0.099	mg/Kg-dry	5	5/5/05 9:53:53 AM
Aroclor 1260		ND	0.0066	0.099	mg/Kg-dry	5	5/5/05 9:53:53 AM
Surr: Tetrac	hloro-m-xylene	85.8	. 0	30-150	%REC	5	5/5/05 9:53:53 AM
Curry Deser	hlorobiphenyi	70.0	0	30-150	%REC	5	5/5/05 9:53:53 AM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit-

- E Value above quantitation range
- J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Project Supervisor: Thomas A. Alexander

)'Brien & (000 Brittonfield Parl		orator	ies, Inc.	An	alyt	ical Result
	ast Syracuse, NY 1	. •) 437-6100		State	CertNo	: 10155
CLIENT:	Parsons Engineering	Science, Inc.		Lab ID:	0504	4162-00)1A
Project:	Amphenol Richardso	on Hill Road Lan	dfill	Client Sa	mple ID: AR-	1	
W Order:	0504162			Collectio	n Date: 4/28	/05	
Matrix:	SOLID			Date Rec	eived: 4/29	/05	
Inst. ID:	GC89 14L	Sample Size	: 30 g	PrepDate	e: 5/2/()5 12:50	0:43 PM
ColumnID:	RtxCLP2	Rt %Moisture	-	BatchNo	: 502/	R1073	
Revision:	5/16/05 5:02:19 PM	TestCode:	8082SE	FileID:	E:\89	9MAY()5\L051329.rst
Analyte		Result Qı	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	(S'	W3550	в)
Aroclor 1016		NĎ	0.014	0.099	mg/Kg-dry		5/14/05 4:57:02 AM
Aroclor 1221		ND	0.017	0.099	₀ mg/Kg-dry :	5	5/14/05 4:57:02 AM
Aroclor 1232	÷	ND	0.012	0.099	mg/Kg-dry	5	5/14/05 4:57:02 AM
Arocior 1242		ND	0.0086	0.099	mg/Kg-dry	5	5/14/05 4:57:02 AM
Aroclor 1248		0.42	0.0067	0.099	mg/Kg-dry	5	5/14/05 4:57:02 AM
Arocior 1254		ND	0.0040	0.099	mg/Kg-dry	5	5/14/05 4:57:02 AM
Arocior 1260		ND	0.0066	0.099	mg/Kg-dry	5	5/14/05 4:57:02 AM
Surr: Tetrac	hloro-m-xylene	106	0	30-150	%REC	5	5/14/05 4:57:02 AM
	hlorobiphenyl	86.7	0	30-150	%REC	5	5/14/05 4:57:02 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits S

в

E

O'Brien & Gere Laboratories, Inc. 5000 Brittonfield Parkway

Analytical Results

	ast Syracuse, NY 130	(315	5) 437-6100	StateCertNo: 10155				
CLIENT: Project: W Order: Aatrix:	Parsons Engineering S Amphenol Richardson 0504162 SOLID		dfill	Lab ID: Client Sa Collection	mple ID: A n Date: 4	504162 R-2 /28/05	-002A	
nst. ID: ColumnID: Levision:	GC90 20D	Sample Size %Moisture TestCode:	~	Date Rec PrepDate BatchNo: FileID:	e: 5/	02/R107	2:50:43 PM 70 Y05\D050412.rst	
Analyte		Result Qi	ialMDL	PQL	Units	DF	Date Analyzed	
OLYCHLO	RINATED BIPHENYLS	BY CO/ECD						
				SW8082		(SW35	50B)	
		ND	0.0028	SW8082 0.020	mg/Kg-d	(SW35) rv 1	•	
roclor 1016			0.0028 0.0034		mg/Kg-di mg/Kg-di	ry 1	5/4/05 6:56:13 PM	
Aroclor 1016 Aroclor 1221 Aroclor 1232		ND		0.020	mg/Kg-di	ry 1 ry 1	5/4/05 6:56:13 PM 5/4/05 6:56:13 PM	
Aroclor 1016 Aroclor 1221 Aroclor 1232		ND ND	0.0034	0.020 0.020	mg/Kg-di mg/Kg-di	ry 1 ry 1 ry 1	5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM	
Aroclor 1016 Aroclor 1221		ND ND ND	0.0034 0.0023	0.020 0.020 0.020	mg/Kg-di mg/Kg-di mg/Kg-di	ry 1 ry 1 ry 1 ry 1 ry 1	5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM	
vroclor 1016 vroclor 1221 vroclor 1232 vroclor 1242 vroclor 1248		ND ND ND ND	0.0034 0.0023 0.0017	0.020 0.020 0.020 0.020	mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di	ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1	5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM	
vroclor 1016 vroclor 1221 vroclor 1232 vroclor 1242 vroclor 1248 vroclor 1254		ND ND ND ND 0.093	0.0034 0.0023 0.0017 0.0013	0.020 0.020 0.020 0.020 0.020	mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di	ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1	5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM	
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1250	hloro-m-xylene	ND ND ND 0.093 ND	0.0034 0.0023 0.0017 0.0013 0.00079	0.020 0.020 0.020 0.020 0.020 0.020	mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di	ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1	5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM 5/4/05 6:56:13 PM	

Qualifiers:

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:05 AM

	J'Brien & (000 Brittonfield Parl	Sere Lab	orator	ies, Inc.	ł	Analy	tical Result
E	ast Syracuse, NY 1.	3057 (315)	437-6100		S	tateCertN	No: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/16/05 5:02:19 PM	on Hill Road Land Sample Size Rt %Moisture:	: 30 g	Lab ID: Client Sa Collectio Date Rec PrepDate BatchNo FileID:	n Date: eived: e: :	502/R107	:50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082		(SW355	50B)
Aroclor 1016		ND	0.0028	0.020	mg/Kg	•	5/14/05 5:24:14 AM
Aroclor 1221		ND	0.0034	0.020	mg/Kg	-dry 1	5/14/05 5:24:14 AM
Aroclor 1232		ND	0.0023	0.020	mg/Kg	dry 1	5/14/05 5:24:14 AM
Arocior 1242		ND	0.0017	0.020	mg/Kg	dry 1	5/14/05 5:24:14 AM
Aroclor 1248		0.088	0.0013	0.020	mg/Kg	dry 1	5/14/05 5:24:14 AM
Aroclor 1254		ND	0.00079	0.020	mg/Kg	dry 1	5/14/05 5:24:14 AM
Aroclor 1260		ND	0.0013	0.020	mg/Kg	dry 1	5/14/05 5:24:14 AM

30-150

30-150

%REC

%REC

1

1

5/14/05 5:24:14 AM

5/14/05 5:24:14 AM

56.0

42.3

0

0

Qualifiers:

B Analyte detected in the associated Method Blank
H Holding times for preparation or analysis exceeded
ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:04 AM

Surr: Tetrachloro-m-xylene

Surr: Decachlorobiphenyl

Project Supervisor: Thomas A. Alexander

)'Brien & G 000 Brittonfield Parky		orator	ies, Inc.		naly	tical Results
	ast Syracuse, NY 130	. (315)	437-6100		Stat	teCertN	No: 10155
CLIENT:	Parsons Engineering S	cience, Inc.		Lab ID:	05	04162-	003A
Project:	Amphenol Richardson	Hill Road Land	lfill	Client Sam	ole ID: Al	R-3	
W Order:	0504162			Collection I	Date: 4/	28/05	
Matrix:	SOLID			Date Receiv	red: 4/:	29/05	
Inst. ID:	GC90 20D	Sample Size:	: 30 g	PrepDate:	5/2	2/05 12:	50:43 PM
ColumnID:	DB-1701	%Moisture:	13.7	BatchNo:	50	2/R107	0
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E:\	90MA	Y05\D050415.rst
Analyte	· · · · · · · · · · · · · · · · · · ·	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082		(SW355	(0B)
Aroclor 1016		ND	0.0028	0.019	mg/Kg-dr		5/4/05 8:36:04 PM
Aroclor 1221		ND	0.0033	0.019	mg/Kg-dr	y 1	5/4/05 8:36:04 PM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-dn	y 1	5/4/05 8:36:04 PM
Aroclor 1242		ND	0.0017	0.019	mg/Kg-dr	y 1	5/4/05 8:36:04 PM
Aroclor 1248		0.17	0.0013	0.019	mg/Kg-dry	/ 1	5/4/05 8:36:04 PM
Aroclor 1254		ND	0.00078	0.019	mg/Kg-dry	/ 1	5/4/05 8:36:04 PM
Aroclor 1260		ND	0.0013	0.019	mg/Kg-dry	/ 1	5/4/05 8:36:04 PM
Surr: Tetraci	hloro-m-xylene	86.1	0	30-150	%REC	1	5/4/05 8:36:04 PM
Surr: Decach	hlorobiphenyl	74.5	0	30-150	%REC	1	5/4/05 8:36:04 PM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:06 AM

в

0 22

	D'Brien & (000 Brittonfield Parl		ies, Inc.	s, Inc. Analytical R					
E	ast Syracuse, NY 13	3057 (315)	437-6100		Sta	teCertľ	No: 10155		
CLIENT:	Parsons Engineering			Lab ID:	Lab ID: 0504162-003A				
Project:	Amphenol Richardso	on Hill Road Land	lfill	Client Sam	ple ID: A	R-3			
W Order:	0504162			Collection	Date: 4/	28/05			
Matrix:	SOLID			Date Received: 4/29/05					
Inst. ID:	GC89 14L	Sample Size:	: 30 g	PrepDate:	5/	2/05 12	:50:43 PM		
ColumnID:	RtxCLP2	Rt %Moisture:	13.7	BatchNo:	50	2/R107	3		
Revision:	5/16/05 5:02:19 PM	TestCode:	8082SE	FileID:	E:	\ 89MA `	Y05\L051331.rst		
Analyte	······································	Result Qu	alMDL	PQL	Units	DF	Date Analyzed		
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082		(SW3550B)			
Arocior 1016		ND	0.0028	0.019	mg/Kg-dr	•	5/14/05 5:51:23 AM		
Aroclor 1221		ND	0.0033	0.019	mg/Kg-dr	y 1	5/14/05 5:51:23 AM		
Aroclor 1232		ND	0.0022	0.019	mg/Kg-dr	y 1	5/14/05 5:51:23 AM		
Aroclor 1242		ND	0.0017	0.019	mg/Kg-dr	у 1	5/14/05 5:51:23 AM		
Aroclor 1248		0.19	0.0013	0.019	mg/Kg-dr	y 1	5/14/05 5:51:23 AM		
Aroclor 1254		ND	0.00078	0.019	mg/Kg-dr	y 1	5/14/05 5:51:23 AM		
Aroclor 1260		ND	0.0013	0.019	mg/Kg-dr	y 1	5/14/05 5:51:23 AM		
Surr: Tetrac	hloro-m-xylene	102	0	30-150	%REC	1	5/14/05 5:51:23 AM		
Surr: Decac									

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:05 AM

)'Brien & G 00 Brittonfield Parky	Ar	Analytical Results						
Ea	ist Syracuse, NY 130	57 (315) 437-6100		State	eCertl	No: 10155		
CLIENT:	Parsons Engineering S	cience, Inc.	,	Lab ID:	050	04162-	-004A		
Project:	Amphenol Richardson	Hill Road Lan	dfill	Client Sa	mple ID: AR	-4			
W Order:	0504162				Collection Date: 4/28/05				
Matrix:	SOLID			Date Rec	eived: 4/2				
Inst. ID:	GC90 20D	Sample Size	:30 g	PrepDate	: 5/2	/05 12	:50:43 PM		
ColumnID:	DB-1701	%Moisture:		BatchNo: 502/R1070					
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E:\9	00MA	Y05\D050440.rst		
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed		
POLYCHLOR	RINATED BIPHENYLS	BY GC/ECD		SW8082	(5	(SW3550B)			
Aroclor 1016		ND	0.014	0.095	mg/Kg-dry		5/5/05 10:27:08 AM		
Aroclor 1221	,	ND	0.017	0.095	mg/Kg-dry	5	5/5/05 10:27:08 AM		
Aroclor 1232		ND	0.011	0.095	mg/Kg-dry	5	5/5/05 10:27:08 AM		
Aroclor 1242		ND	0.0082	0.095	mg/Kg-dry	5	5/5/05 10:27:08 AM		
Aroclor 1248		0.25	0.0065	0.095	mg/Kg-dry	5	5/5/05 10:27:08 AM		
Aroclor 1254		ND	0.0038	0.095	mg/Kg-dry	5	5/5/05 10:27:08 AM		
Aroclor 1260		ND	0.0063	0.095	mg/Kg-dry	5	5/5/05 10:27:08 AM		
Surr: Tetrach	loro-m-xylene	81.7	0	30-150	%REC	5	5/5/05 10:27:08 AM		
Surr: Decach	lorobiphenyl	68.8	0	30-150	%REC	5	5/5/05 10:27:08 AM		

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Е Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:06 AM

В

Н

	J'Brien & (000 Brittonfield Parl	A	Analytical Results				
E	ast Syracuse, NY 1.	3057 (315)	437-6100		St	tateCertN	lo: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/16/05 5:02:19 PM		30 g	Lab ID: Client Samp Collection D Date Receiv PrepDate: BatchNo: FileID:	ole ID:	502/R1073	50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Tetract	RINATED BIPHENYL	S BY GC/ECD ND ND ND 0.29 ND ND 106	0.014 0.017 0.011 0.0082 0.0065 0.0038 0.0063 0	SW8082 0.095 0.095 0.095 0.095 0.095 0.095 0.095 30-150	mg/Kg-(mg/Kg-(mg/Kg-(mg/Kg-(mg/Kg-(mg/Kg-(mg/Kg-(%REC	dry 5 dry 5 dry 5 dry 5 dry 5 dry 5	0B) 5/14/05 6:18:35 AM 5/14/05 6:18:35 AM
Surr: Decach	nlorobiphenyl	85.0	0	30-150	%REC	5	5/14/05 6:18:35 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- Value above quantitation range E
- Analyte detected below quantitation limits J

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:06 AM

в

Project Supervisor: Thomas A. Alexander

	D'Brien & G 000 Brittonfield Parkw ast Syracuse, NY 130	ay	orator)) 437-6100	ies, Inc.		•	tical Results
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering S Amphenol Richardson 0504162 SOLID GC90 20D DB-1701 5/17/05 9:02:43 AM		: 30 g	Lab ID: Client Sam Collection I Date Receiv PrepDate: BatchNo: FileID:	(ple ID: 7 Date: 4 /ed: 4 5 5	0504162- AR-5 4/28/05 4/29/05 5/2/05 12: 5/2/05 12:	005A 50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Tetrac	RINATED BIPHENYLS hioro-m-xylene hiorobiphenyl	BY GC/ECD ND ND ND 0.085 ND ND 88.8 74.2	0.0028 0.0034 0.0023 0.0017 0.0013 0.00079 0.0013 0 0	\$W8082 0.020 0.020 0.020 0.020 0.020 0.020 0.020 30-150 30-150	mg/Kg-c mg/Kg-c mg/Kg-c mg/Kg-c mg/Kg-c mg/Kg-c %REC %REC	dry 1 dry 1 dry 1 dry 1 dry 1 dry 1	5/4/05 9:42:44 PM 5/4/05 9:42:44 PM

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

	J'Brien & (000 Brittonfield Parl	Gere Lab	orator	ies, Inc.	Aı	laly	tical Result	
	ast Syracuse, NY 1		437-6100		Stat	eCertl	No: 10155	
CLIENT:	Parsons Engineering	Science, Inc.		Lab ID:	05	04162-	-005A	
Project:	Amphenol Richardso	on Hill Road Land	lfill	Client Sam	ole ID: AF	१-5		
W Order:	0504162			Collection I	Date: 4/2	8/05	19 1	
Matrix:	SOLID			Date Receiv	ed: 4/2	4/29/05		
Inst. ID:	GC89 14L	Sample Size:	: 30 g	PrepDate:	5/2	/05 12	:50:43 PM	
ColumnID:	RtxCLP2	Rt %Moisture:	15.0	BatchNo:	502	2/R107	'3	
Revision:	5/16/05 5:02:19 PM	TestCode:	8082SE	FileID:	E:\/	89MA`	Y05\L051333.rst	
Analyte	-	Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	(SW355	50B)	
Aroclor 1016		ND	0.0028	0.020	mg/Kg-dry		5/14/05 6:45:38 AM	
Aroclor 1221		ND	0.0034	0.020	mg/Kg-dry	1	5/14/05 6:45:38 AM	
Aroclor 1232		ND	0.0023	0.020	mg/Kg-dry	1	5/14/05 6:45:38 AM	
Aroclor 1242		ND	0.0017	0.020	mg/Kg-dry	1	5/14/05 6:45:38 AM	
Aroclor 1248	•	0.10	0.0013	0.020	mg/Kg-dry	1	5/14/05 6:45:38 AM	
Aroclor 1254		ND	0.00079	0.020	mg/Kg-dry	1	5/14/05 6:45:38 AM	
Arocior 1260		ND	0.0013	0.020	mg/Kg-dry		5/14/05 6:45:38 AM	
Surr: Tetrac	hloro-m-xylene	120	0 ·	30-150	%REC	1	5/14/05 6:45:38 AM	
Surr: Decac	hlorobiphenyl	83.2	0	30-150	%REC	1	5/14/05 6:45:38 AM	

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
 ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:07 AM

Project Supervisor: Thomas A. Alexander

	D'Brien & G	ere Lab	ies, Inc.	s, Inc. Analytical I				
	ast Syracuse,NY 130) 437-6100		Stat	eCertl	No: 10155	
CLIENT: Project: W Order: Matrix: Inst. ID:	Parsons Engineering S Amphenol Richardson 0504162 SOLID GC90 20D	Hill Road Land	: 30 g	Lab ID: Client San Collection Date Rece PrepDate:	nple ID: AF Date: 4/2 ived: 4/2	ate: 4/28/05		
ColumnID: Revision:	DB-1701 5/17/05 9:02:43 AM	%Moisture: TestCode:	15.5 8082SE	BatchNo: FileID:		2/R107 90MA`	0 Y05\D050418.rst	
Analyte	·····	Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	((SW3550B).		
Aroclor 1016		ND	0.0028	0.020	mg/Kg-dry		5/4/05 10:15:57 PM	
Aroclor 1221		ND	0.0034	0.020	mg/Kg-dry	1	5/4/05 10:15:57 PM	
Aroclor 1232		ND	0.0023	0.020	mg/Kg-dry	1	5/4/05 10:15:57 PM	
Aroclor 1242		ND	0.0017	0.020	mg/Kg-dry	1	5/4/05 10:15:57 PM	
Aroclor 1248		0.083	0.0013	0.020	mg/Kg-dry	1	5/4/05 10:15:57 PM	
Aroclor 1254		ND	0.00079	0.020	mg/Kg-dry	1	5/4/05 10:15:57 PM	
Aroclor 1260		ND	0.0013	0.020	mg/Kg-dry	1	5/4/05 10:15:57 PM	
Surr: Tetrac	hloro-m-xylene	89.4	0	30-150	%REC	1	5/4/05 10:15:57 PM	
Surr: Decac	hlorobiphenyl	73.8	0	30-150	%REC	1	5/4/05 10:15:57 PM	

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:08 AM

В

	D'Brien & (000 Brittonfield Parl		orator	ies, Inc.	Ana	lytical Results	
E	ast Syracuse, NY 13	3057 (315)	437-6100		StateCe	rtNo: 10155	
CLIENT: Project: W Order: Matrix: Inst. ID:	Parsons Engineering Amphenol Richardsc 0504162 SOLID	on Hill Road Land		Collection I Date Receiv	Die ID: AR-6 Date: 4/28/03 ved: 4/29/03	5	
	GC89 14L RtxCLP2 5/16/05 5:02:19 PM	Sample Size: Rt %Moisture: TestCode:	-	PrepDate: BatchNo: FileID:			
Analyte	· · · · · · · · · · · · · · · · · · ·	Result Qu	alMDL	PQL	Units DI	Date Analyzed	
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	(SW3	3550B)	
Aroclor 1016		ND	0.0028	0.020	mg/Kg-dry 1	5/14/05 8:07:06 AM	
Aroclor 1221		ND	0.0034	0.020	mg/Kg-dry 1	5/14/05 8:07:06 AM	
Aroclor 1232		ND	0.0023	0.020	mg/Kg-dry 1	5/14/05 8:07:06 AM	
Aroclor 1242		ND	0.0017	0.020	mg/Kg-dry 1	5/14/05 8:07:06 AM	
Aroclor 1248		0.099	0.0013	0.020	mg/Kg-dry 1	5/14/05 8:07:06 AM	
Aroclor 1254		ND	0.00079	. 0.020	mg/Kg-dry 1	5/14/05 8:07:06 AM	
Aroclor 1260		ND	0.0013	0.020	mg/Kg-dry 1	5/14/05 8:07:06 AM	
Surr: Tetrac	hloro-m-xylene	114	0	30-150	%REC 1	5/14/05 8:07:06 AM	
Surr: Decad	hlorobiphenyl	84.2	0	30-150	%REC 1	5/14/05 8:07:06 AM	

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:08 AM

В

	Brien & G 00 Brittonfield Parky st Syracuse, NY 130	vay	orator) 437-6100	ies, Inc.			tical Result	
					St		No: 10155	
	Parsons Engineering S	,		Lab ID:	C	504162	-007A	
	Amphenol Richardson	Hill Road Lan	dfill	Client Sample ID: AR-7				
	0504162			Collection	n Date: 4	ate: 4/28/05		
	SOLID			Date Reco	eived: 4	4/29/05		
	GC90 20D	Sample Size	:30 g	PrepDate	: 5	/2/05 12	:50:43 PM	
	DB-1701	%Moisture:	11.5	BatchNo:	5	02/R107	0	
Revision: 5	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E	:\90MA`	Y05\D050419.rst	
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
OLYCHLORI	NATED BIPHENYLS	BY GC/ECD		SW8082		(SW3550B)		
vroclor 1016	· .	ND	0.0027	0.019	mg/Kg-d		5/4/05 10:49:11 PM	
roclor 1221		ND	0.0033	0.019	mg/Kg-d	•	5/4/05 10:49:11 PM	
rocior 1232		ND	0.0022	0.019	mg/Kg-d	ry 1	5/4/05 10:49:11 PM	
roclor 1242		ND	0.0016	0.019	mg/Kg-d	ry 1	5/4/05 10:49:11 PM	
roclor 1248		0.090	0.0013	0.019	mg/Kg-d	ry 1	5/4/05 10:49:11 PM	
roclor 1254		ND	0.00076	0.019	mg/Kg-d	ry 1	5/4/05 10:49:11 PM	
roclor 1260		ND	0.0012	0.019	mg/Kg-d	rý 1	5/4/05 10:49:11 PM	
Surr: Tetrachk	oro-m-xylene	87.2	0	30-150	%REC	1	5/4/05 10:49:11 PM	
Surr: Decachlo	probiphenyl	73.5	0	30-150	%REC	1	5/4/05 10:49:11 PM	

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Ε Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:09 AM

в

Project Supervisor: Thomas A. Alexander

O'Brien & (5000 Brittonfield Parl	Α	Analytical Results					
East Syracuse, NY 13	3057 (315) 437-6100		Sta	teCertl	No: 10155	
CLIENT:Parsons EngineeringProject:Amphenol RichardsoW Order:0504162Matrix:SOLIDInst. ID:GC89 14LColumnID:RtxCLP2Revision:5/16/05 5:02:19 PM		:30 g	Lab ID: Client San Collection Date Rece PrepDate: BatchNo: FileID:	nple ID: A Date: 4/ ived: 4/ 50	ate: 4/28/05		
Analyte	Result Qu	alMDL	PQL	Units	ÐF	Date Analyzed	
POLYCHLORINATED BIPHENYL Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	S BY GC/ECD ND ND ND 0.10 ND ND	0.0027 0.0033 0.0022 0.0016 0.0013 0.00076 0.0012	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr	y 1 y 1 y 1 y 1 y 1 y 1	5/14/05 8:34:16 AM 5/14/05 8:34:16 AM	
Surr: Tetrachloro-m-xylene Surr: Decachlorobiphenyl	113 82.8	0	30-150 30-150	%REC %REC	1 1 1	5/14/05 8:34:16 AM 5/14/05 8:34:16 AM 5/14/05 8:34:16 AM	

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
 ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:08 AM

	D'Brien & G 000 Brittonfield Parkw	ere Lab	orator	ies, Inc.	• A	naly	tical Results
E	ast Syracuse, NY 130	57 (315)	437-6100		Sta	teCertl	No: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering S Amphenol Richardson 0504162 SOLID GC90 20D DB-1701 5/17/05 9:02:43 AM		: 30 g	Lab ID: Client Sam Collection I Date Receiv PrepDate: BatchNo: FileID:	ple ID: A Date: 4/ ved: 4/ 5/	2/R107	:50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Tetracl	RINATED BIPHENYLS	BY GC/ECD ND ND ND 0.075 ND ND 90.3 75.1	0.0028 0.0033 0.0022 0.0017 0.0013 0.00077 0.0013 0 0	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019 30-150 30-150	mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr %REC %REC	y 1 y 1 y 1 y 1 y 1 y 1	50B) 5/4/05 11:22:32 PM 5/4/05 11:22:32 PM

B Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Е Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:10 AM

Н

Project Supervisor: Thomas A. Alexander

32 0

Qualifiers:

O'Brien & Gere Laboratories, Inc. 5000 Brittonfield Parkway						
057 (315) 437-6100		Stat	eCert	No: 10155	
Sample Size	: 30 g	Collection Date Recei	aple ID: Al Date: 4/2 ived: 4/2 5/2 502	R-8 28/05 29/05 2/05 12 2/R107	::50:43 PM	
Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
S BY GC/ECD ND ND ND 0.083 ND ND ND 114	0.0028 0.0033 0.0022 0.0017 0.0013 0.00077 0.0013 0	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019 30-150	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1	50 B) 5/14/05 9:01:23 AM 5/14/05 9:01:23 AM	
	3057 (315 Science, Inc. n Hill Road Lan Sample Size Rt %Moisture: TestCode: Result Qu S BY GC/ECD ND ND ND ND ND ND ND ND ND ND ND ND ND	057 (315) 437-6100 Science, Inc. n Hill Road Landfill Sample Size: 30 g Rt %Moisture: 13.4 TestCode: 8082SE Result QualMDL SBY GC/ECD ND 0.0028 ND 0.0022 ND 0.0013 ND 0.0017 0.083 0.0013 ND 0.00077 ND 0.0013	Sway 057 (315) 437-6100 Science, Inc. Lab ID: n Hill Road Landfill Client Sam Collection Date Receive Sample Size: 30 g PrepDate: Rt %Moisture: 13.4 BatchNo: TestCode: 8082SE FileID: SW8082 ND 0.0028 0.019 ND 0.0022 0.019 ND 0.0013 0.019 ND 0.0017 0.019 ND 0.0013 0.019 ND 0.0013 0.019 ND 0.0013 0.019	State 057 (315) 437-6100 State Science, Inc. Lab ID: 05 n Hill Road Landfill Client Sample ID: AH Collection Date: 4/2 Date Received: 4/2 Sample Size: 30 g PrepDate: 5/2 Rt %Moisture: 13.4 BatchNo: 502 TestCode: 8082SE FileID: E:\ Result QualMDL PQL Units S BY GC/ECD SW8082 (ND 0.0028 0.019 mg/Kg-dry ND 0.0022 0.019 mg/Kg-dry ND 0.0017 0.019 mg/Kg-dry ND 0.00077 0.019 mg/Kg-dry ND 0.0013 0.019 mg/Kg-dry	StateCert 057 (315) 437-6100 StateCert Science, Inc. Lab ID: 0504162 n Hill Road Landfill Client Sample ID: AR-8 Collection Date: 4/28/05 Date Received: 4/29/05 Sample Size: 30 g PrepDate: 5/2/05 12 Rt %Moisture: 13.4 BatchNo: 502/R107 TestCode: 8082SE FileID: E:\89MA Result QualMDL PQL Units DF S BY GC/ECD SW8082 (SW358 ND 0.0028 0.019 mg/Kg-dry 1 ND 0.0022 0.019 mg/Kg-dry 1 ND 0.0017 0.019 mg/Kg-dry 1 ND 0.0013 0.019 mg/Kg-dry 1 ND	

...

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

Analyte detected below quantitation limits J

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:09 AM

В

	J'Brien & G 000 Brittonfield Parky	ere Lab	orator	ies, Inc.	Aı	ıaly	tical Results
	ast Syracuse, NY 130		437-6100		Stat	eCertN	No: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering S Amphenol Richardson 0504162 SOLID GC90 20D DB-1701 5/17/05 9:02:43 AM		: 30 g	Lab ID: Client Samp Collection D Date Receiv PrepDate: BatchNo: FileID:	ole ID: AR Date: 4/2 red: 4/2 5/2 502	8/05 9/05 /05 12: 2/R107	50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RINATED BIPHENYLS	ND ND ND 0.15 ND ND	0.0028 0.0033 0.0022 0.0017 0.0013 0.00077 0.0013	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1	5/4/05 11:55:45 PM 5/4/05 11:55:45 PM 5/4/05 11:55:45 PM 5/4/05 11:55:45 PM 5/4/05 11:55:45 PM 5/4/05 11:55:45 PM 5/4/05 11:55:45 PM
	nioro-m-xylene hiorobiphenyl	87.9 73.9	0 0	30-150 30-150	%REC %REC	1 1	5/4/05 11:55:45 PM 5/4/05 11:55:45 PM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:10 AM

Project Supervisor: Thomas A. Alexander

	D'Brien & (000 Brittonfield Park ast Syracuse, NY 13	(way	orator) 437-6100	ies, Inc.		-	vtical Results
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/16/05 5:02:19 PM	Science, Inc.	ifill : 30 g	Lab ID: Client Sam Collection Date Recei PrepDate: BatchNo: FileID:	ple ID: Date: ved:	0504162 AR-9 4/28/05 4/29/05 5/2/05 12 502/R107	-009A :50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RINATED BIPHENYL	S BY GC/ECD ND ND ND 0.18 ND ND ND 107	0.0028 0.0033 0.0022 0.0017 0.0013 0.00077 0.0013 0	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019 30-150	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg %REC	dry 1 dry 1 dry 1 dry 1 dry 1 dry 1	50B) 5/14/05 9:28:30 AM 5/14/05 9:28:30 AM
	hlorobiphenyl	83.8	0	30-150	%REC	1	5/14/05 9:28:30 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Е Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:10 AM

В

Project Supervisor: Thomas A. Alexander

5	D'Brien & G 000 Brittonfield Parkw ast Syracuse, NY 130	vay	orator) 437-6100	ies, Inc.		Ľ	tical Results
CLIENT: Project: W Order: Matrix:	Parsons Engineering S Amphenol Richardson 0504162 SOLID	Hill Road Land		Lab ID: Client Sam Collection I Date Receiv	ple ID: . Date: . /ed: .	0504162- AR-10 4/28/05 4/29/05	
Inst. ID: ColumnID:	GC90 20D DB-1701	Sample Size %Moisture:	-	PrepDate: BatchNo:	-	5/2/05 12: 502/R107	50:43 PM 0
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	1	E:\90MA	705\D050422.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082		(SW355	0B)
Aroclor 1016		ND	0.0028	0.019	mg/Kg-	dry 1	5/5/05 12:29:00 AM
Aroclor 1221		ND	0.0033	0.019	mg/Kg-	dry 1	5/5/05 12:29:00 AM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-	dry 1	5/5/05 12:29:00 AM
Aroclor 1242		ND	0.0017	0.019	mg/Kg-	dry 1	5/5/05 12:29:00 AM
Aroclor 1248		0.090	0.0013	0.019	mg/Kg-	dry 1	5/5/05 12:29:00 AM
Aroclor 1254		ND	0.00077	0.019	mg/Kg-(dry 1	5/5/05 12:29:00 AM
Aroclor 1260		ND	0.0013	0.019	mg/Kg-i	dry 1	5/5/05 12:29:00 AM
Surr: Tetrac	hloro-m-xylene	89.0	- O	30-150	%REC	- 1 - 1	5/5/05 12:29:00 AM
Surr: Decac	hlorobiphenyl	74.6	0	30-150	%REC	1	5/5/05 12:29:00 AM

B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

0 36

Print Date: 5/17/05 9:04:11 AM

	D'Brien & C 000 Brittonfield Park	Gere Lab	orator	ies, Inc.	Aı	naly	tical Results
	ast Syracuse,NY 13		437-6100	<u> </u>	Stat	eCertN	Vo: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/16/05 5:02:19 PM	•	: 30 g	Lab ID: Client Sam Collection Date Recei PrepDate: BatchNo: FileID:	ple ID: AH Date: 4/2 ved: 4/2 5/2 502	2/R107	50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	(SW355	i0B) ⁷
Arocior 1016		ND	0.0028	0.019	mg/Kg-dry	/ 1	5/14/05 9:55:40 AM
Aroclor 1221		ND	0.0033	0.019	mg/Kg-dry	/ 1	5/14/05 9:55:40 AM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-dry	/ 1	5/14/05 9:55:40 AM
Aroclor 1242		ND	0.0017	0.019	mg/Kg-dry	/ 1	5/14/05 9:55:40 AM
Arocior 1248		0.10	0.0013	0.019	mg/Kg-dry		5/14/05 9:55:40 AM
Aroclor 1254		ND	0.00077	0.019	mg/Kg-dry	/ 1	5/14/05 9:55:40 AM
Aroclor 1260		ND	0.0013	0.019	mg/Kg-dry		5/14/05 9:55:40 AM
					• • •		
Surr: Tetraci	hloro-m-xylene	120	0 ·	30-150	%REC	1	5/14/05 9:55:40 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- E Value above quantitation range
- Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits S

Print Date: 5/17/05 9:04:11 AM

В

0 37

	D'Brien & G 000 Brittonfield Parky	vay	orator	ies, Inc.	Α	naly	tical Results
	ast Syracuse, NY 130	57 (315	5) 437-6100		Sta	teCertl	No: 10155
CLIENT: Project: W Order: Matrix: Inst. ID:	Parsons Engineering S Amphenol Richardson 0504162 SOLID GC90 20D			Lab ID: Client Sar Collectior Date Rece PrepDate	mple ID: A 1 Date: 4/ 2ived: 4/	504162 R-11 /28/05 /29/05	
ColumnID:		%Moisture	-	BatchNo:		2/05/12)2/R107	:50:43 PM
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:			Y05\D050423.rst
Analyte	· · · · · · · · · · · · · · · · · · ·	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
	RINATED BIPHENYLS	BY GC/ECD		SW8082		(SW355	50B)
Aroclor 1016		ND	0.0028	0.019	mg/Kg-dr		5/5/05 1:02:10 AM
Aroclor 1221 Aroclor 1232		ND	0.0034	0.019	mg/Kg-dr	ý 1	5/5/05 1:02:10 AM
Arocior 1232 Arocior 1242		ND	0.0023	0.019	mg/Kg-dr	у 1	5/5/05 1:02:10 AM
Aroclor 1242 Aroclor 1248	,	ND	0.0017	0.019	mg/Kg-dr	y 1	5/5/05 1:02:10 AM
		0.10	0.0013	0.019	mg/Kg-dr	y 1	5/5/05 1:02:10 AM
Aroclor 1254		ND	0.00078	0.019	mg/Kg-dr	y 1	5/5/05 1:02:10 AM
Aroclor 1260		ND	0.0013	0.019	mg/Kg-dr	y 1	5/5/05 1:02:10 AM
	nloro-m-xylene	88.2	0	30-150	%REC	1	5/5/05 1:02:10 AM
SUIT: Decaci	lorobiphenyl	73.0	0	30-150	%REC	1	5/5/05 1:02:10 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits $_{\wedge}$ S

Print Date: 5/17/05 9:04:12 AM

В

Project Supervisor: Thomas A. Alexander

O'Brien 5000 Brittonfie	& Gere I ^{ld Parkway}	Laborat	ories, Inc.	\mathbf{A}	naly	tical Results
East Syracuse,	NY 13057	(315) 437-61	00	Sta	teCertl	No: 10155
	Rt %Moi	d Landfill e Size: 30 g sture: 14.3	Lab ID: Client Sau Collection Date Reco PrepDate BatchNo: FileID:	mple ID: Al Date: 4// eived: 4// 5/2 50	2/R107	:50:43 PM
Analyte	Resu	lt QualMDL	PQL	Units	DF	Date Analyzed
POLYCHLORINATED BIPH Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Tetrachloro-m-xylene	IENYLS BY GC/E N N 0.1 N N 10	D 0.0028 D 0.0034 D 0.0023 D 0.0017 1 0.0013 D 0.0007 D 0.0013	0.019 0.019 0.019 0.019 0.019 8 0.019	(mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry %REC	/ 1 / 1 / 1 / 1	50B) 5/14/05 10:22:55 AM 5/14/05 10:22:55 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

S

Value above quantitation range E

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

В

Project Supervisor: Thomas A. Alexander

	D'Brien & G 000 Brittonfield Parky ast Syracuse, NY 130	way	orator:) 437-6100	ies, Inc.		J	tical Result	
CLIENT:	Parsons Engineering S	Science, Inc.		Lab ID:	05	504162-	012A	
Project:	Amphenol Richardson	Hill Road Land	fill	Client Sample ID: AR-12				
W Order:	0504162			Collection I	-			
Matrix:	SOLID			Date Receiv	ved: 4/	29/05		
Inst. ID:	GC90 20D	Sample Size:	:30 g	PrepDate:	5/2	2/05 12	:50:43 PM	
ColumnID:	DB-1701	%Moisture:		BatchNo:	50	2/R107	0	
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E:\	90MA	Y05\D050426.rst	
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	. ((SW355	50B)	
Aroclor 1016		ND	0.0028	0.020	mg/Kg-dr	•	5/5/05 2:41:56 AM	
Aroclor 1221		ND	0.0034	0.020	mg/Kg-dr	y 1	5/5/05 2:41:56 AM	
Aroclor 1232		• ND	0.0023	0.020	mg/Kg-dr	y 1	5/5/05 2:41:56 AM	
				0.000				
Aroclor 1242		ND	0.0017	0.020	mg/Kg-dr	y 1	5/5/05 2:41:56 AM	
Aroclor 1242 Aroclor 1248		ND 0.056	0.0017 0.0013	0.020	mg/Kg-dr mg/Kg-dr	•	5/5/05 2:41:56 AM 5/5/05 2:41:56 AM	
		••=				y 1		
Arocior 1248		0.056	0.0013	0.020	mg/Kg-dr	y 1 y 1	5/5/05 2:41:56 AM	
Aroclor 1248 Aroclor 1254 Aroclor 1260	hloro-m-xylene	0.056 ND	0.0013 0.00079	0.020 0.020	mg/Kg-dr mg/Kg-dr	y 1 y 1	5/5/05 2:41:56 AM 5/5/05 2:41:56 AM	

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:13 AM

В

Н

0 40

	D'Brien & (000 Brittonfield Par	Gere Lab ^{.kway}	orator	ies, Inc.	Aı	naly	tical Results
	ast Syracuse, NY 1) 437-6100		Stat	eCertl	No: 10155
CLIENT:	Parsons Engineering	g Science, Inc.		Lab ID:	05	04162-	
Project:	Amphenol Richards	on Hill Road Lan	dfill	Client San	nple ID: AF	R-12	
W Order:	0504162			Collection	Date: 4/2	28/05	
Matrix:	SOLID			Date Recei	ived: 4/2	29/05	
Inst. ID:	GC89 14L	Sample Size	:30 g	PrepDate:	5/2	/05 12	:50:43 PM
ColumnID:	RtxCLP2	Rt %Moisture:		BatchNo:		2/R107	
Revision:	5/16/05 5:02:19 PM	TestCode:	8082SE	FileID:			Y05\L051342.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYI	S BY GC/ECD		SW8082	(SW355	50B)
Aroclor 1016		ND	0.0028	0.020	mg/Kg-dry		5/14/05 10:50:02 AM
Aroclor 1221		ND	0.0034	0.020	mg/Kg-dry	1	5/14/05 10:50:02 AM
Aroclor 1232		ND	0.0023	0.020	mg/Kg-dry	1	5/14/05 10:50:02 AM
Aroclor 1242		ND	0.0017	0.020	mg/Kg-dry	1	5/14/05 10:50:02 AM
Aroclor 1248		0.065	0.0013	0.020	mg/Kg-dry	1	5/14/05 10:50:02 AM
Aroclor 1254		ND	0.00079	0.020	mg/Kg-dry	1	5/14/05 10:50:02 AM
Aroclor 1260		ND	0.0013	0.020	mg/Kg-dry	1	5/14/05 10:50:02 AM
Surr: Tetraci	hloro-m-xylene	111	0	30-150	%REC	1	5/14/05 10:50:02 AM
Surr: Decad	hlorobiphenyl	83.0	0	30-150	%REC	1	5/14/05 10:50:02 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Value above quantitation range Е

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

В

Project Supervisor: Thomas A. Alexander

## # # #	O'Brien & G 6000 Brittonfield Parky		orator	ies, Inc.	Aı	ıaly	tical Resul	
	Cast Syracuse, NY 130	•	437-6100		Stat	eCertl	No: 10155	
CLIENT:	Parsons Engineering S	Science, Inc.		Lab ID:	05	04162-	.013A	
Project:	Amphenol Richardson	Hill Road Land	lfill	Client Sample ID: AR-13				
W Order:	0504162			Collection Date: 4/28/05				
Matrix:	SOLID			Date Recei	ived: 4/2	29/05		
Inst. ID:	GC90 20D	Sample Size:	30 g	PrepDate:	5/2	/05 12	:50:43 PM	
ColumnID:	DB-1701	%Moisture:	•••• .	BatchNo:	502	2/R107	0	
Revision:	5/20/05 2:41:49 PM	TestCode:	8082SE	FileID:	E:\	90MA`	Y05\D050427.rst	
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	. (SW355	50B)	
Aroclor 1016		ND	0.0029	0.020	mg/Kg-dŋ	1	5/5/05 3:15:11 AM	
Aroclor 1221		ND	0.0035	0.020	mg/Kg-dry	1	5/5/05 3:15:11 AM	
Aroclor 1232		NĎ	0.0023	0.020	mg/Kg-dŋ	[,] 1	5/5/05 3:15:11 AM	
Aroclor 1242		ND	0.0017	0.020	mg/Kg-dry	1	5/5/05 3:15:11 AM	
Arocior 1248		0.061 P	0.0014	0.020	mg/Kg-dry	1	5/5/05 3:15:11 AM	
Aroclor 1254		ND	0.00081	0.020	mg/Kg-dry	1	5/5/05 3:15:11 AM	
AIUCIUL 1204								
Aroclor 1260		ND	0.0013	0.020	mg/Kg-dry	r 1	5/5/05 3:15:11 AM	
Aroclor 1260	chloro-m-xylene	ND 85.1	0.0013 0	0.020 30-150	mg/Kg-dry %REC	' 1 1	5/5/05 3:15:11 AM 5/5/05 3:15:11 AM	

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Ê Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits S

В

	D'Brien & (000 Brittonfield Parl		orator	ies, Inc.	Α	naly	tical Result
E	ast Syracuse, NY 1.	3057 (315) 437-6100	· · · ·	Sta	teCertl	No: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/20/05 2:42:51 PM		: 30 g	Lab ID: Client San Collection Date Recei PrepDate: BatchNo: FileID:	nple ID: A Date: 4 ived: 4 5/ 50	02/R107	:50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	(SW3550B)		
Aroclor 1016		ND	0.0029	0.020	mg/Kg-di	-	5/14/05 11:17:08 AM
Aroclor 1221		ND	0.0035	0.020	mg/Kg-di	· .	5/14/05 11:17:08 AM
Aroclor 1232		ND	0.0023	0.020	mg/Kg-di	-	5/14/05 11:17:08 AM
Aroclor 1242		ND	0.0017	0.020	mg/Kg-dr		5/14/05 11:17:08 AM
Aroclor 1248		0.081 P	0.0014	0.020	mg/Kg-dr	•	5/14/05 11:17:08 AM
Aroclor 1254		ND	0.00081	0.020	mg/Kg-dr	-	5/14/05 11:17:08 AM
Arocior 1260		ND	0.0013	0.020	mg/Kg-dr	-	5/14/05 11:17:08 AM
	hloro-m-xylene	114	0	30-150	%REC	, . 1	5/14/05 11:17:08 AM
Surr: Decact	hlorobiphenyl	81.8	0	30-150	%REC	1	5/14/05 11:17:08 AM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Е Value above quantitation range

Analyte detected below quantitation limits J

S Spike Recovery outside accepted recovery limits

Print Date: 5/20/05 2:47:55 PM

В

Project Supervisor: Thomas A. Alexander

O'Brien & Gere Laboratories, Inc. **Analytical Results** 5000 Brittonfield Parkway East Syracuse, NY 13057 (315) 437-6100 StateCertNo: 10155 **CLIENT:** Parsons Engineering Science, Inc. Lab ID: 0504162-014A **Project:** Amphenol Richardson Hill Road Landfill Client Sample ID: AR-14 W Order: 0504162 **Collection Date:** 4/28/05 Matrix: SOLID Date Received: 4/29/05 Inst. ID: GC90 20D Sample Size: 30 g **PrepDate:** 5/2/05 12:50:43 PM ColumnID: DB-1701 %Moisture: 16.7 BatchNo: 502/R1070 **Revision:** 5/17/05 9:02:43 AM TestCode: 8082SE FileID: E:\90MAY05\D050428.rst Analyte **Result QualMDL** PQL Units DF **Date Analyzed** POLYCHI ORINATED BIPHENVI & BY COLEON

Arocior 1016			SW8082	(SW35	50B)
Aroclor 1221	ND	0.0029	0.020	mg/Kg-dry 1	5/5/05 3:48:22 AM
	ND	0.0035	0.020	mg/Kg-dry 1	5/5/05 3:48:22 AM
Aroclor 1232	ND	0.0023	0.020	mg/Kg-dry 1	5/5/05 3:48:22 AM
Aroclor 1242	ND	0.0017	0.020	mg/Kg-dry 1	5/5/05 3:48:22 AM
Aroclor 1248	0.043	0.0014	0.020	mg/Kg-dry 1	5/5/05 3:48:22 AM
Aroclor 1254	ND	0.00080	0.020	mg/Kg-dry 1	
Aroclor 1260	ND	0.0013	0.020	mg/Kg-dry 1	5/5/05 3:48:22 AM
Surr: Tetrachloro-m-xylene	87.2	0	30-150	%REC 1	5/5/05 3:48:22 AM
Surr: Decachlorobiphenyl	72.6	0	30-150	,	5/5/05 3:48:22 AM
- · · ·			30-150	%REC 1	5/5/05 3:48:22 AM

Qualifiers:

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Ε Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits S

Print Date: 5/17/05 9:04:14 AM

В

H

Project Supervisor: Thomas A. Alexander

mol Richards) 437-6100 Hill	Lab ID:	StateCer 050416	tNo: 10155
mol Richards	•	lfill		050416	2 01 4 4
14L P2 5 5:02:19 PM	Sample Size: Rt %Moisture: I TestCode:		Collectio Collectio Date Rec PrepDate BatchNo FileID:	eived: 4/29/05 e: 5/2/05 1 : 502/R10	2:50:43 PM
······································	Result Qu	alMDL	PQL	Units DF	Date Analyzed
D BIPHENY	LS BY GC/ECD ND ND ND 0.053 ND	0.0029 0.0035 0.0023 0.0017 0.0014 0.00080	SW8082 0.020 0.020 0.020 0.020 0.020 0.020 0.020	(SW3: mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1	550B) 5/14/05 11:44:18 AM 5/14/05 11:44:18 AM
		0.053 ND	0.053 0.0014 ND 0.00080 ND 0.0013	0.053 0.0014 0.020 ND 0.00080 0.020 ND 0.0013 0.020	0.053 0.0014 0.020 mg/Kg-dry 1 ND 0.00080 0.020 mg/Kg-dry 1

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:14 AM

0 45

	J'Brien & G 000 Brittonfield Parkv	ere Lab	orator	ies, Inc.	Ar	ıaly	tical Results
E	ast Syracuse, NY 130	57 (315)	437-6100	·····	Stat	eCertN	lo: 10155
CLIENT: Project: W Order: Matrix:	Parsons Engineering S Amphenol Richardson 0504162 SOLID		1611	Lab ID: Client Sam Collection 1 Date Receiv	ple ID: AR Date: 4/2	04162- 15 8/05 9/05	015A
ColumnID:	GC90 20D DB-1701 5/17/05 9:02:43 AM	Sample Size: %Moisture: TestCode:	-	PrepDate: BatchNo: FileID:	502	./R107	50:43 PM 0 705\D050429.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
	RINATED BIPHENYLS	BY GC/ECD	-	SW8082	(;	SW355	0B)
Aroclor 1016		ND	0.0028	0.019	mg/Kg-dry		5/5/05 4:21:34 AM
Aroclor 1221	-	ND	0.0033	0.019	mg/Kg-dry	1	5/5/05 4:21:34 AM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-dry	1	5/5/05 4:21:34 AM
Aroclor 1242		ND	0.0017	0.019	mg/Kg-dry	1	5/5/05 4:21:34 AM
Aroclor 1248		0.10	0.0013	0.019	mg/Kg-dry	1	5/5/05 4:21:34 AM
Aroclor 1254		ND	0.00077	0.019	mg/Kg-dry		5/5/05 4:21:34 AM
Aroclor 1260		ND	0.0013	0.019	mg/Kg-dry	1	5/5/05 4:21:34 AM
Surr: Tetrach	iloro-m-xylene	43.8	0	30-150	%REC	1	5/5/05 4:21:34 AM
Surr: Decach	hlorobiphenyl	35.7	0	30-150	%REC	1 ·	5/5/05 4:21:34 AM

B Analyte detected in the associated Method Blank
H Holding times for preparation or analysis exceeded
ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:15 AM

0 46

	D'Brien & (000 Brittonfield Parl	Gere Lab	orator	ies, Inc.	Aı	naly	tical Results
	ast Syracuse, NY 13		437-6100		Stat	eCertN	lo: 10155
CLIENT: Project: W Order: Matrix:	Parsons Engineering Amphenol Richardso 0504162 SOLID	on Hill Road Land	·	Lab ID: Client Sam Collection Date Recei	ple ID: AH Date: 4/2 ved: 4/2	04162- R-15 28/05 29/05	
Inst. ID: ColumnID: Revision:	GC89 14L RtxCLP2 5/16/05 5:02:19 PM	Sample Size: Rt %Moisture: TestCode:	-	PrepDate: BatchNo: FileID:	502	2/R107	50:43 PM 3 Y05\L051347.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	· (SW355	60B)
Aroclor 1016		ND	0.0028	0.019	mg/Kg-dry	/ 1	5/14/05 7:00:12 PM
Aroclor 1221		ND	0.0033	0.019	mg/Kg-dry	/ 1	5/14/05 7:00:12 PM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-dry	/ 1.	5/14/05 7:00:12 PM
Aroclor 1242		ND	0.0017	0.019	mg/Kg-dry	/ 1	5/14/05 7:00:12 PM
Arocior 1248		0.092	0.0013	0.019	mg/Kg-dry	/ 1	5/14/05 7:00:12 PM
Aroclor 1254		ND	0.00077	0.019	mg/Kg-dry		5/14/05 7:00:12 PM
Aroclor 1260		ND	0.0013	0.019	mg/Kg-dry		5/14/05 7:00:12 PM
Surr: Tetrac	hloro-m-xylene	56.2	0 ·	30-150	%REC	1	5/14/05 7:00:12 PM
Surr: Decac	hlorobiphenyl	43.0	0	30-150	%REC	1	5/14/05 7:00:12 PM

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:15 AM

Project Supervisor: Thomas A. Alexander

	J'Brien & G 000 Brittonfield Parky ast Syracuse, NY 130	vay .	orator) 437-6100	ies, Inc.		Ilytical Results ertNo: 10155
CLIENT: Project: W Order: Matrix: Inst. ID:	Parsons Engineering S Amphenol Richardson 0504162 SOLID	cience, Inc. Hill Road Land	1fill	Lab ID: Client Sam Collection J Date Receiv	05041 ple ID: AR-1 Date: 4/28/0 ved: 4/29/0	62-016A 6 95 95
	GC90 20D DB-1701 5/17/05 9:02:43 AM	Sample Size %Moisture: TestCode:	Ģ	PrepDate: BatchNo: FileID:	502/R	12:50:43 PM 1070 AAY05\D050430.rst
Analyte		Result Qu	alMDL	PQL	Units D	F Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RINATED BIPHENYLS	BY GC/ECD ND ND ND 0.18 ND ND 89.3	0.0027 0.0033 0.0022 0.0016 0.0013 0.00076 0.0013 0	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019 30-150	mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1 mg/Kg-dry 1	3550B) 5/5/05 4:54:48 AM 5/5/05 4:54:48 AM
-	lorobiphenyl	75.0	0	30-150	%REC 1 %REC 1	5/5/05 4:54:48 AM 5/5/05 4:54:48 AM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:16 AM

Project Supervisor: Thomas A. Alexander

5	D'Brien & (000 Brittonfield Parl ast Syracuse, NY 13	(way		ies, Inc.		-	/tical Results
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/16/05 5:02:19 PM		: 30 g	Lab ID: Client Sa Collection Date Rec PrepDate BatchNo: FileID:	mple ID: n Date: eived: e:	4/28/05 4/29/05 5/2/05 12 502/R107	::50:43 PM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Tetrac	RINATED BIPHENYL	S BY GC/ECD ND ND ND 0.20 ND ND 114 87.2	0.0027 0.0033 0.0022 0.0016 0.0013 0.00076 0.0013 0 0	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019 30-150 30-150	mg/Kg- mg/Kg- mg/Kg- mg/Kg- mg/Kg- mg/Kg- %REC %REC	dry 1 dry 1 dry 1 dry 1 dry 1 dry 1	5/14/05 7:27:21 PM 5/14/05 7:27:21 PM 5/14/05 7:27:21 PM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:16 AM

В

Project Supervisor: Thomas A. Alexander

	D'Brien & G 000 Brittonfield Parky	ere Lab	orator	ies, Inc.	Ar	aly	tical Result
	ast Syracuse, NY 130	•) 437-6100		Stat	eCertl	No: 10155
CLIENT:	Parsons Engineering S	cience, Inc.		Lab ID:	050	04162-	017A
Project:	Amphenol Richardson	ol Richardson Hill Road Landfill			ple ID: AR	L-17	
W Order:	0504162		Collection	Date: 4/2	8/05		
Matrix:	SOLID		Date Received:			9/05	
Inst. ID:	GC90 20D	Sample Size	:30 g	PrepDate: 5/2/0			:50:43 PM
ColumnID:	DB-1701	%Moisture:	19.6	BatchNo:	502	./R107	0
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E:\9	90MA	Y05\D050431.rst
Analyte	······································	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	(SW355	50B)
Aroclor 1016		ND	0.0030	0.021	mg/Kg-dry	1	5/5/05 5:28:05 AM
Aroclor 1221		ND	0.0036	0.021	mg/Kg-ḍry	1	5/5/05 5:28:05 AM
Arocior 1232		ND	0.0024	0.021	mg/Kg-dry	1	5/5/05 5:28:05 AM
Aroclor 1242		ND	0.0018	0.021	mg/Kg-dry	1	5/5/05 5:28:05 AM
Aroclor 1248		0.049	0.0014	0.021	mg/Kg-dry	1	5/5/05 5:28:05 AM
Aroclor 1254		ND	0.00083	0.021	mg/Kg-dry	1	5/5/05 5:28:05 AM
Aroclor 1260		ND	0.0014	0.021	mg/Kg-dry	1	5/5/05 5:28:05 AM
Surr: Tetrac	hloro-m-xylene	88.0	0	30-150	%REC	1	5/5/05 5:28:05 AM
Sur: Decad	hlorobiphenyl	72.3	0	30-150	%REC	1	5/5/05 5:28:05 AM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
 ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:17 AM

	D'Brien & (000 Brittonfield Parl		orator	ies, Inc.	A	naly	tical Result
	ast Syracuse, NY 13	•	437-6100	· · · · · · · · · · · · · · · · · · ·	Stat	teCertN	No: 10155
CLIENT: Project: W Order: Matrix:	Parsons Engineering Amphenol Richardso 0504162 SOLID		lfill	Lab ID: Client San Collection Date Recei	nple ID: Al Date: 4/2	04162- R-17 28/05 29/05	017A
Inst. ID: ColumnID: Revision:	GC89 14L RtxCLP2 5/16/05 5:02:19 PM	Sample Size: Rt %Moisture: TestCode:	-	PrepDate: BatchNo: FileID:	50	2/R107	50:43 PM 3 Y05\L051349.rst
Analyte	-	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082		SW355	0B)
Aroclor 1016		ND	0.0030	0.021	mg/Kg-dr		5/14/05 7:54:28 PM
Aroclor 1221		ND	0.0036	0.021	mg/Kg-dr	y 1	5/14/05 7:54:28 PM
Arocior 1232		ND	0.0024	0.021	mg/Kg-dr	y 1	5/14/05 7:54:28 PM
Aroclor 1242		ND	0.0018	0.021	mg/Kg-dr	y 1	5/14/05 7:54:28 PM
Aroclor 1248		0.060	0.0014	0.021	mg/Kg-dr	/ 1	5/14/05 7:54:28 PM
Vrocior 1254		ND	0.00083	0.021	mg/Kg-dr	/ 1	5/14/05 7:54:28 PM
voclor 1260		ND	0.0014	0.021	mg/Kg-dr	/ 1	5/14/05 7:54:28 PM
Surr: Tetrac	hloro-m-xylene	112	0	30-150	%REC	1	5/14/05 7:54:28 PM

B Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- Value above quantitation range Е
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Н

	J'Brien & G 000 Brittonfield Parkv	ere Lab	orator	ies, Inc.	Ar	aly	tical Results
	ast Syracuse, NY 130) 437-6100		State	eCertl	No: 10155
CLIENT:	Parsons Engineering S	•		Lab ID:		04162-	-018A
Project:	Amphenol Richardson	Hill Road Lan	dfill	Client Sam	ple ID: AR	-18	
W Order:	0504162			Collection	Date: 4/2	8/05	
Matrix:	SOLID			Date Recei	ved: 4/2	9/05	
Inst. ID:	GC90 20D	Sample Size	:30 g	PrepDate:	5/2,	/05 12	:50:43 PM
ColumnID:	DB-1701	%Moisture:	: 19.7	BatchNo:	502	/R107	0
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E:\9	90MA	Y05\D050432.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	(5	SW355	50B)
Arocior 1016		ND	0.0030	0.021	mg/Kg-dry		5/5/05 6:01:23 AM
Aroclor 1221		ND	0.0036	0.021	mg/Kg-dry	1	5/5/05 6:01:23 AM
Aroclor 1232		ND	0.0024	0.021	mg/Kg-dry	1	5/5/05 6:01:23 AM
Aroclor 1242		ND	0.0018	0.021	mg/Kg-dry	1	5/5/05 6:01:23 AM
Aroclor 1248		0.080	0.0014	0.021	mg/Kg-dry	1	5/5/05 6:01:23 AM
Aroclor 1254		ND	0.00083	0.021	mg/Kg-dry	1	5/5/05 6:01:23 AM
Aroclor 1260		ND	0.0014	0.021	mg/Kg-dry	1	5/5/05 6:01:23 AM
Surr: Tetrac	hloro-m-xylene	87.8	0	30-150	%REC	1	5/5/05 6:01:23 AM
· -	hlorobiphenyl	72.4	0				

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
 ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:18 AM

Project Supervisor: Thomas A. Alexander

cience, Inc.) 437-6100		Sta	ateCertN	1 10105
-					No: 10155
-	: 30 g		ple ID: A Date: 4 ved: 4 5/ 5/	/29/05 /2/05 12: 02/R107	:50:43 PM
Result Qu	alMDL	PQL	Units	DF	Date Analyzed
ND ND ND 0.10 ND ND 113	0.0030 0.0036 0.0024 0.0018 0.0014 0.00083 0.0014 0	SW8082 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 30-150	mg/Kg-d mg/Kg-d mg/Kg-d mg/Kg-d mg/Kg-d mg/Kg-d %REC	ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1	50B) 5/14/05 8:21:40 PM 5/14/05 8:21:40 PM
	Rt %Moisture: TestCode: Result Qu BY GC/ECD ND ND ND 0.10 ND ND ND ND	Result QualMDL BY GC/ECD ND 0.0030 ND 0.0036 ND 0.0024 ND 0.0018 0.10 0.0014 ND 0.00083 ND 0.0014 113 0	Date Receiv Sample Size: 30 g PrepDate: St %Moisture: 19.7 BatchNo: TestCode: 8082SE FileID: Result QualMDL PQL BY GC/ECD SW8082 ND 0.0036 0.021 ND 0.0024 0.021 ND 0.0018 0.021 ND 0.0014 0.021 ND 0.0014 0.021 ND 0.0014 0.021 ND 0.0014 0.021 ND 0.0015 0.021	Date Received: 4 Sample Size: 30 g PrepDate: 50 Rt %Moisture: 19.7 BatchNo: 50 TestCode: 8082SE FileID: E Result QualMDL PQL Units BY GC/ECD SW8082 SW8082 ND 0.0030 0.021 mg/Kg-d ND 0.0036 0.021 mg/Kg-d ND 0.0024 0.021 mg/Kg-d ND 0.0018 0.021 mg/Kg-d ND 0.0014 0.021 mg/Kg-d	Date Received: 4/29/05 Sample Size: 30 g PrepDate: 5/2/05 12; Rt %Moisture: 19.7 BatchNo: 502/R107 TestCode: 8082SE FileID: E:\89MAX Result QualMDL PQL Units DF BY GC/ECD SW8082 (SW355 ND 0.0036 0.021 mg/Kg-dry 1 ND 0.0024 0.021 mg/Kg-dry 1 ND 0.0018 0.021 mg/Kg-dry 1 ND 0.0014 0.021 mg/Kg-dry 1

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
 ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:17 AM

		orator	ies, Inc.	A	aly	tical Results
	•	437-6100		State	eCertl	No: 10155
Parsons Engineering S	Science, Inc.		Lab ID:	050	04162	-019A
t: Amphenol Richardson Hill Road Landfill der: 0504162			Client Sar	mple ID: AR	-19	
0504162			Collection	Date: 4/2	8/05	
SOLID			Date Rece	eived: 4/2	9/05	
GC90 20D	Sample Size:	:30 g	PrepDate	: 5/2	/05 12	:50:43 PM
DB-1701	%Moisture:	11.3	BatchNo:	502	./R107	′0
5/20/05 2:41:49 PM	TestCode:	8082SE	FileID:	E:\9	90MA	Y05\D050433.rst
	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
RINATED BIPHENYLS	BY GC/ECD		SW8082	(SW35	50B)
	ND	0.0027	0.019	•		5/5/05 6:34:31 AM
	ND	0.0033	0.019	mg/Kg-dry	1	5/5/05 6:34:31 AM
	ND	0.0022	0.019	mg/Kg-dry	1	5/5/05 6:34:31 AM
	ND	0.0016	0.019	mg/Kg-dry	1	5/5/05 6:34:31 AM
	0.15 P	0.0013	0.019	mg/Kg-dry	1	5/5/05 6:34:31 AM
	ND	0.00076	0.019 ,	mg/Kg-dry	1	5/5/05 6:34:31 AM
	ND	0.0012	0.019	mg/Kg-dry	1	5/5/05 6:34:31 AM
chloro-m-xylene	85.1	0	30-150	%REC	1	5/5/05 6:34:31 AM
	000 Brittonfield Parky ast Syracuse, NY 130 Parsons Engineering S Amphenol Richardson 0504162 SOLID GC90 20D DB-1701 5/20/05 2:41:49 PM	ast Syracuse, NY 13057 (315) Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Land 0504162 SOLID GC90 20D Sample Size: DB-1701 %Moisture: 5/20/05 2:41:49 PM TestCode: RINATED BIPHENYLS BY GC/ECD ND	000 Brittonfield Parkway (315) 437-6100 Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill 0504162 SOLID Sample Size: 30 g GC90 20D Sample Size: 30 g DB-1701 %Moisture: 11.3 5/20/05 2:41:49 PM TestCode: 8082SE Result QualMDL RINATED BIPHENYLS BY GC/ECD ND 0.0027 ND 0.0022 ND 0.0022 ND 0.0013 ND 0.0013 ND 0.0013 ND 0.0013	0000 Brittonfield Parkway (315) 437-6100 Parsons Engineering Science, Inc. Amphenol Richardson Hill Road Landfill Client San 0504162 Collection SOLID Date Rece GC90 20D Sample Size: 30 g PrepDate DB-1701 %Moisture: 11.3 BatchNo: 5/20/05 2:41:49 PM TestCode: 8082SE FileID: Result QualMDL PQL RINATED BIPHENYLS BY GC/ECD SW8082 ND 0.0027 0.019 ND 0.0016 0.019 ND 0.0016 0.019 ND 0.0013 0.019 ND 0.0013 0.019	000 Brittonfield Parkway State Parsons Engineering Science, Inc. Lab ID: 050 Amphenol Richardson Hill Road Landfill Client Sample ID: AR 0504162 Collection Date: 4/2 SOLID Date Received: 4/2 GC90 20D Sample Size: 30 g PrepDate: 5/2 DB-1701 %Moisture: 11.3 BatchNo: 502 5/20/05 2:41:49 PM TestCode: 8082SE FileID: E:\string Result QualMDL PQL Units RINATED BIPHENYLS BY GC/ECD SW8082 ((1111)) ND 0.0027 0.019 mg/Kg-dry ND 0.0022 0.019 mg/Kg-dry ND 0.0016 0.019 mg/Kg-dry ND 0.0016 0.019 mg/Kg-dry ND 0.00076 0.019 mg/Kg-dry	000 Brittonfield Parkway StateCertI Parsons Engineering Science, Inc. Lab ID: 0504162. Amphenol Richardson Hill Road Landfill Client Sample ID: AR-19 0504162 Collection Date: 4/28/05 SOLID Date Received: 4/29/05 GC90 20D Sample Size: 30 g PrepDate: 5/2/05 12 DB-1701 %Moisture: 11.3 BatchNo: 502/R107 5/20/05 2:41:49 PM TestCode: 8082SE FileID: E:\90MA RINATED BIPHENYLS BY GC/ECD SW8082 (SW352) ND 0.0027 0.019 mg/Kg-dry 1 ND 0.0022 0.019 mg/Kg-dry 1 ND 0.0016 0.019 mg/Kg-dry 1 ND 0.00076 0.019 mg/Kg-dry 1

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

54

0

Print Date: 5/20/05 2:48:31 PM

В

O'B 5000 Bi	rien & (ittonfield Parl	Sere Lab	orator	ies, Inc.	Α	naly	tical Result
East Sy	racuse, NY 1	3057 (315)	437-6100		Sta	teCertl	No: 10155
CLIENT: Parso	ns Engineering	Science, Inc.		Lab ID:	0	504162-	·019A
roject: Amphenol Richardson Hill Road Landfill			Client San	iple ID: A	R-19		
V Order: 0504162			Collection	Date: 4/	/28/05		
Matrix: SOLI	D			Date Recei	ived: 4/	/29/05	
Inst. ID: GC89	ID: GC89 14L Sample Size: 30 g			PrepDate:	5/	2/05 12	:50:43 PM
ColumnID: RtxC	LP2	Rt %Moisture:		BatchNo:	50)2/R107	3
Revision: 5/20/	05 2:42:51 PM	TestCode:	8082SE	FileID:	E	\ 89MA `	Y05\L051351.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLORINAT	ED BIPHENYL	S BY GC/ECD		SW8082		(SW355	50B)
Aroclor 1016		ND	0.0027	0.019	mg/Kg-di	ry 1	5/14/05 8:48:51 PM
Aroclor 1221		ND	0.0033	0.019	mg/Kg-di	ry 1	5/14/05 8:48:51 PM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-di	ry 1	5/14/05 8:48:51 PM
Aroclor 1242		ND	0.0016	0.019	mg/Kg-di	ry 1	5/14/05 8:48:51 PM
Aroclor 1248		0.19 P	0.0013	0.019	mg/Kg-di	ry 1	5/14/05 8:48:51 PM
Arocior 1254		ND	0.00076	0.019	mg/Kg-di	ry 1	5/14/05 8:48:51 PM
Aroclor 1260		ND	0.0012	0.019	mg/Kg-di	ry 1	5/14/05 8:48:51 PM
Surr: Tetrachloro-m	i-xylene	113	0	30-150	%REC	1	5/14/05 8:48:51 PM
Surr: Decachlorobi	henvl	84.5	0	30-150	%REC	4	5/14/05 8:48:51 PM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Е Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits S

В

O'Brien & Gere Laboratories, Inc. **Analytical Results 5000 Brittonfield Parkway** East Syracuse, NY 13057 (315) 437-6100 StateCertNo: 10155 CLIENT: Parsons Engineering Science, Inc. Lab ID: 0504162-020A **Project:** Amphenol Richardson Hill Road Landfill Client Sample ID: AR-20 W Order: 0504162 **Collection Date:** 4/28/05 Matrix: SOLID Date Received: 4/29/05 Inst. ID: GC90 20D Sample Size: 30 g **PrepDate:** 5/2/05 12:50:43 PM ColumnID: DB-1701 %Moisture: 10.3 **BatchNo:** 502/R1070 **Revision:** 5/20/05 2:41:49 PM TestCode: 8082SE FileID: E:\90MAY05\D050441.rst

Analyte	Result Qu	Result QualMDL		Units	DF	Date Analyzed	
POLYCHLORINATED BIPHENYLS BY GC/ECD			SW8082	(SW3550B)			
Aroclor 1016	ND	0.027	0.19	mg/Kg-dry		5/5/05 11:00:24 AM	
Aroclor 1221	ND	0.032	0.19	mg/Kg-dry	10	5/5/05 11:00:24 AM	
Arocior 1232	ND	0.022	0.19	mg/Kg-dry	10	5/5/05 11:00:24 AM	
Aroclor 1242	ND	0.016	0.19	mg/Kg-dry	10	5/5/05 11:00:24 AM	
Aroclor 1248	0.47 P	0.013	0.19	mg/Kg-dry	10	5/5/05 11:00:24 AM	
Aroclor 1254	ND	0.0075	0.19	mg/Kg-dry	10	5/5/05 11:00:24 AM	
Aroclor 1260	ND	0.012	0.19	mg/Kg-dry	10	5/5/05 11:00:24 AM	
Surr: Tetrachloro-m-xylene	84.2	0 -	30-150	%REC	10	5/5/05 11:00:24 AM	
Surr: Decachlorobiphenyl	68.3	0	30-150	%REC	10	5/5/05 11:00:24 AM	

Qualifiers:

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Ε Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

В

Project Supervisor: Thomas A. Alexander

-560

	J'Brien & (000 Brittonfield Parl	Gere Lab	orator	ies, Inc.	Ar	aly	tical Result
	ast Syracuse, NY 13	-	437-6100		State	Certl	No: 10155
CLIENT:	Parsons Engineering	Science, Inc.		Lab ID:	050	04162	-020A
Project:	Amphenol Richardso	on Hill Road Land	lfill	Client Sa	mple ID: AR	-20	
W Order:	0504162	Collection Dat			1 Date: 4/2	8/05	
Matrix:	SOLID			Date Rece	eived: 4/2	9/05	
Inst. ID:	GC89 14L	Sample Size:	: 30 g	PrepDate	: 5/2.	05 12	:50:43 PM
ColumnID:	RtxCLP2	Rt %Moisture:		BatchNo:		/R107	/3
Revision:	5/20/05 2:42:51 PM	TestCode:	8082SE	FileID:			Y05\L051352.rst
Analyte	· · · · · · · · · · · · · · · · · · ·	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	()	SW35	50B)
Aroclor 1016		ND	0.027	0.19	mg/Kg-dry		5/14/05 9:16:07 PM
Aroclor 1221		ND	0.032	0.19	mg/Kg-dry	10	5/14/05 9:16:07 PM
Aroclor 1232	· · ·	ND	0.022	0.19	mg/Kg-dry	10	5/14/05 9:16:07 PM
Arocior 1242	,	ND	0.016	0.19	mg/Kg-dry	10	5/14/05 9:16:07 PM
Aroclor 1248		0.62 P	0.013	0.19	mg/Kg-dry	10	5/14/05 9:16:07 PM
Aroclor 1254		ND	0.0075	0.19	mg/Kg-dry		5/14/05 9:16:07 PM
Aroclor 1260		ND	0.012	0.19	mg/Kg-dry	10	5/14/05 9:16:07 PM
			· ·	00 4 5 0			
Surr: Tetrac	hloro-m-xylene	113	0 '	30-150	%REC	10	5/14/05 9:16:07 PM

B Analyte detected in the associated Method Blank
H Holding times for preparation or analysis exceeded
ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/20/05 2:48:32 PM

	J'Brien & G 000 Brittonfield Parky	ere Lab	orator	ies, Inc.	A	naly	tical Results
E	ast Syracuse, NY 130	57 (315) 437-6100		St	ateCertI	No: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering S Amphenol Richardson 0504162 SOLID GC90 20D DB-1701 5/17/05 9:02:43 AM		: 30 g	Lab ID: Client Sam Collection Date Recei PrepDate: BatchNo: FileID:	nple ID: A Date: 4 ved: 4 5 5	06/R107	45:37 AM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
	RINATED BIPHENYLS	BY GC/ECD		SW8082		(SW355	
Aroclor 1016		ND	0.0027	0.019	mg/Kg-d		5/5/05 5:53:25 PM
Aroclor 1221		ND	0.0033	0.019	mg/Kg-d	lry 1	5/5/05 5:53:25 PM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-d	rv 1	5/5/05 5:53:25 PM
Aroclor 1242		ND	0.0016	0.019	mg/Kg-d	rv 1	5/5/05 5:53:25 PM
Aroclor 1248		0.17	0.0013	0.019	mg/Kg-d	-	5/5/05 5:53:25 PM
Aroclor 1254		ND	0.00076	0.019	mg/Kg-d	•	5/5/05 5:53:25 PM
Aroclor 1260		ND	0.0012	0.019	mg/Kg-d	-	5/5/05 5:53:25 PM
Surr: Tetrach	hloro-m-xylene	92.2	0	30-150	%REC	.,1	5/5/05 5:53:25 PM
Surr: Decact	hlorobiphenyl	77.2	0	30-150	%REC	1	5/5/05 5:53:25 PM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:20 AM

В

Project Supervisor: Thomas A. Alexander

0.58

O'Brien & O 5000 Brittonfield Park	Gere Lab	orator	ies, Inc.	A	naly	tical Results
East Syracuse, NY 13) 437-6100		Stat	eCertI	No: 10155
CLIENT: Parsons Engineering Project: Amphenol Richardso W Order: 0504162 Matrix: SOLID Inst. ID: GC89 14L ColumnID: RtxCLP2 Revision: 5/16/05 5:02:19 PM		: 30 g	Lab ID: Client Sam Collection Date Recei PrepDate: BatchNo: FileID:	ple ID: Al Date: 4/2 ved: 4/2 5/3 50	6/R107	15:37 AM
Analyte	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Tetrachloro-m-xylene	BY GC/ECD ND ND ND 0.19 ND ND ND 114	0.0027 0.0033 0.0022 0.0016 0.0013 0.00076 0.0012 0	SW8082 0.019 0.019 0.019 0.019 0.019 0.019 0.019 30-150) mg/Kg-dŋ mg/Kg-dŋ mg/Kg-dŋ mg/Kg-dŋ mg/Kg-dŋ mg/Kg-dŋ %REC	/ 1 / 1 / 1 / 1 / 1	50B) 5/14/05 11:59:27 PM 5/14/05 11:59:27 PM
Surr: Decachlorobiphenyl	86.5	0	30-150	%REC	1	5/14/05 11:59:27 PM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:20 AM

Project Supervisor: Thomas A. Alexander

J

0 59

O'Brien & Gere Laboratories, Inc. 5000 Brittonfield Parkway

Analytical Results

E E	ast Syracuse, NY 130)57 (315) 437-6100		Sta	ateCert	No: 10155
CLIENT:	Parsons Engineering S	Science, Inc.		Lab ID:	0	504162	-022A
Project:	Amphenol Richardson	Hill Road Land	dfill	Client Sa	mple ID: A	AR-22	
W Order:	0504162			Collection	-	/28/05	
Matrix:	SOLID			Date Rec	eived: 4	/29/05	
Inst. ID:	GC90 20D	Sample Size	:30 g	PrepDate			45:37 AM
ColumnID:	DB-1701	%Moisture:	8.8	BatchNo:	: 51	06/R103	70
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E	:\90MA	Y05\D050449.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
	RINATED BIPHENYLS	-	alMDL	PQL SW8082	Units		· · · · · · · · · · · · · · · · · · ·
POLYCHLO	RINATED BIPHENYLS	-	0.0026		Units mg/Kg-d	(SW35	50B)
POLYCHLO Aroclor 1016	RINATED BIPHENYLS	BY GC/ECD		SW8082		(SW35 iry 1	50B) 5/5/05 6:26:39 PN
Analyte POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232	RINATED BIPHENYLS	BY GC/ECD ND	0.0026	SW8082 0.018	mg/Kg-d	(SW35 iry 1 iry 1	50B)
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232	RINATED BIPHENYLS	BY GC/ECD ND ND	0.0026 0.0032	SW8082 0.018 0.018	mg/Kg-d mg/Kg-d	(SW35 iry 1 iry 1 iry 1	50B) 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN
POLYCHLO Aroclor 1016 Aroclor 1221	RINATED BIPHENYLS	BY GC/ECD ND ND ND	0.0026 0.0032 0.0021	SW8082 0.018 0.018 0.018	mg/Kg-d mg/Kg-d mg/Kg-d	(SW35 Iry 1 Iry 1 Iry 1 Iry 1	50B) 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	RINATED BIPHENYLS	BY GC/ECD ND ND ND ND	0.0026 0.0032 0.0021 0.0016	SW8082 0.018 0.018 0.018 0.018 0.018	mg/Kg-d mg/Kg-d mg/Kg-d	(SW35 iry 1 iry 1 iry 1 iry 1 iry 1	50B) 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	RINATED BIPHENYLS	BY GC/ECD ND ND ND ND 0.18	0.0026 0.0032 0.0021 0.0016 0.0012	SW8082 0.018 0.018 0.018 0.018 0.018 0.018	mg/Kg-d mg/Kg-d mg/Kg-d mg/Kg-d	(SW35 Iry 1 Iry 1 Iry 1 Iry 1 Iry 1 Iry 1	50B) 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254	RINATED BIPHENYLS	BY GC/ECD ND ND ND ND 0.18 ND	0.0026 0.0032 0.0021 0.0016 0.0012 0.00073	SW8082 0.018 0.018 0.018 0.018 0.018 0.018	mg/Kg-d mg/Kg-d mg/Kg-d mg/Kg-d mg/Kg-d	(SW35 Iry 1 Iry 1 Iry 1 Iry 1 Iry 1 Iry 1	50B) 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN 5/5/05 6:26:39 PN

Qualifiers:

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

- Ε Value above quantitation range
- J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:21 AM

B

Project Supervisor: Thomas A. Alexander

0.60

	J'Brien & (000 Brittonfield Parl	kway		ies, Inc.		-	tical Result
	ast Syracuse, NY 1.	<u>, (315)</u>) 437-6100	······	Sta	teCert	No: 10155
CLIENT:	Parsons Engineering	Science, Inc.		Lab ID:	0:	504162	-022A
Project:	Amphenol Richardso	on Hill Road Land	ifill	Client Sa	mple ID: A	R-22	
W Order:	0504162			Collection	n Date: 4/	28/05	
Matrix:	SOLID			Date Rece	eived: 4/	29/05	
Inst. ID:	GC89 14L	Sample Size:	:30 g	PrepDate	: 5/	3/05 8:	45:37 AM
ColumnID:	RtxCLP2	Rt %Moisture:	8.8	BatchNo:	50	6/R101	73
Revision:	5/16/05 5:02:19 PM	TestCode:	8082SE	FileID:	. E:	\89MA	Y05\L051359.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082		(SW35	50B)
Aroclor 1016		ND	0.0026	0.018	mg/Kg-dr	-	5/15/05 12:26:38 AM
Arocior 1221		NÐ	0.0032	0.018	mg/Kg-dr	-	5/15/05 12:26:38 AM
Aroclor 1232		ND	0.0021	0.018	mg/Kg-dr	•	5/15/05 12:26:38 AM
Aroclor 1242		ND	0.0016	0.018	mg/Kg-dr	-	5/15/05 12:26:38 AM
Aroclor 1248		0.20	0.0012	0.018	mg/Kg-dr	- y 1	5/15/05 12:26:38 AM
Aroclor 1254		ND	0.00073	0.018	mg/Kg-dr	y 1	5/15/05 12:26:38 AM
Aroclor 1260		ND	0.0012	0.018	mg/Kg-dr	-	5/15/05 12:26:38 AM
Surr: Tetracl	hloro-m-xylene	113	0	30-150	%REC	1	5/15/05 12:26:38 AM
Sum Deces	hlorobiphenyl	84.7	0	30-150	%REC		5/15/05 12:26:38 AM

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:21 AM

JDmion

0_

Ϋ́

~

Project Supervisor: Thomas A. Alexander

	J'Brien & G 000 Brittonfield Parky		orator	A	Analytical Results			
	ast Syracuse, NY 130	-) 437-6100		Sta	teCertl	No: 10155	
CLIENT: Project: W Order:	Parsons Engineering S Amphenol Richardson 0504162		dfill	Lab ID: Client Sa Collection	mple ID: A n Date: 4/	504162 R-23 28/05	-023A	
Matrix: Inst. ID: ColumnID: Revision:	SOLID GC90 20D DB-1701 5/17/05 9:02:43 AM	Sample Size %Moisture: TestCode:		Date Rec PrepDate BatchNo: FileID:	:: 5/. 50	6/R107	45:37 AM '0 Y05\D050450.rst	
Analyte	• • • •	Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
	RINATED BIPHENYLS			SW8082		(SW35	50B)	
Aroclor 1016 Aroclor 1221		ND ND	0.014 0.017	0.096 0.096	mg/Kg-dr mg/Kg-dr		5/5/05 7:00:01 PM 5/5/05 7:00:01 PM	
Aroclor 1232 Aroclor 1242		ND ND	0.011 0.0083	0.096 0.096	mg/Kg-dr mg/Kg-dr	-	5/5/05 7:00:01 PM 5/5/05 7:00:01 PM	
Aroclor 1248 Aroclor 1254		0.16 ND	0.0065 0.0039	0.096 0.096	mg/Kg-dr mg/Kg-dr	y 5	5/5/05 7:00:01 PM 5/5/05 7:00:01 PM	
Aroclor 1260 Surr: Tetrac	hloro-m-xylene	ND 78.3	0.0063 0	0.096 30-150	mg/Kg-dr %REC	· ·	5/5/05 7:00:01 PM 5/5/05 7:00:01 PM	
Surr: Decac	hlorobiphenyl	67.1	0	30-150	%REC	5	5/5/05 7:00:01 PM	

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:22 AM

Project Supervisor: Thomas A. Alexander

O'Brien & Gere Laboratories, Inc. 5000 Brittonfield Parkway

Analytical Results

E	ast Syracuse, NY 13	3057 (315) 437-6100		Stat	eCert	No: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/16/05 5:02:19 PM		: 30 g	Lab ID: Client Sa Collectio Date Rec PrepDate BatchNo FileID:	mple ID: AF n Date: 4/2 eived: 4/2 e: 5/3 : 506	R-23 28/05 29/05 /05 8:4 5/R107	-023A 45:37 AM 73 Y05\L051360.rst
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYL	BY GC/ECD SW8		SW8082	(SW355	50B)
Aroclor 1016		ND	0.0028	0.019	mg/Kg-dry		5/15/05 12:53:55 AM
Aroclor 1221		ND	0.0033	0.019	mg/Kg-dry		5/15/05 12:53:55 AM
Aroclor 1232		ND	0.0022	0.019	mg/Kg-dry		5/15/05 12:53:55 AM
Aroclor 1242		ND	0.0017	0.019	mg/Kg-dry		5/15/05 12:53:55 AM
Aroclor 1248		0.17	0.0013	0.019	mg/Kg-dry		5/15/05 12:53:55 AM
Aroclor 1254		ND	0.00077	0.019	mg/Kg-dry		5/15/05 12:53:55 AM
Aroclor 1260		ND	0.0013	0.019	mg/Kg-dry		5/15/05 12:53:55 AM
Surr: Tetrack	hloro-m-xylene	106	0	30-150	%REC	1	5/15/05 12:53:55 AM
Surr: Decach	hlorobiphenyl	74.8	0	30-150	%REC	1	5/15/05 12:53:55 AM

Qualifiers:

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Е Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits S

Print Date: 5/17/05 9:04:21 AM

В

63 0

O'Bric	en & G nfield Parkv	ere Lab	orator	ies, Inc.	Α	naly	tical Results
East Syracu	ise, NY 130	57 (315)	437-6100		Sta	teCertl	No: 10155
Project:AmphenoW Order:0504162Matrix:SOLIDInst. ID:GC90 20ColumnID:DB-1701		cience, Inc. Hill Road Land Sample Size: %Moisture: TestCode:	: 30 g	Lab ID: Client Sam Collection I Date Receiv PrepDate: BatchNo: FileID:	ole ID: A Date: 4, red: 4, 5/ 5()6/R107	5:37 AM
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLORINATED Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Surr: Tetrachioro-m-xyle	ne	BY GC/ECD ND ND ND ND 0.087 P ND ND 87.1	0.0031 0.0037 0.0025 0.0019 0.0015 0.00087 0.0014 0	SW8082 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 30-150	mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di mg/Kg-di %REC	ry 1 ry 1 ry 1 ry 1 ry 1 ry 1 ry 1	60B) 5/5/05 7:33:22 PM 5/5/05 7:33:22 PM
Surr: Decachlorobipheny		87.1 74.4	0	30-150 30-150	%REC %REC	1 1	5/5/05 7:33:22 PM 5/5/05 7:33:22 PM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Value above quantitation range Е

Analyte detected below quantitation limits J

S Spike Recovery outside accepted recovery limits

В

O'Brien & Gere Laboratories, Inc. Analytical Results 🧱 5000 Brittonfield Parkway East Syracuse, NY 13057 (315) 437-6100 StateCertNo: 10155 **CLIENT:** Parsons Engineering Science, Inc. Lab ID: 0504162-024A **Project:** Amphenol Richardson Hill Road Landfill Client Sample ID: AR-24 W Order: 0504162 **Collection Date:** 4/28/05 Matrix: SOLID Date Received: 4/29/05 Inst. ID: GC89 14L Sample Size: 30 g **PrepDate:** 5/3/05 8:45:37 AM ColumnID: RtxCLP2 Rt %Moisture: 22.5 **BatchNo:** 506/R1073 5/20/05 2:42:51 PM **Revision:** TestCode: 8082SE FileID: E:\89MAY05\L051361.rst Analyte **Result QualMDL** PQL Units DF **Date Analyzed**

POLYCHLORINATED BIPHENYL	S BY GC/ECD		SW8082	(SW35	50B)
Aroclor 1016	ND	0.0031	0.022	mg/Kg-dry 1	5/15/05 1:21:13 AM
Aroclor 1221	ND	0.0037	0.022	mg/Kg-dry 1	5/15/05 1:21:13 AM
Aroclor 1232	ND	0.0025	0.022	mg/Kg-dry 1	5/15/05 1:21:13 AM
Aroclor 1242	ND	0.0019	0.022	mg/Kg-dry 1	5/15/05 1:21:13 AM
Aroclor 1248	0.11 P	0.0015	0.022	mg/Kg-dry 1	5/15/05 1:21:13 AM
Aroclor 1254	ND	0.00087	0.022	mg/Kg-dry 1	5/15/05 1:21:13 AM
Aroclor 1260	ND	0.0014	0.022	mg/Kg-dry 1	5/15/05 1:21:13 AM
Surr: Tetrachloro-m-xylene	115	0	30-150	%REC 1	5/15/05 1:21:13 AM
Surr: Decachlorobiphenyl	79.5	0	30-150	%REC 1	5/15/05 1:21:13 AM

Qualifiers:

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Ε Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits S

Print Date: 5/20/05 2:49:17 PM

в

Project Supervisor: Thomas A. Alexander

n 25

	J'Brien & G 000 Brittonfield Parky	ere Lab	orator	ies, Inc.	An	alyt	tical Results
	ast Syracuse, NY 130	-	437-6100		State	CertN	o: 10155
CLIENT:	Parsons Engineering S	cience, Inc.		Lab ID:	0504	4162-0)25A
Project:	Amphenol Richardson	Hill Road Land	lfill	Client Sam	ole ID: AR-	25	• •
W Order:	0504162			Collection I	Date: 4/28	/05	
Matrix:	SOLID			Date Receiv	red: 4/29	/05	
Inst. ID:	GC90 20D	Sample Size:	:30 g	PrepDate:	5/3/0)5 8:45	5:37 AM
ColumnID:	DB-1701	%Moisture:	11.2	BatchNo:	506/.	R1070	
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E:\90	OMAY	05\D050603.rst
Analyte	· · · · · · · · · · · · · · · · · · ·	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	(S'	W3550)B)
Aroclor 1016		ND	0.0054	0.038	mg/Kg-dry		5/6/05 11:03:03 AM
Arocior 1221		ND	0.0065	0.038	mg/Kg-dry 🕽	2	5/6/05 11:03:03 AM
Aroclor 1232		ND	0.0044	0.038	mg/Kg-dry	2	5/6/05 11:03:03 AM
Aroclor 1242		ND	0.0032	0.038	mg/Kg-dry	2	5/6/05 11:03:03 AM
Aroclor 1248		0.32	0.0025	0.038	mg/Kg-dry 2	2	5/6/05 11:03:03 AM
Aroclor 1254		ND	0.0015	0.038	mg/Kg-dry 2	2	5/6/05 11:03:03 AM
Arocior 1260		ND	0.0025	0.038	mg/Kg-dry 2	2	5/6/05 11:03:03 AM
	hloro-m-xylene	90.3	0	30-150	%REC 2	2	5/6/05 11:03:03 AM
Surr: Decac	hlorobiphenyl	78.0	0	30-150	%REC 2	2	5/6/05 11:03:03 AM

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

0

66

Print Date: 5/17/05 9:04:23 AM

)'Brien & (000 Brittonfield Parl		orator	ies, Inc.	An	aly	tical Results
E	ast Syracuse, NY 13	3057 (315)) 437-6100	·	State	CertN	o: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/16/05 5:02:19 PM		: 30 g	Lab ID: Client Sam Collection D Date Receiv PrepDate: BatchNo: FileID:	ple ID: AR- Date: 4/28 ved: 4/29 5/3/0 506/J	/05 /05)5 8:45 R1073	5:37 AM
Analyte		Result Qu	alMDL	PQL	Units]	DF	Date Analyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RINATED BIPHENYL	S BY GC/ECD ND ND ND 0.36 ND ND 114	0.0054 0.0065 0.0044 0.0032 0.0025 0.0015 0.0025 0	SW8082 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 30-150	(S) mg/Kg-dry 2 mg/Kg-dry 2 mg/Kg-dry 2 mg/Kg-dry 2 mg/Kg-dry 2 mg/Kg-dry 2 Mg/Kg-dry 2 %REC 2	2 2 2 2 2 2 2 2	DB) 5/15/05 1:48:26 AM 5/15/05 1:48:26 AM
Surr: Decaci	hlorobiphenyl	85.3	0	30-150	%REC 2	-	5/15/05 1:48:26 AM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
 ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:23 AM

	O'Brien & G	way	orator	ies, Inc.	A	naly	tical Result
E	Last Syracuse, NY 130)57 (315) 437-6100		Stat	eCert	No: 10155
CLIENT:	Parsons Engineering S	Science, Inc.		Lab ID:	05	04162	-026A
Project:	Amphenol Richardson	Hill Road Lane	dfill	Client Sa	mple ID: Al	R-26	
W Order:	0504162			Collection	-	28/05	
Matrix:	SOLID			Date Rec	eived: 4/2	29/05	
Inst. ID:	GC90 20D	Sample Size	:30 g '	PrepDate	: 5/3	/05 8:	45:37 AM
ColumnID:	DB-1701	%Moisture:	13.0	BatchNo:		6/R101	
Revision:	5/17/05 9:02:43 AM	TestCode:	8082SE	FileID:	E:\	90MA	Y05\D050604.rst
Analyte	······	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	. (SW35	50B)
Aroclor 1016		ND	0.0055	0.038	mg/Kg-dry		5/6/05 11:36:23 AM
Aroclor 1221		ND	0.0066	0.038	mg/Kg-dry	/ 2	5/6/05 11:36:23 AM
Aroclor 1232		ND	0.0045	0.038	mg/Kg-dry	2	5/6/05 11:36:23 AM
Aroclor 1242		ND	0.0033	0.038	mg/Kg-dry	2	5/6/05 11:36:23 AM
Aroclor 1248		0.32	0.0026	0.038	mg/Kg-dry		5/6/05 11:36:23 AM
		0.32 ND	0.0026 0.0015	0.038 0.038	+	2	
Aroclor 1248					mg/Kg-dry	2	5/6/05 11:36:23 AM
Aroclor 1248 Aroclor 1254 Aroclor 1260	chioro-m-xylene	ND	0.0015	0.038	mg/Kg-dry mg/Kg-dry	2	5/6/05 11:36:23 AM 5/6/05 11:36:23 AM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
 ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Print Date: 5/17/05 9:04:24 AM

	O'Brien & (000 Brittonfield Parl		orator	Ar	Analytical Results			
	Cast Syracuse, NY 13	•	437-6100		State	eCertl	No: 10155	
CLIENT:	Parsons Engineering	Science, Inc.		Lab ID:	050)4162-	026A	
Project:	Amphenol Richardso	on Hill Road Land	lfill	Client Sa	mple ID: AR	-26		
W Order:	0504162			Collection	n Date: 4/2	8/05		
Matrix:	SOLID			Date Rec	eived: 4/2	9/05		
Inst. ID:	GC89 14L	Sample Size:	: 30 g	PrepDate	: 5/3/	/05 8:4	5:37 AM	
ColumnID:	RtxCLP2	Rt %Moisture:	13.0	BatchNo	: 506	/R107	3	
Revision:	5/16/05 5:02:19 PM	TestCode:	8082SE	FileID:	E:\{	89MA	Y05\L051363.rst	
Analyte		Result Qu	alMDL	PQL	Units	DF	Date Analyzed	
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	(5	SW355	50B)	
Arocior 1016		ND	0.0055	0.038	mg/Kg-dry		5/15/05 2:15:40 AM	
Aroclor 1221		ND	0.0066	0.038	mg/Kg-dry	2	5/15/05 2:15:40 AM	
Aroclor 1232		ND	0.0045	0.038	mg/Kg-dry	2	5/15/05 2:15:40 AM	
Aroclor 1242		ND	0.0033	0.038	mg/Kg-dry	2	5/15/05 2:15:40 AM	
Aroclor 1248		0.38	0.0026	0.038	mg/Kg-dry	2	5/15/05 2:15:40 AM	
Arocior 1254		ND	0.0015	0.038	mg/Kg-dry		5/15/05 2:15:40 AM	
Aroclor 1260		ND	0.0025	0.038	mg/Kg-dry	2	5/15/05 2:15:40 AM	
Surr: Tetrac	chloro-m-xylene	109	0	30-150	%REC	2	5/15/05 2:15:40 AM	

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Ē Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

В

	D'Brien & G 000 Brittonfield Parky	ere Lab	orator	ies, Inc.	Ana	lytical	Results
	ast Syracuse, NY 130) 437-6100		StateC	ertNo: 10155	5
CLIENT: Project: W Order: Matrix:	Parsons Engineering S Amphenol Richardson 0504162 SOLID		1fill	Lab ID: Client Sar Collection Date Rece	nple ID: AR-2 Date: 4/28/	05	
Inst. ID: ColumnID: Revision:	GC90 20D DB-1701 5/20/05 2:41:49 PM	Sample Size %Moisture: TestCode:	-	PrepDate: BatchNo: FileID:	506/R	5 8:45:37 AM 1070 MAY05\D050	
Analyte		Result Qu	alMDL	PQL	Units D	OF Date A	nalyzed
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	RINATED BIPHENYLS	ND ND ND 0.42 P ND	0.013 0.016 0.011 0.0080 0.0062 0.0037	SW8082 0.092 0.092 0.092 0.092 0.092 0.092	mg/Kg-dry 5 mg/Kg-dry 5 mg/Kg-dry 5 mg/Kg-dry 5 mg/Kg-dry 5 mg/Kg-dry 5	5/5/05 1 5/5/05 1 5/5/05 1 5/5/05 1	0:19:57 PM 0:19:57 PM 0:19:57 PM 0:19:57 PM 0:19:57 PM 0:19:57 PM
	hloro-m-xylene hlorobiphenyl	ND 85.8 72.9	0.0061 0 0	0.092 30-150 30-150	mg/Kg-dry 5 %REC 5 %REC 5	5/5/05 1	0:19:57 PM 0:19:57 PM 0:19:57 PM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Value above quantitation range Е

Analyte detected below quantitation limits J

S Spike Recovery outside accepted recovery limits

В

	D'Brien & (000 Brittonfield Parl		orator	ies, Inc.	Ana	alytical Result
E	ast Syracuse,NY 13	3057 (315)	437-6100		StateC	ertNo: 10155
CLIENT: Project: W Order: Matrix: Inst. ID: ColumnID: Revision:	Parsons Engineering Amphenol Richardso 0504162 SOLID GC89 14L RtxCLP2 5/20/05 2:42:51 PM		: 30 g	Lab ID: Client San Collection Date Rece PrepDate: BatchNo: FileID:	nple ID: AR-2 Date: 4/28/ ived: 4/29/ 5/3/05 5/3/05	05 05 5 8:45:37 AM
Analyte		Result Qu	alMDL	PQL	Units D	OF Date Analyzed
POLYCHLO	RINATED BIPHENYL	S BY GC/ECD		SW8082	(SV	V3550B)
Aroclor 1016		ND	0.013	0.092	mg/Kg-dry 5	5/15/05 2:42:51 AM
Aroclor 1221		ND	0.016	0.092	mg/Kg-dry 5	5/15/05 2:42:51 AM
Aroclor 1232		ND	0.011	0.092	mg/Kg-dry 5	5/15/05 2:42:51 AM
Aroclor 1242		ND	0.0080	0.092	mg/Kg-dry 5	5/15/05 2:42:51 AM
Aroclor 1248		0.53 P	0.0062	0.092	mg/Kg-dry 5	
Arocior 1254		ND	0.0037	0.092	mg/Kg-dry 5	5/15/05 2:42:51 AM
Aroclor 1260		ND	0.0061	0.092	mg/Kg-dry 5	
Surr: Tetrac	hloro-m-xylene	117	0	30-150	%REC 5	
Surr Decor	hlorobiphenyl	85.0	0	30-150	%REC 5	

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Ε Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

В

O'Brien & Gere Laboratories, Inc. 5000 Brittonfield Parkway East Syracuse, NY 13057 (315) 437-6100 StateCertNo: 10155 CLIENT Parsons Engineering Science, Inc. Lab ID: 0505073-001A Amphenol Richardson Hill Road Landfill **Project:** Client Sample ID: L5-001 (North Composite) W Order: 0505073 **Collection Date:** 5/12/2005 Matrix: SOLID Date Received: 5/13/2005 10:57:00 AM Inst. ID: GC89 14K Sample Size: 30 g **PrepDate:** 5/16/2005 2:41:17 PM **BatchNo:** 621/R1169 ColumnID: RtxCLP %Moisture: 19.2 FileID: E:\89MAY05\K052208.rst **Revision:** 6/6/2005 4:23:37 PM TestCode: 8082SE Analyte Result QualMDL POL Units DF **Date Analyzed** POLYCHLORINATED BIPHENYLS BY GC/ECD SW8082 (SW3550B) Aroclor 1016 ND 0.135 1.03 mg/Kg-dry 50 5/22/2005 3:54:16 PM 1 4004 ~ ~ ~

Aroclor 1221	ND	0.312	1.03	mg/Kg-dry 50	0	5/22/2005 3:54:16 PM
Aroclor 1232	ND	0.0835	1.03	mg/Kg-dry 50	0	5/22/2005 3:54:16 PM
Aroclor 1242	ND	0.173	1.03	mg/Kg-dry 50	0	5/22/2005 3:54:16 PM
Aroclor 1248	5.23	0.342	1.03	mg/Kg-dry 50	0	5/22/2005 3:54:16 PM
Aroclor 1254	ND	0.0804	1.03	mg/Kg-dry 50	0	5/22/2005 3:54:16 PM
Aroclor 1260	ND	0.121	1.03	mg/Kg-dry 50	0	5/22/2005 3:54:16 PM
Surr: Tetrachloro-m-xylene	133	0	30-150	%REC 50	0	5/22/2005 3:54:16 PM
Surr: Decachlorobiphenyl	100	0	30-150	%REC 50	0	5/22/2005 3:54:16 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Ε Value above quantitation range

Analyte detected below quantitation limits J

Prim./Conf. column %D or RPD exceeds limit

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Ρ

Print Date: 6/16/2005 3:43:10 PM

В

S

Project Supervisor: Thomas A. Alexander

Analytical Results

Ä	
=	
	 _

O'Brien & Gere Laboratories, Inc. 5000 Brittonfield Parkway

Analytical Results

E E	ast Syracuse, NY 1305	57 (315)) 437-6100		State	Certl	No: 10155
CLIENT	Parsons Engineering Sc	cience, Inc.		Lab ID:	050)5073-	-001A
Project:	t: Amphenol Richardson Hill Road Landfill			Client Sa	ample ID: L5-	-001 (North Composite)
W Order:	0505073			Collectio	n Date: 5/1	2/200	5
Matrix:	SOLID			Date Rec	ceived: 5/1	3/200	5 10:57:00 AM
Inst. ID:	GC89_14L	Sample Size	: 30 g	PrepDat	e: 5/10	6/200:	5 2:41:17 PM
ColumnID:		%Moisture:	-	BatchNo	621	/R117	70
Revision:	6/6/2005 4:25:53 PM	TestCode:	8082SE	FileID:	E:\{	39MA	Y05\L052209.rst
Analyte		Result Qu	al MDL	PQL	Units	DF	Date Analyzed
Analyte POLYCHLOI	RINATED BIPHENYLS		al MDL	PQL SW8082			
POLYCHLO	RINATED BIPHENYLS		0.135			SW35	
POLYCHLOI Aroclor 1016	RINATED BIPHENYLS	BY GC/ECD		SW8082	. (5	SW35 50	50B)
POLYCHLOI Aroclor 1016 Aroclor 1221	RINATED BIPHENYLS	BY GC/ECD ND	0.135	SW8082 1.03	(\$ mg/Kg-dry	5W35 50 50	50B) 5/22/2005 4:21:27 P
POLYCHLOI Aroclor 1016 Aroclor 1221 Aroclor 1232	RINATED BIPHENYLS	BY GC/ECD ND ND	0.135 0.312	SW8082 1.03 1.03	(\$ mg/Kg-dry mg/Kg-dry	SW35 50 50 50 50	50B) 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P
POLYCHLOI Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	RINATED BIPHENYLS	BY GC/ECD ND ND ND	0.135 0.312 0.0835	SW8082 1.03 1.03 1.03	(\$ mg/Kg-dry mg/Kg-dry mg/Kg-dry	50 50 50 50 50 50	50B) 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P
POLYCHLOI Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	RINATED BIPHENYLS	BY GC/ECD ND ND ND ND	0.135 0.312 0.0835 0.173	SW8082 1.03 1.03 1.03 1.03 1.03	(\$ mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	50 50 50 50 50 50 50 50	50B) 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P
POLYCHLOI Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	RINATED BIPHENYLS	BY GC/ECD ND ND ND 4.19	0.135 0.312 0.0835 0.173 0.342	SW8082 1.03 1.03 1.03 1.03 1.03 1.03	(\$ mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	50 50 50 50 50 50 50 50	50B) 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P
POLYCHLOI Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RINATED BIPHENYLS	BY GC/ECD ND ND ND 4.19 ND	0.135 0.312 0.0835 0.173 0.342 0.0804	SW8082 1.03 1.03 1.03 1.03 1.03 1.03 1.03	(\$ mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	50 50 50 50 50 50 50 50	50B) 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P 5/22/2005 4:21:27 P

Qualifiers:

В

S Print Date: 6/16/2005 3:43:10 PM

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

Ε Value above quantitation range

> Analyte detected below quantitation limits J

Ρ Prim./Conf. column %D or RPD exceeds limit

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Project Supervisor: Thomas A. Alexander

)'Brien & G ()00 Brittonfield Parkw		oratori	es, Inc.	An	aly	tical Results
	ast Syracuse, NY 1305	•) 437-6100		State	Certl	No: 10155
CLIENT Project: W Order: Matrix:	Parsons Engineering Sc Amphenol Richardson 0505073 SOLID		lfill	Lab ID: Client Sar Collectior Date Rece	nple ID: L5- Date: 5/1	2/2005	Center Composite)
Inst. ID: ColumnID: Revision:	GC89_14K RtxCLP 6/6/2005 4:23:37 PM	Sample Size %Moisture: TestCode:	-	PrepDate BatchNo: FileID:	621	/R116	5 2:41:17 PM 9 Y05\K052209.rst
Analyte		Result Qu	ual MDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	(SW355	50B)
Aroclor 1016		ND	0.126	0.960	mg/Kg-dry	50	5/22/2005 4:21:27 PM
Aroclor 1221		ND	0.290	0.960	mg/Kg-dry	50	5/22/2005 4:21:27 PM
Aroclor 1232		ND	0.0778	0.960	mg/Kg-dry	50	5/22/2005 4:21:27 PM
Aroclor 1242		ND	0.161	0.960	mg/Kg-dry	50	5/22/2005 4:21:27 PM
Aroclor 1248		4.69	0.319	0.960	mg/Kg-dry	50	5/22/2005 4:21:27 PM
Aroclor 1254		ND	0.074 9	0.960	mg/Kg-dry	50	5/22/2005 4:21:27 PM
Aroclor 1260		ND	0.113	0.960	mg/Kg-dry	50	5/22/2005 4:21:27 PM

30-150

30-150

%REC

%REC

50

50

5/22/2005 4:21:27 PM

5/22/2005 4:21:27 PM

Qualifiers:

Surr: Tetrachloro-m-xylene

Surr: Decachlorobiphenyl

Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

125

91.7

0

0

Ε Value above quantitation range

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits J

Prim./Conf. column %D or RPD exceeds limit P

Print Date: 6/16/2005 3:43:10 PM

В

S

Project Supervisor: Thomas A. Alexander

O'Brien & Gere Laboratories, Inc. Analytical Results 5000 Brittonfield Parkway East Syracuse. NY 13057 (315) 437-6100 StateCertNo: 10155 CLIENT Lab ID: Parsons Engineering Science, Inc. 0505073-002A **Project:** Amphenol Richardson Hill Road Landfill Client Sample ID: L5-002 (Center Composite) W Order: 0505073 **Collection Date:** 5/12/2005 Matrix: SOLID Date Received: 5/13/2005 10:57:00 AM Inst. ID: GC89 14L Sample Size: 30 g **PrepDate:** 5/16/2005 2:41:17 PM **BatchNo:** ColumnID: RtxCLP2 %Moisture: 13.2 621/R1170 **Revision:** FileID: E:\89MAY05\L052210.rst 6/6/2005 4:25:53 PM TestCode: 8082SE Analyte Result QualMDL POL Units DF **Date Analyzed** POLYCHLORINATED BIPHENYLS BY GC/ECD SW8082 (SW3550B) Aroclor 1016 ND 0.126 0.960 mg/Kg-dry 50 5/22/2005 4:48:42 PM Aroclor 1221 ND 0.290 0.960 mg/Kg-dry 50 5/22/2005 4:48:42 PM Aroclor 1232 ND 0.0778 0.960 mg/Kg-dry 50 5/22/2005 4:48:42 PM Aroclor 1242 ND 0.161 0.960 mg/Kg-dry 50 5/22/2005 4:48:42 PM Aroclor 1248 3.97 0.319 0.960 mg/Kg-dry 50 5/22/2005 4:48:42 PM 0.0749 mg/Kg-dry 50 Aroclor 1254 ND 0.960 5/22/2005 4:48:42 PM

₿ Analyte detected in the associated Method Blank Ε **Qualifiers:** Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit

ND

117

91.7

0.113

0

0

0.960

30-150

30-150

Spike Recovery outside accepted recovery limits S

Prim./Conf. column %D or RPD exceeds limit

mg/Kg-dry 50

50

50

%REC

%REC

5/22/2005 4:48:42 PM

5/22/2005 4:48:42 PM

5/22/2005 4:48:42 PM

Print Date: 6/16/2005 3:43:10 PM

Aroclor 1260

Surr: Tetrachloro-m-xylene

Surr: Decachlorobiphenyl

Project Supervisor: Thomas A. Alexander

Value above quantitation range

Analyte detected below quantitation limits

P

====)'Brien & G (000 Brittonfield Parkw		orator	ies, Inc.	An	aly	tical Results
	ast Syracuse, NY 130	•	437-6100		State	eCertN	No: 10155
CLIENT	Parsons Engineering So	cience, Inc.		Lab ID:	050	05073-	003A
Project:	Amphenol Richardson	Hill Road Land	lfill	Client Samp	ole ID: L5	-003 (S	South Composite)
W Order:	0505073			Collection I	Date: 5/1	2/2005	5
Matrix:	SOLID			Date Receiv	red: 5/1	3/2005	5 10:57:00 AM
Inst. ID:	GC89_14K	Sample Size:	: 30 g	PrepDate:	5/1	6/2005	5 2:41:17 PM
ColumnID:	RtxCLP	%Moisture:	16.0	BatchNo:	621	/R116	9
Revision:	6/6/2005 4:23:37 PM	TestCode:	8082SE	FileID:	E:\{	39MA`	Y05\K052210.rst
Analyte	·	Result Qu	alMDL	PQL	Units	DF	Date Analyzed
POLYCHLO	RINATED BIPHENYLS	BY GC/ECD		SW8082	(SW355	50B)
Aroclor 1016		ND	0.130	0.993	mg/Kg-dry	50	5/22/2005 4:48:42 PM
Aroclor 1221		ND	0.300	0.993	mg/Kg-dry	50	5/22/2005 4:48:42 PM
Aroclor 1232		ND	0.0804	0.993	mg/Kg-dry	50	5/22/2005 4:48:42 PM
Aroclor 1242		ND	0.167	0.993	mg/Kg-dry	50	5/22/2005 4:48:42 PM
Aroclor 1248		3.71	0.329	0.993	mg/Kg-dry	50	5/22/2005 4:48:42 PM
Aroclor 1254		ND	0.0774	0.993	mg/Kg-dry	50	5/22/2005 4:48:42 PM
Aroclor 1260		ND	0.117	0.993	mg/Kg-dry	50	5/22/2005 4:48:42 PM
Surr: Tetrac	chloro-m-xylene	108	0	30-150	%REC	50	5/22/2005 4:48:42 PM
Surr: Decad	chlorobiphenyl	74.2	0	30-150	%REC	50	5/22/2005 4:48:42 PM

Oualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
•	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Prim./Conf. column %D or RPD exceeds limit
	S	Spike Recovery outside accepted recovery limits		

Project Supervisor: Thomas A. Alexander

.

O'Brien & Gere Laboratories, Inc.

Analytical Results

	ast Syracuse, NY 130	57 (315) 437-6100		Stat	eCertl	No: 10155
CLIENT	Parsons Engineering So	cience, Inc.		Lab ID:	05	05073	-003A
Project:	Amphenol Richardson	Hill Road Lan	dfill	Client Sa	ample ID: L5	6-003 (South Composite)
W Order:	0505073		-	Collectio	n Date: 5/	12/200	5
Matrix:	SOLID			Date Rec	ceived: 5/2	13/200	5 10:57:00 AM
Inst. ID:	GC89_14L	Sample Size	e: 30 g	PrepDat	e: 5/1	6/2005	5 2:41:17 PM
ColumnID:		%Moisture	~	BatchNo	b: 62	1/R117	0
Revision:	6/6/2005 4:25:53 PM	TestCode:	8082SE	FileID:	E:\	89MA	Y05\L052211.rst
Analyte		Result Qu	ual MDL	PQL	Units	DF	Date Analyzed
	RINATED BIPHENYLS	· · · · · ·	ual MDL	PQL SW8082			, v
POLYCHLO	RINATED BIPHENYLS	· · · · · ·	0.130	-		(SW35	, v
POLYCHLO Aroclor 1016	RINATED BIPHENYLS	BY GC/ECD		SW8082		(SW35 y 50	50B)
POLYCHLO Aroclor 1016 Aroclor 1221	RINATED BIPHENYLS	BY GC/ECD ND	0.130	SW8082 0.993	mg/Kg-dr	(SW35) y 50 y 50	50B) 5/22/2005 5:15:56 Pl
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232	RINATED BIPHENYLS	BY GC/ECD ND ND	0.130 0.300	SW8082 0.993 0.993	mg/Kg-dr mg/Kg-dr	(SW35 y 50 y 50 y 50 y 50	50B) 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	RINATED BIPHENYLS	BY GC/ECD ND ND ND	0.130 0.300 0.0804	SW8082 0.993 0.993 0.993	mg/Kg-dr mg/Kg-dr mg/Kg-dr	(SW35 y 50 y 50 y 50 y 50 y 50	50B) 5/22/2005 5:15:56 PI 5/22/2005 5:15:56 PI 5/22/2005 5:15:56 PI
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	RINATED BIPHENYLS	BY GC/ECD ND ND ND ND	0.130 0.300 0.0804 0.167	SW8082 0.993 0.993 0.993 0.993	mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr	(SW35) y 50 y 50 y 50 y 50 y 50 y 50	50B) 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	RINATED BIPHENYLS	BY GC/ECD ND ND ND ND 3.16	0.130 0.300 0.0804 0.167 0.329	SW8082 0.993 0.993 0.993 0.993 0.993	mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr	(SW35) y 50 y 50 y 50 y 50 y 50 y 50 y 50	50B) 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl
POLYCHLO Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RINATED BIPHENYLS	BY GC/ECD ND ND ND 3.16 ND	0.130 0.300 0.0804 0.167 0.329 0.0774	SW8082 0.993 0.993 0.993 0.993 0.993 0.993	mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr mg/Kg-dr	(SW35) y 50 y 50 y 50 y 50 y 50 y 50 y 50	50B) 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl 5/22/2005 5:15:56 Pl

Oualifiers:	в	Analyte detected in the associated Method Blank	Ε	Value above quantitation range
~	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Prim./Conf. column %D or RPD exceeds limit
	S	Spike Recovery outside accepted recovery limits		

Print Date: 6/16/2005 3:43:10 PM

Project Supervisor: Thomas A. Alexander

Date: 09-Sep-05

CLIENT:	Amphenol Corporation	Client Sample ID:	L5-01-090705
Work Order:	050908018	Collection Date:	9/7/2005
Project:	Soil Analysis	Lab Sample ID:	050908018-001
PO#:		Matrix:	SOIL

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS	SW8082(SW3545)				Analyst: KF
Aroclor 1016	< 350	350	µg/Kg-dry	10	9/8/2005 7:15:15 PM
Aroclor 1221	< 350	350	µg/Kg-dry	10	9/8/2005 7:15:15 PM
Aroctor 1232	< 350	350	µg/Kg-dry	10	9/8/2005 7:15:15 PM
Aroclor 1242	< 350	350	µg/Kg-dry	10	9/8/2005 7:15:15 PM
Aroclor 1248	1800	350	µg/Kg-dry	10	9/8/2005 7:15:15 PM
Aroclor 1254	< 350	350	µg/Kg-dry	10	9/8/2005 7:15:15 PM
Aroclor 1260	< 350	350	µg/Kg-dry	10	9/8/2005 7:15:15 PM
					•

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Date: 09-Sep-05

CLIENT:	Amphenol Corporation	Client Sample ID:	L5-02-090705
Work Order:	050908018	Collection Date:	9/7/2005
Project:	Soil Analysis	Lab Sample ID:	050908018-002
PO#:		Matrix:	SOIL

Analyses	Result	PQL Q	1al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS	SW8082(SW3545)				Analyst: KF
Aroctor 1016	< 36	36	µg/Kg-dry	1	9/8/2005 7:41:47 PM
Aroclor 1221	< 36	36	μg/Kg-dry	1	9/8/2005 7:41:47 PM
Aroclor 1232	< 36	36	µg/Kg-dry	1	9/8/2005 7:41:47 PM
Aroclor 1242	< 36	36	µg/Kg-dry	1	9/8/2005 7:41:47 PM
Aroclor 1248	420	36	µg/Kg-dry	1	9/8/2005 7:41:47 PM
Aroclor 1254	< 36	36	µg/Kg-dry	1	9/8/2005 7:41:47 PM
Aroclor 1260	< 36	36	µg/Kg-dry	1	9/8/2005 7:41:47 PM

Qualifiers:

- ND Not Detected at the Reporting Limit
- J Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- T Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 3 of 4

Date: 09-Sep-05

CLIENT:	Amphenol Corporation	Client Sample ID:	L5-03-090705
Work Order:	050908018	Collection Date:	9/7/2005
Project:	Soil Analysis	Lab Sample ID:	050908018-003
PO#:		Matrix:	SOIL

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS	SW8082(SW3545)				Analyst: KF
Aroclor 1016	< 36	36	µg/Kg-dry	1 .	9/8/2005 8:08:22 PM
Aroclor 1221	< 36	36	µg/Kg-dry	1	9/8/2005 8:08:22 PM
Aroclor 1232	< 36	36	µg/Kg-dry	1	9/8/2005 8:08:22 PM
Aroclor 1242	< 36	36	µg/Kg-dry	1	9/8/2005 8:08:22 PM
Aroclor 1248	590	36	µg/Kg-dry	1	9/8/2005 8:08:22 PM
Aroclor 1254	< 36	36	µg/Kg-dry	1	9/8/2005 8:08:22 PM
Aroclor 1260	< 36	36	µg/Kg-dry	1	9/8/2005 8:08:22 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc.

E - Value above quantitation range

Page 4 of 4

Date: 26-Jun-06

	-		
CLIENT:	Amphenol Corporation	Client Sample ID:	L5-01
Work Order:	060621007	Collection Date:	6/20/2006
Project:	Richardson Hill Road Landfill	Lab Sample ID:	060621007-001
PO#: 474030		Matrix:	SOIL.

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed				
POLYCHLORINATED BIPHENYLS	SW8082(SW3545)				Analyst: KF					
Aroclar 1016	< 37	37		µg/Kg-dry	1	6/22/2006 6:02:57 PM				
Aroclar 1221	< 37	37		µg/Kg-dry	1	6/22/2006 6:02:57 PM				
Aroclor 1232	< 37	37		µg/Kg-dry	1	6/22/2006 6:02:57 PM				
Aroclor 1242	250	37	R	µg/Kg-dry	1	6/22/2006 6:02:57 PM				
Aroclor 1248	< 37	37		µg/Kg-dry	1	6/22/2006 6:02:57 PM				
Aroclor 1254	90	37		µg/Kg-dry	1	6/22/2006 6:02:57 PM				
Araclor 1260	< 37	37		µg/Kg-dry	1	6/22/2006 6:02:57 PM				

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc

E - Value above quantitation range

Page 2 of 5

Date: 26-Jun-06

CLIENT: Amphenol Corporation Client	Sample ID: L5-01-1
Work Order: 060621007 Colle	ection Date: 6/20/2006
Project: Richardson Hill Road Landfill Lab	Sample ID: 060621007-002
PO#: 474030	Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	DF Date Analyzed				
POLYCHLORINATED BIPHENYLS	SW8082(SW3545)					Analyst: KF				
Aroclor 1016	< 38	38		µg/Kg-dry	1	6/22/2006 6:32:09 PM				
Aroclor 1221	< 38	38		µg/Kg-dry	1	6/22/2006 6:32:09 PM				
Aroclor 1232	< 38	38		µg/Kg-dry	1	6/22/2006 6:32:09 PM				
Aroclor 1242	270	38	R	µg/Kg-dry	1	6/22/2006 6:32:09 PM				
Aroclor 1248	< 38	38		µg/Kg-dry	1	6/22/2006 6:32:09 PM				
Arocior 1254	93	38		µg/Kg-dry	1	6/22/2006 6:32:09 PM				
Aroclor 1260	< 38	38		µg/Kg-dry	1	6/22/2006 6:32:09 PM				

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

I - Tentitively Identified Compound-Estimated Conc

E - Value above quantitation range

Page 3 of 5

Date: 26-Jun-06

CLIENT:	Amphenol Corporation	Client Sample ID:	L.5-02
Work Order:	060621007	Collection Date:	6/20/2006
Project:	Richardson Hill Road Landfill	Lab Sample ID:	060621007-003
PO#: 474030		Matrix:	SOIL

Aroclor 1016 < 37				
Aroclor 1221 < 37	Analyst: KF			
Aroclor 1232 < 37 37 μg/Kg-dry 1 6/22/2006	10:35:52 AM			
	10:35:52 AM			
Aroclor 1242 360 37 R un/Kn-dny 1 6/22/2006	10:35:52 AM			
	10:35:52 AM			
Aroclor 1248 < 37 37 µg/Kg-dry 1 6/22/2006	10:35:52 AM			
Aroclor 1254 230 37 µg/Kg-dry 1 6/22/2006	10:35:52 AM			
Aroclor 1260 < 37 37 µg/Kg-dry 1 6/22/2006	6 10:35:52 AM			

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

T - Tentitively Identified Compound-Estimated Conc

E - Value above quantitation range

Page 4 of 5

Date: 26-Jun-06

CLIENT: Work Order: Project: PO#: 474030	Amphenol Corporation 060621007 Richardson Hill Road Landfill	Client Sample ID: Collection Date: Lab Sample ID: Matrix:	6/20/2006 060621007-004
PO#: 4/4030		Matrix:	SOIL

Analyses	Result	PQL	Qual	Units	DF Date Analyzed		
POLYCHLORINATED BIPHENYLS	SW8082(SW3545)					Analyst: KF	
Aroclor 1016	< 37	37		μg/Kg-dry	1	6/22/2006 8:28:59 PM	
Aroclor 1221	< 37	37		µg/Kg-dry	1	6/22/2006 8:28:59 PM	
Aroclor 1232	< 37	37		µg/Kg-dry	, 1	6/22/2006 8:28:59 PM	
Aroclor 1242	180	37	R	µg/Kg-dry	1	6/22/2006 8:28:59 PM	
Aroclor 1248	< 37	37		µg/Kg-dry	1	6/22/2006 8:28:59 PM	
Aroclor 1254	110	37		µg/Kg-dry	1	6/22/2006 8:28:59 PM	
Aroclor 1260	< 37	37		µg/Kg-dry	1	6/22/2006 8:28:59 PM	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

X - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

I - Tentitively Identified Compound-Estimated Conc

E - Value above quantitation range

Page 5 of 5

F-4

CONFIRMATORY LABORATORY DATA (SAMPLES COLLECTED BY OTHERS)

Rept: AN0326 Eerth Tech - RH Landfili Oversight RH Landfili Oversight Date: 06/30/2003 Time: 12:02:46 EARTH - ASPOD BOBZ - POLYCHLORINATED BIPHENYLS - S L28-0626031115350006 A03-6155 A3615 AR-0626031100550006 Client ID A3615502 A03-6155 A3615501 Lab ID Job No 06/26/2003 06/26/2003 Sample Date Reporting Limit Reporting Limit Sample Reporting Limit Sample Sample Reporting -Sample Value Value Value Limit Value Analyte Units NA NA NA. ND ND 430 1600 UG/KG ND. Aroclor 1016 KA. 1400 430 UG/KG ND Aroclor 1221 Aractor 1233 NA NA NA. ND: ND 430 430 N 1400 ŔΆ.

350 1

HO 33 J

55 45

430

430

430

32-148

36-153

NA

ŃA

NA

NA NA

1400

1400

1400

1400

32-148 36-153

00/30/2003 12:28

FAX 7166917991

NA - Not Applicable NO . = Not Detected

UG/KG

UG/KG

UG/KG

UG/KG

X X

Aractor 1242

Aroctor 1248

Aroctor 1254

Arocior 1260

Tetrachloro-m-xylene Decachlorobiphenyl

-SURROGATE(S)-

ND

RD

5300

930 J

0 D

O Þ

· . · · · .

16.23

 $T \geq 0$.. • •

łA

HA HA

NA

NA

Date: 07/16/2003 Time: 16:30:38

ND . Hot Detected

. . .

determination and

NA # Not Applicable

٠

Earth Tach - RN Landfill Oversight RH Landfill Oversight EARTH - ASPOD 8082 - POLYCKLORINATED BIPHENYLS - S

Rept: AN0326

Client IO Job No Lab IO Sample Date	l5-0714030950 A03-6693 07/14/2093	\$\$0812 \$3669301		· · ·					
Analyta	Volta	Sample Velue	Reporting Limit	Semple Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	NO NO NO SOO XO SCO J	2100 2100 2100 2100 2100 2100 2100 2100	на. На На На На	· .	на На На На На На На		51 51 51 51 51 51 51 51 51 51 51 51 51 5	
Strachlora-m-xylene Secochlorobiphenyl	X	0 D 0 D	32-148 36-153	NA NA		NA NA		NA NA	

STL BUTTALO

and the second

82 ITHACA STREET TELEPHONE (607) 565-8500 WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:19-NOV-2003

Lab Sample ID: L112993-1

Shaw Environmental & Infrastructure Clay Slaughter 2211 Richardson Hill Road Sidney Center, NY 13839

Sam			C											والمراجع والمراجع		
			Dr 1													
- 0.000 (Net)	arrest first	the second s	ipt			a state of the second secon	فبالأرد والمعاد والمعاد	41.4 YO M 10 10		All Charles and		and the second	S. 1984		. Cara 1, 5 P	e
		1	1 1 1 1		Sec. 99.99	or din			72 Z W.V							
Secondary Second					144 245 24				SE 100 1888	101251612	\$22.5765.7		00:0000	68:2:44		
												1.1.2.				
201212-0000				Sec. 199					1.000					0.00	200.00	
- SCH000 - 99554		ar him 20	led	600 M 160 B 16	State 201		A 4 4 4 1 1 1 1		20.7555	- Vi 1		2000.00	- <u></u>	12.02	6-2: SP	A 194 A
12 10 10 10 10 10 10						1992 - C. A.		1.000					11.11.200		20 C C C C C	
2440503349894		- 60.0X	0.000.000.000	No. Material	44 - C - C - C - C - C	A.A.A		641 M I I I I	- Al-1997 A		80 C - S - S - S - S - S - S - S - S - S -		Sec. 35.	10.000.00		(1. S.
Dat	- CA - CA				N. 1600.	soot at its	THE LOCATION AND A DECIMAL OF A DECIMAL OF A DECIMAL OF A		SE 1971		S SSN		ce		×	
			~O.													
						- C - C - C - C - C - C - C - C - C - C		e	NU 05555	50.0						
A			KA 609 - 69				-State		15.5.168124			1.151.02	S. S	1.1.181	e	

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	74.8	%		17-NOV-03 16:49	CLP 3.0	03-057-59
EPA 8082	·····					
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1254 PCB 1260	ប ប ប ប ប	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	130 260 130 130 130 130 130	19-NOV-03 09:26 19-NOV-03 09:26 19-NOV-03 09:26 19-NOV-03 09:26 19-NOV-03 09:26 19-NOV-03 09:26 19-NOV-03 09:26	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	03-087-3049 03-087-3049 03-087-3049 03-087-3049 03-087-3049 03-087-3049 03-087-3049 03-087-3049
Extraction Information:				18-NOV-03 00:00	EPA 3550	03-077-30
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobiphenyl	81 92	% %				03-087-3049 03-087-3049

Results calculated on a dry weight basis.

Airanda L. Druso Page 1 of 1 Approved by: NY 10252 NJ 73168 PA 68180 EPA NY 00033 Lab Director = wone verected < a less than ug/L = micrograms per liter (equivalent to parts per billion)
= milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million)
= analyte was detected in the method or trip blank E = eatimated value</pre> KEY: ND or U = None Detected mg/L Ë.

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost for these services. Your samples will be discarded after 14 days unless we are advised otherwise.

32 ITHACA STREET TELEPHONE (607) 565-3500 WAVERLY, NY 14892-1582 FAX (607) 565-4083

Date:19-NOV-2003

Lab Sample ID: L112993-2

Shaw Environmental & Infrastructure Clay Slaughter 2211 Richardson Hill Road Sidney Center, NY 13839

	പ്പം കേഷം	caracter and a	NGC GU TU TU TU	₹ 0. LF	
安急地理	*+&	L C C KINDA	RUSUN MILLE	(U, L)+	
		jin: we∂			See a case -
		÷	(A), (F), (A), (A), (A), (A), (A), (A), (A), (A		80008878080114 5 5 66898989898 800888989899111 5 421,00049989
2000-2000 al	econiste	LODO GRAB,	R/. 75 3A		
				BUNG ST CONTRACTOR	
\$501 (ASCA (2001)	Sampled	OII 2 136NC	Na03 44-00	W CLIENT	
Date		ved a 14-m	17516-962-76-599		eeleeneeneeleeleeleeleeleeleeleeleeleele
21,0000,0000	100010000000000000000000000000000000000	***************************************	***************************************	a	9 9 8 8 8 8 1 A
22022 (M	Big Lar	NO: 21302	0	@ ``` `````````````````````````````````	
W/W1202000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	permensioperal i interaction	www.eer.ceac.ab.ceac.ce	***************************************	esereecceccive viskoveccector

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solida	73.3	%		17-NOV-03 16:49	CLP 3.0	03-057-59
EPA 8082						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1248 PCB 1254 PCB 1260	น บ บ บ บ บ บ	ug/kg ug/kg ug/kg ug/kg ug/kg	130 260 130 130 130 130 130 730	19-NOV-03 10:09 19-NOV-03 10:09 19-NOV-03 10:09 19-NOV-03 10:09 19-NOV-03 10:09 19-NOV-03 10:09 19-NOV-03 10:09 19-NOV-03 10:09	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	03-087-3050 03-087-3050 03-087-3050 03-087-3050 03-087-3050 03-087-3050 03-087-3050 03-087-3050
Extraction Information:				18-NOV-03 00:00	EPA 3550	03-077-30
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobiphenyl	82 98	% %				03-087-3050 03-087-3050

Results calculated on a dry weight basis.

- L. LSEVSO Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033 Approved by: Lab Director ug/L = micrograms par liter (equivalent to parts per billion) mg/kg = milligrams per kilogram (equivalent to parts per million) E = estimated value KEY: ND or U = None Detected < = less than = milligram per liter (equivalent to parts per million) = analyte was detected in the method or trip blank

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost for these services. Your samples will be discarded after 14 days unless we are advised otherwise.

mg/L B

	DEP BWS KIN	ESTEN Fax:8453407504	רי 1um 24	1 14-52 P.OS
			·	
	_ c	FORM 1 OTHER ORGANICS ANALYSIS		NYCHEP SAMPLE NO.
•	Lab Name: STL	BURLINGTON	Contra t: 24000	B7
	-	VI Case No.: 24000		SDG No: : 100825
	:		Lab Sampl	
	Sample wt/vol:	: 15.1 (g/mL) G	-	
-		decanted: (Y/N)		
•		(SepF/Cont/Sonc) OTHER		
	Concentrated E	Ixtract Volume: 5(mL) Date Anal	yzed: 06/21/04
		ime: 1.0(uL)		Factor: 5.0
	GPC Cleanup:	(ч/м) и рн:	. Sulfur Cl	eanup: Y/N) Y
	CAS NO.	COMPOUND	CON ENTRATION U (ug, L or ug/Kg)	NITS: UG/KG Q
;-	11104-2 11141-1	1-2Aroclor-1016 28-2Aroclor-1221 5-5Aroclor-1232		100 U
	12672-2	9-6Aroclor-1242 9-6Aroclor-1248		100 U
	11096-8	9-1Aroclor-1254 2-5Aroclor-1260		100 U
	٠		l	
	-		• .	
		FORM I		
•	-	t OKH T	oly the constraints of the const	
	•			And drawners
			· ·	
		1 A A A A A A A A A A A A A A A A A A A	· · · ·	3. 1

ر فرم والمؤلف ، حدد .

Ĵ.

1

· : • : •

... يونية در ريچي مريد در م

	DEP EWS KING	STON Fax:8453407504	Jun 24, 104	14:53	P.03	
-	c	FORM 1 THER ORGANICS ANALYSIS	DATA S IBET	NYCE	ep sampli	E NO.
	Lab Name: STL	BURLINGTON	Contrast: 24000		B9	
•	-	T Case No.: 24000		SDG NG	- 100826	
	Matrix: (soil/		Lab Sampl		[
		15.0 (g/mL) G	_			2-R061
•		decanted: (Y/N)	·			
		(SepF/Cont/Sonc) OTHER		4		• •
:		Axtract Volume: 5			[:	
		ime: 1.0(uL)	•	_	1	
		(Y/N) N pH:		4	ţ.	
•	:		CON SENTRATION U			
	CAS NO.	COMPOUND	(ug L or ug/Kg)	UG/KG	Q	
		! 1-2Aroclor-1016			99 U	· .
	11141-3	8-2Aroclor-1221 6-5Aroclor-1232		-	99 U 99 U	
	12672-2	1-9Aroclor-1242 9-6Aroclor-1248		1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99 U 590	:
		9-1Aroclor-1254 2-5Aroclor-1260			99 U 99 U	
	ł]		l	
•						•
	:				· · ·	
	:					
•						
				-		
	.			-		
	t .					
•						
	• 2 -			-		
•		• • • • • • • • • • • • • • • • • • •		:		
	. <u>-</u>	* *				
		FORM I	OTHER			
:		1 2 •				
•.	: •	:		:		· · ·
		:		3	ł	
•.	• • • .	-				
•		· · · · · · · · · · · · · · · · · · ·	1688 - 47 4 1964 4 11 - 2			424 · · · · · · · · · · · · · · · · · ·

	DEF	P BUS KING	STON	Fax:845	3407504	<u></u> .	Jun 24	104 _ 14:	53	P.04	
		. (OTHER O	FC RGANICS A	NALYSIS	DATA S	IEET	N		P SAMPLE	NO.
	Lab Na	ame: STL	BURLIN	JTON		Contra :	st: 2400	כ	A R	D7	
			1	Case No.:		• •			NO	: 100826	I ´
		x: (soil)	•				Lab Sa		ų.		· · ·
	Sample	e wt/vol:	:	15 .0 (g	(/mL) G		Lab Fi	le ID:	31	JUN04115	2-R101
	* Moi	sture: 25	5	decanted	: (Y/N)	N	Date F	Received	: 06	/18/04	· · ·
			:	ont/Sonc)			Date H				
•		:		Volume:		mL)	Date A	nalyzed	: 06,	21/04	
		-		1.0(uL)				on Facto	4	•	
	GPC C	leanup:	(Y/N)	N	рН:	•		Cleanu		(/N) Y	
		CAS NO.		COMPOU	ND		ENTRATIC L or ug/			Q	
· · · · ·		11104-2 11141-1 53469-2	8-2 6-5 1-9	Aroclo Aroclo Aroclo	r-1221 r-1232 r-1242			·.•		2 U 2 U 2 U 2 U 2 U	• •• •• • • • • • • •
•		11097-6	9-1	Aroclo Aroclo Aroclo	r-1254	·			2	0 2 U 2 U	
		-					,		1	/ 	
							•		ļ		
•*		· ·								· · ·	·
		1									
_									1. 		
	,								لتجلك في		
		1									
											-
-		:			FORM I	OTHER			-		
									مذرسيته		
		•									· · ·
									فليدا ومعتكون		· _·
Š	•	· - · · ·	· · ·	• • • •			ž	•••	, jan		-4
•											

·

	DEP BUS KINGSTON Fax: 8453407504 Jun 24 '04 14:54	4	P.05	
	FORM 1 NYC OTHER ORGANICS ANALYSIS DATA 5 HEST	CDEP	SAMPLE	NO.
	Lab Name: STL BURLINGTON Contrast: 24000		D10	
•	Lab Code: STLVT Case No.: 24000 SAS No.: SDG 1	Ncj. :	100826	
÷	Matrix: (soil/water) SOIL Lab Sample ID:	576	121	· · · · ·
•	Sample wt/vol: 15.0 (g/mL) G Lab File ID:	ziл	N04115:	-ROB1
. ·	* Moisture: 25 decanted: (Y/N) N Date Received:	06/1	18/04	· ·
•	Extraction: (SepF/Cont/Sonc) OTHER Date Extracted:	- þs/	19/04	••••
÷.	Concentrated Extract Volume: 5(mL) Date Analyzed:	a6/2	21/04	
-	Injection Volume: 1.0 (uL) Dilution Factor	- 10);0	
	GPC Cleanup: (Y/N) N pH: Sulfur Cleanup:	KY/	'N) Y	
	CAS NO. COMPOUND CAS NO. COMPOUND (UG L OF UG/KG) UG/KG		Q	
	12674-11-2Aroclor-1016	220	U .	
	11104-28-2Aroclor-1221 11141-16-5Aroclor-1232		U	
•	53469-21-9Aroclor-1242 12672-29-6Aroclor-1248	1100	U	-
	11097-69-1Aroclor-1254 11096-82-5Aroclor-1260		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
-			.	
				•
				-
÷				
				:
-		and a state		
		i i	-	• *
•		Constantion of the local distance of the loc		
:		den la maio		
	FORM I OTHER			. ·
•				
		-		
		(en trees		
		in allow	· · · · · · · · · · · · · · · · · · ·	
		131 -		

69496967.091

9 * d

-

	DEF	BUS KI	NGSTO	Ν	Fax	8453	407504			Jun 24	.'04	14:54	, ·	F.06			
			фтн	IER O	RGANIC	Poi Is ai	rm 1 Nalys:	is da	TA : H	IEET		NYC	BP	SAMI	PLE	NO.	
•	Lab Na	ame: S	п. во	RLIN	FION		•	Co	mtric	: t : 2400	0			E8			··· ··
· ·	Lab Co	ode: S7	LVT	(Case N	ю.:	2400¢) 5	AS 1 c			SDG N		1008	26		
- :	Matrix	ແ: (ອວງ	il/wa	ter)	SOIL			_		Lab S	ample	≥ ID: 5	761	17			
	Sample	e wt/va	51		15.0) (g/	(mL) (3		Lab F	ile i	D: 2	1.JU	N041	152	-R041	_
	¥ Mois	sture:	24		decan	ted:	(Y/E	N). N		Date 1	Recei	ived:	5/1	8 /04		•	•
	Extrac	tion:	(Sej	pF/Co	ont/So	nic)	OTHES	د		Date	Ext.ra	cted:	þ6/	19/0	4		
	Concer	trated	I Ext:	ract	Volum	e:		5 (mL)	Date 1	Analy	zed: 0	6/ 2	1/04			
	Inject	ion Vo	lume	:	1.0(uL}				Dilut:	ion F	actors	10	.0			
	GPC CI	leanup:	: (Y/N)	N		pH:_	<u> </u>		Sulfu	r Cle	anup:	Y/1	Y (1			
		CAS N	ю.		СОМ	POUN	Ð		CON :	ENTRATI(L or ug,	DN UN	ITS:		~			
•	1			—							/ Kg /		1 1	Q	<u> </u>		
		12674	- <u>1</u> 1	2	Aro	clor	-1016	·	<u></u>	<u></u>		ومىغ سادى الد.	20			7	
)-2Ľ-:	9	Aro	clor	-1242						20	U			
		12672	29-6	6	Aro	clor	-1248						00				
-		11096	-82-9	5	Aro	clor	-1260						20 220	-			
	•										~~~~~				1		
			:							•							
•		:															
•		:															
													1				
•		:														•	
													÷.				
<u>.</u>		-															
		÷	1														
	• •		-														
		:					FORM	IOT	HER								
		;	-														
			:														
								-								•	· .
.E										te ges a set into		-		. . •		 بې د م	¥.
1		· (· 1.		***	4. -1	- *		•••		•						

7 • d

	. (OTHER C	F RGANICS	orm 1 Analysis	S DATA :	HEET		NYC) IDEP 1	SAMPL	e no.
Tab W	*				• •					'E12	[
	•		GTON		<u>.</u>						
•	x: (soil)	1	Case No.	: 24000	,			•	a l	•	5
	1.	i	15.0 (s			Lab S					
			decante								52-R071
			ont/Sonc)						· ·		
			Volume:								
		•	1.0(uL)						3.		
	-		N						3		
	:				CON	ENTRATIC	ON UNI	TS:	й 1		
-	CAS :NO.	: 	COMPOU	ND	(ug,	L or ug/	(Kg) Ü	G/KG		Q	
	12674-1	1-2	Aroclo	pr-1016	<u> </u>				99	υ	
	11141-1	.Б-5	Arocle	r-1232					99	1	
	12672-2	9-6	Aroclo	-1248			1		. 99 520	U	
	11097-6	9-1	Arocic	r-1254						0	·] ·
										1 77	1
•	· <u></u>	1			· · · · · · · · · · · · · · · · · · ·				99	U	
	· · · · · · · · · · · · · · · · · · ·									U	
										U	
										U	
										u .	
								.			
·											
· · ·					CTHER						
· ·					CTHER						
· ·					CTHER						
					COTHER						

69796967091

SNOSAR9

NORTH AREA

Date: 09/23/2004 Time: 13:43:15

٤.

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date	:	N2-092004-B1 A04-9054 09/20/2004	A4905402	N2-092004-B10 A04-9054 09/20/2004	A4905414	N2-092004-B11 A04-9054 09/20/2004	A4905415	N2-092004-B12 A04-9054 09/20/2004	A4905416
Analyte	Units	Sample. Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	32	ND	28	ND	26	ND	38
Benzene	UG/KG	ND	6	ND	6	ND	5	ND	8
Bromodichloromethane	UG/KG	ND	6	ND	6] ND	5	ND	8
Bromoform	UG/KG	ND	6	ND ND	6	ND	5	ND	8
Bromomethane	UG/KG	ND	6	ND	6	ND	5	ND	8
2-Butanone	UG/KG	ND	32	ND	28	ND	26	ND	38
Carbon Disulfide	UG/KG	ND	6	ND	6	ND	5	ND	8
Carbon Tetrachloride	UG/KG	ND	6	ND	6	ND	5	ND	8
Chlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	8
Chloroethane	UG/KG	ND	6	ND	6	ND	5	ND	8
Chloroform	UG/KG	ND	6	ND	6	ND	5	ND	8
Chloromethane	UG/KG	ND	6	ND	6	ND	5	ND	8
Cyclohexane	UG/KG	ND	6	ND	6	ND	5	ND	8
,2-Dibromoethane	UG/KG	ND	6	ND	6	ND	5	ND	8
bromochloromethane	UG/KG	ND	6	ND	6	ND	5	ND	8
,2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	6	ND	5	ND	8
.2-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	8
i,3-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	8
.4-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	8
)ichlorodifluoromethane	UG/KG	ND	6	ND	6	ND	5	ND	8
1.1-Dîchloroethane	UG/KG	ND	6	ND	6	ND	5	ND	8
2-Dichloroethane	UG/KG	ND	6	ND	6	ND	5	ND	8
1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	5	ND	8
sis-1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	5	ND	8
	UG/KG	ND	6	ND	6	ND	5	ND	8
rans-1,2-Dichloroethene			8 6		-		5		-
2-Dichloropropane	UG/KG	ND	-	ND	6	ND	5	ND	8
is-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND	5	ND	-
rans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND	5	ND	8
thylbenzene	UG/KG	ND	6	ND	6	ND	-	ND	8
-Hexanone	UG/KG	ND	32	ND	28	ND	26	ND	38
sopropylbenzene	UG/KG	ND	6	ND	6	ND	5	ND	8
lethyl acetate	UG/KG	ND	6	ND	6	ND	5	ND	8
ethylcyclohexane	UG/KG	ND 7	6	ND 7	6	ND	5	ND	8
ethylene chloride	UG/KG		6	•	6	8	5	ND	8
-Methyl-2-pentanone	UG/KG	ND	32	ND	28	ND	26	ND	38
ethyl tert butyl ether	UG/KG	ND	6	ND	6	ND	5	ND	8
tyrene	UG/KG	ND	6	ND	6	ND	5	ND	8
,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	ND	5	ND	8
etrachloroethene	UG/KG	ND	6	ND	6	ND	5	ND	8
oluene	UG/KG	ND	6	ND	6	ND	5	ND	8
,2,4-Trichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	8
,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	5	ND	8
,1,2-Trichloroethane	UG/KG	ND	6	ND	6	ND	5	ND	8

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RK Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: ANO326

Client ID Job No Lab ID Sample Date		N2-092004-B1 A04-9054 09/20/2004	A4905402	N2-092004-B10 A04-9054 09/20/2004	A4905414	N2-092004-B11 A04-9054 09/20/2004	A4905415	N2-092004-B12 A04-9054 09/20/2004	A4905416
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	6 6 32 13 19	ND ND ND ND ND ND	6 6 28 11 17	ND ND ND ND ND ND ND	5 5 26 10 16	ND ND ND ND ND ND	8 8 38 15 22
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	* * * *	102 104 79 94 85 93	50-200 50-200 50-200 71-125 68-124 61-136	83 82 61 96 84 100	50-200 50-200 50-200 71-125 68-124 61-136	74 73 53 94 82 98	50-200 50-200 50-200 71-125 68-124 61-136	78 79 51 96 78 103	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N2-092004-B2 A04-9054 09/20/2004	A4905401	N2-092004-B3 A04-9054 09/20/2004	A4905404	N2-092004-B4 A04-9054 09/20/2004	A4905405	N2-092004-B5 A04-9054 09/20/2004	A4905406
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	30	ND	36	ND	26	ND	28
Benzene	UG/KG	ND	6	ND	7	ND	5	ND	6
romodichloromethane	UG/KG	ND	6	ND	7	ND	5	ND	6
Bromoform	UG/KG	ND	6	ND	7	ND	5	ND	6
Bromomethane	UG/KG	ND	6	ND	7	ND	5	ND	6
2-Butanone	UG/KG	ND	30	ND	36	ND	26	ND	28
Carbon Disulfide	UG/KG	ND	6	ND	7	ND	5	ND	6
Carbon Tetrachloride	UG/KG	ND	6	ND	7	ND	5	ND	6
Chlorobenzene	UG/KG	ND	6	ND	7	ND	5	ND	6
Chloroethane	UG/KG	ND	6	ND	7	ND	5	ND	6
Chloroform	UG/KG	ND	6	ND	7	ND	5	ND	6
Chloromethane	UG/KG	ND	6	ND	7	ND	5	ND	6
Cyclohexane	UG/KG	ND	6	ND	7	ND	5	ND	6
,2-Dibromoethane	UG/KG	. ND	6	ND	7	ND	5	ND	6
ibromochloromethane	UG/KG	ND	6	ND	7	ND	5	ND	6
.2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	7	ND	5	ND	6
2-Dichlorobenzene	UG/KG	ND	6	ND	7	ND	5	ND	6
.3-Dichlorobenzene	UG/KG	ND	6	ND	7	ND	5	ND	6
1.4-Dichlorobenzene	UG/KG	ND	6	ND	7	ND	5	ND	6
ichlorodifluoromethane	UG/KG	ND	6	ND	7	ND	5	ND	6
,1-Dichloroethane	UG/KG	ND	6	ND	7	ND	5	ND	6
2-Dichloroethane	UG/KG	ND	6	ND	7	ND	5	ND	6
.1-Dichloroethene	UG/KG	ND	6	ND	7	ND	5	ND	6
sis-1,2-Dichloroethene	UG/KG	ND	6	ND	7	ND	5	ND	6
trans-1,2-Dichloroethene	UG/KG	ND	6	ND	7	ND	5	ND	6
.2-Dichloropropane	UG/KG	ND	6	ND	7	ND	5	ND	6
sis-1,3-Dichloropropene	UG/KG	ND	6	ND	7	ND	5	ND	6
rans-1,3-Dichloropropene	UG/KG	ND	6	ND	7	ND	5	ND	6
thylbenzene	UG/KG	ND	6	ND	7	ND	5	ND	6
-Hexanone	UG/KG	ND	30	ND	36	ND	26	ND	28
	UG/KG	ND	50	ND	7	ND	20 5	ND	20
sopropylbenzene		ND	6	ND	7	ND	5	ND	-
ethyl acetate	UG/KG	ND	6	ND	7		5		6
ethylcyclohexane	UG/KG	8	6	ND	7	ND 7	5	ND	6
ethylene chloride	UG/KG	_			•	,		6	
-Methyl-2-pentanone	UG/KG	ND	30	ND	36	ND	26	ND	28
ethyl tert butyl ether	UG/KG	ND	6	ND	7	ND	5	ND	6
tyrene	UG/KG	ND	6	ND	7	ND	5	ND	6
,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	7	ND	5	ND	6
etrachloroethene	UG/KG	ND	6	ND	7	ND	5	ND	6
oluene	UG/KG	ND	6	ND	7	ND	5	ND	6
,2,4-Trichlorobenzene	UG/KG	ND	6	ND	7	ND	5	ND	6
,1,1-Trichloroethane	UG/KG	ND	6	ND	7	ND	5	ND	6
1,1,2-Trichloroethane	UG/KG	ND I	6	ND	7	ND	5	Í ND	6

NA = Not Applicable ND = Not Detected

Earth Tech - RK Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N2-092004-B2 A04-9054 09/20/2004	A4905401	N2-092004-B3 A04-9054 09/20/2004	A4905404	N2-092004-B4 A04-9054 09/20/2004	A4905405	N2-092004-85 A04-9054 09/20/2004	A4905406
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Valu e	Reporting Limit	Sample Value	Reporting Limit
Vinyl acetate	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	6 6 30 12 18	ND ND ND ND ND ND	7 7 36 14 22	ND ND ND ND ND ND	5 5 26 10 16	ND ND ND ND ND ND	6 6 28 11 17
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	***	105 106 81 96 86 95	50-200 50-200 50-200 71-125 68-124 61-136	92 96 69 98 86 101	50-200 50-200 50-200 71-125 68-124 61-136	95 97 72 98 85 95	50-200 50-200 50-200 71-125 68-124 61-136	94 96 70 94 83 93	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

3

Rept: AN0326

Client ID Job No Lab ID Sample Date		N2-092004-B6 A04-9054 09/20/2004	A4905408	N2~092004-87 A04-9054 09/20/2004	A4905411	N2-092004-88 A04-9054 09/20/2004	A4905412	N2-092004-B9 A04-9054 09/20/2004	A4905413
Analyte	Units	Sample Value	Reporting Lîmit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	28	NÐ	30	ND	27	ND	26
Benzene	UG/KG	ND	6	ND	6	ND	5	ND	5
Bromodichloromethane	UG/KG	ND	6	ND	6	ND	5	ND	5
Bromoform	UG/KG	ND	6	ND	6	ND	5	ND	5
Bromomethane	UG/KG	ND	6	ND	6	ND	5	ND	5
2-Butanone	UG/KG	ND	28	ND	30	ND	27	ND	26
Carbon Disulfide	UG/KG	ND	6	ND	6	ND	5	ND	5
Carbon Tetrachloride	UG/KG	ND	6	ND	6	ND	5	ND	5
Chlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	5
Chloroethane	UG/KG	ND	6	ND	6	ND	5	ND	5
Chloroform	UG/KG	ND	6	ND	6	ND	5	ND	5
Chloromethane	UG/KG	ND	6	ND	6	ND	5	ND	5
Cvclohexane	UG/KG	ND	6	ND	6	ND	5	ND	5
1,2-Dibromoethane	UG/KG	ND	6	ND	6	ND	5	ND	5
Dibromochloromethane	UG/KG	ND	6	ND	6	ND	5	ND	5
1,2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	6	ND	5	ND	5
1.2-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	5
1,3-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	5
1.4-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	5
Dichlorodifluoromethane	UG/KG	ND	6	ND	6	ND	5	ND	5
1.1-Dichloroethane	UG/KG	ND	6	ND	6	ND	5	ND	5
	UG/KG	ND	6	ND	6	ND	5	ND	5
1,2-Dichloroethane	UG/KG	ND	6	ND	6	ND	5	ND	5
1,1-Dichloroethene	UG/KG	ND	6	ND	6	ND	5	ND	5
cis-1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	5	ND	5
trans-1,2-Dichloroethene				ND	6	ND	5	ND	5
1,2-Dichloropropane	UG/KG	ND	6			ND	5	ND	5
cis-1,3-Dichloropropene	UG/KG	ND	6	ND ND	6	ND ND	2 5	ND	5
trans-1.3-Dichloropropene	UG/KG	ND	6		6		5		5
Ethylbenzene	UG/KG	ND	6	ND	6 30	ND	27	ND	26
2-Hexanone	UG/KG	ND	28	ND		ND		ND	20
Isopropylbenzene	UG/KG	ND	6	ND	6	ND	5	ND	
ethyl acetate	UG/KG	ND	6	ND	6	ND	5	ND	5
ethylcyclohexane	UG/KG	ND	6	ND .	6	ND 7	5	ND 7	5
lethylene chloride	UG/KG	6	6	5 J	6	4	5	• •	5
-Methyl-2-pentanone	UG/KG	ND	28	ND	30	ND	27	ND	26
ethyl tert butyl ether	UG/KG	ND	6	ND	6	ND	5	ND	5
styrene	UG/KG	ND	6	ND	6	ND	5	ND	5
1,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	ND	5	ND	5
Tetrachloroethene	UG/KG	ND	6	ND	6	ND	5	ND	5
foluene	UG/KG	ND	6	ND	6	ND	5	ND	5
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	6	ND	5	ND	5
1,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	5	ND	5
1,1,2-Trichloroethane	UG/KG	ND	6	ND	6	ND	5	ND	5

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N2-092004-B6 A04-9054 09/20/2004	A4905408	N2-092004-87 A04-9054 09/20/2004	A4905411	N2-092004-88 A04-9054 09/20/2004	A4905412	N2-092004-89 A04-9054 09/20/2004	A4905413
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	6 6 28 11 17	ND ND ND ND ND ND	6 6 30 12 18	ND ND ND ND ND ND	5 5 27 11 16	ND ND ND ND ND ND	5 5 26 10 16
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Foluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % %	93 93 71 95 84 95	50-200 50-200 50-200 71-125 68-124 61-136	87 88 60 93 79 99	50-200 50-200 50-200 71-125 68-124 61-136	88 86 67 94 84 99	50-200 50-200 50-200 71-125 68-124 61-136	83 81 60 91 79 98	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

12.66.15

Rept: AN0326

Client ID Job No Lab ID Sample Date		N2-092004-D1 A04-9054 09/20/2004	A4905420	N2-092004-W1 A04-9054 09/20/2004	A4905403	N2-092004-W2 A04-9054 09/20/2004	A4905409	N2-092004-W3 A04-9054 09/20/2004	A4905410
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
lcetone	UG/KG	ND .	34	ND	32	ND	32	ND	32
lenzene	UG/KG	ND	7	ND	6	ND	6	ND	6
Fromodichloromethane	UG/KG	ND	7	ND	6	ND	6	ND	6
tromoform	UG/KG	ND	7	ND	6	ND	6	ND	6
romomethane	UG/KG	ND	7	ND	6	ND	6	ND	6
2-Butanone	UG/KG	ND	34	ND ·	32	ND	32	ND	32
arbon Disulfide	UG/KG	ND	7	ND	6	ND	6	ND	6
Carbon Tetrachloride	UG/KG	ND	7	ND	6	ND	6	ND	6
chlorobenzene		ND	7	ND	6	ND	6	ND	6
chloroethane	UG/KG	ND	7	ND	6	ND	6	ND	6
chloroform	UG/KG	ND	7	ND	6	ND	6	ND	6
chloromethane	UG/KG	ND	7	ND	6	ND	6	ND	6
Syclohexane	UG/KG	ND	7	ND	6	ND	6	ND	6
.2-Dibromoethane	UG/KG	ND	7	ND	6	ND	6	ND	6
)ibromochloromethane	UG/KG	ND	7	ND	6	ND	6	ND	6
.2-Dibromo-3-chloropropane	UG/KG	ND	7	ND	6	ND	6	ND	6
,2-Dichlorobenzene	UG/KG	ND	7	ND	6	ND	6	ND	6
Z-Dichlorobenzene	UG/KG	ND	7	ND	6	ND	6	ND	6
,3-Dichlorobenzene		ND	7	ND	6	ND	6	ND	6
,4-Dichlorobenzene	UG/KG				-		-		-
ichlorodifluoromethane	UG/KG	ND	7	ND	6	ND	6	ND	6
,1-Dichloroethane	UG/KG	ND	7	ND	6	ND	6	ND	6
,2-Dichloroethane	UG/KG	ND	7	ND	6	ND	6	ND	6
,1-Dichloroethene	UG/KG	ND	7	ND	6	ND	6	ND	6
is-1,2-Dichloroethene	UG/KG	ND	7	ND	6	ND	6	ND	6
rans-1,2-Dichloroethene	UG/KG	ND	7	ND	6	ND	6	ND	6
,2-Dichloropropane	UG/KG	ND	7	ND	6	ND	6	ND	6
is-1,3-Dichloropropene	UG/KG	ND	7	ND	6	ND	6	ND	6
rans-1,3-Dichloropropene	UG/KG	NĎ	7	ND	6	ND	6	ND	6
thylbenzene	UG/KG	ND	7	ND	6	ND	6	ND	6
-Hexanone	UG/KG	ND	34	ND	32	ND	32	ND	32
sopropylbenzene	UG/KG	ND	7	ND	6	ND	6	ND	6
lethyl acetate	UG/KG	ND	7	ND	6	ND	6	ND	6
lethylcyclohexane	UG/KG	ND	7	ND	6	ND	6	ND	6
lethylene chloride	UG/KG	8 B	7	6	6	9	6	ND	6
-Methyl-2-pentanone	UG/KG	ND	34	ND	32	ND	32	ND	32
ethyl tert butyl ether	UG/KG	ND	7	ND	6	ND	6	ND	6
tyrene	UG/KG	ND	7	ND	6	ND	6	ND	6
,1,2,2-Tetrachioroethane	UG/KG	ND	7	ND	6	ND	6	ND	6
etrachloroethene	UG/KG	ND	7	ND	6	ND	6	ND	6
oluene	UG/KG	ND	7	ND	6	ND	6	ND	6
,2,4-Trichlorobenzene	UG/KG	ND	7	ND	6	ND	6	ND	6
,1,1-Trichloroethane	UG/KG	ND	7	ND	6	ND	6	ND	6
1 2-Trichlereethane	UG/KG	ND	7	ND	6	ND	6	ND	6
,1,2-Trichloroethane	100760	NU	f f	טוי	D D	NU	U		0

NA = Not Applicable ND = Not Detected

Sec. 1. 182.25

STL Buffalo

300

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N2-092004-D1 A04-9054 09/20/2004	A4905420	N2-092004-W1 A04-9054 09/20/2004	A4905403	N2-092004-W2 A04-9054 09/20/2004	A4905409	N2-092004-W3 A04-9054 09/20/2004	A4905410
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	7 7 34 13 20	ND ND ND ND ND ND	6 6 32 13 19	ND ND ND ND ND ND	6 6 32 13 19	ND ND ND ND ND ND	6 6 32 13 19
	% % % %	81 84 57 97 81 106	50-200 50-200 50-200 71-125 68-124 61-136	99 100 74 96 84 97	50-200 50-200 50-200 71-125 68-124 61-136	87 90 64 97 84 93	50-200 50-200 50-200 71-125 68-124 61-136	90 90 66 93 83 100	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE DRGANICS

Rept: AN0326

¢

Client ID Job No Lab ID Sample Date		N2-092004-W4 A04-9054 09/20/2004	A4905417	N2-092004-W5 A04-9054 09/20/2004	A4905418	N2-092004-W6 A04-9054 09/20/2004	A4905419	1	
Analyte	Unīts	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
leetone	UG/KG	ND	27	ND	35	ND	30	NA	
Benzene	UG/KG	ND	5	ND	7	ND	6	NA	
Bromodichloromethane	UG/KG	ND	5	ND	7	ND	6	NA	
romoform	UG/KG	ND	5	ND	7	ND	6	NA	
romomethane	UG/KG	ND	5	ND	7	ND	6	NA	
2-Butanone	UG/KG	ND	27	ND	35	ND	30	NA	
Carbon Disulfide	UG/KG	ND	5	ND	7	ND	6	NA	
Carbon Tetrachloride	UG/KG	ND	5	ND	7	ND	6	NA	ŀ
chlorobenzene	UG/KG	ND	5	ND	7	ND	6	NA	
Chloroethane	UG/KG	ND	5	ND	7	ND	6	NA	1
chloroform	UG/KG	ND	5	ND	7	ND	6	NA	1
Chloromethane	UG/KG	ND	5	ND	7	ND	6	NA	
Ivelohexane	UG/KG	ND	5	ND	7	ND	6	NA	1
.yctonexane	UG/KG	ND	5	ND	7	ND	6	NA	
)jbromochloromethane	UG/KG	ND	5	ND	7	ND	6	NA	
1,2-Dibromo-3-chloropropane	UG/KG	ND	5	ND	7	ND	6	NA	
1.2-Dichlorobenzene	UG/KG	ND	5	ND	7	ND	6	NA	
	UG/KG	ND	5	ND	7	ND	6	NA	
1,3-Dichlorobenzene	UG/KG	ND	5	ND	7	ND	6	NA	
1,4-Dichlorobenzene		ND	5	ND	7	ND	6	NA	
ichlorodifluoromethane	UG/KG		5		7	ND	6	NA	
1,1-Dichloroethane	UG/KG	ND		ND	7				
,2-DichLoroethane	UG/KG	ND	5	ND		ND	6	NA	
,1-Dichloroethene	UG/KG	ND	5	ND	7	ND	6	NA	
is-1,2-Dichloroethene	UG/KG	ND	5	ND	7	ND	6	NA	
trans-1,2-Dichloroethene	UG/KG	ND	5	ND	7	ND	6	NA	
,2-Dichloropropane	UG/KG	ND	5	ND	7	ND	6	NA	
is-1,3-Dichloropropene	UG/KG	ND	5	ND	7	ND	6	NA	
rans-1,3-Dichloropropene	UG/KG	ND	5	ND	7	ND	6	NA]
thylbenzene	UG/KG	ND	5	ND	7	ND	6	NA	1
-Hexanone	UG/KG	ND	27	ND	35	ND	30	NA	
(sopropylbenzene	UG/KG	ND	5	ND	7	ND	6	NA	1
lethyl acetate	UG/KG	ND	5	ND	7	ND	6	NA]
lethylcyclohexane	UG/KG	ND	5	ND	7	ND	6	NA	
lethylene chloride	UG/KG	7	5	6 J	7	5 J	6	NA	
-Methyl-2-pentanone	UG/KG	ND	27	ND	35	ND	30	NA	
lethyi tert butyi ether	UG/KG	ND	5	ND	7	ND	6	NA	
ityrene	UG/KG	ND	5	ND	7	ND	6	NA	
1,2,2-Tetrachloroethane	UG/KG	ND	5	ND	7	ND	6	NA	
etrachloroethene	UG/KG	ND	5	ND	7	ND	6	NA	
oluene	UG/KG	ND	5	ND	7	ND	6	NA	
,2,4-Trichlorobenzene	UG/KG	ND	5	ND	7	ND	6	NA	
.1.1-Trichloroethane	UG/KG	ND	5	ND	7	ND	6	NA	1
1,2-Trichloroethane	UG/KG	ND	5	ND	7	ND	6	NA	1

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

				1.1.1				•.	
Client ID Job No Lab ID Sample Date		N2-092004-W4 A04-9054 09/20/2004	A4905417	N2-092004-W5 A04-9054 09/20/2004	A4905418	N2-092004-W6 A04-9054 09/20/2004	A4905419		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	NÐ ND ND ND ND ND	5 5 27 11 16	ND ND ND ND ND ND	7 7 35 14 21	ND ND ND ND ND ND	6 6 30 12 18	NA NA NA NA NA NA	
	30 X X X X	79 78 60 93 83 95	50-200 50-200 50-200 71-125 68-124 61-136	78 77 57 95 83 100	50-200 50-200 50-200 71-125 68-124 61-136	77 77 57 92 83 97	50-200 50-200 50-200 71-125 68-124 61-136	NA NA NA NA NA NA	

NA = Not Applicable ND = Not Detected

÷.

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		TRIP BLANK A04-9054 09/20/2004	A4905421			-			
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	25	NA		NA		NA	1
Benzene	UG/L	ND	5.0	NA		NA		NA	
Bromodichloromethane	UG/L	ND	5.0	NA		NA		NA	
Bromoform	UG/L	ND	5.0	NA		NA		NA	
Bromomethane	UG/L	ND	5.0	NA		NA		NA	
2-Butanone	UG/L	NÐ	25	NA		NA		NA	
Carbon Disulfide	UG/L	ND	5.0	NA		NA		NA	
Carbon Tetrachloride	UG/L	ND	5.0	NA		NA		NA	
Chlorobenzene	UG/L	ND	5.0	NA		NA	1	NA	
Chloroethane	UG/L	ND	5.0	NA		NA	1	NA	
Chloroform	UG/L	ND	5.0	NA		NA		NA	
hloromethane	UG/L	ND	5.0	NA		NA		NA	
Syclohexane	UG/L	ND	5.0	NA		NA		NA	
.2-Dibromoethane	UG/L	ND	5.0	NA		NA		NA	
ibromochloromethane	UG/L	ND	5,0	NA		NA		NA	
,2-Dibromo-3-chloropropane	UG/L	ND	5.0	NA		NA		NA	
,2-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
,3-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
.4-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
ichlorodifluoromethane	UG/L	ND	5.0	NA		NA		NA	
,1-Dichloroethane	UG/L	ND	5.0	NA		NA		NA	
,2-Dichloroethane		ND	5.0	NA		NA			
,1-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	
is-1,2-Dichloroethene	UG/L	ND	5.0					NA	
rans-1,2-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	
			5.0	NA		NA		NA	
,2-Dichloropropane	UG/L	ND		NA		NA		NA	
is-1,3-Dichloropropene	UG/L	ND	5.0	NA		NA		NA	
rans-1,3-Dichloropropene	UG/L	ND	5.0	NA		NA	1	NA	1
thylbenzene	UG/L	ND	5.0	NA		NA		NA	
-Hexanone	UG/L	ND	25	NA		NA		NA	
sopropylbenzene	UG/L	ND	5.0	NA		NA		NA	
ethyl acetate	UG/L	ND	5.0	NA		NA		NA	
ethylcyclonexane	UG/L	ND	5.0	NA	-	NA		NA	1
ethylene chloride	UG/L	ND	5.0	NA		NA		NA	1
-Methyl-2-pentanone	UG/L	ND	25	NA		NA		NA	
ethyl tert butyl ether	UG/L	ND	5.0	NA		NA		NA	
tyrene	UG/L	ND	5.0	NA		NA		NA	
,1,2,2-Tetrachloroethane	UG/L	ND	5.0	NA		NA	 	NA	
etrachloroethene	UG/L	ND	5.0	NA		NA		NA	
pluene	UG/L	ND	5.0	NA	1	NA		NA	
,2,4-Trichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
1,1-Trichloroethane	UG/L	ND	5.0	NA		NA		NA	
1.2-Trichloroethane	UG/L	ND	5.0	NA	1	NA		NA	•

NA = Not Applicable ND = Not Detected

STL Buffalo

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

:											
Client ID Job No Lab ID Sample Date	Job No Lab ID		A4905421								
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit		
Trichloroethene Vinyl acetate Vinyl chloride	UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND	5.0 5.0 5.0 25 5.0 15	NA NA NA NA NA		NA NA NA NA NA NA		NA NA NA NA NA			
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	***	98 101 78 96 86 92	50-200 50-200 50-200 77-122 74-120 73-136	NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA NA			

ND = Not Detected

STL Buffalo

Rept: AN0326

NORTH AREA

Date: 09/24/2004 Time: 14:20:54

¢

:

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N1-092104-81 A04-9123 09/21/2004	A4912301	N1-092104-B2 A04-9123 09/21/2004	A4912302	N1-092104-B3 A04-9123 09/21/2004	A4912303	N1-092104-B4 A04-9123 09/21/2004	A4912304
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	30	ND	29	ND	30	ND	30
Benzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromodichloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromoform	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromomethane	UG/KG	ND	6	ND	6	ND	6	ND	6
2-Butanone	UG/KG	ND	30	ND	29	ND	30	ND	30
Carbon Disulfide	UG/KG	ND	6	ND	6	ND	6	ND	6
Carbon Tetrachloride	UG/KG	ND	6	ND	6	ND	6	ND	6
Chlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloroform	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Cyclohexane	UG/KG	ND	6	ND	6	ND	6	ND	6
	UG/KG	ND	6	ND	6	ND	6	ND	6
1,2-Dibromoethane	UG/KG	ND	6	ND	6	ND	6	ND	6
)ibromochloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,2-Dibromo-3-chloropropane		ND	6	ND	6	ND	6	ND	6
1,2-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
1,3-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
1,4-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Dichlorodifluoromethane	UG/KG		6	ND	6	ND	6	ND	6
1,1-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	ő
1,2-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
cis-1,2-Dichloroethene	UG/KG	ND	-		6	ND	6	ND	6
trans-1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
1,2-Dichloropropane	UG/KG	ND	6	ND	6		6	ND	. 6
cis-1,3-Dichloropropene	UG/KG	ND	6	ND	-	ND	6	ND	6
trans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND	6	ND	6
Ethylbenzene	UG/KG	ND	6	ND	6	ND	30	ND	30
2-Hexanone	UÇ/KG	ND	30	ND	29	ND		ND	
Isopropylbenzene	UĞ/KG	ND	6	ND	6	ND	6	ND	6
Methyl acetate	UG/KG	ND	6	ND	6	ND	6		
Methylcyclohexane	UG/KG	ND	6	ND	6	ND	6	ND	6
Methylene chloride	UG/KG	10 B	6	10 B	6	10 B	6	9 B	6
4-Methyl-2-pentanone	UG/KG	ND	30	ND	29	ND	30	ND	30
Methyl tert butyl ether	UG/KG	ND	6	ND	6	ND	6	ND	6
Styrene	UG/KG	ND	6	ND .	6	ND	6	ND	6
1,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Tetrachloroethene	UG/KG	ND	- 6	ND	6	ND	6	ND	6
Toluene	UG/KG	ND	6	ND	6	ND	6	ND	6
1,2,4-Trichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1,2-Trichloroethane	UG/KG	ND	6	ND	6	סא	6	ND	6

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

11

N1-092104-B4 N1-092104-B2 N1-092104-B3 Cljent ID N1-092104-B1 A4912303 A04-9123 A4912304 Lab ID A04-9123 A4912301 A04-9123 A4912302 A04-9123 Job No 09/21/2004 09/21/2004 09/21/2004 09/21/2004 Sample Date Reporting Reporting Sample Reporting Sample Sample Reporting Sample Value Limit Value Limit Value Limit Units Value Limit Analyte 6 ND 6 ND 6 ND 1,1,2-Trichloro-1,2,2-trifluor UG/KG ND 6 NÐ 6 ND Trichlorofluoromethane UG/KG ND 6 6 ND 6 ND 6 Trichloroethene UG/KG ND 6 ND 6 NÐ 6 ND 30 ND 30 ND 29 ND 30 Vinyl acetate UG/KG 12 12 ND 12 12 ND NÐ UG/KG ND Vinyl chloride 18 18 17 ND UG/KG ND 18 ND ND Total Xylenes -IS/SURROGATE(S)-105 50-200 *** 113 50-200 111 50-200 107 50-200 Chlorobenzene-D5 50-200 114 50-200 111 50-200 109 50-200 119 1,4-Difluorobenzene 95 95 87 90 83 50-200 79 50-200 50-200 50-200 1,4-Dichlorobenzene-D4 93 87 95 95 71-125 71-125 71-125 71-125 Toluene-D8 85 87 68-124 68-124 68-124 p-Bromofluorobenzene 68-124 96 104 61-136 94 100 61-136 61-136 1.2-Dichloroethane-D4 61-136

NA = Not Applicable ND = Not Detected

STL Buffalo

Rept: AN0326

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

1.18.2

Client ID Job No Lab ID Sample Date		N1-092104-85 A04-9123 09/21/2004	A4912305	N1-092104-86 A04-9123 09/21/2004	A4912306	N1-092104-87 A04-9123 09/21/2004	A4912307	N1-092104-88 A04-9123 09/21/2004	A4912308
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
cetone	UG/KG	ND	28	ND	27	ND	32	ND	35
lenzene	UG/KG	ND	6	ND	5	ND	6	ND	7
lromodichloromethane	UG/KG	ND	6	ND	5	ND	6	ND	7
romoform	UG/KG	ND	6	ND	5	ND	6	ND	7
romomethane	UG/KG	ND	6	ND	5	ND	6	ND	7
-Butanone	UG/KG	ND	28	ND	27	ND	32	ND	35
arbon Disulfide	UG/KG	ND	6	ND	5	ND	6	ND	7
arbon Tetrachloride	UG/KG	ND	6	ND	5	ND	6	ND	7
hlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	7
hloroethane	UG/KG	ND	6	ND	5	ND	6	ND	7
chloroform	UG/KG	ND	6	ND	5	ND	6	ND	7
hloromethane	UG/KG	ND	6	ND	-5	ND	6	ND	7
vclohexane	UG/KG	ND	6	ND	5	ND	6	ND	7
,2-Dibromoethane	UG/KG	ND	6	ND	5	ND	6	ND	7
ibromochloromethane	UG/KG	ND	6	ND	5	ND	6	ND	7
.2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	5	ND	6	ND	7
,2-Dichlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	7
.3-Dichlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	7
.4-Dichlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	7
ichlorodifluoromethane	UG/KG	ND	6	ND	5	ND	6	ND	7
.1-Dichloroethane	UG/KG	ND	6	ND	5	ND	6	ND	ż
, 2-Dichloroethane	UG/KG	ND	6	ND	5	ND	6	ND	7
,1-Dichloroethene	UG/KG	ND .	6	ND	5	ND	6	ND	7
is-1,2-Dichloroethene	UG/KG	ND	6	ND	5	ND	6	ND	7
	UG/KG	ND	6	ND	5	ND	6	ND	7
rans-1,2-Dichloroethene	UG/KG	ND	6	ND	5	ND	6	ND	7
,2-Dichloropropane		ND	6	ND	5	ND	6	ND	7
is-1,3-Dichloropropene	UG/KG	ND	6	ND	5	ND	6	ND	7
rans-1,3-Dichloropropene	UG/KG		-		5	ND	6	ND	7
thylbenzene	UG/KG	ND	6	ND	27	ND	32	ND	35
Hexanone	UG/KG	ND	28	ND	5	ND	52	ND	7
sopropylbenzene	UG/KG	ND	6	ND	5	ND	6	ND	7
ethyl acetate	UG/KG	ND	6	ND	5	ND	6	ND	7
ethylcyclohexane	UG/KG	ND	6	ND					7
ethylene chioride	UG/KG	8 B	6	9 B	5	ND	6 32	9 B	35
-Methyl-2-pentanone	UG/KG	ND	28	ND	27	ND	52	ND	33 7
ethyl tert butyl ether	UG/KG	ND	6	ND	5	ND		ND	7
tyrene	UG/KG	ND	6	ND	5	ND	6	ND	7
,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	5	ND	6	ND	
etrachloroethene	UG/KG	ND	6	ND	5	ND	6	ND	7
oluene	UG/KG	ND	6	ND	5	ND	6	ND	7
,2,4-Trichlorobenzene	UG/KG	ND	6	ND	5	ND	6	ND	7
1,1-Trichloroethane	UG/KG	ND	6	ND	5	ND	6	ND	7
,1,2-Trichloroethane	UG/KG	ND	6	ND	5	ND	6	ND	7

. . . .

Sec. 1.

.

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N1-092104-B5 A04-9123 09/21/2004	A4912305	N1-092104-86 A04-9123 09/21/2004	A4912306	N1-092104-B7 A04-9123 09/21/2004	A4912307	N1-092104-88 A04-9123 09/21/2004	A4912308
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Lîmît	Sample Value	Reporting Limit
1,1,2-Trichloro-1,2,2-trifluor Trichlorofluoromethane Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	6 6 28 11 17	ND ND ND ND ND ND	5 5 27 11 16	ND ND ND ND ND ND	6 6 32 13 19	ND ND ND ND ND ND	7 7 35 14 21
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	* * % % %	103 106 76 92 82 99	50-200 50-200 50-200 71-125 68-124 61-136	100 103 76 94 85 101	50-200 50-200 50-200 71-125 68-124 61-136	95 101 71 97 85 102	50-200 50-200 50-200 71-125 68-124 61-136	86 89 63 96 83 100	50-200 50-200 50-200 71-125 68-124 61-136

STL Buffalo

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

ŝ

1972 - Mar

4

Rept: AN0326

Client ID Job No Leb ID Sample Date		N1-092104-W1 A04-9123 09/21/2004	A4912309	N1-092104-W2 A04-9123 09/21/2004	A4912310	N1-092104-W3 A04-9123 09/21/2004	A4912311		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	30	ND	29	ND	29	NA	
Benzene	UG/KG	ND	6	ND	6	ND	6	NA	
romodichloromethane	UG/KG	ND	6	ND	6	ND	6	NA	
Bromoform	UG/KG	ND	6	ND	6	ND	6	NA	
Bromomethane	UG/KG	ND	6	ND	6	ND	6	NA	
2-Butanone	UG/KG	ND	30	ND	29	ND	29	NA	
arbon Disulfide	UG/KG	ND	6	. ND	6	ND	6	NA	
Carbon Tetrachloride	UG/KG	ND	6	ND	6	ND	6	NA	
Chlorobenzene	UG/KG	ND	6	ND	6	ND	6	NA	
Chloroethane	UG/KG	ND	6	ND	6	ND	6	NA	
chloroform	UG/KG	ND	6	ND	6	ND	6	NA	
Chloromethane	UG/KG	ND	6	ND	6	ND	6	NA	
Cyclohexane	UG/KG	ND	6	ND	6	ND	6	NA	
,2-Dibromoethane	UG/KG	ND	6	ND	6	ND	6	NA	
ibromochloromethane	UG/KG	ND	6	ND	6	ND	6	NA	
.2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	6	ND	6	NA	
,2-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	NA	
.3-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	NA	
,4-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	NA	
)ichlorodifluoromethane	UG/KG	ND	6	ND	6	ND	6	NA	
1.1-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	NA	
.2-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	NA	
1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	NA	
sis-1,2-Dichloroethene	UG/KG	ND	. 6	ND	6	ND	6	NA	
rans-1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	NA	
,2-Dichloropropane	UG/KG	ND	6	ND	6	ND	6	NA	
;is-1,3-Dichloropropene	UG/KG	ND	. 6	ND	6	ND	6	NA	
rans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND	6	NA	
thylbenzene	UG/KG	ND	6	ND	6	ND	6	NA	
-Hexanone	UG/KG	ND	30	ND	29	ND	29	NA	
sopropylbenzene	UG/KG	ND	6	ND	6	ND	6	NA	
lethyl acetate	UG/KG	ND	6	ND	6	ND	6	NA	
lethylcyclohexane	UG/KG	ND	6	ND	6	ND	6	NA	
ethylene chloride	UG/KG	12 B	6	5 BJ	6	12 B	6	NA	
	UG/KG	ND	30	ND	29	ND	29	NA	1
-Methyl-2-pentanone Wethyl tert butyl ether	UG/KG	ND	6	ND	6	ND	6	NA	1
	UG/KG	ND	6	ND	6	ND	6	NA	
ityrene ,1,2,2-Tetrachloroethane	UG/KG	ND	6	ND	6	ND	6	NA	
	UG/KG	ND	6	ND	6	ND	6	NA	
Tetrachloroethene	UG/KG	ND	6	ND	6	ND	6	NA	
ioluene		ND	6	ND ND	6	ND	6	NA	}
,2,4-Trichlorobenzene	UG/KG		6	ND	6	ND	6	NA	
,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	6	NA	
,1,2-Trichloroethane	UG/KG	ND		1 ND	0			1975	1

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N1-092104-W1 A04-9123 09/21/2004	A4912309	N1-092104-W2 A04-9123 09/21/2004	A4912310	N1-092104-W3 A04-9123 09/21/2004	A4912311		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene /inyl acetate /inyl chloride fotał Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	6 6 30 12 18	ND ND ND ND ND ND	6 6 29 12 17	ND ND ND ND ND ND	6 6 29 12 18	NA NA NA NA NA NA	
S/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 4,4-Dichlorobenzene-D4 Foluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % % %	76 74 61 90 82 102	50-200 50-200 50-200 71-125 68-124 61-136	88 92 65 92 80 95	50-200 50-200 50-200 71-125 68-124 61-136	87 87 70 91 82 94	50-200 50-200 50-200 71-125 68-124 61-136	NA NA NA NA NA	

NA = Not Applicable ND = Not Detected

STL Buffalo

the second second

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

·									
Client ID Job No Lab ID Sample Date		N1-092104-FB-1 A04-9123 09/21/2004	A4912314				· · · · · · · · · · · · · · · · · · ·		
Analyte	Units	Sample Value	Reporting Limit	Sampie Value	Reporting Limit	Sampl e Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	25	NA		NA		NA	
Benzene	UG/L	ND	5.0	NA		NA		NA	
Bromodichloromethane	UG/L	ND	5.0	NA]	NA		NA	
Bromoform	UG/L	ND	5.0	NA]	NA		NA	
Bromomethane	UG/L	ND	5.0	NA		NA		NA	
2-Butanone	UG/L	ND	25	NA		NA		NA	}
Carbon Disulfide	UG/L	ND	5.0	NA		NA		NA	
Carbon Tetrachloride	UG/L	ND	5.0	NA		NA		NA	
Chlorobenzene	UG/L	ND	5.0	NA		NA		NA	
Chloroethane	UG/L	ND	5.0	NA		NA		NA	
Chloroform	UG/L	ND	5.0	NA		NA		NA	1
Chloromethane	UG/L	ND	5.0	NA	1	NA		NA	
Cyclohexane	UG/L	ND	5.0	NA		NA		NA	
1.2-Dibromoethane	UG/L	ND	5.0	NA		NA		NA	
Dibromochloromethane	UG/L	ND	5.0	NA		NA		NA	
1,2-Dibromo-3-chloropropane	UG/L	ND	5.0	NA		NA		NA	
1.2-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
1.3-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
1.4-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
Dichlorodifluoromethane	UG/L	ND	5.0	NA		NA		NA	
1.1-Dichloroethane	UG/L	ND	5.0	NA		NA		NA	
1,2-Dichloroethane	UG/L	ND	5.0	NA		NA		NA	
1.1-Dichloroethene	UG/L	ND	5.0	NA		NA		NA -	
cis-1,2-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	
trans-1,2-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	
	UG/L	ND	5.0	NA	1	NA		NA	
1,2-Dichloropropane	UG/L	ND	5.0	NA		NA		NA	
cis-1,3-Dichloropropene	UG/L	ND	5.0	NA		NA		NA	
trans-1,3-Dichloropropene	UG/L	ND	5.0	NA		NA		NA	ĺ
Ethylbenzene	UG/L	ND	25	NA		NA		NA	
2-Hexanone		ND	5.0	NA		NA		NA	
Isopropylbenzene	UG/L	ND	5.0	NA		NA		NA	
Methyl acetate	UG/L	ND	5.0	NA		NA		NA	
lethylcyclohexane	UG/L		5.0	NA		NA		NA	
Methylene chloride	UG/L	ND	25	NA		NA		NA	
4-Methyl-2-pentanone	UG/L	ND	5.0	NA		NA		NA	
lethyl tert butyl ether	UG/L	ND	5.0	NA		NA		NA	
Styrene	UG/L	ND	5.0	NA		NA		NA	
1,1,2,2-Tetrachloroethane	UG/L	ND				NA		NA	
Tetrachloroethene	UG/L	ND	5.0	NA		NA NA		NA	
Toluene	UG/L	ND	5.0	NA				NA	
1,2,4-Trichlorobenzene	UG/L	ND	5.0	NA		NA			
1,1,1-Trichloroethane	UG/L	ND	5.0	NA		NA		NA NA	
1,1,2-Trichloroethane	UG/L	ND	5.0	NA	1	NA	l	NA	

NA = Not Applicable ND = Not Detected

2000

•••

STL Buffalo

والمعالي ووالما المتروم المعري

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N1-092104-FB-1 A04-9123 09/21/2004	A4912314		·				:
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl.acetate Vinyl chloride Total Xylenes	UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND	5.0 5.0 25 5.0 15	NA NA NA NA NA NA		NA NA NA NA NA NA		NA NA NA NA NA	
S/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 foluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % %	96 99 73 99 89 87	50-200 50-200 50-200 77-122 74-120 73-1 36	NA NA NA NA NA		NA NA NA NA NA NA	· ·	NA NA NA NA NA NA	

L.

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

	·							· •	
Client ID Job No Lab ID Sample Date		TB-2 A04-9123 09/21/2004	A4912315						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	25	NA		NA		NA	
lenzene	UG/L	ND	5.0	NA	1	NA		NA	
Bromodichioromethane	UG/L	ND	5.0	NA	j	NA		NA	
Bromoform	UG/L	ND	5.0	NA	1	NA		NA	
Bromomethane	UG/L	ND	5.0	NA		NA		NA	
?-Butanone	UG/L	ND	25	NA		NA		NA	
Carbon Disulfide	UG/L	ND	5.0	NA		NA		NA	
Carbon Tetrachloride	UG/L	ND	5.0	NA		NA	1	NA	
hlorobenzene	UG/L	ND	5.0	NA		NA		NA	
hloroethane	UGZL	ND	5.0	NA		NA		NA	
chloroform	UG/L	ND	5.0	NA		NA		NA	
chloromethane	UG/L	ND	5.0	NA		NA		NA	
yclohexane	UG/L	ND	5.0	NA		NA		NA	-
.2-Dibromoethane	UG/L	ND	5.0	NA		NA		NA	
ibromochloromethane	UG/L	ND	5.0	NA		NA		NA	
,2-Dibromo-3-chloropropane	UG/L	ND	5.0	NA		NA		NA	
,2-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
,3-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	}
.4-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA NA	
ichlorodifluoromethane	UG/L	ND	5.0	NA		NA		NA	
.1-Dichloroethane	UG/L	ND	5.0	NA		NA		NA	1
,2-Dichloroethane	UG/L	ND	5.0	NA		NA		NA	
,1-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	
is-1,2-Dichloroethene	UG/L	ND	5.0	NA		NA		NA NA	•
rans-1,2-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	1
,2-Dichloropropane	UG/L	ND	5.0	NA		NA			
	UG/L	ND	5.0					NA	
is-1,3-Dichloropropene				NA		NA		NA	
rans-1,3-Dichloropropene	UG/L	ND ND	5.0	NA	1	NA		NA	1
thylbenzene	UG/L		5.0	NA		NA		NA	
-Hexanone	UG/L	ND	25	NA		NA		NA	
sopropylbenzene	UG/L	ND	5.0	NA		NA		NA	
ethyl acetate	UG/L	ND	5.0	NA		NA		NA	
ethylcyclohexane	UG/L	ND	5.0	NA		NA		NA	
ethylene chloride	UG/L	ND	5.0	NA		NA		NA	
-Methyl-2-pentanone	UG/L	ND	25	NA	ł	NA		NA]
ethyl tert butyl ether	UG/L	ND	5.0	NA		NA		NA	
tyrene	UG/L	ND	5.0	NA		NA		NA	
,1,2,2-Tetrachloroethane	UG/L	ND	5.0	NA		NA		NA	
etrachloroethene	UG/L	ND	5.0	NA		NA .		NA	1
oluene	UG/L	ND	5.0	NA		NA		NA	
,2,4-Trichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
,1,1-Trichloroethane	UG/L	ND	5.0	NA		NA		NA	
,1,2-Trichloroethane	UG/L	ND	5.0	NA		NA		NA	1

NA = Not Applicable ND = Not Detected

26 M

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

.

Rept: AN0326

Client ID Job No Lab ID Sample Date		TB-2 A04-9123 09/21/2004	A4912315						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chlorîde	UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND - ND	5.0 5.0 5.0 25 5.0 15	NA NA NA NA NA NA		NA NA NA NA NA NA		NA NA NA NA NA NA	
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % %	91 95 67 99 89 87	50-200 50-200 50-200 77-122 74-120 73-136	NA NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA NA	

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS .

.

-

and the second second

Rept: AN0326

Client ID Job No Lab ID Sample Date		N3-092704-81 A04-9383 09/27/2004	A4938302	N3-092704-B2 A04-9383 09/27/2004	A4938303	N3-092704-B3 A04-9383 09/27/2004	A4938304	N3-092704-B4 A04-9383 09/27/2004	A4938305
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	29	ND	32	ND	29	ND	28
Benzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromodichloromethane	UG/KG	ND	. 6	ND	6	ND	6	ND	6
Bromoform	UG/KG	ND	6	ND	6	ND	6	ND	6
Bromomethane	UG/KG	ND	6	ND	6	ND	6	ND	6
2-Butanone	UG/KG	ND	29	ND	32	ND	29	ND	28
Carbon Disulfide	UG/KG	ND	6	ND	6	ND	6	ND	6
Carbon Tetrachloride	UG/KG	ND	6	ND	6	ND	6	ND	6
Chlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloroform	UG/KG	ND	6	ND	6	ND	6	ND	6
Chloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
Cyclohexane	UG/KG	ND	6	ND	6	ND	6	ND	6
.2-Dibromoethane	UG/KG	ND	6	ND	6	ND .	6	ND	6
) jbromochloromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
,2-Dibromo-3-chloropropane	UG/KG	ND	6	ND	6	ND.	6	ND	6
.2-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
.3-Dichlorobenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
.4 Dichlorobenzene	UG/KG	ND	6	2 J	6	ND	6	ND	6
Dichlorodifluoromethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1.1-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1.2-Dichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1.1-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
sis-1,2-Dichloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
rans-1,2-Dichloroethene	UG/KG	ND	6	ND ·	6	ND	6	ND	6
1,2-Dichloropropane	UG/KG	ND	6	ND	6	ND	6	ND	6
sis-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND	6	ND	6
rans-1,3-Dichloropropene	UG/KG	ND	6	ND	6	ND	6	ND	6
thylbenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
Hexanone	UG/KG	ND	29	ND	32	ND	29	ND	28
sopropyibenzene	UG/KG	ND	6	ND	6	ND	6	ND	6
ethyl acetate	UG/KG	ND	6	ND	6	ND	6	ND	6
ethylcyclohexane	UG/KG	ND	6	ND	6	ND	6	ND	6
ethylene chloride	UG/KG	7 в	6	6 B	6		6	8 B	6
-Methyl-2-pentanone	UG/KG	ND	29	ND	32	ND	29	ND	28
ethyl tert butyl ether	UG/KG	ND	6	ND	6	ND	6	ND	6
tyrene	UG/KG	ND	6	ND	6	ND	6	ND	6
.1.2.2-Tetrachloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
etrachloroethene	UG/KG	ND	6	ND	6	ND	6	ND	6
oluene	UG/KG	ND	6	ND	6	ND	6	ND	6
,2,4-Trichlorobenzene		ND	6	ND	6	ND	6	ND	6
,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
1,1,1-Trichloroethane	UG/KG	ND	6	ND	6	ND	6	ND	6
, i, 2-11 ICH LOPOETABRE	00/80	NU	o		0	RU	v	U	0

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

.

Client ID Job No Lab ID Sample Date		N3-092704-81 A04-9383 09/27/2004	A4938302	N3-092704-B2 A04-9383 09/27/2004	A4938303	N3-092704-B3 A04-9383 09/27/2004	A4938304	N3-092704-B4 A04-9383 09/27/2004	A4938305
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND ND	6 6 29 11 17	ND ND ND ND ND ND	6 6 32 13 19	ND ND ND ND ND ND	6 6 29 12 18	ND ND ND ND ND ND	6 6 28 11 17
	* * * * *	99 102 76 94 85 96	50-200 50-200 50-200 71-125 68-124 61-136	86 86 71 92 84 101	50-200 50-200 50-200 71-125 68-124 61-136	93 95 73 92 83 95	50-200 50-200 50-200 71-125 68-124 61-136	95 98 74 94 84 96	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

Earth Tech ~ RH Landfill Oversight RH Landfill Oversight ~ Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

4

 $^{\prime} V_{i}$

1

f.

Client ID Job No Lab ID Sample Date		N3-092704-B5 A04-9383 09/27/2004	A4938307	N3-092704-B6 A04-9383 09/27/2004	A4938308	N3-092704-B7 A04-9383 09/27/2004	A4938309	N3-092704-B8 A04-9383 09/27/2004	A4938310
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
cetone	UG/KG	ND	27	ND	28	ND	34	36	30
lenzene	UG/KG	ND	5	ND	6	ND	7	ND	6
Bromodichloromethane	UG/KG	ND	5	ND	6	ND	7	ND	6
Bromoform	UG/KG	ND	5	ND	6	ND	7	ND	6
Bromomethane	UG/KG	ND	5	ND	6 .	ND	7	ND	6
2-Butanone	UG/KG	ND	27	ND	28	ND	34	7 J	30
Carbon Disulfide	UG/KG	ND	5	ND	6	ND	7	ND	6
Carbon Tetrachloride	UG/KG	ND	5	ND	6	ND	7	ND	6
Chlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6
Chloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6
Chloroform	UG/KG	ND	5	ND	6	ND	7	ND	6
Chloromethane	UG/KG	ND	5	ND	6	ND	7	ND	6
Cyclohexane	UG/KG	ND	5	ND	6	ND	7	ND	6
.2-Dibromoethane	UG/KG	ND	5	ND	6	ND	7	ND	6
bromochloromethane	UG/KG	ND	5	ND	6	ND	7	ND	6
,2-Dibromo-3-chloropropane	UG/KG	ND	5	ND	6	ND	7	ND	6
.2-Dichlorobenzene	UG/KG	ND	5	ND	6	31	7	ND	6
.3-Dichlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6
.4-Dichlorobenzene	UG/KG	ND	5	ND	6		7	7	6
ichlorodifluoromethane	UG/KG	ND	5	ND	6	ND	ż	ND	6
1.1-Dichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6
,2-Dichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6
,1-Dichloroethene		ND	5	ND	6	ND	7	ND	6
sis-1,2-Dichloroethene	UG/KG	ND	5	ND	6	ND	7	ND	6
trans-1,2-Dichloroethene	UG/KG	ND	5	ND	6	ND	7	ND	6
I,2-Dichloropropane	UG/KG	ND	5	ND	6	ND	7	ND	6
is-1,3-Dichloropropene	UG/KG	ND	5	ND	6	ND	7	ND	6
rans-1,3-Dichloropropene	UG/KG	ND	5	ND	6	ND	7	ND	
thylbenzene	UG/KG	ND	5	ND	6	чи 6 J	⁷ 7	ND	6
2-Hexanone	UG/KG	ND	27	ND	28	ND	34	ND	30
sopropylbenzene	UG/KG	ND	5	ND	20 6	3 J	54 7	ND	
lethyl acetate	UG/KG	ND	5	ND	6		7		6
ethyl acetate ethylcyclohexane	UG/KG	ND	5	νµ 5 j	0 6	ND	$\frac{7}{7}$	ND	6
ethylene chloride	UG/KG	88	5		-	ND	7	ND	6
			27	8 B	6	10 B		11 B	6
-Methyl-2-pentanone	UG/KG	ND	27 5	ND	28	ND	34	ND	30
lethyl tert butyl ether	UG/KG	ND		ND	6	ND	7	ND	6
	UG/KG	ND	5	ND	6	ND	7	ND	6
,1,2,2-Tetrachloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6
etrachloroethene	UG/KG	ND	5	ND	6	NÐ	7	6	6
oluene	UG/KG	ND	5	ND	6	ND	7	ND	6
,2,4-Trichlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6
,1,1-Trichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6
,1,2-Trichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N3-092704-B5 A04-9383 09/27/2004	A4938307	N3-092704-86 A04-9383 09/27/2004	2 A4938308	N3-092704-B7 A04-9383 09/27/2004	A4938309	N3-092704-88 A04-9383 09/27/2004	A4938310
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chloride	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND ND	5 5 27 11 16	ND ND ND ND ND 17	6 6 28 11 17	ND ND ND ND ND 27	7 7 34 13 20	NÐ ND ND ND ND ND	6 6 30 12 18
Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Difluorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % %	93 96 73 94 84 92	50-200 50-200 50-200 71-125 68-124 61-136	91 94 84 95 90 92	50-200 50-200 50-200 71-125 68-124 61-136	83 89 71 95 89 106	50-200 50-200 50-200 71-125 68-124 61-136	97 98 82 92 85 97	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

1.12.15

Date: 09/30/2004

Time: 15:25:12

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

N3-092704-W2 N3-092704-W1 N3-092704-D2 N3-092704-D1 Client ID A4938312 A4938311 A04-9383 A4938317 A04-9383 A4938318 A04-9383 A04-9383 Lab ID Job No 09/27/2004 09/27/2004 09/27/2004 09/27/2004 Sample Date Reporting Reporting Sample Reporting Sample Reporting Sample Sample Value Limit Value Limit Value . Limit Value Limit Analyte Units 28 31 ND 28 ND 32 ND UG/KG ND Acetone ND 6 ND 6 UG/KG ND 6 ND 6 Benzene UG/KG ND 6 ND 6 ND 6 ND 6 Bromodichloromethane ND 6 ND 6 ND 6 ND 6 Bromoform UG/KG ND 6 ND 6 6 ND 6 ND Bromomethane UG/KG 32 31 ND 28 28 ND ND UG/KG ND 2-Butanone 6 ND 6 ND 6 ND. 6 Carbon Disulfide UG/KG ND ND 6 ND 6 Carbon Tetrachloride UG/KG ND 6 ND 6 ND 6 ND 6 UG/KG ND 6 ND 6 Chlorobenzene 6 ND 6 ND 6 ND Chloroethane UG/KG ND 6 ND 6 ND 6 ND 6 ND 6 UG/KG Chloroform ND 6 ND 6 ND ND 6 UG/KG 6 Chloromethane 6 6 ND ND 6 ND 6 ND Cyclohexane UG/KG 6 ND 1,2-Dibromoethane ND ND 6 UG/KG ND 6 6 NÐ 6 ND 6 Dibromochloromethane UG/KG ND 6 ND 6 ND 6 ND 6 UG/KG ND 6 ND 6 1.2-Dibromo-3-chloropropane ND 6 ND 6 UG/KG ND 6 ND 6 1.2~Dichlorobenzene ND 6 ND 6 1,3-Dichlorobenzene ND 6 ND 6 UG/KG 6 ND 6 ND 1,4-Dichlorobenzene UG/KG ND 6 ND 6 6 ND 6 ND 6 ND 6 ND UG/KG Dichlorodifluoromethane 6 ND 6 ND 6 ND 6 ND UG/KG 1.1-Dichloroethane 6 ND 6 ND 6 ND 6 1,2-Dichloroethane ND UG/KG ND 6 ND 6 6 ND 6 1.1-Dichloroethene UG/KG ND ND 6 6 ND 6 NÐ 6 UG/KG ND cis-1,2-Dichloroethene 6 ND NÐ 6 ND 6 6 UG/KG ND trans-1,2-Dichloroethene ND 6 ND 6 6 ND 1,2-Dichloropropane UG/KG ND 6 ND 6 ND 6 6 cis-1.3-Dichloropropene UG/KG ND ND 6 6 UG/KG ND 6 ND 6 ND 6 ND trans-1.3-Dichloropropene ND 6 ND 6 ND 6 ND 6 Ethylbenzene UG/KG 31 28 28 ND 32 ND ND ND 2-Hexanone UG/KG 6 ND 6 ND ND 6 ND 6 Isopropylbenzene UG/KG 6 ND 6 ND. UG/KG ND 6 ND 6 Methyl acetate 6 6 ND ND 6 ND Methylcyclohexane UG/KG ND 6 9 B 6 B 6 6 B 6 UG/KG 8 B 6 6 Methylene chloride 31 28 32 ND ND UG/KG ND 28 ND 4-Methyl-2-pentanone 6 6 ND 6 ND Methyl tert butyl ether UG/KG ND ND 6 6 ND 6 ND 6 ND 6 UG/KG ND Styrene 6 6 ND ND 6 ND 1,1,2,2-Tetrachloroethane UG/KG ND 6 ND 6 ND 6 NÐ 6 ND 6 Tetrachloroethene UG/KG 6 ND NÐ 6 ND 6 Toluene UG/KG ND 6 ND ND 6 1,2,4-TrichLorobenzene ND 6 ND 6 6 UG/KG 1,1,1-Trichloroethane ND ND 6 ND 6 ND 6 6 UG/KG ND NÐ 6 ND 6 1,1,2-Trichloroethane ND 6 6 UG/KG

STL Buffalo

Rept: AN0326

÷

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

100

. . .

. .

Client ID Job No Lab ID Sample Date		N3-092704-D1 A04-9383 09/27/2004	A4938317	N3-092704-D2 A04-9383 09/27/2004	A4938318	N3-092704-W1 A04-9383 09/27/2004	A493831?	N3-092704-W2 A04-9383 09/27/2004	A4938312
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	6 6 28 11 17	ND ND ND ND ND ND	6 6 32 13 19	ND ND ND ND ND ND	6 6 31 12 19	ND ND ND ND ND ND	6 6 28 11 17
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % %	84 86 61 94 82 96	50-200 50-200 50-200 71-125 68-124 61-136	87 86 62 91 80 96	50-200 50-200 50-200 71-125 68-124 61-136	95 100 73 92 86 97	50-200 50-200 50-200 71-125 68-124 61-136	37 * 37 * 23 * 91 80 127	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

ř

į.

Rept: AN0326

1

Client ID Job No Lab ID Sample Date		N3-092704-W2 A04-9383 09/27/2004	A4938312R1	N3-092704-W3 A04-9383 09/27/2004	A4938313	N3-092704-W4 A04-9383 09/27/2004	A4938314	N3-092704-W5 A04-9383 09/27/2004	A4938315		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit		
cetone	UG/KG	ND	27	ND	29	ND	33	ND	28		
enzene	UG/KG	j ND	5	DND	6	ND	7	ND	6		
romodichloromethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
romoform	UG/KG	ND	5	ND	6	ND	7	ND	6		
romomethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
Butanone	UG/KG	ND	27	ND	29	ND	33	ND	28		
arbon Disulfide	UG/KG	ND	5	ND	6	ND	7	ND	6		
arbon Tetrachloride	UG/KG	ND	5	ND	6	ND	7	ND	6		
hlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6		
hloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
hloroform	UG/KG	ND	5	ND	6	ND	7	ND	6		
hloromethane	UG/KG	ND	. 5	ND	6	ND	7	ND	6		
vclohexane	UG/KG	ND	5	ND	6	ND	7	ND	6		
,2-Dibromoethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
bromochloromethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
2-Dibromo-3-chloropropane	UG/KG	ND	5	ND	6	ND	7	ND	6		
2-Dichlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6		
.3-Dichlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6		
,4-Dichlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6		
ichlorodifluoromethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
.1-Dichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
,2-Dichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
,1-Dichloroethene	UG/KG	ND	5	ND	6	ND	7	ND	6		
is-1,2-Dichloroethene	UG/KG	ND	5	ND	6	ND	7	ND	6		
rans-1,2-Dichloroethene		ND	5	ND	6	ND	7	ND	6		
,2-Dîchloropropane	UG/KG	ND	5	ND	6	ND	7	ND	6		
is-1,3-Dichloropropene	UG/KG	ND	5	ND	6	ND	7	ND	6		
rans-1,3-Dichloropropene	UG/KG	ND	5	ND	6	ND	7	ND	6		
	UG/KG	ND	5	ND	6	ND	7	ND	6		
thylbenzene	UG/KG	ND	27	ND	29	ND	33	ND	28		
Hexanone		ND	5	ND	6	ND		ND	6		
sopropylbenzene	UG/KG	ND	5	ND	6	ND	7	ND	6		
ethyl acetate	UG/KG		5		6	ND	7	ND	6		
ethylcyclohexane	UG/KG	ND		ND	-		7				
ethylene chloride	UG/KG	10 B	5	5 BJ	6	6 BJ		ND	6		
Methyl-2-pentanone	UG/KG	ND	27	ND	29	ND	33	ND	28		
ethyl tert butyl ether	UG/KG	ND	5	ND	6	ND	7	ND	6		
tyrene	UG/KG	ND	5	ND	6	ND	7	ND	6		
1,2,2-Tetrachloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
etrachloroethene	UG/KG	ND	5	ND	6	ND	7	ND	6		
oluene	UG/KG	ND	5	ND	6	ND	7	ND	6		
,2,4-Trichlorobenzene	UG/KG	ND	5	ND	6	ND	7	ND	6		
,1,1-Trichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6		
1,2-Trichloroethane	UG/KG	ND	5	ND	6	ND	7	ND	6		

NA = Not Applicable ND = Not Detected

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

j,

- E

Rept: AN0326

Client ID Job No Lab ID Sample Date		N3-092704-W2 A04-9383 09/27/2004	A4938312RI	N3-092704-W3 A04-9383 09/27/2004	A4938313	N3-092704-W4 A04-9383 09/27/2004	A4938314	N3-092704-W5 A04-9383 09/27/2004	A4938315
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
frichloroethene /inyl acetate /inyl chloride fotal Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	5 5 27 11 16	ND ND ND ND ND ND ND	6 6 29 12 17	ND ND ND ND ND ND	7 7 33 13 20	ND ND ND ND ND ND	6 6 28 11 17
IS/SURROGATE(S) Chlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 foluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	% % % % %	58 58 42 * 89 82 114	50-200 50-200 50-200 71-125 68-124 61-136	89 92 66 93 82 96	50-200 50-200 50-200 71-125 68-124 61-136	89 91 66 94 82 97	50-200 50-200 50-200 71-125 68-124 61-136	83 84 60 93 84 98	50-200 50-200 50-200 71-125 68-124 61-136

NA = Not Applicable ND = Not Detected

. - - - -

STL Buffalo

er an an an an Arg

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

i.

Rept: AN0326

÷.,

									<u> </u>
Client ID Job No Lab ID Sample Date		N3-092704-W6 A04-9383 09/27/2004	A4938316						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/KG	ND	28	NA		NA		NA	
Benzene	UG/KG	ND	6	NA		NA		NA	
Bromodichloromethane	UG/KG	ND	6	NA	1	NA		NA	
Bromoform	UG/KG	ND	6	NA		NA		NA	
Bromomethane	UG/KG	ND	6	NA		NA		NA	
2-Butanone	UG/KG	ND	28	NA		NA		NA	
Carbon Disulfide	UG/KG	ND	6	NA		NA		NA	
Carbon Tetrachloride	UG/KG	ND	6	NA		NA		NA	
chlorobenzene	UG/KG	ND	6	NA		NA		NA	1
Chloroethane	UG/KG	ND	6	NA	· ·	NA		NA	
chioroform	UG/KG	ND	6	NA	Ì	NA) NA	
Chioromethane	UG/KG	ND	6	NA		NA		NA	
Cyclohexane	UG/KG	ND	6	NA		NA		NA	
1.2-Dibromoethane	UG/KG	ND	6	NA		NA		NA	
)ibromochloromethane	UG/KG	ND	6	NA		NA		NA	
.2-Dibromo-3-chloropropane	UG/KG	ND	6	NA		NA		NA	
.2-Dichlorobenzene	UG/KG	ND	6	NA		NA		NA	
.3-Dichlorobenzene	UG/KG	ND	6	NA		NA		NA	-
1.4-Dichlorobenzene	UG/KG	ND	6	NA		NA		NA	
)ichlorodifluoromethane		ND	6	NA		NA		NA	
1.1-Dichloroethane	UG/KG	ND	6	NA		NA		NA	
1,2-Dichloroethane	UG/KG	ND	6	NA		NA		NA	
1,1-Dichloroethene	UG/KG	ND	6	NA		NA		NA	
;;-1,2-Dichloroethene	UG/KG	ND	6	NA		NA		NA	
	UG/KG	ND	6	NA		NA		NA	
trans-1,2-Dichloroethene	UG/KG	ND	6	NA		NA		NA	
1,2-Dichloropropane	UG/KG	ND	6	NA		NA		NA	1
cis-1,3-Dichloropropene	UG/KG	ND	6	NA	1	NA		NA	
trans-1,3-Dichloropropene	UG/KG	ND	6	NA	-	NA		NA	
Ethylbenzene	UG/KG	ND	28	NA		NA		NA	
2-Hexanone	UG/KG	ND	6	NA		NA		NA	
Isopropylbenzene		ND	6	NA		NA		NA	
lethyl acetate	UG/KG	ND	6	NA		NA		NA	
lethylcyclohexane	UG/KG	UN 8 B	6	NA		NA		NA	
lethylene chloride	UG/KG		° 28	NA		NA		NA	1
-Methyl-2-pentanone	UG/KG	ND	28 6	NA		NA		NA	1
Methyl tert butyl ether	UG/KG	ND		NA		NA		NA	1
Styrene	UG/KG	ND	6 6			NA		NA	1
1,1,2,2-Tetrachloroethane	UG/KG	ND		NA	1	NA		NA	
fetrachloroethene	UG/KG	ND	6	NA	1	NA NA		NA	
foluene	UG/KG	ND	6	NA	1			NA	
1,2,4-Trichlorobenzene	UG/KG	ND	6	NA		NA		NA	
1,1,1-Trichloroethane	UG/KG	ND	6	NA	1	NA		NA NA	· ·
1,1,2-Trichloroethane	UG/KG	ND	6	NA	l	NA	l	NA NA	ļ

NA = Not Applicable ND = Not Detected

and the second

i;

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

Client ID Job No Lab ID Sample Date		N3-092704-W6 A04-9383 09/27/2004	A4938316		:				
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Frichloroethene /inyl acetate /inyl chloride Fotal Xylenes	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND ND ND	6 6 28 11 17	NA NA NA NA NA NA		NA NA NA NA NA		NA NA NA NA NA	
SURROGATE(S) hlorobenzene-D5 1,4-Difluorobenzene 1,4-Dichlorobenzene-D4 foluene-D8 -Bromofluorobenzene 1,2-Dichloroethane-D4	***	87 88 65 94 82 95	50-200 50-200 50-200 71-125 68-124 61-136	NA NA NA NA NA NA		NA NA NA NA NA NA		NA NA NA NA NA	

NA = Not Applicable ND = Not Detected

STL Buffalo

1.1.16

Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

Rept: AN0326

1

22

Client ID Job No Lab ID Sample Date	· .	TB-3 A04-9383 09/27/2004	A4938319						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acetone	UG/L	ND	25	NA		NA		NA	
Benzene	UG/L	ND	5.0	NA		NA		NA	
Bromodichloromethane	UG/L	ND	5.0	NA		NA		NA	
Bromoform	UG/L	ND	5.0	NA		NA		NA	
Bromomethane	UG/L	ND	5.0	NA		NA		NA	
P-Butanone	UG/L	ND	25	NA		NA		NA	
Carbon Disulfide	UG/L	ND	5.0	NA		NA		NA	
Carbon Tetrachloride	UG/L	ND	5.0	NA		NA		NA	
chlorobenzene	UG/L	ND	5.0	NA		NA		NA	
Chloroethane	UG/L	ND	5.0	NA		NA		NA	
Chloroform	UG/L	ND	5.0	NA		NA		NA	
Chloromethane	UG/L	ND	5.0	NA		NA		NA	
Cyclohexane	UG/L	ND	5.0	NA		NA	1	NA	
,2-Dibromoethane	UG/L	ND	5.0	NA		NA		NA	
ibromochloromethane	UG/L	ND	5.0	NA		NA		NA	
.2-Dibromo-3-chloropropane	UG/L	ND	5.0	NA		NA		NA	
,2-Dichlorobenzene	UG/L	ND	5.0	NA		NA		NA	
.3-Dichtorobenzene	UG/L	ND	5.0	NA		NA		NA	
.4-Dichlorobenzene	UG/L	ND	5.0	NA	1	NA		NA	
ichlorodifluoromethane	UG/L	ND	5.0	NA]	NA		NA	
,1-Dichloroethane	UG/L	ND	5.0	NA		NA		NA	
,2-Dichloroethane	UG/L	ND	5.0	NA		NA		NA	
,1-Dichloroethene	UG/L	ND	5.0	NA		NA	j	NA	
is-1,2-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	
rans-1.2-Dichloroethene	UG/L	ND	5.0	NA		NA		NA	
	UG/L	ND	5.0	NA		NA		NA	· ·
,2-Dichloropropane	UG/L	ND	5.0	NA		NA	1	NA	
sis-1,3-Dichloropropene	UG/L	ND	5.0	NA		NA		NA	
rans-1,3-Dichloropropene	UG/L	ND ND	5.0	NA		NA		NA	
thylbenzene		ND ND	25	NA		NA		NA	
-Hexanone	UG/L	ND ND	25 5.0	NA		NA		NA	
sopropylbenzene	UG/L	שא ו	5.0	NA		NA		NA	
lethyl acetate	UG/L	ND	5.0	NA		NA		NA	
lethylcyclohexane	UG/L	ND	5.0	NA		NA		NA	1
lethylene chloride	UG/L	ND	25	NA		NA		NA	
-Methyl-2-pentanone	UG/L	ND				NA	1	NA	
lethyl tert butyl ether	UG/L	ND	5.0	NA NA		NA		NA	
tyrene	UG/L	ND	5.0			NA		NA NA	
,1,2,2-Tetrachloroethane	UG/L	ND	5.0	NA	1	NA	1	NA	
etrachloroethene	UG/L	ND	5.0	NA	1		1	NA NA	
oluene	UG/L	ND	5.0	NA		NA	1	NA NA	
1,2,4-Trichlorobenzene	UG/L	ND	5.0	NA		NA		NA NA	
1,1,1-Trichloroethane	UG/L	ND	5.0	NA		NA			
,1,2-Trichloroethane	UG/L	ND	5.0	NA	l l	NA		NA	Į –

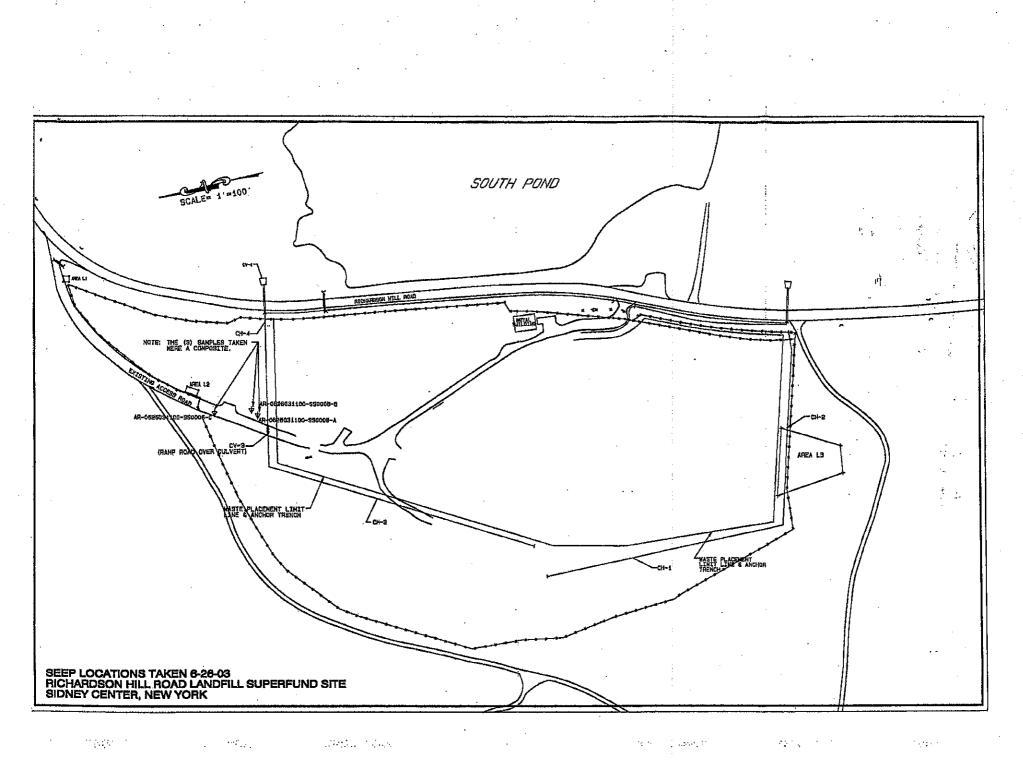
NA = Not Applicable ND = Not Detected

STL Buffalo

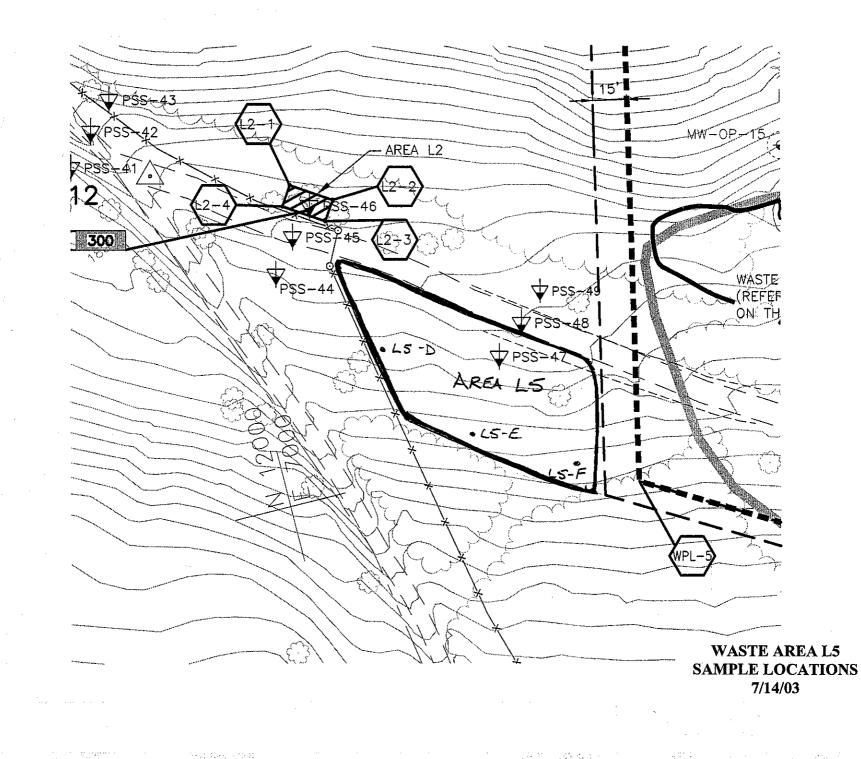
10.11.1

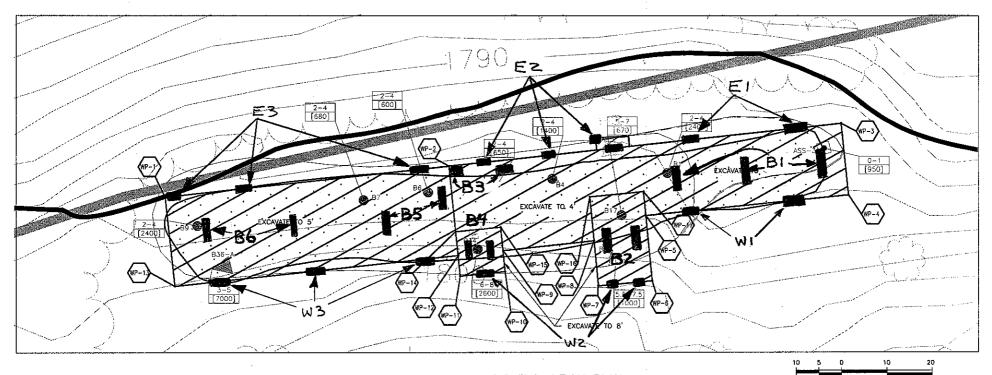
Earth Tech - RH Landfill Oversight RH Landfill Oversight - Special VOA analysis METHOD 8260 - TCL VOLATILE ORGANICS

TB-3 Client ID A04-9383 A4938319 Job No Lab ID 09/27/2004 Sample Date Reporting Sample Reporting Sample Reporting Reporting Sample Sample Limit Limit Value Value Value Limit Value Limit Unîts Analyte NA NA 1,1,2-Trichloro-1,2,2-trifluor UG/L Trichlorofluoromethane UG/L 5.0 NA ND NA NA NA 5.0 ND NA NA UG/L ND 5.0 NA Trichloroethene NA NA 25 NA ND UG/L Vinyl acetate NA NA 5.0 NA ND UG/L Vinyl chloride NA NA 15 NA ND UG/L Total Xylenes -IS/SURROGATE(S)-NA NA 50-200 NA 89 Chlorobenzene-D5 * * * * * * NA NA 50-200 NA 1,4-Difluorobenzene 91 NA NA NA 67 50-200 1,4-Dichlorobenzene-D4 NA NA 95 77-122 NA Toluene-D8 NA NA 84 74-120 NA p-Bromofluorobenzene NA NA 96 73-136 NA 1,2-Dichloroethane-D4


NA = Not Applicable ND = Not Detected

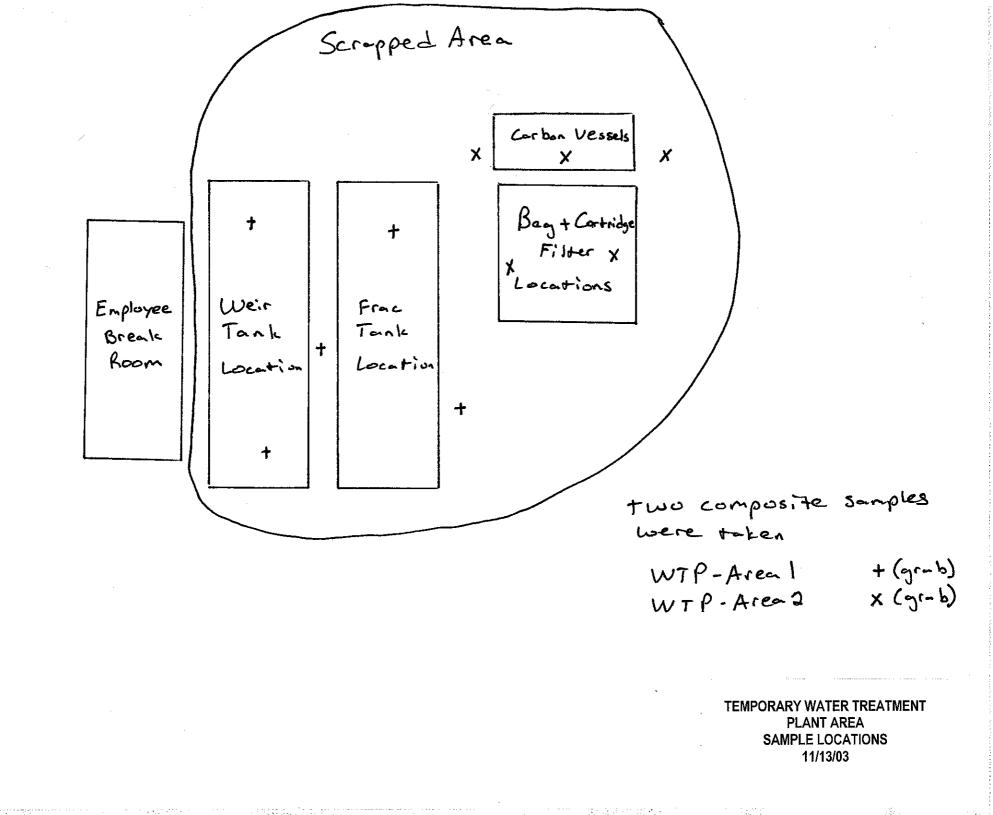
STL Buffalo

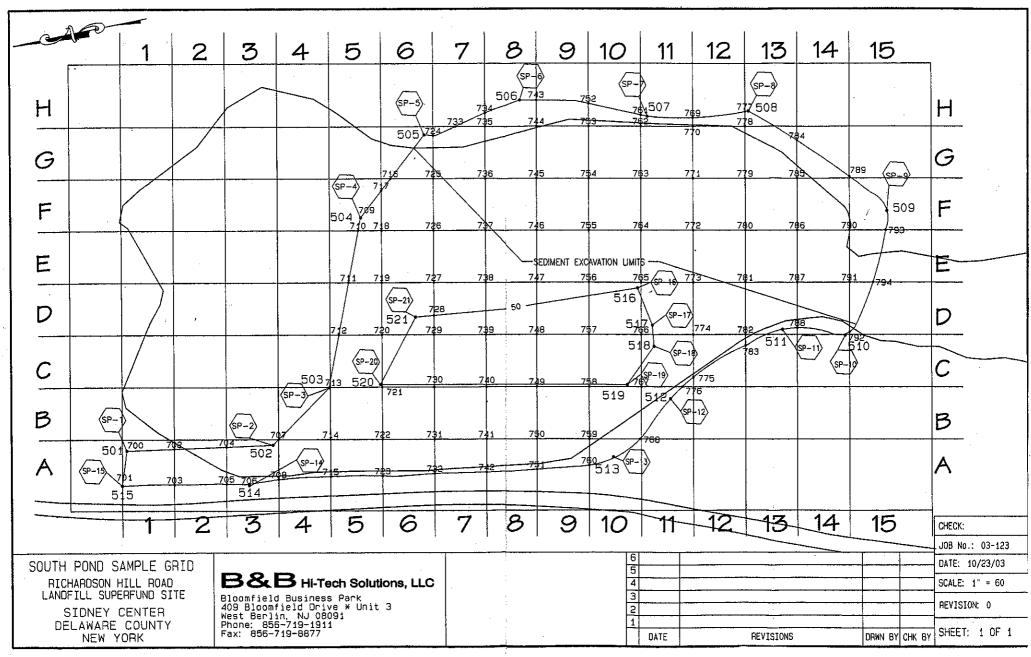

Rept: AN0326


F-5

CONFIRMATORY SAMPLE LOCATIONS

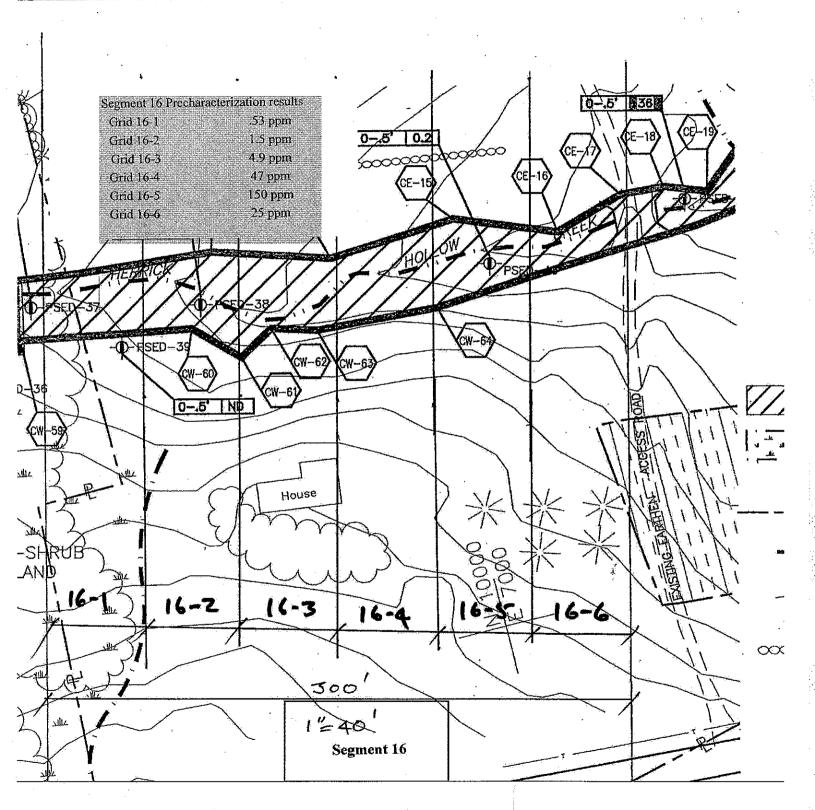
en. De la companya de la c

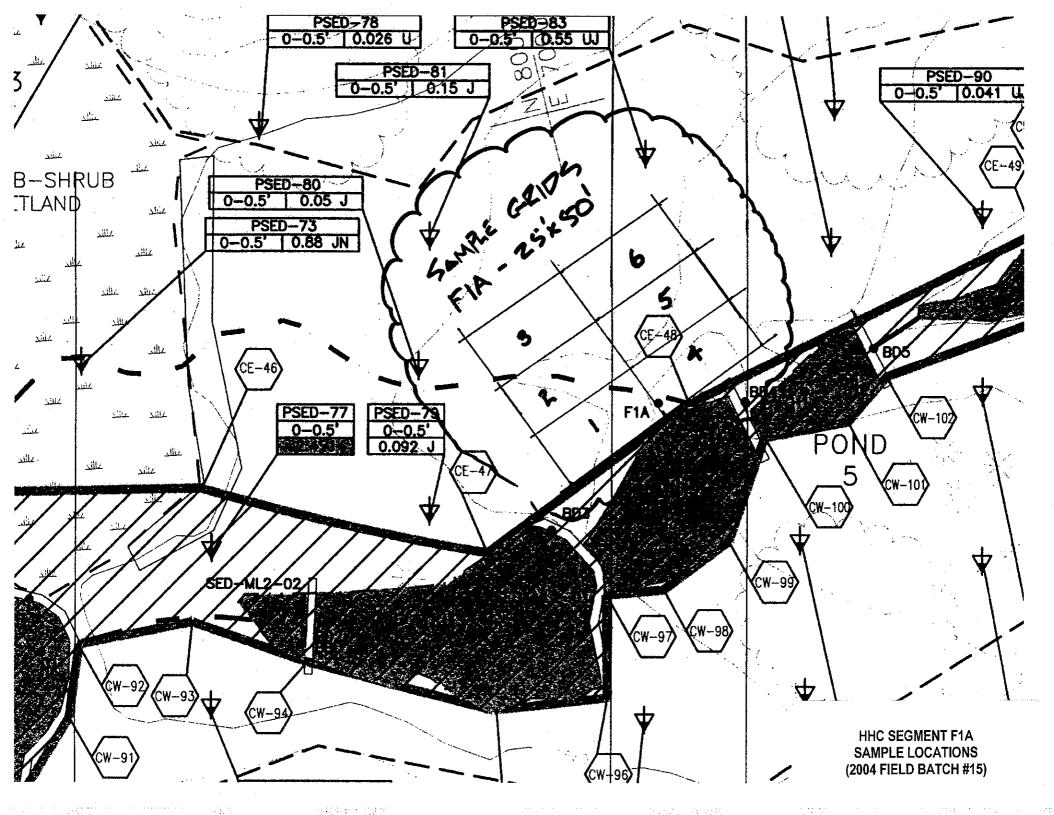


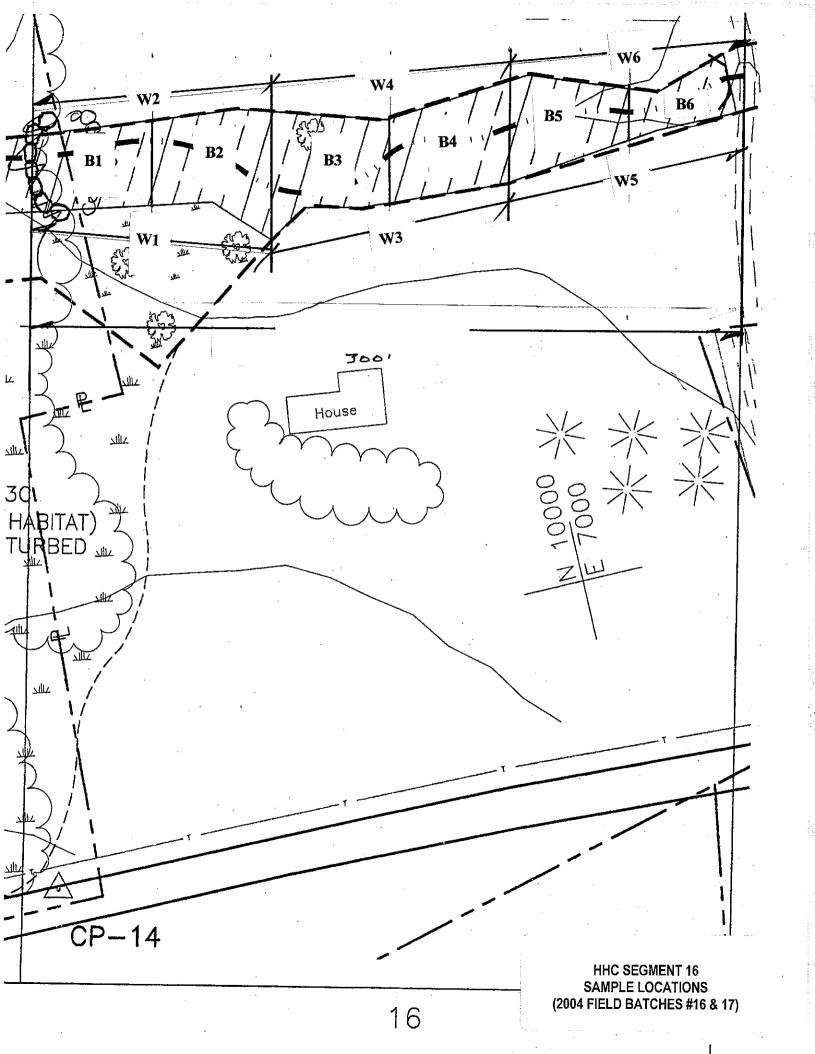


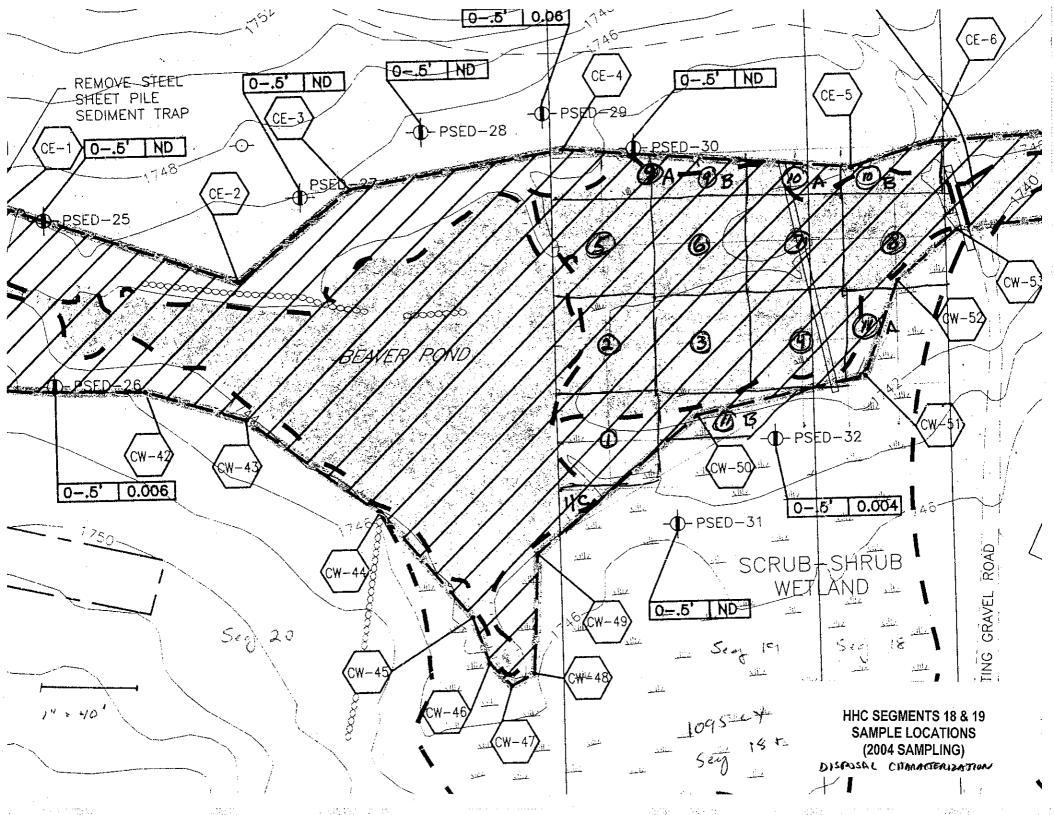
WASTE OIL PIT EXCAVATION PLAN SCALE: 1°=10'-0"

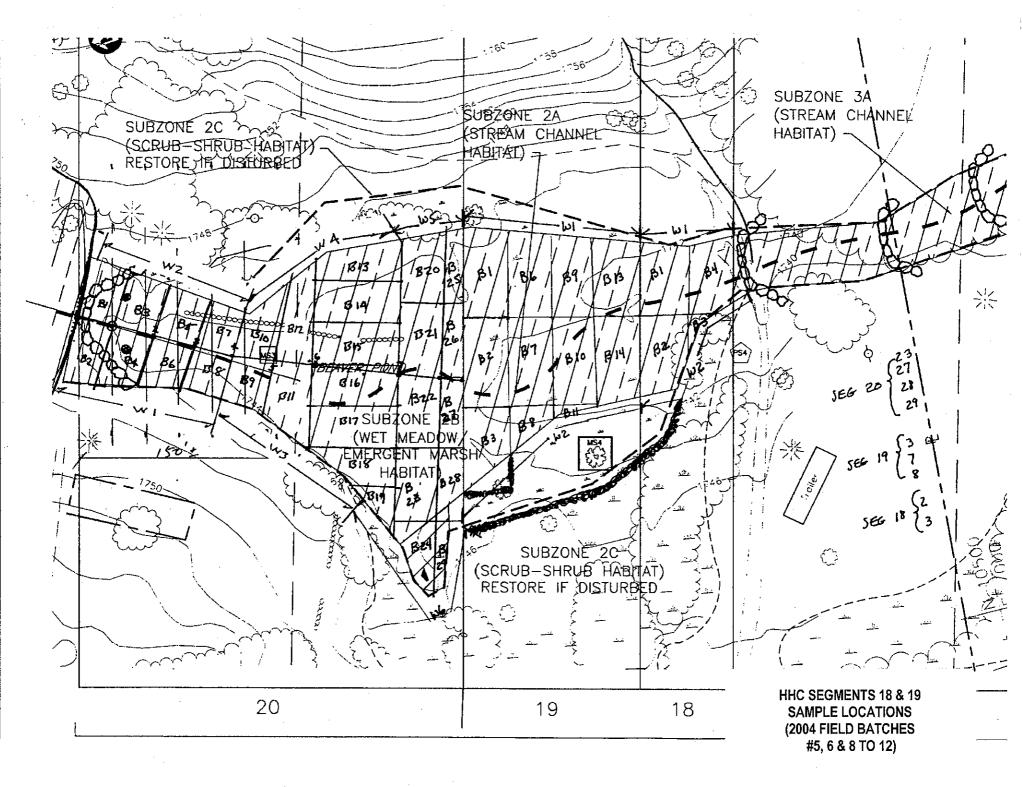
> WASTE OIL PIT SAMPLE LOCATIONS 10/28/03


SCALE: 1"=10"

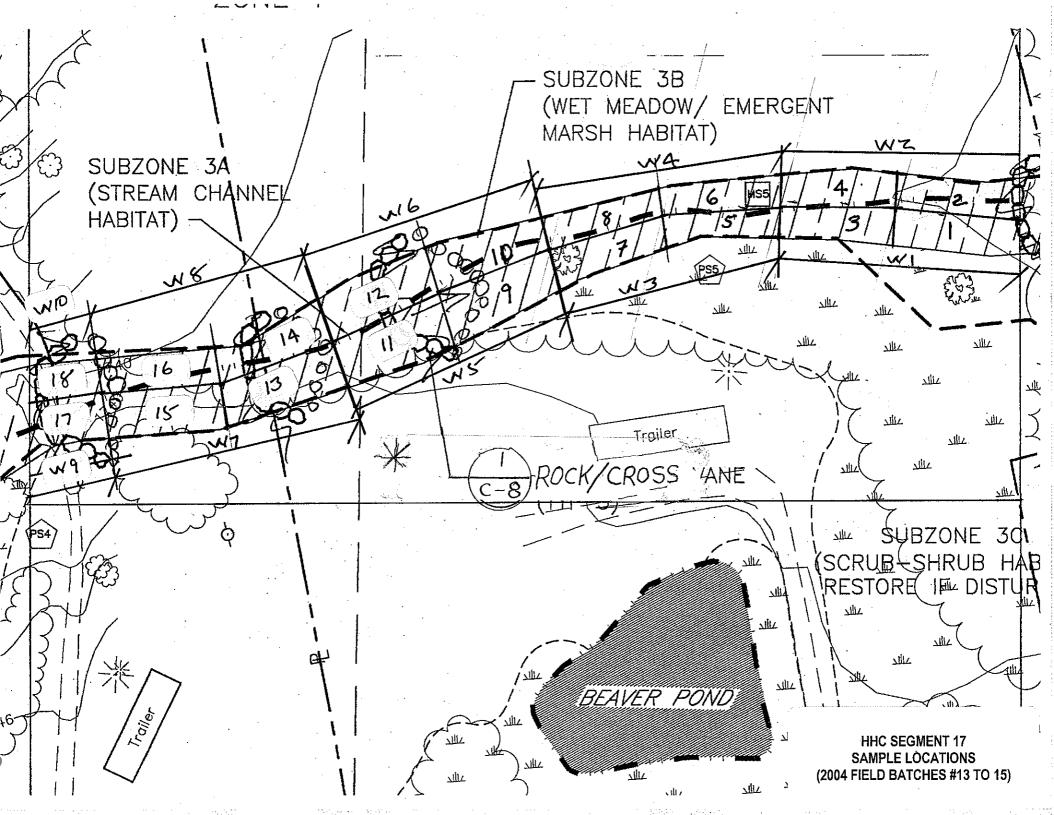


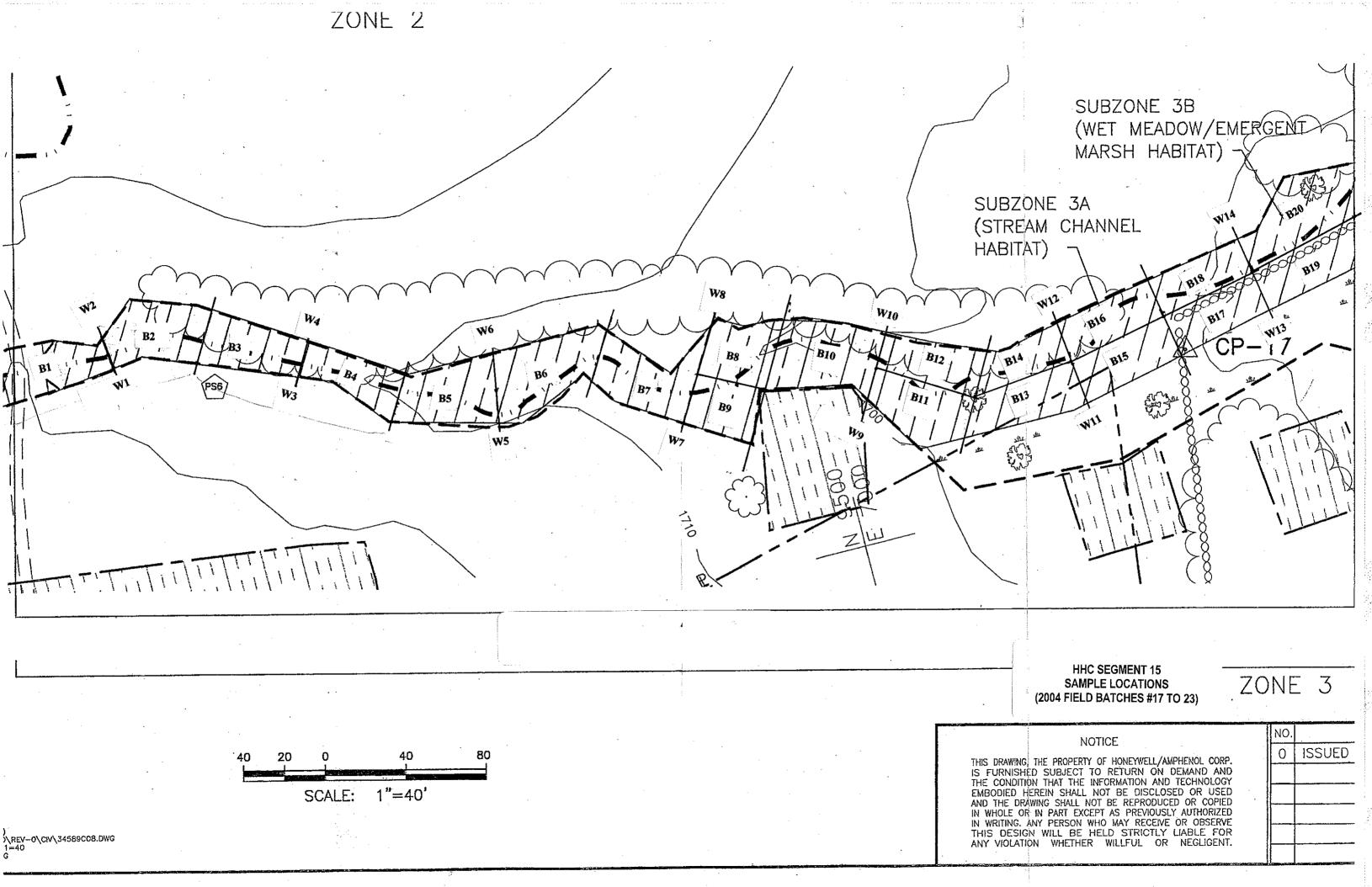

HHC SEGMENT 21 (South Pond) SAMPLE LOCATIONS (2004 FIELD BATCHES #1 TO 4, 7, 9, & 10)

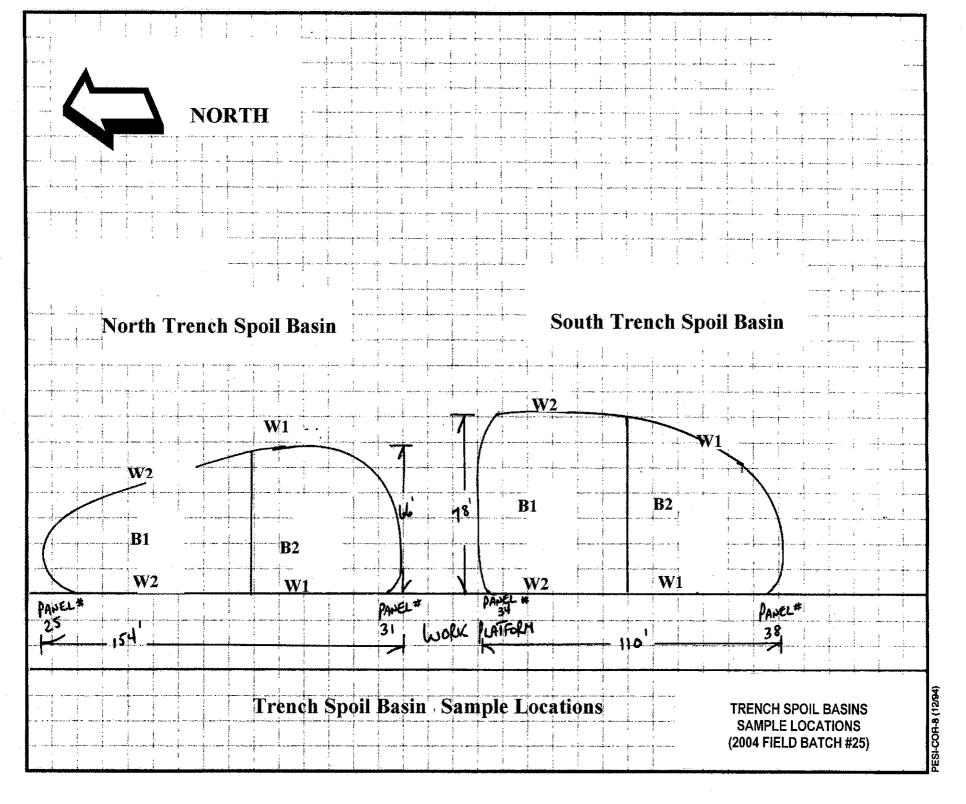

 (A_{1}, A_{2}, A_{3})



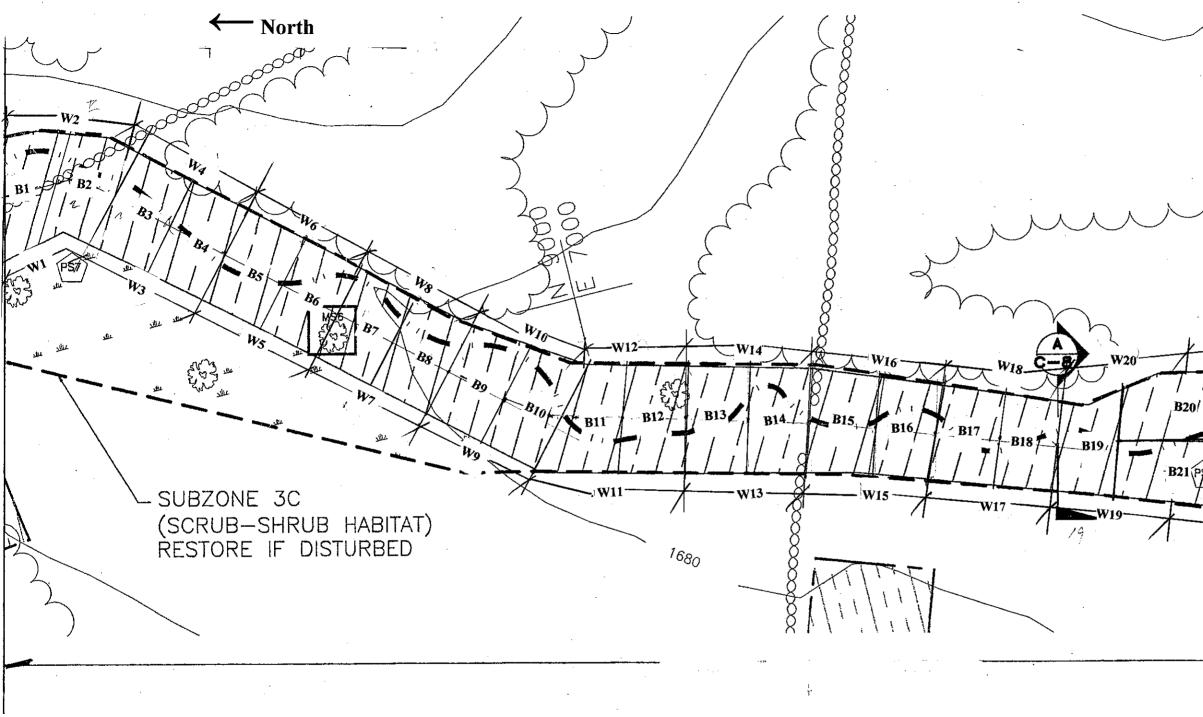
HHC SEGMENT 16 PRECHARACTERIZATION SAMPLING (2004 FIELD BATCH #12) DISPOSAL CHARACTERIZATION





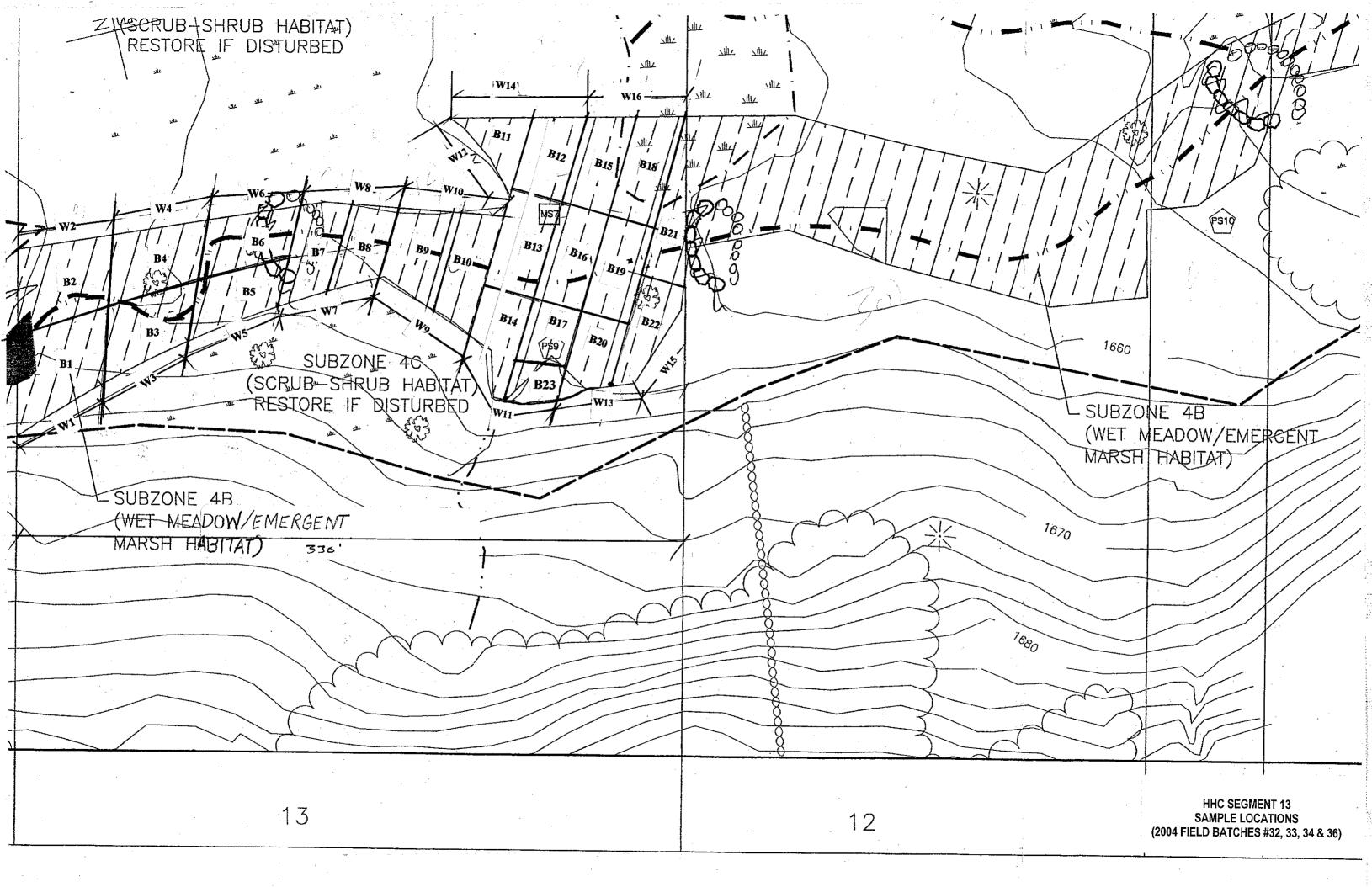


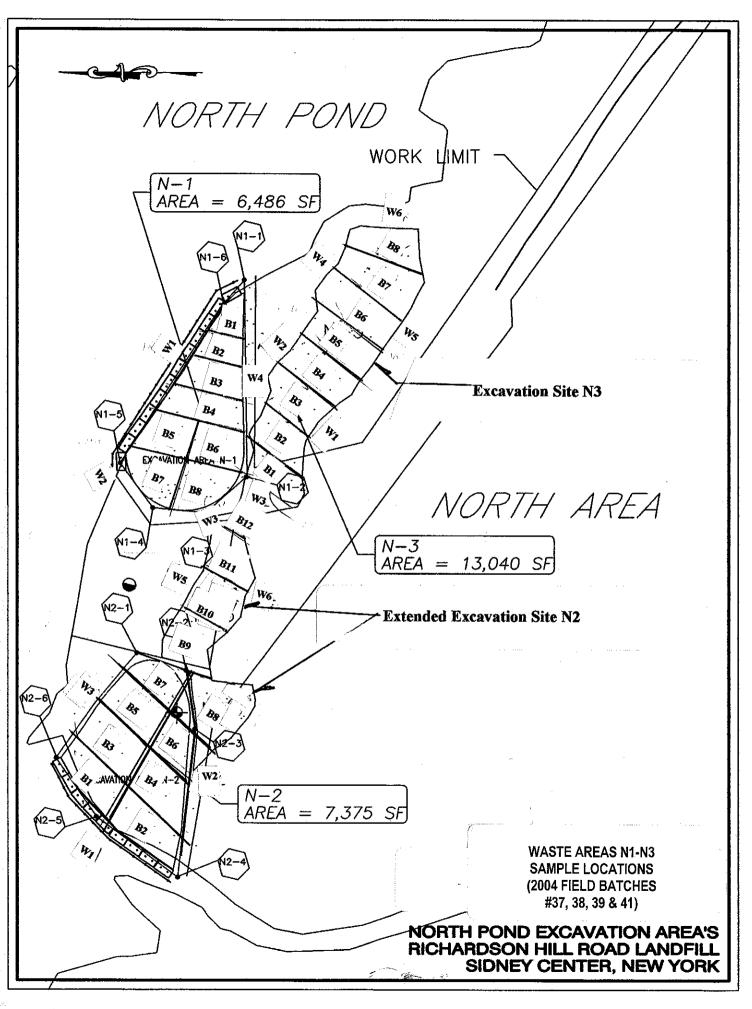
and and the second s



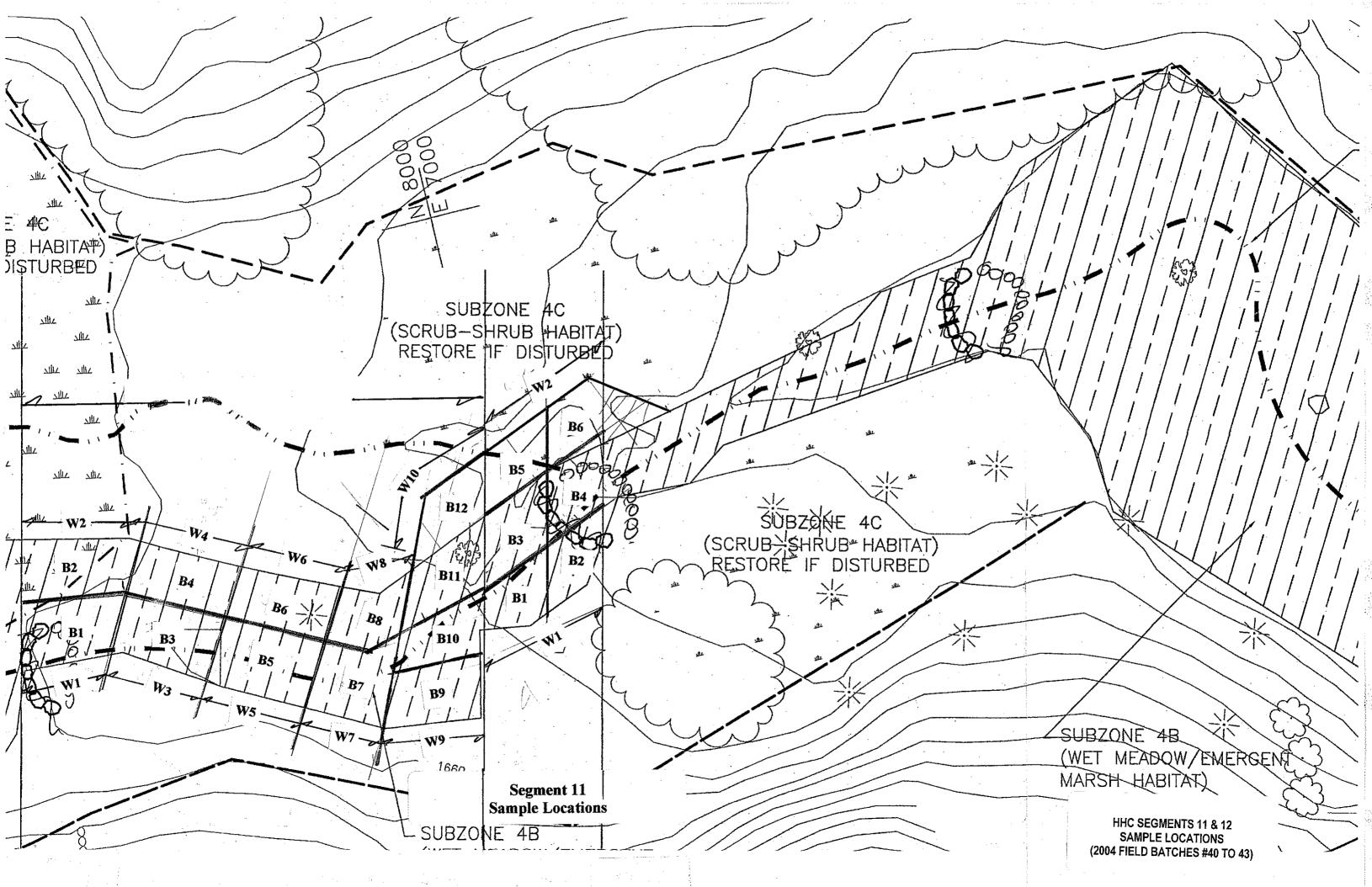
1991 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 -

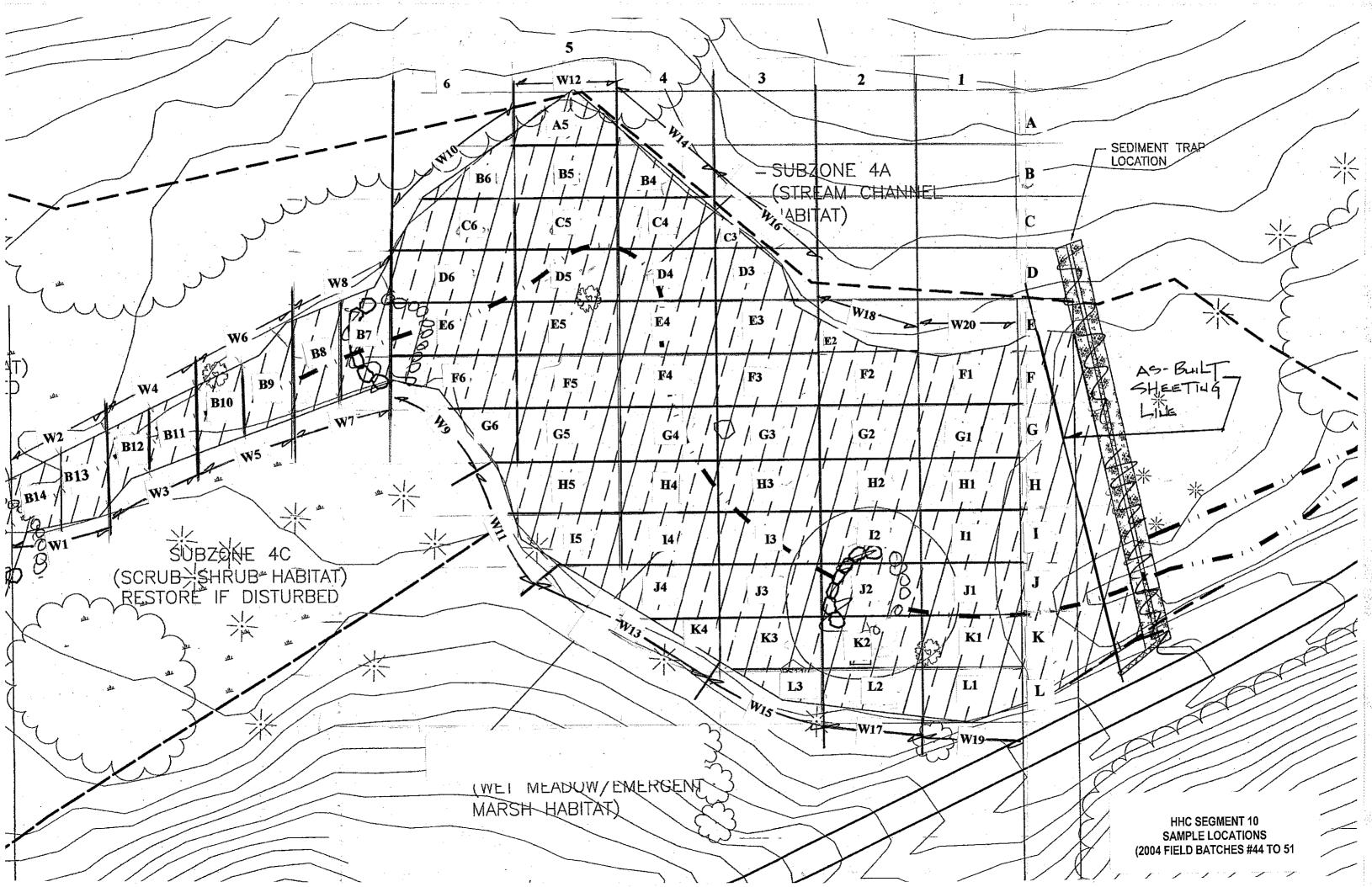
LUINE J

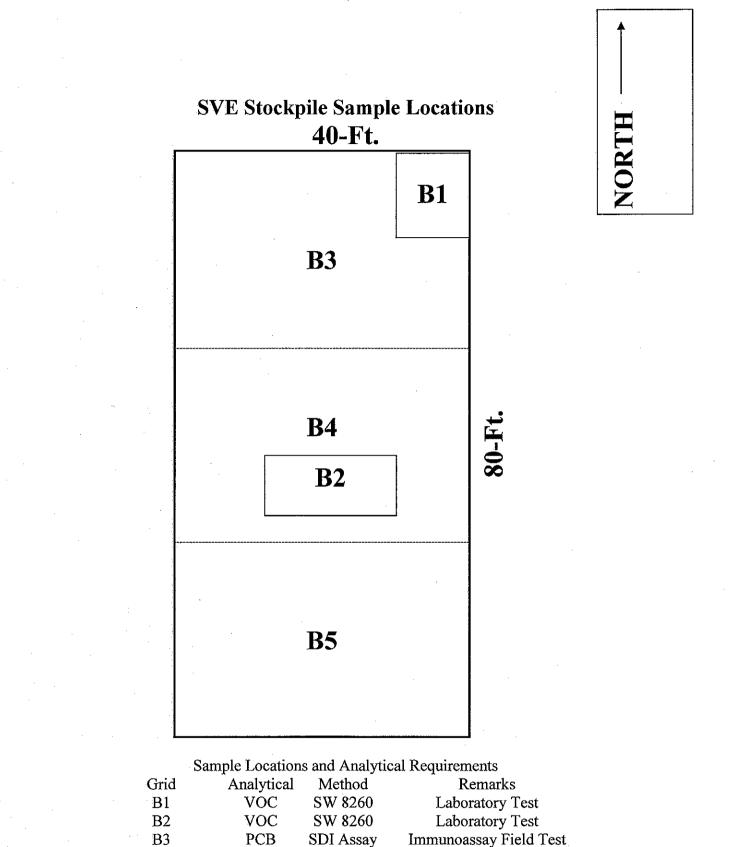




(CONT'D)


												the second division of	-
REVISION	BY	APPR.	APPR.	APPR.	APPR.	DATE	NO.	. REVISION	BY	APPR.	APPR.	APPR.	APF
FOR CONSTRUCTION	JAR	All L				8/20/02							L
		-							_				
			Ţ									· ·	ĺ
										<u> </u>			
				dat de baie de la tê			2430 G 1473 B					-	

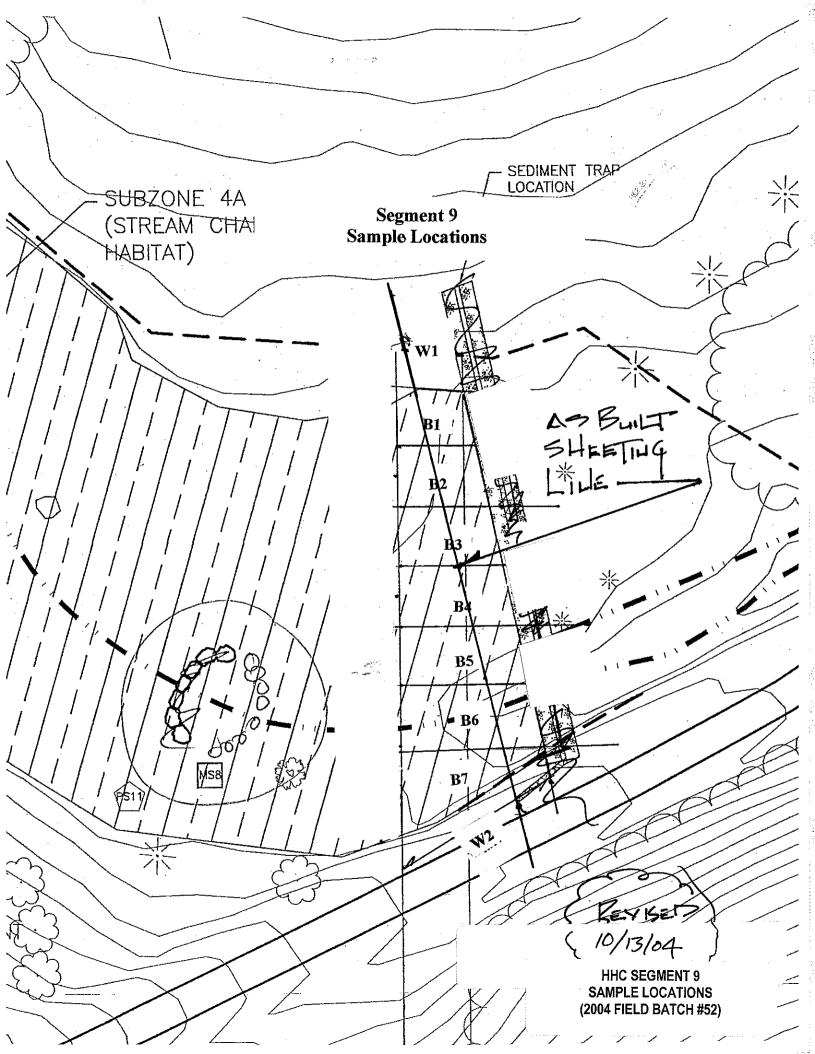

W22 B B W23 W23	W24 W24 W24 W24 W24 B24 B24 B26 B27 B27 B25 W25 W21 W25
PPR. DATE	REFERENCE
	HHC SEGMENT 14 SAMPLE LOCATIONS – (2004 FIELD BATCHES #26 TO 31)

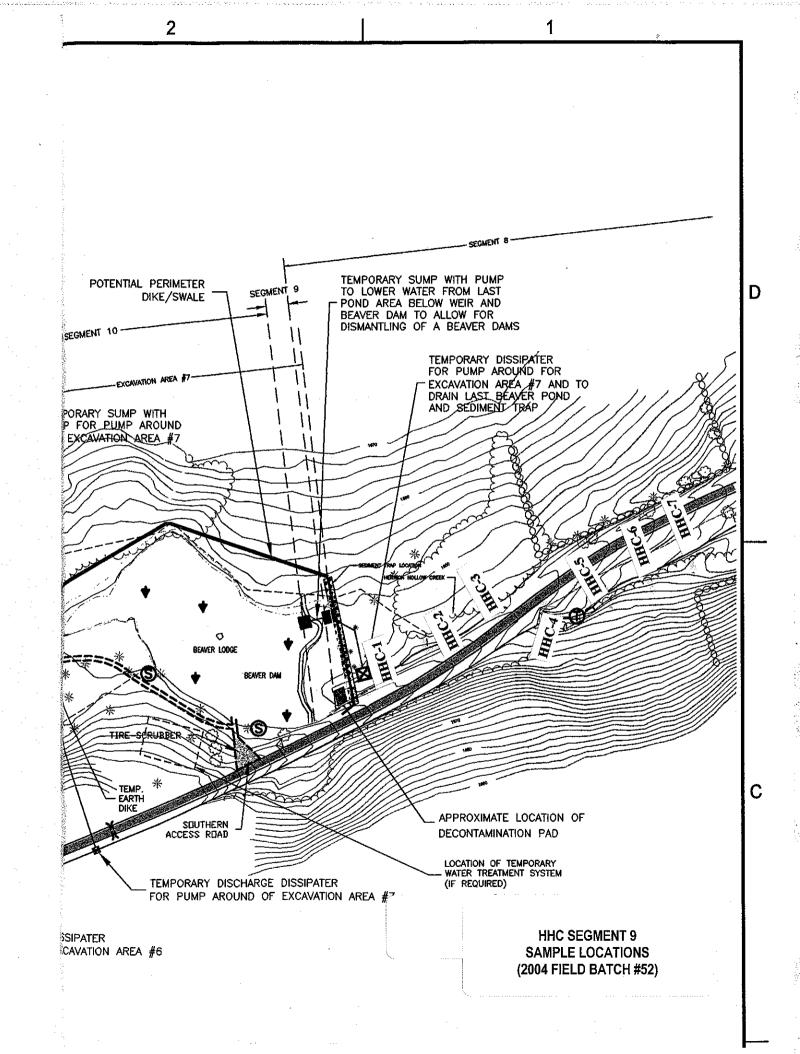


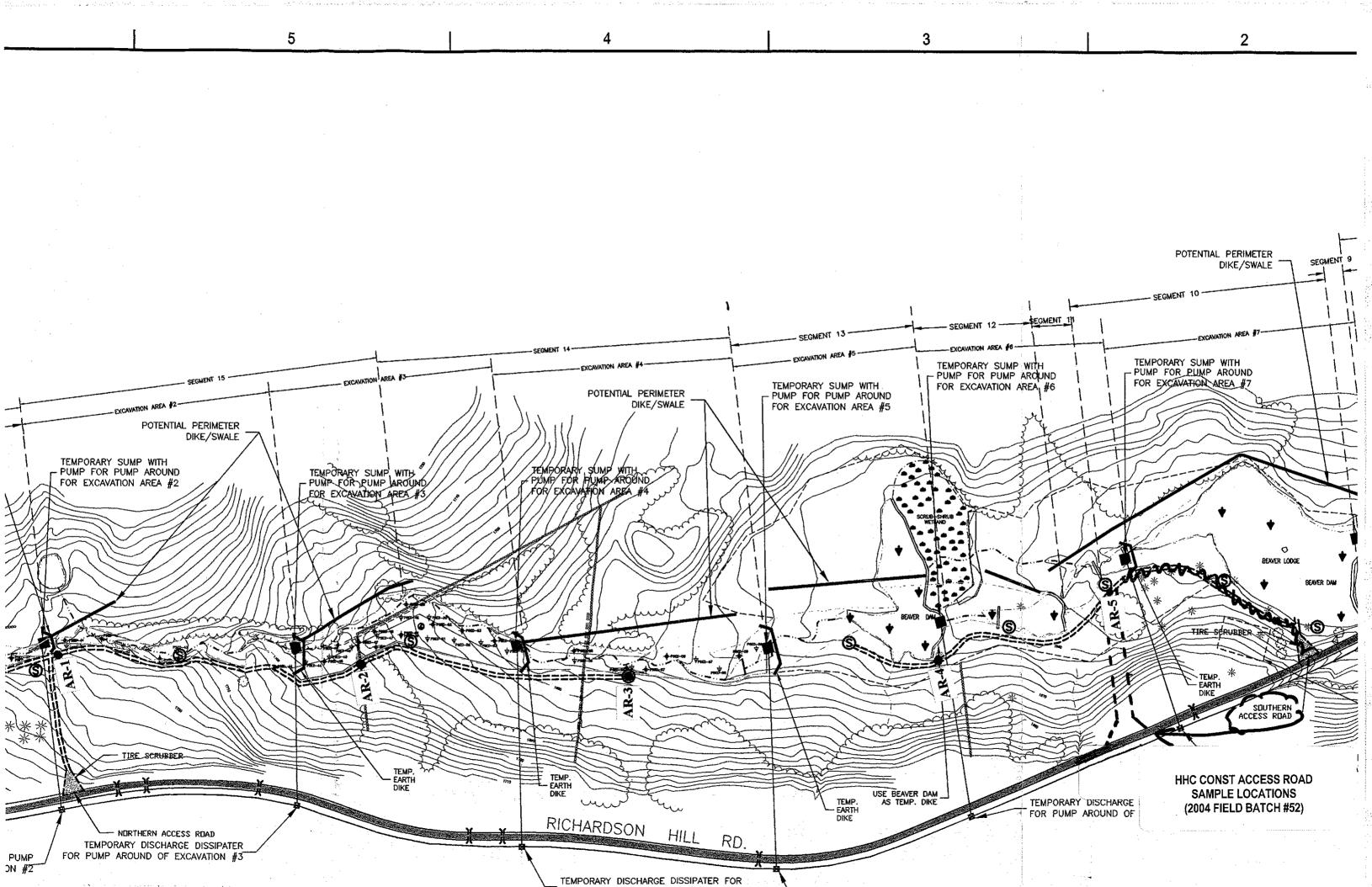
~

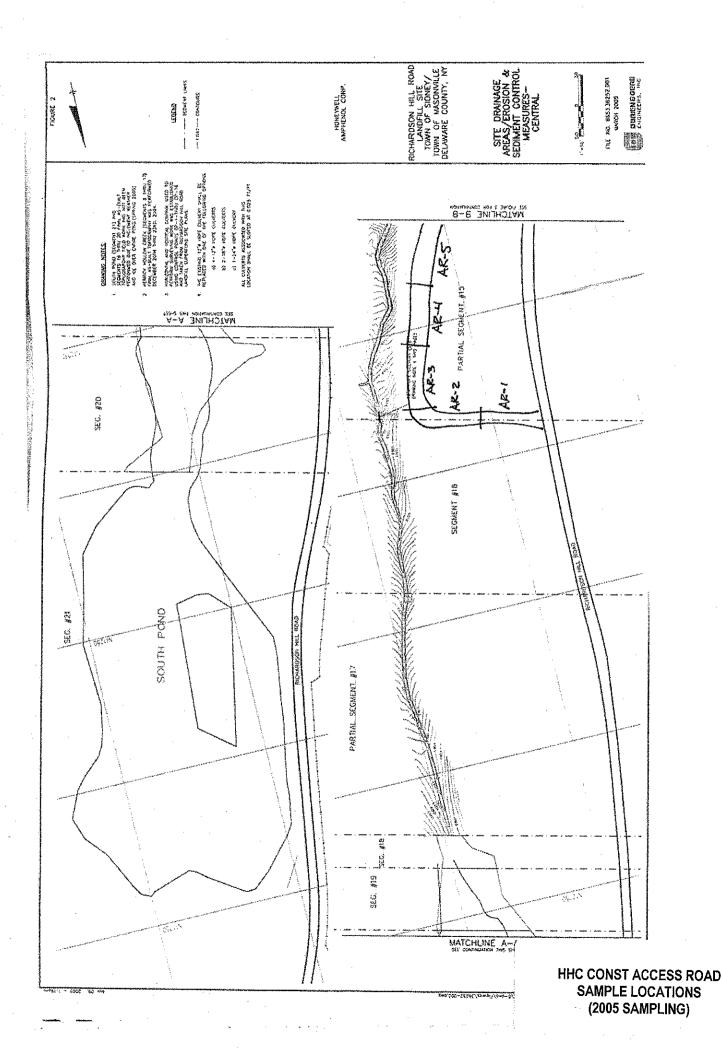
Assay	Immunoassay Field Test
Assay	Immunoassay Field Test
Assay	Immunoassay Field Test

B4

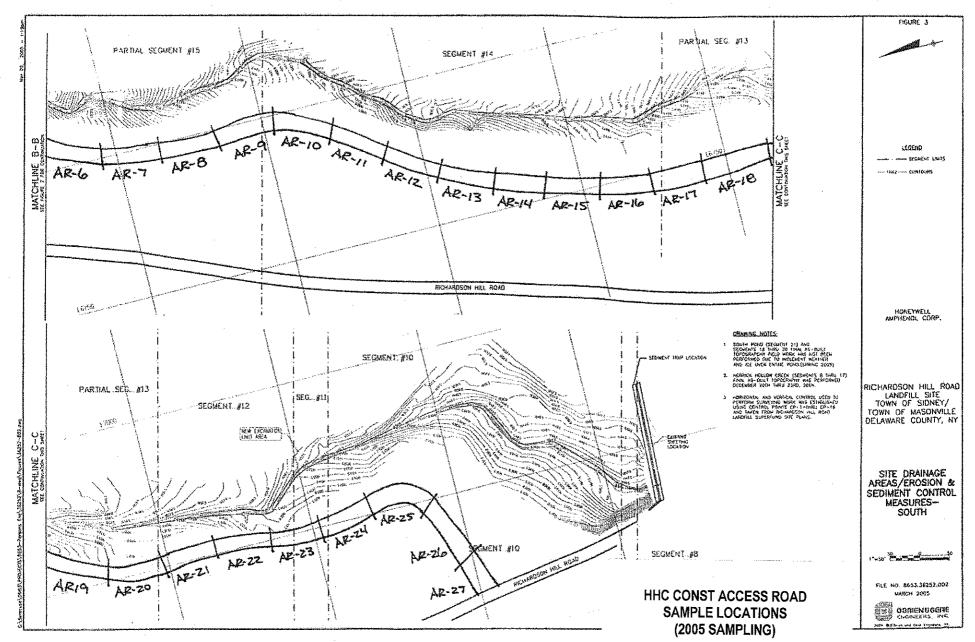

B5

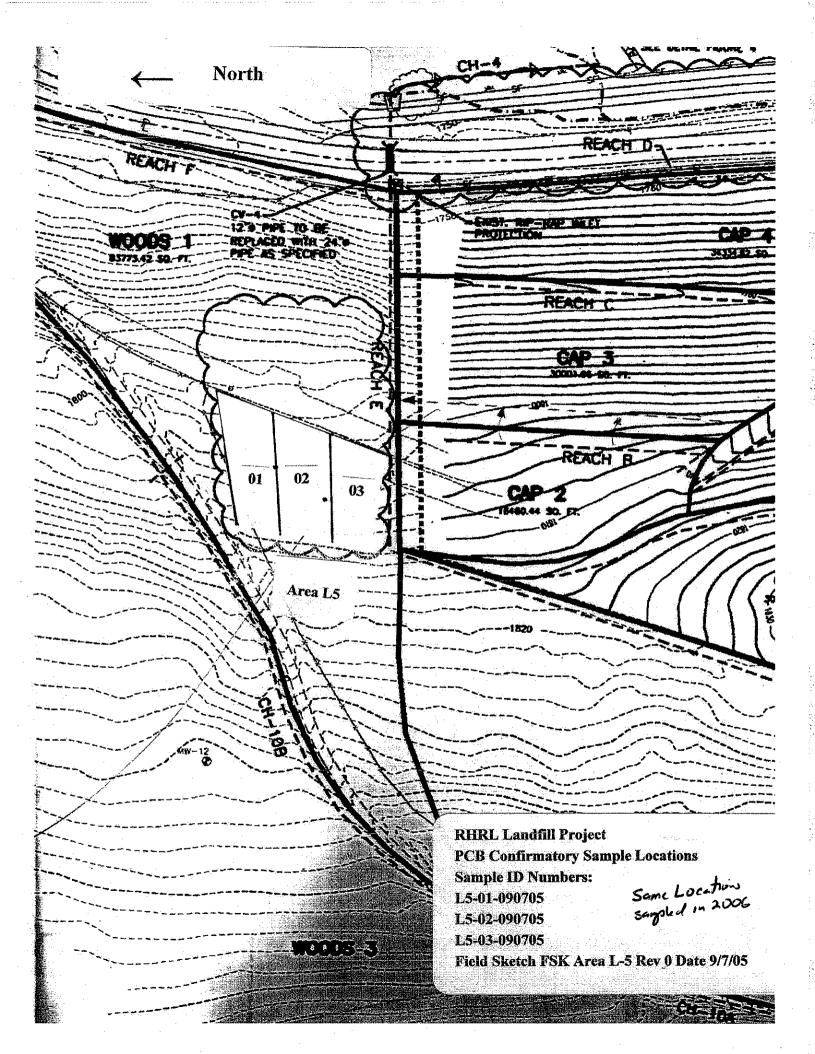

PCB


PCB


SDI SDI

SVE STOCKPILE LOCATION SAMPLE LOCATIONS (2004 FIELD BATCHES #48, 49 & 51)





81111 1111

F-6

DATA USABILITY SUMMARY REPORT

PARSONS

DATA USABILITY SUMMARY REPORT

RICHARDSON HILL ROAD LANDFILL

Prepared For:

HONEYWELL

101 Columbia Road P.O. Box 2105 Morristown, NJ 07962

Prepared By:

PARSONS

290 ELWOOD DAVIS ROAD SUITE 312 LIVERPOOL, NY 13088

AUGUST 2007

PARSONS

TABLE OF CONTENTS

Page

PARSONS

DN1-1	SECTION 1
TION RESULTS 2-1	SECTION 2
TION SUMMARY 3-1	SECTION 3

LIST OF TABLES

Table 2.1-1	Summary of S	ample Analyses an	d Usability-Soil	
-------------	--------------	-------------------	------------------	--

LIST OF ATTACHMENTS

ATTACHMENT A VALIDATED CONFIRMATORY LABORATORY DATA

SECTION 1

INTRODUCTION

Soil and sediment confirmatory samples were collected from the Richardson Hill Road Landfill (RHRL) site in Sidney, New York from May 27, 2003 through June 20, 2006 and analyzed for polychlorinated biphenyls (PCBs) using the USEPA SW-846 8082 analytical method. Analytical results from these samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Construction Quality Assurance Project Plan (Parsons, 2002), and
- USEPA Region II SOP HW-23B, Rev. 1, May 2002 "Validating PCB Compounds By SW-846 Method 8082" (SOP HW-23B).

The analytical laboratories for this project were O'Brien & Gere Laboratories, Inc. (OBG) and Adirondack Environmental Services, Inc. (AES). These laboratories were certified by the New York Department of Health (NYDOH) Environmental Laboratory Analytical Program (ELAP).

The data qualifications resulting from the data validation review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed in Section 2. The laboratory data were reviewed and were qualified with the following validation flags:

"UJ" – nondetected and estimated at the value given,

"J" – estimated at the value given, and

"N" – presumptive evidence at the value given.

The validated confirmatory laboratory data were summarized, tabulated, and presented in Attachment A.

PARSONS

SECTION 2

DATA VALIDATION RESULTS

Data review has been completed for data packages generated by OBG and AES containing confirmatory samples collected from the site. The specific samples contained in these data packages, the analyses performed, and an usability summary are presented in Table 2.1.

All of these samples were shipped under a COC record and received at the laboratories within one to five days of sampling. All samples were received intact and in good condition at the laboratories, except it was noted that sample shipping container coolers received at OBG were within the temperature range of 11-22°C for sample delivery group (SDG) # 5769, 8332, 8377, 8436, 8488, 8539, 8564, 8703, 8725, 8927, and 0505073. In some cases, ice was present, however, in other cases, the ice had melted. Therefore, sample results contained within these SDGs were considered estimated with positive results qualified "J" and nondetected results qualified "UJ".

It was also noted that the following samples contained less than 50% solids (i.e., the sample contained more than 50% water): F1A-01-070804 (28%), F1A-02-070804 (26%), F1A-03-070804 (34%), F1A-04-070804 (30%), F1A-05-070804 (39%), and F1A-06-070804 (30%). All of these samples contained greater than 10% solids. Therefore, the confirmatory PCB results for these samples were considered estimated and qualified "J".

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was approximately 21-43 days for the confirmatory samples. The data packages received from the laboratories were paginated, complete, and overall were of good quality. Comments on specific quality control (QC) and other requirements are discussed within this section.

Data validation was performed for all samples in accordance with the USEPA Region II SOP HW-23B. The validated confirmatory laboratory data are summarized and presented in Attachment A.

The following items were reviewed for compliancy in the PCB analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank contamination

- Initial calibrations
- Verification calibrations
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of surrogate recoveries, MS/MSD precision and accuracy, LCS recoveries, and sample result identification, as described below.

Surrogate recoveries

There were a number of sample surrogate recoveries on the quantitation columns and confirmation columns that were outside the QC limit of 30-150%R. However, validation qualification of the samples was not required due to sample dilutions.

MS/MSD Precision and Accuracy

All MS/MSD precision (relative percent difference; RPD) and accuracy (percent recovery; %R) measurements were compliant and within QC acceptance ranges with the exception of the MS/MSD recoveries for the spiked PCB-1016 and PCB-1260 during the spiked analyses of WOP 1, WOP 8, Segment 20-B1-062404, Segment 20-B21-062404, SVE-B3-100904, AR-3, and AR-27. Validation qualification of the unspiked sample results was not warranted due to sample dilutions, masking of the spiked compounds, and/or because PCB-1016 and PCB-1260 were not detected in the unspiked samples.

LCS Recoveries

All LCS recoveries were compliant and within QC acceptance criteria with the exception of the high LCS recovery on the primary column for PCB-1016 (125%R; QC limit 71-118%R) associated with samples collected on 8/31/04 through 9/16/04. Validation qualification of these samples was not warranted for this compound since PCB-1016 was not detected in these samples.

Sample Result Identification

All positive confirmatory PCB sample results were confirmed present using a secondary column. The percent difference (%D) between the primary and secondary columns were less than 25% for all confirmed PCB results with the exception of the following PCB sample results:

PCB-1248 in samples L1-001 (46%D), RHRL-L-2 (44%D), Segment 20-B2-062404 (30%D), Segment 20-B10-062404 (31%D), Segment 20-B12-062404 (30%D),

PARSONS P:\742577\wp\Phase 2 Closure Report\Final Interim RA Report - Remedial Work Element I\Appendicies\Appendix F - Confirmatory Analytical Data\Data Summary RPT.doc August 15, 2007

Segment 20-B16-062404 (31%D), Segment 18-B2 (92%D), F1A-03-070804 (33%D), F1A-05-070804 (32%D), F1A-06-070804 (45%D), Segment 17-B5-071604 (26%D), Segment 17-B10-071604 (30%D), Segment 17-W6-071604 (56%D), Segment 15-B7-072804 (26%D), Segment 13-W15-091604 (70%D), Segment 12-W1-092204 (47%D), Segment 12-B5-092304 (100%D), Segment 12-B10-092504 (59%D), Segment 12-B11-092504 (51%D), Segment 11-B4-092704 (59%D), AR-2-101304 (27%D), AR-13 (32.8%D), AR-19 (26.7%D), AR-20 (31.9%D), AR-24 (26.4%D), and AR-27 (26.2%D);

- PCB-1254 in samples Segment 15-W12-080404 (79%D), Segment 15-W13-080404 (37%D), Segment 14-B2-082304 (64%D), Segment 14-B10-082304 (54.8%D), Segment 14-B19-083104 (31%D), Segment 14-W25-083104 (71%D), Segment 9-W1-101304 (57%D), and HHC-6-101304 (47%D); and
- PCB-1260 in sample Segment 13-W15-091604 (103%D).

Therefore, these results were considered estimated and qualified "J". PCB results where %D exceeded 90% between the dual columns were considered estimated, tentatively identified, and qualified "JN" samples since overlapping PCBs and matrix interferences were present for the affected samples.

Usability

All confirmatory PCB sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The confirmatory PCB data presented by OBG and AES were 100% complete with all data considered usable and valid. The validated data are tabulated, summarized, and presented in Attachment A.

TABLE 2.1

	SAMPLE						
SAMPLE ID	MATRI	DATE	PCBs				
	<u>X</u>						
RHRL-L-2	Soil	5/29/03	OK				
L1-001	Soil	6/18/03	OK				
L2-001	Soil	6/27/03	OK				
TP-1	Soil	7/16/03	OK				
TP-4	Soil	7/16/03	OK				
WOP B-1	Soil	10/28/03	OK				
WOP B-2	Soil	10/28/03	OK				
WOP B-3	Soil	10/28/03	OK				
WOP B-4	Soil	10/28/03	OK				
WOP B-5	Soil	10/28/03	OK				
WOP B-6	Soil	10/28/03	OK				
WOP E-1	Soil	10/28/03	OK				
WOP E-2	Soil	10/28/03	OK				
WOP E-3	Soil	10/28/03	OK				
WOP W-1	Soil	10/28/03	OK				
WOP W-2	Soil	10/28/03	OK				
WOP W-3	Soil	10/28/03	OK				
WOP 1	Soil	10/28/03	OK				
WOP 2	Soil	10/28/03	OK				
WOP 2A	Soil	10/28/03	OK				
WOP 3	Soil	10/28/03	OK				
WOP 4	Soil	10/28/03	OK				
WOP 5	Soil	10/28/03	OK				
WOP 6	Soil	10/28/03	OK				
WOP 7	Soil	10/28/03	OK				
WOP 8	Soil	10/28/03	OK				
SP-17-G06-061204	Soil	6/12/04	OK				
SP-18-H08-061204	Soil	6/12/04	OK				
SP-21-E08-061504	Soil	6/15/04	OK				
SP-22-E15-061504	Soil	6/15/04	OK				
SP-15-D09-061704	Soil	6/17/04	OK				
SP-16-C09-061704	Soil	6/17/04	OK				
SP-17-C11-061704	Soil	6/17/04	OK				
SP-33-B07-061704	Soil	6/17/04	OK				
SP-34-C05-061704	Soil	6/17/04	OK				

SUMMARY OF SAMPLE ANALYSES AND USABILITY SOIL AND SEDIMENT – RHRL CONFIRMATORY SAMPLES

SUMMARY OF SAMPLE ANALYSES AND USABILITY SOIL AND SEDIMENT– RHRL CONFIRMATORY SAMPLES

SAMPLE ID	MATRI X	SAMPLE <u>DATE</u>	PCBs
Segment 20-B1-062404	Soil	6/24/04	OK
Segment 20-B2-062404	Soil	6/24/04	OK
Segment 20-B3-062404	Soil	6/24/04	OK
Segment 20-B4-062404	Soil	6/24/04	OK
Segment 20-B5-062404	Soil	6/24/04	OK
Segment 20-B6-062404	Soil	6/24/04	OK
Segment 20-B7-062404	Soil	6/24/04	OK
Segment 20-B8-062404	Soil	6/24/04	OK
Segment 20-B9-062404	Soil	6/24/04	OK
Segment 20-B10-062404	Soil	6/24/04	OK
Segment 20-B11-062404	Soil	6/24/04	OK
Segment 20-B12-062404	Soil	6/24/04	OK
Segment 20-B13-062404	Soil	6/24/04	OK
Segment 20-B14-062404	Soil	6/24/04	OK
Segment 20-B15-062404	Soil	6/24/04	OK
Segment 20-B16-062404	Soil	6/24/04	OK
Segment 20-B17-062404	Soil	6/24/04	OK
Segment 20-B18-062404	Soil	6/24/04	OK
Segment 20-B19-062404	Soil	6/24/04	OK
Segment 20-B20-062404	Soil	6/24/04	OK
Segment 20-B21-062404	Soil	6/24/04	OK
Segment 20-W1-062404	Soil	6/24/04	OK
Segment 20-W2-062404	Soil	6/24/04	OK
Segment 20-W3-062404	Soil	6/24/04	OK
Segment 20-W4-062404	Soil	6/24/04	OK
SP-C6-062404	Soil	6/24/04	OK
SP-D6-062404	Soil	6/24/04	OK
Segment 18-B2-070104	Soil	7/1/04	OK
Segment 18-B3-070104	Soil	7/1/04	OK
Segment 19-B14-070104	Soil	7/1/04	OK
F1A-01-070804	Soil	7/8/04	OK
F1A-02-070804	Soil	7/8/04	OK
F1A-03-070804	Soil	7/8/04	OK
F1A-04-070804	Soil	7/8/04	OK
F1A-05-070804	Soil	7/8/04	OK
F1A-06-070804	Soil	7/8/04	OK

SUMMARY OF SAMPLE ANALYSES AND USABILITY SOIL AND SEDIMENT– RHRL CONFIRMATORY SAMPLES

SAMPLE ID	<u>MATRI</u> <u>X</u>	SAMPLE <u>DATE</u>	<u>PCB</u>
Segment 17-B5-071604	Soil	7/16/04	OK
Segment 17-B10-071604	Soil	7/16/04	OK
Segment 17-B15-071604	Soil	7/16/04	OK
Segment 17-W6-071604	Soil	7/16/04	OK
Segment 16-W3-072104	Soil	7/22/04	OK
Segment 16-W4-072104	Soil	7/22/04	OK
Segment 15-B7-072804	Soil	7/29/04	OK
Segment 15-W5-072804	Soil	7/29/04	OK
Segment 15-B14-080204	Soil	8/3/04	OK
Segment 15-W10-080204	Soil	8/3/04	OK
Segment 15-W12-080404	Soil	8/5/04	OK
Segment 15-W13-080404	Soil	8/5/04	OK
NB-B1-082004	Soil	8/20/04	OK
NB-B1-082004	Soil	8/20/04	OK
Segment 14-W1-082304	Soil	8/24/04	OK
Segment 14-B2-082304	Soil	8/24/04	OK
Segment 14-B10-082404	Soil	8/24/04	OK
Segment 14-W14-082504	Soil	8/26/04	OK
Segment 14-B19-083104	Soil	8/31/04	OK
Segment 14-W25-090104	Soil	9/1/04	OK
Segment 14-W28-090204	Soil	9/2/04	OK
Segment 13-W3-091304	Soil	9/13/04	OK
Segment 13-W10-091404	Soil	9/14/04	OK
Segment 13-B12-091404	Soil	9/14/04	OK
N2-B6-091504	Soil	9/15/04	OK
Segment 13-W15-091604	Soil	9/16/04	OK
N2-B8-091604	Soil	9/16/04	OK
N1-W4-092104	Soil	9/21/04	OK
N1-B1-092104	Soil	9/21/04	OK
N3-B4-092204	Soil	9/22/04	OK
Segment 12-W1-092204	Soil	9/22/04	OK
Segment 12-B5-092304	Soil	9/23/04	OK
Segment 12-B10-092504	Soil	9/25/04	OK
Segment 12-B11-092504	Soil	9/25/04	OK
N3-W5-092304	Soil	9/23/04	OK

SUMMARY OF SAMPLE ANALYSES AND USABILITY SOIL AND SEDIMENT– RHRL CONFIRMATORY SAMPLES

SAMPLE ID	<u>MATRI</u> <u>X</u>	SAMPLE <u>DATE</u>	<u>PCB</u> <u>s</u>
Segment 11-B4-092704	Soil	9/27/04	OK
Segment 10-B10-093004	Soil	9/30/04	OK
Segment 10-B7-100104	Soil	10/1/04	OK
Segment 10-C4-100404	Soil	10/4/04	OK
Segment 10-E3-100504	Soil	10/5/04	OK
Segment 10-G1-100704	Soil	10/7/04	OK
SVE-B3-100804	Soil	10/8/04	OK
SVE-B3-100904	Soil	10/9/04	OK
Segment 10-L3-101104	Soil	10/11/04	OK
Segment 10-K3-101204	Soil	10/12/04	OK
Segment 10-K4-101204	Soil	10/12/04	OK
Segment 10-J4-101204	Soil	10/12/04	OK
Segment 9-W1-101304	Soil	10/13/04	OK
AR-2-101304	Soil	10/13/04	OK
HHC-6-101304	Soil	10/13/04	OK
SP-B1-110604	Soil	11/6/04	OK
AR-1	Soil	4/28/05	OK
AR-2	Soil	4/28/05	OK
AR-3	Soil	4/28/05	OK
AR-4	Soil	4/28/05	OK
AR-5	Soil	4/28/05	OK
AR-6	Soil	4/28/05	OK
AR-7	Soil	4/28/05	OK
AR-8	Soil	4/28/05	OK
AR-9	Soil	4/28/05	OK
AR-10	Soil	4/28/05	OK
AR-11	Soil	4/28/05	OK
AR-12	Soil	4/28/05	OK
AR-13	Soil	4/28/05	OK
AR-14	Soil	4/28/05	OK
AR-15	Soil	4/28/05	OK
AR-16	Soil	4/28/05	OK
AR-17	Soil	4/28/05	OK
AR-18	Soil	4/28/05	OK

	SAMPLE ID	MATRI X	SAMPLE <u>DATE</u>	PCB
AR-19		Soil	4/28/05	<u>s</u> OK
AR-20		Soil	4/28/05	OK
AR-21		Soil	4/28/05	OK
AR-22		Soil	4/28/05	OK
AR-23		Soil	4/28/05	OK
AR-24		Soil	4/28/05	OK
AR-25		Soil	4/28/05	OK
AR-26		Soil	4/28/05	OK
AR-27		Soil	4/28/05	OK
LC-001		Soil	5/12/05	OK
LC-002		Soil	5/12/05	OK
LC-003		Soil	5/12/05	OK
L5-01		Soil	6/20/06	OK
L5-01-1		Soil	6/20/06	OK
L5-02		Soil	6/20/06	OK
L5-03		Soil	6/20/06	OK
TOTAL SA	AMPLES			156

SUMMARY OF SAMPLE ANALYSES AND USABILITY SOIL AND SEDIMENT– RHRL CONFIRMATORY SAMPLES

NOTES: OK - Sample analysis considered valid and usable.

SECTION 3

DATA VALIDATION SUMMARY

Soil and sediment confirmatory samples collected from the site were analyzed for PCBs using the USEPA SW-846 8082 analytical method. Certain reported results for the PCB samples were considered estimated due to dual column confirmation percent differences, sample percent moisture, and shipping cooler temperature upon laboratory receipt. The validated data are tabulated, summarized, and presented in Attachment A. The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The PCB data were 100% complete with all data considered usable and valid.

PARSONS P:\742577\wp\Phase 2 Closure Report\Final Interim RA Report - Remedial Work Element I\Appendicies\Appendix F - Confirmatory Analytical Data\Data Summary RPT.doc August 15, 2007

1

ATTACHMENT A

VALIDATED CONFIRMATORY LABORATORY DATA

RICHARDSON HILL ROAD LANDFILL

SIDNEY, NEW YORK

SIDNET, NEW YORK													
Sample Identification	ntification Date				Location	Grid		Samples Colle	cted by Parso	ons		Samples Collected by	
	T di pose				Immunoassy Field Test Kit Results ⁽¹⁾		Validate	d Laboratory 1 (Method 8082)	Results ⁽²⁾	Others (Total PCBs in mg/kg)			
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content				
2003 SAMPLING													
RHRL-L2	05/27/03	Confirmatory	Area L-2	Composite			5476	14 J	26%		See 6/26/03 test		
L1-001	06/13/03	Confirmatory	Area L-1	Composite			5644	0.19 J	29%				
L2-001	06/26/03	Confirmatory	Area L-2	Composite			5769	0.55 J	12%		Retest at Area L2		
L2R-0626031115-SS006 AR-0626031100SS0006	06/26/03	Confirmatory Site Characterization	Area L-2 Along access road	Composite Composite of 3 samples						0.383 6.23	Sample collected Sample collected		
L5-0714030950SS0812	07/14/03	Site Characterization	Area L-5							5.5	Sample collected		
2003 Field Batch #1 L5D-071503 L5E-071503 SPC1-071503 SPC2-071503 SPC3-071503 TP-1 TP-4 2003 Field Batch #2 RE1-090903 RE2-900903	07/14/03 " 07/15/03 " 07/16/03 " 09/09/03 "	Site Characterization " " " " Site Characterization " Confirmatory "	Area L-5 " South Pond " Area L-4 " Area L-4 "	60' NW of decon pad 40' NW of decon pad 20' NW of decon pad Clay Clay Peat Residue Test Pit 1 (N. end of RHR) Test Pit 4 (S. end of RHR) North Wall	3.06 <0.5 1.30 <0.5 <0.5 1.76	3.63 <0.6 1.53 <0.6 <0.6 2.07 <0.6 <0.6	5918 "	64 0.14	7% 6%		See retest in 200 See retest in 200 Sample collected Sample collected Sample collected See retest in 200 See retest in 200 Retest at Area L- Retest at Area L-		
2003 Field Batch #3 1A-091203 1B-091203 2A-091203 2B-091203 3A-091203 3B-091203 3B-091203 2003 Field Batch #4	09/12/03 " " "	Site Characterization " " "	S. Pond re-route trench " " "		<0.5 0.55 <0.5 <0.5 <0.5 <0.5 <0.5	< 0.6 0.65 < 0.6 < 0.6 < 0.6 < 0.6							
SS1-092303 SS1 DUP-092303 SS2-092303 SS3-092303 SS4-092303 SS5-092303 SS6-092303 SS6-092303 SS6 DUP-092303	09/23/03 " " " " " "	Confirmatory " " " " " "	South Pond " " " " " "	Near weir " " East edge, east of weir East edge, next to tel. pole East edge, north of tel. pole "	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	$< 0.6 \\ < 0.6 \\ < 0.6 \\ < 0.6 \\ < 0.6 \\ < 0.6 \\ < 0.6 \\ < 0.6 \\ < 0.6 \\ < 0.6 $							

Remarks

test #L2-001 for retest after additional excavation

a L2 (5/27/03 RHRL-LA) after additional excavation

cted by EarthTech cted by EarthTech. See Area L-5.

cted by EarthTech

2003 batch #5 after excavation

2003 batch #5 after excavation cted south of >50 ppm area cted south of >50 ppm area cted south of >50 ppm area

2003 batch #2 after excavation 2003 batch #2 after excavation

a L-4 after excavation. a L-4 after excavation.

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

	Date						Samples Colle	ected by Parso	Samples	T	
Sample Identification	Collected	Purpose	Location	Grid	T	_	-		D V ⁽²⁾	Collected by Others (Total	Remarks
					Immunoassy Field			Validated Laboratory Results ⁽²⁾ (Method 8082)		PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
WOP B-1	10/28/03	Confirmatory	Waste Oil Pit	B1			6651	230	5%		Cleanup goal for Waste Oil Pit = 500 ppm PCBs
WOP B-2	"	"	"	B2				90	5%		
WOP B-3	"		"	B3			"	120	9%		
WOP B-4	"	"	"	B4				140	10%		
WOP B-5	"	"	"	B5			"	14	5%		
WOP B-6	"	"	"	B6				110	6%		
WOP E-1	"	"	"	E1			"	100	16%		
WOP E-2	"	"	"	E2			"	15	7%		
WOP E-3	"	"	"	E3			"	56	14%		
WOP W-1	"	"	"	W1			"	290	13%		
WOP W-2	"	"	"	W2				73	14%		
WOP W-3	"	"	"	W3			"	77	16%		
WOP 1	"	Disposal Characterization	Waste Oil Pit	From stockpiles			"	200	15%		
WOP 2				"				150	12%		
WOP 2A				"				77	10%		
WOP 3				"				1900	24%		
WOP 4				"				97	10%		
WOP 5			"					140	16%		
WOP 6								1400	20%		
WOP 7			"					6100	17%		
WOP 8		"	"	"			"	750	13%		
2003 Field Batch #5	11/05/02			01	0.5	0.5					
L5-01-110503	11/05/03	Confirmatory	Area L-5	01	< 0.5	<0.6					Retest of Area L-5 after excavation.
L5-02-110503				02	0.51	0.60					Retest of Area L-5 after excavation.
L5-03-110503				03 04	<0.5	<0.6					Retest of Area L-5 after excavation. Retest of Area L-5 after excavation.
L5-04-110503 L5-05-110503			"		<0.5 <0.5	<0.6 <0.6					Retest of Area L-5 after excavation. Retest of Area L-5 after excavation.
L5-06-110503				05 06	<0.5 <0.5	<0.6					Retest of Area L-5 after excavation.
L5-06-110505				06	<0.5	<0.0					
WOP 3, 6, 7, 8	11/05/03	Disposal Characterization	Waste Oil Pit	From stockpiles			6732	14000	18%		Also VOCs, TCLP Metals
WTP-Area 1 WTP-Area 2	11/13/03	Confirmatory "	Temp WTP Area							<0.26 <0.26	Sample collected by Shaw.
SP-1 thru SP-8	11/17/03	Disposal Characterization	Waste Oil Pit	From stockpiles			6828	-	-		VOCs only.
2004 SAMPLING											
Segment 18/19-01-061104	06/11/04	Disposal Characterization	HHC Segment 19	01			8141	5.6	42%		<50 ppm - Disposal in TSCA cell not required
Segment 18/19-02-061104	"	"	"	02			"	0.68	62%		
Segment 18/19-03-061104	"	"	"	03			"	3.53	71%		
Segment 18/19-04-061104		"	HHC Segment 18/19	04			"	1.85	66%		
Segment 18/19-05-061104			HHC Segment 19	05				0.46	66%		
Segment 18/19-06-061104			"	06				0.132	70%		
Segment 18/19-07-061104			HHC Segment 18/19	07				0.149	35%		
Segment 18/19-08-061104			HHC Segment 18	8				3.35	45%		
Segment 18/19-09A-061104			HHC Segment 19	09A				0.086	54%		
Segment 18/19-09B-061104			HHC Segment 19	09B				0.80	67%		
Segment 18/19-10A-061104			HHC Segment 18/19	10A				0.42	55%		
Segment 18/19-10B-061104			HHC Segment 18	10B				0.109	43%		
Segment 18/19-11A-061104			HHC Segment 18/10	11A				6.2	28%		
Segment 18/19-11B-061104			HHC Segment 18/19	11B				2.53	64%		
Segment 18/19-11C-061104			HHC Segment 19	11C				0.47	38%	1	

·ks

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

Sample Identification	Date Collected	Purpose	Location	Grid		Samples Colle	cted by Pars	ons		Samples Collected by	
		Turpose			Immunoassy Field	l Test Kit Results ⁽¹⁾	Validate	d Laboratory (Method 8082)	Results ⁽²⁾	Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #1											
SP-01-G06-061204 &	06/12/04	Confirmatory	South Pond	G6	2.41	2.84	8153	0.48	30%		See retest in bate
SP-17-G06-061204 (lab)		•									
SP-02-G07-061204	"	"		G7	< 0.5	<0.6					
SP-03-G08-061204	"	"	"	G8	<0.5	<0.6					
SP-04-G09-061204		"		G9	<0.5	<0.6					
SP-05-G10-061204	"	"		G10	<0.5	<0.6					
SP-06-G11-061204	"	"		G10 G11	<0.5	<0.6					
SP-07-G12-061204		"		G12	<0.5	<0.6					
SP-07-012-001204 SP-08-G13-061204		"		G12 G13	<0.5	<0.0 <0.6					
		"									
SP-09-G14-061204		"		G14	< 0.5	<0.6					
SP-10-H07-061204				H7	<0.5	<0.6	0152	0.01	220/		
SP-11-H08-061204 &				H8	<0.5	<0.6	8153	0.81	23%		
SP-18-H08-061204 (lab)					o 7	0.6					
SP-12-H09-061204				H9	<0.5	<0.6					
SP-13-H10-061204	"			H10	<0.5	<0.6					
SP-14-H11-061204	"		"	H11	<0.5	<0.6					
SP-15-H12-061204	"	"	"	H12	<0.5	<0.6					
SP-16-H13-061204	"	"	"	H13	<0.5	<0.6					
2004 Field Batch #2											
SP-01-F05-061504	06/12/04	Confirmatory	South Pond	F5	< 0.5	<0.6					
SP-02-F06-061504	"	"	"	F6	< 0.5	<0.6					
SP-03-F07-061504	"	"	"	F7	< 0.5	<0.6					
SP-04-F08-061504	"	"	"	F8	< 0.5	<0.6					
SP-05-F09-061504	"	"	"	F9	<0.5	<0.6					
SP-06-F10-061504	"	"	"	F10	<0.5	<0.6					
SP-07-F11-061504	"	"	"	F11	< 0.5	<0.6					
SP-08-F12-061504	"	"	"	F12	< 0.5	<0.6					
SP-09-F13-061504	"	"	"	F13	< 0.5	<0.6					
SP-10-F14-061504	"	"	"	F14	< 0.5	<0.6					
SP-11-F15-061504	"	"	"	F15	<0.5	<0.6					
SP-12-E15-061504 &	"	"	"	E15	1.54	1.81	8213	2.6	17%		See retest in bate
SP-22-E15-061504 (lab)				2.0	1.0 .				/ 0		,
SP-13-E14-061504 (lab)	"	"	"	E14	< 0.5	<0.6					
SP-14-E13-061504	"	"	"	E14 E13	<0.5	<0.6					
SP-15-E12-061504	"	"	"	E13 E12	0.59	0.69				0.52	A sample also co
SP-15-E12-061504 SP-16-E11-061504	"	"	"	E12 E11	<0.5	<0.69 <0.6				0.52	a sample also co
SP-10-E11-061504 SP-17-E10-061504		"	"	E11 E10		<0.8 0.95					
		"	"	E10 E9	0.81						
SP-18-E09-061504					<0.5	<0.6	0010	17	170/	2.0	A
SP-19-E08-061504 &				E8	9.67	11.38	8213	1.7	17%		A sample also co
SP-21-E08-061504 (lab)				1.5	0.50	0.02					excavation
SP-20-E07-061504	"			E7	0.79	0.93					

Remarks

batch #10 after additional excavation

batch #10 after additional excavation

o collected by NYCDEP

o collected by NYCDEP. See retest in batch #10 after additional

RICHARDSON HILL ROAD LANDFILL

	Date					Samples Colle	cted by Pars	ons		Samples	
Sample Identification	Collected	Purpose	Location	Grid	Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory]	Results ⁽²⁾	Collected by Others (Total	
					initiatioussy i felu	Test Int Results	, and at	(Method 8082)	icourto	PCBs in mg/kg))
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #3											
SP-01-D07-061704	06/17/04	Confirmatory	South Pond	D7	< 0.5	<0.6				0.24	A sample also co
SP-02-D08-061704	"	"	"	D8	<0.5	<0.6					
SP-03-D09-061704 &	"		"	D9	1.11	1.31	8213	3.6	18%		See retest in bate
SP-15-D09-061704 (lab)											A sample also co
SP-04-D10-061704	"	"	"	D10	< 0.5	<0.6				1.1	excavation.
SP-05-D11-061704	"		"	D11	<0.5	<0.6					1
SP-06-D12-061704	"	"	"	D12	<0.5	<0.6					
SP-07-D13-061704	"	"	"	D13	<0.5	<0.6					
SP-08-D14-061704	"	"	"	D14	<0.5	<0.6				1	1
SP-09-D15-061704	"	"	"	D15	<0.5	<0.6					
SP-10-C08-061704	"	"	"	C8	<0.5	<0.6					
SP-11-C09-061704 &	"		"	C9	1.29	1.52	8213	0.1	23%		See retest in bate
SP-16-C09-061704 (lab)											
SP-12-C10-061704		"		C10	<0.5	<0.6					
SP-13-C11-061704 &	"	"	"	C11	1.04	1.22	8213	0.47	26%		See retest in bate
SP-17-C11-061704 (lab) SP-14-C12-061704		"		C12	<0.5	<0.6					
2004 Field Batch #4	0.5/17/0.4										
SP-18-B04-061704	06/17/04	Confirmatory	South Pond	B4	<0.5	<0.6					
SP-19-B05-061704				B5	<0.5	<0.6					
SP-20-B06-061704				B6	<0.5	<0.6	0012	0.46	150/	0.74	A
SP-21-B07-061704 &				B7	<0.5	-0 C	8213	0.46	15%	0.74	A sample also co
SP-33 B07-061704 (lab)		"	"	Do	-0.5	<0.6					
SP-22-B08-061704 SP-23-B09-061704			"	B8 B9	<0.5 <0.5	<0.6 <0.6				0.59	A sample also co
SP-23-B09-061704 SP-24-B10-061704			"	B9 B10	<0.5 <0.5	<0.6				0.39	A sample also co
SP-25-B11-061704		"		B10 B11	<0.5	<0.6					
SP-26-C05-061704 &		"	"	C5	<0.5	<0.6	8213	2.3	20%		See retest in bate
SP-34-C05-061704 (lab)				0.5	<0.5	<0.0	0215	2.5	2070		See relest in ball
SP-27-C06-061704		"	"	C6	< 0.5	<0.6					
SP-28-C07-061704		"	"	C7	<0.5	<0.6					
SP-29-D05-061704	"	"	"	D5	<0.5	<0.6					
SP-30-D06-061704	"	"	"	D6	<0.5	<0.6					
SP-31-E05-061704	"	"	"	E5	<0.5	<0.6					
SP-32-E06-061704	"	"	"	E6	<0.5	<0.6					
2004 Field Batch #5											
Segment 20-B1-062404	06/24/04	Confirmatory	HHC Segment 20	B1	1.38	1.62	8295	5.5	20%	1	See retest in bate
Segment 20-B2-062404	"	"	"	B1 B2	<0.5	<0.6	"	0.48 J	7%	1	in out
Segment 20-B3-062404		"	"	B3	1.33	1.56	"	4.0	22%		See retest in bate
Segment 20-B4-062404	"	"	"	B4	<0.5	<0.6	"	0.69	9%		
Segment 20-B5-062404	"	"	"	B5	1.35	1.59	"	0.90	21%		See retest in bat
Segment 20-B6-062404	"	"	"	B6	0.96	1.13	"	1.9	13%	1	See retest in bate
Segment 20-B7-062404	"		"	B7	< 0.5	<0.6	"	1.5	31%		See retest in bate
Segment 20-B8-062404	"	"	"	B8	<0.5	<0.6	"	0.73	18%		See retest in bate
Segment 20-B9-062404	"		"	B9	0.69	0.81	"	1.4	25%		See retest in bate
Segment 20-B10-062404	"	"	"	B10	1.30	1.53	"	3.4 J	22%		See retest in bate
Segment 20-B11-062404	"	"	"	B11	< 0.5	<0.6	"	0.85	20%		
Segment 20-B12-062404	"	"	"	B12	< 0.5	<0.6	"	1.3 J	15%		See retest in bate

Remarks

o collected by NYCDEP

batch #9 after additional excavation

o collected by NYCDEP. See retest in batch #9 after additional

batch #9 after additional excavation

batch #10 after additional excavation

o collected by NYCDEP

o collected by NYCDEP

batch #8 after additional excavation

batch #11 after additional excavation

batch #11 after additional excavation

batch #12 after additional excavation batch #11 after additional excavation batch #11 after additional excavation batch #11 batch #11 after additional excavation

batch #11 after additional excavation

batch #11 after additional excavation.

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

Sample Identification	Date Collected	Purpose	Location	Grid		Samples Collec	ted by Parso	ons		Samples Collected by	
					Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory 1 (Method 8082)	Results ⁽²⁾	Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #6											
Segment 20-W1-062404	06/24/04	Confirmatory	HHC Segment 20	W-1	<0.5	<0.6	8295	0.71	19%		
Segment 20-W2-062404	"	"	"	W-2	<0.5	<0.6	"	0.018 J	29%		
Segment 20-W3-062404	"	"	"	W-3	<0.5	<0.6	"	0.025	22%		
Segment 20-W4-062404	"	"	"	W-4	<0.5	<0.6	"	0.029	25%		
Segment 20-B13-062404	"	"	"	B13	<0.5	<0.6	"	0.023	12%		
Segment 20-B14-062404	"	"	"	B14	<0.5	<0.6	"	0.22	15%		
Segment 20-B15-062404	"	"	"	B15	<0.5	<0.6	"	0.84	14%		
Segment 20-B16-062404	"	"	"	B16	<0.5	<0.6		0.68 J	19%		
Segment 20-B17-062404	"	"	"	B17	0.98	1.15	"	2.4	39%		See retest in bate
Segment 20-B18-062404	"	"	"	B18	<0.5	<0.6	"	0.22	25%		
Segment 20-B19-062404	"	"	"	B19	<0.5	<0.6	"	0.69	17%		
Segment 20-B20-062404	"	"	"	B20	<0.5	<0.6	"	0.019	12%		
Segment 20-B21-062404	"	"	"	B21	<0.5	<0.6	"	0.17	18%		
2004 Field Batch #7											
SP-C6-062404	06/24/04	Confirmatory	South Pond	C6	5.13	6.04	8295	9.7	29%		See batch #8 for
SP-D6-062404	"	"	"	D6	3.77	4.44		5.3	28%		See batch #10 fo
SP-Stockpile 1-062404	"	Disposal Characterization	South Pond Stockpile	ST-1	<0.5	<0.6	"	0.38	2%		
SP-Stockpile 2-062404	"	"	"	ST-2	<0.5	<0.6	"	0.82	4%		
SP-Stockpile 3-062404	"	"	"	ST-3	<0.5	<0.6	"	0.80	12%		
2004 Field Batch #8											
Segment 20-B22-062804	06/28/04	Confirmatory	HHC Segment 20	B22	<0.5	<0.6					
Segment 20-B24-062804	"	"	"	B24	<0.5	<0.6					
Segment 20-B25-062804	"	"	"	B25	<0.5	<0.6					
Segment 20-B26-062804			"	B26	<0.5	<0.6					
Segment 20-W5-062804	"	"	"	W5	<0.5	<0.6					
Segment 20-W6-062804	"	"	"	W6	<0.5	<0.6					
SP-C5-062804			South Pond	C5	<0.5	<0.6					Retest of batch
SP-C6-062804	"	"	"	C6	<0.5	<0.6					Retest of batch #
2004 Field Batch #9											
SP-C8-062904	06/29/04	Confirmatory	South Pond	C8	<0.5	<0.6					Retest of batch
SP-C9-062904	"	"	"	C9	<0.5	<0.6					Retest of batch #
SP-D9-062904		"	"	D9	<0.5	<0.6					Retest of batch #
SP-D10-062904	"	"	"	D10	<0.5	<0.6					Retest of batch #
Segment 18-B4-062904		"	HHC Segment 18	B4	<0.5	<0.6					
Segment 18-W1-062904	"	"	"	W1	<0.5	<0.6					
Segment 18-W2-062904	"	"	"	W2	<0.5	<0.6					
Segment 19-B9-062904		"	HHC Segment 19	B9	<0.5	<0.6					
Segment 19-B10-062904	"	"	"	B10	<0.5	<0.6					
Segment 19-B13-062904		"	"	B13	<0.5	<0.6					
Segment 19-W1-062904	"	"	"	W1	<0.5	<0.6					
Segment 19-W2-062904			"	W2	1.32	1.55					See retest in bat

Remarks

batch #11 after additional excavation

for retest after additional excavation. 0 for retest after additional excavation.

ch #7 location after additional excavation ch #7 location after additional excavation

ch #3 location after additional excavation ch #3 location after additional excavation ch #3 location after additional excavation ch #3 location after additional excavation

batch #2 after additional excavation.

RICHARDSON HILL ROAD LANDFILL

	Dete	1	1			, NEW YORK	4 11 D			G 1	
Sample Identification	Date Collected	Purpose	Location	Grid		Samples Colle	-			Samples Collected by	
					Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory 2 (Method 8082)	Results ⁽²⁾	Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #10											
SP-C7-062904	06/29/04	Confirmatory	South Pond	C7	<0.5	<0.6					
SP-C11-062904	"	"		C11	<0.5	<0.6					Retest of batch #
SP-D6-062904	"	"	"	D6	<0.5	<0.6					Retest of batch #
SP-E8-062904	"		"	E8	<0.5	<0.6					Retest of batch #
SP-E15-062904	"		"	E15	<0.5	<0.6					Retest of batch #
SP-G6-062904	"		"	G6	<0.5	<0.6					Retest of batch #
Segment 18-B1-062904	"	"	HHC Segment 18	B1	<0.5	<0.6					
Segment 19-B1-062904	"	"	HHC Segment 19	B1	<0.5	<0.6					
Segment 19-B2-062904	"	"	"	B2	<0.5	<0.6					
Segment 19-B10-062904	"	"	"	B10	<0.5	<0.6					
Segment 19-B11-062904	"	"	"	B11	<0.5	<0.6					
Segment 19-B14-062904	"	"	"	B14	4.19	4.93					See retest in bate
2004 Field Batch #11											
Segment 19-B3-063004	6/302004	Confirmatory	HHC Segment 19	B3	<0.5	<0.6					
Segment 20-B1-063004	"	"	HHC Segment 20	B1	<0.5	<0.6					Retest of batch #
Segment 20-B3-063004	"	"	"	B3	<0.5	<0.6					Retest of batch #
Segment 20-B6-063004	"	"	"	B6	<0.5	<0.6					Retest of batch #
Segment 20-B7-063004	"	"	"	B7	<0.5	<0.6					Retest of batch #
Segment 20-B8-063004	"	"	"	B8	<0.5	<0.6					Retest of batch #
Segment 20-B9-063004	"	"	"	B9	<0.5	<0.6					Retest of batch #
Segment 20-B10-063004	"	"	"	B10	<0.5	<0.6					Retest of batch #
Segment 20-B12-063004	"	"	"	B12	<0.5	<0.6					Retest of batch #
Segment 20-B17-063004		"	"	B17	<0.5	<0.6					Retest of batch #
Segment 20-B23-063004			"	B23	<0.5	<0.6					
Segment 20-B28-063004		"	"	B28	<0.5	<0.6					
2004 Field Batch #12											
Segment 18-B2-063004	06/30/04	Confirmatory	HHC Segment 18	B2	<0.5	<0.6	8332	0.0026 JN	17%		
Segment 18-B3-063004	"	"	"	B3	<0.5	<0.6	"	<0.020 J	15%		
Segment 19-B7-063004	"	"	HHC Segment 19	B7	<0.5	<0.6					
Segment 19-B8-063004			"	B8	<0.5	<0.6					
Segment 19-B14-063004& Segment 19-B14-070104 (lab)	"	"	"	B14	<0.5	<0.6	8332	<0.018 J	8%		Retest of batch #
Segment 19-W2-063004	"	"	"	W2	0.73	0.86					Retest of batch #
Segment 20-B5-063004	"	"	HHC Segment 20	B5	<0.5	<0.6					Retest of batch #
Segment 20-B27-063004	"	"	"	B27	<0.5	<0.6					
Segment 20-B29-063004	"	"	"	B29	<0.5	<0.6					
Segment 16-01-070604	7/6/04	Disposal Characterization	HHC Segment 16	01			8355	0.79	58%		
Segment 16-02-070604	"	"	"	02			"	2.7	45%		
Segment 16-03-070604	"	"	"	03			"	8.2	59%		
Segment 16-04-070604		"	"	04			"	60	63%		
Segment 16-05-070604	"	"	"	05			"	160	52%		
Segment 16-06-070604	"	"	"	06			"	27	64%		
F1A-01-070804	07/08/04	Site Characterization	HHC Sample Location F1A	01			8377	1.6 J	72%		See Segment 12
F1A-02-070804	"	"	"	02			"	0.43 J	74%		
F1A-03-070804	"	"	"	03			"	0.053 J	66%		
F1A-04-070804	"	"	"	04			"	1.4 J	70%		See Segment 11
F1A-05-070804	"	"	"	05			"	0.25 J	61%		
F1A-06-070804	"	"	"	06			"	0.016 J	70%		

Remarks

ch #3 location after additional excavation ch #7 location after additional excavation ch #2 location after additional excavation ch #2 location after additional excavation ch #1 location after additional excavation

batch #12 after additional excavation

ch #5 location after additional excavation ch #5 location after additional excavation ch #5 location after additional excavation ch #5 location after additional excavation ch #5 location (confirmation only - no additional excavation) ch #5 location after additional excavation ch #5 location after additional excavation ch #5 location after additional excavation ch #5 location after additional excavation

ch #6 location after additional excavation

ch #10 location after additional excavation

ch #9 location after additional excavation ch #5 location after additional excavation

12 samples B-12, W-10 in batch #42 after excavation.

11 samples B-5, B-6, W-2 in batch #43 after excavation.

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

Sample Identification	Date Collected	Purpose	Location	Grid		Samples Collec	cted by Pars	ons		Samples Collected by	
		-			Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory 1 (Method 8082)	Results ⁽²⁾	Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
SVE-01-071304	07/13/04	Disposal Characterization	SVE Stockpile	01			8425	1000	78%		
SVE-02-071304 SVE-03-071304	"	"		02 03			"	NA NA			TCLP Metals on VOCs only
2004 Field Batch #13											
Segment 17-B1-071404	07/14/04	Confirmatory	HHC Segment 17	B1	< 0.5	<0.6					
Segment 17-B3-071404	"		"	B3	<0.5	<0.6					
Segment 17-B4-071404	"	"	"	B4	<0.5	<0.6					
Segment 17-B5-071404	"	"	"	B5	1.00	1.18					See retest in bate
Segment 17-B7-071404	"	"	"	B7	<0.5	<0.6					
Segment 17-B8-071404	"	"	"	B8	<0.5	<0.6					
Segment 17-B9-071404	"	"	"	B9	<0.5	<0.6					
Segment 17-B10-071404	"	"	"	B10	2.74	3.22					See retest in bate
Segment 17-W1-071404	"	"	"	W1	< 0.5	<0.6					
Segment 17-W2-071404	"	"	"	W2	< 0.5	<0.6					
Segment 17-W4-071404	"	"	"	W4	< 0.5	<0.6					
Segment 17-W5-071404	"	"	"	W5	<0.5	<0.6					
2004 Field Batch #14											
Segment 17-B2-071404	07/14/04	Confirmatory	HHC Segment 17	B2	< 0.5	<0.6					
Segment 17-B6-071404	"	"	"	B6	< 0.5	<0.6					
Segment 17-B11-071404	"	"	"	B11	< 0.5	<0.6					
Segment 17-B12-071404	"	"	"	B12	< 0.5	<0.6					
Segment 17-B14-071404	"	"	"	B14	< 0.5	<0.6					
Segment 17-B16-071404	"	"	"	B16	0.72	0.85					
Segment 17-W3-071404	"	"	"	W3	< 0.5	<0.6					
Segment 17-W6-071404	"	"	"	W6	2.51	2.95					See retest in bate
Segment 17-W7-071404	"	"	"	W7	< 0.5	< 0.6					
Segment 17-W8-071404	"	"	"	W8	< 0.5	<0.6					
Segment 17-W9-071404	"	"	"	W9	<0.5	<0.6					
2004 Field Batch #15											
Segment 17-B13-071404	07/14/04	Confirmatory	HHC Segment 17	B13	< 0.5	<0.6					
Segment 17-B15-071404	"	"	"	B15	2.25	2.65					See retest in bate
Segment 17-B17-071404	"	"	"	B17	< 0.5	<0.6					
Segment 17-B18-071404	"	"	"	B18	<0.5	<0.6					
Segment 17-W10-071404	"	"	"	W10	<0.5	<0.6					
Segment 17-B5-071604	07/16/04	Confirmatory	HHC Segment 17	В5			8436	0.29 J	32%		Retest of batch #
Segment 17-B10-071604	"	"	"	B10			"	0.12 J	17%		Retest of batch #
Segment 17-B15-071604	"	"	"	B15			"	<0.020 J	14%		Retest of batch #
Segment 17-W6-071604				W6			"	0.95 J	38%		Retest of batch #

Remarks

s only

batch #15 after additional excavation

ch #13 location after additional excavation ch #13 location after additional excavation ch #14 location after additional excavation ch #14 location after additional excavatior

RICHARDSON HILL ROAD LANDFILL

SIDNEY, NEW YORK

	Date	E.	Location	Grid		Samples Colle	cted by Parso	ons		Samples	
Sample Identification	Collected	Purpose	Location	Gria	Immunoassy Field	Test Kit Results ⁽¹⁾		l Laboratory l Method 8082)		Collected by Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs			
2004 Field Batch #16											
Segment 16-B1-072104	07/21/04	Confirmatory	HHC Segment 16	B1	1.07	1.26					See batch #17 fc
Segment 16-B2-072104	"	"	"	B2	< 0.5	<0.6					
Segment 16-B3-072104	"	"	"	B3	< 0.5	<0.6					
Segment 16-B4-072104	"	"	"	B4	< 0.5	<0.6					
Segment 16-B5-072104	"	"	"	В5	< 0.5	<0.6					
Segment 16-B6-072104	"	"	"	B6	< 0.5	<0.6					
Segment 16-W1-072104	"	"	"	W1	<0.5	<0.6					
Segment 16-W2-072104	"	"	"	W2	<0.5	<0.6					
Segment 16-W3-072104	"	"	"	W3	5.19	6.10	8488	4.8 J	43%		See batch # 17 f
Segment 16-W4-072104	"	"	"	W4	2.71	3.19	"	0.073 J	23%		See batch # 17 f
Segment 16-W5-072104	"	"	"	W5	<0.5	<0.6		010720	2070		
Segment 16-W6-072104	"		"	W6	<0.5	<0.6					
WP-9+50 to 9+0	"	Quality surveillance check	Work Platform	Station 9+50 to 9+00	<0.5	<0.6					Work platform q
WP-10+50 to10+0	"	Quality surveillance check	Work Platform	Station 10+50 to 10+00	<0.5	<0.6					Work platform q
2004 Field Batch #17											
Segment 16-B1-072204	07/22/04	Confirmatory	HHC Segment 16	B1	< 0.5	<0.6					Retest of batch #
Segment 16-W3-072204	"	"	"	W3	< 0.5	< 0.6					Retest of batch #
Segment 16-W4-072204	"	"	"	W4	< 0.5	< 0.6					Retest of batch #
Segment 15-B1-072304	07/23/04	"	HHC Segment 15	B1	< 0.5	<0.6					
Segment 15-B2-072304	"	"	"	B2	< 0.5	< 0.6					
Segment 15-B3-072304	"	"	"	B3	< 0.5	<0.6					
Segment 15-W1-072304	"	"	"	W1	< 0.5	<0.6					
Segment 15-W2-072304	"	"	"	W2	<0.5	<0.6					
2004 Field Batch #18											
Segment 15-B4-072804	07/28/04	Confirmatory	HHC Segment 15	B4	<0.5	<0.6					
Segment 15-B5-072804	"			B5	<0.5	<0.6					
Segment 15-B6-072804	"		"	B6	0.69	0.81					
Segment 15-B7-072804	"	"	"	B7	3.96	4.66	8539	3.9 J	39%		See batch #19 fo
Segment 15-W3-072804	"		"	W3	<0.5	<0.6					
Segment 15-W4-072804	"			W4	<0.5	<0.6					
Segment 15-W5-072804 Segment 15-W6-072804	"	"	"	W5 W6	1.28 1.18	1.51 1.39	8539	1.2 J	34%		See batches # 19 See batch #19 fo
2004 Field Batch #19											
Segment 15-B7-073004	07/30/04	Confirmatory	HHC Segment 15	B7	< 0.5	<0.6					Retest of batch #
Segment 15-B8-083004	"	"	"	B8	2.82	3.32					See batch # 20 f
Segment 15-B9-073004	"	"	"	B9	< 0.5	<0.6					
Segment 15-B10-073004	"	"	"	B10	<0.5	<0.6					
Segment 15-B11-073004	"	"	"	B11	2.29	2.69					See batch # 20 f
Segment 15-B12-073004	"	"	"	B12	1.22	1.44					See batch # 20 f
Segment 15-W5-073004	"	"	"	W5	19.4	22.8					Retest of batch #
Segment 15-W6-073004	"	"	"	W6	<0.5	<0.6					Retest of batch #
Segment 15-W7-073004	"	"	"	W7	<0.5	<0.6					June
Segment 15-W8-073004		"	"	W8	5.55	6.53					See batch #20 fo
Segment 15-W9-073004		"	"	W9	<0.5	<0.6					$\sim cc$ such $\pi 20$ IC
Segment 15-W10-073004	"	"	"	W10	2.16	2.54					See batches #20
Segment 13- w 10-0/3004				W 10	2.10	2.34		[I	See Satelles $\pi 20$

Remarks

7 for retest after additional excavation

7 for retest after additional excavation7 for retest after additional excavation

m quality surveillance check station 9+50 to 9+0 m quality surveillance check station 10+50 to 10+0

ch #16 location after additional excavation ch #16 location after additional excavation ch #16 location after additional excavation

9 for retest after additional excavation

19 & 20 for retests after additional excavation9 for retest after additional excavation

ch #18 location after additional excavation 20 for retest after additional excavation

20 for retest after additional excavation 20 for retest after additional excavation ch #18. See batch # 20 for retest after additional excavation ch #18 location after additional excavation

0 for retest after additional excavation

#20 & 21 for retests after additional excavation

RICHARDSON HILL ROAD LANDFILL

SIDNEY, NEW YORK

	Date					Samples Colleg	cted by Pars	ons		Samples	
Sample Identification	Collected	Purpose	Location	Grid			-		(2)	Collected by Others (Total	
					Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory 1 (Method 8082)	Results ⁽²⁾	PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #20											
Segment 15-B8-080204	08/02/04	Confirmatory	HHC Segment 15	B8	< 0.5	<0.6					Retest of batch
Segment 15-B11-080204	"	"	"	B11	< 0.5	<0.6					Retest of batch #
Segment 15-B12-080204	"	"	"	B12	0.77	0.91					Retest of batch
Segment 15-B14-080204	"	"		B14	2.74	3.22	8564	1 J	31%		See batch #21 fo
Segment 15-W5-080204	"	"	"	W5	< 0.5	<0.6					Retest of batch #
Segment 15-W8-080204	"	"	"	W8	<0.5	<0.6					Retest of batch #
Segment 15-W10-080204	"	"	"	W10	10.39	12.22	8564	1.7 J	25%		Retest of batch #
2004 Field Batch #21											
Segment 15-B13-080304	08/03/04	Confirmatory	HHC Segment 15	B13	<0.5	<0.6					
Segment 15-B14-080304	"	"	"	B14	<0.5	<0.6					Retest of batch #
Segment 15-B15-080304	"	"	"	B15	0.89	1.05					See batch #23 fo
Segment 15-B16-080304	"	"	"	B16	< 0.5	< 0.6					
Segment 15-B17-080404	08/04/04	"	"	B17	0.87	1.02					See batch #23 fo
Segment 15-B18-080404	"	"	"	B18	< 0.5	<0.6					
Segment 15-W10-080404	"	"	"	W10	< 0.5	<0.6					
Segment 15-W11-080404	"	"	"	W11	< 0.5	<0.6					
Segment 15-W12-080404	"	"	"	W12	2.25	2.65	8582	0.86 J	37%		See batch #23 fo
2004 Field Batch #22											
Segment 15-B19-080404	08/04/04	Confirmatory	HHC Segment 15	B19	<0.5	<0.6					
Segment 15-B20-080404	"	"	"	B20	<0.5	<0.6					
Segment 15-W13-080404	"	"	"	W13	1.17	1.38	8582	3.7 J	38%		See batch #23 fc
Segment 15-W14-080404	"	"	n	W14	<0.5	<0.6					
2004 Field Batch #23											
Segment 15-B15-080504	08/05/04	Confirmatory	HHC Segment 15	B15	<0.5	<0.6					Retest of batch #
Segment 15-B17-080504	"	"	"	B17	<0.5	<0.6					Retest of batch #
Segment 15-W12-080504	"	"	"	W12	<0.5	<0.6					Retest of batch #
Segment 15-W13-080504	"	"	"	W13	<0.5	<0.6					Retest of batch #
2004 Field Batch #24											
WP 1+50 To 1+0-081804	08/18/04	Quality Surveillance	Work Platform	Station 1+50 to 1+00	<0.5	<0.6					Work platform c
WP 2+50 To 2+0-081804 WP 3+50 To 3+0-081804		"	Work Platform Work Platform	Station 2+50 to 2+00 Station 3+50 to 3+00	<0.5 <0.5	<0.6 <0.6					
2004 Field Batch #25											
2004 Field Batch #25 NB-B1-082004	08/20/04	Confirmatory	N. Trench Spoil Basin	NA	<0.5	<0.6	8703	0.036 J	13%		
NB-B1-082004 NB-B2-082004	08/20/04	Confirmatory	in. Trench Spoll Basin	INA "		<0.6	8703	0.020 J	15%		
		"	"	"	<0.5	<0.6					
NB- East W1-082004		"	"	"	<0.5	<0.6					
NB- East W2-082004					<0.5	<0.6					
NB-West W1-082004					<0.5	<0.6					
NB-West W2-082004			0 Tuor -1 0 '1 D '		<0.5	<0.6	0702	0.10.1	150/		
SB-B1-082004			S. Trench Spoil Basin		<0.5	<0.6	8703	0.18 J	15%		
SB-B2-082004					<0.5	<0.6					
SB- East W1-082004					<0.5	<0.6					
SB- East W2-082004					<0.5	<0.6					
SB-West W1-082004					<0.5	<0.6					
SB-West W2-082004	"		"	"	< 0.5	<0.6					1

Remarks

ch #19 location after additional excavation ch #19 location after additional excavation ch #19 location after additional excavation 1 for retest after additional excavation ch #19 location after additional excavation ch #19 location after additional excavation ch #20 location. See batch # 21 for retest after additional ex.

ch #20 location after additional excavation 3 for retest after additional excavation

3 for retest after additional excavation

3 for retest after additional excavation

3 for retest after additional excavation

ch #21 location after additional excavation ch #21 location after additional excavation ch #21 location after additional excavation ch #22 location after additional excavation

m quality surveillance check.

" " "

RICHARDSON HILL ROAD LANDFILL

	Date					Samples Colle	cted by Pars	ons		Samples	
Sample Identification	Collected	Purpose	Location	Grid	Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory 1	Results ⁽²⁾	Collected by Others (Total	
					· ·			(Method 8082)		PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #26											
Segment 14-B1-082304	08/23/04	Confirmatory	HHC Segment 14	B1	0.66	0.78					
Segment 14-B2-082304	"	"	"	B2	2.51	2.95	8725	1.3 J	26%		See batch #27 for
Segment 14-B3-082304	"	"	"	B3	0.60	0.71					
Segment 14-B4-082304		"		B4	0.70	0.82					
Segment 14-B5-082304		"		B5	<0.5	<0.6					
Segment 14-B6-082304				B6	0.63	0.74	0705	171	220/		0 1 (1 107 (
Segment 14-W1-082304				W1	1.56	1.84	8725	1.7 J	23%		See batch #27 for
Segment 14-W2-082304 Segment 14-W3-082304				W2 W3	<0.5 <0.5	<0.6 <0.6					
Segment 14-W3-082304 Segment 14-W4-082304				W3 W4	<0.5 <0.5	<0.6					
Segment 14-W5-082304	"	"		W4 W5	<0.5 <0.5	<0.6					
Segment 14-W6-082304	"	"	"	W6	0.53	0.62					
2004 Field Batch #27											
Segment 14-B2-082404	08/24/04	Confirmatory	HHC Segment 14	B2	<0.5	<0.6					Retest of batch #2
Segment 14-B7-082404	"	"	"	B7	<0.5	<0.6					
Segment 14-B8-082404	"	"	"	B8	<0.5	<0.6					
Segment 14-B9-082404	"	"		B9	<0.5	<0.6					
Segment 14-B10-082404	"	"		B10	<0.5	<0.6	8725	0.086 J	25%		
Segment 14-W1-082404				W1	0.59	0.69					Retest of batch #2
Segment 14-W7-082404				W7	<0.5	<0.6					
Segment 14-W8-082404				W8 W9	<0.5 <0.5	<0.6 <0.6					
Segment 14-W9-082404 Segment 14-W10-082404	"		"	W10	<0.5	<0.6					
2004 Field Batch #28											
Segment 14-B11-082504	08/25/04	Confirmatory	HHC Segment 14	B11	<0.5	<0.6					
Segment 14-B12-082504	"	"	"	B12	< 0.5	<0.6					
Segment 14-B13-082504	"	"	"	B13	< 0.5	<0.6					
Segment 14-B14-082504	"	"	"	B14	<0.5	<0.6					
Segment 14-W11-082504	"	"	"	W11	<0.5	<0.6					
Segment 14-W12-082504	"	"	"	W12	<0.5	<0.6					
Segment 14-W13-082504 Segment 14-W14-082504		"	"	W13 W14	<0.5 <0.5	<0.6 <0.6	8747	< 0.025	33%		
2004 Field Batch #29											
Segment 14-B15-083104	08/31/04	Confirmatory	HHC Segment 14	B15	<0.5	<0.6					
Segment 14-B16-083104	"	"	"	B15 B16	<0.5	<0.6					
Segment 14-B17-083104	"	"	"	B17	<0.5	<0.6					
Segment 14-B18-083104		"	"	B18	<0.5	<0.6					
Segment 14-B19-083104	"	"	"	B19	<0.5	<0.6	8816	0.013 J	31%		
Segment 14-W15-083104	"		"	W15	< 0.5	<0.6					
Segment 14-W16-083104	"		"	W16	< 0.5	<0.6					
Segment 14-W17-083104	"	"	"	W17	<0.5	<0.6					
Segment 14-W18-083104	"	"	"	W18	<0.5	<0.6					
2004 Field Batch #30 Segment 14-B20-090104	09/01/04	Confirmatory	HHC Segment 14	B20	<0.5	<0.6					
Segment 14-B20-090104 Segment 14-B21-090104	09/01/04	Comminatory	nne Segment 14	B20 B21	<0.5 <0.5	<0.6 <0.6					
Segment 14-B22-090104			"	B21 B22	<0.5 <0.5	<0.6 <0.6					
Segment 14-B22-090104 Segment 14-B23-090104			"	B22 B23	<0.5	<0.6					
Segment 14-B25-090104 Segment 14-W19-090104	"	"	"	W19	<0.5	<0.6					
Segment 14-W20-090104	"	"	"	W20	<0.5	<0.6					
Segment 14-W22-090104	"	"	"	W22	<0.5	<0.6					
Segment 14-W23-090104	"	"	"	W23	<0.5	<0.6					
Segment 14-W24-090104	"	"	"	W24	< 0.5	<0.6					
Segment 14-W25-090104			"	W25	1.55	1.82	8816	0.41 J	32%		See batch #31 for

P:\742577\wp\Phase 2 Closure Report\Final Interim RA Report - Remedial Work Element I\Appendicies\Appendix F - Confirmatory Analytical Data\Data Bagen1aroReport Attachment A.xls\Sheet1

Remarks

7 for retest after additional excavation

7 for retest after additional excavation

ch #26 location after additional excavation

ch #26 location after additional excavation

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

Sample Identification	Date Collected	Purpose	Location	Grid		Samples Collec	cted by Parso	ons		Samples Collected by	
Sumple recitineation		i uipose			Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory 1 (Method 8082)	Results ⁽²⁾	Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #31											
Segment 14-B24-090204	09/02/04	Confirmatory	HHC Segment 14	B24	< 0.5	<0.6					
Segment 14-B25-090204	"	"	"	B25	<0.5	<0.6					
Segment 14-B26-090204		"		B26	<0.5	<0.6					
Segment 14-B27-090204		"		B20 B27	<0.5	<0.6					
Segment 14-W25-090204		"		W25	<0.5	<0.6					Retest of batch #
Segment 14-W26-090204		"		W26	<0.5	<0.6					netest of butch #
Segment 14-W27-090204		"		W20 W27	<0.5	<0.6					
Segment 14-W28-090204		"		W27 W28	<0.5	<0.6	8816	0.0042 J	28%		
Segment 14-W29-090204	"			W28 W29	0.71	0.84	0010	0.0042 J	2070		
2004 Field Batch #32											
Segment 13-B1-091304	09/11/04	Confirmatory	HHC Segment 13	B1	< 0.5	<0.6					
Segment 13-B2-091304	"	"	"	B2	< 0.5	<0.6					
Segment 13-B3-091304		"	"	B3	<0.5	<0.6					
Segment 13-B4-091304	"	"		B4	<0.5	<0.6					
Segment 13-W1-091304	"	"		W1	<0.5	<0.6					
Segment 13-W2-091304		"		W2	<0.5	<0.6					
Segment 13-W3-091304		"		W3	<0.5	<0.6	8927	0.015 J	31%		
Segment 13-W4-091304	"	"	"	W4	<0.5	<0.6	0,2,	010100	01/0		
2004 Field Batch #33					0.5						
Segment 13-B5-091404	09/14/04	Confirmatory	HHC Segment 13	B5	<0.5	<0.6					
Segment 13-B6-091404		"		B6	<0.5	<0.6					
Segment 13-B7-091404				B7	<0.5	<0.6					
Segment 13-B8-091404				B8	<0.5	<0.6					
Segment 13-B9-091404				B9	<0.5	<0.6					
Segment 13-B10-091404				B10	<0.5	<0.6					
Segment 13-B15-091404				B15	< 0.5	<0.6					
Segment 13-W5-091404				W5	<0.5	<0.6					
Segment 13-W6-091404				W6	<0.5	<0.6					
Segment 13-W7-091404				W7	<0.5	<0.6					
Segment 13-W8-091404 Segment 13-W10-091404			"	W8 W10	<0.5 <0.5	<0.6 <0.6	8927	<0.020 J	15%		
2004 Field Batch #34											
Segment 13-B11-091404	09/14/04	Confirmatory	HHC Segment 13	B11	< 0.5	<0.6					
Segment 13-B12-091404	"		"	B12	< 0.5	<0.6	8927	0.022 J	22%		
Segment 13-B18-091404	"	"	"	B18	< 0.5	<0.6					
Segment 13-W9-091404	"	"	"	W9	< 0.5	<0.6					
Segment 13-W12-091404	"	"	"	W12	< 0.5	<0.6					
Segment 13-W14-091404	"	"	"	W14	< 0.5	<0.6					
Segment 13-W16-091404	"	"	"	W16	< 0.5	< 0.6					

Remarks

ch #30 location after additional excavation

RICHARDSON HILL ROAD LANDFILL

SIDNEY, NEW YORK

	Date					, NEW YORK	tod her D	N G		Comm1	1
Sample Identification	Date Collected	Purpose	Location	Grid		Samples Collec	-			Samples Collected by	
					Immunoassy Field			d Laboratory 1 (Method 8082)		Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #35											
N2-B1-091504	09/15/04	Confirmatory	Area N2	B1	<0.5	<0.6				VOCs Only	VOC samples co
N2-B2-091504	"	"	"	B2	<0.5	<0.6				"	r r r r r r r r r r r r r r r r r r r
N2-B3-091504	"	"	"	B3	<0.5	<0.6				"	
N2-B4-091504	"	"	"	B4	<0.5	<0.6					
N2-B5-091504		"		B5	<0.5	<0.6				"	
N2-B6-091504	"	"	"	B5 B6	21.51	25.31	8927	92 J	8%	"	See batch #36 fo
N2-B0-091504 N2-B7-091504		"	"	B0 B7	<0.5	<0.6	0927	92 J	0 70		See Datell #50 10
		"									C 1 + + + +
N2-B8-091504				B8	8.58	10.09					See batches #36
N2-W1-091504				W1	<0.5	<0.6					
N2-W2-091504		"	"	W2	<0.5	<0.6				"	
N2-W3-091504	"	"	"	W3	<0.5	<0.6				"	
2004 Field Batch #36				744							
Segment 13-B13-091604	09/16/04	Confirmatory	HHC Segment 13	B13	<0.5	<0.6					
Segment 13-B14-091604	"	"	"	B14	<0.5	<0.6					
Segment 13-B16-091604	"	"	"	B16	<0.5	<0.6					
Segment 13-B17-091604	"	"	"	B17	< 0.5	<0.6					
Segment 13-B19-091604	"	"	"	B19	< 0.5	<0.6					
Segment 13-B20-091604	"	"	"	B20	< 0.5	< 0.6					
Segment 13-B21-091604	"	"	"	B21	< 0.5	<0.6					
Segment 13-B22-091604	"	"	"	B22	< 0.5	<0.6					
Segment 13-W11-091604	"	"	"	W11	< 0.5	< 0.6					
Segment 13-W13-091604	"	"	"	W13	<0.5	< 0.6					See batch #37 fo
Segment 13-W15-091604	"	"	"	W15	4.36	5.13	8927	5.92 J	45%		See batch #37 fo
N2-B6-091604		"	Area N2	B6	<0.5	<0.6	0/2/	0.020	1070		Retest of batch #
N2-B8-091604	"	"	"	B8	20.30	23.88	8927	87 J	7%		Retest of batch #
2004 Field Batch #37											
N2-B9-091604	09/16/04	Confirmatory	Area N2	B9	<0.5	<0.6				VOCs Only	VOC samples co
N2-B10-091604	"	"	"	B10	<0.5	<0.6				"	· · · · · · · · · · · · · · · · · · ·
N2-B11-091604		"		B10 B11	<0.5	<0.6				"	
N2-B12-091604		"		B12	<0.5	<0.6					
N2-W4-091604		"	"	W4		<0.6					
N2-W5-091604		"			<0.5						
		"		W5	<0.5	<0.6					
N2-W6-091604				W6	<0.5	<0.6					
Segment 13-W13-091704	09/17/04	"	HHC Segment 13	W13	<0.5	<0.6					Retest of batch #
Segment 13-W15-091704 Segment 13-B23-091704	"		HHC Segment 13 "	W15 B23	<0.5 <0.5	<0.6 <0.6					Retest of batch #
2004 Field Batch #38											
N1-B1-092104	09/21/04	Confirmatory	Area N1	B1	<0.5	<0.6	8976	0.066	20%	VOCs Only	VOC samples co
N1-B2-092104	"	"	"	B2	<0.5	<0.6				"	r
N1-B3-092104	"	"	"	B3	<0.5	<0.6				"	
N1-B4-092104	"	"	"	B4	<0.5	<0.6				"	
N1-B5-092104	"	"	"	B4 B5	<0.5	<0.6				"	
N1-B6-092104		"	"	B5 B6	<0.5	<0.6				"	
N1-B7-092104		"	"	В0 В7	<0.5 <0.5	<0.6				"	
		"	"								
N1-B8-092104				B8	<0.5	<0.6					
N1-W1-092104				W1	<0.5	<0.6					
N1-W2-092104	"	"	"	W2	<0.5	<0.6				"	
N1-W3-092104	"	"	"	W3	<0.5	<0.6				"	
N1-W4-092104	"	"	"	W4	1.35	1.59	8976	18	14%		See batch # 39 fo
N2-B8-092104	"	"	Area N2	B8	< 0.5	<0.6					Retest of batch #
N2-B8-092104 (Dup)	"	"	"	B8	< 0.5	<0.6		1		1	Retest of batch #

Remarks

s collected 9/20/04 by EarthTech.

6 for retest after additional excavation

#36 & 38 for retests after additional excavation

7 for retest after additional excavation 7 for retest after additional excavation ch #35 location after additional excavation ch #35 location. See batch # 38 for retest after additional ex.

s collected 9/20/04 by EarthTech.

ch #36 location after additional excavation. ch #36 location after additional excavation.

s collected 9/20/04 by EarthTech.

39 for retest after additional excavation ch #35 & 36 locations after additional excavation ch #35 & 36 locations after additional excavatior

RICHARDSON HILL ROAD LANDFILL

SIDNEY, NEW YORK

	Date		. .	<i>c</i> · · ·		Samples Collec	ted by Pars	ons		Samples	
Sample Identification	Collected	Purpose	Location	Grid	Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory]	Results ⁽²⁾	Collected by Others (Total	
								(Method 8082)		PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #39											
N3-B1-092204	09/22/04	Confirmatory	Area N3	B1	< 0.5	<0.6				VOCs Only	VOC samples co
N3-B2-092204	"	"	"	B2	<0.5	<0.6				"	
N3-B3-092204	"	"	"	B3	< 0.5	<0.6				"	
N3-B4-092204	"	"	"	B4	<0.5	<0.6	8976	0.27	10%	"	
N3-W1-092204	"	"	"	W1	<0.5	<0.6					
N3-W2-092204	"	"	"	W2	<0.5	<0.6				"	
N3-W3-092204	"	"	"	W3	<0.5	<0.6				"	
N1-W4-092204		"	Area N1	W4	0.71	0.84					Retest of batch #
2004 Field Batch #40											
Segment 12-B1-092204	09/22/04	Confirmatory	HHC Segment 12	B1	< 0.5	<0.6					
Segment 12-B2-092204	"	"	"	B2	< 0.5	<0.6					
Segment 12-B3-092204	"	"	"	B3	< 0.5	<0.6					
Segment 12-B4-092204	"	"	"	B4	<0.5	<0.6					
Segment 12-W1-092204	"	"	"	W1	2.22	2.61	8976	5.6 J	46%		See batch #41 fo
Segment 12-W2-092204	"	"	"	W2	<0.5	<0.6					
Segment 12-W3-092204	"	"	"	W3	<0.5	<0.6					
Segment 12-W4-092204		"	"	W4	<0.5	<0.6					
2004 Field Batch #41											
Segment 12-B5-092304	09/23/04	Confirmatory	HHC Segment 12	B5	1.24	1.46	9011	0.8 JN	25%		See batch #42 fo
Segment 12-B6-092304	"	"	"	B6	< 0.5	<0.6					
Segment 12-W1-092304	"	"	"	W1	< 0.5	<0.6					Retest of batch #
Segment 12-W5-092304	"	"	"	W5	< 0.5	<0.6					
Segment 12-W6-092304	"	"	"	W6	<0.5	<0.6					
N3-B5-092304	"	"	Area N3	B5	< 0.5	<0.6				VOCs Only	VOC samples co
N3-B6-092304	"	"	"	B6	< 0.5	<0.6				"	
N3-B7-092304	"	"	"	B7	<0.5	<0.6				"	
N3-B8-092304	"	"	"	B8	<0.5	<0.6				"	
N3-W4-092304	"	"	"	W4	<0.5	<0.6				"	
N3-W5-092304	"	"	"	W5	<0.5	<0.6	9011	0.047	22%		
N3-W6-092304		"	"	W6	<0.5	<0.6				"	
2004 Field Batch #42											
Segment 12-B5-092504	09/25/04	Confirmatory	HHC Segment 12	B5	<0.5	<0.6					Retest of batch #
Segment 12-B7-092504	"	"	"	B7	<0.5	<0.6					
Segment 12-B8-092504	"	"	"	B8	<0.5	<0.6					
Segment 12-B9-092504	"	"	"	B9	<0.5	<0.6					
Segment 12-B10-092504	"	"	"	B10	<0.5	<0.6	9011	0.11 J	19%		
Segment 12-B11-092504	"	"	"	B11	<0.5	<0.6	9011	0.092 J	24%		
Segment 12-B12-092504	"	"	"	B12	<0.5	<0.6					Retest of FIA#01
Segment 12-W7-092504		"	"	W7	<0.5	<0.6					
Segment 12-W8-092504	"	"	"	W8	<0.5	<0.6					
Segment 12-W9-092504	"	"	"	W9	<0.5	<0.6					
Segment 12-W10-092504	"	"	"	W10	<0.5	<0.6					Retest of FIA#01

Remarks

s collected 9/27/04 by EarthTech.

ch #38 location after additional excavation

1 for retest after additional excavation

2 for retest after additional excavation

ch #40 location after additional excavation

s collected 9/27/04 by EarthTech.

ch #41 location after additional excavation

#01 after excavation.

#01 after excavation.

RICHARDSON HILL ROAD LANDFILL

SIDNEY, NEW YORK

·		Date Samples Collected by Parsons Samples										
Sample Identification	Date Collected	Purpose	Location	Grid		Samples Collected by						
					Immunoassy Field Test Kit Results ⁽¹⁾		Validated Laboratory Results ⁽²⁾ (Method 8082)		Others (Total PCBs in mg/kg)			
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content			
2004 Field Batch #43												
Segment 11- B1-092704	09/27/04	Confirmatory	HHC Segment 11	B1	<0.5	<0.6						
Segment 11- B2-092704	"	"	"	B2	<0.5	<0.6						
Segment 11- B3-092704	"	"	"	B3	<0.5	<0.6						
Segment 11- B4-092704	"	"	"	B4	<0.5	<0.6	9022	0.043 J	26%			
Segment 11- B5-092704	"	"	"	B5	<0.5	<0.6					Retest of FIA#0	
Segment 11- B6-092704	"	"	"	B6	<0.5	<0.6					Retest of FIA#0	
Segment 11- W1-092704	"	"	"	W1	<0.5	<0.6						
Segment 11- W2-092704	"	"	"	W2	<0.5	<0.6					Retest of FIA#0	
2004 Field Batch #44												
Segment 10-B10-093004	09/30/04	Confirmatory	HHC Segment 10	B10	<0.5	<0.6	9052	< 0.021	20%			
Segment 10-B11-093004	"	"	"	B11	<0.5	<0.6						
Segment 10-B12-093004	"	"	"	B12	<0.5	<0.6						
Segment 10-B13-093004	"	"	"	B13	<0.5	<0.6						
Segment 10-B14-093004	"	"	"	B14	<0.5	<0.6						
Segment 10-W1-093004	"	"	"	W1	<0.5	<0.6						
Segment 10-W2-093004	"	"	"	W2	<0.5	<0.6						
Segment 10-W3-093004	"	"	"	W3	<0.5	<0.6						
Segment 10-W4-093004	"	"	"	W4	<0.5	<0.6						
2004 Field Batch #45												
Segment 10-B7-100104	10/01/04	Confirmatory	HHC Segment 10	B7	<0.5	<0.6	9052	0.029	25%			
Segment 10-B8-100104	"	"		B8	<0.5	<0.6						
Segment 10-B9-100104	"	"		B9	<0.5	<0.6						
Segment 10-W5-100104	"	"		W5	<0.5	<0.6						
Segment 10-W6-100104	"	"		W6	<0.5	<0.6						
Segment 10-W7-100104	"	"		W7	<0.5	<0.6						
Segment 10-W8-100104	"	"	"	W8	<0.5	<0.6						
SVE-B1-100404 SVE-B2-100404	10/04/04 "	Confirmatory	Area L-5	B1 B2			9052	VOCs Only			VOC samples of	
2004 Field Batch #46												
Segment 10-A5-100404	10/04/04	Confirmatory	HHC Segment 10	A5	<0.5	<0.6						
Segment 10-B4-100404				B4	<0.5	<0.6						
Segment 10-B5-100404	"	"	"	B5	<0.5	<0.6						
Segment 10-B6-100404	"	"	"	B6	<0.5	<0.6						
Segment 10-C4-100404	"	"	"	C4	<0.5	<0.6	9090	< 0.021	19%			
Segment 10-C5-100404	"	"	"	C5	<0.5	<0.6						
Segment 10-C6-100404	"	"	"	C6	<0.5	<0.6						
Segment 10-D6-100404	"	"	"	D6	<0.5	<0.6						
Segment 10-W10-100404	"	"	"	W10	<0.5	<0.6						
Segment 10-W12-100404	"	"	"	W12	<0.5	<0.6						
Segment 10-W14A-100404	"	"	"	W14A	<0.5	<0.6						
Segment 10-W14B-100404	"	"	"	W14B	<0.5	<0.6						

Remarks

A#04 after excavation. A#04 after excavation.

A#04 after excavation.

s collected by Parsons

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

Sample Identification	Date Collected	Purpose	Purpose Location	Grid		Samples Collected by					
					Immunoassy Field	Immunoassy Field Test Kit Results ⁽¹⁾		Validated Laboratory Results ⁽²⁾ (Method 8082)		Others (Total PCBs in mg/kg)	
					Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content		
2004 Field Batch #47											
Segment 10-C3-100504	10/05/04	Confirmatory	HHC Segment 10	C3	< 0.5	< 0.6					
Segment 10-D3-100504		"	"	D3	< 0.5	< 0.6					
Segment 10-D4-100504	"	"		D4	<0.5	<0.6					
Segment 10-D5-100504		"		D5	<0.5	<0.6					
Segment 10-E2-100504		"		E3	<0.5	<0.6	9090	< 0.021	19%		
Segment 10-E3-100504	"	"		E2	<0.5	<0.6					
Segment 10-F1-100504	"	"	"	F1	<0.5	<0.6					
Segment 10-W16-100504		"		W16	<0.5	<0.6					
Segment 10-W18-100504		"		W18	<0.5	<0.6					
Segment 10-W20-100504	"	"	"	W20	<0.5	<0.6					
2004 Field Batch #48											
Segment 10-E4-100704	10/07/04	Confirmatory	HHC Segment 10	E4	< 0.5	<0.6					
Segment 10-E5-100704	"	"	"	E5	< 0.5	< 0.6					
Segment 10-E6-100704	"	"	"	E6	< 0.5	<0.6					
Segment 10-F2-100704		"	"	F2	< 0.5	< 0.6					
Segment 10-F4-100804	10/08/04	"	"	F4	< 0.5	< 0.6					
Segment 10-F5-100804		"	"	F5	< 0.5	< 0.6					
Segment 10-F6-100704	10/07/04	"	"	F6	< 0.5	< 0.6					
Segment 10-G1-100704	"	"		G1	< 0.5	< 0.6	9090	< 0.022	24%		
Segment 10-G5-100804	10/08/04	"		G5	< 0.5	< 0.6					
Segment 10-G6-100804	"	"	"	G6	<0.5	<0.6					
SVE-B3-100804	10/08/04	"	Area L-5	В3	1.78	2.09	9090	8.1	9%		See batches # 4
SVE-B4-100804		"	"	B4	7.95	9.35					See batches # 4
SVE-B5-100804	"	"	"	B5	31.15	36.65					See batches # 4
2004 Field Batch #49											
Segment 10-J1-101104	10/11/04	Confirmatory	HHC Segment 10	J1	<0.5	<0.6					
Segment 10-K1-101104	"	"	"	K1	<0.5	<0.6					
Segment 10-L1-101104	"	"	"	L1	<0.5	<0.6					
Segment 10-L2-101104	"	"	"	L2	<0.5	<0.6					
Segment 10-L3-101104		"	"	L2 L3	<0.5	<0.6	9121	< 0.022	23%		
Segment 10-W13-101104		"	"	W13	<0.5	<0.6	/121		2070		
Segment 10-W15-101104		"	"	W15	<0.5	<0.6					
Segment 10-W17-101104		"	"	W15 W17	<0.5	<0.6					
Segment 10-W19-101104		"	"	W17 W19	<0.5 <0.5	<0.6					
SVE-B3-100904	10/09/04	"	Area L-5	B3	1.82	2.14	9121	3.9	6%		Retest of batch
SVE-B3-100904 SVE-B4-100904	10/07/04	"	"	B3 B4	1.82	2.14 2.06	1121	3.7	070		Retest of batch
SVE-B5-100904		"		B4 B5	1.73	1.45					Retest of batch

Remarks

49 & 51 for retests after additional excavation
49 & 51 for retests after additional excavation
49 & 51 for retests after additional excavation

tch #48 location. See batch # 51 for retest after additional ex. tch #48 location. See batch # 51 for retest after additional ex. tch #48 location. See batch # 51 for retest after additional ex.

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

Sample Identification	Date		Location	Grid		Samples					
	Collected F				Immunoassy Field	Test Kit Results ⁽¹⁾	Validate	d Laboratory 1 (Method 8082)	Results ⁽²⁾	Collected by Others (Total PCBs in mg/kg)	
				Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as Aroclor 1248)	SDG #	Total PCBs	Moisture Content			
2004 Field Batch #50											
Segment 10-F3-101104	10/12/04	Confirmatory	HHC Segment 10	F3	< 0.5	<0.6					
Segment 10-G2-101104	10/11/04	"	"	G2	< 0.5	<0.6					
Segment 10-G3-101204	10/12/04	"	"	G3	<0.5	<0.6					
Segment 10-H1-101104	10/11/04	"	"	H1	<0.5	<0.6					
Segment 10-H2-101104	"	"	"	H2	<0.5	<0.6					
Segment 10-H3-101204	10/12/04	"	"	H3	<0.5	<0.6					
Segment 10-I1-101104	10/11/04	"	"	I1	<0.5	<0.6					
Segment 10-I2-101104	"	"	"	I2	<0.5	<0.6					
Segment 10-I3-101204	10/12/04	"	"	13	<0.5	<0.6					
Segment 10-J2-101104	10/11/04	"		J2	<0.5	<0.6					
Segment 10-J3-101204	10/12/04	"		J3	<0.5	<0.6					
Segment 10-K2-101104	10/11/04	"		K2	<0.5	<0.6		0.025			
Segment 10-K3-101204	10/12/04	"		K3	<0.5	<0.6	9121	0.035	27%		
Segment 10-K4-101204	"	"	"	K4	<0.5	<0.6	9121	0.31	36%		
2004 Field Batch #51											
Segment 10-H4-101204	10/12/04	Confirmatory	HHC Segment 10	H4	< 0.5	<0.6					
Segment 10-H5-101204	"	"		H5	< 0.5	< 0.6					
Segment 10-I4-101204	"	"	"	I4	<0.5	<0.6					
Segment 10-I5-101204	"	"	"	I5	<0.5	<0.6					
Segment 10-J4-101204	"	"	"	J4	<0.5	<0.6	9121	< 0.021	20%		
Segment 10-W9-101204	"	"	"	W9	<0.5	<0.6					
Segment 10-W11-101204	"	"	"	W11	<0.5	<0.6					
SVE-B2-101304	"	"	Area L-5	B2			9121	VOCs Only			VOC sample co
SVE-B3-101204	"	"	"	B3	< 0.5	<0.6					Retest of batch
SVE-B4-101204	"	"	"	B4	< 0.5	<0.6					Retest of batch
SVE-B5-101204	"	"	"	В5	<0.5	<0.6					Retest of batch
2004 Field Batch #52											
Segment 9-B1-101304	10/13/04	Confirmatory	HHC Segment 9	B1	<0.5	<0.6					
Segment 9-B2-101304	"	"		B2	<0.5	<0.6					
Segment 9-B3-101304		"		B3	<0.5	<0.6					
Segment 9-B4-101304				B4	<0.5	<0.6					
Segment 9-B5-101304				B5 B6	<0.5	<0.6					
Segment 9-B6-101304 Segment 9-B7-101304				B6 B7	<0.5 <0.5	<0.6 <0.6					
Segment 9-W1-101304 Segment 9-W1-101304		"	"	B7 W1	<0.5 <0.5	<0.6 <0.6	9127	0.022 J	41%		
Segment 9-W2-101304 Segment 9-W2-101304		"	"	W1 W2	<0.5 <0.5	<0.6	7121	0.022 J	4170		
AR-1-101304	"	"	HHC Const. Access Road	A1	<0.5	<0.6					
AR-2-101304	"	"	"	A2	<0.5	<0.6	9127	0.19 J	2%		
AR-3-101304	"	"	"	A3	<0.5	<0.6					
AR-4-101304		"	"	A4	<0.5	<0.6					
AR-5-101304	"	"	"	A5	0.64	0.75					
HHC-1-101304	"	"	Herrick Hollow Creek	HHC1	<0.5	<0.6					
HHC-2-101304	"	"	"	HHC2	<0.5	<0.6					
HHC-3-101304	"	"	"	HHC3	<0.5	<0.6					
HHC-4-101304	"	"	"	HHC4	<0.5	<0.6					
HHC-5-101304	"	"	"	HHC5	<0.5	<0.6					
HHC-6-101304	"	"	"	HHC6	<0.5	<0.6	9127	0.0085 J	6%		
HHC-7-101304	"	"	"	HHC7	< 0.5	<0.6				<u> </u>	

Remarks

collected by Parsons.

tch #48 & 49 locations after additional excavation tch #48 & 49 locations after additional excavation tch #48 & 49 locations after additional excavation

RICHARDSON HILL ROAD LANDFILL SIDNEY, NEW YORK

SP-B1-110604	Collected	Purpose	Location South Pond Weir	Grid	Immunoassy Field Total PCBs (Reported as Aroclor 1254)	Total PCBs (Reported as	(1	Laboratory I Method 8082) Total PCBs	Results ⁽²⁾ Moisture	Collected by Others (Total PCBs in mg/kg)	
SP-B1-110604	11/06/04	Confirmatory	South Pond Weir		(Reported as	(Reported as					
2004 Field Batch #53 SP-B1-110604 2005 SAMPLING	11/06/04	Confirmatory	South Pond Weir			Aroclor 1248)			Content		
2005 SAMPLING			South Folid Well	B1	<0.5	<0.6	9305	0.23	26%		
AR-1	4/28/2005	Confirmatory	HHC Const Access Road	-	-	-		0.42	16.2%		
AR-2	"	"	"	-	-	-		0.093	15.1%		
AR-3	"	"	"	-	-	-		0.19	13.7%		
AR-4	"	"	"	-	-	-		0.29	12.5%		
AR-5	"	"	"	-	-	-		0.10	15.0%		
AR-6	"	"	"	-	-	-		0.099	15.5%		
AR-7	"	"	"	-	-	-		0.10	11.5%		
AR-8		"		-	-	-		0.083	13.4%		
AR-9		"		-	-	-		0.18	13.3%		
AR-10		"	"	-	-	-		0.10	13.2%		
AR-11				-	-	-		0.11	14.3%		
AR-12				-	-	-		0.065	15.2%		
AR-13				-	-	-		0.081 J	16.8%		
AR-14				-	-	-		0.053	16.7%		
AR-15				-	-	-		0.10	13.2%		
AR-16		"		-	-	-		0.20	12.1%		
AR-17 AR-18		"		-	-	-		0.060 0.10	19.6% 19.7%		
AR-18 AR-19		"		-	-	-		0.10 0.19 J			
AR-19 AR-20		"		-	-	-		0.19 J 0.62 J	11.3% 10.3%		
AR-20 AR-21		"		-	-	-		0.02 J	10.3%		
AR-21 AR-22	"	"		-	-	-		0.19	8.8%		
AR-22 AR-23	"	"		-	-	-		0.20	13.3%		
AR-24	"	"		-	-	-		0.11 J	22.5%		
AR-25		"				_		0.36	11.2%		
AR-26		"				_		0.38	13.0%		
AR-27	"	"	"	-	-	-		0.53 J	9.5%		
L5-001 (North Composite)	05/12/05	Confirmatory	Area L-5	North			0505073	5.23 J	19%		See 9/7/05 sam
L5-002 (Center Composite)	"	"	"	Center			"	4.69 J	13%		
L5-003 (South Composite)	"	"	"	South			"	3.71 J	16%		
L5-01	09/07/05	Confirmatory	Area L-5	North			050908018	1.8			Retest of 5/12/
L5-02	"	"	"	Center			"	0.42			" " "
L5-02	"	"	"	South			"	0.59			
2006 SAMPLING											
L5-01	6/20/2006	Confirmatory	Area L-5	North			60621007	0.34			Retest of 9/72/
L5-01-1	"	"	"	North (Duplicate)			"	0.363			
L5-02	"	"		Center			"	0.59			
L5-03		"		South			"	0.29			

Notes:

RaPID Assay immunoassay test kit. The RaPid Assay is calibrated to Aroclor 1254, and exhibits 15% less sensitivity to Aroclor 1248. The RaPID assay does not distinguish between Aroclors (i.e., results reported as total PCBs). Since both Aroclors 1254 and 1248 were known to be present at the site, results were compared to clean-up criteria conservatively using two worst case scenarios as follows: in one it was assumed that all of the PCB detected by the RaPID Assay was Aroclor 1254, and for the other it was assumed that all of the PCB detected was Aroclor 1248. Because the RaPID assay is 15% less sensitive to Aroclor 1248 than for Aroclor 1254, in the second scenario, for Aroclor 1248, results were divided by 0.85 to account for the difference in sensitivity. The results for Aroclor 1254 and Aroclor 1248 were then compared to the clean-up goal of 1 mg/kg.

2. Samples analyzed by OBG Laboratories unless otherwise indicated. Higher of two GC column results shown.

3. Shaded results exceed 1 mg/kg.

P:\742577\wp\Phase 2 Closure Report\Final Interim RA Report - Remedial Work Element I\Appendicies\Appendix F - Confirmatory Analytical Data\Data BagentaryoReport Attachment A.xls\Sheet1

Remarks samples for retests after excavation 12/05 locations after excavation / See 6/20/06 retest. Adirondack Labs. 72/05 locations after additional excavation. Adirondack Labs.