2023 PERIODIC REVIEW REPORT AMERICAN THERMOSTAT SITE NYSDEC SITE NO. 420006

WORK ASSIGNMENT NO. D009809-01

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

Earth Environment Engineering and Geology P.C. (formerly MACTEC Engineering & Geology, P.C.) Portland, Maine

Project No. 3616206098

JANUARY 2025

2023 PERIODIC REVIEW REPORT AMERICAN THERMOSTAT SITE NYSDEC SITE NO. 420006

WORK ASSIGNMENT NO. D009809-01

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

Earth Environment Engineering and Geology P.C. (formerly MACTEC Engineering & Geology, P.C.) Portland, Maine

Project No. 3616206098

JANUARY 2025

Submitted by:

Katie Amann Project Manager

Approved by:

Nate Vogan, P.G. Senior Hydrogeologist

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF FIGURES	iii
LIST OF TABLES	
GLOSSARY OF ACRONYMS AND ABBREVIATIONS	v
EXECUTIVE SUMMARY	ES-1
1.0 SITE OVERVIEW	
1.1 SITE HISTORY AND DESCRIPTION	
1.1.1 OPERABLE UNIT 1 RECORD OF DECISION IMPLEMENTATIO)N 1-1
1.1.2 OPERABLE UNIT 2 RECORD OF DECISION IMPLEMENTATIO	
1.1.3 NON-RECORD OF DECISION SITE ACTIVITIES	
1.2 PHYSICAL SETTING	
1.3 CLEANUP GOALS AND REMEDIAL PROGRESS	
2.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS,	
PROTECTIVENESS	
2.1 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS	
2.1.1 SITE CONTROLS AND EVALUATION	
2.1.2 GROUNDWATER EXTRACTION AND TREATMENT SYSTEM	
2.1.3 RESIDENTIAL POINT OF ENTRY TREATMENT SYSTEMS	
2.2 OPERATION AND MAINTENANCE PLAN	
2.2.1 GROUNDWATER EXTRACTION AND TREATMENT SYSTEM	
2.2.2 RESIDENTIAL POINT OF ENTRY TREATMENT SYSTEMS	
2.3 HYDRAULIC MONITORING	
2.4 LONG-TERM MONITORING	
3.0 SUSTAINABILITY AND RESILIENCY	
3.1 GROUND SOURCE HEATING AND SOLAR PHOTOVOL	
EVALUATION AND IMPLEMENTATION	
4.0 COST CONTROL SUMMARY	
5.0 CONCLUSIONS AND RECOMMENDATIONS	
5.1 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS	
5.2 OPERATION AND MAINTENANCE PLAN	
5.3 GROUNDWATER MONITORING PROGRAM	5-2
5.4 RECOMMENDATIONS	
6.0 REFERENCES	6-1

FIGURES

TABLES

APPENDICES

Appendix A:	Historical Groundwater Results – Site VOCs
Appendix B:	2021-2023 Groundwater Extraction and Treatment System Performance Sampling Results
Appendix C:	2023 Long-Term Groundwater Monitoring and Sampling Event Field Records
Appendix D:	Category A Review, October - November 2023 LTM Groundwater Sampling

TABLE OF CONTENTS (CONTINUED)

- Appendix E: Time-Series Plots OW-14, EW-16, EW-7, CE-2, EW-13, M-5
- Appendix F: Constituent Trend Analyses of Key Wells
- Appendix G: Cost Control Summary Documents

LIST OF FIGURES

Figure

- 1.1 Site Location
- 1.2 Site Features
- 2.1 Groundwater Well Locations
- 2.2 April 2023 Interpreted Bedrock Potentiometric Surface (Pumping)
- 2.3 October 2023 Interpreted Bedrock Potentiometric Surface (Pumping)
- 2.4 October 2023 Interpreted Overburden Potentiometric Surface (Pumping)
- 2.5 October 2023 Bedrock Groundwater PCE Plume
- 2.6 October 2023 Overburden Groundwater PCE Plume

LIST OF TABLES

Table

- 2.1 Site Management Requirements
- 2.2 Long-Term Monitoring and System Performance Sampling Matrix
- 2.3 Treatment Plant Monthly Throughput
- 2.4 Groundwater Extraction and Treatment System Operational Data
- 2.5 Total VOCs in Extracted Groundwater (lbs.)
- 2.6 Groundwater Extraction and Treatment System Performance Sampling Results
- 2.7 Long-Term Monitoring and Semiannual Groundwater Elevations
- 2.8 Groundwater Monitoring Results Site-Specific Contaminants of Concern

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

bgs	below ground surface
BOD	Basis of Design
cis-1,2-DCE	cis-1,2-dichloroethene
COC(s)	contaminant(s) of concern
EC(s)	engineering control(s)
EEEG	Earth Environment Engineering and Geology P.C.
EW	bedrock extraction well
GAC	granular activated carbon
gpm	gallon(s) per minute
GSHP	ground/water source heat pump
GWETS	groundwater extraction and treatment system
IC(s)	institutional control(s)
LTM	long-term monitoring
MACTEC	MACTEC Engineering & Geology, P.C.
µg/L	microgram(s) per liter
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
O&M	operation and maintenance
OM&M	operation, maintenance, and monitoring
OU1	Operable Unit 1
OU2	Operable Unit 2
OW	overburden extraction well

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

PCE	tetrachloroethene
PLC	programmable logic controller
POET	point of entry treatment
RAO	Remedial Action Objective
ROD	Record of Decision
RSO	Remedial System(s) Optimization
Site	American Thermostat Site
SM	Site Management
SMP	Site Management Plan
SVI	soil vapor intrusion
TCE	trichloroethene
USEPA	United States Environmental Protection Agency
VOC(s)	volatile organic(s) compound

EXECUTIVE SUMMARY

The American Thermostat Site (NYSDEC Site No. 420006; herein referred to as the Site) consists of approximately eight acres located in South Cairo, Town of Catskill, Greene County, New York. The Site has been remediated in accordance with the Record of Decision (ROD) for Operable Unit 1 (potable water supply) (United States Environmental Protection Agency [USEPA], 1988) and Operable Unit 2 (soil, sediment, surface water, groundwater, and building contamination) (USEPA, 1990). The Site includes an active groundwater extraction and treatment system (GWETS). The contaminants of concern are volatile organic compounds including tetrachloroethene (PCE), trichloroethene, 1,2-dichloroethene, and vinyl chloride. Remedial goals outlined in the ROD documents for the Site are instituted to ensure protection of groundwater from site contaminants in soil, restore groundwater to drinking water standards or until a point has been reached at which contaminant concentrations in the groundwater stabilize, and reduce risk to human health and the environment. Current Site Management (SM) requirements for monitoring the performance and effectiveness of the remedial measures completed at the Site consist of operating the GWETS to maintain hydraulic control in the source area, routine inspection, sampling, and reporting.

The GWETS has been operational since 1998, and monitoring results have indicated that achieving groundwater cleanup goals in a reasonable period will not be possible. Exposure pathways resulting from site contaminants being released into the environment have either been eliminated through previous actions (i.e., extension of the public water supply, thermal treatment of shallow contaminated soil, and former residential point of entry treatment systems) or are not complete (i.e., vapor intrusion). However, vapor mitigation within the vacant American Thermostat building should be evaluated if building occupancy resumes. The objective of treating groundwater "until federal and state standards for the organic contaminants have been achieved" is not practicable at this Site. As a result, the Remedial Action Objective for the Site has been redefined to focus on hydraulic containment of the source area, which is an achievable goal that is protective and cost-effective.

Based on information gathered from the 2012 Remedial Systems Optimization investigation and updated conceptual site model, GWETS optimization measures were initiated in 2013 and completed in 2017 to focus on hydraulic control of the bedrock source area and eliminate extraction of water from off-site deep bedrock extraction wells. Optimization measures resulted in increased operational effectiveness of the GWETS and decreased operating costs.

This Periodic Review Report summarizes SM activities completed from January 2021 through December 2023. Based on activities completed in 2023, the site use and activities are in compliance with the Site Management Plan requirements (MACTEC, 2018b), the institutional controls/engineering controls remain in-place, the GWETS is performing as designed, and site controls are effective in protecting the public health and environment.

During the reporting period, the GWETS was shut down on several occasions due to system alarms, modifications, and maintenance periods.

Water level measurements were collected semiannually from 2021 to 2023 to monitor hydraulic control of the source area. Groundwater samples were collected in April 2021, July 2022, and October and November 2023 as part of the long-term monitoring program established for the Site. GWETS performance monitoring occurred monthly. Results from these monitoring programs demonstrate that the system is performing effectively by maintaining an inward hydraulic gradient at the bedrock source area adjacent to the Site.

As expected, the groundwater plume's concentration core continues to respond to the reconfiguration of extraction well pumping, and the residual off-site groundwater contamination appears to be migrating toward Catskill Creek as predicted.

In 2022 an updated Ground Source Heating and Solar Photovoltaic Evaluation (an update to the original document [MACTEC, 2018]) was submitted to the New York State Department of Environmental Conservation summarizing an assessment of energy conservation measures to reduce utility expenditures and greenhouse gas output at the Site (MACTEC, 2022b). The evaluation proposes a ground/water source heat pump (GSHP) system to heat and cool the treatment building utilizing infrastructure already present as part of the GWETS, and a solar photovoltaic system for local electric power generation. Design and implementation of the GSHP system is anticipated in 2024. Design and implementation of the solar photovoltaic system is on hold while the USEPA completes the field portion of a proposed remedial investigation and feasibility study at the Site.

1.0 SITE OVERVIEW

The American Thermostat site (Site) is in a rural residential area in South Cairo, Town of Catskill, Greene County, New York, approximately thirty miles southwest of Albany and five miles west of the Village of Catskill. The approximately eight-acre site is bordered by Routes 23B and Route 23 on the north and south, respectively, by a residential property on the west, and by New York State-owned property to the east (Figure 1.1). The Site contains the former American Thermostat building and the water treatment plant constructed for the implementation of the groundwater remedy.

The area surrounding the Site is characterized as rural-residential. There are a few full-time residences, vacation homes, and several small businesses in the vicinity of the Site. The American Thermostat Co. was the only manufacturing facility in the area. Approximately 5,000 people live within a three-mile radius of the Site in low-density residential areas.

1.1 SITE HISTORY AND DESCRIPTION

American Thermostat Co. produced thermostats and used chlorinated and non-chlorinated solvents in its manufacturing from 1954 to 1985. The waste solvents were disposed on the property and/or discharged to the septic system.

In 1981, the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health sampled nearby residential wells and detected tetrachloroethene (PCE) at concentrations exceeding federal maximum contaminant levels. Shortly thereafter, the United States Environmental Protection Agency (USEPA) assumed management of the Site and installed a point of entry treatment (POET) system consisting of a carbon filtration unit on affected homeowners' wells. American Thermostat Co. ended site operations in 1985, and in 1987, the USEPA commissioned a focused feasibility study to evaluate an alternate water supply for affected residents.

1.1.1 OPERABLE UNIT 1 RECORD OF DECISION IMPLEMENTATION

In 1988, a Record of Decision (ROD) was signed for Operable Unit 1 (OU1) that outlined the extension of the existing public water supply to provide a permanent and reliable solution for the

prevention of health risks to area residents associated with exposure to contaminated groundwater (USEPA, 1998). In 1998, following the completion of the public water supply extension in 1992, site-related contamination was observed in the communal water supply for the Country Estates mobile home park located 3,000 feet northwest of the Site and in three residential wells (USEPA, 2003 and MACTEC, 2013c). Country Estates has two bedrock wells (CE-1 and CE-2) that provide water for tenants within the mobile home park. POET systems were installed and maintained for the individual Country Estates water supply wells and the three residences as an alternative remedial action for OU1.

1.1.2 OPERABLE UNIT 2 RECORD OF DECISION IMPLEMENTATION

The USEPA conducted a remedial investigation for soil, surface water, and groundwater at the Site. In 1990, a ROD for Operable Unit 2 (OU2) was issued outlining mitigation measures for addressing the source of the soil and groundwater contamination at the Site as well as contamination in the groundwater contaminated plume emanating from the Site.

Remedial actions implemented for the OU2 ROD included:

- Excavation and treatment of on-site soils (approximately 38,000 cubic yards) via ex situ low temperature thermal desorption.
- Decontamination of the manufacturing building.
- Implementation of a groundwater extraction and treatment system (GWETS) for the groundwater plume emanating from the Site with reinjection of the treated water into the ground.

The GWETS, as commissioned in 1998, consisted of 14 open-hole bedrock extraction wells, 16 screened overburden extraction wells, 14 open-hole bedrock re-injection wells, and three re-injection trenches (MACTEC, 2018b). The re-injection trenches could not sufficiently handle the volume of effluent due to the poor permeability of the soil. The bedrock re-injection wells also proved ineffective at handling the volume of effluent due to the relatively low transmissivity of the bedrock aquifer, and injection into the bedrock aquifer was subsequently terminated.

The GWETS became fully operational in 1998, and the USEPA conducted five-year reviews in 2003, 2008, 2013, 2018, and 2024. In 2008, following 10 years of Site Management (SM) by the USEPA, the SM activities were transferred to the NYSDEC.

The GWETS was modified to its current configuration of five bedrock extraction wells and seven overburden extraction wells in 2013 as part of the Remedial Systems Optimization (RSO) described further in report Subsection 1.3. The on-site injection wells were abandoned in 2021 (MACTEC, 2021b), but the off-site open-hole bedrock injection wells located within the groundwater plume were not abandoned. Three off-site injection wells (IW-8, IW-9, and IW-10) were repurposed as monitoring wells for long-term groundwater monitoring. The remaining off-site injection wells are not used for site monitoring. Currently, the GWETS effluent is discharged to a surface drainage swale on the eastern side of the Site that eventually leads to Catskill Creek. The discharge pipe is inspected quarterly.

1.1.3 NON-RECORD OF DECISION SITE ACTIVITIES

In the winter of 2012, the vapor intrusion pathway within the plume boundaries was evaluated (MACTEC, 2012b). Soil vapor intrusion (SVI) sampling indicated a potential migration pathway of vapors to the site manufacturing building and to an adjacent property (Structure 3) located northwest of the Site. In October 2020, the open sump basin in the Structure 3 basement slab was replaced with a lined sump basin with cover as an engineering control to reduce SVI potential at this property. Cracks in the slab were sealed to prevent vapor exposure potential (MACTEC, 2021a). Standing water has been observed in Structure 3's exterior basement stairwell since December 2020, and it is therefore assumed that the basement contains standing water. Follow-up SVI sampling was to occur after the completion of sump replacement and slab crack sealing but was postponed until conditions allow for safe entry into Structure 3. Structure 3 is currently unoccupied, and further SVI sampling will be considered if the property becomes reoccupied in the future.

In 2018, a geothermal heating/cooling assessment was performed at the Site to evaluate utilization of extracted, treated groundwater to reduce utility expenditures and greenhouse gas output. The assessment was updated in 2022. Details of the assessment are summarized in Section 3.0 of this report.

1.2 PHYSICAL SETTING

The topography in the vicinity of the Site is characterized by the gently rolling foothills of the Catskill Mountains, which are deeply incised by stream channels. The Site is located on a slight ridge

2023 Periodic Review Report - American Thermostat Site NYSDEC Site No. 420006 Earth Environment Engineering and Geology P.C. – 3616206098

overlooking Catskill Creek Valley. Immediately west of the facility is a small valley which includes Tributary B, a tributary of Catskill Creek. East of the facility is Tributary A, which also flows into Catskill Creek, approximately a quarter mile to the east of the Site (Figure 1.2).

Regionally, the bedrock within Greene County consists of interbedded shales and sandstones of Devonian age, known as the Catskill Formation. The Catskill Formation is comprised of four distinct bedrock groups. From oldest to youngest, these groups are Hamilton, Genesee, Sonya, and West Falls. Bedrock underlying the Site is part of the Hamilton Group. Near the Site, the bedrock is at an average depth of 28 to 30 feet below ground surface (bgs). However, the bedrock surface is steeply incised at approximately 100 feet bgs near the former manufacturing building. Overburden overlying bedrock consists primarily of glacially derived soils (i.e., till).

There is limited hydraulic connection between the overburden and bedrock at the Site (MACTEC, 2013a). Overburden groundwater is perched and slowly drains laterally toward low lying areas, and vertically into the bedrock aquifer. Bedrock groundwater level fluctuations recorded during the RSO implementation field investigation in 2012 were compared to barometric fluctuations and the resulting relationship between water level fluctuation and barometric fluctuation indicated that the bedrock aquifer is likely semi-confined (MACTEC, 2013a).

Catskill Creek, located to the north and east of the Site, is classified as a trout stream and has considerable recreational value to local and visiting fishermen. The creek is also an auxiliary water supply for the Village of Catskill.

1.3 CLEANUP GOALS AND REMEDIAL PROGRESS

Implementation of the OU2 ROD was initiated by the USEPA in 1990, with the building decontamination and soil remediation elements completed by 1996. The groundwater remedy for OU2 was initiated in 1990 with the GWETS fully operational in July 1998 (MACTEC, 2018b). Operation and maintenance (O&M) of the GWETS is the only active OU2 remedial element transferred with the Site to the NYSDEC in 2008. Therefore, the GWETS and OU1 POET systems are considered for discussion of cleanup goals and remedial progress for the Site.

The GWETS, consisting of five bedrock extraction wells and seven overburden extraction wells, discharges treated water to a surface swale on the eastern side of the Site that drains to Catskill Creek. Monitoring of the OU2 groundwater remedial measure historically included three residential POET systems maintained and sampled by the NYSDEC since 2008 and the Country Estates communal water supply. Additional information on the OU2 monitoring well network is provided in report Subsections 2.1.3 and 2.2.2.

The ROD for the OU2 groundwater remedy states: "The groundwater treatment will continue until federal and state standards for the organic contaminants have been achieved in the groundwater throughout the contaminated plume area or until a point has been reached at which contaminant concentrations in the groundwater 'level off'. At that point, the remedy will be reevaluated for its effectiveness." It was assumed in the 1990 OU2 ROD that the selected remedial alternative for groundwater would take up to 30 years to achieve cleanup levels (five micrograms per liter [μ g/L] for PCE).

Based on the findings of the 2008 Final RSO Report (MACTEC, 2008), the NYSDEC implemented several recommended optimization efforts at the Site and conducted an RSO implementation field investigation in 2012 to:

- evaluate remedy performance relative to remedial goals
- identify potential changes to the remedy to enhance effectiveness, reduce costs, and shorten time to closure
- verify site conceptual model and closure strategy
- identify problem areas and recommend improvements
- evaluate progress in reaching closure (MACTEC, 2012a)

Concentration trends of site contaminants in the off-site plume at active extraction wells appeared to be steady and/or slightly trending downward. However, in the source area, concentrations remained elevated (above 1,000 μ g/L) and declining at an ever-slowing rate, indicating that concentrations may be sustained by the presence of a residual contaminant source. It appeared that groundwater treatment had reached a point at which contaminant concentrations had more or less "leveled off," and it was recommended that the remedial action be reevaluated for its effectiveness.

In 2012, an RSO implementation field investigation was conducted, from which recommendations for optimization of the groundwater remedy were proposed. The Final RSO Implementation Activities Report concluded that groundwater cleanup goals would not be achieved in a reasonable period. Therefore, the remedial objective was redefined and implemented in 2013 to focus on hydraulic containment of the source area of grossly contaminated groundwater (MACTEC, 2013a). The source area of grossly contaminated groundwater concentrations of the Final RSO Implementation Activities Report, is the area with groundwater concentrations of PCE greater than 1,000 μ g/L located between the American Thermostat building and Tributary B (Figure 1.2). The redefined remedial objective is currently being achieved through the active extraction well network.

Pumping of former off-site extraction wells hydraulically maintained the shape and direction of the plume to the northwest against the natural groundwater flow path to the northeast towards Catskill Creek. The RSO implementation investigation findings predicted that eliminating extraction of groundwater from off-site deep bedrock extraction wells would allow the off-site bedrock portion of the PCE plume to detach and migrate towards Catskill Creek to the northeast (Figure 1.2). As a result, a small residual portion of the off-site plume would be drawn into the Country Estates supply wells where it would be treated via its existing treatment system, and the remainder of the plume would begin to slowly move toward Catskill Creek where it would eventually discharge and dilute to low concentrations (MACTEC, 2013a). In September 2012, pumping was ceased at off-site bedrock extraction wells EW-10, EW-11, EW-12, and EW-14, located between the Country Estates supply wells and the Site.

To implement the recommendations from the 2013 RSO Implementation Activities Report, Basis of Design (BOD) Memoranda were prepared to define proposed modifications to the groundwater treatment system design to improve effectiveness and lower operating costs (MACTEC, 2013b and 2013d).

From 2013 through the end of 2017, the majority of GWETS improvements proposed in the BOD Memoranda were conducted, including:

- demolition and removal of unnecessary treatment components
- process improvements to the treatment system
- upgrade of 12 extraction wells, abandonment of nine on-site overburden extraction wells in accordance with NYSDEC Groundwater Monitoring Well Decommissioning Policy (CP-

43) (NYSDEC, 2009), conversion of 14 extraction/injection wells to monitoring wells, and removal of nine injection wells from service

• installation of an updated controls infrastructure including new control panels in the GWETS building and at each extraction well, and providing programmable logic controller (PLC) programming and communication between each well location and the GWETS building

From 2018 to 2023, GWETS modifications including well pump programming adjustments and system component upgrades were implemented to continue optimization efforts. Details of the improvements accomplished from 2018 to 2020 are provided in the 2018 Annual Report (MACTEC, 2019), 2019 Annual Report (MACTEC, 2020), and the 2020 Periodic Review Report (MACTEC, 2021a). Details of the improvements accomplished from 2021 to 2023 are included in Subsection 2.1.2 of this report.

The sampling frequency of pre-treatment (influent) water at the Country Estate wells CE-1 and CE-2 was reduced from quarterly to a 15-month sampling frequency in 2014 following the shutdown of the off-site extraction well network in September 2012. Influent groundwater samples collected from the Country Estates supply well CE-1 historically have contained low to no detections of PCE, trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride (Appendix A). CE-1 is no longer used to track the off-site PCE plume and was last sampled during the 2016 long-term monitoring (LTM) event. This well is not currently in service and serves as an emergency backup well to CE-2, the main supply well for Country Estates. Concentrations of PCE and TCE at CE-2 have mostly been below the New York State (NYS) Class GA Water Quality Standards (Class GA standard) of 5 μ g/L for PCE and TCE (NYSDEC, 1998) since 2014 with isolated exceptions (Appendix A).

Operation, maintenance, and monitoring (OM&M) of the POET systems for the Country Estates supply wells was transferred from the NYSDEC to the County Estates owner in April 2010. As of March 2024, the POET system for Country Estates' active water supply well CE-2 is monitored by the NYSDEC (NYSDEC, 2024). The POET system for CE-1 is present but not in use and is therefore not monitored.

Following the cessation of pumping in the off-site bedrock extraction wells, sample results from the Site's LTM wells located within the footprint of the off-site groundwater plume have continued to show a declining trend of PCE and TCE concentrations. The declining trend indicates that the off-

site groundwater plume has successfully detached, is migrating to the northeast towards Catskill Creek, and that matrix diffusion from bedrock fractures is a continuing source of site contaminants of concern (COCs) at individual wells including the Country Estates supply well CE-2.

Detachment of the off-site groundwater plume and movement of the western tip of the plume away from the Country Estates supply wells toward Catskill Creek is further evidenced by an increase in PCE concentrations from 2014 to 2018 in downgradient monitoring well EW-13 (located approximately 1,500 feet east of CE-2). A general declining trend has been observed at EW-13 since 2018 which suggests that the core of the plume has migrated beyond this location with concentrations likely sustained by matrix diffusion from bedrock fractures. Monitoring of the off-site migration and natural attenuation of the plume is accomplished with the LTM program and is further discussed in report Section 2.0.

2.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The Site Management Plan (SMP) includes an Institutional and Engineering Controls Plan, O&M Plan, LTM Plan, and associated reporting (MACTEC, 2018b). SM requirements are summarized in Table 2.1. The content of Table 2.1 is a combination of the requirements specified in the SMP and those implemented as part of the RSO implementation recommendations (MACTEC, 2013a).

2.1 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS

Institutional controls/engineering controls (ICs/ECs) provide added protection measures for potentially exposed receptors over and above natural attenuation mechanisms and source area remedial measures. ICs for the Site include restrictions to soil excavation, groundwater use and well installations, and a monitoring plan. Adherence to the ICs is required by and implemented under the SMP. ECs consist of the GWETS, the site perimeter fence, monitoring wells, residential POET systems, and an alternate water supply (MACTEC, 2018b).

Hydraulic control of the bedrock source area is maintained by the GWETS to confine the plume extent and migration and to recover contaminant mass. The site perimeter fence prohibits unauthorized access to the GWETS building and is inspected monthly. Monitoring wells (on- and off-site) are used for collecting groundwater samples and elevation measurements as part of the LTM program. POET systems for three residences without municipal water, directing potentially affected residential groundwater through two-stage granular activated carbon (GAC) filtration, have been monitored through routine maintenance and quarterly collection and analysis of groundwater samples. In May 2022, the NYSDEC issued letters to the three residences ending its responsibility of POET system OM&M (NYSDEC, 2022a, 2022b, 2022c). These POET systems are no longer considered a site EC. The OU1 alternate water supply consisting of a public water supply line, extended to the vicinity of the Site from the Village of Catskill in 1992, is maintained by the Village of Catskill (MACTEC, 2018b).

At the site transfer from USEPA to the NYSDEC in 2008, the Country Estates groundwater communal water supply treatment system was maintained and sampled by the NYSDEC. Treatment system O&M responsibilities were transferred from the NYSDEC to the Country Estates owner in

April 2010 (MACTEC, 2013c). A pre-treatment sample is collected from Country Estates' primary water supply well CE-2 as part of the Site's long-term groundwater monitoring program discussed in report Subsection 2.4. As of March 2024, the POET system associated with the Country Estates active water supply well CE-2 is monitored by the NYSDEC (NYSDEC, 2024).

RSO implementation field activities in 2012 identified surface and subsurface soil PCE contamination at the Site that exceeds the ROD cleanup goal of 1 milligram per kilogram. Surface soil contamination was identified immediately adjacent to the former manufacturing building (MACTEC, 2013a). To control exposure to contaminated soils, an IC was established requiring written permission from the NYSDEC to excavate site soils as well as adherence to the Excavation Plan in the SMP (MACTEC, 2018b).

The former manufacturing building is currently used for the storage of vintage cars slated for restoration. Should the owner use the building for any activity other than the current use for storage, vapor mitigation may be necessary to address worker exposure by SVI.

2.1.1 SITE CONTROLS AND EVALUATION

Requirements for the site controls are presented in Table 2.1. Effectiveness of the groundwater remedial measures is directly related to maintenance and monitoring of treatment processes related to the GWETS. Progress of groundwater remediation is tracked through the performance of the GWETS, through the LTM program (Table 2.2), through the interpretation of plume extent, and through the evaluation of trends in concentration over time (MACTEC, 2013a). Each of these components are discussed in the following report subsections.

2.1.2 GROUNDWATER EXTRACTION AND TREATMENT SYSTEM

Operating parameters for the GWETS include monitoring the volume of groundwater treated (gallons), flow rate (gallons per minute [gpm]), system downtime (days), and total volatile organic compounds (VOCs) extracted from groundwater (pounds). These parameters are summarized in Tables 2.3, 2.4, and 2.5. In 2023, the treatment plant processed approximately 7.2 million gallons of groundwater at an average flow rate of 14 gpm and removed 141 pounds of total VOCs. A summary of GWETS performance monitoring results for 2023 is provided in Table 2.6. GWETS performance

monitoring results for the reporting period are included in Appendix B.

The following GWETS modifications, improvements, and activities were completed during the reporting period.

In 2021, GWETS modifications and improvements implemented included:

- replacement of the seal assembly on Discharge Pump B to repair a leak
- removal of an extraneous wye strainer filter and screen from the system's discharge pipe, between the air stripper sump and discharge pumps, and cleaning of this section of pipe to resolve flow restrictions from fouling
- replacement of the SYSOP OK indicator light and fuse at overburden extraction well OW-7's control panel
- purchase of a Grundfos pump controller wireless remote
- replacement of the pressure sensor in bedrock extraction well EW-9 to resolve an erroneous high-pressure alarm from a failed sensor

Additional activities completed in 2021 as part of OM&M at the Site included:

- abandonment of six former injections wells (IW-1, IW-2, IW-3, IW-4, IW-5, IW-6) and four unused monitoring wells (UNK Well-02, UNK Well-03, UNK Well-05, and WB-4) (MACTEC, 2021b) in accordance with NYSDEC Groundwater Monitoring Well Decommissioning Policy CP-43 (NYSDEC, 2009)
- annual inspection of the treatment building by the New York State Office of Fire Prevention and Control
- purchase of a replacement push lawn mower for maintaining grass within the site perimeter fence
- off-site transportation and disposal of investigation derived waste
- support in response to basement flooding in Structure 3
- placement of approximately 0.2 cubic yards of material, approved for reuse by the NYSDEC, in ruts at the western portion of the on-site wellfield

In 2022, GWETS modifications and improvements implemented included:

- replacement of level transmitter fuses in EW-16 and OW-13
- replacement of non-functioning pumps in overburden extraction wells OW-3, OW-7, OW-13, and OW-16
- replacement of the flow meter O-ring at bedrock extraction well EW-6
- phased reduction of the pumping rate at EW-9 as part of the optimization evaluation to further reduce over pumping, collection, and treatment of clean off-site water (MACTEC, 2022a)

Additional activities completed as part of OM&M at the Site in 2022 included:

- removal of expired and unnecessary flammable aerosol products for off-site disposal
- annual inspection of the treatment building by the New York State Office of Fire Prevention and Control
- implementation of semiannual cleaning of extraction well flow meters
- replacement of the Site's water meter by the Village of Catskill Water Department
- NYSDEC assuming responsibility for snow plowing services at the Site

In 2023, GWETS modifications and improvements implemented included:

- replacement of the flow meter fuse in OW-5
- lowering the level transducer in OW-13 from 22 feet to 25 feet
- adding logic to the GWETS main PLC increasing signal communication time between antennas on the treatment building and EW-9's control panel to eliminate potential communication time-outs

Additional activities completed as part of OM&M at the Site in 2023 included:

- annual inspection of the treatment building by the New York State Office of Fire Prevention and Control
- inspection of the on-site propane tank by the NYSDEC's new propane call-out contractor, Superior Plus Propane

2.1.3 RESIDENTIAL POINT OF ENTRY TREATMENT SYSTEMS

While municipal water is supplied through the town distribution system to many houses in the area, three residences located outside the area of the municipal water supply and historically within the residual off-site plume are equipped with POET systems. Monitoring and maintenance were conducted quarterly from 2021 through January 2022. Quarterly sample results letters were issued to the residents. Sampling results indicate that the POET systems were operating as intended.

2.2 OPERATION AND MAINTENANCE PLAN

The remedial measures in place require routine inspection, sampling, and maintenance to provide effective remediation and reduction of exposure to site-related contaminants. O&M procedures and requirements are presented in the SMP (MACTEC, 2018b). The O&M Plan was revised in the 2018 SMP to incorporate the numerous changes implemented at the Site from 2013 to 2017. The following

report subsections describe requirements and compliance with the O&M Plan with respect to the GWETS and individual residential POET systems.

2.2.1 GROUNDWATER EXTRACTION AND TREATMENT SYSTEM

Monthly project reports were generated in 2023 to summarize GWETS system operation and to present operational and maintenance data to the NYSDEC.

The GWETS utilizes a total of twelve extraction wells including five bedrock wells (EWs) and seven overburden wells (OWs):

- EW-2, EW-6, EW-7, EW-9, EW-16
- OW-2, OW-3, OW-5, OW-7, OW-13, OW-14, OW-16

In 2023, a total of ten extraction wells were active:

- EW-6, EW-7, EW-16
- OW-2, OW-3, OW-5, OW-7, OW-13, OW-14, OW-16

Bedrock extraction well EW-2 has been inoperable since September 2020 due to electrical and mechanical issues including loss of power, piping repairs, and pump failure. It was recommended in the Final Extraction Well Optimization Evaluation Field Activities Report that EW-2 be converted to a monitoring well (MACTEC, 2023a). EW-2, in its most recently sampled period of operation (October 2018), had PCE concentrations an order of magnitude (150 μ g/L) lower than the threshold to be considered part of the bedrock source area (1,000 μ g/L) and represents limited efficiency for contaminant mass removal. Although EW-2 has not been able to be sampled since 2018 due to disabled extraction equipment remaining within the well, groundwater contour maps presented in that report indicate that the EW-7 capture zone includes EW-2 and that active extraction at EW-2 is not necessary to maintain the Remedial Action Objective (RAO) of hydraulic control of the bedrock source area. Extraction well EW-9 is not operating at the time of the submittal of this report due to a presumed failed pump. Repairs and/or modifications are planned for 2025.

An RSO evaluation at EW-9 was conducted in accordance with the Field Activities Plan – Extraction Well Optimization Evaluation (MACTEC, 2022a) to evaluate optimization of contaminant mass removal by the GWETS and focused on pumping rates at bedrock extraction well EW-9.

The following plan was implemented at EW-9 in three phases in 2022:

- Phase 1 (February 1 to April 1) reduction in pumping rate from 11 gpm to 9 gpm
- Phase 2 (April 1 to June 1) reduction in pumping rate from 9 gpm to 7 gpm
- Phase 3 (June 1 to August 1) reduction in pumping rate from 7 gpm to 5 gpm

Each phase included collection of VOC samples from EW-9 following each pumping rate reduction and collection of water level measurements from select groundwater extraction and monitoring wells to evaluate effects of pumping rate reductions on hydraulic gradients. Findings and results are summarized in the Final Extraction Well Optimization Evaluation Field Activities Report (MACTEC, 2023a).

During 2023, the treatment plant processed approximately 7.2 million gallons of groundwater at an average flow rate of 14 gpm and removed 141 pounds of total VOCs (Tables 2.3, 2.4, and 2.5). System influent and effluent samples were collected and analyzed monthly for VOCs; therefore, mass removal is an approximation.

During 2023, there were approximately 10 downtime days, or 3% of the year (Table 2.4). The GWETS was shut down on several occasions in 2023 due to system alarms, power outages, and maintenance periods.

Approximate system downtime for the GWETS fluctuated during 2021, 2022, and 2023: 14 days (MACTEC, 2022d), 12 days (MACTEC, 2023b), and 10 days (Table 2.4), respectively. The total amount of water treated by the system from 2021 through 2023 decreased compared to the 2018 through 2020 reporting period (approximately 30 and 37 million gallons, respectively) (Table 2.3).

Effluent water is discharged from the GWETS to a surface swale which drains to Tributary A (a Class C surface water body) and discharges to Catskill Creek (Figure 1.2). Effluent samples are collected at the end of the treatment system train and compared to Class C standards and guidance values (NYSDEC, 1998) which are applicable at the point of discharge at the swale.

In 2021, monthly effluent samples did not exceed Class C standards and guidance values for siterelated VOCs in 2021 and therefore surface discharge limits were met (MACTEC, 2022d). In 2022, iron exceeded Class C criteria in July, August, and November effluent samples. In August site-related VOCs in the monthly effluent samples exceeded Class C criteria. However, there were no detections of site-related VOCs in the August 2022 influent samples (collected before air stripper treatment). A review of historical data show that the VOC concentrations observed in the effluent sample were consistent with historical influent sample results, and concentrations in the influent sample were consistent with historical effluent sample results. Therefore, it is assumed that the samples IDs were switched either in the field or at the laboratory. Except for the exceedances above, treated effluent water met surface discharge limits in 2022 (MACTEC, 2023b).

In 2023, iron exceeded Class C criteria in the April effluent sample. Monthly effluent samples did not exceed Class C criteria for site-related VOCs and therefore met surface discharge limits. The system performance monitoring results for 2023 are presented in Table 2.6.

2.2.2 RESIDENTIAL POINT OF ENTRY TREATMENT SYSTEMS

Quarterly maintenance and monitoring of the three residential POET systems occurred in 2021 to January 2022. Samples were collected before and between GAC filters, and no exceedances of NYS Class GA standards for site-related VOCs were observed (MACTEC, 2022d and 2023b). Samples were collected from the three residential wells before filtration as part of the April 2021 and July 2022 LTM events and did not contain detections of site-related VOCs. Results for April 2021 are included in the 2021 Annual Report (MACTEC, 2022d), and results for July 2022 are included in the 2022 Annual Report (MACTEC, 2023b). Letters reporting the sample results were issued to the residents.

On May 17, 2022, POET system cessation letters were issued to the three residences because COCs exceeding GA standards had not been detected in pre-treatment groundwater since January 2013 (NYSDEC, 2022a, 2022b, 2022c). The residents were offered the option to keep and assume responsibility for their system or to have the NYSDEC arrange for its removal. One resident opted for partial removal of their POET system. Removal activities were summarized in a NYSDEC Daily Inspection Report (MACTEC, 2022c). Copies of POET system cessation letters are included in Attachment 1 of the 2022 Annual Report (MACTEC, 2023b).

2-7

Per email correspondence with the NYSDEC on October 20, 2022, LTM samples are no longer collected from the three residences with former POET systems.

POET system OM&M completed in 2021 and 2022 included the following:

- Residence
 - Quarterly inspection of the POET system through January 2022, and additional requested inspections in March and June 2022
 - Quarterly sample collection of water before and between GAC filters through January 2022
 - Replacement of particulate filters, GAC filters, and ultraviolet bulb, as necessary, through June 1, 2022. Filters and ultraviolet unit remain in place; owner assumed responsibility for the system.
- Residence
 - 0 Quarterly inspection of the POET system through January 2022
 - Quarterly sample collection of water before and between GAC filters through January 2022
 - Filters and ultraviolet unit remain in place; owner assumed responsibility for the system

Residence

- o Quarterly inspection of the POET system through January 2022
- Quarterly sample collection of water before and between GAC filters through January 2022
- Modifications to the POET system in August 2022 by Precision Environmental Services
 - Removal of two GAC tanks from the treatment train
 - Installation of new piping between the particulate filter housing and UV unit
 - Particulate filter and ultraviolet unit remain in place; owner assumed responsibility for the system

2.3 HYDRAULIC MONITORING

Water level measurements are collected semiannually to evaluate hydraulic control of the bedrock source area near the Site (Figure 2.1). Semiannual water levels are collected from a subset of bedrock monitoring and extraction wells for the hydraulic monitoring program in April and October each year. Water levels for the semiannual program are manually measured in nine bedrock monitoring

wells and transcribed from the human machine interface at the treatment system's main control panel for the five bedrock extraction wells, which are measured by transducers.

A synoptic water level measurement round is collected from an expanded network of overburden monitoring wells, bedrock monitoring wells, and bedrock extraction wells once a year (Figure 2.1). Although water levels are collected from the overburden extraction wells, they essentially operate as sumps and do not represent the overall overburden potentiometric surface. The synoptic water level measurement round is used to evaluate groundwater flow in the overburden and bedrock beyond the hydraulic control area and is typically collected during LTM groundwater sampling events as described in report Subsection 2.4. If an LTM event is not completed in a particular year, one of the semiannual hydraulic monitoring events is expanded to collect the full synoptic measurement round.

The 2021 and 2022 water level data and potentiometric surface maps are presented in the 2021 Annual Report (MACTEC, 2022d) and 2022 Annual Report (MACTEC, 2023b), respectively. Water level measurements collected for the April and October 2023 semiannual hydraulic monitoring events are presented in Table 2.7. The expanded water level measurement round was conducted for the LTM event completed in October 2023 where water levels were measured in 22 monitoring wells, five bedrock extraction wells, and seven overburden extraction wells (Table 2.7). Bedrock potentiometric surface maps were generated for April and October 2023 and are presented as Figures 2.2 and 2.3, respectively. An overburden potentiometric surface map was generated for the expanded October 2023 event and is presented as Figure 2.4.

The bedrock potentiometric surface maps (Figures 2.2 and 2.3) indicate that the bedrock source area (roughly centered around extraction well EW-16) is controlled with inward gradients maintained by GWETS operation of the bedrock extraction wells. Overall bedrock groundwater flow beyond the hydraulically controlled source area is to the northeast (Figure 2.3). Groundwater flow in the overburden at the Site is generally to the north and northeast in the direction of Catskill Creek (Figure 2.4).

2.4 LONG-TERM MONITORING

The LTM program is designed to monitor the following (MACTEC, 2018b):

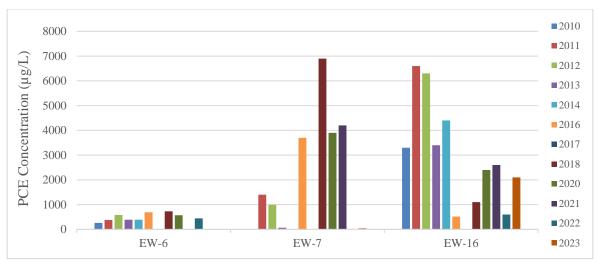
• the effect of the GWETS on contaminant levels in groundwater in the vicinity of the Site

- long-term trends in concentrations of COCs in groundwater
- evaluate the effectiveness of the remedial actions

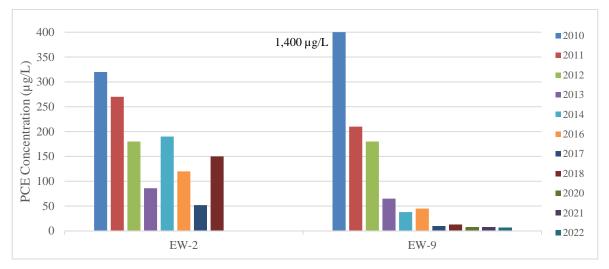
The objectives of the LTM program are accomplished through groundwater sampling and analysis. Since 2014, groundwater sampling events for the Site have been performed on a 15-month frequency.

Groundwater samples were collected and analyzed for VOCs from select wells (Table 2.2) during the April 2021, July 2022, and October 2023 LTM events, and the data was used to delineate the PCE plume. Data tables and figures from the 2021 and 2022 LTM events were included in their respective annual reports (MACTEC, 2022d and 2023b). Historical groundwater results for Site VOCs through 2022 are provided in Appendix A.

For the October 2023 LTM event, samples were collected from 28 locations. Depictions of well locations, bedrock and overburden potentiometric surfaces, and the inferred bedrock and overburden groundwater PCE plumes from the October 2023 LTM event are included in Figures 2.1, 2.3, 2.4, 2.5, and 2.6, respectively. Field records from the October 2023 LTM event are included in Appendix C. Analytical results for site COCs in groundwater for the October 2023 LTM event are presented in Table 2.8. A copy of the Category A Review validation document is provided in Appendix D. Time-series plots of PCE concentrations in select wells are provided in Appendix E. Laboratory results for samples were provided to NYSDEC in electronic document delivery format for uploading into EQuIS.


Bedrock extraction wells EW-2, EW-6, and EW-9 were off-line during the LTM event and therefore were not sampled. Pumps in overburden extraction wells OW-7 and OW-13 would not activate during the LTM event due to a dry running alarm and therefore were not sampled. Troubleshooting and repairs at unsampled wells are tentatively scheduled for 2024, and samples will be collected following repairs. The results from this sampling will be presented and discussed in the next reporting period. The results of this sampling will be communicated to the NYSDEC and USEPA for informative purposes in the interim. OW-7 and OW-13 were sampled on March 5, 2024, and EW-6 was sampled on March 19, 2024, but were not covered during this reporting period.

The highest concentrations of PCE and TCE in bedrock were observed in groundwater at EW-5 and EW-16. The highest concentrations of site COCs in overburden were observed in OW-3 and OW-14. These findings are consistent with results observed since the reconfiguration of the GWETS.


The core of the bedrock groundwater PCE plume is centered around EW-16 and shows signs of changing shape and shifting toward Catskill Creek, likely because of the discontinuance of off-site extraction wells. The leading edge of the plume, as evidenced by PCE detected at EW-13, is interpreted to be beyond the influence of the on-site extraction system and is expected to continue to migrate towards Catskill Creek.

Since 2010, the nature and extent of the overburden groundwater plume has been variable, with hot spots related to interpreted residual source areas with steep concentration gradients, consistent with previous sampling events at the Site. The October 2023 result for PCE of 11,000 μ g/L in OW-3 suggests that residual product remains present in the overburden. However, these observations agree with the conceptual site model that: 1) overburden groundwater is not migrating horizontally beyond the influence of the overburden extraction well network, and 2) is primarily vertically flow-dominated within the fractured till.

The histograms shown below present PCE concentrations over time in the bedrock extraction wells situated in the core of the bedrock source area. The changes in PCE concentrations in these wells support the optimized plume capture from re-configured GWETS in 2017 with a reduction in over-extraction of clean water from off-site.

PCE Concentrations in Bedrock Extraction Wells EW-2 and EW-9

Time-series plots of PCE concentrations in extraction well OW-14, EW-7, and EW-16 and off-site monitoring wells CE-2, EW-13, and M-5 were prepared to evaluate the long-term effectiveness of the modified extraction well network (Appendix E).

Overburden extraction well OW-14 and bedrock extraction wells EW-7 and EW-16 were selected to monitor on-site changes in groundwater quality. Wells OW-14 and EW-16 have historically shown high concentrations of PCE but have exhibited a general downward trend in PCE concentrations beginning in 2013/2014 through 2023. In contrast, PCE levels in EW-7 have exhibited a general upward trend from 2013 to 2021, likely a result of optimized pumping rates that have limited the overextraction of clean off-site groundwater; however, a considerable decrease occurred between 2021 (4,200 μ g/L) and 2022 (6.5 μ g/L) with a slight increase in 2023 (40 μ g/L). The fluctuations in groundwater quality at EW-7 may be related to changes in the pumping regime at EW-9 following the 2022 RSO and will be further evaluated in the next LTM sampling event scheduled for January 2025.

Monitoring wells CE-2, EW-13, and M-5 were selected to track progression of the residual off-site plume to the northeast towards Catskill Creek. Country Estates primary supply well, CE-2, has previously been used to track the distal end (i.e., northwest tip) of the residual, off-site plume. LTM sample results from 2014 to 2021 and 2023 have demonstrated consistent PCE concentrations below the NYS Class GA Standard for PCE of 5 μ g/L. However, in August 2022, PCE was detected above the standard at 10.9 μ g/L. CE-2 will continue to be monitored to track plume migration from

historical receptors (residential water supply wells). The highest PCE concentrations in the off-site plume, observed in EW-13 (located southeast of CE-2), demonstrated a slow overall decline from 2018 to 2023. Monitoring well M-5 was selected as a sentinel well to monitor the northeastward (off-site) progression of the plume beyond EW-13. Although PCE has not been detected in M-5 since 2010, daughter compounds cis-1,2-DCE and vinyl chloride remain above applicable NYS Class GA Standards. This trend demonstrates degradation of PCE either at or upgradient of this location, as is recently evident in other locations in this area. The off-site plume is expected to continue to decrease in concentration through natural degradation processes and migrate to the northeast towards Catskill Creek.

Constituent trend analyses for wells OW-14, EW-7, EW-16, M-5, and CE-2 were performed using the Mann-Kendall test. Test results for PCE, cis-1,2-DCE, and vinyl chloride are included in Appendix F. Overall, trends observed for PCE and associated daughter products are stable or indicate some declining trend in concentrations.

The objective of establishing hydraulic capture of highly contaminated bedrock groundwater (>5,000 μ g/L) in close proximity to the Site is being maintained while achieving improved extraction efficiency.

Per email correspondence with the NYSDEC on October 20, 2022, LTM samples are no longer collected from the three residences with former POET systems.

The next LTM sampling event will be conducted in January 2025.

2023 Periodic Review Report - American Thermostat Site NYSDEC Site No. 420006 Earth Environment Engineering and Geology P.C. – 3616206098

3.0 SUSTAINABILITY AND RESILIENCY

3.1 **GROUND SOURCE HEATING AND SOLAR PHOTOVOLTAIC EVALUATION** AND IMPLEMENTATION

An updated Ground Source Heating and Solar Photovoltaic Evaluation (an update to the original document [MACTEC, 2018]) was submitted to the NYSDEC in 2022 summarizing an assessment of energy conservation measures designed to reduce utility expenditures as well as greenhouse gas output at the Site (MACTEC, 2022b). The evaluation proposed a ground/water source heat pump (GSHP) system to heat and cool the treatment building utilizing infrastructure already present as part of the GWETS, and a solar photovoltaic system for local electric power generation.

Earth Environment Engineering and Geology P.C. (EEEG) is developing preliminary design packages for a NYSDEC call-out contractor to design, permit, build, and commission the two systems. A site inspection was performed on April 6, 2023, to identify and inventory existing electrical equipment, identify civil site conditions, and identify potential locations for new or upgraded equipment for the proposed GSHP and solar photovoltaic systems.

A draft conceptual solar array layout figure was prepared and presented to the NYSDEC on August 8, 2023. On September 7, 2023, the NYSDEC put the solar design on hold due to a proposed site remedial investigation and feasibility study by the USEPA scheduled to begin in the fall of 2023. The field investigation was postponed and is scheduled to begin in 2025 and continue through 2026. Completion of the design package will resume at the NYSDEC's direction.

EEEG submitted the GSHP system preliminary design package to the NYSDEC on October 30, 2024. NYSDEC's call-out contractor, LaBella Associates, D.P.C., will implement the work in 2025.

4.0 COST CONTROL SUMMARY

A cost summary table for 2023 SM activities is provided in Appendix G. As shown in the table, most of the SM costs were for operation and maintenance of the GWETS. Cost summaries for 2021 and 2022 were presented in their respective annual reports (MACTEC, 2022d and 2023b).

Annual SM costs for 2023 were less than those in 2021 and 2022. Costs were greater in 2021 and 2022 due to residential routine POET sampling, decommissioning of a residential POET system, an extraction well optimization evaluation and associated reporting, well decommissioning and associated reporting, pump and motor lead replacement at four overburden extraction wells OW-3, OW-7, OW-13, and OW-16, and preparation of an updated ground source heating and solar photovoltaic evaluation report. Costs are anticipated to increase due to upcoming scheduled maintenance tasks at the Site.

As of the 2022 to 2023 winter season, the NYSDEC assumed responsibility for snow plowing at the Site and it is no longer subcontracted.

At the NYSDEC's request, EEEG assumed management of site electric, propane, and municipal water utilities from the NYSDEC in 2023.

Since the NYSDEC assumed responsibility from the USEPA for the Site in 2008, annual SM costs associated with reporting, LTM, and GWETS OM&M have decreased by 73 percent, and cost per pound of VOCs removed has decreased by 54 percent. Charts depicting a breakdown of annual SM costs from 2008 to 2023 and cost per pound of VOCs removed are included in Appendix G. Optimization measures to reduce overall operating expenses have been and will continue to be implemented to provide further cost savings at the Site.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on information gathered as part of the 2012 RSO investigation, the RAO for the Site was redefined and implemented in 2013 to be hydraulic containment of the bedrock source area in the vicinity of the Site. Optimization efforts of the GWETS to achieve the RAO were initiated in 2013 and completed in 2017, with additional minor modifications completed between 2018 and 2023. By focusing on hydraulic control of the bedrock source area in the vicinity of the Site and ceasing operation of the rest of the off-site bedrock groundwater extraction wells, the off-site portion of the PCE plume to the northwest has detached from the source area and appears to be migrating to the northeast where it will eventually discharge and dilute to low concentrations toward Catskill Creek. Following completion of optimization measures from 2013 to 2017, and as evidenced during the reporting period (January 2021 through December 2023), the effectiveness of the GWETS at achieving the RAO has increased, operating costs have decreased, and the GWETS is continuing to treat groundwater within the Site's source area to reduce contaminant mass.

5.1 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS

The current ICs/ECs are adequate to achieve the objectives for protection of human health and the environment based on current site use. ICs for the Site, including a restriction on soil excavation, groundwater use and well installations, and a monitoring plan, remain in-place and adhered to. A soil vapor exposure pathway exists at the former manufacturing building and the adjacent property (Structure 3) located northwest of the Site; however, the former manufacturing building is currently used for storage purposes only. Mitigation would be necessary to address exposure to SVI should the former manufacturing building become occupied. In October 2020, the open sump basin in the Structure 3 basement slab was replaced with a lined sump basin with cover as an engineering control to reduce SVI potential at this property. Cracks in the slab were also sealed to prevent vapor exposure potential (MACTEC, 2021a).

ECs include the GWETS, the site perimeter fence, monitoring wells, the three residential POET systems, and an alternate water supply. The GWETS remains effective at treating impacted groundwater and at preventing further migration of impacted groundwater, as evidenced by monthly effluent sampling data that demonstrates adherence to surface water discharge criteria, and by LTM and semiannual monitoring data collected from on- and off-site monitoring wells. The site perimeter

fence is inspected monthly and continues to restrict unauthorized access to the GWETS building. Maintenance, monitoring, and sampling of the three residential POET systems was performed quarterly from 2021 through January 2022, and no exceedances of site-related VOCs were observed. Sampling results indicate that the POET systems were operating as intended. In May 2022, POET system OM&M responsibility was transferred to the residents. It is recommended that the POET systems no longer be considered a site EC. The alternate water supply (public water supply line) is maintained by the Village of Catskill.

5.2 OPERATION AND MAINTENANCE PLAN

The remedial measures in place require routine inspection, sampling, and maintenance to provide effective remediation and reduction of exposure to site-related contaminants. Compliance with procedures and requirements in the SMP was maintained during the reporting period. Site-related VOCs and iron in effluent water samples did not exceed Class GA standards and guidance values during the reporting period, thus meeting surface discharge limits except in July, August, and November 2022 and in April 2023. Monthly project reports will continue to be generated and submitted to the NYSDEC summarizing GWETS operational and maintenance data.

5.3 GROUNDWATER MONITORING PROGRAM

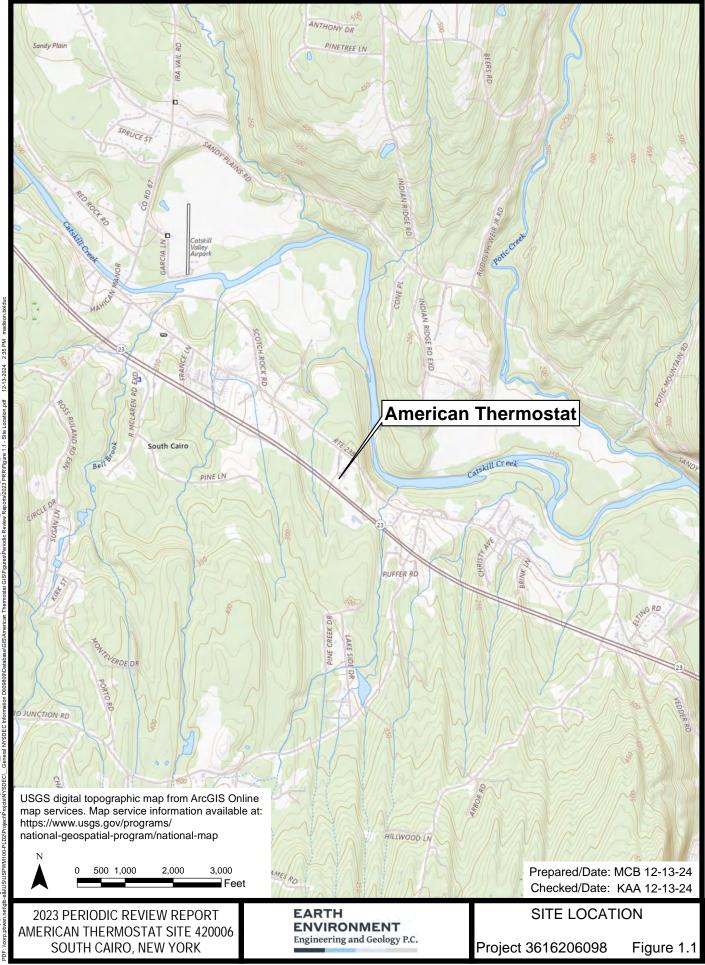
Monitoring the migration and/or degradation of the PCE plume is accomplished through the LTM program in accordance with the SMP. The objective of establishing hydraulic capture of contaminated bedrock groundwater near the Site, resulting from extraction well array modifications initiated in 2013, completed in 2017, and optimized through 2023 has been achieved and is supported through evaluation of contaminant concentration changes in data generated during LTM events. Data from the 2021, 2022, and 2023 LTM events continue to show that the core of the bedrock source area is maintained hydraulically in the vicinity of the Site and that the northwest edge of the residual off-site plume is continuing to migrate northeastward toward Catskill Creek, as evidenced by consistent PCE concentrations below the NYS Class GA Standard for PCE of 5 µg/L in CE-2 since 2014, with the exception of an exceedance in 2022, an overall decline of PCE in EW-13 since 2018, and detections of PCE daughter compounds cis-1,2-DCE and vinyl chloride above applicable Class GA Standards in M-5 since 2010. Changes in groundwater concentrations and plume movement will

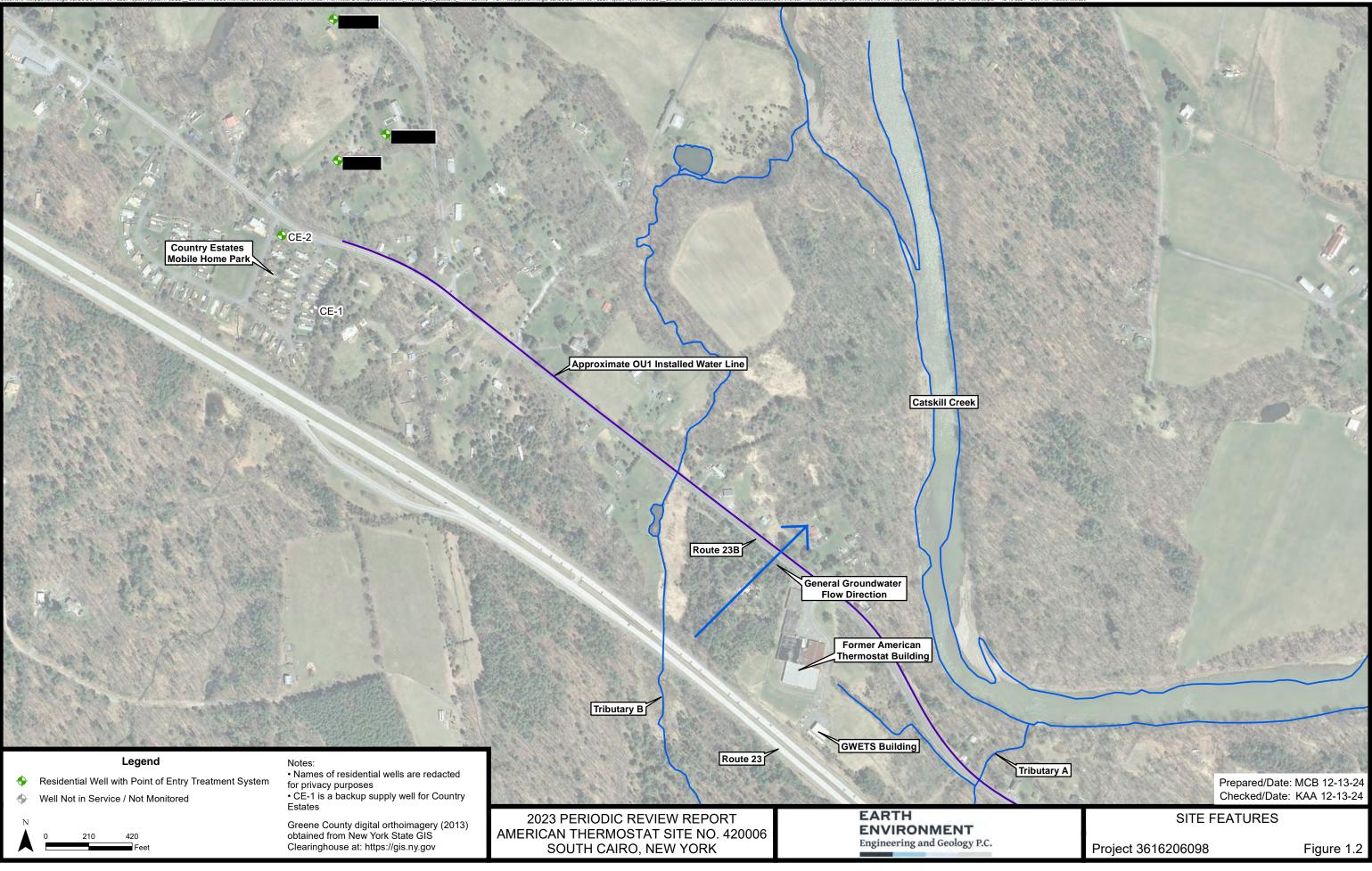
continue to be monitored during the 15-month LTM events. The next LTM sampling event will be conducted in January 2025.

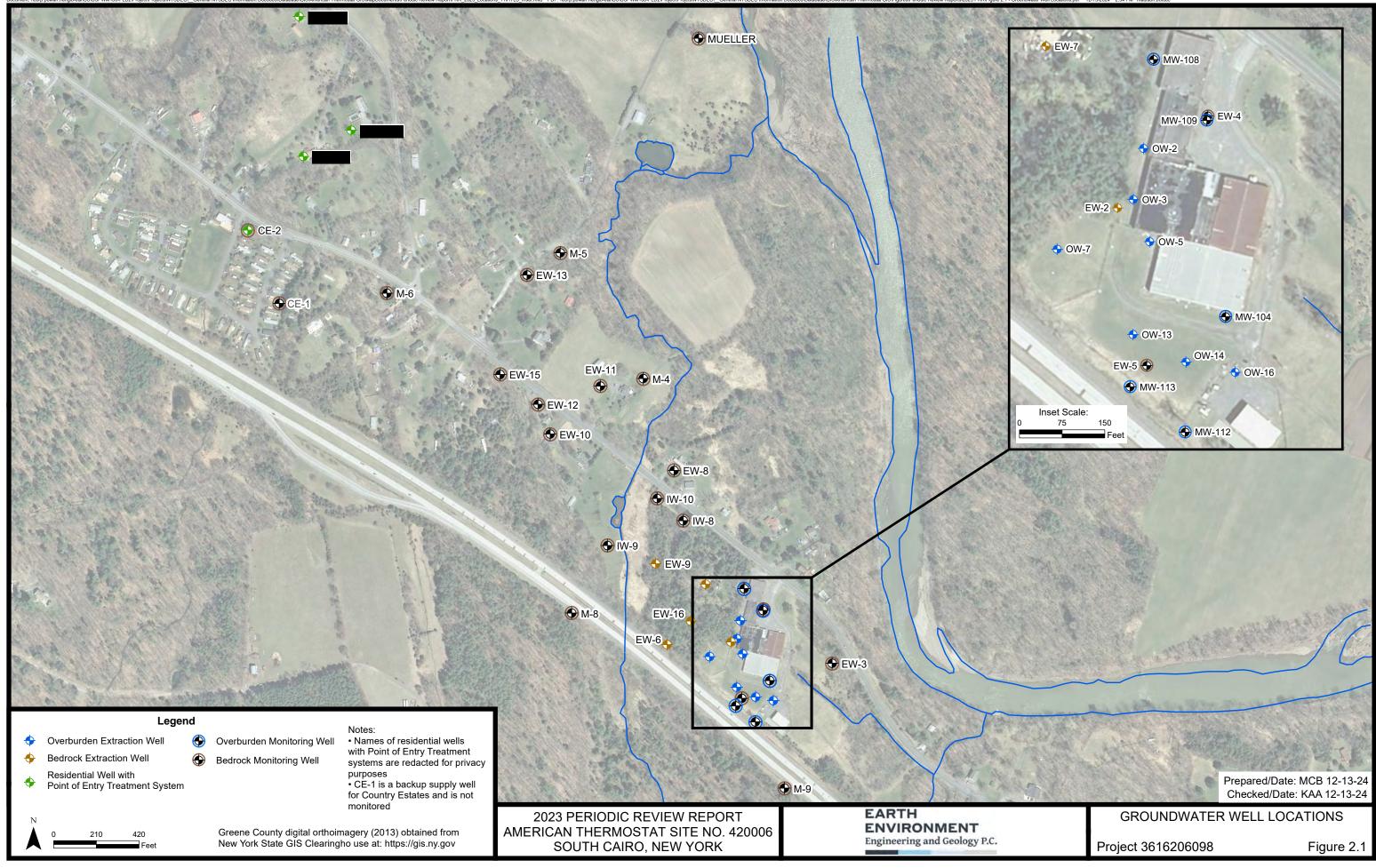
5.4 **RECOMMENDATIONS**

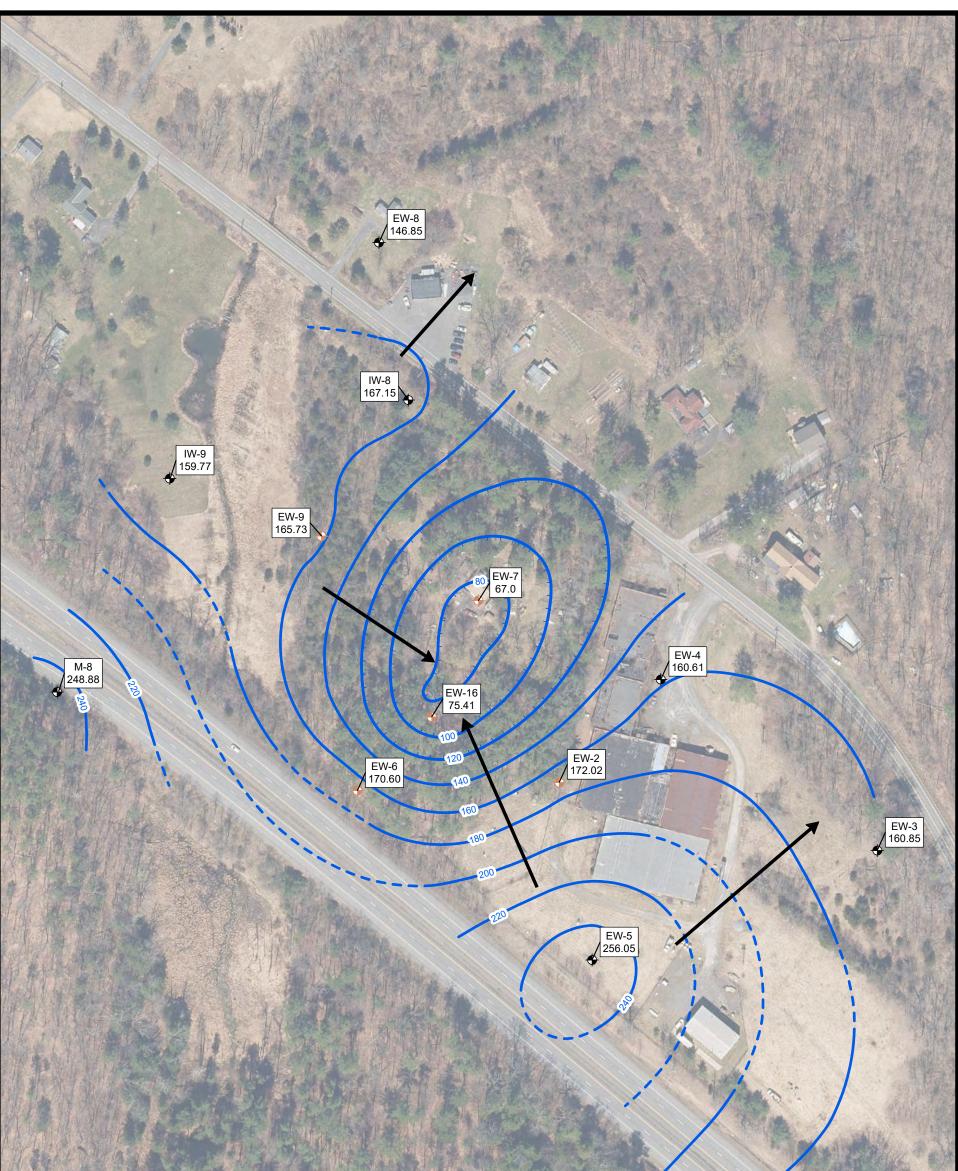
To continue optimizing system efficiency and remedial progress, and to provide further cost savings at the Site, the following actions are recommended:

- Continued implementation, review, and evaluation of the existing ICs/ECs, O&M Plan, and groundwater monitoring program, as applicable
 - Evaluate the long-term monitoring sampling and hydraulic monitoring program and refine to optimize monitoring the off-site bedrock plume.
 - Remove residential POET systems from the list of site ECs.
 - Update the SMP to reflect treatment systems and long-term monitoring plan changes.
- Continued routine GWETS maintenance
 - Conduct general housekeeping activities to improve work processes and eliminate general clutter.
 - Troubleshoot well components as needed to maintain normal system operation.
- Implement recommendations in the Final Extraction Well Optimization Evaluation Field Activities Report (MACTEC, 2023a).
 - Convert EW-2 to a monitoring well.
 - Further evaluate if EW-9 should be removed from service. Based on the relatively low mass removal rate and hydraulic control of the bedrock source area under reduced pumping, continued use of EW-9 may not be needed. Eliminating EW-9 will reduce operating costs as the well frequently requires unscheduled site visits to restore operation caused by power and antenna communication interruptions unique to this well. A rebound study would be proposed for EW-9 under non-pumping conditions prior to removal of supporting extraction infrastructure.
 - Evaluate source of and remedies for level transducer malfunctions in EW-16.
- Conduct a private utility mark-out to identify the perimeter/extent and depth of the Site's septic holding tank and to identify all underground utilities and structures near the tank in preparation for its decommissioning. Historical documentation identifying the above is either incomplete or not available. A private utility mark-out was completed prior to submission of this report (April 1, 2024).
- Decommissioning of the building septic tank and associated plumbing facilities to reduce costs associated with its maintenance. The GWETS has not been staffed full-time since 2017 and the septic tank and plumbing facilities are no longer necessary. Decommissioning was completed prior to submission of this report (May 22, 2024).
- Replace level transducers in EW-7 and EW-16 due to repeated transducer failures.


- Install stilling tubes in bedrock extraction wells EW-6, EW-7, EW-9, and EW-16 for unobstructed, direct water level measurement for routine transducer checks and calibration.
- Generate a preliminary GSHP system design package to heat and cool the treatment building for a NYSDEC call-out contractor to implement the design. The design package was submitted to the NYSDEC prior to submission of this report (October 30, 2024).
- Additional residential sampling is recommended as part of upcoming site activities to further assess contamination at the distal end of the groundwater plume to the northwest of the Site.


6.0 **REFERENCES**


- MACTEC, 2008. Final Remedial System Optimization Report, American Thermostat Site Site Number 4-20-006. November 2008.
- MACTEC, 2012a. Periodic Review Report (2010-2011). Prepared for the New York State Department of Environmental Conservation. May 2012.
- MACTEC, 2012b. Confidential Soil Vapor Intrusion Evaluation (SVIE) Letter Report, American Thermostat Site Characterization – Site Number 4-20-006. Prepared for the New York State Department of Environmental Conservation. May 18, 2012.
- MACTEC, 2013a. Final RSO Implementation Activities Report, American Thermostat Site (Site No. 420006). Prepared for the New York State Department of Environmental Conservation. January 10, 2013.
- MACTEC, 2013b. Basis of Design Memorandum, American Thermostat Site (Site No. 420006), Treatment Plan Improvements. January 29, 2013.
- MACTEC, 2013c. Periodic Review Report (2012). Prepared for the New York State Department of Environmental Conservation. June 4, 2013.
- MACTEC, 2013d. Basis of Design Memorandum, Extraction Well & System Monitoring Improvements, American Thermostat Site (Site No. 420006). July 23, 2013.
- MACTEC, 2018a. Ground Source Heating and Solar Photovoltaic Evaluation. Prepared for the New York State Department of Environmental Conservation. October 19, 2018.
- MACTEC, 2018b. Site Management Plan, American Thermostat Site (Site No. 420006), Revision
 4. Prepared for the New York State Department of Environmental Conservation. November 29, 2018.
- MACTEC, 2019. 2018 Annual Report. Prepared for the New York State Department of Environmental Conservation. January 31, 2019.
- MACTEC, 2020. 2019 Annual Report. Prepared for the New York State Department of Environmental Conservation. February 4, 2020.
- MACTEC, 2021a. 2020 Periodic Review Report. Prepared for the New York State Department of Environmental Conservation. May 2021.
- MACTEC, 2021b. Field Activities Report Well Decommissioning. Prepared for the New York State Department of Environmental Conservation. September 30, 2021.
- MACTEC, 2022a. Field Activities Plan Extraction Well Optimization Evaluation, American Thermostat NYSDEC Site No. 420006. March 25, 2022.
- MACTEC, 2022b. Ground Source Heating and Solar Photovoltaic Evaluation Update, American Thermostat Site (NYSDEC Site No. 420006). June 9, 2022.


- MACTEC, 2022c. Daily Inspection Report, August 20, 2022. Prepared for the New York State Department of Environmental Conservation. September 22, 2022.
- MACTEC, 2022d. Final 2021 Annual Report, American Thermostat Site (NYSDEC Site No. 420006). November 17, 2022.
- MACTEC, 2023a. Final Extraction Well Optimization Evaluation Field Activities Report, American Thermostat NYSDEC Site No. 420006. May 14, 2024.
- MACTEC, 2023b. Final 2022 Annual Report, American Thermostat Site (NYSDEC Site No. 420006). October 17, 2022.
- NYSDEC, 1998. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 1998 (revised).
- NYSDEC, 2009. CP-43: Groundwater Monitoring Well Decommissioning Policy. November 2009.
- NYSDEC, 2022a. 83 Scotch Rock Road, American Thermostat Site, Site ID: 420006, Point of Entry Treatment (POET) System Cessation. Division of Environmental Remediation, Remedial Bureau E. May 17, 2022.
- NYSDEC, 2022b. 93 Scotch Rock Road, American Thermostat Site, Site ID: 420006, Point of Entry Treatment (POET) System Cessation. Division of Environmental Remediation, Remedial Bureau E. May 17, 2022.
- NYSDEC, 2022c. 123 Scotch Rock Road, American Thermostat Site, Site ID: 420006, Point of Entry Treatment (POET) System Cessation. Division of Environmental Remediation, Remedial Bureau E. May 17, 2022.
- NYSDEC, 2024. *Country Estates Mobile Home Park Letter, Offer of Alternate Water Supply.* Division of Environmental Remediation, Remedial Bureau E. March 21, 2024.
- USEPA, 1988. USEPA Region II Record of Decision for the American Thermostat Site, South Cairo, Greene County, New York. January 7, 1988.
- USEPA, 1990. USEPA Region II Record of Decision, Operable Unit 2, American Thermostat Site, South Cairo, Greene County, New York. June 29, 1990.
- USEPA, 2003. Five-Year Review Report, American Thermostat Superfund Site, Town of Catskill, Greene County, New York. September 2003.

FIGURES

Legend

Bedrock Monitoring Well

Bedrock Extraction Well

Interpreted Groundwater Flow Direction

Interpreted Bedrock Groundwater Contour (feet above mean sea level)

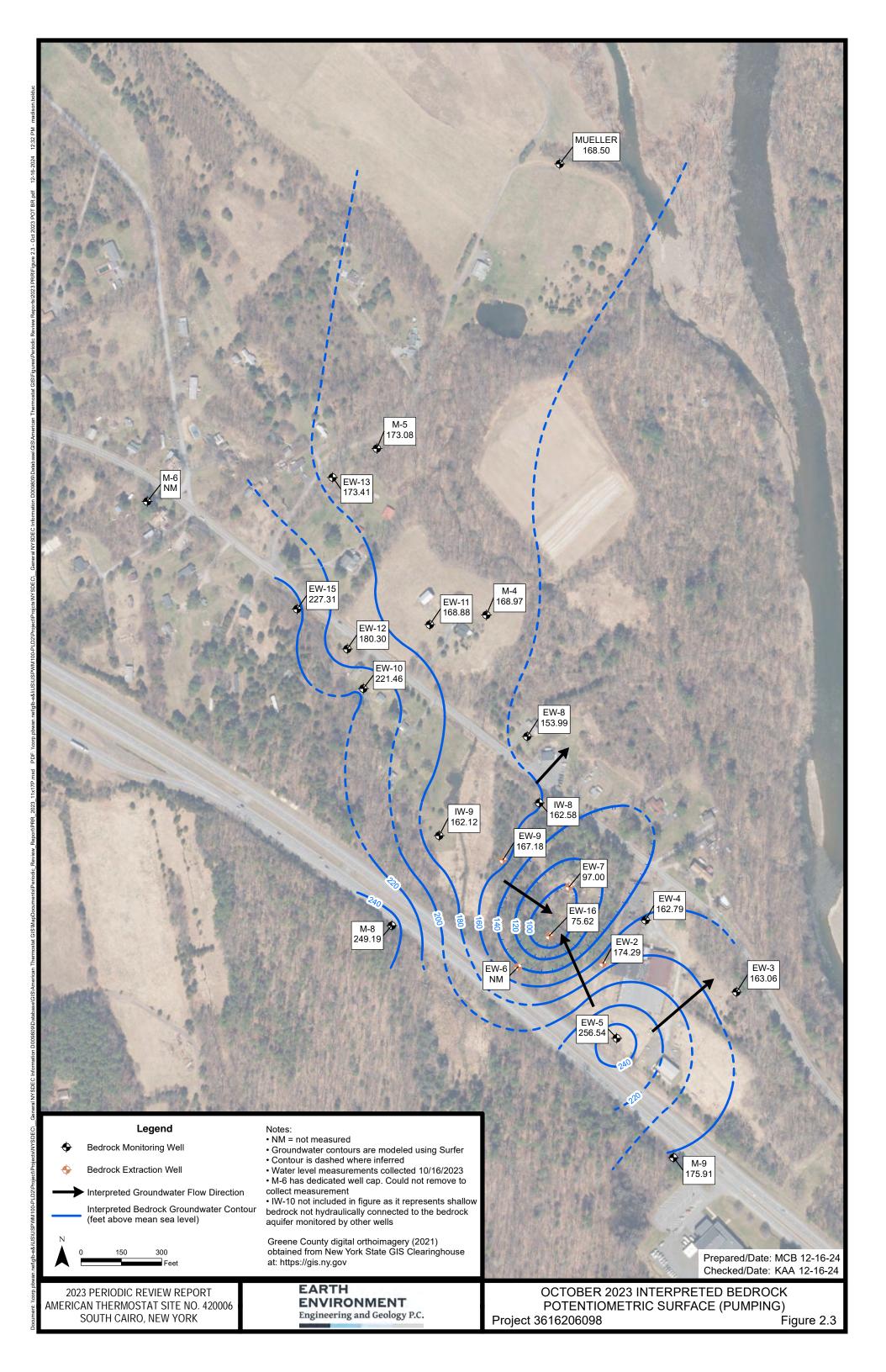
Notes:

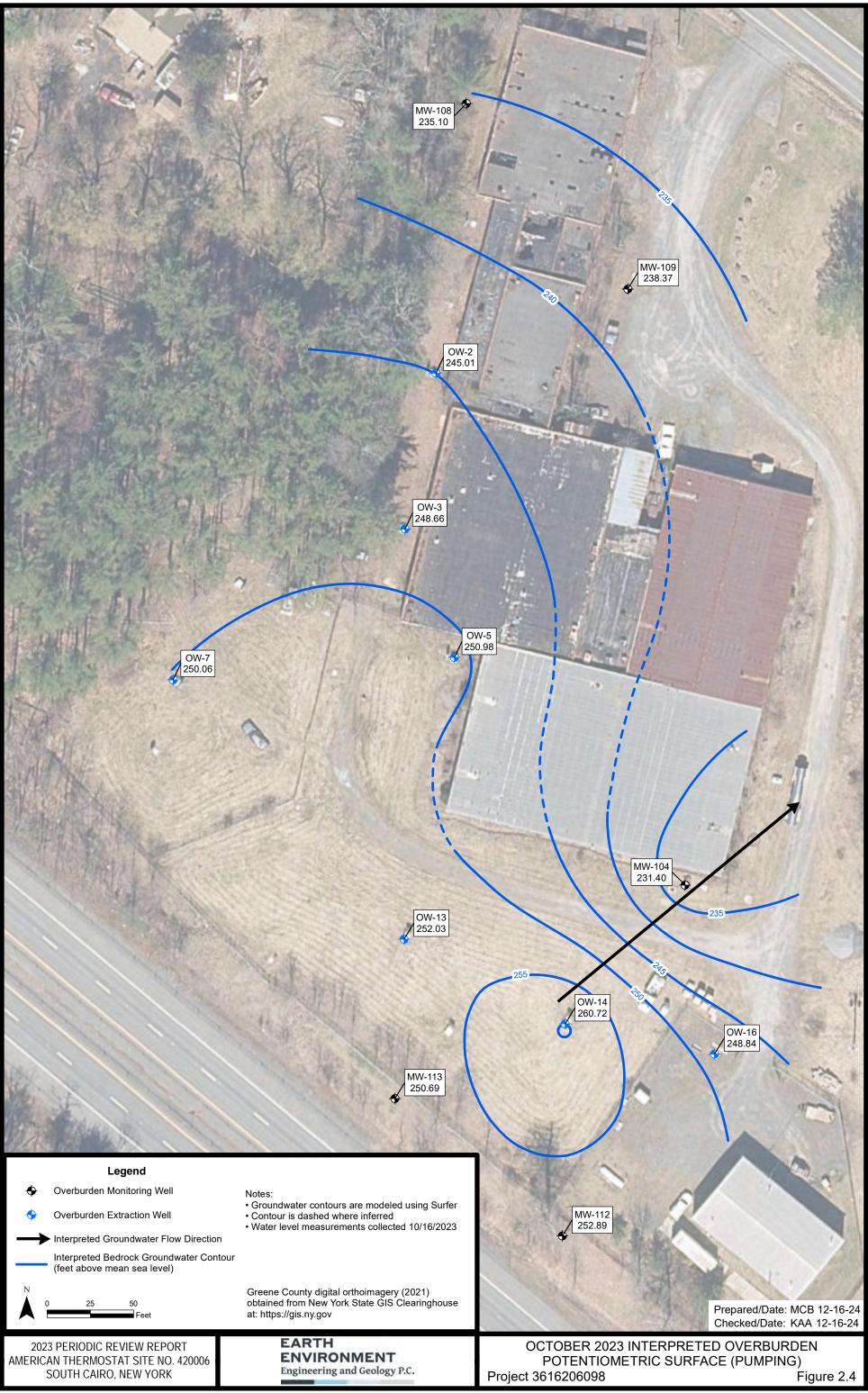
Groundwater contours are modeled using Surfer

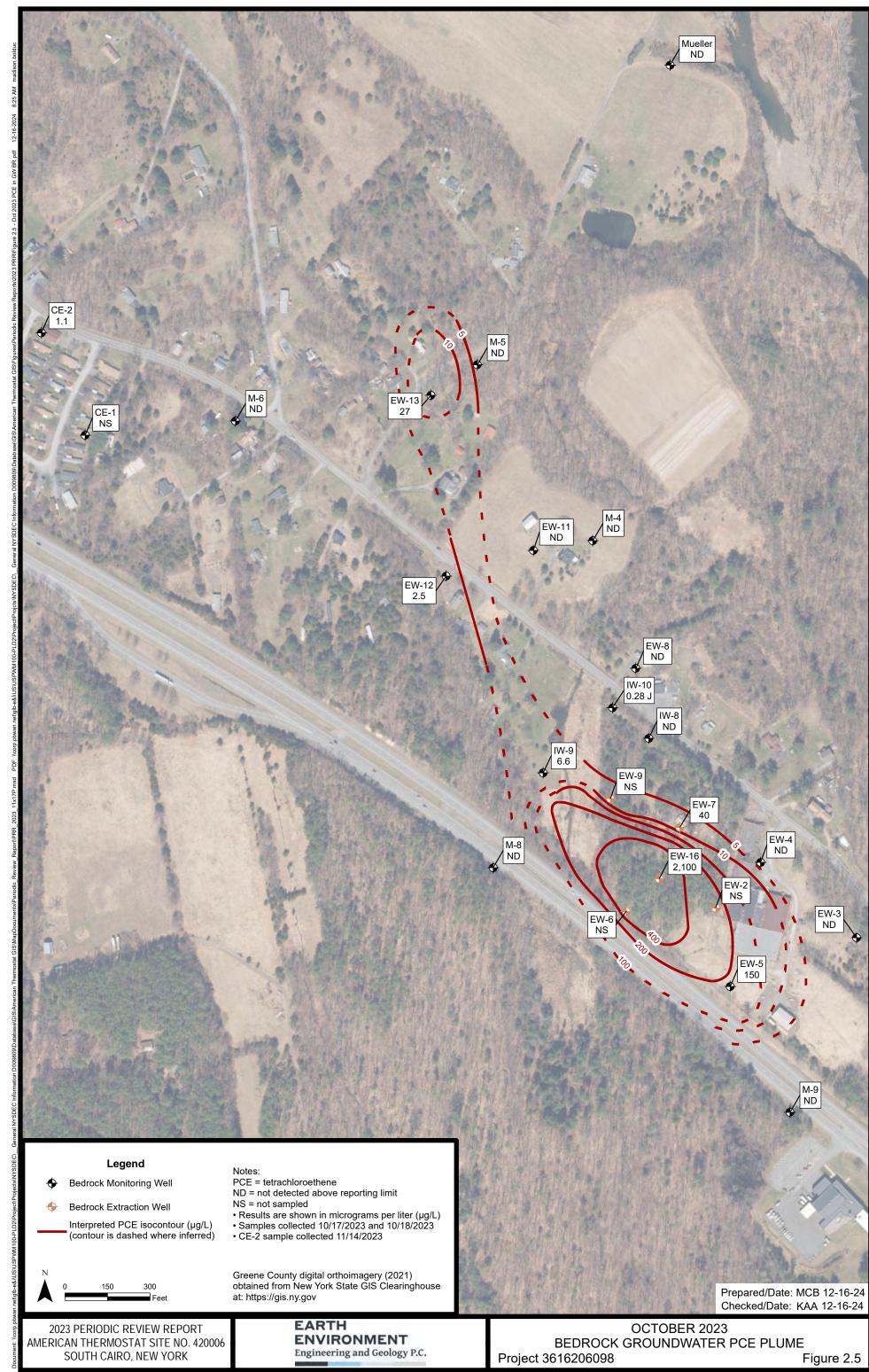
Contour is dashed where inferred

 Water level measurements collected 04/20/2023 • EW-16 level transmitter not functioning properly. Value recorded from human machine interface not representative of actual groundwater elevation • IW-10 not included in figure as it represents shallow bedrock not hydraulically connected to the bedrock aquifer monitored by other wells

Greene County digital orthoimagery (2021) obtained from New York State GIS Clearinghouse at: https://gis.ny.gov


EARTH ENVIRONMENT Engineering and Geology P.C.


APRIL 2023 INTERPRETED BEDROCK POTENTIOMETRIC SURFACE (PUMPING) Project 3616206098 Figure 2.2


M-9 173.61

Prepared/Date: MCB 12-16-24

Checked/Date: KAA 12-16-24

TABLES

Component	Action	Required Frequency	Comments/Recommendations		
Groundwater Extracti	on and Treatmen	t System (GW	ETS)		
GWETS Operation Checklist	Inspection	Each O&M visit	Check groundwater treatment system operation: flow rates, meter readings, system components.		
Extraction Wells	Inspection	Each O&M visit	Check extraction wells, housing, control panels.		
Control Panel, Heaters	Inspection	Each O&M visit	Check function of control panel indicating lights. In cold weather, verify pilot light operation of heaters.		
Safety Equipment, Treatment Plant Lighting	Inspection	Monthly	Inspect safety equipment (ladders, eyewash, fire extinguishers, etc.). Inspect plant lighting for proper operation.		
Site Security	Inspection	Monthly	Check treatment building door locks, fencing, and site perimeter fence for defects.		
Air Stripper	Inspection/ Maintenance	Semiannually	Perform cleaning of air stripper unit trays and sump, if necessary.		
		Annual inspection and cleaning of heaters; to be performed by a licensed subcontractor.			
Groundwater Monitoring System	Inspection	Every 15 months	Visually inspect well pads/locks at site wells; repair as necessary to maintain integrity and security.		
System Performance N	Aonitoring				
Influent Header (SP-1)	Plant influent water sampling	Monthly	Grab sample collected to monitor and evaluate GWETS performance.		
Treatment Plant Discharge (SP-39)	Plant effluent water sampling	Monthly	Grab sample collected to monitor and evaluate GWETS performance.		
Point of Entry Treatm	ent (POET) Syste	m			
POET System	Residential water supply sampling and inspection	Quarterly ⁽¹⁾	Grab sample collected between carbon filters to monitor and evaluate water supply and GAC performace. Perform system maintenance on carbon filters and UV system as needed, annual at a minimum.		
Environmental Monito	oring				
Hydraulic Monitoring Groundwater hydraulic Monitoring level measurements		Semiannually (spring and fall)	Collect groundwater level measurements from extraction wells and select monitoring wells to monitor hydraulic control of the plume near the site.		
Groundwater Sampling	Groundwater sampling of 34 wells	Every 15 months	Collect grab/PDB samples from 34 locations including: 20 monitoring wells, 12 bedrock and overburden extraction wells, 2 private supply wells (Country Estates).		

Table 2.1: Site Management Requirements

Notes:

⁽¹⁾ As of May 31, 2022, NYSDEC is no longer responsible for maintenance and sampling of POET systems. GAC = granular activated carbon O&M = operation and maintenance PDB = passive diffusion bag UV = ultraviolet

Gamerala ID/	M	Water Level M	Measurements		Sec. 1
Sample ID/ Location	Monitoring Interval	Semiannual	15-Month LTM	Analysis	Sample Description
Monitoring W	ells (15-Month I	LTM) ⁽¹⁾			
CE-1 ⁽²⁾	bedrock			VOCs	Grab, before filters
CE-2	bedrock			VOCs	Grab, before filters
EW-3	bedrock	Х	Х	VOCs	PDB
EW-4	bedrock	Х	Х	VOCs	PDB
EW-5	bedrock	Х	Х	VOCs	PDB
EW-8	bedrock	Х	Х	VOCs	PDB
EW-10	unknown		Х		Not Applicable
EW-11	bedrock		Х	VOCs	PDB
EW-12	bedrock		Х	VOCs	PDB
EW-13	bedrock		Х	VOCs	PDB
EW-15	unknown		Х		Not Applicable
IW-8	bedrock	Х	Х	VOCs	PDB
IW-9	bedrock	Х	Х	VOCs	PDB
IW-10	bedrock	X	Х	VOCs	PDB
M-4	bedrock		Х	VOCs	PDB
M-5	bedrock		Х	VOCs	PDB
M-6	bedrock		Х	VOCs	Grab
M-8 ⁽³⁾	bedrock	Х	Х	VOCs	PDB
M-9 ⁽³⁾	bedrock	Х	Х	VOCs	PDB
Mueller	bedrock		Х	VOCs	PDB
MW-104 ⁽³⁾	overburden		Х	VOCs	PDB
MW-108	overburden		Х		Not Applicable
MW-109 ⁽³⁾	overburden		Х	VOCs	PDB
MW-112 ⁽³⁾	overburden		Х	VOCs	PDB
MW-113 ⁽³⁾	overburden		Х	VOCs	PDB
Active Bedroc	k Extraction We	ells (15-Month L'	ΓM) ⁽¹⁾		
EW-2 ⁽⁴⁾	bedrock		Х	VOCs	Grab
EW-6 ⁽⁵⁾	bedrock		Х	VOCs	Grab
EW-7	bedrock		Х	VOCs	Grab
EW-9 ⁽⁶⁾	bedrock		Х	VOCs	Grab
EW-16	bedrock		Х	VOCs	Grab
Active Overbu	rden Extraction	Wells (15-Mont	h LTM) ⁽¹⁾		
OW-2	overburden		Х	VOCs	Grab
OW-3	overburden		Х	VOCs	Grab
OW-5	overburden		Х	VOCs	Grab
OW-7	overburden		Х	VOCs	Grab ⁽⁷⁾
OW-13	overburden		Х	VOCs	Grab ⁽⁷⁾

Table 2.2:	Long-Term	Monitoring and System	Performance Sampling Matrix

Course ID/	M	Water Level N	Measurements		G
Sample ID/ Location	Monitoring Interval	Semiannual	15-Month LTM	Analysis	Sample Description
Active Overbu	rden Extraction	Wells (15-Mont	h LTM) ⁽¹⁾ (con	tinued)	
OW-14	overburden		Х	VOCs	Grab
OW-16	overburden		Х	VOCs	Grab
Residential We	ells (15-Month L'	TM) ⁽⁸⁾			
	bedrock			VOCs	Grab, before filters
	bedrock			VOCs	Grab, before filters
	bedrock			VOCs	Grab, before filters
Residential We	ell POET System	Performance (Quarterly) ⁽⁹⁾	VOCs	Grab, before & between filters
_BEF	E,BET			VOCs	Grab, before & between filters
_BEF,	_BET			VOCs	Grab, before & between filters
Groundwater]	Extraction and T	Treatment System	m Performance	(Monthly)	
PS-INFLUENT	2			VOCs, Metals, TDS, TSS	Grab, influent water
PS-AS-EFFLU	ENT			VOCs	Grab, air stripper effluent water

Table 2.2: Long-Term Monitoring and System Performance Sampling Matrix

Notes:

⁽¹⁾ LTM event occurred October 17-18, 2023. CE-2 LTM sample collected November 14, 2023.

⁽²⁾ CE-1 not in service; acts as an emergency backup well to CE-2 for Country Estates; therefore, not sampled during LTM event.

⁽³⁾ Well added to LTM network based on recommendation from 2018 EPA Five-Year Review for the Site.

- ⁽⁴⁾ EW-2 has been inoperable since September 2020 due to electrical and mechanical issues. It cannot be sampled due to presence of extraction well equipment.
- ⁽⁵⁾ EW-6 off-line during LTM event due to failed uninterrupted power supply unit. Sample collected March 19, 2024, but is not covered in this Periodic Review Report.
- ⁽⁶⁾ EW-9 has been off-line since April 2023 due to a presumed failed pump. It cannot be sampled due to presence of extraction well equipment.
- ⁽⁷⁾ Dry running alarm preventing pump from activating to collect grab sample. Sample collected by PDB on March 5, 2024, but is not covered in this Periodic Review Report.

⁽⁸⁾ Per NYSDEC, three residential wells no longer sampled as part of LTM for the Site. Last LTM samples collected July 19, 2022.

⁽⁹⁾ As of May 31, 2022, NYSDEC is no longer responsible for maintenance and sampling of POET systems. Last samples collected Janurary 4, 2022.

LTM = long-term monitoring

PDB = passive diffusion bag

POET = point of entry treatment

TDS = total dissolved solids

TSS = total suspended solids

VOCs = volatile organic compounds

V	Month													Cumulative Total
Year	January	February	March	April	May	June	July	August	September	October	November	December	Year (gallons)	Throughput (gallons)
1998	-	-	-	-	-	-	-	1,845,307	2,326,580	2,000,099	1,387,734	1,515,814	9,075,534	9,075,534
1999	2,327,342	1,946,464	1,570,828	1,986,297	1,876,550	1,810,328	1,880,672	2,865,086	2,849,292	2,967,620	2,840,040	2,996,042	27,916,561	36,992,095
2000	2,188,662	1,828,969	2,782,069	2,625,243	2,689,205	2,515,671	2,845,066	2,656,221	2,790,754	3,191,008	2,906,470	3,089,535	32,108,873	69,100,968
2001	3,154,385	3,202,253	3,397,280	3,325,592	3,507,403	3,241,052	2,846,350	3,323,930	3,116,812	3,172,179	2,668,748	2,676,774	37,632,758	106,733,726
2002	2,643,561	2,400,906	2,581,039	3,015,136	2,827,722	3,087,176	3,109,504	2,969,001	2,826,453	3,126,848	3,151,070	3,043,354	34,781,770	141,515,496
2003	3,112,140	2,640,103	3,032,627	2,956,081	2,279,599	2,817,292	2,828,580	2,862,294	2,805,159	2,889,540	2,703,444	1,743,574	32,670,433	174,185,929
2004	1,452,060	1,323,679	1,433,444	1,621,998	1,511,813	1,378,343	1,829,427	2,488,132	2,214,838	2,016,922	2,147,628	2,218,612	21,636,896	195,822,825
2005	1,969,101	1,627,579	1,505,083	1,888,648	1,679,210	1,635,094	1,679,658	1,675,021	1,668,387	1,048,462	1,753,165	1,804,582	19,933,990	215,756,815
2006	1,850,648	1,724,943	1,726,705	1,860,726	2,038,414	2,225,379	1,700,523	1,505,840	1,573,918	2,365,602	2,542,691	1,570,319	22,685,708	238,442,523
2007	1,860,431	1,484,866	1,797,869	1,651,491	1,595,631	1,567,880	1,656,624	1,680,981	1,559,100	1,624,903	1,628,116	1,779,807	19,887,699	258,330,222
2008	1,621,909	1,661,136	1,872,515	1,922,613	1,496,402	1,519,804	1,344,964	2,366,862	2,053,268	2,649,688	2,172,569	2,466,153	23,147,883	281,478,105
2009	2,009,299	1,973,492	2,109,251	2,164,940	2,086,536	2,069,749	2,413,904	1,461,639	1,572,872	1,962,537	1,782,527	2,171,560	23,778,306	305,256,411
2010	1,715,140	1,562,130	2,144,107	1,972,606	1,692,254	1,657,835	1,710,898	1,814,591	1,502,900	1,736,300	1,505,900	1,799,400	20,814,061	326,070,472
2011	1,660,400	1,608,200	1,677,100	1,807,700	1,869,800	1,617,700	1,626,100	1,676,400	1,764,200	1,646,400	1,806,000	1,966,500	20,726,500	346,796,972
2012	1,617,600	1,592,100	1,545,800	976,300	1,050,200	655,200	435,000	1,572,000	1,098,900	1,363,800	1,223,500	1,351,200	14,481,600	361,278,572
2013	1,287,600	1,165,900	1,213,400	1,213,400	1,024,000	560,000	-	368,300	282,600	1,133,000	1,240,188	950,031	10,438,419	371,716,991
2014	605,868	537,554	828,412	1,311,895	1,181,124	1,036,409	1,101,365	968,790	516,422	771,419	643,451	804,076	10,306,785	382,023,776
2015	1,055,444	726,839	818,456	829,691	918,585	1,174,145	1,364,309	1,069,571	1,424,510	890,175	-	251,416	10,523,141	392,546,917
2016	1,028,212	1,142,661	1,197,620	1,176,265	1,105,646	1,027,389	1,159,271	1,156,925	1,179,487	1,145,887	936,208	953,286	13,208,857	405,755,774
2017	1,492,216	906,043	1,123,788	1,197,556	1,049,899	1,426,931	1,168,068	1,576,200	928,859	1,428,789	863,212	1,231,949	14,393,510	420,149,284
2018	1,225,869	1,362,944	983,689	968,599	1,548,696	1,134,499	1,470,999	97,588	287,744	1,076,410	863,088	1,227,285	12,247,410	432,396,694
2019	1,589,576	1,274,721	1,562,495	1,217,017	1,343,215	1,222,569	1,222,569	1,063,488	1,114,585	1,141,511	902,426	755,511	14,409,683	446,806,377
2020	499,106	1,258,095	679,114	720,765	523,678	409,470	731,479	860,427	1,191,122	784,850	1,149,568	1,037,075	9,844,749	456,651,126
2021	859,906	937,650	981,620	951,290	1,260,945	914,353	1,355,500	1,152,711	1,016,565	1,269,408	1,061,188	1,017,492	12,778,628	469,429,754
2022	1,010,934	860,600	934,151	1,033,360	696,112	730,950	655,937	678,561	689,057	753,523	873,911	952,235	9,869,331	479,299,085
2023	834,090	740,594	857,184	667,247	578,855	599,752	542,249	689,459	375,278	465,640	409,367	398,990	7,158,705	486,457,790

Table 2.3: Groundwater Extraction and Treatment System Monthly Throughput

Note: Treatment system modifications resulted in plant shutdown during the months of July 2013 and November 2015.

Reporting Month	Reporting Pe	eriod Interval	System Downtime (approximate)	System Runtime ⁽¹⁾			Monthly System Throughput	Average Flow Rate
WIOIIII	Start Date	End Date	(days)	(days)	Start	End	(gallons)	(gpm)
January	1/3/2023	2/1/2023	0.46	29	103,939,377	104,773,467	834,090	20
February	2/1/2023	3/1/2023	0.04	28	104,773,467	105,514,061	740,594	18
March	3/1/2023	4/3/2023	0.25	33	105,514,061	106,371,245	857,184	18
April	4/3/2023	5/2/2023	0.14	29	106,371,245	107,038,492	667,247	16
May	5/2/2023	6/1/2023	0.03	30	107,038,492	107,617,347	578,855	13
June	6/1/2023	7/6/2023	0.15	35	107,617,347	108,217,099	599,752	12
July	7/6/2023	8/1/2023	0.78	25	108,217,099	108,759,348	542,249	15
August	8/1/2023	9/5/2023	0.06	35	108,759,348	109,448,807	689,459	14
September	9/5/2023	10/3/2023	0.00	28	109,448,807	109,824,085	375,278	9
October	10/3/2023	11/2/2023	0.15	30	109,824,085	110,289,725	465,640	11

29

25

110,289,725

110,699,092

110,699,092

111,098,082

 Table 2.4: Groundwater Extraction and Treatment System Operational Data

0.02

8.29

Notes:

Year

2023

⁽¹⁾ Calculated by subtracting system downtime in days from number of days in reporting period interval.

12/1/2023

1/3/2024

11/2/2023

12/1/2023

gpm = gallons per minute

November

December

10

11

409,367

398,990

Year	Calendar Month													Cumulative Total
i cai	January	February	March	April	May	June	July	August	September	October	November	December	Year (lbs.)	(lbs.)
1998	-	-	-	-	-	-	-	104.7	24.5	42.4	26.6	35.0	233	233
1999	26.5	49.3	43.7	39.2	26.7	31.0	23.9	47.3	39.0	63.2	58.1	66.9	515	748
2000	57.5	47.2	62.3	58.7	43.7	50.0	40.8	41.5	33.9	34.6	42.7	49.9	563	1,311
2001	42.7	42.6	50.5	44.1	54.4	45.5	34.7	41.2	29.5	71.5	23.9	27.9	509	1,820
2002	28.1	26.0	28.3	43.4	42.5	44.8	40.5	38.5	37.3	36.9	42.3	42.8	451	2,271
2003	38.2	37.3	43.8	44.8	34.1	45.5	32.7	42.0	51.9	49.3	35.1	34.4	489	2,760
2004	29.7	31.3	39.2	42.0	34.6	32.6	32.1	31.6	26.9	36.0	26.8	34.3	397	3,157
2005	39.4	33.0	20.5	21.8	29.6	23.6	24.3	14.3	17.5	15.2	31.8	31.3	302	3,460
2006	33.8	28.5	27.2	29.0	40.2	44.1	13.1	14.1	24.4	40.1	40.4	23.1	358	3,818
2007	32.3	19.8	28.8	34.4	19.8	18.7	20.2	16.4	15.8	15.8	20.2	21.9	264	4,082
2008	23.9	24.3	34.0	30.6	22.7	14.7	11.8	24.7	21.8	24.8	24.1	25.3	283	4,364
2009	23.0	18.5	20.0	21.0	23.8	19.4	25.3	15.8	14.8	16.9	19.9	26.5	245	4,609
2010	19.0	19.4	30.6	23.6	15.1	13.9	12.0	9.8	13.7	21.8	18.0	30.4	227	4,836
2011	18.2	15.9	35.5	26.3	25.1	22.9	19.5	19.8	25.0	22.5	19.8	22.5	273	5,109
2012	18.5	18.6	18.0	18.8	24.0	5.4	27.5	39.6	12.8	29.2	23.9	17.0	253	5,363
2013	21.8	27.9	30.2	18.7	18.6	13.1	-	20.0	10.4	17.1	18.5	14.1	211	5,573
2014	7.5	11.0	25.1	18.1	26.1	15.6	13.0	40.3	7.0	8.9	14.0	10.7	197	5,770
2015	14.1	6.4	6.1	15.5	15.5	16.8	16.9	14.2	17.4	10.5	-	8.9	142	5,912
2016	24.0	19.1	18.0	32.1	14.4	17.6	14.1	9.5	9.5	13.4	8.6	16.1	196	6,109
2017	13.9	37.0	10.3	27.0	10.5	18.6	10.0	20.5	10.9	7.1	6.1	8.0	180	6,289
2018	25.1	21.5	10.8	20.6	18.1	14.1	13.5	7.8	9.2	23.9	15.5	18.7	199	6,487
2019	17.8	17.7	20.4	15.8	14.6	12.4	20.7	16.9	71.6	8.3	27.8	22.5	267	6,754
2020	9.8	23.4	10.0	20.2	13.2	22.2	20.3	7.5	14.5	9.1	25.9	14.1	190	6,944
2021	24.3	34.6	15.2	17.0	20.8	11.2	41.8	16.8	30.8	21.7	17.1	26.0	277	7,221
2022	10.4	6.9	11.3	15.9	9.4	38.0	9.8	9.4	7.4	11.8	15.3	15.3	161	7,382
2023	17.1	13.3	21.1	13.3	9.1	10.5	8.5	13.5	9.9	11.2	6.9	6.7	141	7,523

Table 2.5: Total VOCs Extracted from Groundwater (lbs.)

Notes:

VOCs Extracted calculated by multiplying site-specific VOC concentrations in monthly influent samples by monthly average flow rate and monthly system runtime (refer to Table 2.4). Treatment system modifications resulted in plant shutdown during the months of July 2013 and November 2015.

lbs. = pounds

VOCs = volatile organic compounds

			Parameter	1,2-DCE (total) ⁽¹⁾	РСЕ	TCE	Vinyl Chloride	Barium	Iron	Total Dissolved Solids
			Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
		New York S	tate Class C Criteria	-	1 (2)	40 ⁽³⁾	-	-	300 ⁽¹⁾	-
Location	Matrix	Date	Field Sample ID							
PS-Influent	L	1/3/2023	PS-Influent	530	1,400	460	13 J	42 J	130 J+	240
PS-Influent	L	2/1/2023	PS-Influent	594 J	1,100	390	9.2 J	42 J	120 J+	340
PS-Influent	L	3/1/2023	PS-Influent	704 J	1,800	370	12 J	37 J	120	270
PS-Influent	L	4/3/2023	PS-Influent	444 J	1,500	370	18 J	48 J	940	280
PS-Influent	L	5/2/2023	PS-Influent	420	1,100	290	9.2 J	31 J	82	30
PS-Influent	L	6/1/2023	PS-Influent	706 J	870	450	19 J	38 J	180	340
PS-Influent	L	7/6/2023	PS-Influent	583 J	920	330	14 J	40 J	130	350
PS-Influent	L	8/1/2023	PS-Influent	760	1,100	440	22	36 J	50 U	360
PS-Influent	L	9/5/2023	PS-Influent	1,100	1,400	580	27 J	46 J	280	330
PS-Influent	L	10/3/2023	PS-Influent	1,207 J	1,100	490	25 J	56	160 J+	460
PS-Influent	L	11/2/2023	PS-Influent	414	1,200	370	18	49 J	50 U	280
PS-Influent	L	12/1/2023	PS-Influent	744 J	1,800	600	16 J	54	110 J+	330
Air Stripper Eff	L	1/3/2023	PS-AS Effluent	2 U	1 U	1 U	2 U	42 J	120 J+	250
Air Stripper Eff	L	2/1/2023	PS-AS Effluent	2 U	1 U	1 U	2 U	47 J	130 J+	320
Air Stripper Eff	L	3/1/2023	PS-AS Effluent	0.19 J	0.19 J	1 U	2 U	35 J	93	330
Air Stripper Eff	L	4/3/2023	PS-AS Effluent	0.23 J	0.6 J	1 U	2 U	50 J	890	290
Air Stripper Eff	L	5/2/2023	PS-AS Effluent	2 U	1 U	1 U	2 U	37 J	260	130
Air Stripper Eff	L	6/1/2023	PS-AS Effluent	0.22 J	1 U	1 U	2 U	35 J	150	330
Air Stripper Eff	L	7/6/2023	PS-AS Effluent	0.42 J	1 U	1 U	2 U	35 J	110	350
Air Stripper Eff	L	8/1/2023	PS-AS Effluent	2 U	1 U	1 U	2 U	36 J	50 U	370
Air Stripper Eff	L	9/5/2023	PS-AS Effluent	2 U	0.18 J	1 U	2 U	47 J	250	310
Air Stripper Eff	L	10/3/2023	PS-AS Effluent	2 U	1 U	1 U	2 U	48 J	160 J+	420
Air Stripper Eff	L	11/2/2023	PS-AS Effluent	2 U	1 U	1 U	2 U	49 J	50 U	250
Air Stripper Eff	L	12/1/2023	PS-AS Effluent	0.2 J	1 U	1 U	2 U	53	160 J+	350

 Table 2.6:
 Groundwater Extraction and Treatment System Performance Sampling Results

Notes:

⁽¹⁾ Result not reported by lab. Result is a calculated total of cis- and trans-1,2-dichloroethene.

(2) Guidance Value

(3) Standard

= exceedance of standard/guidance value

Bold = positively detected result

PCE = tetrachloroethene TCE = trichloroethene Qualifiers:

J = estimated value

" - " = no criteria

L = liquid

1,2-DCE = 1,2-dichloroethene

 $\mu g/L =$ micrograms per liter mg/L = milligrams per liter J+ = estimated value, biased high U = not detected

Prepared by: ALH 01/12/2024 Checked by: KAA 01/16/2024

Well ID/	Measurement	Well	Monitoring	Measurement	Depth to Water	Groundwater	Depth to Water	Groundwater
Sampling	Point	Depth	Interval	Point	4/20/2023	Elevation	10/16/2023	Elevation
Location	Elevation	-		Reference		4/20/2023		10/16/2023
	(ft. msl)	(ft.)			(ft. btoc)	(ft. amsl)	(ft. btoc)	(ft. amsl)
Monitoring W	ells		-				-	
CE-1 ⁽²⁾	224.91	535.00	bedrock	TOC	NM	NM	NM	NM
CE-2	224.95	287.00	bedrock	TOC	NM	NM	NM	NM
EW-3	259.67	295.00	bedrock	TOC	98.82	160.85	96.61	163.06
EW-4	256.01	322.00	bedrock	TOC	95.40	160.61	93.22	162.79
EW-5	259.85	235.20	bedrock	TOC	3.80	256.05	3.31	256.54
EW-8	223.93	318.00	bedrock	TOC	77.08	146.85	69.94	153.99
EW-10	234.09	225.00	unknown	TOC	NM	NM	12.63	221.46
EW-11	231.40	172.20	bedrock	TOC	NM	NM	62.52	168.88
EW-12	232.76	270.50	bedrock	TOC	NM	NM	52.46	180.30
EW-13	217.06	360.00	bedrock	TOC	NM	NM	43.65	173.41
EW-15	236.37	275.00	unknown	TOC	NM	NM	9.06	227.31
IW-8	239.47	391.80	bedrock	TOC	72.32	167.15	76.89	162.58
IW-9	224.37	358.10	bedrock	TOC	64.60	159.77	62.25	162.12
IW-10 ⁽⁴⁾	235.57	176.30	bedrock	TOC	6.52	229.05	6.29	229.28
M-4	232.19	200.00	bedrock	TOC	NM	NM	63.22	168.97
M-5	213.88	200.00	bedrock	TOC	NM	NM	40.80	173.08
M-6	248.31	100.00	bedrock	TOC	NM	NM	NM ⁽⁵⁾	NM ⁽⁵⁾
M-8	261.57	200.00	bedrock	TOC	12.69	248.88	12.38	249.19
M-9	256.39	200.00	bedrock	TOC	82.78	173.61	80.48	175.91
Mueller	183.25	114.00	bedrock	TOC	NM	NM	14.75	168.50
MW-104	258.00	81.60	overburden	TOC	NM	NM	26.60	231.40
MW-108	254.72	86.10	overburden	TOC	NM	NM	19.62	235.10
MW-109	255.96	87.50	overburden	TOC	NM	NM	17.59	238.37
MW-112	256.60	25.10	overburden	TOC	NM	NM	3.71	252.89
MW-113	257.38	25.00	overburden	TOC	NM	NM	6.69	250.69
Active Bedrocl	k Extraction Wells							
EW-2 ⁽¹⁾	255.29	322.00	bedrock	TOC/PLC	NM	172.02 (3)	31.30	174.29 (3)
EW-6	242.94	325.00	bedrock	TOC/PLC	NM	170.60 (3)	NM ⁽⁶⁾	NM ⁽⁷⁾

 Table 2.7:
 LTM and Semiannual Groundwater Level Measurements

Well ID/	Measurement	Well	Monitoring	Measurement	Depth to Water	Groundwater	Depth to Water	Groundwater
Sampling	Point	Depth	Interval	Point	4/20/2023	Elevation	10/16/2023	Elevation
Location	Elevation			Reference		4/20/2023		10/16/2023
	(ft. msl)	(ft.)			(ft. btoc)	(ft. amsl)	(ft. btoc)	(ft. amsl)
Active Bedrock	Extraction Wells	s (continued)						
EW-7	251.64	227.00	bedrock	TOC/PLC	NM	67.00 ⁽³⁾	63.00	97.00 ⁽³⁾
EW-9	236.21	365.00	bedrock	TOC/PLC	NM	165.73 ⁽³⁾	NM ⁽⁸⁾	167.18 ⁽³⁾
EW-16	248.16	417.00	bedrock	TOC/PLC	NM	75.41 ⁽⁹⁾	37.40	75.62 ⁽⁹⁾
Active Overbui	rden Extraction V	Vells						
OW-2	257.03	30.00	overburden	TOC/PLC	NM	245.01 (3)	16.36	245.01 ⁽³⁾
OW-3	256.81	25.00	overburden	TOC/PLC	NM	239.06 (3)	8.80	248.66 ⁽³⁾
OW-5	258.20	30.00	overburden	TOC/PLC	NM	251.07 ⁽³⁾	17.56	250.98 (3)
OW-7	254.57	25.00	overburden	TOC/PLC	NM	237.01 (3)	5.40	250.06 ⁽³⁾
OW-13	259.95	29.50	overburden	TOC/PLC	NM	252.02 (3)	22.04	252.03 (3)
OW-14	261.24	30.00	overburden	TOC/PLC	NM	261.47 ⁽³⁾	7.80	260.72 (3)
OW-16	259.81	30.00	overburden	TOC/PLC	NM	248.92 (3)	37.40	248.84 (3)

Table 2.7: LTM and Semiannual Groundwater Level Measurements

Notes:

⁽¹⁾ Water levels measured under pumping conditions with EW-2 and EW-9 offline. EW-2 has been off-line since September 2020 due to electrical and mechanical issues. EW-9 has been off-line since April 2023 due to a presumed failed pump.

⁽²⁾ CE-1 not in service; acts as emergency backup well to CE-2 for Country Estates.

⁽³⁾ Measurement collected from extraction well control panel.

⁽⁴⁾ Measurements not included in potentiometric surface figures as it represents shallow bedrock that is not hydraulically connected to the bedrock aquifer monitored by other wells.

⁽⁵⁾ Could not remove dedicated well cap to collect depth to water measurement.

⁽⁶⁾ Water level meter tangled with well extraction equipment and wouldn't advance past 65 feet. Depth to water was not reached.

⁽⁷⁾ No power at control panel due to non-functioning uniterrupted power supply unit. Therefore, no groundwater elevation displayed on human machine interface screen to record.

⁽⁸⁾ Particles present in groundwater caused water level meter to not function properly.

⁽⁹⁾ Level transmitter not functioning properly. Value recorded from human machine interface screen not representative of actual groundwater elevation.

btoc = below top of casing

ft. = feet

amsl = above mean sea level

LTM = long-term monitoring

NM = not measured

PLC = programmable logic controller

TOC = top of casing

		Parameter	1,2-DCE (total)	Cis-1,2- DCE	Trans-1,2- DCE	PCE	TCE	Vinyl Chloride
		Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
New York	State Class G	A Standard	5	5	5	5	5	2
Location	Sample Date	Sample ID						
CE-2	11/14/2023	CE-2 BEF	2 U	1 U	1 U	1.1	0.29 J	2 U
EW-3	10/17/2023	EW-3	2.7	2.7	1 U	1 U	1 U	9.7
EW-4	10/17/2023	EW-4	5.2	5.2	1 U	1 U	1 U	12
EW-5	10/17/2023	EW-5	211 J	210	1.3 J	150	63	6.8
EW-7	10/18/2023	EW-7	235	230	5	40	27	4 J
EW-8	10/17/2023	EW-8	3.2 J	2.7	0.48 J	1 U	1 U	2.2
EW-11	10/17/2023	EW-11	2.3	2.3	1 U	1 U	1 U	2 U
EW-12	10/17/2023	EW-12	0.35 J	0.35 J	1 U	2.5	0.28 J	2 U
EW-13	10/17/2023	EW-13	2.8	2.8	1 U	27	2.6	2 U
EW-16	10/18/2023	EW-16	1,000	1,000	25 U	2,100	1,200	18 J
IW-8	10/17/2023	IW-8	2 U	1 U	1 U	1 U	0.86 J	2 U
IW-9	10/17/2023	IW-9	17	17	1 U	6.6	2.2	1.2 J
IW-10	10/17/2023	IW-10	1.8	1.8	1 U	0.28 J	0.61 J	2 U
M-4	10/17/2023	M-4	2 U	1 U	1 U	1 U	1 U	2 U
M-5	10/17/2023	M-5	11	11	1 U	1 U	1 U	4.6
M-6	10/17/2023	M-6	2 U	1 U	1 U	1 U	1 U	2 U
M-8	10/17/2023	M-8	0.67 J	0.35 J	0.32 J	1 U	1 U	0.32 J
M-9	10/17/2023	M-9	2 U	1 U	1 U	1 U	1 U	2 U
MUELLER	10/17/2023	Mueller	0.41 J	0.41 J	1 U	1 U	1 U	2 U
MW-104	10/17/2023	MW-104	2 U	1 U	1 U	1 U	1 U	2 U
MW-109	10/17/2023	MW-109	2 U	1 U	1 U	1 U	1 U	2 U
MW-112	10/17/2023	MW-112	0.86 J	0.86 J	1 U	1 U	0.94 J	2 U
MW-113	10/17/2023	MW-113	15 J	15 J	20 U	1,900	11 J	40 U
OW-2	10/18/2023	OW-2	130	130	20 U	1,200	26	40 U
OW-3	10/18/2023	OW-3	230	230	100 U	11,000	200	200 U
OW-5	10/18/2023	OW-5	850	850	40 U	3,000	220	80 U
OW-14	10/18/2023	OW-14	1,000	1,000	40 U	2,500	830	34 J
OW-16	10/18/2023	OW-16	180	180	5 U	310	50	3.4 J

Notes:

1,2-DCE (total) result not reported by lab. Result is a calculated total of cis- and trans-1,2-DCE.

= exceedance of standard

Bold = positively detected result

1,2-DCE = 1,2-dichloroethene

cis-1,2-DCE = cis-1,2-dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

Trans-1,2-DCE = trans-1,2-dichloroethene

 $\mu g/L = micrograms per liter$

Qualifiers:

J = estimated value U = not detected

APPENDIX A

HISTORICAL GROUNDWATER RESULTS – SITE VOCS

NYS Class				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		NY	S Class GA S	tandard	5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
CE-1	10/1/2008	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/1/2008	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	11/3/2008	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	11/3/2008	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	12/1/2008	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	12/1/2008	CE-1 BET	FS	μg/L	2 U	1 U	1 U	0.4 J	1 U	1 U
CE-1	1/5/2009	CE-1 BEF	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/5/2009	CE-1 BET	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	3/16/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	3/16/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/6/2009	CE-1 BEF	FS	μg/L	2 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1
CE-1	4/6/2009	CE-1 BET	FS	μg/L	2 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1
CE-1	5/5/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	5/5/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/6/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/6/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	8/4/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	8/4/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	9/14/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	9/14/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/5/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/5/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	11/3/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	11/3/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	11/3/2009	BLIND DUP	FD	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	12/2/2009	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	0.41 J	1 U	1 U
CE-1	12/2/2009	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/5/2010	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/5/2010	CE-1 BET	FS	μg/L	2 U	1 U	1 U	0.4 J	1 U	1 U
CE-1	3/22/2010	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	3/22/2010	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/6/2010	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/6/2010	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/6/2010	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/6/2010	BLIND DUP 1	FD	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/6/2010	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/6/2010	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/6/2010	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/5/2010	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U

NYS Cla				rameter	1,2-Dichloroethene (total)	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		NY	S Class GA S	tandard	5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
CE-1 (continued)	10/5/2010	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/5/2010	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/3/2011	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	2	1 U	1 U
CE-1	1/3/2011	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	0.69 J	1 U	1 U
CE-1	1/3/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	0.57 J	1 U	1 U
CE-1	3/31/2011	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	3/31/2011	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	3/31/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/4/2011	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/4/2011	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/4/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/11/2011	CE-1 AFT	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/11/2011	CE-1 BEF	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/11/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/18/2011	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/18/2011	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/18/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/25/2011	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/25/2011	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/25/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/5/2011	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/5/2011	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/5/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/4/2011	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/4/2011	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/4/2011	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/3/2012	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/3/2012	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/3/2012	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/2/2012	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/2/2012	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/2/2012	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	5/2/2012	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	5/2/2012	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	5/2/2012	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	6/5/2012	CE-1 AFT 6/5/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	6/5/2012	CE-1 BEF 6/5/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	6/5/2012	CE-1 BET 6/5/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/3/2012	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U

				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			S Class GA S		5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
CE-1 (continued)	7/3/2012	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	7/3/2012	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	8/6/2012	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	8/6/2012	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	8/6/2012	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/1/2012	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/1/2012	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	10/1/2012	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/7/2013	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/7/2013	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	1/7/2013	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/1/2013	CE-1 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/1/2013	CE-1 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	4/1/2013	CE-1 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-1	12/18/2014	CE-1	FS	μg/L	2 U	1 U	1 U	2.5	0.57 J	1 U
CE-1	3/30/2016	CE-1	FS	μg/L	5.9	5.9	1 U	1 U	0.81 J	1 U
CE-2	10/1/2008	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	7.2	1.7	1 U
CE-2	10/1/2008	CE-2 BET	FS	μg/L	1.4 J	1.4	1 U	0.59 J	1 U	1 U
CE-2	11/3/2008	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	11/3/2008	CE-2 BET	FS	μg/L	1.3 J	1.3	1 U	1 U	1 U	1 U
CE-2	12/1/2008	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	3.4	0.88 J	1 U
CE-2	12/1/2008	CE-2 BET	FS	μg/L	1.1 J	1.1	1 U	0.74 J	0.69 J	1 U
CE-2	1/5/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	1/5/2009	CE-2 BET	FS	μg/L	1.1 J	1.1	1 U	1 U	0.56 J	1 U
CE-2	1/5/2009	BLIND DUP	FD	μg/L	2 U	1 U	1 U	2.6	0.66 J	1 U
CE-2	2/2/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	3	1.1	1 U
CE-2	2/2/2009	CE-2 BET	FS	μg/L	0.82 J	0.82 J	1 U	1 U	0.54 J	1 U
CE-2	3/2/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	0.77 J	1 U	1 U
CE-2	3/2/2009	CE-2 BET	FS	μg/L	2 U	0.7 J	1 U	1 U	0.67 J	1 U
CE-2	4/6/2009	CE-2 BEF	FS	μg/L	2 U, N1	1 U, N1	1 U.N1	1.5 N1	0.51 N1,J	1 U, N1
CE-2	4/6/2009	CE-2 BET	FS	μg/L	2 U, N1	0.59 N1,J	1 U, N1	0.46 N1.J	0.61 N1,J	1 U, N1
CE-2	5/5/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U,111	2	0.65 J	1 U,111
CE-2	5/5/2009	CE-2 BET	FS	μg/L	2 U	0.65 J	1 U	0.6 J	0.64 J	1 U
CE-2	6/9/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	5.1	1.4	1 U
CE-2	6/9/2009	CE-2 BET	FS	μg/L	2 U	1 U	1 U	0.67 J	0.65 J	1 U
CE-2	7/6/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	2.5	0.79 J	1 U
CE-2	7/6/2009	CE-2 BET	FS	μg/L	2 U	0.5 J	1 U	0.76 J	0.85 J	1 U
CE-2	8/4/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	0.84 J	1 U	1 U
CE-2 CE-2	8/4/2009	CE-2 BET	FS	μg/L μg/L	2 U	1 U	1 U	0.72 J	0.72 J	1 U

P NYS Class GA				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			-		5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
CE-2 (continued)	9/14/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	5.4	1.5	1 U
CE-2	9/14/2009	CE-2 BET	FS	μg/L	2 U	1 U	1 U	0.88 J	0.82 J	1 U
CE-2	9/14/2009	BLIND DUP	FD	μg/L	2 U	1 U	1 U	5.4	1.6	1 U
CE-2	10/5/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	6	1.5	1 U
CE-2	10/5/2009	CE-2 BET	FS	μg/L	2 U	1 U	1 U	0.95 J	0.9 J	1 U
CE-2	10/5/2009	BLIND DUP	FD	μg/L	2 U	1 U	1 U	0.96 J	0.93 J	1 U
CE-2	11/16/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	2.2	1 U	1 U
CE-2	11/16/2009	CE-2 BET	FS	μg/L	2 U	0.6 J	1 U	1.1	0.89 J	1 U
CE-2	12/2/2009	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.8	0.6 J	1 U
CE-2	12/2/2009	CE-2 BET	FS	μg/L	2 U	0.48 J	1 U	1.2	1.1	1 U
CE-2	1/5/2010	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.8	1 U	1 U
CE-2	1/5/2010	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1.3	0.86 J	1 U
CE-2	4/21/2010	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	4/21/2010	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	2.1	0.68 J	1 U
CE-2	4/21/2010	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	7/6/2010	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	7/6/2010	CE-2 BEF	FS	μg/L	3.1	3.1	1 U	80	8.2	1 U
CE-2	7/6/2010	CE-2 BET	FS	μg/L	2 U	1 U	1 U	0.6 J	1 U	1 U
CE-2	10/5/2010	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	10/5/2010	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	11	1.8	1 U
CE-2	10/5/2010	CE-2 BET	FS	μg/L	1.3 J	1.3	1 U	2.7	0.88 J	1 U
CE-2	1/3/2011	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	1/3/2011	CE-2 BEF	FS	μg/L	1.1 J	1.1	1 U	2.6	0.81 J	1 U
CE-2	1/3/2011	CE-2 BET	FS	μg/L	2 U	1 U	1 U	2.6	0.67 J	1 U
CE-2	1/3/2011	BLIND DUP 1	FD	μg/L	2 U	1 U	1 U	2.3	0.58 J	1 U
CE-2	3/31/2011	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	3/31/2011	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.7	0.47 J	1 U
CE-2	3/31/2011	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	4/4/2011	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	4/4/2011	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.7	1 U	1 U
CE-2	4/4/2011	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	4/11/2011	CE-2 AFT	FS	μg/L μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	4/11/2011	CE-2 BEF	FS	μg/L μg/L	2 U	1 U	1 U	1.5	1 U	1 U
CE-2 CE-2	4/11/2011	CE-2 BET CE-2 BET	FS	μg/L μg/L	2 U	1 U	1 U	1.5 1 U	1 U	1 U
CE-2 CE-2	4/18/2011	CE-2 AFT	FS	μg/L μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2 CE-2	4/18/2011	CE-2 BEF	FS	μg/L μg/L	2 U	1 U	1 U	1.4	1 U	1 U
CE-2 CE-2	4/18/2011	CE-2 BET CE-2 BET	FS	μg/L μg/L	2 U	1 U	1 U	1.4 1 U	1 U	1 U
CE-2 CE-2	4/18/2011	CE-2 AFT	FS		2 U 2 U	1 U	1 U	1 U	1 U	1 U
CE-2 CE-2				μg/L						
CE-2	4/25/2011	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.3	1 U	1 U

· · · · · · · · · · · · · · · · · · ·				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			S Class GA S		5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
CE-2 (continued)	4/25/2011	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	7/5/2011	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	7/5/2011	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	2.8	1.2	1 U
CE-2	7/5/2011	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	7/5/2011	BLIND DUP	FD	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	10/4/2011	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	10/4/2011	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.7	1 U	1 U
CE-2	10/4/2011	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	10/4/2011	BLIND DUP	FD	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	1/3/2012	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	1/3/2012	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.1	1 U	1 U
CE-2	1/3/2012	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	4/2/2012	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	4/2/2012	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	2	0.73 J	1 U
CE-2	4/2/2012	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	5/2/2012	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	5/2/2012	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	0.45 J	1 U	1 U
CE-2	5/2/2012	CE-2 BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	6/5/2012	CE-2 AFT 6/5/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	6/5/2012	CE-2 BEF 6/5/2012	FS	μg/L	2 U	1 U	1 U	1.7	0.49 J	1 U
CE-2	6/5/2012	CE-2 BET 6/5/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	7/3/2012	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	7/3/2012	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	5.9	1.2	1 U
CE-2	7/3/2012	CE-2 BET	FS	μg/L	2 U	1 U	1 U	0.65 J	1 U	1 U
CE-2	8/6/2012	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	8/6/2012	CE-2 BEF	FS	μg/L	1.9 J	1.9	1 U	67	8.3	1 U
CE-2	8/6/2012	CE-2 BET	FS	μg/L	2 U	1 U	1 U	6.7	1.1	1 U
CE-2	10/1/2012	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	0.42 J	1 U	1 U
CE-2	10/1/2012	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	4.3	1	1 U
CE-2	10/1/2012	CE-2 BET	FS	μg/L μg/L	2 U	1 U	1 U	1.5	0.59 J	1 U
CE-2	1/15/2012	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	1/15/2013	CE-2 BEF	FS	μg/L μg/L	2 U	1 U	1 U	1.5	1 U	1 U
CE-2 CE-2	1/15/2013	CE-2 BET	FS	μg/L μg/L	2 U	1 U	1 U	1.5 1 U	1 U	1 U
CE-2 CE-2	4/1/2013	CE-2 BET CE-2 AFT	FS	μg/L μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2 CE-2	4/1/2013	CE-2 AFT CE-2 BEF	FS	μg/L μg/L	2 U	1 U	1 U	1	1 U	1 U
CE-2 CE-2	4/1/2013	CE-2 BET CE-2 BET	FS	μg/L μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2 CE-2	10/15/2013	CE-2 BEF	FS	μg/L μg/L	0.41 J	0.41 J	1 U	41	4.2	1 U
CE-2 CE-2	12/18/2014	CE-2 BEF CE-2	FS		2 U	1 U	1 U	1 U	4.2 1 U	1 U
				μg/L μα/Ι						
CE-2	4/1/2016	CE-2	FS	μg/L	2 U	1 U	1 U	1.7	0.49 J	1 U

	Para NYS Class GA Sta				1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
					5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
CE-2 (continued)	6/21/2017	CE-2 BEF	FS	μg/L	2 UJ	1 UJ	1 UJ	1.3 J	1 UJ	1 UJ
CE-2	10/31/2018	CE-2 BEF	FS	μg/L	2 UJ	1 UJ	1 UJ	1.6 J	0.52 J	1 UJ
CE-2	1/22/2020	CE-2	FS	μg/L	1.4 J	1.4	1 U	1.4	1.3	1 U
CE-2	4/19/2021	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
CE-2	8/1/2022	CE-2 BEF	FS	μg/L	2.7	2.7	1 U	10.9	3.9	1 U
CE-2	10/17/2023	CE-2 AFT	FS	μg/L	2 U	1 U	1 U	1 U	1 U	2 U
CE-2	11/14/2023	CE-2 BEF	FS	μg/L	2 U	1 U	1 U	1.1	0.29 J	2 U
EW-1	4/9/2009	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	10/19/2009	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	1/5/2010	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	4/7/2010	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	7/7/2010	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	10/4/2010	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	1/3/2011	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	4/6/2011	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	7/5/2011	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	10/4/2011	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	6/6/2012	420006-EW1-080 6/6/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-1	6/6/2012	420006-EW1-123 6/6/2012	FS	μg/L	2 U	1 U	1 U	0.53 J	1 U	1 U
EW-1	6/6/2012	420006-EW1-184 6/6/2012	FS	μg/L	2 U	1 U	1 U	0.43 J	1 U	1 U
EW-1	10/5/2012	EW-1	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-2	10/2/2008	EW-2	FS	μg/L	40	40	1 U	240	31	1 U
EW-2	12/17/2008	EW-2	FS	µg/L	38	38	1 U	240	29	1 U
EW-2	12/17/2008	BLIND DUP	FD	μg/L	43	43	1 U	310	34	1.2 U
EW-2	1/12/2009	EW-2	FS	μg/L	34 D08	34 D08	4 U,D08	250 D08	30 D08	4 U,D08
EW-2	1/12/2009	BLIND DUP	FD	μg/L	200 U,D08	100 U,D08	100 U,D08	100 U,D08	100 U,D08	100 U,D08
EW-2	4/6/2009	EW-2	FS	μg/L	33 D08, N1	31 D08, N1	1.6 D08,N1,J	150 D08, N1	18 D08, N1	4 U,D08,N1
EW-2	7/6/2009	EW-2	FS	μg/L	35 D08	33 D08	1.9 D08,J	150 D08	17 D08	2 U, D08
EW-2	10/5/2009	EW-2	FS	μg/L	49 D08	46 D08	2.2 D08,J	220 D08	23 D08	4 U, D08
EW-2	1/6/2010	EW-2	FS	μg/L	49 D08	47 D08	2.4 D08,J	510 D08	48 D08	4 U, D08
EW-2	4/7/2010	EW-2	FS	μg/L	69 D08	65 D08	3.3 D08	240 D08	45 D08	2 U, D08
EW-2	7/7/2010	EW-2	FS	μg/L	45 D08	41 D08	4.1 D08	230 D08	20 D08	4 U, D08
EW-2	10/4/2010	EW-2	FS	μg/L	170 D08	170 D08	4 U, D08	320 D08	90 D08	4 U, D08
EW-2	1/3/2011	EW-2	FS	μg/L	130	130	2.7	270	39	1 U
EW-2	4/6/2011	EW-2	FS	μg/L	210	210	4.1	160	37	1 U
EW-2	7/5/2011	EW-2	FS	μg/L	73	70	3.1	230	18	1.5
EW-2	10/4/2011	EW-2	FS	μg/L	86	86	4 U	270	28	4 U
EW-2	1/3/2012	EW-2	FS	μg/L	72	70	2.3	290	31	1.6
EW-2	6/6/2012	420006-EW2-110 6/6/2012	FS	μg/L	500	500	200 U	11000	2600	200 U

	NYS			rameter	, .	lloroethene otal)	Dichlo	-1,2- roethene	trans-1,2- Dichloroethene	Tetrac	hloroethene	Trichle	oroethene	Chl	inyl loride
			Class GA S			5		5	5		5		5		2
Location	Date	Sample ID	QC Code	Units	Result	Qualifier	Result	Qualifier	Result Qualifier	Result	Qualifier	Result	Qualifier		Qualifier
EW-2 (continued)	6/6/2012	420006-EW2-188 6/6/2012	FS	μg/L	460		460		200 U	11000		2300		200 0	
EW-2	6/6/2012	420006-EW2-225 6/6/2012	FS	μg/L	480		480		200 U	12000		2400		200 t	
EW-2	6/6/2012	420006-EW2-313 6/6/2012	FS	μg/L	360		360		200 U	10000	J	1800		200 0	Ŭ
EW-2	7/18/2012	420006-EW02-310	FS	μg/L	1407		1400		6.8	6000		1700		5.2	
EW-2	10/2/2012	EW-2	FS	μg/L	130		130		5 U	280		56		6.4	
EW-2	4/16/2013	EW-2	FS	μg/L	53		50		2.7	58		6.4		3.8	
EW-2	10/15/2013	EW-2	FS	μg/L	150		150		3.9	86		15		3.7	
EW-2	12/15/2014	EW-2	FS	μg/L	260		260		5 U	190		54		15	
EW-2	3/30/2016	EW-2	FS	μg/L	130		130		5 U	120		15		14	
EW-2	6/20/2017	EW-2	FS	μg/L	61		61		1 U	52		7.1		12	
EW-2	10/31/2018	EW-2	FS	μg/L	190		190		4 U	150		16		18	
EW-3	4/29/2013	EW-3-125	FS	μg/L	13		12		0.97 J	1	U	1	U	11	Ü
EW-3	4/29/2013	EW-3200	FS	μg/L	17		16		1.3	1	U	1	U	11	U
EW-3	4/29/2013	EW-3275	FS	µg/L	23		21		1.9	1	U	1	U	1 0	U
EW-3	11/5/2013	EW-3	FS	µg/L	55		50		4.5	1	U	9		3.3	
EW-3	12/17/2014	EW-3	FS	µg/L	30		30		1 U	1	U	1	U	6.1	
EW-3	3/29/2016	EW-3	FS	μg/L	39		38		0.95 J	1	U	0.83	J	6.3	
EW-3	6/21/2017	EW-3	FS	μg/L	6.8		6.8		1 U	1	U	1	U	3.7	
EW-3	10/30/2018	EW-3	FS	μg/L	8.6		8.6		1 U	1	U	1	U	9.7	
EW-3	1/23/2020	EW-3	FS	μg/L	5.1		5.1		1 U	1	U	1	U	4.6	
EW-3	4/21/2021	EW-3	FS	μg/L	3.5		3.5		1 U	1	U	1	U	5.4	
EW-3	7/20/2022	EW-3	FS	μg/L	5.3	J	5.3	J	1 U	1	U	1	U	4.8	
EW-3	10/17/2023	EW-3	FS	μg/L	2.7		2.7		1 U	1	U	1	U	9.7	
EW-4	6/6/2012	420006-EW4-125 6/6/2012	FS	μg/L	3.1		3.1		1 U	1	U	1	U	1 0	U
EW-4	6/6/2012	420006-EW4-178 6/6/2012	FS	μg/L	10.2		8.2		2	1	U	1	U	11	U
EW-4	6/6/2012	420006-EW4-258 6/6/2012	FS	μg/L	14		11		2.9	1		1	U	1 1	
EW-4	6/6/2012	420006-EW4-302 6/6/2012	FS	μg/L	16		13		2.6	0.44	J	1	U	11	
EW-4	4/29/2013	EW-4302	FS	μg/L	13		10		2.8	1	U	1	U	11	U
EW-4	11/5/2013	EW-4	FS	μg/L	44		42		2.3	1		13		1.8	
EW-4	12/17/2014	EW-4	FS	μg/L	16		13		2.8	1	-	1		11	U
EW-4	3/29/2016	EW-4	FS	μg/L	17		14		3.2	1		1		11	
EW-4	6/21/2017	EW-4	FS	μg/L μg/L	11		8.4		2.7	1		1		11	
EW-4	10/30/2018	EW-4	FS	μg/L μg/L	9.6		8.1		1.5	1	-	1	_	11	-
EW-4	7/21/2020	EW-4	FS	μg/L	5.7		4.6		1.1	1		1		11	
EW-4	4/21/2020	EW-4	FS	μg/L μg/L	8.2		6.8		1.4	1		1		11	
EW-4	7/20/2022	EW-4	FS	μg/L	5.7		5.7		1 U	1		1		1	5
EW-4	10/17/2023	EW-4	FS	μg/L μg/L	5.2		5.2		1 U	1		1		12	
EW-4 EW-5	6/6/2012	420006-EW5-150 6/6/2012	FS	μg/L μg/L	210		210		20 U	890	0	130	0	20 0	
EW-5 EW-5	6/6/2012	420006-EW5-202 6/6/2012	FS	μg/L μg/L	210		210		10 U	610		100		10 0	

NYS C				rameter	· /	loroethene otal)	Dichlo	-1,2- roethene	Dichlo	ıs-1,2- roethene	Tetrac	hloroethene		oroethene		'inyl loride
			Class GA S			5		5		5		5		5		2
Location	Date	Sample ID	QC Code	Units	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
EW-5 (continued)	6/6/2012	420006-EW5-283 6/6/2012	FS	μg/L	190		190		4	U	150		49		4	
EW-5	7/12/2012	420006-EW05-280	FS	μg/L	335		330		5.1		5	U	3.7	J	5	
EW-5	4/29/2013	EW-5150	FS	μg/L	120		120		1	U	260		55		1	
EW-5	11/5/2013	EW-5	FS	μg/L	1100		1100		3.9		38		27		2	
EW-5	12/17/2014	EW-5	FS	μg/L	45		45		4		200		18		4	
EW-5	10/5/2015	EW-5	FS	μg/L	170		170	F1	4		290	F1	80		4	U
EW-5	3/29/2016	EW-5	FS	μg/L	300		300		4		330		120		4.6	
EW-5	6/21/2017	EW-5	FS	μg/L	310		310		4		600	J	120		7	
EW-5	10/30/2018	EW-5	FS	μg/L	260		260		8		340		88		9.1	
EW-5	1/23/2020	EW-5	FS	μg/L	210		210		8		200		64		8	
EW-5	4/21/2021	EW-5	FS	μg/L	240		240		8	U	150		67		8	U
EW-5	7/20/2022	EW-5	FS	μg/L	260		258		2.4		182		67		8.7	
EW-5	10/17/2023	EW-5	FS	μg/L	211	J	210		1.3		150		63		6.8	
EW-6	10/2/2008	EW-6	FS	μg/L	84		84		1	-	320		74		1.2	U
EW-6	12/17/2008	EW-6	FS	μg/L	69		69		1	U	440		84		1.2	U
EW-6	1/12/2009	EW-6	FS	μg/L	-	D08	78	D08	5	U,D08	310			D08	5	U,D08
EW-6	4/8/2009	EW-6	FS	μg/L	100	D08	98	D08	1.6	D08,J	370	D08	90	D08	5	U, D08
EW-6	10/5/2009	EW-6	FS	μg/L	120	D08	120	D08	1.4		410	D08	130	D08	1	U
EW-6	4/7/2010	EW-6	FS	μg/L	120	D08	120	D08	5	U, D08	270		73	D08	5	U, D08
EW-6	10/4/2010	EW-6	FS	μg/L	110	D08	110	D08	5	U, D08	260	D08	65	D08	5	U, D08
EW-6	4/6/2011	EW-6	FS	μg/L	290		290		2.6		1300		280		2.1	
EW-6	10/4/2011	EW-6	FS	μg/L	180		180		5	U	380		160		5	U
EW-6	10/2/2012	EW-6	FS	μg/L	330		330		5	U	580		220		5	U
EW-6	4/16/2013	EW-6	FS	μg/L	220		220		8	U	550		150		8	U
EW-6	10/15/2013	EW-6	FS	µg/L	180		180		4.1	J	390		140		5	U
EW-6	12/18/2014	EW-6	FS	µg/L	300		300		8	U	390		120		8	U
EW-6	3/30/2016	EW-6	FS	µg/L	200		200		8	U	690		180		8	U
EW-6	6/20/2017	EW-6	FS	µg/L	160		160		8	U	730		170		8	U
EW-6	10/31/2018	EW-6	FS	μg/L	130		130		10	U	730		140		10	U
EW-6	1/22/2020	EW-6	FS	μg/L	150		150		10	U	570		150		9.2	J
EW-6	4/20/2021	EW-6	FS	μg/L	790		790		15		8	U	8 1	U	21	
EW-6	7/20/2022	EW-6	FS	μg/L	175		171		3.3		446		135		13.4	
EW-7	10/2/2008	EW-7	FS	μg/L	720		710		8.8		78		66		2.4	U
EW-7	12/17/2008	EW-7	FS	μg/L	500		490		5.3		660		280		2.4	
EW-7	1/12/2009	EW-7	FS	μg/L	1200	D08	1200	D08		U,D08	2200	H2,D08	1500	D08	20	U,D08
EW-7	4/8/2009	EW-7	FS	μg/L		D08, N1		D08, N1		D08,N1,J		D08, N1		D08, N1		U,D08,N1
EW-7	7/6/2009	EW-7	FS	μg/L	1200		1200			U, D08	3800		1900			U, D08
EW-7	10/5/2009	EW-7	FS	μg/L	720	D08	710	D08	11	D08	18	D08	49	D08	10	U, D08
EW-7	1/6/2010	EW-7	FS	μg/L	530		520		9.4			D08,J	19			U, D08

				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		-	S Class GA S		5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
EW-7 (continued)	4/7/2010	EW-7	FS	μg/L	870 D08	870 D08	7 D08,J	2000 D08	970 D08	8 U, D08
EW-7	7/7/2010	EW-7	FS	μg/L	460 D08	450 D08	11 D08	8 U, D08	27 D08	8 U, D08
EW-7	7/7/2010	BLIND DUP	FD	μg/L	440 D08	430 D08	11 D08	8 U, D08	27 D08	8 U, D08
EW-7	10/4/2010	EW-7	FS	μg/L	490 D08	480 D08	12 D08	8.4 D08,J	26 D08	10 U, D08
EW-7	1/3/2011	EW-7	FS	μg/L	590	580	10	66	79	1 U
EW-7	4/18/2011	EW-7	FS	μg/L	680	670	12	730	310	1 U
EW-7	10/4/2011	EW-7	FS	μg/L	710	710	10 U	1400	650	10 U
EW-7	10/2/2012	EW-7	FS	μg/L	860	860	20 U	990	570	20 U
EW-7	4/16/2013	EW-7	FS	μg/L	480	470	11	260	110	10 U
EW-7	10/15/2013	EW-7	FS	μg/L	480	470	9.2	65	34	6.7 U
EW-7	3/30/2016	EW-7	FS	μg/L	950	940	9.1 J	3700	1800	10 U
EW-7	6/20/2017	EW-7	FS	μg/L	1300	1300	40 U	2600	1200	40 U
EW-7	10/31/2018	EW-7	FS	μg/L	1300	1300	100 U	6900	2200	14
EW-7	1/22/2020	EW-7	FS	μg/L	1200	1200	100 U	3900	1400	100 U
EW-7	4/20/2021	EW-7	FS	μg/L	890	890	100 U	4200	1400	100 U
EW-7	7/20/2022	EW-7	FS	μg/L	304	292	11.7	6.5	6.4	9.7
EW-7	10/18/2023	EW-7	FS	µg/L	235	230	5	40	27	4 J
EW-8	4/29/2013	EW-8100	FS	µg/L	1.2 J	1.2	1 U	1 U	1 U	1 U
EW-8	4/29/2013	EW-8200	FS	µg/L	4.3	4.3	1 U	0.82 J	0.95 J	1 U
EW-8	4/29/2013	EW-8300	FS	µg/L	3.7	3.7	1 U	0.45 J	0.55 J	1 U
EW-8	11/5/2013	EW-8	FS	µg/L	3.9	3.9	1 U	1 U	1 U	1 U
EW-8	12/17/2014	EW-8	FS	µg/L	2.8	2.8	1 U	1 U	1 U	1 U
EW-8	3/29/2016	EW-8	FS	μg/L	4.1	4.1	1 U	1 U	1 U	1 U
EW-8	6/21/2017	EW-8	FS	μg/L	4	4	1 U	1 U	1 U	1 U
EW-8	10/30/2018	EW-8	FS	μg/L	1.9 J	1.9	1 U	1 U	0.53 J	1
EW-8	1/23/2020	EW-8	FS	μg/L	3.5	3.5	1 U	1 U	1 U	1.1
EW-8	4/21/2021	EW-8	FS	μg/L	2.4	2.4	1 U	1 U	1 U	1 U
EW-8	7/20/2022	EW-8	FS	μg/L	3.8	3.8	1 U	1 U	1 U	2.1
EW-8	10/17/2023	EW-8	FS	μg/L	3.2 J	2.7	0.48 J	1 U	1 U	2.2
EW-9	10/2/2008	EW-9	FS	μg/L	140	140	1 U	240	86	1.2 U
EW-9	4/7/2009	EW-9	FS	μg/L	88 D08	86 D08	1.6 D08,J	230 D08	69 D08	5 U, D08
EW-9	10/6/2009	EW-9	FS	μg/L	280 D08	280 D08	2.9	500 D08	250 D08	1 U
EW-9	4/7/2010	EW-9	FS	μg/L	210 D08	200 D08	2.9 D08.J	270 D08	140 D08	4 U. D08
EW-9	10/4/2010	EW-9	FS	μg/L	590 D08	590 D08	6.2 D08	1400 D08	580 D08	4 U, D08
EW-9	10/4/2010	BLIND DUP	FD	μg/L	560 D08	550 D08	8 U. D08	1600 D08	580 D08	8 U, D08
EW-9	4/6/2011	EW-9	FS	μg/L	420	420	5.7	460	250	1 U
EW-9	4/6/2011	BLIND DUP 2	FD	μg/L	400	400	5.6	460	230	1 U
EW-9	10/4/2011	EW-9	FS	μg/L	230	230	4 U	210	140	4 U
EW-9	10/2/2012	EW-9	FS	μg/L μg/L	290	280	5.4	180	140	4 U

Param NYS Class GA Stand				rameter	, .	nloroethene total)		s-1,2- proethene	Dichlor	s-1,2- oethene	Tetrac	hloroethene	Trichle	oroethene	Vir Chlo	ride
		1				5		5		5		5		5	2	
Location	Date	Sample ID	QC Code	Units	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier		Qualifier
EW-9 (continued)	4/16/2013	EW-9	FS	μg/L	130		130		2.6		73		48		2 U	
EW-9	10/15/2013	EW-9	FS	μg/L	130		130		3.1		65		44		2.5 U	
EW-9	12/15/2014	EW-9	FS	μg/L	200		200		3.6 J	T	38		20		4 U	
EW-9	3/30/2016	EW-9	FS	μg/L	150		150		4 U		45		18		4 U	
EW-9	6/20/2017	EW-9	FS	μg/L	97		95		1.8 J		10		5.2		3.4	
EW-9	12/28/2018	EW-9	FS	μg/L	90		90		4 U		13		6.5		12	
EW-9	1/22/2020	EW-9	FS	μg/L	74		74		2 U		7.8		4.2		8.2	
EW-9	4/20/2021	EW-9	FS	μg/L	45		45		2 U		7.7		4.3		14	
EW-9	2/1/2022	EW-9	FS	μg/L	35.3		35.3		1 U		4.7		4.1		5.4 J-	
EW-9	3/1/2022	EW-9	FS	μg/L	30.3		30.3		1 U		5.3		3.8		13	
EW-9	4/1/2022	EW-9	FS	μg/L	29.9		29.9		1 U	J	12.3		7		9.8	
EW-9	5/2/2022	EW-9	FS	μg/L	28.3		27.3		1.1		5.6		5.8		11	
EW-9	6/1/2022	EW-9	FS	μg/L	553		550		3.2		38		24		32	
EW-9	7/1/2022	EW-9	FS	μg/L	94		93		1.4		13		9.4		27	
EW-9	7/20/2022	EW-9	FS	μg/L	40		38.6		1.4		6.1		5.4		16.2	
EW-9	8/1/2022	EW-9	FS	μg/L	110		108		1.6		8.6		5.7		36.2	
EW-10	10/1/2008	EW-10	FS	μg/L	22		22		1 U		480		110		1 U	
EW-10	4/7/2009	EW-10	FS	μg/L	20		20		1 U		350		110	D08	1 U	
EW-10	10/6/2009	EW-10	FS	μg/L	7.6		7.6		1 U		110		12		1 U	
EW-10	4/7/2010	EW-10	FS	μg/L	-	D08	-	D08		J, D08	200		-	D08		, D08
EW-10	10/4/2010	EW-10	FS	μg/L		D08	7.7	D08		J, D08	100	D08	11	D08		, D08
EW-10	4/6/2011	EW-10	FS	μg/L	98		98		1 U		1100		500		1 U	
EW-10	10/4/2011	EW-10	FS	μg/L	38		38		4 U		240		130		4 U	
EW-10	10/4/2012	EW-10	FS	μg/L	12		12		2 U	J	100		23		2 U	
EW-11	10/1/2008	EW-11	FS	μg/L	76		75		0.68 J		46		12		1 U	
EW-11	4/7/2009	EW-11	FS	μg/L	110	D08	110	D08	1.4		31		12		1 U	
EW-11	10/6/2009	EW-11	FS	μg/L		D08	120	D08	1.7		140	D08	41		1 U	
EW-11	4/7/2010	EW-11	FS	μg/L	100	D08	100	D08	3.1		39		21		1 U	
EW-11	10/4/2010	EW-11	FS	μg/L	180	D08	180	D08	4.6 E	008	110	D08	47	D08	2 U	, D08
EW-11	4/6/2011	EW-11	FS	μg/L	170		160		5.6		21		14		4 U	
EW-11	10/4/2011	EW-11	FS	μg/L	120		110		5.4		17		12		2 U	
EW-11	6/7/2012	420006-EW11-078	FS	μg/L	2	U	1	U	1 U	J	0.42	J	1	U	1 U	
EW-11	6/7/2012	420006-EW11-117	FS	μg/L	2.1		2.1		1 U	J	0.45	J	1	U	1 U	
EW-11	6/7/2012	420006-EW11-160	FS	μg/L	3.2		3.2		1 U	J	1	U	1	U	3.1	
EW-11	7/10/2012	420006-EW11-079	FS	μg/L	3.2		3.2		1 U	J	1.6	U	0.56	J	1 U	
EW-11	10/4/2012	EW-11	FS	μg/L	120		110		7		8.5		5		2 U	
EW-11	4/29/2013	EW-11117	FS	μg/L	31		31		1 U	J	1	U	1	U	1 U	
EW-11	11/5/2013	EW-11	FS	μg/L	6.8		6.8		1 U	J	1	U	1	U	1 U	
EW-11	12/17/2014	EW-11	FS	μg/L	1.1	J	1.1		1 U	J	1	U	1	U	1 U	

NYS Clas				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			Class GA St		5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
EW-11 (continued)	3/29/2016	EW-11	FS	μg/L	4.9	4.9	1 U	1 U	1 U	1 U
EW-11	6/21/2017	EW-11	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-11	10/31/2018	EW-11	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-11	1/23/2020	EW-11	FS	μg/L	5.5	5.5	1 U	1 U	1 U	1 U
EW-11	4/21/2021	EW-11	FS	μg/L	16	16	1 U	1 U	1	1 U
EW-11	7/20/2022	EW-11	FS	μg/L	1.2 J	1.2	1 U	1 U	1 U	1 U
EW-11	10/17/2023	EW-11	FS	μg/L	2.3	2.3	1 U	1 U	1 U	2 U
EW-12	10/1/2008	EW-12	FS	μg/L	180	180	1 U	1200	370	1 U
EW-12	1/12/2009	EW-12	FS	μg/L	140 D08	140 D08	4 U,D08	670 H2,D08	260 D08	4 U,D08
EW-12	4/7/2009	EW-12	FS	µg/L	160 D08, N1	150 D08, N1	1 D08,N1,J	88 D08, N1	74 D08, N1	4 U,D08,N1
EW-12	7/6/2009	EW-12	FS	μg/L	180 D08	180 D08	4 U, D08	250 D08	170 D08	4 U, D08
EW-12	7/6/2009	BLIND DUP	FD	μg/L	180 D08	180 D08	4 U, D08	260 D08	160 D08	4 U, D08
EW-12	10/6/2009	EW-12	FS	μg/L	180 D08	180 D08	4 U, D08	650 D08	320 D08	4 U, D08
EW-12	1/6/2010	EW-12	FS	µg/L	150 D08	150 D08	1.2 D08,J	190 D08	120 D08	2 U, D08
EW-12	4/7/2010	EW-12	FS	μg/L	100 D08	100 D08	2 U, D08	26 D08	21 D08	2 U, D08
EW-12	7/6/2010	EW-12	FS	µg/L	180 D08	180 D08	2.2 D08	160 D08	110 D08	2 U, D08
EW-12	10/4/2010	EW-12	FS	μg/L	170 D08	170 D08	2 U, D08	51 D08	37 D08	2 U, D08
EW-12	1/3/2011	EW-12	FS	μg/L	140	140	1 U	17	9.7	1 U
EW-12	4/6/2011	EW-12	FS	μg/L	150	150	1.6	100	84	1 U
EW-12	10/4/2011	EW-12	FS	μg/L	56	56	1 U	4.3	2.6	3.7
EW-12	6/7/2012	420006-EW12-076 6/7/2012	FS	μg/L	22	22	1 U	14	8.6	1 U
EW-12	6/7/2012	420006-EW12-115 6/7/2012	FS	μg/L	23	23	1 U	18	9.2	1 U
EW-12	6/7/2012	420006-EW12-140 6/7/2012	FS	μg/L	23	23	1 U	16	8.6	1 U
EW-12	6/7/2012	420006-EW12-251 6/7/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	4.3
EW-12	7/18/2012	420006-EW12-140	FS	μg/L	25	25	1 U	140	24	1 U
EW-12	10/4/2012	EW-12	FS	μg/L	110	92	1 U	81	45	1 U
EW-12	4/29/2013	EW-12115	FS	μg/L	2 U	1 U	1 U	3.4	0.67 J	1 U
EW-12	11/5/2013	EW-12	FS	μg/L	3.5	3.5	1 U	28	3.2	1 U
EW-12	12/17/2014	EW-12	FS	μg/L	2 U	1 U	1 U	3.1	0.53 J	1 U
EW-12	3/29/2016	EW-12	FS	μg/L	2 U	1 U	1 U	6.4	0.83 J	1 U
EW-12	6/21/2017	EW-12	FS	μg/L	2 U	1 U	1 U	4.2	0.52 J	1 U
EW-12	10/30/2018	EW-12	FS	μg/L	2 U	1 U	1 U	4.8	0.53 J	1 U
EW-12	1/23/2020	EW-12	FS	μg/L	2 U	1 U	1 U	3.7	1 U	1 U
EW-12	4/21/2021	EW-12	FS	μg/L	2 U	1 U	1 U	3	1 U	1 U
EW-12	7/20/2022	EW-12	FS	μg/L	2 U	1 U	1 U	5.7	1 U	1 U
EW-12	10/17/2023	EW-12	FS	μg/L	0.35 J	0.35 J	1 U	2.5	0.28 J	2 U
EW-12 EW-13	4/29/2013	EW-13100	FS	μg/L	2.9	2.9	1 U	20	3.2	1 U
EW-13	4/29/2013	EW-13200	FS	μg/L	12	12	1 U	13	3.6	1 U
EW-13	4/29/2013	EW-13200	FS	μg/L	14	14	1 U	14	3.7	1 U

	Paran NYS Class GA Stan					cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		1			5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
EW-13 (continued)	11/5/2013	EW-13	FS	μg/L	15	15	1 U	31	4	1 U
EW-13	12/17/2014	EW-13	FS	μg/L	12	12	1 U	21	3.5	1 U
EW-13	3/29/2016	EW-13	FS	μg/L	20	20	1 U	25	4.3	1 U
EW-13	6/20/2017	EW-13	FS	μg/L	16	16	1 U	26	3.7	1 U
EW-13	10/30/2018	EW-13	FS	μg/L	11	11	1 U	32	3	1 U
EW-13	1/22/2020	EW-13	FS	μg/L	15	15	1 U	29	2.9	1.4
EW-13	4/21/2021	EW-13	FS	μg/L	3.3	3.3	1 U	26	3	1 U
EW-13	7/19/2022	EW-13	FS	μg/L	3.1	3.1	1 U	24.3	2.5	1 U
EW-13	10/17/2023	EW-13	FS	μg/L	2.8	2.8	1 U	27	2.6	2 U
EW-14	10/1/2008	EW-14	FS	μg/L	38	38	1 U	0.68 J	4.9	1 U
EW-14	1/21/2009	EW-14	FS	μg/L	34	34	1 U	1 U	6.1	1 U
EW-14	4/7/2009	EW-14	FS	μg/L	27 N1	27 N1	1 U, N1	1 U, N1	6.9 N1	1 U, N1
EW-14	7/6/2009	EW-14	FS	μg/L	32	32	1 U	1 U	5.7	1 U
EW-14	10/6/2009	EW-14	FS	μg/L	23	23	1 U	4.6	5.1	1 U
EW-14	1/6/2010	EW-14	FS	μg/L	21	21	1 U	0.4 J	5	1 U
EW-14	4/7/2010	EW-14	FS	μg/L	22	22	1 U	0.54 J	4.8	1 U
EW-14	7/6/2010	EW-14	FS	μg/L	27	27	1 U	1 U	4.6	1 U
EW-14	10/4/2010	EW-14	FS	μg/L	35	35	1 U	1 U	3	1 U
EW-14	1/3/2011	EW-14	FS	μg/L	24	24	1 U	1 U	3.5	1 U
EW-14	4/6/2011	EW-14	FS	μg/L	23	23	1 U	1 U	4.1	1 U
EW-14	10/4/2011	EW-14	FS	μg/L	29	29	1 U	1 U	4.2	1 U
EW-14	10/4/2012	EW-14	FS	μg/L	37	37	1 U	1 U	2.3	1 U
EW-15	4/6/2011	EW-15	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-15	10/18/2011	EW-15	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-15	10/5/2012	EW-15	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
EW-16	10/2/2008	EW-16	FS	μg/L	450	450	2.5 U	1400	690	4.8 U
EW-16	12/17/2008	EW-16	FS	μg/L	460	460	2.5 U	3700	1200	4.8 U
EW-16	1/12/2009	EW-16	FS	μg/L	570 D08	570 D08	100 U,D08	3800 D08	1500 D08	100 U,D08
EW-16	4/8/2009	EW-16	FS	μg/L	570 D08, N1	570 D08, N1	2.9 D08, N1	2100 D08, N1	1000 D08, N1	3 D08, N1
EW-16	7/6/2009	EW-16	FS	μg/L	590 D08	590 D08	2.6 D08,J	1900 D08	1100 D08	2.6 D08,J
EW-16	10/5/2009	EW-16	FS	μg/L	530 D08	530 D08	20 U, D08	1100 D08	560 D08	20 U, D08
EW-16	1/6/2010	EW-16	FS	μg/L	700 D08	700 D08	20 U, D08	3000 D08	1500 D08	20 U, D08
EW-16	4/7/2010	EW-16	FS	μg/L	950 D08	950 D08	40 U, D08	4800 D08	2400 D08	40 U, D08
EW-16	7/7/2010	EW-16	FS	μg/L	2100 D08	2100 D08	40 U, D08	3000 D08	2000 D08	40 U, D08
EW-16	10/4/2010	EW-16	FS	μg/L	1000 D08	1000 D08	40 U, D08	3300 D08	1900 D08	40 U, D08
EW-16	1/3/2011	EW-16	FS	μg/L	1200	1200	5.2	4000	2100	8.9
EW-16	1/3/2011	BLIND DUP 2	FD	μg/L	880 H	880 H	5	2400 H	1500 H	7.8
EW-16	4/6/2011	EW-16	FS	μg/L	1300	1300	7.3	5600	2600	11
EW-16	10/4/2011	EW-16	FS	μg/L	1500	1500	40 U	6600	3800	40 U

				rameter	(1	nloroethene otal)	Dichlo	-1,2- roethene	Dichlo	ıs-1,2- roethene	Tetrac	hloroethene	Trichl	oroethene	Ch	inyl loride
T			Class GA St			5		5		5	D L	5	D L	5		2
Location	Date	Sample ID	QC Code	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
EW-16 (continued)	6/7/2012 6/7/2012	420006-EW16-100	FS FS	μg/L	924 884		920 880		3.6		2800 2400		860		9.4	
EW-16		420006-EW16-210		μg/L												F T
EW-16	6/7/2012	420006-EW16-320	FS	μg/L	880		880		25		2300		820		25	U
EW-16	6/7/2012	420006-EW16-405	FS	μg/L	4200		4200		40	U	40	U	40	_	61	
EW-16	7/13/2012	420006-EW16-100	FS	μg/L	3322		3300		22		4300		2500		13	
EW-16	7/13/2012	420006-EW16-100D	FD	μg/L	3220		3200		20		4200		2500		13	
EW-16	7/17/2012	420006-EW16-320	FS	μg/L	2511		2500		11		3300		1500		8	
EW-16	7/17/2012	420006-EW16-404	FS	μg/L	3211		3200		11		3100		1600		94	
EW-16	10/2/2012	EW-16	FS	μg/L	1200		1200		100		6300		3300		100	
EW-16	4/16/2013	EW-16	FS	μg/L	1100		1100		40		7200		3100		40	
EW-16	10/15/2013	EW-16	FS	μg/L	840		840		50		3400		1800		50	U
EW-16	12/18/2014	EW-16	FS	μg/L	1400		1400		8		4400		2000		14	
EW-16	3/30/2016	EW-16	FS	μg/L	640		640		20		520		400		20	-
EW-16	6/20/2017	EW-16	FS	μg/L	1500		1500		20		1600		1300		19	J
EW-16	10/31/2018	EW-16	FS	μg/L	990		990		20	U	1100		530		20	U
EW-16	1/22/2020	EW-16	FS	μg/L	1500		1500		20	U	2400		1000		28	
EW-16	4/20/2021	EW-16	FS	μg/L	1300		1300		50	U	2600		1100		50	U
EW-16	7/20/2022	EW-16	FS	μg/L	1960		1940		23.3		599		657		25.6	
EW-16	10/18/2023	EW-16	FS	μg/L	1000		1000		25	U	2100		1200		18	J
IW-8	6/7/2012	420006-IW8-095 6/7/2012	FS	μg/L	2	U	1	U	1	U	0.89	J	0.55	J	1	U
IW-8	6/7/2012	420006-IW8-150 6/7/2012	FS	μg/L	2	U	1	U	1	U	0.99	J	1	U	1	U
IW-8	6/7/2012	420006-IW8-339 6/7/2012	FS	μg/L	2	U	1	U	1	U	1.3		0.51	J	1	U
IW-8	4/29/2013	IW-8339	FS	μg/L	2	U	1	U	1	U	0.55	J	1	U	1	U
IW-8	11/5/2013	IW-8	FS	μg/L	8.3		6.9		1.4		1	U	1.9		1.3	
IW-8	12/17/2014	IW-8	FS	μg/L		U	1	U	1	U	1	U	1	U	1	U
IW-8	3/29/2016	IW-8	FS	μg/L	1.1	J	1.1		1	U	0.66	J	0.65	J	1	U
IW-8	6/21/2017	IW-8	FS	μg/L		U	1	U	1	U	0.65			U	1	U
IW-8	10/30/2018	IW-8	FS	μg/L		U	1		1		0.55			U	1	
IW-8	1/23/2020	IW-8	FS	μg/L		U	1		1			U	-	U	1	
IW-8	4/21/2021	IW-8	FS	μg/L		U	1	_	1	-	-	U	-	U	1	-
IW-8	7/20/2022	IW-8	FS	μg/L		U	1		1		1		1.1	-	1	
IW-8	10/17/2023	IW-8	FS	μg/L μg/L		U	1		1		1	-	0.86	J	2	
IW-9	6/7/2012	420006-IW9-085 6/7/2012	FS	μg/L	200	-	200	-	20		1200	-	620		20	
IW-9	6/7/2012	420006-IW9-107 6/7/2012	FS	μg/L μg/L	260		260		50		3200		1400		50	
IW-9	6/7/2012	420006-IW9-206 6/7/2012	FS	μg/L μg/L	310		310		40		2900	J	1900		40	-
IW-9	6/7/2012	420006-IW9-333 6/7/2012	FS	μg/L μg/L	250		250		50		3400		1700		50	
IW-9	6/7/2012	420006-IW9-085 DUP 6/7/2012	FD	μg/L μg/L	230		230		20		1300		680		20	
IW-9 IW-9	7/19/2012	420006-IW09-085 DOP 0///2012	FS		220		220		1.8	0	5900		2200		20	-
				μg/L	543				2.6				3400		37	0
IW-9	7/19/2012	420006-IW09-334	FS	μg/L	543		540		2.6		7300		3400		- 37	

				rameter	-,	lloroethene otal)	Dichlo	-1,2- roethene	Dichlo	1s-1,2- roethene	Tetrac	hloroethene	Trichle	oroethene		'inyl loride
			Class GA S			5		5		5		5		5		2
Location	Date	Sample ID	QC Code	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	C
IW-9 (continued)	4/29/2013	IW-9333	FS	μg/L	270		270		1.3		570		820		1	
IW-9	11/5/2013	IW-9	FS	μg/L	310		310		1.2		1300		970		1	
IW-9	12/17/2014	IW-9	FS	μg/L	1000		1000		25		630		540		25	
IW-9	3/29/2016	IW-9	FS	μg/L	960		960		25		240		270		41	
IW-9	6/21/2017	IW-9	FS	μg/L	830		830		25		330		390		25	
IW-9	10/30/2018	IW-9	FS	μg/L	840	J	840	I	25	U	550		550		25	U
IW-9	1/23/2020	IW-9	FS	μg/L	880		880		25	U	330		410		25	U
IW-9	4/21/2021	IW-9	FS	μg/L	570		570		25	U	210		320		25	U
IW-9	7/20/2022	IW-9	FS	μg/L	590		586		3.6		168		239		2.1	
IW-9	10/17/2023	IW-9	FS	μg/L	17		17		1	U	6.6		2.2		1.2	J
IW-10	6/7/2012	420006-IW10-016 6/7/2012	FS	μg/L	2.2	2.2 2.2 2.1 2.1			1	U	0.51	J	1.4		1	U
IW-10	6/7/2012	420006-IW10-040 6/7/2012	FS	µg/L	2.1		2.1 2.3		1	U	0.96	J	1.5		1	U
IW-10	6/7/2012	420006-IW10-140 6/7/2012	FS	µg/L	2.3		2.3 1 U		1	U	1	U	1	U	3.3	
IW-10	4/29/2013	IW-10040	FS	μg/L	2	U	1	U	1	U	0.82	J	0.58	J	1	U
IW-10	11/5/2013	IW-10	FS	μg/L	2	U	1	U	1	U	0.67	J	1	U	1	U
IW-10	12/17/2014	IW-10	FS	μg/L	7		7		1	U	1	U	1	U	1	U
IW-10	3/29/2016	IW-10	FS	μg/L	19		1 U 1 U 7 19 10		1	U	10		2.9		1	U
IW-10	6/21/2017	IW-10	FS	μg/L	10	2 U 1 U 7 7 19 19 10 10			1	U	1	U	2		1	U
IW-10	10/30/2018	IW-10	FS	μg/L	5.7	7 7 19 19 10 10 5.7 5.7			1	U	1	U	1.8		1	U
IW-10	1/23/2020	IW-10	FS	μg/L	3.8		3.8		1	U	1	U	1.3		1	U
IW-10	4/21/2021	IW-10	FS	μg/L	2.7		2.7		1	U	1	U	0.9	J	1	U
IW-10	7/20/2022	IW-10	FS	μg/L	3.6		3.6		1	U	1		1.3		1	U
IW-10	10/17/2023	IW-10	FS	μg/L	1.8		1.8		1		0.28	J	0.61	J	2	U
IW-12	6/7/2012	420006-IW12-075 6/7/2012	FS	μg/L	5.1		5.1		1	U	1.2		1.3		1	
IW-12	6/7/2012	420006-IW12-125 6/7/2012	FS	μg/L	146		140		5.7		2.6		16		2	U
IW-12	6/7/2012	420006-IW12-158 6/7/2012	FS	μg/L	134		130		3.9		2	U	2		8.4	
IW-12	7/19/2012	420006-IW12-124	FS	μg/L	183		170		13	J	170		51		1.8	
IW-14	6/7/2012	420006-IW14-080 6/7/2012	FS	μg/L	2	U	1	U	1		1		1		1	
IW-14	6/7/2012	420006-IW14-140 6/7/2012	FS	μg/L	0.85		0.85		1		1		1		1	
IW-14	6/7/2012	420006-IW14-189 6/7/2012	FS	μg/L	6.6		6.6		1		1		0.5	-	1	
IW-14	6/7/2012	420006-IW14-290 6/7/2012	FS	μg/L	7.2		7.2		1		1		1		1	
IW-14	7/20/2012	420006-IW14-084	FS	μg/L	5	U	3	IJ	2		130		11	_	2	
IW-14	7/20/2012	420006-IW14-188	FS	μg/L		U	4		4		220		21		4	
	10/2/2008	BEF	FS	μg/L	2		1		1		1		1		1	
	10/2/2008	BET	FS	μg/L	2		0.62		1		1		1		1	
	1/5/2009	BEF	FS	μg/L	2		1		1		1		1		1	
	1/5/2009	BET	FS	μg/L		U	1		1		1		1		1	
	4/6/2009	BEF	FS	μg/L		U, N1	0.69		-	U, N1	-	U, N1	-	U, N1		U, N1
	4/6/2009	BET	FS	μg/L μg/L		U, N1	0.29	,		U, N1		U, N1		U, N1		U, N1

				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			S Class GA S			5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
(continued)	7/6/2009	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2009	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/5/2009	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/5/2009	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/5/2010	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/5/2010	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/6/2010	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/6/2010	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2010	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2010	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/5/2010	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/5/2010	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2011	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/5/2011	BEF	FS	μg/L	8.8	8.8	1 U	1 U	1 U	1 U
	4/5/2011	BET	FS	μg/L	1.9 J	1.9	1 U	1 U	1 U	1 U
	7/5/2011	BEF	FS	μg/L	3.1	3.1	1 U	1 U	1 U	1 U
	7/5/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/5/2011	BEF	FS	μg/L	1.1 J	1.1	1 U	1 U	1 U	1 U
	10/5/2011	BET	FS	μg/L	2.4	2.4	1 U	1 U	1 U	1 U
	1/4/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/4/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/18/2012	BEF	FS	μg/L	1.1 J	1.1	1 U	1 U	1 U	1 U
	4/18/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	5/3/2012	BEF	FS	μg/L	6.1	6.1	1 U	1 U	1 U	1 U
	5/3/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/5/2012	BEF 6/5/2012	FS	μg/L	1.9 J	1.9	1 U	1 U	1 U	1 U
	6/5/2012	BET 6/5/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/3/2012	BEF	FS	μg/L	2.2	2.2	1 U	1 U	1 U	1 U
	7/3/2012	BET	FS	μg/L	1.1 J	1.1	1 U	1 U	1 U	1 U
	8/6/2012	BEF	FS	μg/L	0.92 J	0.92 J	1 U	1 U	1 U	1 U
	8/6/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/1/2012	BEF	FS	μg/L	1 J	1	1 U	1 U	1 U	1 U
	10/1/2012	BET	FS	μg/L	0.86 J	0.86 J	1 U	1 U	1 U	1 U
	1/8/2013	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/8/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/1/2013	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/1/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/16/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U

				ameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			NYS Class GA St	andard	5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
(continued)	10/15/2013	BET	FS	μg/L	1.2 J	1.2	1 U	1 U	1 U	1 U
	1/6/2014	-BET	FS	μg/L	1.9 J	1.9	1 U	1 U	1 U	1 U
	4/8/2014	BET	FS	μg/L	0.81 J	0.81 J	1 U	1 U	1 U	1 U
	7/9/2014		FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/14/2014	BET	FS	μg/L	2	2	1 U	1 U	1 U	1 U
	1/14/2015	BEF	FS	μg/L	0.81 J	0.81 J	1 U	1 U	1 U	1 U
	4/9/2015		FS	μg/L	1.5 J	1.5	1 U	1 U	1 U	1 U
	7/7/2015	BET	FS	μg/L	2	2	1 U	1 U	1 U	1 U
	10/5/2015	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/13/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/1/2016	BEF	FS	μg/L	5	5	1 U	1 U	1 U	1 U
	4/1/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/10/2016	BET	FS	μg/L	1.5 J	1.5	1 U	1 U	1 U	1 U
	1/11/2017	BET	FS	μg/L	1.2 J	1.2	1 U	1 U	1 U	1 U
	4/13/2017	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/20/2017	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2017	BEF	FS	µg/L	3.5	3.5	1 U	1 U	1 U	1 U
	12/6/2017	-BET	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
	2/2/2018	BET	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/13/2018	BET	FS	μg/L	2.3	2.3	1 U	1 U	1 U	1 U
	8/17/2018	BET	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/29/2018	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/29/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/5/2019	BET	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/19/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/15/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/21/2020	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/21/2020	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/15/2020	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/17/2020	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	11/3/2020	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	2/3/2021	-BEF	FS	FS µg/L	2.9	2.9	1 U	1 U	1 U	1 U
	2/3/2021	-BET	-BET FS µg	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/20/2021	-BEF FS μg/L		1.1 J	1.1	1 U	1 U	1 U	1 U	
	4/20/2021 -BEF FS µg/L 4/20/2021 -BET FS µg/L	2 U	1 U	1 U	1 U	1 U	1 U			
	7/15/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/15/2021	-BET	FS	$\mu g/L$	1 J	1	1 U	1 U	1 U	1 U

Checked By: KLD 01/17/2024

			Pa	rameter	1,2-Dichloroethene (total)	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		NYS	S Class GA S	tandard	5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
(continued)	10/4/2021	-BET	FS	μg/L	2.3	2.3	1 U	1 U	1 U	1 U
	10/4/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/4/2022	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/4/2022	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/19/2022	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/1/2008	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/1/2008	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/13/2009	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/13/2009	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/6/2009	BEF	FS	μg/L	2 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1
	4/6/2009	BET	FS	μg/L	2 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1
	7/7/2009	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/7/2009	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/19/2009	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/19/2009	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/5/2010	BEF	FS FS FS FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/5/2010	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/8/2010	BEF	FS	μg/L	2 U	0.56 J	1 U	1 U	1 U	1 U
	4/8/2010	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2010	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2010	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/4/2010	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/4/2010	BET	FS	μg/L	2 U	1 U	1 U	0.62 J	1 U	1 U
	1/4/2011	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/4/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/5/2011	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/5/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/5/2011	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/5/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/17/2011	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/17/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/18/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/18/2012	BET	FS	μg/L	2 U	1 U	1 U	0.65 J	1 U	1 U
	5/3/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	5/3/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/6/2012	BEF 6/6/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/6/2012	BET 6/6/2012	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U

				ameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
	-	-	NYS Class GA St	andard	5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
(continued)	7/5/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/5/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/7/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/7/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/3/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/3/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/9/2013	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/9/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/16/2013	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/16/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/16/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/15/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/6/2014	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/7/2014	BET	FS	μg/L	2 U	1 U	1 U	0.98 J	1 U	1 U
	7/7/2014	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/14/2014	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/14/2015	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/9/2015		FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/7/2015	BET	FS	μg/L	2 U	1 U	1 U	0.73 J	1 U	1 U
	10/5/2015	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/13/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/1/2016	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/1/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/10/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/11/2017	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/13/2017	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/20/2017	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2017	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	12/6/2017	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	2/2/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/13/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/17/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/18/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/29/2018	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/5/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/19/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/15/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U

1/21/2 6/23/2 8/17/2 11/3/2 2/3/20 2/3/20 4/20/2 4/20/2 7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 7/15/2 10/4/2 1/4/20	1/2020 1/2020 3/2020 7/2020 3/2020 2/2021 2/2021	Sample ID BEF BET -BET BET BET	/S Class GA St QC Code FS FS FS FS FS FS FS FS FS FS	Units μg/L μg/L μg/L μg/L μg/L μg/L	5 Result Qualifier 2 U 2 U 2 U 2 U 2 U	S Result Qualifier 1 U 1 U 1 U	S Result Qualifier 1 U 1 U	5 Result Qualifier	5 Result Qualifier	2 Result Qualifier
(continued) 1/21/2 1/21/2 6/23/2 8/17/2 8/17/2 11/3/2 2/3/20 2/3/20 2/3/20 4/20/2 4/20/2 10/4/2 7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 10/4/2 1/4/20 10/4/2 1/4/20 10/4/2 1/4/20 10/4/2 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20	1/2020 1/2020 3/2020 3/2020 2/2021 2/2021 0/2021 0/2021 5/2021	BEF BET -BET BET BET -BET -BEF -BEF	FS FS FS FS FS FS FS	μg/L μg/L μg/L μg/L μg/L	2 U 2 U 2 U 2 U	1 U 1 U	1 U	1 U		
1/21/2 6/23/2 8/17/2 11/3/2 2/3/20 2/3/20 4/20/2 4/20/2 7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 7/15/2 10/4/2 1/4/20	1/2020 3/2020 7/2020 3/2020 /2021 /2021 0/2021 0/2021 5/2021	BET -BET BET BET -BET -BEF -BEF	FS FS FS FS FS FS	μg/L μg/L μg/L μg/L	2 U 2 U	1 U			1 U	1 11
6/23/2 8/17/2 2/3/20 2/3/20 2/3/20 4/20/2 4/20/2 7/15/2 7/15/2 10/4/2 10/4/2 1/4/20	3/2020 7/2020 3/2020 /2021 /2021 0/2021 0/2021 0/2021 5/2021	-BET BET BET -BET -BEF -BEF	FS FS FS FS	μg/L μg/L μg/L	2 U		1 U			1 U
8/17/2 11/3/2 2/3/20 2/3/20 4/20/2 4/20/2 7/15/2 7/15/2 10/4/2 10/4/2 1/4/20	7/2020 3/2020 /2021 /2021 0/2021 0/2021 0/2021 5/2021	BET BET -BET -BEF -BEF	FS FS FS	μg/L μg/L		1 11		1 U	1 U	1 U
11/3/2 2/3/20 2/3/20 4/20/2 4/20/2 7/15/2 7/15/2 10/4/2 10/4/2 1/4/20	3/2020 /2021 /2021 0/2021 0/2021 0/2021 5/2021	BET -BET -BEF -BEF	FS FS	μg/L	2.U		1 U	1 U	1 U	1 U
2/3/20 2/3/20 4/20/2 4/20/2 7/15/2 7/15/2 10/4/2 10/4/2 1/4/20 1/5/20 1/	/2021 /2021 0/2021 0/2021 0/2021 5/2021	-BET -BEF -BEF	FS			1 U	1 U	1 U	1 U	1 U
2/3/20 4/20/2 7/15/2 7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20 1/4/20	/2021 D/2021 D/2021 5/2021	-BEF -BEF			2 U	1 U	1 U	0.77 J	1 U	1 U
4/20/2 4/20/2 7/15/2 7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 1/4/20 7/19/2 M-4	0/2021 0/2021 5/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
4/20/2 7/15/2 7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 1/4/20 7/19/2 M-4 4/29/2	0/2021 5/2021			μg/L	2 U	1 U	1 U	1 U	1 U	1 U
7/15/2 7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 7/19/2 M-4 4/29/2	5/2021	DET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
7/15/2 10/4/2 10/4/2 1/4/20 1/4/20 7/19/2 M-4			FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
10/4/2 10/4/2 1/4/20 1/4/20 M-4 4/29/2	5/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
10/4/2 1/4/20 1/4/20 7/19/2 M-4 4/29/2		-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
1/4/20 1/4/20 7/19/2 M-4 4/29/2	4/2021	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
1/4/20 7/19/2 M-4 4/29/2	4/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 7/19/2 4/29/2	/2022	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 4/29/2	/2022	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	9/2022	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 4/29/2	9/2013	M-4080	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	9/2013	M-4130	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 4/29/2	9/2013	M-4180	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 11/5/2	5/2013	M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 12/17	17/2014	M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 3/29/2	9/2016	M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 6/21/2	1/2017	M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
M-4 10/31	31/2018	M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
		M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
		M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	0/2022	MW-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	17/2023	M-4	FS	μg/L	2 U	1 U	1 U	1 U	1 U	2 U
		M-5	FS	μg/L	43	43	1 U	1 U	2	1 U
		M-5	FS	μg/L	43	43	1 U	1 U	1 U	1 U
M-5 4/7/20		M-5	FS	μg/L	40 N1	40 N1	0.46 N1,J	1 U, N1	1.8 N1	1 U, N1
M-5 7/7/20		M-5	FS	μg/L	40 111	41	1 U	1 U, IVI	1.9	1 U, IVI
		M-5	FS	μg/L	33	33	1 U	1.3	1.8	1 U
M-5 1/6/20		M-5	FS	μg/L	38	37	0.45 J	0.51 J	1.7	1 U
M-5 1/6/20		BLIND DUP	FD	μg/L	36	36	1 U	1 U	1.6	1 U
M-5 1/0/20		M-5	FS	μg/L	36	36	0.48 J	1 U	1.6	1 U
M-5 7/7/20		M-5	FS	μg/L μg/L	33	33	1 U	1 U	1.7	1 U
		M-5	FS	μg/L μg/L	33	34	1 U	1 U	1.7	1 U
M-5 10/6/2		M-5	FS	μg/L μg/L	34	34	10	1 U		1 10 1

				rameter	, .	nloroethene otal)	Dichlo	-1,2- roethene	Dichlo	ns-1,2- roethene	Tetra	chloroethene	Trichle	oroethene		'inyl loride
			YS Class GA S			5		5		5		5		5		2
Location	Date	Sample ID	QC Code		Result	Qualifier	Result	Qualifier		Qualifier	Result	<u> </u>	Result	Qualifier		Qualifier
M-5 (continued)	4/11/2011	M-5	FS	μg/L	28		28		1			U	1.2		1	
M-5	7/6/2011	M-5	FS	μg/L	36		36		1	-		U	1.5		1	-
M-5	10/6/2011	M-5	FS	μg/L	29		29		1			U	1.3		1	
M-5	1/4/2012	M-5	FS	μg/L	29		29		1			U	1.3		1	
M-5	10/5/2012	M-5	FS	μg/L	28		28		1	-	-	U	0.98	J	1	_
M-5	4/17/2013	M-5	FS	μg/L	32		32		1			U	1.1		1	
M-5	10/16/2013	M-5	FS	μg/L	31		31		0.35			U	0.73		1	
M-5	12/16/2014	M-5	FS	μg/L	34		34		1	U		U	0.69		1	
M-5	3/29/2016	M-5	FS	μg/L	23		22		1.1			U	1		1	U
M-5	6/20/2017	M-5	FS	μg/L	18		17		1.1			U	1		1	U
M-5	10/30/2018	M-5	FS	μg/L	16		16		1	U	1	U	1	U	3.5	
M-5	1/22/2020	M-5	FS	μg/L	14		14		1	U	1	U	1	U	4.6	
M-5	4/21/2021	M-5	FS	μg/L	15		15		1	U	1	U	1	U	2.9	
M-5	7/19/2022	M-5	FS	μg/L	12.7		12.7		1	U	1	U	1	U	6.7	
M-5	10/17/2023	M-5	FS	μg/L	11		11		1	U	1	U	1	U	4.6	
M-6	4/29/2013	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	10/16/2013	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	12/16/2014	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	3/30/2016	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	6/21/2017	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	10/30/2018	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	1/23/2020	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	4/20/2021	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	7/19/2022	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	1	U
M-6	10/17/2023	M-6	FS	μg/L	2	U	1	U	1	U	1	U	1	U	2	U
M-8	1/23/2020	M-8	FS	μg/L	7.1		7.1		1		0.98	J	1		1	U
M-8	4/21/2021	M-8	FS	μg/L	9.8		9.8		1	U	1	U	1.4		1	U
M-8	7/19/2022	M-8	FS	μg/L		U	1	U	1			U	1	U	1	
M-8	10/17/2023	M-8	FS	μg/L	0.67		0.35	J	0.32			U	1		0.32	
M-9	1/23/2020	M-9	FS	μg/L		U	1		1		1	U	1		1	
M-9	4/21/2021	M-9	FS	μg/L		U	1		1			U	1		1	
M-9	7/19/2022	M-9	FS	μg/L		U	1		1			U	1		1	
M-9	10/17/2023	M-9	FS	μg/L		U	1		1			U	1		2	
MUELLER	10/6/2008	MUELLER	FS	μg/L μg/L		U	1		1			U	1		1	
MUELLER	4/7/2009	MUELLER	FS	μg/L		U, N1	-	U, N1	-	U, N1	-	U, N1	-	U, N1,M7	-	U, N1
MUELLER	7/7/2009	MUELLER	FS	μg/L		U	1		1			U	1		1	
MUELLER	10/6/2009	MUELLER	FS	μg/L	0.71		0.71		1		1.6		1		1	
MUELLER	7/19/2010	MUELLER	FS	μg/L μg/L		J U	1		1	-		U	1	-	1	_
MUELLER	10/6/2010	MUELLER	FS	μg/L μg/L		U	1		1			U	1		1	

					rameter	1,2-Dichloroethene (total)	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
NUELLER (continued) 4/11/2011 MUELLER FS pgL 2 U I I U U U U				Class GA St	tandard	-	5	5	5	5	2
NUELLER Y6/2011 MUELLER FS µgL 2 U I UU		Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
NUELLER Info Display NUELLER Info I U I <td>MUELLER (continued)</td> <td>4/11/2011</td> <td>MUELLER</td> <td></td> <td>μg/L</td> <td>2 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td>	MUELLER (continued)	4/11/2011	MUELLER		μg/L	2 U	1 U	1 U	1 U	1 U	1 U
NUELLER H42012 MUELLER FS hgL 2 U 1 U <	MUELLER	7/6/2011	MUELLER	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
NUELLER Investment FS Investment I UILLER I <td>MUELLER</td> <td>10/6/2011</td> <td>MUELLER</td> <td></td> <td>μg/L</td> <td>2 U</td> <td></td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td>	MUELLER	10/6/2011	MUELLER		μg/L	2 U		1 U	1 U	1 U	1 U
MUELLER 4/17,2013 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U MUELLER 12/6/2014 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 12/6/2014 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 6/20/201 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 10/30/2016 MUELLER FS µg/L 2 U 1 U		1/4/2012	MUELLER			2 U	1 U	1 U		1 U	1 U
MUELLER 4/17,2013 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U MUELLER 12/6/2014 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 12/6/2014 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 6/20/201 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 10/30/2016 MUELLER FS µg/L 2 U 1 U	MUELLER	10/5/2012	MUELLER	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
NUELLER 12/16/2014 MUELLER FS pgL 2 U 1 U 1 U 1 U 1 U 1 U MUELLER 620/2017 MUELLER FS pgL 2 U 1 U<	MUELLER	4/17/2013	MUELLER	FS		2 U	1 U	1 U	1 U	1 U	1 U
MUELLER 12/16/2014 MUELLER FS pgL 2 U 1 U 1 U 1 U 1 U 1 U MUELLER 620/2017 MUELLER FS pgL 2 U 1 U<	MUELLER	10/16/2013	MUELLER	FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
NUELLER 3292016 MUELLER FS µgL 2 U 1 U	MUELLER	12/16/2014	MUELLER	FS		2 U	1 U	1 U	1 U	1 U	1 U
NUELLER 1030/2018 MUELLER F8 μg/L 2 U 1 U	MUELLER	3/29/2016	MUELLER	FS		2 U	1 U	1 U	1 U	1 U	1 U
NUELLER 10/30/2018 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 1/2/2020 MUELLER FS µg/L 2 U 1	MUELLER	6/20/2017	MUELLER	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
NUELLER 1/22/020 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U MUELLER 4/21/2021 MUELLER FS µg/L 2 U 1 U	MUELLER	10/30/2018	MUELLER	FS		2 U	1 U	1 U	1 U	1 U	1 U
NUELLER 4/21/2021 MUELLER FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U MUELLER 1017/2023 MUELLER FS µg/L 0.41 J 0.41 J 1 U	MUELLER	1/22/2020		FS		2 U	1 U	1 U	1 U	1 U	1 U
MUELLER 719/2022 MUELLER FS µg/L 2 U 1 U	MUELLER	4/21/2021	MUELLER	FS		2 U	1 U	1 U	1 U	1 U	1 U
NUELLER 10/17/2023 Mueller FS µg/L 0.41 J 0.41 J 1 U <td>MUELLER</td> <td>7/19/2022</td> <td>MUELLER</td> <td>FS</td> <td></td> <td>2 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td>	MUELLER	7/19/2022	MUELLER	FS		2 U	1 U	1 U	1 U	1 U	1 U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MUELLER	10/17/2023	Mueller	FS		0.41 J	0.41 J	1 U	1 U	1 U	2 U
MW-104 4/21/2021 MW-104 FS $\mu g/L$ 2 U 1 U<	MW-104	6/7/2012	420006-MW104-079	FS	ug/L	2 U	1 U	1 U		1 U	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-104	4/21/2021		FS		2 U	1 U	1 U	1 U	1 U	1 U
MW-104 10/17/2023 MW-104 FS $\mu g/L$ 2 U 1 U 1 U 1 U 1 U 2 U MW-108 6/7/2012 420006-MW108-083 FS $\mu g/L$ 2 U 1 U 1 U 0.49 J 1 U 1 U 1 U MW-109 6/7/2012 420006-MW109-083 FS $\mu g/L$ 2 U 1 U <td>MW-104</td> <td>7/20/2022</td> <td>MW-104</td> <td>FS</td> <td></td> <td>2 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td> <td>1 U</td>	MW-104	7/20/2022	MW-104	FS		2 U	1 U	1 U	1 U	1 U	1 U
MW-108 6/7/2012 420006-MW108-083 FS $\mu g/L$ 2 U 1 U 1 U 0.49 J 1 U 1 U 1 U MW-109 6/7/2012 420006-MW109-083 FS $\mu g/L$ 2 U 1 U <td< td=""><td></td><td>10/17/2023</td><td>MW-104</td><td></td><td></td><td></td><td>1 U</td><td></td><td>1 U</td><td>1 U</td><td></td></td<>		10/17/2023	MW-104				1 U		1 U	1 U	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-108	6/7/2012	420006-MW108-083	FS	μg/L	2 U	1 U	1 U	0.49 J	1 U	1 U
MW-109 $4/21/2021$ MW-109FS $\mu g'L$ 2 U1 U1 U1 U1 U1 U1 UMW-109 $7/20/2022$ MW-109FS $\mu g'L$ 2 U1 U1 U1 U1 U1 U1 UMW-109 $10/17/2023$ MW-109FS $\mu g'L$ 2 U1 U1 U1 U1 U1 U2 UMW-109 $10/17/2023$ MW-109FS $\mu g'L$ 2 U1 U1 U1 U1 U2 UMW-112 $6/7/2012$ 420006 -MW112-019 DUPFD $\mu g'L$ 2 U1 U1 U1.51 U1 UMW-112 $7/20/202$ MW-112FS $\mu g'L$ 2 U1 U1 U1.51 U1 UMW-112 $7/20/202$ MW-112FS $\mu g'L$ 2 U1 U1 U1 U0.57 J1 UMW-112 $7/19/2022$ MW-112FS $\mu g'L$ 2 U1 U1 U1 U0.57 J1 UMW-112 $10/17/2023$ MW-112FS $\mu g'L$ 2 U1 U1 U1 U0.94 J2 UMW-113 $6/7/2012$ 420006 -MW113-018FS $\mu g'L$ 40 U20 U20 U20 U20 U20 UMW-113 $7/20/202$ MW-113FS $\mu g'L$ 40 U20 U20 U20 U20 U20 UMW-113 $7/19/2022$ MW-113FS $\mu g'L$ 40 U20 U20 U20 U20 U20 UMW-113 $7/19/2022$ MW-113 <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>1 U</td> <td></td> <td>1 U</td> <td>1 U</td>					10			1 U		1 U	1 U
MW-109 7/20/2022 MW-109 FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U MW-109 10/17/2023 MW-109 FS µg/L 2 U 1 U 1 U 1 U 1 U 1 U 1 U 2 U MW-112 6/7/2012 420006-MW112-019 FS µg/L 2 U 1 U	MW-109			FS		2 U	1 U	1 U	1 U	1 U	1 U
MW-109 10/17/2023 MW-109 FS $\mu g/L$ 2 U 1 U 1 U 1 U 1 U 2 U MW-112 6/7/2012 420006-MW112-019 FS $\mu g/L$ 2 U 1 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
MW-112 6/7/2012 420006-MW112-019 FS µg/L 2 U 1 U 1 U 1.5 1 U 1 U MW-112 6/7/2012 420006-MW112-019 DUP FD µg/L 2 U 1 U </td <td></td>											
MW-112 6/7/2012 420006-MW112-019 DUP FD µg/L 2 U 1 U 1 U 1.5 1 U 1 U MW-112 7/20/2020 MW-112 FS µg/L 2 U 1 U 1 U 1 U 1.4 0.7 J 1 U MW-112 4/21/2021 MW-112 FS µg/L 2 U 1 U 1 U 1 U 0.57 J 1 U MW-112 7/19/2022 MW-112 FS µg/L 2 U 1 U 1 U 1 U 0.57 J 1 U MW-112 10/17/2023 MW-112 FS µg/L 2 U 1 U					10					1 U	
MW-112 7/20/2020 MW-112 FS µg/L 2 U 1 U 1 U 1.4 0.7 J 1 U MW-112 4/21/2021 MW-112 FS µg/L 2 U 1 U 1 U 1 U 0.57 J 1 U MW-112 7/19/2022 MW-112 FS µg/L 2 U 1 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
MW-112 4/21/2021 MW-112 FS µg/L 2 U 1 U 1 U 1 U 0.57 J 1 U MW-112 7/19/2022 MW-112 FS µg/L 2 U 1 U											
MW-112 7/19/2022 MW-112 FS µg/L 2 U 1 U							1 U	1 U			1 U
MW-112 10/17/2023 MW-112 FS µg/L 0.86 J 1 U 1 U 0.94 J 2 U MW-113 6/7/2012 420006-MW113-018 FS µg/L 40 UJ 20 U 20 UJ 1400 J 20 U 20 U 20 U MW-113 7/20/2020 MW-113 FS µg/L 40 U 20 U 20 U 940 20 U 20											
MW-113 6/7/2012 420006-MW113-018 FS µg/L 40 UJ 20 U 20 UJ 1400 J 20 U 20 U 20 U MW-113 7/20/2020 MW-113 FS µg/L 40 U 20 U 20 U 940 20 U											
MW-113 7/20/2020 MW-113 FS µg/L 40 U 20 U 20 U 940 20 U 20 U MW-113 4/21/2021 MW-113 FS µg/L 40 U 20 U 20 U 890 10 J 20 U MW-113 7/19/2022 MW-113 FS µg/L 24.4 24.4 1 U 1650 23.1 1 U MW-113 10/17/2023 MW-113 FS µg/L 15 J 20 U 1900 11 J 40 U OW-1 10/2/2008 OW-1 FS µg/L 85 85 1 U 200 24 1 U OW-1 4/7/2009 OW-1 FS µg/L 90 D08 90 D08 4 U, D08 450 D08 30 D08 37 D08,J					10						
MW-113 4/21/2021 MW-113 FS µg/L 40 U 20 U 20 U 890 10 J 20 U MW-113 7/19/2022 MW-113 FS µg/L 24.4 24.4 1 U 1650 23.1 1 U MW-113 10/17/2023 MW-113 FS µg/L 15 J 20 U 1900 11 J 40 U OW-1 10/2/2008 OW-1 FS µg/L 85 85 1 U 200 24 1 U OW-1 4/7/2009 OW-1 FS µg/L 90 D08 90 D08 4 U, D08 450 D08 30 D08 37 D08,J											
MW-113 7/19/2022 MW-113 FS µg/L 24.4 1 U 1650 23.1 1 U MW-113 10/17/2023 MW-113 FS µg/L 15 J 15 J 20 U 1900 11 J 40 U OW-1 10/2/2008 OW-1 FS µg/L 85 85 1 U 200 24 1 U OW-1 4/7/2009 OW-1 FS µg/L 90 D08 90 D08 4 U, D08 30 D08 37 D08,J			-								
MW-113 10/17/2023 MW-113 FS μg/L 15 J 15 J 20 U 1900 11 J 40 U OW-1 10/2/2008 OW-1 FS μg/L 85 85 1 U 200 24 1 U OW-1 4/7/2009 OW-1 FS μg/L 90 D08 90 D08 4 U, D08 450 D08 30 D08 37 D08,J		-	-					-			
OW-1 10/2/2008 OW-1 FS μg/L 85 85 1 U 200 24 1 U OW-1 4/7/2009 OW-1 FS μg/L 90 D08 90 D08 4 U, D08 450 D08 30 D08 3.7 D08,J											
OW-1 4/7/2009 OW-1 FS µg/L 90 D08 90 D08 4 U, D08 450 D08 30 D08 3.7 D08,J					10						
								,			
									,		4 U, D08

				rameter	, .	nloroethene total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			Class GA St			5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units		Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
OW-1 (continued)	10/4/2010	OW-1	FS	μg/L		D08	98 D08	2 U, D08	160 D08	22 D08	2 U, D08
OW-1	4/6/2011	OW-1	FS	μg/L	160		160	1	320	40	1 U
OW-1	10/6/2011	OW-1	FS	μg/L	98		98	2 U	160	25	2 U
OW-1	10/4/2012	OW-1	FS	μg/L	60		60	1 U	79	21	1.6
OW-2	10/2/2008	OW-2	FS	μg/L	120		120	1 U	360	16	1.2 U
OW-2	1/12/2009	OW-2	FS	μg/L		U,D08	20 U,D08	20 U,D08	2400 H2,D08	20 U,D08	20 U,D08
OW-2	4/6/2009	OW-2	FS	μg/L		D08,J	29 D08	20 U, D08	2900 D08	30 D08	20 U, D08
OW-2	10/5/2009	OW-2	FS	μg/L		D08	190 D08	10 U, D08	700 D08	35 D08	10 U, D08
OW-2	4/7/2010	OW-2	FS	μg/L	-	D08	70 D08	10 U, D08	1200 H2,D08,P-H	33 D08	10 U, D08
OW-2	10/4/2010	OW-2	FS	μg/L		D08	49 D08	20 U, D08	1700 D08	30 D08	20 U, D08
OW-2	4/6/2011	OW-2	FS	μg/L	110		110	1 U	1500	35	1 U
OW-2	10/18/2011	OW-2	FS	μg/L	67		67	20 U	1100	28	20 U
OW-2	10/2/2012	OW-2	FS	μg/L	73		73	20 U	1200	26	20 U
OW-2	4/16/2013	OW-2	FS	μg/L	70		70	20 U	1800	27	20 U
OW-2	10/15/2013	OW-2	FS	μg/L	32	J	32	25 U	1900	20 J	25 U
OW-2	12/15/2014	OW-2	FS	μg/L	66		66	20 U	1100	23	20 U
OW-2	3/30/2016	OW-2	FS	μg/L	110		110	20 U	1300	26	20 U
OW-2	6/20/2017	OW-2	FS	μg/L	38	-	38	20 U	470	19 J	20 U
OW-2	10/31/2018	OW-2	FS	μg/L	76		76	20 U	840	24	20 U
OW-2	1/22/2020	OW-2	FS	μg/L	89		89	20 U	1200	25	20 U
OW-2	4/20/2021	OW-2	FS	μg/L	91		91	20 U	1100	30	20 U
OW-2	7/20/2022	OW-2	FS	μg/L	68.4		68.4	1 U	389	17.8	1 U
OW-2	10/18/2023	OW-2	FS	μg/L	130		130	20 U	1200	26	40 U
OW-3	10/2/2008	OW-3	FS	μg/L	87	U	70	16 U	7400	140	30 U
OW-3	1/12/2009	OW-3	FS	μg/L	400	D08	400 D08	120 U,D08	20000 H2,D08	700 D08	120 U,D08
OW-3	4/6/2009	OW-3	FS	μg/L	64	D08	64 D08	25 U, D08	2200 D08	110 D08	25 U, D08
OW-3	10/5/2009	OW-3	FS	μg/L	100	D08,J	100 D08,J	4.3	10000 D08	240 D08	2.8
OW-3	4/7/2010	OW-3	FS	μg/L	110	D08	110 D08	50 U, D08	8300 D08	250 D08	50 U, D08
OW-3	10/4/2010	OW-3	FS	μg/L	90	D08,J	90 D08,J	100 U, D08	9500 D08	210 D08	100 U, D08
OW-3	4/6/2011	OW-3	FS	μg/L	88		85	2.7	7800	180	1 U
OW-3	10/18/2011	OW-3	FS	µg/L	160	U	80 U	80 U	5400	150	80 U
OW-3	10/3/2012	OW-3	FS	μg/L	160	U	80 U	80 U	4500	110	80 U
OW-3	4/16/2013	OW-3	FS	μg/L	84	J	84	80 U	7900	190	80 U
OW-3	10/15/2013	OW-3	FS	μg/L	75	J	75 J	170 U	8600	180	170 U
OW-3	12/15/2014	OW-3	FS	μg/L	120	J	120	80 U	5100	110	80 U
OW-3	3/30/2016	OW-3	FS	μg/L	160		160	80 U	11000	190	80 U
OW-3	6/20/2017	OW-3	FS	μg/L	400	U	200 U	200 U	4800	110 J	200 U
OW-3	10/31/2018	OW-3	FS	μg/L	180		180	80 U	6500	150	80 U
OW-3	1/22/2020	OW-3	FS	μg/L	220		220	80 U	11000	210	80 U

				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		1	S Class GA S		5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
OW-3 (continued)	4/20/2021	OW-3	FS	μg/L	190 J	190 J	200 U	5300	140 J	200 U
OW-3	7/20/2022	OW-3	FS	μg/L	221	217	3.2	10400	289	1.7
OW-3	10/18/2023	OW-3	FS	μg/L	230	230	100 U	11000	200	200 U
OW-5	10/2/2008	OW-5	FS	μg/L	440	440	16 U	8900	130	30 U
OW-5	1/12/2009	OW-5	FS	μg/L	82 H2,D08	82 H2,D08	10 U,H2,D08	840 H2,D08	180 H2,D08	10 U,H2,D08
OW-5	4/6/2009	OW-5	FS	μg/L	49 D08	49 D08	5 U, D08	370 D08	38 D08	5 U, D08
OW-5	10/5/2009	OW-5	FS	μg/L	490 D08,P-HS	490 D08,P-HS	1.6	4700 D08,P-HS	120 D08,HS,J	6.1
OW-5	4/7/2010	OW-5	FS	μg/L	680 D08	680 D08	200 U, D08	12000 D08	220 D08	200 U, D08
OW-5	10/4/2010	OW-5	FS	μg/L	590 D08	590 D08	200 U, D08	13000 D08	210 D08	200 U, D08
OW-5	4/6/2011	OW-5	FS	μg/L	500	500	0.98 J	8300	150	4
OW-5	4/6/2011	BLIND DUP 1	FD	μg/L	550	550	1.2	7500	150	3.8
OW-5	10/18/2011	OW-5	FS	μg/L	490	490	130 U	8400	160	130 U
OW-5	10/2/2012	OW-5	FS	μg/L	570	570	130 U	6300	150	130 U
OW-5	4/16/2013	OW-5	FS	μg/L	1000	1000	100 U	14000	250	100 U
OW-5	10/15/2013	OW-5	FS	μg/L	2200	2200	200 U	9300	320	200 U
OW-5	3/30/2016	OW-5	FS	μg/L	2400	2400	200 U	7300	420	200 U
OW-5	6/20/2017	OW-5	FS	µg/L	900 J	900 J	50 UJ	1500 J	96 J	5.8 J
OW-5	10/31/2018	OW-5	FS	µg/L	1600 J	1600 J	100 U	5200 J	310	100 U
OW-5	1/22/2020	OW-5	FS	µg/L	1100	1100	100 U	4200	230	100 U
OW-5	4/20/2021	OW-5	FS	μg/L	24	24	1 U	72	6.2	1 U
OW-5	7/20/2022	OW-5	FS	µg/L	1370	1360	5.3	3900	273	2.5
OW-5	10/18/2023	OW-5	FS	μg/L	850	850	40 U	3000	220	80 U
OW-6	10/2/2008	OW-6	FS	μg/L	18	18	1 U	27	8.9	1 U
OW-6	12/17/2008	OW-6	FS	μg/L	16	16	1 U	28	8.1	1 U
OW-6	1/12/2009	OW-6	FS	μg/L	15	15	1 U	23	7.1	1 U
OW-6	4/8/2009	OW-6	FS	μg/L	17	17	1 U	27	7.8	1 U
OW-6	10/5/2009	OW-6	FS	μg/L	23	23	1 U	25	9.9	1 U
OW-6	4/7/2010	OW-6	FS	μg/L	18	18	1 U	26	8.4	1 U
OW-6	10/4/2010	OW-6	FS	μg/L	23	23	1 U	17	8.2	1 U
OW-6	10/5/2011	OW-6	FS	μg/L	30	30	1 U	31	8.8	1.4
OW-7	10/2/2008	OW-7	FS	μg/L	99	99	1.3 U	1000	49	2.4 U
OW-7	12/17/2008	OW-7	FS	μg/L	100	100	2.5 U	1000	45	4.8 U
OW-7	1/12/2009	OW-7	FS	μg/L	130 D08	130 D08	10 U,D08	1200 H2,D08	57 D08	10 U,D08
OW-7	4/8/2009	OW-7	FS	μg/L	110 D08	110 D08	10 U, D08	1100 D08	49 D08	10 U, D08
OW-7	4/8/2009	BLIND DUP	FD	μg/L	140 D08	140 D08	20 U, D08	1300 D08	62 D08	20 U, D08
OW-7	10/5/2009	OW-7	FS	μg/L	170 D08	170 D08	0.48 J	1400 D08	120 D08	0.62 J
OW-7	4/7/2010	OW-7	FS	μg/L	100 D08	100 D08	20 U, D08	850 D08	44 D08	20 U, D08
OW-7	10/4/2010	OW-7	FS	μg/L	210 D08	210 D08	8 U, D08	400 D08	37 D08	9.5 D08
OW-7	4/6/2011	OW-7	FS	μg/L μg/L	77	77	1 U	600	47	1 U

Unit Clas GA Sundard S S C S B S B B C B B S B S B S B S B S B					ameter	(to	oroethene otal)	Dichlo	-1,2- roethene	Dichlo	ıs-1,2- roethene	Tetracl	nloroethene	Trichle	oroethene	Chl	inyl Ioride
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							-		-		-		-		-		_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				20.0000			Qualifier		Qualifier		-		Qualifier		Qualifier		Qualifier
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · ·																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
OW-7 12182014 OW-7 F8 µg/L 30 30 1 1 74 13 1 1 OW-7 6202017 OW-7 F8 µg/L 12 12 1 0 20 0 20 0 20 0 20 0 10 10 0 10 10 0 0 10 10 0 0 10 10 0 0 10 10 0 0 10 0 0 10 0 0 0 0 0 0 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10 10 0 10										-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$0W-7$ 6202017 $0W-7$ FS μgL 12 11 11 14 6 1 $0W-7$ 1031/2018 $0W-7$ FS μgL 160 160 10 230 45 10 $0U$ $0W-7$ 1/22/200 $0W-7$ FS μgL 160 160 10 $0U$ 670 180 10 $0U$ $0W-7$ 1/22/200 $0W-7$ FS μgL 100 10 $0U$ 100 840 35 $0W-9$ 10/22008 $0W-9$ FS μgL 270 D08 50																	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1700		1700		-			U	20	U		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-7	6/20/2017	OW-7	FS	μg/L	12		12		1	U	47		6		11	U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-7	10/31/2018	OW-7	FS	μg/L	120		120		10	U	230		45		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-7	1/22/2020	OW-7	FS		160		160		10	U	670		180			IJ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-7	4/20/2021	OW-7	FS	μg/L	1100				10	U	1800		840		35	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-7	7/20/2022	OW-7	FS		37.6		37.6		1	U	116		16.1		1 1	U
OW-91052009OW-9FS $\mu g L$ 77751.4310D089.71OW-94772010OW-9FS $\mu g L$ 120D08120D085U, D08370D089.2D085U, D08OW-910/4/2010OW-9FS $\mu g L$ 100D08100D085U, D08320D0810D085U, D08OW-94/6/2011OW-9FS $\mu g L$ 2002001U440141UOW-910/5/2011OW-9FS $\mu g L$ 27027010U4402010UOW-910/5/2012OW-9FS $\mu g L$ 6.66.61U3307.41.2UOW-1010/5/2009OW-10FS $\mu g L$ 6.66.61U3307.41.2UOW-1010/5/2009OW-10FS $\mu g L$ 530D08,P-HS1.57400D08,P-HS150D08,HS,J5.8OW-1010/5/2009OW-10FS $\mu g L$ 7.77.75U330D086.6D085.0D08OW-1010/5/2009BLIND DUP 2FD $\mu g L$ 7.77.75U330D086.6D085.0D085.0D085.0D085.0D085.0D085.0D085.0D085.0D0	OW-9	10/2/2008	OW-9	FS	μg/L	25		25		1	U	280		7.1		1.2 U	U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-9	4/8/2009	OW-9	FS	μg/L	20 I	D08	20	208	5	U, D08	270	D08	5.6	D08	5 1	U, D08
OW-9 47/2010 OW-9 FS µg/L 120 D08 5 U, D08 370 D08 9.2 D08 5 U, D08 OW-9 10/4/2010 OW-9 FS µg/L 100 D08 5 U, D08 320 D08 10 D08 5 U, D08 OW-9 10/4/2011 OW-9 FS µg/L 270 270 10 U 440 10 D08 5 U, D08 00 0.0 10 U 440 10 U 0.0 0.0 10 U 440 10 U 0.0 0.0 10 U 0.0 10 U 0.0 10 U 0.0 1.0 U 0.0 1.0 U 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OW-9	10/5/2009	OW-9	FS		77		75		1.4		310	D08	9.7		1 U	U
OW-9 104/2010 OW-9 FS µg/L 100 D08 100 D08 5 U,D08 320 D08 10 D08 5 U,D08 OW-9 10/5/2011 OW-9 FS µg/L 270 270 10 U 440 1	OW-9	4/7/2010	OW-9	FS		120 I	D08	120	208	5	U, D08	370	D08	9.2	D08	5 1	U, D08
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-9	10/4/2010	OW-9	FS		100 I	D08	100	208	5	U, D08	320	D08	10	D08	5 1	U, D08
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-9	4/6/2011	OW-9	FS		200		200		1	U	440		14			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-9	10/5/2011	OW-9	FS		270		270		10	U	440		20		10 0	U
OW-10 4/8/2009 OW-10 FS $\mu g'L$ 6.7 D08 5 U, D08 360 D08 5.8 D08 5 U, D08 OW-10 10/5/2009 OW-10 FS $\mu g'L$ 11 11 1	OW-9	10/4/2012	OW-9	FS		910		910		10	U	910		55		9.1	J
OW-10 4/8/2009 OW-10 FS $\mu g/L$ 6.7 D08,J 6.7 D08 S U, D08 360 D08 S.8 D08 S U, D08 OW-10 10/5/2009 OW-10 FS $\mu g/L$ 11 11 1	OW-10	10/2/2008	OW-10	FS	μg/L	6.6		6.6		1	U	330		7.4		1.2	U
OW-10 10/5/2009 OW-10 FS $\mu g/L$ 11 11 1	OW-10	4/8/2009	OW-10	FS		6.7 I	D08,J	6.7	208	5	U, D08	360	D08	5.8	D08	51	U, D08
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OW-10	10/5/2009	OW-10	FS		11	,	11		1	Ú	310	D08	17		1 0	Ű
OW-10 4/7/2010 OW-10 FS µg/L 8.8 D08,J 7.9 D08,J 5 U, D08 380 D08 6.6 D08 5 U, D08 OW-10 10/4/2010 OW-10 FS µg/L 7.9 D08,J 7.9 D08 5 U, D08 300 D08 6.6 D08 5 U, D08 OW-10 4/6/2011 OW-10 FS µg/L 7.7 J 7.7 S U 330 5.8 S U OW-10 10/5/2011 OW-10 FS µg/L 12 12 S U 330 S.8 5 U OW-11 10/5/2008 OW-11 FS µg/L 500 D08 490 D08 2.4 D08,J 700 D08 100 D08 16 D08,J 6.6 D08 16 D08,J 0 0 0 0 0 0 0 0 0 0	OW-10	10/5/2009	BLIND DUP 2	FD		530 I	D08.P-HS	530	D08.P-HS			7400	D08.P-HS	150	D08.HS.J		
OW-10 10/4/2010 OW-10 FS µg/L 7.9 D08,J 7.9 D08 5 U, D08 300 D08 6.6 D08 5 U, D08 OW-10 4/6/2011 OW-10 FS µg/L 7.7 J 7.7 5 U 330 5.8 5 U 5 U OW-10 10/5/2011 OW-10 FS µg/L 12 12 5 U 320 8.3 5 U OW-11 10/2/2008 OW-11 FS µg/L 140 140 1 U 220 55 10 0 OW-11 10/2/2008 OW-11 FS µg/L 500 D08 490 D08 2.4 D08,J 700 D08 190 D08 300 D08		4/7/2010									U. D08		· ·				U. D08
OW-10 $4/6/2011$ OW-10FS $\mu g/L$ 7.7 J 7.7 5 U 330 5.8 5 UOW-10 $10/5/2011$ OW-10FS $\mu g/L$ 12 12 5 U 320 8.3 5 UOW-11 $10/2/2008$ OW-11FS $\mu g/L$ 140 140 1 U 220 55 10 OW-11 $4/8/2009$ OW-11FS $\mu g/L$ 500 D08 490 D08 2.4 D08,J 700 D08 190 D08 38 D08OW-11 $10/5/2009$ OW-11FS $\mu g/L$ 690 D08 690 D08 3.6 810 D08 270 D08 76 OW-11 $10/5/2019$ OW-11FS $\mu g/L$ 110 D08 110 D08 2 U, D08 150 D08 110 D08 160 D08 20 D08 360 D08 360 D08 100 100 100 1					ug/L		,										· ·
$OW-10$ $10/5/2011$ $OW-10$ FS $\mu g/L$ 12 12 5 U 320 8.3 5 U $OW-11$ $10/2/2008$ $OW-11$ FS $\mu g/L$ 140 140 1 U 220 55 10 $OW-11$ $4/8/2009$ $OW-11$ FS $\mu g/L$ 500 $D08$ 490 $D08$ 2.4 $D08J$ 700 $D08$ 190 $D08$ 38 $D08$ $OW-11$ $10/5/2009$ $OW-11$ FS $\mu g/L$ 690 $D08$ 690 $D08$ 3.6 810 $D08$ 270 $D08$ 76 $OW-11$ $10/5/2009$ $OW-11$ FS $\mu g/L$ 110 $D08$ 110 $D08$ 2 U, $D08$ 150 $D08$ 110 $D08$ 100																	
OW-11 10/2/2008 OW-11 FS µg/L 140 140 1 U 220 55 10 OW-11 4/8/2009 OW-11 FS µg/L 500 D08 490 D08 2.4 D08,J 700 D08 190 D08 38 D08 OW-11 10/5/2009 OW-11 FS µg/L 690 D08 690 D08 3.6 810 D08 270 D08 700																	
OW-11 4/8/2009 OW-11 FS µg/L 500 D08 490 D08 2.4 D08,J 700 D08 190 D08 38 D08 OW-11 10/5/2009 OW-11 FS µg/L 690 D08 690 D08 3.6 810 D08 270 D08 70 D08 70 <td< td=""><td></td><td></td><td></td><td></td><td>10</td><td></td><td></td><td>140</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></td<>					10			140								-	-
OW-11 10/5/2009 OW-11 FS µg/L 690 D08 690 D08 3.6 810 D08 270 D08 76 OW-11 4/7/2010 OW-11 FS µg/L 110 D08 110 D08 2 U, D08 150 D08 110 D08 1.6 D08,J OW-11 10/4/2010 OW-11 FS µg/L 3500 D08 3500 D08 10 D08 3400 D08 920 D08 500 D08 OW-11 4/6/2011 OW-11 FS µg/L 250 250 0.96 3400 D08 920 D08 500 D08 OW-11 10/5/2011 OW-11 FS µg/L 250 250 8 U 270 79 24 20 20 8.3 20 20 8.3 20 20 8.3 20 20 8.3 20 20 8.3 20 20 8.3 20 20 8.3 20 20 8.3 20 20 8.3 2							208		208				D08		D08		D08
OW-11 4/7/2010 OW-11 FS µg/L 110 D08 110 D08 150 D08 110 D08 1.6 D08,J OW-11 10/4/2010 OW-11 FS µg/L 3500 D08 3500 D08 10 D08 3400 D08 920 D08 500 D08 OW-11 4/6/2011 OW-11 FS µg/L 250 250 0.96 J 340 D08 94 15 OW-11 10/5/2011 OW-11 FS µg/L 250 250 8 U 270 79 24 OW-11 10/4/2012 OW-11 FS µg/L 85 85 1 U 90 20 8.3 OW-11 10/4/2012 OW-11 FS µg/L 68 68 1 U 90 20 8.3 OW-12 10/2/2008 OW-12 FS µg/L 68 68 1 U 34 19 49 49 OW-12 12/17/2008 OW-12 FS µg/L 680 730																	
OW-11 10/4/2010 OW-11 FS μg/L 3500 D08 3500 D08 10 D08 3400 D08 920 D08 500 D08 OW-11 4/6/2011 OW-11 FS μg/L 250 250 0.96 J 3400 D08 920 D08 500 D08 OW-11 10/5/2011 OW-11 FS μg/L 250 250 8 U 270 79 24 OW-11 10/4/2012 OW-11 FS μg/L 85 85 1 U 90 20 8.3 OW-12 10/2/2008 OW-12 FS μg/L 68 68 1 U 34 19 49 OW-12 12/17/2008 OW-12 FS μg/L 680 730 4.2 160 96 100											U. D08			-		_	D08.J
OW-11 4/6/2011 OW-11 FS µg/L 250 250 0.96 J 340 94 15 OW-11 10/5/2011 OW-11 FS µg/L 250 250 8 U 270 79 24 OW-11 10/4/2012 OW-11 FS µg/L 85 85 1 U 90 20 8.3 OW-12 10/2/2008 OW-12 FS µg/L 68 68 1 U 34 19 49 OW-12 12/17/2008 OW-12 FS µg/L 680 730 4.2 160 96 100																	
OW-11 10/5/2011 OW-11 FS µg/L 250 250 8 U 270 79 24 OW-11 10/4/2012 OW-11 FS µg/L 85 85 1 U 90 20 8.3 OW-12 10/2/2008 OW-12 FS µg/L 68 68 1 U 34 19 49 OW-12 12/17/2008 OW-12 FS µg/L 680 730 4.2 160 96 100													200		200		200
OW-11 10/4/2012 OW-11 FS µg/L 85 85 1 U 90 20 8.3 OW-12 10/2/2008 OW-12 FS µg/L 68 68 1 U 34 19 49 OW-12 12/17/2008 OW-12 FS µg/L 680 730 4.2 160 96 100														~ -			
OW-12 10/2/2008 OW-12 FS µg/L 68 68 1 U 34 19 49 OW-12 12/17/2008 OW-12 FS µg/L 680 730 4.2 160 96 100																	
OW-12 12/17/2008 OW-12 FS µg/L 680 730 4.2 160 96 100										-	-			-			
											0	-		-			
10^{112} $11^{12}^{12}^{1007}$ 10^{10}^{-12} 1^{10}							12 D08		12 D08		11 D08		11 D08		11 D08		D08
OW-12 4/8/2009 OW-12 FS ug/L 270 D08 270 D08 1.4 D08,J 48 D08 11 D08 110 D08							,		,				,		,		

				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
T			Class GA St		5	5	5	5	5	2
Location	Date 10/5/2009	Sample ID OW-12	QC Code FS	Units	Result Qualifier 270 D08	ResultQualifier270D08	Result Qualifier	Result Qualifier 6.9	Result Qualifier 5.1	ResultQualifier220D08
OW-12 (continued) OW-12	4/7/2010	OW-12 OW-12	FS FS	μg/L	510 D08	510 D08	1.1 2.8 D08.J	20 D08	5.1 15 D08	220 D08
OW-12 OW-12	10/4/2010	OW-12 OW-12	FS	μg/L	94 D08	94 D08	2.8 D08,5 2 U, D08	12 D08	13 D08	120 D08
OW-12 OW-12	4/6/2011	OW-12 OW-12	FS	μg/L	150	150	2 U, D08	27	7	91
OW-12 OW-12	10/5/2011	OW-12 OW-12	FS	μg/L	300	300	2 U 2 U	14	7	140
			FS FS	μg/L				25	/	76
OW-12	10/4/2012	OW-12		μg/L	73	73	5 U		9.7	
OW-13	10/2/2008	OW-13	FS	μg/L	120	120	1.3 U	730	11	2.4 U
OW-13	12/17/2008	OW-13	FS	μg/L	120	120	1.3 U	770	10 10 U D 00	2.4 U
OW-13	1/12/2009	OW-13	FS	μg/L	110 D08	110 D08	10 U,D08	580 D08	10 U,D08	10 U,D08
OW-13	4/8/2009	OW-13	FS	μg/L	94 D08	94 D08	10 U, D08	740 D08	11 D08	10 U, D08
OW-13	10/6/2009	OW-13	FS	μg/L	170 D08	170 D08	1 U	930 D08	25	1 U
OW-13	4/7/2010	OW-13	FS	μg/L	130 D08	130 D08	10 U, D08	690 D08	14 D08	10 U, D08
OW-13	10/4/2010	OW-13	FS	μg/L	180 D08	180 D08	10 U, D08	790 D08	18 D08	10 U, D08
OW-13	4/6/2011	OW-13	FS	μg/L	110	110	1 U	800	14	0.96 J
OW-13	10/5/2011	OW-13	FS	μg/L	130	130	10 U	630	16	10 U
OW-13	10/2/2012	OW-13	FS	μg/L	120	120	10 U	440	14	10 U
OW-13	4/17/2013	OW-13	FS	μg/L	180	180	10 U	790	15	10 U
OW-13	10/15/2013	OW-13	FS	μg/L	140	140	11 U	670	15	11 U
OW-13	3/30/2016	OW-13	FS	μg/L	70	70	5 U	140	13	5 U
OW-13	6/20/2017	OW-13	FS	μg/L	32	32	5 U	120	6	5 U
OW-13	10/30/2018	OW-13	FS	μg/L	75	75	5 U	230	8.1	5 U
OW-13	1/22/2020	OW-13	FS	μg/L	1100	1100	50 U	3500	280	5 U
OW-13	4/20/2021	OW-13	FS	μg/L	710	710	20 U	860	340	20 U
OW-13	7/20/2022	OW-13	FS	μg/L	90.2	90.2	1 U	147	8.8	1.2
OW-14	10/2/2008	OW-14	FS	μg/L	720	720	25 U	18000	1000	48 U
OW-14	1/12/2009	OW-14	FS	μg/L	53 H2,D08	53 H2,D08	20 U,H2,D08	1300 H2,D08	62 H2,D08	20 U,H2,D08
OW-14	4/6/2009	OW-14	FS	μg/L	29 D08,J	29 D08	20 U, D08	1100 D08	40 D08	20 U, D08
OW-14	10/6/2009	OW-14	FS	μg/L	810 D08	810 D08	3.5	17000 D08	1800 D08	36
OW-14	4/7/2010	OW-14	FS	μg/L	900 D08	900 D08	200 U, D08	18000 D08	1400 D08	200 U, D08
OW-14	10/4/2010	OW-14	FS	μg/L	1300 D08	1300 D08	200 U, D08	29000 D08	2100 D08	200 U, D08
OW-14	4/6/2011	OW-14	FS	μg/L	900	900	3.4	16000	1200	32
OW-14	10/5/2011	OW-14	FS	μg/L	890	890	200 U	17000	1300	200 U
OW-14	10/5/2011	BLIND DUP	FD	μg/L	890	890	10 U	16000	1300	37
OW-14	10/2/2012	OW-14	FS	μg/L	760	760	200 U	10000	880	200 U
OW-14	4/16/2013	OW-14	FS	µg/L	750	750	100 U	6900	520	100 U
OW-14	10/15/2013	OW-14	FS	μg/L	1000	1000	250 U	15000	1100	250 U
OW-14	12/15/2014	OW-14	FS	µg/L	810	810	100 U	9300	810	100 U
OW-14	3/30/2016	OW-14	FS	μg/L	2100	2100	40 U	150	460	40 U
OW-14	6/20/2017	OW-14	FS	μg/L	610	610	40 U	3900	1000	40 U

				ameter	, .	nloroethene total)	Dichlo	-1,2- roethene	Dichlo	ıs-1,2- roethene	Tetrac	hloroethene	Trich	loroethene		'inyl loride
			NYS Class GA St			5		5		5		5		5		2
Location	Date	Sample ID	QC Code	Units	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
OW-14 (continued)	10/31/2018	OW-14	FS	μg/L	950		950		100		7300		680		100	
OW-14	1/22/2020	OW-14	FS	μg/L	980		980		100		7400		770		100	
OW-14	4/19/2021	OW-14	FS	μg/L	1600		1600		100	U	9800		1100		98	J
OW-14	7/20/2022	OW-14	FS	μg/L	1380		1370		7.2		2420		584		134	
OW-14	10/18/2023	OW-14	FS	μg/L	1000		1000		40	-	2500		830		34	J
OW-15	10/2/2008	OW-15	FS	μg/L	260		260		1.3		320		41		20	
OW-15	12/17/2008	OW-15	FS	μg/L	370		370		1.3	U	430		71		56	
OW-15	1/12/2009	OW-15	FS	μg/L	1800	H2,D08		H2,D08	10	U,D08	460	D08	270	D08	480	D08
OW-15	4/8/2009	OW-15	FS	μg/L	370	D08	370	D08	1.2	D08,J		D08	51	D08	56	D08
OW-15	10/5/2009	OW-15	FS	μg/L	410	D08	410	D08	0.97	J		D08	58		25	
OW-15	4/7/2010	OW-15	FS	μg/L	230	D08	230	D08	5	U, D08	330	D08	41	D08	40	D08
OW-15	10/4/2010	OW-15	FS	μg/L	280	D08	280	D08	4	U, D08	210	D08	29	D08	64	D08
OW-15	4/6/2011	OW-15	FS	μg/L	160		160		2	U	330		32		19	
OW-15	10/5/2011	OW-15	FS	μg/L	210		210		5	U	270		27		34	
OW-15	10/4/2012	OW-15	FS	μg/L	63		63		2	U	130		23		2	U
OW-16	10/2/2008	OW-16	FS	μg/L	90		90		1	U	360		34		1	U
OW-16	4/8/2009	OW-16	FS	μg/L	16		16		1	U	100	D08	13		1	U
OW-16	10/6/2009	OW-16	FS	μg/L	20	D08	20	D08	8	U, D08	550	D08	42	D08	8	U, D08
OW-16	4/7/2010	OW-16	FS	μg/L	140	D08	140	D08	8	U, D08	920	D08	84	D08	8	U, D08
OW-16	10/4/2010	OW-16	FS	μg/L	65	D08	65	D08	8	U, D08	450	D08	38	D08	8	U, D08
OW-16	4/6/2011	OW-16	FS	μg/L	63		63		1	U	490		39		1	U
OW-16	10/5/2011	OW-16	FS	μg/L	560		580		10	U	8700		610		10	U
OW-16	10/2/2012	OW-16	FS	μg/L	93		93		4	U	250		35		4	U
OW-16	4/16/2013	OW-16	FS	μg/L	89		89		10	U	430		45		10	U
OW-16	10/15/2013	OW-16	FS	μg/L	99		99		13	U	850		89		13	U
OW-16	3/31/2016	OW-16	FS	μg/L	110		110		10	U	350		59		10	U
OW-16	6/20/2017	OW-16	FS	μg/L	62		62		10	U	200		20		10	U
OW-16	10/31/2018	OW-16	FS	μg/L	470		470		80	U	2300		290		80	U
OW-16	1/22/2020	OW-16	FS	μg/L	47		47		5	U	240		20		5	U
OW-16	4/19/2021	OW-16	FS	μg/L	1000		1000		10	U	1600		420		24	
OW-16	7/20/2022	OW-16	FS	μg/L	64		64		1		80.4		24.2		1	
OW-16	10/18/2023	OW-16	FS	μg/L	180		180		5		310		50		3.4	
R-1	10/6/2008	R-1	FS	μg/L	47		47		1		1.2		1.4		1	
R-1	1/13/2009	R-1	FS	μg/L	17		17		1			U		U	1	
R-1	4/6/2009	R-1	FS	μg/L		N1	24	N1		U, N1	1.2			N1,J	-	U, N1
R-1	7/7/2009	R-1	FS	μg/L	24		24		1		1.3		0.77		1	
R-1	10/6/2009	R1	FS	μg/L	23		23		1		3		0.62		1	
R-1	1/6/2010	R-1	FS	μg/L	20		20		1	_	1.5		0.66		1	-
R-1	4/8/2010	R-1	FS	μg/L	1.2		1.2		1		0.49			U	1	

				rameter	(t	lloroethene otal)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		1	S Class GA S			5	5	5	5	5	2
Location	Date	Sample ID	QC Code		Result	Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
R-1 (continued)	7/7/2010	R-1 R-1	FS FS	µg/L	24 17		24 17	1 U 1 U	1.1 0.84 J	0.65 J 0.66 J	1 U 1 U
R-1				µg/L							
R-1	10/6/2010	BLIND DUP	FD FS	µg/L	17		17	1 U 1 U	0.97 J	0.74 J	1 U
R-1	1/4/2011	R-1		µg/L	16		16		1.4	0.74 J	1 U
R-1	4/5/2011	R-1	FS	µg/L	19		19	1 U	1.6		1 U
R-1	7/6/2011	R-1	FS	μg/L	17		17	1 U	1.2	0.63 J	1 U
R-1	10/6/2011	R-1	FS	μg/L	2.9		2.9	1 U	0.77 J	1 U	1 U
R-1	1/4/2012	R-1	FS	μg/L	16		16	1 U	1.2	0.51 J	1 U
R-1	10/4/2012	R-1	FS	µg/L	2	U	1 U	1 U	1 U	1 U	1 U
	10/6/2008		FS	μg/L	150		150	1.2	1.2	17	1 U
	1/13/2009		FS	μg/L	44	D00 11	44	1 U	1 U	2.7	1 U
	4/7/2009		FS	μg/L		D08, N1	160 D08, N1	1.3 N1	1 U, N1	8.4 N1	1 U, N1
	4/11/2011		FS	μg/L	140		140	1.3	1 U	1.6	1 U
	7/6/2011		FS	μg/L	50		50	1 U	1 U	0.63 J	1 U
	10/6/2011		FS	μg/L	91		90	1.1	1 U	0.65 J	1 U
	1/4/2012		FS	μg/L	100		100	1	1 U	1.2	1 U
	10/5/2012		FS	μg/L	130		130	2 U	2 U	2 U	2 U
	10/6/2008	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	10/6/2008	BET	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	1/21/2009	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	1/21/2009	BET	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	4/7/2009	BEF	FS	μg/L		U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1
	4/7/2009	BET	FS	μg/L		U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1	1 U, N1
	7/21/2009	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	7/21/2009	BET	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	10/19/2009	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	10/19/2009	BET	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	1/5/2010	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	1/5/2010	BET	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	4/7/2010	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	4/8/2010	BET	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	7/7/2010	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	7/7/2010	BET	FS	μg/L	2	U	1 U	1 U	1 U	1 U	1 U
	10/4/2010	BEF	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	10/4/2010	BET	FS	μg/L	2		1 U	1 U	1 U	1 U	1 U
	1/4/2011	BEF	FS	μg/L	2	U	1 U	1 U	1 U	1 U	1 U
	1/4/2011	BET	FS	μg/L	2	U	1 U	1 U	1 U	1 U	1 U
	4/5/2011	BEF	FS	μg/L	2	U	1 U	1 U	1 U	1 U	1 U
	4/5/2011	BET	FS	μg/L	2	U	1 U	1 U	1 U	1 U	1 U

				rameter	1,2-Dichloroethene (total)	Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
			NYS Class GA St	tandard		5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
(continued)	7/6/2011	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/17/2011	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/17/2011	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/18/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/18/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	5/3/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	5/3/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/5/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/5/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/7/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/7/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/17/2012	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/17/2012	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/15/2013	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/15/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/16/2013	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/16/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/16/2013	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/16/2013		FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/7/2014	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/7/2014		FS	μg/L	2 U	1 U	1 U	0.56 J	1 U	1 U
	7/7/2014		FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/13/2014	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/16/2015		FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/9/2015		FS	µg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/7/2015	BET	FS	µg/L	2 U	1 U	1 U	0.39 J	1 U	1 U
	10/5/2015	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/13/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/1/2016	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/1/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/10/2016	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/11/2017	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/13/2017	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/20/2017	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/6/2017	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U

Created By: KMS 01/17/2024

Checked By: KLD 01/17/2024

			Pa	rameter	1,2-Dichloroethene (total)	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		NY	/S Class GA S	tandard	5	5	5	5	5	2
Location	Date	Sample ID	QC Code	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
(continued)	12/6/2017	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	2/2/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/13/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/17/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/18/2018	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/29/2018	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/3/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/25/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/19/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/15/2019	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/21/2020	BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/21/2020	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	6/23/2020	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	8/17/2020	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	11/3/2020	BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	2/3/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	2/3/2021	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/20/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	4/20/2021	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/15/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/15/2021	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/4/2021	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	10/4/2021	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/4/2022	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	1/4/2022	-BET	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U
	7/19/2022	-BEF	FS	μg/L	2 U	1 U	1 U	1 U	1 U	1 U

Notes:

- A blank cell indicates that the compound was not analyzed for.

- Bolded values indicate a detection of the corresponding standard.

- Bolded, gray-shaded values indicate an exceedance of the corresponding standard.

- FS = field sample
- FD = field duplicate
- NYS = New York State
- $\mu g/L = micrograms per liter$

VOCs = volatile organic compounds

Qualifiers:

D08 = dilution required due to high concentration of target compound(s)

H2 = Initial analysis within holding time. Reanalysis for the required dilution was past holding time.

J = estimated value

N1 = estimated value

P-H = sample container contained headspace

U = not detected

APPENDIX B

2021-2023 GROUNDWATER EXTRACTION AND TREATMENT SYSTEM PERFORMANCE SAMPLING RESULTS

	I	ocation	Air Stripper Eff											
	Field Samp		1/5/2021	2/3/2021	3/3/2021	4/5/2021	5/3/2021	6/1/2021	7/1/2021	8/2/2021	9/1/2021	10/4/2021	11/1/2021	12/1/2021
	X			PS-AS EFFLUENT										
		C Code	FS											
Method	Parameter	Units	Result Qualifier			Result Qualifier			Result Qualifier				Result Qualifier	
SW8260C	1,1,1-Trichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,1,2,2-Tetrachloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,1,2-Trichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,1-Dichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,2-Dichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1.2-Dichloroethene (total)	μg/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
SW8260C	2-Hexanone	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260C	Acetone	μg/L	10 U	10 U	10 U	10 U	8.4 J	10 U	10 U	10 U	3.2 J	3.7 J	10 U	5 U
SW8260C	Carbon disulfide	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.2 J	1 U	1 U
SW8260C	Carbon tetrachloride	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Chloroform	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Chloromethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ
SW8260C	cis-1,2-Dichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Methylene chloride	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Tetrachloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Toluene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	0.59 J	1 U	1 U	1 U	1 U	1 U
SW8260C	trans-1,2-Dichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Trichloroethene	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Vinyl chloride	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW6010C	Aluminum	μg/L	200 U											
SW6010C	Antimony	μg/L												
SW6010C	Arsenic	μg/L	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	10 U
SW6010C	Barium	μg/L	99.1	118	63.5	63.5	70.4	55	80.9	59.5	37.9	46.2	53.5	200 UJ
	Beryllium	μg/L												
SW6010C	Cadmium	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.5 U
SW6010C	Calcium	μg/L												
	Chromium	μg/L	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	10 U
SW6010C	Cobalt	μg/L												
SW6010C	Copper	μg/L	10 U	25 U										
SW6010C	Iron	μg/L	107	209	122	101	68.1	50 U	285	50 U	50.5	91.1	50 U	144
	Lead	μg/L	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	5 U
SW6010C	Magnesium	μg/L												
	Manganese	μg/L	82.9	141	46.3	62.2	51.8	35	111	105	44.1	33.4	38.2	122
SW6010C	Nickel	μg/L	10 U	40 U										
	Potassium	μg/L												
SW6010C		μg/L												
SW6010C		μg/L												
SW6010C		µg/L												
SW6010C		μg/L												
	Vanadium	μg/L												
SW6010C		μg/L	10 U	20 U										
SW7470A		µg/L	0.12 U	0 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.2 U				
SM2540F	Total Settleable Solids	mg/L												
	Total Dissolved Solids	mg/L	473	458	402	305	333 J-	387	372	367	450	399	388	380
SM2540D	Total Suspended Solids	mg/L	4 U	4 U	4 U	4 U	4 UJ	4 U	4 U	4 U	4 U	4 U	4 U	2 U

Notes:

Blank cell indicates compound was not analyzed for $\mu g/L = micrograms$ per liter mg/L = milligrams per liter FS = field sample Qualifiers: U = not detected UJ = not detected, estimated value J = estimated value

2021-2023 Groundw	ater Extraction and	l Treatment System	Performance	Sampling Results

	L	ocation	Air Stripper Eff											
	Field Samp		1/4/2022	2/1/2022	3/1/2022	4/1/2022	5/2/2022	6/1/2022	7/1/2022	8/1/2022	9/1/2022	10/3/2022	11/2/2022	12/2/2022
							PS-AS EFFLUENT		PA-AS Effluent		PS-AS-EFFLUENT	PS-AS Effluent	PS-AS Effluent	PS-AS Effluent
		C Code	FS											
Method	Parameter	Units		Result Qualifier							Result Qualifier			
SW8260C	1,1,1-Trichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,1,2,2-Tetrachloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
SW8260C	1,1,2-Trichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,1-Dichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.2	1 U	1 U	1 U	1 U
SW8260C	1,2-Dichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,2-Dichloroethene (total)	μg/L	2 U	2 U	2 U	2 U	2 U				2 U			
SW8260C	2-Hexanone	μg/L	5 U	5 U	5 U	5 U	5 U	10 U	10 U	5 U	5 U	10 U	10 U	10 U
SW8260C	Acetone	μg/L	5 U	5 U	5 U	5 U	2.2 J	2.7 J	50 U	5 U	2.5 J	50 U	50 U	50 U
SW8260C	Carbon disulfide	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	1 U	5 U	5 U	5 U
SW8260C	Carbon tetrachloride	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	1 U	5 U	5 U	5 U
SW8260C	Chloroform	μg/L	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	2 U	2 U
SW8260C	Chloromethane	μg/L	1 UJ	1 UJ	1 UJ	1 U	1 U	2 UJ	2 UJ	1 UJ	1 U	2 U	2 U	2 U
SW8260C	cis-1,2-Dichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10 U	1 U	1 U	1 U	1 U
SW8260C	Methylene chloride	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	1 U	5 U	5 U	5 U
SW8260C	Tetrachloroethene	μg/L	1 U	1 U	1 U	1	1 U	1 U	1 U	523	1 U	0.24 J	0.36 J	1 U
SW8260C	Toluene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	trans-1,2-Dichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	6	1 U	1 U	1 U	1 U
SW8260C	Trichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	246	1 U	1 U	1 U	1 U
SW8260C	Vinyl chloride	μg/L	1 U	1 UJ	1 U	1 U	1 U	2 U	2 U	29.5	1 U	2 U	2 U	2 U
SW6010C	Aluminum	μg/L	55.9 J	68.7 J	123 J	70.1 J	50.6 J	42 J	110	200 U	72.6 J	87	890	64
SW6010C	Antimony	μg/L							50 U					
SW6010C	Arsenic	μg/L	10 U	5.4 J	10 U	10 U	10 U							
SW6010C	Barium	μg/L	40.1 J	53 J	52.5 J	51.2 J	47.2 J	68	53	200 U	42.1 J	41 J	53	44 J
SW6010C	Beryllium	μg/L							4 U					
SW6010C	Cadmium	μg/L	2.5 U	4 U	4 U	2.5 U	2.5 U	4 U	4 U	4 U				
	Calcium	μg/L						35000	18000					
	Chromium	μg/L	10 U											
	Cobalt	μg/L						10 U	10 U					
	Copper	μg/L	25 U	25 U	25 U	6.1 J	25 U	10 U	10 U	25 U	25 U	10 U	260	10 U
	Iron	μg/L	72.6 J	167	231	199	140	180	310	308	146	200	850	96
SW6010C	Lead	μg/L	5 U	5 U	11.8	5 U	5 U	10 U	10 U	5 U	5 U	10 U	8.7 J	10 U
	Magnesium	μg/L			10			5900	3800					
	Manganese	µg/L	26.3	28.7	40	32.9	38.5	140	57	63.1	34.9 J	61	41	46
SW6010C	Nickel	µg/L	6.2 J	9.1 J	9.3 J	7.7 J	8.6 J	10 U	10 U	40 U	15.9 J	10 U	10 U	10 U
	Potassium	µg/L							2000 U					
SW6010C		µg/L							50 U					
SW6010C		µg/L							10 U					
SW6010C		µg/L							140000					
SW6010C		µg/L							50 U					
SW6010C		µg/L	20.11	20.11	20.11	20.11	20.11	10.11	10 U	20.11	20.11	4 4 T	1(0)	10.11
	Zinc	µg/L	20 U	10 U	10 U	20 U	20 U	4.4 J	160	10 U				
	Mercury	µg/L	0.2 U	0.1 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.1 U				
	Total Settleable Solids	mg/L	401	279	264	254	272	220	240	422	262	270	250	270
	Total Dissolved Solids	mg/L	401	378	364	354	373	230	340	423	362	370	250	270
SM2540D	Total Suspended Solids	mg/L	2 U	5 U	1.6 J	2.8	2.8	1.3 U	3.4		5 U	5.8	5.2	1

Notes:

Blank cell indicates compound was not analyzed for $\mu g/L = micrograms$ per liter mg/L = milligrams per liter FS = field sample Qualifiers: U = not detected UJ = not detected, estimated value J = estimated value

	Le	ocation	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff	Air Stripper Eff
	Field Samp		1/3/2023	2/1/2023	3/1/2023	4/3/2023	5/2/2023	6/1/2023	7/6/2023	8/1/2023	9/5/2023	10/3/2023	11/2/2023	12/1/2023
	Field Sam			PS-AS Effluent	PS-AS Effluent	PS-AS Effluent	PS-AS Effluent							
		C Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	1,1,1-Trichloroethane	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,1,2,2-Tetrachloroethane	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
SW8260C	1,1,2-Trichloroethane	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,1-Dichloroethene	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,2-Dichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	1,2-Dichloroethene (total)	µg/L	2 U	2 U	0.19 J	0.23 J	2 U	0.22 J	0.42 J	2 U	2 U	2 U	2 U	0.2 J
SW8260C	2-Hexanone	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW8260C	Acetone	µg/L	2.4 J	50 U	50 U	50 U	50 U	3.2 J	50 U	2.8 J				
SW8260C	Carbon disulfide	µg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260C	Carbon tetrachloride	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260C	Chloroform	µg/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
SW8260C	Chloromethane	μg/L	2 U	2 UJ	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
SW8260C	cis-1,2-Dichloroethene	µg/L	1 U	1 U	0.19 J	0.23 J	1 U	0.22 J	0.42 J	1 U	1 U	1 U	1 U	0.2 J
SW8260C	Methylene chloride	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260C	Tetrachloroethene	μg/L	1 U	1 U	0.19 J	0.6 J	1 U	1 U	1 U	1 U	0.18 J	1 U	1 U	1 U
SW8260C	Toluene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	4.7	0.37 J	1 U	1 U	1 U
SW8260C	trans-1,2-Dichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Trichloroethene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260C	Vinyl chloride	μg/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
SW6010C	Aluminum	μg/L	78	110	50 U	1400	150	73	61	93	130	88	47 J	32 J
SW6010C	Antimony	μg/L												
SW6010C	Arsenic	μg/L	10 U	10 U	10 U	10 U	52	10 U						
SW6010C	Barium	μg/L	42 J	47 J	35 J	50 J	37 J	35 J	35 J	36 J	47 J	48 J	49 J	53
SW6010C	Beryllium	μg/L												
SW6010C	Cadmium	μg/L	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
SW6010C	Calcium	μg/L												
SW6010C	Chromium	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Cobalt	μg/L												
SW6010C	Copper	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Iron	μg/L	120 J+	130 J+	93	890	260	150	110	50 U	250	160 J+	50 U	160 J+
SW6010C	Lead	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Magnesium	μg/L												
SW6010C	Manganese	μg/L	35	93	42	61	220	35	40	30	57	41	39	63
SW6010C	Nickel	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Potassium	μg/L												
SW6010C		μg/L												50 U
SW6010C	Silver	μg/L												10 U
	Sodium	μg/L												
	Thallium	μg/L												
	Vanadium	μg/L												
	Zinc	μg/L	10 U	10 U	10 U	10 U	23	10 U	10 U	10 U	10 U	16	10 U	10 U
	Mercury	μg/L	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
SM2540F	Total Settleable Solids	mg/L												
	Total Dissolved Solids	mg/L	250	320	330	290	130	330	350	370	310	420	250	350
SM2540D	Total Suspended Solids	mg/L	1 U	1.6	2.2	2.4	1 U	4	1 U	0.8 J	1.4	1.8	5 U	2.5 U

Notes:

Blank cell indicates compound was not analyzed for $\mu g/L = micrograms$ per liter mg/L = milligrams per liter FS = field sample Qualifiers: U = not detected UJ = not detected, estimated value J = estimated value

	L	ocation	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent
	Field Samp		1/5/2021	2/3/2021	3/3/2021	4/5/2021	5/3/2021	6/1/2021	7/1/2021	8/2/2021	9/1/2021	10/4/2021	11/1/2021	12/1/2021
	Field Sam				PS-AS-INFLUENT		PS-INFLUENT	PS-INFLUENT	PS-INFLUENT	PS-INFLUENT	PS-INFLUENT	PS-INFLUENT	PS-INFLUENT	PS-INFLUENT
		C Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	1,1,1-Trichloroethane	μg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	1,1,2,2-Tetrachloroethane	µg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	1,1,2-Trichloroethane	μg/L	20 U	1 U	20 U	20 U	19 J	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	1,1-Dichloroethene	μg/L	20 U	2.9	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1.2	2.7
SW8260C	1,2-Dichloroethane	μg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	1,2-Dichloroethene (total)	μg/L	670	840	610	1000	950	610	800	730	1000	860	650	751
SW8260C	2-Hexanone	μg/L	100 U	5 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	200 U	100 U	5 U
SW8260C	Acetone	μg/L	62 J	10 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	400 U	10 U	5 U
SW8260C	Carbon disulfide	μg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	Carbon tetrachloride	μg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	Chloroform	µg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	Chloromethane	µg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 UJ
SW8260C	cis-1,2-Dichloroethene	μg/L	670	840	610	1000	950	610	800	730	1000	860	650	751
SW8260C	Methylene chloride	μg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	18 J	1 U	1 U
SW8260C	Tetrachloroethene	μg/L	2100	2800	950	850	770	670	2300	770	2100	950	920	1680
SW8260C	Toluene	μg/L	20 U	1 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	1 U	1 U
SW8260C	trans-1,2-Dichloroethene	μg/L	20 U	80 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	40 U	3.3	1 U
SW8260C	Trichloroethene	μg/L	600	760	290	260	240	190	570	250	530	220	360	611
SW8260C	Vinyl chloride	μg/L	20 U	19	20 U	27	18 J	20 U	21	20 U	20 U	40 U	11	16.8
SW6010C	Aluminum	µg/L	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U
SW6010C	Antimony	μg/L												
SW6010C	Arsenic	µg/L	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	10 U
SW6010C	Barium	µg/L	88.8	111	61.1	93.5	69.4	55	68.1	56.1	47.9	48.2	53.6	200 U
SW6010C	Beryllium	µg/L												
SW6010C	Cadmium	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.5 U
SW6010C	Calcium	µg/L												
SW6010C	Chromium	µg/L	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	10 U
SW6010C	Cobalt	µg/L												
SW6010C	Copper	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	25 U
SW6010C	Iron	μg/L	63.8	113	70.4	125	50 U	50 U	131	50 U	275	156	50 U	100 U
	Lead	μg/L	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	5.4
SW6010C	Magnesium	µg/L												
SW6010C	Manganese	µg/L	69	137	37.1	54.7	40.8	32	89.7	33.9	43.3	30	34.1	125
SW6010C	Nickel	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	40 U
	Potassium	µg/L												
SW6010C		μg/L												
SW6010C		μg/L												
SW6010C		μg/L												
SW6010C		μg/L												
	Vanadium	μg/L												
SW6010C		μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U
SW7470A		μg/L	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.2 U
	Total Settleable Solids	mg/L												
	Total Dissolved Solids	mg/L	459	454	417	361	350 J-	397	322	389	421	359	352	376
SM2540D	Total Suspended Solids	mg/L	4 U	4 U	4 U	4 U	4 UJ	4 U	4 U	4 U	4 U	4 U	4 U	2 U

Notes:

Blank cell indicates compound was not analyzed for $\mu g/L = micrograms$ per liter mg/L = milligrams per liter FS = field sample Qualifiers: U = not detected UJ = not detected, estimated value J = estimated value

	Location	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent
Field S	ample Date		2/1/2022	3/1/2022	4/1/2022	5/2/2022	6/1/2022	7/1/2022	8/1/2022	9/1/2022	10/3/2022	11/2/2022	12/2/2022
	Sample ID		PS-INFLUENT	PS-INFLUENT	PS-INFLUENT	PS-INFLUENT	PS-Influent	PS-Influent	PS-Influent	PS-INFLUENT	PS-Influent	PS-Influent	PS-Influent
	OC Code		FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Method Parameter	Units								Result Qualifier			Result Qualifier	
SW8260C 1,1,1-Trichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	10 UD	1 U	1 U	10 U	10 U	10 U
SW8260C 1,1,2,2-Tetrachloroetha		1 U	1 U	1 U	1 U	1 U	0.5 U	5 UD	1 U	1 U	5 U	5 U	5 U
SW8260C 1,1,2-Trichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	10 UD	1 U	1 U	10 U	10 U	10 U
SW8260C 1,1-Dichloroethene	μg/L		1.4	1 U	1.5	1.5	4.9	10 UD	1 U	1.5	1.8 J	10 U	10 U
SW8260C 1,2-Dichloroethane	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	10 UD	1 U	1 U	10 U	10 U	10 U
SW8260C 1,2-Dichloroethene (to	al) µg/L	739	632	368	652	794				692			
SW8260C 2-Hexanone	μg/L	5 U	5 U	5 U	5 U	5 U	10 U	100 UD	5 U	5 U	100 U	100 U	100 U
SW8260C Acetone	μg/L	5 U	5 U	5 U	5 U	5 U	50 U	500 UD	5 U	5 U	500 U	500 U	500 U
SW8260C Carbon disulfide	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	50 UD	1 U	1 U	50 U	50 U	50 U
SW8260C Carbon tetrachloride	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	50 UD	1 U	1 U	50 U	50 U	50 U
SW8260C Chloroform	μg/L	1 U	1 U	1 U	1 U	1 U	2 U	20 UD	1 U	1 U	20 U	20 U	20 U
SW8260C Chloromethane	μg/L	1 UJ	1 UJ	1 UJ	1 U	1 U	2 UJ	20 UJ	1 UJ	1 U	20 U	20 U	20 U
SW8260C cis-1,2-Dichloroethene	μg/L	739	628	365	647	789	1700	820 D	849	687	860	710	490
SW8260C Methylene chloride	μg/L	1 U	1 U	1 U	1 U	1 U	5 U	50 UD	1 U	1 U	50 U	50 U	50 U
SW8260C Tetrachloroethene	μg/L	349	218	792	899	484	3300	640 D	1 U	365	690	1100	1100
SW8260C Toluene	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	10 UD	1 U	1 U	10 U	10 U	10 U
SW8260C trans-1,2-Dichloroether	ne µg/L	4.7	3.7	3.5	4.5	5	8	5 JD	1 U	4.8	5.9 J	5.3 J	3.8 J
SW8260C Trichloroethene	μg/L	128	101	272	273	317	1200	270 D	1 U	213	250	240	400
SW8260C Vinyl chloride	μg/L	17.1	9.1 J-	14	12.3	16	18	17 JD	1 U	15.2	26	12 J	13 J
SW6010C Aluminum	μg/L	40.8 J	35.4 J	134 J	86.1 J	77.4 J	34 J	130		106 J	63	1500	61
SW6010C Antimony	μg/L							50 U					
SW6010C Arsenic	μg/L	10 U	6.5 J	10 U	10 U	5.6 J	10 U	10 U	10 U				
SW6010C Barium	μg/L	48.1 J	52.7 J+	51.5 J	50.3 J	46.6 J	60	49 J	200 U	40.5 J	62	58	43 J
SW6010C Beryllium	μg/L							4 U					
SW6010C Cadmium	μg/L	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	4 U	4 U	2.5 U	2.5 U	4 U	4 U	4 U
SW6010C Calcium	μg/L						37000	16000					
SW6010C Chromium	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C Cobalt	μg/L						10 U	10 U					
SW6010C Copper	μg/L	25 U	25 U	25 U	3.8 J	25 U	10 U	10 U	25 U	25 U	10 U	10 U	10 U
SW6010C Iron	μg/L	76 J	99.3 J	237	246	172	150	330	352	158	300	1300	100
SW6010C Lead	μg/L	5 U	5 U	5 U	5 U	5 U	<u>3 J</u>	10 U	5 U	5 U	10 U	10 U	10 U
SW6010C Magnesium	μg/L		20.0	16.1	22.2	20.2	5800	3400	16.1	20.2.1	-		21
SW6010C Manganese	μg/L	66.8	28.8	46.4	32.3	39.2	190	70	46.4	30.3 J	50	44 10 U	31
SW6010C Nickel	μg/L	6.8 J	8.5 J	9.3 J	7.8 J	8.5 J	10 U	10 U	40 U	16.3 J	10 U	10 U	10 U
SW6010C Potassium	μg/L							2000 U					
SW6010C Selenium	µg/L							50 U					
SW6010C Silver	μg/L							10 U					
SW6010C Sodium	μg/L							140000					
SW6010C Thallium	μg/L							50 U					
SW6010C Vanadium	μg/L		20.11	20.11	20.11	20.11	10.11	10 U	20.11	20.11	0.2.1	4 G T	10.11
SW6010C Zinc	μg/L	20 U 0.2 U	20 U 0.2 U	20 U	20 U	20 U	10 U	10 U	20 U 0.2 U	20 U	9.3 J 0.1 U	4.5 J	10 U
SW7470A Mercury	μg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.1 U	0.1 U		0.2 U	0.1 U	0.1 U	0.1 U
SM2540FTotal Settleable SolidsSM2540CTotal Dissolved Solids	mg/L	410	387	272	256	266	280	250	0.1	410	250	100	250
				373	356	366	380	350	398	410 5 U	350	190	250
SM2540D Total Suspended Solid	mg/L	2 U	5 U	4.4	2	3.6	2.4 J+	2.8		5 U	3	7.4	1.6

Notes:

Blank cell indicates compound was not analyzed for $\mu g/L = micrograms$ per liter mg/L = milligrams per liter FS = field sample Qualifiers: U = not detected UJ = not detected, estimated value J = estimated value

	Le	ocation	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent
	Field Samp		1/3/2023	2/1/2023	3/1/2023	4/3/2023	5/2/2023	6/1/2023	7/6/2023	8/1/2023	9/5/2023	10/3/2023	11/2/2023	12/1/2023
	Field Sam		PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent	PS-Influent
		C Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	1,1,1-Trichloroethane	μg/L	20 U	20 U	20 U	20 U	20 U	20 U	10 U	10 U	20 U	20 U	1 U	20 U
SW8260C	1,1,2,2-Tetrachloroethane	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	5 U	5 U	10 U	10 U	0.5 U	10 U
SW8260C	1,1,2-Trichloroethane	μg/L	20 U	20 U	20 U	20 U	20 U	20 U	10 U	10 U	20 U	20 U	1 U	20 U
SW8260C	1,1-Dichloroethene	µg/L	20 U	20 U	20 U	20 U	20 U	20 U	10 U	10 U	20 U	20 U	1.6	20 U
SW8260C	1,2-Dichloroethane	µg/L	20 U	20 U	20 U	20 U	20 U	20 U	10 U	10 U	20 U	20 U	1 U	20 U
SW8260C	1,2-Dichloroethene (total)	µg/L	530	594 J	704 J	444 J	420	706 J	583 J	760	1100	1207 J	414	744 J
SW8260C	2-Hexanone	µg/L	200 U	200 U	200 U	200 U	200 U	200 U	100 U	100 U	200 U	200 U	10 U	200 U
SW8260C	Acetone	µg/L	1000 U	1000 U	1000 U	1000 U	46 J	50 J	500 U	500 U	1000 U	1000 U	50 U	1000 U
SW8260C	Carbon disulfide	µg/L	100 U	100 U	100 U	100 U	100 U	100 U	50 U	50 U	100 U	100 U	5 U	100 U
SW8260C	Carbon tetrachloride	µg/L	100 U	100 U	100 U	100 U	100 U	100 U	50 U	50 U	100 U	100 U	5 U	100 U
SW8260C	Chloroform	µg/L	40 U	40 U	40 U	40 U	40 U	40 U	20 U	20 U	40 U	40 U	2 U	40 U
SW8260C	Chloromethane	μg/L	40 U	40 UJ	40 U	40 U	40 U	40 U	20 U	20 U	40 U	40 U	2 U	40 U
SW8260C	cis-1,2-Dichloroethene	µg/L	530	590	700	440	420	700	580	760	1100	1200	410	740
SW8260C	Methylene chloride	µg/L	100 U	100 U	100 U	100 U	100 U	100 U	50 U	50 U	100 U	100 U	5 U	100 U
SW8260C	Tetrachloroethene	µg/L	1400	1100	1800	1500	1100	870	920	1100	1400	1100	1200	1800
SW8260C	Toluene	µg/L	20 U	20 U	20 U	20 U	20 U	6.4 J	10 U	10 U	20 U	20 U	1 U	20 U
SW8260C	trans-1,2-Dichloroethene	µg/L	20 U	3.8 J	4.4 J	3.6 J	20 U	5.8 J	3.2 J	10 U	20 U	7.2 J	3.7	3.6 J
SW8260C	Trichloroethene	µg/L	460	390	370	370	290	450	330	440	580	490	370	600
SW8260C	Vinyl chloride	µg/L	13 J	9.2 J	12 J	18 J	9.2 J	19 J	14 J	22	27 J	25 J	18	16 J
SW6010C	Aluminum	μg/L	95	100	64	1400	50 U	96	87	120	140	94	46 J	40 J
SW6010C	Antimony	µg/L												
SW6010C	Arsenic	µg/L	10 U	10 U	10 U	10 U	57	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Barium	µg/L	42 J	42 J	37 J	48 J	31 J	38 J	40 J	36 J	46 J	56	49 J	54
SW6010C	Beryllium	μg/L												
SW6010C	Cadmium	μg/L	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
SW6010C	Calcium	$\mu g/L$												
SW6010C	Chromium	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Cobalt	μg/L												
SW6010C	Copper	µg/L	10 U	10 U	10 U	5.2 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Iron	µg/L	130 J+	120 J+	120	940	82	180	130	50 U	280	160 J+	50 U	110 J+
SW6010C	Lead	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
SW6010C	Magnesium	µg/L												
	Manganese	µg/L	32	31	34	42	35	38	41	33	44	68	42	50
SW6010C	Nickel	µg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	Potassium	μg/L												
SW6010C	Selenium	μg/L												50 U
SW6010C	Silver	μg/L												10 U
SW6010C		µg/L												
SW6010C	Thallium	µg/L												
	Vanadium	µg/L												
SW6010C	Zinc	µg/L	10 U	10 U	10 U	4.5 J	23	10 U	10 U	10 U	10 U	20	10 U	10 U
SW7470A	Mercury	μg/L	0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
	Total Settleable Solids	mg/L												
	Total Dissolved Solids	mg/L	240	340	270	280	30	340	350	360	330	460	280	330
SM2540D	Total Suspended Solids	mg/L	1.4	3.3	2.2	4.4	0.8 J	2.8	3	2	0.8 J	1.8	7.1 U	2.5 U

Notes:

Blank cell indicates compound was not analyzed for $\mu g/L = micrograms$ per liter mg/L = milligrams per liter FS = field sample Qualifiers: U = not detected UJ = not detected, estimated value J = estimated value

APPENDIX C

2023 LONG-TERM GROUNDWATER MONITORING AND SAMPLING EVENT FIELD RECORDS

WATER LEVEL MONITORING AND WELL INSPECTION CHECKLIST

Site: American Thermostat NYSDEC Site No. 420006

Project #: 3616206098

Date: 10/16/2023

Name(s): Adam Norvelle, Kim Stilson, Mike Ladny

	-																
Location	Measurement Point	Well	Measure	Well	Measure Point	Protective Casing	TOC-TOR	Depth	to	Depth to Bottom of	Well ID	Well	Protective	Water in Annular	Concrete	Well	
ID	Elevation	Depth	Point Reference	Diameter	Marked	Stickup	Difference	Water	r	Well	Present	Lock/Cap	Casing	Space	Pad	Riser/Cap	Comments
Monitonia	(ft. above msl)	(ft.)		(in.)	(Y/N)	(ft.)	(ft.)	(ft. BM	P)	(ft. BMP)	(Y/N)	(G/F/P)*	(G/F/P)*	(Y/N)	(G/F/P)*	(G/F/P)*	
Monitoring		205	TOD		N		0.46	06.61		290.50	V	Г		N	C	Р	
EW-3	259.67	295	TOR	6	N	NA	0.46	96.61		289.59	Y Y	F	G	N	G	-	2' x 2' vault
EW-4	256.01	322	TOR	6	Y	NA	0.25	93.22		319	Y Y	F	G	N	G	G	2' x 2' vault
EW-5	259.85	235.2	TOR	6	N	NA	0.55	3.31		235.13	-	G	G F	N	1	G	Located in aboveground vault
EW-8	223.93	318	TOR	6	N	NA	0.49	69.94		319	Y	F G	-	N	G	F	15" flush-mount road box
EW-10	234.09	225	TOR	6	N	NA	0.58	12.63		218.71	Y Y	G F	G	N	F	G	15" flush-mount road box
EW-11	231.40	172.2 270.5	TOR TOR	6	N Y	NA		62.52 52.46		170.41	Y	F F	F F	N	F G	G F	15" flush-mount road box
EW-12 EW-13	232.76			Ű	•	NA	0.38	52.46		265	Y	F P	1	N	G F	Г Р	2' x 2' vault
EW-13 EW-14	217.06 234.85	360 185	TOR TOC	6	N	NA	0.50	43.65		349.55	I	P	NA	N	Г	P	15" flush-mount road box
				()////////////////////////////////////	//////////////////////////////////////	NT 4	2.65	0.06		260.05	<u>/////////////////////////////////////</u>	F	F	NI	<i></i>	F	Well inaccessible; located under stored materials on a private property
EW-15 IW-8	236.37	275	TOR TOR	6	N Y	NA	3.65	9.06 76.89		269.05 392	Y Y	F G	-	N	G	F F	2' x 2' vault
IW-8 IW-9	239.47 224.37	391.8 358.1	TOR	6 6	N Y	NA NA	0.55 0.75	62.25		392 360	Y	G	G G	N N	G	F F	2' x 2' vault
IW-9 IW-10	235.57	176.3	TOR	6	N	NA	0.75	6.29		176.57	Y	G	G	N	G F	G F	15" flush-mount road box Located in aboveground vault next to EW-9 well panel
M-4	233.37	200	TOR	4	N	2.33	0.53	63.22		201.91	Y	G	F	N	NA	G	4" diameter steel riser in 6" diameter steel casing
M-4 M-5	213.88	200	TOR	4	N	2.33	1.00	40.80		201.91	Y	G	G	N	NA	G	4" diameter steel riser in 6" diameter steel casing
M-5 M-6	248.31	100	TOK	4 6	NR	2.29 NR	NR	40.80 NM		200.70 NM	NR	NR	NR	NR	NR	NR	6" steel casing, homeowner utilizes well for yard
M-8	248.51	200	TOR	4	N	2.25	0.43	12.38		202.11	Y	F	F	N	NA	G	4" diameter steel riser in 6" diameter steel casing
M-9	256.39	200	TOR	4	N	2.23	0.43	80.48		202.11	Y	F	г F	N	NA	G	4" diameter steel riser in 6" diameter steel casing 4" diameter steel riser in 6" diameter steel casing
Mueller	183.25	114	TOK	4 6	N	1.42	NA	14.75		113.25	Y	G F	г G	NA	NA	G	6" diameter steel casing
MW-104	258.00	83.3	TOR	2	N	NA	0.38	26.60		84.52	Y	G	G	N	G	G	8" flush-mount road box, 2" PVC diameter riser
MW-104	258.00	85.5 86.1	TOR	2	N Y	NA	0.38	19.62		84.32 87.65	Y	G	G	N	E E	G	8 flush-mount road box, 2 PVC diameter riser 8" flush-mount road box, 2" PVC diameter riser
MW-108 MW-109	255.96	87.7	TOR	2	N I	NA	0.33	19.02		86.19	I Y	G	G	N	Г Б	G	
MW-109 MW-112	256.60	25.3	TOR	2	N Y	NA	0.40	3.71		24.85	Y	G	NA	N	F	– U F	8" flush-mount road box, well ID on gripper plug, 2" PVC diameter riser 8" flush-mount road box, 2" PVC diameter riser
MW-112 MW-113	257.38	23.3	TOR	2	I Y	NA	0.43	6.69		24.83	Y	G	NA	N	F	G F	8" flush-mount road box, 2" PVC diameter riser 8" flush-mount road box, 2" PVC diameter riser
IVI VV-113	237.38	22.9	IUK	Z	I	INA	0.30	Water	Depth to	22.31	I	0	NA	IN	Г	U	8 Ilush-mount road box, 2 PVC diameter riser
Extraction	Wells (Values C	allected Fi	rom Well Pan	els)				Elevation	Water								
Latituction	viens (varaes e	oncered 11	ioni vven i un	((15))				(ft. above msl) ¹	(ft. BMP)								
EW-2	255.29	322	TOC/PLC	6	NA	NA	NA	174.29	31.30	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
EW-6	242.94	325	TOC/PLC	6	NA	NA	NA	See note	65+ (see note)	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
EW-7	251.64	227	TOC/PLC	6	NA	NA	NA	97.00	63.00	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
EW-9	236.21	365	TOC/PLC	6	NA	NA	NA	167.18	See note	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
EW-16	248.16	417	TOC/PLC	6	NA	NA	NA	75.62 (see note)	14.80	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
OW-2	257.03	30	TOC/PLC	8	NA	NA	NA	245.01	16.36	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
OW-3	256.81	25	TOC/PLC	8	NA	NA	NA	248.66	8.80	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
OW-5	258.20	30	TOC/PLC	8	NA	NA	NA	250.98	17.56	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or <u>No</u>
OW-7	254.57	25	TOC/PLC	8	NA	NA	NA	250.06	5.40	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
OW-13	259.95	29.5	TOC/PLC	8	NA	NA	NA	252.03	22.04	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or <u>No</u>
OW-14	261.24	30	TOC/PLC	8	NA	NA	NA	260.72	7.80	NA	Y	G	G	N	G	G	Pump running at time of inspection? Yes or No
OW-16	259.81	30	TOC/PLC	8	NA	NA	NA	248.84	37.40	NA	Y	G	G	N	F	F	Pump running at time of inspection? Yes or No
	207.01	50	100/120	, v		- 1/1	1 1/1	2.0.01	27.10	1,41	÷		_		-		
Notes:		1						1.10				NM = not m		ft. = feet		G = good	BMP = below measurement point
			-	·	• •			corded from HMI. Cou	uld not obtain	depth		NR = not re	corded	in. = inches		F = fair	NA = not applicable
	ing. Water level mete	ž												msl = mean		P = poor	PLC = programmable logic controller
	el transducer not func						edicated cap that	cannot be removed.						TOC = top c	0	N = no	PVC = polyvinyl chloride

EW-9 - Water level meter not able function properly to collect measurement due to particles/debris present in groundwater.

*Poor or notable observations require input in "Comments" column

TOR = top of riser

TOV = top of vault

Y = yes

¹ Value collected from well panel

Checked By: K. Amann 12/1/23

Well ID/ Sampling Location	Sample Description	Well Depth (ft)	Sample Depth (ft)	Sample ID	Sampler Initials	Sample Date	Sample Time	Comments
Monitoring W	ells			1000		-		
CE-1 ⁽¹⁾	Before filters	535	unknown	CE-1 BEF				
CE-2-**	Before filters	287	unknown	CE-2 BEF	AN ML VS	10)17/23	1210	
EW-3	PDB	295	275	EW-3	1	1 miles	1345	
EW-4	PDB	322	302	EW-4			1300	
EW-5	PDB	235	150	EW-5			1500	
EW-8	PDB	318	200	EW-8			1125	
EW-11	PDB	172	117	EW-11			1045	1
EW-12	PDB	270.5	115	EW-12			1030	
EW-13	PDB	360	200	EW-13			0945	
IW-8	PDB	392	339	IW-8			1440	
IW-9	PDB	358	333	IW-9			1100	
IW-10	PDB	176	40	IW-10		1.00	1430	
M-4	PDB	200	130	M-4	1.0		1050	
M-5	PDB	200	129	M-5			0930	
M-6	Grab	100	pump intake	M-6			1010	
M-8	PDB	200	195	M-8			1230	
M-9	PDB	200	195	M-9			1245	
Mueller	PDB	114	69	Mueller			0910	
MW-104	PDB	83	79.4	MW-104			1400	11
MW-109	PDB	88	69	MW-109			1315	
MW-112	PDB	25	20	MW-112			1515	
MW-113	PDB	23	20	MW-113	1	1	1536	
	k Extraction W	ells						
EW-2 ⁽²⁾	Grab	322	284	EW-2				-
EW-6	Grab	325	285	EW-6				- Punn not work in
EW-7	Grab	227	200	EW-7	ANMLKS	10/18/23	1120	= Pump not working
EW-9	Grab	365	307	EW-9		- vivi - v		= P
EW-16	Grab	417	157	EW-16	1 1. en	10/18/23	1100	tunp hat worke

15-Month Long-Term Monitoring (LTM) Sampling

Notes:

OW-2

OW-3

OW-5

OW-7

OW-13

OW-14

OW-16

Field Blank Field Blank Grab

Grab

Grab

Grab

Grab

Grab

Grab

PDB

30

25

30

25

29.5

30

30

NA

23

pump intake

23

23

23

24

23

NA

OW-2

OW-3

OW-5

OW-7

OW-13

OW-14

OW-16

- Samples to be analyzed for site-specific 19 compound list for VOCs by Method 8260.

(1) CE-1 not in service; acts as an emergency backup well to CE-2 for Country Estates and therefore does not get sampled if CE-2 is in service.

(2) EW-2 off-line due to non-functioning pump. Well cannot be sampled.

PDB = passive diffusion bag

Checked by: K. Amann 12/1/23

CU300 Fault "Pry Rud

Cu300

+"Pry Bud wing" ut "Pry Running"

10/2023

AN, MLKS

1

10/18/23

1

Field Blank A.N. ML. 10/17/23 1545

1030

1020

0915

0900

200

30

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Sample Date:	10/17/23			
Sampler Name(s):	AN. ML.	KS		
Neather Conditions:	Rain Snow Sun	Cloudy Dry Hu	umid Temperatu	ire: 🔨 °F
veatrier conditions.	Rain Snow Sun	Cloudy Dry H	iniu remperatu	1. <u>37</u> L
Well Condition:	Satisfactory / Un	satisfactory (explain ir	notes)	
Depth to Water:	NA	feet Dep	th to Bottom:	NA feet
Neasurement Point Refe Resideutial Su	erence: TOC / TC Yply well grad		l Diameter:	WA- 6 inches
Time	Temperature (°C)	Conductivity (mS/		Turbidity (NTU)
	-			
Sample Method: Sample Collection Time:	Grab 1210			VOA by Method 8260
Notes: Sumple taken Was present Was historice 2 Min and	and indicate	I that post	sumple hose treatment vere collecte	e. Pominic Sample host ce). Purged for
°C = degrees Celcius °F = degrees Fahrenheit	TOC = top of o	asing pro		upply well for the Country Es and depth to bottom not mea

Checked by: K. Amann 12/1/23

1

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	CE-2			
Sample Date:	11/14/2023			
Sampler Name(s):	Mike Ladny			_
Weather Conditions:	Rain Snow Sun Cloudy Dry	Humid Te	emperature: 60	°F
Well Condition:	Satisfactory / Unsatisfactory (exp	lain in notes)		
Depth to Water:	Not measured feet	Depth to Bottom:	Not measured	feet
Measurement Point Refe	Not applicable erence: TOC / TOR / TOV	Well Diameter:	6	inches

Field Measurements

Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		Not -		
		Not applicable		

Sample Method:	Grab	Number of Containers:	2
Sample Collection Time:	1330	Intended Analysis:	VOCs by Method 8260

Notes:

Re-sample of CE-2. LTM sample collected on 10/17/23 was after treatment. Returned to collect sample before treatment. Dominick Caropreso provided access to the CE-2 pump house.

°C = degrees Celcius TOC = top of casing

- °F = degrees Fahrenheit
- TOR = top of riser TOV = top of vault
- mS/cm = millisiemens per centimeter NTU = nephelometric turbidity units
- VOCs = volatile organic compounds

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	CW-3			
Sample Date:	- 10/17/2	23		
Sampler Name(s):	_A.N.,	M.L., K.S.		
Weather Conditions:	Rain Snow Sun	Cloudy Dry Humid	Temperature:	55 °F
Well Condition:	Satisfactory / Unsa	atisfactory (explain in notes)		
Depth to Water:	96.61 fe	et Depth to Botton	n: 289	59 feet
Measurement Point Ref	erence: TOC TOR	TOV Well Diameter:	6	inches
		Field Measurements		
Time	Temperature (°C) Conductivity ((mS/cm)	pН
		/		
		/		
ample Method:	PDB	Number of Containe	rs: ZV	OAS
	1	Number of Containe Intended Analysis:	rs: <u>Z</u> V 	
ample Collection Time	1345			
Sample Method: Sample Collection Time New PDB Deployed?:				
ample Collection Time	1345			
ample Collection Time	1345 (Ves) No	Intended Analysis:		
ample Collection Time	1345 (Ves) No			
ample Collection Time	1345 (Ves) No	Intended Analysis:		
Sample Collection Time	1345 (Ves) No	Intended Analysis:		
ample Collection Time lew PDB Deployed?: lotes: PDB Jeploy	Ves No	Intended Analysis: 2.00 [°] .		
ample Collection Time ew PDB Deployed?: otes: <u>PDB Jeploy</u> = degrees Celcius	: 1345 (es) No yed at 27.	Intended Analysis:		
ample Collection Time	tes No Yed at 27.	Intended Analysis: 2.00° .		

Checked by: K. Amann 12/1/23

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-4	-		
Sample Date:	10/17/23	_		
Sampler Name(s):	A.N., M.L., K	.5,		
Weather Conditions: Ra	ain Snow Sun Cloudy	Dry Humid Tempera	ature: 55	_°F
Well Condition:	atisfactory Unsatisfactor	y (explain in notes)		
Depth to Water:	93.22 feet	Depth to Bottom:	00.00	feet
Measurement Point Referen	ce: TOC / TOR / TO	V Well Diameter:	6	inches
	and the second se	easurements		
Time	Temperature (°C)	Conductivity (mS/cm)	pH	
Sample Collection Time:	PDB 300 100 No		2 VOA s by Method 8260	-
Sample Collection Time:	1300		Sector Sector	-
Sample Collection Time: New PDB Deployed?:	300 30) NO 201 298.00'. TOC = top of	Intended Analysis: VOC	Sector Sector	-
Sample Collection Time:	TOC = top of TOR = top of top	Intended Analysis: VOC	Sector Sector	

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

	EW-5		
Sample Date:	[0]17/23	<u></u>	
Sampler Name(s):	A.N., M.L., K	L.S.	
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Temperatur	e: <u>55</u> °F
Well Condition:	Satisfactory P Unsatisfactor	ry (explain in notes)	
Depth to Water:		Depth to Bottom: 23	5.13 feet
Measurement Point Ref	ference: TOC / TOR /	Well Diameter:	6 inches
		leasurements	1
Time	Temperature (°C)	Conductivity (mS/cm)	pH
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		N	and the second s
		1	
Sample Method:	PDB	Number of Containers: 2	VORS
Sample Method: Sample Collection Time			VOR5
Sample Collection Time	150 1500		
Sample Collection Time New PDB Deployed?:	150 1500		
Sample Collection Time New PDB Deployed?:	(Yes) / No		
Sample Collection Time	150 1500		
Sample Collection Time New PDB Deployed?:	(Yes) / No		
Sample Collection Time New PDB Deployed?:	(Yes) / No		
Sample Collection Time New PDB Deployed?: Notes: PDB DPB ひとりし	(Yes) / No	Intended Analysis: VOCs b	
Sample Collection Time New PDB Deployed?: Notes: PDB DP3 Veplo C = degrees Celcius F = degrees Fahrenheit	(Yes) / No (Yes) / No TOC = top of TOR = top of TOR = top of	Intended Analysis: VOCs b	
Sample Collection Time New PDB Deployed?:	res / No (Yes) / No TOC = top of TOR = top of TOV = top of	Intended Analysis: VOCs b	

Checked by: K. Amann 12/1/23

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-8			
Sample Date:	10/17/23	_		
Sampler Name(s):	A.N. , M.L.	, K.S.		
Weather Conditions: Ra	ain Snow Sun Cloudy	Dry Humid Ten	nperature: 55	°F
Well Condition:	atisfactory / Unsatisfactor	ry (explain in notes)		
Depth to Water:	69.94 feet	Depth to Bottom:	319.00	feet
Measurement Point Referen	ce: TOC / OR TO	OV Well Diameter:	6	inches
		easurements		
Time	Temperature (°C)	Conductivity (mS/c	cm)	pН
		/		
		A		
Sample Method:	PDB	Number of Containers:	2 VOA	
	-			0
Sample Collection Time: New PDB Deployed?: & Notes: PBB deployed (-			0
New PDB Deployed?: Fe Notes: PDB deployed (C = degrees Celcius	25) NO 25 198.00 ¹ . TOC = top of	casing		
New PDB Deployed?:	25) NO 25) NO 25) NO TOC = top of TOR = top of	casing		

Checked by: K. Amann 12/1/23

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	Ew-11	-			
Sample Date:	10/17/23				
Sampler Name(s):	_A.N., M.	L., K.S.			
Weather Conditions:	Rain Snow Su	in Cloudy	Dry Humid T	emperature:	55 °F
Well Condition:	Satisfactory / U	Insatisfactory (explain in notes)		
Depth to Water:	62.52	feet	Depth to Bottom:	120.41	feet
Measurement Point Refe	erence: TOC /	OR TOV	Well Diameter:	6	inches
		Field Meas	surements		
Time	Temperatur	re (°C)	Conductivity (ms	S/cm)	pН
	1				
the second se	the second se				
			2		
Sample Method:	PDB		Number of Containers:	21	JoA
	1011-	-		And a second	
Sample Collection Time:	1045	-	Number of Containers: Intended Analysis:	2 L VOCs by Met	
Sample Collection Time:	1011-	-		And a second	
Sample Collection Time:	1045	-		And a second	
Sample Collection Time: New PDB Deployed?:	1045	-	Intended Analysis:	And a second	
Sample Method: Sample Collection Time: New PDB Deployed?: Notes: PDB Deploy	1045	-	Intended Analysis:	And a second	
Sample Collection Time: New PDB Deployed?: Notes:	(045 (Yes)/ No	-	Intended Analysis:	And a second	
Sample Collection Time: New PDB Deployed?: Notes:	(045 (Yes)/ No	-	Intended Analysis:	And a second	
Sample Collection Time: New PDB Deployed?: Notes:	(045 (Yes)/ No	-	Intended Analysis:	And a second	
Sample Collection Time: New PDB Deployed?: Notes: <u>PDB Depl</u>	(045 (Yes)/ No	- 117.00	Intended Analysis:	And a second	
Sample Collection Time: New PDB Deployed?: Notes: <u>PDB Depl</u> C = degrees Celcius	(045 (Yes)/ No	- - 117.02 TOC = top of cas	Intended Analysis:	And a second	
Sample Collection Time: New PDB Deployed?: Notes:	(Ves) No Ves) No loyed at	- 117.00	Intended Analysis:	And a second	

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-12		
Sample Date:	10-17-23		
Sampler Name(s):	_A. N, M.L., K	L.S.	
Weather Conditions:	Rain Snow Sun Clou	Dry Humid Temperature	:°F
Well Condition:	Satisfactory / Unsatisfact	tory (explain in notes)	
Depth to Water:	52.46 feet	Depth to Bottom: 26	5.00 feet
Measurement Point Re	ference: TOC / TOR	TOV Well Diameter:	inches
	Field	Measurements	
Time	Temperature (°C)	Conductivity (mS/cm)	pН
Sample Collection Time	PDB e: 1030 Yes / No	Number of Containers: Z Intended Analysis: VOCs by	- VDA Method 8260
Sample Method: Sample Collection Time New PDB Deployed?: Notes: PDIS bug de	e: 1030 (Yes)/ No		VCar
Sample Collection Time New PDB Deployed?: Notes: PDB Day Do	e: 1030 (Yes)/ No	Intended Analysis: VOCs by	VCA
Sample Collection Time New PDB Deployed?: Notes:	e: 1030 (Yes) No eployed at 106 TOC = top TOR = top	Intended Analysis: VOCs by	VUIT

Checked by: K. Amann 12/1/23

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-13			
Sample Date:	10/17/23	_		
Sampler Name(s):	A.N., M.L., IL.S.			_
Weather Conditions: R	ain Snow Sun Cloudy	Dry Humid Te	mperature:	°F
Well Condition:	atisfactor / Unsatisfactor	y (explain in notes)		
Depth to Water:	43.65 feet	Depth to Bottom: 349.55		feet
Measurement Point Referer	nce: TOC / TOR / TO	OV Well Diameter:	6	inches
	Field M	easurements		
Time	Temperature (°C)	Conductivity (mS	/cm)	рН
	PDB	Number of Containers:	2 VOA	
Sample Collection Time:	0945	Intended Analysis:	VOCs by Method	8260
New PDB Deployed?:	es) / No			
Notes:				
	"+ 196.00 '			
	at 196,00'			
	at 196,00%			
	at 196,00%			
PDB Deployed	at 196,000	fcasing		
Notes: <u>PPB Jeployed</u> °C = degrees Celcius °F = degrees Fahrenheit				
PPB Deployed a	TOC = top of TOR = top of	f riser		

Checked by: K. Amann 12/1/23

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	IW-8			
Sample Date:	10/17/23			
Sampler Name(s):	AN, M.L.	K.S.		
Weather Conditions:	Rain Snow Sun	Loudy Dry Humid Ter	mperature: 5	₹ <u></u> •F
Well Condition:	Satisfactory / Unsatis	sfactory (explain in notes)		
Depth to Water:	76.89 feet	Depth to Bottom:	392.00	feet
Measurement Point Re	ference: TOC / (TOR)	/ TOV Well Diameter:	6	inche
	F	ield Measurements		
Time	Temperature (°C		/cm)	рН
Sample Collection Time	PDB 1430/1440 (Yes) No	Number of Containers: Intended Analysis:	Z UDAS VOCs by Method	8260
Sample Method: Sample Collection Time New PDB Deployed?: Notes: PDB Deploy	e: <u>1430</u> 1440 (Yes) No 336'	Intended Analysis:	Carlo Carlos C	8260
Sample Collection Time New PDB Deployed?: Notes:	e: <u>1430</u> 1440 (Yes) No <u>336</u> <u>yed</u> at. <u>38</u>	Intended Analysis:	Carlo Carlos C	8260
Sample Collection Time New PDB Deployed?: Notes: PDB Deploy	e: <u>1430</u> 1440 (Yes) No <u>336'</u> <u>4ed</u> at. <u>38</u> Toc Toc	Intended Analysis:	Carlo Carlos C	8260

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	IW-9			
Sample Date:	10/17/23			
Sampler Name(s):	A.N., M.L.,	K.S.		
Weather Conditions:	Rain Snow Sun	Dry Humid Ter	nperature: 5	5°F
Well Condition:	Satisfactory Unsatisfac	ctory (explain in notes)		
Depth to Water:	42.25 feet	Depth to Bottom:	360	feet
Measurement Point Ref	erence: TOC / TOR	TOV Well Diameter:	6	inches
	Field	d Measurements		
Time	Temperature (°C)	Conductivity (mS/	cm)	рН
		/		
Sample Method:	PDB	Number of Containers: _	Z VOA VOCs by Method	8260
	(res) No			
New PDB Deployed?:	6			
New PDB Deployed?:	(res)/ No			
New PDB Deployed?: Notes: <u>PDT3 Jeplor</u> C = degrees Celcius	(es) No 402 at 326.5 TOC = top	D ¹ .		
Sample Collection Time: New PDB Deployed?: Notes: <u>PDT3 Jeplor</u> 'C = degrees Celcius 'F = degrees Fahrenheit nS/cm = millisiemens per cent	TOC = top TOC = top	p of casing p of riser		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	IW-10		
Sample Date:	10/17/23		
Sampler Name(s):	A. N., M.L., K	_S.	
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Temperature:	57 °F
Well Condition:	Satisfactory Unsatisfactory	(explain in notes)	
Depth to Water:	6.29 16.29 feet	Depth to Bottom:	57_feet
Measurement Point Refere	ence: TOC / TOR / TOV	Well Diameter:	inches
	Field Me	asurements	
Time	Temperature (°C)	Conductivity (mS/cm)	рН
Sample Method: _ Sample Collection Time: _	PDB 1440-9430	Number of Containers: 2	VUAS Method 8260
New PDB Deployed?:	es)/ No		
Notes: PDB Jepley	ed at 38'		
°C = degrees Celcius	TOC = top of c	asing	
°F = degrees Fahrenheit	TOR = top of ri		
mS/cm = millisiemens per centime PDB = passive diffusion bag		ault e organic compounds	
r DD - passive unusion bag	VOUS - VOIAIR	organic compounds	

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-Y	-		
Sample Date:	10/17/23	_		
Sampler Name(s):	A.N., M.L., K.	S.		
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Ter	nperature:	°F
Well Condition:	Satisfactory / Unsatisfactory	/ (explain in notes)		
Depth to Water:	_63.22_feet	Depth to Bottom:	201.91	feet
Measurement Point Refe	erence: TOC / (FOR) / TO	V Well Diameter:	4	inches
	0			
		easurements		
Time	Temperature (°C)	Conductivity (mS/	cm)	рН
	/			
Sample Method:	PDB	Number of Containers: _	2 VoA VOCs by Method	
	(res)/ No			
Sample Collection Time: New PDB Deployed?: Notes: TDB deploye	6			
New PDB Deployed?: Notes: TDB deploye	(res)/ No	casing		
New PDB Deployed?: Notes:	e^{T} No $d = \frac{129.00^{\circ}}{129.00^{\circ}}$ TOC = top of c TOR = top of rights	iser		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-5	~	
Sample Date:	(0)17123		
Sampler Name(s):	N., M.L., K	5.	
Weather Conditions: Rain	Snow Sun Cloudy	Dry Humid Temperature:	<u>54</u> °F
Well Condition: Satisfac	tory / Unsatisfactory	(explain in notes)	
Depth to Water: 40	. 20 feet	Depth to Bottom:	-76 feet
Measurement Point Reference:	TOC / TOR / TOV	Well Diameter:	inches
		asurements	
Time	Temperature (°C)	Conductivity (mS/cm)	pН
	/		
Sample Method: PDB Sample Collection Time: O New PDB Deployed?: Tes of	730 No	Number of Containers: ≥ Intended Analysis: VOCs by	Method 8260
Notes: PPB Jeplo yec) at 125.0	50'	
°C = degrees Celcius	TOC = top of ca	asing	
°C = degrees Celcius °F = degrees Fahrenheit	TOC = top of ca TOR = top of ris		
	TOR = top of ris TOV = top of va	ser	

MONITORING WELLS - SUBMERSIBLE PUMP SAMPLING RECORD

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-6			
Sample Date:	0/17/23			
Sampler Name(s):	.N., M.	L., K.S.		
Weather Conditions: Rain	Snow Sur	Cloudy Dry Humid	Temperature:	55 °F
Well Condition: Satisf	factory Un	satisfactory (explain in notes)		
Depth to Water:	NM	feet Depth to Bot	tom: _~10	⊘feet
Measurement Point Reference:	TOC TO	DR / TOV Well Diamet	er: (inches
		Field Macouromonto		
Time Tem	perature (°C)	Field Measurements Conductivity (mS/cm)	pН	Turbidity (NTU)
		N N N N N N N N N N N N N N N N N N N	pri	raiolary (into)
			-	
Sample Method: Gra	b	Number of Conta	iners: 2VC	AS
Sample Collection Time:(C	010	Intended Analysi	s: VOCs by N	lethod 8260
Sample Collection Time:(<u>C</u>	010	Intended Analysi	s: VOCs by M	Nethod 8260
	210	Intended Analysi	s: <u>VOCs by N</u>	Aethod 8260
Notes:	0			Aethod 8260
Notes:	n from	hose. Purge 20		Aethod 8260
Notes: Sample take water befor	n from	hose. Purge 20	o gallons	of
Notes: Sample take Water befor Well contains a dedicate	n from ~e same ed cap that ca	hose. Purge 20 apled.	pth to water and o	o f depth to bottom
Notes: Sample take Water befor Well contains a dedicate	n from re same ed cap that can o bottom record	hose. Purge 20 ifled. nnot be removed to collect de rded above is based on histor	pth to water and o	o f depth to bottom
Notes: Sample take Well contains a dedicate measurements. Depth t dedicated pump. Pump	n from ~e same ed cap that can o bottom recon is activated to	hose. Purge 20 fled. not be removed to collect de ded above is based on histor collect sample.	o gallows	o f depth to bottom
Notes: Sample take Well contains a dedicate measurements. Depth t dedicated pump. Pump	<u>n from</u> <u>e Sance</u> ed cap that can o bottom recon is activated to TOC = top of	hose. Purge 20 <u>innot be removed to collect de</u> <u>rded above is based on histor</u> <u>collect sample.</u> casing	o gallows	o f depth to bottom
Notes: Sample take Well contains a dedicate measurements. Depth t dedicated pump. Pump	n from ~e same ed cap that can o bottom recon is activated to	hose. Purge 20 ufled. nnot be removed to collect de rded above is based on histor collect sample. casing riser	o gallows	o f depth to bottom

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID: -	M	- %	-		
Sample Date:	10)1	7/23			
Sampler Name(s):	A.N., 1	N.L.,K	.s.		
Weather Conditions: F	Rain Snow	Sun Cloudy	Dry Humid Te	emperature: 5	5_°F
Well Condition:	Satisfactory /	Unsatisfactory	(explain in notes)		
Depth to Water:	12.38	feet	Depth to Bottom:	202.11	feet
Measurement Point Refere	nce: TOC /	FOR TON	/ Well Diameter:	4	inches
		-			
		Field Mea	asurements	1	
Time	Tempera	ture (°C)	Conductivity (mS	S/cm)	рН
		~	1		
Sample Method: Sample Collection Time: New PDB Deployed?:	PDB 1230 Tes)1 No	-	Number of Containers: Intended Analysis:	2 VOA VOCs by Metho	od 8260
Notes: PD3 hag depl	oyed at	199-0	,		
°C = degrees Celcius °F = degrees Fahrenheit		TOC = top of c: TOR = top of ri			
mS/cm = millisiemens per centime	eter	TOV = top of va	ault		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	M-9	-		
Sample Date:	10/17/23	_		
Sampler Name(s):	A.N. ML ,KS	ŝ		-
Weather Conditions: Ra	in Snow Sun Cloudy	Dry Humid Ter	mperature: 55	°F
Well Condition:	tisfactory Unsatisfactory	(explain in notes)		
Depth to Water:	80,48 feet	Depth to Bottom:	201.82	feet
Measurement Point Referenc	E TOC / TOR TOV	/ Well Diameter:	4	inches
	Field Mea	asurements		
Time	Temperature (°C)	Conductivity (mS/	/cm)	рН
	· · · ·			
Sample Method:	245	Number of Containers:	Z VDA VOCs by Method 82	260
New PDB Deployed?: Ye	s)/ No			
New PDB Deployed?: (Ve Notes: <u>P.P. 13 deployed</u>)	s) 1 No at 198:00.			
Notes: P.P. 13 deployed	at 198.00.			
Notes: <u>P.P. 73 deployed</u> °C = degrees Celcius	at 198.00. TOC = top of ca	The Party of		
	at 198.00. TOC = top of ca TOR = top of ris	ser		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	Mueller	-		
Sample Date:	10/17/23			
Sampler Name(s):	AN, M.L. K.	5.		
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Te	mperature: 5	2°F
Well Condition:	Satisfactory Unsatisfactory	y (explain in notes)		
Depth to Water:	14.75 feet	Depth to Bottom:	113.25	feet
Measurement Point Referen	ence: TOC TOR / TO	V Well Diameter:	. 6	inches
	Field Me	easurements		
Time	Temperature (°C)	Conductivity (mS	/cm)	pН
Sample Method: Sample Collection Time:	PDB 0910 (res) No	Number of Containers:	2 Vok VOCs by Method	18260
Notes: PDBdepley	<u> </u>			
'C = degrees Celcius 'E = degrees Eabrenbeit	TOC = top of a			
'C = degrees Celcius 'F = degrees Fahrenheit nS/cm = millisiemens per centim	TOR = top of r	riser		

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:M	w-104	-	
Sample Date:(0	117/23	-	
Sampler Name(s):	N. , M.L.,	K.S.	
Weather Conditions: Rain S	Snow Sun Cloudy	Dry Humid Temperat	ture: <u>55</u> °F
Well Condition: Satisfacto	ory / Unsatisfactory	(explain in notes)	
Depth to Water: 26.1	60 feet	Depth to Bottom:	9.52 feet
Veasurement Point Reference: T	OC / TOB / TON	/ Well Diameter:	2 inche
	Field Mea	asurements	1
Time T	emperature (°C)	Conductivity (mS/cm)	pН
	/	9	
Sample Collection Time:	0D		LV DAS
	0D No 78.0 ¹ .		The Second Second Second
Sample Collection Time: <u>140</u> New PDB Deployed?: (es) Notes: <u>PB deployed</u> at	No 78.0 ¹ .	Intended Analysis: VOCs	The Second Second Second
Sample Collection Time: 140 New PDB Deployed?: (es) 1 Notes: DB Jeployed at C = degrees Celcius	No	Intended Analysis: VOCs	The Second Second Second
Sample Collection Time: 140 New PDB Deployed?: (es)	No 78.0^{1} . TOC = top of ca TOR = top of ria TOV = top of va	Intended Analysis: VOCs	The Second Second Second

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	MW-109			
Sample Date:	10/17/23			
Sampler Name(s):	A.N., ML. K	5		
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Te	emperature:	5_°F
Well Condition:	Catisfactory Unsatisfactory	(explain in notes)		
Depth to Water:	17.59 feet	Depth to Bottom:	86.19	feet
Measurement Point Refer	rence: TOC / (TOR)/ TO	V Well Diameter:	2	inches
	0			1.00
	Field Me	asurements		
Time	Temperature (°C)	Conductivity (mS	S/cm)	рН
		/		
	/			
Sample Method: Sample Collection Time:	PDB 1315	Number of Containers: Intended Analysis:	2 VOA VOCs by Method	
New PDB Deployed?:	es/ No	intended Analysis.	VOUS by Method	0200
Notes:				
Bottom of b	ay @ 69.0°			
°C = degrees Celcius	TOC = top of c	casing		
PT - deserves Tabasebatt	TOD - top of	iser		
	TOR = top of r			
°F = degrees Fahrenheit mS/cm = millisiemens per centir PDB = passive diffusion bag	neter TOV = top of v			

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	MW-112			
Sample Date:	10/17/23			
Sampler Name(s):	_A.N., M.L.	, Ks.		_
Weather Conditions:	Rain Snow Sun cloudy	Dry Humid Ter	nperature: 57	°F
Well Condition:	Satisfactory Unsatisfactory (explain in notes)		
Depth to Water:	3.71 feet	Depth to Bottom:	24.85	feet
Measurement Point Re	eference: TOC / OR / TOV	Well Diameter:	2	inches
	Field Mea	surements		
Time	Temperature (°C)	Conductivity (mS/	cm)	рН
Sample Collection Time	1	Number of Containers: _ Intended Analysis: _	2 VOAS VOCs by Method 826	60
Sample Collection Time New PDB Deployed?: Notes:	a: 1575	Intended Analysis:		<u>50</u>
Sample Collection Time New PDB Deployed?: Notes: PDB bag	e: 1575 (Yes)/ No	Intended Analysis: _		<u>50</u>
Sample Method: Sample Collection Time New PDB Deployed?: Notes: PDB bag C = degrees Celcius F = degrees Fahrenheit nS/cm = millisiemens per cer	e: <u>1575</u> (Yes) / No <u>deployed</u> at 20. TOC = top of cas TOR = top of rise	Intended Analysis: _		50

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	MW-113		
Sample Date:	10/17/23		
Sampler Name(s):	A.N., K.S., M.	し.	
Weather Conditions:	Rain Snow Sun Cloudy	Dry Humid Tempe	rature: <u>57</u> °F
Well Condition:	Satisfactory Unsatisfactor	y (explain in notes)	
Depth to Water:	6-69 feet	Depth to Bottom:	22.51 feet
Measurement Point Refe	erence: TOC / OR / TO	V Well Diameter:	Zinches
	Field M	easurements	
Time	Temperature (°C)	Conductivity (mS/cm)	pH
	>		
Sample Method: Sample Collection Time:	6	and the second second	Cs by Method 8260
New PDB Deployed?: Notes: PDB Deplo	(res) No yed at 19.60%		
C = degrees Celcius	TOC = top of		
F = degrees Fahrenheit	TOR = top of		
nS/cm = millisiemens per cent	imeter TOV = top of	vault	
DB = passive diffusion bag	Voca = valati	ile organic compounds	

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	Ew-	7			
Sample Date:	10/18/2	3			
Sampler Name(s):	A.N., N	I.L., KS.			
Weather Conditions:	Rain Snow S	un Cloudy Dry	Humid	Temperature	e:°F
Well Condition:	Satisfactory Un	satisfactory (explain	in notes)		
Initial Water Level:	83.00	ft ft. a	bove mst	Reading	ansducer / Manual DTW
Pump Intake Depth:	51.64	ft. / ft. a	bove msl	Pump Opera	tion: Auto Manual
Depth to Water:	NIN	ft. / ft.a	bove msl		
		Field Meas	urements		
Time	Temperature (°C)	Conductivity (mS	S/cm)	рН	Turbidity (NTU)
				_	
Purge Water Descrip	the law of the second se	ine black partici		Ddor: NAPL present	? Yes (NO)
Sample Method:	Grab		lumber of Conta		
Sample Collection Ti	ime: <u>1130</u>	Ir	ntended Analys	is: VOCs	by Method 8260
Final Water Level:	83,00)ft. (ft. abo	ve msl Rea	ding Transo	lucer / Manual DTW
Notes:					
NM = not measure	d				
°C = degrees Celcius	ft. = feet	m	sl = mean sea leve	əl	NTU = nephelometric turbidity units
°F = degrees Fahrenheit DTW = depth to water	mS/cm = millisieme	ens per centimeter N	APL = non-aqueou	is phase liquid	VOCs = volatile organic compounds

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	EW-16	2			
Sample Date:	10/18/2	3	_		
Sampler Name(s):	A.N., M	L.,KS.			
Weather Conditions:	Rain Snow S	un Cloudy	Dry Humid	Temperatur	e:°F
Well Condition:	Satisfactory / Un	satisfactory (exp	lain in notes)		
Initial Water Level:	75.72	ft. 🤇 t	ft. above msl	Reading: F	ransducer Manual DTW
Pump Intake Depth:	91.16	ft. / 🕻	t. above msl	Pump Opera	ation: Auto / Manual
Depth to Water:	NM	ft. / 1	t. above msl		
		Field Me	easurements		
Time	Temperature (°C)	Conductivity	(mS/cm)	рН	Turbidity (NTU)
Purge Water Descrip	tion: Color: Other:	der	-	Odor: NAPL present	Yes (No)
Sample Method:	Grab		Number of	Containers:	\sim
Sample Collection Til	me:(100		Intended A	nalysis: VOC	s by Method 8260
Final Water Level:	75-7	0_ft. /ft. a	above msl	Reading: Transo	ducer / Manual DTW
Notes:					
Level transducer no NM = not measured		<u>y; therefore, ini</u>	tial and final	water levels recor	ded are incorrect.
°C = degrees Celcius °F = degrees Fahrenheit DTW = depth to water	ft. = feet mS/cm = millisieme	ens per centimeter	msl = mean so NAPL = non-a	ea level iqueous phase liquid	NTU = nephelometric turbidity units VOCs = volatile organic compounds

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	OW-	2	_		
Sample Date:	(0/18/2	:3	_		
Sampler Name(s):	A. N. , 1	1.L. , K.	Ŝ		
Weather Conditions	s: Rain Snow S	Sun Cloudy D	ry Humid	Temperature	e: 50 °F
Well Condition:	Satisfactory / Un	nsatisfactory (expl	ain in notes)		
Initial Water Level:	245.02	ft. / f t	above msl	Reading:	ansducer / Manual DTW
Pump Intake Depth	234.03	5ft. 1/ft	above msl	> Pump Opera	tion: Auto Manual
Depth to Water:	NM	ft. / ft	above msl		
		Field Me	asurements		
Time	Temperature (°C)	Conductivity (mS/cm)	pН	Turbidity (NTU)
				_	
Purge Water Descri		cleer		Odor: <u>NO</u>	\sim
	Other: _	none		NAPL present	? Yes No
Sample Method:	Grab		Number of C		ZUOAS
Sample Collection T		_	Intended Ana	alysis: VOCs	by Method 8260
Final Water Level:	245.0	2ft. / ft. al	bove msl)	Reading: Transd	ucer Manual DTW
Notes:					
°C = degrees Celcius	ft. = feet		msl = mean sea	a level	NTU = nephelometric turbidity units
°F = degrees Fahrenheit DTW = depth to water	mS/cm = millisiem	ens per centimeter	NAPL = non-aq	ueous phase liquid	VOCs = volatile organic compounds

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	0w-	3	-		
Sample Date:	10/18	23			
Sampler Name(s):	_A.N., 1	1.L., K.S.			
Weather Conditions	: Rain Snow	Sun Cloudy Dr	y Humid	Temperature:	
Well Condition:	Satisfactory / U	nsatisfactory (expla	iin in notes)		
Initial Water Level:	239.61	ft. 1 (ft.	above msl	Reading:	nsducer / Manual DTW
Pump Intake Depth:	Not availa	ble ft. 1/1(.	above msl) Pump Operati	on: Auto Manual
Depth to Water:	NM	ft. / ft.	above msl		
		Field Mea	asurements		
Time	Temperature (°C)	Conductivity (n	nS/cm)	pН	Turbidity (NTU)
		/		_	
		/			
Purge Water Descrip	otion: Color: _ Other: _	none		Odor: <u>no</u> NAPL present?	Yes / No
Sample Method:	Grab		Number of C	ontainers: 2	20045
Sample Collection T	ime: 1020		Intended Ana	alysis: VOCs b	by Method 8260
Final Water Level:	239.7	1 ft. / ft. ab	ove msl) F	Reading: (ransdu	cer / Manual DTW
Notes:		~			
NM = not measure	ed				
°C = degrees Celcius °F = degrees Fahrenheit DTW = depth to water	ft. = feet mS/cm = millisiem		msl = mean sea NAPL = non-aqu		NTU = nephelometric turbidity units VOCs = volatile organic compounds

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	Ow	-5			
Sample Date:	10/18/2	3			
Sampler Name(s):	_A.N., M	L. K.S	*		
Weather Conditions	s: Rain Snow S	Sun Cloudy Dry	Humid	Temperature:	_ <u>\$0</u> °F
Well Condition:	Satisfactory / Ur	nsatisfactory (explain	in notes)		
Initial Water Level:	257.20	ft. / (ft. a	bove msl	Reading: Tra	nsducer / Manual DTW
Pump Intake Depth	235.2	ft. ft. a	bove msl	Pump Operati	on: Auto / Manual
Depth to Water:	NM	ft. / ft.a	bove msl		
	1	Field Measu	urements		
Time	Temperature (°C)	Conductivity (mS	S/cm)	рН	Turbidity (NTU)
			_		
Purge Water Descri	the second se	clear		Odor:	one
	Other: 🛓	ne black pertice		NAPL present?	
Sample Method:	Grab	N	umber of Co	ntainers: 2	- VOAS
Sample Collection T	ime: 1000	In	tended Analy	vsis: VOCs k	by Method 8260
Final Water Level:	248.3	ft. / (ft. abov	ve msl Re	eading: Fransdu	cer D Manual DTW
Notes:					
NM = not measure	d				
°C = degrees Celcius °F = degrees Fahrenheit DTW = depth to water	ft. = feet mS/cm = millisiem		sl = mean sea le APL = non-aque		NTU = nephelometric turbidity units VOCs = volatile organic compounds

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	00-7	-		
Sample Date:	10/18/2	-3		
Sampler Name(s):	A.N. ,	M.L., K.S.		
Weather Conditions:	Rain Snow S	un Cloudy Dry Humid	Temperature	<u>50</u> °F
Well Condition:	Satisfactory / Un	satisfactory (explain in notes)		
Initial Water Level:	250.21	ft. / ft. above msl	Reading:	insducer / Manual DTW
Pump Intake Depth:	231.37	ft. ft. above msl	> Pump Operat	ion Auto Manual
Depth to Water:	NM	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	pН	Turbidity (NTU)
		1		
		/		
Purge Water Descrip	otion: Color: Other:	NA NA	Odor: NAPL present?	NA Yes / No
Sample Method:	Grab		Containers:	NA
				////
Sample Collection Ti	ime: <u>NA</u>	Intended A	nalysis: VOCs	by Method 8260
Final Water Level:	NM	t. / ft. above mat	Reading: Transdu	ucer / Manual DTW
Notes: When 5	starting CI	isoo control	, controlle	er error light
activate and sa	ample could not be co	Red light ki pollected. NM = not measure	d. NA = not applica	Therefore, pump would not able.
°C = degrees Celcius °F = degrees Fahrenheit	ft. = feet mS/cm = millisieme	msl = mean se ens per centimeter NAPL = non-a	ea level aqueous phase liquid	NTU = nephelometric turbidity units VOCs = volatile organic compounds

DTW = depth to water

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	010-13	<u> </u>		
Sample Date:	10/12/23	3		
Sampler Name(s):	A.N., M	1.L., K.S.		
Weather Conditions	s: Rain Snow S	Sun Cloudy Dry Humid	Temperature	SO °F
Well Condition:	Satisfactory Ur	nsatisfactory (explain in notes)		
Initial Water Level;	252.02	ft. / ft. above msl	Reading: Tra	nsducer / Manual DTW
Pump Intake Depth	236.9	ft. / tt. above msl	Pump Operat	ion: Auto / Manual
Depth to Water:	NM	ft. / ft. above msl		
		Field Measurements		
Time	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)
		1		
	11			
Purge Water Descri	ption: Color: Other:	NA	Odor: NAPL present?	VA Yes / No
Sample Method:	Grab	Number of 0	Containers:	
Sample Collection 1	. 10	Intended Ar		
				by Method 8260
Final Water Level:		ft. / ft. above msl	Reading: Transdu	icer / Manual DTW
Notes:	1		Loter S.	
when ste	> 1	300 control,	controlle	<u>cenor</u>
would not active	ate and sample could	d not be collected. NM = not	measured. NA = no	Therefore, pump ot applicable.
ALC: NOT THE OWNER OF				Contraction of the second
°C = degrees Celcius °F = degrees Fahrenheit	ft. = feet mS/cm = millisiem	msl = mean se ens per centimeter NAPL = non-ac	a level queous phase liquid	NTU = nephelometric turbidity units VOCs = volatile organic compounds

DTW = depth to water

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	010-14	-			
Sample Date: _	10/18/2	3			
Sampler Name(s): _	A.N., M	L, K.S	-		
Weather Conditions:	Rain Snow Si	un Cloudy Dry	Humid T	emperature:	50 °F
Well Condition:	Satisfactory Uns	atisfactory (explain	in notes)		
Initial Water Level: _	261.73	ft. / fc.at	pove msl R	eading: Trar	nsducer / Manual DTW
Pump Intake Depth: _	237.24	ft. / ft. at	pove msl P	ump Operati	on: Auto / Manual
Depth to Water:	NM	ft. / ft.ab	pove msl		
		Field Measu	rements		
Time	Temperature (°C)	Conductivity (mS	/cm)	pН	Turbidity (NTU)
Purge Water Descripti	on: Color: Other:	deer .	Odd	or:	Vone Yes (No)
Sample Method:	Grab	NI	umber of Contain	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sample Collection Tim	ne: 0915	In	tended Analysis:	VOCs b	by Method 8260
Final Water Level:	261.39	ft. / ft. abov	~		cer Manual DTW
Notes:		_		St. Iterioud	indindai D I II
NM = not measure	ed				
°C = degraan Onlative	A - fact				
°C = degrees Celcius °F = degrees Fahrenheit DTW = depth to water	ft. = feet mS/cm = millisieme		il = mean sea level .PL = non-aqueous pl		NTU = nephelometric turbidity uni VOCs = volatile organic compoun

AMERICAN THERMOSTAT ROUTE 23B, SOUTH CAIRO, NEW YORK

Well ID:	000-16			
Sample Date:	10/18/22	>		
Sampler Name(s):	A.N, M	. L. , K.S.		
Weather Condition	s: Rain Snow S	Sun Cloudy Dry	Humid Temperatu	ire: <u>50</u> °F
Well Condition:	Satisfactory Ur	nsatisfactory (explain ir	n notes)	
Initial Water Level:	248.57	ft. / tabo	ove msl Reading:	Fransducer / Manual DTW
Pump Intake Depth		5 ft. / (t. abo	ove msl Pump Ope	ration: Auto Manual
Depth to Water:	NM	ft. / ft. abc	ove msl	
		Field Measur	ements	
Time	Temperature (°C)	Conductivity (mS/c	cm) pH	Turbidity (NTU)
		1		
Purge Water Descr	iption: Color: _ Other:	clear NA	Odor: NAPL preser	10ne nt? Yes / No
Sample Method:	Grab	Nu	mber of Containers:	
Sample Collection	Time: 0900		ended Analysis; VOC	s by Method 8260
Final Water Level:	246.52	ft. / t. above	msl) Reading: Trans	ducer) Manual DTW
Notes:				
NM = not measu	ired			
°C = degrees Celcius °F = degrees Fahrenheil DTW = depth to water	ft. = feet mS/cm = millisiem		= mean sea level PL = non-aqueous phase liquid	NTU = nephelometric turbidity units VOCs = volatile organic compounds

Checked by: K.

K. Amann 12/1/23

APPENDIX D

CATEGORY A REVIEW, OCTOBER - NOVEMBER 2023 LTM GROUNDWATER SAMPLING

CATEGORY A REVIEW REPORT OCTOBER - NOVEMBER 2023 LTM GROUNDWATER SAMPLING AMERICAN THERMOSTAT SITE SOUTH CAIRO, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in October and November 2023 at the American Thermostat Site in South Cairo, New York, and shipped to Pace Analytical Laboratory in Longmeadow, Massachusetts, for analysis. Samples were analyzed by the following United States Environmental Protection Agency (USEPA) method:

• Project List Volatile Organic Compounds (VOCs) by Method 8260

Results were reported in the following sample delivery groups (SDGs):

- 23J2524
- 23J2533
- 23K1915

Sample event information included in this chemistry review is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

Laboratory deliverables included:

• Chain of custody documentation plus batch quality control results.

The Category A Review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Laboratory Control Samples (LCS)
- Field Duplicate Evaluation (none collected)
- Matrix spike and Matrix Spike Duplicate (MS/MSD) Evaluation
- Surrogates (if applicable)
- Reporting Limits
- Electronic Data Qualification and Verification

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reporting limit J = concentration is estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review the majority of data meet the quality objectives; however, the following potential limitations were identified:

Acetone (3.2 ug/L) was detected at a concentration greater than the reporting limit in the field blank associated with a subset of samples in SDG 23J2524. Acetone results in associated samples were qualified as non-detect (U) at the reporting limit. Qualified results are summarized in Table 3 with reason code BL2.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

There were no additional observations and quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3. Unless presented in Table 3, sample results are interpreted to be usable as reported by the laboratory.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

Data Validator: Amber Jones

amen lons

Date: January 10, 2023

Reviewed by: Julie Ricardi

Julie Rinandi

Date: January 10, 2024

Standard Table Notes:

Sample Type (QC Code)	Qualification Reason Codes
FS – field sample	BL1 – method blank qualifier
FD – field duplicate	BL2 – field or trip blank qualifier
TB – trip blank	CCV – continuing calibration verification recovery outside limits
EB – equipment blank	CCV%D – continuing calibration verification percent difference exceeds goal
FB – field blank	CCVRRF – continuing calibration relative response factor low
	CI – chromatographic interference present
<u>Matrix</u>	DCPD – dual column percent difference exceeds limit
GW – ground water	E – result exceeds calibration range
BW – blank water	FD – field duplicate precision goal exceeded
TW – tap water	FP – false positive interference
SV – soil vapor	HT – holding time for prep or analysis exceeded
SED - sediment	HTG – holding time for prep or analysis grossly exceeded
	ICV – initial calibration verification recovery outside limit
<u>Units</u>	ICVRRF – initial calibration verification relative response factor low
mg/L – milligrams per liter	ICVRSD – initial calibration verification % relative standard deviation exceeds
ng/L – nanograms per liter	goal
μg/L – micrograms per liter	ISH – internal standard response greater than limit
mg/kg – milligrams per kilogram	ISL – internal standard response less than limit
μg/kg – micrograms per kilogram	LCSH – laboratory control sample recovery high
$\mu g/m^3$ – micrograms per cubic meter	LCSL – laboratory control sample recovery low
	LCSRPD – laboratory control sample/duplicate relative % difference precision goal exceeded
Qualifiers	LD – lab duplicate precision goal exceeded
U – not detected above quantitation limit	MSH – matrix spike and/or MS duplicate recovery high
J – estimated quantity	MSL – matrix spike and/or MS duplicate recovery low
J+ - estimated quantity, biased high	MSRPD – matrix spike/duplicate relative % difference precision goal exceeded
J estimated quantity, biased low	N – analyte identification is not certain
R – data unusable	PEM – performance evaluation mixture exceeds limit
	PM – sample percent moisture exceeds EPA guideline
Fraction	SD – serial dilution result exceeds percent difference limit
T – total	SP – sample preservation/collection does not meet method requirement
D – dissolved	SSH – surrogate recovery high
N – normal	SSL – surrogate recovery low

TD – dissolved concentration exceeds total

					M	ethod Class	VOCs
					Analy	sis Method	SW8260
						Fraction	Ν
Lab SDG	Location	Field Sample ID	Sample Date	Lab Sample ID	Media	Qc Code	Count
23J2524	EW-16	EW-16	10/18/2023	23J2524-04	GW	FS	18
23J2524	EW-7	EW-7	10/18/2023	23J2524-03	GW	FS	18
23J2524	MW-113	MW-113	10/17/2023	23J2524-01	GW	FS	18
23J2524	OW-14	OW-14	10/18/2023	23J2524-08	GW	FS	18
23J2524	OW-16	OW-16	10/18/2023	23J2524-09	GW	FS	18
23J2524	OW-2	OW-2	10/18/2023	23J2524-05	GW	FS	18
23J2524	OW-3	OW-3	10/18/2023	23J2524-06	GW	FS	18
23J2524	OW-5	OW-5	10/18/2023	23J2524-07	GW	FS	18
23J2524	QC	Field Blank	10/17/2023	23J2524-02	BW	FB	18
23J2524	QC	Trip Blank	10/18/2023	23J2524-10	BW	ТВ	18
23J2533	CE-2	CE-2 AFT	10/17/2023	23J2533-01	GW	FS	18
23J2533	EW-11	EW-11	10/17/2023	23J2533-06	GW	FS	18
23J2533	EW-12	EW-12	10/17/2023	23J2533-07	GW	FS	18
23J2533	EW-13	EW-13	10/17/2023	23J2533-08	GW	FS	18
23J2533	EW-3	EW-3	10/17/2023	23J2533-02	GW	FS	18
23J2533	EW-4	EW-4	10/17/2023	23J2533-03	GW	FS	18
23J2533	EW-5	EW-5	10/17/2023	23J2533-04	GW	FS	18
23J2533	EW-8	EW-8	10/17/2023	23J2533-05	GW	FS	18
23J2533	IW-10	IW-10	10/17/2023	23J2533-11	GW	FS	18
23J2533	IW-8	IW-8	10/17/2023	23J2533-09	GW	FS	18
23J2533	IW-9	IW-9	10/17/2023	23J2533-10	GW	FS	18
23J2533	M-4	M-4	10/17/2023	23J2533-12	GW	FS	18
23J2533	M-5	M-5	10/17/2023	23J2533-13	GW	FS	18
23J2533	M-6	M-6	10/17/2023	23J2533-14	GW	FS	18
23J2533	M-8	M-8	10/17/2023	23J2533-15	GW	FS	18
23J2533	M-9	M-9	10/17/2023	23J2533-16	GW	FS	18
23J2533	MUELLER	Mueller	10/17/2023	23J2533-17	GW	FS	18
23J2533	MW-104	MW-104	10/17/2023	23J2533-18	GW	FS	18
23J2533	MW-109	MW-109	10/17/2023	23J2533-19	GW	FS	18
23J2533	MW-112	MW-112	10/17/2023	23J2533-20	GW	FS	18
23K1915	CE-2	CE-2 BEF	11/14/2023	23K1915-02	GW	FS	18
23K1915	QC	Trip Blank	11/14/2023	23K1915-01	BW	ТВ	18

	Lo	ocation	CE-2	2	C	E-2	EW	/-11	EV	V-12
	Lab Sample Delivery	Group	23J253	33	23K	1915	23J	2533	23J	2533
	Field Samp	le Date	10/17/2	.023	11/14/2023		10/17/2023		10/17/2023	
	Field Sar	nple ID	CE-2 AFT		CE-2	2 BEF	EW	/-11	EW-12	
	Qc Code		FS		I	FS	I	=S		FS
Method	Parameter	Units	Result C	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1-Trichloroethane	UG/L	1 U		1	U	1	U	1	U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U
SW8260	1,1,2-Trichloroethane	UG/L	1 U		1	U	1	U	1	U
SW8260	1,1-Dichloroethene	UG/L	1 U		1 U		1 U		1 U	
SW8260	1,2-Dichloroethane	UG/L	1 U		1 U		1 U		1 U	
SW8260	2-Hexanone	UG/L	10 U		10 U		10 U		10	U
SW8260	Acetone	UG/L	50 U		4 J		19	J	50	U
SW8260	Carbon disulfide	UG/L	5 U		5		5 U		5 U	
SW8260	Carbon tetrachloride	UG/L	5 U		5	U	5 U		5 U	
SW8260	Chloroform	UG/L	1.7 J		2.6		2	U	2	U
SW8260	Chloromethane	UG/L	2 U		0.82	J	2	U	2	U
SW8260	cis-1,2-Dichloroethene	UG/L	1 U		1	U	2.3		0.35	J
SW8260	Methylene chloride	UG/L	5 U		5	U	5	U	5	U
SW8260	Tetrachloroethene	UG/L	1 U		1.1		1	U	2.5	
SW8260	Toluene	UG/L	1 U		1	U	1	1 U		U
SW8260	trans-1,2-Dichloroethene	UG/L	1 U		1 U		1 U		1 U	
SW8260	Trichloroethene	UG/L	1 U		0.29 J		1 U		0.28 J	
SW8260	Vinyl chloride	UG/L	2 U		2	U	2	U	2	U

	Lo	ocation	EW	-13	EV	/-16	E۱	V-3	E۱	N-4
	Lab Sample Delivery	Group	23J2	2533	23J	2524	23J	2533	23J	2533
	Field Samp	le Date	10/17	/2023	10/18/2023		10/17/2023		10/17/2023	
	Field Sar	nple ID	EW-13		EV	/-16	E١	V-3	E١	N-4
	Qc Code		FS		FS		I	=S		FS
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1-Trichloroethane	UG/L	1	U	25	U	1	U	1	U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	12	U	0.5	U	0.5	U
SW8260	1,1,2-Trichloroethane	UG/L	1	U	25	U	1	U	1	U
SW8260	1,1-Dichloroethene	UG/L	1	U	25 U		1 U		1 U	
SW8260	1,2-Dichloroethane	UG/L	1	U	25 U		1 U		1 U	
SW8260	2-Hexanone	UG/L	10	U	250 U		10 U		10	U
SW8260	Acetone	UG/L	160		1,200 U		32 J		57	,
SW8260	Carbon disulfide	UG/L	5	U	120 U		5 U		5 U	
SW8260	Carbon tetrachloride	UG/L	5	U	120	U	5 U		5 U	
SW8260	Chloroform	UG/L	2	U	50	U	2	U	2	U
SW8260	Chloromethane	UG/L	2	U	50	U	2	U	2	U
SW8260	cis-1,2-Dichloroethene	UG/L	2.8		1,000		2.7		5.2	
SW8260	Methylene chloride	UG/L	5	U	120	U	5	U	5	U
SW8260	Tetrachloroethene	UG/L	27		2,100		1	U	1	U
SW8260	Toluene	UG/L	1	U	25	U	1	U	1 U	
SW8260	trans-1,2-Dichloroethene	UG/L	1	U	25 U		1 U		1 U	
SW8260	Trichloroethene	UG/L	2.6		1,200		1 U		1 U	
SW8260	Vinyl chloride	UG/L	2	U	18	J	9.7		12	

	Lo	ocation	EW-5	EW-7	EW-8	IW-10	
	Lab Sample Delivery	/ Group	23J2533	23J2524	23J2533	23J2533	
	Field Samp	le Date	10/17/2023	10/18/2023	10/17/2023	10/17/2023	
	Field Sar	nple ID	EW-5	EW-7	EW-8	IW-10	
	Qc Code		FS	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	1,1,1-Trichloroethane	UG/L	2 U	4 U	1 U	1 U	
SW8260	1,1,2,2-Tetrachloroethane	UG/L	1 U	2 U	0.5 U	0.5 U	
SW8260	1,1,2-Trichloroethane	UG/L	2 U	4 U	1 U	1 U	
SW8260	1,1-Dichloroethene	UG/L	0.52 J	4 U	1 U	1 U	
SW8260	1,2-Dichloroethane	UG/L	2 U	4 U	1 U	1 U	
SW8260	2-Hexanone	UG/L	20 U	40 U	10 U	10 U	
SW8260	Acetone	UG/L	62 J	200 U	7.1 J	25 J	
SW8260	Carbon disulfide	UG/L	10 U	20 U	5 U	5 U	
SW8260	Carbon tetrachloride	UG/L	10 U	20 U	5 U	5 U	
SW8260	Chloroform	UG/L	4 U	8 U	2 U	2 U	
SW8260	Chloromethane	UG/L	4 U	8 U	2 U	2 U	
SW8260	cis-1,2-Dichloroethene	UG/L	210	230	2.7	1.8	
SW8260	Methylene chloride	UG/L	10 U	20 U	5 U	5 U	
SW8260	Tetrachloroethene	UG/L	150	40	1 U	0.28 J	
SW8260	Toluene	UG/L	43	4 U	1 U	1 U	
SW8260	trans-1,2-Dichloroethene	UG/L	1.3 J	5	0.48 J	1 U	
SW8260	Trichloroethene	UG/L	63	27	1 U	0.61 J	
SW8260	Vinyl chloride	UG/L	6.8	4 J	2.2	2 U	

	Lo	ocation	IW-8	IW-9	M-4	M-5	
	Lab Sample Delivery	Group	23J2533	23J2533	23J2533	23J2533	
	Field Samp	le Date	10/17/2023	10/17/2023	10/17/2023	10/17/2023	
	Field Sar	nple ID	IW-8	IW-9	M-4	M-5	
	Qc Code		FS	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	1,1,1-Trichloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	
SW8260	1,1,2-Trichloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,2-Dichloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	2-Hexanone	UG/L	10 U	10 U	10 U	10 U	
SW8260	Acetone	UG/L	30 J	24 J	94	63	
SW8260	Carbon disulfide	UG/L	5 U	5 U	5 U	5 U	
SW8260	Carbon tetrachloride	UG/L	5 U	5 U	5 U	5 U	
SW8260	Chloroform	UG/L	2 U	2 U	2 U	2 U	
SW8260	Chloromethane	UG/L	2 U	2 U	2 U	2 U	
SW8260	cis-1,2-Dichloroethene	UG/L	1 U	17	1 U	11	
SW8260	Methylene chloride	UG/L	5 U	5 U	5 U	5 U	
SW8260	Tetrachloroethene	UG/L	1 U	6.6	1 U	1 U	
SW8260	Toluene	UG/L	1 U	1 U	1 U	1 U	
SW8260	trans-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	
SW8260	Trichloroethene	UG/L	0.86 J	2.2	1 U	1 U	
SW8260	Vinyl chloride	UG/L	2 U	1.2 J	2 U	4.6	

	Lo	ocation	M-6		N	1-8	N	1-9	MU	ELLER
	Lab Sample Delivery	Group	23J2533		23J	2533	23J	2533	23J	2533
	Field Samp	le Date	10/17/2023		10/17/2023		10/17/2023		10/17/2023	
	Field Sar	nple ID	M-6		M-8		M-9		Mueller	
	Qc Code		FS		FS		I	=S		FS
Method	Parameter	Units	Result Qualit	fier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1-Trichloroethane	UG/L	1 U		1	U	1	U	1	U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U
SW8260	1,1,2-Trichloroethane	UG/L	1 U		1	U	1	U	1	. U
SW8260	1,1-Dichloroethene	UG/L	1 U		1 U		1 U		1 U	
SW8260	1,2-Dichloroethane	UG/L	1 U		1 U		1	U	1 U	
SW8260	2-Hexanone	UG/L	10 U		10	U	10	U	10	U
SW8260	Acetone	UG/L	2.2 J		84		81		27	′ J
SW8260	Carbon disulfide	UG/L	5 U		5 U		5 U		5 U	
SW8260	Carbon tetrachloride	UG/L	5 U		5	U	5 U		5 U	
SW8260	Chloroform	UG/L	2 U		2	U	2	U	2	U
SW8260	Chloromethane	UG/L	2 U		2	U	2	U	2	U
SW8260	cis-1,2-Dichloroethene	UG/L	1 U		0.35	J	1	U	0.41	J
SW8260	Methylene chloride	UG/L	5 U		5	U	5	U	5	5 U
SW8260	Tetrachloroethene	UG/L	1 U		1	U	1	U	1	. U
SW8260	Toluene	UG/L	1 U		8.2		1	U	1 U	
SW8260	trans-1,2-Dichloroethene	UG/L	1 U		0.32 J		1 U		1 U	
SW8260	Trichloroethene	UG/L	1 U		1 U		1 U		1 U	
SW8260	Vinyl chloride	UG/L	2 U		0.32	J	2	U	2	U

	Lo	ocation	MW	-104	MM	/-109	MM	/-112	M٧	/-113
	Lab Sample Delivery	Group	23J2	533	23J	2533	23J2533		23J	2524
	Field Samp	le Date	10/17	/2023	10/17/2023		10/17/2023		10/17/2023	
	Field Sar	nple ID	MW	MW-104		MW-109		/-112	MW-113	
	Qc Code		FS		FS		I	=S		FS
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1-Trichloroethane	UG/L	1	U	1	U	1	U	20) U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	10) U
SW8260	1,1,2-Trichloroethane	UG/L	1	U	1 U		1	U	20) U
SW8260	1,1-Dichloroethene	UG/L	1	U	1 U		1 U		20 U	
SW8260	1,2-Dichloroethane	UG/L	1	U	1 U		1 U		20 U	
SW8260	2-Hexanone	UG/L	10	U	10	U	10	U	200	U
SW8260	Acetone	UG/L	67		31 J		130		1,000) U
SW8260	Carbon disulfide	UG/L	5	U	5 U		5 U		100 U	
SW8260	Carbon tetrachloride	UG/L	5	U	5	U	5 U		100 U	
SW8260	Chloroform	UG/L	2	U	2	U	2	U	40	U
SW8260	Chloromethane	UG/L	2	U	2	U	2	U	40	U
SW8260	cis-1,2-Dichloroethene	UG/L	1	U	1	U	0.86	J	15	j J
SW8260	Methylene chloride	UG/L	5	U	5	U	5	U	100	U
SW8260	Tetrachloroethene	UG/L	1	U	1	U	1	U	1,900)
SW8260	Toluene	UG/L	1	U	1 U		1	1 U) U
SW8260	trans-1,2-Dichloroethene	UG/L	1	U	1 U		1 U		20 U	
SW8260	Trichloroethene	UG/L	1	U	1 U		0.94 J		11 J	
SW8260	Vinyl chloride	UG/L	2	U	2	U	2	U	40) U

	L	ocation	OW	-14	OV	V-16	0\	N-2	0	N-3
	Lab Sample Delivery	Group	23J2	524	23J	2524	23J2524		23J	2524
	Field Samp	le Date	10/18	/2023	10/18/2023		10/18/2023		10/18/2023	
	Field Sar	nple ID	OW-14		OV	V-16	0\	N-2	0	N-3
	Qc Code		FS		I	FS	I	=S		FS
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1-Trichloroethane	UG/L	40	U	5	U	20	U	100	U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	20	U	2.5	U	10	U	50	U
SW8260	1,1,2-Trichloroethane	UG/L	40	U	5	U	20	U	100	U
SW8260	1,1-Dichloroethene	UG/L	40	U	5 U		20 U		100 U	
SW8260	1,2-Dichloroethane	UG/L	40	U	5	U	20	U	100	U
SW8260	2-Hexanone	UG/L	400	U	50	U	200	U	1000	U
SW8260	Acetone	UG/L	2,000	U	250	U	1,000	U	5,000	U
SW8260	Carbon disulfide	UG/L	200	U	25 U		100 U		500 U	
SW8260	Carbon tetrachloride	UG/L	200	U	25	U	100 U		500 U	
SW8260	Chloroform	UG/L	80	U	10	U	40	U	200	U
SW8260	Chloromethane	UG/L	80	U	10	U	40	U	200	U
SW8260	cis-1,2-Dichloroethene	UG/L	1,000		180		130	1	230	
SW8260	Methylene chloride	UG/L	200	U	25	U	100	U	500	U
SW8260	Tetrachloroethene	UG/L	2,500		310		1,200	1	11,000	
SW8260	Toluene	UG/L	40	U	5	U	20	U	100	U
SW8260	trans-1,2-Dichloroethene	UG/L	40	U	5 U		20 U		100 U	
SW8260	Trichloroethene	UG/L	830		50		26		200	
SW8260	Vinyl chloride	UG/L	34	J	3.4	J	40	U	200	U

	Lo	ocation	OW-5	QC	QC	QC	
	Lab Sample Delivery	Group	23J2524	23J2524	23J2524	23K1915	
	Field Samp	le Date	10/18/2023	10/17/2023	10/18/2023	11/14/2023	
	Field Sar	nple ID	OW-5	Field Blank	Trip Blank	Trip Blank	
	Qc Code		FS	FB	ТВ	ТВ	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	1,1,1-Trichloroethane	UG/L	40 U	1 U	1 U	1 U	
SW8260	1,1,2,2-Tetrachloroethane	UG/L	20 U	0.5 U	0.5 U	0.5 U	
SW8260	1,1,2-Trichloroethane	UG/L	40 U	1 U	1 U	1 U	
SW8260	1,1-Dichloroethene	UG/L	40 U	1 U	1 U	1 U	
SW8260	1,2-Dichloroethane	UG/L	40 U	1 U	1 U	1 U	
SW8260	2-Hexanone	UG/L	400 U	10 U	10 U	10 U	
SW8260	Acetone	UG/L	2,000 U	3.2 J	50 U	50 U	
SW8260	Carbon disulfide	UG/L	200 U	5 U	5 U	5 U	
SW8260	Carbon tetrachloride	UG/L	200 U	5 U	5 U	5 U	
SW8260	Chloroform	UG/L	80 U	2 U	2 U	2 U	
SW8260	Chloromethane	UG/L	80 U	2 U	2 U	2 U	
SW8260	cis-1,2-Dichloroethene	UG/L	850	1 U	1 U	1 U	
SW8260	Methylene chloride	UG/L	200 U	5 U	5 U	5 U	
SW8260	Tetrachloroethene	UG/L	3,000	1 U	1 U	1 U	
SW8260	Toluene	UG/L	40 U	1 U	1 U	1 U	
SW8260	trans-1,2-Dichloroethene	UG/L	40 U	1 U	1 U	1 U	
SW8260	Trichloroethene	UG/L	220	1 U	1 U	1 U	
SW8260	Vinyl chloride	UG/L	80 U	2 U	2 U	2 U	

										Val	
							Lab	Final	Final	Reason	
Lab SDG	Method	Lab Sample ID	Field Sample ID	Fraction	Parameter	Lab Result	Qualifier	Result	Qualifier	Code	Units
23J2524	SW8260	23J2524-01	MW-113	N	Acetone	56	J	1,000	U	BL2	UG/L
23J2524	SW8260	23J2524-03	EW-7	N	Acetone	11	J	200	U	BL2	UG/L
23J2524	SW8260	23J2524-09	OW-16	N	Acetone	17	J	250	U	BL2	UG/L

CATEGORY A REVIEW REPORT OCTOBER – NOVEMBER 2023 LTM GROUNDWATER SAMPLING AMERICAN THERMOSTAT SITE SOUTH CAIRO, NEW YORK

ATTACHMENT A

VOCs

PROJECT CATEGORY A REVIEW RECORD Project: American Thermostat Method : SW-846 8260C (or specify) Laboratory: Pace SDG(s): 23J2524, 23J2533, 23K1915 Date: 1/8/2024 Reviewer: Amber Jones X CATEGORY A **Review Level** 1. Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? ves. see attached Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) 2. **U** Holding time and Sample Collection Were all samples properly preserved and analyzed within the 14 day holding time? (7 day holding time for unpreserved samples) YES NO (circle one) (See Table 1, USEPA Region 2 SOP HW-24, Rev 4, Sep 2014) 3. **QC Blanks** Are method blanks free of contamination? **YES** NO (circle one) Are Trip blanks free of contamination? **YES** NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) see attached - acetone - subset U @ RL, BL2 4. **Matrix Spike** – Use nominal limits for recovery (water and soil 70-130%) and relative percent difference (RPD) (water RPD \leq 20, soil RPD \leq 35) based on Region 2 SOP guidance. Were MS/MSDs submitted/analyzed? YES NO Were all results within above OC limits? YES NO NA (circle one) Were any recoveries <20%? YES NO NA (circle one) [National Functional Guidelines 2020 [Expanded Lower Acceptance Limit"] 5. **Laboratory Control Sample Results** – Use nominal limits for recovery (water and soil 70-130%) and RPD (water RPD <20, soil RPD <35) based on Region 2 SOP guidance. Were all results within above QC limits? YES NO (circle one) see attached - subset J+, LCSH 6. Surrogate Recovery – Use nominal limits for recovery (water 80-120%, soil 70-130%) based on Region 2 SOP guidance. Were all results within above QC limits? YES NO (circle one) Were any results <10%? YES NO NA (circle one) [National Functional Guidelines 2020 [Expanded Lower Acceptance Limit"]

7.
Field Duplicates - Region 2 limits (water RPD 50, soil RPD 100)
Were Field Duplicates submitted/analyzed? YES NO

Were all results within Region 2 Limits? YES NO NA (circle one)

- 8. C Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one) elevated RLs for ND
- 9. Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one)

10. \Box Table Review

Table 1 (Samples and Analytical Methods)Table 2 (Analytical Results)Table 3 (Qualification Actions)Were all tables produced and reviewed?YESNO (circle one)

Table 4 (TICs)

Did lab report TICs?

YES NO (circle one)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

SW-846 8260D

Qualifications: L-04 Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified: Tetrahydrofuran S095283-CCV1
Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified: Tetrahydrofuran
compound is likely to be biased on the low side. Analyte & Samples(s) Qualified: Tetrahydrofuran
L-07
Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD see attached for LCS review between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:
1,2-Dichloroethane B355762-BSD1
RL-11
Elevated reporting limit due to high concentration of target compounds.
Analyte & Samples(s) Qualified:
23J2524-01[MW-113], 23J2524-03[EW-7], 23J2524-04[EW-16], 23J2524-05[OW-2], 23J2524-06[OW-3], 23J2524-07[OW-5], 23J2524-08[OW-14], 23J2524-09[OW-16]
V-05
Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound. outside scope of Cat A review
Analyte & Samples(s) Qualified:
1,4-Dioxane \$095283-CCV1
2-Butanone (MEK) \$095283-CCV1
Acrylonitrile S095283-CCV1
Methyl Acetate S095283-CCV1
tert-Butyl Alcohol (TBA) S095283-CCV1
Tetrahydrofuran S095283-CCV1
V-20
Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:
1,1,1,2-Tetrachloroethane S095283-CCV1

1,2-Dichloroethane

S095283-CCV1

Bromodichloromethane S095283-CCV1

Bromomethane S095283-CCV1

Dibromomethane S095283-CCV1

Trichlorofluoromethane (Freon 11) S095283-CCV1

Page 5 of 26

1 - FORM I ANALYSIS DATA SHEET

Field Blank

Laboratory:	aboratory: Pace New England			Work O	rder:	23J2524			
Client:	NYDEC_W	ood - Portland	I, ME	Project:		American Th	nermostat -	CO 14274	5
Matrix:	Field Blank		Laboratory ID:	23J2524-02		File ID:	B23\	/29309.D	
Sampled:	10/17/23 15	5:45	Prepared:	10/20/23 06:41		Analyzed:	10/20)/23 09:44	
Solids:			Preparation:	SW-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 mL								
Batch:	B355762	Sequen	ce: \$095283	Calibratio	n:	2301046	Instru	iment:	GCMSVOA2
CAS NO	D.	COMPOUN	D		CONC.	(µg/L)	MDL	RL	Q
67-64-1	1	Acetone			3.2	2	2.0	50	J
75-15-0)	Carbon Disu	Ilfide				1.6	5.0	
56-23-5	5	Carbon Tetra	achloride subse	et U @ RL, BL2			0.16	5.0	
67-66-3	3	Chloroform					0.14	2.0	
74-87-3	3	Chlorometha	ane				0.50	2.0	
107-06-	-2	1,2-Dichloro	ethane				0.30	1.0	
75-35-4	1	1,1-Dichloro	ethylene				0.14	1.0	
156-59-	-2	cis-1,2-Dichl	loroethylene				0.14	1.0	
156-60-	-5	trans-1,2-Dio	chloroethylene				0.17	1.0	
591-78-	-6	2-Hexanone	(MBK)				1.2	10	
75-09-2	2	Methylene C	Chloride				0.18	5.0	
79-34-5	5	1,1,2,2-Tetra	achloroethane				0.14	0.50	
127-18-	-4	Tetrachloroe	ethylene				0.17	1.0	
108-88-	-3	Toluene					0.22	1.0	
71-55-6	6	1,1,1-Trichlo	proethane				0.15	1.0	
79-00-5	5	1,1,2-Trichlo	proethane				0.19	1.0	
79-01-6	6	Trichloroethy	ylene				0.17	1.0	
75-01-4	1	Vinyl Chlorid	le				0.24	2.0	
156-59-2 156-60-5 591-78-6 75-09-2 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-01-4		1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 2-Hexanone (MBK) Methylene Chloride 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride					0.17 1.2 0.18 0.14 0.17 0.22 0.15 0.19 0.17	1.0 1.0 5.0 0.50 1.0 1.0 1.0 1.0 1.0	

3 - FORM III

LCS / LCS DUPLICATE RECOVERY

SW-846 8260D

Laboratory: Pace New England		Work Order:		23J2524		
Client: NYDEC_Wood - Portland, ME			Project:	American The	2745	
Matrix:	Water		Preparation:	SW-846 5030	3	
Batch:	B355762		Laboratory ID:	B355762-BS1		
Column:			Initial/Final:	5 mL / 5 mL		
	ANALYTE	SPIKE ADDED (µg/L)	CONCEN	CS ITRATION g/L)	LCS % REC.	QC LIMITS REC.
Acetone		100	90.5		90.5	70 - 160
Carbon Disult	fide	100	117		117	70 - 130
Carbon Tetra	chloride	10.0	10.6		106	70 - 130
Chloroform		10.0	11.5		115	70 - 130
Chlorometha	ne	10.0	9.09		90.9	40 - 160
1,2-Dichloroe	thane	10.0	12	2.6	126	70 - 130
1,1-Dichloroe	thylene	10.0	1	1.6	116	70 - 130
cis-1,2-Dichlo	proethylene	10.0	10	0.6	106	70 - 130
trans-1,2-Dicl	hloroethylene	10.0	1(0.3	103	70 - 130
2-Hexanone ((MBK)	100	88	8.0	88.0	70 - 160
Methylene Ch	nloride	10.0	10.0		100	70 - 130
1,1,2,2-Tetrad	chloroethane	10.0	10.9		109	70 - 130
Tetrachloroet	hylene	10.0	11.2		112	70 - 130
Toluene		10.0	10.8		108	70 - 130
1,1,1-Trichlor	roethane	10.0	11.5		115	70 - 130
1,1,2-Trichlor	roethane	10.0	11.7		117	70 - 130
Trichloroethy	lene	10.0	11.6		116	70 - 130
Vinyl Chloride	e	10.0	1(0.7	107	40 - 160

	SPIKE	LCSD	LCSD		QC	LIMITS
ANALYTE	ADDED (µg/L)	CONCENTRATION (µg/L)	% REC.#	% RPD #	RPD	REC.
Acetone	100	85.2	85.2	5.96	25	70 - 160
Carbon Disulfide	100	115	115	1.59	25	70 - 130
Carbon Tetrachloride	10.0	11.2	112	6.16	25	70 - 130
Chloroform	10.0	11.1	111	3.81	25	70 - 130
Chloromethane	10.0	9.05	90.5	0.441	25	40 - 160
1,2-Dichloroethane samples ND - no quals	5 10.0	13.5	135	* 6.97	25	70 - 130
1,1-Dichloroethylene	10.0	11.5	115	0.347	25	70 - 130
cis-1,2-Dichloroethylene	10.0	10.6	106	0.377	25	70 - 130
trans-1,2-Dichloroethylene	10.0	10.3	103	0.485	25	70 - 130
2-Hexanone (MBK)	100	83.9	83.9	4.80	25	70 - 160
Methylene Chloride	10.0	9.74	97.4	2.63	25	70 - 130
1,1,2,2-Tetrachloroethane	10.0	10.5	105	3.09	25	70 - 130
Tetrachloroethylene	10.0	11.0	110	1.98	25	70 - 130
Toluene	10.0	10.8	108	0.371	25	70 - 130
1,1,1-Trichloroethane	10.0	11.4	114	0.873	25	70 - 130

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISION 12/28/23: Report revised to have Sample ID for Sample -01 changed per client request.

SW-846 8260D

Qualifications:

RL-11

Elevated reporting limit due to high concentration of target compounds. Okay

Analyte & Samples(s) Qualified:

23J2533-04[EW-5]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Kyle K. Stuckey Project Manager

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260D

Qualifications:

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound. outside scope of Cat A review

Analyte & Samples(s) Qualified:

Diisopropyl Ether (DIPE)

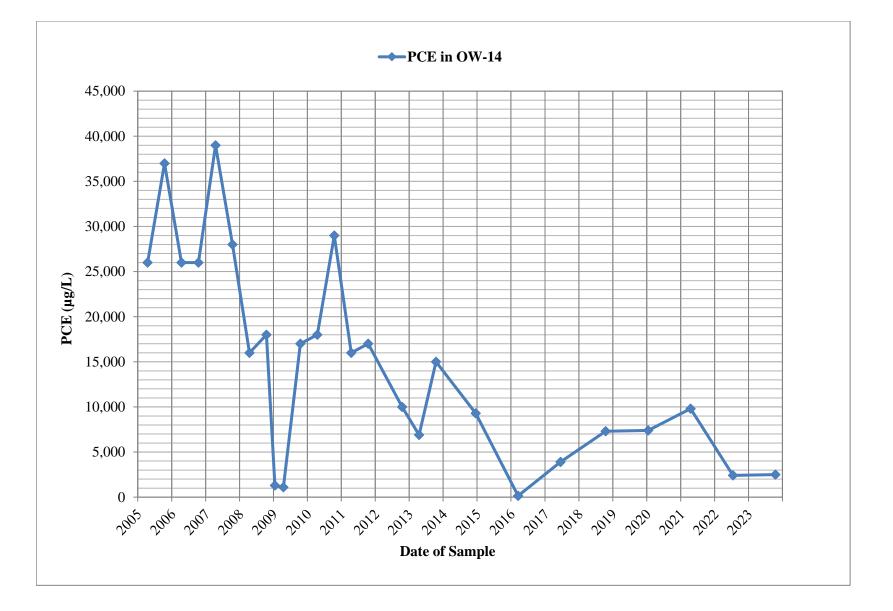
S096519-CCV1

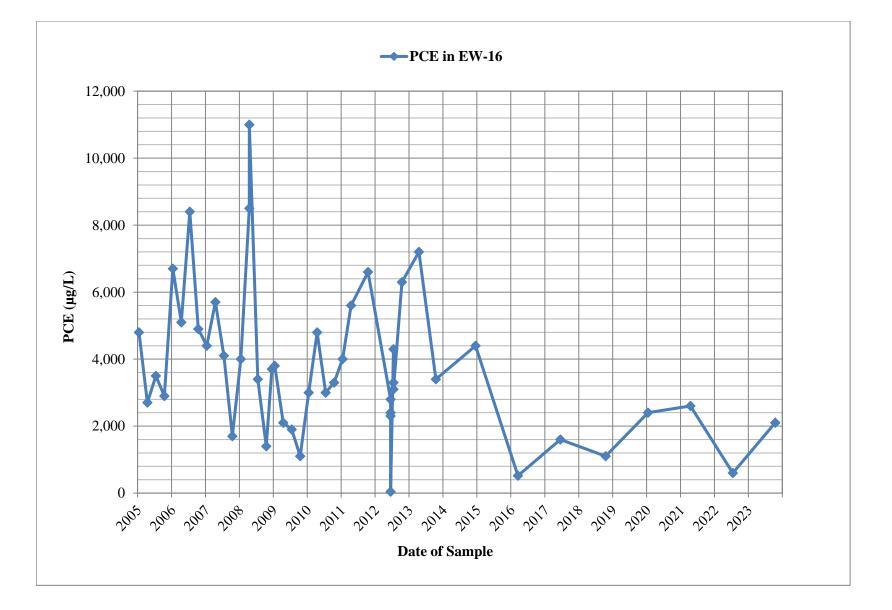
Methylene Chloride

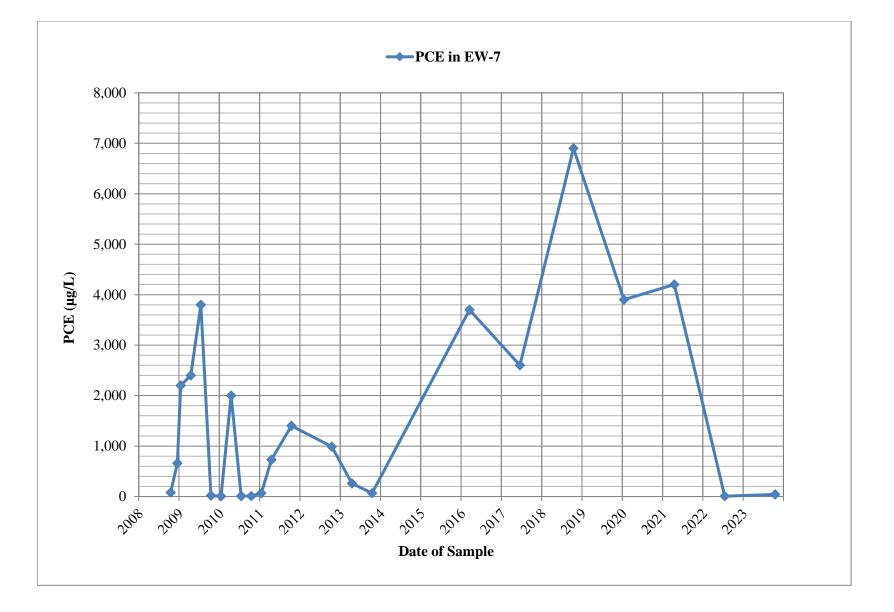
23K1915-01[Trip Blank], 23K1915-02[CE-2 BEF], B358291-BLK1, B358291-BS1, B358291-BSD1, S096519-CCV1

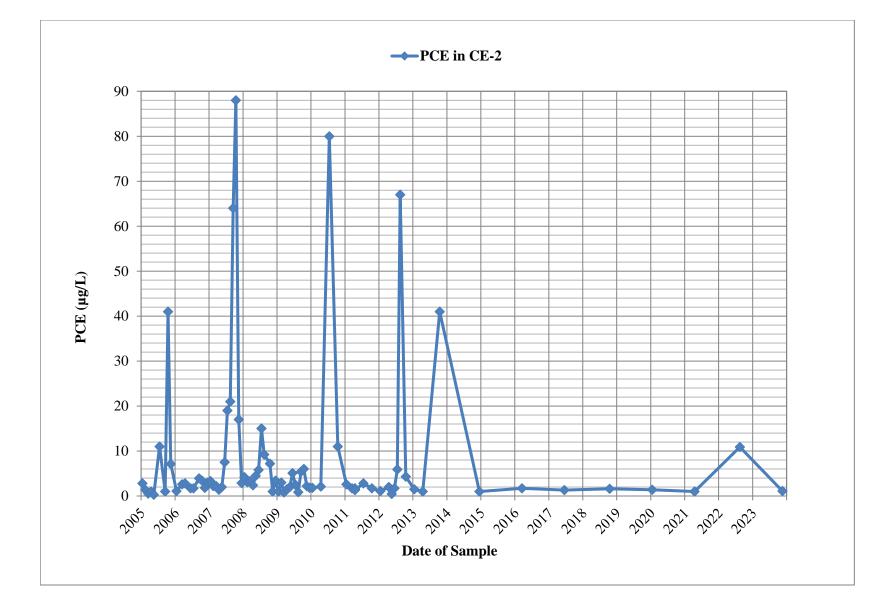
The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

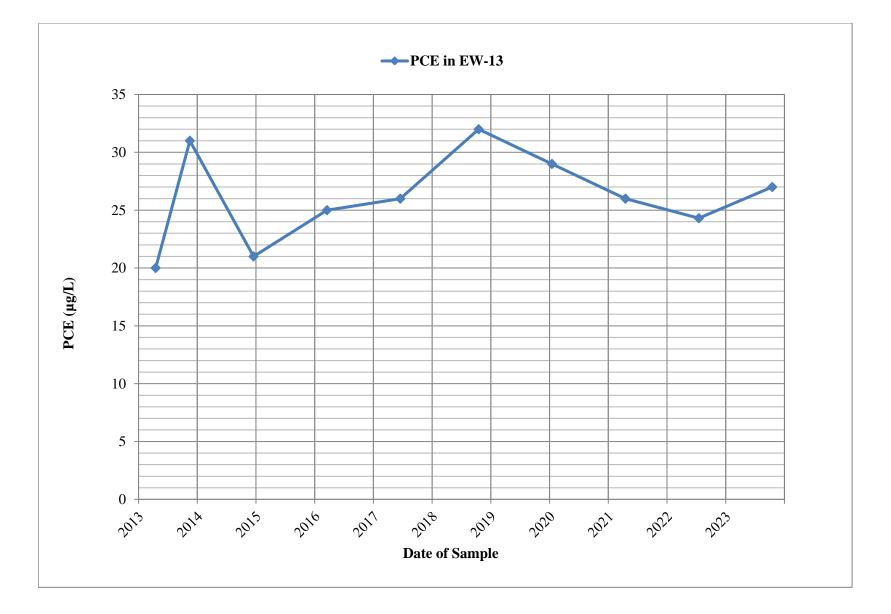
I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

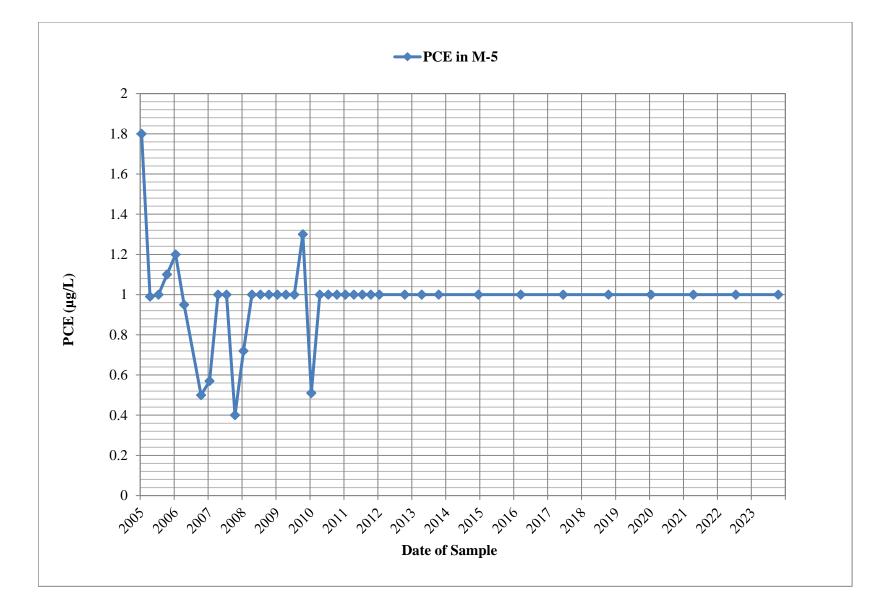

pua Watthington

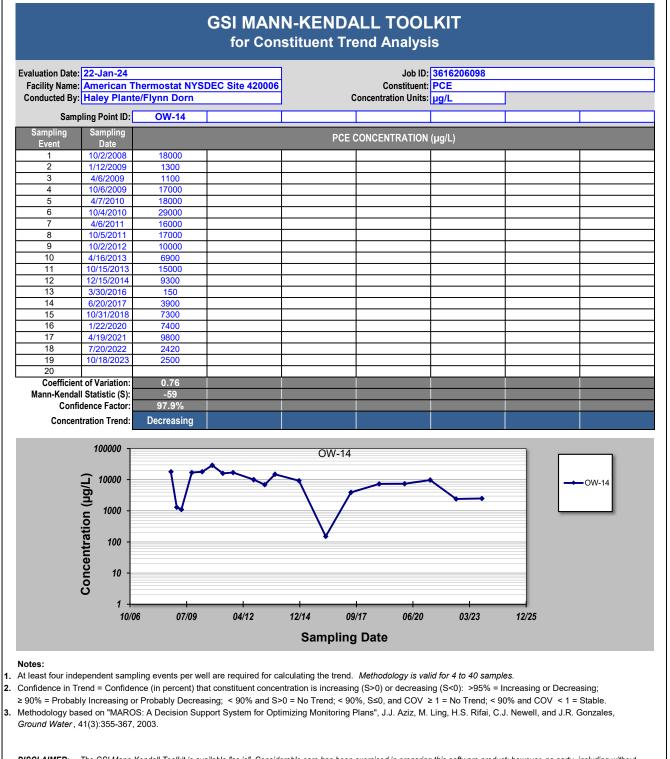

Lisa A. Worthington Technical Representative

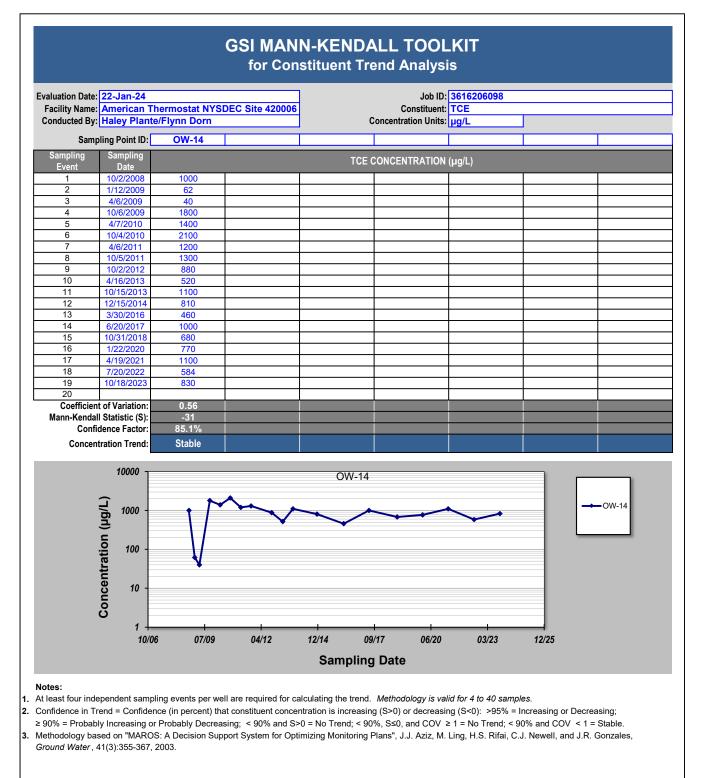

Page 4 of 14

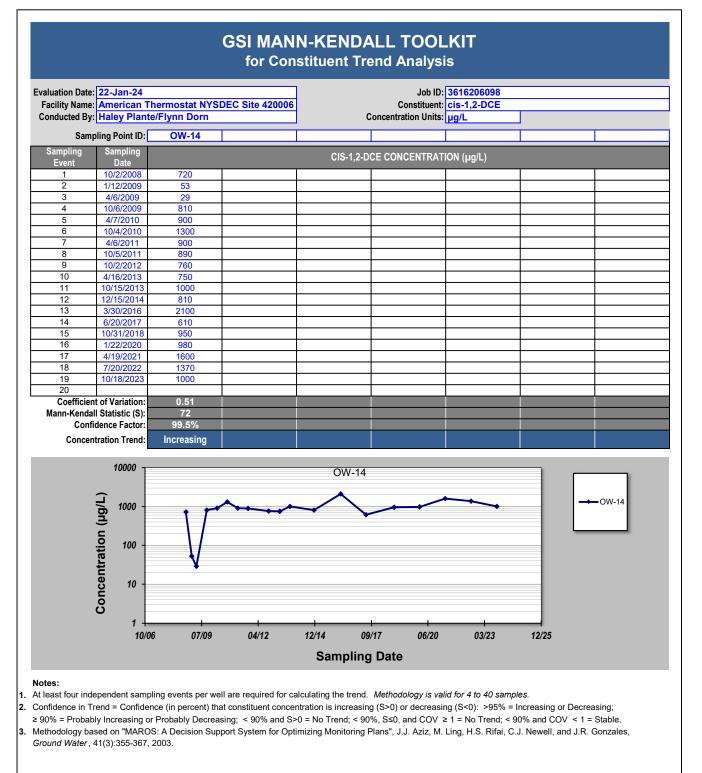

APPENDIX E

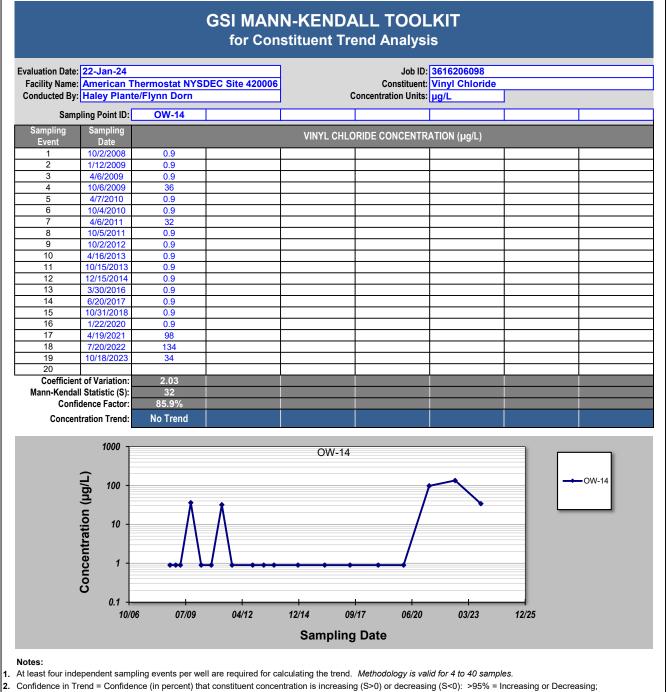

TIME SERIES PLOTS – OW-14, EW-16, EW-7, CE-2, EW-13, M-5



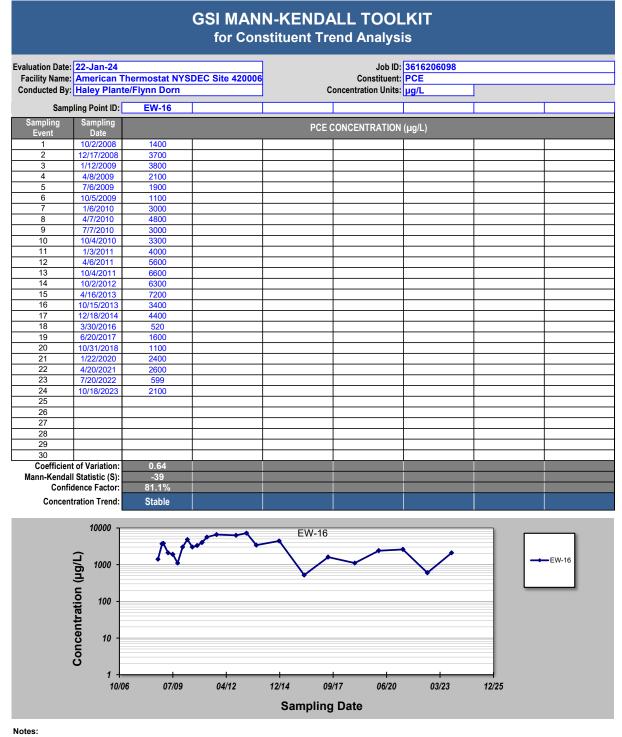






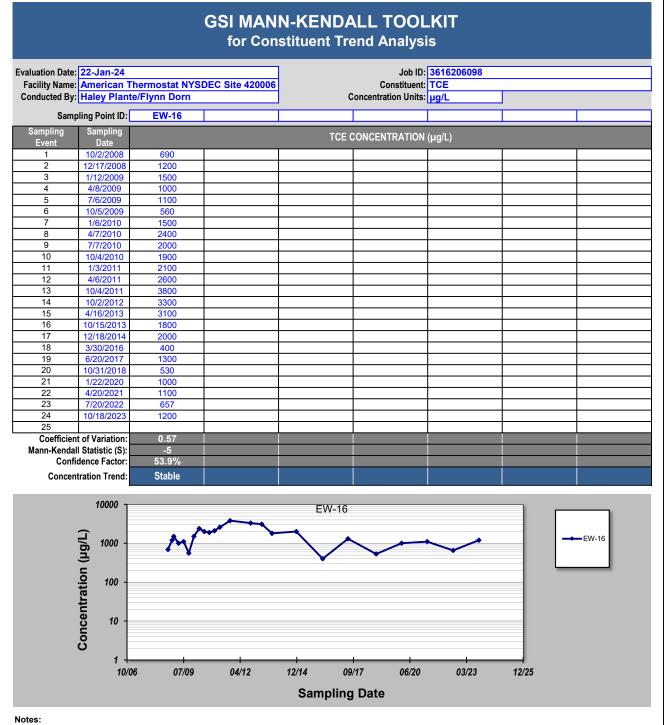

APPENDIX F

CONSTITUENT TREND ANALYSES OF KEY WELLS



≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

4. Results have two historic detections, most recently in 2011.

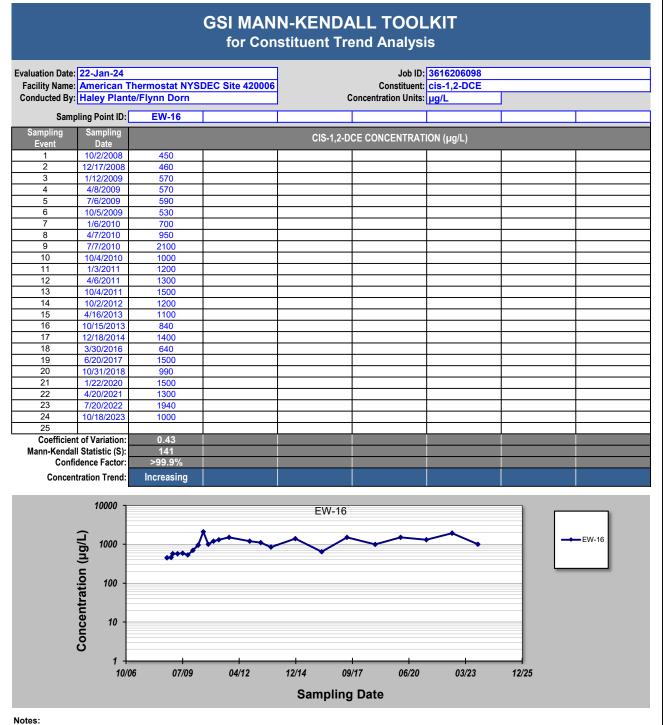


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

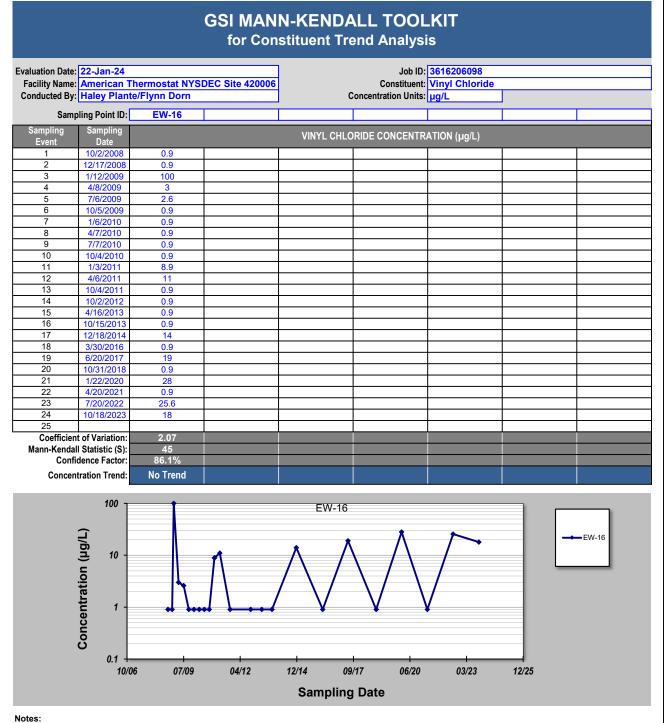
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.



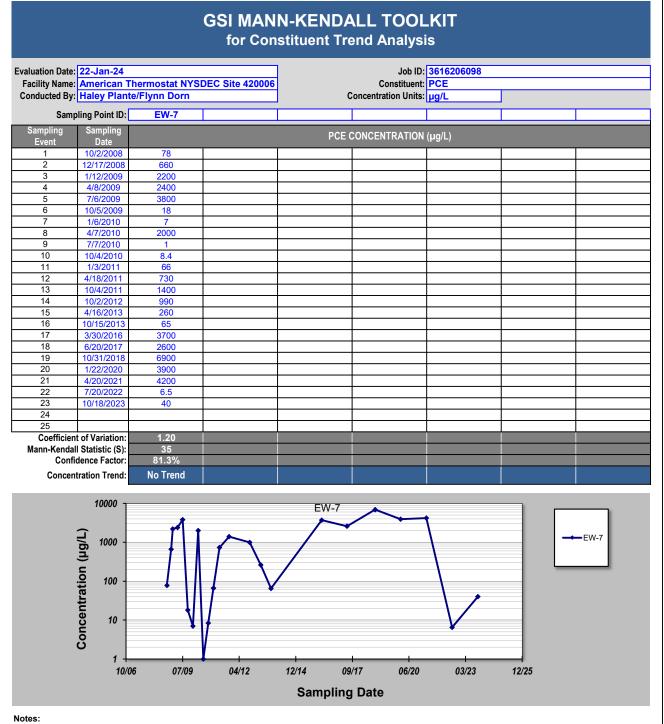
2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.


3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

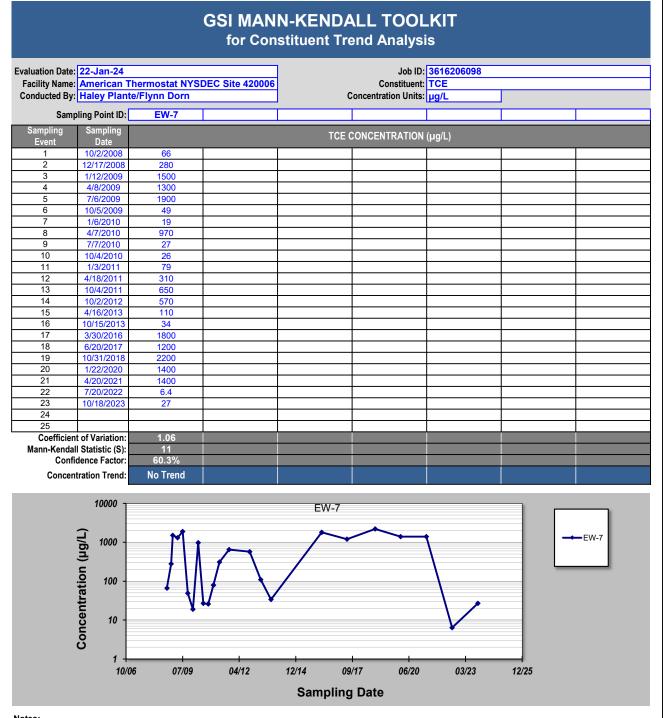
Ground Water, 41(3):355-367, 2003.

4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

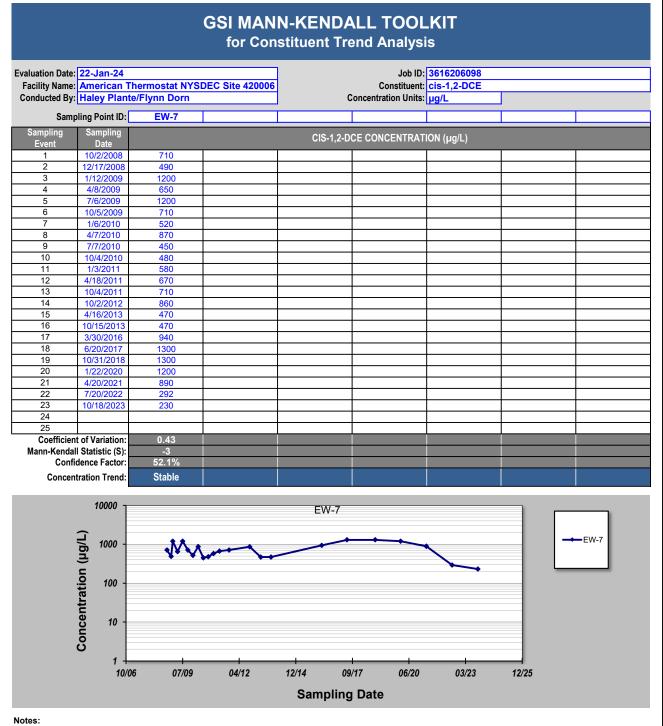


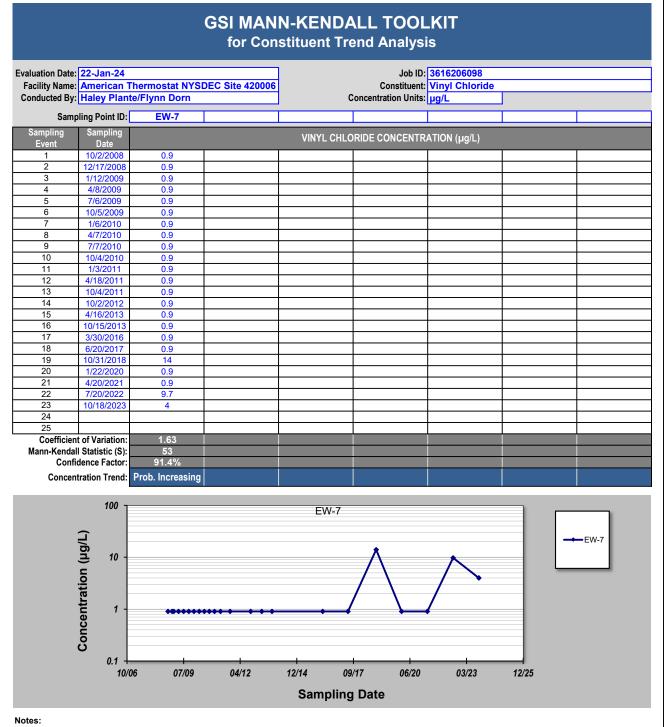
2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;


≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.

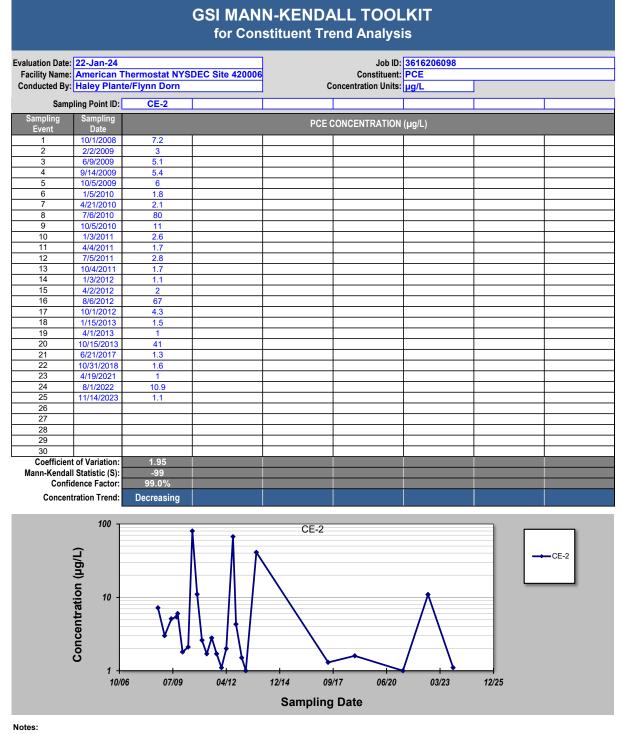

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

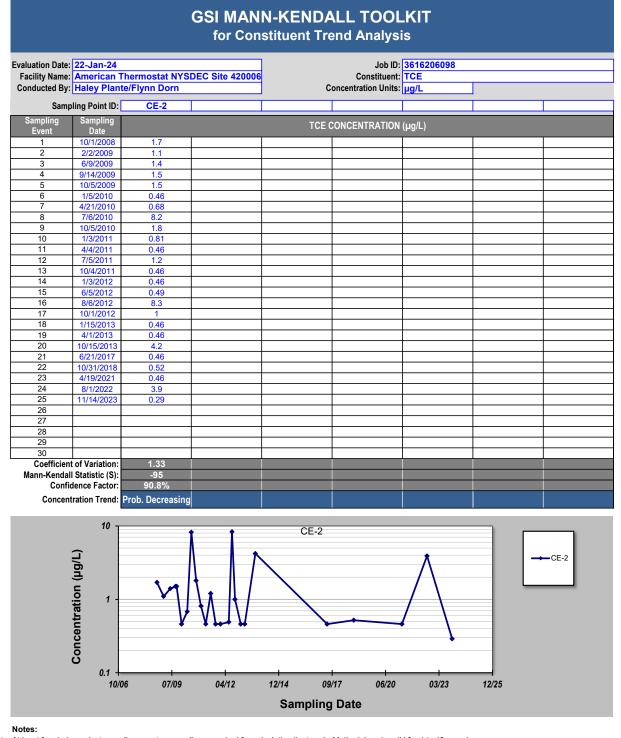

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

4. Results have two historic detections, most recently in 2011.

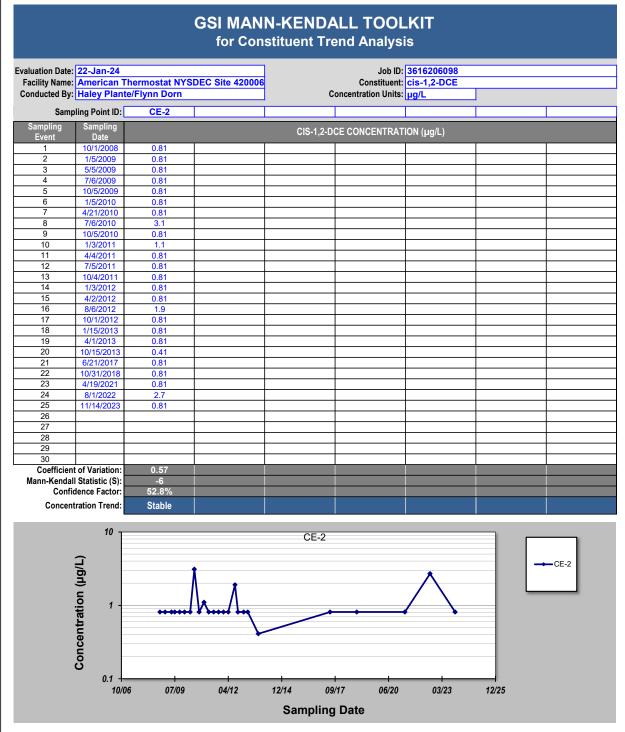


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.



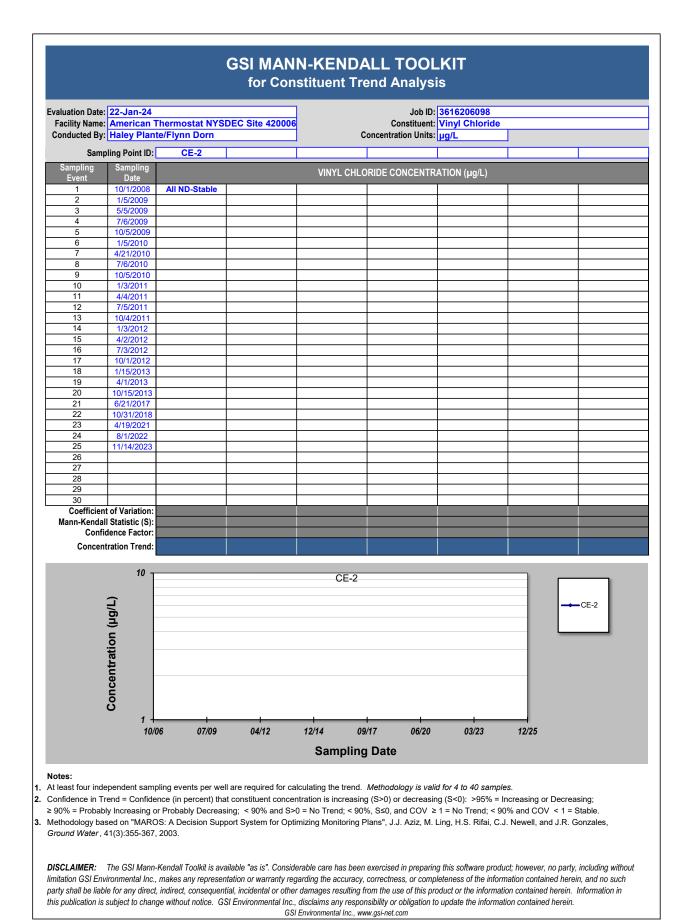
2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

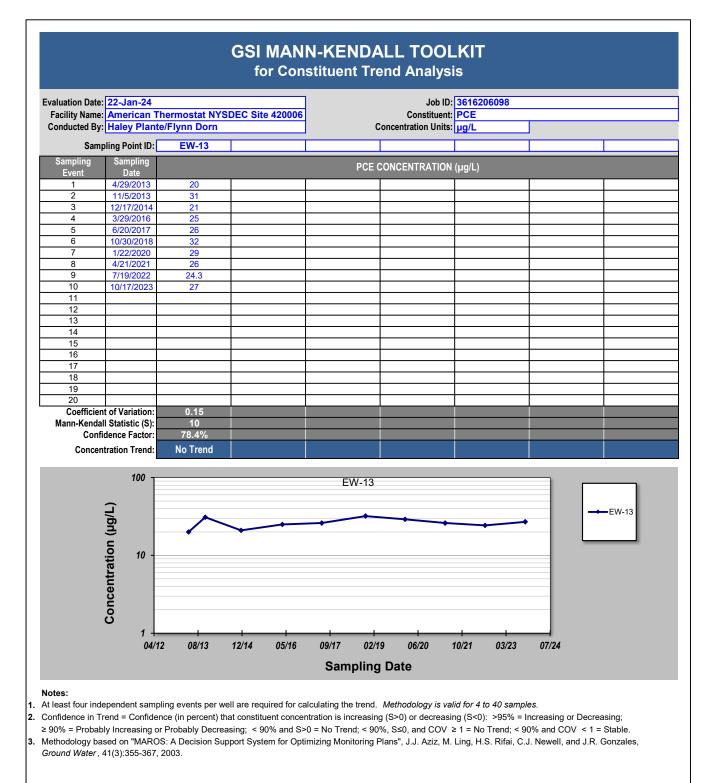
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

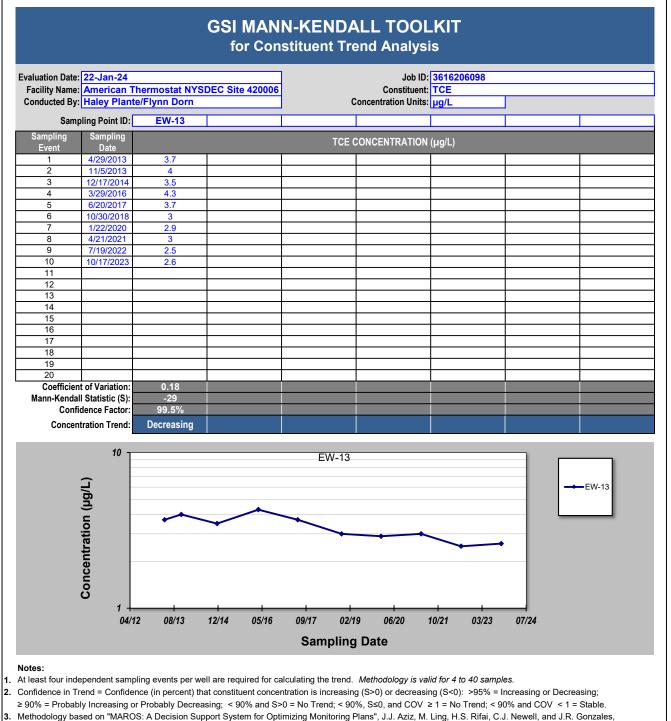
Ground Water, 41(3):355-367, 2003.

4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.

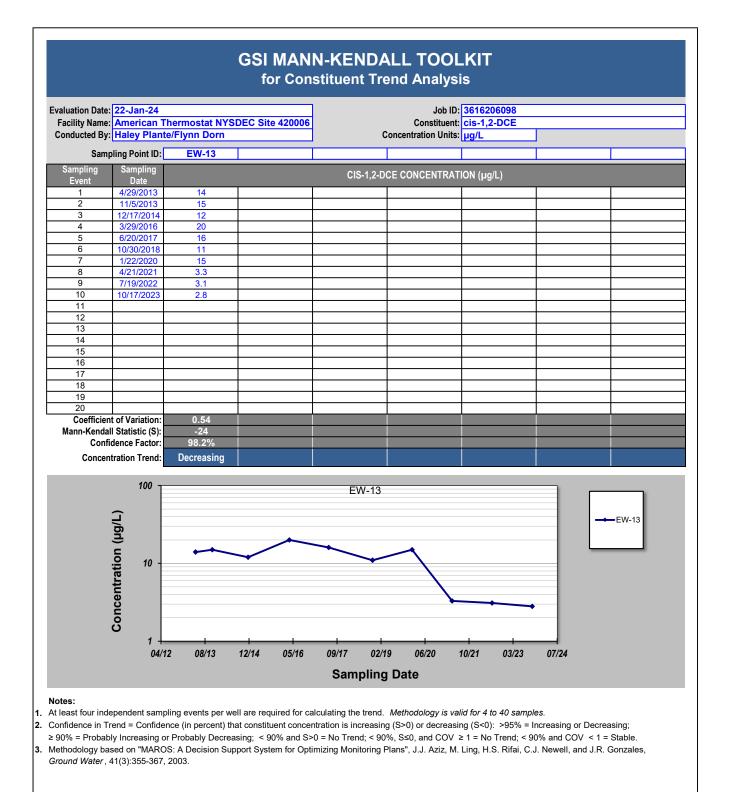
Notes:

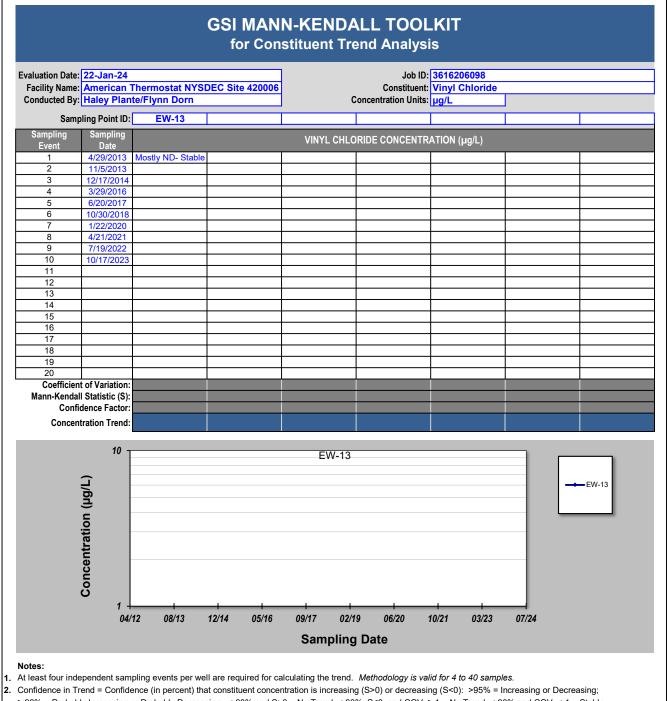

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

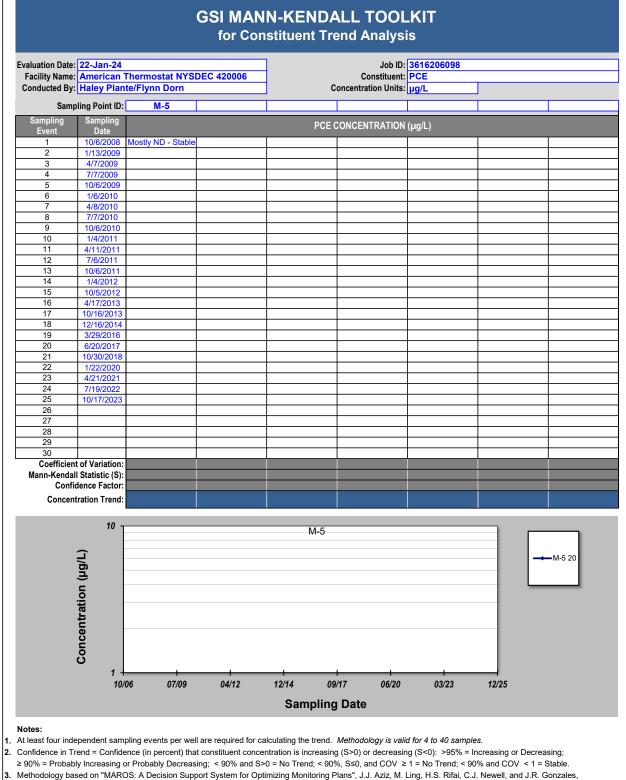

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;


≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

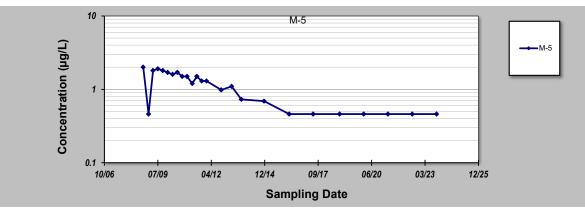
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.




Ground Water, 41(3):355-367, 2003.

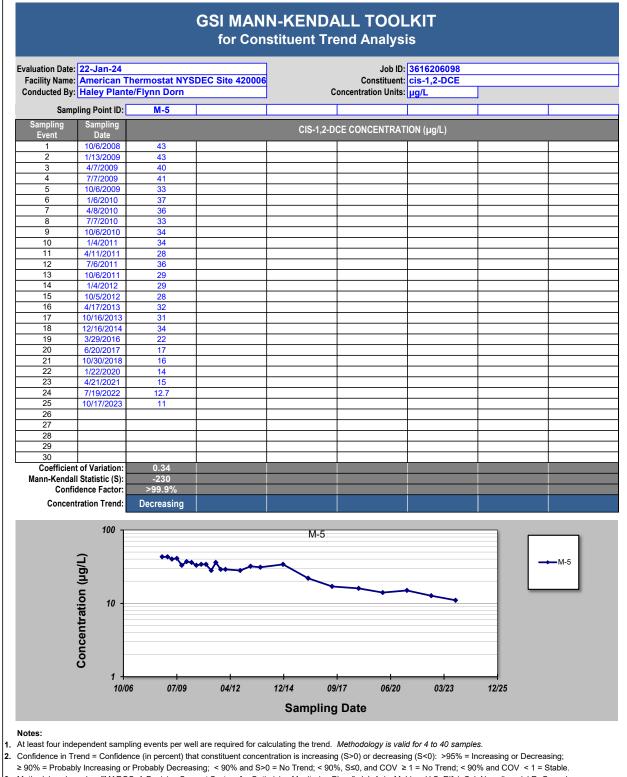
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.

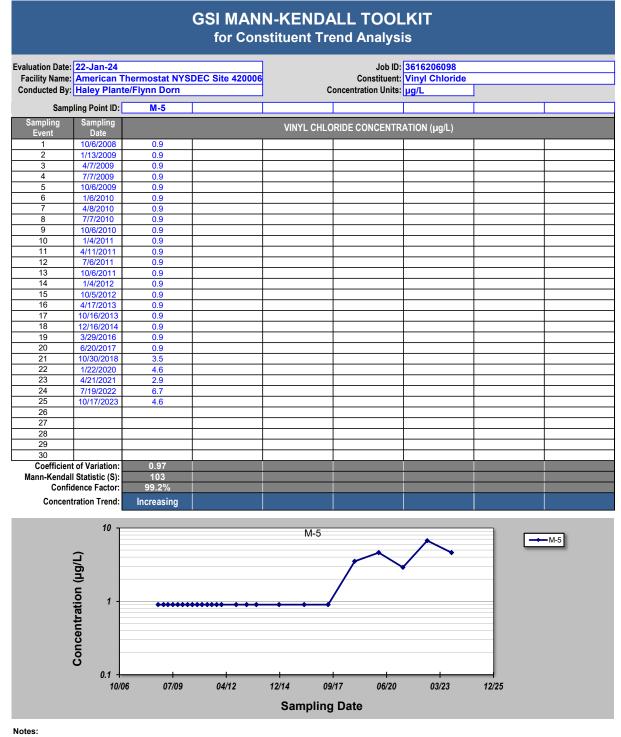
Ground Water, 41(3):355-367, 2003.

4. Results show two historical detections, most recently in 2010.

onducted By:	American T Haley Plant	e/Flynn Dorn	DEC Site 420006		Job ID: Constituent: Concentration Units:		
	ling Point ID:	M-5					
Sampling Event	Sampling Date			TCE	CONCENTRATION	(µg/L)	
1	10/6/2008	2					
2	1/13/2009	0.46					
3	4/7/2009	1.8			1		
4	7/7/2009	1.9					
5	10/6/2009	1.8					
6	1/6/2010	1.7					
7	4/8/2010	1.6					
8	7/7/2010	1.7					
9	10/6/2010	1.5					
10	1/4/2011	1.5					
11	4/11/2011	1.2					
12	7/6/2011	1.5					
13	10/6/2011	1.3					
14	1/4/2012	1.3					
15	10/5/2012	0.98					
16	4/17/2013	1.1					
17	10/16/2013	0.73					
18	12/16/2014	0.69					
19	3/29/2016	0.46					
20	6/20/2017	0.46					
21	10/30/2018	0.46					
22	1/22/2020	0.46					
23	4/21/2021	0.46					
24	7/19/2022	0.46					
25	10/17/2023	0.46					
26							
27							
28							
29 30							
	of Variation :	0.50					
Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor:		-222					
		-222 >99.9%					
Concent	ration Trend:	Decreasing					
	10 -			M-5			


Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

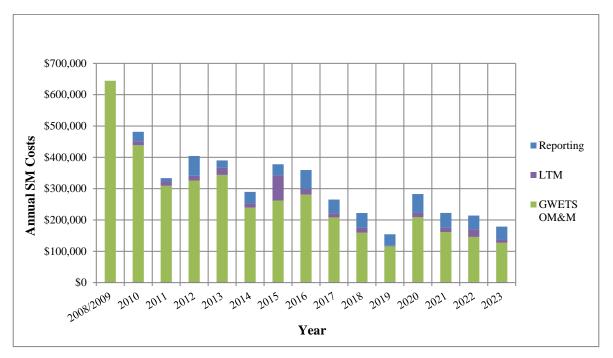
≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

4. Non-Detects are reported as the detection limit from the January 2020 laboratory analysis.

APPENDIX G

COST CONTROL SUMMARY DOCUMENTS


2023 COST CONTROL SUMMARY TABLE

Task 1 (Preliminary Activiti	les)						
Labor	\$0						
Task 2 (Site Management Pl	an)						
Labor	\$0						
Task 3 (Operation and Maintena	ance) ^(a)						
	· \$99,739						
Lodging, Travel, and M&IE	\$3,384						
Shipping	\$37						
Internet							
Plowing ^(b)	\$0						
Supplies and Equipment	\$344						
Subcontractors	\$0						
Electricity	\$13,781						
Propane							
Water							
Laboratory Services ^{* (c)}	\$1,472						
	\$124,904						
Task 4 (Monitoring and Report							
Labor ^(d)	\$99,657						
Lodging, Travel, and M&IE	\$986						
Supplies and Equipment							
Laboratory Services ^{* (c)}	\$1,471						
	\$102,891						
Task 5 (Periodic Review and Re	porting)						
Labor	\$14,289						
Task 6 (Sustainable and Resilient Remediation Implementation)							
Labor	* \$48,340						
Lodging, Travel, and M&IE	\$2,015						
Supplies and Equipment	\$23						
	\$50,378						
Annual Total:	\$292,462						

Notes:

- (a) Includes routine and non-routine OM&M and the following out-of-scope items: generating an electric account authorization letter, management of electric, propane, and water accounts, populating NYSDEC's Operational Technology Inventory spreadsheet, and generating a cost estimate for standby laboratory services.
- ^(b) As of 2023, plowing is no longer subcontracted and is performed by the NYSDEC.
- (c) Task 3 and Task 4 Laboratory Services costs were estimated using the total cost provided by the NYSDEC for 2023. Monthly treatment system performance samples represent Task 3 laboratory costs. October 2023 LTM samples represent Task 4 laboratory costs.
- (d) Labor costs included LTM; semiannual hydraulic monitoring; analytical data validation and management; compilation, review, and evaluation of monthly system performance data; monthly reporting and invoicing; extraction well optimization evaluation reporting; and the following out-of-scope items: generating a well details table for EQuiS, early treatment system shutdown assessment, Country Estates water supply well information and rough order of magnitude cost estimate requests from NYSDEC and USEPA, and NYSDEC callout laboratory scope review.

M&IE = Meals and incidental expenses

ANNUAL SITE MANAGEMENT COSTS 2008/2009-2023

Notes:

GWETS OM&M includes Country Estates (thru Q2 2013) and residential GAC system OM&M (thru 6/1/2022). After Q2 2013, OM&M of Country Estates treatment system(s) became owner's responsibility. OM&M of three residential GAC systems ceased after 6/1/2022. 2008/2009: Costs from 10/1/2008 through 12/31/2009.

2010: GWETS OM&M includes Country Estates & residential GAC system OM&M. Reporting includes preparation of 2008/2009 Periodic Review Report (PRR).

2011: GWETS OM&M includes Country Estates & residential GAC system OM&M.

2012: GWETS OM&M includes Country Estates & residential GAC system OM&M, preparation of detailed design drawings for GWETS improvements; Reporting includes preparation of SMP and 2010/2011 PRR.

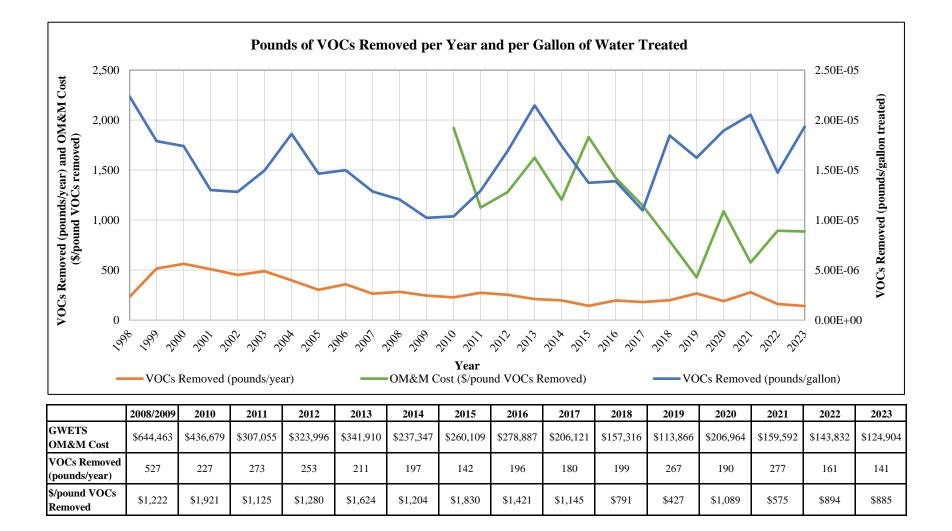
2013: OM&M does not include preparation of detailed design drawings for GWTS improvements or implementation of RSO improvements. LTM includes conducting hydraulic effectiveness monitoring and EW-9 step test.

2014: OM&M does not include GWETS modifications; Reporting includes 2014 PRR, drafting SMP update.

2015: GWETS OM&M includes oversight/coordination of GWETS upgrades/modifications; LTM reflects quarterly residential POET system OM&M, extraction well decommissioning, EW-5 over drilling/MW conversion, EW-5 investigation derived waste disposal.

2016/2017: GWETS OM&M includes modifications, GWETS commissioning; Reporting includes PRR preparation, SMP updates.

2018: GWETS OM&M includes GWETS commissioning/optimization & monitoring well decommissioning inventory; Reporting includes annual report preparation, SMP updates.


2019: GWETS OM&M includes regular inspections/maintenance; LTM reflects quarterly residential POET system OM&M, semiannual hydraulic monitoring; Reporting includes annual report preparation.

2020: GWETS OM&M includes routine/non-routine inspections/maintenance, replacement of two effluent discharge pumps, quarterly residential POET system OM&M; LTM reflects January/July 2020 groundwater monitoring/sampling events, semiannual hydraulic monitoring, October 2020 emerging contaminants sampling; Reporting includes 2019 Annual Report, initial 2020 PRR preparation, 2020 MPRs.

2021: GWETS OM&M includes routine/non-routine inspections/maintenance, quarterly residential POET system OM&M, well decommissioning event; LTM reflects April 2021 groundwater monitoring/sampling event, semiannual hydraulic monitoring; Reporting includes 2020 Periodic Review Report edits, 2021 MPRs, Field Activities Plans for Well Decommissioning and Extraction Well Optimization Evaluation, Well Decommissioning Field Activities Report, annual report preparation, data management/validation.

2022: GWETS OM&M includes routine/non-routine inspection/maintenance, waste disposal, residential POET system OM&M through June 1st, partial decommissioning of one residential POET system, OW-3, OW-7, OW-13, OW-16 pump replacements; LTM includes July 2022 groundwater monitoring/sampling event, semiannual hydraulic monitoring; Reporting includes 2021 Annual Report, MPRs, Extraction Well Optimization Evaluation Field Activities Report, updated Ground Source Heating and Solar Photovoltaic Evaluation, data management/validation.

2023: GWETS OM&M includes routine/non-routine inspection/maintenance; LTM includes October 2023 groundwater monitoring/sampling event, semiannual hydraulic monitoring; Reporting includes 2022 Annual Report, MPRs, Extraction Well Optimization Evaluation Field Activities Report, data management/validation.

