

May 15, 2019

Ms. Linette Waling VP of Operations Print Bear LLC 336 Forest Avenue Amsterdam, NY 12010

Via email: <u>linette@printbear.net</u>

RE: Limited Phase II Environmental Site Investigation Report

61 Edson Street, Amsterdam, NY Ambient Project No. 190311ENVA

Dear Ms. Waling;

Ambient Environmental, Inc. (Ambient) performed a limited Phase II Environmental Site Investigation (SI) at the Site located at 61 Edson Street, Amsterdam, New York (the Site). The Site location is shown on the attached Figure 1. The scope of work was based, in part, on a detailed review of environmental documents related to the Site and discussions with Print Bear LLC (Print Bear) regarding their potential future purchase and use of the Site. The Site is designated as State Superfund Program Site No. 429004 and remediation has been conducted under that Program to the extent that the Site has been reclassified as Classification 04. A NYSDEC-approved Site Management Plan (SMP) prepared by AECOM Environmental, dated February 2011, applies to the Site and contains requirements that must be met prior to the performance of any intrusive work at the Site. To comply with the SMP, Ambient prepared a limited SI Work Plan that was submitted to, and approved by, NYSDEC as described below.

Prior to preparing the SI Work Plan, Ambient evaluated environmental files related to the Site. Ambient's file review identified data gaps that could have represented a potential risk to the future owner. Those data gaps were as follows:

- Sampling had not been conducted under the building, therefore, the extent of contamination under the building (if any) was not known;
- Sampling had not been conducted in the parking lot area that occupies the entire western portion of the Site, therefore, the extent of contamination in this area (if any) was not known;
- Groundwater monitoring had not been conducted in the western portion of the site, therefore, groundwater quality in this area (which is the portion of the Site closest to residential properties) was not known.

Ambient's scope of work addressed those data gaps.

SCOPE OF WORK

Ambient implemented the scope of work summarized below.

SI Work Plan Development. Ambient prepared a SI Work Plan that describes the limited SI scope of work and the approach and procedures for implementing the scope of work. The SI Work Plan includes the following elements: Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP). The SI Work Plan contains an extensive summary of the Site background and environmental work performed to date; therefore, that information is not presented herein.

The SI Work Plan was submitted to NYSDEC for review on 13 March 2019. NYSDEC provided comments on 14 March 2019 and Ambient addressed those comments in a SI Work Plan Addendum dated 14 March 2019. NYSDEC accepted the SI Work Plan and Addendum on 18 March 2019.

Ground Penetrating Radar (GPR) Survey. Ambient contracted GPRS, Inc. to conduct a GPR survey of western parking lot area to evaluate the potential location of current or past tanks, dry wells, pipes and other buried features. Additionally, Ambient utilized the public underground utility locator service ("Digsafe") and the knowledge of the property representative to establish an underground feature mark-out in the work area prior to any intrusive activity.

Results from this survey performed on 27 March 2019 are summarized below in the Summary of Findings section of this report.

Soil Boring/Soil Sampling. On 27 March 2019 and 28 March 2019, Ambient advanced 18 soil borings to various depths below ground surface (bgs) based on field screening and site conditions. Nine soil borings were advanced inside the building through the concrete floor and nine soil borings were advanced in the western parking lot area (Figure 2). [NOTE-Prior to advancing interior borings, Ambient utilized a PhotoIonization Detector (PID) to survey interior building air for volatile organic compounds (VOCs) at the ppm detection level. Significant VOC readings were not detected during that survey.] Soil borings were advanced by NYEG Drilling, LLC using 'direct push' technology to collect samples continuously from grade to total depth. Soil borings were logged and continuously scanned with a PID by Ambient's on-site geologist and on-site environmental scientist. The soil borings location map is included as an attachment. PID readings exceeding 5 ppm (parts per million) were not detected in soil at any boring location except for interior soil boring ISB-4 where a VOC reading of 35 ppm was detected at 8.5 feet bgs. No odors or staining were detected in any of the recovered soil. A total of five soil samples were collected for analyses based on field observations and screening as follows:

- Soil sample ISB-4 collected from 7.5 to 8.5 feet bgs at boring location ISB-4;
- Soil sample ISB-6 collected from 3.5 to 4.5 feet bgs at boring location ISB-6;
- Soil sample SB-2 collected from 9.0 to 9.0 feet bgs at boring location SB-2;
- Soil sample SB-5 collected from 4.5 to 5.0 feet bgs at boring location SB-5; and
- Soil sample WC1 collected from MW-22 and MW-23 drill cuttings.

In general, borings were advanced to approximately 10 feet below grade at which depth a firm medium brown silt/clay till layer was encountered. Refusal occurred in nine of the borings at depths varying from 4 feet bgs to 9 feet bgs due to large cobbles or dense till.

Soil boring logs are attached.

Groundwater Monitoring. Two bedrock groundwater monitoring wells, MW-22 and MW-23, were constructed in the northwest portion of the Site and one groundwater sample was collected for analyses from each new well (Figure 2). MW-22 and MW-23 are two-inch diameter PVC wells that were installed on 27 March 2019 and 28 March 2019 in boreholes drilled with a Hollow Stem Auger (HSA) to the top of bedrock. Air rotary drilling was utilized to complete the drilling to the total depth: 50 feet bgs for MW-22 and 45 feet bgs for MW-23. Both wells were screened from 30 feet bgs to total depth and sand was placed around the screen from 28 feet bgs to total depth. MW-22 was sealed with bentonite from 25 feet bgs to 28 feet bgs and a bentonite/cement grout was placed around the screen from 2.5 feet bgs to 25 feet bgs. A concrete pad was poured from 0 feet bgs to 2.5 feet bgs and the well was finished with a flushmounted curb box. MW-23 was sealed with bentonite from 23.4 feet bgs to 28 feet bgs and a bentonite/cement grout was placed around the screen from 3 feet bgs to 23.4 feet bgs. A concrete pad was poured from 0 feet bgs to 3 feet bgs and the well was finished with a flushmounted curb box. Water levels for both wells were measured on 28 March 2019, at which time the depth to water in MW-22 was 20.07 feet below the top of the PVC casing and the depth to water in MW-23 was 18.34 feet below the top of the PVC casing.

Both wells were developed, purged and sampled by Alpha Analytical on 8 April 2019. The depth to water in each well was measured prior to sampling. The depth to water in MW-22 was 18.12 feet below the top of the PVC casing and the depth to water in MW-23 was 17.90 feet below the top of the PVC casing. MW-22 was developed using bailers while MW-23 was developed using the Geopump (a peristaltic pump). A total of 14 gallons, or three well volumes, were purged from MW-23 to develop the well. A total of 11 gallons was purged from MW-22 before the well went dry. The groundwater in MW-22 started off clear and became more turbid as the well was developed. The groundwater in MW-23 started off clear and stayed clear throughout the development process. No odor was detected in either well. MW-23 recharged almost instantaneously, but MW-22 only recharged seven feet after a few hours. MW-23 was purged with the Geopump and sampled using the low flow method. MW-22 could not be purged with the Geopump due to the limited recharged; therefore, the well was purged with a bailer and sampled using the low flow method. Water quality readings were collected during the sampling process using YSI ProDSS with a flow cell. Five readings were taken from MW-23 until three stable readings were taken. There was not enough recharge in MW-22 to get three stable readings: only one reading of the parameters was taken.

Well Purging/Sampling logs are attached.

Sample Analyses. Five soil samples and two water samples (plus a VOC Trip Blank, as required) were analyzed for TCL volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) SW-846 Test Method 8260. Additionally, five soil samples were analyzed for total RCRA Metals, Nickel, and Zinc (EPA 6010D and EPA 7471). All samples were analyzed by ALPHA Analytical, a NYSDOH-certified laboratory. The results of soil sample analyses are compared to unrestricted use and commercial use NYSDEC Soil

Cleanup Objectives (SCOs) as summarized on the attached Table 1. The results of water sample analyses are compared to NYS Groundwater Standards (GWS) as summarized on Table 2.

Laboratory reports are provided as attachments.

Summary of Findings. The GPR survey covered the entire parking lot area and located three underground features on the western side of the building. Live power was found parallel to the western side of the building from the corner of the building to the man door. An unknown underground feature, approximately 9 feet long and buried an estimated 0.5 feet bgs, was located near the south west corner of the building. A few feet north of that, another underground feature was located. This feature was a semi-circle, approximately 8 feet wide and buried an estimated 0.5 feet bgs.

Soil borings showed that a firm medium brown silt/clay till layer was encountered at around 10 feet bgs throughout the Site. Light gray cobbles were consistently found throughout borings, causing refusal at some locations as noted on boring logs. PID readings were below 5 ppm in most of the borings, except at ISB-4 where a VOC reading of 35 ppm was detected at 8.5 feet bgs. At SB-2, a sample from 8.5 feet bgs was placed in a Ziplock bag and the headspace VOC reading reached 3 ppm. Odors or staining were not identified in any of the soil borings. The concrete floors inside the building were generally 0.5 feet thick and the pavement in the western parking lot area was generally 0.3 feet thick with another 0.7 feet of sub-base material.

Bedrock groundwater monitoring wells indicated that depth to groundwater in the western parking lot area is approximately 17-20 feet bgs. This is consistent with the other wells onsite. The bedrock in MW-23 was very fractured, causing groundwater to be encountered at relatively shallow depths, while the bedrock in MW-22 appeared to be less fractured (and, therefore, produce less water).

Analyses of soil samples show that concentrations of VOCs and metals exceed unrestricted use SCOs for various analytes in three out of the five samples. Exceedances are as follows: acetone and trichloroethene in ISB-6 (3.5-4'), trichloroethene and zinc in ISB-4 (7.5-8.5'), and cadmium, chromium, lead, nickel, and zinc in WC1. The exceedances in ISB-6 (3.5-4') were excepted since this sample was taken from the grinding room; the reported location of a historical spill. The only PID reading above 5 ppm was from ISB-4, the same location where highest concentration of trichloroethene and zinc were found in the soil sample. Soil boring ISB-4 was located near the grinding room. Although there were exceedances for unrestricted use SCOs, the concentrations of VOCs and metals in all soil samples were below commercial use SCOs.

Analyses of groundwater samples show that concentrations of VOCs exceed the NYS GWS for trichloroethene in samples collected from both newly-installed wells (MW-22 and MW-23). Aside from trichloroethene, no other VOC exceedances of the NYS GWS occurred in either sample. The concentrations of trichloroethene in samples collected from both new monitoring wells are consistent with the trichloroethene concentrations detected in samples obtained from the Site-wide groundwater monitoring well network over time. This shows that the trichloroethene concentrations in groundwater onsite is not contained to the eastern portion of the Site, as previously indicated.

Additional Investigation Activities

Ambient performed the following activities in order to further evaluate the Site based on the findings described above.

Groundwater Sampling. On 2 May 2019 and 3 May 2019, Alpha Analytical re-sampled the two monitoring wells installed by Ambient (MW-22 and MW-23) and also collected groundwater samples from existing monitoring wells MW-5, MW-8, MW-10 and MW-12. This sampling was performed to: (1) confirm initial results of MW-22 and MW-23 sampling and analyses and; (2) document contemporaneous VOC concentrations at selected locations site-wide.

Well Purging/Sampling logs are attached.

Six water samples (plus a VOC Trip Blank, as required) were analyzed for TCL volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) SW-846 Test Method 8260. All samples were analyzed by ALPHA Analytical, a NYSDOH-certified laboratory. The concentration of trichloroethene exceeded the NYS Groundwater Standards (GWS) by at least one order of magnitude in each sample. The results of groundwater sample analyses are compared to GWS as summarized on Table 2.

Laboratory reports are provided as attachments.

Analyses of groundwater samples show that concentrations of VOCs exceed the NYS GWS for trichloroethene in samples collected from both newly installed wells (MW-22 and MW-23) and from the existing wells that were sampled (MW-5, MW-8, MW-10 and MW-12). Aside from trichloroethene, no other VOC exceedances of the NYS GWS occurred in MW-22, MW-23, MW-5 or MW-12. In addition to a trichloroethene exceedance in the sample from MW-8, the concentration of tetrachloroethene in that sample also exceedance the GWS. Both a trichloroethene exceedance and a cis-1,2-dichloroethene exceedance were detected in the sample from MW-10. The concentrations of trichloroethene in samples collected from the monitoring wells are consistent with the trichloroethene concentrations detected in the samples obtained on 8 April 2019, as well as the trichloroethene concentrations detected in samples obtained from the Site-wide groundwater monitoring well network over time. This further shows that the trichloroethene concentrations in groundwater onsite is not contained to the eastern portion of the Site, as previously indicated.

Metal Detection. Debris piles and small grassy hills were observed along the northwestern corner of the property. Due to a visual inspection of the area which revealed obvious metal pieces in the area, Ambient walked the area with a metal detector on 6 May 2019. The metal detector was utilized to search for possible buried drums, tanks or other materials that could have influenced groundwater and soil sample results.

As indicated on the attached Figure 3, five centralized readings were observed in the subject area. Additionally, three locations were discovered where a positive reading was observed approximately 35 inches from a negative reading. This could indicate that a horizontal metal drum or pipe is buried below the surface [NOTE- historic air photos indicate that two small sheds were previously located in the northwest portion of the Site. The purpose of those sheds is not known, and the sheds are no longer present.]

Off-Site Source Investigation. Because groundwater flow at the Site has always been shown as being to the south-southwest, Ambient evaluated the potential presence of other sources of trichloroethene to groundwater from off-site, upgradient sources. Ambient utilized historic photographs of the area and researched operating procedures at upgradient sources in order to investigate the potential presence of an off-site source. Historic photographs indicate that a large industrial landfill may be located northeast of the Site in the presumed upgradient direction. The presumed landfill in on property owned (currently or previously) by Fiber Glass Industries, 69 Edson Street, adjacent to the subject Site. The photographs indicate a very large area of ground disturbance, as well as several large above ground tanks and a lagoon or pond at 69 Edson. Ambient currently does not know if trichloroethene was used at 69 Edson Street; we are continuing our evaluation.

Conclusions and Recommendations

Based on the information obtained during this limited SI, Ambient concludes that significant concentrations of VOCs and metals are not present in soil under the building floor or in the soil in the western parking lot area. VOCs were detected in groundwater samples collected from monitoring wells located in the previously untested northwestern portion of the Site. The concentrations of trichloroethene in samples collected from both recently-installed monitoring wells exceeded the NYS GWS. As indicated on the attached Figure 4, these results are consistent with past results presented by others as the concentrations of trichloroethene in samples from the wells MW-10, MW-11 and MW-12 (the existing monitoring wells closest to the newly-installed wells) historically contained trichloroethene at concentrations similar to those detected in samples from MW-22 and MW-23. Unfortunately, trichloroethene contour maps prepared by others indicated that the concentration of trichloroethene in groundwater in the northwestern portion of the Site was below 5 ppb (NYS GWS); therefore, previous Site evaluations did not consider the need for addressing trichloroethene in groundwater in this portion of the Site. Further evaluation of potential on-site and off-site source of VOCs to groundwater is needed. Remediation efforts will need to be expanded to address the northwest portion of the Site.

Ambient appreciates the opportunity to provide environmental consulting services. If you have any questions regarding this report, please contact me at (315) 263-3388 or by email (jimb@ambient-env.com). Thank you.

Respectfully;

Ambient Environmental, Inc.

James F. Blasting, PG Senior Consultant

James F. Blasting

Attachments

Table 1 Soil Sample Results Presented by Ambient Environmental, 2019 61 Edson Street, Amsterdam, NY

	Unrestricted	Commercial	Sample ID								
Analyte	Use Cleanup Objectives	Use Cleanup Objectives	WC1	ISB-4	ISB-6	SB-2	SB-5				
	(ppm)	(ppm)	3/27/2019	3/27/2019	3/27/2019	3/27/2019	3/28/2019				
Volatile Organic Compounds (VOCs)											
Acetone	0.05	500	0.028	ND	0.65	0.022	.0069 J				
o-Xylene	0.26	500	0.0009 J	ND	ND	ND	ND				
Ethylbenzene	1	390	0.00032 J	ND	ND	ND	ND				
Trichloroethene	0.47	200	0.0009	110	0.56	0.0018	.00044 J				
Methyl tert butyl ether	0.93	500	0.0003 J	ND	ND	.00022 J	ND				
p/m - Xylene	0.26	500	0.0015 J	ND	ND	ND	ND				
cis-1,2-Dichloroethene	0.25	500	ND	.17 J	ND	ND	ND				
Methyl Acetate	NS	NS	0.0074	2	3.3	.0027 J	.0018 J				

Metals							
Arsenic	13	16	4.33	3.89	4.49	4.28	4.2
Barium	350	400	55.4	33.4	59.9	39.2	40.1
Cadmium	2.5	9.3	2.56	0.84	0.271 J	0.082 J	0.049 J
Chromium	30	1500	33.4	6.7	22.6	9.06	13.5
Lead	63	1000	80.3	5.78	7.65	7.03	7.62
Mercury	0.18	2.8 J	ND	ND	ND	ND	ND
Nickel	30	310	72.6	10.4	20.5	15.9	17
Selenium	4	1,500	ND	0.169 J	0.244 J	0.254 J	0.341 J
Silver	2	1,500	1.06	ND	ND	ND	ND
Zinc	109	10,000	2850	184	42.9 J	49.2	45.2

Notes:

All results reported in mg/kg - parts per million (ppm).

ND - Compound not detected.

BOLD - Unrestricted use cleanup objective excedance

J - Estimated value. The target analyte concentration is below the quantitation limit (RL) but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analysis. This represents an estimated concentration for Tentalively Identified Compounds (TICs).

Only those compounds detected in at least one sample are presented on this table.

Table 2 Groundwater Sample Results Presented by Ambient 2019 61 Edson Street, Amsterdam, NY

		Sample ID							
	NYSDEC	MW-22	MW-23	MW-5	MW-8	MW-10	MW-12	Trip Blank	
	Groundwater				4/8/2019				
Analyte	Standard (ppb)				4/8/2019				
Volatile Organic Compounds (VOCs)									
Tetrachloroethene	5	0.59	ND	NA	NA	NA	NA	ND	
1,1-Dichloroethene	5	0.57	0.54	NA	NA	NA	NA	ND	
trans-1,2-Dichloroethene	5	ND	0.72 J	NA	NA	NA	NA	ND	
Trichloroethene	5	78	96	NA	NA	NA	NA	0.23 J	
cis-1,2-Dichloroethene	5	2.0 J	1.9 J	NA	NA	NA	NA	ND	
Methyl cyclohexane	NS	0.55 J	0.70 J	NA	NA	NA	NA	ND	

	NYSDEC	Sample ID									
	Groundwater	MW-22	MW-23	MW-5	MW-8	MW-10	MW-12	Trip Blank			
Analyte	Standard (ppb)	5/3/2019	5/2/2019	5/2/2019	5/2/2019	5/2/2019	5/2/2019	5/3/2019			
Volatile Organic Compounds (VOCs)											
Tetrachloroethene	5	0.29 J	ND	ND	55	1.2	ND	ND			
1,1-Dichloroethene	5	0.38 J	0.57	ND	ND	1.6	0.34 J	ND			
trans-1,2-Dichloroethene	5	ND	0.73 J	ND	ND	1.4 J	ND	ND			
Trichloroethene	5	52	100	27	2400	170	30	ND			
cis-1,2-Dichloroethene	5	1.5 J	2.0 J	1.3 J	ND	6.3	3.7	ND			
Methyl cyclohexane	NS	ND	ND	ND	ND	ND	ND	ND			
Acetone	50	ND	ND	ND	ND	ND	ND	2.0 J			

Notes:

All results reported in ug/l - parts per billion (ppb).

Only those compounds detected in at least one sample are presented on this table.

ND - Compound not detected.

NS- no standard

NA - sample not collected for analyses from this well

J- Estimated value. The target analyte concentration is below the quantitation limit (RL) but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analysis.

This represents an estimated concentration for Tentatively Identified Compounds (TICs)

BOLD- Exceedance

					e Investigation	Sheet 1 of 1
	NT: 61 E					
				190311EN		
				ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/27/19
	ER: NYI	EG		1	INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					GOH DEGODIDATION	DEMARKS
					SOIL DESCRIPTION	REMARKS
					0 - 0.5' : Concrete	
1.0		<1			0.5' - 5': medium brown silt with clay, mottled, uniform, dry to	
					moist, no odors, no staining, firm/stiff	
2.0						
			5.0			
3.0						
4.0		1.4				
4.0		1.7				
5.0		0.5				
5.0		0.5				
					5' - 6.75': medium brown silt with clay, mottled, uniform, dry to	
6.0		0.5			moist, no odors, no staining, firm/stiff	
					6.75' - 7.15' : light gray cobble	
7.0		3.5				
			5.0		7.15' - 8.5': medium brown silt with clay, mottled, uniform, dry to	
8.0		0.5			moist, no odors, no staining, firm/stiff	
					8.5' - 9' : light gray cobble	
9.0		0.5				
7.0		0.5			9' - 10': medium brown silt with clay, mottled, uniform, dry to	
10.0					· · · · · · · · · · · · · · · · · · ·	
10.0					moist, no odors, no staining, firm/stiff	
44.0						
11.0						
12.0						
13.0						
14.0						
1 1.0						
15.0						
15.0						
16.0						
17.0						
18.0						

PROJECT: Former Ward Products Site Investigation CLIENT: 61 Edson Street LLC AMBIENT PROJECT NO: 190311ENVA DRILLING METHOD: Direct Push SAMPLER BIT SIZE CORE CASING DRILLING RIG: Geoprobe Macrocore NA NA NA DATE: DRILLER: NYEG INSPECTOR: Jim Blasting and Alexis Martin DEFTH SAMPLE PID REC. USCS Class SOIL DESCRIPTION REMAIL 1.0 6" 3.0 6" 3.0 6" 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 7.0 5.0 5.0 5.0 8.0 0.5 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no reading staining 9.0 0.7 st	
DRILLING METHOD: Direct Push SAMPLER BIT SIZE CORE CASING DRILLING RIG: Geoprobe Macrocore NA NA NA NA DRILLER: NYEG INSPECTOR: Jim Blasting and Alexis Martin DEPTH SAMPLE PID REC. USCS Class NORECOVERY SOIL DESCRIPTION 1.0 6" 0 - 0.5" : Concrete No Recovery 2.0 6.0 5' - 6.5" : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7" - 6.7" : light gray cobble 7.0 5.0 5.0 8.0 0.5 5.0 7.5" - 7.6" : light gray cobble 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.5" - 7.6" : light gray cobble 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.5" - 7.6" : light gray cobble 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.5" - 7.6" : light gray cobble 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.5" - 7.6" : light gray cobble 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.5" - 7.6" : light gray cobble 7.6" - 10" : medium brown fine sand, very dry, no odors, no staining 7.5" - 7.6" : light gray cobble 7.5" - 7.6" : light	
DRILLING RIG: Geoprobe DRILLER: NYEG INSPECTOR: Jim Blasting and Alexis Martin DEPTH SAMPLE PID REC. USCS Class SOIL DESCRIPTION REMAI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	
DRILLER: NYEG DEPTH SAMPLE PID REC. USCS Class SOIL DESCRIPTION REMAN 1.0 0 - 0.5': Concrete No Recovery 2.0 6'' 3.0 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.0 0.5 0.5 8.0 0.5 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
DEPTH SAMPLE PID REC. USCS Class SOIL DESCRIPTION REMAI 1.0 0 - 0.5': Concrete No Recovery 6" 3.0 4.0 5.0 0.5 5'- 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.0 8.0 0.5 5.0 5.0 5'- 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no reading coming	3/27/19
SOIL DESCRIPTION REMAN 1.0 0 - 0.5': Concrete No Recovery 6" 5.0 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
SOIL DESCRIPTION REMAN 1.0 0 - 0.5': Concrete No Recovery 6" 3.0 4.0 5.0 0.5 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.0 5.0 5.0 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
1.0 2.0 3.0 4.0 5.0 0.5 5' - 6.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7' : light gray cobble 6.7' - 7.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 7.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no reading staining 9.0 0.7	
No Recovery 6" No Recovery 6" 3.0 4.0 5.0 5' - 6.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7' : light gray cobble 6.7' - 7.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no staining 9.0 0.7	RKS
No Recovery 6" No Recovery 6" 3.0 4.0 5.0 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
3.0 4.0 5.0 0.5 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no reading staining 9.0 0.7	
3.0 4.0 5.0 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no staining staining	
4.0 5.0 0.5 5' - 6.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7' : light gray cobble 6.7' - 7.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
5.0 0.5 5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
5' - 6.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 6.7' - 6.7': light gray cobble 6.7' - 7.5': medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6': light gray cobble 7.6' - 10': medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
to moist, no odors, no staining, firm/stiff 6.7' - 6.7' : light gray cobble 6.7' - 7.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
6.7' - 6.7' : light gray cobble 6.7' - 7.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
7.0 6.7' - 7.5' : medium brown silt with clay, mottled, uniform, dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
dry to moist, no odors, no staining, firm/stiff 7.5' - 7.6' : light gray cobble 7.6' - 10' : medium brown fine sand, very dry, no odors, no staining 9.0 0.7	
8.0 0.5 7.5' - 7.6' : light gray cobble	
7.6' - 10': medium brown fine sand, very dry, no odors, no reading staining coming	
9.0 0.7 staining coming	
	out of
10.0	
11.0	
12.0	
13.0	
14.0	
15.0	
16.0	
17.0	
18.0	

DDOI		XX	. 1.0	1 . 0'	BURING NU.: ISB-3	01 . 1 6 1
					e Investigation	Sheet 1 of 1
	VT: 61 E				77.7 A	
				190311EN		
				ect Push	SAMPLER BIT SIZE CORE CASING	DATE: 2/27/10
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/27/19
-	ER: NYI				INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.5' : Concrete	
1.0		1.6			0.5' - 1.5': medium brown silt with clay, mottled, uniform, dry	1.2 - 1.5 ppm
					to moist, no odors, no staining, firm/stiff	PID reading
2.0					1.5' - 3.5': very firm, dark brown and gray clay with silt, few	
		1.6	3.5		pebbles	
3.0		1.0]		3.5' - 3.55' : organic layer	no staining
5.0		1				no odors
4.0		1			3.55' - 5': very firm, dark brown and gray clay with silt, few	no odors
4.0					pebbles	
5.0		1.2				
					5' - 7.2': medium brown clay with silt and few pebbles	
6.0						
						no staining
7.0		0.2	5.0		7.2' - 8.5': medium brown and gray plastic clay with silt, very	no odors
					moist	
8.0						
0.0					8.5' - 10': medium brown silt with clay, firm/stiff, moist	
0.0					8.5 - 10 . Illedium brown siit with clay, illin/stiff, moist	
9.0						
10.0						
11.0						
1						
12.0						
13.0						
14.0						
17.0						
15.0						
15.0						
1.60						
16.0						
17.0						
1						
18.0						

PROJI	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1
CLIEN	NT: 61 E	dson S	treet L	LC		
				190311EN		
				ect Push	SAMPLER BIT SIZE CORE CASING	In
	ING RIG		obe		Macrocore NA NA NA INSPECTOR: Line Planting and Alamin Martin	DATE: 3/27/19
	ER: NYI				INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH IN FT.	SAMPLE NO.	PID reading	REC.	USCS Class		
IN F1.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.5' : Concrete	
1.0					0.5' - 5': very firm, dark brown silt with clay, mottled	
2.0						
3.0		0.5	5.0			
4.0						
5.0						
1					5' - 6.5': light gray cobble	
6.0					6.5' - 7.5': medium brownish gray plastic clay with silt, very	
					moist	
7.0					7.5' - 8.5': dark gray, firm, moist, silt, little clay and pebbles,	
L .			3.5		no odor, no staining	
8.0	ISB-4	22			Composite Sample ISB-4 (7.5-8.5)	
9.0		35			Refusal @ 8.5'	
10.0						
11.0						
12.0						
13.0						
14.0						
15.0						
16.0						
17.0						
18.0						

DDOI		**	. 1 D	1	BURING NU.: 18B-3	C1 + 1 C 1
					te Investigation	Sheet 1 of 1
	VT: 61 E			LC 190311EN	NTY A	
				ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC			ect r usii	Macrocore NA NA NA	DATE: 3/27/19
	ER: NYI		obc		INSPECTOR: Jim Blasting and Alexis Martin	DATE: 3/21/17
	SAMPLE	PID	REC.	USCS	I was 2010th our 2 moung who i nome tracen	
IN FT.	NO.	reading	raze.	Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.5' : Concrete	
1.0					0.5' - 4.5': medium brown silt with clay, mottled, uniform,	
					dry to moist	
2.0		2				
3.0			5.0			
I						
4.0		2.5			4.5' - 4.8': light gray cobble	
					4.8' - 5': medium brown silt with clay, mottled, uniform, dry	
5.0		3			to moist	
					5' - 6': medium brown clay with silt, cobbles present	
6.0		2	1.9		throughout	
					Refusal @ 6'	
7.0						
8.0						
9.0						
10.0						
11.0						
12.0						
1						
13.0						
15.0						
14.0						
17.0						
15.0						
15.0						
16.0						
10.0						
17.0						
18.0						

PROJE	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1
	NT: 61 E					
				190311EN	WA	
DRILI	LING M	ETHOI	D: Di	rect Push	SAMPLER BIT SIZE CORE CASING	
DRILL	ING RIC	: Geopr	obe		Macrocore NA NA NA	DATE: 3/27/19
DRILL	ER: NYI	EG			INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.9' : Concrete	KLZIVITKIKIS
1.0						NI. atainina
1.0					0.9' - 4.3': medium brown silt with clay and fine sand, dry to	
					moist, firm to very firm, uniform throughout	No odor
2.0			2.0			No PID over
						1 ppm
3.0						
					4.3' - 4.5': very firm/hard till with silty clay, fine sand and	
4.0					cobbles	
4.0	ISB-6				Refusal @ 4.5'	
5 0	12D-0					
5.0					Composite Sample ISB-6 (3.5-4.5)	
6.0						
7.0						
8.0						
0.0						
0.0						
9.0						
10.0						
11.0						
12.0						
12.0						
12.0						
13.0						
14.0						
15.0						
16.0						
16.0						
17.0						
18.0						
10.0						

PROJI	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1
	VT: 61 E					
				190311EN		
				ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/27/19
	ER: NYI	EG			INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.5' : Concrete	No staining
1.0		5			0.5' - 2.8': medium brown silt with clay and some fine sand,	No odor
1.0		5			some pebbles, moist, firm	PID: 3-7 ppm
2.0					2.8' - 4': dry silt, clayey, fine sand with cobbles and gravel	throughout
2.0					2.8 - 4 . dry sirt, clayey, time saild with coobles and graver	unroughout
2.0			<i>-</i> 0			
3.0			5.0			
4.0					4' - 5': medium brown silt with clay, some fine sand, very	
					firm, moist	
5.0						
					5' - 6': medium brown silt with clay, some fine sand, very	
6.0					firm, moist	
					6' - 6.5' : light gray cobble	
7.0			2.6		6.5' - 7': medium brown silt with clay and sand, some pebbles	
8.0					7' - 7.4': brown fine sand, moist to wet	
0.0					7.4' - 7.6': very hard till with clay, silt, sand, pebbles	
9.0					Refusal @ 7.6	
9.0					Refusal @ 7.0	
10.0						
10.0						
44.0						
11.0						
12.0						
13.0						
1						
14.0						
1						
15.0						
13.0						
16.0						
10.0						
17.0						
18.0						

					e Investigation	Sheet 1 of 1
	VT: 61 E					
				190311EN		
				ect Push	SAMPLER BIT SIZE CORE CASING	T
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/27/19
	ER: NYI				INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.5' : Concrete	
1.0					0.5' - 4.6': medium brown silt with clay and sand, pebbles	
1.0					and cobbles throughout, moist, firm, no odor, no staining	
2.0		3			and coooles unoughout, moist, min, no odor, no stanning	
2.0		3				
2.0			5.0			
3.0			5.0			
4.0		4.0				
4.0		4.2			4.6' - 5' : light gray cobble	
5.0		4				
					5' - 5.5' : cobble	
6.0		4			5.5' - 7.9': medium brown silt with clay and sand, pebles	
					throughout, moist, firm, no odor, no staining	
7.0		4.3				
8.0			5.0		7.9' - 10': till, gray/brown, cobbles and pebbles throughout,	
					firm, moist	
9.0		4			,	
10.0						
10.0						
11.0						
11.0						
12.0						
12.0						
13.0						
14.0						
15.0						
16.0						
17.0						
18.0						
10.0					l	

PROJI	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1
	NT: 61 E					7,000,000
				190311EN	NVA	
DRILI	LING M	ETHOI	D: Din	ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/27/19
DRILL	ER: NYI	EG			INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.5' : Concrete	
1.0					0.5' - 5': medium brown silt with clay and sand, moist, firm,	
1.0		3				
2.0		3			no odor, cobbles and gravel throughout	
2.0						
2 0						
3.0			5.0			
4.0						
5.0		4.2				
					5' - 5.5': medium brown silt with clay and sand, moist, firm,	
6.0			3.0		no odor, cobbles and gravel throughout	
					Refusal @ 5.5'	
7.0					Terusur e oio	
7.0						
8.0						
8.0						
0.0						
9.0						
10.0						
11.0						
12.0						
13.0						
13.0						
140						
14.0						
1						
15.0						
16.0						
17.0						
18.0						

PROJI	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1					
	NT: 61 E				<u> </u>						
AMBI	ENT PR	ROJECT	NO:	190311EN	IVA						
DRILI	LING M	ETHOI	D: Dir	ect Push	SAMPLER BIT SIZE CORE CASING						
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/27/19					
	ER: NYI	EG			INSPECTOR: Jim Blasting and Alexis Martin						
DEPTH	SAMPLE	PID	REC.	USCS							
IN FT.	NO.	reading		Class							
					SOIL DESCRIPTION	REMARKS					
					0-1': pavement and gravel						
1.0		1			1' - 1.8': loose sand and gravel fill						
					.8' - 5': medium brown silt and clay, moist, no odor, no						
2.0					staining, firm						
2.0					Stating, Tim						
3.0			5.0								
3.0			5.0								
4.0											
4.0											
5.0											
					5' - 6.5': medium brown silt and clay, very moist, gravel						
6.0		<.5			pieces throughout, no odor						
			3.7								
7.0					Refusal @ 6.5'						
8.0											
9.0											
7.0											
10.0											
10.0											
44.0											
11.0											
12.0											
13.0											
14.0											
15.0											
15.0											
160											
16.0											
l											
17.0											
18.0											
10.0											

CLIENT: 61 Edson Street LLC AMBIENT PROJECT NO: 190311ENVA DRILLING METHOD: Direct Push SAMPLER BIT SIZE CORE CASING DRILLING RIG: Geoprobe Macrocore NA NA NA DRILLER: NYEG INSPECTOR: Jim Blasting and Alexis Martin DEPTH SAMPLE PID REC. USCS reading NO. Class SOIL DESCRIPTION 1.0 1.5 0 - 0.3': Pavement 0.3' - 1': fill: sub-base (sand and gravel, moist) 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5' 3.0 2.8	DATE: 3/27/19 REMARKS 1-1.5 PID
DRILLING METHOD: Direct Push SAMPLER BIT SIZE CORE CASING DRILLING RIG: Geoprobe Macrocore NA NA NA DRILLER: NYEG INSPECTOR: Jim Blasting and Alexis Martin DEPTH SAMPLE NO. reading REC. USCS Class SOIL DESCRIPTION 1.0 1.5 0.3' - 1' : fill: sub-base (sand and gravel, moist) 1' - 5' : medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	REMARKS
DRILLING RIG: Geoprobe Macrocore NA NA NA NA DRILLER: NYEG INSPECTOR: Jim Blasting and Alexis Martin SOIL DESCRIPTION 1.0 1.5 0 - 0.3': Pavement 0.3' - 1': fill: sub-base (sand and gravel, moist) 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	REMARKS
DRILLER: NYEG DEPTH SAMPLE PID REC. USCS Class IN FT. NO. reading 1.0 1.5 1.5 INSPECTOR: Jim Blasting and Alexis Martin SOIL DESCRIPTION 0 - 0.3': Pavement 0.3' - 1': fill: sub-base (sand and gravel, moist) 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	REMARKS
DEPTH SAMPLE NO. reading REC. USCS Class SOIL DESCRIPTION 1.0	
SOIL DESCRIPTION 1.0 1.5 1.5 1.5 Class SOIL DESCRIPTION 0 - 0.3': Pavement 0.3' - 1': fill: sub-base (sand and gravel, moist) 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	
SOIL DESCRIPTION 1.0 1.5 0 - 0.3': Pavement 0.3' - 1': fill: sub-base (sand and gravel, moist) 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	
1.0 1.5 0 - 0.3': Pavement 0.3' - 1': fill: sub-base (sand and gravel, moist) 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	
1.0 1.5 0.3' - 1': fill: sub-base (sand and gravel, moist) 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	1-1.5 PID
2.0 1' - 5': medium brown, firm, dry to moist, silt with clay, sand and gravel (rounded) and rounded pebbles. Very firm at 5'	
and gravel (rounded) and rounded pebbles. Very firm at 5'	
and gravel (rounded) and rounded pebbles. Very firm at 5'	no odor
	no staining
3.0 2.8	
4.0	
5.0	
5' - 8': very firm, clay rich till with pebbles and gravel,	
	no odon
6.0 medium brown, dry to moist	no odor
	no staining
7.0	
5.0	
8.0 8' - 10': plastic with more clay, medium brown, firm, moist	
9.0 SB-2	3 ppm in bag
	headspace ~
10.0	8.5'
11.0	
12.0	
13.0	
14.0	
15.0	
16.0	
16.0	
17.0	
18.0	1

	C1.10	THEL W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1
CLIEN'	T: 61 E	dson St	reet L	LC		
				190311EN		
				ect Push	SAMPLER BIT SIZE CORE CASING	I
DRILLI			obe		Macrocore NA NA NA	DATE: 3/28/19
DRILLE					INSPECTOR: Jim Blasting and Alexis Martin	
	SAMPLE	PID	REC.	USCS		
IN FT. N	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.3': Pavement	
1.0					0.3' - 1': fill and sub-base (sand and gravel)	<2 ppm
					1' - 2.5': gravely brownish gray silt and clay	no odor
2.0					2.5' - 5': medium brown, firm, dry to moist, silt with clay,	no staining
					rounded pebbles and angular gravel pieces	Č
3.0			5.0		8-11-11-11-11-11-11-11-11-11-11-11-11-11	
			0.0			
4.0						
7.0						
5.0						
5.0						
<i>c</i> 0					5' - 9': medium brown, firm, dry to moist, silt with clay,	2
6.0					rounded pebbles and angular gravel pieces	<2 ppm
7.0					Refusal @ 9'	
8.0			5.0			
9.0						
10.0						
11.0						
11.0						
12.0						
12.0						
100						
13.0						
14.0						
15.0						
16.0						
17.0						
18.0						

PROJ	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation				Sheet 1 of 1			
CLIEN	NT: 61 E	Edson St	reet L	LC								
				190311EN								
				rect Push	SAMPLER	BIT SIZE	CORE	CASING				
	ING RIC		obe		Macrocore	NA	NA	NA	DATE: 3/28/19			
	ER: NYI				INSPECTOR: Jim B	lasting and Alexis	Martin					
	SAMPLE	PID	REC.	USCS								
IN FT.	NO.	reading		Class								
						SOIL DESCRIE	PTION		REMARKS			
					0 - 0.3': Pavement							
1.0					0.3' - 1' : fill with s	ub-base						
					1' - 1.5' : medium b	brown silt with cla	ay, moist, fi	rm, pebbles				
2.0					and gravel				no odor			
		<1.5	4.0		1.5' - 2' : light gray	cobble			no staining			
3.0					2' - 4' : medium bro	own silt with clay	, moist, firn	n				
						•						
4.0						Refusal @ 4'						
5.0												
6.0												
7.0												
7.0												
8.0												
0.0												
9.0												
7.0												
10.0												
10.0												
11.0												
11.0												
12.0												
12.0												
12.0												
13.0												
14.0												
15.0												
16.0												
17.0												
18.0												
18.0												

					DOMING NO.: 5D-5	~
					e Investigation	Sheet 1 of 1
	VT: 61 E				WAL	
				190311EN		
				rect Push	SAMPLER BIT SIZE CORE CASING	DATE 0/20/40
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/28/19
	ER: NY				INSPECTOR: Jim Blasting and Alexis Martin	
	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.3' : Pavement	
1.0					0.3' - 1': sub-base material (sand and gravel)	
1.0					1' - 5': medium brown silt with clay, moist, firm, no odor,	PID readings
2.0					• • • • • • • • • • • • • • • • • • • •	_
2.0			- o		gravel and pebbles	<2 ppm
			5.0			
3.0						
4.0	SB-5				Composite Sample SB-5 (4.5-5')	
5.0						
					5' - 7': same as above with more angular gravel pieces and	
6.0					rounded pebbles	
0.0					Tourided peoples	
7.0					D-f1 @ 7!	
7.0					Refusal @ 7'	
8.0						
9.0						
10.0						
11.0						1
11.0						
12.0						1
12.0						
13.0						
14.0						
15.0						
16.0						
10.0						
17.0						
17.0						
18.0						
10.0						

PROJ	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1
	NT: 61 E				-	
				190311EN		
				ect Push	SAMPLER BIT SIZE CORE CASING	_
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/28/19
	ER: NYI				INSPECTOR: Jim Blasting and Alexis Martin	
	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.3': Pavement	
1.0					0.3' - 1': sub-base material (gravel and sand)	
					1' - 5': medium brown silt and clay, moist, firm, no odor,	
2.0		2.8			pebbles and gravel pieces present, no staining	
			4.8			
3.0		2.6				
4.0		2.9				
5.0		2.6				
					5' - 10': medium brown silt and clay, moist, firm, no odor,	
6.0					pebbles and gravel pieces present, no staining	
					process and graves process, no summing	
7.0						
,						
8.0		2.7	4.8			
0.0		2.,				
9.0		1.5				
7.0		1.5				
10.0		2.8				
10.0		2.0				
11.0						
11.0						
12.0						
12.0						
13.0						
15.0						
140						
14.0						
15.0						
15.0						
160						
16.0						
17.0						
17.0						
18.0						
10.0						

DDO	COT. P		a1 D		DURING NU.; SD-7	Cl 1 C 1
					e Investigation	Sheet 1 of 1
	NT: 61 E			LC 190311EN	TV A	
	LING M ING RIC			rect Push	SAMPLER BIT SIZE CORE CASING Macrocore NA NA NA	DATE: 3/28/19
	ER: NYI		obe		INSPECTOR: Jim Blasting and Alexis Martin	DATE: 5/28/19
_	_				INSPECTOR. Jill Blasting and Alexis Martin	
DEPTH IN FT.	SAMPLE NO.	PID	REC.	USCS Class		
IN F1.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.3': Pavement	
1.0		0.6			0.3' - 1': sub-base material (sand and gravel)	no odor
					1' - 1.8': grayish brown silt and clay, firm, moist, pebbles and	no staining
2.0					gravel pieces	
					1.8' - 3.7': medium brown silt and clay, firm	
3.0			5.0		3.7' - 4.3': softer, little more clay	
0.0			0.0		in a society made more can	
4.0		1.3			4.3' - 5': medium brown silt and clay, firm, gravel and pebble,	
4.0		1.5			moist	
<i>5</i> 0		0.6			moist	
5.0		0.6			[c] 10 1	1
- 0					5' - 10' : same as above	no odor
6.0						no staining
7.0						
8.0		0.5				
9.0						
10.0		2				
10.0						
11.0						
11.0						
12.0						
12.0						
13.0						
14.0						
15.0						
16.0						
10.0						
17.0						
17.0						
18.0						
					<u>l</u>	ı

PROJ	ECT: Fo	rmer W	ard Pr	oducts Sit	e Investigation	Sheet 1 of 1
	NT: 61 E					
AMBI	ENT PR	ROJECT	ΓNO:	190311EN		
DRILI	LING M	ETHOI	D: Dir	ect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/28/19
	ER: NYI	EG			INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.3' : Pavement	
1.0					0.3' - 1': sub-base material (sand and gravel)	no odor
					1' - 5': medium brown, silt and clay, moist, firm, gravel and	no staining
2.0					round pebbles, no odor, no staining	no stanning
2.0					Tound peobles, no odor, no staining	
3.0			5.0			
3.0			3.0			
1.0		1				
4.0		1				
5.0		0.4				
					5' - 10': same as above, more round gravel and pebbles	no odor
6.0						no staining
7.0		1				
8.0		0.5	5.0			
9.0						
7.0						
10.0						
10.0						
110						
11.0						
12.0						
13.0						
14.0						
15.0						
15.0						
16.0						
10.0						
17.0						
17.0						
18.0						

PROJ	ECT: Fo	rmer W	ard Pr	oducts Si	te Investigation	Sheet 1 of 1
	NT: 61 E					
AMB)	IENT PF	ROJECT	ΓNO:	190311E	NVA	
DRIL	LING M	ETHOI	D: Diı	rect Push	SAMPLER BIT SIZE CORE CASING	
	ING RIC		obe		Macrocore NA NA NA	DATE: 3/28/19
DRILI	ER: NYI	EG			INSPECTOR: Jim Blasting and Alexis Martin	
DEPTH	SAMPLE	PID	REC.	USCS		
IN FT.	NO.	reading		Class		
					SOIL DESCRIPTION	REMARKS
					0 - 0.3' : Pavement	
1.0					0.3' - 1': sub-base materail (sand and gravel)	
110					1' - 4.6': medium gray, silt and clay, firm, moist, gravel and	no odor
2.0					pebbles, no odor, no staining	no staining
2.0					peoples, no odor, no stanning	no stanning
2.0						
3.0						
4.0		0.5				
4.0		0.5			4.6' - 5' : light gray cobble	
5.0						
					5' - 10': medium gray, silt and clay, firm, moist, gravel and	
6.0					pebbles, no odor, no staining	
7.0						
8.0		0.5				
9.0						
10.0						
11.0						
11.0						
12.0						
12.0						
12.0						
13.0						
14.0						
15.0						
16.0						
17.0						
18.0						

	Inj	ection Well Pu	rging/Samplin	g Form				1
Project Name and Number:		61 Edson	St, An	Sterdo	YU,m	19031	ENVA	
Monitoring Well Number:		MW-2:	Date:	41	8119			
Samplers:		ZOICK ROBISON AAL						
Sample Number:		_2	QA/Q	C Collected?	N	IA		
Purging / Sampling Method:		Georg	1 gruc	Low F	COOP			_
1. L = Total Well Depth: 2. D = Riser Diameter (1.D.): 3. W = Static Depth to Water (T 4. C = Column of Water in Casis 5. V = Volume of Water in Well 6. D2 = Pump Setting Depth (ft) 7. C2 = Column of water in Pum 8. Tubing Volume = C2(0.0057)	ng: l = C(3.14159 : np/Tubing (ft))(0.5D) ² (7.48)	40.0 2 in 18.18 31.62 5.16 40.0	feet feet gal feet feet gal feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50		49.75 -18.12 31.63 × 016 = 5.16 gal × 3 volume
Water Quality Readings Collect	ed Using	v(gal/ft) 0.0	inch 2-inch 041 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5		= 15.46ga (Purge to Davel
Parameter	Units	1515		Readings				
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor Comments: Developments: Three consecutive readings with the properties of	elope	42.6 100.2 147.2 68.0 68.75 187.4 0.848 7.42 14.1 002 Con 2 Well 1005— 1005— 1005— 1005—	before Sidnut	e Sa O CBG	mple our)	Q	revel	Ory. (Developed)
* Three consecutive readings w			of that parameter.				3 C12	7

Not enough volume recurrage to get 3 Stable readings. Only I reading of Parameters taken,

Project Name and Number: Monitoring Well Number:	-	GL	Table 1921					n	_
Monitoring Well Number:		01	EDSON	ost,	AMS	esdam	NY RO	311E	NUA
	_	MW-	83	Date:	4	18/19			
Samplers:	j	Lace	- Ro	bison	AA	<u></u>			
Sample Number:	_	1		QA/QC	Collected?	1	MA		
Purging / Sampling Method:	_	Geof	Sump	16	WFK	SW.			
1. L = Total Well Depth: 2. D = Riser Diameter (1.D.): 3. W = Static Depth to Water (TOC) 4. C = Column of Water in Casing: 5. V = Volume of Water in Well = 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/ 8. Tubing Volume = C2(0.0057370)	: C(3.14159) Tubing (ft):) .	37.0	feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	0.08 0.17 0.25 0.33 0.50		45.95 -17.90 28.05×.11 =4.57×3
Water Quality Readings Collected	Į	D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5		= 13.72ga Crurge to Dev
Parameter	Units				Readings				
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor	24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c µmho / cm pH unit C Visual Olfactory	7.28 12.1 1.28 12.1 12.1	Sy.59 2.79 0.86 0.745 7.28 7.28	7.28 0.28 199.6 0.741 7.28	1330 17.87 10.87 18.10 18.10 13.0 13.0 13.0	48.75 2.28 0.74 0.74 7.23		tetal	19 gallons
Comments: Well	J'M G	(book	Cond testi	ditio	on // exten (Vo (३० १	(Hc	

Method: cepth: cer (1.D.): to Water (TOC): dater in Casing: dater in Well = C(3.14159)(0.5) dater in Pump/Tubing (ft): c2(0.005737088) D(V) dings Collected Using Units 24 hr feet gal mL/min 10	Geo 59)(0.5D) ² (7.48) (ft): D (inches) V (gal / ft) YS1 Gro	Pump/	QAQC Low F 47.80 2in 17.80 32.0 5.21	S/S			· A
Method: cepth: cer (1.D.): to Water (TOC): dater in Casing: dater in Well = C(3.14159)(0.5) dater in Pump/Tubing (ft): c2(0.005737088) D(V) dings Collected Using Units 24 hr feet gal mL/min 10	Mw-2 Eric Su 6 Geo 59)(0.5D) ² (7.48) (ft): V (gal / ft) YS1 Pro	Pump/	QAQC Low F 47.80 2in 17.80 32.0 5.21	Collected?	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
Method: cpth: cr (1.D.): to Water (TOC): dater in Casing: dater in Well = C(3.14159)(0.3 mg Depth (ft): water in Pump/Tubing (ft): c C2(0.005737088) D (V (V (I)) Units 24 hr feet 17. gal mL/min 10	Eric S. 6 Geo 59)(0.5D) ² (7.48) (ft): V (gal / ft) YS1 Fro	Pump/	QAQC Low F 49.50 2:n 17.50 32.0 5.21	feet feet feet feet gal feet feet feet	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
Method: cpth: er (1.D.): to Water (TOC): dater in Casing: dater in Well = C(3.14159)(0.3 mg Depth (ft): er (22(0.005737088) D (V (1.2 mg) Collected Using Units 24 hr feet gal mL/min 10	6 Geo 59)(0.5D) ² (7.48) (ft): D (inches) V (gal / ft) YS1 Fro	Pump /	QAQC Low F 49.80 2in 17.80 32.0 5.21 25	feet feet feet feet gal feet feet feet	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
Copt Copt	59)(0.5D) ² (7.48) (ft): D (inches) V (gal / ft) YS) Cro	Conversion f	Low F 44.80 2:n 17.80 32.0 5.21 25	feet feet feet feet gal feet feet feet	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33	
er (1.D.): to Water (TOC): later in Casing: later in Well = C(3.14159)(0.5 later in Pump/Tubing (ft): C2(0.005737088) D (D (inches) V (gal / ft) YS1 Cro	Conversion f	2:n 17:50 32:0 5:21 25	feet feet feet gal feet feet	1-inch 2-inch 3-inch 4-inch	0.08 0.17 0.25 0.33	
er (1.D.): to Water (TOC): later in Casing: later in Well = C(3.14159)(0.5 later in Pump/Tubing (ft): C2(0.005737088) D (D (inches) V (gal / ft) YS1 Cro	Conversion f	2 in 17.80 32.0 5.21 25	feet feet gal feet feet	2-inch 3-inch 4-inch	0.08 0.17 0.25 0.33	1
to Water (TOC): (ater in Casing: (ater in Well = C(3.14159)(0.5) (ater in Well = C(3.14159)(0.5) (ater in Pump/Tubing (ft): (ater in Pump/Tubing (ft): (b): (c): (c): (d): (d): (d): (d): (d): (d): (d): (e): (ft): (ft	D (inches) V (gal / ft) YS1 Cro	Conversion f	17.50 32.0 5.21 25	feet feet gal feet feet	2-inch 3-inch 4-inch	0.17 0.25 0.33	Ť
Value	D (inches) V (gal / ft) YS1 Cro	Conversion f	32.0 5.21 25	feet gal feet feet	3-inch 4-inch	0.25 0.33	*
Vater in Well = C(3.14159)(0.5	D (inches) V (gal / ft) YS1 Cro	Conversion f	5.21 25	gal feet feet	4-inch	0.33	
Ing Depth (ft): Water in Pump/Tubing (ft): C2(0.005737088) D (V	D (inches) V (gal / ft) YS1 Cro	Conversion f	25	feet feet		507.72	
water in Pump/Tubing (ft): C2(0.005737088) D (V (V (V (V (V (V (V (V (V (V	D (inches) V (gal / ft) YS1 Cro	Conversion f		feet	o-inch	0.50	
D (V (D (inches) V (gal / ft) YS1 Cro	1-inch					1
lings Collected Using Units 24 hr feet gal mL/min	D (inches) V (gal / ft) YS1 Cro	1-inch		gai			
Units 24 hr feet gal mL/min	D (inches) V (gal / ft) YS1 Cro	1-inch					
Units 24 hr feet gal mL/min	D (inches) V (gal / ft) YS1 Cro	1-inch					
Units 24 hr feet gal mL/min	YSI Pro	I there are not been all the same of	actors to det	termine v gi	ven C		
Units 24 hr feet gal mL/min	YSI Pro	I there are not been all the same of	2-inch	3-inch	4-inch	6-inch	7
Units 24 hr feet gal mL/min	YS1 Pro	0.041	0.163	0.37	0.65	1.5	
feet 17. gal mL/min 10		0830	mC-7-	Readings 0840	0845	leten	0855
gal mL/min 10	11.00	17.28	0835 1791	17.95	15.00	18.03	18.05
mL/min 10		14.00	1431	11.45	13.00	17.03	18.05
	in 100-L					-	
I NITH HAS		121.02	122 (0	PA 101	767	CCH	MAC
						7.57	39.3
The second secon						430	4.33
11-10/01 INET 3.				The second secon	PROPERTY OF STREET, ST		216.5
May 31						1000	
	213.2	0.574	0.344	0.813	לויצים	D.847	0.842
ty mS/cm ^c 0.9	213.2			1246	-	100	-
ty mS/cm ^c φ.§	213.2 0.886		-				7.46
ty mS/cm ^c 0.9 %) μmho / cm pH unit 7.4	213.2 6 0.886 cm	7.45	117	11.3	11.3	11.7	11.3
ty mS/cm ^c 0.9 //6) μmho / cm pH unit 7.1 C 11	213.2 0.886 (m 1 7.45	7.45 II-3	11.5	1			
ty mS/cm ^c 0.9 /6) μmho / cm pH unit 7.1 C 11 Visual 4	213.2 0.886 1 7.45 11.0 Clear		16.3	-			
+/- 10%) % 52	113 52	.46 .7 .2 .3	.46 12102 .7 46.5 62 5.04 6.2 216.4 86 0.894	.46 12102 122.60 .7 46.5 42.7 62 5.04 4.64 6.2 216.4 216.4 86 0.894 0.894	.46 121,02 122.60 121.07 .7 46.5 42.7 41.7 62 5.04 4.64 4.46 63 216.4 216.4 216.4 66 0.544 0.544 0.543 15 7.45 7.45 7.45	.46 121,02 122.60 121.07 7.43 .7 46.5 42.7 41.7 40.1 62 5.04 4.64 4.46 4.40 6.2 216.4 216.4 216.5 66 0.544 0.544 0.543 0.543 15 7.45 7.45 7.45 7.45	.46 12.102 122.60 121.07 7.43 5.54 .7 46.5 42.7 41.7 40.1 39.8 62 5.04 4.64 4.46 4.40 4.38 62 216.4 216.4 216.4 216.5 216.5 66 0.894 0.894 0.893 0.893 0.892

oject Name and Number: onitoring Well Number:	<u>G</u>	rion Well rl Edis NV-8	on St.	Sampling I	rdam 1	JY 1907		
onitoring Well Number:	_						II FUN	A
		AL/ C	,	Date:	5/2/1	9		
les:	L	77-8		Date	2/2/			
amplers:		eric Su	ertzme	yer				
ample Number:	_			QA/QC	Collected?	NA		
urging / Sampling Method:		GeoPu	mp/La	QAVQC TION				
-f	_			Action to the second	feet I	D (inches)	D (feet)	1
L = Total Well Depth:				210	feet	1-inch	0.08	
D = Riser Diameter (I.D.):			•	12.61	feet	2-inch	0.08	
W = Static Depth to Water (TO	C):			68.04	feet	3-inch	0.17	
C = Column of Water in Casing	2:				727		2000	
V = Volume of Water in Well =	= C(3.14159)	(0.5D)*(7.48	3)	11.09	gal	4-inch	0.33	
D2 = Pump Setting Depth (ft):				60.0	feet	6-inch	0.50	1
. C2 = Column of water in Pump	p/Tubing (ft):				feet			
3. Tubing Volume = C2(0.00573	7088)				gal			
The second second						2		
			Conversion	factors to de	termine V gi	ven C		
								_
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	1
Water Quality Readings Collecte		V (gal / ft)	0.041	2-inch 0.163	0.37	4-inch 0.65	6-inch 1.5]
		V (gal / ft)	0.041	0.163	0.37]
Parameter	ed Using	V (gal / ft)	0.041	0.163 Flow Le	0.37		1.5	0805
Parameter Fime	ed Using Units	V (gal / ft) Pro D	0.041 SS w/ 1	0.163 Flow Le	0.37	0.65	0800	-
Parameter Fime Water Level (0.33)	Units 24 hr	Pro D	0.041 SS w/	0.163 Flow Le	Readings	0.65	1.5	-
Parameter Fime Water Level (0.33) Volume Purged	Units 24 hr feet	V (gal / ft) Pro D	0.041 SS w/	0.163 Flow Le	Readings	0.65	0800	
Parameter Fime Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal	V (gal / ft) Pro D: 0735 12.61	0.041 SS w/	0.163 Flow Le	0.37 Readings 0750 12.61	0.65	0800 12.61	12.61
Parameter Fime Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL / min	V (gal / ft) Pro D: 0735 12.61	0.041 SS w/ 1	0.163 Flow Le 0745 12.61 G0.28	0.37 Readings 0750 12.61	0.65	0800 12.61	12.61
Parameter Fime Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL / min NTU	V (gal / ft) Pro D: 0735 12.61 100mL 49.50 36.4	0.041 SS w/ 0740 12.60 57.55 30.3	0.163 Flow Le 0745 12.61 G0.28 28.0	Readings 0750 12.61	0.65 0755 12.61	0800 12.61	12.61 60.74 25.8
Water Quality Readings Collecter Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL / min NTU %	V (gal / ft) Pro D: 0735 12.61 100aL 44.50	0.041 SS w/ 0740 12.60 57.55 30.3 3.49	0.163 Flow Le 0745 12.61 Go.28 28.0 3.23	Readings 0750 12.61 61.31 27.1 3.11	0.65	0500 12.61 60.59 25.9	12.61 50.74 25.8 2.98
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL / min NTU % mg/L MeV	V (gal / ft) Pro D: 0735 12.61 100mL 49.50 36.4 4.13 209.3	0.041 SS w/ 12.60 57.55 30.3 3.49 210.1	0.163 Flow Le 0745 12.61 Go.28 28.0 3.23 210.2	Readings 0750 12.61 61.31 27.1 3.11 210.6	0.65 12.61 60.59 26.3 3.03 211.0	0800 12.61 60.89 25.9 3.00 211.4	12.61 50.74 25.8 2.98 211.6
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc	V (gal / ft) Pro D: 0735 12.61 100~L 14.50 36.4 4.13 209.3 0.494	0.041 SS w/ 0740 12.60 57.55 30.3 3.49	0.163 Flow Le 0745 12.61 Go.28 28.0 3.23	Readings 0750 12.61 61.31 27.1 3.11	0.65 0755 12.61 60.59 26.3 3.03	0500 12.61 60.59 25.9 3.00	12.61 50.74 25.8 2.98 211.6
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm µmho / cm	V (gal / ft) Pro D: 0735 12.61 100 L 49.50 36.4 4.13 209.3 0.494	0.041 SS w/ 12.60 57.55 30.3 3.49 210.1 0.504	0.163 Flow Le 0745 12.61 G0.28 28.0 3.23 210.2 0.510	Readings 0750 12.61 2.7.1 3.11 210.6 0.512	0.65 0755 12.61 60.59 26.3 3.03 211.0	0800 12.61 60.89 25.9 3.00 211.4	12.61 50.74 25.8 2.98 211.6 0.518
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cme µmho / cm pH unit	7.43	0.041 SS w/ 12.60 12.60 57.55 30.3 3.49 210.1 0.504	0.163 Flow Le 0745 12.61 G0.28 28.0 3.23 210.2 0.510	Readings 0750 12.61 27.1 3.11 210.6 0.512 7.44	0.65 12.61 60.59 26.3 3.03 211.0 0.516	0800 12.61 60.89 25.9 3.00 211.4 0.519	12.61 50.74 25.8 2.98 211.6 0.518
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm µmho / cm	V (gal / ft) Pro D: 0735 12.61 100 L 49.50 36.4 4.13 209.3 0.494	0.041 SS w/ 12.60 57.55 30.3 3.49 210.1 0.504	0.163 Flow Le 0745 12.61 G0.28 28.0 3.23 210.2 0.510	Readings 0750 12.61 2.7.1 3.11 210.6 0.512	0.65 0755 12.61 60.59 26.3 3.03 211.0	0800 12.61 60.89 25.9 3.00 211.4	25.8

MW-S Erics	- werten	QA/QX QA/QX QA/QX 18.35	5/2/1 C Collected?	N/#		
MW-S Erics	ucrten	QA/QX QA/QX QA/QX 18.35	5/2/1	_ N/#		
Erics.	uerten	QA/QX on Flor	C Collected?	N/#	4	
		QA/QC <u>ON Flow</u> 18.35			4	
Geo P.	- / L	18.35				
	•		feet			
14159)(0.5D) ² (7.4	18)	1.75 0.28 1.7.0	feet feet feet gal feet feet gal feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	0.08 0.17 0.25 0.33 0.50	
	Conversion	1 factors to de	etermine V gi	iven C		
D (inches)		2-inch	3-inch	4-inch	6-inch	
its			Readings			+
the same of the sa						
	2.58				-	
Marketin Company of the Company of the Company						-
THE RESERVE THE PERSON NAMED IN	The second secon				-	
	_	_				
	0.663	0.662	0.662	0.663		
/ cm						
	THE RESERVE TO SAME					
unit 7.10	7.10	7.11	7.11	7.10		
unit 7.10	7.10 8.3	8.4	7.11	7.10 8.4		
unit 7.10						
	V (gal / ft) Pro D iits hr OSUS et 16.60	Conversion D (inches)	Conversion factors to do D (inches)	Conversion factors to determine V grad	Conversion factors to determine V given C	Conversion factors to determine V given C

	MW-			rdan N	Y 1903	" FALV	4
	MW-				**	II ENT	1
	Fr. S		Date:				
	LILLY	varten	eyer				
				C Collected?	NI	4	
1	Geo F	Jump /	Low Flo				
OC): :g: = C(3.14159	7 0)(0.5D) ² (7.4	Strle9	20.42 2:5 31.83 5.18 35.0	feet feet feet gal feet feet gal teet gal etermine V g		0.08 0.17 0.25 0.33 0.50	
	V (gal / ft)	0.041	0.163	0.37	0.65	1.5	
ed Using Units		0.041 0 DSS ~	0.163	0.37	THE RESERVE TO BE STONE THE PERSON NAMED IN	1.5	
2.7			0.163	0.37	0.65		1110
Units 24 hr feet gal	YS1 A	o DSS ~	0.163	0.37 Cell	THE RESERVE TO BE STONE THE PERSON NAMED IN	1.5	1110 20.42 1901
Units 24 hr feet gal mL/min	YSI A	1045 20.42	0.163 Flow	0.37 Cell Readings 1055 2042	0.65	1105	20.42 1901
Units 24 hr feet gal mL / min NTU % mg/L MeV	YSI A 1040 2042 100mL 90.51 17.1 1.77 214.2	1045 20.42 44.51 9.0 0.98 221.0	0.163 Flow 1050 20.42 121.5 1050	0.37 Cell Readings 1055 2042	35.66 3.1 0.40 220.8	34.51 3.0 0.37 220.6	20.42
Units 24 hr feet gal mL / min NTU % mg/L	YSI A 1040 2042 100mL 90.51 17.1 1.77 214.2 0.643	1045 20.42 44.51 9.0	0.163 Flow 1050 20.42 121.17 5.0 0.54 221.6 0.705	0.37 Cell Readings 1055 2042 34.99 4.0 0.43	1100 20.42 35.66 3.1	34.81 3.0 0.38	35.23 2.9 0.37
Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc	YSI A 1040 2042 100mL 100mL 100mL 11.1 1.77 214.2 0.643	1045 20.42 44.51 9.0 0.98 221.0	0.163 Flow 1050 20.42 121.5 1050	0.37 Cell Readings 1055 2042	35.66 3.1 0.40 220.8	34.51 3.0 0.37 220.6	35.23 2.9 0.37 2.0.5 0.703
Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm	YSI A 1040 2042 100mL 90.51 17.1 1.77 214.2 0.643	1045 20.42 44.57 9.0 0.48 221.0	0.163 Flow 1050 20.42 121.17 5.0 0.54 221.6 0.705	0.37 Cell Readings 1055 2042	35.66 3.1 0.40 220.8	34.51 3.0 0.37 220.6 0.703	35.23 2.9 0.37 2.0.5
Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm pH unit	YSI A 1040 2042 100mL 90.51 17.1 1.77 214.2 0.643	1045 20.42 44.57 9.0 0.48 221.0 0.691	0.163 Flow 1050 20.42 121.17 5.0 0.54 221.6 0.705 7.24	0.37 Cell Readings 1055 2042	35.66 3.1 0.40 220.8 0.704	34.51 3.0 0.37 220.6 0.703	35.23 2.9 0.37 220.5 0.703
-	OC): g: = C(3.14159	DC): g: = C(3.14159)(0.5D) ² (7.4) p/Tubing (ft): 7088)	DC): S T (9) = C(3.14159)(0.5D) ² (7.48) p/Tubing (ft): 7088) Conversion	20.42 2:2 2:2 5:2 5:11(4) 52.25 31.83 5.18 35.0 p/Tubing (ft): 7088)	COnversion factors to determine V g	DC): Shift 20.42 feet 2.in feet 2.inch Shift 31.83 feet 3.inch Shift 35.0 feet 3.inch Portubing (ft): Towns 7088 Conversion factors to determine V given C	20.42 feet

1	51 Ed MW-2 Eric Su	son St 3 vartem	Date:	5/2	19		Α
1	MW-2 Eric Su	mp/	Date: _	5/2	19		
1	Eric Su	mp/	eyer				
	Eric Su 4 Geo Pi	mp /	QAQC Low Fl	Collected?	N/A		
	Geo P.		QA/QC Low Fl	Collected?	N/A		
_	Geo P.		Low Fl	0~			
_	Geo Vi		Low FI	0~			
		79	45.45	feet	D (inches)	D (feet)	
			din	feet	1-inch	0.08	
			17.60	feet	2-inch	0.17	31
				feet	3-inch	0.25	
14150V	(0.5D) ² (7.48)	4.53	gal	4-inch	0.33	
.17137)((J.J.J.) (1.10			feet	6-inch	0.50	
ine (A)					0	0.50	
ing (II).				ranga.			
0				, gui			
		Conversion	factors to det	ermine V ai	ven C		
		Conversion	ractors to uc	critime v gi	venc		
T I	D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch	
	Contract of the Contract of th	1 man		THE RESERVE OF THE PARTY OF	-	1.5	037
		0 022	-/ Flow	Cell		7	9
inits		0 053	-/ Flow	Cell Readings	-		
	1200	1205	1210	Readings	1220	1225	1230
inits	W			Readings	1220	1225	17.71
Inits 24 hr feet gal	1200 17.60	1205	1210	Readings			
Inits 24 hr feet gal _/ min	1200 17.60	17.71	1210	Readings 1215 17.71	17.71	17.71	17.71 1921
Units 24 hr feet gal _/ min NTU	1200 17.60 100mL 185.62)205 17.71 	1210 17.71 251.40	Readings 1215 17.71 220.51	221.61	220.97	17.71 1921 221.2
Inits 24 hr feet gal _/ min	1200 17.60 100mL 185.62 20.2)205 17.71 	1210 17.71 251.40 6.9	Readings 1215 17.71	221.61	220.97 6.6	17.71 1501 221.2 6.5
Units 24 hr feet gal _/ min NTU	1200 17.60 100mL 185.62 20.2 2.10)205 17.71 	1210 17.71 251.40	Readings 1215 17.71 220.51	221.61 6.8 0.74	220.97 6.6 0.73	17.71 15.1 221.2 6.5 0.71
Inits 24 hr feet gal / min NTU %	1200 17.60 100mL 165.62 20.2 2.10 204.6)205 17.71 	1210 17.71 251.40 6.9	Readings 1215 17.71 220.51 7.2	221.61	220.97 6.6 0.73 165.2	17.71 1gal 221.2 6.5 0.71 164.8
inits 24 hr feet gal / min NTU % mg/L	1200 17.60 100mL 185.62 20.2 2.10)205 17.71 	1210 17.71 251.40 6.9 0.76	Readings /215 /7.71 220.51 7.2 0.51 161.3	221.61 6.8 0.74	220.97 6.6 0.73	17.71 15.1 221.2 6.5 0.71
Inits 24 hr feet gal _ / min NTU % mg/L MeV	1200 17.60 100mL 165.62 20.2 2.10 204.6	17.71 17.71 236.11 7.0 0.77 150.4	1210 17.71 251.40 6.9 0.76 174.0	Readings 1215 17.71 220.51 7.2 0.81	221.C1 6.8 6.74 166.8	220.97 6.6 0.73 165.2	17.71 15.2 6.5 0.71 164.8 0.739
enits 24 hr feet gal _/ min NTU % mg/L MeV uS/cmc	1200 17.60 100mL 165.62 20.2 2.10 204.6	17.71 17.71 236.11 7.0 0.77 150.4 0.739	1210 17.71 251.40 6.9 0.76 174.0	Readings 215 7.71 220.51 7.2 0.51 61.3 0.744	221.C1 6.8 6.74 166.8	220.97 6.6 0.73 165.2	17.71 15.2 6.5 0.71 164.8 0.739
Inits 24 hr feet gal _/ min NTU % mg/L MeV uS/cmc tho / cm	1200 17.60 100mL 165.62 20.2 2.10 204.6	17.71 17.71 236.11 7.0 0.77 150.4	1210 17.71 251.40 6.9 0.76 174.0 0.737	Readings 1215 17.71 220.51 7.2 0.51 161.3 0.744 7.19	17.71 221.01 6.8 6.74 106.8	220.97 6.6 0.73 165.2 0.740	17.71 15.2 6.5 0.71 164.8 0.739
Inits 24 hr feet gal _/ min NTU % mg/L MeV aS/cmc tho / cm H unit	1200 17.60 100mL 165.62 20.2 2.10 204.6 0.738	7.17	1210 17.71 251.40 6.9 0.76 174.0	Readings 215 7.71 220.51 7.2 0.51 61.3 0.744	221.c1 6.8 6.74 166.8 0.742 7.19	17.71 220.97 6.6 0.73 165.2 0.740	17.71 15.2 6.5 0.71 164.8 0.739
i	ng (ft):	D (inches) V (gal / ft)	Conversion D (inches) 1-inch V (gal / ft) 0.041	Conversion factors to det D (inches) 1-inch 2-inch	Conversion factors to determine V gi	Conversion factors to determine V given C D (inches) 1-inch 2-inch 3-inch 4-inch	rng (ft): So. 6 lect 6-inch 0.50

Project Name and Number: Monitoring Well Number: Samplers: Sample Number: Purging / Sampling Method:		Mh	Edism 1-12 L Sun	Г	nsterd	am NY	190311	
Samplers: Sample Number: Purging / Sampling Method:		Mh	1-12	Г				ENV
Sample Number: Purging / Sampling Method:		En	· Sun		ate:	13/19		
Purging / Sampling Method:				tzmey	er			
			5 Pan	Q/	VQC Collec	ted?^)/A	
		Ge	o Pum	p/Low	Flor	,		
I. L = Total Well Depth:				45.75	feet	D (incl	nes) D (fee	71)
2. D = Riser Diameter (I.D.):				2in	feet	1-inc		
3. W = Static Depth to Water				17.52	feet	2-inc	0.00	
. C = Column of Water in Ca				28.23		3-inc		
S. V = Volume of Water in W		59)(0.5D) ² (7.48)	4.60		4-inc		
5. D2 = Pump Setting Depth (. ,(0.20) (30.0		6-inc		
C2 = Column of water in Pu		ft):		30.0	feet	0-inc	h 0.50	
. Tubing Volume = C2(0.005		,.			gal			
. Tuong Volume - C2(0.003	131000)			0	gai			
			Conversi	on factors to	determine V	oiven C		
			Conversi	on ructors to	octernine v	Biven		
		D (inches) I-inch	2-inch	3-inch	4-inch	/ Line	
		V (gal / ft	The state of the s	0.163	0.37		6-inch	
valet Quality Readings Collect	cted Using	Y51				0.65	1.5	
	cted Using Units	YSI	ProDS S			L	1.5	
arameter	1400	Y51			lovcel	L	0800	0805
arameter ime	Units		ProDSS	-/ F	lo~ Ce l	L es		0805
arameter ime (ater Level (0.33)	Units 24 hr	0735	Pro1)55	0745	Reading 0750	0755	0800	
arameter ime (ater Level (0.33) olume Purged	Units 24 hr feet	0735	Pro1)55	0745	Reading 0750 19.15	0755 19.20	0800	19.30
arameter ime 'ater Level (0.33) olume Purged ow Rate urbidity (+/- 10%)	Units 24 hr feet gal	0735 17.52	0740 18.85	0745	Reading 0750 17.15	0755 19.20	0808 19.25	
arameter ime 'ater Level (0.33) olume Purged ow Rate urbidity (+/- 10%) issolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min	0735 17.52	0740 18.85	0745 19.00	Reading 0750 19.15	0755 19.20	0800	14.27
arameter ime fater Level (0.33) folume Purged ow Rate urbidity (+/- 10%) ssolved Oxygen (+/- 10%)	Units 24 hr feet gal mL / min NTU	0735 17.52 100mL 24.01	0740 18.85 17.29 65.3 7.26	0745 19.00	Reading 0750 17.15	14.60 64.2 7.12	14.51 64.3	19.30
arameter ime fater Level (0.33) folume Purged ow Rate urbidity (+/- 10%) ssolved Oxygen (+/- 10%) ssolved Oxygen (+/- 10%)	Units 24 hr feet gal mL / min NTU %	0735 17.52 100mL 24.01 75.6	0740 18.45 17.29 65.3	0745 19.00	Reading 0750 17.15 15.01 64.6	14.60 64.2	0808 14.25 14.51 64.3	14.27
arameter ime fater Level (0.33) folume Purged ow Rate fribidity (+/- 10%) ssolved Oxygen (+/- 10%) ssolved Oxygen (+/- 10%)	Units 24 hr feet gal mL / min NTU % mg/L	17.52 17.52 100mL 24.01 75.6 5.30	0740 18.85 17.29 65.3 7.26	0745 19.00 17.60 64.8 7.20	Reading 0750 17.15	14.60 64.2 7.12	14.51 64.3	14.27 64.6 7.13
arameter ime later Level (0.33) plume Purged ow Rate irbidity (+/- 10%) ssolved Oxygen (+/- 10%) ssolved Oxygen (+/- 10%) // ORP (+/- 10) ecific Conductivity	Units 24 hr feet gal mL / min NTU % mg/L MeV	0735 17.52 100mL 24.01 75.6 8.30 253.5	0740 18.85 17.29 65.3 7.26 250.5	17.60 64.8 7.20 224.8	Reading 0750 17.15 15.01 64.6 7.16 229.4	14.60 64.2 7.12 224.0	0800 14.25 14.51 64.3 7.13 228.9	14.27 64.6 7.13 228.6
arameter ime later Level (0.33) plume Purged ow Rate irbidity (+/- 10%) ssolved Oxygen (+/- 10%) ssolved Oxygen (+/- 10%) // ORP (+/- 10) ecific Conductivity inductivity (+/- 3%)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc	0735 17.52 100mL 24.01 75.6 8.30 253.5 0.588	0740 18.85 17.29 65.3 7.26 250.5 0.597	17.60 64.8 7.20 229.8 0.598	Reading 0750 17.15 15.01 64.6 7.16 229.4	14.60 64.2 7.12 224.0	0800 14.25 14.51 64.3 7.13 228.9	14.27 64.6 7.13 228.6
arameter ime fater Level (0.33) folume Purged ow Rate urbidity (+/- 10%) ssolved Oxygen (+/- 10%) ssolved Oxygen (+/- 10%) for (+/- 10) ecific Conductivity inductivity (+/- 3%) for (+/- 0.1)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm	0735 17.52 100mL 24.01 75.6 5.30 253.5 0.588	0740 18.85 17.29 65.3 7.26 250.5 0.597	17.60 64.8 7.20 224.8	Reading 0750 17.15 15.01 64.6 7.16 229.4 0.547	14.60 64.2 7.12 224.0	14.25 14.25 14.51 64.3 7.13 225.9 0.578	19.30 14.27 64.6 7.13 228.6 0.518
arameter ime fater Level (0.33) folume Purged ow Rate urbidity (+/- 10%)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cmc µmho / cm pH unit	0735 17.52 100mL 24.01 75.6 8.30 253.5 0.588	0740 18.85 17.29 65.3 7.26 250.5 0.597	17.60 64.8 7.20 224.8 0.548	Reading 0750 17.15 15.01 64.6 7.16 229.4 0.547	14.60 64.2 7.12 224.0 0.548	0800 14.25 14.51 64.3 7.13 225.9 0.518	19.30 14.27 64.6 7.13 228.6 0.518

ANALYTICAL REPORT

Lab Number: L1912354

Client: Ambient Environmental

7843 Karakul Lane Fayetteville, NY 13066

ATTN: Jim Blasting
Phone: (315) 203-3355

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA Report Date: 04/04/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354 **Report Date:** 04/04/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1912354-01	WC1	SOIL	61 EDSON STREET	03/27/19 16:30	03/28/19
L1912354-02	ISB-6 (3.5-4')	SOIL	61 EDSON STREET	03/27/19 13:43	03/28/19
L1912354-03	ISB-4 (7.5-8.5')	SOIL	61 EDSON STREET	03/27/19 12:15	03/28/19
L1912354-04	SB-2 (8-9')	SOIL	61 EDSON STREET	03/27/19 17:50	03/28/19
L1912354-05	SB-5 (4.5-5')	SOIL	61 EDSON STREET	03/28/19 09:27	03/28/19

Project Name:FORMER WARD PRODUCTS SITELab Number:L1912354Project Number:190311ENVAReport Date:04/04/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:FORMER WARD PRODUCTS SITELab Number:L1912354Project Number:190311ENVAReport Date:04/04/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 04/04/19

Nails

ANALYTICAL

ORGANICS

VOLATILES

L1912354

04/04/19

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 03/27/19 16:30

Lab Number:

Report Date:

L1912354-01

Client ID: Date Received: 03/28/19 WC1 Field Prep: Sample Location: **61 EDSON STREET** Not Specified

Sample Depth:

Lab ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 04/03/19 19:12

Analyst: MV 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/kg	5.6	2.6	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.7	0.16	1
Carbon tetrachloride	ND		ug/kg	1.1	0.26	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.30	1
Tetrachloroethene	ND		ug/kg	0.56	0.22	1
Chlorobenzene	ND		ug/kg	0.56	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.5	0.78	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1
1,1,1-Trichloroethane	ND		ug/kg	0.56	0.19	1
Bromodichloromethane	ND		ug/kg	0.56	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.56	0.18	1
Bromoform	ND		ug/kg	4.5	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.56	0.18	1
Benzene	ND		ug/kg	0.56	0.18	1
Toluene	ND		ug/kg	1.1	0.60	1
Ethylbenzene	0.32	J	ug/kg	1.1	0.16	1
Chloromethane	ND		ug/kg	4.5	1.0	1
Bromomethane	ND		ug/kg	2.2	0.65	1
Vinyl chloride	ND		ug/kg	1.1	0.37	1
Chloroethane	ND		ug/kg	2.2	0.50	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.15	1
Trichloroethene	0.90		ug/kg	0.56	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

MDL

Dilution Factor

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

Lab ID: L1912354-01 Date Collected: 03/27/19 16:30

Client ID: WC1 Date Received: 03/28/19
Sample Location: 61 EDSON STREET Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i arameter	Nosuit	Qualifici	Oilles			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1	
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1	
Methyl tert butyl ether	0.30	J	ug/kg	2.2	0.22	1	
p/m-Xylene	1.5	J	ug/kg	2.2	0.62	1	
o-Xylene	0.90	J	ug/kg	1.1	0.32	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1	
Styrene	ND		ug/kg	1.1	0.22	1	
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1	
Acetone	28		ug/kg	11	5.4	1	
Carbon disulfide	ND		ug/kg	11	5.1	1	
2-Butanone	ND		ug/kg	11	2.5	1	
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1	
2-Hexanone	ND		ug/kg	11	1.3	1	
Bromochloromethane	ND		ug/kg	2.2	0.23	1	
1,2-Dibromoethane	ND		ug/kg	1.1	0.31	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1	
Isopropylbenzene	ND		ug/kg	1.1	0.12	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.36	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1	
Methyl Acetate	7.4		ug/kg	4.5	1.1	1	
Cyclohexane	ND		ug/kg	11	0.61	1	
1,4-Dioxane	ND		ug/kg	89	39.	1	
Freon-113	ND		ug/kg	4.5	0.77	1	
Methyl cyclohexane	ND		ug/kg	4.5	0.67	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	112	70-130	
4-Bromofluorobenzene	117	70-130	
Dibromofluoromethane	91	70-130	

L1912354

04/04/19

Project Name: FORMER WARD PRODUCTS SITE

L1912354-02

Project Number: 190311ENVA

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 03/27/19 13:43

Client ID: Date Received: 03/28/19 ISB-6 (3.5-4') Field Prep: Sample Location: **61 EDSON STREET** Not Specified

Sample Depth:

Lab ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 04/03/19 21:40

Analyst: NLK 87% Percent Solids:

Volatile Organics by GC/MS - Westborough Lab Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND ND ND ND ND ND	ug/kg ug/kg	280 55	130	1
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane	ND ND ND				1
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane	ND ND	ug/kg	55		
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane	ND			8.0	1
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane		ug/kg	83	7.7	1
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane	ND	ug/kg	55	13.	1
1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane		ug/kg	55	6.9	1
Tetrachloroethene Chlorobenzene Trichlorofluoromethane	ND	ug/kg	55	7.7	1
Chlorobenzene Trichlorofluoromethane	ND	ug/kg	55	15.	1
Trichlorofluoromethane	ND	ug/kg	28	11.	1
	ND	ug/kg	28	7.0	1
1,2-Dichloroethane	ND	ug/kg	220	38.	1
	ND	ug/kg	55	14.	1
1,1,1-Trichloroethane	ND	ug/kg	28	9.2	1
Bromodichloromethane	ND	ug/kg	28	6.0	1
trans-1,3-Dichloropropene	ND	ug/kg	55	15.	1
cis-1,3-Dichloropropene	ND	ug/kg	28	8.7	1
Bromoform	ND	ug/kg	220	14.	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	28	9.2	1
Benzene	ND	ug/kg	28	9.2	1
Toluene	ND	ug/kg	55	30.	1
Ethylbenzene	ND	ug/kg	55	7.8	1
Chloromethane	ND	ug/kg	220	51.	1
Bromomethane	ND	ug/kg	110	32.	1
Vinyl chloride	ND	ug/kg	55	18.	1
Chloroethane	ND	ug/kg	110	25.	1
1,1-Dichloroethene	ND	ug/kg	55	13.	1
trans-1,2-Dichloroethene	ND	ug/kg	83	7.6	1
Trichloroethene					
1,2-Dichlorobenzene	560	ug/kg	28	7.6	1

MDL

Dilution Factor

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

Lab ID: L1912354-02 Date Collected: 03/27/19 13:43

Client ID: ISB-6 (3.5-4') Date Received: 03/28/19
Sample Location: 61 EDSON STREET Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i didilicici	rtosuit	Qualifici Offi			Dilation i actor	
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND	ug/l	kg 110	8.2	1	
1,4-Dichlorobenzene	ND	ug/l	kg 110	9.4	1	
Methyl tert butyl ether	ND	ug/l	kg 110	11.	1	
p/m-Xylene	ND	ug/k	kg 110	31.	1	
o-Xylene	ND	ug/k	kg 55	16.	1	
cis-1,2-Dichloroethene	ND	ug/k	kg 55	9.7	1	
Styrene	ND	ug/l	kg 55	11.	1	
Dichlorodifluoromethane	ND	ug/l	kg 550	50.	1	
Acetone	650	ug/l	kg 550	260	1	
Carbon disulfide	ND	ug/l	kg 550	250	1	
2-Butanone	ND	ug/l	kg 550	120	1	
4-Methyl-2-pentanone	ND	ug/l	kg 550	71.	1	
2-Hexanone	ND	ug/l	kg 550	65.	1	
Bromochloromethane	ND	ug/l	kg 110	11.	1	
1,2-Dibromoethane	ND	ug/l	kg 55	15.	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	kg 160	55.	1	
Isopropylbenzene	ND	ug/l	kg 55	6.0	1	
1,2,3-Trichlorobenzene	ND	ug/l	kg 110	18.	1	
1,2,4-Trichlorobenzene	ND	ug/l	kg 110	15.	1	
Methyl Acetate	3300	ug/l	kg 220	52.	1	
Cyclohexane	ND	ug/l	kg 550	30.	1	
1,4-Dioxane	ND	ug/l	kg 4400	1900	1	
Freon-113	ND	ug/l	(g 220	38.	1	
Methyl cyclohexane	ND	ug/l	kg 220	33.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	101	70-130	

L1912354

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 03/27/19 12:15

Report Date: 04/04/19

Lab Number:

Lab ID: L1912354-03 D

Client ID: ISB-4 (7.5-8.5')
Sample Location: 61 EDSON STREET

Date Received: 03/28/19
Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/03/19 22:05

Analyst: NLK Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/kg	2300	1100	10
1,1-Dichloroethane	ND		ug/kg	470	68.	10
Chloroform	ND		ug/kg	700	65.	10
Carbon tetrachloride	ND		ug/kg	470	110	10
1,2-Dichloropropane	ND		ug/kg	470	58.	10
Dibromochloromethane	ND		ug/kg	470	65.	10
1,1,2-Trichloroethane	ND		ug/kg	470	120	10
Tetrachloroethene	ND		ug/kg	230	92.	10
Chlorobenzene	ND		ug/kg	230	59.	10
Trichlorofluoromethane	ND		ug/kg	1900	320	10
1,2-Dichloroethane	ND		ug/kg	470	120	10
1,1,1-Trichloroethane	ND		ug/kg	230	78.	10
Bromodichloromethane	ND		ug/kg	230	51.	10
trans-1,3-Dichloropropene	ND		ug/kg	470	130	10
cis-1,3-Dichloropropene	ND		ug/kg	230	74.	10
Bromoform	ND		ug/kg	1900	120	10
1,1,2,2-Tetrachloroethane	ND		ug/kg	230	78.	10
Benzene	ND		ug/kg	230	78.	10
Toluene	ND		ug/kg	470	250	10
Ethylbenzene	ND		ug/kg	470	66.	10
Chloromethane	ND		ug/kg	1900	440	10
Bromomethane	ND		ug/kg	940	270	10
Vinyl chloride	ND		ug/kg	470	160	10
Chloroethane	ND		ug/kg	940	210	10
1,1-Dichloroethene	ND		ug/kg	470	110	10
trans-1,2-Dichloroethene	ND		ug/kg	700	64.	10
Trichloroethene	110000		ug/kg	230	64.	10
1,2-Dichlorobenzene	ND		ug/kg	940	67.	10

04/04/19

Project Name: Lab Number: FORMER WARD PRODUCTS SITE L1912354

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 03/27/19 12:15

Report Date:

Lab ID: L1912354-03 D

Date Received: Client ID: ISB-4 (7.5-8.5') 03/28/19 Sample Location: **61 EDSON STREET** Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	940	69.	10
1,4-Dichlorobenzene	ND		ug/kg	940	80.	10
Methyl tert butyl ether	ND		ug/kg	940	94.	10
p/m-Xylene	ND		ug/kg	940	260	10
o-Xylene	ND		ug/kg	470	140	10
cis-1,2-Dichloroethene	170	J	ug/kg	470	82.	10
Styrene	ND		ug/kg	470	92.	10
Dichlorodifluoromethane	ND		ug/kg	4700	430	10
Acetone	ND		ug/kg	4700	2200	10
Carbon disulfide	ND		ug/kg	4700	2100	10
2-Butanone	ND		ug/kg	4700	1000	10
4-Methyl-2-pentanone	ND		ug/kg	4700	600	10
2-Hexanone	ND		ug/kg	4700	550	10
Bromochloromethane	ND		ug/kg	940	96.	10
1,2-Dibromoethane	ND		ug/kg	470	130	10
1,2-Dibromo-3-chloropropane	ND		ug/kg	1400	470	10
Isopropylbenzene	ND		ug/kg	470	51.	10
1,2,3-Trichlorobenzene	ND		ug/kg	940	150	10
1,2,4-Trichlorobenzene	ND		ug/kg	940	130	10
Methyl Acetate	2000		ug/kg	1900	440	10
Cyclohexane	ND		ug/kg	4700	250	10
1,4-Dioxane	ND		ug/kg	37000	16000	10
Freon-113	ND		ug/kg	1900	320	10
Methyl cyclohexane	ND		ug/kg	1900	280	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	105	70-130	

L1912354

04/04/19

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

SAMPLE RESULTS

Data Callagated: 02/27/40 47:50

Lab Number:

Report Date:

Lab ID: L1912354-04 Date Collected: 03/27/19 17:50

Client ID: SB-2 (8-9')

Sample Location: 61 EDSON STREET

Date Received: 03/28/19
Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/03/19 19:38

Analyst: MV Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	5.4	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.76	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.4	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	ND		ug/kg	1.1	0.59	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.4	1.0	1
Bromomethane	ND		ug/kg	2.2	0.63	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.2	0.49	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	1.8		ug/kg	0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

04/04/19

Project Name: Lab Number: FORMER WARD PRODUCTS SITE L1912354

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 03/27/19 17:50

Report Date:

Lab ID: L1912354-04 Date Received: Client ID: SB-2 (8-9') 03/28/19

Sample Location: **61 EDSON STREET** Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1			
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1			
Methyl tert butyl ether	0.22	J	ug/kg	2.2	0.22	1			
p/m-Xylene	ND		ug/kg	2.2	0.61	1			
o-Xylene	ND		ug/kg	1.1	0.32	1			
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1			
Styrene	ND		ug/kg	1.1	0.21	1			
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1			
Acetone	22		ug/kg	11	5.2	1			
Carbon disulfide	ND		ug/kg	11	5.0	1			
2-Butanone	ND		ug/kg	11	2.4	1			
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1			
2-Hexanone	ND		ug/kg	11	1.3	1			
Bromochloromethane	ND		ug/kg	2.2	0.22	1			
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1			
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1			
Isopropylbenzene	ND		ug/kg	1.1	0.12	1			
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.35	1			
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1			
Methyl Acetate	2.7	J	ug/kg	4.4	1.0	1			
Cyclohexane	ND		ug/kg	11	0.59	1			
1,4-Dioxane	ND		ug/kg	87	38.	1			
Freon-113	ND		ug/kg	4.4	0.76	1			
Methyl cyclohexane	ND		ug/kg	4.4	0.66	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	108	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	95	70-130	

L1912354

04/04/19

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1912354-05 Date Collected: 03/28/19 09:27

Client ID: SB-5 (4.5-5') Date Received: 03/28/19

Sample Location: 61 EDSON STREET Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/03/19 20:04

Analyst: MV Percent Solids: 80%

Volatile Organics by GC/MS - Westboroug						
volume organico by contro trockboroug	h Lab					
Methylene chloride	ND		ug/kg	5.0	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	ND		ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1
Tetrachloroethene	ND		ug/kg	0.50	0.20	1
Chlorobenzene	ND		ug/kg	0.50	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	1
Bromodichloromethane	ND		ug/kg	0.50	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	1
Bromoform	ND		ug/kg	4.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	1
Benzene	ND		ug/kg	0.50	0.17	1
Toluene	ND		ug/kg	1.0	0.55	1
Ethylbenzene	ND		ug/kg	1.0	0.14	1
Chloromethane	ND		ug/kg	4.0	0.94	1
Bromomethane	ND		ug/kg	2.0	0.59	1
Vinyl chloride	ND		ug/kg	1.0	0.34	1
Chloroethane	ND		ug/kg	2.0	0.46	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1
Trichloroethene	0.44	J	ug/kg	0.50	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1

Project Name: Lab Number: FORMER WARD PRODUCTS SITE L1912354

Project Number: Report Date: 190311ENVA 04/04/19

SAMPLE RESULTS

Lab ID: L1912354-05 Date Collected: 03/28/19 09:27

Date Received: Client ID: SB-5 (4.5-5') 03/28/19

Sample Location: **61 EDSON STREET** Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	1			
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1			
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1			
p/m-Xylene	ND		ug/kg	2.0	0.56	1			
o-Xylene	ND		ug/kg	1.0	0.29	1			
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1			
Styrene	ND		ug/kg	1.0	0.20	1			
Dichlorodifluoromethane	ND		ug/kg	10	0.92	1			
Acetone	6.9	J	ug/kg	10	4.8	1			
Carbon disulfide	ND		ug/kg	10	4.6	1			
2-Butanone	ND		ug/kg	10	2.2	1			
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1			
2-Hexanone	ND		ug/kg	10	1.2	1			
Bromochloromethane	ND		ug/kg	2.0	0.21	1			
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	1			
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	1			
Isopropylbenzene	ND		ug/kg	1.0	0.11	1			
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	1			
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	1			
Methyl Acetate	1.8	J	ug/kg	4.0	0.96	1			
Cyclohexane	ND		ug/kg	10	0.55	1			
1,4-Dioxane	ND		ug/kg	81	35.	1			
Freon-113	ND		ug/kg	4.0	0.70	1			
Methyl cyclohexane	ND		ug/kg	4.0	0.61	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	97	70-130	

Project Number: 190311ENVA Report Date: 04/04/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/03/19 18:42

Analyst: AD

arameter	Result	Qualifier Units	RL	. MDL	
olatile Organics by GC/MS	- Westborough La	ab for sample(s):	01,04-05	Batch: WG12	222870-5
Methylene chloride	ND	ug/k	g 5.0	2.3	
1,1-Dichloroethane	ND	ug/kç	g 1.0	0.14	
Chloroform	ND	ug/kç	g 1.5	0.14	
Carbon tetrachloride	ND	ug/kç	g 1.0	0.23	
1,2-Dichloropropane	ND	ug/kç	g 1.0	0.12	
Dibromochloromethane	ND	ug/kç	g 1.0	0.14	
1,1,2-Trichloroethane	ND	ug/kç	g 1.0	0.27	
Tetrachloroethene	ND	ug/kç	9 0.50	0.20	
Chlorobenzene	ND	ug/kç	g 0.50	0.13	
Trichlorofluoromethane	ND	ug/kç	9 4.0	0.70	
1,2-Dichloroethane	ND	ug/kç	g 1.0	0.26	
1,1,1-Trichloroethane	ND	ug/kç	g 0.50	0.17	
Bromodichloromethane	ND	ug/kç	g 0.50	0.11	
trans-1,3-Dichloropropene	ND	ug/kç	g 1.0	0.27	
cis-1,3-Dichloropropene	ND	ug/kç	0.50	0.16	
Bromoform	ND	ug/kç	9 4.0	0.25	
1,1,2,2-Tetrachloroethane	ND	ug/kç	g 0.50	0.17	
Benzene	ND	ug/kç	g 0.50	0.17	
Toluene	ND	ug/k	g 1.0	0.54	
Ethylbenzene	ND	ug/kç	g 1.0	0.14	
Chloromethane	ND	ug/kç	9 4.0	0.93	
Bromomethane	ND	ug/kç	2.0	0.58	
Vinyl chloride	ND	ug/kç	g 1.0	0.34	
Chloroethane	ND	ug/kç	g 2.0	0.45	
1,1-Dichloroethene	ND	ug/kç	g 1.0	0.24	
trans-1,2-Dichloroethene	ND	ug/kç	g 1.5	0.14	
Trichloroethene	ND	ug/kç	g 0.50	0.14	
1,2-Dichlorobenzene	ND	ug/kç	2.0	0.14	
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.15	

Project Number: 190311ENVA Report Date: 04/04/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/03/19 18:42

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westh	orough Lat	o for sampl	e(s): 01,	04-05 Batch:	WG1222870-5	
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	
Methyl tert butyl ether	0.24	J	ug/kg	2.0	0.20	
p/m-Xylene	ND		ug/kg	2.0	0.56	
o-Xylene	ND		ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	
Styrene	ND		ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND		ug/kg	10	0.92	
Acetone	ND		ug/kg	10	4.8	
Carbon disulfide	ND		ug/kg	10	4.6	
2-Butanone	ND		ug/kg	10	2.2	
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	
2-Hexanone	ND		ug/kg	10	1.2	
Bromochloromethane	ND		ug/kg	2.0	0.20	
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	
Isopropylbenzene	ND		ug/kg	1.0	0.11	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	
Methyl Acetate	ND		ug/kg	4.0	0.95	
Cyclohexane	ND		ug/kg	10	0.54	
1,4-Dioxane	ND		ug/kg	80	35.	
Freon-113	ND		ug/kg	4.0	0.69	
Methyl cyclohexane	ND		ug/kg	4.0	0.60	

Project Number: 190311ENVA Report Date: 04/04/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/03/19 18:42

Analyst: AD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01,04-05Batch:WG1222870-5

		Acceptance	
Surrogate	%Recovery Qualifie	er Criteria	
			_
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	93	70-130	

Project Number: 190311ENVA Report Date: 04/04/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/03/19 19:20

Analyst: AD

arameter	Result	Qualifier Un	its	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	o for sample(s)	: 02-03	Batch:	WG1223011-5
Methylene chloride	ND	ug	ı/kg	250	110
1,1-Dichloroethane	ND	ug	ı/kg	50	7.2
Chloroform	ND	ug	ı/kg	75	7.0
Carbon tetrachloride	ND	ug	ı/kg	50	12.
1,2-Dichloropropane	ND	ug	ı/kg	50	6.2
Dibromochloromethane	ND	ug	ı/kg	50	7.0
1,1,2-Trichloroethane	ND	ug	ı/kg	50	13.
Tetrachloroethene	ND	ug	ı/kg	25	9.8
Chlorobenzene	ND	ug	ı/kg	25	6.4
Trichlorofluoromethane	ND	ug	ı/kg	200	35.
1,2-Dichloroethane	ND	ug	ı/kg	50	13.
1,1,1-Trichloroethane	ND	ug	ı/kg	25	8.4
Bromodichloromethane	ND	ug	ı/kg	25	5.4
trans-1,3-Dichloropropene	ND	ug	ı/kg	50	14.
cis-1,3-Dichloropropene	ND	ug	ı/kg	25	7.9
Bromoform	ND	ug	ı/kg	200	12.
1,1,2,2-Tetrachloroethane	ND	ug	ı/kg	25	8.3
Benzene	ND	ug	ı/kg	25	8.3
Toluene	ND	ug	ı/kg	50	27.
Ethylbenzene	ND	ug	ı/kg	50	7.0
Chloromethane	ND	ug	ı/kg	200	47.
Bromomethane	51	J ug	ı/kg	100	29.
Vinyl chloride	ND	ug	ı/kg	50	17.
Chloroethane	ND	ug	ı/kg	100	23.
1,1-Dichloroethene	ND	ug	ı/kg	50	12.
trans-1,2-Dichloroethene	ND	ug	ı/kg	75	6.8
Trichloroethene	ND	ug	ı/kg	25	6.8
1,2-Dichlorobenzene	ND	ug	ı/kg	100	7.2
1,3-Dichlorobenzene	ND	ug	ı/kg	100	7.4

Project Number: 190311ENVA Report Date: 04/04/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/03/19 19:20

Analyst: AD

arameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS - V	Vestborough Lat	o for sample(s):	02-03 Batch	n: WG1223011-5	
1,4-Dichlorobenzene	ND	ug/k	g 100	8.6	
Methyl tert butyl ether	ND	ug/k	g 100	10.	
p/m-Xylene	ND	ug/k	g 100	28.	
o-Xylene	ND	ug/k	g 50	14.	
cis-1,2-Dichloroethene	ND	ug/k	g 50	8.8	
Styrene	ND	ug/k	g 50	9.8	
Dichlorodifluoromethane	ND	ug/k	g 500	46.	
Acetone	ND	ug/k	g 500	240	
Carbon disulfide	ND	ug/k	g 500	230	
2-Butanone	ND	ug/k	g 500	110	
4-Methyl-2-pentanone	ND	ug/k	g 500	64.	
2-Hexanone	ND	ug/k	g 500	59.	
Bromochloromethane	ND	ug/k	g 100	10.	
1,2-Dibromoethane	ND	ug/k	g 50	14.	
1,2-Dibromo-3-chloropropane	ND	ug/k	g 150	50.	
Isopropylbenzene	ND	ug/k	g 50	5.4	
1,2,3-Trichlorobenzene	ND	ug/k	g 100	16.	
1,2,4-Trichlorobenzene	ND	ug/k	g 100	14.	
Methyl Acetate	ND	ug/k	g 200	48.	
Cyclohexane	ND	ug/k	g 500	27.	
1,4-Dioxane	ND	ug/k	g 4000	1800	
Freon-113	ND	ug/k	g 200	35.	
Methyl cyclohexane	ND	ug/k	g 200	30.	

Project Number: 190311ENVA Report Date: 04/04/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/03/19 19:20

Analyst: AD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):02-03Batch:WG1223011-5

		Acceptance			
Surrogate	%Recovery Quali	fier Criteria			
1,2-Dichloroethane-d4	119	70-130			
Toluene-d8	94	70-130			
4-Bromofluorobenzene	101	70-130			
Dibromofluoromethane	104	70-130			

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,04-05	Batch:	WG122287	0-3 WG12228	70-4			
Methylene chloride	85		84			70-130	1		30	
1,1-Dichloroethane	89		86			70-130	3		30	
Chloroform	82		82			70-130	0		30	
Carbon tetrachloride	79		77			70-130	3		30	
1,2-Dichloropropane	87		86			70-130	1		30	
Dibromochloromethane	82		83			70-130	1		30	
1,1,2-Trichloroethane	89		90			70-130	1		30	
Tetrachloroethene	78		74			70-130	5		30	
Chlorobenzene	79		79			70-130	0		30	
Trichlorofluoromethane	78		76			70-139	3		30	
1,2-Dichloroethane	93		95			70-130	2		30	
1,1,1-Trichloroethane	81		80			70-130	1		30	
Bromodichloromethane	82		82			70-130	0		30	
trans-1,3-Dichloropropene	91		94			70-130	3		30	
cis-1,3-Dichloropropene	81		82			70-130	1		30	
Bromoform	82		85			70-130	4		30	
1,1,2,2-Tetrachloroethane	89		92			70-130	3		30	
Benzene	80		80			70-130	0		30	
Toluene	86		85			70-130	1		30	
Ethylbenzene	85		85			70-130	0		30	
Chloromethane	92		89			52-130	3		30	
Bromomethane	83		82			57-147	1		30	
Vinyl chloride	78		74			67-130	5		30	

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s):	01,04-05 Batch:	WG1222870-3 WG1222870)-4	
Chloroethane	82		79	50-151	4	30
1,1-Dichloroethene	78		75	65-135	4	30
trans-1,2-Dichloroethene	78		78	70-130	0	30
Trichloroethene	78		77	70-130	1	30
1,2-Dichlorobenzene	81		82	70-130	1	30
1,3-Dichlorobenzene	83		82	70-130	1	30
1,4-Dichlorobenzene	82		82	70-130	0	30
Methyl tert butyl ether	85		87	66-130	2	30
p/m-Xylene	81		81	70-130	0	30
o-Xylene	80		79	70-130	1	30
cis-1,2-Dichloroethene	79		78	70-130	1	30
Styrene	80		80	70-130	0	30
Dichlorodifluoromethane	65		62	30-146	5	30
Acetone	120		123	54-140	2	30
Carbon disulfide	84		82	59-130	2	30
2-Butanone	100		114	70-130	13	30
4-Methyl-2-pentanone	100		107	70-130	7	30
2-Hexanone	98		104	70-130	6	30
Bromochloromethane	75		75	70-130	0	30
1,2-Dibromoethane	84		86	70-130	2	30
1,2-Dibromo-3-chloropropane	85		87	68-130	2	30
Isopropylbenzene	86		85	70-130	1	30
1,2,3-Trichlorobenzene	80		82	70-130	2	30

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s):	01,04-05 Batch:	WG122287	0-3 WG122287	0-4	
1,2,4-Trichlorobenzene	80		80		70-130	0	30
Methyl Acetate	97		101		51-146	4	30
Cyclohexane	89		86		59-142	3	30
1,4-Dioxane	112		115		65-136	3	30
Freon-113	78		77		50-139	1	30
Methyl cyclohexane	78		76		70-130	3	30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	116	118	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	108	109	70-130
Dibromofluoromethane	95	97	70-130

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch:	WG1223011-3	WG1223011-4			
Methylene chloride	89		88		70-130	1	30	
1,1-Dichloroethane	99		98		70-130	1	30	
Chloroform	108		106		70-130	2	30	
Carbon tetrachloride	113		110		70-130	3	30	
1,2-Dichloropropane	94		92		70-130	2	30	
Dibromochloromethane	90		90		70-130	0	30	
1,1,2-Trichloroethane	87		89		70-130	2	30	
Tetrachloroethene	85		86		70-130	1	30	
Chlorobenzene	82		84		70-130	2	30	
Trichlorofluoromethane	123		114		70-139	8	30	
1,2-Dichloroethane	113		113		70-130	0	30	
1,1,1-Trichloroethane	110		107		70-130	3	30	
Bromodichloromethane	106		104		70-130	2	30	
trans-1,3-Dichloropropene	93		96		70-130	3	30	
cis-1,3-Dichloropropene	98		98		70-130	0	30	
Bromoform	88		88		70-130	0	30	
1,1,2,2-Tetrachloroethane	79		82		70-130	4	30	
Benzene	94		93		70-130	1	30	
Toluene	86		85		70-130	1	30	
Ethylbenzene	87		87		70-130	0	30	
Chloromethane	88		85		52-130	3	30	
Bromomethane	143		133		57-147	7	30	
Vinyl chloride	87		84		67-130	4	30	

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch:	WG1223011-3	WG1223011-4			
Chloroethane	97		96		50-151	1	30	
1,1-Dichloroethene	89		89		65-135	0	30	
trans-1,2-Dichloroethene	93		91		70-130	2	30	
Trichloroethene	95		92		70-130	3	30	
1,2-Dichlorobenzene	80		81		70-130	1	30	
1,3-Dichlorobenzene	80		81		70-130	1	30	
1,4-Dichlorobenzene	80		80		70-130	0	30	
Methyl tert butyl ether	105		104		66-130	1	30	
p/m-Xylene	85		85		70-130	0	30	
o-Xylene	83		85		70-130	2	30	
cis-1,2-Dichloroethene	93		93		70-130	0	30	
Styrene	83		84		70-130	1	30	
Dichlorodifluoromethane	88		84		30-146	5	30	
Acetone	115		116		54-140	1	30	
Carbon disulfide	91		89		59-130	2	30	
2-Butanone	104		104		70-130	0	30	
4-Methyl-2-pentanone	83		87		70-130	5	30	
2-Hexanone	88		92		70-130	4	30	
Bromochloromethane	96		92		70-130	4	30	
1,2-Dibromoethane	85		87		70-130	2	30	
1,2-Dibromo-3-chloropropane	82		85		68-130	4	30	
Isopropylbenzene	82		81		70-130	1	30	
1,2,3-Trichlorobenzene	82		84		70-130	2	30	

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02-03 Batch:	WG1223011-3	WG1223011-4		
1,2,4-Trichlorobenzene	81		83		70-130	2	30
Methyl Acetate	100		101		51-146	1	30
Cyclohexane	91		89		59-142	2	30
1,4-Dioxane	100		104		65-136	4	30
Freon-113	97		94		50-139	3	30
Methyl cyclohexane	90		89		70-130	1	30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	120	122	70-130
Toluene-d8	94	95	70-130
4-Bromofluorobenzene	100	100	70-130
Dibromofluoromethane	106	106	70-130

METALS

Project Name: Lab Number: FORMER WARD PRODUCTS SITE L1912354 04/04/19

Project Number: Report Date: 190311ENVA

SAMPLE RESULTS

L1912354-01

Date Collected:

03/27/19 16:30

Client ID: WC1

Date Received: 61 EDSON STREET Field Prep:

03/28/19 Not Specified

Sample Depth:

Sample Location:

Lab ID:

Matrix:

Soil

Percent Solids: 87	%

Percent Solids:	87%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	4.33		mg/kg	0.454	0.094	1	04/02/19 07:10	04/02/19 10:26	EPA 3050B	1,6010D	LC
Barium, Total	55.4		mg/kg	0.454	0.079	1	04/02/19 07:10	0 04/02/19 10:26	EPA 3050B	1,6010D	LC
Cadmium, Total	2.56		mg/kg	0.454	0.045	1	04/02/19 07:10	04/02/19 10:26	EPA 3050B	1,6010D	LC
Chromium, Total	33.4		mg/kg	0.454	0.044	1	04/02/19 07:10	0 04/02/19 10:26	EPA 3050B	1,6010D	LC
Lead, Total	80.3		mg/kg	2.27	0.122	1	04/02/19 07:10	0 04/02/19 10:26	EPA 3050B	1,6010D	LC
Mercury, Total	ND		mg/kg	0.072	0.015	1	03/30/19 09:30	04/01/19 14:49	EPA 7471B	1,7471B	GD
Nickel, Total	72.6		mg/kg	1.13	0.110	1	04/02/19 07:10	04/02/19 10:26	EPA 3050B	1,6010D	LC
Selenium, Total	ND		mg/kg	0.907	0.117	1	04/02/19 07:10	0 04/02/19 10:26	EPA 3050B	1,6010D	LC
Silver, Total	1.06		mg/kg	0.454	0.128	1	04/02/19 07:10	0 04/02/19 10:26	EPA 3050B	1,6010D	LC
Zinc, Total	2850		mg/kg	22.7	1.33	10	04/02/19 07:10	04/02/19 19:55	EPA 3050B	1,6010D	AB

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354 **Report Date:** 04/04/19

Project Number: 190311ENVA

SAMPLE RESULTS

Lab ID: L1912354-02 Date Collected: 03/27/19 13:43 Date Received: Client ID: ISB-6 (3.5-4') 03/28/19 **61 EDSON STREET** Field Prep: Not Specified Sample Location:

Sample Depth:

Soil Matrix: 87% Percent Solids:

Prep Dilution Date Date Analytical Method **Parameter** Qualifier Units Factor **Prepared** Analyzed Method Result RL MDL Analyst Total Metals - Mansfield Lab Arsenic, Total 4.49 mg/kg 0.444 0.092 1 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1,6010D LC Barium, Total 59.9 mg/kg 0.444 0.077 1 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1,6010D LC J 1 LC Cadmium, Total 0.271 mg/kg 0.444 0.044 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1,6010D 1 Chromium, Total 22.6 mg/kg 0.444 0.043 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1,6010D LC 04/02/19 07:10 04/02/19 13:53 EPA 3050B 7.65 2.22 1,6010D LC Lead, Total mg/kg 0.119 1 ND GD Mercury, Total 0.072 0.015 1 03/30/19 09:30 04/01/19 15:00 EPA 7471B 1,7471B mg/kg Nickel, Total 20.5 mg/kg 1.11 0.108 1 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1,6010D LC Selenium, Total 0.244 J 0.889 1 1,6010D LC mg/kg 0.115 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1 Silver, Total ND 0.126 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1,6010D LC mg/kg 0.444 42.9 0.130 1 04/02/19 07:10 04/02/19 13:53 EPA 3050B 1,6010D LC Zinc, Total mg/kg 2.22

Project Name: Lab Number: FORMER WARD PRODUCTS SITE L1912354

Project Number: 190311ENVA

Report Date:

SAMPLE RESULTS

04/04/19

Lab ID: L1912354-03 Date Collected: Date Received: 03/27/19 12:15

Client ID: ISB-4 (7.5-8.5') Sample Location: 61 EDSON STREET

Field Prep:

03/28/19 Not Specified

Sample Depth:

Matrix:

Soil

Percent Solids:	89%					
i crociii Collas.		Dilution	Date	Date	Prep	Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	3.89		mg/kg	0.433	0.090	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC
Barium, Total	33.4		mg/kg	0.433	0.075	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC
Cadmium, Total	0.840		mg/kg	0.433	0.042	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC
Chromium, Total	6.70		mg/kg	0.433	0.042	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC
Lead, Total	5.78		mg/kg	2.16	0.116	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC
Mercury, Total	ND		mg/kg	0.071	0.015	1	03/30/19 09:30	0 04/01/19 15:02	EPA 7471B	1,7471B	GD
Nickel, Total	10.4		mg/kg	1.08	0.105	1	04/02/19 07:10	04/02/19 13:57	EPA 3050B	1,6010D	LC
Selenium, Total	0.169	J	mg/kg	0.866	0.112	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.433	0.122	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC
Zinc, Total	184		mg/kg	2.16	0.127	1	04/02/19 07:10	0 04/02/19 13:57	EPA 3050B	1,6010D	LC

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

 Lab ID:
 L1912354-04
 Date Collected:
 03/27/19 17:50

 Client ID:
 SB-2 (8-9')
 Date Received:
 03/28/19

 Sample Location:
 61 EDSON STREET
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 83%

Percent Solids: Parameter	83%		Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Result	Qualifier									
Total Metals - Man	sfield Lab										
Arsenic, Total	4.28		mg/kg	0.454	0.094	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Barium, Total	39.2		mg/kg	0.454	0.079	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Cadmium, Total	0.082	J	mg/kg	0.454	0.045	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Chromium, Total	9.06		mg/kg	0.454	0.044	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Lead, Total	7.03		mg/kg	2.27	0.122	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Mercury, Total	ND		mg/kg	0.076	0.016	1	03/30/19 09:30	04/01/19 15:04	EPA 7471B	1,7471B	GD
Nickel, Total	15.9		mg/kg	1.13	0.110	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Selenium, Total	0.254	J	mg/kg	0.907	0.117	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.454	0.128	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC
Zinc, Total	49.2		mg/kg	2.27	0.133	1	04/02/19 07:10	04/02/19 14:02	EPA 3050B	1,6010D	LC

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

 Lab ID:
 L1912354-05
 Date Collected:
 03/28/19 09:27

 Client ID:
 SB-5 (4.5-5')
 Date Received:
 03/28/19

 Sample Location:
 61 EDSON STREET
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 80%

Percent Solids:	00%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	ofiold Lob										
Total Metals - Man	sileid Lab										
Arsenic, Total	4.20		mg/kg	0.494	0.103	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Barium, Total	40.1		mg/kg	0.494	0.086	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Cadmium, Total	0.049	J	mg/kg	0.494	0.048	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Chromium, Total	13.5		mg/kg	0.494	0.047	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Lead, Total	7.62		mg/kg	2.47	0.132	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Mercury, Total	ND		mg/kg	0.079	0.017	1	03/30/19 09:30	04/01/19 15:08	EPA 7471B	1,7471B	GD
Nickel, Total	17.0		mg/kg	1.24	0.120	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Selenium, Total	0.341	J	mg/kg	0.988	0.128	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.494	0.140	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC
Zinc, Total	45.2		mg/kg	2.47	0.145	1	04/02/19 07:10	04/02/19 14:07	EPA 3050B	1,6010D	LC

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number:

L1912354

Report Date: 04/04/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-05 B	atch: W	G12213	06-1				
Mercury, Total	ND	mg/kg	0.083	0.018	1	03/30/19 09:30	04/01/19 14:45	1,7471B	GD

Prep Information

Digestion Method: EPA 7471B

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sa	ample(s):	01-05 B	atch: Wo	G12219	92-1				
Arsenic, Total	0.104	J	mg/kg	0.400	0.083	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Barium, Total	ND		mg/kg	0.400	0.070	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Cadmium, Total	ND		mg/kg	0.400	0.039	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Chromium, Total	ND		mg/kg	0.400	0.038	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Lead, Total	ND		mg/kg	2.00	0.107	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Nickel, Total	ND		mg/kg	1.00	0.097	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Selenium, Total	ND		mg/kg	0.800	0.103	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Silver, Total	ND		mg/kg	0.400	0.113	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC
Zinc, Total	0.152	J	mg/kg	2.00	0.117	1	04/02/19 07:10	04/02/19 09:51	1,6010D	LC

Prep Information

Digestion Method: EPA 3050B

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number: L1912354

Report Date: 04/04/19

Parameter	LCS %Recover	y Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-05 E	Batch: WG12	21306-2 SRM	Lot Number:	D101-540			
Mercury, Total	124		-		65-135	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-05 E	Batch: WG12	21992-2 SRM	Lot Number:	D101-540			
Arsenic, Total	93		-		83-117	-		
Barium, Total	94		-		83-118	-		
Cadmium, Total	91		-		83-117	-		
Chromium, Total	92		-		81-118	-		
Lead, Total	89		-		83-117	-		
Nickel, Total	91		-		82-117	-		
Selenium, Total	93		-		79-121	-		
Silver, Total	94		-		80-120	-		
Zinc, Total	90		-		81-119	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number:

L1912354

Report Date:

04/04/19

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ial Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-05	QC Bat	ch ID: WG122	1306-3	QC Sam	ple: L1912354-01	Client ID: WO	C1	
Mercury, Total	ND	0.145	0.174	120		-	-	80-120	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-05	QC Bat	ch ID: WG122	1992-3	QC Sam	ple: L1912498-02	Client ID: MS	Sample	
Arsenic, Total	1.87	10.2	11.5	94		-	-	75-125	-	20
Barium, Total	8.05	170	162	91		-	-	75-125	-	20
Cadmium, Total	ND	4.33	4.08	94		-	-	75-125	-	20
Chromium, Total	3.59	17	19.1	91		-	-	75-125	-	20
Lead, Total	2.92J	43.3	41.2	95		-	-	75-125	-	20
Nickel, Total	5.81	42.5	43.7	89		-	-	75-125	-	20
Selenium, Total	0.242J	10.2	9.31	91		-	-	75-125	-	20
Silver, Total	ND	25.5	22.0	86		-	-	75-125	-	20
Zinc, Total	18.9	42.5	59.0	94		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number:

L1912354

Report Date:

04/04/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-	05 QC Batch ID:	WG1221306-4 QC Sample:	L1912354-01	Client ID:	: WC1	
Mercury, Total	ND	ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01-	05 QC Batch ID:	WG1221992-4 QC Sample:	L1912498-02	Client ID:	: DUP Sam	nple
Arsenic, Total	1.87	1.97	mg/kg	5		20
Barium, Total	8.05	8.09	mg/kg	0		20
Cadmium, Total	ND	ND	mg/kg	NC		20
Chromium, Total	3.59	3.56	mg/kg	1		20
Lead, Total	2.92J	2.97J	mg/kg	NC		20
Nickel, Total	5.81	5.77	mg/kg	1		20
Selenium, Total	0.242J	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Zinc, Total	18.9	19.4	mg/kg	3		20

INORGANICS & MISCELLANEOUS

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

Lab ID: L1912354-01 Date Collected: 03/27/19 16:30

Client ID: WC1 Date Received: 03/28/19

Sample Location: 61 EDSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	86.5		%	0.100	NA	1	-	03/29/19 13:34	121,2540G	RI

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

Lab ID: L1912354-02 Date Collected: 03/27/19 13:43

Client ID: ISB-6 (3.5-4') Date Received: 03/28/19
Sample Location: 61 EDSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result Qu	ıalifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	87.3		%	0.100	NA	1	-	03/29/19 13:34	121,2540G	RI

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

 Lab ID:
 L1912354-03
 Date Collected:
 03/27/19 12:15

 Client ID:
 ISB-4 (7.5-8.5')
 Date Received:
 03/28/19

Sample Location: 61 EDSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	88.8		%	0.100	NA	1	-	03/29/19 13:34	121,2540G	RI

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

Lab ID: L1912354-04 Date Collected: 03/27/19 17:50

Client ID: SB-2 (8-9') Date Received: 03/28/19
Sample Location: 61 EDSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	82.8		%	0.100	NA	1	-	03/29/19 13:34	121,2540G	RI

Project Name: FORMER WARD PRODUCTS SITE Lab Number: L1912354

Project Number: 190311ENVA Report Date: 04/04/19

SAMPLE RESULTS

Lab ID: L1912354-05 Date Collected: 03/28/19 09:27

Client ID: SB-5 (4.5-5') Date Received: 03/28/19
Sample Location: 61 EDSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	79.6		%	0.100	NA	1	-	03/29/19 13:34	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Lab Number:

L1912354

Report Date:

04/04/19

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG1221060-1	QC Sample:	L1910330-01	Client ID:	DUP Sample
Solids, Total	70.8		69.4	%	2		20

Serial_No:04041913:54 **Lab Number:** L1912354

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA **Report Date:** 04/04/19

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1912354-01A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)
L1912354-01B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),NI-TI(180),PB-TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1912354-01C	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-01X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-01Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-01Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-02A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)
L1912354-02B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),NI-TI(180),PB-TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1912354-02C	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-02X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-02Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-02Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-03A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)
L1912354-03B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),NI-TI(180),PB-TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1912354-03C	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-03X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-03Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-03Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-04A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)
L1912354-04B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.5	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),NI-TI(180),PB-TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)

Lab Number: L1912354

Report Date: 04/04/19

Project Name: FORMER WARD PRODUCTS SITE

Project Number: 190311ENVA

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1912354-04C	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-04X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-04Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-04Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-05A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)
L1912354-05B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),NI-TI(180),PB-TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1912354-05C	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-05X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)
L1912354-05Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)
L1912354-05Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	03-APR-19 03:56	NYTCL-8260-R2(14)

Project Name:FORMER WARD PRODUCTS SITELab Number:L1912354Project Number:190311ENVAReport Date:04/04/19

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

NP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER WARD PRODUCTS SITELab Number:L1912354Project Number:190311ENVAReport Date:04/04/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER WARD PRODUCTS SITELab Number:L1912354Project Number:190311ENVAReport Date:04/04/19

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 10/9/2018 4:58:19 PM

ID No.:17873

Revision 12

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con	lay	95	Page		ſ	Date I	Rec'd	3	29 1	9	ALPHA Job# L191235	54
Westberough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3268	Project Information Project Name: FOYM Project Location: (a) Project # 190311E	Edson		ts site			ASP-/ EQuils Other			ASP-	B S (4 File)	Billing Information Same as Client Info	
Client: AM DUNT	ENV	(Use Project name as Pr			_		harmed		Require	ment			Disposal Site Information	Tella .
Address: 828 WQ	snington Ave			ting				NY TO	Property of the Park		NY Pa		Please identify below location of applicable disposal facilities.	of.
Phone: Fax: Email: Alex1'S maa	MARKA H. LAN LIN	Turn-Around Time Standard Rush (only if pre approved		Due Date: # of Days:	EZ //70/			NY Un	stricted (restricted lewer Dis	Use	Other		Disposal Facility: NJ NY Other:	
These samples have be			70				ANAI	YSIS					Sample Filtration	
Other project specific Please specify Metals		nents:					MetableceAs)		TCL - 8260				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	ola- Bol
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Coll Date	ection Time	Sample Matrix	Sampler's Initials	15th	1-8	NYT				Sample Specific Comments	- t
12354 - 01	MCI		3/21/19	4:30pm	Soil	AM	1	١	1					
02	ISB-6/	3.5-41)	3/27/19	1:43 pm		.AM	1	1	1					
03	ISB-4(1,5-8,51)	3/27/19		soil	AM	1	ı	1					1
04						And in case of the last of the	1	1	1	_		\vdash		-
05	SB-5 (4)	5-5')	3/28/19	9:27am	5611	AM	1	1	1					
B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification Mansfield: Certification Mansfield:			Cor	ntainer Type	G	P	V				Please print clearly, legi and completely. Sample	the contract of the contract o
$D = H_2SO_4$ $E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$ $O = Other$	V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished Alous Mart Muly	1n				Recei	A	AAA	- 3h - 3h	Pate 2/19 2/19	1213 1213	not be logged in and turnaround time clock w start until any ambiguitie resolved. BY EXECUTII THIS COC, THE CLIEN HAS READ AND AGRE TO BE BOUND BY ALF TERMS & CONDITION: (See reverse side.)	es are NG IT ES PHA'S
93 94 95	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification Mansfield: Certificati	3 2] 9 3 2] 9 3 28 9 3 28 9 No: MA935 No: MA015	12:15pm 5:50pm 9:27am	5011 5011 5011 Con	AM AM AM Preservative	G A	A PALBY	A	- 3/	8/19	1213	and completely. not be logged in turnaround time start until any an resolved. BY EX THIS COC, THE HAS READ AND TO BE BOUND TERMS & CON	Sample and clock with the clock with

ANALYTICAL REPORT

Lab Number: L1914179

Client: Ambient Environmental

7843 Karakul Lane Fayetteville, NY 13066

ATTN: Jim Blasting
Phone: (315) 203-3355

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA Report Date: 04/15/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

Lab Number: L1914179 **Report Date:** 04/15/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1914179-01	MW-22	WATER	AMSTERDAM, NY	04/08/19 15:15	04/08/19
L1914179-02	MW-23	WATER	AMSTERDAM, NY	04/08/19 14:00	04/08/19
L1914179-03	TRIP BLANK	WATER	AMSTERDAM, NY	04/08/19 00:00	04/08/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1914179
Project Number: 190311ENVA Report Date: 04/15/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1914179
Project Number: 190311ENVA Report Date: 04/15/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 04/15/19

vaile

ORGANICS

VOLATILES

L1914179

04/15/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 04/08/19 15:15

Client ID: MW-22 Date Received: 04/08/19
Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/12/19 15:27

Analyst: PK

1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichlorotharomethane ND ug/l 0.50 0.18 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloromethane ND ug/l 0.50 0.19 1 1 tans-1,3-Dichloropropene ND ug/l 0.50	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westk	oorough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 0.59 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane 0.59 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND Ug/l 1.0 0.14 1 1 1,1 1,1 1,1 1,2 1,1	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene 0.59 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	Tetrachloroethene	0.59		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 C	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 <t< td=""><td>Trichlorofluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 <t< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>0.13</td><td>1</td></t<>	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 1,ri-Dichloroethene ND ug/l 2.5 0.70 1 1,ri-Dichloroethene ND ug/l 0.50 0.18 1	Bromodichloromethane	ND		ug/l	0.50	0.19	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene 0.57 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene 78 ug/l 0.50 0.18 1	Chloroethane	ND		ug/l	2.5	0.70	1
Trichloroethene 78 ug/l 0.50 0.18 1	1,1-Dichloroethene	0.57		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	78		ug/l	0.50	0.18	1
$oldsymbol{arphi}$	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/15/19

Project Name: Lab Number: 61 EDSON STREET, AMSTERDAM, NY L1914179

Project Number: 190311ENVA

L1914179-01

SAMPLE RESULTS

Date Collected: 04/08/19 15:15

Report Date:

Date Received: Client ID: 04/08/19 MW-22 Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.0	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.55	J	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	100	70-130	

L1914179

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

SAMPLE RESULTS

Report Date: 04/15/19

Lab Number:

Lab ID: L1914179-02

Client ID: MW-23

Sample Location: AMSTERDAM, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/12/19 15:56

Analyst: PΚ

Date Collected:	04/08/19 14:00
Date Received:	04/08/19
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.54		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.72	J	ug/l	2.5	0.70	1
Trichloroethene	96		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/15/19

Report Date:

Project Name: Lab Number: 61 EDSON STREET, AMSTERDAM, NY L1914179

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 04/08/19 14:00 L1914179-02

Date Received: Client ID: 04/08/19 MW-23

Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.9	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.70	J	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	99	70-130	

L1914179

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

SAMPLE RESULTS

04/15/19

Lab Number:

Report Date:

Date Collected: 04/08/19 00:00 L1914179-03

Client ID: Date Received: 04/08/19 TRIP BLANK Field Prep: Sample Location: AMSTERDAM, NY Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/12/19 16:26

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.23	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/15/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1914179

Project Number: 190311ENVA

L1914179-03

SAMPLE RESULTS

Date Collected: 04/08/19 00:00

Report Date:

Client ID: TRIP BLANK Date Received: 04/08/19
Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	99	70-130	

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1914179

Project Number: 190311ENVA Report Date: 04/15/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/12/19 10:33

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 0	11-03 Batch:	WG1225976-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1914179

Project Number: 190311ENVA Report Date: 04/15/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/12/19 10:33

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - V	Vestborough Lal	o for sample(s): 01-0	3 Batch:	WG1225976-5	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

L1914179

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number:

Project Number: 190311ENVA Report Date: 04/15/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/12/19 10:33

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s): 01-03Batch: WG1225976-5

		Acceptance	
Surrogate	%Recovery Qualif	ier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	100	70-130	

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

Lab Number: L1914179

Report Date: 04/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch: W	G1225976-3 WG1225976-4			
Methylene chloride	100		100	70-130	0	20	
1,1-Dichloroethane	110		110	70-130	0	20	
Chloroform	100		100	70-130	0	20	
Carbon tetrachloride	100		100	63-132	0	20	
1,2-Dichloropropane	110		110	70-130	0	20	
Dibromochloromethane	100		110	63-130	10	20	
1,1,2-Trichloroethane	97		100	70-130	3	20	
Tetrachloroethene	100		100	70-130	0	20	
Chlorobenzene	100		100	75-130	0	20	
Trichlorofluoromethane	95		95	62-150	0	20	
1,2-Dichloroethane	100		100	70-130	0	20	
1,1,1-Trichloroethane	100		100	67-130	0	20	
Bromodichloromethane	110		110	67-130	0	20	
trans-1,3-Dichloropropene	94		95	70-130	1	20	
cis-1,3-Dichloropropene	100		100	70-130	0	20	
Bromoform	100		110	54-136	10	20	
1,1,2,2-Tetrachloroethane	95		97	67-130	2	20	
Benzene	100		100	70-130	0	20	
Toluene	100		99	70-130	1	20	
Ethylbenzene	100		99	70-130	1	20	
Chloromethane	80		81	64-130	1	20	
Bromomethane	57		53	39-139	7	20	
Vinyl chloride	110		110	55-140	0	20	

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

Lab Number: L1914179

Report Date: 04/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch: V	VG1225976-	-3 WG1225976-4		
Chloroethane	110		100		55-138	10	20
1,1-Dichloroethene	100		100		61-145	0	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	100		100		70-130	0	20
1,2-Dichlorobenzene	96		98		70-130	2	20
1,3-Dichlorobenzene	97		96		70-130	1	20
1,4-Dichlorobenzene	96		96		70-130	0	20
Methyl tert butyl ether	95		97		63-130	2	20
p/m-Xylene	105		100		70-130	5	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Styrene	100		100		70-130	0	20
Dichlorodifluoromethane	130		130		36-147	0	20
Acetone	97		87		58-148	11	20
Carbon disulfide	110		110		51-130	0	20
2-Butanone	61	Q	60	Q	63-138	2	20
4-Methyl-2-pentanone	100		100		59-130	0	20
2-Hexanone	84		84		57-130	0	20
Bromochloromethane	120		120		70-130	0	20
1,2-Dibromoethane	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	97		97		41-144	0	20
Isopropylbenzene	99		98		70-130	1	20
1,2,3-Trichlorobenzene	91		98		70-130	7	20

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA Lab Number: L1914179

Report Date: 04/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03 Batch:	WG1225976-3	WG1225976-4			
1,2,4-Trichlorobenzene	95		98		70-130	3		20
Methyl Acetate	72		72		70-130	0		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	110		100		56-162	10		20
Freon-113	100		100		70-130	0		20
Methyl cyclohexane	100		100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	93	94	70-130
Toluene-d8	97	95	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	100	99	70-130

Serial_No:04151913:05 *Lab Number:* L1914179

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA Report Date: 04/15/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1914179-01A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1914179-01B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1914179-01C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1914179-02A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1914179-02B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1914179-02C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1914179-03A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1914179-03B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: 61 EDSON STREET, AMSTERDAM, NY L1914179 **Project Number:** 190311ENVA **Report Date:** 04/15/19

GLOSSARY

Acronyms

EDL

LOD

MSD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values. - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1914179
Project Number: 190311ENVA Report Date: 04/15/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:04151913:05

Project Name:61 EDSON STREET, AMSTERDAM, NYLab Number:L1914179Project Number:190311ENVAReport Date:04/15/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04151913:05

ID No.:17873

Revision 12

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 10/9/2018 4:58:19 PM Title: Certificate/Approval Program Summary

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbos Bivd TEL: 508-822-9300 FAX: 508-822-3268	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tenawanda, NY 14150: 275 Co Project Information Project Name:	Vay oper Ave, Suite 1 61 Edson S	treet, Amsterd	Page of dam, NY		Deli	in erable ASP-		1 223	ASP-	B S (4 File)	Billing Information Same as Client Info	19
Client Information		Project Location:	Amsterdam	, NT			10	Othe	200		Luu	0 (4 / 110)	TOW TOOUT ICHAN	
THE RESIDENCE OF THE PROPERTY OF THE PERSON NAMED IN	invironmental	Project #	se Project name as Project #)				-	-	Requirem	ent		1200	Disposal Site Information	
Address:	nyironmentai						passe	NY TO	The second second	2000000	NY Pa	rt 375	THE PARTY OF THE P	
Address:			oject Manager; Jim Blasting				1 1	1,454,154,0	Standards	0.00	NY CF		Please identify below location of applicable disposal facilities.	
Dhane: (245) 202	2222	THE RESIDENCE OF THE PARTY OF T	PHAQuote #:				12		estricted Us	-	Other	-91	Disposal Facility:	
Phone: (315) 263-	3308	Turn-Around Time	· Ci	D. D. D. L.					restricted (_	Other		□ NJ □ NY	
Fax:	last any som	Rush (only if pre approved		Due Date										
	pient-env.com		, u	# of Days	2		4 2 1 4		Sewer Disc	narge	_		Other:	Total I
These samples have to Other project specific	CONTRACTOR OF THE PARTY OF THE						ANA	LYSIS		_	_		Sample Filtration	0
Please specify Metal		nents:					TCL VOCS						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	8 o t
ALPHA Lab ID			Coll	ection	Sample	Sampler's	1	1			1	1 1		3
(Lab Use Only)	21	ample ID	Date	Time	Matrix	Initials	1						Sample Specific Comments	e
14179101	MVV-22		4/8/2019	1515	GW	ZJR	х							3
40%	MW-23		4/8/2019	1400	GW	ZJR	х							3
(0)	Trip Blank		4/8/2019		Lab Water	ZJR	x							2
														\top
				-			1	\top						
							T	\top						
				1	1			-			+			
Preservative Code: A = None B = HCI C = HNO ₂ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification M		•		tainer Type	v B						Please print clearly, legib and completely. Samples not be logged in and turnaround time clock will	s can
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	The second second	Date 4/9/10	Time (1130)	0	_	ived B	y:	4	_	/Time	start until any ambiguities resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS	IG T ES HA'S
Form No: 01-25 (rev. 30-S	ept-2013)			1										

ANALYTICAL REPORT

Lab Number: L1918442

Client: Ambient Environmental

7843 Karakul Lane Fayetteville, NY 13066

ATTN: Jim Blasting
Phone: (315) 203-3355

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA Report Date: 05/10/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

Lab Number: L1918442 **Report Date:** 05/10/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1918442-01	MW-22	WATER	AMSTERDAM, NY	05/03/19 08:55	05/03/19
L1918442-02	MW-23	WATER	AMSTERDAM, NY	05/02/19 12:30	05/03/19
L1918442-03	MW-5	WATER	AMSTERDAM, NY	05/02/19 09:05	05/03/19
L1918442-04	MW-8	WATER	AMSTERDAM, NY	05/02/19 08:05	05/03/19
L1918442-05	MW-10	WATER	AMSTERDAM, NY	05/02/19 11:00	05/03/19
L1918442-06	MW-12	WATER	AMSTERDAM, NY	05/03/19 08:05	05/03/19
L1918442-07	TRIP BLANK	WATER	AMSTERDAM, NY	05/02/19 00:00	05/03/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1918442
Project Number: 190311ENVA Report Date: 05/10/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1918442
Project Number: 190311ENVA Report Date: 05/10/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kwil. Wisters Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 05/10/19

ORGANICS

VOLATILES

L1918442

05/10/19

Not Specified

05/03/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

SAMPLE RESULTS

05/03/19 08:55

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1918442-01 Date Collected:

Client ID: MW-22

Sample Location: AMSTERDAM, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/08/19 09:56

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.29	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.38	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	52		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

05/10/19

Project Name: Lab Number: 61 EDSON STREET, AMSTERDAM, NY L1918442

Project Number: 190311ENVA

L1918442-01

SAMPLE RESULTS

Date Collected: 05/03/19 08:55

Report Date:

Date Received: Client ID: 05/03/19 MW-22

Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	1.5	J	ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	102	70-130	

L1918442

05/10/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY

L1918442-02

AMSTERDAM, NY

MW-23

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 05/02/19 12:30

Date Received: 05/03/19

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/08/19 10:32

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.57		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.73	J	ug/l	2.5	0.70	1
Trichloroethene	100		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

05/10/19

Report Date:

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1918442

Project Number: 190311ENVA

SAMPLE RESULTS

Lab ID: L1918442-02 Date Collected: 05/02/19 12:30

Client ID: MW-23 Date Received: 05/03/19
Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	2.0	J	ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	103	70-130	

L1918442

05/10/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY

AMSTERDAM, NY

L1918442-03

MW-5

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 05/02/19 09:05

Lab Number:

Report Date:

Date Received: 05/03/19 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/08/19 11:08

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	27		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

05/10/19

Report Date:

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1918442

Project Number: 190311ENVA

SAMPLE RESULTS

L1918442-03 Date Collected: 05/02/19 09:05

Client ID: MW-5 Date Received: 05/03/19
Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	1.3	J	ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	106	70-130	

L1918442

05/03/19

Not Specified

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 05/02/19 08:05

Report Date: 05/10/19

Lab Number:

Date Received:

Field Prep:

Lab ID: L1918442-04 D

Client ID: MW-8

Sample Location: AMSTERDAM, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/08/19 11:44

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	50	14.	20
1,1-Dichloroethane	ND		ug/l	50	14.	20
Chloroform	ND		ug/l	50	14.	20
Carbon tetrachloride	ND		ug/l	10	2.7	20
1,2-Dichloropropane	ND		ug/l	20	2.7	20
Dibromochloromethane	ND		ug/l	10	3.0	20
1,1,2-Trichloroethane	ND		ug/l	30	10.	20
Tetrachloroethene	55		ug/l	10	3.6	20
Chlorobenzene	ND		ug/l	50	14.	20
Trichlorofluoromethane	ND		ug/l	50	14.	20
1,2-Dichloroethane	ND		ug/l	10	2.6	20
1,1,1-Trichloroethane	ND		ug/l	50	14.	20
Bromodichloromethane	ND		ug/l	10	3.8	20
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20
Bromoform	ND		ug/l	40	13.	20
1,1,2,2-Tetrachloroethane	ND		ug/l	10	3.3	20
Benzene	ND		ug/l	10	3.2	20
Toluene	ND		ug/l	50	14.	20
Ethylbenzene	ND		ug/l	50	14.	20
Chloromethane	ND		ug/l	50	14.	20
Bromomethane	ND		ug/l	50	14.	20
Vinyl chloride	ND		ug/l	20	1.4	20
Chloroethane	ND		ug/l	50	14.	20
1,1-Dichloroethene	ND		ug/l	10	3.4	20
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20
Trichloroethene	2400		ug/l	10	3.5	20
1,2-Dichlorobenzene	ND		ug/l	50	14.	20

05/10/19

Project Name: Lab Number: 61 EDSON STREET, AMSTERDAM, NY L1918442

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 05/02/19 08:05

Report Date:

Lab ID: D L1918442-04

Date Received: Client ID: 05/03/19 MW-8

Sample Location: Field Prep: AMSTERDAM, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	50	14.	20
1,4-Dichlorobenzene	ND		ug/l	50	14.	20
Methyl tert butyl ether	ND		ug/l	50	14.	20
p/m-Xylene	ND		ug/l	50	14.	20
o-Xylene	ND		ug/l	50	14.	20
cis-1,2-Dichloroethene	ND		ug/l	50	14.	20
Styrene	ND		ug/l	50	14.	20
Dichlorodifluoromethane	ND		ug/l	100	20.	20
Acetone	ND		ug/l	100	29.	20
Carbon disulfide	ND		ug/l	100	20.	20
2-Butanone	ND		ug/l	100	39.	20
4-Methyl-2-pentanone	ND		ug/l	100	20.	20
2-Hexanone	ND		ug/l	100	20.	20
Bromochloromethane	ND		ug/l	50	14.	20
1,2-Dibromoethane	ND		ug/l	40	13.	20
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20
Isopropylbenzene	ND		ug/l	50	14.	20
1,2,3-Trichlorobenzene	ND		ug/l	50	14.	20
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20
Methyl Acetate	ND		ug/l	40	4.7	20
Cyclohexane	ND		ug/l	200	5.4	20
1,4-Dioxane	ND		ug/l	5000	1200	20
Freon-113	ND		ug/l	50	14.	20
Methyl cyclohexane	ND		ug/l	200	7.9	20

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	103	70-130	

L1918442

05/10/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY

AMSTERDAM, NY

L1918442-05

MW-10

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 05/02/19 11:00

Lab Number:

Report Date:

Date Received: 05/03/19 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/08/19 12:20

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	1.2		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	1.6		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	1.4	J	ug/l	2.5	0.70	1	
Trichloroethene	170		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

05/10/19

Report Date:

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1918442

Project Number: 190311ENVA

SAMPLE RESULTS

L1918442-05 Date Collected: 05/02/19 11:00

Client ID: MW-10 Date Received: 05/03/19
Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	6.3		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	104	70-130

L1918442

05/10/19

Not Specified

05/03/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 05/03/19 08:05

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1918442-06

Client ID: MW-12

Sample Location: AMSTERDAM, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/08/19 12:57

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	0.34	J	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	30		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

05/10/19

Project Name: Lab Number: 61 EDSON STREET, AMSTERDAM, NY L1918442

Project Number: 190311ENVA

SAMPLE RESULTS

Date Collected: 05/03/19 08:05

Report Date:

Lab ID: L1918442-06 Date Received: Client ID: MW-12 05/03/19

Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	3.7		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	107	70-130	

L1918442

05/02/19 00:00

Not Specified

05/03/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 05/10/19

Lab ID: L1918442-07 Client ID: TRIP BLANK

Sample Location: AMSTERDAM, NY

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 05/08/19 09:20

Analyst: PD

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

05/10/19

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1918442

Project Number: 190311ENVA

L1918442-07

SAMPLE RESULTS

Date Collected: 05/02/19 00:00

Report Date:

Client ID: TRIP BLANK Date Received: 05/03/19
Sample Location: AMSTERDAM, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.0	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	102	70-130	

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1918442

Project Number: 190311ENVA Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/08/19 08:44

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 0	01-07 Batch:	WG1234948-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 61 EDSON STREET, AMSTERDAM, NY **Lab Number:** L1918442

Project Number: 190311ENVA Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/08/19 08:44

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lat	o for sample(s): 01-07	Batch:	WG1234948-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1918442

Project Number: 190311ENVA Report Date: 05/10/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/08/19 08:44

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s): 01-07Batch: WG1234948-5

		Acceptance	
Surrogate	%Recovery Qualific	er Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	105	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

Lab Number: L1918442

Report Date: 05/10/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-07 Batch:	WG1234948-3	WG1234948-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	110		110		70-130	0	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	110		110		70-130	0	20
Dibromochloromethane	96		92		63-130	4	20
1,1,2-Trichloroethane	97		95		70-130	2	20
Tetrachloroethene	98		98		70-130	0	20
Chlorobenzene	98		98		75-130	0	20
Trichlorofluoromethane	110		100		62-150	10	20
1,2-Dichloroethane	110		100		70-130	10	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	100		100		67-130	0	20
trans-1,3-Dichloropropene	87		86		70-130	1	20
cis-1,3-Dichloropropene	110		110		70-130	0	20
Bromoform	84		81		54-136	4	20
1,1,2,2-Tetrachloroethane	90		87		67-130	3	20
Benzene	110		110		70-130	0	20
Toluene	99		97		70-130	2	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	86		88		64-130	2	20
Bromomethane	110		100		39-139	10	20
Vinyl chloride	92		94		55-140	2	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

Lab Number: L1918442

Report Date: 05/10/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	01-07 Batch:	WG1234948-3	WG1234948-4			
Chloroethane	120		100		55-138	18		20
1,1-Dichloroethene	100		100		61-145	0		20
trans-1,2-Dichloroethene	110		100		70-130	10		20
Trichloroethene	100		100		70-130	0		20
1,2-Dichlorobenzene	94		93		70-130	1		20
1,3-Dichlorobenzene	94		93		70-130	1		20
1,4-Dichlorobenzene	94		93		70-130	1		20
Methyl tert butyl ether	98		97		63-130	1		20
p/m-Xylene	105		100		70-130	5		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	110		110		70-130	0		20
Styrene	105		105		70-130	0		20
Dichlorodifluoromethane	100		99		36-147	1		20
Acetone	100		94		58-148	6		20
Carbon disulfide	96		97		51-130	1		20
2-Butanone	100		100		63-138	0		20
4-Methyl-2-pentanone	80		83		59-130	4		20
2-Hexanone	85		86		57-130	1		20
Bromochloromethane	120		110		70-130	9		20
1,2-Dibromoethane	93		92		70-130	1		20
1,2-Dibromo-3-chloropropane	76		83		41-144	9		20
Isopropylbenzene	97		98		70-130	1		20
1,2,3-Trichlorobenzene	87		94		70-130	8		20

Lab Control Sample Analysis Batch Quality Control

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA

Lab Number:

L1918442

Report Date:

05/10/19

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-07 Batch	n: WG1234948-3	WG1234948-4				
1,2,4-Trichlorobenzene	91		92		70-130	1		20	
Methyl Acetate	98		99		70-130	1		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	90		92		56-162	2		20	
Freon-113	110		110		70-130	0		20	
Methyl cyclohexane	110		100		70-130	10		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	100	70-130
Toluene-d8	97	96	70-130
4-Bromofluorobenzene	98	99	70-130
Dibromofluoromethane	103	101	70-130

Serial_No:05101906:13 *Lab Number:* L1918442

Project Name: 61 EDSON STREET, AMSTERDAM, NY

Project Number: 190311ENVA Report Date: 05/10/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1918442-01A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-01B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-01C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-02A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-02B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-02C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-03A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-03B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-03C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-04A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-04B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-04C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-05A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-05B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-05C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-06A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-06B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-06C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-07A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
	L1918442-07B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1918442

Project Number: 190311ENVA Report Date: 05/10/19

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

SRM

Report Format: DU Report with 'J' Qualifiers

Project Name: 61 EDSON STREET, AMSTERDAM, NY Lab Number: L1918442
Project Number: 190311ENVA Report Date: 05/10/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:61 EDSON STREET, AMSTERDAM, NYLab Number:L1918442Project Number:190311ENVAReport Date:05/10/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Alpha Analytical, Inc. Facility: Company-wide

Title: Certificate/Approval Program Summary

Revision 12 Published Date: 10/9/2018 4:58:19 PM Department: Quality Assurance

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 REW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288		Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14180: 275 Cooper Ave, Suite 105 Project Information Project Name: 61 Edson Street, Amsterdam, NY					Date Rec'd in Lab 5 4 9 Deliverables ASP-A ASP-B EQuis (1 File) EQuis (4 File)						ALPHA Job # 442 Billing Information Same as Client Info Po# 190311ENVA	
Client Information	TRINE VOI	Project #						Other						
Client: Ambient E	nvironmental	(Use Project name as P	roject#)				Regu	latory Red	quiremen	t		AS P	Disposal Site Information	
Address:		Project Manager:	Jim Blasting)				NY TOGS			NY Part 37	5	Please identify below location of	
		ALPHAQuote #:					☐ AWQ Standards ☐ NY CP-51						applicable disposal facilities.	
Phone: (315) 263-	3388	Turn-Around Time						NY Restric	ted Use		Other		Disposal Facility:	
Fax:		Standard	12	Due Date	5/9/1	q		NY Unrest	ricted Use				□ NJ □ NY	
Email: jimb@amb	ient-env.com	Rush (only if pre approved	0	# of Days				NYC Sew	er Discharg	je			Other:	
These samples have b	een previously analyz	ed by Alpha					ANAI	YSIS					Sample Filtration	0
Other project specific Please specify Metals		nents:					OCs - EPA 8260						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	B o t
ALPHA Lab ID		Collection			Sample Sampler's	2								
(Lab Use Only)	Si	ample ID	Date	Time	Matrix	Initials	TCL						Sample Specific Comments	e
18442- 01	MW-22		5/3/19	0855	GW	ES	x					\top		3
	MW-23		5/2/19	1230	GW	ES	x							3
03	MW-5		5/2/19	0905	GW	ES	x							3
	MW-8		5/2/19	0805	GW	ES	x							3
5	MW-10		5/2/19	11:10	GW	ES	x							3
06	MW-12		5/3/19	0805	GW	ES	x							3
0)	Trip Blank		701.1		Lab Water	-	x						1	2
					1.00		-		\top					+
				_	_				_		-	\top		+
												\top		+
Preservative Code: Container Code A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ O = Other		Mansfield: Certification No: MA015		reservative		ved By:		51	Date/Tin	ne 60:33	Please print clearly, legit and completely. Sample not be logged in and turnaround time clock wi start until any ambiguitie resolved. BY EXECUTIN THIS COC, THE CLIEN	es can ill not es are NG		
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other Form No: 01-25 (rev. 30-Se	E = Encore D = BOD Bottle	7		121.	7000		4	4			111		HAS READ AND AGREI TO BE BOUND BY ALP TERMS & CONDITIONS	ES PHA'S