

30 September 2024

Jolene Lozewski, P.G.
Project Manager
Remedial Bureau A
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, 12th Floor
Albany, NY 12233

Via Email: Jolene.Lozewski@dec.ny.gov

RE: Annual Groundwater Monitoring Report

Ward Products Site, 61 Edson Street, Amsterdam, NY

NYSDEC Site No.429004

James Environmental Management (JEM) is submitting this annual groundwater monitoring report on behalf of 61 Edson Street LLC. The report details the activities associated with the annual groundwater sampling conducted at the site on 22 and 23 August 2024. The groundwater monitoring was conducted pursuant to the February 2011 Site Management Plan (revised July 2011 & January 2017).

Annual Groundwater Monitoring

The current monitoring program for the Site is summarized below in Table 1. The program specifies annual sampling from monitoring wells MW-1R, MW-4, MW-4R, MW-10, MW-13, MW-16, MW-17, MW- 22 and MW-23, and bi-annual sampling (i.e. every two years) of selected monitoring wells as shown below. As such, the groundwater sampling event reported herein for 2024 included monitoring wells MW-1R, MW-4, MW-4R, MW-10, MW-13, MW-14, MW-16, MW-17, MW-18, MW-19, MW-20, MW-22 and MW-23.

	Mo	Table 1 Groundwater nitoring Program	
Monitoring Program	Frequency*	Matrix	Analysis
	Annual	Groundwater – Wells MW-1R; MW- 4; MW-4R; MW-10; MW-13; MW-16; MW-17, MW-22, MW-23	WQFP VOCs (Full List) – 8260B Total Cr – 6010B (wells MW-1R, MW-4, MW-4R)
Groundwater	Bi-annual	Groundwater (Odd numbered years) – Wells MW-5; MW-6; MW-7; MW- 8; MW-9; MW-12	WQFP VOCs (Full List) – 8260B Total Cr –6 010B (wells MW-6, MW-7, MW-8, MW-9)
	Bi-annual	Groundwater (Even numbered years) – Wells MW-14; MW-18; MW-19; MW-20	WQFP VOCs (Full List) – 8260B

Notes:

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH. The current monitoring program is directed by the February, 2011 SMP (as amended).

James Environmental Management 30 September 2024 Page 2 of 3

The August 2024 groundwater sampling event commenced by first locating and opening each existing groundwater monitoring well (including wells not scheduled for sampling) to assess their integrity and collect headspace measurements of total volatile organic compound (VOC) vapor concentrations with a photoionization detector (PID). Once the wells were opened and initial assessments/headspace readings were recorded, depth to water (DTW) measurements were collected. The DTW measurements obtained prior to commencing with the sampling activities were used in conjunction with top of well casing (TOC) elevations to determine the groundwater elevations at each monitoring well. The DTW measurements/groundwater elevations, along with selected well construction information, are presented in the attached Table 2.

After opening all of the wells and collecting a complete round of DTW measurements, groundwater sampling commences using low flow methods. Dedicated polyethylene tubing was placed in each well and purging commences via a low stress pump. During purging, the water quality field parameters (WQFPs) of temperature, specific conductance (SC), dissolved oxygen (DO), potential hydrogen (pH), oxidation/reduction potential (eH) and turbidity were monitored using a flow-thru cell. Each well was purged until stabilization of WQFPs was demonstrated. The stabilized WQFPs obtained prior to sample acquisition are presented on the attached Field Water Quality Measurement Forms (Attachment 1).

Groundwater samples were collected upflow of the flow-thru cell once stabilization was achieved. Groundwater samples were placed in pre-preserved, laboratory-supplied sampling vials containing dilute hydrochloric acid. Samples were placed on ice in a cooler and transported by laboratory courier following chain of custody protocols to the analytical laboratory for analysis. The groundwater samples for the 2024 groundwater monitoring event were transported to PACE Analytical (formerly ALPHA) of Westborough, Massachusetts for analyses. The samples were analyzed for Target Compound List (TCL) VOCs by Environmental Protection Agency (EPA) analytical method 8260 and selected samples were analyzed for total chromium by EPA analytical method 200.7.

Analytical Results

The analytical results for the August 2024 groundwater monitoring event are summarized on the attached Table 3: Groundwater Sample Analytical Results-VOCs. Exceedances of the NYSDEC Ambient Water Quality Standards as presented in NYSDEC TOGS 1.1.1 (GWS) were detected in samples from MW-1R, MW-4, MW-4R, MW 10 and MW-23. Specifically, the concentrations of Trichloroethene (TCE) exceeded the GWS in samples from those five monitoring wells. The Tetrachloroethene GWS was exceeded in samples from MW-1R, MW-4, and MW-4R. The Vinyl chloride GWS and the cis-1,2-Dichloroethene GWS were exceeded in the sample from MW-4. Because TCE was detected in the most samples and at the highest concentrations, the TCE concentrations were contoured as presented on Figure 1.

Additionally, groundwater samples collected from monitoring wells MW-1R, MW-4 and MW-4R were analyzed for chromium. The chromium concentrations in the sample collected from MW-1R (229 ug/L) exceeded the GES of 50 ug/L.

The following attachments related to the August 2024 groundwater monitoring event are

provided:

- Table 2: Monitoring Well Information and 8/22/24 Water Level Data;
- Table 3: 2024 Groundwater Sample Analytical Results-VOCs;
- Table 4: 2024 Groundwater Sample Analytical Results-Total Chromium;
- Figure 1: 2024 Groundwater Contour Map;
- Figure 2: TCE Isoconcentration Map;
- Attachment A: Field Water Quality Measurement Forms;
- Attachment B: Laboratory Analytical Report.

JEM is currently in the process of uploading the August 2024 groundwater analytical data into the NYSDEC EQUIS database. We will advise you when that data has been successfully uploaded.

Summary of Findings

The on-site Groundwater Extraction and Treatment System (GWE&TS) was designed to control migration of groundwater containing VOCs, and the data indicate that the GWE&TS is accomplishing that objective. The water level at monitoring well MW-10, located next to operating recovery well RW-2, was 'depressed' compared to expectations (note the water elevation of MW-10 with respect to isometric lines on Figure 1). The groundwater contours near RW-1 were not affected as RW-1 was not operating at the time of groundwater elevation measurements. Detected concentrations in samples from all off-site, downgradient wells were below GWS. The highest TCE concentration (19,000 ppb) was detected in the groundwater sample collected from MW-4R, closest to the source area and closest to RW-1. This concentration is similar to past results: the TCE concentration in samples collected from MW-4R in 1998 was 28,000 ppb; 30,000 ppb TCE were detected in the sample collected from MW-4R in 2023.

Please contact me at 315-263-3388 or by email: <u>jfblasting@james-em.com</u> if you have questions or need additional information.

Respectfully;

James Environmental Management

James F. Blasting

James F. Blasting, P.G.

Principal

Attachments

Cc: Linette Coolong (61 Edson Street, LLC)

Alexis Martin, JEM Jacob Guy, JEM

Table 2
Monitoring Well Information and 8/22/24 Water Level Data
Ward Products Site, 61 Edson St., Amsterdam NY

	Depth to		Measured			DTW (ft.)		PID
	Bedrock*	Total	well depth	Screened	Well	from top	Water	reading
Well No.	(ft)	Depth (ft)	8/22/24	Interval*	Elev.**	of PVC	Level Elev.	(ppm)
MW-1	6.5	9	21.01	3-8	471.22	7.33	463.89	0
MW-1R	4	19	18.12	9-19	470.85	4.28	466.57	0
MW-2	12	12	11.80	7-12	470.51	4.42	466.09	0
MW-3	13	16	7.85	6-16.6	472.36	6.49	465.87	0
MW-4	10.5	15	14.59	5-15	469.50	7.11	462.39	0
MW-4R	10.5	35	34.26	25-35	469.68	21.02	448.66	12.1
MW-5R	2.5	16.5	16.28	6.5-16.5	471.26	1.05	470.21	0.5
MW-6	13.25	38.1	37.63	23-38	470.39	21.81	448.58	0.8
MW-7	24.4	34.2	33.65	19.5-34.2	468.46	19.63	448.83	0
MW-8	20.5	30.5	30.22	15.5-30.5	466.69	16.56	450.13	0.5
MW-9	36.5	47	46.55	32-47	464.71	30.28	434.43	0.3
MW-10	31.5	51.5	50.65	36-51.5	466.09	31.71	434.38	0.5
MW-11R	13.5	27	24.20	17-27	481.45	17.08	464.37	0
MW-12	30	46	45.72	36-46	467.52	22.64	444.88	0.4
MW-13	45.5	69.3	69.05	54-69	461.44	33.30	428.14	0.1
MW-14	40.8	58.8	60.64	44-58.8	452.75	11.03	441.72	0.3
MW-15	36.5	55.2	54.40	40-55.2	444.58	7.76	436.82	0
MW-16	50.1	69.8	67.90	57.5-67.5	448.75	21.85	426.90	0
MW-17	46.5	66.5	66.40	51.5-66.5	450.09	15.78	434.31	0
MW-18	52.8	69	66.00	56-66	462.98	21.66	441.32	0
MW-19	52.5	70.9	70.55	55.9-70.9	440.97	26.74	414.23	0
MW-20	39.3	60.2	53.10	45-60	441.99	21.49	420.50	0
MW-22	NA	50	NG	30-50	471.27	24.86	446.41	0
MW-23	NA	45	NG	30-45	470.51	23.63	446.88	0
IW-01	30	45.5	NG	30.5-45.5		replaced	by RW-02	
IW-02	13.5	80.8	79.50	20-80	468.29	18.36	449.93	3.8
IW-03	11	80.8	NG	20-80	472.01	NG	NG	NG
IW-04	13	80.8	78.58	20-80	470.74	22.02	448.72	0.7
RW-01 ¹	14	80	NG	20-80	472.08	NG	NG	NG
RW-02	30	50	NG	30-50	465.13	NG	NG	NG

Reference document states that pump set in RW-02 at 45 feet BG. Installed 2012.

IW logs are found in AECOM constr. completion report dated January 2010.

R= Replacement well. MW-5 and MW-11 were replaced with MW-5R and MW-11R (4/22).

NG= well not gauged on 8-22-24; Tubing in MW-22 and MW-23, could not measure total depth

^{*}reported feet below ground surface

^{**}well elevations provided by LaBella

¹RW-01 well elevation is from 'rim of the well cover'

Table 3: Groundwater Sample Analytical Results - VOCs

Site: 61 Edson Street, Amsterdam, NY Sample Collection Date: 8/22/24-8/23-24 JAMES ENVIRONMENTAL MANAGMENT

	NYSDEC							Sample ID						
Analyte	Ambient GW Quality (Class	MW-1R	MW-4R	MW-4	MW-10	MW-13	MW-14	MW-16	MW-17	MW-18	MW-19	MW-20	MW-22	MW-23
	GA)		8	3/23/2024						8/22/20	024			
Volatile Organic Compo	ınds (VOCs)													
Carbon tetrachloride	5	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	27	1800	39	0.63	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	5	0.75 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	0.78	ND	ND	ND	ND	ND	ND	ND	ND	0.7
trans-1,2-Dichloroethene	5	ND	ND	ND	0.84 J	ND	ND	ND	ND	ND	ND	ND	ND	0.78 J
Trichloroethene	5	180	19000	180	180	1.2	ND	0.32 J	3	ND	ND	ND	1	80
cis-1,2-Dichloroethene	5	1.1 J	ND	7.3	7.7	1.4 J	ND	ND	1 J	ND	ND	ND	ND	2.7

Notes:

All results reported in ug/L

NS - No Standard

ND - Compound not detected.

BOLD - exceeds GW Standard

Only those compounds detected in at least one sample are presented on this table.

J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Table 4: GW Sample Analytical Results - Total Chromium

Site: 61 Edson Street, Amsterdam, NY

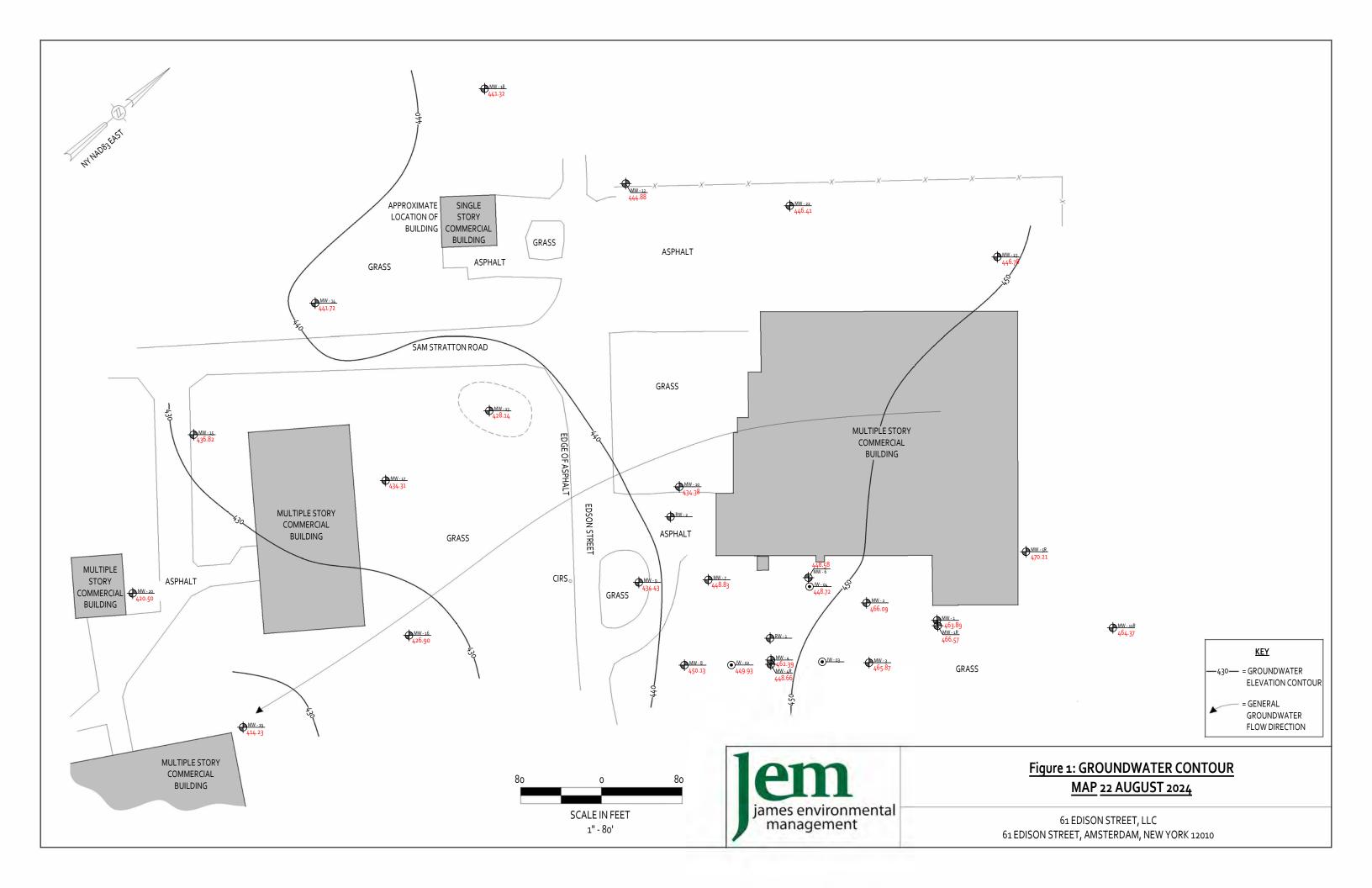
Sample Collection Date: 8/23/24

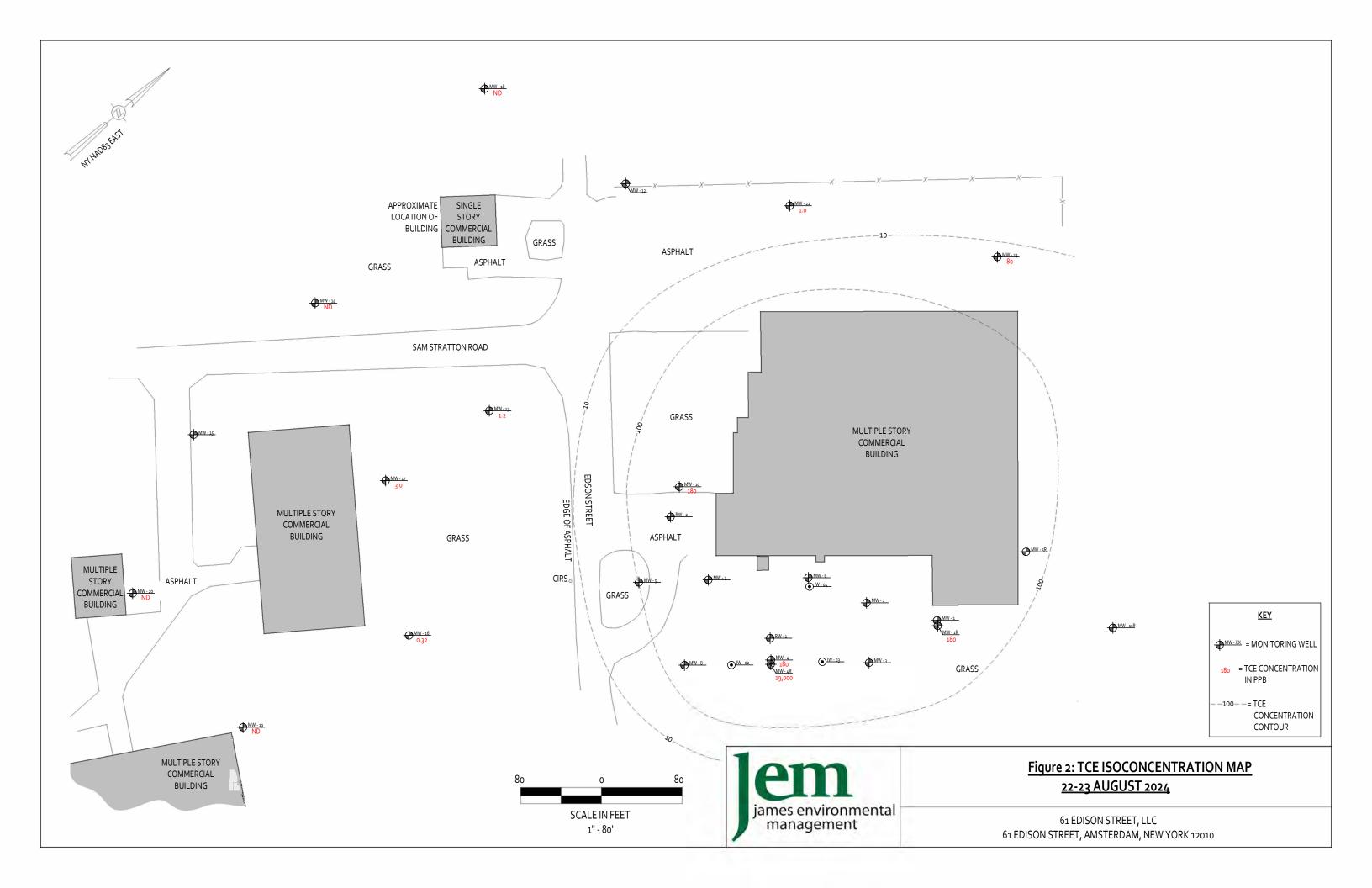
JAMES ENVIRONMENTAL MANAGMENT

	NYSDEC	Sample ID		
Analyte	Ambient GW Ouality (Class	MW-4R	MW-4	MW-1R
	GA)	8	3/23/2024	
Volatile Organic Compo	unds (VOCs)			
Chromium	50	7.8	ND	229

Notes:

All results reported in ug/L


NS - No Standard


ND - Compound not detected.

BOLD - exceeds GW Standard

J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Only those compounds detected in at least one sample are presented on this table.

Attachment A Field Water Quality Measurement Forms

Water Pump Purge Cum. Temp. Spec. pH ORP3 Depth Dial Rate Volume "C Cond.2 mv MP ft Hiters 17.0 689 6.97 90.4 5.55 17.1 731 6.95 125.9 7.30 17.2 719 6.95 125.1 1.19 17.2 719 6.95 125.1	Water Depth Depth Depth Depth Depth Depth Depth Dial! Pump Rate below ml/min Purged Depth Dial! Cond. Purged P	Location (Site/Well Number_Well Number_Field Personnel Sampling Orga Identify MP	Paci Miza	TO SE	Date Koens	\$ [23/2) 124			(below MP) Pump Intak Purging De Total Volu	below MP) top Pump Intake at (ft. b Purging Device; (pu Total Volume Purge	ed um be		0 991
Depth Dial Rate Volume 1-1 1-2 1-3	Somp W Som Purged Purg	Clock	Water	Pump	Purge	Cum.	Temp.	Spec.	рH	ORP ³	DO	Tur-	Comments
1.10 1.21 1.21 1.21 1.22 2.55 1.10 1.20 1.21 1.	1.19 1.20 689 6.97 90.4 4.00 1.10 1.20 1.20 1.10 1.20 1.20 1.10	Time 24 HR	Depth below MP ft	Dial	ml/min	Volume Purged liters	Ċ	μS/cm		mv.	II gr	NTU	
5.55 8 6.44 96.6 1.50 7.36 17.1 731 6.45 120.9 1.04 17.1 721 6.45 120.9 1.04 17.2 772 6.45 120.9 1.04 1.10 1.05 1.10 1.25 0.08 2.3/26	5.55 17.1 778 6.44 96.6 1.50 17.1 731 6.45 115.7 1.04 17.2 712 6.45 120.9 1.04 17.2 712 6.45 120.9 1.04 17.2 712 6.45 125.1 1.10 17.2 719 6.45 125.1 1.10		セセカ				17.0	689	6.97	40.4	Ö	14.10	
1. 1. 2. 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.1 21 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5.55				12.1	82F	6.94	9.6	2	15.65	
7.36 17.7 729 6.95 120.9 1.04 9.36 17.2 717 6.95 125.1 1.10 9.19 12.2 719 6.95 125.1 1.10	7.30 17.1 729 6.95 120.9 1.04 9.36 17.2 712 6.95 [30.9 [03 1.12] 718 6.95 [25.1 1.10 Sampled O [125 on 8 23/2)	5	49-9				17.1		645	115.8		14-61	
9.36 17.2 722 695 130.9 103 9.19 695 125.1 1.10	8.36 17.2 722 645 130.4 103 9.19 17.2 719 645 125.1 1.10 Sampled @ 1125 on 8 23/2	=	7.30				1.41	729	6.95			20.19	
1.19 12.2 719 6.95 [25.1] 1.10 SOMO[0] PJ [125 DA 8 23/24	1.19 (Sample) (D) 1125 on 8 23/24		8.36					22	695		103	21.03	
(1) P 1125 pa 8	W @ 1125 on 8		9.19				17.2		6.95	125.1	1.10	23.19	
(1) PT 1125 po 8	(a) 0 1125 on 8					1							
-								_		8	23/2		
											-		

Scanned with
CS CamScanner

APPENDIX C

Well Numbe Field Person Sampling Ou Identify MP	nel ganizat	ation particle	Date of the state	42 K2 18		1111	Pump Intak Purging De Total Volu	Pump Intake at (ft. below MP) Purging Device; (pump type) Total Volume Purged	ft. below (pump ty urged	low MP) p type) Peri	95/
Clock		Pump	Purge	Cum.	Temp.	Spec.	Нq	ORP ³	DO mo/I	Tur-	Comments
Time 24 HR	below MP ft	Dial	ml/min	Purged liters	Ċ	μS/cm		mv.	mg/L	NTU	
1025					14.6	74.9	6-39	6-79 -57.6 1.50		13.25	
1030	8.01				4.41	670	6.78	-56.5	0.55	12.74	
1035	\$.50				14.9	639	6.72	9.5Y-	0.22	14.27	
1940	46.8				15.0	599	6-61	-7.7	0.14	14.39	
1045	9.49				15.0	579	66	30	0/2	11.81	
1050	10.02				15.1	286	6.61	1.0	D.14	19.09	
									1.		
				Sampled	60	aso/	2	8/23/	143		
,											

Stabiliza 1. Pump 2. µSier 3. Oxida					1015	1010	2001	1000	2540	Time 24 HR	Clock	Location (Site/ Well Number_/ Field Personnel Sampling Organ Identify MP
Stabilization Criteria 1. Pump dial setting (for example: hertz 2. µSiemens per cm(same as µmhos/cm 3. Oxidation reduction potential (ORP)					21.31	21.28	21.20	21.14	20.93	Depth below MP ft	Water	
a g (for exar i(same as										Dial	Pumn	8 5 C
Stabilization Criteria 1. Pump dial setting (for example: hertz, cycles/r 2. µSiemens per cm(same as µmhos/cm)at 25°C. 3. Oxidation reduction potential (ORP)					,					Rate ml/min	Purge	Date Date
Stabilization Criteria 1. Pump dial setting (for example: hertz, cycles/min, etc). 2. μSiemens per cm(same as μmhos/cm)at 25°C. 3. Oxidation reduction potential (ORP)										Volume Purged liters	Cum	EUS0124
3% etc).		-	Sampl		1.5)	15.1	14.9	15.5	16.5	Ö,	Temp.	St.
3%			0	1	117	607	610	610	614	Cond. ² µS/cm	Spec.	
±0.1			105		7.14	h.t	光	7.13	7.13		Ha	Depth to (below MP) Pump Intak Purging De Total Volu
±0.1 ±10 mv,			00		182.9	7.14/85.0	198.8	193.6 0.82	七か	mν	ORP ³	Depth to 10.5% below MP) top Pump Intake at (ft. bel Purging Device; (pum) Total Volume Purged
10%			8/23/3	1	0.31	0.36	0.40	23.0	2.01	mg/L	DO	Depth to 20.5% below MP) top bottom Pump Intake at (ft. below MP) Purging Device; (pump type) Total Volume Purged
10%			S.		25.11	27.3	26.42	26.81	22.41	bidity NTU	Tur-	of screen bottom low MP)
											Comments	reen

biliza Pump	5,1			0935	0930	0975	0920	Clock Time 24 HR	Location (Site/I Well Number_/ Field Personnel_ Sampling Organ Identify MP7
Stabilization Criteria 1. Pump dial setting				0935 33.51	33.49	33.47	33.11	Water Depth below MP ft	
(for exar								Pump Dial ¹	e/Facility Name NW -10 el Chuin anization Fa 700 af
Stabilization Criteria 1. Pump dial setting (for example: hertz, cycles/i								Purge Rate ml/min	Date VC
stabilization Criteria 1. Pump dial setting (for example: hertz, cycles/min, etc). 2. uSiemens per cm/same as umhos/cm)at 25°C.								Cum. Volume Purged liters	
3% etc).			Sampled	12.9	13.1	13.0	13.1	Temp.	
- 3%	1		6	424	726	730	OHE	Spec. Cond. ² µS/cm	III.
±0.1			3800	7.28	7.30	7.21	4.7.4	pН	Depth to (below MP) Pump Intake Purging Dev Total Volur
±0.1 ±10 mv,			3	7.28 97.0	7.30 17.3	7.21 98.1	3.12 101.3 1.13	mv	Depth to 32.14/ Delow MP) top Pump Intake at (ft. bel Purging Device; (pum Total Volume Purged
10%			8/23	0.84	0.87	18.0	1.13	mg/L	Depth to 32.16/ below MP) top bottom Pump Intake at (ft. below MP) Purging Device; (pump type) Total Volume Purged
10%			3 24	9.13	4.37	10.11	17-11	Tur- bidity NTU	of screen bottom slow MP) np type) per 1
								Comments	reen

Well Number MW - 13 Field Personnel Colorin Sampling Organization R Identify MP 100 of	Well Number MW - 13 Field Personnel Color Sampling Organization Identify MP 100 of	100 P	Date S	123/24			Pump Intak Purging De Total Volu	Pump Intake at (ft. be Purging Device; (pum Total Volume Purged		low MP) p eC.	P	54
Clock	Water	Pump	Purge	Cum.	Temp.	Spec.	Нq	ORP3	DO	Tur-	Comments	
Time 24 HR	Depth below MP ft	Dial	Rate ml/min	Volume Purged liters	ď	Cond. ² µS/cm		mv	mg/L	NTU		
25.9	33.42		1.1		0.41	391	663	6-231 Kg.	9-3	27.05		
			ı) Ye	,	9				1	1:
												100
				The same					•			
			,			1	4					
		,	,		SAM	Samples G	1	0880	20	8/23/	(42	
										\		
	40											
			•									
Stabilization Criteria	ion Criteria	2	,		30%	3%	±0.1	±0.1 ±10 mv	10%	10%		

Pump Purge Dial' Rate ml/min	Temp.	Spec. Cond.					Depth to 21. (below MP) top Pump Intake at (i Purging Device; Total Volume PupH ORP3
Water Pump Purge Depth Dial ¹ Rate below MP ft ml/min	Temp.	Spec. Cond. ² µS/cm	70	Ξ.		ORP ³	ORP ³ DO my/L
H.	12.5	269	16.0			210.76.73	210.76.
1505 82.43	12.4	250	100		211.5	211.5 621	211.5
1510 22.69	12.2	250	690	9	212.4	212.4 630	212.4
1515 22.83	12.2	250	6.9	0	6.90 213.0	0213.0 6.30	
					·		
(San	sampled @	, 1575	'	2		an 8/22/24	8/22/
			8				

Scanned with
CS CamScanner

Location (Site/Facility Name) Well Number MW-14 Field Personnel Calvin I Sampling Organization Page Identify MP Tage of Page	Site/Facili er_M\\\nnel(\text{organizati})	Na Service Name	1 2 1 E	by Edson st. Date 8/22/24 51.726		11111	Depth to (below MP) Pump Intak Purging De Total Volu	Depth to 1.20 / below MP) top bottom Pump Intake at (fl. below MP) Purging Device; (pump type) Total Volume Purged	p bottom (ft. below MP) (pump type)_ urged	of screen tom MP) pe) Per;	₩ 941.
Clock	Water	Pump	Purge	Cum.	Temp.	Spec.	Нq	ORP ³	DO	Tur-	Comments
	Depth	Dial	Rate	Volume	Ċ	Cond. ² uS/cm		mv.	mg/L	NTU	
	MP ft			liters							
1 325.1	4211				14.3	1869	8.68	172.8	5.22	16.91	
1 00 F	12.99				1.41	863	8.72	8.72 171.0	5.60	16.53	
	13.70				14.2	862	14.8	8.76 168.6	4.57	16.26	
	14.65				1.41	864	2.76	5.76 167.2	8.52	15.44	
1418	15.59				1.11	863	5.76	5.76 166.78	94.	15.91	
					E. 70	1320	98				
				Sampled	0 0	1415	3	8/22	124		7

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Scanned with
CS CamScanner

	-			1320 28.41	1315 28.24	28.£2 01 E1	£5.42 SOEI	1300 27.76	Clock Water Pump Time Depth Dial ¹ 24 HR below MP ft	Well Number $\Lambda M = 4$ Field Personnel $2 \times M$ Sampling Organization $2 \times M$ Identify MP $2 \times M$
1									Purge Rate ml/min	199
		Sampled	1						Cum. Volume Purged liters	Date 8/72/14
	1.0	0	- F A.	14.6	14.5	14.1	13.9	15.5	Temp.	47.
	1 P	1320		434	771	734	702	849	Spec. Cond. ² µS/cm	11111
7		8		6.12	6.34		6.8%	6.15	рН	(below MP) Pump Intak Purging De Total Volu
	1	2/8		6.12 195.6	178.9	202.9	206.6	2026 6.00	ORP ³	below MP) top bottom Pump Intake at (ft. below MP) Purging Device; (pump type) Total Volume Purged
		124		3.67	3.58	7.71		6.00	DO mg/L	p bottom (ft. below MP (pump type) urged
				8.19	9.70	45.5	6.03	10.59	Tur- bidity NTU	
	*	Oup, MS MSD	*						Comments	26.52 gal
	*	0	*							

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Location (Site/Well Number_) Field Personnel Sampling Organ Identify MP Clock Wate	Location (Site/Facility Name) Well Number MW - 20 Field Personnel Calvin Sampling Organization 746 Identify MP 199 97 12 Clock Water Pump	THE STATE OF THE PARTY OF THE P	Date Korn	S&A [27/2]	Temp.		Depth to (below MP) Pump Intak Purging De Total Volu	Depth to 2.52/ below MP) top below MP) top Pump Intake at (ft. bel Purging Device; (pum Total Volume Purged pH ORP³ DO	top bottom te at (ft. below MP) wice; (pump type) me Purged p3 DO Tu	Depth to 21.52/ of screen below MP) top bottom Pump Intake at (ft. below MP) Purging Device; (pump type) 12.75 Total Volume Purged 2.75 pH ORP ³ DO Tur- Co	of screen of screen Comments
Clock	Water Depth	Pump Dial	Purge Rate	Cum. Volume	Temp.	Spec. Cond. ²	pH	ORP3	DO mg/L	Tur- bidity	Comments
24 HR	below MP ft		ml/min	Purged liters		μS/cm				UIN	
072	14.12				14.6	hlel	7.40	7.40 225.6	8.36	135.56	
1225	23.50				13.4	184	7.36	7.36 2/61	5.42	106.40	
1230	24.31				14.1	986	7.35	7.35 210.3 8	94	77.14	
1255	24.87				13.9	989	7.36	7.36 207.18	.06	81.11	
1240	25.20				14.2	980	7.40	7.40 202.47	68.	₹5.7	
12,12	25.45				14.3	188	7.39	7.39 201.3	7.80	89.79	
				1	10 11	15		/			
				(Sampled	0	1245	9	1/22	2/24		
				/							

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Stabiliza 1. Pum 2. µSici 3. Oxid						5411	0h11	SCII	0211	\$71]	Clock Time 24 HR	Location (Si Well Numbe Field Person Sampling Or Identify MP
Stabilization Criteria 1. Pump dial setting (for example: hertz, cycles/r 2. μSiemens per cm(same as μπhos/cm)at 25°C. 3. Oxidation reduction potential (ORP)						24.03	13.65	23.43	22.73	21.90	Water Depth below MP ft	te/Facil
(for exan											Pump Dial ¹	N-(6)
nple: hertz, o µmhos/cm)a ;ial (ORP)											Purge Rate ml/min	Date
tabilization Criteria 1. Pump dial setting (for example: hertz, cycles/min, etc). 2. μSiemens per cm(same as μπhos/cm)at 25°C. 3. Oxidation reduction potential (ORP)			Swill	Sample 0							Cum. Volume Purged liters	Edson St. 8/22/24
3% (c).			je.		1	13.0	12.8	12.2	9.11	14:5	Temp.	
- 3%	1	77	1	11/15 00		185	[83]	184	181	192	Spec. Cond. ² µS/cm	
±0.1			9:1	8		(S)	6.62	6.64.	49.9	6.82	рН	Depth to (below MP) Pump Intak Purging De Total Volu
±0.1 ±10 mv,			01	22/24		191.5	194.8	1.781.19.9	6.67 196.7	6.82 189.7	ORP ³	Depth to 21.87/ below MP) top Pump Intake at (ft. bel Purging Device; (pum) Total Volume Purged
10%		1				0.65	0.63	0.60	2.80	5.45	DO mg/L	Depth to 21.87/ below MP) top bottom Pump Intake at (ft. below MP) Purging Device; (pump type) Total Volume Purged
10%						19.91	25.82	23.5q	27.39	18.04	Tur- bidity NTU	of screen bottom ow MP) p type) 767;
											Comments	cen :

Scanned with
CS CamScanner

Stabiliz 1. Pum 2. µSie 3. Oxie						((15	1110	105	1100	1055	Clock Time 24 HR	Location (Site/Well Number_Field Personnel Sampling Organ Identify MP_1
Stabilization Criteria 1. Pump dial setting (for example: hertz 2. µSiemens per cm(same as µmhos/cm 3. Oxidation reduction potential (ORP)						16-99	16.95	16.54	15.97	15.71	Water Depth below MP ft	te/Fac MM nel ganiza
a g (for examond) i(same as ion potential)											Pump Dial	Name
Stabilization Criteria 1. Pump dial setting (for example: hertz, cycles/min, etc). 2. μSiemens per cm(same as μmhos/cm)at 25°C. 3. Oxidation reduction potential (ORP)		/		\						WIGH	Purge Rate ml/min	Date Date
ycles/min, e t 25°C.			Simple) @		\						Cum. Volume Purged liters	Edson St.
Б. 3%			00			14.6	14.5	l4.3	14.1	15.5	Temp. "C	
- 3%			llis .		1	270	526	528	527	583	Spec. Cond. ² µS/cm	
#0.1			00			7.10	7.10	7.08	308	4.0	pН	Depth to (below MP) Pump Intak Purging De Total Volu
±0.1 ±10 mv			8/22/		,		190.3	7.08 192.0	191.9	7.09 190.5	ORP ³ mv	to 15. MP) to Intake at g Device, Volume P
201			142	V			7.40	7.45	7.53	8.14	DO mg/L	Depth to 15.67/66.65 of s (below MP) top bottom Pump Intake at (fl. below MP) Purging Device; (pump type) 27. Total Volume Purged 70.
10%						1	M-11	12.91	13.75	11.68	Tur- bidity NTU	
											Comments	1.00 Sol
	L	,										

Well Number		ion 73	Date oe, : 42	8 22 24		,	(below MP) Pump Intak Purging De Total Volu		p bottom ft. below MP) (pump type)_ urged	top bottom e at (fl. below MP) vice; (pump type) peri	· • 75 241
Clock	Water	Pump	Purge	Cum.	Temp.	Spec.	ЬH	ORP ³	DO.	Tur-	Comments
Time 24 HR	Depth below MP ft	Dial	Rate ml/min	Volume Purged liters	"C ·	Cond.² µS/cm		. mv.	mg/L	NTU	
0001	23.95		001 N		14.8	719	7.14	2.14 1775	0.62	13.70	
2001	73.97				14.7	719	7.13	7.13 175.4	0.42	18.90	
010	23.97	U			14.6	717	7.14	162.4	0.17	30.11	
1015	24.00				14.6	717	かた	0.551 hit	0.12	32.17	
1020	23.95				14.9	りた	21.5	146.1	0.13	34.19	
1025	23.41				1.31	217	21.5	148.0 0.14		36.03	
9				1							
				Sampled	0 m	1025	9	8/22	2/24		
				1					V.		

Scanned with
CS CamScanner

Clock Water Pump Purge Cum. Temp. Spec. pH ORP3 Time Depth Dial Rate below MP ft MP ft MP iliters CQ15 25.35	10%	10% 109
Water Depth Dial Purge Cum. Temp. Spec. Cond.2 Volume below MP ft Purged MP ft Purged Iters Purged Iters IS.S 364 25.45 IS.35 IS.5 362 IS.53 IS.5 362 IS.54 IS.5 362 IS.57 IS.		\vdash
Water Depth Dial¹ Pump Dial¹ Purge Nate Dial¹ Cum. Volume Purged Purged Iiters Temp. Cond.² Cond.² Spec. Cond.² 25.35 ~250 15.5 364 25.95 19.6 362 25.73 15.5 373 25.73 15.5 373 25.73 15.5 373 25.73 15.5 373 25.73 16.0 407 25.74 16.7 407 25.75 16.7 407	822	-
Water Dump Purge Cum. Temp. Spec. Cond.2 Volume below MP ft 25.35		
Water Depth Depth Depth below MP ft Pump Purge Purge Purge ml/min Below ml/min Purged Iters Cum. Temp. Temp. Cond.2 Cond.2 pus/cm Spec. Cond.2 pus/cm 25.35 ~250 15.5 362 25.43 15.5 381 25.37 15.5 381 25.37 15.5 342	1.83	=
Water Depth Depth below MP ft Pump Dial ¹ Rate below MP ft Purge ml/min Iliters Cum. Volume Purged Purged Iliters *C Cond.² μS/cm μS/cm Iliters 25.35 ~250 15.5 364 25.45 15.5 373 25.73 15.5 373 25.73 15.5 372	1.81	-
Water Depth Depth below MP ft Pump Dial ¹ Rate below MP ft Purge ml/min Purged ml/min liters Cum. Volume Purged Purged Purged liters Temp. C Cond. ² μS/cm 25.35 ~250 15.5 364 25.95 19.6 362 26.04 15.5 373 25.73 15.5 373	04.1	1.
Water Pump Purge Cum. Temp. Spec. Depth Dial Rate Volume below MP ft 25.35 25.45 26.04 Purge Volume Purged Purged Purged Purged liters 15.5 364 15.2 373	2.67	2
Water Pump Purge Cum. Temp. Spec. Depth Dial Rate Volume below MP ft 25.35 A250 Purge Volume Purged liters 15.5 364	3.09	W
Water Pump Purge Cum. Temp. Spec. Depth Dial Rate Volume C Cond.2 below MP ft Purge Volume Iliters IS.S 364	4.12	7
Water Pump Purge Cum. Temp. Spec. pH Depth Dial ¹ Rate Volume C Cond. ² below ml/min Purged μS/cm	725	14:
Water Pump Purge Cum. Temp. Spec. pH Depth Dial Rate Volume C Cond.2		
Water Pump Purge Cum. Temp. Spec. pH	mg/L	m
	DO	D
	ce; (pump type) Per	e; (pu
nization Page	β. be	(A)
Purging Devi	574 49. 8% of screen	2 2
Name) 61 Edson St. I 12 Date \$122/24 (1)		

Pump dial setting (for example: hertz, cycles/min, etc).
 µSiemens per cm(same as µmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Attachment B Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2448101

Client: James Environmental Management

134 Greenridge Drive Manlius, NY 13104

ATTN: James Blasting Phone: (315) 263-3388

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified Report Date: 08/28/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448101 **Report Date:** 08/28/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2448101-01	MW-16	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 11:45	08/22/24
L2448101-02	MW-17	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 11:15	08/22/24
L2448101-03	MW-22	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 09:45	08/22/24
L2448101-04	MW-23	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 10:25	08/22/24
L2448101-05	MW-14	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 14:15	08/22/24
L2448101-06	MW-18	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 15:15	08/22/24
L2448101-07	MW-19	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 13:20	08/22/24
L2448101-08	MW-20	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 12:45	08/22/24
L2448101-09	TRIP BLANK		61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 00:00	08/22/24
L2448101-10	FIELD DUPLICATE	WATER	61 EDISON STREET, AMSTERDAM, NEW YORK	08/22/24 13:20	08/22/24

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448101Project Number:Not SpecifiedReport Date:08/28/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

r loade domadt r rojedt Management a	11 000 02+ 0220 With any questions.	

Please contact Project Management at 800-624-9220 with any questions

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448101Project Number:Not SpecifiedReport Date:08/28/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2448101-09: A sample identified as "TRIP BLANK" was listed on the Chain of Custody, but not received. This was verified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Selly Many Ashaley Moynihan

Authorized Signature:

Title: Technical Director/Representative

Дерна

Date: 08/28/24

ORGANICS

VOLATILES

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

L2448101-01

MW-16

Project Number: Not Specified

SAMPLE RESULTS

61 EDISON STREET, AMSTERDAM, NEW YORK

Date Collected: 08/22/24 11:45

Lab Number:

Report Date:

Date Received: 08/22/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/27/24 09:11

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.32	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

SAMPLE RESULTS

Lab ID: L2448101-01 Date Collected: 08/22/24 11:45

Client ID: MW-16 Date Received: 08/22/24 Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	99	70-130	

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

L2448101-02

MW-17

Project Number: Not Specified

SAMPLE RESULTS

61 EDISON STREET, AMSTERDAM, NEW YORK

Date Collected: 08/22/24 11:15

Lab Number:

Report Date:

Date Received: 08/22/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/27/24 09:34

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	3.0		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

SAMPLE RESULTS

Lab ID: L2448101-02 Date Collected: 08/22/24 11:15

Client ID: MW-17 Date Received: 08/22/24 Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

, , , , ,

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.0	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	102	70-130	

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/22/24 09:45

Lab Number:

Report Date:

Lab ID: L2448101-03 Client ID: Date Received: 08/22/24 MW-22 Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/27/24 09:58

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.0		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

SAMPLE RESULTS

Lab ID: L2448101-03 Date Collected: 08/22/24 09:45

Client ID: MW-22 Date Received: 08/22/24 Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	105	70-130	

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

L2448101-04

MW-23

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/22/24 10:25

Date Received: 08/22/24

Lab Number:

Report Date:

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/27/24 10:22

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.70		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.78	J	ug/l	2.5	0.70	1
Trichloroethene	80		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

SAMPLE RESULTS

Lab ID: L2448101-04 Date Collected: 08/22/24 10:25

Client ID: MW-23 Date Received: 08/22/24 Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.7		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	109		70-130
Toluene-d8	103		70-130
4-Bromofluorobenzene	95		70-130
Dibromofluoromethane	102		70-130

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/22/24 14:15

Lab ID: L2448101-05

Client ID: MW-14

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK

Date Received: 08/22/24

Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/27/24 10:46

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: EDSON STREET, AMSTERDAM L2448101

Project Number: Report Date: Not Specified 08/28/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/22/24 14:15 L2448101-05

Date Received: Client ID: 08/22/24 MW-14 Field Prep: Not Specified

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	ND		ug/l	5.0	1.5	1				
Carbon disulfide	ND		ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1				
2-Hexanone	ND		ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	ND		ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	ND		ug/l	10	0.40	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	103	70-130	

L2448101

08/28/24

Not Specified

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/22/24 15:15

Lab Number:

Report Date:

Lab ID: L2448101-06

Client ID: MW-18

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep:

Date Received: 08/22/24

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/27/24 11:10

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: EDSON STREET, AMSTERDAM L2448101

Project Number: Report Date: Not Specified 08/28/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/22/24 15:15 L2448101-06

Date Received: Client ID: 08/22/24 MW-18

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	ND		ug/l	5.0	1.5	1				
Carbon disulfide	ND		ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1				
2-Hexanone	ND		ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	ND		ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	ND		ug/l	10	0.40	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	103	70-130	

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

L2448101-07

MW-19

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/22/24 13:20

Date Received: 08/22/24

Lab Number:

Report Date:

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/27/24 11:33

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: EDSON STREET, AMSTERDAM L2448101

Project Number: Report Date: Not Specified 08/28/24

SAMPLE RESULTS

Lab ID: L2448101-07 Date Collected: 08/22/24 13:20

Date Received: Client ID: 08/22/24 MW-19

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	ND		ug/l	5.0	1.5	1				
Carbon disulfide	ND		ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1				
2-Hexanone	ND		ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	ND		ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	ND		ug/l	10	0.40	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	105	70-130	

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

L2448101-08

MW-20

Project Number: Not Specified

SAMPLE RESULTS

61 EDISON STREET, AMSTERDAM, NEW YORK

08/22/24 12:45

Date Collected:

Lab Number:

Report Date:

Date Received: 08/22/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/27/24 11:57

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/22/24 12:45

Client ID: MW-20 Date Received: 08/22/24 Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	107	70-130	

L2448101

08/28/24

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/22/24 13:20

Lab ID: L2448101-10

Client ID: FIELD DUPLICATE

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep:

Date Received: 08/22/24
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/27/24 12:21

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/22/24 13:20

Client ID: FIELD DUPLICATE Date Received: 08/22/24

Sample Location: 61 EDISON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	106	70-130	

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/27/24 08:47

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lab	for sample(s):	01-08,10 E	Batch: WG1964830-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/27/24 08:47

Analyst: PID

Parameter	Result	Qualifier Uni	ts Ri	L	MDL	
Volatile Organics by GC/MS - West	oorough Lab	for sample(s):	01-08,10	Batch:	WG1964830-5	
1,4-Dichlorobenzene	ND	uç	y/l 2.5	5	0.70	
Methyl tert butyl ether	ND	uç	y/l 2.5	5	0.17	_
p/m-Xylene	ND	uç	y/l 2.	5	0.70	
o-Xylene	ND	uç	ı/l 2.	5	0.70	_
cis-1,2-Dichloroethene	ND	uç	ı/l 2.	5	0.70	
Styrene	ND	uç	ı/l 2.	5	0.70	
Dichlorodifluoromethane	ND	uç	y/l 5.0	0	1.0	
Acetone	ND	uç	y/I 5.0	0	1.5	
Carbon disulfide	ND	uç	y/I 5.0	0	1.0	
2-Butanone	ND	uç	y/I 5.0	0	1.9	
4-Methyl-2-pentanone	ND	uç	y/I 5.0	0	1.0	
2-Hexanone	ND	uç	ı/l 5.0	0	1.0	
Bromochloromethane	ND	uç	ı/l 2.	5	0.70	
1,2-Dibromoethane	ND	uç	ı/l 2.0	0	0.65	
1,2-Dibromo-3-chloropropane	ND	uç	ı/l 2.	5	0.70	
Isopropylbenzene	ND	uç	ı/l 2.	5	0.70	
1,2,3-Trichlorobenzene	ND	uç	y/l 2.	5	0.70	
1,2,4-Trichlorobenzene	ND	uç	y/l 2.	5	0.70	
Methyl Acetate	ND	uç	y/l 2.0	0	0.23	
Cyclohexane	ND	uç	y/l 10)	0.27	
1,4-Dioxane	ND	uç	ı/l 25	0	61.	
Freon-113	ND	uç	ı/l 2.	5	0.70	
Methyl cyclohexane	ND	uç	ı/l 10)	0.40	

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448101

Project Number: Not Specified Report Date: 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/27/24 08:47

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-08,10 Batch: WG1964830-5

		Acceptance
Surrogate	%Recovery Qua	alifier Criteria
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	94	70-130
Dibromofluoromethane	102	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westl	borough Lab Associated	sample(s): 0	01-08,10 Batch:	WG1964830-3 WG1964830	-4	
Methylene chloride	96		100	70-130	4	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	100		98	63-132	2	20
1,2-Dichloropropane	110		110	70-130	0	20
Dibromochloromethane	91		98	63-130	7	20
1,1,2-Trichloroethane	96		100	70-130	4	20
Tetrachloroethene	99		100	70-130	1	20
Chlorobenzene	98		100	75-130	2	20
Trichlorofluoromethane	110		97	62-150	13	20
1,2-Dichloroethane	120		120	70-130	0	20
1,1,1-Trichloroethane	98		100	67-130	2	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	99		110	70-130	11	20
cis-1,3-Dichloropropene	96		100	70-130	4	20
Bromoform	82		98	54-136	18	20
1,1,2,2-Tetrachloroethane	94		110	67-130	16	20
Benzene	100		110	70-130	10	20
Toluene	100		100	70-130	0	20
Ethylbenzene	100		100	70-130	0	20
Chloromethane	110		100	64-130	10	20
Bromomethane	64		66	39-139	3	20
Vinyl chloride	120		100	55-140	18	20

Lab Control Sample Analysis Batch Quality Control

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-08,10 Batch:	WG1964830-3 WG1964830)-4		
Chloroethane	120		130	55-138	8		20
1,1-Dichloroethene	100		94	61-145	6		20
trans-1,2-Dichloroethene	100		100	70-130	0		20
Trichloroethene	97		96	70-130	1		20
1,2-Dichlorobenzene	94		100	70-130	6		20
1,3-Dichlorobenzene	94		100	70-130	6		20
1,4-Dichlorobenzene	95		100	70-130	5		20
Methyl tert butyl ether	90		100	63-130	11		20
p/m-Xylene	100		105	70-130	5		20
o-Xylene	100		100	70-130	0		20
cis-1,2-Dichloroethene	99		100	70-130	1		20
Styrene	100		100	70-130	0		20
Dichlorodifluoromethane	90		80	36-147	12		20
Acetone	94		100	58-148	6		20
Carbon disulfide	110		100	51-130	10		20
2-Butanone	120		130	63-138	8		20
4-Methyl-2-pentanone	96		100	59-130	4		20
2-Hexanone	89		120	57-130	30	Q	20
Bromochloromethane	96		100	70-130	4		20
1,2-Dibromoethane	89		96	70-130	8		20
1,2-Dibromo-3-chloropropane	74		86	41-144	15		20
Isopropylbenzene	93		98	70-130	5		20
1,2,3-Trichlorobenzene	81		91	70-130	12		20

Lab Control Sample Analysis Batch Quality Control

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated s	ample(s):	01-08,10 Batch:	WG196483	80-3 WG1964830	0-4			
1,2,4-Trichlorobenzene	84		97		70-130	14		20	
Methyl Acetate	97		120		70-130	21	Q	20	
Cyclohexane	120		110		70-130	9		20	
1,4-Dioxane	78		92		56-162	16		20	
Freon-113	99		91		70-130	8		20	
Methyl cyclohexane	100		90		70-130	11		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	117	109	70-130
Toluene-d8	101	98	70-130
4-Bromofluorobenzene	91	91	70-130
Dibromofluoromethane	102	96	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number:

L2448101

Report Date:

08/28/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-19	6 - Westborough	Lab Assoc	ciated sample	(s): 01-08,10	QC Batch ID: WG1	964830-6 WG ⁻	1964830-7 QC Sar	nple: L2	448101-07 Client ID
Methylene chloride	ND	10	9.7	97	10	100	70-130	3	20
1,1-Dichloroethane	ND	10	11	110	12	120	70-130	9	20
Chloroform	ND	10	10	100	10	100	70-130	0	20
Carbon tetrachloride	ND	10	9.6	96	10	100	63-132	4	20
1,2-Dichloropropane	ND	10	11	110	11	110	70-130	0	20
Dibromochloromethane	ND	10	9.1	91	9.9	99	63-130	8	20
1,1,2-Trichloroethane	ND	10	10	100	11	110	70-130	10	20
Tetrachloroethene	ND	10	9.6	96	10	100	70-130	4	20
Chlorobenzene	ND	10	9.7	97	10	100	75-130	3	20
Trichlorofluoromethane	ND	10	10	100	11	110	62-150	10	20
1,2-Dichloroethane	ND	10	12	120	12	120	70-130	0	20
1,1,1-Trichloroethane	ND	10	9.8	98	10	100	67-130	2	20
Bromodichloromethane	ND	10	10	100	10	100	67-130	0	20
trans-1,3-Dichloropropene	ND	10	9.1	91	9.6	96	70-130	5	20
cis-1,3-Dichloropropene	ND	10	8.4	84	9.1	91	70-130	8	20
Bromoform	ND	10	8.4	84	8.7	87	54-136	4	20
1,1,2,2-Tetrachloroethane	ND	10	9.9	99	10	100	67-130	1	20
Benzene	ND	10	10	100	11	110	70-130	10	20
Toluene	ND	10	10	100	10	100	70-130	0	20
Ethylbenzene	ND	10	9.6	96	10	100	70-130	4	20
Chloromethane	ND	10	10	100	12	120	64-130	18	20
Bromomethane	ND	10	3.1	31	Q 3.3	33	Q 39-139	6	20
Vinyl chloride	ND	10	10	100	11	110	55-140	10	20

Matrix Spike Analysis Batch Quality Control

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number:

L2448101

Report Date:

08/28/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD		PD mits
Volatile Organics by GC/MS MW-19	- Westborough	Lab Assoc	ciated sample(s): 01-08,10	QC Batch ID: WG19	64830-6 WG1	964830-7 QC Sam	ple: L2	2448101-07	Client ID:
Chloroethane	ND	10	13	130	13	130	55-138	0		20
1,1-Dichloroethene	ND	10	9.8	98	10	100	61-145	2		20
trans-1,2-Dichloroethene	ND	10	9.7	97	10	100	70-130	3		20
Trichloroethene	ND	10	9.7	97	9.9	99	70-130	2		20
1,2-Dichlorobenzene	ND	10	9.1	91	9.6	96	70-130	5		20
1,3-Dichlorobenzene	ND	10	9.2	92	9.5	95	70-130	3		20
1,4-Dichlorobenzene	ND	10	9.3	93	9.7	97	70-130	4		20
Methyl tert butyl ether	ND	10	8.6	86	9.2	92	63-130	7		20
o/m-Xylene	ND	20	19	95	20	100	70-130	5		20
o-Xylene	ND	20	18	90	20	100	70-130	11		20
cis-1,2-Dichloroethene	ND	10	9.4	94	10	100	70-130	6		20
Styrene	ND	20	19	95	20	100	70-130	5		20
Dichlorodifluoromethane	ND	10	7.0	70	7.9	79	36-147	12		20
Acetone	ND	10	12	120	14	140	58-148	15		20
Carbon disulfide	ND	10	11	110	11	110	51-130	0		20
2-Butanone	ND	10	12	120	13	130	63-138	8		20
4-Methyl-2-pentanone	ND	10	9.6	96	11	110	59-130	14		20
2-Hexanone	ND	10	10	100	11	110	57-130	10		20
Bromochloromethane	ND	10	9.7	97	9.8	98	70-130	1		20
1,2-Dibromoethane	ND	10	9.2	92	9.8	98	70-130	6		20
1,2-Dibromo-3-chloropropane	ND	10	8.2	82	8.4	84	41-144	2		20
Isopropylbenzene	ND	10	8.6	86	8.9	89	70-130	3		20
1,2,3-Trichlorobenzene	ND	10	8.1	81	8.5	85	70-130	5		20

Matrix Spike Analysis Batch Quality Control

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number:

L2448101

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	y RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-19	- Westborough I	Lab Assoc	iated sample(s	s): 01-08,10	QC Batch I	D: WG19	64830-6 WG1	964830-7 QC Sa	ample: L2	2448101-07 Client ID:
1,2,4-Trichlorobenzene	ND	10	8.1	81		8.2	82	70-130	1	20
Methyl Acetate	ND	10	10	100		11	110	70-130	10	20
Cyclohexane	ND	10	9.9J	99		11	110	70-130	11	20
1,4-Dioxane	ND	500	410	82		450	90	56-162	9	20
Freon-113	ND	10	8.7	87		9.6	96	70-130	10	20
Methyl cyclohexane	ND	10	7.6J	76		8.5J	85	70-130	11	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	123	119	70-130
4-Bromofluorobenzene	85	87	70-130
Dibromofluoromethane	102	100	70-130
Toluene-d8	101	99	70-130

Serial_No:08282416:17 Lab Number: L2448101

Project Name: EDSON STREET, AMSTERDAM

Report Date: 08/28/24 Project Number: Not Specified

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2448101-01A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-01B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-01C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-02A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-02B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-02C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-03A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-03B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-03C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-04A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-04B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-04C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-05A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-05B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-05C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-06A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-06B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-06C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07A1	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07A2	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07B1	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2448101

Report Date: 08/28/24

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	. ' -	Pres	Seal	Date/Time	Analysis(*)
L2448101-07B2	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07C1	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-07C2	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-08A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-08B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-08C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-10A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-10B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2448101-10C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448101Project Number:Not SpecifiedReport Date:08/28/24

GLOSSARY

Acronyms

EDL

LOQ

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448101Project Number:Not SpecifiedReport Date:08/28/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448101Project Number:Not SpecifiedReport Date:08/28/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448101Project Number:Not SpecifiedReport Date:08/28/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 21

Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дена	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney I Albany, NY 12305: 14 Walker Wa Tonawanda, NY 14150: 275 Coo	y		Page		In Late 8/33/04				1	1018101
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02046 320 Forbes Blvd	Project information					Deliv	erables.				Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Edson Street,	Amsterdam				ASP-A		ASP.		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	61 Edson Stre	eet, Amsterd	am, New Yo	rk		EQuIS (1 File)	EQu	IS (4 File)	PO#
Client information		Project #						Other		_	_	
Client: Ambient En	vironmental	(Use Project name as Pro	ject#)				Regu		dructueu		-	Disposal Site Information
Address: 828 Washin	igton Ave	Project Manager:						NY TOG	5		art 375	Please identify below location of applicable disposal facilities.
Albany, NY 12203		ALPHAQuote #:						AWQ Sta		NYC		
Phone: (315) 263-3	388	Furn-Around Time						NY Restr	icted Use	Other		Disposal Facility:
Fax:		Standard	4	Due Date:					stricted Use			NJ NY
Email: jfblasting@j	ames-em.com	Rush (only if pre approved)	P	# of Days.					ver Discharg	e		Other:
These samples have be	en previously analyz	ed by Alpha					ANA	LYSIS		_		Sample Filtration
Other project specific Please specify Metals		nents:					NYTCL-8260	Total Chromium				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab (D (Lab Use Only)	s	ample ID	mple ID Collection Sample Sampler Date Time Matrix Initials		Sampler's Initials		-				Sample Specific Comments	
	MVV-HP			/	M	/	K	x/				
	MW-4	/ ^	,	/	W	/	/x	x/				
	MW-1R	\times			w)	X	X	X _C				
	MW-10		/	1	w/		x/					
	MAY-1s		/		W	-	1	1				
IO IOBH	MW-16		8 22 24	1145	W	CK	X					
	MW-17		8 22 24	1115	W	CK	X					1
63	MW-22		6 22 24	2460	W	CK	Х					
09	MW-23		8 22 24	1025	W	CK	X				-	
05	MW-14		8/22/24	1415	W	CK	X				1	
[11 - N0939U1		Date 7 22 24	a/Time	Preservative	V P			8/3				
K/E = Zn Ac/NaOH O = Other Form No: 01-25 (rev. 30-Si	D = BOD Bottle	1		8/2		0,	7			8/23/	24 0150	HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS

B = HCl	Дена		NEW YORK CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker)	Service Centers Mahwah, NJ 07430: 35 Whitsey Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105					ALPHAJORY8101						
ASP-A ASP-				Project Information		-			Deli	rerables				Billing Information		
Client Information	11 - 21 - 21 - 21 - 21 - 21 - 21 - 21 -		TEL: 508-822-9300		Edson Street	Amsterdam	1				-	-		Same as Client Info		
Collection Col	FAX: 508-898	-9193	FAX: 508-822-3288		61 Edson Str	eet, Amsterd	lam, New Yo	rk.		EQuIS	(1 File)		EQuIS (4 File)	PO#		
Client Ambient Environmental Client Collection	Client Inton	nation		Project #						Other						
Address: 228 Washington Ave Project Manager: AVPG Standards NY CR-51 Registable disposal facilities. Properties Use NY CR-51 Registable disposal facilities. NY CR-52 Registable disposal			nvironmental	(Use Project name as F	Project #)				Reg	lilatory R	adureme	rt)		Disposal Site Information		
Albany, NY 12203		8 Washi	ngton Ave	Project Manager:						NY TOG	S	-				
Phone: (315) 283-3388 Tun-Arouna Time Standard Due Date: Other Other Other Other Other Other Other Other	Albany, NY 12	203		ALPHAQuote #:					L	AWO SI	andards					
Standard Due Date: NY Unrestricted Use NU NY Unrestricted Use Nu NY Unrestricted Use Nu NY Unrestricted Use Nu NY Unrestricted Use Nunrestricted University Nunrestricted Use Nunrestricted University Nunrestricted Use Nunrestricted Use Nunrestricted Use Nunrestricted Use Nunrestricted Use N			3388	Turn-Argund Time						NY Rest	ricted Use		Other			
Container Code	Fax:			Standar	rd 🔲	Due Date	6			NY Unite	stricted Us	e		NJ NY		
These samples flave been previously analyzed by Alpha Cother project specific requirements/comments: Cother project specific requirements/comments:		lasting@	james-em.com	Rush (only if pre approve	ed)	# of Days	it.		-	NYC Se	wer Discha	irge		1		
Other project specific requirements/comments: Please specify Metals or TAL.	These sample:	s have b	een previously analyz	ed by Alpha					ANALYSIS			, ,	Sample Filtration			
Container Type Container Code Container Code A = Amber Glass Container Code				nones:					1.0					Lab to do Preservation Lab to do		
Cantainer Type Container Code Cont	AL ENIX L	et itt		8 A	Colle	ection	Sample	Sampler's	Z	10			1 1	The state of the s		
MW-18			S	ample ID	Date	Time								Sample Specific Comments		
MW-19 \$\frac{122}{22} \qquad \qquad \qquad \qquad \qquad \qquad \qqqq \qqqqq \qqqq \qqqqq \qqqqqq	USIN	DU	MW/-18		8/22/24	1515	w	CK	x							
Trip Blank Trip Blank Field Duplicate Trip Blank T	7004	00					-		×							
Trip Blank Field Duplicate SIZZ Z4 1320 W CK X MS MSD MSD VIZZ 34 1320 W CK X MSD MSD VIZZ 34 1320 W CK X MSD Container Code P = Plastic B = HCl A = Amber Glass C = HNO ₃ D = H ₂ SO ₄ E = NaOH B = Bacteria Cup F = MeOH C = Cube C = NaHSO ₄ D = Obter H = Na ₂ S ₂ O ₃ D = Obter E = Encore D = BOD Bottle D = BOD Bottle D = BOD Bottle D = Strain D V V V V V V V V V		08					_		X							
Field Duplicate Sizz 24 1320 W CK X			the same of the sa						X							
MSD MSD MSD MSD MSD MSD MSD MSD		10			8 22 24	1320	w	CK	X							
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH E = NaOH E = NaOH B = Bacteria Cup G = NaHSO ₄ D = Other B = Na ₂ S ₂ O ₃ D = BOD Bottie Westboro: Certification No: MA935 Container Type V Container Type		0	5				W	CK	х			7 1				
A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vial D = H ₃ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ D = Other H = Na ₂ S ₂ O ₃ E = Encore K/E = Zn Ac/NaOH Received By: Container Type V Please print clearly, legit and completely. Samples not be logged in and turnaround time clock wistart until any ambiguitie resolved. By: Date/Time Received By: Date/Time Received By: Date/Time Received By: Date/Time TO BE BOUND BY ALP		0,	MSD				w	CK	X							
A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vial D = H ₃ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ D = Other H = Na ₂ S ₂ O ₃ E = Encore K/E = Zn Ac/NaOH Received By: Container Type V Please print clearly, legit and completely. Samples not be logged in and turnaround time clock wistart until any ambiguitie resolved. By: Date/Time Received By: Date/Time Received By: Date/Time Received By: Date/Time TO BE BOUND BY ALP									-							
E = NaOH B = Bacteria CUP F = MeOH C = Cube G = NaHSO _A D = O = Other H = Na ₂ S ₂ O ₃ E = Encore D = BOD Bottle Relinquished By: Date/Time Received By: Date/Time Resolved By EXECUTIN Resolved By EXECUTIN BE BOUND BY ALP TO BE BOUND BY ALP	A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	= None P = Plastic Westdorft. Certification No. MA015 = HCl A = Amber Glass Mansfield: Certification No. MA015 = H ₂ SO ₄ G = Glass = NaOH B = Bacteria Cup = MeOH C = Cube Relinquished By: = NaHSO ₄ O = Other			-		e V					turnaround time clock will				
K/E = Zn Ad/NaOH D = BOD Bottle TO BE BOUND BY ALP	F = MeOH G = NaHSO ₄				d By:	7/22/2	1 1530		-	eiead By:		_	Pat 2	CAR DEAD AND ACCES		
	K/E = Zn Ad/Nat	OH	D = BOD Bottle	ffe		8/	29 150	0	8/23/24 0/50		HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS.					

ANALYTICAL REPORT

Lab Number: L2448259

Client: James Environmental Management

134 Greenridge Drive Manlius, NY 13104

ATTN: James Blasting Phone: (315) 263-3388

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified Report Date: 08/30/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

 Lab Number:
 L2448259

 Report Date:
 08/30/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2448259-01	MW-4R	WATER	61 EDSON STREET, AMSTERDAM, NEW YORK	08/23/24 10:15	08/23/24
L2448259-02	MW-4	WATER	61 EDSON STREET, AMSTERDAM, NEW YORK	08/23/24 10:50	08/23/24
L2448259-03	MW-1R	WATER	61 EDSON STREET, AMSTERDAM, NEW YORK	08/23/24 11:25	08/23/24
L2448259-04	MW-10	WATER	61 EDSON STREET, AMSTERDAM, NEW YORK	08/23/24 09:35	08/23/24
L2448259-05	MW-13	WATER	61 EDSON STREET, AMSTERDAM, NEW YORK	08/23/24 08:50	08/23/24
L2448259-06	TRIP BLANK	WATER	61 EDSON STREET, AMSTERDAM, NEW YORK	08/23/24 00:00	08/23/24

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

i ioado domadi i	Todos contact i reject management at eco ez i ezze mar any quecaene.										

Please contact Project Management at 800-624-9220 with any questions

Serial_No:08302419:50

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448259

Project Number: Not Specified Report Date: 08/30/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lelly Melf Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 08/30/24

ORGANICS

VOLATILES

Serial_No:08302419:50

L2448259

08/30/24

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/23/24 10:15

Lab Number:

Report Date:

Lab ID: L2448259-01 D

Client ID: MW-4R

Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK

Date Received: 08/23/24
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D

Analytical Date: 08/28/24 11:16

Analyst: PID

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane	ND ND	ug/l			
		ua/l			
1,1-Dichloroethane	ND	ug/i	500	140	200
		ug/l	500	140	200
Chloroform	ND	ug/l	500	140	200
Carbon tetrachloride	ND	ug/l	100	27.	200
1,2-Dichloropropane	ND	ug/l	200	27.	200
Dibromochloromethane	ND	ug/l	100	30.	200
1,1,2-Trichloroethane	ND	ug/l	300	100	200
Tetrachloroethene	1800	ug/l	100	36.	200
Chlorobenzene	ND	ug/l	500	140	200
Trichlorofluoromethane	ND	ug/l	500	140	200
1,2-Dichloroethane	ND	ug/l	100	26.	200
1,1,1-Trichloroethane	ND	ug/l	500	140	200
Bromodichloromethane	ND	ug/l	100	38.	200
trans-1,3-Dichloropropene	ND	ug/l	100	33.	200
cis-1,3-Dichloropropene	ND	ug/l	100	29.	200
Bromoform	ND	ug/l	400	130	200
1,1,2,2-Tetrachloroethane	ND	ug/l	100	33.	200
Benzene	ND	ug/l	100	32.	200
Toluene	ND	ug/l	500	140	200
Ethylbenzene	ND	ug/l	500	140	200
Chloromethane	ND	ug/l	500	140	200
Bromomethane	ND	ug/l	500	140	200
Vinyl chloride	ND	ug/l	200	14.	200
Chloroethane	ND	ug/l	500	140	200
1,1-Dichloroethene	ND	ug/l	100	34.	200
trans-1,2-Dichloroethene	ND	ug/l	500	140	200
Trichloroethene	19000	ug/l	100	35.	200
1,2-Dichlorobenzene	ND	ug/l	500	140	200

Project Name: Lab Number: EDSON STREET, AMSTERDAM L2448259

Project Number: Report Date: Not Specified 08/30/24

SAMPLE RESULTS

Lab ID: D Date Collected: 08/23/24 10:15 L2448259-01

Date Received: Client ID: 08/23/24 MW-4R Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

1.4-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
1.4-Dichlorobenzene ND ug/l 500 140 200 Methyl tert butyl ether ND ug/l 500 33. 200 p/m-Xylene ND ug/l 500 140 200 o-Xylene ND ug/l 500 140 200 cis-1,2-Dichloroethene ND ug/l 500 140 200 Styrene ND ug/l 500 140 200 Dichlorodfilluoromethane ND ug/l 1000 200 200 Acetone ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 390 200 Carbon disulfide ND ug/l 1000 390 200 2-Butanone ND ug/l 1000 200 200 <th colspan="9">Volatile Organics by GC/MS - Westborough Lab</th>	Volatile Organics by GC/MS - Westborough Lab								
1.4-Dichlorobenzene ND ug/l 500 140 200 Methyl tert butyl ether ND ug/l 500 33. 200 p/m-Xylene ND ug/l 500 140 200 o-Xylene ND ug/l 500 140 200 cis-1,2-Dichloroethene ND ug/l 500 140 200 Styrene ND ug/l 500 140 200 Dichlorodifluoromethane ND ug/l 1000 200 200 Acetone ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 290 200 2-Butanone ND ug/l 1000 390 200 4-Methyl-2-pentanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 500 140 200 2-Hexanone ND ug/l 500 140 200 <tr< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>500</td><td>140</td><td>200</td></tr<>	1,3-Dichlorobenzene	ND		ug/l	500	140	200		
p/m-Xylene ND ug/l 500 140 200 o-Xylene ND ug/l 500 140 200 cis-1,2-Dichloroethene ND ug/l 500 140 200 Styrene ND ug/l 500 140 200 Dichlorodifluoromethane ND ug/l 1000 200 200 Acetone ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 290 200 2-Butanone ND ug/l 1000 290 200 2-Hexanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 1000 200 200 Bromochloromethane ND ug/l 500 140 200 1,2-Dibromo-3-chloropropane ND ug/l 400 130 200 Isopropylbenzene ND ug/l 500 140 200	1,4-Dichlorobenzene	ND			500	140	200		
o-Xylene ND ug/l 500 140 200 cis-1,2-Dichloroethene ND ug/l 500 140 200 Styrene ND ug/l 500 140 200 Dichlorodiffluoromethane ND ug/l 1000 200 200 Acetone ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 290 200 2-Butanone ND ug/l 1000 390 200 2-Hexanone ND ug/l 1000 390 200 2-Hexanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 1000 200 200 Bromochloromethane ND ug/l 500 140 200 1,2-Dibromo-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 <t< td=""><td>Methyl tert butyl ether</td><td>ND</td><td></td><td>ug/l</td><td>500</td><td>33.</td><td>200</td></t<>	Methyl tert butyl ether	ND		ug/l	500	33.	200		
Styrene ND ug/l 500 140 200	p/m-Xylene	ND		ug/l	500	140	200		
Styrene ND ug/l 500 140 200 Dichlorodifluoromethane ND ug/l 1000 200 200 Acetone ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 200 200 2-Butanone ND ug/l 1000 390 200 4-Methyl-2-pentanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 500 140 200 Bromochloromethane ND ug/l 500 140 200 1,2-Dibromo-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 500 140 200	o-Xylene	ND		ug/l	500	140	200		
Dichlorodifluoromethane	cis-1,2-Dichloroethene	ND		ug/l	500	140	200		
Acetone ND ug/l 1000 290 200 Carbon disulfide ND ug/l 1000 200 200 2-Butanone ND ug/l 1000 390 200 2-Butanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 1000 200 200 Bromochloromethane ND ug/l 500 140 200 1,2-Dibromoethane ND ug/l 400 130 200 1,2-Dibromo-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 500 140 200 Cyclohexane ND ug/l 400 47. 200	Styrene	ND		ug/l	500	140	200		
Carbon disulfide ND ug/l 1000 200 200 2-Butanone ND ug/l 1000 390 200 4-Methyl-2-pentanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 1000 200 200 Bromochloromethane ND ug/l 500 140 200 1,2-Dibromoethane ND ug/l 400 130 200 1,2-Dibromoethane ND ug/l 500 140 200 1,2-Dibromoe-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 500 140 200 Cyclohexane ND ug/l 2000 54 200 1,4-Dioxane ND ug/l 5000 140 20	Dichlorodifluoromethane	ND		ug/l	1000	200	200		
2-Butanone	Acetone	ND		ug/l	1000	290	200		
4-Methyl-2-pentanone ND ug/l 1000 200 200 2-Hexanone ND ug/l 1000 200 200 Bromochloromethane ND ug/l 500 140 200 1,2-Dibromoethane ND ug/l 500 140 200 1,2-Dibromo-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 1,2,4-Trichlorobenzene ND ug/l 500 140 200 1,4-Dioxane ND ug/l 5000 140 200 1,4-Dioxane ND ug/l 5000 12000 200 Freon-113 ND ug/l 5000 12000 200	Carbon disulfide	ND		ug/l	1000	200	200		
2-Hexanone ND ug/l 1000 200 200 Bromochloromethane ND ug/l 500 140 200 1,2-Dibromoethane ND ug/l 400 130 200 1,2-Dibromo-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 1,2,4-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 400 47. 200 Cyclohexane ND ug/l 2000 54. 200 1,4-Dioxane ND ug/l 5000 12000 200 Freon-113 ND ug/l 5000 140 200	2-Butanone	ND		ug/l	1000	390	200		
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	1000	200	200		
1,2-Dibromoethane ND ug/l 400 130 200 1,2-Dibromo-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 1,2,4-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 400 47. 200 Cyclohexane ND ug/l 2000 54. 200 1,4-Dioxane ND ug/l 50000 12000 200 Freon-113 ND ug/l 500 140 200	2-Hexanone	ND		ug/l	1000	200	200		
1,2-Dibromo-3-chloropropane ND ug/l 500 140 200 Isopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 1,2,4-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 400 47. 200 Cyclohexane ND ug/l 2000 54. 200 1,4-Dioxane ND ug/l 50000 12000 200 Freon-113 ND ug/l 500 140 200	Bromochloromethane	ND		ug/l	500	140	200		
Sopropylbenzene ND ug/l 500 140 200 1,2,3-Trichlorobenzene ND ug/l 500 140 200 1,2,4-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 400 47 200 Cyclohexane ND ug/l 2000 54 200 1,4-Dioxane ND ug/l 5000 12000 200 Freon-113 ND ug/l 500 140 200	1,2-Dibromoethane	ND		ug/l	400	130	200		
1,2,3-Trichlorobenzene ND ug/l 500 140 200 1,2,4-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 400 47. 200 Cyclohexane ND ug/l 2000 54. 200 1,4-Dioxane ND ug/l 50000 12000 200 Freon-113 ND ug/l 500 140 200	1,2-Dibromo-3-chloropropane	ND		ug/l	500	140	200		
1,2,4-Trichlorobenzene ND ug/l 500 140 200 Methyl Acetate ND ug/l 400 47. 200 Cyclohexane ND ug/l 2000 54. 200 1,4-Dioxane ND ug/l 50000 12000 200 Freon-113 ND ug/l 500 140 200	Isopropylbenzene	ND		ug/l	500	140	200		
Methyl Acetate ND ug/l 400 47. 200 Cyclohexane ND ug/l 2000 54. 200 1,4-Dioxane ND ug/l 50000 12000 200 Freon-113 ND ug/l 500 140 200	1,2,3-Trichlorobenzene	ND		ug/l	500	140	200		
Cyclohexane ND ug/l 2000 54. 200 1,4-Dioxane ND ug/l 50000 12000 200 Freon-113 ND ug/l 500 140 200	1,2,4-Trichlorobenzene	ND		ug/l	500	140	200		
1,4-Dioxane ND ug/l 50000 12000 200 Freon-113 ND ug/l 500 140 200	Methyl Acetate	ND		ug/l	400	47.	200		
Freon-113 ND ug/l 500 140 200	Cyclohexane	ND		ug/l	2000	54.	200		
	1,4-Dioxane	ND		ug/l	50000	12000	200		
Methyl cyclohexane ND ug/l 2000 79. 200	Freon-113	ND		ug/l	500	140	200		
	Methyl cyclohexane	ND		ug/l	2000	79.	200		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	99	70-130	

L2448259

08/30/24

Project Name: EDSON STREET, AMSTERDAM

L2448259-02

MW-4

D

61 EDSON STREET, AMSTERDAM, NEW YORK

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/23/24 10:50

Lab Number:

Report Date:

Date Received: 08/23/24

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/27/24 15:08

Analyst: MAG

1,1-Dichloroethane ND ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1.2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 Tetrachloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane 39 ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 Itans-1,3-Dichloropropene ND ug/l 1.0 0.33 2	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 L2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane 39 ug/l 3.0 1.0 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofuloromethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 1,1-Trichloroethane ND ug/l 1.0 0.26 2 Bromodichloromethane ND ug/l 1.0 0.33 2 Bromodichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 1.0 0.33 2	Methylene chloride	ND		ug/l	5.0	1.4	2
Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane 39 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichloroflucomethane ND ug/l 5.0 1.4 2 1,1,1-Trichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 1.0 0.38 2 Bromodichloromethane ND ug/l 1.0 0.33 2 Bromodichloropropene ND ug/l 1.0 0.33 2 Isamondichloropropene ND ug/l 1.0 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.4</td><td>2</td></t<>	1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
1,2-Dichloropropane ND Ug/l 2,0 0,27 2 2 2 2 2 2 2 2 2	Chloroform	ND		ug/l	5.0	1.4	2
Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane 39 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 1.0 0.26 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 Benzene ND ug/l 1.0 0.33 2 Toluene ND ug/l 5.0 1.4 2	Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Tetrachloroethene 39 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2	Dibromochloromethane	ND		ug/l	1.0	0.30	2
Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 gromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 1.0 0.33 2 Bromoform ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2	1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Vin	Tetrachloroethene	39		ug/l	1.0	0.36	2
1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.33 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 5.0 1.4 2 Chloroe	Chlorobenzene	ND		ug/l	5.0	1.4	2
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane ND ug/l 1.0 0.38 2	1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chlorotethane ND ug/l 5.0 1.4 2 Chlorotethane ND ug/l 5.0 1.4 2 Trichloroethene ND ug/l 5.0 1.4 2	1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 1.0 0.35 2	Bromodichloromethane	ND		ug/l	1.0	0.38	2
Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 5.0 1.4 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 5.0 1.4 2	trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 5.0 1.4 2	cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Bromoform	ND		ug/l	4.0	1.3	2
Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Trichloroethene ND ug/l 5.0 1.4 2 Trichloroethene ND ug/l 5.0 1.4 2 Trichloroethene ND ug/l 1.0 0.34 2 Trichloroethene ND ug/l 5.0 1.4 2 Trichloroethene ND ug/l 5.0 1.4 2	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Benzene	ND		ug/l	1.0	0.32	2
Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Toluene	ND		ug/l	5.0	1.4	2
Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Ethylbenzene	ND		ug/l	5.0	1.4	2
Vinyl chloride 18 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Chloromethane	ND		ug/l	5.0	1.4	2
Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Bromomethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene ND ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Vinyl chloride	18		ug/l	2.0	0.14	2
trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 180 ug/l 1.0 0.35 2	Chloroethane	ND		ug/l	5.0	1.4	2
Trichloroethene 180 ug/l 1.0 0.35 2	1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
	trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
1,2-Dichlorobenzene ND ug/l 5.0 1.4 2	Trichloroethene	180		ug/l	1.0	0.35	2
	1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

Project Name: Lab Number: EDSON STREET, AMSTERDAM L2448259

Project Number: Report Date: Not Specified 08/30/24

SAMPLE RESULTS

Lab ID: L2448259-02 D Date Collected: 08/23/24 10:50

Date Received: Client ID: 08/23/24 MW-4 Not Specified

Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	0.33	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	7.3		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	119		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	106		70-130	

L2448259

08/30/24

Project Name: EDSON STREET, AMSTERDAM

L2448259-03

MW-1R

Project Number: Not Specified

SAMPLE RESULTS

61 EDSON STREET, AMSTERDAM, NEW YORK

Date Collected: 08/23/24 11:25

Lab Number:

Report Date:

Date Received: 08/23/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/27/24 15:32

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	1.8		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	27		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	0.75	J	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	180		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448259

Project Number: Not Specified Report Date: 08/30/24

SAMPLE RESULTS

Lab ID: L2448259-03 Date Collected: 08/23/24 11:25

Client ID: MW-1R Date Received: 08/23/24

Result

Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

i didilicici	Nosuit	Qualifici	Office			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	1.1	J	ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	107	70-130	

L2448259

08/30/24

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

SAMPLE RESULTS

08/23/24 09:35

Lab Number:

Report Date:

Lab ID: L2448259-04 Date Collected:

Client ID: Date Received: 08/23/24 MW-10 Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/27/24 15:56

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.63		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.78		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.84	J	ug/l	2.5	0.70	1
Trichloroethene	180		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448259

Project Number: Not Specified Report Date: 08/30/24

SAMPLE RESULTS

Lab ID: L2448259-04 Date Collected: 08/23/24 09:35

Client ID: MW-10 Date Received: 08/23/24

Result

Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

i arameter	Nosun	Qualifici	Office			Dilation Lactor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	7.7		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	109	70-130	

L2448259

08/30/24

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/23/24 08:50

Lab ID: L2448259-05

Client ID: MW-13

Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK

Date Received: 08/23/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/27/24 16:20

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.2		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: EDSON STREET, AMSTERDAM L2448259

Project Number: Report Date: Not Specified 08/30/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/23/24 08:50 L2448259-05

Date Received: Client ID: 08/23/24 MW-13

Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.4	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	123	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	103	70-130	

L2448259

08/30/24

Project Name: EDSON STREET, AMSTERDAM

L2448259-06

TRIP BLANK

Project Number: Not Specified

SAMPLE RESULTS

61 EDSON STREET, AMSTERDAM, NEW YORK

Date Collected: 08/23/24 00:00

Lab Number:

Report Date:

Date Received: 08/23/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/27/24 16:44

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: EDSON STREET, AMSTERDAM Lab Number: L2448259

Project Number: Not Specified Report Date: 08/30/24

SAMPLE RESULTS

Lab ID: L2448259-06 Date Collected: 08/23/24 00:00

Client ID: TRIP BLANK Date Received: 08/23/24 Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	124	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	113	70-130	

Project Number: Not Specified Report Date: 08/30/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/27/24 08:47

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	02-06 Batch:	WG1964830-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: Not Specified Report Date: 08/30/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/27/24 08:47

Analyst: PID

Parameter	Result	Qualifier Uni	ts	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	02-06	Batch:	WG1964830-5
1,4-Dichlorobenzene	ND	ug	ı/I	2.5	0.70
Methyl tert butyl ether	ND	ug	ı/l	2.5	0.17
p/m-Xylene	ND	ug	ı/I	2.5	0.70
o-Xylene	ND	ug	ı/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug	ı/l	2.5	0.70
Styrene	ND	uç	ı/l	2.5	0.70
Dichlorodifluoromethane	ND	uç	ı/l	5.0	1.0
Acetone	ND	uç	ı/I	5.0	1.5
Carbon disulfide	ND	uç	ı/l	5.0	1.0
2-Butanone	ND	uç	ı/l	5.0	1.9
4-Methyl-2-pentanone	ND	uç	ı/l	5.0	1.0
2-Hexanone	ND	uç	ı/l	5.0	1.0
Bromochloromethane	ND	ug	ı/I	2.5	0.70
1,2-Dibromoethane	ND	ug	ı/I	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug	ı/l	2.5	0.70
Isopropylbenzene	ND	ug	ı/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	uç	ı/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	uç	ı/l	2.5	0.70
Methyl Acetate	ND	ug	ı/l	2.0	0.23
Cyclohexane	ND	ug	ı/l	10	0.27
1,4-Dioxane	ND	ug	ı/l	250	61.
Freon-113	ND	ug	ı/l	2.5	0.70
Methyl cyclohexane	ND	ug	ı/l	10	0.40

Project Number: Not Specified Report Date: 08/30/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/27/24 08:47

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02-06 Batch: WG1964830-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 114 70-130 Toluene-d8 99 70-130 4-Bromofluorobenzene 94 70-130 Dibromofluoromethane 102 70-130

Project Number: Not Specified Report Date: 08/30/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/28/24 07:58

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	01 Batch:	WG1965237-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: Not Specified Report Date: 08/30/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/28/24 07:58

Analyst: PID

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by GC/MS - Westl	oorough Lab	for samp	e(s):	01	Batch:	WG1965237-5
1,4-Dichlorobenzene	ND		ug/l		2.5	0.70
Methyl tert butyl ether	ND		ug/l		2.5	0.17
p/m-Xylene	ND		ug/l		2.5	0.70
o-Xylene	ND		ug/l		2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l		2.5	0.70
Styrene	ND		ug/l		2.5	0.70
Dichlorodifluoromethane	ND		ug/l		5.0	1.0
Acetone	ND		ug/l		5.0	1.5
Carbon disulfide	ND		ug/l		5.0	1.0
2-Butanone	ND		ug/l		5.0	1.9
4-Methyl-2-pentanone	ND		ug/l		5.0	1.0
2-Hexanone	ND		ug/l		5.0	1.0
Bromochloromethane	ND		ug/l		2.5	0.70
1,2-Dibromoethane	ND		ug/l		2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l		2.5	0.70
Isopropylbenzene	ND		ug/l		2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l		2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l		2.5	0.70
Methyl Acetate	ND		ug/l		2.0	0.23
Cyclohexane	ND		ug/l		10	0.27
1,4-Dioxane	ND		ug/l		250	61.
Freon-113	ND		ug/l		2.5	0.70
Methyl cyclohexane	ND		ug/l		10	0.40

Project Number: Not Specified Report Date: 08/30/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/28/24 07:58

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1965237-5

		Acceptance			
Surrogate	%Recovery 0	Qualifier Criteria			
1,2-Dichloroethane-d4	102	70-130			
Toluene-d8	106	70-130			
4-Bromofluorobenzene	105	70-130			
Dibromofluoromethane	95	70-130			

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448259

Report Date: 08/30/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	02-06 Batch: '	WG1964830-3 WG1964830-4	4	
Methylene chloride	96		100	70-130	4	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	100		98	63-132	2	20
1,2-Dichloropropane	110		110	70-130	0	20
Dibromochloromethane	91		98	63-130	7	20
1,1,2-Trichloroethane	96		100	70-130	4	20
Tetrachloroethene	99		100	70-130	1	20
Chlorobenzene	98		100	75-130	2	20
Trichlorofluoromethane	110		97	62-150	13	20
1,2-Dichloroethane	120		120	70-130	0	20
1,1,1-Trichloroethane	98		100	67-130	2	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	99		110	70-130	11	20
cis-1,3-Dichloropropene	96		100	70-130	4	20
Bromoform	82		98	54-136	18	20
1,1,2,2-Tetrachloroethane	94		110	67-130	16	20
Benzene	100		110	70-130	10	20
Toluene	100		100	70-130	0	20
Ethylbenzene	100		100	70-130	0	20
Chloromethane	110		100	64-130	10	20
Bromomethane	64		66	39-139	3	20
Vinyl chloride	120		100	55-140	18	20

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448259

Report Date: 08/30/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	02-06 Batch: W0	G1964830-3 WG1964830-4			
Chloroethane	120		130	55-138	8		20
1,1-Dichloroethene	100		94	61-145	6		20
trans-1,2-Dichloroethene	100		100	70-130	0		20
Trichloroethene	97		96	70-130	1		20
1,2-Dichlorobenzene	94		100	70-130	6		20
1,3-Dichlorobenzene	94		100	70-130	6		20
1,4-Dichlorobenzene	95		100	70-130	5		20
Methyl tert butyl ether	90		100	63-130	11		20
p/m-Xylene	100		105	70-130	5		20
o-Xylene	100		100	70-130	0		20
cis-1,2-Dichloroethene	99		100	70-130	1		20
Styrene	100		100	70-130	0		20
Dichlorodifluoromethane	90		80	36-147	12		20
Acetone	94		100	58-148	6		20
Carbon disulfide	110		100	51-130	10		20
2-Butanone	120		130	63-138	8		20
4-Methyl-2-pentanone	96		100	59-130	4		20
2-Hexanone	89		120	57-130	30	Q	20
Bromochloromethane	96		100	70-130	4		20
1,2-Dibromoethane	89		96	70-130	8		20
1,2-Dibromo-3-chloropropane	74		86	41-144	15		20
Isopropylbenzene	93		98	70-130	5		20
1,2,3-Trichlorobenzene	81		91	70-130	12		20

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number:

L2448259

Report Date:

08/30/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated		02-06 Batch:	WG1964830-3	WG1964830-4				
1,2,4-Trichlorobenzene	84		97		70-130	14		20	
Methyl Acetate	97		120		70-130	21	Q	20	
Cyclohexane	120		110		70-130	9		20	
1,4-Dioxane	78		92		56-162	16		20	
Freon-113	99		91		70-130	8		20	
Methyl cyclohexane	100		90		70-130	11		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	117	109	70-130
Toluene-d8	101	98	70-130
4-Bromofluorobenzene	91	91	70-130
Dibromofluoromethane	102	96	70-130

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448259

Report Date: 08/30/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westb	orough Lab Associated	sample(s): 0	1 Batch: WG	1965237-3	WG1965237-4				
Methylene chloride	91		87		70-130	4		20	
1,1-Dichloroethane	97		91		70-130	6		20	
Chloroform	92		87		70-130	6		20	
Carbon tetrachloride	70		67		63-132	4		20	
1,2-Dichloropropane	91		88		70-130	3		20	
Dibromochloromethane	85		82		63-130	4		20	
1,1,2-Trichloroethane	100		98		70-130	2		20	
Tetrachloroethene	84		76		70-130	10		20	
Chlorobenzene	90		85		75-130	6		20	
Trichlorofluoromethane	95		90		62-150	5		20	
1,2-Dichloroethane	86		85		70-130	1		20	
1,1,1-Trichloroethane	72		69		67-130	4		20	
Bromodichloromethane	78		76		67-130	3		20	
trans-1,3-Dichloropropene	88		85		70-130	3		20	
cis-1,3-Dichloropropene	81		78		70-130	4		20	
Bromoform	86		66		54-136	26	Q	20	
1,1,2,2-Tetrachloroethane	110		100		67-130	10		20	
Benzene	90		87		70-130	3		20	
Toluene	96		90		70-130	6		20	
Ethylbenzene	92		89		70-130	3		20	
Chloromethane	87		80		64-130	8		20	
Bromomethane	96		92		39-139	4		20	
Vinyl chloride	100		96		55-140	4		20	

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448259

Report Date: 08/30/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	.ab Associated	sample(s): 01	Batch: WG1	965237-3	WG1965237-4			
Chloroethane	100		99		55-138	1		20
1,1-Dichloroethene	85		82		61-145	4		20
trans-1,2-Dichloroethene	86		82		70-130	5		20
Trichloroethene	80		76		70-130	5		20
1,2-Dichlorobenzene	89		84		70-130	6		20
1,3-Dichlorobenzene	90		85		70-130	6		20
1,4-Dichlorobenzene	91		85		70-130	7		20
Methyl tert butyl ether	73		72		63-130	1		20
p/m-Xylene	90		80		70-130	12		20
o-Xylene	90		80		70-130	12		20
cis-1,2-Dichloroethene	86		84		70-130	2		20
Styrene	95		85		70-130	11		20
Dichlorodifluoromethane	87		80		36-147	8		20
Acetone	110		99		58-148	11		20
Carbon disulfide	90		84		51-130	7		20
2-Butanone	79		94		63-138	17		20
4-Methyl-2-pentanone	90		90		59-130	0		20
2-Hexanone	94		83		57-130	12		20
Bromochloromethane	81		79		70-130	3		20
1,2-Dibromoethane	88		84		70-130	5		20
1,2-Dibromo-3-chloropropane	91		52		41-144	55	Q	20
Isopropylbenzene	92		87		70-130	6		20
1,2,3-Trichlorobenzene	83		77		70-130	8		20

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number:

L2448259

Report Date:

08/30/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1965237-3	WG1965237-4				
1,2,4-Trichlorobenzene	82		76		70-130	8		20	
Methyl Acetate	94		92		70-130	2		20	
Cyclohexane	80		75		70-130	6		20	
1,4-Dioxane	88		82		56-162	7		20	
Freon-113	73		71		70-130	3		20	
Methyl cyclohexane	84		76		70-130	10		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	105	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	101	97	70-130
Dibromofluoromethane	97	98	70-130

METALS

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

SAMPLE RESULTS

Lab ID: L2448259-01 Date Collected: 08/23/24 10:15

Client ID: MW-4R Date Received: 08/23/24
Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	nsfield Lab										
Chromium, Total	0.0078	J	mg/l	0.0100	0.0021	1	08/29/24 09:3	6 08/29/24 20:23	EPA 3005A	19,200.7	DHL

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

SAMPLE RESULTS

Lab ID: L2448259-02 Date Collected: 08/23/24 10:50

Client ID: MW-4 Date Received: 08/23/24
Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Chromium, Total	ND		mg/l	0.0100	0.0021	1	08/29/24 09:3	6 08/29/24 20:29	EPA 3005A	19,200.7	DHL

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

SAMPLE RESULTS

Lab ID: L2448259-03 Date Collected: 08/23/24 11:25

Client ID: MW-1R Date Received: 08/23/24
Sample Location: 61 EDSON STREET, AMSTERDAM, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Chromium, Total	0.229		mg/l	0.0100	0.0021	1	08/29/24 09:3	6 08/29/24 20:3	5 EPA 3005A	19,200.7	DHL

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number:

L2448259

Report Date:

08/30/24

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-03 E	Batch: Wo	G19653	59-1				
Chromium, Total	ND	mg/l	0.0100	0.0021	1	08/29/24 09:36	08/29/24 14:46	19,200.7	DHL

Prep Information

Digestion Method: EPA 3005A

EDSON STREET, AMSTERDAM

Lab Number:

L2448259

Project Number: Not Specified

Project Name:

Report Date:

08/30/24

Parameter	LCS %Recovery Qu	LCSD ual %Recovery	%Rec Qual Lin	•	Qual	RPD Limits		
Total Metals - Mansfield Lab Associated sample(s): 01-03 Batch: WG1965359-2								
Chromium, Total	107	-	85-1	15 -				

Matrix Spike Analysis Batch Quality Control

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number:

L2448259

Report Date:

08/30/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recov Qual Limit	•	RPD _{ual} Limits
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01-03	QC Ba	tch ID: WG196	5359-3	QC Sam	ple: L2448423-0	01 Client ID:	MS Sample	
Chromium, Total	ND	0.2	0.218	109		-	-	75-125	5 -	20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01-03	QC Ba	tch ID: WG196	5359-7	QC Sam	nple: L2448424-0	02 Client ID:	MS Sample	
Chromium, Total	ND	0.2	0.206	103		-	-	75-125	5 -	20

Project Name: EDSON STREET, AMSTERDAM

Project Number: Not Specified

Lab Number: L2448259 **Report Date:** 08/30/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2448259-01A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-01B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-01C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Υ	Absent		CR-UI(180)
L2448259-02A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-02B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-02C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Υ	Absent		CR-UI(180)
L2448259-03A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-03B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-03C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-03D	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Υ	Absent		CR-UI(180)
L2448259-04A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-04B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-04C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-05A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-05B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-05C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-06A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2448259-06B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

GLOSSARY

Acronyms

EDL

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix free from the analytes of interest spiked with year

 - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert but

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:EDSON STREET, AMSTERDAMLab Number:L2448259Project Number:Not SpecifiedReport Date:08/30/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 21

Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

L2448259 30AUG24 AMBIENT – NY Service Centers Page 1 **NEW YORK** Date Rec'd. Manwah, NJ 07430; 35 Whitney Rd, Suite 5 of @ CHAIN OF DIPHA Altrany, NY 12265: 14 Walker Way In Lab Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 CUSTODY Deliverables Billing Information Manafield, MA 02048 Westborough, MA 01581 Project Information 320 Forbes Blvd 5 Wallup Dr. ASP-B Same as Client Info ASP-A TEL: 508-822-9300 Edson Street, Amsterdam TEL: 508-898-9220 Project Name: FAX: 508-898-8183 FAX: 508-822-3288 | | EQuIS (4 File) EQuIS (1 File) PO# 61 Edson Street, Amsterdam, New York Project Location: Other Project # Cherd Information Disposal Site Information Regulatory Requirement (Use Project name as Project #) Ambient Environmental Client: NY Part 375 NY TOGS Please identify below location of 828 Washington Ave Project Manager. Address: applicable disposal facilities. NY CP-51 AWQ Standards ALPHAQuote #: Albany, NY 12203 NY Restricted Use Other Disposal Facility: (315) 263-3388 Turm-Around Time Phone: | NY NJ NY Unrestricted Use Standard | Due Date: Fax Other NYC Sewer Discharge # of Days: Rush (only if pre approved) Ifblasting@james-em.com Email: Sample Filtration ANALYSIS These samples have been previously analyzed by Alpha Done Other project specific requirements/comments: Lab to do Chromium Preservation Lab to do Please specify Metals or TAL NYTCL (Please Specify below) otal Collection Sampler's Sample ALPHA Leb ID Sample ID Sample Specific Comments Initials Matrix (Latr Use Only) Date Time CK X X 8/23/24 015 40759-01 MW-4R Cu X X 1020 W MW-4 172 4 1175 CK X -03 MW-1R 3 CK X W 0935 MW-10 -04 3 CK X D850 W MW-13 - 00 W -06 Trip Blank Container Code Preservative Code: Westboro: Certification No. MA935 Container Type Please print clearly, legibly P = Plastic A = None and completely. Samples can Mansfield: Certification No. MA015 B = HOI A = Amber Glass not be logged in and V = Viai C = HNO Preservative turnsround time clock will not G = Glass D = H2SO. B = Bacteria Cup start until any ambiguities are

Date/Time

1135

PACE \$ 23 24

Received By:

nece

Date/Time

resolved, BY EXECUTING

HAS READ AND AGREES

TERMS & CONDITIONS.

TO BE BOUND BY ALPHA'S

2000 THIS COO, THE CLIENT

Page	44	of	44

E = NaOH

F = MeOH

O = Other

G = NaHSO,

H = Na₃S₂O₃

K/E = Zn Ac/NaOH

Form No. 01-25 (rev. 30-Sept-2013)

C = Cube

D = Other

E = Encore

D = BOD Bottle

Relinquished By: