Appendix I

Operation, Maintenance and Monitoring Plan

Imagine the result

Operation, Maintenance and Monitoring Plan

Dewey Loeffel Landfill Superfund Site Nassau, New York

February 13, 2013

Operation, Maintenance and Monitoring Plan

Dewey Loeffel Landfill Superfund Site Nassau, New York

Prepared by: ARCADIS, U.S., Inc. 6723 Towpath Road Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.446.5807

Our Ref.: B0031174

Date: February 13, 2013

Table of Contents

1.	Introduction			1
	1.1	Location and Description		
	1.2	History		
2.	Site Fa	cilities		5
	2.1	Site Ac	ccess	5
		2.1.1	Monitoring	5
		2.1.2	Routine Maintenance	6
	2.2	Site Se	ecurity	6
		2.2.1	Monitoring	7
		2.2.2	Routine Maintenance	7
	2.3	Site St	ructures and Utilities	7
		2.3.1	Monitoring	7
		2.3.2	Routine Maintenance	8
3.	Ground	dwater	Extraction and Landfill Leachate Collection Systems	9
	3.1	Monito	ring of Groundwater Extraction and Landfill Leachate Collection Sy	/stems 10
	3.2	Mainte Systen	nance of Groundwater Extraction Wells and Landfill Leachate Coll	ection 10
4.	Treatm	ent Sys	stem	12
5.	Start-U	р		19
6.	Norma	nal System Operations 2		
	6.1	1 Normal Start-Up Procedure		21
	6.2	Treatment System Process Monitoring		22
	6.3	Treatment System Routine Maintenance		22
		6.3.1	Equalization Tank Routine Maintenance	22
		6.3.2	Clarifier Routine Maintenance	22
		6.3.3	Filter Bag Change-Out	22
		6.3.4	Air Stripper Routine Maintenance	22
		6.3.5	Air Stripper Cleaning	23

Table of Contents

9.	Reporti	ng			30
8.	Samplii	ng an	d Analy	ysis	29
7.	Control	Syste	ems		27
	6.4	Waste	e Manag	gement	26
		6.3.7	Vapo	or-Phase GAC and PPZ Change-Outs	26
		6.3.6	Liqui	d-Phase GAC System Change-Out	26
		6	.3.5.4	Air Stripper Acid Washing Procedures	25
		6	.3.5.3	Equipment and Materials Required for Air Stripper Acid Washing	24
		6	.3.5.2	Pressure Washing Procedure	23
		6	.3.5.1	Equipment Required	23

Table

Table 1 Equipment Schedule

Figures

Figure 1	Site Location Map

Figure 2 Site Plan

Figure 3 Process Flow Diagram

Attachments

Attachment A	Log Sheets and Checklists
Attachment B	Effluent Limitations and Monitoring Requirements
Attachment C	Piping and Instrumentation Diagrams

1. Introduction

This Operation, Maintenance and Monitoring (OM&M) Plan has been prepared for the proposed treatment system at the Dewey Loeffel Landfill Superfund Site located in the Town of Nassau, Rensselaer County, New York (site). The work described herein is being completed pursuant to the Administrative Settlement Agreement and Order on Consent for a Removal Action (CERCLA Index No. 02-2012-2005) (Consent Order) executed by the United States Environmental Protection Agency (USEPA), General Electric Company (GE), and SI Group, Inc. (SI Group). (GE and SI Group are referred to herein as Respondents.)

This OM&M Plan has been prepared to provide the following:

- Procedures for routine OM&M of the groundwater extraction, landfill leachate collection and treatment systems, including, but not limited to, inspection and maintenance checklists, and schedules for inspection and maintenance activities;
- Plans for general maintenance of gravel drives, the fence surrounding the landfill, extraction
 wells and treatment building area, structures including the treatment building and any other
 enclosures which house parts of the groundwater extraction and landfill leachate collection
 systems, and snow removal and grass cutting as necessary to access all components of the
 groundwater extraction, landfill leachate collection and treatment systems;
- A plan for providing security measures to be taken to keep unauthorized personnel from entering restricted work areas;
- A schedule for operation of the groundwater extraction, landfill leachate collection, and treatment systems; and
- Plans and a schedule for monitoring of the treatment system in accordance with the revised Quality Assurance Project Plan (QAPP), which will be submitted to USEPA after the Design Report/Implementation Plan (DR/IP), as well as a schedule for submission of the results to USEPA.

Pursuant to Paragraph 63 of the Consent Order, within 30 days of the conclusion of the shakedown period discussed in the Start-Up Plan provided as Appendix H of the DR/IP, Respondents will submit to USEPA a Construction Completion Report. This report will include a final OM&M Plan for the groundwater extraction, landfill leachate collection, and treatment systems.

1.1 Location and Description

The Dewey Loeffel Landfill (landfill) is located along the south side at 350 Mead Road between Nassau-Averill Park Road and Central Nassau Road. A map showing the location of the landfill and surrounding area is presented on Figure 1. Key features are presented on Figure 2.

The capped area of the landfill is roughly triangular in shape and situated in a low-lying area between two wooded hills. The landfill is bound to the north by Mead Road, and to the south, west and east by undeveloped forested land. The rural area surrounding the landfill is sparsely populated and contains few residential properties and a bowhunter's club lodge.

Topography in the area generally slopes downward from east to west. Surface water at the landfill mostly drains to the west toward the Valatie Kill via Tributary T11A. The Valatie Kill flows in a southwesterly direction to Nassau Lake, located approximately three miles downstream. Surface water from a portion of the landfill flows to the south into a small unnamed tributary which discharges into Valley Stream and ultimately Nassau Lake.

The hydraulic gradient of groundwater in overburden soils in the vicinity of the landfill is generally to the west and/or southwest. The hydraulic gradient of groundwater in the bedrock is similar. However, based on the distribution of volatile organic compounds (VOCs) in a groundwater contaminant plume emanating from the landfill to the south, bedrock groundwater flows primarily to the south due to the influence of fractures within the bedrock.

1.2 History

As described in the Consent Order, from approximately 1952 to 1968, the landfill was owned and operated by several companies including the Loeffel Waste Oil and Removal Service Company (Loeffel Companies) as a waste disposal facility. During this time, the landfill consisted of two waste lagoons located in the western and central portions of the landfill, a 6-foot deep oil pit in the east central portion of the landfill, four 30,000 gallon aboveground storage tanks, and a drum disposal area located in the southeastern portion of the landfill.

Landfill disposal operations reportedly ceased in 1968 by order of the State of New York. Between 1970 and 1975, remedial actions undertaken by the Loeffel Companies included covering and grading the drum disposal area, oil pit and lagoons, and constructing a system of drainage ditches around the landfill. From 1974 to 1980, the Loeffel Companies reportedly also operated a waste oil transfer station utilizing the four 30,000 gallon aboveground storage tanks.

On September 23, 1980, GE entered into an agreement with the New York State Department of Environmental Conservation (NYSDEC) which required GE to perform field investigations, submit an engineering report which discussed the collected data, identify remedial alternatives, and recommend a remedial alternative. A remedy was subsequently selected by NYSDEC and involved the installation of soil-bentonite cutoff wall around the landfill, an overlying clay cap, and a landfill leachate collection system below the cap within the cutoff wall. The design of the remedy was performed by GE and approved by NYSDEC. The remedy was subsequently implemented by NYSDEC using funding provided by GE, Schenectady Chemicals, Inc. (now SI Group), and Bendix Corporation (now Honeywell International, Inc.). Beginning in 1983, NYSDEC and/or GE performed a variety of response actions at the site, some of which were performed in accordance with Records of Decision (RODs) issued by NYSDEC in January 2001 and January 2002. The response actions included, but were not limited to, the following:

- Installation and operation of a bedrock groundwater recovery well system involving three extraction wells located to the south of the landfill;
- Transportation of landfill leachate and groundwater for off-site treatment;
- Installation, operation, maintenance and monitoring of point-of-use treatment systems for five residential wells (located on four properties) to remove VOCs;
- Routine VOC monitoring of other residential wells located near the landfill; and
- Routine monitoring of many groundwater monitoring wells located outside the landfill's perimeter fence.

The current groundwater extraction system designed and constructed by NYSDEC is located along the approximate centerline of the VOC plume to the south of the landfill and includes three bedrock extraction wells (designated EW-1, EW-2 and EW-3, see Figure 2). Beginning in late March 2008 and through 2010, NYSDEC extracted groundwater from these three extraction wells on a seasonal basis, operating during the spring, summer, and fall months. Along with leachate from the landfill, extracted groundwater was transported for off-site treatment and disposal. NYSDEC transported landfill leachate for off-site treatment and disposal each year since 1991 with the exception of 1994. NYSDEC continued operation of the landfill leachate collection system through October 2011. Operation of the groundwater extraction system by NYSDEC did not resume after shutdown in the fall of 2010 until July 2011.

At the request of NYSDEC, USEPA proposed the site for inclusion on the National Priorities List (NPL) on March 4, 2010. The site was subsequently added to the NPL on March 10, 2011.

USEPA subsequently took over operation of the landfill leachate collection system and the groundwater extraction system to the south of the landfill on October 31, 2011. USEPA winterized the system, allowing groundwater extraction to continue during the winter months.

Pursuant to the Consent Order, GE and SI Group assumed responsibility from USEPA for continued operation and maintenance of the on-site leachate collection system and the off-site groundwater extraction system. The transition from USEPA to the Respondents occurred on August 1, 2012, and the first transportation of leachate and extracted groundwater by the Respondents occurred on August 2, 2012. The leachate and extracted groundwater will continue to be transported for off-site treatment and disposal until such time as an off-site treatment system is designed, constructed and approved for operation. Pursuant to the Consent Order, GE and SI Group will design and construct the treatment system to treat landfill leachate and extracted groundwater. Upon USEPA approval that the treatment system discharge meets the effluent discharge limits set under the Consent Order, routine transportation of leachate and extracted groundwater for off-site treatment will cease.

2. Site Facilities

Site facilities include the following:

- Gravel drive from Mead Road to the treatment building;
- Dirt and vegetated trails to the extraction wells, with gravel in select areas;
- Fencing with access gates around the landfill, extraction wells, and treatment building;
- Well vaults; and
- Electrical/control panels at the extraction wells and leachate storage tank at the landfill.

The monitoring and maintenance for the support facilities are discussed below. These facilities are grouped in categories by site access (e.g., gravel drive, dirt trails), site security (e.g., fencing), and site structures (e.g., treatment building) and utilities.

2.1 Site Access

A gravel drive, located to the west of the landfill, provides vehicular access to the treatment building from the south side of Mead Road. Connected to that gravel drive is a dirt trail that follows outside the western and southern landfill fence line. Connected to that dirt trail are a network of vegetated/dirt trails that provide access to the extraction wells located south of the landfill. As described below, the gravel drive and dirt trails will be monitored and maintained to allow ongoing site operations.

2.1.1 Monitoring

The gravel drive to the treatment building and vegetated/dirt trails to the extraction wells will be monitored on a monthly basis using the Preventative Maintenance Checklist in Attachment A. Monitoring of the gravel drive and vegetated/dirt trails will be performed by walking the entire length from Mead Road to each of the extraction wells. The inspection will focus on looking for evidence of washout, settling, erosion and obstructions (e.g., debris, snow, downed trees/branches) that have the potential to prohibit safe vehicular access or would limit access to the extraction wells by personnel on foot.

2.1.2 Routine Maintenance

Maintenance of the gravel drive to the treatment building and vegetated/dirt trails to the extraction wells will be performed on an as-needed basis based on the results of the monitoring activities described above within a time frame sufficient to allow full-time operation of the treatment system. These maintenance activities may include the following:

- Placement and compaction of additional gravel;
- Minor trimming of vegetation along and within the gravel drive and/or vegetated/dirt trails;
- Clearing of downed trees/branches from the trails;
- Snow removal to the extent necessary to safely access the extractions wells, leachate collection tank, and treatment building; and
- Grass cutting to the extent necessary to maintain access to the extraction wells, leachate collection tank, and treatment building.

Snow removal will likely be completed by a local snow removal subcontractor to clear the gravel drive to the treatment building. Snow removal around the extraction wells will be completed by hand or by a mechanical means (e.g., snow blower, vehicle with plow) on an as-needed basis. Maintenance will be tracked on the log sheet in Attachment A.

2.2 Site Security

As shown on Figure 2, the landfill is surrounded by an 8-foot-high security fence topped with barbed wire. Vehicular and/or pedestrian access to the landfill is limited by three locked gates: two located along the northern fence line which provides access from Mead Road, and one located along the fence line at the southern tip of the landfill which exits onto the dirt/vegetated trail that follows outside the fence along the southwest edge of the landfill. The gates that provide access to the landfill are equipped with locking mechanisms (chains with padlocks).

Each of the three existing extraction wells (EW-1, EW-2 and EW-3) is surrounded by an 8-foot-high security fence topped with barbed wire, and the five new extraction wells (EW-4 through EW-8) will be similarly secured. Access to each well is through a double-swing gate with locking mechanisms (chains with padlocks).

The treatment building is also surrounded by an 8-foot-high security fence topped with barbed wire. Vehicular and/or pedestrian access to the treatment building is limited by double-swing gates with locking mechanisms (chains with padlocks).

During times when OM&M activities are not being performed, the gates that provide access to the landfill, extraction wells, and treatment building will remain locked. Only authorized personnel representing USEPA and the Respondents will be issued keys that allow access to the site.

2.2.1 Monitoring

To confirm ongoing security at the site, fences, gates and locking mechanisms will be monitored on a monthly basis using the Preventative Maintenance Checklist in Attachment A. Monitoring of fencing around the landfill, extraction wells and treatment building will be completed by walking the entire perimeter of the fence to visually observe the overall integrity of the fencing and to determine if maintenance of the fencing is necessary. In addition, the gate structures will be observed for proper operation and security of the locking mechanisms.

2.2.2 Routine Maintenance

Maintenance of the fencing and locking mechanisms will be performed on an as needed basis based on the results of the monitoring described above. Fencing in the area requiring maintenance will be repaired to a similar condition as the surrounding existing fencing. Inoperable or damaged locks and chains will be replaced as needed. Maintenance will be tracked on the log sheet in Attachment A.

2.3 Site Structures and Utilities

Several site structures and utilities are present at the site including the following:

- Well vaults;
- Treatment building; and
- Electrical/control panels at the extraction wells.

2.3.1 Monitoring

To assess integrity and functionality, the site structures and utilities will be monitored as necessary for full-time operation of treatment system and on a monthly basis using the Preventative Maintenance

Checklist in Attachment A, which addresses the structures and utilities individually. This inspection will focus on observing for obvious signs of the following:

- Damaged and/or deteriorating construction materials;
- Vandalism or tampering;
- Significant leaks in the roofing/wall systems;
- Rodent or pest infestation;
- Overall security (e.g., inoperable doors, locks);
- Faded or damaged signage; and
- If applicable, evidence of leaking, damaged or corroded piping and valves.

Additionally, electrical components will be inspected for evidence of deterioration or corrosion of panels, conduits, wires and connections.

2.3.2 Routine Maintenance

Maintenance of the site facilities and utilities will be performed on an as needed basis based on the results of the monitoring described above within a time frame sufficient to allow full-time operation of treatment system. Simple repairs (e.g., patching holes, replacing signs) will be performed by operating personnel. More significant or specialized repairs to equipment (e.g., electrical) will be performed by qualified subcontractor personnel. Maintenance will be tracked on the log sheet in Attachment A.

3. Groundwater Extraction and Landfill Leachate Collection Systems

The groundwater extraction system consists of the following components that will be maintained within a time frame sufficient to allow full-time operation:

- Three existing bedrock extraction wells (EW-1, EW-2 and EW-3);
- Five new bedrock extraction wells (EW-4 through EW-8);
- Extraction well pumps; and
- Subsurface piping at well heads and associated fittings, valves and meters.

The existing extraction wells were installed within the approximate centerline of the VOC plume at distances of approximately 400 feet (EW-3), 800 feet (EW-2) and 1,200 feet (EW-1) south of the landfill. The flows from extraction well EW-2 averages approximately 2 gallons per minute (gpm) while the flow from extraction wells EW-1 and EW-3 average about 1 gpm. Each extraction well is equipped with well pump, power supply, and pump control and level control panels, which together supply power and control to groundwater pump operations. Pump operation is initiated and stopped when the pump on and off level set points are reached. Each well pump discharge line is connected via a pitless adaptor to the existing force main running towards the treatment building. The five new extraction wells are located closer to the landfill and similarly configured.

The existing leachate collection system consists of a network of three underground pipes beneath the western end of the landfill that gravity drain to an approximately 8,000-gallon underground storage tank (UST) in that same area. Landfill leachate will be pumped from the leachate collection tank to a 550 gallon leachate tank in the treatment building.

Equipment

Extraction Well Pumps (P-101 to P-108)

Quantity:
Туре:
Manufacturer:
Model:
Capacity:
Electrical:

...

8 Submersible well pump Grundfos or equivalent 10Redi-Flo3-260 or equivalent 5 gpm at 340 feet total dynamic head (TDH) 1 horsepower (hp), 230 volt, single phase

Leachate Collection Tank Pump (P-001) (located at the landfill)

Quantity:	1
Туре:	Submersible well pump
Manufacturer:	Grundfos or equivalent
Model:	XGOWS0712BF or equivalent
Capacity:	20 gpm at 35 feet TDH
Electrical:	1/2 hp, 230 volt, single phase

3.1 Monitoring of Groundwater Extraction and Landfill Leachate Collection Systems

Monitoring of the groundwater extraction and landfill leachate collection systems will be documented on a monthly basis using the Preventative Maintenance Checklist in Attachment A. Visible piping, valves and couplings will be inspected for evidence of corrosion, flaking and leakage. Visible wiring will be visually observed for cracking of the wire insulation and for evidence of corrosion. Additionally, operating parameters (e.g., extraction well pumping rates, flow totalizer readings) will be recorded.

Samples will be collected from the extraction wells and leachate collection tank. These samples will initially be analyzed for select field parameters (dissolved oxygen [DO] and pH), VOCs, select semi-volatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs) at the frequencies given in Table 1 of the Performance Monitoring Plan (see Appendix J of the DR/IP). The analytical parameters and frequencies of these samples may be adjusted in the future based on operational experience. Extraction well samples will be collected from the sample tap located in the vault near each well. Similarly, samples of leachate will be collected from the vault near the leachate collection tank at the landfill.

The mass of VOCs and select SVOCs removed from each extraction well and the landfill leachate will be calculated each month. Mass removal of PCBs will not be tracked given the very low, sporadic detections. These calculations will use the monthly recorded volume of leachate and extracted groundwater pumped to the treatment system along with available analytical data. All detections (including those flagged as estimated [i.e., below the practical quantitation limit but above the method detection limit]) will be employed in these calculations; for the purpose of these mass removal calculations, non-detects will be represented by the reporting limit, one-half of the reporting limit and/or zero.

3.2 Maintenance of Groundwater Extraction Wells and Landfill Leachate Collection Systems

Routine maintenance of the groundwater extraction and landfill leachate collection systems will be performed on an as needed basis based on the results of the monitoring described above. Simple repairs (e.g., piping, replacing gauges) will be performed by operating personnel. More significant or

specialized repairs to equipment (e.g., electrical) will be performed by qualified subcontractor personnel. Maintenance of the groundwater extraction wells and landfill leachate collection system may also include the pumps in each of the extraction wells and landfill leachate collection tank. Maintenance will be tracked on the log sheet in Attachment A.

4. Treatment System

The design of the treatment system is based on an average flow rate of 15 gpm and a maximum flow rate of 25 gpm. The treatment system consists of the following major components:

- One equalization tank for leachate;
- One equalization tank for groundwater and leachate combined;
- One aerobic fixed-film bioreactor primarily to destroy benzene, toluene, ethylbenzene, and xylenes (BTEX), vinyl chloride, and acetone;
- One clarifier settling tank to remove residual solids/biological carryover from the bioreactor;
- One bag filtration system to remove remaining solids carryover from the clarifier;
- One induced draft low-profile air stripper system to address remaining or residual strippable VOCs;
- Two liquid-phase granular activated carbon (GAC) adsorption units installed in series to address SVOCs, residual adsorbable VOCs, and low concentrations of PCBs;
- Three vapor-phase GAC vessels to address primarily VOCs (with the exception of vinyl chloride and methylene chloride) from the air stripper exhaust stream;
- Two vapor-phase potassium permanganate impregnated zeolite (PPZ) vessels for the destruction of vinyl chloride and methylene chloride from the air stripper exhaust prior to discharge;
- One backwash water supply tank required for backwashing GAC and/or air stripper cleaning, etc.; and
- A programmable logic controller (PLC)-based control system.

As shown on Figure 3, extracted groundwater will be pumped from the extraction wells to an equalization tank located in the treatment building. Landfill leachate will be first pumped from the leachate collection tank at the landfill to a leachate equalization tank in the treatment building, and will then be pumped into the main equalization tank. Groundwater and landfill leachate will then be pumped from the main equalization tank to an aerobic fixed-film bioreactor tank. The bioreactor will

Operation, Maintenance and Monitoring Dewey Loeffel Landfill Superfund Site

consist of a submerged fixed-film growth media within a reactor tank, incorporating aeration and biological treatment. The bioreactor system will be designed primarily to destroy BTEX, vinyl chloride, and acetone, and is also expected to address other chlorinated VOCs and SVOCs to some extent. Inside of the bioreactor, biomass will attach to the growth media, with aerators and chemical feed systems to provide sufficient oxygen and nutrients for sustaining adequate biomass within the reactor. In the course of the biological process, biomass will slough off the growth media and exit the reactor tank. Effluent from the reactor tank, which will include this biomass and other solids that carryover from the bioreactor, will flow to a clarifier. Settled solids collected at the bottom of the clarifier will be periodically withdrawn for dewatering and off-site transportation and disposal.

The clarifier settling tank will overflow to a pump station tank, which will be equipped with transfer pumps leading to subsequent treatment processes and a recycle pump. A recycle stream will be directed back to the main equalization tank in order to maintain a consistent flow rate through the bioreactor/clarifier as well as provide additional bio-treatment to enhance removal of contaminants. Water will then be pumped through a bag filtration system (two bag filter units installed in parallel) for removal of suspended solids prior to being directed to an induced draft low-profile air stripper to address remaining or residual strippable VOCs. Vapor exhaust from the air stripper and the vented air from the bioreactor will pass through three vapor-phase GAC units for adsorption of VOCs followed by two vessels containing PPZ for destruction of methylene chloride and vinyl chloride in the vapor stream. Treated effluent from the air stripper will be either recycled back to the equalization tank based on tank level to maintain a continuous flow rate across the bioreactor, clarifier and air stripper, or directed through two liquid-phase GAC units in series to address SVOCs, residual adsorbable VOCs, and, if present, low concentrations of PCBs. Treated effluent will then flow to a backwash water storage tank. In order to maintain an adequate supply of treated water for backwashing purposes, all effluent will be directed through this tank. Treated effluent will be pumped for discharge to the Valatie Kill. USEPA provided Respondents with revised discharge limitations and monitoring requirements from NYSDEC on February 6, 2013, which are provided in Attachment B.

Equipment

Leachate Tank (T-100) (located within the treatment building)

Quantity: Type: Manufacturer: Model: Capacity: Material of Construction: 1 Flat bottom vertical tank with domed top Snyder Industries or equivalent 1800000N or equivalent 550 gallons HDPE

Leachate Feed Pump (P-100) (located at Leachate Tank T-100)

Quantity:	1
Manufacturer:	LMI or equivalent
Model:	SD8387P or equivalent
Capacity:	115 GPH at 75 pounds per square inch (psi)
Electrical:	60 Hertz (Hz), 230 volt, single phase

Equalization Tank (T-200)

Quantity:	1
Type:	Flat bottom vertical tank with domed top
Manufacturer:	Snyder Industries or equivalent
Model:	1780200N or equivalent
Capacity:	1,900 gallons
Material of Construction:	HDPE

Bioreactor Feed Pumps (P-200A/B)

Quantity:	1
Туре:	Closed coupled centrifugal
Manufacturer:	Goulds or equivalent
Model:	2ST2C4K4 or equivalent
Capacity:	25 gpm at 33 feet TDH
Electrical:	1/2 hp, 240 volt, three phase, 1750 revolutions per minute (rpm)

Fixed-Film Bioreactor (T-300)

Quantity:	1
Dimensions:	10 feet diameter with 12 feet side water height
Continuous Design Flow Rate:	15 gpm
Maximum Design Flow Rate:	25 gpm
Design BOD (5 day) Loading:	20 pounds per day
Media Volume:	450 cubic feet of polypropylene packing
Material of Construction:	Epoxy-coated carbon steel

Bioreactor Blower (B-300)

Quantity:	1
Type:	Positive displacement
Manufacturer:	Dresser Industries or equivalent
Model:	URI-22 or equivalent
Capacity:	36 cubic feet per minute (cfm) at 10 psi
Electrical:	5 hp, 240 volt, single phase

Bioreactor Chemical Feed Pumps (P-300 and P-301)

Quantity:	2
Type:	Electronic metering pump
Manufacturer:	Pulsatron or equivalent
Model:	LE03 or equivalent
Capacity:	0.50 GPH at 150 psi
Electrical:	5 hp, 230 volt, single phase, 1750 rpm

Clarifier (T-400)

Quantity:	1
Type:	Sloped bottom with integrally molded drain outlet and
	domed top
Dimensions:	10 feet diameter by 8 feet, 7 inches high
Capacity:	4,000 gallons
Continuous Design Flow Rate:	15 gpm
Maximum Design Flow Rate:	25 gpm
Design Influent Solids:	100 milligrams per liter (mg/L)
Estimated Sludge Production:	75 gallons per day (3% solids)
Material of Construction:	HDPE

Sludge Pump (P-400)

1
Progressive cavity
Moyno or equivalent
33152 or equivalent
1.7 gpm at 30 psi
5 hp, 230 volt, single phase, 1750 rpm

Pressure Filter Unit (PF-400 and PF-410A/B)

Quantity:	3
Manufacturer:	Rosedale
Model:	8-30
Capacity:	25 gpm
Materials of Construction:	Stainless steel

Clarifier Pump Station Tank (T-410)

Quantity:1Type:FlatManufacturer:SnyModel:806Capacity:550Materials of Construction:HD

Flat bottom with domed top Snyder Industries or equivalent 8060000N 550 gallons HDPE

Air Stripper Feed and Discharge Pumps (P-410A/B and P-500A/B)

Quantity:1Type:Closed coupled centrifugalManufacturer:Goulds or equivalentModel:1ST1D4E4 or equivalentCapacity:25 gpm at 58 feet TDHElectrical:3/4 hp, 240 volt, three phase, 3500 rpm

Air Stripper Inlet Duct Heater

Manufacturer:	Indeeco or equivalent
Model:	QUZ or equivalent
Capacity:	10 kW (kilowatt)

Recycle Pump (P-420)

Quantity:	1
Туре:	Closed coupled centrifugal
Manufacturer:	Goulds or equivalent
Model:	1ST2C4A4 or equivalent
Capacity:	15 gpm at 33 feet TDH
Electrical:	1/2 hp, 240 volt, single phase, 1750 rpm

Low-Profile Air Stripper (AS-500)

Quantity:	1
Manufacturer:	NEEP Systems or equivalent
Model:	ShallowTray Model 2600 or equivalent
Maximum Design Flow Rate:	25 gpm
Number of Trays:	5
Materials of Construction:	304L Stainless Steel

Model:

Air Stripper Blower (B-500)

Quantity: 1 Manufacturer: New York Blower or equivalent 2606A or equivalent Flow Rate: 600 cfm at 52 inches water column 10 hp, 240 volt, single phase Electrical:

Vapor-Phase Carbon Vessels (GAC-501 to GAC-503)

Quantity:	3
Manufacturer:	Tigg or equivalent
Model:	N-4000-PDB or equivalent
Design Flow Rate:	600 cfm
Media Capacity:	4,000 pounds of vapor-phase GAC
Materials of Construction:	Epoxy-coated carbon steel

Vapor-Phase PPZ Vessels (PPZ-504 and PPZ-505)

Quantity:	2
Manufacturer:	Siemens or equivalent
Model:	FB-2000 or equivalent
Design Flow Rate:	600 cfm
Media Capacity:	3,500 pounds of PPZ
Materials of Construction:	Epoxy-coated carbon steel

Liquid-Phase Carbon Vessels (GAC-601 and GAC-602)

Quantity:	2
Manufacturer:	Siemens or equivalent
Model:	PV-2000 or equivalent
Maximum Design Flow Rate:	25 gpm
Media Capacity:	2,000 pounds of liquid-phase GAC
Materials of Construction:	Epoxy-coated carbon steel

Backwash Tank (T-800)

Quantity:	1
Туре:	Flat bottom with domed top
Manufacturer:	Snyder Industries or equivalent
Model:	1831000N
Capacity:	2,000 gallons
Materials of Construction:	HDPE

Backwash Pump (P-800)

Quantity:	1
Туре:	Closed coupled centrifugal
Manufacturer:	Goulds or equivalent
Model:	2ST1E4E4 or equivalent
Capacity:	50 gpm at 58 feet TDH
Electrical:	1-1/2 hp, 240 volt, single phase, 3500 rpm

Process Wash Vessel Feed Pump (P-810)

Quantity:	1
Туре:	Closed coupled centrifugal
Manufacturer:	Davey or equivalent
Model:	HS12-40HT1 or equivalent
Capacity:	12 gpm at 40 psi
Electrical:	120 volt, single phase, 0.9 kW

Backwash Supply Tank Discharge Pumps (P-820A/B)

(Quantity:	1
-	Гуре:	Closed coupled centrifugal
ſ	Manufacturer:	Goulds or equivalent
ſ	Model:	1ST1D4E4 or equivalent
(Capacity:	25 gpm at 58 feet TDH
E	Electrical:	3/4 hp, 240 volt, three phase, 3500 rpm

Process Sump Pump (P-900)

Quantity: Type:	1 Submersible sump pump
Manufacturer:	Goulds or equivalent
Model:	WE0312M or equivalent
Capacity:	10 gpm at 16 feet TDH
Electrical:	1/3 hp, 230 volt, single phase, 1750 rpm

Process Wash Vessel

Manufacturer:	Eagle Group or equivalent
Model:	314-16-1-18-R or equivalent
Materials of Construction:	304 Stainless Steel

5. Start-Up

The Start-Up Plan for the treatment system is provided in Appendix H of the DR/IP. The Start-Up Plan includes preliminary start-up activities along with a clean water system start-up to test the treatment system components.

Initial treatment system start-up will occur using groundwater from existing extraction wells EW-1, EW-2, and EW-3 and leachate from the existing leachate collection tank at the landfill. Prior to startup and while the transition steps discussed in the Start-Up Plan are being completed, media and activated sludge from a local publically owned treatment works (POTW) and/or another source will be added to the bioreactor. Additionally, the discharge line from the treatment system will be rerouted to either of two frac tanks located outside the treatment building but inside a fenced area. Based on the current rates of leachate and groundwater removal, at least two frac tanks will be used and are sufficient to store approximately six days of leachate and groundwater removal.

The treatment system start-up will be initiated by placing controls in "Auto" mode at the operator interface in the control room of the new treatment building. Once in "Auto" mode, water should begin flowing from the equalization tank through the treatment system. The landfill leachate extraction system will be brought online first. The existing extraction wells will then be brought online one at a time, starting with EW-1 followed by EW-3 and then EW-2. At each step, proper operation of communication, instrumentation and interlocks systems will be verified prior to proceeding to the next extraction well.

Sampling of the treatment system will be conducted to demonstrate that the discharge meets the substantive requirements established pursuant to the Consent Order (see Attachment B). As specified in Paragraph 54 of the Consent Order, treated water discharged from the system will be containerized on-site in at least two frac tanks near the treatment building during this shakedown period. Treated water in the tanks will be sampled and analyzed for the parameters in the substantive requirements by methods described in the revised QAPP that will be submitted to USEPA after the DR/IP, and may, with USEPA prior approval, be discharged to surface water in batches if the sampling data for a tank show that the substantive requirements have been met. Alternatively, treated water may be transported for off-site disposal or recycled back into the treatment system until USEPA provides notice to Respondents of interim approval to discharge treated water directly to surface water. Sampling locations, methods and frequencies for process monitoring samples are provided in the Performance Monitoring Plan (see Appendix J of the DR/IP). Following this shakedown period, Respondents will present data to USEPA in a Construction Completion Report submitted pursuant to Paragraph 63 of the Consent Order.

Operation, Maintenance and Monitoring Dewey Loeffel Landfill Superfund Site

As discussed in Appendix F of the DR/IP, additional hydrogeologic investigation activities are planned during installation of the five new extraction wells (EW-4 through EW-8). Thus, the new extraction wells will not be operational and connected to the treatment system until after initial startup. Each new extraction will be started, one at a time on different days, and allowed to operate for 4 to 8 hours to collect additional information. During this period, proper operation of communication, instrumentation and interlocks systems will be verified. Additionally, the specific capacity of each new extraction well will be estimated. Prior to shutting down each well, a water sample will be collected for analysis of VOCs, SVOCs, and PCBs by methods described in the revised QAPP that will be submitted to USEPA after the DR/IP.

Based on the analytical results and specific capacity estimates, a start-up sequence will be established for the five new extraction wells. This process will be designed to avoid any upset to the treatment system operations. After a new extraction well is placed into operation, a minimum of one set of analytical results from the treatment system will be obtained before the next extraction well is placed into operation. After all of the new extraction wells are placed into operation, pump set points will be adjusted incrementally and sequentially based on treatment system data, extraction well data (flow rates and groundwater quality), and groundwater monitoring data (water level elevations and groundwater quality), the latter collected under the Groundwater Monitoring Plan (see Attachment B of Appendix J to the DR/IP).

6. Normal System Operations

The system is designed to operate automatically without constant supervision and maintenance. The panel-mounted human-machine interface (HMI) will allow operators to connect to the PLC and will graphically display the status of the treatment system as well as log data and alarms. For the HMI, the operator can operate the equipment (i.e., turn on/off pumps, etc.) and change control and alarm set points. The PLC is also provided with a wireless modem that allows an off-site operator to remotely monitor the treatment system. The treatment system operator will visit the site at least weekly to monitor the system. The following activities must be completed during the monitoring:

- Monitor system operation;
- Check equipment and all related piping for leaks, repair if necessary;
- Change the filter bags, if necessary;
- Check the pressure drop across the liquid and vapor-phase GAC units and complete GAC change outs, if necessary based on analytical data;
- Inspect the air stripper trays through the view ports. If there is excessive build-up on the trays, schedule the air stripper for cleaning;
- Inspect the treatment building for general housekeeping issues and correct as necessary;
- Record any maintenance performed on the log sheet in Attachment A;
- · Complete the Preventative Maintenance Checklist on a monthly basis; and
- Complete the checklists included with the revised Health and Safety Plan (HASP) and revised Preparedness, Prevention, and Contingency Plans (PPCP) that will be submitted to USEPA after the DR/IP.

6.1 Normal Start-Up Procedure

The system is designed to operate in automatic mode under the control of the PLC. To restart the system after a brief shutdown, open any valves that were closed for maintenance or cleaning and place all equipment in "Automatic". The PLC will start the equipment as the necessary permissives are satisfied.

Should the system be shut down due to a power outage, the water in the sump of the air stripper must be pumped to the equalization tank and clean water added to the stripper sump prior to restart of the system. This procedure will also be used if the system is shut down on an emergency basis, and if

the system shuts down for an unknown reason and it cannot be confirmed that the blower timed out properly.

6.2 Treatment System Process Monitoring

During treatment system operation, the parameters listed in the Operations Log Sheet are monitored to assess the overall performance of the treatment system components. The monitoring will be conducted on a weekly basis during the first quarter of operation and then at least bi-weekly thereafter.

6.3 Treatment System Routine Maintenance

To promote proper operation of the system, maintenance described in this section will be conducted. Additional maintenance requirements are described in the equipment manufacturers' manuals that will be stored in the treatment building.

6.3.1 Equalization Tank Routine Maintenance

Due to the nature of the extraction system design, sediment may build up in the equalization tank during normal operation. The tank will be checked monthly for sediment buildup, and cleaned as necessary. The frequency of tank cleaning will be determined by operational experience.

6.3.2 Clarifier Routine Maintenance

Due to the nature of the bio-reactor operation, sludge will build up in the clarifier during normal operation. The clarifier will be checked weekly for sludge buildup, and sludge removed using the sludge pump and pressure filter as necessary. The frequency of clarifier sludge removal will be determined by operational experience.

6.3.3 Filter Bag Change-Out

The pressure drop across the influent and effluent bag filters will increase as the bags collect solids. When indicated by the increased pressure drop, the filter in service will be replaced with a new filter bag in the housing. The frequency of filter bag changes will be determined by operational experience.

6.3.4 Air Stripper Routine Maintenance

The low-profile air stripper is designed to operate with a minimal amount of maintenance. The following general maintenance will be performed on the air stripper at least annually:

- Clean blower motor housing;
- Lubricate blower fan and motor bearings, as necessary; and
- Clean air stripper aeration trays as described in Section 6.3.5.

6.3.5 Air Stripper Cleaning

During operation of the system, dissolved minerals (e.g., calcium) may precipitate out of the water onto the air stripper trays. These minerals form insoluble deposits that can foul the openings in each tray. Fouling may cause higher than normal operating air pressure within the air stripper unit. In order to prevent fouling of the aeration trays, the trays will be periodically pressure washed. Pressure washing of the air stripper aeration trays with water will be conducted as necessary to maintain normal operating air pressures within the air stripper. Clean-out ports located on the end of the air stripper trays provide access to the air stripper trays. Normal cleaning operations can be accomplished via the access ports; therefore, removal of the air stripper trays is typically not necessary.

6.3.5.1 Equipment Required

- Pressure washer capable of 2 gpm minimum flow at 900 psi max;
- Washer wand with spray nozzle and an adapter to connect the wand to the pressure washer hose end; and
- Treated water from the Backwash Supply Tank.

6.3.5.2 Pressure Washing Procedure

- Shut down the system.
- Stop and lock out the air stripper and the equalization tank pump.
- Make provisions for handling waste generated during cleaning. A wet/dry vacuum may be required.
- Remove the cleanout port covers.
- Turn on the water supply to the pressure washer. Then, turn on the pressure washer. Be sure to wear appropriate personal protective equipment (PPE), including, but not limited to, protective goggles or a face shield while spraying.

- Insert the wand all the way into the 8-inch-diameter cleanout port on the sump tank. Have the spray nozzle pointed up toward the bottom of the lower tray. Holding the wand tightly, pull the trigger to start the pressurized water flow. Expect the wand to kick back as flow starts.
- Move the wand side to side at a rate of about 1 inch per second. Be sure to cover the entire tray bottom area.
- Periodically stop the cleaning operation and inspect the cleaned area by shining a light into the unit. The area is clean when there are no deposits in or around the aeration holes.
- Check the water level in the sump tank and drain as necessary.
- When the bottom surface appears clean, move the wand to the top side of the same tray by inserting it in the next highest cleanout port. Continue spraying with the nozzle pointed down onto the top surface of the tray. Remove all visible deposits from the tray baffles and the walls of the unit.
- Repeat the procedure for the bottom and top of each tray.
- After the cleaning operation is finished, rinse the trays, baffles, and walls with the pressure sprayer. Work down from the upper tray to the sump tank. Make sure the surfaces are clean and the holes are not blocked by loosened debris.
- Remove the top cover, flip it over, and wash the bottom side. Inspect the spray nozzle for fouling.
- If the spray nozzle shows evidence of deposits, it should be removed and cleaned with a wire brush.
- Reinstall the top cover and all cleanout port covers.
- Pump all wash water collected in the air stripper sump to the equalization tank.
- Return the air stripper to operation.

If pressure washing is ineffective, the stripper trays may require a cleaning with a dilute acid solution.

6.3.5.3 Equipment and Materials Required for Air Stripper Acid Washing

- Portable pH meter;
- 1 gallon of hydrochloric acid; and
- 1 quart of sodium hydroxide.

6.3.5.4 Air Stripper Acid Washing Procedures

- Shut down the system and turn the air stripper control panel HAND/OFF/AUTO (HOA) switch and turn the switches for the air stripper blower, the air stripper inlet pump, and the air stripper sump pump to the OFF position.
- Close ball valve on air stripper sump pump discharge pipe.
- Close ball valve on air stripper water inlet piping.
- Open the ball valve on the crossover pipeline from the air stripper discharge pump to the air stripper inlet piping.
- Remove the rubber cap on the air stripper sump access portal, add 2 quarts of hydrochloric acid to the approximately 80 gallons of water remaining in the air stripper sump and replace the rubber cap on the portal. Be sure to wear appropriate PPE, including, but not limited to, protective goggles or face shield and protective gloves.
- Turn the air stripper sump discharge pump HOA switch to the HAND position and allow the acid/water mixture to circulate from the air stripper sump to the air stripper inlet piping, through the air stripper tray and back to the air stripper sump.
- Allow the acid/water mixture to circulate for 2 hours or until the trays of the air stripper are cleaned of hardness buildup, checking the pH of the mixture every 30 minutes and adding hydrochloric acid as needed to keep the pH below 4.0.
- After the cleaning is a complete, use small amount of sodium hydroxide to raise the pH of the acid/water solution circulating through the air stripper to a pH between 6.7 and 8.3.
- Pump all wash water collected in the air stripper sump to the equalization tank.
- Turn air stripper sump discharge pump HOA switch to the OFF position.
- Return valves to their normal positions.
- Turn air stripper control panel HOA switches to the AUTO position.
- Return the stripper to operation.

The frequency of acid washing of the air stripper will be determined by operational experience.

6.3.6 Liquid-Phase GAC System Change-Out

Change-outs of the lead liquid-phase GAC will be scheduled based on sampling results in addition to evaluation of loading based on these data in conjunction with isotherm estimates in order to minimize the generation of hazardous waste while still meeting substantive requirements. Liquid-phase GAC change-outs will be completed by vacuuming the spent carbon out of the vessel and replacing with fresh carbon.

6.3.7 Vapor-Phase GAC and PPZ Change-Outs

As shown on Figure 3, the vapor-phase treatment will include three GAC units in series followed by two PPZ units. To monitor operating efficiency, air samples will be collected from between the middle and the lag vapor-phase GAC units and at the discharge of the lead vapor-phase PPZ. Air samples will be collected using either a tedlar bag or summa canister and analyzed for VOCs. As presented in Table 1 of the Performance Monitoring Plan in Appendix J of the DR/IP, air samples will be collected on a monthly basis for the first year of operation. Thereafter, based on operational experience, the sampling schedule may be reduced. Change-outs of the lead vapor-phase GAC and PPZ will be scheduled based on sampling results in addition to evaluation of loading based on these data in conjunction with isotherm estimates in order to minimize the generation of hazardous waste while still meeting substantive requirements. Change-out of the vapor-phase GAC and PPZ will be completed by vacuuming the spent media out of the vessel and replacing with fresh media.

6.4 Waste Management

Spent PPE, disposable equipment and other debris (including bag filters and other solid hazardous waste) will be contained in a 55-gallon drums in the treatment building. Additional waste will include spent liquid-phase GAC, vapor-phase GAC and vapor-phase PPZ. These materials will be characterized as necessary for profile approval, and then transported off-site for disposal at a permitted facility in accordance with the Transportation and Disposal (T&D) Plan conditionally approved by USEPA.

Non-impacted materials (e.g., paper, cardboard, plastic, etc.) will be placed in a designated on-site recycling container for periodic removal to an off-site recycling facility. General non-impacted refuse (e.g., cups, packaging materials, etc.) that is not recyclable will be placed in a designated trash container for periodic removal to an off-site sanitary waste disposal facility.

7. Control Systems

The treatment system will be equipped with adequate instrumentation necessary for monitoring of key parameters. The function of major instrumentation is summarized below and described in further detail on Contract Drawings P2, P3, P4, and P5 provided in Attachment C.

- The extraction wells will be equipped with local pump control panels to control pump operation, flow meters to monitor extraction well flow, and level switches. All extraction well pump instrumentation will be in communication with and interlocked with the treatment system main control panel via buried control wiring. A similar configuration will be provided at the leachate collection tank at the landfill;
- The leachate tank in the treatment building will be equipped with level controls and switches to monitor for high or low level conditions and to control pump and actuated valve operation;
- The main equalization tank will be equipped with level controls and switches to monitor for high or low level conditions and to control pump and actuated valve operation;
- The fixed-film bioreactor feed line will be equipped with a flow meter to control feed pump operation and monitor flow conditions to the bioreactor;
- The fixed-film bioreactor will be equipped with instrumentation to monitor pH, DO, and temperature, along with a level switch to monitor for a high level condition;
- The clarifier will be equipped with a level switch to monitor for a high level condition;
- The clarifier pump station will be equipped with level controls and switches to monitor for high or low level conditions and to control pump operation;
- The air stripper feed line will be equipped with a pressure transmitter to monitor line pressure upstream of the bag filtration system and a flow meter to monitor flow conditions to the air stripper;
- The air stripper will be equipped with level transmitters and switches, pressure transmitters and switches, air flow meter, and temperature transmitter to detect critical alarm conditions associated with the air stripper system;

- The liquid-phase GAC system feed line will be equipped with a flow meter to monitor flow conditions and a pressure transmitter to monitor line pressure upstream of the GAC system; and
- Flow and pH meters will be mounted at the discharge line in the building for flow and effluent quality monitoring prior to discharge to surface water.

The instrumentation and process equipment located in the building and at the extraction wells will be hard-wired to a PLC mounted inside the building. The PLC will perform the following functions:

- Monitor various system parameters such as groundwater and air flow rates, tank levels, air stripper air inlet temperature, air stripper sump pressure, effluent pH, building temperature, bioreactor pH, bioreactor DO, and bioreactor temperature;
- Directly control equipment operations including actuated valves, pumps, and the air stripper;
- Initiate alarms and/or equipment shutdowns as detailed in the interlocks and control logic on Contract Drawing P5 provided in Attachment C; and
- Notify operating personnel of alarm and/or shutdown conditions as appropriate via wireless telemetry.

8. Sampling and Analysis

Treatment system effluent samples will be collected from the treatment system discharge pump. The sampling frequency and analytical parameters specified in the substantive requirements are presented in Table 1 of the Performance Monitoring Plan in Appendix J of the DR/IP. These include select field parameters (DO and pH), VOCs, select SVOCs, PCBs, select pesticides, select metals, and select water quality parameters. Additionally, the substantive requirements include quarterly whole effluent toxicity (WET) testing along with mercury and PCB minimization programs. Following the conclusion of the shakedown period and USEPA approval of routine discharge from the treatment system to the Valatie Kill, the treatment system discharge will be monitored as described in the Performance Monitoring Plan in Appendix J of the DR/IP.

Treatment system influent samples will initially be collected for the same analytical parameter as the effluent but at a reduced sampling frequency (see Table 1 of the Performance Monitoring Plan in Appendix J of the DR/IP). Additional samples will be collected from specific locations between key process components within the treatment system. These samples will initially be analyzed for select field parameters (DO and pH), VOCs, and select SVOCs at the frequency given in Table 1 of the Performance Monitoring Plan in Appendix J of the DR/IP. Water samples within the treatment system are anticipated to be collected from the sample taps at the locations shown on Figure 3 in the Performance Monitoring Plan in Appendix J of the DR/IP.

9. Reporting

Respondents do not propose to provide USEPA with daily oral or weekly written reports for the activities described in this OM&M Plan. However, in addition to providing the laboratory analytical results, the activities performed under this plan will be summarized in the Monthly Progress Reports that are submitted to USEPA pursuant to the Consent Order. Additionally, in accordance with Paragraph 57f of the Consent Order, Analytical Services Tracking System (ANSETS) forms will be submitted to USEPA for each sampling event; the complete analytical data packages will also be submitted to USEPA.

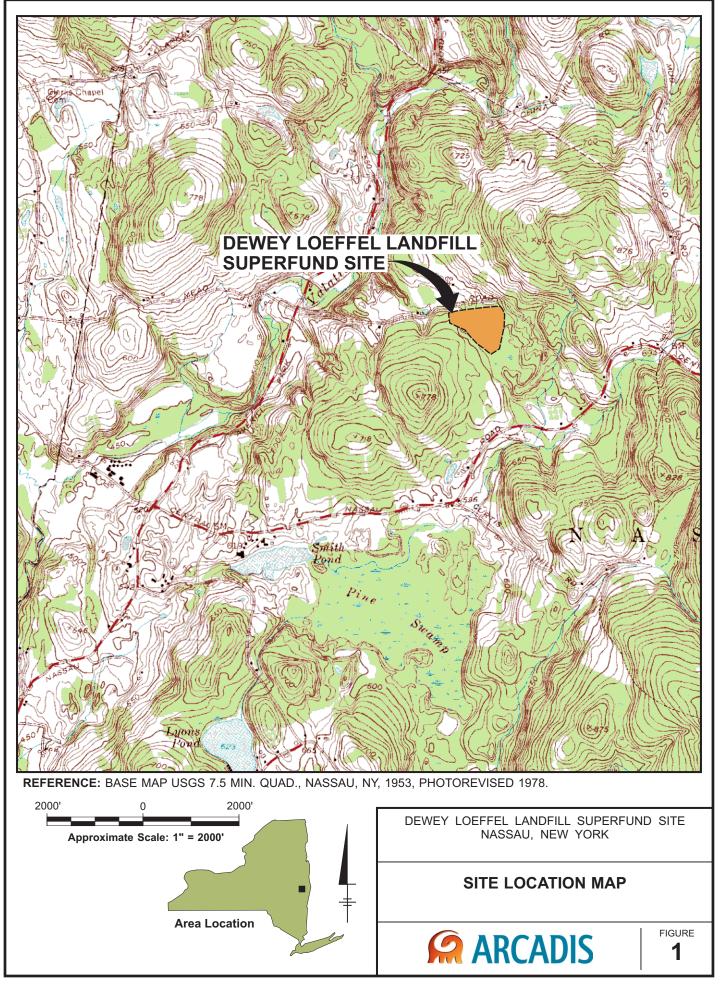
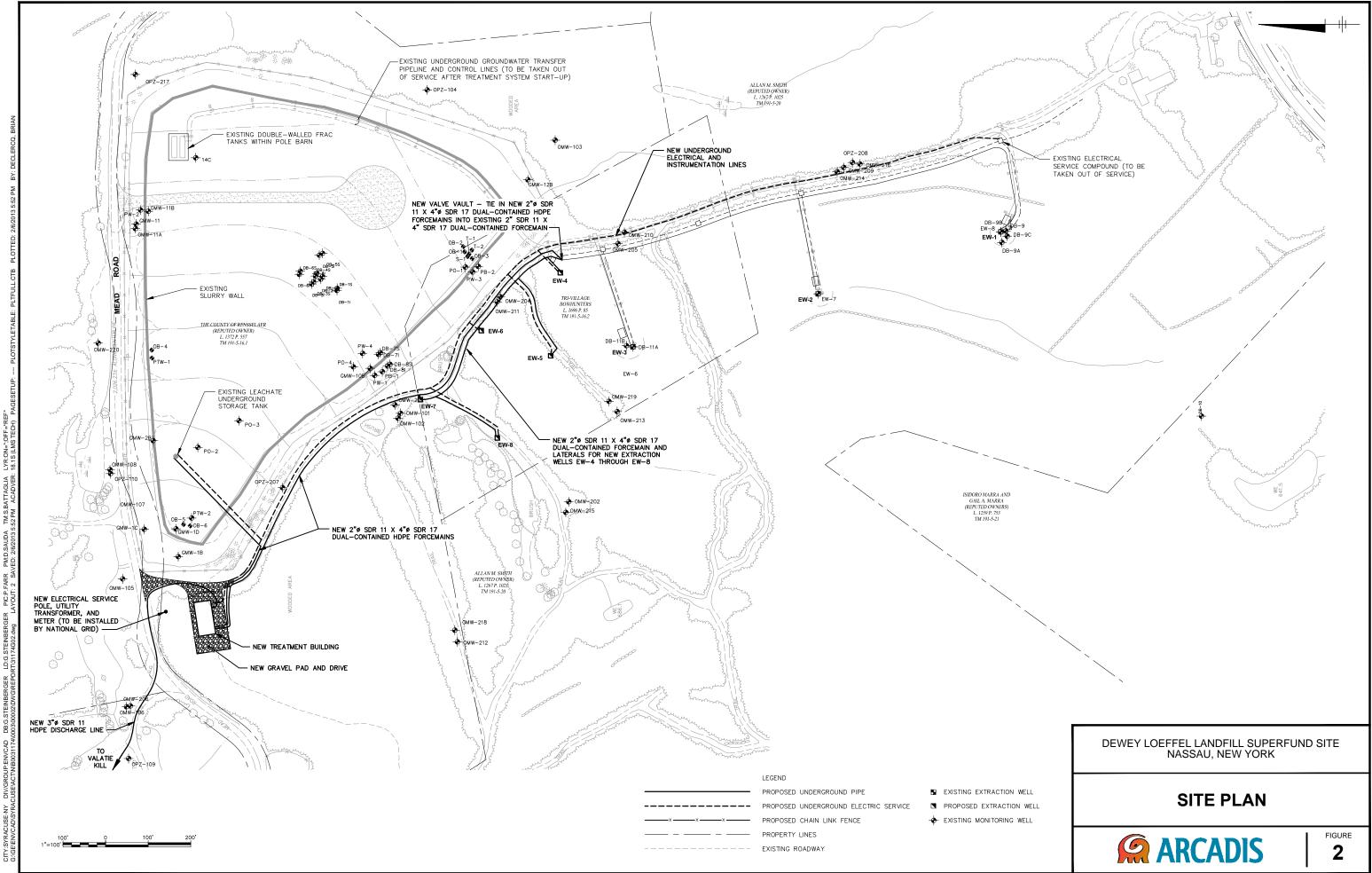
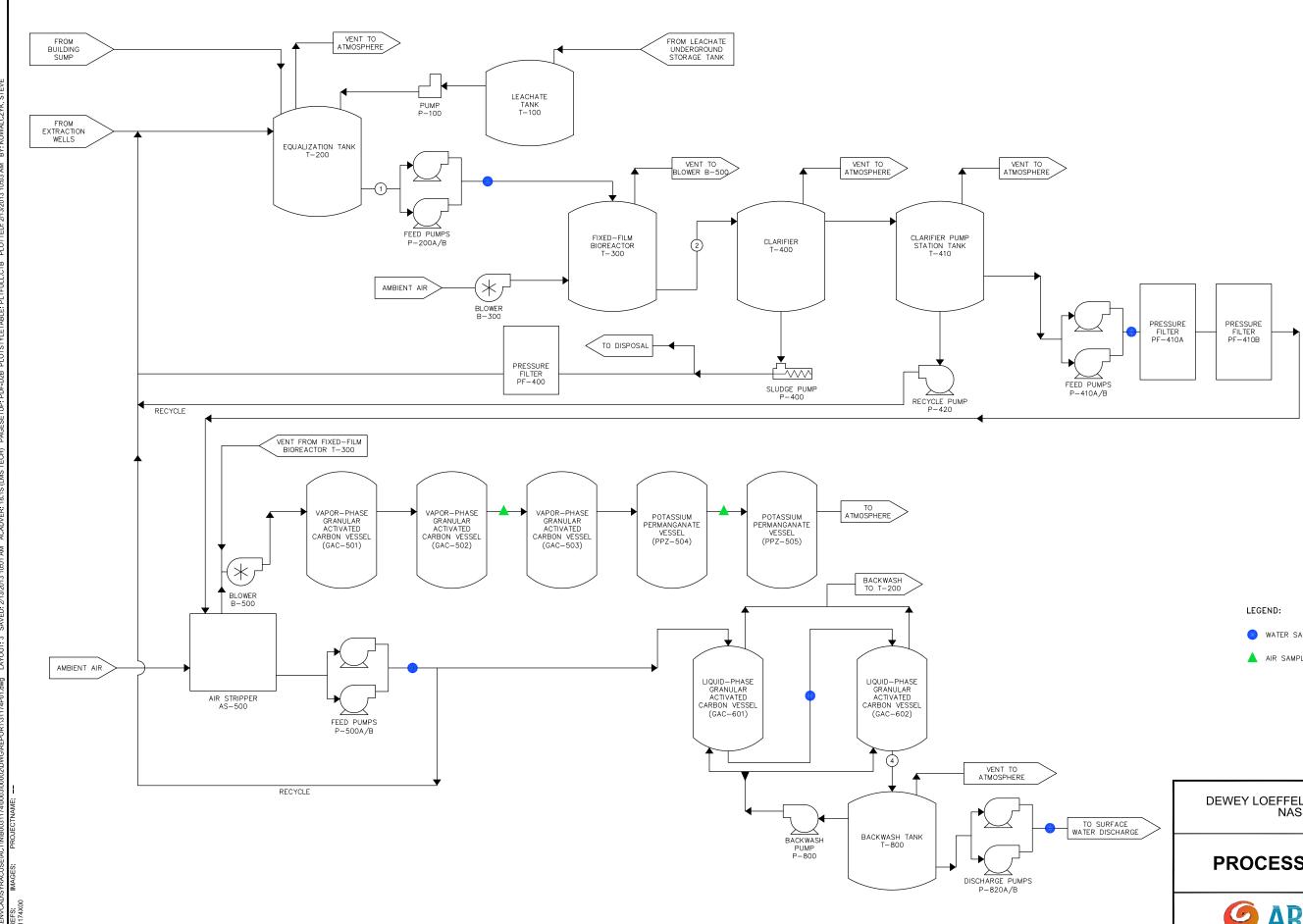

Table

TABLE 1 DEWEY LOEFFEL LANDFILL SUPERFUND SITE NASSAU, NEW YORK EQUIPMENT SCHEDULE


P-101-P-103 GRUNDOS 108609-R10.03/200 F101-P-17-103 BADGER RECORDALL MODELS SWITCH REPLANDERS LSP100-LSP103 GRUN LS780 LSP100-LSP103 GRUN LS780 LSP100-LSP103 GRUN LS780 LSP100-LSP103 GRUN LS780 LSP100-LSP103 GRUN RECORDALL MODELS SWITCH RE ALW TRANSMITTER F00 MADGER RECORDALL MODELS F100 SWIDER MUSTRIES 190000001 SWIDER MUSTRIES 19000001 SSRIES SWILECTRA SCIENCES F100 GRUNS LS700 LSE1-F100 WIXA LS10 F100 GRUNS LS700 LS1200 SWIDER MOLUSTRIES TMADDIM F1100 SWIDER MOLUSTRIES TMADDIM F1200 MADGER TMADDIM F1200 SWIDER MOLUSTRIES TMADDIM F1200 SWIDER TMADDIM F1200 SWIDER MOLUSTRIES TMADDIM F1200 SWIDER MOLUSTRIES TMADDIM	Equipment Tag	Manufacturer	Model Number
PHT-10-17-103 BADGER RECORDALL MODE LS SWITH RITE RLOW TRANSMITTER LSKI-01-LSKI-03 LSKI-01-LSKI-03 GEMS LSKI-01-LSKI-03 DOI GOULDS XXXXXXXITER LSKI-01-LSKI-03 DOI GOULDS XXXXXXXITER LSKI-01-LSKI-03 DIO GOULDS XXXXXXXITER LSKI-03 DIO GOULDS XXXXXXXXITER LSKI-03 DIO GAUGER 1880000 DIO BADGER 1100 LSKI-03 GAUGER 1100 P-100 BADGER 1100 P-100 BADGER 1100 P-100 BADGER 1100 SUPCER NOLVERRIS 1700000 LSKI-200 WRAC LST0 LSKI-200 <	Extraction Wells		
B4H-00-L94-H03 GFMS L5780 BASHMS CONSIGNATING LOCAL DATA MASMATTER COULDS XXCMV507136F P001 BAUGER RECORDALL MODEL SWITH RTR PLOY TRANSMITTER P001 SNYDER INCLISTRES 1800000 L3MIN SWITH GAUGER RECORDALL MODEL SWITH RTR PLOY TRANSMITTER L3MIN SWITH SNYDER INCLISTRES 1800000 L3MIN SWITH SNYDER INCLISTRES 1800000 LSMIN SWITH SNYDER INCLISTRES 1772200 MARK LST90 1772000 SNYDER INCLISTRES LST90 1772000 SNYDER INCLISTRES LST90 1772000 SNYDER INCLISTRES LST90 1772000 SNYDER INCLISTRES LST90 177200 SNYDER INCLISTRES LST90 177200 TF100 GAUGER 1740000 1571000 LEAT-700 WKA LST90 157000 TF200 DOYEEN INSTULIENTS RMS-82 1790000 TF1300AC POXEDRO RST90 15700 LEAT-40 WKA <td< td=""><td></td><td></td><td></td></td<>			
Lackabe Collection Tank (Located at the Landit) GOULOS KGOWS97126F PTI-00 BADQER PECORDALL MODEL 55 WITH RTN FLOW TRANSMITTER Main Trainment System T-100 SHYDER INDUSTRIES 1800000N SH44 SL.100 GEMES 1.5750 LEX.T-100 WIKA LS10 T100 LMIR 1.5750 T100 LMIR SCOUNT T100 LMIR 1.5750 T100 LMIR SCOUNT T00 BANDER 1.5750 T00 SWITCE INDUSTRIES TOX0000 T00 WKA LS10 T00 WKA LS10 SCADDON SWITCE INDUSTRIES TOX0000 T00 WKA LS10 SCADDON SWITCE INDUSTRIES TOX0000 T1200 BADDER THANCHOLONUM SCADDON FOXBORO SWITCE INDUSTRIES T1200 BADDER TWANDER SWITCE INDUSTRIES SWITCE INDUSTRIES SCADDON COVERNONT SWITCE INDUSTRIES <t< td=""><td></td><td></td><td></td></t<>			
P-001 GOULDS XX0/WS7/28F PT-011 BADGER PECORDALL MODEL 56 WITH RTR FLOW TRANSMITTER Main Transmit System 1800000N SNYDER INDUSTRIES 180000N LSM4K SL100 GFMS LS700 LS700 LSM4K SL100 GFMS LS700 WKA LS10 P100 UMI SD0387P CFMS LS700 MA200 HAVWARD SEMES EMILECTING AUTORING MARCON MA200 GFMS LS700 LS700 TS200 DFOX80RO 27171H SS700 TS300 FOX80RO RS7107HM LS700 TS300 FOX80RO RS72072221 RS00 TS300 DWESSEN INUSTRIES FOX222 RS00 TS300 DWESSEN INUSTRIES RS00 LS700			LS750
PTro1 BAGGER BECORDAL MODEL 55 WITH HET FLOW TRANSMITTER Wart Trained With T-100 SWIDER INDUSTRIES 1800000N SWIDER INDUSTRIES 1800000N SWIDER INDUSTRIES 1570 EAT-T-100 WIKA LST0 FI-100 UMI SD0000N MA2000 NAVMARD SERBES BULECTRO, ACTUOR WKA LST0 SWIDER INDUSTRIES 1782000N FI-100 NAVMARD SERBES BULECTRO, ACTUOR WA200 NAVMARD SERBES BULECTRO, ACTUOR WA200 NAVMARD SERBES SUBLECTRO, ACTUOR FIRED SUBORS 178200N WA200 SWIDER INDUSTRIES 178200N FIRED SUBORS 17870N FIRED SUBORS 17870N FIRED SEE CONTRACT DRAWING INF FIRED PUBANCY SEE CONTRACT DRAWING INF FIRED SUBORS FIRED FIRED PUBANCY SUBORS FIRED SUBORS FIRED FIRED PUBANCY <td< td=""><td></td><td></td><td>XCOWS0712BE</td></td<>			XCOWS0712BE
Num SWHDER INDUSTRIES 1800000N LSPH45,L100 GEMS L570 LSPH45,L100 GEMS L570 LSPH45,L100 GEMS L570 LSPH45,L100 UKA L510 P100 LMI SD5337 MA200 HAVMARD SEMES EMJ ELCTING CATUATOR SAVEL200 GEMS L5700 LSPH45,L200 GEMS L5700 LSPH45,L200 OKAS L5700 LSPH45,L200 MKAS L5700 LSPH45,L200 PCX80RO R71571400 LSPH45,L200 DWXER INSTRUMENTS RMS-52 PT-3000 DESESER INCUSTRIES PC-1222 LSPH45,L110 <			
T-100 SNYDER INDUSTRIES 180000M BAHKSL-100 GEMS L579 LELT-100 WIKA L519 P-100 WIKA L519 P-100 BADGER 1*MACNETOR-LOW WK200 HAYWARD SEREE SLE LECTRIX ACTUATOR T-200 SNYDER INDUSTRIES T720200M BAHLSL-200 GEMS L570 LELT-200 GEMS L570 BADGER 1*MACNETOR-LOW ACAD WIKA L510 POXADON 071114 SECONTRACTORAWING MI AE 300 FOXADON 071144 AE 300 FOXADON GEMS PT 300 FOXADON GEMS PT 300 FOXADON GEONTRACT DRAWING MI PT-300 FOXADON GEONTRACT DRAWING MI PT-300 FOXADON GEONTRACT DRAWING MI PL-300 MYKA L570 FT-400 GEMS L570 FT-400 ROSEDALE 8-30 FT-410 WIKA		DADGER	
SHH45L-100 GEMS L5750 PA100 LMI SD0357P PA100 LMI SD0357P PA100 BAGGER 1"MACHTOPLOW MV-200 HAYWARD SERES EMJ ELGTRIK CATUATOR SUSVER INDUSTRIES 1782000N LSH44.SL200 GEMS LS700 LSH44.SL200 GEMS LS700 LSH44.SL200 GEMS 178200N LSH44.SL200 GEMS 231264K P200AB GOULDS 231264K P200AB GOULDS 231264K P200AB GOULDS 231264K P200AB GOULDS 231264K P200AB POXS0NO K11511WCDAWL11 P1300C POXS0NO GWP2 P1300C POXS0NO GWP2 P1300C POXS0NO GWP2 P1430C POXS0NO GWP2 P1430C POXS0NO GWP2 P1430C POXS0NO GWP2 P400 MOYPIO S300	T-100	SNYDER INDUSTRIES	1800000N
P-100 LM SD83PP PF100 BADGER 1* MAONETOFLOW MV-200 HATWARD SERIES EM FLECTRACACTUATOR T-200 SNPDER INJUSTRIES IT780200N LSH4LSL200 GEMS LSYS LSH-200 WKA IS10 P-200APB GQULDS SET2CH44 PT200 BADGER 1* MAONETOFLOW AE-300 FOXBORD BATTS RT300 HACH ST90000 TT-300 FOXBORO BATTS TH-300C DESEE CONTRACT DRAWING M S-300 PD4-322 PAO-4301 PAO-4301 DESEE CONTRACT DRAWING MB S-300 BADGER PC-122 PAO-4301 GEMAS BADGER FA10 SEE CONTRACT DRAWING MB SIMMSL-410 SEE CONTRACT DRAWING MB <t< td=""><td>LSHH/LSLL-100</td><td></td><td>LS750</td></t<>	LSHH/LSLL-100		LS750
FIT-100 BADGER 1* MADRETOLOW W200 H4YWARD SERIES MELECTRIC ACTUATOR T-200 SNYDER INDUSTRIES 1792000 SHMLSIL-200 GEMS LS750 LEAT-200 WKA LS10 P-200MB GOULDS 2572.0444 STOTO BADGER 1* MADRETOLOW AE-300 FOXBORO B701TPH FT-300AGC DYVER INSTRUMENTS RM6-52 PT-300C FOXBORO IGP24-722817-HV11 B300 DVERSITINSTRUMENTS RM6-52 PT-300C FOXBORO IGP24-722817-HV11 B400 DEFESER INJOURTSTRIS PC1-222 PC400 DVERSITISTINGEN IGE00 LELT-410 WKA LS10 PF400 ROSEDALE 6-30 I	LE/LT-100	WIKA	LS10
MY-200 HAYWARD SERIES EML ELECTAL CATUATOR TA00 SINDER INJUSTRIES T17802000 LSHHUSL-200 GEMS LSY30 LSHUSL-200 WKA LS10 P-200AB GOULDS 2872C44 PT 200 BADGER I* MACNETOFLOW AE-300 HACH 5790000 TT 300 HACH 5790000 TT 300 SEE CONTRACT DRAWING MY TT 300 DYES INSTRUMENTS RMAS2 PT 300C FDX80R0 (1679212821F.MULL BAJOBARO DYESESER INDUSTRIES PC-12221F.MULL BAJOBARO DYESESER INDUSTRIES PC-1232 PA00-P301 PULSATEDER PLUSATRON LE33 T-400 SWINDER INDUSTRIES PC-1232 PA00 MWYAO 33152 PF-400 ROSEDALE 8:30 T-410 WKA LST0 PF-400 ROSEDALE 8:30 PT-410 BADGER 1'MAONETOFLOW PT-410 ROSEDALE 8:30	P-100	LMI	SD8387P
Taol SNDER INDUSTRIES T17900N ISHHUSL200 GEMS I.S750 LELT-200 WKA I.S750 LELT-200 WKA I.S750 ELT-200 BADGER I*MACNETCHW AE-300 FXX80R0 BYJTFPH AE-300 DESSER INDUSTRIES PC-12.22 PT-300ABC DYVER INSTRUMENTS RMB-52 PT-300C FXX80R0 IGP2-72221F-M1L1 B-300 DESSER INDUSTRIES PC-12.22 P-300- DESSER INDUSTRIES PC-12.22 P-400 WKA I.S10 F4-40 GEMS I.S750 ELT-410 WKA I.S10 FF-400 ROSEDALE 8-30 FF-410A SNDER NDUSTRIES B600000N FF-410A GOULDS IS11044 FF-410A	FIT-100	BADGER	
LSH-HG.SL.200 GFMS LL5790 LEIT.200 WKA LS10 P-2000AB GOULDS 28720444 PF.200 BADGER 1*MAGNETOFLOW AE 300 FOXBORO B707000 AE 300 HCH 570000 T7.300 FOXBORO BRTHSTINKGNAFL1 T300 FOXBORO BRTHSTINKGNAFL1 T300 FOXBORO BRTHSTINKGNAFL1 T300 FOXBORO BRTHSTINKGNAFL1 T300 FOXBORO BRTHSTINKGNAFL1 Save-Paol PCADRORO BRTHSTINKGNAFL1 Save-Paol PCADRORO BRTHSTINKGNAFL1 Save-Paol PCADRORO LE03 F4400 GEMS LS70 ELET.7410 GOULDS 1STIDL4 PF-400 ROSEDALE B-30 F1410 BADGER 1*MAGNETORUW PF400 ROSEDALE B-30 PF410AB GOULDS 1STIDL4 PF4101 BADGER 1*MAGNETORUW PF4101			
LELT-200 WKA LS10 P2000/B GOULDS 237204/4 FT-200 BADGER 1*MGMPTOPLOW AE-300 FDX80RO B707PH AE-300 FDX80RO B707PH AE-300 FDX80RO B707PH AE-300 FDX80RO BT115-TWCQWAF-L1 T-300 DWYER INSTRUMENTS RMB-52 PT-300ABC DWYER INSTRUMENTS RMB-52 PF-300ADC DESSER INUSTRIES PC-12-22 P-00P-P301 PUESAPEEDER PULSATROM LE03 LSH-412L-101 GEMS LE13-40 LSH-413L-101 GEMS LE13-40 LSH-410 GEMS LS160 P-400 MOYNO 33192 PF-401 SADGER 1*100 PF-402 ROSEDALE 8-30 P-4104 SADGER 1*10444 FT-410 ROSEDALE 8-30 PF-410 ROSEDALE 8-30 PF-410 ROSEDALE 8-30 PF-410 ROSEDAL			
P200AB GOULDS 237224/4 PF7200 BADGER 1* MAGNETOFLOW AE 300 POXBORO B70000 AE 300 POXBORO BRTIS-TUNCQUAF-LI T300 FOXBORO BRTIS-TUNCQUAF-LI T300 FOXBORO BRTIS-TUNCQUAF-LI T400 SEE CONTRACT DRAWING M7 PT-300C FOXBORO IGP20 T22821F-ML1 B300 DESESER INDUSTRIES PC-12.2 P300-F301 PULSAFEEDER PULSATRON LE03 LET 410 WIKA L510 LET 410 WIKA L510 P400 ROSEDALE 8-300 P400 ROSEDALE 8-300 P410. GOULDS 1ST1044. PF410 BADGER 1''MAGNETORLOW PF410. BADGER 1''''''''''''''''''''''''''''''''''''			
PT200 BAGGER 1*MGRUPTORIUM AE 300 POX80R0 B70TPH AE 310 HACH 570000 T300 POX80R0 BTT15-TIWCQNAF-L1 T300 DWYER INSTRUMENTS RUB-52 PT-300ABC DWYER INSTRUMENTS RUB-52 PT-300ABC DWYER INSTRUMENTS RUB-52 PC-15-22 PO-15-22 PO-15-22 P-00P-P-301 DEESSER INUSTINES PC-15-22 P-00P-701 PULSAPEEDER PULSATROM LE03 LSH-H12L-101 GEMS LE1-310 LSH-H12L-110 GEMS LE03 P-400 MOYNO S31192 P-401 GEMS LS10 P-402 MOYNO S1511044 FT-410 SNYDER INDUSTRIES 800000N P1410 SORGEO IGP10-72201F AIL1 PF-400 ROSEDALE 9.0 P1410 FOX80RO IGP10-72201F AIL1 PF-400 ROSEDALE 9.0 P1410 ROSEDALE 9.0			
AE-300 FOXBORO B70TFH AE-310 HACH 570000 TT-300 FOXBORO RTT1-TWCONAF-L1 T-300 SEE CONTRACT DR/WING MY PT1-300ABC DWYER INSTEUMENTS RMB-52 PT-300ABC DEVESSER INDUSTIES PO-27282/F-ML1 B-300 DESSER INDUSTIES PC-12-22 P-300-F-301 PULSAFEEDER PULSATRON L63 T-400 SEE CONTRACT DRAWING MS SEE CONTRACT DRAWING MS LSHH4L1410 WIKA L510 LET-410 WIKA L510 P-400 ROSEDALE 8-30 P-400 ROSEDALE 8-30 PT-410 BADGER 1*MACNETOFLOW PT-410 BADGER 1*MACNETOFLOW PT-410 PCXBORO ISP10-122DF-ML1 PF-410A ROSEDALE 8-30 PT-410 BADGER 1*MACNETOFLOW PT-420 GOULDS 1*ST20-FML1 PC-420 GOULDS 1*ST20-FML1 PC-420 GOULDS 1*ST20-FML1			
AE-310 HACH 579000 T-300 FCX80R0 RTT15/TWCONFL1 T-300 SEE CONTRACT DRAWING M7 FT-300ABC DWYER INSTLUMENTS RNB-52 PT-300-0 FCX80R0 IOP20-T2831F.MTL1 B-300 DRESSER INDUSTRIES PL1-22 B-300-7-301 PLUSAFEDER PULSATRON LE03 T-400 SEE CONTRACT DRAWING M8 L13750 SHHLSLL-410 GEMS L.13750 F4400 MIKA L510 P+400 MOVNO 33152 F440 ROSEDALE 8-30 F4104 BADGER 1' MAINETOFLOW PF-4104 BADGER 1' MAINETOFLOW PF-4104 BADGER 1' MAINETOFLOW PF-4104 BADGER 8-30 MV-410 ABC/D ASAH 3730020 PF-4104B ROSEDALE 8-30 MV-410 ABC/D ASAH 3730020 PF-420 GOULDS 1157C4AA DUCT HEATER INDEECO QUZ FF-4300			
T-300 FOXBORO RTT-1WCOMAF-L1 7:00 SEE CONTRACT DRAWING M7 PT-300ABC DWYER INSTEUMENTS NIM-52 PT-300C FOXBORO IOP20-T2881F ML1 5:300 DRESSER INDUSTRIES PC-12-22 P-200-P-201 PULSAFEEDER PULSATRON LE03 1:400 SEE CONTRACT DRAWING M8 1:5HHLSL1410 GEMS L570 LET.410 WIKA L510 P-400 ROSEDALE 8:30 FT-410 WIKA L510 P-400 ROSEDALE 8:30 T-110 ROSEDALE 8:30 FT-410 ROSEDALE 8:30 FT-410 FOXBORO IGP10-T22D1F-M1L1 PF-4104 ROSEDALE 8:30 PT-410 FOXBORO IGP10-T22D1F-M1L1 PF-410 ROSEDALE 8:30 PT-410 ROSEDALE 8:30 PT-410 FOXBORO IGP10-T22D1F-M1L1 PF-410 FOXBORO IGP10-T22D1F-M1L1 PF440			
3-300 SEE CONTRACT DRAWING M7 F1:300ABC DVYER INSTLUMENTS RM-5/2 P1:300C PCXBORO IOP20-72821F-MIL1 B-300 DESESER INDUSTRIES PC1-22 P300-P-301 PULSAFEEDER PULSATRON LE03 T-400 SEE CONTRACT DRAWING M8 SEM4LSL-410 GEMS L.5750 LELT-410 WINKA L510 P-400 MOYNO 33152 FF-400 ROSEDALE 8-33 F410 ROSEDALE 8-30 P4104B GOULDS 15171D4E4 F1410 BADGER 1''MAGNETOFLOW PF-410AB ROSEDALE 8-30 MV-410 ABC/D ASAHI 3730020 PF-410AB ROSEDALE 8-30 MV-410 ABC/D ASAHI 3730020 PF-420 GOULDS 15172C4A4 DUCT HEATER INDEECO QUZ TF:50 FCX80RO RTT-11WCDMAF-L1 AS-500 NEW YORK BLOWER COMPANY 206A PF2:04-PF2:050	TT-300		
FIT-300ABC DWYER INSTENUMENTS RME-52 PT-300C FCXB0RO [GPD:72221F:AML1 B-300 DRESSER INUSTRIES PC-12-22 P300-P-301 PULSAFEEDER PULSATRON LE03 SEE CONTRACT DRAWING MB LE03 LSHHLSL410 GEMS LS750 LSHHLSL410 WIKA LS10 P400 MOYNO 33152 PF-400 ROSEDALE B-30 T-410 WIKA LS16 P400 ROSEDALE B-30 T-410 BADGER I*I*IMAGNETOFLOW PF-4104 FOXBORO IGPI-T2201F-MIL1 PF-4104 ROSEDALE B-30 PT-420 FOXBORO IGPI-T2201F-MIL1 PF-4104B ROSEDALE B-30 PT-420 FOXBORO IGPI-T2201F-MIL1 PF-420 FOXBORO IGPI-T2201F-MIL1 PF-430C ASAH 3302 PT-420 FOXBORO RTISCAMAF-L1 PS-420 FOXBORO RTISCAMAF-L1 PA20 </td <td>T-300</td> <td></td> <td></td>	T-300		
8-300 DRESSER INDUSTNES PC-12-22 P300-P-301 PULSAFEDER PULSATRON LE03 T-400 SEE CONTRACT DRAWING M8 LSHH-LL410 GEMS LS750 LSH-L410 WKA LS10 P-400 MOYNO 33152 PF-400 ROSEDALE 8-30 T-410 SMYDER INDUSTRIES 8060000N P-410AB GOULDS 1517104E4 P11410 BADGR 1' MAGNETOFLOW P1410A ROSEDALE 8-30 P1410B GOULDS 1517104E4 P1410B ROSEDALE 8-30 MV-410 AMBC/D ASAHI 373020 P1420 GOULDS 15172C4A4 DUCT HEATRE INDEECO QUZ TT-500 FOXBORO RT15-TIVECONAF-L1 AS-500 NEE'P SYSTEMS SHALLOWTRAV MODEL 2805 FT-500 SIERRA 6205.L66M1EN2V4DD0 S-600 NEE'P SYSTEMS SHALLOWTRAV MODEL 2805 FT-500 SIERRA 6205.L66M1EN2V4DD0	FIT-300A/B/C		
P-301-931 PULSAFEDER PULSATRON LE03 SEE CONTRACT DRAWING MB SEE CONTRACT DRAWING MB LSHHJLSLL410 GEMS LS750 LELT-410 WIKA LS10 P-400 MOYNO 33152 PF-400 ROSEDALE 8-30 TA10 SKYDER INDUSTRIES 8080000N P-410AB GOULDS 1'ST104E4 PF-410AB GOULDS 1'ST104E4 PF-410AB ROSEDALE 8-30 MN-410 ABIC/D ASAHI 373020 PF-420 GOULDS 1ST2CA44 DUCT HEATER INDEECO QUZ R500 NEW YORK BLOWER COMPANY 2606A PF-510 FOXBORO IGP10-T2201F-M11.1 GAC-501-GAC-503 TIGO N-4000-PDB PF-510 FOXBORO IGP10-T2201F PF-	PIT-300C	FOXBORO	IGP20-T22B21F-M1L1
T-400 SEE CONTRACT DRAWING M8 LSHH/LSL410 GEMS LS750 LSH-1410 WIKA LIS10 P-400 MOYNO 33152 P-400 ROSEDALE 8-30 T-110 SNYDER INDUSTRIES 8060000N P-1004B GOULDS 1517D4E4 BADGER 1* MAGNETOFLOW PT-410 BADGER 1* MAGNETOFLOW PT-410 BADGER 1* MAGNETOFLOW PT-410 BADGER 1* MAGNETOFLOW PT-410 BADGER 1* MAGNETOFLOW PT-420 FOXBORO IGP10-T2201F-M111 PF-420 GOULDS 1512C4A4 DUCT HEATER INDEECO QUZ TT-500 NEW YORK BLOWER COMPANY 2606A PT-510 FOXBORO ISTERA 620S-L06M1EN2VADD0 B-500 NEW YORK BLOWER COMPANY 2606A PT-510 FOXBORO IGP20-T2281F-M111 GAC-50-GA-503 TIGG N-400-PD8 PP2564P2-505 SIEMENS FE-2000 <td>B-300</td> <td></td> <td>PC-12-22</td>	B-300		PC-12-22
LSHH/L410 GEMS LS780 LELT-410 WIKA LS10 P400 MOYNO 33152 PF-400 ROSEDALE 8-30 TA10 SNOPER INDUSTRIES 8606000N P-410AB GOULDS 1ST1D4E4 FT-410 BADGER 1'MAGNETOFLOW PT-410 ROSEDALE 8-30 PT-410 BADGER 1'MAGNETOFLOW PT-410 ROSEDALE 8-30 W-410.ABC/D ASAH 370020 PT-420 FOXBORO IGP10-T22D1F-M1L1 PF-420 GOULDS 1ST2CA4A DUCT HATER INDEECO QUZ TT-500 FOXBORO RTT-511/WCONAF-11 AS-600 NEEP SYSTEMS SHALLOWTRAY MODEL 2850 FT-510 FOXBORO ISTERA SCAC-603 TIGG N-4000-PDB PF2304-PP2-505 SIEMENS FB-2000 P630 AB GOULDS 1ST1D4E4 MV-510 BADGER 1'MAGNETOFLOW P6300	P-300P-301		
LEILT-10 WKA LS10 P4400 MOYNO 33152 PF-400 ROSEDALE 6-30 T-410 SNYDER INDUSTRIES 8600000N P410AB GOULDS 1511D4E4 PF1410 BADGER 1*1 MAGNETOFLOW PF1410 FOXBORO IGP10-T2201F-ML1 PF-410AB ROSEDALE 8-30 MV-410 ABIC/D ASAH 3730020 PF1-420 FOXBORO IGP10-T2201F-ML1 PF420 GOULDS 1512C4A4 DUCT HEATER INDEECO QUZ S500 NEEP SYSTEMS SHALLOWTRAY MODEL 2850 PT50 SERRA 2629L-06MI EN2VAPDO S4500 NEW YORK BLOWER COMPANY 2606A PT510 FOXBORO IGP20-T22821F-M1L1 GAC-501-GAC-503 TIGG N-4000-PD6 PP2540P25-C50 SIEMENS FB-2000 PA500 AB GOULDS 15T1D4E4 PT510 BADGER 1*MAGNETOFLOW PP2640P25-C50 SIEMENS FB-2			
P-400 MOYNO 33152 PF-400 ROSEDALE 8-30 F410 SNYDER INDUSTRIES 800000N P-410AB GOULDS 1ST1D4E4 F17-10 BADGER 1'MAGNETOFLOW PF1-410 FOXBORO IGP10-72201F-MIL1 PF-410AB ROSEDALE 8-30 MV-410 AB/C/D ASAHI 3730020 PF1-420 FOXBORO IGP10-72201F-MIL1 P-420 GOULDS IST2C4A4 DUCT HATER INDEECO QUZ TT-500 FOXBORO RT171WCGNAF-L1 AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 PT1500 SIERAA 66020.22821F-MIL1 AGC-501-GAC-503 TIGG N-4000-PDB PP2-504 GOULDS IST1D4E4 PT-510 FOXBORO IGP10-72201F-MIL1 PP2-505 SIENENS FB-2000 PP2-504 GOULDS IST1D4E4 PT-510 FOXBORO IGP10-72201F-MIL1 M-500 GOULDS IST1D4E4			
PF-400 ROSEDALE 8:30 T-410 SNYDER INDUSTRIES 8080000N P-410AB GOULDS 151104E4 BADGER 1'MAGNETOFLOW PT-410 PT-410 BADGER 1'MAGNETOFLOW PF-4104 POX80RO IGP1-72201F-MML1 PF-410AB ROSEDALE 8:30 MV-410 ABIC/D ASAHI 3730020 PT-420 FOX80RO IGP10-72201F-MIL1 P-420 GOULDS 15172444 DUCT HEATER INDEECO QUZ TT-500 FOX80RO RETTIS-TIWCONAF-L1 AS-500 NEW YORK BLOWER COMPANY 2606A PT-510 FOX80RO IGP2-722821F-MIL1 GAC-501-GAC-503 TIGG N-4000-PDB PP2 504-PP2-505 SIEMENS FB-2000 PA0AB GOULDS 1511044 MV-500 HAYWARD SERIES EM JELECTRONIC ACTUATOR MV-501 BADGER 1'MAGNETOFLOW PT-522 FOX80RO IGP1-72201F-MIL1 MV-500 HAYWARD			
T-410 SNYDER INDUSTRIES 8060000H P-410AB GOULDS 15110444 FT-410 BADGER 1*MGNETOFLOW PF1-410 FOXBORO IGPI0-T2201F-MIL1 PF-410AB ROSEDALE 8-30 MV-410 AB/CD ASAHI 3730020 PF1-420 FOXBORO IGPI0-T2201F-MIL1 PF-420 GOULDS 15T2C4A4 DUCT HEATER INDEECO QUZ TT-500 FOXBORO RTT-T1WCONAF-L1 AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 FT-500 SIERRA 6205-L080HER2/4DD0 B-500 NEW YORK BLOWER COMPANY 2206A PT-510 FOXBORO IGP20-T2281F-MIL1 GAC-501-GAC-503 TIGG N-4000-PDB PT-520 SIEMENS FB-2000 PF2504-PF2-005 SIEMENS FB-2000 PF300 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR </td <td></td> <td></td> <td></td>			
P-410AB GOULDS 151104E4 FIT-410 BADGER 1* MAGNETOFLOW PFT-410 FOXBORO IGP10-T2201F-M1L1 PF-410AB ROSEDALE B-30 WV-410 ABC/D ASAHI 3730020 PT-420 FOXBORO IGP10-T2201F-M1L1 P-420 GOULDS 1ST2C4A4 DUCT HEATER INDECCO QUZ DUCT HEATER INDECO QUZ S500 NEEP SYSTEMS SHALLOWTRAY MODEL 2660 FT-500 SIERRA 6202-L06M1EN2V4DD0 B-500 NEW YORK BLOWER COMPANY 2666A PT-510 FOXBORO IGP10-T222E1F-M1L1 GAC-501-GAC-503 TIGG N-4000-PDB PF2540PP2-505 SIEMENS FD-2000 P-500 AB GOULDS 151104E4 MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR <td></td> <td></td> <td></td>			
FIT-410 BADGER 1* MAGNETOFLOW PIT-410 FOXBORO IOPIO-T2201F-MIL1 PF410A/B ROSEDALE 8-30 MV-410 A/BC/D ASAHI 3730020 PIT-420 FOXBORO IGPI0-T2201F-MIL1 P-420 GOULDS 1ST2C4A4 DUCT HEATER INDEECO QUZ TT-500 FOXBORO RITI-51'WCONAFL-11 AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2660 FIT-500 SIERRA 6202-L06M1EN2V4DD0 8-600 NEW YORK BLOWER COMPANY 2006A ACx-501 - GAC-503 TIGG N-4000-PDB PPZ-505 SIEMENS FB-2000 PS2604 - PPZ-505 SIEMENS FB-2000 PS200 AB GOULDS 1ST104E4 PFT-510 BADGER 1* MAGNETOFLOW PF300 AB GOULDS 1ST104E4 PF7-520 FOXBORO IGP10-T2201F-M1L1 MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR <			
PIT-410 FOXBORO IGP10-T22D1F-M1L1 PF-410A/B ROSEDALE 8-30 PF-410A/B ROSEDALE 8-30 PF-410A/B ASAHI 3730020 PIT-420 FOXBORO IGP10-T22D1F-M1L1 P420 GOULDS 1ST2C4A4 DUCT HEATER INDEECO QUZ DT-500 RT15-T1WCQNAF-L1 SA5-500 SA5-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 FIT-500 SIERRA 620S-L06M1EN2V4DD0 B-600 NEW YORK BLOWER COMPANY 2606A PTF-510 FOXBORO IGP20-T22R1F-M1L1 GAC-501-GAC-503 TIGG N-4000-PDB PPZ-504PPZ-505 SIEMENS FB-2000 P>500 AB GOULDS IST11M44 W-510 BADGER 1' MAGNETOFLOW PT-520 FOXBORO IGP10-T22D1F-M1L1 W-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601-GAC-602 SIEMENS PV-2000 FT-800 BADGER 1' MAGNETOFLOW P			
NV-410 A/B/C/D ASAHI 3730020 PIT-420 FOXBORO IGP10-T22D1F-M1L1 PP420 GOULDS 11ST2C4A4 DUCT HEATER INDEECO QUZ TT-500 FOXBORO RT15-T1WCONAF-L1 A6-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 FIT-500 SIERRA 6205-L08M1EN2VADD0 B-500 NEW YOR BLOWER COMPANY 2506A PT-510 FOXBORO IGP20-T22B21F-M1L1 GAC-501-GAC-503 TIGG N-4000-PDB PP2-504-PP2-505 SIEMENS FB-2000 P-500 A/B GOULDS 1511D4E4 FIT-510 BADGER 1*MACNETOFLOW PT-520 FOXBORO IGP10-T22D1F-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601-GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1*MACNETOFLOW P-800 GOULDS 2571E4E4 F-800 GOULDS 25716 FIT-800 GADGER 1*MACNETOFLOW P-810<	PIT-410		
PIT-420 FOXBORO IGP10-T22D1F-M1L1 P-420 GOULDS 1ST2C4A4 DUCT HEATER INDEECO QUZ TT-500 FOXBORO RTT15-TIWCONAF-L1 AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 FT-500 SIERRA 6205-LOMEIN2V4DD0 B-500 NEW YORK BLOWER COMPANY 2606A PIT-510 FOXBORO IGG2 AC-501-GAC-503 TIGG N-4000-PDB PP2-504-PP2-505 SIEMENS FB-2000 P-500 A/B GOULDS 1ST104E4 PTF-510 BADGER 1*MAGNETOFLOW PF300 A/B GOULDS 1ST104E4 PT-520 FOXBORO IGP10-T22D1F-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 BADGER 1* MAGNETOFLOW P-800 GOULDS 2ST164E4 T-800 GOULDS 2ST164E4 T-800 GOULDS 1ST104E4 FT-800 GOULDS 1ST104E4 T-800 GOULDS	PF-410A/B	ROSEDALE	8-30
P-420 GOULDS 1ST2C4A4 DUCT HEATER INDEECO QUZ TF-500 FOXBORO RTIT5-TIWCQNAF-L1 AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 SIERRA 620S-L06M1ERV2V4DD0 B-500 NEW YORK BLOWER COMPANY 2606A PIT-510 FOXBORO IGP20-T22821F-M1L1 GAC-601-GAC-503 TIGG N-4000-PDB PF25.04 FOXBORO IGP20-T22821F-M1L1 GAC-601-GAC-503 TIGG N-4000-PDB PF25.04 FOXBORO IGP20-T22821F-M1L1 GAC-601-GAC-503 TIGG N-4000-PDB PF25.04 FOXBORO IST104E4 FIT-510 BADGER 1* MAGNETOFLOW PF-520 FOXBORO IGP10-T22D1F-M1L1 MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR FIT-800 GOULDS 2511E4E4 T-800 GOULDS 2511E4E4	MV-410 A/B/C/D	ASAHI	3730020
DUCT HEATER INDEECO QUZ TT-500 FOXBORO RTT15-T1WCGNAF-L1 AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 FIT-500 SIERRA 620S-L06M1EN2V4DD0 B-500 NEW YORK BLOWER COMPANY 2606A PT-510 FOXBORO IGP2-T22821F-M1L1 GAC-501GAC-503 TIGG N-4000-PDB PPZ-504PPZ-505 SIEMENS FB-2000 PP25-04-PPZ-505 SIEMENS FB-2000 PP25-04-PPZ-505 SIEMENS FB-2000 PP25-04-PPZ-505 SIEMENS FB-2000 PP5-500 FOXBORO IGP10-T2201F-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 BADGER 1*MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 SUYDER INDUSTRIES 1831000N LE/LT-800 GEMS L3750 LE/LT-800 GOULDS 1	PIT-420	FOXBORO	IGP10-T22D1F-M1L1
FOXBORO RTT15-T1WCQNAF-L1 AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 FIT-500 SIERRA 620S-L06M1EXY4DD0 B-500 NEW YORK BLOWER COMPANY 2606A PTT-510 FOXBORO IGP20-T22821F-M1L1 GAC-501-GAC-503 TIGG N-4000-PDB PF2504-PP2-505 SIEMENS FB-2000 P-500 A/B GOULDS 1ST1D4E4 FT-510 BADGER 1* MAGNETOFLOW PF-504-PP2-505 SIEMENS FB-2000 P-500 A/B GOULDS 1ST1D4E4 MY-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 BADGER 1* MAGNETOFLOW PT-800 GOULDS 2ST1E4E4 T-800 GOULDS 2ST1E4E4 T-800 GEMS LS760 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B	P-420		
AS-500 NEEP SYSTEMS SHALLOWTRAY MODEL 2650 FIT-500 SIERRA 6205-L06MTEN2V4DD0 B-500 NEW YORK BLOWER COMPANY 2606A PIT-510 FOXBORO IGP20-T22821F-M1L1 GAC-501-GAC-503 TIGG N-4000-PDB PP2-504-PP2-505 SIEMENS FB-2000 P-500 AB GOULDS 1ST1D4E4 FIT-510 BADGER 1" MAGNETOFLOW PP2-504-PP2-505 FOXBORO IGP10-T2201F-M1L1 WV-500 FOXBORO IGP10-T2201F-M1L1 WV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601-GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1" MAGNETOFLOW P-800 GOULDS 25750 LE/LT-800 GEMS LS750 LE/LT-800 GULDS 1ST1044 FIT-900 GOULDS 1ST1044 FIT-900 GOULDS 1ST1044 FIT-900 GOULDS 1ST1044			
FIT-500 SIERRA 620S-L06M1EN2V4DD0 B-500 NEW YORK BLOWER COMPANY 2606A PIT-510 FOXBORO IGP20-T22821F-M1L1 GAC-501GAC-503 TIGG N-4000-PDB PPZ-504-PPZ-505 SIEMENS FEb-2000 P-500 A/B GOULDS 1ST1D4E4 FIT-510 BADGER 1'MAGNETOFLOW PIT-520 FOXBORO IGP10-T22D1F-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1'MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 BADGER 1'MAGNETOFLOW P-810 GOULDS 2ST1E4E4 P-810 GOULDS 1ST104E4 FIT-900 GOULDS 1ST104E4 FIT-900 GOULDS 1ST104E4 FIT-900 GOULDS 1ST104E4 FIT-900 FOXBORO 8701TPH P-900 <			
B-500 NEW YORK BLOWER COMPANY 2606A PIT-510 FOXBORO IGP20-T22B21F-M1L1 GAC-503 TIGG N-4000-PDB PPZ-504-PPZ-505 SIEMENS FB-2000 P-500 A/B GOULDS 1ST1D4E4 FIT-510 BADGER 1*MAGNETOFLOW PIT-520 FOXBORO IGP10-T22D1F-M1L1 WV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601-GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1*MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 GOULDS 2ST1E4E4 T-800 GOULDS 2ST1E4E4 T-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 ADGER 1*MAGNETOFLOW ATT-900 PADGER 1*MAGNETOFLOW PROCESS WASH VESSEL EADE GROU			
PIT-510 FOXBORO IGP20-T22B21F-M1L1 GAC-503 TIGG N-4000-PDB PPZ-504PPZ-505 SIEMENS FB-2000 PP500 A/B GOULDS 1ST104E4 FIT-510 BADGER 1* MAGNETOFLOW PT-500 A/B GOULDS IST104E4 FIT-510 BADGER 1* MAGNETOFLOW PT-520 FOXBORO IGP10-T22D1F-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1* MAGNETOFLOW P-800 GOULDS 2ST164E4 T-800 BADGER 1* MAGNETOFLOW P-800 GOULDS 2ST164E4 T-800 SINYDER INDUSTRIES 1831000N LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 15T104E4 FIT-900 BADGER 1* MAGNETOFLOW AT-9000 FOXBORO <td></td> <td></td> <td></td>			
GAC-501GAC-503 TIGG N-4000-PDB PPZ-505 SIEMENS FB-2000 P-500 A/B GOULDS 1ST1D4E4 FIT-510 BADGER 1* MAGNETOFLOW PIT-520 FOXBORO IGP10-T22D1F-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601-GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1* MAGNETOFLOW FIT-800 BADGER 1* MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 SNYDER INDUSTRIES 1831000N LE/LT-800 GEMS LS750 LE/LT-800 GEMS LS760 LE/LT-800 GOULDS 1ST1D4E4 FIT-900 BADGER 1* MAGNETOFLOW P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1* MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS			
PPZ-504PPZ-505 SIEMENS FB-2000 P-500 A/B GOULDS 1ST1D4E4 FIT-510 BADGER 1* MAGNETOFLOW PIT-520 FOXBORO IGP10-T22D1F-MIL1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1* MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 BADGER 1* MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 GEMS LS750 LE/LT-80 GEMS LS750 LE/LT-80 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1* MAGNETOFLOW AT-900 FOXBORO 8701TPH P-900 GOULDS 1ST1D4E4 FIT-900 GOULDS 1ST104E4 HOH-1UH-4, UH-6UH-7 CHROMALOX LU			
FIT-510 BADGER 1" MAGNETOFLOW PIT-520 FOXBORO IGP10-T22D1F-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601-GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1" MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 SNYDER INDUSTRIES 1831000N LSH/LSL-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1" MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 W EF-1 GREENHECK AWB 24A6B UH-55 CHROMALOX	PPZ-504PPZ-505	SIEMENS	FB-2000
PT-520 FOXBORO IGP10-T22DIF-M1L1 MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1" MAGNETOFLOW P-800 GOULDS 2STIE4E4 T-800 SNYDER INDUSTRIES 1831000N LE/LT-800 GEMS LS750 LE/LT-800 GEMS LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1'STID4E4 FIT-900 AGOULDS 1'STID4E4 FIT-900 GOULDS 1'STID4E4 P-820A/B GOULDS 1'STID4E4 P-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-07-21-34 L-1/L-3 UH-10-44 GREENHECK AWB 24A6B UH-5	P-500 A/B	GOULDS	1ST1D4E4
MV-500 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1" MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 SNYDER INDUSTRIES 1831000N LSH/LSL-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1" MAGNETOFLOW P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1" MAGNETOFLOW ATI-900 FOXBORO 8701TPH P-900 GOULDS WE0312M PP-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1-UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36" W X 36" W EF-1 L-1/L-3 GREENHECK AWB 24A6B UH-5 L-12 <t< td=""><td></td><td>BRBOER</td><td></td></t<>		BRBOER	
MV-510 HAYWARD SERIES EMJ ELECTRONIC ACTUATOR GAC-601GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1" MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 SNYDER INDUSTRIES 1831000N LSH/LSL-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1" MAGNETOFLOW P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1" MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36" W X 36" W EF-1 L-1/L-3 GREENHECK AWB 24A6B UH-5 UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN	PIT-520		
GAC-601GAC-602 SIEMENS PV-2000 FIT-800 BADGER 1" MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 SNYDER INDUSTRIES 1831000N LSH/LSL-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1" MAGNETOFLOW FIT-900 BADGER 1" MAGNETOFLOW AlT-900 BADGER 1" MAGNETOFLOW AlT-900 GOULDS 87017PH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
FIT-800 BADGER 1" MAGNETOFLOW P-800 GOULDS 2ST1E4E4 T-800 SNYDER INDUSTRIES 1831000N LSH/LSL-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1" MAGNETOFLOW FIT-900 BADGER 1" MAGNETOFLOW AlT-900 POXOR 8701TPH P-900 GOULDS 8701TPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W 26" W UH-5 CHROMALOX LUH-04-21-34 UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
P-800 GOULDS 2ST1E4E4 T-800 SNYDER INDUSTRIES 1831000N LSH/LSL-800 GEMS LS750 LE/L7-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1" MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36" W X 36" W EF-1 UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
T-800 SNYDER INDUSTRIES 1831000N LSH/LSL-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1STID4E4 FIT-900 BADGER 1" MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1-UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36" W 36" W EF-1 GREENHECK AWB 24A6B UH-5 UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
LSH/LSL-800 GEMS LS750 LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1" MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36" W 36" W EF-1 GREENHECK AWB 24A6B UH-5 UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
LE/LT-800 WIKA LS10 P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1" MAGNETOFLOW AlT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36" W 26" W EF-1 GREENHECK AWB 24A6B UH-5 UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
P-810 DAVEY HS12-40HT1 P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1" MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1-UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H	LE/LT-800		
P-820A/B GOULDS 1ST1D4E4 FIT-900 BADGER 1" MAGNETOFLOW AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H ENC6375DAX, 12"W X 18" H	P-810		
AIT-900 FOXBORO 870ITPH P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H	P-820A/B	GOULDS	1ST1D4E4
P-900 GOULDS WE0312M PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1-UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H	FIT-900		
PROCESS WASH VESSEL EAGLE GROUP 314-16-1-18-R Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36" W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H	AIT-900		
Heating and Ventalation UH-1UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H	P-900		
UH-1-UH-4, UH-6UH-7 CHROMALOX LUH-07-21-34 L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H		EAGLE GROUP	314-16-1-18-R
L-1/L-3 RUSKIN ELC6375DAX, 36"W X 36" W EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H		CLIDOMALOY	
EF-1 GREENHECK AWB 24A6B UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
UH-5 CHROMALOX LUH-04-21-34 L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
L-2 RUSKIN ELC6375DAX, 12"W X 18" H			
	L-2		
	EF-2		


Figures

04/116/2012 SYRACUSE, NY-ENV/CAD-141, DJHOWES B0031174/0000/00001/CDR/31174N01.CDR

PM:D.SAUDA TM:S.BATTAGLIA LYR:ON=*,0FF= 2/13/2013 10:01 AM ACADVER: 18.15 (LMS TECH) LD.G.STEINBERGER PIC.P.FARR 1174P01.dwg LAYOUT 3 SAVED GER EINBE IVCAD 74\000 ≧

PROCESS FLOW DIAGRAM

DEWEY LOEFFEL LANDFILL SUPERFUND SITE NASSAU, NEW YORK

Attachments

Attachment A

Log Sheets and Checklists

DEWEY LOEFFEL LANDFILL SUPERFUND SITE NASSAU, NEW YORK PREVENTATIVE MAINTENANCE CHECKLIST

		Yes	No	Comments
Gravel	Drive and Trails			
1.	Is there evidence of washout, settling, erosion, or obstructions on the gravel drive or trails? If yes, describe.			
2.	Is there evidence of erosion or obstructions which prohibit access to the extraction wells? If yes, describe.			
3.	Is any maintenance of the treatment building gravel drive or trails to extraction wells required? If yes, describe.			
Securit	y Fences			
1.	Are there any compromised areas of the chain link fence? If yes, describe location(s).			
2.	Are gates operating properly? If no, describe.			
3.	Is barbed wire present and intact? If no, describe location(s).			
4.	Are locking mechanisms present and functional? If no, replace as necessary?			
5.	Is any maintenance necessary? If yes, describe.			
Treatm	ent Building			
1.	Is there evidence of deterioration of the building materials? If yes, describe.			
2.	Are there significant leaks in the roofing/wall system? If yes, describe.			
3.	Are locking mechanisms functional and effective? If no, describe.			
4.	Is there any evidence of vandalism? If yes, describe.			
5.	Is there evidence of rodent/pest infestation? If yes, describe.			
6.	Is there any evidence of leakage or damages/corroded piping and valves on the interior of the treatment building? If yes, describe.			
7.	Is there evidence of cracked wire insulation or corrosion/rust on any electrical connections/wiring? If yes, describe.			
8.	Is signage present and legible? If no, describe.			
9.	Is any maintenance necessary? If yes, describe.			

Well Va	aults	
1.	Is there evidence of vandalism/tampering? If yes, describe.	
2.	Is there evidence of deterioration of the concrete top (e.g. spalling concrete) and the metal door? If yes, describe.	
3.	Are locking mechanisms functional and effective on any of the extraction well vaults? If no, describe.	
4.	Is signage present and legible? If no, describe.	
5.	Is any maintenance necessary? If yes, describe.	
Ground	lwater Extraction System	
1.	Is there evidence of leaking and/or deterioration at any of the extraction wells? If yes, describe.	
2.	Is there any evidence of vandalism at any of the extraction well compounds? If yes, describe.	
	Is there evidence of corrosion, flaking, and leakage on any visible piping, valves, and couplings? If yes, describe.	
4.	Is there evidence of cracked wire insulation or corrosion/rust on any visible electrical connections/wiring? If yes, describe.	
5.	Is there evidence of leaking and/or deterioration on any of the extraction well pumps? If yes, describe.	
6.	Are the extraction well pumps operating properly? If no, describe.	
7.	Is any maintenance of the groundwater extraction system required? If yes, describe.	
Leacha	te Collection System	
1.	Is there evidence of leaking and/or deterioration at the vault? If yes, describe.	
2.	Is there any evidence of corrosion, flaking, and/or leakage on any visible piping, valves and/or couplings? If yes, describe.	
3.	Is there evidence of cracked wire insulation or corrosion/rust on any electrical connections/wiring? If yes, describe.	
4.	Is any maintenance necessary? If yes, describe.	

Treatm	ent System	
1.		
	piping, valves, and couplings? If yes,	
	describe.	
2.	Is there sediment buildup in the equalization	
	tank? If yes, describe.	
3.	Are all motorized control valves operational?	
	If no, describe.	
4.	Are all pumps and blowers operational? If no, describe.	
5.	Is the air stripper unit operational? If no describe.	
6.	Is the duct heater operational? If no,	
	describe.	
7.	Are the exhaust fan/louvers operational? If	
	no, describe.	
8.	Are the heaters operational? If no, describe.	
Genera	al (performed annually)	
1.	Check calibration of all pressure transmitters.	
2.	Check calibration of all flow transmitters.	
3.	Check calibration of all temperature	
	transmitters.	
4.	Check calibration of all level transmitters	
Genera	al Comments:	
Date:		
Operat	or:	 (Print)

MAINTENANCE LOG SHEET

Date: _____

Operator: _____

Use this form to document maintenance performed at the site or on any system components. Also indicate who performed the work (operator, subcontractor, etc.).

Date **Description of Work Done** _ ____

DEWEY LOFFEL LANDFILL SUPERFUND SITE NASSAU, NEW YORK OPERATIONS LOG SHEET

			Date								1	
			Time									
Parameter	Units	Equipment Tag	Operator Initials									
Extraction Wells					-	-		-				
Running	-	P-101		Yes/No								
Running	-	P-102		Yes/No								
Running	-	P-103		Yes/No								
Running	-	P-104		Yes/No								
Running	-	P-105		Yes/No								
Running	-	P-106		Yes/No								
Running	-	P-107		Yes/No								
Running	-	P-108		Yes/No								
Totalized Flow	gallons	FIT-101										
Totalized Flow	gallons	FIT-102										
Totalized Flow	gallons	FIT-103										
Totalized Flow	gallons	FIT-104										
Totalized Flow	gallons	FIT-105										
Totalized Flow	gallons	FIT-106										
Totalized Flow	gallons	FIT-107										
Totalized Flow	gallons	FIT-108										
Leachate Underground	d Storage	Tank (on landfill)			-	-		-				
Pump Running	-	P-001		Yes/No								
Totalized Flow	gallons	FIT-001										
Leachate Tank (in trea	itment buil	ding)			-	-		-				
Pump Running	-	P-100		Yes/No								
Totalized Flow	gallons	FIT-100										
Level	feet	LE/LT-100										
Equalization Tank					-	-		-			_	
Pump Running	-	P-200A/B		Yes/No								
Level	feet	LE/LT-200										
Discharge Pressure	psi	PI-200A/B										
Totalized Flow	gallons	FIT-200										
Fixed-Film Bioreactor					-	-		-				
Blower Running	-	B-300		Yes/No								
Nutrients Needed	-	P-300P-301		Yes/No								
рН	SU	AE-300										
Dissolved Oxygen	mg/L	AE-310										
Temperature	°C	TT-300										
Air Flow Rate	cfm	FIT-300A/B/C										
Air Pressure	psi	PIT-300C										

DEWEY LOFFEL LANDFILL SUPERFUND SITE NASSAU, NEW YORK OPERATIONS LOG SHEET

Ole siff an												
Clarifier												
Pump Running	-	P-400		Yes/No								
Discharge Pressure	psi	PI-400										
Clarifier Pump Station	1 1				[[-
Pump Running	-	P-410A/B		Yes/No								
Pump Running	-	P-420		Yes/No								
Level	feet	LE/LT-410										
Totalized Flow	gallons	FIT-410										
Bag Filter Housings	1 1		[]									
Changed Bags	-	PF-410A/B		Yes/No								
Inlet Pressure	psi	PIT-410										
Outlet Pressure	psi	PIT-420										
Air Stripper					n							
Blower Running	-	B-500		Yes/No								
Pump Running	-	P-500A/B		Yes/No								
Inlet Air Temperature	°C	T-500										
Totalized Flow	gallons	FIT-510										
Vapor-Phase GAC and	I PPZ				-					-	-	
Air Flow	cfm	FIT-500										
Inlet Pressure	psi	PIT-510										
Discharge Pressure	psi	PI-505										
Liquid-Phase GAC					-					-	-	
Discharge Pressure	psi	PIT-520										
Discharge Pressure	psi	PI-800										
Backwash Supply Tan	k				-					-	-	
Pump Running	-	P-800		Yes/No								
Pump Running	-	P-810		Yes/No								
Totalized Flow	gallons	FIT-800										
Level	feet	LE/LT-800										
System Effluent												
Pump Running	-	P-820A/B		Yes/No								
Discharge Pressure	psi	PI-820A/B										
Totalized Flow	gallons	FIT-900										
pН	SU	AIT-900										
Building Sump												
Pump Running	-	P-900		Yes/No								
General Comments				•	•	• •		•				

ARCADIS

Attachment B

Effluent Limitations and Monitoring Requirements

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning **March 1, 2013** and lasting until **February 28, 2018** the discharges from the treatment facility to **Valatie Kill**, water index number H-204-2-7, Class C(T), shall be limited and monitored by the operator as specified below:

Outfall Number and Parameter	Discharge Limit	tations	Units	Minimum Monitoring Requirements		
Outrain Number and Farameter	Monthly Avg.	Daily Max	Units	Measurement Frequency	Sample Type	
Outfall 002- Treated Groundwater F	Remediation Discharge	to the Valatie K	ill			
Flow	Monitor	36,000	GPD	Continuous	Meter	
pH (range)	6.5 to 8.5		SU	Weekly	Grab	
Solids, Total Suspended	Monitor	20	mg/l	One/2 weeks	Composite	
Solids, Total Dissolved	Monitor	2700	mg/l	One/2 weeks	Composite	
Dissolved Oxygen	Monitor	5.0 minimum	mg/l	Weekly	Grab	
BOD5	Monitor	30	mg/l	One/2 weeks	Composite	
Ammonia, as NH3	Monitor	8.1	mg/l	One/2 weeks	Composite	
Oil & Grease	Monitor	15	mg/l	One/2 weeks	Grab	
Aluminum, Total	2000	4000	ug/l	One/2 weeks	Composite	
Arsenic, Total	50	100	ug/l	One/2 weeks	Composite	
Cobalt, Total	Monitor	27	ug/l	One/2 weeks	Composite	
Copper, Total	Monitor	86	ug/l	One/2 weeks	Composite	
Iron, Total	2000	4000	ug/l	One/2 weeks	Composite	
Lead, Total	Monitor	51	ug/l	One/2 weeks	Composite	
Manganese, Total	1000	2000	ug/l	One/2 weeks	Composite	
Mercury, Total (7)	Monitor	50	ng/l	Quarterly	Grab	
Phosphorus, Total	Monitor	1000	ug/l	One/2 weeks	Composite	
Selenium, Total	Monitor	25	ug/l	One/2 weeks	Composite	
Silver, Total	Monitor	22	ug/l	One/2 weeks	Composite	
Thallium, Total	Monitor	43	ug/l	One/2 weeks	Composite	
Vanadium, Total	Monitor	76	ug/l	One/2 weeks	Composite	

Zinc, Total	Monitor	400	ug/l	One/2 weeks	Composite
Acetone	Monitor	280	ug/l	Weekly	Grab
Benzene	Monitor	5.0	ug/l	Weekly	Grab
Bis(2-Ethylhexyl)phthalate	Monitor	5.0	ug/l	Weekly	Grab
2-Butanone	Monitor	280	ug/l	Weekly	Grab
Chlorobenzene	Monitor	10	ug/l	Weekly	Grab
Chloroethane	Monitor	10	ug/l	Weekly	Grab
Chloroform	Monitor	50	ug/l	Weekly	Grab
Chloromethane	Monitor	10	ug/l	Weekly	Grab
2-Chlorophenol	Monitor	Monitor	ug/l	Weekly	Grab
Sum of o, m, & p-Dichlorobenzene	Monitor	27	ug/l	Weekly	Grab
1,1 Dichloroethane	Monitor	10	ug/l	Weekly	Grab
1,2 Dichloroethane	Monitor	10	ug/l	Weekly	Grab
1,1 Dichloroethene	Monitor	10	ug/l	Weekly	Grab
cis 1,2 Dichloroethene	Monitor	10	ug/l	Weekly	Grab
trans 1,2 Dichloroethene	Monitor	10	ug/l	Weekly	Grab
2,4-Dimethylphenol	Monitor	10	ug/l	Weekly	Grab
Ethylbenzene	Monitor	5.0	ug/l	Weekly	Grab
Isopropylbenzene	Monitor	14	ug/l	Weekly	Grab
Methylene Chloride	Monitor	10	ug/l	Weekly	Grab
4-Methyl-2-pentanone	Monitor	140	ug/l	Weekly	Grab
2-Methylphenol	Monitor	10	ug/l	Weekly	Grab
Sum of 3- & 4-Methylphenol	Monitor	10	ug/l	Weekly	Grab
Pentachlorophenol	Monitor	Monitor	ug/l	Weekly	Grab
Phenol	Monitor	10	ug/l	Weekly	Grab
Phenols, Total Chlorinated (9)	Monitor	5.4	ug/l	Weekly	Grab
Phenols, Total Unchlorinated (10)	Monitor	27	ug/l	Weekly	Grab
1,1,2,2 Tetrachloroethane	Monitor	50	ug/l	Weekly	Grab

Tetrachloroethene	5.4	10	ug/l	Weekly	Grab
Toluene	Monitor	5.0	ug/l	Weekly	Grab
1,2,4 Trichlorobenzene	Monitor	10	ug/l	Weekly	Grab
1,1,1 Trichloroethane	Monitor	10	ug/l	Weekly	Grab
1,1,2 Trichloroethane	Monitor	10	ug/l	Weekly	Grab
Trichloroethylene	Monitor	10	ug/l	Weekly	Grab
Trichlorofluoromethane	Monitor	10	ug/l	Weekly	Grab
Vinyl Chloride	Monitor	10	ug/l	Weekly	Grab
Sum of o, m, & p-Xylene	Monitor	15	ug/l	Weekly	Grab
Aroclor 1221 (7)	Monitor	200	ng/l	One/2 weeks	Composite
Aroclor 1242 (7)	Monitor	200	ng/l	One/2 weeks	Composite
Aroclor 1248 (7)	Monitor	200	ng/l	One/2 weeks	Composite
Aroclor 1254 (7)	Monitor	200	ng/l	One/2 weeks	Composite
Aroclor 1260 (7)	Monitor	200	ng/l	One/2 weeks	Composite
beta-BHC	Monitor	38	ng/l	One/2 weeks	Composite
delta-BHC	Monitor	43	ng/l	One/2 weeks	Composite
alpha-Chlordane	Monitor	50	ng/l	One/2 weeks	Composite
gamma-Chlordane	Monitor	50	ng/l	One/2 weeks	Composite
4-4' - DDE	Monitor	10	ng/l	One/2 weeks	Composite
Dieldrin	Monitor	5.0	ng/l	One/2 weeks	Composite
Endosulfan II	Monitor	49	ng/l	One/2 weeks	Composite
Endosulfan Sulfate	Monitor	200	ng/l	One/2 weeks	Composite
Heptachlor	Monitor	10	ng/l	One/2 weeks	Composite
Methoxychlor	Monitor	400	ng/l	One/2 weeks	Composite
WET - Acute Invertebrate		0.3	TUa	Quarterly	see footnote@
WET - Acute Vertebrate		0.3	TUa	Quarterly	see footnote@
WET - Chronic Invertebrate		5.4	TUc	Quarterly	see footnote@
WET - Chronic Vertebrate		5.4	TUc	Quarterly	see footnote@

Site Number 4-42-006 Page 8 of 12

@ - Whole Effluent Toxicity (WET) Testing for Outfall 002:

<u>Testing Requirements</u> - WET testing shall consist of **Chronic only**. WET testing shall be performed in accordance with 40 CFR Part 136 and TOGS 1.3.2 unless prior written approval has been obtained from the Department. The test species shall be *Ceriodaphnia dubia* (water flea - invertebrate) and *Pimephales promelas* (fathead minnow - vertebrate). Receiving water collected upstream from the discharge should be used for dilution. All tests conducted should be static-renewal (two 24 hr composite samples with one renewal for Acute tests and three 24 hr composite samples with two renewals for Chronic tests). The appropriate dilution series bracketing the IWC and including one exposure group of 100% effluent should be used to generate a definitive test endpoint, otherwise an immediate rerun of the test is required. WET testing shall be coordinated with the monitoring of chemical and physical parameters limited by this authorization so that the resulting analyses are also representative of the sample used for WET testing. The ratio of critical receiving water flow to discharge flow (i.e. dilution ratio) is 2.7:1 for acute, and 5.4:1 for chronic.

<u>Monitoring Period</u> - WET testing shall be performed at the specified sample frequency **for the duration of the discharge authorization.**

<u>Reporting</u> - Toxicity Units shall be calculated and reported as follows: TUa = (100)/(48 hr LC50) or (100)/(48 hr EC50) (note that Acute data is generated by both Acute and Chronic testing) and TUc = (100)/(NOEC) when Chronic testing has been performed or $TUc = (TUa) \times (10)$ when only Acute testing has been performed and is used to predict Chronic test results, where the 48 hr LC50 or 48 hr EC50 and NOEC are expressed in % effluent. This must be done for both species and using the Most Sensitive Endpoint (MSE) or the lowest NOEC and corresponding highest TUc. Report a TUa of 0.3 if there is no statistically significant toxicity in 100% effluent as compared to control.

The complete test report including all corresponding results, statistical analyses, reference toxicity data, daily average flow at the time of sampling and other appropriate supporting documentation, shall be submitted within 60 days following the end of each test period to the Toxicity Testing Unit. A summary page of the test results for the invertebrate and vertebrate species indicating TUa, 48 hr LC50 or 48 hr EC50 for Acute tests and/or TUc, NOEC, IC25, and most sensitive endpoints for Chronic tests, should also be included at the beginning of the test report.

<u>WET Testing Exceedances</u> - If a limit is exceeded then the Department may require the authorized discharger to conduct additional WET testing including Acute and/or Chronic tests. Additionally, the authorized discharger may be required to perform a Toxicity Reduction Evaluation (TRE) in accordance with Department guidance. If such additional testing or performance of a TRE is necessary, the authorized discharger shall be notified in writing by the Department. The written notification shall include the reason(s) why such testing or a TRE is required.

Site Number 4-42-006 Page 9 of 12

Additional Conditions:

(1) Discharge is not authorized until such time as an engineering submission showing the method of treatment is approved by the Department. The discharge rate may not exceed the effective or design treatment system capacity. All monitoring data, engineering submissions and modification requests must be submitted to:

Mike Komoroske, Section Chief NYSDEC, 625 Broadway, Albany, New York 12233-7016 518-402- 9802

With a copy sent to: Andrea Dzierwa, Regional Water Engineer NYSDEC, 1150 N. Westcott Road, Schenectady, NY 12306-2014 518-357-2045

- (2) Only site generated wastewater is authorized for treatment and discharge.
- (3) Authorization to discharge is valid only for the period noted above but may be renewed if appropriate. A request for renewal must be received 6 months prior to the expiration date to allow for a review of monitoring data and reassessment of monitoring requirements.
- (4) Both concentration (mg/l, μg/l or ng/l) and mass loadings (lbs/day) must be reported to the Department for all parameters except flow and pH. Should the laboratory results show non-detect for any of the listed parameters, the mass loadings for those parameters are not required to be reported.
- (5) Any use of corrosion/scale inhibitors, biocidal-type compounds, or other water treatment chemicals used in the treatment process must be approved by the department prior to use.
- (6) This discharge and administration of this discharge must comply with the substantive requirements of 6NYCRR Part 750.
- (7) The mercury minimization program and PCB minimization program requirements specified below must be complied with.
- (8) For the purposes of this authorization, a composite sample shall be composed of a minimum of eight grab samples at a constant sample volume collected at least fifteen minutes apart.
- (9) Sum all detected chlorinated phenolic compounds.
- (10) Sum all detected unchlorinated phenolic compounds.
- (11) Sufficiently sensitive analytical methods, as defined by USEPA, must be used for monitoring purposes.

MERCURY MINIMIZATION PROGRAM

1. <u>General</u> - The authorized discharger shall develop, implement, and maintain a Mercury Minimization Program (MMP) for those outfalls which have mercury effluent limits. The MMP is required because the 50 ng/L effluent limit exceeds the statewide water quality based effluent limit (WQBEL) of 0.70 nanograms/liter (ng/L) for Total Mercury. The goal of the MMP is to reduce mercury effluent levels in pursuit of the WQBEL. Note – the mercury-related requirements in this authorization conform to the mercury Multiple Discharge Variance specified in NYSDEC policy *DOW 1.3.10*.

2. <u>MMP Elements</u> - The MMP shall be documented in narrative form and shall include any necessary drawings or maps. Other related documents already prepared for the facility may be used as part of the MMP and may be incorporated by reference. As a minimum, the MMP shall include an on-going program consisting of: periodic monitoring; an acceptable control strategy which will become enforceable under this authorization; and, submission of periodic status reports.

A. <u>Monitoring</u> - The authorized discharger shall conduct periodic monitoring designed to quantify and, over time, track the reduction of mercury. Wastewater treatment plant influents and effluents, and other outfalls shall be monitored in accordance with the minimum frequency specified on the mercury limits page. Additionally, key locations in the wastewater and/or stormwater collection systems, and known or potential mercury sources, including raw materials, shall be monitored at the above frequency during the first year of the MMP. Monitoring of key locations and known/potential sources may be reduced during subsequent years if downstream outfalls have maintained mercury levels less than 50 ng/l during the previous year. Additional monitoring must be completed as may be required elsewhere in this authorization or upon Department request. Monitoring shall be coordinated so that the results can be effectively compared between internal locations and final outfalls.

All authorization-related wastewater and stormwater mercury compliance point (outfall) monitoring shall be performed using EPA Method 1631. Use of EPA Method 1669 during sample collection is recommended. Unless otherwise specified, all samples should be grabs. Monitoring at influent and other locations tributary to compliance points may be performed using either EPA Methods 1631 or 245.7. Monitoring of raw materials, equipment, treatment residuals, and other non-wastewater/non-stormwater substances may be performed using other methods as appropriate.

B. <u>Control Strategy</u> - An acceptable control strategy is required for reducing mercury discharges via costeffective measures, which may include, but is not limited to: source identification; replacement of mercury-containing equipment, materials, and products with mercury-free alternatives where environmentally preferable; more stringent control of tributary waste streams; remediation; and/or installation of new or improved treatment facilities. Required monitoring shall also be used, and supplemented as appropriate, to determine the most effective way to operate the wastewater treatment system(s) to ensure effective removal of mercury while maintaining compliance with other requirements.

C. <u>Annual Status Report</u> - An annual status report shall be submitted to the Regional Water Engineer and to the DER summarizing: (a) all MMP monitoring results for the previous year; (b) a list of known and potential mercury sources; (c) all action undertaken pursuant to the strategy during the previous year; (d) actions planned for the upcoming year; and, (e) progress toward the goal. The annual status reports are due on January 31 for the prior calendar year, and the first such report is due on January 31 in the year following USEPA approval to start discharge from the treatment system to surface water. A file shall be maintained containing all MMP documentation which shall be available for review by NYSDEC representatives. Copies shall be provided upon request.

3. <u>MMP Modification</u> - The MMP shall be modified whenever: (a)changes at the facility or within the collection system increase the potential for mercury discharges; (b) actual discharges exceed 50 ng/L; (c) a letter from the Department identifies inadequacies in the MMP; or (d) pursuant to modification of this authorization.

PCB MINIMIZATION PROGRAM

- 1. <u>General</u> The authorized discharger shall develop, implement, and maintain a Polychlorinated Biphenyl Minimization Program (PCBMP) for those outfalls which have effluent limits for PCBs (including Aroclors). The PCBMP is required because the 200 nanograms/liter (ng/L) effluent limit per PCB Aroclor exceeds the water quality based effluent limit (WQBEL) of 0.001 ng/L for Total PCBs. The goal of the PCBMP is to reduce PCB effluent levels in pursuit of the WQBEL. The basis for the 200 ng/L per Aroclor limit is the EPA Method 608 analytical Minimum Level for Aroclors.
- 2. **PCBMP Elements** The PCBMP shall be documented in narrative form and shall include any necessary drawings or maps. Other related documents already prepared for the facility may be used as part of the PCBMP and may be incorporated by reference. As a minimum, the PCBMP shall include an on-going program consisting of: periodic monitoring; an acceptable control strategy which will become enforceable under this authorization; and, submission of periodic status reports.

A. <u>Monitoring</u> - The authorized discharger shall conduct periodic monitoring designed to quantify and, over time, track the reduction of PCBs. Wastewater treatment plant influents and effluents, and other outfalls shall be monitored using a congener specific analysis method* at a minimum frequency of quarterly. Key locations in the wastewater and/or stormwater collection systems, and known or potential PCB sources, including raw materials as appropriate, shall be monitored using a congener specific analysis method* at a minimum frequency of semi-annually.

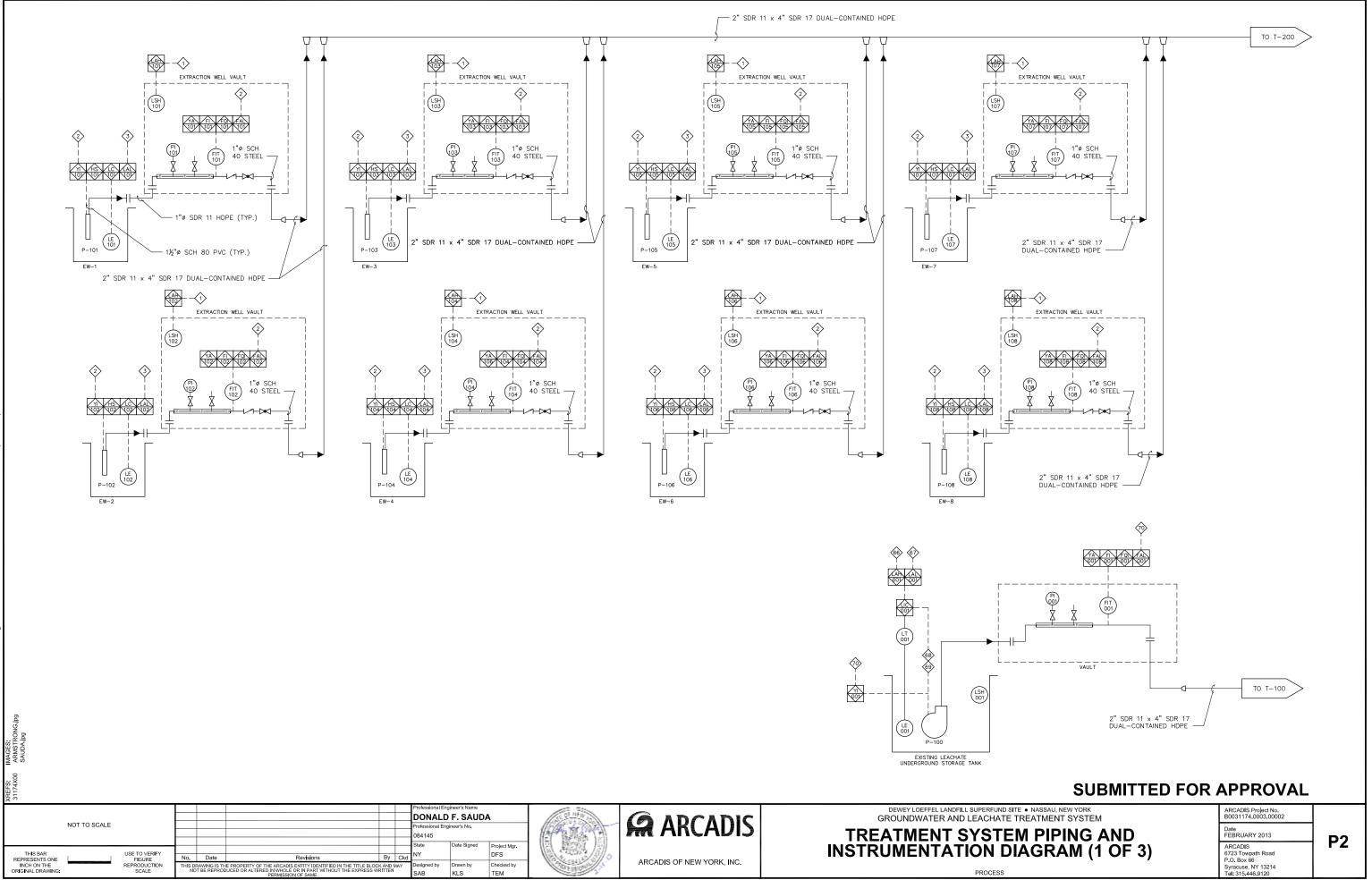
Effluent limit compliance monitoring shall be performed at the frequency specified on the effluent limits page(s) using Method 608. Effluent results from congener analysis required under this PCBMP shall not be used for determining compliance with the 200 ng/L Aroclor limits. Additional monitoring must be completed as may be required elsewhere or upon Department request. Monitoring shall be coordinated so that the results can be effectively: compared between locations; compared between analytical methods; used to identify PCB sources; and, used to gauge the effectiveness of PCB reduction and control efforts.

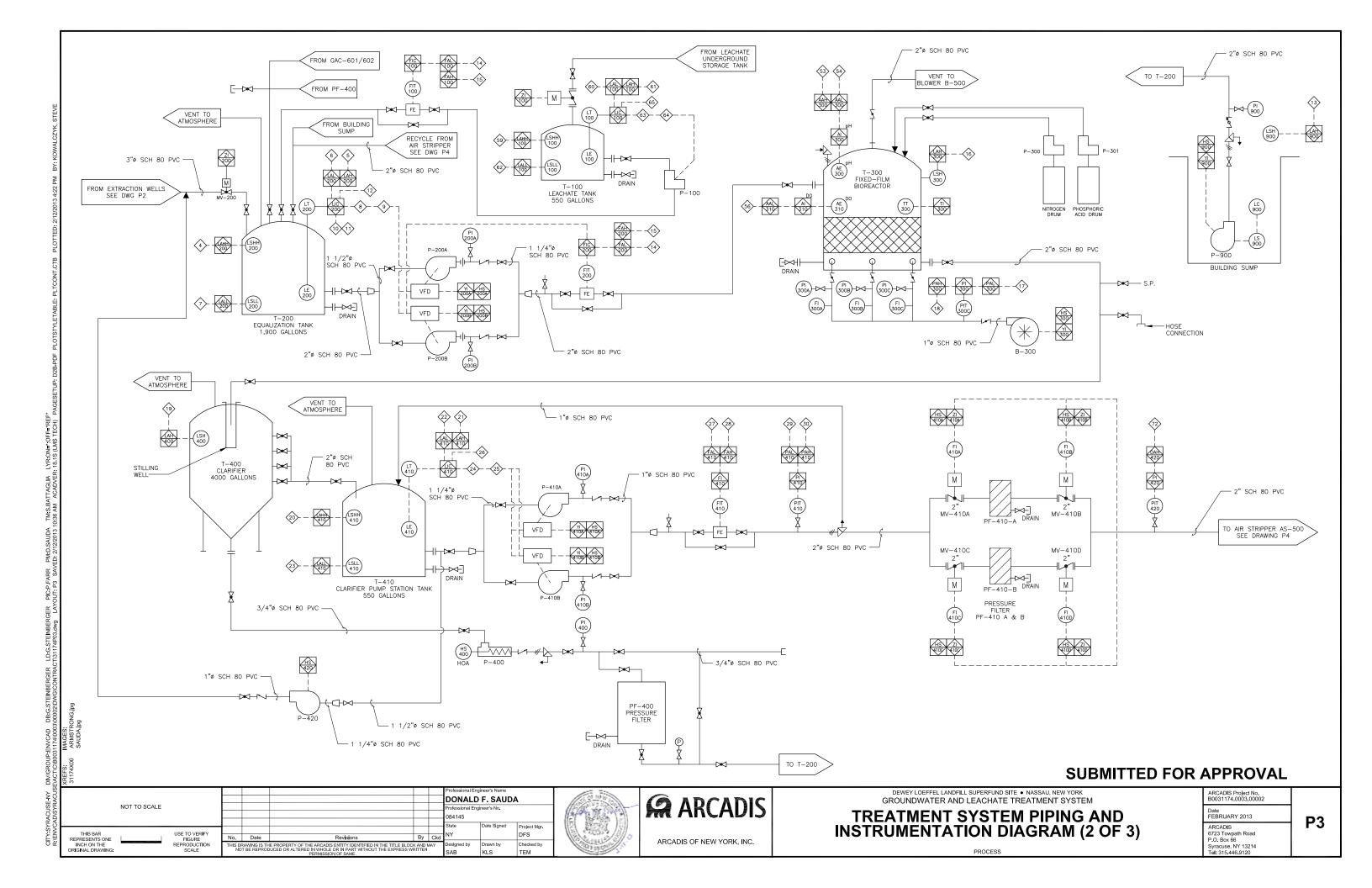
* The authorized discharger shall use a congener specific analysis method to measure and quantify Total PCBs at the locations noted above. The congener specific analysis method must achieve a Total PCB reporting limit no greater than 9 ng/L. For methods more sensitive than this specification, the reporting of Total PCB concentrations below 9 ng/L is not required. Sample volumes greater than one liter may be necessary to achieve this limit. Current methodologies approved by the Department for congener specific PCB analyses are as follows:

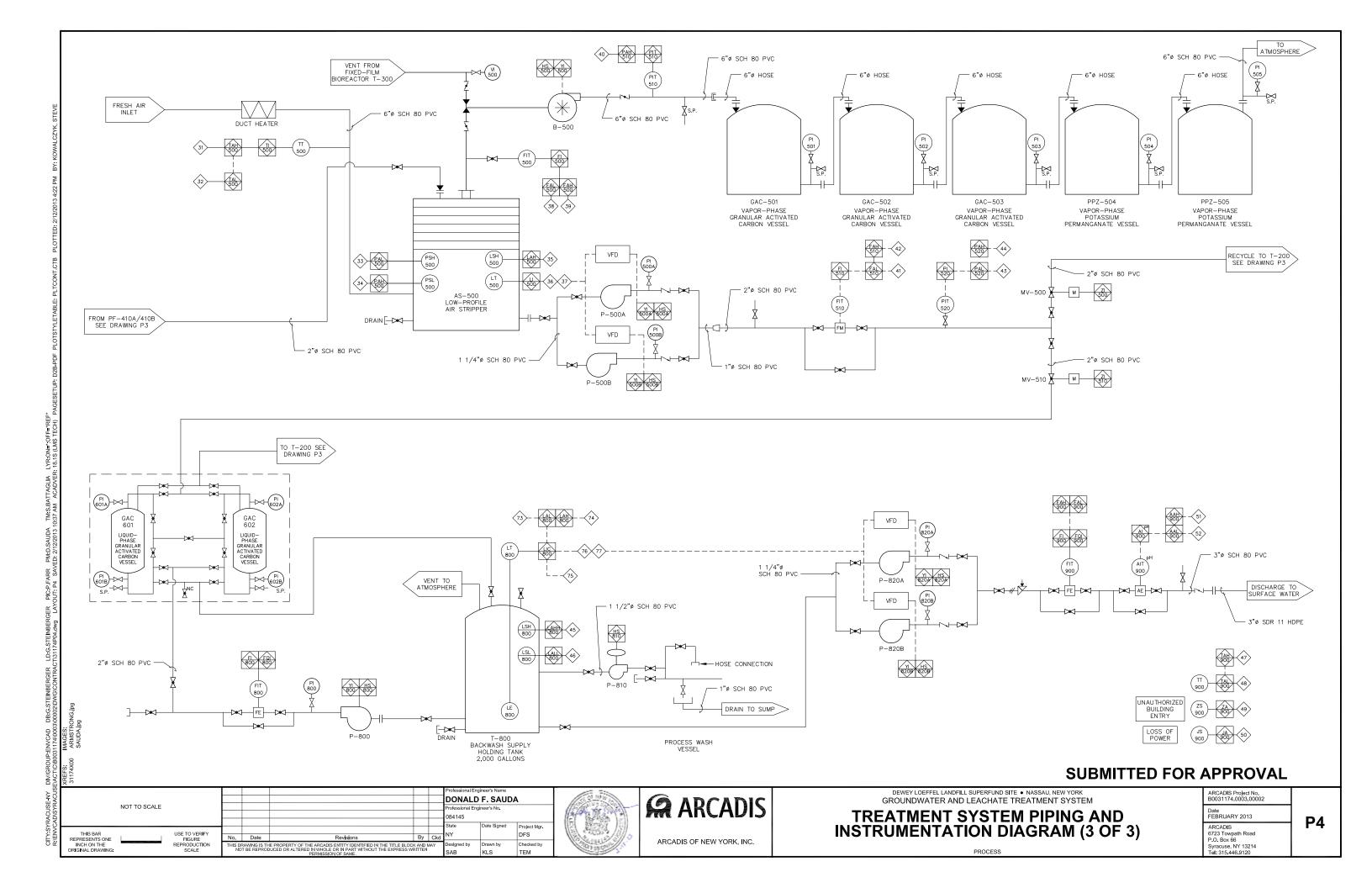
- Method 1668C Method 1668, Revision C: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS. EPA-820-R-10-005, Office of Water, U.S. Environmental Protection Agency, Washington, D.C. (2010).
- (2) mGBM "The Modified Green Bay Mass Balance Method" as detailed in the following publication: Palmer P.M., Wilson L.R., Casey A.C. and Wagner R.E. (2011) Occurrence of PCBs in raw and finished drinking water at seven public water systems along the Hudson River. Environ. Monit. Assess. 175 (1-4), pp. 487-499.

The authorized discharger may request, and the Department may optionally approve, alternate methods for congener specific PCB analyses provided all of the following conditions are met: (a) the method can achieve a Total PCB reporting limit of 9 ng/L or less; (b) the analysis method must allow for quantification of all 209 congeners to arrive at a Total PCB concentration; (c) co-elutions among the 209 congeners will be allowed, but the summation of only targeted or toxic congeners does not constitute an analysis for Total PCB; and (d) the accuracy and precision of the alternate method must be demonstrated to be equivalent or superior to Method 1668C and/or mGBM.

B. <u>Control Strategy</u> - An acceptable control strategy is required for reducing PCB discharges via costeffective measures, which may include, but are not limited to, source identification, more stringent control of tributary waste streams, remediation, and/or installation of new or improved treatment facilities. Required monitoring shall also be used, and supplemented if appropriate, to determine the most effective way to operate the wastewater treatment system(s) to ensure effective removal of PCBs while maintaining compliance with other requirements.


C. <u>Annual Status Report</u> - An annual status report shall be submitted to the Regional Water Engineer and to the Bureau of Water Permits summarizing: (a) all PCBMP monitoring results for the previous year; (b) a list of known and potential PCB sources; (c) all action undertaken pursuant to the strategy during the previous year; (d) actions planned for the upcoming year; and, (e) progress toward the goal. The annual status reports are due on January 31 for the prior calendar year, and the first such report is due on January 31 in the year following USEPA approval to start discharge from the treatment system to surface water. A file shall be maintained containing all PCBMP documentation which shall be available for review by NYSDEC representatives. Copies shall be provided upon request.


3. **PCBMP Modification** - The PCBMP shall be modified whenever: (a)changes at the facility or within the collection system(s) increase the potential for PCB discharges; (b) new information is discovered concerning the source, nature, or extent of any PCB source(s) and/or discharges from the facility; (c) actual discharges contain detectable Aroclors as measured with EPA Method 608; (d) a letter from the Department identifies inadequacies in the PCBMP; or (e) pursuant to a modification of this authorization.


ARCADIS

Attachment C

Piping and Instrumentation Diagrams

		CONTROL SYSTEM INTERLOCKS		CONTROL SYSTEM INTERLOCKS	
	INTERLOCK		INTERLOCK		
	1	DESCRIPTION IF HIGH LEVEL AT EXTRACTION WELL VAULT (LAH-1XX), SIGNAL ALARM AT MAIN CONTROL PANEL (MCP) AND TURN OFF ALL EXTRACTION WELLS. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE ALARM. IF PUMP RUN SIGNAL DETECTED (YI-1XX) AT EXTRACTION WELLS AND RESPECTIVE FLOW RATE IS 0 AFTER 5 MINUTES, SIGNAL ALARM AT	46	IF LOW LEVEL ALARM SWITCH ACTIVATED AT T-800 (LAL-400), SIGNAL ALARM AT MCP AND TI SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE AL/ IF HIGH BUILDING TEMPERATURE ALARM (TAH-900), SIGNAL ALARM AT MCP.	URN OFF PUMP P-800. ALL LEVEL ARM.
	2	MCP (FAL-1XX) AND TURN OFF ALL EXTRACTION WELLS. IF LOW LEVEL IN EXTRACTION WELL (LAL-1XX), SIGNAL ALARM AT MCP AND TURN OFF EXTRACTION WELL PUMP.	48	IF LOW BUILDING TEMPERATURE ALARM (TAH-900), SIGNAL ALARM AT MCP AND TURN OFF ALL MV-200.	EXTRACTION WELL PUMPS AND CLOSE
	4	IF HIGH-HIGH LEVEL ALARM SWITCH ACTIVATED AT T-200 (LAHH-200), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B, P-400, P-410A/B, P-420, P-500A/B, AND P-800 TURN OFF ALL EXTRACTION WELL PUMPS, TURN OFF BUILDING SUMP PUMP P-900, AND	49 50	IF UNAUTHORIZED BUILDING ENTRY ALARM ACTIVATED, SIGNAL ALARM AT MCP. IF LOSS OF SYSTEM POWER DETECTED, SIGNAL ALARM AT MCP AND CLOSE MV-200.	
PROCESS PIPING LOCAL, FIELD MOUNT PROCESS PIPING		CLOSE MY-200 AND MY-500. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE ALARM. IF HIGH LEVEL ALARM AT T-200 (LAH-200), SIGNAL ALARM AT MCP AND TURN OFF ALL EXTRACTION WELL PUMPS, TURN OFF PUMPS	51	HIGH pH ALARM AT DISCHARGE, SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-500A/B, AN	1
INSTRUMENTATION SIGNAL	6	P-400 AND P-800, AND CLOSE MV-200. IF LOW LEVEL ALARM AT T-200 (LAL-200), SIGNAL ALARM AT MCP, TURN OFF PUMPS P-200A /B AND P-800, TURN OFF ALL	53	HIGH pH ALARM AT T-300 (AAH-300), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200	А/В.
	7	EXTRACTION WELL PUMPS, TURN OFF BUILDING SUMP PUMP P-900, AND CLOSE MV-200. IF LOW-LOW LEVEL ALARM SWITCH ACTIVATED AT T-200 (LALL-200), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B AND P-800, TURN OFF ALL EXTRACTION WELL PUMPS, AND CLOSE MV-200, ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO	54	LOW pH ALARM AT T-300 (AAL-300), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A HIGH DISSOLVED 02 ALARM AT T-300 (AAH-310), SIGNAL ALARM AT MCP AND TURN OFF PUM	
-DX- SAMPLE TAP	8	IF HIGH LEVEL SETPOINT #1 AT T-200, TURN ON LEAD PUMP (P-200A OR B) - LEAD/LAG PUMPS SHALL BE ALTERNATING.	56	LOW DISSOLVED 02 ALARM AT T-300 (AAL-310), SIGNAL ALARM AT MCP AND TURN OFF PUMI HIGH TEMPERATURE ALARM AT T-300 (TAH-300), SIGNAL ALARM AT MCP.	PS P-200A/B.
-DA-(PI 100) PRESSURE GAUGE	9 10	IF LOW LEVEL SETPOINT #1 AT T-200, TURN OFF PUMPS P-200A/B. IF HIGH LEVEL SETPOINT #2 AT T-200, OPEN MV-510 AND CLOSE MV-500.	58	LOW TEMPERATURE ALARM AT T-300 (TAL-300), SIGNAL ALARM AT MCP. IF HIGH-HIGH LEVEL ALARM SWITCH ACTIVATED AT T-100 (LAHH-100), SIGNAL ALARM AT MCP	. TURN OFF P-001 AND CLOSE MV-10
	11	IF LOW LEVEL SETPOINT #2 AT T-200, OPEN MV-500 AND CLOSE MV-510.	59 60	ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CON: IF HIGH LEVEL ALARM AT T-100 (LAH-100), SIGNAL ALARM AT MCP, TURN OFF P-001 AND CI	STITUTE ALARM.
	12	IF T-200 LEVEL TRANSMITTER SIGNAL (LT-200) IS DETECTED OUT OF ACCEPTABLE RANGE, SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B, TURN OFF EXTRACTION WELL PUMPS, AND CLOSE MV-200.	61	IF LOW LEVEL ALARM AT T-100 (LAL-100), SIGNAL ALARM AT MCP, TURN OFF BUILDING SUMP CLOSE MV-100.	PUMP P-900, TURN OFF P-001 AND
BALL VALVE	13	IF HIGH LEVEL ALARM (LAH-900) AT BUILDING SUMP, SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B, P-400, P-410A/B, P-420, P-500A/B, AND P-800, TURN OFF ALL EXTRACTION WELL PUMPS, AND CLOSE MV-200. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL MILL CONSTITUTE ALARM.	62	IF LOW-LOW LEVEL ALARM SWITCH ACTIVATED AT T-100 (LALL-100), SIGNAL ALARM AT MCP, TURN OFF P-001 AND CLOSE MV-100. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLO CONSTITUTE ALARM.	TURN OFF BUILDING SUMP PUMP P-900 SED SO THAT LOSS OF SIGNAL WILL
BALL VALVE	14	IF LOW FLOW ALARM AT T-200 DISCHARGE (FAL-200), SIGNAL ALARM AT MCP, TURN OFF PUMPS P-200A/B, TURN OFF ALL EXTRACTION WELL PUMPS, AND CLOSE MV-200.	63	IF HIGH LEVEL SETPOINT AT T-100, TURN ON P-100. IF LOW LEVEL SETPOINT AT T-100, TURN OFF P-100.	
	15	IF HIGH FLOW ALARM AT T-200 DISCHARGE (FAH-200), SIGNAL ALARM AT MCP, TURN OFF PUMPS P-200A/B, TURN OFF ALL EXTRACTION WELL PUMPS, AND CLOSE MV-200.	65	IF LOW LEVEL SLIPPIN AT 14100, TOKK OF 14100. IF T-100 LEVEL TRANSMITTER SIGNAL (LT-100) IS DETECTED OUT OF ACCEPTABLE RANGE, SIG CLOSE MV-100.	NAL ALARM AT MCP, TURN OFF P-001
	16	IF HIGH LEVEL ALARM SWITCH ACTIVATED AT T-300 (LAH-300), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE ALARM. IF LOW BLOWER DISCHARGE PRESSURE (PAL-300) AT T-300, SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B.	66	IF HIGH LEVEL ALARM AT LEACHATE UNDERGROUND STORAGE TANK (LAH-001), SIGNAL ALARM IF LOW LEVEL ALARM AT LEACHATE UNDERGROUND STORAGE TANK (LAL-001), SIGNAL ALARM	
BUTTERFLY VALVE	18	IF HIGH BLOWER DISCHARGE PRESSURE (PAH-300) AT T-300, SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B.	68	IF HIGH LEVEL SETPOINT AT LEACHATE UNDERGROUND STORAGE TANK, TURN ON P-001.	
	19	IF HIGH LEVEL ALARM SWITCH ACTIVATED AT T-400 (LAH-400), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE ALARM. IF HIGH-HIGH LEVEL ALARM SWITCH ACTIVATED AT T-410 (LAHH-410), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B, P-400,	69 70	IF LOW LEVEL SETPOINT AT LEACHATE UNDERGROUND STORAGE TANK, TURN OFF P-001. IF PUMP RUN SIGNAL DETECTED (YI-001) AND FLOW RATE IS 0 AFTER 5 MINUTES, SIGNAL ALA P-001.	RM AT MCP (FAL-1XX) AND TURN OFF
BOOSTER PUMP # VACUUM RELIEF VALVE	20	P-410A/B, P-420, P-500A/B, AND P-800 TURN OFF ALL EXTRACTION WELL PUMPS, TURN OFF BUILDING SUMP PUMP P-900, AND CLOSE MV-200 AND MV-500. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE ALARM.	71	IF LEVEL TRANSMITTER SIGNAL (LT-001) IS DETECTED OUT OF ACCEPTABLE RANGE, SIGNAL AL	
	21	IF HIGH LEVEL ALARM AT T-410 (LAH-410), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B.	72	IF HIGH DIFFERENTIAL PRESSURE ALARM ACROSS PF-410A/B (DAH-420), SWITCH FROM LEAD IF HIGH LEVEL ALARM AT T-800 (LAH-800), SIGNAL ALARM AT MCP, TURN OFF P-500A/B AN	
#─ → PRESSURE RELIEF VALVE	22	IF LOW LEVEL ALARM AT T-400 (LAL-400), SIGNAL ALARM AT MCP, TURN OFF PUMPS P-200A/B AND P-410A/B. IF LOW-LOW LEVEL ALARM SWITCH ACTIVATED AT T-400 (LALL-400), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-200A/B,	74	IF LOW LEVEL ALARM AT T-800 (LAL-800), SIGNAL ALARM AT MCP, TURN OFF PUMPS P-500. IF T-800 LEVEL TRANSMITTER SIGNAL (LT-800) IS DETECTED OUT OF ACCEPTABLE RANGE, SIG	
	24	P-410A/B AND P-420. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE ALARM. IF HIGH LEVEL SETPOINT #1 AT T-410, TURN ON LEAD PUMP (P-410A OR B) - LEAD/LAG PUMPS SHALL BE ALTERNATING.	75	P-500A/B AND P-820A/B. IF HIGH LEVEL SETPOINT #1 AT T-800, TURN ON LEAD PUMP (P-820A OR B) - LEAD/LAG P	PUMPS SHALL BE ALTERNATING.
ABBREVIATIONS:	25	IF LOW LEVEL SETPOINT #1 AT T-410, TURN OFF PUMPS P-410A/B. IF T-410 LEVEL TRANSMITTER SIGNAL (LT-410) IS DETECTED OUT OF ACCEPTABLE RANGE, SIGNAL ALARM AT MCP AND TURN OFF PUMPS	77	IF LOW LEVEL SETPOINT #1 AT T-800, TURN OFF PUMPS P-820A/B.	
A AIR LI LEVEL INDICATOR	20	P-200A/B AND P-410A/B. IF LOW FLOW ALARM AT T-410 DISCHARGE (FAL-410), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B.	-	CONTROL LOGIC	
AAH ANALYSIS ALARM HIGH LIC LEVEL INDICATING CONTROLLER AAL ANALYSIS ALARM LOW LSH LEVEL SWITCH HIGH	28 29	IF HIGH FLOW ALARM AT T-410 DISCHARGE (FAH-410), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B IF LOW PRESSURE ALARM AT T-410 EFFLUENT (PAL-410), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B.	PUMP	DESCRIPTION WELL PUMP OPERATION IS CONTROLLED BY THE LOCAL WELL PUMP CONTROL PANEL. PUMP OF	SERVICE INTALES MUCH THE DUMP
AE ANALYSIS ELEMENT LSL LEVEL SWITCH LOW AIT ANALYSIS INDICATING TRANSMITTER LT LEVEL TRANSMITTER AS AIR STRIPPER MV MOTORIZED VALVE	30	IF HIGH PRESSURE ALARM AT T-410 EFFLUENT, (PAH-410), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B.	WELL PUM	PS LEVEL SETPOINT IS REACHED. PUMP OPERATION IS STOPPED WHEN THE PUMP OFF LEVEL SETI LEACHATE COLLECTION SUMP PUMP OPERATION IS CONTROLLED BY THE LOCAL CONTROL PANEL	POINT IS REACHED. PUMP OPERATION IS INITIATED WHEN
BF BAG FILTER NC NORMALLY OPEN Ø DIAMETER NO NORMALLY OPEN DC DOUBLE_CONTAINED PAH PRESSURE_ALARM_HIGH	31	IF HIGH TEMPERATURE ALARM (TAH-500) AT AR STRIPPER INLET DUCT, SIGNAL ALARM AT MCP AND TURN OFF P-410A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY. IF LOW TEMPERATURE ALARM (TAL-500) AT AIR STRIPPER INLET DUCT, SIGNAL ALARM AT MCP AND TURN OFF P-410A/B AND TURN OFF	P-100	PUMP ON LEVEL SETPOINT IS REACHED. PUMP OPERATION IS STOPPED WHEN THE PUMP OFF PUMP OPERATION SHALL BE CONTROLLED BASED ON LEVEL SETPOINT. PUMP OPERATION IS IN SETPOINT IS REACHED. PUMP OPERATION IS STOPPED WHEN THE PUMP OFF LEVEL SETPOINT	ITIATED WHEN THE PUMP ON LEVEL
EW EXTRACTION WELL PAL PRESSURE ALARM LOW FAH FLOW ALARM HIGH PF PRESSURE FILTER	32	BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY. IF HIGH PRESSURE ALARM ACROSS AIR STRIPPER SYSTEM (PAH-500), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410 A/B AND	P-200A/	ARE IDENTIFIED IN THE INTERLOCK LIST. TRANSFER PUMP OPERATION SHALL BE ALTERNATING LEAD/LAG. LAG PUMP SHALL NOT TURN (ON AUTOMATICALLY. PUMP OPERATION S
FE FLOW ELEMENT PI PRESSURE INDICATOR FI FLOW INDICATOR PLC PROGRAMMABLE LOGIC CONTROLLER	34	TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY. IF LOW PRESSURE ALARM ACROSS AIR STRIPPER SYSTEM (PAL-500), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410 A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY.	MV-200	BE CONTROLLED BY VED BASED ON FLOW SETPOINT. POMP PERMISSIVE CONDITIONS ARE IDENTITIONS AND DEPENDENT OF A DEPE	ARE IDENTIFIED IN THE INTERLOCK LIS
FIT FLOW INDICATING TRANSMITTER PPZ POTASSIUM PERMANANATE ZEOLITE FM FLOW METER PSL PRESSURE SWITCH LOW FO FAIL OPEN PSH PRESSURE SWITCH HIGH	35	IF HIGH AIR STRIPPER SUMP SWITCH ALARM (LAH-500), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410 A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF	B-300	BLOWER OPERATION SHALL BE CONSTANT AND NOT DEPENDENT UPON ANY SETPOINTS. BLOWE THE INTERLOCK LIST.	
FP FLOOR PENETRATION PVC POLYVINYL CHLORIDE FQI TOTALIZED FLOW INDICATOR SCH SCHEDULE	36	SIGNAL WILL CONSTITUTE ALARM. IF AIR STRIPPER SUMP HIGH LEVEL SETPOINT #1 ACTIVATED, TURN ON LEAD AIR STRIPPER DISCHARGE PUMP P-500A/B LEAD/LAG PUMPS SHALL BE ALTERNATING.	P-400	TRANSFER PUMP OPERATION SHALL BE MANUALLY INITIATED AND TURNED OFF BY OPERATOR. IDENTIFIED IN THE INTERLOCK LIST.	
GA GAUGE TAL TEMPERATURE ALARM LOW HDPE HIGH DENSITY POLYETHYLENE TI TEMPERATURE INDICATOR	37	IF AIR STRIPPER SUMP LOW LEVEL SETPOINT #1 ACTIVATED, TURN OFF AIR STRIPPER DISCHARGE PUMPS P-500A/B.	P-410A/	TRANSFER PUMP OPERATION SHALL BE ALTERNATING LEAD/LAG. LAG PUMP SHALL NOT TURN (B BE CONTROLLED BY VFD BASED ON CONSTANT TANK T-410 LEVEL SETPOINT. PUMP PERMISSIVE INTERLOCK LIST.	UN AUTOMATICALLY, PUMP OPERATION S E CONDITIONS ARE IDENTIFIED IN THE
HOA HAND-OFF-AUTO TT TEMPERATURE INDICATING TRANSMITTER HP HORSEPOWER TYP TYPICAL HS HAND SWITCH UG UNDERGROUND	38	IF LOW BLOWER AIR FLOW ALARM AT AIR STRIPPER (FAL-500), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY. IF HIGH BLOWER AIR FLOW ALARM AT AIR STRIPPER (FAH-500), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B AND TURN OFF	P-420	RECYCLE PUMP OPERATION SHALL BE CONSTANT AND NOT DEPENDENT UPON ANY SETPOINTS. IDENTIFIED IN THE INTERLOCK LIST. SUMP DEPENDENTIAN SHALL BE AUTOMATIC BASED ON LOCAL SUMP LEVEL SWITCH DOSITION	
INS INSULATED VFD VARIABLE FREQUENCY DRIVE KI PUMP RUN TIME INDICATOR W WATER	40	BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY. IF HIGH BLOWER DISCHARGE PRESSURE ALARM AT AIR STRIPPER (PAH-510), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B	P-900	SUMP PUMP OPERATION SHALL BE AUTOMATIC BASED ON LOCAL SUMP LEVEL SWITCH POSITION IDENTIFIED IN THE INTERLOCK LIST. BLOWER OPERATION SHALL BE CONSTANT AND NOT DEPENDENT UPON ANY SETPOINTS. BLOWE	
LAH LEVEL ALARM HIGH ZI POSITION INDICATOR LAHH LEVEL ALARM HIGH-HIGH	41	AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY. IF LOW FLOW ALARM AT AIR STRIPPER DISCHARGE (FAL-510), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-500A/B AND P-410A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY.	B-500 P-500A/	THE INTERLOCK LIST. TRANSFER PUMP OPERATION SHALL BE ALTERNATING LEAD/LAG. LAG PUMP SHALL NOT TURN (ON AUTOMATICALLY. PUMP OPERATION S
LAL LEVELALARM LOW LALL LEVELALARM LOW-LOW LE LEVELELEMENT	42	IF HIGH FLOW ALARM AT AIR STRIPPER DISCHARCE (FAH-510), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-500A/B AND P-410A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY.		INTERLOCK LIST.	
	43	IF LOW PRESSURE ALARM AT P-500A/B DISCHARGE (PAL-520), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B AND P-500A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY.	MV-500 MV-510	THE EVENT OF A POWER LOSS, MV-200 SHALL BE CLOSED WITH POWER FROM UPS BACK-UP MOTORIZED VALVE MV-510 SHALL BE EITHER 100% OPEN OR CLOSED. PERMISSIVE CONIDTIONS	BATTERY. ARE IDENTIFIED IN THE INTERLOCK LIS
	44	IF HIGH PRESSURE ALARM AT P-500A/B DISCHARGE (PAH-520), SIGNAL ALARM AT MCP AND TURN OFF PUMPS P-410A/B AND P-500A/B AND TURN OFF BLOWERS B-300 AND B-500 AFTER 10 MINUTE DELAY.	P-800	THE EVENT OF A POWER LOSS, MV-200 SHALL BE CLOSED WITH POWER FROM UPS BACK-UP TRANSFER PUMP OPERATION SHALL BE MANUALL INITIATED BY OPERATOR. PUMP PERMISSIVE INTERLOCK LIST.	
	45	IF HIGH LEVEL ALARM SWITCH ACTIVATED AT T-800 (LAHH-800), SICNAL ALARM AT MCP AND TURN OFF PUMPS P-500A/B AND P-410A/B. ALL LEVEL SWITCHES SHALL BE WIRED NORMALLY CLOSED SO THAT LOSS OF SIGNAL WILL CONSTITUTE ALARM.	P-820A/	B TRANSFER PUMP OPERATION SHALL BE ALTERNATING LEAD/LAG. LAG PUMP SHALL NOT TURN O BE CONTROLLED BY VFD BASED ON FLOW SETPOINT. PUMP PERMISSIVE CONDITIONS ARE IDENTI	
R R R R R R R R R R R R R R R R R R R					
31174X00				SUBMITTED FOR	APPROVAL
		InstallEngineer's Name		LOEFFEL LANDFILL SUPERFUND SITE • NASSAU, NEW YORK DWATER AND LEACHATE TREATMENT SYSTEM	ARCADIS Project No. B0031174.0003.00002
NOT TO SCALE	084	ALD F. SAUDA sional Engineer's No. 45			Date FEBRUARY 2013
THIS BAR USE TO VERIFY REPRESENTS ONE FIGURE No. Date Revisions	By Ckd		U, ADE	BREVIATIONS, AND INTERLOCKS	ARCADIS 6723 Towpath Road P.O. Box 66
INCH ON THE REPRODUCTION THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLC RIGINAL DRAWING: SCALE NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS PERMISSION OF SAME.	CK AND MAY Des WRITTEN SA	Pred by Drawn by Checked by KLS TEM ARCADIS OF NEW YORK, INC.		PROCESS	Syracuse, NY 13214 Tel: 315.446.9120