**Report for** 

# Niagara Mohawk Power Corporation 300 Erie Boulevard West Syracuse, New York 13202

# **Final**

Preliminary Site Assessment/ Interim Remedial Measures Study for Troy (Water Street), New York (Area 2)

October 12, 1995

Prepared by: Groundwater Technology, Inc. 1245 Kings Road Schenectady, New York 12303 (518) 370-5631



Groundwater Technology, Inc.

1245 Kings Road, Schenectady, NY 12303 Fax: (518) 370-5864

## FINAL

PRELIMINARY SITE ASSESSMENT/ INTERIM REMEDIAL MEASURES STUDY FOR TROY (WATER STREET), NEW YORK (AREA 2)

GTI Project 011100037

October 12, 1995

Prepared for: Niagara Mohawk Power Corporation 300 Erie Boulevard West Syracuse, New York 13202

**Groundwater Technology, Inc.** Submitted by:

Bruce W. Ahrens Senior Project Manager

#87Reports\NIMO\0037-PSA.095

**Groundwater Technology, Inc.** Approved by:

ndoma

Todd G. Schwendeman Northeast District Manager

son lau Richard A. Hixon

#### **EXECUTIVE SUMMARY**

#### Site Background

Area 2 of the Water Street manufactured gas plant (MGP) site is approximately 33 acres in area and is located in the City of Troy, Rensselear County, New York. The site had been used for the production of coke, steel, iron, and coal gas since 1849. In 1925, coke and water gas production from the Water Street facility for public use was begun by the Hudson Valley Coke and Products Corporation. In 1950 Niagara Mohawk Power Corporation (NMPC) was formed from the merger of several companies. NMPC operated the coke plant at this site from 1950 to 1951 at which time the plant was sold to Republic Steel. Republic Steel operated the coke plant until the 1960s. A majority of the site was sold by Republic Steel to King Fuels in the 1960s. Since then, King Fuels has operated a gasoline and fuel distribution company at the site.

#### **Preliminary Site Assessment**

In December 1992, NMPC signed an Order on Consent (Index No. DO-0001-9210) requiring them to investigate and, where necessary, to remediate environmental impacts resulting from the operation of the former MGP. A Preliminary Site Assessment/Interim Remedial Measures (PSA/IRM) study was conducted from July 1994 through February 1995 to identify potential site impacts from the former MGP operations.

Analyses for metals, cyanide, pesticides, polychlorinated biphenyls (PCBs), volatiles, and semivolatiles were conducted for groundwater, surface soils, subsurface soils, and Wynants Kill sediment and surface water samples.

#### **Objectives**

In accordance with the Order on Consent, the objectives of the Water Street PSA/IRM study were to collect sufficient environmental data to facilitate a preliminary evaluation of the following:

- the nature and presence of hazardous substances, including MGP by-products onsite
- whether such substances constitute a significant threat to public health or the environment
- the possible need for additional investigation



 the appropriateness of one or more interim remedial measures (IRMs) because of the nature and extent of MGP residuals and other contaminants found at the site

#### Hydrogeological Results

The results of the soil screening and classification performed during soil boring/monitoring well installations indicated that a majority of the surficial soils at the site have been disturbed through excavation, filling, or grading operations. The thickness of fill, which consists primarily of slag, cinders, ash and gravel, ranges from approximately 5 feet on the eastern portion of the site, to approximately 40 feet on the western portion. Below the fill, the overburden soils on site consist of interbedded alluvial, glacial outwash and glaciolacustrine deposits, with sporadic layers of glacial till. These unconsolidated deposits are underlain by shale bedrock.

Groundwater was found within the lower portions of the fill at depths from approximately 18 to 31 feet below grade.

## Surface Soils Investigation Results

Thirteen surface soil samples were collected for laboratory analysis of volatiles, semivolatiles, metals, cyanide, pesticides, and PCBs. No pesticides, PCBs, volatile organics, or total semivolatile organics were detected above the NYSDEC guidance criteria. Although an investigation of background concentrations of metals in surrounding soils was not completed as part of the PSA, zinc was the only metal detected at concentrations exceeding published values for typical eastern USA soils.

#### Subsurface Soils Investigation Results

Sixty-nine subsurface soil samples were collected from five test pits, 10 soil borings, and five monitoring wells. Volatile compounds detected ranged from below detectable levels to 45 milligrams per kilogram (mg/kg) total volatiles. Total semivolatiles ranged from approximately 0.1 mg/kg to 185,340 mg/kg (inside a suspected tar well). Naphthalene, phenanthrene, pyrene, and fluoranthene appear to be the semivolatile compounds present in the highest concentrations.

#### Sediment Soils Investigation Results

Sampling of the Wynants Kill sediments indicated the presence of low concentrations of three pesticides: dieldrin, endrin, and endrin ketone. No PCBs were detected in either of the sediment samples. Toluene at 0.007 mg/kg was the only volatile compound detected. Approximately 1,716 mg/kg total semivolatiles were detected in the upstream sample, while 392 mg/kg were detected downstream.



### Groundwater Investigation Results

Groundwater on site is not used as a potable water source. The two groundwater sampling events indicated that no semivolatile compounds, with the exception of phenol at the location of MW-4 (0.023 milligrams per liter [mg/L]), and only low concentrations of volatile organic compounds were detected. Pesticides and PCBs were not detected at any of the groundwater sampling locations.

#### Surface Water Investigation Results

No semivolatile organic compounds were detected above the NYSDEC Class C surface water standards in either the upstream or the downstream water samples. The only volatile organic detected was acetone, a suspected laboratory artifact in the downstream water sample. Additionally, pesticides and PCBs were not detected at either of the surface water sampling locations.

#### Preliminary Risk Evaluation

The potential for exposure of on-site workers and hypothetical future construction workers to subsurface soils was calculated based on information collected. The results show that the potential cancer risk to daily workers and construction workers are within the USEPA's target risk range of  $10^4$  to  $10^6$ . The potential non-cancer hazard indices are also below USEPA threshold values.

## Fish and Wildlife Habitat Assessment — Step 1

Based on their locations and distances from the site, any state-regulated wetlands and rare plant locations would be unaffected by site-related activities. Any lack of plant or animal species appeared to be related to the lack of habitat, or the high level of physical disturbance and human activity, rather than industrial residuals.

#### Recommendations

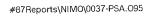
Using existing information, the chemical nature of the site does not appear to pose an imminent danger to current workers, potential future construction workers, or wildlife. These data support the conclusion that IRMs are not warranted and that any future remediation should be completed in recognition of current and intended uses of the site. Potential IRM activities that are recommended include only non-emergency activities aimed at preventing further chemical impacts to the environment from existing site conditions.



Two IRMs have been identified which fit into this category. These potential IRMs include:

- analysis and removal of the contents of a 300,000 cubic feet gas relief holder
- closure of a suspected tar well

A focussed remedial investigation/feasibility study is necessary to fill site characterization data gaps and to evaluate the need for remedial measures.


## **Report Organization**

A description of the PSA/IRM's purpose and objectives, along with the site history and location is included in section 1.0. A detailed description of the scope of work completed is included in section 2.0, with the results presented in section 3.0. A summary of the preliminary risk evaluation and fish and wildlife impact analysis reports are included in section 4.0. These full reports are included as attachments in the appendixes. Section 5.0 discusses observations made during field activities which represent contemporary site conditions not investigated as part of the PSA. Sections 6.0 and 7.0 discuss the two proposed IRMs and the conclusions that can be made from the data collected, respectively.

Because of the extent of the data collected, all data tables are included in the appendixes.

## TABLE OF CONTENTS

| 1.0 | INTRODUCTION11.1 Purpose and Objectives11.2 Site Location11.3 Regional Settings31.3.1 Regional Geology31.3.2 Regional Hydrogeology41.3.3 Groundwater Usage in Site Vicinity4                                                                                                                                                                                               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20  | SCOPE OF WORK                                                                                                                                                                                                                                                                                                                                                              |
| 2.0 | 2.1 Introduction                                                                                                                                                                                                                                                                                                                                                           |
|     | 2.2 Field Investigation                                                                                                                                                                                                                                                                                                                                                    |
|     | 2.2.1 Inspection of Large Gas Holder                                                                                                                                                                                                                                                                                                                                       |
|     | 2.2.2 Inspection and Sampling of Small Gas Holder                                                                                                                                                                                                                                                                                                                          |
|     | 2.2.3 Surface Water and Sediment Sampling                                                                                                                                                                                                                                                                                                                                  |
|     | 2.2.4 Test Pit Excavation and Sampling                                                                                                                                                                                                                                                                                                                                     |
|     | 2.2.5 Surface Soil Sampling                                                                                                                                                                                                                                                                                                                                                |
|     | 2.2.6 Subsurface Soil Sampling                                                                                                                                                                                                                                                                                                                                             |
|     | 2.2.7 Monitoring Well Installation 10                                                                                                                                                                                                                                                                                                                                      |
|     | 2.2.8 Groundwater Gauging and Sampling 10                                                                                                                                                                                                                                                                                                                                  |
|     | 2.2.9 Air Monitoring                                                                                                                                                                                                                                                                                                                                                       |
| 3.0 | PRELIMINARY SITE ASSESSMENT RESULTS113.1 Site Hydrogeology123.1.1 Site Geology123.1.2 Hydrogeology133.2 Source Characterization133.2.1 Large Gas Holder133.2.2 Small Gas Holder143.2.3 Soils From Test Pit TP-7153.3 PSA Contamination Assessment153.3.1 Metals and Cyanide163.3.2 Pesticides and PCBs193.3.3 Volatiles203.4 Air Monitoring Results263.5 Data Validation26 |
| 4.0 | RISK EVALUATION AND HABITAT-BASED ASSESSMENT274.1 Preliminary Risk Evaluation274.2 Fish and Wildlife Impact Analysis294.2.1 Objectives294.2.2 Habitat Characterization294.2.3 Habitat-Based Value Assessment314.2.4 Regulatory Criteria32                                                                                                                                  |

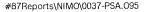




| 5.0 | FIELD OBSERVATIONS              | 32 |
|-----|---------------------------------|----|
| 6.0 | IRM EVALUATION                  | 33 |
|     | CONCLUSIONS AND RECOMMENDATIONS | 35 |
| 8.0 | REFERENCES                      | 40 |

## FIGURES

- 2-1. Site Location Map
- 2-2. Site Plan
- 2-3. Area 2 Site Map
- 4-1. Geologic Cross-Section A- A' (MW-1 to MW-5)
- 4.2. Geologic Cross-Section B-B' (MW-3 to MW-5)
- 4-3. Sediment Sampling Results
- 4-4. Surface Soil Sampling Results
- 4-5. Subsurface Soil Sampling Results
- 4-6. Surface Water Sampling Results
- 4-7. Summary of Groundwater Monitoring Results (December 1994)
- 4-8. Summary of Groundwater Monitoring Results (January 1995)
- 4-9. Hydrocarbon Distribution Cross-Section (MW-1 to MW-5)
- 4-10. Hydrocarbon Distribution Cross-Section (MW-3 to MW-5)




### TABLES

- 1-1. Former Small Gas Holder and Surface Water Sampling Results (TAL Metals and Cyanide)
- 1-2. Former Small Gas Holder and Surface Water Sampling Results (Pesticides and PCBs)
- 1-3. Former Small Gas Holder and Surface Water Sampling Results (TCL Volatiles)
- 1-4. Former Small Gas Holder and Surface Water Sampling Results (TCL Semivolatiles)
- 2-1. Sediment Sampling Results (TAL Metals and Cyanide)
- 2-2. Sediment Sampling Results (Pesticides and PCBs)
- 2-3. Sediment Sampling Results (TCL Volatiles)
- 2-4. Sediment Sampling Results (TCL Semivolatiles)
- 3-1. Surface Soil Sampling Results (TAL Metals and Cyanide)
- 3-2. Surface Soil Sampling Results (Pesticides and PCBs)
- 3-3. Surface Soil Sampling Results (TCL Volatiles)
- 3-4. Surface Soil Sampling Results (TCL Semivolatiles)
- 4-1. Test Pit Sampling Results (TAL Metals and Cyanide)
- 4-2. Test Pit Sampling Results (Pesticides and PCBs)
- 4-3. Test Pit Sampling Results (TCL Volatiles)
- 4-4. Test Pit Sampling Results (TCL Semivolatiles)
- 5-1. Soil Sampling Results Soil Boring and Monitoring Well Locations (TAL Metals and Cvanide)
- 5-2. Soil Sampling Results Soil Boring and Monitoring Well Locations (Pesticides and PCBS)
- 5-3. Soil Sampling Results Soil Boring and Monitoring Well Locations (TCL Volatiles)
- 5-4. Soil Sampling Results Soil Boring and Monitoring Well Locations (TCL Semivolatiles)
- 5-5. Summary of GC Gas/GC Fuel Soil Sampling Results
- 6-1. Groundwater Gauging and Sampling Results (December 1994)
- 6-2. Groundwater Gauging and Sampling Results (January 1995)
- 7-1. Waste Characteristics Analyses
- 8-1. Air Analytical Results
- 9-1. Equipment Rinseate Sampling Results (TAL Metals and Cyanide)
- 9-2. Equipment Rinseate Sampling Results (Pesticides and PCBs)
- 9-3. Equipment Rinseate Sampling Results (TCL Volatiles)
- 9-4. Equipment Rinseate Sampling Results (TCL Semivolatiles)

#### APPENDIXES

- A. Drilling Logs
- B. Air Analysis Laboratory Analytical Reports
- C. Geotechnical Laboratory Analytical Reports
- D. Preliminary Risk Evaluation Report
- E. Fish and Wildlife Impact Analysis Step 1 Report





## 1.0 INTRODUCTION

#### 1.1 Purpose and Objectives

The objective of the PSA/IRM study undertaken at the King Fuels portion (Area 2) of the Water Street site was to collect sufficient environmental data to present a preliminary evaluation of the following:

- the presence and nature of hazardous substances, including MGP residuals
- whether such substances constitute a significant threat to public health or the environment
- the possible need for additional remedial investigation at the site
- the appropriateness of one or more IRMs because of the nature and extent of MGP residuals and other contaminants detected at the site

The scope of work completed to accomplish these objectives included the installation of test pits, soil borings, and monitoring wells, and the collection and analysis of soil and water samples from the surface and subsurface. Specific tasks completed during the PSA/IRM investigation are described below in section 2.0.

#### 1.2 Site Location

The former Water Street MGP site is located adjacent to both the east and west banks of the Hudson River. The portion of the site located along the east bank of the river is located both in the City of Troy and the Town of North Greenbush, Rensselaer County, New York. The portion of the site located along the west bank is located in the Village of Menands, Albany County, New York. Figure 2-1, Site Location Map, identifies the general site location (USDOT, North Troy Quadrangle). This map, along with all maps and figures included in this PSA report, are located in the Figures appendix. The site comprises approximately 220 acres of land which border more than 2,000 feet of the Hudson River shoreline. Based on site-specific issues related to obtaining access from the current property owners, the New York State Department of Environmental Conservation (NYSDEC) in a letter received by NMPC on November 29, 1994, has granted permission to divide the site into four study areas. For the purposes of conducting the PSA/IRM investigation program, each area is



being addressed as an individual project. A description of these individual areas include the following:

- Area 1: Includes the former island located on the west bank of the Hudson River formerly known as Breaker (Hillhouse) Island. This parcel is located in the Village of Menands and is approximately 111 acres in size. Most of the former island is occupied by an interchange of the Troy-Menands Bridge and Interstate Highway 787. NMPC currently has an easement on the property for accessing an existing gas pipeline valve station. A bike path constructed on this parcel in the 1980s lies between the highway and the river. This parcel contains the location of a former casting plant and a possible MGP residuals disposal area.
- Area 2: Area 2 is bordered by the Hudson River to the west, the New York Central Railroad to the east, the Chevron USA, Inc. (Chevron) property to the south. Area 2 extends approximately 50 feet north of a 2 million cubic feet gas holder, which is located just north of the Wynants Kill. This area of the site is currently owned by King Fuels, Inc. (King Fuels), a heating oil and gasoline distributor, and is the primary location of the former MGP facility. Within this area, NMPC owns a parcel of land, just south of the Wynants Kill confluence with the Hudson River, approximately 0.5 acre in size which contains a gas regulator station. Area 2 is approximately 33 acres in area with much of the site covered with pavement and buildings. Some unpaved areas are located along the river. Many of the buildings and tanks from the former MGP remain and several are currently in use by King Fuels. The local school district stores their school busses in a large parking area adjacent to the Hudson River. A beverage storage and distribution company occupies a facility just to the northeast of the parking area.
- Area 3: Includes the portion of the site located on the east side of the Hudson River situated under and south of the Troy-Menands Bridge. This 11-acre area is currently owned by Chevron and is operated as an asphalt batch plant and petroleum storage facility. This area was previously owned by the Barrett Company, a division of Allied Chemical and Dye Corporation which used, as one of its operations, coal by-products from the adjacent MGP facility for reprocessing and commercial sale. The property is bounded by the Hudson River to the west, the railroad to the east, and the King Fuels property to the north.
- Area 4: The southernmost area of the site is located approximately 0.5 mile south of the Troy-Menands Bridge in the Town of North Greenbush. A small portion of the northern end of the site is located within the City of Troy. This area of the site is currently owned by the Rensselaer County Sewer District and consists of a suspected disposal area. The site is bounded to the west by the Hudson River, to the east by the New York Central Railroad, to the south by the Rensselaer County Sewer District treatment facility, and to the north by the Chevron property. The site is an elongated hill that rises approximately 20 feet from the road, creating quickly before dropping steeply to the shore of the Hudson River.



The four areas that constitute the Water Street site are depicted in figure 2-2, Site Plan. As discussed above, this report specifically addresses the PSA/IRM program conducted in Area 2. A Site Map detailing this area is included as figure 2-3. Former MGP structures, along with the locations of samples collected during the PSA/IRM field activities (discussed below) are included on this map.

For the purposes of this PSA/IRM Report, the Site will refer to the King Fuels parcel described above as Area 2.

## 1.3 Regional Settings

## 1.3.1 Regional Geology

According to the Surficial Geologic Map of New York, Hudson Mohawk Sheet (D. Cadwell, R. Dineen, 1987), the area of the site is generally located within the lacustrine silt and clay deposited in proglacial lakes. The underlying bedrock is a shale of Upper Ordovician age (Geologic Map of New York, Hudson Mohawk Sheet, D. Fisher, 1970).

The site is located on a small delta outwash deposit in the Hudson-Champlain Lowland (D. Fisher, 1984). The deposit sediments consist primarily of sand and gravel. Bedrock is of a thinly bedded, weathered, black shale. The black shale is inclined steeply toward the Hudson River. Depth to bedrock is observed to be nearly 70 feet adjacent to the river, but outcrops just a short distance east of the New York Central Railroad tracks. Regional geology suggests that this inclined, faulted and folded shale is likely either Normanskill or Snake Hill Shale. Significant portions of the site have been filled.

The unconsolidated materials that overlay the bedrock have been characterized as fill, alluvium, outwash, glaciolacustrine sediment and glacial till. Specifically, descriptions of these units include:

- Fill slag, cinders, ash, brick, cinder, sand, and gravel 4 to 25 feet thick.
- Alluvium loose silt with sand, clay, and organic 0 to 18 feet thick.
- Glacial outwash stratified sand and gravel ranging from fine sand to coarse gravel with cobbles, and boulders 9 to 40 feet thick.
- Glaciolacustrine fine grain sediments of silt, clay, and fine sand 0 to 15 feet thick.



Glacial till — sand to boulders in a silty matrix — 2 to 3 feet thick.

## 1.3.2 Regional Hydrogeology

Based on historical hydrogeologic information collected by Rensselaer County from an area north of the site, the shallow aquifer is primarily found in the granular glacial outwash at between 15 to 25 feet below grade. The water-bearing formations consist primarily of sand and gravel deposits.

Permeability tests conducted by others at four monitoring wells installed on the former Burden Iron Works property (located north of the site) yielded permeability values between  $4.1 \times 10^3$  to  $2.0 \times 10^3$  cm/sec.<sup>2</sup> The calculated groundwater flow rate is approximately 0.1 feet/day (40 feet/year) because of the low groundwater gradient values in that area.

Groundwater flow in the overburden aquifer is west, toward the Hudson River. Groundwater is tidally influenced on the western part of the site by the Hudson River which fluctuates 4 to 6 feet daily.

The bedrock aquifer is located in the shale formation which can be characterized by low yields for water supply (O'Brien & Gere, 1994). Groundwater in the shale is usually hard, often cloudy, and frequently contains hydrogen sulfide (R. V. Cushman, 1950).

## 1.3.3 Groundwater Usage in Site Vicinity

According to an April 20, 1995, communication with the Rensselaer County Department of Health (Mr. Richard Kempner), the entire City of Troy is supplied by public water.

## 2.0 SCOPE OF WORK

Presented in the following sections is a description of the field methods and procedures used to collect the required samples. Field investigation activities commenced with a site reconnaissance visit on June 29, 1994, and were completed on January 20, 1995, with the collection of the second set of groundwater samples.

## 2.1 Introduction

Field work was conducted in accordance with the NYSDEC-approved PSA/IRM Study for Troy (Water Street) Former MGP Site in Troy, New York (Work Plan) dated May 1994, and associated



*Quality Assurance and Project Plan* (QAPjP), *Field Sampling Plan* (FSP), and *Health and Safety Plan* (HASP). All soil and water samples that were designated in the *Work Plan* were collected and sent to the contract laboratory for analysis. Several additional soil samples were collected and will be discussed in the appropriate section(s).

Laboratory analyses of environmental samples were conducted in accordance with NYSDEC ASP-CLP protocols. Data quality objective Level IV requirements were used whenever possible. Where not applicable, the NYSDEC ASP Category B deliverables were met.

## 2.2 Field Investigation

Field investigation activities at Area 2 included installation of 5 test pits, 10 soil borings, and the installation of 5 monitoring wells. In addition, surface soil sampling at 13 locations, sampling of upstream and downstream surface water and sediments, and inspection and sampling of two former gas relief holders was conducted. Air monitoring for volatile organic compounds (VOCs) and airborne particulates was conducted in accordance with the project HASP.

Field procedures for each activity are presented below.

## 2.2.1 Inspection of Large Gas Holder

On August 8, 1994, a Groundwater Technology technician and District Health and Safety Specialist performed an inspection of the former large (2,000,000 cubic feet) gas holder which is located immediately north of the Wynants Kill (figure 2-3). The inspection was performed by Groundwater Technology personnel after climbing to the top of the holder using a ladder (to climb to the bottom of existing stairs) and the existing stairs located on the side of the holder. To ensure personal safety, the investigators were tied off to the stairs on the tank with rock climbing equipment.

The inspection included opening a manhole on the top of the concave shaped roof which was located next to a mechanically operated manlift station. Natural lighting (from a skylight which existed in the roof) and battery operated spotlights were used to inspect the inside of the structure. Confined space entry into the gas relief holder was not attempted. The internal movable ceiling appeared to be resting at ground grade, however a measurement of the distance from the top of the floating roof to the manway was not made.

A detailed inspection of the base of the holder was performed to verify if there were any possible openings that could aid in the verification of the contents of the structure (if existing). No access



points were identified. An inspection of the contents of the holder below the floating ceiling (if existing) could therefore not be made.

## 2.2.2 Inspection and Sampling of Small Gas Holder

During the same site visit on August 8, 1994, Groundwater Technology personnel visually inspected a former small (300,000 cubic feet) gas holder which is located within the northeastern corner of the King Fuels containment area (figure 2-3). The holder was found to contain approximately 5 to 6 feet of water and an unknown quantity of a hydrocarbon type sludge. Both the water and sludge were sampled and sent to the contract laboratory for analysis. The water in the holder is believed to originate from precipitation as the holder does not have a competent roof.

Samples of the water were collected using disposable polyethylene bailers through an opening which had been cut into the holder on the southwestern side by King Fuels, or one of its subcontractors. To enable the collection of sludge samples at the bottom of the gas holder, a 12-foot extension was attached to a polyethylene sludge sampler. The samples were analyzed at the contract laboratory for the full Target Compound List/Target Analyte List (TCL/TAL) parameters which included volatiles by NYSDEC 91-1, semivolatiles by NYSDEC 91-2, pesticides/PCBs by NYSDEC 91-3, TAL metals, cyanide, and waste characterization parameters (Toxicity Characteristic Leaching Procedure [TCLP] volatiles, TCLP semivolatiles, TCLP metals, corrosivity, reactive cyanide, reactive sulfide, and ignitability).

## 2.2.3 Surface Water and Sediment Sampling

On August 15, 1994, surface water and sediment samples were collected from the Wynants Kill at downstream and upstream locations, as indicated in figure 2-3. Samples were collected first in the downstream area of the Wynants Kill, and then upstream to avoid disturbing and transporting sediments between sample locations. At each location, surface water samples were collected first, followed by sediment sample collection.

Surface water samples were collected directly into appropriate sampling containers. The downstream samples were collected within the man-made concrete channel which was installed in 1930 to divert the stream. The upstream samples were collected in relatively shallow water, immediately west of the railroad crossing.

Sediment sampling in the downstream area was performed using a decontaminated, long-handled hand auger because the water was relatively deep and swift moving. At the upstream location, sediment samples were collected using a decontaminated, stainless steel trowel. The decontamination procedure consisted of Liquinox<sup>®</sup>/potable water wash, potable water rinse, methanol rinse and deionized water rinse.



All QA/QC samples were also collected as required by the *Work Plan*. Upon collection, all samples were sealed, labeled and placed on ice for overnight shipment to the contract laboratory for analysis of the full TCL/TAL parameters list.

## 2.2.4 Test Pit Excavation and Sampling

Five test pits (TP-1, TP-2, TP-3, TP-4, and TP-7) were excavated during the period from August 9 through August 12, 1994. As described in the *Work Plan*, the first four locations were selected to aid in the delineation of MGP residues near former MGP plant structures. An additional test pit location (TP-7) was added to the investigation program as a result of observations of a tar-like material in this area during a site walk which was performed on July 14, 1994. The test pit locations are presented in figure 2-3.

Excavation of test pits TP-1, TP-2, TP-3, and TP-4 was performed in Level D personal protective equipment. During excavation of TP-7, however, because of olfactory evidence of VOCs, utilization of respirators was required. PID measurements, however, did not indicate levels of VOCs above action limits.

The excavation of the test pits was completed using a backhoe operated by Aquifer Drilling and Testing (ADT), a Groundwater Technology subcontractor. A Groundwater Technology geologist and field technician were present during each test pit excavation to direct the excavation activities, perform air monitoring, and collect the required soil samples. Each test pit was approximately 2 feet wide and 10 feet deep with the exception of TP-7, which was installed to approximately 9 feet below grade.

Each test pit wall and the excavated soils were visually examined by the supervising geologist to document lithologic descriptions, horizontal and vertical extent of impacts, and the presence or absence of former MGP structures. A MicroTip Photoionization Detector (PID) was used to screen soil samples for the presence of VOCs.

Soil samples for laboratory analyses were collected from the bucket of the backhoe. Samples were immediately placed on ice, and sent via overnight courier to the contract laboratory for analyses. At least one depth interval was sampled at each test pit (8 samples were collected). Samples were analyzed for the full TCL/TAL parameters list, and selected samples (collected at the location of TP-7) were analyzed for waste characterization parameters. All QA/QC samples were collected as required by the *Work Plan.* 



The backhoe bucket was decontaminated in the designated decontamination area with a steam cleaner between each excavation. Equipment blanks were collected from the backhoe bucket, as required by the *Work Plan*.

## 2.2.5 Surface Soil Sampling

During the period from August 9 through August 12, 1994, 13 surface soil samples and 2 blind duplicate samples were collected on the Site as depicted in figure 2-3. The samples were collected to characterize the chemical impacts, if any, to the surface soils across the Site. Depending on the sample location, the upper layer of asphalt or grass was removed prior to sampling. Samples were collected from an average depth of approximately 6 inches below grade. The samples were collected with a stainless steel trowel and a stainless steel bowl as required by the *Work Plan*. Samples were placed on ice, and sent via overnight courier to the contract laboratory for analyses. Samples were analyzed for MGP indicators (BTEX by EPA Method 8240, polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270, and total cyanide by CLP-M) at 10 locations and full TCL/TAL parameters at three locations.

In addition to the samples identified in the work plan, three additional surface samples were collected at the request of King Fuels. The samples were collected in a location where electrical transformers had historically been observed and sent to the contract laboratory for analysis of PCBs.

Between each sampling location, sampling equipment was decontaminated using Liquinox<sup>®</sup>/potable water wash, potable water rinse, methanol rinse and deionized water rinse. Equipment blanks were also collected as required by the *Work Plan*.

## 2.2.6 Subsurface Soil Sampling

During the period from August 16 through September 6, 1994, after completion of the test pits, 10 soil borings were installed on site to provide further information about site geology and the vertical distribution of impacts, if any, resulting from industrial operations. The borings were advanced using one of two different hollow-stem Mobile drill rigs. The majority of the drilling was conducted using a Mobile B-57 drill rig with split-spoon sampling capabilities. Selected borings were completed using a Mobile-61 drill rig. Two-foot long, three-inch-diameter split-spoons were used during all drilling operations at the site. Split-spoon samples were collected continuously in accordance with ASTM Method D-1586-84.

A 4.25-inch (I.D.) auger was used for each boring. If visual hydrocarbon impacts or confining layers were encountered, carbon steel casing was installed to isolate those intervals. Where these



situations occurred, the 4.25-inch augers were removed and the hole was redrilled to the same depth using 8-inch (I.D.) diameter augers and 6-inch steel casing was installed and grouted in place. Following installation of the steel casing, a drive and wash method was used to further advance the borehole and to collect split-spoon samples. All borings were advanced through the unconsolidated sediments until bedrock was reached. Depth to bedrock across the site ranged from approximately 13 feet (SB-14) to approximately 67 feet (SB-12).

All split-spoon samples were screened for VOCs using a PID. The soil samples were also described by the geologist using the Unified Soil Classification System (USCS). Moisture content, color, consolidation, lithology, grain size distribution, and sedimentary composition were also recorded. Drilling logs are included in appendix A.

Soil samples were packed on ice in coolers and sent by overnight courier to the contract laboratory for analyses. Up to five sample intervals per borehole were selected for laboratory analyses based on visual observations of hydrocarbon impacts and PID headspace screening results. At least three intervals were collected for laboratory analyses at each boring. Fifty-six soil samples were collected during soil boring installations.

A majority of the analyses conducted was performed for project MGP indicators (BTEX, PAHs and total cyanide). A minimum of 20 percent of the samples (at least one at each boring location) was analyzed for full TCL/TAL parameters list. Blind duplicate samples were also collected and submitted to the laboratory for analyses. Additionally, selected samples from various geologic units were analyzed for geotechnical parameters including percent moisture, bulk density, grain size, total organic carbon content, pH, and Atterberg limit. All geotechnical analyses reports are included in appendix C.

The split-spoons were decontaminated between each sampling interval to avoid cross contamination. A series of Liquinox<sup>®</sup>/potable water wash, potable water rinse, methanol rinse and deionized water rinse. Equipment blanks were also collected for analysis as required by the *Work Plan*.

Drill cuttings were segregated into visually impacted and visually non-impacted soils, and stockpiled on polyethylene sheeting during drilling. Contaminated cuttings were stored in a roll-off dumpster for later characterization sampling, removal, and proper disposal. Decontamination water was containerized on-site in two holding tanks for later characterization and disposal.

Upon completion, each of the soil borings were grouted back to the ground surface with a cement/bentonite slurry.



## 2.2.7 Monitoring Well Installation

In August 1994, five groundwater monitoring wells (MW-1 through MW-5) were installed at the Site to aid in evaluation of groundwater flow direction, gradient, and quality. Each monitoring well was drilled and sampled in accordance with the soil boring protocol using hollow-stem auger techniques and split-spoon sampling. The monitoring wells were installed as detailed in the *Work Plan*.

Monitoring wells were constructed of 15-foot-long, 2-inch-diameter, flush-joint polyvinyl chloride (PVC) screen (0.010-inch slot) and riser. A 2-foot sump was installed at the bottom of each well to provide a collection area for dense nonaqueous phase liquids (DNAPLs), if present. A sand pack (No. 1 Morie sand) was installed to approximately 2 feet above the screen. A bentonite seal and bentonite/cement grout were placed above the sand pack. At the location of well MW-5, the 15-foot screen interval was installed just above the bedrock in an attempt to evaluate vertical groundwater flow gradient, while at the remaining locations the screen interval was installed so they intercept the impacted zone and the water table (as determined during drilling). Well MW-5 was installed to a depth of 34.5 feet. The other wells were installed to depths ranging from 23 feet below grade (MW-2) to 53 feet below grade (MW-4).

Each well was secured with a locking gripper and either a guard pipe or a flush-mounted roadbox. Upon completion, all wells were developed by the drilling subcontractor using surging and pumping method to remove fine sediments from the well and the sand pack, and to improve hydraulic connection between the well and the surrounding aquifer.

Well construction details are included on the drilling logs which are included in appendix A.

## 2.2.8 Groundwater Gauging and Sampling

As required by the *Work Plan*, two groundwater gauging and sampling events were performed at the Site. The first event was performed during the period from December 19 through December 20, 1994. The second event was conducted during the period from January 18 through January 20, 1995.

Approximately one week prior to the first sampling event, all monitoring wells on-site were redeveloped by surging and pumping using dedicated submersible pumps. This redevelopment was required because several months had passed since the initial well development was performed. The well redevelopment was performed until water was visually free of sediments and measurement.of other indicator parameters (temperature, conductivity, pH, and turbidity) indicated stabilized conditions.



The wells were allowed to equilibrate. Prior to sampling, depth to groundwater was gauged using an Interface Probe (IP) to provide elevation data for evaluation of local groundwater gradient. Subsequently, each well was purged of a minimum of three well volumes using a dedicated submersible pump. Groundwater samples were collected using disposable polyethylene bailers and then poured directly into the appropriate sampling containers. All samples were placed on ice and shipped by overnight courier to the contract laboratory for analysis for full TCL/TAL parameter list and conventional analyses (sulfide, sulfate, nitrate, chloride, hardness, total dissolved solids, BOD5, COD, pH, and oil and grease). Samples for volatile organics analysis were collected first, followed by samples for semivolatile organics and the remaining analytes. All required QA/QC samples were also collected and submitted to the laboratory for analysis.

## 2.2.9 Air Monitoring

Ambient air and perimeter air monitoring for VOCs and airborne particulates was conducted during each stage of the field work using portable instruments (PID and Miniram). All monitoring data was recorded on Groundwater Technology Vapor Monitoring Forms. Draeger tubes were used to monitor the breathing zone for cyanide. Additionally, during test pit excavation and soil boring installation at both the Site and the suspected disposal area (Area 4), eight air samples were collected in Tedlar bags and on filter cartridges using vacuum pumps. At each sampling location, upwind and downwind air samples were collected.

Air samples collected in Tedlar bags were analyzed for BTEX by NIOSH Method 1501. Samples collected on filter cartridges were analyzed for PAHs by NIOSH Method 5575. All samples were sent to the contract laboratory for analysis.

## 3.0 PRELIMINARY SITE ASSESSMENT RESULTS

Presented in this section are the results of the PSA/IRM investigation activities. Site geology and hydrogeologic characteristics are presented in section 3.1 followed by the results of the characterization of the two gas relief holders in section 3.2. Section 3.3 presents the results of the contamination assessment. The results of the ambient and community air monitoring are included in section 3.4.

Because of the volume of data collected, all data tables are presented at the end of the report in the Tables appendix. Summary discussions and conclusions of these results are presented in section 7.0.



## 3.1 Site Hydrogeology

#### 3.1.1 Site Geology

Soil borings logs from the PSA drilling program are included in appendix A. Two geologic crosssections were constructed along two different axes across the Site using all available soil data (figure 4-1 and figure 4-2). Figure 4-1 is a geologic cross-section along a north-south axis, and figure 4-2 is a geologic cross-section along a west-east axis.

The results from the soil screening and classification performed during the soil boring/monitoring well installations indicate that a majority of the surficial sediments at the Site have been disturbed through excavation or grading. The thickness of fill, which primarily consists of slag, cinders, ash, bricks and gravel, ranged from approximately 5 feet in the eastern part of the site (east of MW-2) to approximately 40 feet (near SB-16). It appears that debris and by-products from the former industrial operations have been used to fill low areas of the site. During redirection of the Wynants Kill to the north in 1930, it also appears that backfilling of the former channel with locally available fill occurred.

Below the fill, the overburden sediments on site consist of interbedded alluvial, glacial outwash, and glaciolacustrine deposits, with sporadic layers of glacial till. Alluvial deposits can be characterized as loose silt with sand and clay. Glacial outwash deposits consist of sand and gravel, and glaciolacustrine deposits consist of fine-grained sediments like silt, clay, and fine sand. Finally, the glacial till consists of silt with poorly sorted sand and gravel mixtures. The thickness of overburden sediments was determined to range from approximately 5 feet (east of MW-2) to approximately 70 feet (SB-12). Generally, the thickness of unconsolidated deposits is lower in the eastern part of the site, and increases toward the west, towards the Hudson River. No apparent continuous confining layers were determined to exist within the overburden on site.

The unconsolidated deposits on site are underlain by shale bedrock. Depth to bedrock ranges from approximately 5 feet (east of MW-2) to approximately 70 feet (identified at SB-12) and generally slopes toward the Hudson River and former Wynants Kill channel. The detailed evaluation of bedrock underlying the site was not included in the PSA program.

#### 3.1.2 Hydrogeology

The groundwater within the overburden on site was found in the lower portions of the fill, and within the alluvial, glacial outwash, and glaciolacustrine deposits underlying the fill. The fill and underlying unconsolidated deposits are apparently hydraulically connected. Based on the close proximity of the Hudson River, it is likely that groundwater on-site may be influenced by tidal fluctuations.

Two groundwater gauging events were performed in conjunction with the two rounds of groundwater sampling (December 1994 and January 1995). During each gauging event, depth to water was measured from the top-of-casing of each well. Top-of-casing elevations were surveyed after well installation by a NMPC survey team. In December 1994, depth to water on site ranged from approximately 18 feet (at MW-2) to 31 feet below grade (at MW-4). In January 1995, depth to water ranged from 18 feet to 29 feet below grade, again at the locations of MW-2 and MW-4, respectively. Based on the two rounds of groundwater gaugings, the groundwater on-site was generally flowing toward the west to the Hudson River. The presence of the former Wynants Kill channel appears to affect the flow of groundwater by causing an apparent convergence toward the former channel.

Groundwater elevations determined based on the December 1994 and January 1995 groundwater gauging data, are included in figures 4-1 and 4-2, Geologic Cross-Sections, to further depict the location of groundwater table within the overburden on site.

#### 3.2 Source Characterization

Source characterization included the inspection and sampling of two gas relief holders at the Site and characterization of soils collected from test pit TP-7. The large 2,000,000 cubic feet gas holder is located north of the Wynants Kill. The smaller 300,000 cubic feet holder is located adjacent to the south bank of the Wynants Kill within a concrete block secondary containment compound.

#### 3.2.1 Large Gas Holder

The results of the visual inspection of the interior of the 2,000,000 cubic feet gas holder indicated that the holder was empty (dry). The floating ceiling appeared to be down to the bottom of the tank. No odors appeared to be emanating from the tank.

The gas relief holder appeared to be of triple wall construction. It was noted that some windows associated with the skylight were broken, and therefore may provide access to rainwater. No



accumulated water, however, was observed at the bottom of the holder. The visual inspection of the exterior of the holder did not indicate any openings, access points or leaks existed.

## 3.2.2 Small Gas Holder

The results of TCL/TAL and waste characterization analysis (TCLP volatiles, TCLP semivolatiles, TCLP metals, corrosivity, reactive cyanide, reactive sulfide, ignitability) of the contents of the former small gas holder (water and sludge) are presented in tables 1-1, 1-2, 1-3, 1-4, and 7-1, which are included in the Tables appendix.

Results of TCL/TAL analyses of the water samples indicated dissolved concentrations of both volatile and semivolatile organic compounds. Several semivolatiles in the phenolic and naphthalene groups were flagged by the laboratory as exceeding the calibration range of the gas chromatograph/mass spectrometer (GC/MS) instrument for that analysis. The concentrations for those analytes were, therefore, qualified as estimated values. The concentration of total dissolved PAHs was 1.34 mg/L. The total dissolved BTEX concentration was 1.75 mg/L. Of the BTEX compounds, all but toluene exceeded the calibration limits of the GC/MS, and the concentrations were again reported as estimated.

Of the TAL metals analyses, only iron and manganese were detected in the water samples, at concentrations of 7.5 and 0.5 mg/L. Cyanide was detected at a concentration of 0.04 mg/L.

No pesticides or PCBs were detected in the samples.

The results of the waste characterization analyses for water from the small gas holder indicated that the benzene concentration in the TCLP extract was 0.58 mg/L, which exceeds the regulatory limit of 0.5 mg/L. The water in the holder is therefore likely to be classified as a hazardous waste by characteristic for this compound pending collection of a representative quantity of samples.

The results of the waste characterization analyses for the sludge from the gas holder indicated that concentrations of benzene in the TCLP extract were above the calibration range of the instrument and therefore had to be reported as an estimated value. The sludge is therefore also classified as a hazardous waste by characteristic for this compound pending collection of a representative quantity of samples. Additionally, barium, lead, and mercury were detected in the TCLP extract at the concentrations of 389, 160, and 0.33 mg/L, respectively, which exceed the respective regulatory levels of 100, 5.0 and 0.2 mg/L.



### 3.2.3 Soils From Test Pit TP-7

The results of the sampling for waste characterization parameters for the soils from test pit TP-7 are included in table 7-1. As indicated in the table, benzene concentrations in the TCLP extract at the location of TP-7 from soil samples collected from 3 and 9 feet below grade were 1.9 mg/L and 3.5 mg/L, respectively. These values exceed the regulatory limit of 0.5 mg/L. These soils are therefore likely to be classified as a hazardous waste by characteristic for benzene.

Concentrations of other analytes detected in TCLP extracts did not exceed the respective regulatory criteria.

#### 3.3 PSA Contamination Assessment

In the following sections, the results of the metals, cyanide, pesticides, PCBs, volatiles, and semivolatiles analyses are presented. For each section below, a summary of the results for the soils analyses are presented, followed by a summary of the results for surface and groundwater.

For discussion purposes, guidance values and standards for each medium are presented in the data summary tables. These guidance values and standards for soils, sediments and groundwater are taken from the New York State Division Technical and Administration Guidance Memorandum *Determination of Soil Cleanup Objectives and Cleanup Levels* (TAGM 4046); the NYSDEC Division of Fish and Wildlife/Marine Resources *Technical Guidance for Screening Contaminated Sediments*, and the NYSDEC Division of Water, Technical and Operation Guidance Series, *Ambient Water Quality Standards and Guidance Values* (TOGS 1.1.1), respectively. Although several of these guidance values and standards may ultimiately not be applicable to the Water Street former MGP site, where they were exceeded, the reported values are presented in bold font in the tables.

The data tables include a summary of the target analytes detected for each analysis. For analyses that also report non-target analytes detected, these values are also included in the tables. Non-target analytes are compounds detected in samples that are not target compounds, internal standards, or surrogates, and are not positively identified during mass spectral library searches. Identification is only tentative because the chromatographic peaks have not been compared with analytical standards. Quantitation associated with non-target analytes should only be considered as an estimate of concentrations present, and could be in error by several orders of magnitude. In consideration of this, only target analytes will be used for discussion purposes.

### 3.3.1 Metals and Cyanide

All test pit soil samples, Wynants Kill surface water and sediment samples, selected surface soil and subsurface soil samples, and all groundwater samples were analyzed for TAL metals (31 soil samples and 12 water samples). Additionally, analyses for cyanide were conducted for all 82 surface and subsurface soil samples and 12 water samples collected during the PSA/IRM investigation.

The sampling results for various media sampled are presented in tables 1-1, 2-1, 3-1, 4-1, 5-1, and 6-1. All equipment rinseate sampling results are included in table 9-1. A discussion of the metals and cyanide in soils is presented, followed by a discussion of metals and cyanide in water. The distribution of cyanide in soils and water is presented in figures 4-3 through 4-8.

#### Metals and Cyanide in Soils

Generally, a majority of the TAL metals were detected at all sampled soil locations. NYSDEC TAGM HWR-94-4046 provides ranges of typical background concentrations of various heavy metals in eastern USA soils. These ranges may not, however, be indicative of heavily industrialized areas such as Troy, New York. An investigation of background metal concentrations in soils for the area surrounding the project site was not completed as part of the PSA study. These values (ranges) are, however, included in the tables, and will be referenced for discussion purposes. Soil samples which possess reported values exceeding the NYSDEC TAGM HWR-94-4046 typical ranges are presented on the tables in bold font.

The eight metals most likely to occur in high concentrations in soils or sediments from MGP operations include: arsenic, cadmium, chromium, copper, iron, lead, nickel, and zinc (*Handbook on Manufactured Gas Plant Sites*, Environmental Research & Technology, Inc., and Koppers Company, Inc., September 1994). The concentrations of metals detected in sediment samples collected from the Wynants Kill were compared to the two levels of risk presented in the *Technical Guidance for Screening Contaminated Sediments*. Generally, most metals detected were present in concentrations above the Lowest Effect Level (LEL) and below the Severe Effect Level (SEL). Silver and zinc were present at concentrations below the LEL. Only iron, in both up- and downstream samples exceeded the SEL.



| Analyte  | Range (mg/kg)                |
|----------|------------------------------|
| arsenic  | 4.7 (S-1) to 9.0 (S-3)       |
| cadmium  | 1.3 (S-1) to 2.4 (S-3)       |
| chromium | 19.7 (S-1) to 30.9 (S-3)     |
| copper   | 85.5 (S-1) to 99 (S-3)       |
| iron     | 29,400 (S-1) to 48,200 (S-3) |
| lead     | 103 (S-1) to 106 (S-3)       |
| nickel   | 26.6 (S-1) to 33.4 (S-3)     |
| zinc     | 164 (S-1) to 200 (S-3)       |

Concentrations of these eight metals in the Wynants Kill sediment samples ranged from:

For all metals detected, concentrations were higher at the upstream sample location (S-3) than those detected at the downstream location (S-1). The downstream sample was collected from within the concrete channel constructed to divert the Wynants Kill, while the upstream sample was collected from the undisturbed portion of the Wynants Kill.

Soils from three surface locations were analyzed for TAL metals. In the surface soil samples, concentrations of these metals, and cyanide, ranged from:

| Analyte         | Range (mg/kg)                   |
|-----------------|---------------------------------|
| arsenic         | 5.4 (SS-4) to 8.7 (SS-6)        |
| cadmium         | ND to 1.2 (SS-6)                |
| chromium        | 15.1 (SS-4) to 35.3 (SS-10)     |
| copper          | 21.5 (SS-6) to 45.2 (SS-10)     |
| iron            | 22,700 (SS-6) to 40,600 (SS-10) |
| lead            | 50.1 (SS-6) to 503 (SS-10)      |
| nickel          | 22.6 (SS-6) to 25.2 (SS-4)      |
| zinc            | 90.3 (SS-4) to 105 (SS-6)       |
| cyanide (total) | ND to 49.5 (SS-10)              |

Concentrations of total cyanide in surface soils were detected in 3 of 13 samples analyzed. Concentrations of other metals detected at various soil sampling locations can be found in table 3-1.

Only zinc was detected above eastern USA background levels as reported in the NYSDEC TAGM HWR-94-4046 at all three sampling locations, while magnesium was detected above these reference levels at two locations.



Twenty-three subsurface soil samples were collected for metals analysis during test pit, soil boring, and monitoring well installations. In the subsurface soil samples, concentrations of these same eight metals and cyanide ranged from:

| Analyte         | Range (mg/kg)                   |
|-----------------|---------------------------------|
| arsenic         | 2.6 (MW-4) to 42.8 (SB-16)      |
| cadmium         | ND to 5.1 (TP-2)                |
| chromium        | ND (TP-1) to 95.7 (SB-12)       |
| copper          | ND to 501 (SB-16)               |
| iron            | 13,900 (MW-3) to 331,000 (TP-2) |
| lead            | ND to 316 (TP-4)                |
| nickel          | ND to 45.1 (SB-14)              |
| zinc            | ND to 267 (SB-13)               |
| cyanide (total) | ND to 7.2 (TP-1)                |

Concentrations of cyanide in subsurface soils were detected at only 6 of the 20 sampling locations including test pits TP-1, TP-3, TP-4, and in soil borings SB-13, SB-15, and SB-18.

Values that exceeded the NYSDEC TAGM HWR-94-4046 typical ranges for eastern USA soils are printed on the tables included in the appendixes in bold font. A random or inconsistent pattern of occurrence and concentration appears to exist for most metals exceeding these values in the subsurface soils.

## Metals and Cyanide in Water

Results of the surface water sampling event for metals and cyanide are included in table 1-1. At the two surface water sampling locations, of the metals which are most likely to occur at former MGP sites, only iron at concentrations of 0.594 mg/L and 0.684 mg/L was detected (upstream and downstream, respectively). Cadmium and zinc were each detected in one sample, but data validation indicated that these metals were also detected in the associated blanks. Aluminum was the only metal detected in the surface water samples that exceeded the NYSDEC Class C surface water standards (TOGS 1.1.1., *Ambient Water Quality Standards and Guidance Values*). Here again, a data validation qualifier indicated that aluminum was also detected in the associated blank.

The December 1994 and January 1995 groundwater sampling indicated that highest detected concentrations of arsenic were 0.115 mg/L and 0.142 mg/L (MW-4), chromium concentrations were 0.007 mg/L (MW-2) and 0.006 mg/L (MW-3), copper concentrations were 0.017 mg/L (MW-2) and 0.017 mg/L (MW-3), and lead concentrations were 0.007 (MW-1) and 0.005 (MW-3).



In December 1994, cyanide was detected at the locations of MW-1, MW-3, and MW-4, at concentrations of 0.05 mg/L, 0.05 mg/L, and 0.066 mg/L, respectively. In January 1995, detected cyanide concentrations were 0.04 mg/L, 0.04 mg/L, and 0.06 mg/L, at the same well locations, respectively.

During the December 1994 sampling event, the only VOCs detected above groundwater standards were chloroform (at MW-1 and MW-5) and benzene (at MW-4). Similar results were obtained during the January 1995 sampling event. Additionally, ethylbenzene (0.007 mg/L) and xylenes (0.006 mg/L) exceeded the groundwater standards (0.005 mg/L) during the January 1995 event. A data validation qualifier, however, indicated that these two reported values were estimated.

## 3.3.2 Pesticides and PCBs

Analyses for pesticides and PCBs were conducted for 32 soil samples and 12 water samples. Specifically, all eight test pit soil samples, two Wynants Kill surface water and sediment samples, seven selected surface soil and 15 subsurface soil samples, and all 10 groundwater samples were analyzed for pesticides and PCBs. The sampling results for various sampled media are presented in tables 1 through 6.

A summary of the analytical results of the pesticides and PCBs in soils are presented below, followed by the results for pesticides and PCBs in water.

## Pesticides and PCBs in Soils

The results from the surface soil sampling and analysis are included in table 3-2. The results indicated that selected pesticides were detected in two of the four sample locations (SS-6 and SS-10). At the location of SS-6, the following three pesticides were found: 4,4-DDE (0.003 mg/kg), 4,4-DDT (0.007 mg/kg), and endrin aldehyde (0.029 mg/kg). The only other pesticide detected in surface soils was endrin ketone, detected at 0.15 mg/kg in SS-10. These detected levels were all below the recommended soil cleanup objectives provided in the NYSDEC TAGM HWR-94-4046.

The only PCB detected in the analyzed surface soil samples was aroclor-1260, which was found in the three soil samples collected near the King Fuels office, at concentrations ranging from 0.056 mg/kg to 0.13 mg/kg. These 3 locations were taken in the area of a former electrical transformer. At all these locations, aroclor-1260 was below the recommended soil cleanup objective presented in the NYSDEC TAGM HWR-94-4046.

Sampling of the Wynants Kill sediments indicated the presence of dieldrin and endrin in the downstream sample, at the concentrations of 0.023 mg/kg and 0.14 mg/kg, respectively (table 2-1).



Pesticides detected in the upstream sample were endrin (0.008 mg/kg) and endrin ketone (0.006 mg/kg). Assuming a default organic content of the sediment at 1%, none of the pesticides exceeded either the wildlife or human health bioaccumulation sediments criterias provided in the *Technical Guidance for Screening Contaminated Sediments*.

No PCBs were detected in any of the sediment samples.

Subsurface soil sampling results indicated the presence of pesticides at 11 of the 23 locations sampled. Eight different pesticides were identified including:

| Pesticide          | Concentration (mg/kg)         |
|--------------------|-------------------------------|
| heptachlor         | 0.003 (SB-19)                 |
| heptachlor epoxide | 0.006 (SB-15)                 |
| endrin             | 0.011 (MW-5) to 0.72 (TP-1)   |
| alpha chloradane   | 0.008 (SB-15)                 |
| 4,4'-DDD           | 0.004 (SB-19)                 |
| 4,4'-DDT           | 0.004 (MW-1) to 0.220 (TP-1)  |
| gamma-BHC/lindane  | 0.007 (MW-5)                  |
| endrin aldehyde    | 0.006 (MW-2) to 0.030 (SB-19) |

Pesticides were not detected above the NYSDEC TAGM HWR-94-4046 recommended cleanup objectives with the exception of dieldrin (0.047 mg/kg) and endrin (0.39 and 0.72 mg/kg) at the location of test pit TP-1.

PCBs were not detected at any of the subsurface soil sampling locations.

## Pesticides and PCBs in Water

Pesticides and PCBs were not detected at any of the groundwater or surface water sampling locations.

## 3.3.3 Volatiles

Analysis for VOCs were conducted on all media sampled during the PSA/IRM program. Samples collected from test pit excavations, surface water, sediment, soil borings and groundwater were analyzed for either full TCL Volatiles list (in conjunction with full TCL/TAL parameter list) or BTEX (in conjunction with MGP Indicators parameter list). Twenty-nine soil samples and 13 water samples were analyzed for the full TCL volatiles list (NYSDEC Method 91-1). Fifty-three samples were



analyzed for BTEX by EPA Method 8240. The sampling results for both analyses are presented in tables 1-3, 2-3, 3-3, 4-3, 5-3, 6-1, and 6-2.

Consistent with the previous sections, the results for soils are presented first, followed by the results for surface and groundwater.

#### Volatiles in Soils

As indicated in table 2-3, the only target analyte detected during the sediment sampling event was toluene. This compound was detected in the downstream Wynants Kill sediment sample (S-1) at the concentration of 0.007 mg/kg.

Table 3-3 presents the results of the volatiles analyses conducted on surface soils. Target VOCs were not detected at any of the surface soil sampling locations.

Sampling of soils from the test pits (table 4-3) indicated that volatile organics were found at all eight test pit sampling locations. Total BTEX concentrations ranged from below detectable levels (TP-3, TP-4) to 45 mg/kg (TP-7). Total volatiles at concentrations over the NYSDEC TAGM HWR-94-4046 cleanup objective of 10 mg/kg were detected in one sample (TP-7/9 feet). Additionally, at test pit TP-1, benzene and xylene exceeded individual cleanup objectives of the sample collected from 6 feet below grade.

Table 5-3 presents the results of the volatiles analyses conducted on subsurface soils collected during soil boring and monitoring well installation. Concentrations of total BTEX ranged from below detectable levels (SB-14, SB-20, MW-4) to 34.6 mg/kg (SB-19/23 to 25 feet). The elevated levels of total BTEX were also detected at the location of SB-15/32 to 34 feet (22.86 mg/kg), SB-13/16 to 17 feet (18.24 mg/kg) and SB-19/25 to 27 feet (6.72 mg/kg).

Besides BTEX, miscellaneous volatiles were detected in several samples analyzed for full TCL/TAL list. The compound detected at highest concentration was methylene chloride at SB-15/32 to 34 feet (0.4 mg/kg). Of 58 subsurface soil samples collected, only four samples possessed total volatiles exceeding the NYSDEC TAGM HWR-94-4046 recommended cleanup objective of 10 mg/kg.

In addition to TCL/TAL and MGP Indicators analyses, five selected samples were analyzed by GC Gas/GC Fuel analyses. These selected samples included:



| Location | Depth (feet) |
|----------|--------------|
| SB-12    | 18 to 20     |
| SB-15    | 24 to 26     |
| SB-19    | 23 to 25     |
| SB-20    | 24 to 26     |
| MW-5     | 26 to 28     |

These samples were selected based on olfactory evidence of petroleum hydrocarbons at these five locations during subsurface investigations.

As indicated in table 5-5, gasoline was identified in all six soil samples, at concentrations ranging from 0.3 mg/kg (SB-12) to 4,300 mg/kg (SB-15). The next highest gasoline concentration was found at the location of SB-19 (3,100 mg/kg). No. 2 fuel oil also was detected at all the sample locations except SB-12 at concentrations ranging from 2,100 mg/kg (MW-5) to 40,000 mg/kg (SB-15).

## Volatiles in Water

The analyses of the Wynants Kill surface water indicated that the only VOC found in the surface water was acetone, which was detected in the downstream sample at the concentration of 0.018 mg/L (table 1-3). A data validation qualifier was affixed to this result indicating that the reported value was estimated.

Two groundwater sampling events were performed at the site approximately one month apart. Tables 6-1 and 6-2 present the December 1994 and January 1995 sampling data, respectively. As indicated in table 6-1, in December 1994 total BTEX concentrations in groundwater ranged from not detected (MW-1, MW-2, MW-3 and MW-5) to 0.065 mg/L (MW-4). Benzene was the only BTEX compound detected at the location of MW-4.

In January 1995, total BTEX concentrations ranged again from not detected (MW-1, MW-2, MW-3 and MW-5) to 0.064 mg/L (MW-4).

Besides BTEX, the only VOCs detected at any of the monitoring well locations during both sampling events were chloroform (MW-1 and MW-5) at concentrations ranging from 0.019 to 0.038 mg/L, and 1,1-dichloroethane (MW-2 and MW-4) at concentrations of 0.003 mg/L.



During both sampling events chloroform exceeded the NYSDEC groundwater standard at monitoring wells MW-1 and MW-5. Benzene exceeded the groundwater standard at only one location (MW-4) during both sampling events.

## 3.3.4 Semivolatiles

Eighty-two soil samples were collected and sent for laboratory analysis of semivolatiles by either EPA Method 8270 for PAHs or Method 91-2 for TCL semivolatiles. These samples were collected during installation of the 10 soil borings, 5 monitoring wells, 5 test pits, and 13 surface soil sampling and 2 sediment sampling locations on Area 2 as described above in section 3.0. Twelve water samples also were collected (2 surface water samples from the Wynants Kill and two rounds of groundwater samples from the five monitoring wells on site) and sent to the contract laboratory for analysis of semivolatiles by TCL/TAL.

Results from the laboratory analyses are presented in tables 1-4, 2-4, 3-4, 4-4, 5-4, 6-1, and 6-2 in the Tables appendix.

Presented in the following two sections is a brief summary of the results of the sampling for semivolatiles. A discussion of the semivolatiles in soils is presented, followed by a discussion of semivolatiles in surface and groundwater.

Semivolatiles consist of both straight chained aliphatics and multi-ringed aromatics which share similar chemical properties, specifically vapor pressure. PAHs are a subgroup of the semivolatiles, which consist of approximately 18 commonly recognized multi-ringed, aromatic compounds. These PAH compounds, because of their physical and chemical characteristics, are commonly targeted as identifiers for discussion, where appropriate.

## Semivolatiles in Soils

## Sediment Samples

The locations from which the two sediment samples were collected are shown on figure 2-3, Area 2 Site Map, which is included in the Figures appendix. As shown in table 2-4, the upstream sample (S-3) possessed approximately four times higher concentrations of total semivolatiles (approximately 2,231 mg/kg) than did the downstream (S-1) location (approximately 498 mg/kg). Seven analytes (fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, and chrysene) exceeded the upper detection limits of the GC/MS instrument in the upstream sample, requiring the samples to be diluted and reanalyzed. The results from the diluted samples were similar to the



undiluted results. For discussion purposes, the reported results from the diluted samples will be used.

Of the semivolatiles detected in the diluted samples at both sampling locations, phenanthrene was present in the highest concentrations (480 mg/kg upstream, 110 mg/kg downstream), followed by pyrene (300 mg/kg upstream, 99 mg/kg downstream) and fluoranthene (460 mg/kg upstream, 9.8 mg/kg downstream). The same distribution occurred in the undiluted samples.

A duplicate of the downstream sample was collected (S-2) and sent to the laboratory for analysis. This sample possessed approximately 26 mg/kg total semivolatiles. Phenanthrene, pyrene, and fluoranthene were again the analytes in the highest concentrations.

#### Surface Soil Samples

As mentioned above, surface soil samples were collected from 13 locations on the King Fuels property and sent for analysis of semivolatiles. These results are presented in table 3-4, Surface Soil Sampling Results, which is included in the Tables appendix. The table also includes the results from the two duplicate samples collected (SS-14 and SS-15).

Semivolatile hydrocarbons were detected in all the surface samples collected with total concentrations ranging from 0.037 mg/kg (at surface sample SS-13) to 266.5 mg/kg (at SS-10). Surface soil sample SS-10 was located near the former Tar/Lime/Coke tank farm, but the sample was collected from directly under the asphalt pavement and therefore may not be representative of industrial impacts, but rather leaching from the current asphalt cover.

Surface soil sampling locations are presented on figure 4-4, Surface Soil Sampling Results. None of the locations sampled possessed total semivolatiles exceeding the 500 mg/kg recommended soil cleanup objective presented in the NYSDEC TAGM HWR-94-4046.

Fluoranthene and pyrene were the analytes present in the highest relative concentrations.

#### Subsurface Soil Samples

Subsurface soil samples were collected from 5 test pits, 10 soil boring locations, and 5 monitoring well locations as described in section 3.0. The results of the laboratory analyses for semivolatiles are presented in tables 4-4 and 5-4.

Eight samples were collected from the five test pits installed in Area 2 for semivolatiles analysis. Semivolatiles were present at all sample locations ranging from approximately 0.1 mg/kg at test pit TP-3 to 185,340 mg/kg at test pit TP-7. Soils from test pits TP-2 (located outside the NMPC gas



regulator station) and TP-3 (located behind the former water gas plant) exhibited very low concentrations of semivolatiles (less than 3.5 mg/kg).

Based on observation during installation, test pit TP-7 is believed to have been installed inside a suspected former tar well. The extract from this soil sample had to be diluted by the contract laboratory to keep all the semivolatile analytes within the detection limits of the instrument.

A soil sample collected at 6 feet below grade from test pit TP-1 (located in the area formerly occupied by oxide purifier boxes where King Fuels currently stages used storage tanks), contained approximately 550 mg/kg total semivolatiles. The soil sample collected from approximately 2 feet below grade, however, possessed only 0.13 mg/kg total semivolatiles.

Naphthalene, phenanthrene and fluoranthene appear to be present in the highest relative concentrations in the soil samples from the test pits.

Fifty-nine soil samples were collected during the installation of the 10 soil borings and 5 monitoring wells and were sent for analysis of semivolatiles. The total semivolatiles detected on the soil samples ranged from non-detectable (at 14 locations) to 10,667 mg/kg at SB-13. Of these soil samples, five possessed total semivolatile concentrations greater than 500 mg/kg. A total of 39 samples possessed total semivolatile concentrations less than 5 mg/kg.

Phenanthrene, pyrene, and fluoranthene were the PAH analytes present in the highest relative concentrations with the exception of SB-19 at 25 to 27 feet below grade (at the water table) and at SB-13 where naphthalene was present in high relative concentrations. Soil boring SB-19 is located immediately downgradient of the underground storage tanks operated by King Fuels, and SB-13 is located in the former Wynants Kill Creek channel. The soil sample from SB-19 does not show the presence of heavier PAHs (greater than carbon number C16) which were present at the other locations. Additionally, the geologist recorded a distinct fuel oil odor at this location.

For each location where a soil sample was collected and sent for semivolatiles analysis (surface soils, subsurface soils, test, and sediment soils), the location is highlighted on figure 4-5. The seven locations (two test pits and five soil borings) where subsurface soils possessed greater than 500 mg/kg total semivolatiles are also indicated on figure 4.5.

#### Semivolatiles in Water

As previously mentioned, one upstream (S-3) and one downstream (S-1) surface water sample was collected from the Wynants Kill. Table 1-4, Former Gas Holder and Surface Water Sampling Results, summarizes the results of the analyses for semivolatiles.



As shown on the table, no dissolved levels of target semivolatiles were detected in either sample.

A duplicate surface water sample (S-2) was collected from the downstream location. Here again, no dissolved semivolatiles were detected.

As shown on table 6-1 of the five groundwater samples collected during the first sampling event from MW-1, MW-2, MW-3, MW-4, and MW-5, phenol was the only target analyte present. Phenol was detected in one monitoring well (MW-4) at a concentration of 0.002 mg/L which exceeded the NYSDEC Class GA groundwater standard of (0.001 mg/L). A data validation qualifier indicated that the reported value is an estimated value.

The second sampling round (table 6-2) was similar, where again in all monitoring wells, no detectable levels of semivolatiles were present, except at MW-3 and MW-4 where approximately 0.002 mg/L of acenaphthene and 0.023 mg/L of phenol were detected, respectively.

Bis (2-ethylhexyl) phthalate, believed to be a sampling artifact, was detected at one location during each event (at different monitoring wells).

As shown on the tables, the NYSDEC Class GA groundwater quality standards were exceeded at only one monitoring well location (MW-4) by one semivolatile analyte (phenol).

## 3.4 Air Monitoring Results

The results of laboratory analysis of air samples are presented in table 8-1. The complete laboratory analytical reports are included in appendix C. Table 8-1 contains the results of air sampling performed during both the Area 2 and the Area 4 investigation since the field work was performed simultaneously in these areas.

As indicated in the table, BTEX compounds were not detected in any of the analyzed air samples. Naphthalene was the only PAH compound detected in the analyzed air samples, at concentrations ranging from 0.005 micrograms per liter ( $\mu$ g/L) to 0.44  $\mu$ g/L.

## 3.5 Data Validation

The data validation for the PSA at the site was performed by Chemworld Environmental, Inc. of Rockville, Maryland. The validation process followed the guidelines included in the US EPA Region



II Data Validation Checklists (January 1992) and the CLP portion of the NYSDEC Analytical Service Protocols (ASP), (December 1991), where applicable.

Data validation reports were prepared, which included a narrative listing the results of data validation and summary tables indicating all appropriate data validation qualifiers. The PSA/IRM laboratory analytical results tables (tables 1 through 7), which are presented in the Tables appendix, include the validated analytical data with all pertinent data qualifiers.

According to the data validation report, all data is considered to be valid and usable with the exception of the following samples:

- cyanide in sediment samples S-1 and S-3
- TCL semivolatiles in subsurface soil sample SB-15 from 32-34 feet below grade
- equipment blank GT-15A for TCL semivolatiles

This unusable data is noted by an "R" qualifier in the data summary tables.

## 4.0 RISK EVALUATION AND HABITAT-BASED ASSESSMENT

A preliminary risk evaluation and a fish and wildlife impact analysis were conducted for the Area 2 site. The purpose was to determine if potential concerns regarding imminent threats to human health or the environment existed as a result of site conditions. Groundwater Technology's Risk Assessment Services group performed the preliminary risk evaluation, while Environmental Design & Research, P.C. (EDR) performed the habitat assessment. The reports from both of these studies are included as appendixes to this report, and additionally are summarized below.

## 4.1 Preliminary Risk Evaluation

A preliminary risk evaluation was performed for Area 2 by Groundwater Technology's Risk Assessment Services group. The purpose of this evaluation was to determine whether MGP or other contemporary industrial residuals in surface or subsurface soils pose an imminent hazard to human health in the short term. Potential exposure to daily workers and construction workers to soils was quantitatively evaluated.



A copy of the *Preliminary Risk Evaluation* — *Area* 2 report is included as appendix D. The preliminary risk evaluation included an evaluation of the following:

- Data Evaluation
- Potential Exposure Pathways
- Exposure Parameters
- Toxicity Values
- Risk Characterization

As a screening mechanism to determine the compounds of concern for the imminent hazard evaluation portion of the PSA, compounds were limited to those meeting the following criteria:

- detected more than twice in either surface or subsurface soils
- the average concentration was more than twice the NYSDEC cleanup objective or background level identified for the compound
- readily available toxicity values

Surface water and sediment soils were not included in the risk evaluation because the potential for exposure to these media was judged to be insignificant compared with the exposure to surface and subsurface soils in the short term (workers are more likely to be exposed to site soil than to wade in the sediment and water). Likewise, data for groundwater was not evaluated because groundwater is not used as a drinking water supply at or downgradient of the site.

Potential exposure pathways included dermal contact and incidental ingestion of soil. The potential for exposure to on-site workers and potential for exposure of hypothetical future construction and maintenance workers to subsurface soils used a five-year period when calculating risk. The results show that the potential cancer risks to daily workers ( $3 \times 10^5$ ) and construction workers ( $8 \times 10^5$ ) are within the USEPA's target risk range of  $1 \times 10^4$  to  $1 \times 10^6$ . Likewise, the potential non-cancer hazard indices for the daily workers (0.004) and construction workers (0.16) are also below the USEPA threshold value of 1.0.



## 4.2 Fish and Wildlife Impact Analysis

A Fish and Wildlife Impact Analysis — Step 1 report was prepared by EDR to determine the impact of MGP and other industrial residuals on the fish and wildlife resources at the Site. The report is included as appendix E. The impact analysis includes a description of the site, the methods used to collect data, the fish and wildlife resources present at the site including the species and ecological communities and habitats present, observations of stress, and also a discussion of the value of the resources and of pertinent regulatory criteria.

The following sub-sections present a brief summary of the results of the report. The report was prepared in conformance with the NYSDEC document titled *Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites*, dated 1994.

### 4.2.1 Objectives

The objectives of the *Fish and Wildlife Impact Analysis* — *Step 1* report was to identify the fish and wildlife resources on, and in the vicinity of, the site identified as Area 2 (King Fuels property) that could be affected by site-related contaminants.

To identify the resources present at the site, a variety of existing data sources were used along with a field survey of the site and the surrounding area. The field survey was conducted on December 9, 1994. The purpose of the site visit was to document all the plant and animal species and natural communities that occur within a 0.5-mile radius of the site. The field survey activities included walking and driving the entire site and surrounding area, visual and auditory field identification of plant and animal wildlife, and collection of plant species for follow-up classification with taxonomic keys.

#### 4.2.2 Habitat Characterization

Information provided by the New York Natural Heritage Program indicated that the following resources exists within a 2.0-mile radius of the site:

- five state regulated wetlands
- two significant coastal fish and wildlife habitats
- three documented rare plant locations



The only wetlands that occur in the study area are well removed from the project site. The closest wetland is located across the Hudson River, west of Route 787, approximately 1,300 feet from the Site. Burdens Pond is an impoundment/wetland on the Wynants Kill, approximately 0.5 mile upstream of the project area. Given their locations, these wetlands would be unaffected by site-related conditions.

Both significant coastal fish and wildlife habitats (Menands Marsh and Poestenkill Creek) are more than 1 mile from the subject site.

The locations of the rare plants are located on the west side of the Hudson River, more than 1.5 miles from the site.

A total of 69 different plant species (including trees, shrubs, and herbs), and 23 species of wildlife were observed on or surrounding the site during the December 9, 1994 site visit. However, existing data sources estimate that approximately 163 different wildlife species and 77 species of fish are likely to occur within a 0.5-mile radius of the site. The difference could be, in part, attributed to the timing of the field survey; observed species were limited to those that were on-site and active during the winter months. Breeding and migratory species of birds were not present, nor were any reptiles or amphibians (which would be hibernating). The species likely to occur in the study area include:

*Birds*: Of the breeding birds documented in the area, none are on the state or federal lists of endangered or threatened species. Two species, however, the eastern bluebird and the common nighthawk, are listed as Special Concern by the NYSDEC.

*Mammals*: Documentation indicated the likely presence of at least 37 mammal species of which 8 were observed during the field survey. No rare or unusual mammal species were observed, or considered likely to inhabit the area.

*Reptiles and Amphibians*: No reptiles or amphibians were observed because of the time of year the field survey took place. However, based on the type of habitat available, it was estimated that at least 17 species of reptiles and amphibians could exist in the area. No rare species are anticipated to occur in the area based on the lack of available habitat.

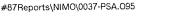
*Fish*: Studies indicate that approximately 77 species of fish occur in the upper Hudson River reservoir. This area of the river does provide habitat for one listed endangered fish, the short nose sturgeon.



Seven separate terrestrial and aquatic communities were identified on or within a 0.5-mile radius of the project site. These communities included:

- Old Field
- Shrub Upland
- Deciduous Forest
- Developed/Disturbed
- Wetland
- Midreach Stream
- Tidal River

The Site and surrounding area appear to have a wildlife community typical of an urban industrial/residential setting in terms of both abundance and diversity. There were no observations of physical stress that appeared to be related to site contamination. However, because plants were dormant at the time of field review, any abnormalities in size or coloration of foliage could not be documented. Any lack of species appeared to be related to the lack of a particular habitat, or the high level of physical disturbance and human activity, rather than industrial residuals.


# 4.2.3 Habitat-Based Value Assessment

The diversity of cover types in the study area provides habitat for common aquatic, forest, and early successional species. However, human development and the associated disturbance and loss of habitat, severely limits the habitat value of terrestrial communities in this area.

The aquatic habitat, despite being in an urban setting, appears to support a healthy and abundant fish population. Any limitations in fish abundance and diversity are probably results of water temperature and dissolved oxygen content, along with the less than ideal cover availability.

Although there is no significant commercial fishing, the Hudson River supports high-quality recreational fishing for smallmouth bass, northern pike, and other warm-water species. These recreational activities are limited on the eastern shore of the river because of a steep sloping shoreline and lack of public access. While providing good recreational opportunities, the river's value is limited because of the concern over potentially high PCB levels in fish inhabiting this portion of the river. A NYS Health Department advisory against eating most species of fish caught in this area exists.

Along with providing habitat for a variety of warm-water fish species, the open water of the Hudson is used by migratory and wintering water foul. However, shallow-water habitat is extremely limited in





the area of the Site because of the lack of emergent vegetation. Consequently, the shoreline provides little, if any, wetland habitat beyond limited foraging by shorebirds. Nesting habitat for waterfowl also appears to be limited by the steep shoreline, lack of thick shoreline vegetation, and absence of suitable tree cavities. The shoreline does harbor abundant insects, invertebrates, frogs, and fish, which serve as important food sources for terrestrial species.

# 4.2.4 Regulatory Criteria

The Hudson River and the Wynants Kill are considered "waters of the United States," and, as such, are protected under the Clean Water Act of 1977, Sections 401 and 404. Based on the current lack of use of these waters by the current site activities, limited regulatory criteria are applicable. The following New York State regulations could potentially be applicable:

- 6NYCRR PART 700-705: Water Quality Regulations for Surface Waters and Groundwaters; includes New York State's stream classification system; establishes best use of the Hudson and Wynants Kill; establishes physical, chemical, and biological ambient water quality standards and guidance values and permitted discharge requirements.
- 6NYCRR PART 608: Requires acquisition of a permit to conduct disturbance activities in the bed or banks of protected streams.

# 5.0 FIELD OBSERVATIONS

During field activities, Groundwater Technology personnel observed and documented conditions at the site that were not part of the PSA study, but may represent potential environmental concerns. As stated, evaluation of these conditions was not completed. The presence of these conditions however, may speak to the current general conditions and environmental practices at the site.

These conditions include:

- Unidentified Drums: Numerous unidentified drums were observed on the King Fuels property during the site activities and during site reconnaissance visits. An inventory of the quantity, or contents, of the drums was not conducted, however. Several locations of the drums include:
  - two under the former coke screening station
  - six inside the building near monitoring well MW-4
  - three near the fuel transfer line to Chevron near the wooden dock on the eastern side of the site
  - three near the fuel transfer line, between MW-4 and MW-5



Additionally, an unidentified quantity of drums was observed half-buried in the ground during field work conducted in the fall of 1994 in the portion of the site used for parking school busses. Specifically, the drums were located near the fuel transfer line and between MW-4 and MW-5. These drums were not observed during the most recent site visit, and regrading of the area appears to have occurred.

These drums are of a more contemporary origin than can be associated with historical MGP operations.

Relocation of Purifier Box Waste: During the PSA site activities, oxide boxes that were historically used by water gas and coke oven plants as a final gas purification step for removing hydrogen sulfide from the manufactured gas were observed intact. These boxes were observed to be filled with spent oxide waste. Spent oxide wastes are typically high in sulfur and also contain significant amounts of various cyanides and heavy metals. Oxide box waste is not a RCRA hazardous waste, but might fail the RCRA reactivity test based on its cyanide and/or sulfide content.

During a final site reconnaissance visit conducted in April 1995, it was observed that the oxide boxes had been razed and the contents relocated and used as construction fill by King Fuels, or its subcontractors, on the south side of the 2,000,000 cubic feet holder (between the gas holder and the Wynants Kill).

• **Suspected Asbestos:** Several buildings on the study area appeared to contain asbestos insulation in a deteriorated state. Recently, lack of maintenance on these buildings has allowed them to deteriorate. In a deteriorated state, asbestos particles/fibers can become airborne and potentially impact human receptors such as site workers.

#### 6.0 IRM EVALUATION

The site conditions in Area 2, excluding those identified in section 5.0, were evaluated to determine if an imminent danger to health or the environment exists, or conditions exist which may lead to an imminent danger, which warrants proceeding with one or more IRMs. An IRM is considered a discrete set of activities to address both emergency and non-emergency site conditions, which can be undertaken without extensive investigation and evaluation, to prevent, mitigate, or remedy environmental damage. This evaluation consisted of the review of the chemical data collected, the *Preliminary Risk Evaluation* report, and the *Fish and Wildlife Impact Analysis — Step 1* report, combined with observations gathered during site reconnaissance visits.

The preliminary risk evaluation did not indicate unacceptable risks to human health based on the current usage. Several compounds and metals in surface soils were above NYSDEC cleanup quidance values for hazardous waste sites. However, these guidance values are intended as



objectives for cleanup for unrestricted property uses. The subject property is zoned and used as industrial property. There is no residential use of the property. Therefore, the NYSDEC Guidance Values are not applicable as IRM trigger levels.

Based on the above criteria, the chemical nature of the site does not pose an imminent danger to current workers, potential future construction workers, or wildlife. These data support the conclusion that IRMs are not warranted and that any remediation should be completed in recognition of current and intended uses of the site. Therefore, potential IRM activities include only non-emergency activities aimed at preventing further chemical impacts to the environment.

Two IRMs have been identified which fit into this category. These potential IRMs include:

**300,000 Cubic Feet Gas Relief Holder:** The current contents of the former gas holder is leaking through a hole (approximately 2 feet in diameter) cut into the side of the holder. The roof of the holder has apparently rusted away. Lack of maintenance on the gas holder has allowed rainwater to fill the holder to the hole and flow out freely into concrete vaults adjacent to the tank. From the vaults, the water apparently seeps into the ground.

As presented in section 3.2.2 of this report, both the water and an undetermined quantity sludge in the holder is likely to be classified as a RCRA hazardous waste by characteristic for benzene.

The contents of the holder should be analyzed to determine if the material is MGP- or petroleum-related.

The gas holder should then be emptied of the sludge and accumulated water and cleaned. The contents should be properly transported for off-site disposal.

• **Closure of Suspected Tar Well:** A suspected tar well exists in the area of test pit TP-7 (near the former tar/lime/creosote tank farm). The contents of the tar well should be excavated and properly transported for off-site disposal. The tar well structure should be cleaned in place, or also removed for proper disposal.

# 7.0 CONCLUSIONS AND RECOMMENDATIONS

The objective of this section is to summarize the conclusions of the field investigation. These conclusions are based on the geologic and hydrogeologic information collected combined with the preliminary risk evaluation and the fish and wildlife impact analysis.

To be concise, the conclusions are presented in a "bulleted" format.



### 7.1 Conclusions

Based on the PSA/IRM Study, the following conclusions may be drawn.

#### Site Setting

- Area 2 is approximately 33 acres in area and is located in an area of Troy characterized by industrial and commercial land use. The site is bounded to the west by the Hudson River, to the east by the New York Central Railroad, to the south by the Chevron asphalt batch plant, and extends approximately 50 feet north of the remains of a 2 million cubic feet gas holder.
- The site is currently owned by King Fuels, a heating oil and gasoline distributor. Much of the site is covered with pavement, buildings, and industrial structures. Many of the buildings and tanks from the former MGP remain, and several are currently in use by King Fuels.
- A majority of the surficial soils at the site has been disturbed through excavation or grading. The thickness of fill, which consists primarily of slag, cinders, ash, bricks, and gravel, ranges from approximately 5 feet on the eastern portion of the site, to approximately 40 feet on the western portion.
- Groundwater was found at depths ranging from 18 to 31 feet below grade. The groundwater flows primarily to the west, toward the Hudson River. A portion of the groundwater flow appears to converge toward the former Wynants Kill channel.
- An inventory of both the number and contents of the unlabeled drums which exist across the site should be conducted, including verification that drums have not been inadvertently buried under the fill which appears to be present in the vicinity of the school bus parking area. Because the more recent origin of these drums indicates they are not associated with the former MGP operations, this inventory should be conducted by the current site operators.

#### Source Characterization

- Inspection of the former 2,000,000 cubic feet gas holder from an access manway in the roof indicated that it appeared to be empty. Due to the absence of access at grade, the investigation was indeterminent in verifying that there were no contents below the floating ceiling.
- Inspection of the former 300,000 cubic feet gas holder and sampling and laboratory analysis of its contents indicated that both the water and sludge may be considered a RCRA hazardous waste by characteristic.
- Results from the waste characterization sampling of the tar-like material encountered at the location of test pit TP-7 indicated that the material is considered a RCRA hazardous



waste by characteristic. The location of TP-7 is suspected to be located within a former tar well.

 An evaluation of the spent oxide waste and any impacts of its recent disposal by King Fuels should be conducted.

### Surface Soils

- No pesticides, PCBs, or VOCs were detected above the USEPA Health Based or NYSDEC Recommended Cleanup Objectives presented in TAGM HWR-94-4046.
- Total semivolatiles were not detected above the 500 mg/kg Recommended Cleanup Objective presented in TAGM HWR-94-4046. Total semivolatiles ranged from 0.037 to 266.5 mg/kg. The soil sample collected from sample location SS-10, where the highest concentration of semivolatiles was detected (266.5 mg/kg), was collected directly beneath asphalt and may not be representative of MGP impacts.
- An investigation of the background metals concentrations in soils for the area surrounding the project site was not completed as part of the PSA study. Recommended Cleanup Objectives for metals presented in NYSDEC TAGM HWR-94-4046 may not be representative of heavily industrialized areas such as Troy, New York, but have been included for discussion purposes only.
- Generally, a majority of the TAL metals was detected at most sampling locations. Only zinc was detected at all three sampling locations above Eastern USA Background Concentrations as reported in TAGM HWR-94-4046.
- A random pattern appears to exist for most metals detected, which therefore does not form a pattern that can be used to determine the source of the metals (MGP, other more contemporary residuals, or background levels).

### Sediment Samples

- No PCBs were detected.
- No pesticides were detected above the Recommended Cleanup Objective presented in TAGM HWR-94-4046 with the exception of endrin in the downgradient sample.
- No VOCs were detected above the Recommended Cleanup Objective presented in TAGM HWR-94-4046.
- The sediment soil sample collected at the upgradient (eastern) boundary of the study area exceeded the Recommended Cleanup Objective of 500 mg/kg presented in TAGM HWR-94-4046 for total semivolatiles (2,231 mg/kg); the downgradient sediment sample, collected from the area where the Wynants Kill deposits into the Hudson River (498 mg/kg), did not exceed the Recommended Cleanup Objective.



- The concrete lining of the area from which the downgradient sample was collected may explain the apparent disparity between downgradient and upgradient SVOC concentrations.
- A random pattern appears to exist for most metals detected which therefore does not form a pattern which can be used to determine the source of metals (MGP, other more contemporary residuals, or background levels).

### Subsurface Soils

- The principal contaminants of concern identified were VOCs and semivolatiles. VOC concentrations ranged from below detectable levels to 44.8 mg/kg. Semivolatile concentrations ranged from less than 1.0 to 185,340 mg/kg (in the suspected tar well).
- Of the 67 soil samples collected for analysis of VOCs, only four of the soil samples exceeded the Recommended Cleanup Objective of 10 mg/kg total VOCs presented in TAGM HWR-94-4046 (SB-13, SB-15, SB-19, and TP-7).
- The highest concentrations of total semivolatiles in subsurface soils were encountered at the location of the suspected tar well (TP-7) and at two soil borings located in the former creek channel (SB-13 and SB-15).
- Of the 20 locations on the site at which soil borings, monitoring wells, or test pits were installed (total of 67 soil samples collected for analysis), 7 locations had at least one soil sample (total of 7 soil samples) which possessed total semivolatile concentrations exceeding the Recommended Cleanup Objective of 500 mg/kg presented in TAGM HWR-94-4046 (TP-1, TP-7, MW-2, MW-5, SB-13, SB-15, and SB-18).
- The relative distribution of semivolatiles which was detected at soil boring SB-19 appeared to be different from the relative distribution of semivolatiles in other areas of the site (a higher percentage of lighter, less condensed semivolatiles existed in the SB-19 sample). The GC Gas/GC Fuel Oil analysis performed on this sample (table 5-5) indicated the soil contained 3,100 mg/kg TPH as gasoline and 14,000 mg/kg No. 2 fuel oil. Additionally, the GC Gas/GC Fuel Oil analysis performed on the soil sample from SB-15 indicated the soil contained 4,300 mg/kg TPH as gasoline and 40,000 mg/kg No. 2 fuel oil. The highest BTEX impacts in subsurface soils (outside the suspected tar well) were also found at these locations. These soil borings are located downgradient of underground storage tanks associated with the King Fuels operation and may be evidence that more than one source of hydrocarbon impacts exits.
- A random or inconsistent pattern appears to exist for most metals detected. A correlation between the presence of these metals and historical MGP, or more contemporary activities, could not be made.

### Surface Water

• No pesticides or PCBs were detected.



- No VOC concentrations were detected that exceeded the NYSDEC Class C surface water standards as presented in the TOGS 1.1.1.
- No semivolatile concentrations were detected that exceeded the NYSDEC Class C surface water standards as presented in the TOGS 1.1.1.
- Aluminum was the only metal detected with a concentration exceeding the NYSDEC Class C surface water standards as presented in the TOGS 1.1.1.

### Groundwater

- No pesticides or PCBs were detected during either sampling event.
- During both sampling events, two of the five monitoring wells did not possess any VOCs.
- Chloroform (at MW-1 and MW-5) and benzene (at MW-4) were the only analytes to exceed NYSDEC Class GA groundwater standards during the first sampling event. Similar results were obtained from the second sampling event. Monitoring well MW-4 appears to be downgradient of the underground storage tanks associated with the King Fuels operations.
- Phenol was the only semivolatile analyte detected above NYSDEC Class GA groundwater standards during either sampling event (MW-4).
- Five metals were present in concentrations exceeding NYSDEC Class GA groundwater standards during the two sampling events.

### Preliminary Risk Evaluation

Based on dermal contact and incidental ingestion, the potential cancer risks to daily workers (3 x 10<sup>5</sup>) and construction workers (8 x 10<sup>5</sup>) was within the EPA's target risk range of 1 x10<sup>4</sup> to 1 x 10<sup>6</sup>. Likewise, the potential non-cancer hazard indices for daily workers (0.004) and construction works (0.16) was below the EPA's threshold value of 1.0. Based on existing information, therefore, the site does not pose an imminent danger to human health in the short term.

### Fish and Wildlife Impact Analysis

- The five state-regulated wetlands, two significant coastal fish and wildlife habitats, and three documented rare plant locations which exist within a 2-mile radius of the site appear to be unaffected by site-related activities.
- Any lack of plant or animal species appeared to be related to human and industrial development and the associated loss of habitat rather than industrial residuals.



## 7.2 Recommendations

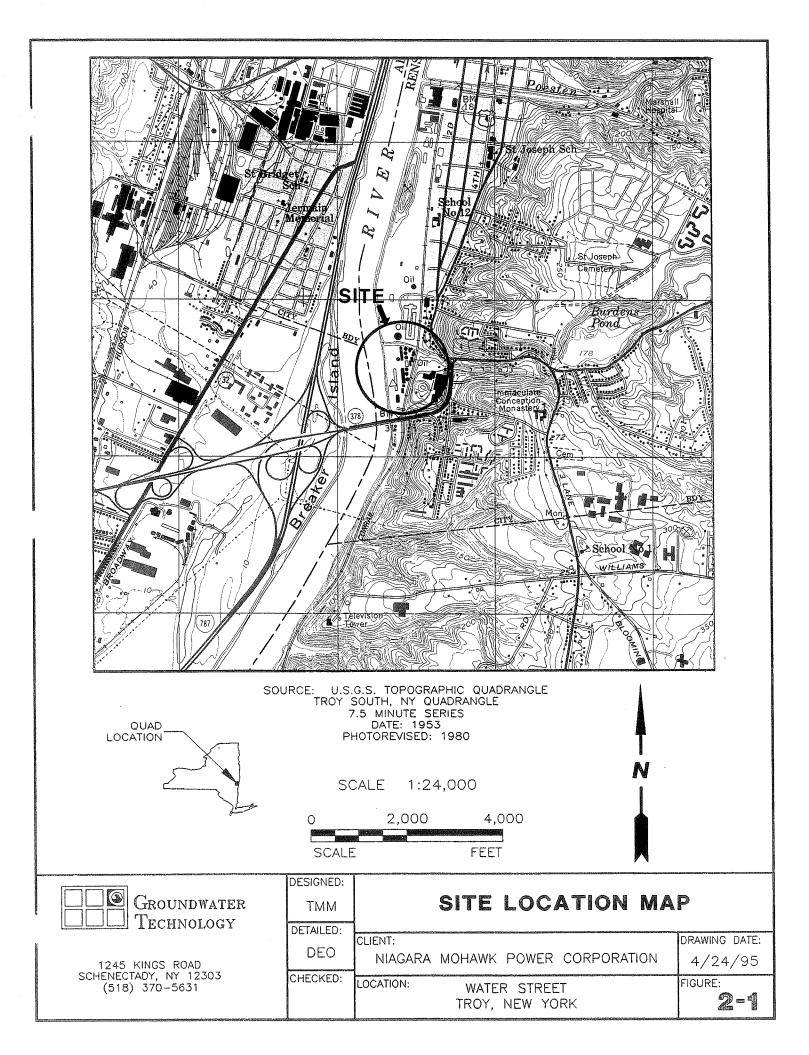
MGP and other industrial related impacts are present on site. A focussed remedial investigation/feasibility study is necessary to fill site characterization data gaps and to evaluate the need for potential remedial measures. The following list presents recommended additional assessment tasks which, when combined with the information collected during the PSA study, will more fully characterize the project site:

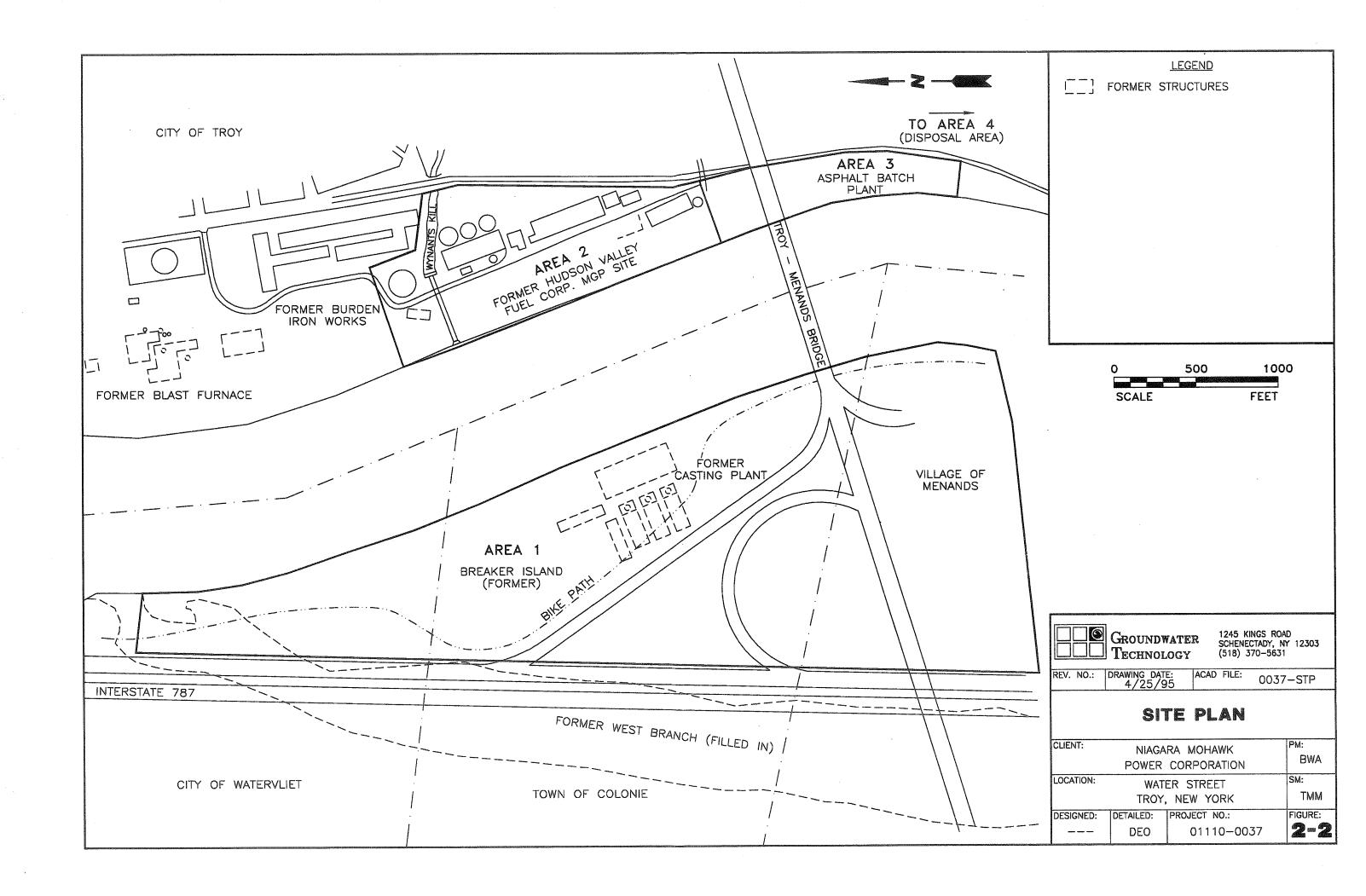
- Evaluate the quality and organic content of Wynants Kill soil sediments and surface water upstream from the Site by collection of appropriate samples.
- Collection of Hudson River sediment samples from within the zone of tidal influence to evaluate if significant impacts from MGP residuals exist. Samples should be collected upstream and downstream of the project site to assist in differentiating between background conditions and site impacts (if any).
- Continue the on-site subsurface soil and groundwater sampling program with the following objectives:
  - delineate/differentiate the extent of subsurface impacts associated with historical MGP operations and contemporary site operations
  - characterize subsurface soil and groundwater downgradient of the 2,000,000 cubic feet gas relief holder
  - characterize subsurface soil and groundwater around the 300,000 cubic feet gas relief holder
  - better understand groundwater flow direction and gradient on the southern and central portions of the site and determine the influence of the former Wynants Kill channel on groundwater flow by the installation of piezometers
- Collect information on background concentrations of metals in area soils by conducting literature searches and/or performing surface soil sampling.
- Locate and review engineering design drawings of the 2,000,000 cubic feet gas relief holer for details of construction. These details are required to aid in developing a safe plan to access the holder to verify the contents below the floating ceiling.

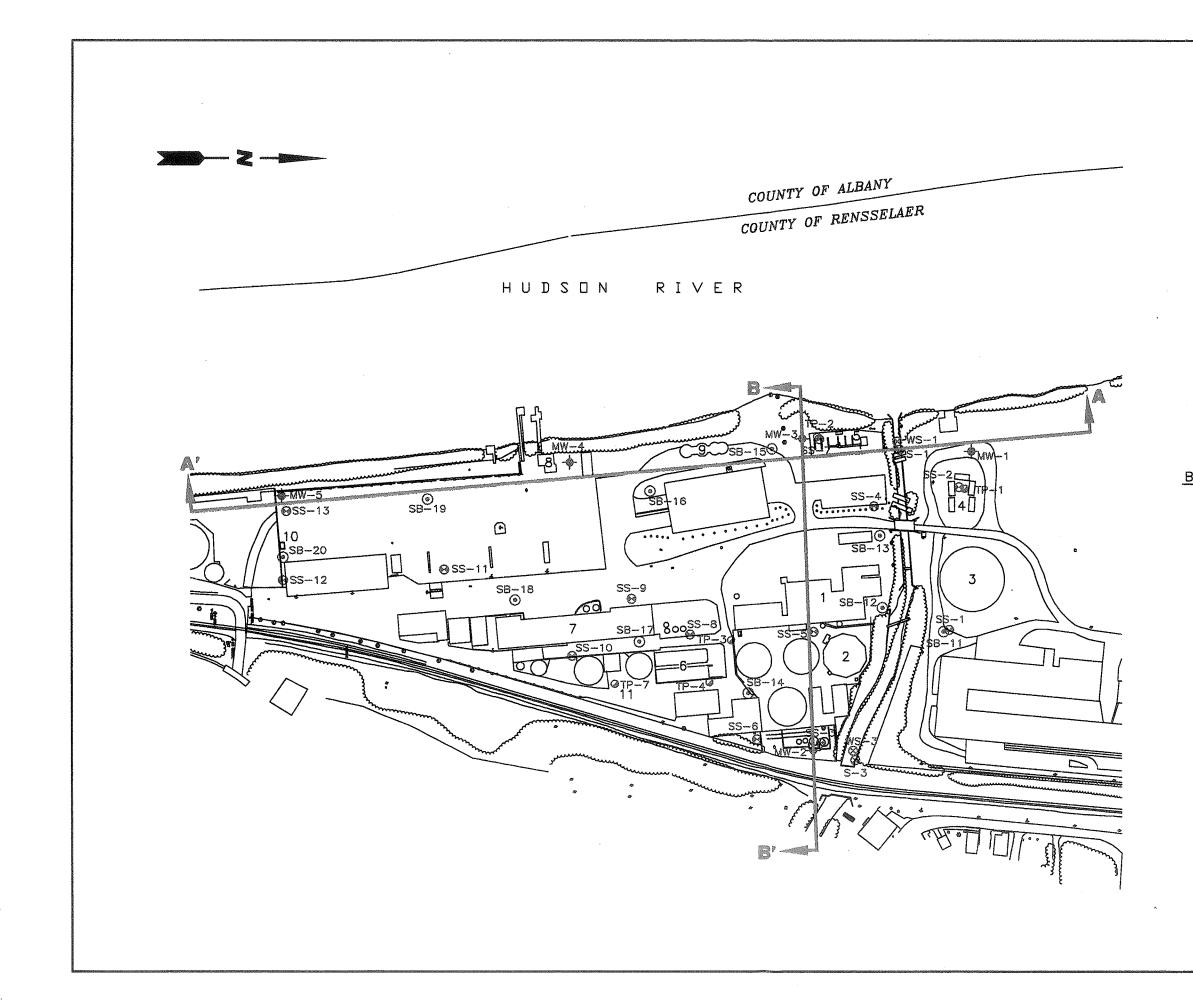
#87Reports\NIMO\0037-PSA.095

GROUNDWATER

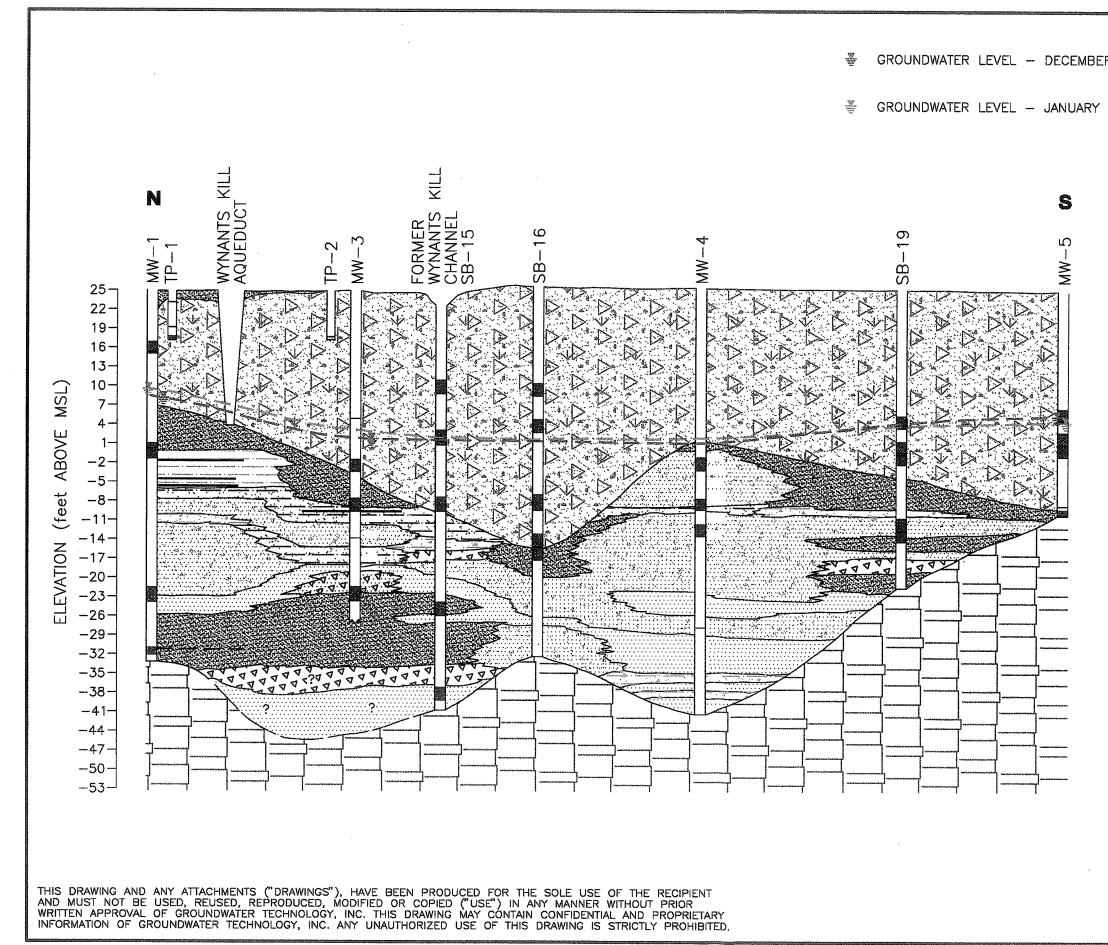
#### 8.0 REFERENCES


- 1. O'Brien & Gere Engineers, "Work Plan Preliminary Site Assessment/Interim Remedial Measure Study for the Former Troy (Water Street) MGP Site," May 1994.
- 2. ESI and Thomsen Associates, "Hydrogeologic Evaluation, Lands of Republic Steel Corporation, South Troy, NY," August 1986.
- 3. R.V. Cushman, "The Groundwater Resources of Rensselaer County," USGS in Cooperation with Water Power and Control Commission, Albany, NY, 1950.
- 4. Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites, NYSDEC, Division of Fish and Wildlife, 1994.
- 5. Surficial Geologic Map of New York, Hudson Mohawk Street, D. Cadwell, R. Dineen, 1987.
- 6. Geologic Map of New York, Hudson Mohawk Street, D. Fisher, 1970.
- 7. "Exposure to Carcinogenic PAHs in the Environment," Menzie, Potocki, and Sanodonato, Environmental Science & Technology, Vol. 26, 1992.
- 8. NYSDEC Division of Water, Technical and Operation Guidance Series (1.1.1), "Ambient Water Quality Standards and Guidance Values," October 22, 1993.
- Environmental Research & Technology, Inc. and Koppers Company, Inc., Handbook on Manufactured Gas Plant Sites, prepared for Utility Solid Waste Activities Group, September 1994.
- 10. NYSDEC Division of Hazardous Waste Remediation, Division of Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, HWR-92-4046, January 1994.

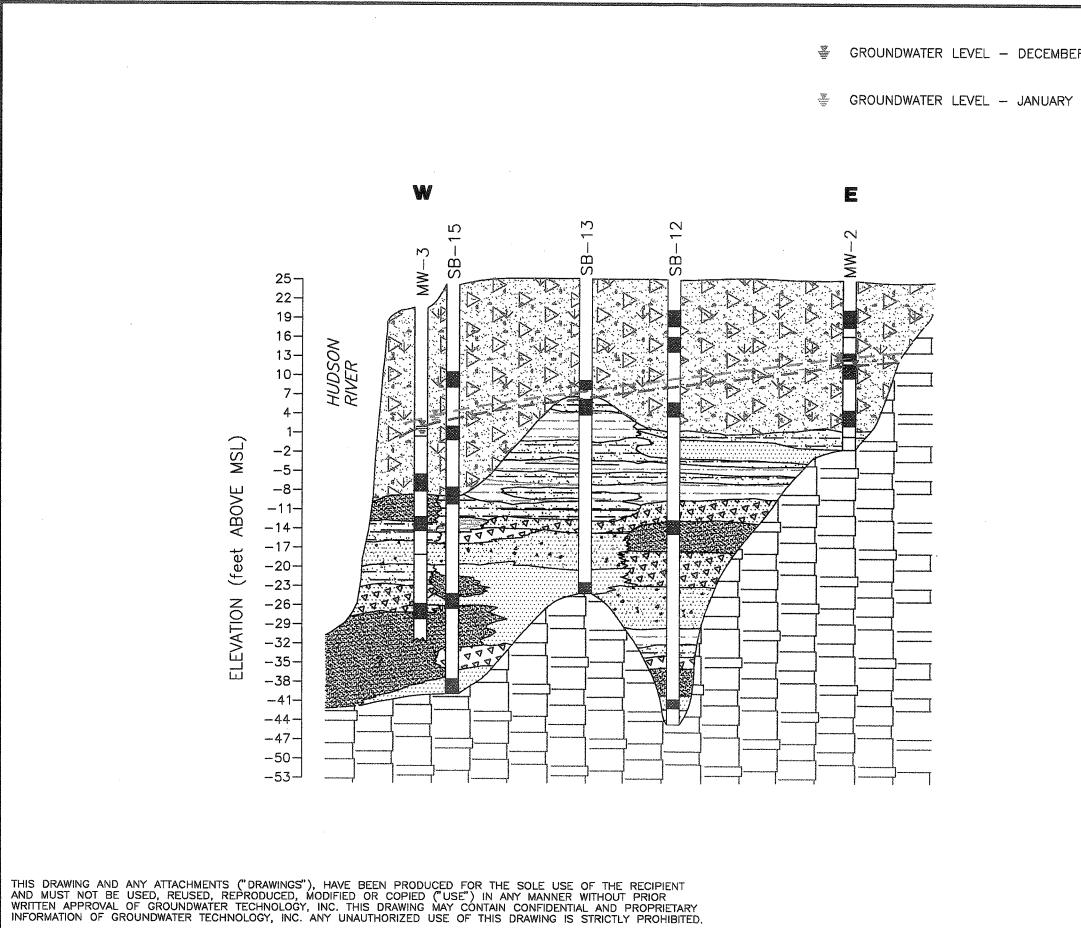




# **FIGURES**

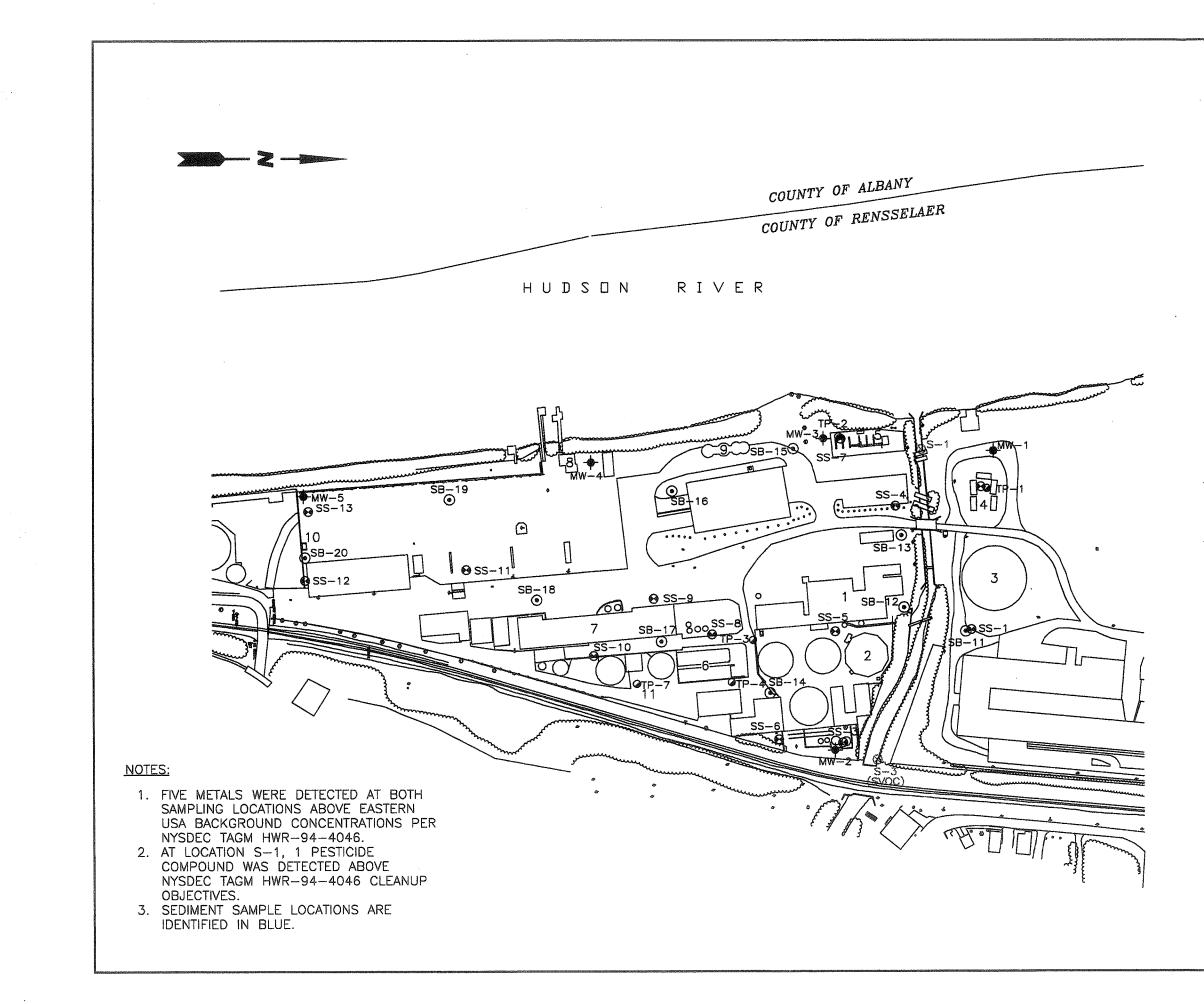
- 2-1. Site Location Map
- 2-2. Site Plan
- 2-3. Area 2 Site Map
- 4-1. Geologic Cross-Section A-A' (MW-1 to MW-5)
- 4.2. Geologic Cross-Section B-B' (MW-3 to MW-5)
- 4-3. Sediment Sampling Results
- 4-4. Surface Soil Sampling Results
- 4-5. Subsurface Soil Sampling Results
- 4-6. Surface Water Sampling Results
- 4-7. Summary of Groundwater Monitoring Results (December 1994)
- 4-8. Summary of Groundwater Monitoring Results (January 1995)
- 4-9. Hydrocarbon Distribution Cross-Section (MW-1 to MW-5)
- 4-10. Hydrocarbon Distribution Cross-Section (MW-3 to MW-5)

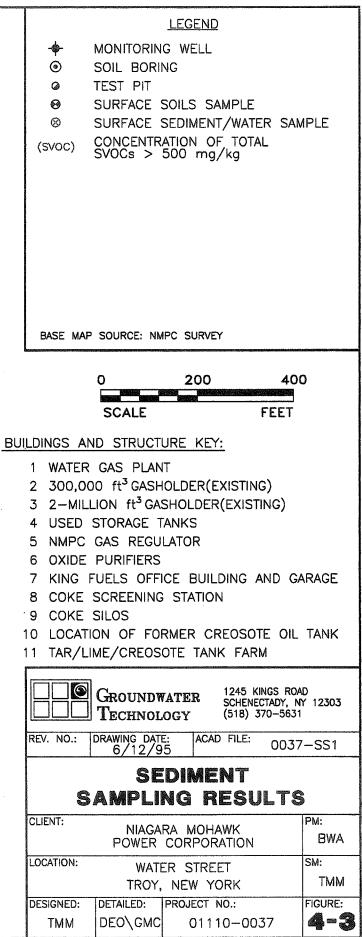


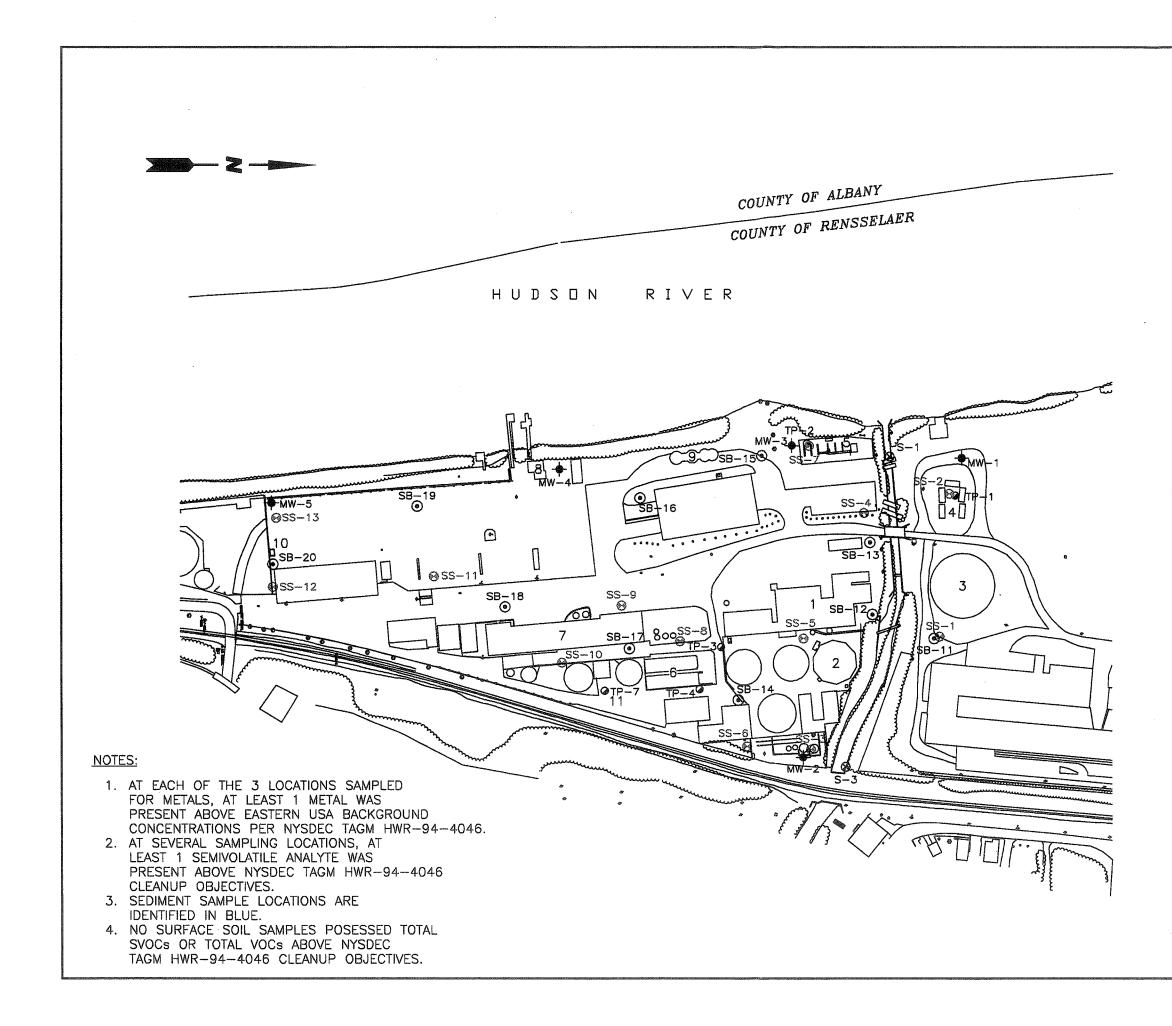


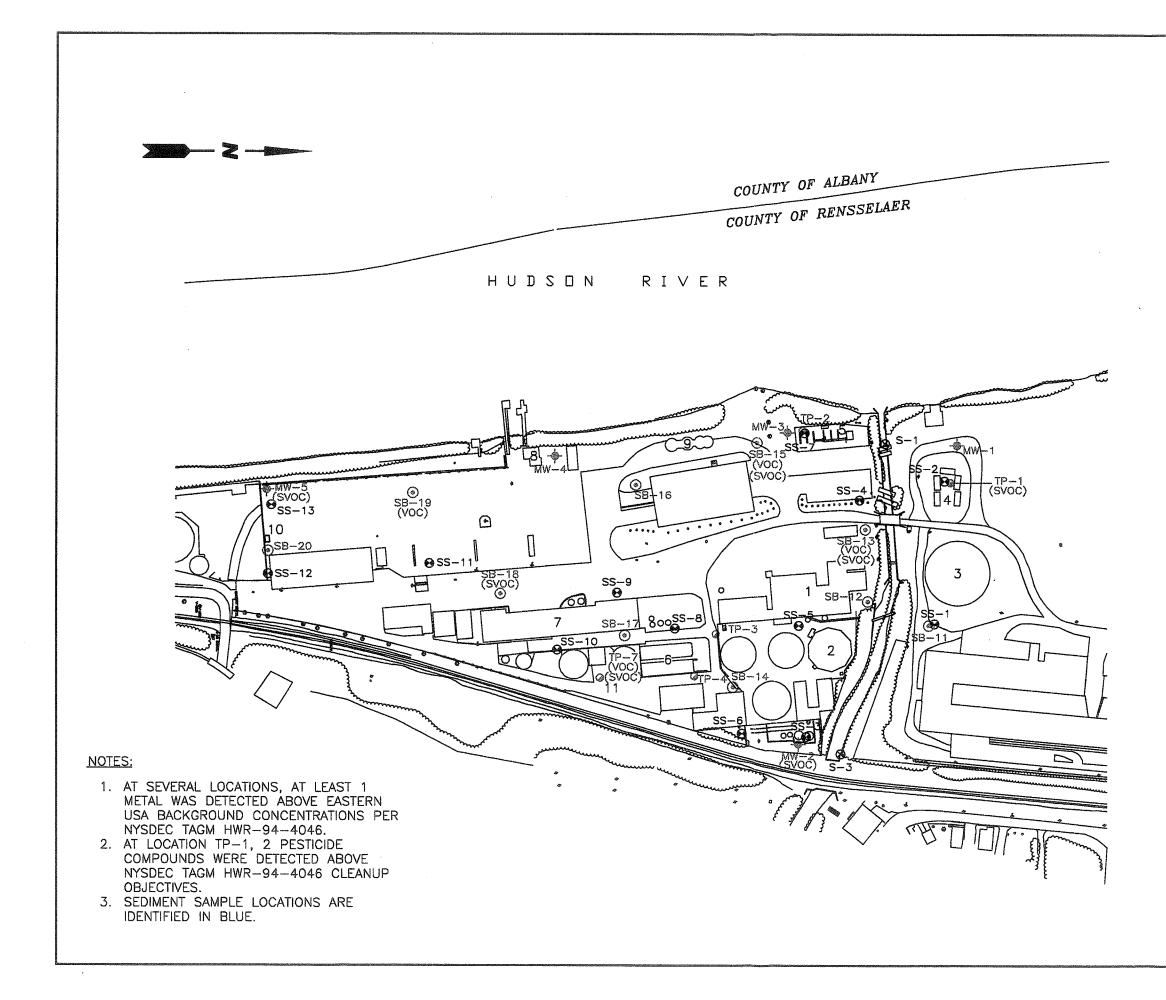




| LEGEND<br>MONITORING WELL<br>SOIL BORING<br>TEST PIT<br>SURFACE SOILS SAMPLE<br>ULCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)<br>LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)<br>LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)<br>LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)<br>BASE MAP SOURCE: NMPC SURVEY<br>D<br>CO<br>SCALE FEET<br>SUILDINGS AND STRUCTURE KEY:<br>1 WATER GAS PLANT<br>2 300,000 ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>4 USED STORAGE TANKS<br>5 NMPC GAS REGULATOR<br>6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>CLIENT: NIAGARA MOHAWK<br>POWER CORPORATION<br>1245 KINGS ROAD<br>SCHENECTAPY, NY 12303<br>REV. NO: PRAWING DATE: ACAD FILE: 0037-ST1<br><b>AREEA 2</b><br>SITE MAP<br>CLIENT: NIAGARA MOHAWK<br>POWER CORPORATION<br>BWA<br>LOCATION: WATER STREET<br>TROY, NEW YORK TMM<br>DESIGNED: DETAILED: PROJECT NO:: FIGURE:<br>DEO/GMC 01110-0037<br>2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |     |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LEGEND                                                |     |  |  |  |  |
| • TEST PIT             • SURFACE SOILS SAMPLE             • SURFACE SEDIMENT/WATER SAMPLE             • SURFACE SEDIMENT/WATER SAMPLE             • LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)                 • LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)                 • LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)            BASE MAP SOURCE: NMPC SURVEY                 • LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)            BASE MAP SOURCE: NMPC SURVEY                 • LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)            BASE MAP SOURCE: NMPC SURVEY                 • LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)            BASE MAP SOURCE: NMPC SURVEY                 • USED STORAGE TANKS                 • USED STORAGE TANKS                 • USED STORAGE TANKS                 • USED STORAGE TANKS                 • MING FUELS OFFICE BUILDING AND GARAGE                 • COKE SILOS                • LOCATION OF FORMER CREOSOTE OIL TANK                 • LOCATION OF FORMER CREOSOTE OIL TANK                 • COKE SILOS                 • LOCATION OF FORMER CREOSOTE OIL TANK                 • COKE SILOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |     |  |  |  |  |
| SURFACE SOILS SAMPLE     SURFACE SEDIMENT/WATER SAMPLE     SURFACE SEDIMENT/WATER SAMPLE     LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)     LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)      BASE MAP SOURCE: NMPC SURVEY      Q 20 400     SCALE FEET  SUILDINGS AND STRUCTURE KEY:     1 WATER GAS PLANT     2 300,000 ft <sup>3</sup> GASHOLDER(EXISTING)     3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)     3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)     4 USED STORAGE TANKS     NMPC GAS REGULATOR     6 OXIDE PURIFIERS     7 KING FUELS OFFICE BUILDING AND GARAGE     8 COKE SCREENING STATION     9 COKE SILOS     10 LOCATION OF FORMER CREOSOTE OIL TANK     11 TAR/LIME/CREOSOTE TANK FARM      CUENT: NIAGARA MOHAWK FOWER CORPORATION     MATER STREET TROY, NEW YORK     MMA     LOCATION: WATER STREET TROY, NEW YORK     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |     |  |  |  |  |
| SURFACE SEDIMENT/WATER SAMPLE     LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)     LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)     BASE MAP SOURCE: NMPC SURVEY      D 200 400     SCALE FEET  SULDINGS AND STRUCTURE KEY:     1 WATER GAS PLANT     2 300,000 ft <sup>3</sup> GASHOLDER(EXISTING)     3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)     3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)     4 USED STORAGE TANKS     NMPC GAS REGULATOR     O XIDE PURIFIERS     7 KING FUELS OFFICE BUILDING AND GARAGE     8 COKE SCREENING STATION     9 COKE SILOS     10 LOCATION OF FORMER CREOSOTE OIL TANK     11 TAR/LIME/CREOSOTE TANK FARM      FECHNOLOGY     CROUNDWATER     1245 KINGS ROAD     SCHENECTADY, NY 12303     SCHENECTADY, NY 12303     SCHENECTADY, NY 12303     SITE MAP      CLIENT: NIAGARA MOHAWK     POWER CORPORATION     WATER STREET     TROY, NEW YORK     TMM     DESIGNED: [DETAILED: PROJECT NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |     |  |  |  |  |
| LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)<br>B'<br>LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)<br>BASE MAP SOURCE: NMPC SURVEY<br>Description<br>BASE MAP SOURCE: NMPC SURVEY<br>DESCALE FEET<br>SULDINGS AND STRUCTURE KEY:<br>1 WATER GAS PLANT<br>2 300,000 ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>4 USED STORAGE TANKS<br>5 NMPC GAS REGULATOR<br>6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>DESCHENER<br>REV. NO: DRAWING DATE: ACAD FILE: 00.37-ST1<br>AREA 2<br>SITE MAP<br>CLIENT: NIAGARA MOHAWK<br>POWER CORPORATION<br>10 LOCATION: WATER STREET<br>TROY, NEW YORK<br>DESIGNED: DETAILED: PROJECT NO:: FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | -   |  |  |  |  |
| LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5)<br>B'<br>LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)<br>BASE MAP SOURCE: NMPC SURVEY<br>D<br>BASE MAP SOURCE: NMPC SURVEY<br>D<br>BASE MAP SOURCE: NMPC SURVEY<br>D<br>BASE MAP SOURCE: NMPC SURVEY<br>D<br>SCALE FEET<br>SUILDINGS AND STRUCTURE KEY:<br>1 WATER GAS PLANT<br>2 300,000 ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>4 USED STORAGE TANKS<br>5 NMPC GAS REGULATOR<br>6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                     |     |  |  |  |  |
| SECTION (MW-1 TO MW-5)<br>B'<br>LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)<br>BASE MAP SOURCE: NMPC SURVEY<br>Development of the survey<br>Development of t                                                                                                                                                                                                     |                                                       |     |  |  |  |  |
| LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)<br>BASE MAP SOURCE: NMPC SURVEY<br>D 200 400 200 400 200 400 200 200 400 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-1 TO MW-5) |     |  |  |  |  |
| LOCATION OF GEOLOGIC CROSS-<br>SECTION (MW-3 TO MW-2)<br>BASE MAP SOURCE: NMPC SURVEY<br>D 200 400 200 400 200 400 200 200 400 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |     |  |  |  |  |
| SECTION (MW-3 TO MW-2)<br>BASE MAP SOURCE: NMPC SURVEY<br>0 200 400<br>SCALE FEET<br>BUILDINGS AND STRUCTURE KEY:<br>1 WATER GAS PLANT<br>2 300,000 ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>4 USED STORAGE TANKS<br>5 NMPC GAS REGULATOR<br>6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>120037-ST1<br>1245 KINGS ROAD<br>12037-ST1<br>1245 KINGS ROAD<br>12037-ST1<br>1245 KINGS ROAD<br>12037-ST1<br>1203<br>12037-ST1<br>1203<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>12037-ST1<br>1 |                                                       |     |  |  |  |  |
| BASE MAP SOURCE: NMPC SURVEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCATION OF GEOLOGIC CROSS-                           |     |  |  |  |  |
| 0       200       400         SCALE       FEET         BUILDINGS AND STRUCTURE KEY:         1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         I245 KINGS ROAD SCHENECTADY, NY 12303 (518) 370-5631         CROUNDWATER 1245 KINGS ROAD SCHENECTADY, NY 12303 (518) 370-5631         REV. NO.:         DRAWING DATE: 6/12/95         ACAD FILE: 0037-ST1         AREA 2 SITE MAP         CLIENT: NIAGARA MOHAWK POWER CORPORATION         PMI: POWER CORPORATION         BWA         LOCATION: WATER STREET TROY, NEW YORK         JON: DETAILED: PROJECT NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |     |  |  |  |  |
| 0       200       400         SCALE       FEET         BUILDINGS AND STRUCTURE KEY:         1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         I245 KINGS ROAD SCHENECTADY, NY 12303 (518) 370-5631         CROUNDWATER 1245 KINGS ROAD SCHENECTADY, NY 12303 (518) 370-5631         REV. NO.:         DRAWING DATE: 6/12/95         ACAD FILE: 0037-ST1         AREA 2 SITE MAP         CLIENT: NIAGARA MOHAWK POWER CORPORATION         PMI: POWER CORPORATION         BWA         LOCATION: WATER STREET TROY, NEW YORK         JON: DETAILED: PROJECT NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |     |  |  |  |  |
| 0       200       400         SCALE       FEET         BUILDINGS AND STRUCTURE KEY:         1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         I245 KINGS ROAD SCHENECTADY, NY 12303 (518) 370-5631         CROUNDWATER 1245 KINGS ROAD SCHENECTADY, NY 12303 (518) 370-5631         REV. NO.:         DRAWING DATE: 6/12/95         ACAD FILE: 0037-ST1         AREA 2 SITE MAP         CLIENT: NIAGARA MOHAWK POWER CORPORATION         PMI: POWER CORPORATION         BWA         LOCATION: WATER STREET TROY, NEW YORK         JON: DETAILED: PROJECT NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |     |  |  |  |  |
| SCALE       FEET         SUILDINGS AND STRUCTURE KEY:       1         1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         I245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370-5631         REV. NO:         DRAWING DATE:<br>6/12/95         ACAD FILE: 0037-ST1         AREEA 2<br>SITE MAP         CLIENT:         NIAGARA MOHAWK         PM:<br>POWER CORPORATION         WATER STREET<br>TROY, NEW YORK         JON:         DETAILED:         DETAILED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BASE MAP SOURCE: NMPC SURVEY                          |     |  |  |  |  |
| SCALE       FEET         SUILDINGS AND STRUCTURE KEY:       1         1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         I245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370-5631         REV. NO:         DRAWING DATE:<br>6/12/95         ACAD FILE: 0037-ST1         AREEA 2<br>SITE MAP         CLIENT:         NIAGARA MOHAWK         PM:<br>POWER CORPORATION         WATER STREET<br>TROY, NEW YORK         JON:         DETAILED:         DETAILED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |     |  |  |  |  |
| BUILDINGS AND STRUCTURE KEY:         1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         Image: Comparison of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |     |  |  |  |  |
| 1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         I245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370-5631         REV. NO.: DRAWING DATE:<br>6/12/95         ACAD FILE: 0037-ST1 <b>AREA 2</b><br>SITE MAP         CLIENT: NIAGARA MOHAWK<br>POWER CORPORATION         INAGARA MOHAWK<br>POWER CORPORATION         BWA       LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DETAILED: PROJECT NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SCALE FEET                                            |     |  |  |  |  |
| 1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         I245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370-5631         REV. NO.: DRAWING DATE:<br>6/12/95         ACAD FILE: 0037-ST1 <b>AREA 2</b><br>SITE MAP         CLIENT: NIAGARA MOHAWK<br>POWER CORPORATION         INAGARA MOHAWK<br>POWER CORPORATION         BWA       LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DETAILED: PROJECT NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BUILDINGS AND STRUCTURE KEY.                          |     |  |  |  |  |
| 2 300,000 ft <sup>3</sup> GASHOLDER(EXISTING)<br>3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>4 USED STORAGE TANKS<br>5 NMPC GAS REGULATOR<br>6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>1245 KINGS ROAD<br>9 COKE SILOS<br>10 LOCATION DESIGNED DATE: ACAD FILE: 0037-ST1<br>10 CONT WATER STREET<br>10 COATION: WATER STREET<br>10 CORPORATION DATE: SM:<br>10 COATION: WATER STREET<br>10 CORPORATION TANK<br>10 COATION: WATER STREET<br>10 CORPORATION TANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |     |  |  |  |  |
| 3 2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)<br>4 USED STORAGE TANKS<br>5 NMPC GAS REGULATOR<br>6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370-5631<br>REV. NO.: DRAWING DATE: ACAD FILE: 0037-ST1<br>AREA 2<br>SITE MAP<br>CLIENT: NIAGARA MOHAWK POWER CORPORATION<br>LOCATION: WATER STREET TROY, NEW YORK TMM<br>DESIGNED: DETAILED: PROJECT NO.: FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |     |  |  |  |  |
| 5 NMPC GAS REGULATOR<br>6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370–5631<br>REV. NO.: DRAWING DATE:<br>6/12/95 ACAD FILE: 0037–ST1<br>AREA 2<br>SITE MAP<br>CLIENT: NIAGARA MOHAWK<br>POWER CORPORATION BWA<br>LOCATION: WATER STREET<br>TROY, NEW YORK TMM<br>DESIGNED: DETAILED: PROJECT NO.: FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |     |  |  |  |  |
| 6 OXIDE PURIFIERS<br>7 KING FUELS OFFICE BUILDING AND GARAGE<br>8 COKE SCREENING STATION<br>9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM<br>1245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370–5631<br>REV. NO.: DRAWING DATE:<br>6/12/95 ACAD FILE: 0037–ST1<br>AREA 2<br>SITE MAP<br>CLIENT: NIAGARA MOHAWK<br>POWER CORPORATION BWA<br>LOCATION: WATER STREET<br>TROY, NEW YORK TMM<br>DESIGNED: DETAILED: PROJECT NO.: FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |     |  |  |  |  |
| 7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         1245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370–5631         REV. NO.:         DRAWING DATE:<br>6/12/95         ACAD FILE:<br>0037–ST1         AREA 2<br>SITE MAP         CLIENT:         NIAGARA MOHAWK<br>POWER CORPORATION         PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK         SITE MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |     |  |  |  |  |
| 8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM         1245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370–5631         REV. NO.:         DRAWING DATE:<br>6/12/95         ACAD FILE: 0037–ST1         AREA 2<br>SITE MAP         CLIENT:         NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DESIGNED:       DETAILED:       PROJECT NO.:       FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 25  |  |  |  |  |
| 9 COKE SILOS<br>10 LOCATION OF FORMER CREOSOTE OIL TANK<br>11 TAR/LIME/CREOSOTE TANK FARM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 9C  |  |  |  |  |
| 11 TAR/LIME/CREOSOTE TANK FARM         Image: Creating of the strength of the strengt                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |     |  |  |  |  |
| GROUNDWATER<br>TECHNOLOGY       1245 KINGS ROAD<br>SCHENECTADY, NY 12303<br>(518) 370-5631         REV. NO.:       DRAWING DATE:<br>6/12/95       ACAD FILE:<br>0037-ST1         AREA 2<br>SITE MAP         CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DESIGNED:       DETAILED:       PROJECT NO.:       FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | ١K  |  |  |  |  |
| CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DESIGNED:       DETAILED:       PROJECT NO.:       FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 TAR/LIME/CREOSOTE TANK FARM                        |     |  |  |  |  |
| CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DESIGNED:       DETAILED:       PROJECT NO.:       FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |     |  |  |  |  |
| REV. NO.:       DRAWING DATE:<br>6/12/95       ACAD FILE:       0037-ST1         AREA 2<br>SITE MAP       PM:<br>BWA         CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DESIGNED:       DETAILED:       PROJECT NO.:       FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SCHENECTADY, NY 12                                    | 303 |  |  |  |  |
| 6/12/95     0037-STT       AREA 2     SITE MAP       CLIENT:     NIAGARA MOHAWK<br>POWER CORPORATION     PM:<br>BWA       LOCATION:     WATER STREET<br>TROY, NEW YORK     SM:<br>TMM       DESIGNED:     DETAILED:     PROJECT NO.:     FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |     |  |  |  |  |
| SITE MAP         CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DESIGNED:       DETAILED:       PROJECT NO.:       FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | Г1  |  |  |  |  |
| SITE MAP         CLIENT:       NIAGARA MOHAWK<br>POWER CORPORATION       PM:<br>BWA         LOCATION:       WATER STREET<br>TROY, NEW YORK       SM:<br>TMM         DESIGNED:       DETAILED:       PROJECT NO.:       FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA 2                                                |     |  |  |  |  |
| NIAGARA MOHAWK<br>POWER CORPORATION BWA<br>LOCATION: WATER STREET SM:<br>TROY, NEW YORK TMM<br>DESIGNED: DETAILED: PROJECT NO.: FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |     |  |  |  |  |
| POWER CORPORATION     BWA       LOCATION:     WATER STREET     SM:       TROY, NEW YORK     TMM       DESIGNED:     DETAILED:     PROJECT NO.:     FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLIENT: PM:                                           |     |  |  |  |  |
| TROY, NEW YORK TMM<br>DESIGNED: DETAILED: PROJECT NO.: FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | WA  |  |  |  |  |
| TROY, NEW YORK TMM DESIGNED: DETAILED: PROJECT NO.: FIGURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | MM  |  |  |  |  |
| DEO/GMC 01110-0037 2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ——— DEO/GMC 01110—0037 2                              | -3  |  |  |  |  |



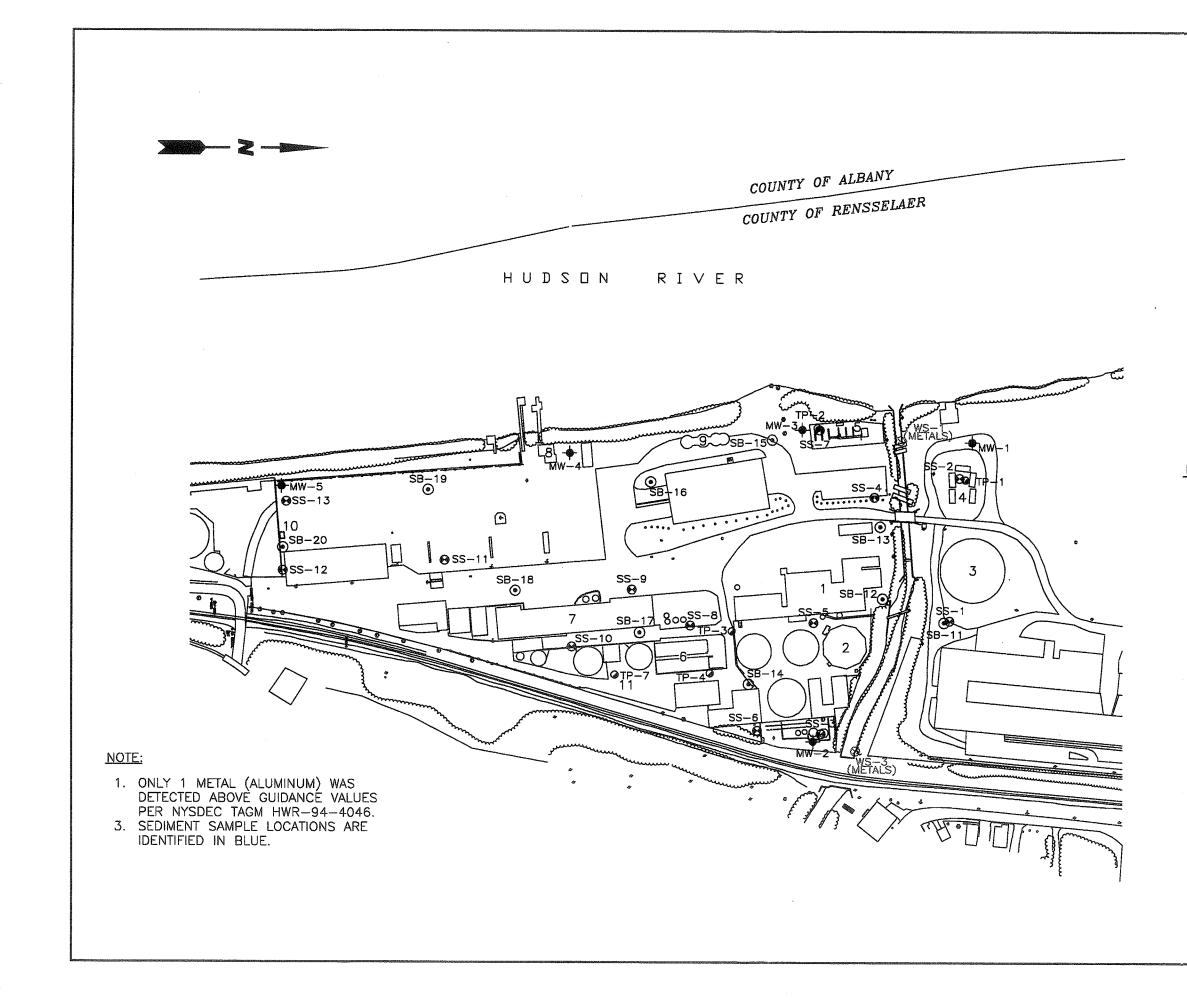


|         | 10000 B                                                 | LEGEND                                          |                                        |  |  |  |  |
|---------|---------------------------------------------------------|-------------------------------------------------|----------------------------------------|--|--|--|--|
| ER 1994 |                                                         | FINE SAND                                       |                                        |  |  |  |  |
|         |                                                         | SLAG                                            |                                        |  |  |  |  |
| 1995    |                                                         | SHALE BEDROCK                                   |                                        |  |  |  |  |
|         | e totalizatione                                         | CLAY                                            |                                        |  |  |  |  |
|         |                                                         | COARSE SAND                                     |                                        |  |  |  |  |
|         |                                                         | CLAY AND SILT or<br>CLAY AND FINE SAND          |                                        |  |  |  |  |
|         | Transformer<br>States - continues<br>States - continues | CLAY WITH GRAVEL or<br>CLAY WITH GRAVEL AI      |                                        |  |  |  |  |
|         | 4 4<br>2 4<br>2 4<br>2 4                                | GRAVEL                                          | NU SANU                                |  |  |  |  |
|         |                                                         | SAND AND GRAVEL MIXTURES                        |                                        |  |  |  |  |
|         | 7. <b>Q</b> .N                                          | SAND WITH COBBLES                               |                                        |  |  |  |  |
|         | 19.2                                                    | - PEAT                                          |                                        |  |  |  |  |
|         |                                                         |                                                 |                                        |  |  |  |  |
|         | SB                                                      | SOIL BORING                                     |                                        |  |  |  |  |
|         | TP                                                      | TEST PIT                                        |                                        |  |  |  |  |
|         | MSL                                                     | MEAN SEA LEVEL                                  |                                        |  |  |  |  |
|         | R                                                       | DATA UNUSABLE                                   |                                        |  |  |  |  |
|         | O VE                                                    | RTICAL SCALE: AS NO<br>HORIZONTAL SCALE:<br>300 | 0TED<br>600                            |  |  |  |  |
|         | S                                                       | CALE FE                                         |                                        |  |  |  |  |
|         |                                                         | SCHENE                                          | NGS ROAD<br>CTADY, NY 12303<br>70-5631 |  |  |  |  |
|         | REV. NO.:                                               | RAWING DATE: ACAD FILE:<br>6/14/95              | 0037-X1                                |  |  |  |  |
|         | DIS                                                     | RIBUTION CRO                                    | )\$\$-                                 |  |  |  |  |
|         |                                                         | ION IMW-1 TO                                    | MW-51                                  |  |  |  |  |
|         | CLIENT:                                                 | NIAGARA MOHAWK<br>POWER CORPORATION             | PM:<br>BWA                             |  |  |  |  |
|         | LOCATION:                                               | WATER STREET<br>TROY, NEW YORK                  | SM:<br>TMM                             |  |  |  |  |
|         | DESIGNED:                                               | DETAILED: PROJECT NO.:                          | DRAWING:                               |  |  |  |  |
|         | SJT                                                     | GMC 01110-003                                   | 57 <b>4 - 1</b>                        |  |  |  |  |



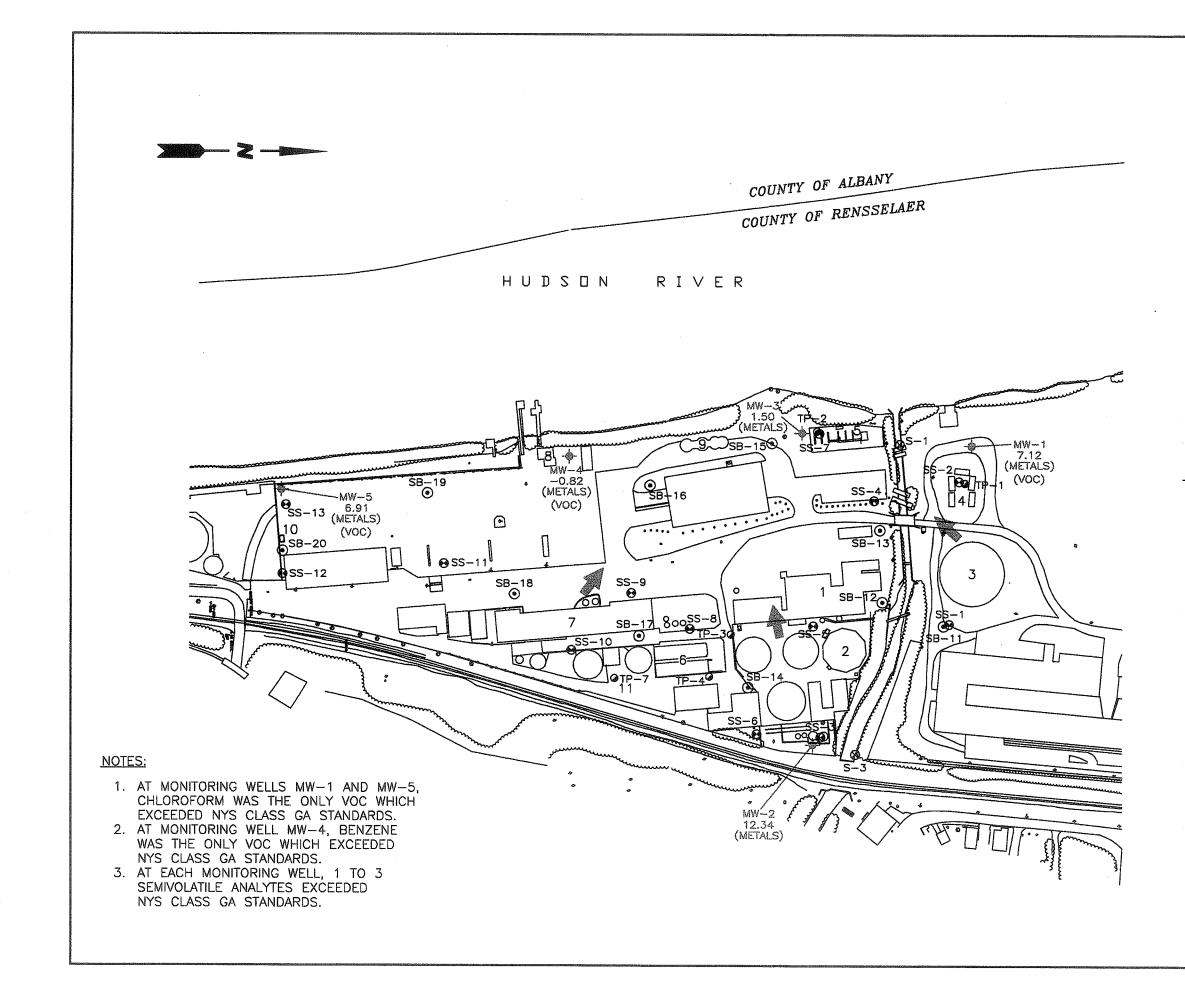

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (SALARA)         | LEGEND             |                  |                                                |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|------------------|------------------------------------------------|------------|
| ER 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | FINE SA            | ND               |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | SLAG               |                  |                                                |            |
| ´ 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                    |                  |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | SHALE              | BEDRO            | CK                                             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | visioner e marge | CLAY               |                  |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | COARSE             | SAND             |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                    |                  | or<br>NE SAND                                  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | CLAY W             | ITH GR           | AVEL or                                        | _          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 V              |                    | NITH GI          | RAVEL AND SA                                   | AND        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44               | GRAVEL             |                  |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | SAND A             | ND GRA           | AVEL MIXTURE                                   | S          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44               | SAND W             | ітн со           | BBLES                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ******           | - PEAT             |                  |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SB               | SOIL BO            | RING             |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW               | MONITOF            | RING WI          | ELL                                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MSL              | MEAN S             | EA LEV           | EL]                                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R                | DATA UN            | NUSABL           | E                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VE               | RTICAL S           | CALE:            | AS NOTED                                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                    |                  | SCALE:                                         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | о                |                    | 300              | 600                                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | CALE               |                  | FEET                                           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                    |                  |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | GROUNDA<br>TECHNOL |                  | 1245 KINGS RC<br>SCHENECTADY,<br>(518) 370-563 | NY 12303   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REV. NO.:        | DRAWING DAT        | E: AC            | AD FILE: 003                                   | 57-X2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GEOL             | OGIC               | CRO              | SS-SEC                                         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | MW-3               | TÓ               | <b>MW-2</b>                                    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLIENT:          |                    | ARA MO           |                                                | PM:<br>BWA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOCATION:        |                    |                  |                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                    | TER ST<br>1, NEW |                                                | ТММ        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DESIGNED:<br>SJT | DETAILED:<br>GMC   | PROJECT          | NO.:<br>110-0037                               | DRAWING:   |
| and a subscription of the | 1                |                    |                  |                                                | L_a. 453   |



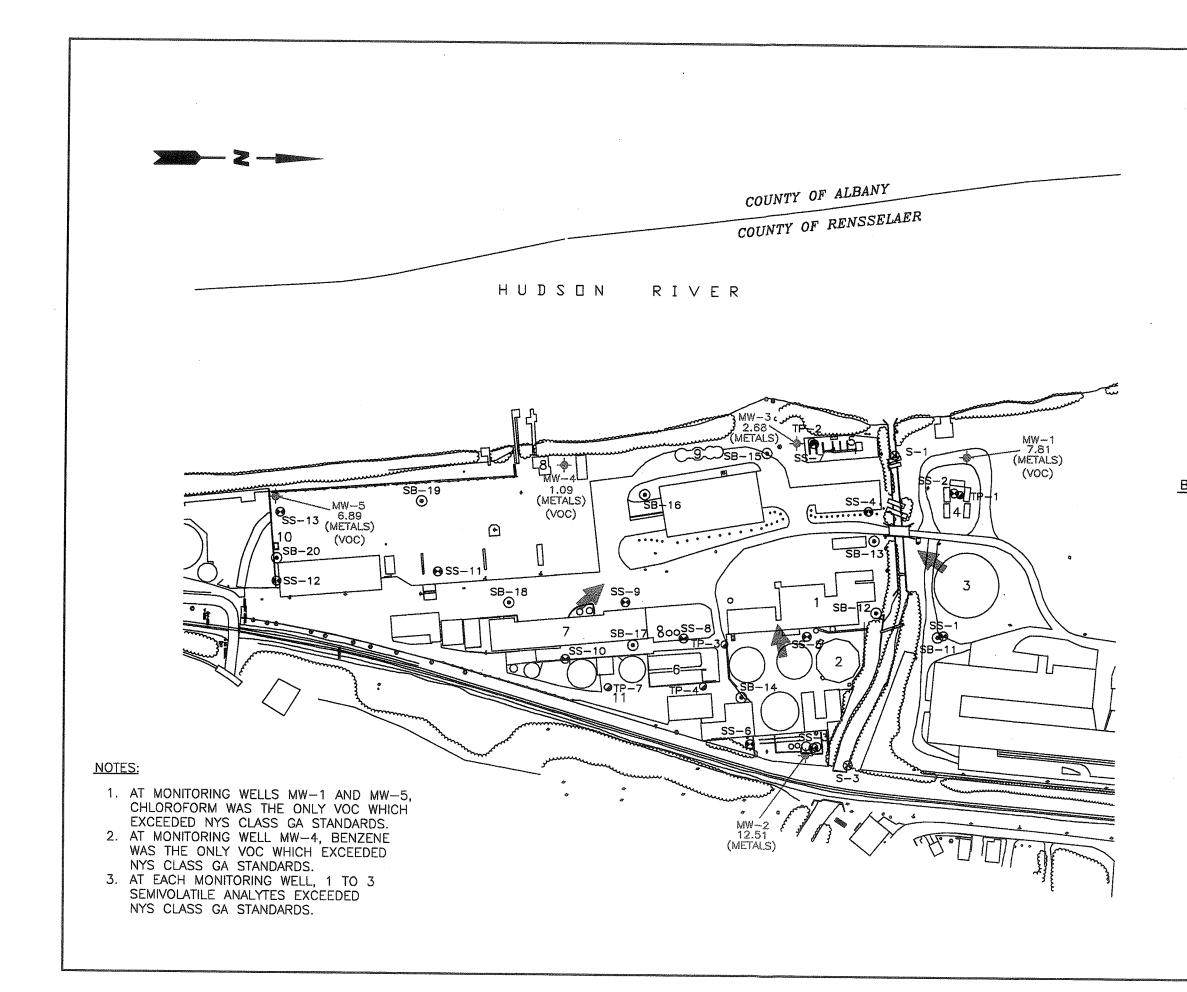




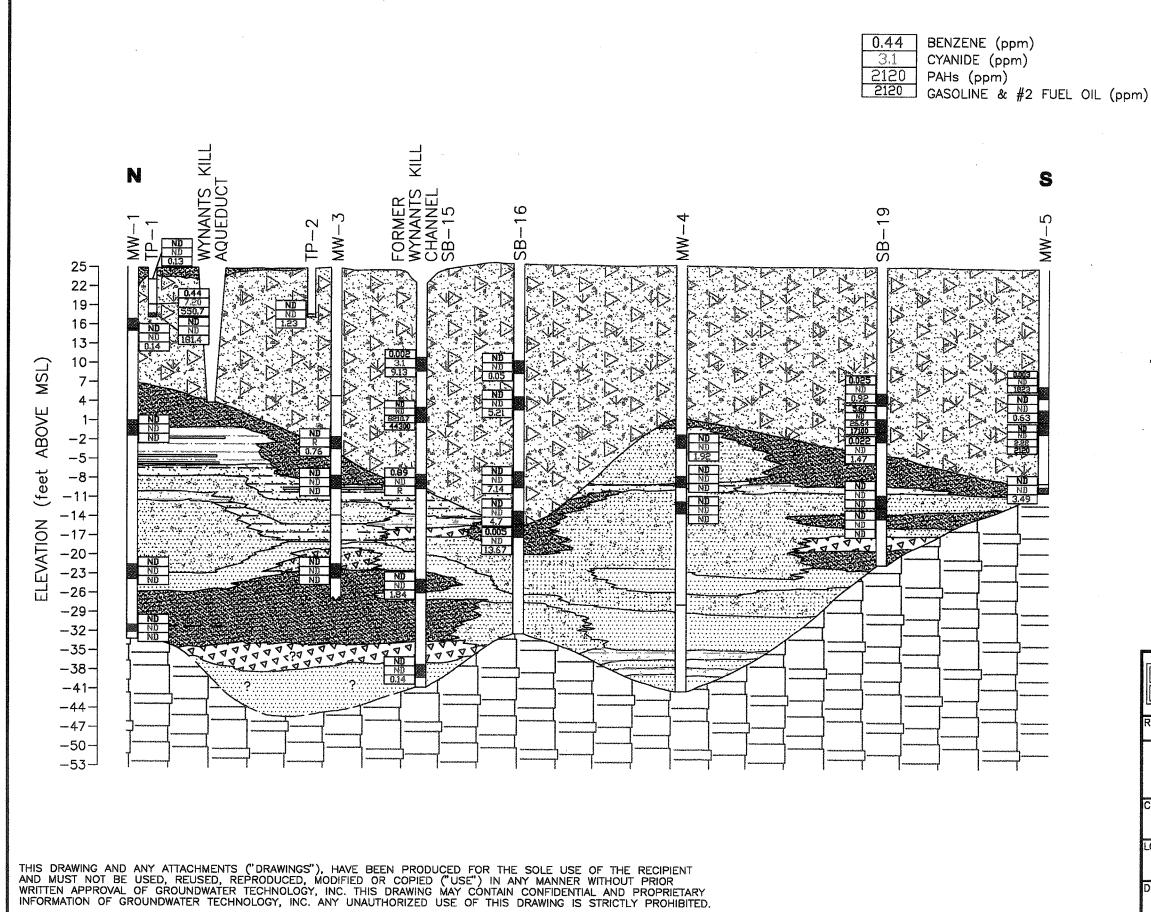

| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                        | a for the standard of the stand |            |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|------------|--|--|
| · · · · · · · · · · · · · · · · · · · | @<br>@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                        |                                                                                                                 | 1PLE       |  |  |
|                                       | BASE MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOURCE: NN            | IPC SURVEY             |                                                                                                                 |            |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>SCALE            | 200                    | 400<br>FEET                                                                                                     | D          |  |  |
| RH                                    | I DINGS AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | IRE KEY.               |                                                                                                                 |            |  |  |
|                                       | BUILDINGS AND STRUCTURE KEY:         1       WATER GAS PLANT         2       300,000 ft <sup>3</sup> GASHOLDER(EXISTING)         3       2-MILLION ft <sup>3</sup> GASHOLDER(EXISTING)         4       USED STORAGE TANKS         5       NMPC GAS REGULATOR         6       OXIDE PURIFIERS         7       KING FUELS OFFICE BUILDING AND GARAGE         8       COKE SCREENING STATION         9       COKE SILOS         10       LOCATION OF FORMER CREOSOTE OIL TANK         11       TAR/LIME/CREOSOTE TANK FARM |                       |                        |                                                                                                                 |            |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GROUND<br>TECHNOL     | OGY (51                | 45 KINGS ROA<br>HENECTADY, N<br>18) 370-5631                                                                    | Y 12303    |  |  |
|                                       | REV. NO.: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRAWING DAT<br>6/12/9 |                        | <sup>LE:</sup> 0037                                                                                             | -SSR       |  |  |
|                                       | SURFACE SOIL<br>SAMPLING RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                        |                                                                                                                 |            |  |  |
|                                       | CLIENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | RA MOHAWA<br>CORPORATI |                                                                                                                 | рм:<br>BWA |  |  |
|                                       | LOCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WAT                   | ER STREET              |                                                                                                                 | sм:<br>TMM |  |  |
|                                       | DESIGNED:<br>———                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DETAILED:<br>GMC      | PROJECT NO.:<br>01110- |                                                                                                                 | FIGURE:    |  |  |

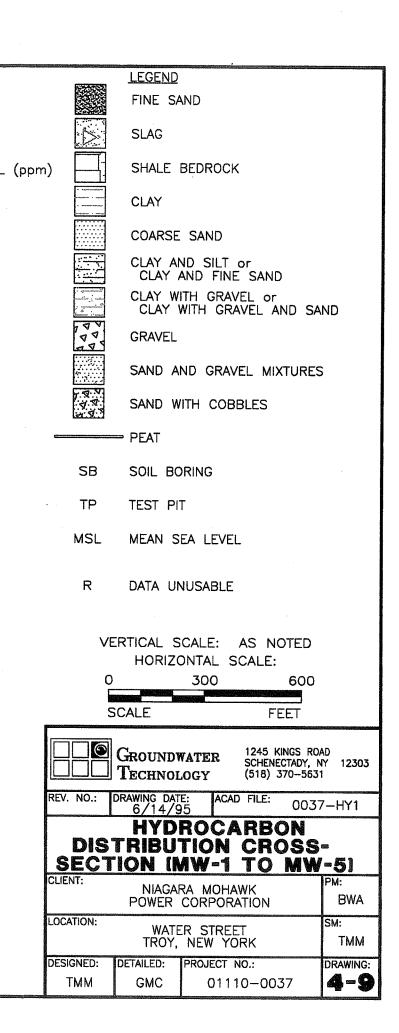


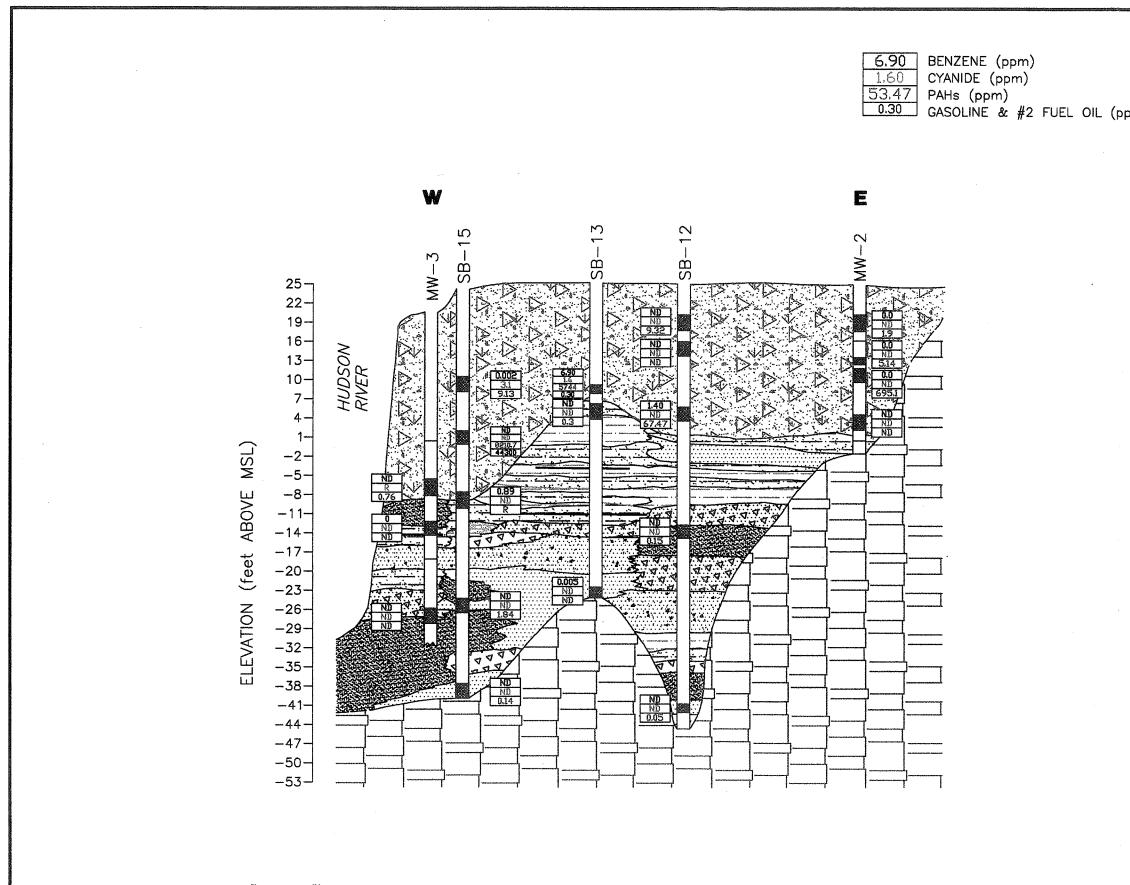

.


|     | (voc)                                                                                           | SURFACE<br>CONCENTF<br>VOCs > 1                            |                                                | ATER SAI<br>DTAL                         | MPLE       |
|-----|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|------------------------------------------|------------|
|     | BASE MAP                                                                                        | SOURCE: N                                                  | MPC SURVEY                                     | N) DOWNLY WAS DOWNLY                     |            |
|     |                                                                                                 | 0<br>SCALE                                                 | 200                                            | 40<br>FEET                               | 0          |
| BUI | LDINGS AN                                                                                       | ID STRUCT                                                  | URE KEY:                                       |                                          |            |
|     | <ol> <li>2 300,00</li> <li>3 2-MILL</li> <li>4 USED</li> <li>5 NMPC</li> <li>6 OXIDE</li> </ol> | ION ft <sup>3</sup> GA<br>STORAGE<br>GAS REGU<br>PURIFIERS | HOLDER(EXIST<br>SHOLDER(EXI<br>TANKS<br>ILATOR | STING)                                   | ARAGE      |
|     | 8 COKE<br>9 COKE                                                                                | SCREENING<br>SILOS                                         | S STATION                                      |                                          |            |
|     |                                                                                                 |                                                            | RMER CREOS                                     |                                          | TANK       |
|     |                                                                                                 | Groundy<br>Technoi                                         | VATER SCHE                                     | 5 KINGS ROA<br>ENECTADY, N<br>) 370-5631 | Y 12303    |
|     | REV. NO.:                                                                                       | DRAWING DAT<br>6/12/9                                      |                                                | <sup>2:</sup> 0037                       | '-PS1      |
|     | _                                                                                               |                                                            | RFACE<br>Ng res                                |                                          | 6          |
|     | CLIENT:                                                                                         |                                                            | RA MOHAWK                                      | OLIS                                     | PM:        |
|     | LOCATION:                                                                                       | POWER                                                      | CORPORATIO                                     | N                                        | BWA<br>SM: |
|     |                                                                                                 | TROY,                                                      | ER STREET<br>NEW YORK                          |                                          | ТММ        |
|     | DESIGNED:<br>TMM                                                                                | DETAILED:<br>GMC                                           | PROJECT NO.:<br>01110-(                        | 037                                      | FIGURE:    |




| <ul> <li>SOIL BOF</li> <li>TEST PIT</li> <li>SURFACE</li> <li>SURFACE</li> <li>SURFACE</li> <li>SURFACE</li> <li>SURFACE</li> <li>SURFACE</li> <li>SURFACE</li> </ul> | LEGEND<br>NG WELL<br>RING<br>SOILS SAMPLE<br>SEDIMENT/WATER SAMP<br>METALS DETECTED ABC<br>CLASS C SURFACE WATE<br>DS OR GUIDANCE VALUES | DVE<br>FR |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| BASE MAP SOURCE: N                                                                                                                                                    | IMPC SURVEY                                                                                                                              |           |  |  |  |
| 0                                                                                                                                                                     | 200 400                                                                                                                                  |           |  |  |  |
| SCALE                                                                                                                                                                 | FEET                                                                                                                                     |           |  |  |  |
| BUILDINGS AND STRUC                                                                                                                                                   | TURE KEY:                                                                                                                                |           |  |  |  |
| 1 WATER GAS PLA                                                                                                                                                       |                                                                                                                                          |           |  |  |  |
| 2 300,000 $ft^3$ GAS<br>3 2-MILLION $ft^3$ GAS                                                                                                                        | HOLDER(EXISTING)<br>ASHOLDER(EXISTING)                                                                                                   |           |  |  |  |
| 4 USED STORAGE                                                                                                                                                        | . ,                                                                                                                                      |           |  |  |  |
| 5 NMPC GAS REGU                                                                                                                                                       |                                                                                                                                          |           |  |  |  |
| 6 OXIDE PURIFIERS<br>7 KING FUELS OFF                                                                                                                                 | 5<br>FICE BUILDING AND GAR/                                                                                                              | AGE       |  |  |  |
| 8 COKE SCREENIN                                                                                                                                                       |                                                                                                                                          |           |  |  |  |
| 9 COKE SILOS                                                                                                                                                          | DRMER CREOSOTE OIL TA                                                                                                                    |           |  |  |  |
| 11 TAR/LIME/CREOS                                                                                                                                                     |                                                                                                                                          | 11417     |  |  |  |
| GROUND<br>TECHNO                                                                                                                                                      | SUTENEL AUT. NT I                                                                                                                        | 2303      |  |  |  |
| REV. NO.: DRAWING DA                                                                                                                                                  |                                                                                                                                          | SWS       |  |  |  |
| SURFACE WATER<br>SAMPLING RESULTS                                                                                                                                     |                                                                                                                                          |           |  |  |  |
|                                                                                                                                                                       | ARA MOHAWK<br>CORPORATION                                                                                                                | 1:<br>BWA |  |  |  |
|                                                                                                                                                                       | ER STREET SM                                                                                                                             | I:<br>TMM |  |  |  |
| DESIGNED: DETAILED:                                                                                                                                                   |                                                                                                                                          | SURE:     |  |  |  |
| GMC                                                                                                                                                                   | 01110-0037                                                                                                                               | -6        |  |  |  |





|                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                         |                                                                                                                |              |  |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|--------------|--|--|
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | LEGEND                  |                                                                                                                |              |  |  |
|                                                                                                                 | <ul> <li>MONITORING WELL</li> <li>SOIL BORING</li> <li>TEST PIT</li> <li>SURFACE SOILS SAMPLE</li> <li>SURFACE SEDIMENT/WATER SAMPLE</li> <li>DIRECTION OF GROUNWATER FLOW</li> <li>7.12 GROUNDWATER ELEVATION (feet)</li> <li>SELECTED METALS DETECTED ABOVE</li> <li>(METALS) NYSDEC CLASS GA GROUNDWATER<br/>STANDARDS OR GUIDANCE VALUES</li> <li>SELECTED VOCs DETECTED ABOVE</li> <li>(VOC) NYSDEC CLASS GA GROUNDWATER<br/>STANDARDS OR GUIDANCE VALUES</li> <li>MONITORING DATE: 12/19/94</li> </ul> |                       |                         |                                                                                                                |              |  |  |
|                                                                                                                 | BASE MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOURCE: N             | MPC SURVEY              | and a second |              |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                     | 200                     | 40                                                                                                             | 0            |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SCALE                 |                         | FEET                                                                                                           |              |  |  |
| BUI                                                                                                             | LDINGS AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID STRUCT             | URF KFY:                |                                                                                                                |              |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GAS PLAN              |                         |                                                                                                                |              |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                     | OLDER(EXIST             |                                                                                                                |              |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STORAGE               | SHOLDER(EXI<br>TANKS    | STING)                                                                                                         |              |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GAS REGU              |                         |                                                                                                                |              |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PURIFIERS             | ICE BUILDING            | AND G                                                                                                          | ARAGE        |  |  |
|                                                                                                                 | 8 COKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SCREENING             |                         |                                                                                                                |              |  |  |
| 1                                                                                                               | 9 COKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | RMER CREOS              | OTE OI                                                                                                         | TANK         |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | OTE TANK FA             |                                                                                                                |              |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Groundy<br>Technol    |                         | KINGS ROA<br>NECTADY, N<br>370-5631                                                                            | Y 12303      |  |  |
|                                                                                                                 | REV. NO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DRAWING DAT<br>6/12/9 |                         | <sup>:</sup> 0037                                                                                              | -W1B         |  |  |
| Downood and an and a | ABAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUM                   | IMARY (                 |                                                                                                                |              |  |  |
|                                                                                                                 | GROUNDWATER MONITORING<br>RESULTS (DECEMBER 1994)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                         |                                                                                                                |              |  |  |
|                                                                                                                 | CLIENT: NIAGARA MOHAWK PM:<br>DOWER CORPORATION BWA                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                         |                                                                                                                |              |  |  |
|                                                                                                                 | LOCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | CORPORATIO<br>ER STREET | N                                                                                                              | SM:          |  |  |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | NEW YORK                |                                                                                                                | ТММ          |  |  |
|                                                                                                                 | DESIGNED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | PROJECT NO .:           | 0.7-7                                                                                                          | FIGURE:      |  |  |
|                                                                                                                 | TMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEO/GMC               | 01110-0                 | 1037                                                                                                           | <b>*** /</b> |  |  |



| 19-martin |                                                                                                                                                                                                                                                                                                                                                                               | and the second |                                                       |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
|           |                                                                                                                                                                                                                                                                                                                                                                               | LEGEND                                                                                                           |                                                       |  |  |  |
|           | SURFACE<br>DIRECTION<br>7.81 GROUNDW/<br>SELECTED<br>(METALS) SELECTED<br>(VOC) NYSDEC C                                                                                                                                                                                                                                                                                      |                                                                                                                  | FLOW<br>eet)<br>ABOVE<br>ATER<br>LUES<br>BOVE<br>ATER |  |  |  |
|           | MONITORING<br>BASE MAP SOURCE: NM                                                                                                                                                                                                                                                                                                                                             | DATE: 1/18/95                                                                                                    |                                                       |  |  |  |
|           | 0                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                              | 0.0                                                   |  |  |  |
|           | O                                                                                                                                                                                                                                                                                                                                                                             | 200 4                                                                                                            | 00                                                    |  |  |  |
|           | SCALE                                                                                                                                                                                                                                                                                                                                                                         | FEET                                                                                                             |                                                       |  |  |  |
| <u>3U</u> | LDINGS AND STRUCT                                                                                                                                                                                                                                                                                                                                                             | URE KEY:                                                                                                         |                                                       |  |  |  |
|           | 1       WATER GAS PLAN         2       300,000 ft <sup>3</sup> GASH         3       2-MILLION ft <sup>3</sup> GASH         4       USED STORAGE T         5       NMPC GAS REGULE         6       OXIDE PURIFIERS         7       KING FUELS OFFI         8       COKE SCREENING         9       COKE SILOS         10       LOCATION OF FOFI         1       TAR/LIME/CREOSO | IOLDER(EXISTING)<br>SHOLDER(EXISTING)<br>ANKS<br>LATOR<br>CE BUILDING AND O<br>STATION                           |                                                       |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                               | OGY (518) 370-56                                                                                                 | NY 12303                                              |  |  |  |
|           | REV. NO.: DRAWING DATE                                                                                                                                                                                                                                                                                                                                                        | 5 003                                                                                                            | 7-W1C                                                 |  |  |  |
|           | SUMMARY OF<br>GROUNDWATER MONITORING<br>RESULTS (JANUARY, 1995)                                                                                                                                                                                                                                                                                                               |                                                                                                                  |                                                       |  |  |  |
|           | CLIENT: NIAGAF                                                                                                                                                                                                                                                                                                                                                                | RA MOHAWK                                                                                                        | PM:<br>BWA                                            |  |  |  |
|           | I OCATIONI                                                                                                                                                                                                                                                                                                                                                                    | CORPORATION<br>R STREET                                                                                          | SM:                                                   |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                               | NEW YORK                                                                                                         | ТММ                                                   |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                               | PROJECT NO.:                                                                                                     | FIGURE:                                               |  |  |  |
|           | ININI DEULGNU                                                                                                                                                                                                                                                                                                                                                                 | 01110-0037                                                                                                       | 4-8                                                   |  |  |  |







THIS DRAWING AND ANY ATTACHMENTS ("DRAWINGS"), HAVE BEEN PRODUCED FOR THE SOLE USE OF THE RECIPIENT AND MUST NOT BE USED, REUSED, REPRODUCED, MODIFIED OR COPIED ("USE") IN ANY MANNER WITHOUT PRIOR WRITTEN APPROVAL OF GROUNDWATER TECHNOLOGY, INC. THIS DRAWING MAY CONTAIN CONFIDENTIAL AND PROPRIETARY INFORMATION OF GROUNDWATER TECHNOLOGY, INC. ANY UNAUTHORIZED USE OF THIS DRAWING IS STRICTLY PROHIBITED.

|       | 6775C                                                                                                            | LEGEND                | <u> </u>                   |                                      |            |
|-------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|--------------------------------------|------------|
|       |                                                                                                                  | FINE SA               | ND                         |                                      |            |
|       |                                                                                                                  | SLAG                  |                            |                                      |            |
| pm)   |                                                                                                                  | SHALE I               | BEDROCK                    |                                      |            |
|       |                                                                                                                  | CLAY                  |                            |                                      |            |
|       |                                                                                                                  | COARSE                | SAND                       |                                      |            |
|       |                                                                                                                  |                       | ND SILT or<br>AND FINE SAM | ND                                   |            |
|       | and a second s |                       | TH GRAVEL c<br>WITH GRAVEL |                                      | ND         |
|       | 444                                                                                                              | GRAVEL                |                            |                                      |            |
|       |                                                                                                                  | SAND AI               | ND GRAVEL M                | IIXTURES                             |            |
|       | 44                                                                                                               | SAND W                | ITH COBBLES                |                                      |            |
| 12000 |                                                                                                                  | - PEAT                |                            |                                      |            |
|       | SB                                                                                                               | SOIL BO               | RING                       |                                      |            |
|       | MW                                                                                                               | MONITOR               | RING WELL                  |                                      |            |
|       | MSL                                                                                                              | MEAN S                | EA LEVEL]                  |                                      |            |
|       | R                                                                                                                | DATA UN               | IUSABLE                    | •                                    |            |
|       | VE                                                                                                               | RTICAL S              | CALE: AS I                 | NOTED                                |            |
|       |                                                                                                                  | HORIZO                | ONTAL SCALE                | Ξ:                                   |            |
|       | 0                                                                                                                |                       | 300                        | 600                                  |            |
|       | S                                                                                                                | CALE                  |                            | FEET                                 |            |
|       |                                                                                                                  | GROUND<br>TECHNOL     | VATER SCHE                 | KINGS ROA<br>ENECTADY, N<br>370-5631 | Y 12303    |
| RE    | V. NO.: I                                                                                                        | DRAWING DAT<br>6/13/9 | e: acad file               | <sup>:</sup> 0037                    | '-HY2      |
|       | DIS                                                                                                              | STRIBL                |                            | ROS                                  | S-<br>N-21 |
| CLI   | ENT:                                                                                                             |                       | ARA MOHAWK<br>CORPORATIO   |                                      | Рм:<br>BWA |
| LO    | CATION:                                                                                                          | WA.                   | TER STREET<br>Y, NEW YORK  |                                      | SM:<br>TMM |
| DE    | SIGNED:                                                                                                          |                       | PROJECT NO .:              |                                      | DRAWING:   |
|       | ТММ                                                                                                              | GMC                   | 01110-0                    | 037                                  | 4-10       |

#### TABLES

- 1-1. Former Small Gas Holder and Surface Water Sampling Results (TAL Metals and Cyanide)
- 1-2. Former Small Gas Holder and Surface Water Sampling Results (Pesticides and PCBs)
- 1-3. Former Small Gas Holder and Surface Water Sampling Results (TCL Volatiles)
- 1-4. Former Small Gas Holder and Surface Water Sampling Results (TCL Semivolatiles)
- 2-1. Sediment Sampling Results (TAL Metals and Cyanide)
- 2-2. Sediment Sampling Results (Pesticides and PCBs)
- 2-3. Sediment Sampling Results (TCL Volatiles)
- 2-4. Sediment Sampling Results (TCL Semivolatiles)
- 3-1. Surface Soil Sampling Results (TAL Metals and Cyanide)
- 3-2. Surface Soil Sampling Results (Pesticides and PCBs)
- 3-3. Surface Soil Sampling Results (TCL Volatiles)
- 3-4. Surface Soil Sampling Results (TCL Semivolatiles)
- 4-1. Test Pit Sampling Results (TAL Metals and Cyanide)
- 4-2. Test Pit Sampling Results (Pesticides and PCBs)
- 4-3. Test Pit Sampling Results (TCL Volatiles)
- 4-4. Test Pit Sampling Results (TCL Semivolatiles)
- 5-1. Soil Sampling Results Soil Boring and Monitoring Well Locations (TAL Metals and Cyanide)
- 5-2. Soil Sampling Results Soil Boring and Monitoring Well Locations (Pesticides and PCBS)
- 5-3. Soil Sampling Results Soil Boring and Monitoring Well Locations (TCL Volatiles)
- 5-4. Soil Sampling Results Soil Boring and Monitoring Well Locations (TCL Semivolatiles)
- 5-5. Summary of GC Gas/GC Fuel Soil Sampling Results
- 6-1. Groundwater Gauging and Sampling Results (December 1994)
- 6-2. Groundwater Gauging and Sampling Results (January 1995)
- 7-1. Waste Characteristics Analyses
- 8-1. Air Analytical Results
- 9-1. Equipment Rinseate Sampling Results (TAL Metals and Cyanide)
- 9-2. Equipment Rinseate Sampling Results (Pesticides and PCBs)
- 9-3. Equipment Rinseate Sampling Results (TCL Volatiles)
- 9-4. Equipment Rinseate Sampling Results (TCL Semivolatiles)



Date Validation Qualifiers:

- J Indicates an estimated value. The flag is used either when estimating concentration where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less then the sample quantitation limit.
- JN Tentatively identified analyte with approximated concentration.
- B This flag is used when the analyte is found in the associated blank as well as the sample. It indicates possible/probable blank concentration and warns the data user to take appropriate action. This flag is used for a TIC as well as for a positively identified target compound.
- E This flag identifies compounds whose concentrations exceeded the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- DL diluted sample
- RE return analysis
- ND not detected
- NT not tested
- R Reported value is unusable and rejected due to variance from quality control limits.

#### Former Gas Holder and Surface Water Sampling Results TAL Metals and Cyanide (mg/l)

|               | AL Metals and | oyamuo (mg/i)    |       |           |        |        |
|---------------|---------------|------------------|-------|-----------|--------|--------|
|               |               |                  |       | Sample Lo | cation |        |
| ANALYTE       | Analytical    | Surface Water    | STT-1 | WS-1      | WS-2   | WS-3   |
|               | Method        | Standard (mg/l)* |       |           |        |        |
| Aluminum      | CLP-M**       | 0.1              | ND    | 0.173B    | 0.20   | 0.176B |
| Antimony      | CLP-M**       | NA               | ND    | 0.053B    | ND     | ND     |
| Arsenic       | CLP-M**       | 0.19             | ND    | ND        | ND     | ND     |
| Barium        | CLP-M**       | NA               | ND    | 0.1B      | 0.104B | 0.97B  |
| Beryllium     | CLP-M**       | -(1)             | ND    | ND        | ND     | ND     |
| Cadmium       | CLP-M**       | -(2)             | ND    | 0.005B    | ND     | ND     |
| Calcium       | CLP-M**       | NA               | ND    | 41.7      | 41.3   | 44.8   |
| Chromium      | CLP-M**       | 0.011            | ND    | ND        | 0.009B | 0.006B |
| Cobalt        | CLP-M**       | 0.005            | ND    | ND        | ND     | ND     |
| Copper        | CLP-M**       | -(3)             | ND    | ND        | ND     | ND     |
| Iron          | CLP-M**       | NA               | 7.55  | 0.684     | 0.7    | 0.594  |
| Lead          | CLP-M**       | -(4)             | 0.008 | ND        | ND     | ND     |
| Magnesium     | CLP-M**       | NA               | ND    | 8.79      | 8.72   | 9.57   |
| Manganese     | CLP-M**       | NA               | 0.483 | 0.179     | 0.165  | 0.156  |
| Mercury       | CLP-M**       | 0.2 (GV)         | ND    | ND        | ND     | ND     |
| Nickel        | CLP-M**       | -(5)             | ND    | ND        | ND     | ND     |
| Potassium     | CLP-M**       | NA               | ND    | 3.09B     | 3.20B  | 2.52B  |
| Selenium      | CLP-M**       | 0.001            | ND    | ND        | ND     | ND     |
| Silver        | CLP-M**       | 0.0001           | ND    | ND        | ND     | ND     |
| Sodium        | CLP-M**       | NA               | ND    | 25.3      | 26.1   | 24.1   |
| Thallium      | CLP-M**       | 0.008            | ND    | ND        | ND     | ND     |
| Vanadium      | CLP-M**       | 0.014            | ND    | ND        | ND     | ND     |
| Zinc          | CLP-M**       | -(6)             | ND    | 0.015B    | ND     | ND     |
| Total Cyanide | CLP-M**       | 0.005            | 0.038 | ND        | ND     | ND     |

\* - NYSDEC DIVISION OF WATER TECHNICAL AND OPERATIONAL GUIDANCE SERIES (1.1.1), "AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES", OCTOBER 22, 1993

\*\* - CLP ANALYTICAL METHODS FOR METALS AS PER DOCUMENT ILM03.0

STT - tank water (from small former gas holder)

- WS-1 -downstream surface water sample
- WS-2 -duplicate of downstream water sample

WS-3 -upstream surface water sapmle

GV - Guidance Value

(1) 0.011 IF HARDNESS < or = 75 ppm

1.1 IF HARDNESS > 75 ppm (2) exp (0.752 [ln (ppm hardness)] -3.49) (3) exp (0.8545[ln(ppm hardness)]-1.465) (4) exp (1.266[ln(ppm hardness)]-4.661) (5) exp (0.76[ln(ppm hardness)]+1.06) (6) exp (0.85[ln(ppm hardness)]+0.50) NOTE: WYNANTS KILL IS A CLASS C STREAM

#### WSMET.WK3

#### Former Gas Holder and Surface Water Sampling Results Pesticides and PCBs (mg/l)

|                     |             | · · · · · · · · · · · · · · · · · · · | Sample Location |      |      |      |
|---------------------|-------------|---------------------------------------|-----------------|------|------|------|
| ANALYTE             | Analtyical  | Surface Water                         | STT−1           | WS-1 | WS-2 | WS-3 |
|                     | Method      | Standard (mg/l)*                      |                 |      |      |      |
| alpha-BHC           | NYSDEC 91-3 | NA                                    | ND              | ND   | ND   | ND   |
| beta-BHC            | NYSDEC 91-3 | NA                                    | ND              | ND   | ND   | ND   |
| deita-BHC           | NYSDEC 91-3 | NA                                    | ND              | ND   | ND   | ND   |
| gamma–BHC (Lindane) | NYSDEC 91-3 | NA                                    | ND              | ND   | ND   | ND   |
| Heptachlor          | NYSDEC 91-3 | 0.000001                              | ND              | ND   | ND   | ND   |
| Aldrin              | NYSDEC 91-3 | 0.000001 (TOTAL ALDRIN & DIELDRIN)    | ND              | ND   | ND   | ND   |
| Heptachlor epoxide  | NYSDEC 91-3 | 0.000001                              | ND              | ND   | ND   | ND   |
| Endosulfan I        | NYSDEC 91-3 | 0.000009                              | ND              | ND   | ND   | ND   |
| Dieldrin            | NYSDEC 91-3 | 0.000001 (TOTAL ALDRIN & DIELDRIN)    | ND              | ND   | ND   | ND   |
| 4,4'-DDE            | NYSDEC 91-3 | 0.000001 (TOTAL DDT, DDD & DDE)       | ND              | ND   | ND   | ND   |
| Endrin              | NYSDEC 91-3 | 0.000002                              | ND              | ND   | ND   | ND   |
| Endosulfan II       | NYSDEC 91-3 | 0.00009                               | ND              | ND   | ND   | ND   |
| 4,4'-DDD            | NYSDEC 91-3 | 0.000001 (TOTAL DDT, DDD & DDE)       | ND              | ND   | ND   | ND   |
| Endosulfan sulfate  | NYSDEC 91-3 | NA                                    | ND              | ND   | ND   | ND   |
| 4,4'-DDT            | NYSDEC 91-3 | 0.000001 (TOTAL DDT, DDD & DDE)       | ND              | ND   | ND   | ND   |
| Methoxychlor        | NYSDEC 91-3 | 0.00003                               | ND              | ND   | ND   | ND   |
| Endrin ketone       | NYSDEC 91-3 | NA                                    | ND              | ND   | ND   | ND   |
| Endrin aldehyde     | NYSDEC 91-3 | NA                                    | ND              | ND   | ND   | ND   |
| alpha-Chlordane     | NYSDEC 91-3 | 0.000002 (GV)                         | ND              | ND   | ND   | ND   |
| gamma-Chlordane     | NYSDEC 91-3 | 0.000002                              | ND              | ND   | ND   | ND   |
| Toxaphene           | NYSDEC 91-3 | 0.000005                              | ND              | ND   | ND   | ND   |
| Aroclor-1016        | NYSDEC 91-3 | 0.000001 (TOTAL PCBs)                 | ND              | ND   | ND   | ND   |
| Aroclor-1221        | NYSDEC 91-3 | 0.000001 (TOTAL PCBs)                 | ND              | ND   | ND   | ND   |
| Arocior-1232        | NYSDEC 91-3 | 0.000001 (TOTAL PCBs)                 | ND              | ND   | ND   | ND   |
| Aroclor-1242        | NYSDEC 91-3 | 0.000001 (TOTAL PCBs)                 | ND              | ND   | ND   | ND   |
| Aroclor-1248        | NYSDEC 91-3 | 0.000001 (TOTAL PCBs)                 | ND              | ND   | ND   | ND   |
| Aroclor-1254        | NYSDEC 91-3 | 0.000001 (TOTAL PCBs)                 | ND              | ND   | ND   | ND   |
| Aroclor-1260        | NYSDEC 91-3 | 0.000001 (TOTAL PCBs)                 | ND              | ND   | ND   | ND   |

\* - NYSDEC DIVISION OF WATER TECHNICAL AND OPERATIONAL GUIDANCE SERIES (1.1.1), "AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES", OCTOBER 22, 1993

- STT tank water (from small former gas holder)
- WS-1 -downstream surface water sample
- WS-2 -duplicate of downstream water sample
- WS-3 -upstream surface water sapmle
- GV Guidance Value

Summary of Former Gas Holder and Surface Water Sampling Results TCL Volatiles (mg/l)

| ······································ |                      | TOL VOIALIES (IIIg/)                |        | Sample  | e Location |        |      |
|----------------------------------------|----------------------|-------------------------------------|--------|---------|------------|--------|------|
| Analyte                                | Analytical<br>Method | Surface Water<br>Standards (mg/l) * | STT-1  | STT-1DL | WS-1       | WS-2   | WS-3 |
| Methylene Chloride                     | NYSDEC 91-1          | NA                                  | ND     | ND      | ND         | ND     | ND   |
| Acetone                                | NYSDEC 91-1          | NA                                  | 0.009J | 0.048DJ | 0.018J     | 0.016J | ND   |
| 2-Butanone                             | NYSDEC 91-1          | NA                                  | 0.003J | NDJ     | NDJ        | NDJ    | NDJ  |
| Benzene                                | NYSDEC 91-1          | 0.006 (GV)                          | 0.820E | 0.670D  | ND         | ND     | ND   |
| Toluene                                | NYSDEC 91-1          | NA                                  | 0.058  | 0.043D  | ND         | ND     | ND   |
| Ethylbenzene                           | NYSDEC 91-1          | NA                                  | 0.400E | 0.360D  | ND         | ND     | ND   |
| Xylene (total)                         | NYSDEC 91-1          | NA                                  | 0.470E | 0.430D  | ND         | ND     | ND   |
| Ethyl Methyl Benzene Isomer            | NYSDEC 91-1          | NA                                  | 0.066  | ND      | ND         | ND     | ND   |
| Trimethyl Benzene Isomer               | NYSDEC 91-1          | NA                                  | 0.120  | 0.067D  | ND         | ND     | ND   |
| Aromatic TICs                          | NYSDEC 91-1          | NA                                  | 0.859  | 0.625D  | ND         | ND     | ND   |
| Other TICs                             | NYSDEC 91-1          | NA                                  | ND     | ND      | ND         | ND     | ND   |
| Total BTEX                             | NYSDEC 91-1          | NA                                  | 1.75   | 1.5     | ND         | ND     | ND   |

\* - NYSDEC Division of Water Technical and OpEQ-BLK -equipment blank

Water Quality Standards and Guidance values\*, October 22, 1993

GV - Guidance Value

STT - tank water (from small former gas holder)

WS-1 - downstream surface water sample

WS-2 - duplicate of downstream water samle

WS-3 - upstream surface water sample

SWVOC.WK3

Former Gas Holder and Surface Water Sampling Results

TCL Semi-Volatiles (mg/l)

|                            |                      |                                    |        | Sample Location |        |        |        |
|----------------------------|----------------------|------------------------------------|--------|-----------------|--------|--------|--------|
| ANALYTE                    | Analytical<br>Method | Surface Water<br>Standards (mg/l)* | STT-1  | STT-1DL         | WS-1   | WS-2   | WS-3   |
| Phenol                     | NYSDEC 91-2          | 0.005 (TOTAL PHENOLS)              | 0.090E | 0.067DJ         | ND     | ND     | ND     |
| 2-Methylphenol             | NYSDEC 91-2          | 0.005                              | 0.070  | 0.069DJ         | ND     | ND     | ND     |
| 4-Methylphenol             | NYSDEC 91-2          | 0.005                              | 0.057  | 0.050DJ         | ND     | ND     | ND     |
| 2,4-Dimethylphenol         | NYSDEC 91-2          | 0.005                              | 0.093E | 0.082DJ         | ND     | ND     | ND     |
| Naphthalene                | NYSDEC 91-2          | NA                                 | 0.510E | 0.610D          | ND     | ND     | ND     |
| 2-Methylnaphthalene        | NYSDEC 91-2          | NA                                 | 0.230E | 0.200D          | ND     | ND     | ND     |
| Acenaphthylene             | NYSDEC 91-2          | NA                                 | 0.100E | 0.082DJ         | ND     | ND     | ND     |
| Acenaphthene               | NYSDEC 91-2          | NA                                 | 0.007J | ND              | ND     | ND     | ND     |
| Dibenzofuran               | NYSDEC 91-2          | 0.00000001                         | ND     | ND              | ND     | ND     | ND     |
| Fluorene                   | NYSDEC 91-2          | NA                                 | 0.061J | 0.045DJ         | ND     | ND     | ND     |
| Phenanthrene               | NYSDEC 91-2          | NA                                 | 0.079J | ND              | ND     | ND     | ND     |
| Anthracene                 | NYSDEC 91-2          | NA                                 | ND     | ND              | ND     | ND     | ND     |
| Carbazole                  | NYSDEC 91-2          | NA                                 | ND     | ND J            | ND     | ND     | ND     |
| Fluoranthene               | NYSDEC 91-2          | NA                                 | ND     | ND              | ND     | ND     | ND     |
| Pyrene                     | NYSDEC 91-2          | NA                                 | ND     | ND              | ND     | ND     | ND     |
| Aromatic TICs              | NYSDEC 91-2          | NA                                 | 0.576  | 0.455D          | ND     | ND     | ND     |
| Other TICs                 | NYSDEC 91-2          | NA                                 | 0.010  | 0.067D          | 0.064  | ND     | ND     |
| bis(2-ethylhexylphthalate) | NYSDEC 91-2          | NA                                 | ND     | ND              | 0.001J | 0.002J | 0.002J |
| Total PAHs                 | NYSDEC 91-2          | NA                                 | 1.34   | 1.28            | ND     | ND     | ND     |

\* - NYSDEC DIVISION OF WATER TECHNICAL AND OPERATIONAL GUIDANCE SERIES (1.1.1), "AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES", October 22, 1993

TICs = Tentatively Identified Compounds

- STT tank water (from small former gas holder)
- WS-1 downstream surface water sample
- WS-2 duplicate of downstream water sample

WS-3 - upstream surface water sample

WSSEMI.WK3

| TABLE | 2-1 |  |
|-------|-----|--|
|-------|-----|--|

Sediment Sampling Results

Metals and Cyanide (mg/kg)

|                                     | Sediment Criteria *  |                        | nt Criteria *          | Sample Location |        |       |  |
|-------------------------------------|----------------------|------------------------|------------------------|-----------------|--------|-------|--|
| ANALYTE<br>Sampling Depth (in feet) | Analytical<br>Method | Lowest Effect<br>Level | Severe Effect<br>Level | S-1             | S-2    | S–3   |  |
| Aluminum                            | CLP-M**              |                        |                        | 9400            | 7520   | 13300 |  |
| Antimony                            | CLP-M**              | 2.0                    | 25.0                   | 13.9J           | 8.1J   | 17.1J |  |
| Arsenic                             | CLP-M**              | 6.0                    | 33.0                   | 4.7             | 11.3   | 9     |  |
| Barium                              | CLP-M**              |                        |                        | 143             | 70.7   | 203   |  |
| Beryllium                           | CLP-M**              |                        |                        | ND              | 2.9    | ND    |  |
| Cadmium                             | CLP-M**              | 0.6                    | 9.0                    | 1.3             | 2.9    | 2.4   |  |
| Calcium                             | CLP-M**              |                        |                        | 11500           | 20700  | 12700 |  |
| Chromium                            | CLP-M**              |                        |                        | 19.7            | 24.6   | 30.9  |  |
| Cobait                              | CLPM**               |                        |                        | 9.1B            | 13.4   | 17.9  |  |
| Copper                              | CLPM**               | 16.0                   | 110.0                  | 85.5            | 28.8   | 99    |  |
| Iron                                | CLP-M**              | 2%                     | 4%                     | 29400           | 133000 | 48200 |  |
| Lead                                | CLP-M**              | 31.0                   | 110.0                  | 103             | 71.3   | 106   |  |
| Magnesium                           | CLP-M**              |                        |                        | 5730            | 4310   | 6640  |  |
| Manganese                           | CLPM**               | 460                    | 1100                   | 533J            | 3810J  | 2390J |  |
| Mercucy                             | CLP-M**              | 0.15                   | 1.3                    | ND              | ND     | ND    |  |
| Nickel                              | CLP-M**              | 16.0                   | 50.0                   | 26.6            | 12     | 33.4  |  |
| Potassium                           | CLP-M**              |                        |                        | 679B            | 692B   | 1790  |  |
| Selenium                            | CLP-M**              |                        |                        | ND              | ND     | ND    |  |
| Silver                              | CLPM**               | 1.0                    | 2.2                    | ND              | ND     | ND    |  |
| Sodium                              | CLP-M**              |                        |                        | ND              | ND     | ND    |  |
| Thallium                            | CLP-M**              |                        |                        | ND              | ND     | ND    |  |
| Vanadium                            | CLP-M**              |                        |                        | 24.2            | 129    | 38.6  |  |
| Zinc                                | CLP-M**              | 120.0                  | 270.0                  | 164             | 91.4   | 200   |  |
| Total Cyanide                       | CLP-M**              |                        |                        | R               | R      | R     |  |

\* - NYSDEC Technical Guidance for Screening Contaminated Sediments, July 1994

(absence of Sediment Criteria value indicates metal not reported in guidance document)

\*\* - CLP ANALYTICAL METHODS FOR METALS AS PER DOCUMENT ILM03.0

S-1 - downstream sample

S-2 - duplicate of S-1

S-3 - upstream sample

# TABLE 2-2 Sediment Sampling Results

Pesticides and PCBs (ug/kg)

|                     | Festicides and FC | Sediment Criteria (ug/kg) * |                |                 |            |         | Sample Location |         |  |  |
|---------------------|-------------------|-----------------------------|----------------|-----------------|------------|---------|-----------------|---------|--|--|
| ANALYTE             | Analytical        | Human Health                | Benthic Org.   | Benthic Org.    | Wildlife   | S-1     | S-2             | S-3     |  |  |
|                     | Method            | Bioaccum.                   | Acute Toxicity | ChronicToxicity | Bioaccum.  |         |                 |         |  |  |
| alpha-BHC           | NYSDEC 91-3       |                             |                |                 |            | ND      | ND              | ND      |  |  |
| beta-BHC            | NYSDEC 91-3       |                             |                |                 |            | ND      | ND              | ND      |  |  |
| delta-BHC           | NYSDEC 91-3       |                             |                |                 |            | ND      | ND              | ND      |  |  |
| gamma–BHC (Lindane) | NYSDEC 91-3       |                             |                |                 |            | ND      | ND              | ND      |  |  |
| Heptachlor          | NYSDEC 91-3       | 0.008                       | 131            | 1.0             | 0.3        | ND      | ND              | ND      |  |  |
| Aldrin              | NYSDEC 91-3       | 1.0                         |                |                 | 7.7        | ND      | ND              | ND      |  |  |
| Heptachlor epoxide  | NYSDEC 91-3       | 0.008                       | 131            | 1.0             | 0.3        | ND      | ND              | ND      |  |  |
| Endosulfan I        | NYSDEC 91-3       |                             | 7.8            | 0.3             |            | ND      | ND              | ND      |  |  |
| Dieldrin            | NYSDEC 91-3       | 1.0                         |                | 90              | 7.7        | 0.023JN | ND              | ND      |  |  |
| 4,4'-DDE            | NYSDEC 91-3       | 0.1                         |                |                 | 10         | ND      | ND              | ND      |  |  |
| Endrin              | NYSDEC 91-3       | 8                           |                | 40              | 8          | 0.14JN  | 0.009JN         | 0.008JN |  |  |
| Endosulfan II       | NYSDEC 91-3       |                             | 7.8            | 0.3             |            | ND      | ND              | ND      |  |  |
| 4,4'-DDD            | NYSDEC 91-3       | 0.1                         |                |                 | 10         | ND      | ND              | ND      |  |  |
| Endosulfan sulfate  | NYSDEC 91-3       |                             |                |                 |            | ND      | ND              | ND      |  |  |
| 4,4'-DDT            | NYSDEC 91-3       | 0.1                         | 11000          | 10              | 10         | ND      | ND              | ND      |  |  |
| Methoxychior        | NYSDEC 91-3       |                             |                | 6.0             |            | ND      | ND              | ND      |  |  |
| Endrin ketone       | NYSDEC 91-3       |                             |                |                 |            | ND      | 0.009JN         | 0.006JN |  |  |
| Endrin aldehyde     | NYSDEC 91-3       |                             |                |                 |            | ND      | ND              | ND      |  |  |
| alpha-Chlordane     | NYSDEC 91-3       | 0.01                        | 14             | 0.3             | 0.06       | ND      | ND              | ND      |  |  |
| gamma-Chlordane     | NYSDEC 91-3       | 0.01                        | 14             | 0.3             | 0.06       | ND      | ND              | ND      |  |  |
| Toxaphene           | NYSDEC 91-3       | 0.2                         | 32             | 0.1             |            | ND      | ND              | ND      |  |  |
| Aroclor-1016        | NYSDEC 91-3       | 0.008 (TOTAL)               | 27608 (TOTAL)  | 193 (TOTAL)     | 14 (TOTAL) | ND      | ND              | ND      |  |  |
| Aroclor-1221        | NYSDEC 91-3       | 0.008 (TOTAL)               | 27608 (TOTAL)  | 193 (TOTAL)     | 14 (TOTAL) | ND      | ND              | ND      |  |  |
| Arocior-1232        | NYSDEC 91-3       | 0.008 (TOTAL)               | 27608 (TOTAL)  | 193 (TOTAL)     | 14 (TOTAL) | ND      | ND              | ND      |  |  |
| Aroclor-1242        | NYSDEC 91-3       | 0.008 (TOTAL)               | 27608 (TOTAL)  | 193 (TOTAL)     | 14 (TOTAL) | ND      | ND              | ND      |  |  |
| Aroclor-1248        | NYSDEC 91-3       | 0.008 (TOTAL)               | 27608 (TOTAL)  | 193 (TOTAL)     | 14 (TOTAL) | ND      | ND              | ND      |  |  |
| Aroclor-1254        | NYSDEC 91-3       | 0.008 (TOTAL)               | 27608 (TOTAL)  | 193 (TOTAL)     | 14 (TOTAL) | ND      | ND              | ND      |  |  |
| Aroclor-1260        | NYSDEC 91-3       | 0.008 (TOTAL)               | 27608 (TOTAL)  | 193 (TOTAL)     | 14 (TOTAL) | ND      | ND              | ND      |  |  |

\* - NYSDEC Technical Guidance for Screening Contaminated Sediments, July 1994

\*\* - Assumes a 1% organic carbon content in sediment soils

S-1 -downstream sample

S-2 -is a duplicate of S-1

S-3 -upstream sample

#### TABLE 2–3 Sediment Sampling Results TCL Volatiles (mg/kg)

| ANALYTE            |                      | Sediment Criteria (ug/kg) * |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Semple Location |        |        |
|--------------------|----------------------|-----------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|--------|--------|
|                    | Analytical<br>Method | Human Health<br>Bioaccum.** | Benthic Org.<br>Acute Toxicity** | Benthic Org.<br>ChronicToxicity*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wildlife<br>Bioaccum.** | S-1             | S-2    | S-3    |
| Toluene            | NYSDEC 91-1          |                             |                                  | , in the second s |                         | 0.007J          | ND     | ND     |
| Benzene Isomer     | NYSDEC 91-1          | 6.0 (BENZENE)               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | ND              | 0.065J | ND     |
| Other TICs         | NYSDEC 91-1          |                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | ND              | ND     | 0.107J |
| Total BTEX         | NYSDEC 91-1          | 6.0 (BENZENE)               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 0.007           | ND     | ND     |
| Total Volatiles*** | NYSDEC 91-1          |                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 0.007           | ND     | ND     |

NOTE: only detected analytes reported in table

\* - NYSDEC Technical Guidance for Screening Contaminated Sediments, July 1994

(absence of Sediment Criteria value indicates organic compound not reported in guidance document)

\*\* - Assumes a 1% organic carbon content in sediment soils

\*\*\* - Total Volatiles do not include unknown, Non-target compounds

S-1 -downstream sample

S-2 -is a duplicate of S-1

S-3 -upstream sample

Other TICs: Non-aromatic TICs

#### TABLE 2–4 Sediment Sampling Results TCL Semi–Volatiles (mg/kg)

| · · · · · · · · · · · · · · · · · · · | ICE Sein-Volat       |                           | Sediment Criteria              | *                                |                       |       | San   | nple Loc | ation  |       |
|---------------------------------------|----------------------|---------------------------|--------------------------------|----------------------------------|-----------------------|-------|-------|----------|--------|-------|
| ANALYTE                               | Analytical<br>Method | Human Health<br>Bioaccum. | Benthic Org.<br>Acute Toxicity | Benthic Org.<br>Chronic Toxicity | Wildlife<br>Bioaccum. | S–1   | S-1DL | S-2      | 1      | S–3DL |
| Phenol                                | NYSDEC 91-2          |                           |                                | 5.0 (TOTAL)                      |                       | 0.52J | ND    | ND       | ND     | ND    |
| 4-Methylphenol                        | NYSDEC 91-2          |                           |                                | 5.0 (TOTAL)                      |                       | 1.7J  | ND    | 2.7J     | ND     | ND    |
| Fluorene                              | NYSDEC 91-2          |                           |                                |                                  |                       | 16    | 21D   | 0.71J    | 87E    | 110D  |
| Phenanthrene                          | NYSDEC 91-2          |                           |                                | 1,200                            |                       | 65E   | 110D  | 4.4J     | 350E   | 480D  |
| Anthracene                            | NYSDEC 91-2          |                           |                                |                                  |                       | 23    | 32D   | 0.94J    | 88E    | 120D  |
| Carbazole                             | NYSDEC 91-2          |                           |                                |                                  |                       | 6.3   | 8.8JD | NDJ      | 24     | 24JD  |
| Fluoranthene                          | NYSDEC 91-2          |                           |                                | 10,200                           |                       | 51E   | 9.8D  | 5        | 230E   | 460D  |
| Pyrene                                | NYSDEC 91-2          |                           |                                |                                  |                       | 62E   | 99D   | 6.2      | 280E   | 300D  |
| Naphthalene                           | NYSDEC 91-2          |                           |                                |                                  |                       | 14    | 18JD  | ND       | 25     | 25JD  |
| 2-Methylnaphthalene                   | NYSDEC 91-2          |                           |                                |                                  |                       | 6.1   | 7.9JD | ND       | 43     | 48JD  |
| Benzo (a) anthracene                  | NYSDEC 91-2          | 13                        |                                |                                  | -                     | 28    | 37D   | 2J       | 99E    | 150D  |
| Chrysene                              | NYSDEC 91-2          | 13                        |                                |                                  |                       | 30    | 42D   | 2.2J     | 110E   | 130D  |
| Acenaphthylene                        | NYSDEC 91-2          |                           |                                |                                  |                       | 2.4J  | 2.9JD | ND       | ND     | ND    |
| Acenaphthene                          | NYSDEC 91-2          |                           |                                |                                  | 7.7                   | 16    | 22D   | ND       | 84     | 110D  |
| Dibenzofuran                          | NYSDEC 91-2          |                           |                                |                                  |                       | 10    | 14JD  | ND       | 70     | 89JD  |
| Benzo (b) fluoranthene                | NYSDEC 91-2          | 13                        |                                |                                  |                       | 21    | 25D   | 1.6J     | 79     | 76JD  |
| Benzo (k) fluoranthene                | NYSDEC 91-2          | 13                        |                                |                                  |                       | 14    | 14JD  | 1.2J     | 48     | 44JD  |
| Benzo (a) pyrene                      | NYSDEC 91-2          | 13                        |                                |                                  |                       | 19    | 24D   | 1.6J     | 71     | 65JD  |
| Indeno (1,2,3-cd) pyrene              | NYSDEC 91-2          | 13                        |                                |                                  |                       | 11    | 11JD  | ND       | 49     | ND    |
| Dibenz (a,h) anthracene               | NYSDEC 91-2          |                           |                                |                                  |                       | 4.1J  | ND    | ND       | 12     | ND    |
| Benzo (g,h,i) perylene                | NYSDEC 91-2          |                           |                                |                                  |                       | 9.4   | ND    | ND       | 37     | ND    |
| bis (2-ethylhexylphthalate)           | NYSDEC 91-2          |                           |                                |                                  |                       | 1.7J  | ND    | 1.2J     | ND     | ND    |
| Aromatic TICs                         | NYSDEC 91-2          |                           |                                |                                  |                       | 35.2J | 140.9 | 8.1J     | 100.8J | 138JD |
| Other TICs                            | NYSDEC 91-2          |                           |                                |                                  |                       | 39.16 | 143.9 | 34.29J   | 4.9J   | 23JD  |
| Total PAHs                            | NYSDEC 91-2          |                           |                                |                                  |                       | 392   | 489.6 | 25.85    | 1716   | 2118  |
| Total Semivolatiles**                 | NYSDEC 91-2          |                           |                                |                                  |                       | 412.2 | 498.4 | 29.75    | 1786   | 2231  |

\* - NYSDEC Technical Guidance for Screening Contaminated Sediments, July 1994

(absence of a Sediment Criteria value indicates SVOC not reported in guidance document) (assumes a 1% organic carbon content in sediment soils)

\*\* - TOTAL SEMIVOLATILES do not include TICs

S-1 -downstream sample

S-2 -is a duplicate of S-1

S-3 -upstream sample

TIC = Tentatively Identified Compound

SSEMI.WK3

| TABL | .E 3 | -1 |
|------|------|----|
|------|------|----|

Surface Soil Sampling Results

|  | TAL | Metals | and Cyan | ide ( | (ma/ | 'ka) |
|--|-----|--------|----------|-------|------|------|
|--|-----|--------|----------|-------|------|------|

|               |            |                     | Sample L | ocation |       |          |
|---------------|------------|---------------------|----------|---------|-------|----------|
| ANALYTE       | Analytical | Eastern USA         | SS-4     | SS-6    | SS-10 | SS-14    |
|               | Method     | Background (mg/kg)* |          |         |       | SS-4 DUP |
| Aluminum      | CLP-M**    | 33000               | 11200    | 10000   | 10000 | 9560     |
| Antimony      | CLP-M**    | NA                  | ND       | ND      | ND    | ND       |
| Arsenic       | CLP-M**    | 3-12                | 5.4J     | 8.7J    | 6.2   | 5.9 J    |
| Barium        | CLP-M**    | 15-600              | 86.3     | 68.4    | 61.2  | 58.8     |
| Beryllium     | CLPM**     | 0-1.75              | ND       | ND      | ND    | ND       |
| Cadmium       | CLPM**     | 0.1-1               | ND       | 1.2     | 0.77B | ND       |
| Calcium       | CLP-M**    | 130-35000           | 23100    | 1670    | 8850  | 48300    |
| Chromium      | CLPM**     | 1.5-40              | 15.1     | 17.3    | 35.3  | 14.3     |
| Cobalt        | CLP-M**    | 2.5-60              | 8.5B     | 8.5B    | 10.7B | 8.0B     |
| Copper        | CLP-M**    | 1-50                | 22.6J    | 21.5J   | 45.2  | 15.3J    |
| Iron          | CLP-M**    | 2000-550000         | 23400    | 22700   | 40600 | 19400    |
| Lead          | CLP-M**    | 200-500             | 124      | 50.1    | 503   | 89.4     |
| Magnesium     | CLP-M**    | 100-5000            | 5780     | 3360    | 7120  | 5060     |
| Manganese     | CLPM**     | 50-5000             | 739      | 580     | 494   | 480      |
| Mercury       | CLP-M**    | 0.001-0.2           | ND       | 0.15    | 0.23  | 0.11     |
| Nickel        | CLP-M**    | 0.5-25              | 25.2     | 22.6    | 22.9  | 20.8     |
| Potassium     | CLP-M**    | 8500-43000          | 1020B    | 1320    | 1300  | 1040     |
| Selenium      | CLP-M**    | 0.1-3.9             | ND       | ND      | ND    | ND       |
| Silver        | CLP-M**    | NA                  | R        | R       | ND    | R        |
| Sodium        | CLP-M**    | 6000-8000           | ND       | ND      | ND    | ND       |
| Thallium      | CLP-M**    | NA                  | ND       | ND      | ND J  | ND       |
| Vanadium      | CLPM**     | 1-300               | 23.7     | 27.5    | 34.7  | 20.7     |
| Zinc          | CLP-M**    | 9-50                | 90.3     | 105     | 97.2  |          |
| Total Cyanide | CLP-M**    | NA                  | NDJ      | NDJ     | 49.5J | NDJ      |

\* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994

\*\* - CLP ANALYTICAL METHODS FOR METALS AS PER DOCUMENT ILM03.0

SSPEST.WK3

| TABLE 3-1   | (continued)        |
|-------------|--------------------|
| Surface Sol | I Sampling Results |
| Cvanide (m  | a/ka)              |

|               |            | Recommended        |    |             |      |      |             |      |      |      |             |
|---------------|------------|--------------------|----|-------------|------|------|-------------|------|------|------|-------------|
| ANALYTE       | Analytical | Soil Cleanup       |    |             |      | Sam  | ole Locatic | n    |      |      |             |
|               | Method     | Objective (mg/kg)* |    | <u>SS-2</u> | SS-3 | SS-4 | SS-5        | SS-6 | SS-7 | SS-8 | <u>SS-9</u> |
| Total Cyanide | CLP-M      |                    | ND | ND          | ND   | ND   | ND          | ND   | 2.2  | ND   | 1.2         |

.

|               |            | Recommended        |       |       |             |       |       |       |
|---------------|------------|--------------------|-------|-------|-------------|-------|-------|-------|
| ANALYTE       | Analytical | Soil Cleanup       |       | San   | nple Locati | on    |       |       |
|               | Method     | Objective (mg/kg)* | SS-10 | SS-11 | SS-12       | SS-13 | SS-14 | SS-15 |
| Total Cyanide | CLP-M      |                    | 49.5  | ND    | ND          | ND    | ND    | ND    |

SS-14 - duplicate of SS-4 SS-15 - duplicate of SS-12

SSVOLAT.WK3

| TABLE 3-2                     |
|-------------------------------|
| Surface Soil Sampling Results |
| Pesticides and PCBs (mg/kg)   |

| <u>.</u>            | resucides and FCD | Recommended        |      |         | Sample Lo | cation |        |        |        |
|---------------------|-------------------|--------------------|------|---------|-----------|--------|--------|--------|--------|
| ANALYTE             | Analytical        | Soil Cleanup       | SS-4 | SS-6    | SS-10     | SS-14  | 1-SOIL | 2-SOIL | 3-SOIL |
|                     | Method            | Objective (mg/kg)* |      |         |           |        |        |        |        |
| alpha-BHC           | NYSDEC 91-3       | 0.11               | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| beta-BHC            | NYSDEC 91-3       | 0.2                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| delta-BHC           | NYSDEC 91-3       | 0.3                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| gamma-BHC (Lindane) | NYSDEC 91-3       | 0.06               | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Heptachlor          | NYSDEC 91-3       | 0.1                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Aldrin              | NYSDEC 91-3       | 0.041              | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Heptachlor epoxide  | NYSDEC 91-3       | 0.1                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Endosulfan I        | NYSDEC 91-3       | 0.9                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Dieldrin            | NYSDEC 91-3       | 0.044              | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| 4,4'-DDE            | NYSDEC 91-3       | 2.1                | ND   | 0.003JN | ND        | ND     | NT     | NT     | NT     |
| Endrin              | NYSDEC 91-3       | 0.1                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Endosulfan II       | NYSDEC 91-3       | 0.9                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| 4,4'-DDD            | NYSDEC 91-3       | 2.8                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Endosulfan sulfate  | NYSDEC 91-3       | 1.0                | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| 4,4'-DDT            | NYSDEC 91-3       | 2.1                | ND   | 0.007JN | ND        | ND     | NT     | NT     | NT     |
| Methoxychlor        | NYSDEC 91-3       | NA                 | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Endrin ketone       | NYSDEC 91-3       | NA                 | ND   | ND      | .15JN     | ND     | NT     | NT     | NT     |
| Endrin aldehyde     | NYSDEC 91-3       | NA                 | ND   | 0.029 P | ND        | ND     | NT     | NT     | NT     |
| alpha-Chlordane     | NYSDEC 91-3       | NA                 | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| gamma-Chlordane     | NYSDEC 91-3       | 0.54               | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Toxaphene           | NYSDEC 91-3       | NA                 | ND   | ND      | ND        | ND     | NT     | NT     | NT     |
| Aroclor-1016        | NYSDEC 91-3       | 1 (TOTAL PCBs)     | ND   | ND      | ND        | ND     | ND     | ND     | ND     |
| Aroclor-1221        | NYSDEC 91-3       | 1 (TOTAL PCBs)     | ND   | ND      | ND        | ND     | ND     | ND     | ND     |
| Aroclor-1232        | NYSDEC 91-3       | 1 (TOTAL PCBs)     | ND   | ND      | ND        | ND .   | ND     | ND     | ND     |
| Aroclor-1242        | NYSDEC 91-3       | 1 (TOTAL PCBs)     | ND   | ND      | ND        | ND     | ND     | ND     | ND     |
| Aroclor-1248        | NYSDEC 91-3       | 1 (TOTAL PCBs)     | ND   | ND      | ND        | ND     | ND     | ND     | ND     |
| Aroclor-1254        | NYSDEC 91-3       | 1 (TOTAL PCBs)     | ND   | ND      | ND        | ND     | ND     | ND     | ND     |
| Aroclor-1260        | NYSDEC 91-3       | 1 (TOTAL PCBs)     | ND   | ND      | ND        | ND     | 0.13   | 0.061J | 0.056J |

\* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994

SAMPLES COLLECTED NEAR KING FUELS OFFICE BUILDING:

SSPEST.WK3

- 1-SOIL
- 2-SOIL

3-SOIL

| TABLE 3-3             |         |
|-----------------------|---------|
| Surface Soil Sampling | Results |
| TCI Volatilae (ma/ka) |         |

|                     | IOL VOIdules (Ing/kg)     |                    |        |        | ******* |        | *****    |         |             |        |        | ******* |
|---------------------|---------------------------|--------------------|--------|--------|---------|--------|----------|---------|-------------|--------|--------|---------|
|                     |                           | Recommended        |        |        |         |        | Sample L | ocation |             |        |        |         |
| ANALYTE             | Analytical                | Soil Cleanup       | SS-1   | SS-1RE | SS-2    | SS-2RE | SS-3     | SS-4    | <u>SS-5</u> | SS-6   | SS-7   | SS-7RE  |
|                     | Method                    | Objective (mg/kg)* | (BTEX) | (BTEX) | (BTEX)  | (BTEX) | (BTEX)   | TCL     | (BTEX)      | TCL    | (BTEX) | (BTEX)  |
| Benzene             | NYSDEC 91-1 OR EPA 8240** | 0.06               | ND J   | ND J   | ND J    | ND J   | ND       | ND      | ND          | ND     | ND     | ND      |
| Toluene             | NYSDEC 91-1 OR EPA 8240** | 1.5                | ND J   | NDJ    | ND J    | ND J   | ND       | ND      | ND          | ND     | ND     | ND      |
| Ethylbenzene        | NYSDEC 91-1 OR EPA 8240** | 5.5                | ND J   | ND J   | ND J    | ND J   | ND       | ND      | ND          | ND     | ND     | ND      |
| Xylene (total)      | NYSDEC 91-1 OR EPA 8240** | 1.2                | ND J   | ND J   | ND J    | ND J   | ND       | ND      | ND          | ND     | ND     | ND      |
| Aromatic TICs       | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | NT      | NT     | NT       | ND      | NT          | ND     | NT     | NT      |
| Other TICs          | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | NT      | NT     | NT       | 0.008J  | NT          | 0.014J | NT     | NT      |
| Total BTEX (mg/kg)  | NYSDEC 91-1 OR EPA 8240** | NA                 | ND     | ND     | ND      | ND     | ND       | ND      | ND          | ND     | ND     | ND      |
| Total Volatiles *** | NYSDEC 91-1 OR EPA 8240** | 10                 | ND     | ND     | ND      | ND     | ND       | ND      | ND          | ND     | ND     | ND      |

|                     | Net 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Recommended                        |               |              |                |              | Sample Lo       | cation          |                  |                 |              |                 |
|---------------------|--------------------------------------------|------------------------------------|---------------|--------------|----------------|--------------|-----------------|-----------------|------------------|-----------------|--------------|-----------------|
| ANALYTE             | Analytical<br>Method                       | Soil Cleanup<br>Objective (mg/kg)* | SS8<br>(BTEX) | SS8RE<br>TCL | SS-9<br>(BTEX) | SS-10<br>TCL | SS-11<br>(BTEX) | SS-12<br>(BTEX) | SS-12R<br>(BTEX) | SS-13<br>(BTEX) | SS-14<br>TCL | SS-15<br>(BTEX) |
| Benzene             | NYSDEC 91-1 OR EPA 8240**                  | 0.06                               | ND            | ND J         | ND             | ND           | ND              | ND              | ND               | ND              | ND           | ND              |
| Toluene             | NYSDEC 91-1 OR EPA 8240**                  | 1.5                                | ND J          | NDJ          | ND             | ND           | ND              | ND              | ND               | ND              | ND           | ND              |
| Ethylbenzene        | NYSDEC 91-1 OR EPA 8240**                  | 5.5                                | ND J          | NDJ          | ND             | ND           | ND              | ND              | ND               | ND              | ND           | ND              |
| Xylene (total)      | NYSDEC 91-1 OR EPA 8240**                  | 1.2                                | NDJ           | NDJ          | ND             | ND           | ND              | ND              | ND               | ND              | ND           | ND              |
| Aromatic TICs       | NYSDEC 91-1 OR EPA 8240**                  | NA                                 | NT            | NT           | NT             | 0.008J       | NT              | NT              | NT               | NT              | ND           | NT              |
| Other TICs          | NYSDEC 91-1 OR EPA 8240**                  | NA                                 | NT            | NT           | NT             | ND           | NT              | NT              | NT               | NT              | ND           | NT              |
| Total BTEX (mg/kg)  | NYSDEC 91-1 OR EPA 8240**                  | NA                                 | ND            | ND           | ND             | ND           | ND              | ND              | ND               | ND              | ND           | ND              |
| Total Volatiles *** | NYSDEC 91-1 OR EPA 8240**                  | 10                                 | ND            | ND           | ND             | ND           | ND              | ND              | ND               | ND              | ND           | ND              |

\* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994 \*\* - EPA METHOD 8240 USED FOR INDICATOR PARAMETERS (BTEX) ANALYSIS \*\*\* - TOTAL VOLATILES DO NOT INCLUDE UNKNOWN, NON-TARGET COMPOUNDS

SS-14 - duplicate of SS-4 SS-15 - duplicate of SS-12

SSVOLAT.WK3

#### TABLE 3-4

Surface Soil Sampling Results

|                          | CL Semivolatiles (mg/kg)  |                    |      |        |       |         |       |           |        |       |                |       |        |          |       |         |        |         |
|--------------------------|---------------------------|--------------------|------|--------|-------|---------|-------|-----------|--------|-------|----------------|-------|--------|----------|-------|---------|--------|---------|
|                          |                           | Recommended        |      |        |       |         |       | Sample Lo | cation |       |                |       |        | <u> </u> |       | <u></u> |        |         |
| ANALYTE                  | Analytical                | Soil CLeanup       | SS-1 | SS-2   | SS-3  | SS-4    | SS-5  | SS-6      | SS-7   | SS-8  | SS-9           | SS-10 | SS-11  | SS-12    | SS-13 | SS-14   | SS-15  | SS-15DL |
|                          | Method                    | Objective (mg/kg)* | PAHs | PAHs   | PAHs  | TCL     | PAHs  | TCL       | PAHs   | PAHs  | PAHs           | TCL   | PAHs   | PAHs     | PAHs  | TCL     | PAHs   | PAHs    |
| Naphthalene              | NYSDEC 91-2 or EPA 8270** | 13                 | ND   | ND     | 0.49J | ND      | ND    | 0.052J    | ND     | ND    | 0. <b>49</b> J | ND    | 0.042J | 1.4J     | ND    | ND      | 0.64J  | ND      |
| 2-Methyinaphthalene      | NYSDEC 91-2 or EPA 8270** | 36.4               | NT   | NT     | NT    | ND      | NT    | 0.051J    | NT     | NT    | NT             | ND    | NT     | NT       | NT    | ND      | NT     | NT      |
| Fluorene                 | NYSDEC 91-2 or EPA 8270** | 50                 | ND   | ND     | 1.1J  | ND      | 0.77J | ND        | 0.093J | ND    | ND             | 1.5J  | ND     | 2.1J     | ND    | ND      | 3.2J   | 2.0JD   |
| Phenantherene            | NYSDEC 91-2 or EPA 8270** | 50                 | ND   | ND     | 7.2   | 0.1J    | 3.7J  | 0.27J     | 1.8    | 1.4J  | 1.3J           | 13.0  | 0.13J  | 14.0     | ND    | 0.4J    | 28.0   | 20.0D   |
| Anthracene               | NYSDEC 91-2 or EPA 8270** | 50                 | 3.7J | ND     | 1.6J  | ND      | 1.3J  | 0.04J     | 0.34J  | 0.48J | 0.78J          | 2.QJ  | 0.041J | 3.4J     | ND    | 0.095J  | 10.0   | 6.8JD   |
| Fluoranthene             | NYSDEC 91-2 or EPA 8270** | 50                 | ND   | 0.07J  | 7.8   | 0.18J   | 5.4   | 0.39      | 4.1    | 3.1J  | 2.7J           | 45.0  | 0.24J  | 20.0     | 37J   | 0.76    | 38.0E  | 36.0D   |
| Pyrene                   | NYSDEC 91-2 or EPA 8270** | 50                 | 3.2J | 0.074J | 6,1   | 0.24J   | 6.9   | 0.34J     | 3.6    | 5.0   | 2.9J           | 36.0  | 0.2J   | 17.0     | ND    | 0.76    | 42.0E  | 30.0D   |
| Acenaphthylene           | NYSDEC 91-2 or EPA 8270** | 41                 | 2.9J | ND J   | 1.4J  | 0.045J  | 2.5J  | 0.038J    | 0.085J | 1.0J  | 2.1J           | 3.4J  | 0.067J | 1.4J     | ND    | 0.13J   | 4.5    | 2.7JD   |
| Acenaphthene             | NYSDEC 91-2 or EPA 8270** | 50                 | ND   | ND     | ND.   | ND      | ND    | ND        | ND     | ND    | ND             | ND    | ND     | 0.78J    | ND    | ND      | 2.0J   | 1.3JD   |
| Benzo (a) anthracene     | NYSDEC 91-2 or EPA 8270** | 0.22               | ND   | ND     | 3.6J  | 0.11J   | 4.1   | 0.2J      | 2.9    | 2.6J  | 1.9J           | 26.0  | 0.14J  | 11.0     | ND    | 0.41J   | 31.0E  | 20.0D   |
| Chrysene                 | NYSDEC 91-2 or EPA 8270** | 0.4                | ND   | ND     | 3.4J  | 0.14J   | 4.3   | 0.26J     | 2.8    | 3.QJ  | 1.8J           | 31.0  | 0.15J  | 10.0     | ND    | 0.43J   | 22.0   | 19.0D   |
| Benzo (b) fluoranthene   | NYSDEC 91-2 or EPA 8270** | 1.1                | ND   | ND     | 2.8J  | 0.15J   | 3.9   | 0.22J     | 3.1    | ND    | 2.5J           | 27.0  | 0.17J  | 9.0      | ND    | 0.44J   | 26.0J  | 13.0D   |
| Benzo (k) fluoranthene   | NYSDEC 91-2 or EPA 8270** | 1.1                | ND   | ND     | 4.1J  | 0.16J   | 4.2   | 0.21J     | 1.4    | ND    | 3.4J           | 21.0  | 0.2J   | 7.9J     | ND    | 0.42J   | 21.0J  | 9.5DJ   |
| Benzo (a) pyrene         | NYSDEC 91-2 or EPA 8270** | 0.061              | ND   | ND     | 2.7J  | 0.13J   | 4.3   | 0.19J     | 2.2.1  | 2.6J  | 2.4J           | 22.0  | 0.12J  | 8.3J     | ND    | 0.38J   | 19.0J  | 12.0DJ  |
| Indeno (1,2,3-cd) pyrene | NYSDEC 91-2 or EPA 8270** | 3.2                | ND   | ND     | 0.89J | 0.052J  | 1.4J  | 0.12J     | 1.0J   | ND    | 0.97J          | 16.0  | 0.086J | 3.7J     | ND    | 0.14J   | 4.5J   | 4.4JD   |
| Dibenz (a,h) anthracene  | NYSDEC 91-2 or EPA 8270** | 0.014              | ND   | ND     | ND    | ND      | ND    | 0.042J    | 0.22J  | ND    | ND             | 6.6J  | ND     | 0.5J     | ND    | ND      | 0.68J  | ·ND     |
| Benzo (g,h,i) perylene   | NYSDEC 91-2 or EPA 8270** | 50                 | ND   | ND     | 0.83J | 0.048J  | 1.5J  | 0.11J     | 0.97J  | ND    | 0.97J          | 16.0  | 0.08J  | 3.2J     | ND    | 0.11J   | 3.7J   | 3.6JD   |
| Di-n-butyiphthalate      | NYSDEC 91-2 or EPA 8270** | 8.1                | NT   | NT     | NT    | ND      | NT    | 0.13J     | NT     | NT    | NT             | ND    | NT     | NT       | NT    | ND      | NT     | NT      |
| Butylbenzylphthalate     | NYSDEC 91-2 or EPA 8270** | NA                 | NT   | NT     | NT    | ND      | NT    | 0.078J    | NT     | NT    | NT             | ND    | NT     | NT       | NT    | ND      | NT     | NT      |
| Aromatic TICs            | NYSDEC 91-2 or EPA 8270** | NA                 | NT   | NT     | NT    | .11J    | NT    | 0.41J     | NT     | NT    | NT             | 91.3  | NT     | NT       | NT    | 1.55J   | NT     | NT      |
| Other TICs               | NYSDEC 91-2 or EPA 8270** | NA                 | NT   | NT     | NT    | 5.547JE | NT    | 15.709JB  | NT     | NT    | NT             | 8.6J  | NT     | NT       | NT    | 11.11JB | NT     | NT      |
| Total PAHs               | NYSDEC 91-2 or EPA 8270** | NA                 | 9.8  | 0.14   | 43.52 | 1.36    | 44.27 | 2.43      | 24.61  | 19.18 |                | 266.5 | 1.62   | 112.28   | 0.037 | 4.48    | 256.22 | 177.3   |
| Total Semivolatiles***   | NYSDEC 91-2 or EPA 8270** | 500                | 9.8  | 0.14   | 43.52 | 1.36    | 44.27 | 2.74      | 24.61  | 19.18 | 23.72          | 266.5 | 1.62   | 112.28   | 0.037 | 4.48    | 256.22 | 177.3   |

\* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994 \*\* - EPA METHOD 8270 USED FOR INDICATOR PARAMETERS (PAHs) ANALYSIS

\*\*\* - TOTAL SEMIVOLATILES DO NOT INCLUDE UNKNOWN, NON-TARGET ANALYTES

SS-14 - duplicate of SS-4

SS-15 - duplicate of SS-12

SSSEMI.WK3

|                          | Al Motolo and A | Cyanide (mg/kg)     |       |       |        |          |        |       |        |       |
|--------------------------|-----------------|---------------------|-------|-------|--------|----------|--------|-------|--------|-------|
|                          | AL Metals and   | Cyamoe (mg/kg)      |       |       | Sample | Location |        |       |        |       |
| ANALYTE                  |                 |                     |       | TP-1  |        | TP-2     | TP-3   | T     | TP-4   | TP-7  |
| Sampling Depth (in feet) | Analytical      | Eastern USA         | 2     | 6     | 10     | 9        | 4      | 10    | 10     | 9     |
| Camping Dopar (in root)  | Method          | Background (mg/kg)* |       |       |        |          |        |       |        |       |
| Aluminum                 | CLP-M**         | 33000               | 16900 | 3720  | 10300  | 5220     | 3820   | 17500 | 10500  | 1550  |
| Antimony                 | CLP-M**         | NA                  | ND    | ND    | ND     | 10.8B    | ND     | ND    | ND     | ND    |
| Arsenic                  | CLP-M**         | 3-12                | 6.5   | 32.5  | 25.8   | 30.2     | 14.2   | 5.2   | 20     | 19.4  |
| Barium                   | CLP-M**         | 15-600              | 145   | 67.3B | ND     | 28.4B    | 31.5B  | 115   | 109    | 15.1B |
| Bervilium                | CLP-M**         | 0-1.75              | 1.5J  | ND    | ND     | 2.5      | 1.1J   | 1.2J  | 1.0J   | ND    |
| Cadmium                  | CLPM**          | 0.1-1               | 0.81B | ND    | ND     | 5.1      | 2.5    | 0.86B | 3.6    | 2     |
| Calcium                  | CLPM**          | 130-35000           | 50000 | 12100 | ND     | 12500    | 4640   | 37500 | 18500  | 2700  |
| Chromium                 | CLP-M**         | 1.5-40              | 17.5  | 18    | ND     | 41.6     | 22.9   | 22.7  | 31     | 2.4   |
| Cobait                   | CLP-M**         | 2.5-60              | 12.7  | 10.4B | 14.3B  | 48.6     | 10.9B  | 15.9  | 16.7   | ND    |
| Copper                   | CLP-M**         | 150                 | 25.8  | 146   | ND     | 12.5J    | 51     | 28.3  | 73.4   | 39    |
| Iron                     | CLPM**          | 2000-550000         | 27700 | 17100 | ND     | 331000   | 87200  | 33700 | 72100  | 3430  |
| Lead                     | CLP-M**         | 200-500             | 50.6  | 94.6  | ND     | 45       | 47.3   | 16.9  | 316    | 90.4  |
| Magnesium                | CLP-M**         | 100-5000            | 9200  | 2200  | ND     | 1060B    | 1130   | 11500 | 44100  | ND    |
| Manganese                | CLP-M**         | 50-5000             | 1730  | 540   | ND     | 2530     | 1510   | 875   | 2790   | 28.2  |
| Mercury                  | CLP-M**         | 0.001-0.2           | 0.12  | 2.6   | ND     | ND       | 0.31   | ND    | ND     | 0.33  |
| Nickel                   | CLP-M**         | 0.5-25              | 20.5  | 17.1  | ND     | 39.6     | 14.1J  | 22.4  | 23.3   | ND    |
| Potassium                | CLP-M**         | 8500-43000          | 2440  | ND    | 1130B  | 728B     | ND     | 2650  | 1620   | ND    |
| Selenium                 | CLP-M**         | 0.1-3.9             | ND    | ND    | ND     | ND       | ND     | ND    | ND     | 2.3   |
| Silver                   | CLP-M**         | NA                  | ND    | ND    | ND     | R        | ND     | ND    | ND     | ND    |
| Sodium                   | CLP-M**         | 6000-8000           | ND    | ND    | 940B   | ND       | ND     | ND    | ND     | ND    |
| Thallium                 | CLPM**          | NA                  | ND J  | ND J  | ND J   | ND       | ND J   | ND J  | ND J   | 31.4J |
| Vanadium                 | CLP-M**         | 1-300               | 31.2  | 12.8B | ND     | 298      | 65.5   | 36.4  | 70.7   | ND    |
| Zinc                     | CLP-M**         | 9-50                | 85.4  | 36.9  | ND     | 103      | 27.6   | 77.4  | 113    | 155   |
| Total Cyanide            | CLP-M**         | NA                  | ND J  | 7.2J  | ND J   | ND J     | 0.55 J | ND J  | 0.73 J | ND J  |

TABLE 4–1 Test Pit Sampling Results

\* - NYSDEC TAGM HWR-94-4046, January 24, 1994

\*\* - CLP ANALYTICAL METHODS FOR METALS AS PER DOCUMENT ILM03.0

TPMET.WK3

#### TABLE 4-2

## Test Pit Sampling Results

| Pestici | des | and | PCBs ( | (mg/kg) |  |
|---------|-----|-----|--------|---------|--|
|         |     |     |        |         |  |

|                          |             |                    |    |        | Sa      | mple Loca | tion    |    |      |      |
|--------------------------|-------------|--------------------|----|--------|---------|-----------|---------|----|------|------|
| ANALYTE                  |             | Recommended        |    | TP-1   |         | TP-2      | T       | P3 | TP-4 | TP-7 |
| Sampling Depth (in feet) | Analytical  | Soil Cleanup       | 2  | 6      | 10      | 9         | 4       | 10 | 10   | 9    |
|                          | Method      | Objective (mg/kg)* |    |        |         |           |         |    |      |      |
| alpha-BHC                | NYSDEC 91-3 | 0.11               | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| beta-BHC                 | NYSDEC 91-3 | 0.20               | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| delta-BHC                | NYSDEC 91-3 | 0.3                | ND | ND     | 0.081   | ND        | ND      | ND | ND   | ND   |
| gamma-BHC (Lindane)      | NYSDEC 91-3 | 0.06               | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Heptachlor               | NYSDEC 91-3 | 0.1                | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aldrin                   | NYSDEC 91-3 | 0.041              | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Heptachlor epoxide       | NYSDEC 91-3 | 0.1                | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Endosulfan I             | NYSDEC 91-3 | 0.1                | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Dieldrin                 | NYSDEC 91-3 | 0.044              | ND | 0.17JN | 0.047JN | 0.004JN   | ND      | ND | ND   | ND   |
| 4,4'-DDE                 | NYSDEC 91-3 | 2.1                | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Endrin                   | NYSDEC 91-3 | 0.1                | ND | 0.72JN | 0.39JN  | ND        | ND      | ND | ND   | ND   |
| Endosulfan II            | NYSDEC 91-3 | 0.9                | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| 4,4'-DDD                 | NYSDEC 91-3 | 2.9                | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Endosulfan sulfate       | NYSDEC 91-3 | 1.0                | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| 4,4'-DDT                 | NYSDEC 91-3 | 2.1                | ND | 0.22JN | 0.22JN  | ND        | ND      | ND | ND   | ND   |
| Methoxychlor             | NYSDEC 91-3 | NA                 | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Endrin ketone            | NYSDEC 91-3 | NA                 | ND | ND     | ND      | 0.004JN   | 0.005JN | ND | ND   | ND   |
| Endrin aldehyde          | NYSDEC 91-3 | NA                 | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| alpha-Chlordane          | NYSDEC 91-3 | NA                 | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| gamma-Chlordane          | NYSDEC 91-3 | 0.54               | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Toxaphene                | NYSDEC 91-3 | NA                 | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aroclor-1016             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aroclor-1221             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aroclor-1232             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aroclor-1242             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aroclor-1248             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aroclor-1254             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |
| Aroclor-1260             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND | ND     | ND      | ND        | ND      | ND | ND   | ND   |

\* - NYSDECTAGM HWR-94-4046, JANUARY 24, 1994

TPPEST.WK3

## TABLE 4-3 Test Pit Sampling Results TCL Volatiles (mg/kg)

|                               |             |                    |     |       | Sample | Locatio | n      |        |      |       |
|-------------------------------|-------------|--------------------|-----|-------|--------|---------|--------|--------|------|-------|
| ANALYTE                       | -           | Recommended        |     | TP-1  |        | TP-2    | TP     | -3     | TP-4 | TP-7  |
| Sampling Depth (in feet)      | Analytical  | Soil Cleanup       | 2   | 6     | 10     | 9       | 4      | 10     | 10   | 9     |
|                               | Method      | Objective (mg/kg)* |     |       |        |         |        |        |      |       |
| 2-Butanone                    | NYSDEC 91-1 | 0.3                | NDJ | NDJ   | NDJ    | NDJ     | NDJ    | 0.004  | ND   | ND    |
| Benzene                       | NYSDEC 91-1 | 0.06               | ND  | 0.44J | ND     | ND      | ND     | ND     | ND   | 15    |
| Toluene                       | NYSDEC 91-1 | 1.5                | ND  | 0.33J | ND     | ND      | ND     | ND     | ND   | 12    |
| Ethylbenzene                  | NYSDEC 91-1 | 5.5                | ND  | 1.4J  | ND     | 0.002J  | ND     | ND     | ND   | 0.39J |
| Xylene (total)                | NYSDEC 91-1 | 1.2                | ND  | 3.8   | 0.33J  | ND      | ND     | ND     | ND   | 13    |
| Styrene                       | NYSDEC 91-1 | NA                 | ND  | 1.2J  | 0.45J  | ND      | ND     | ND     | ND   | 4.4   |
| Trimethyl Benzene Isomer      | NYSDEC 91-1 | NA                 | ND  | ND    | 15.8J  | ND      | ND     | ND     | ND   | 10.3J |
| Ethyl Dimethyl Benzene Isomer | NYSDEC 91-1 | NA                 | ND  | ND    | 44J    | ND      | ND     | ND     | ND   | ND    |
| Tetramethyl Benzene Isomer    | NYSDEC 91-1 | NA                 | ND  | 82J   | 64J    | ND      | ND     | ND     | ND   | ND    |
| Aromatic TICs                 | NYSDEC 91-1 | NA                 | ND  | 198   | 46.7J  | ND      | 0.185J | ND     | ND   | 115   |
| Other TICs                    | NYSDEC 91-1 | NA                 | ND  | ND    | 40J    | ND      | ND     | 0.074J |      |       |
| Total BTEX                    | NYSDEC 91-1 | NA                 | ND  | 5.37  | 0.33   | 0.002   | ND     | ND     | ND   | 40.39 |
| Total Volatiles**             | NYSDEC 91-1 | 10                 | ND  | 7.17  | 0.78   | 0.002   | ND     | 0.004  | ND   | 44.79 |

\* - NYSDEC TAGM HWR-94-4046, January 24, 1994 \*\* - TOTAL VOLATILES do not include TICs

TPVOLAT.WK3

#### TABLE 4-4

#### Test Pit Sampling Results TCL Semivolatiles (mg/kg)

|                          | TCL Semivolatiles | (mg/kg)            |         |       |        |        |         |          |       |        |            |              |        |        |
|--------------------------|-------------------|--------------------|---------|-------|--------|--------|---------|----------|-------|--------|------------|--------------|--------|--------|
|                          |                   |                    |         |       |        | Sample | ocation | <u> </u> |       |        |            |              |        |        |
| ANALYTE                  |                   | Recommended        |         | TP-1  |        |        | TP-     | -2       |       | TP-3   | TP-        | -4           | TP     | -7     |
| Sampling depth (in feet) | Analytical        | Soil Cleanup       | 2       | 6     | 6DL    | 10     | 9       | 9RE      | 4     | 10     | 10         | 10DL         | 9      | 9DL    |
|                          | Method            | Objective (mg/kg)* |         |       |        |        |         |          |       |        |            |              |        |        |
| Phenol                   | NYSDEC 91-2       | 0.03               | ND      | ND    | ND     | ND     | ND      | ND       | ND    | ND     | ND         | ND           | 3600J  | 3300JD |
| 2-Methylphenol           | NYSDEC 91-2       | 0.1                | ND      | ND    | ND     | ND     | ND      | ND       | ND    | ND     | ND         | ND           | 1000J  | ND     |
| 4-Methylphenol           | NYSDEC 91-2       | 0.9                | ND      | ND    | ND     | ND     | ND      | ND       | ND    | ND     | ND         | ND           | 2800J  | 2600JD |
| Fluorene                 | NYSDEC 91-2       | 50                 | ND      | 29J   | 28JD   | 4.2J   | ND      | ND       | ND    | ND     | 6.4        | 6.4JD        | 9600   | 9300D  |
| 2,4-Dimethylphenol       | NYSDEC 91-2       | NA                 | ND      | ND    | ND     | ND     | ND      | ND       | ND    | ND     | ND         | ND           | 80J    | ND     |
| Phenanthrene             | NYSDEC 91-2       | 50                 | ND      | 46    | 53JD   | 16     | 0.11J   | 0.1J     | 0.4J  | ND     | 25E        | 41D          | 27000  | 29000D |
| Anthracene               | NYSDEC 91-2       | 50                 | ND      | ND    | ND     | 2.4J   | ND      | ND       | ND    | ND     | 8.4        | 91D          | 6400   | 6200JD |
| Carbazole                | NYSDEC 91-2       | NA                 | ND      | ND    | ND     | NDJ    | ND      | ND       | ND    | ND     | 1.1J       | 1.1JD        | 2200J  | 2200JD |
| Fluoranthene             | NYSDEC 91-2       | 50                 | 0.062J  | 16    | 10JD   | 20     | 0.15J   | 0.15J    | 0.6J  | 0.056J | 33E        | 49D          | 17000  | 19000D |
| Pyrene                   | NYSDEC 91-2       | 50                 | 0.063J  | 18    | 15JD   | 19     | 0.14J   | 0.14J    | 0.5J  | 0.044J | 30E        | 36D          | 12000  | 11000D |
| Naphthalene              | NYSDEC 91-2       | 13                 | ND      | 240E  | 220D   | 24     | ND      | ND       | 0.13J | ND     | 0.88J      | 0.94JD       | 46000E | 54000D |
| 2-Methyinaphthalene      | NYSDEC 91-2       | 36.4               | ND      | 170E  | 210D   | 21     | ND      | ND       | ND    | ND     | 0.6J       | ND           | 9300   | 8700JD |
| Benzo (a) anthracene     | NYSDEC 91-2       | 0.224              | ND      | 6.8J  | 5.8JD  | 9J     | 0.097J  | 0.1J     | 0.35J | ND     | 22E        | 24D          | 6100   | 5800JD |
| Chrysene                 | NYSDEC 91-2       | 0.4                | ND      | 8.4J  | 7.9JD  | 10J    | 0.16J   | 0.16J    | 0.36J | ND     | 20E        | 21D          | 5100   | 4900JD |
| Acenaphthylene           | NYSDEC 91-2       | 41                 | ND      | ND    | ND     | ND     | ND      | ND       | ND    | ND     | 4          | 4.1JD        | 5500   | 5600JD |
| Acenaphthene             | NYSDEC 91-2       | 50                 | ND      | ND    | ND     | ND     | ND      | ND       | ND    | ND     | 0.78J      | ND           | 960J   | 940JD  |
| Dibenzofuran             | NYSDEC 91-2       | 6.2                | ND      | ND    | ND     | ND     | ND      | ND       | ND    | ND     | 3.4        | 3.3JD        | 7200   | 6900JD |
| Benzo (b) fluoranthene   | NYSDEC 91-2       | 1.1                | ND      | 4.6J  | ND     | 7.6J   | 0.14J   | 0.14J    | 0.27J | ND     | 20E        | 18D          | 3800J  | 3500JD |
| Benzo (k) fluoranthene   | NYSDEC 91-2       | 1.1                | ND      | 4.1J  | ND     | 8.5J   | 0.12J   | 0.12J    | 0.23J | ND     | 10         | 16D          | 4200J  | 4100JD |
| Benzo (a) pyrene         | NYSDEC 91-2       | 0.061              | ND      | 1.8J  | ND     | 5.9J   | 0.086J  | 0.086J   | 0.21J | ND     | 18E        | 19JD         | 4800J  | 4500JD |
| Indeno (1,2,3-cd) pyrene | NYSDEC 91-2       | 3.2                | ND      | 3.1J  | ND     | 5.4J   | 0.11J   | 0.1J     | 0.15J | ND     | 9.3        | 9.1D         | 2100J  | 2000JD |
| Dibenz (a,h) anthracene  | NYSDEC 91-2       | 0.014              | ND      | ND    | ND     | 2.1J   | ND      | ND       | ND    | ND     | <b>4</b> J | 3.2          | 750J   | ND     |
| Benzo (g,h,i) perviene   | NYSDEC 91-2       | 50                 | ND      | 2.9J  | ND     | 4.7J   | 0.12J   | 0.12J    | 0.15J | ND     | 6.8J       | 6.7JD        | 2000J  | 1800JE |
| Aromatic TICs            | NYSDEC 91-2       | NA                 | ND      | 1203J | 940JD  | 218    | 0.21J   | 0.17J    | 1.39J | ND     | 39.28J     | 97.2JD       | 34830J | 14900J |
| Other TICs               | NYSDEC 91-2       | ŇA                 | 21.4JAB | 3678J | 3740JD | 558    | 19.35JB | 19.71JB  | 9.18J | 11.68J | 3J         | <b>3JABD</b> | ND     | ND     |
| Total PAHs               | NYSDEC 91-2       | NA                 | 0.13    | 550.7 | 549.7  | 181.4  | 1.23    | 1.13     | 3.4   | 0.1    | 219.16     | 263.54       | 162610 | 170340 |
| Total Semivolatiles**    | NYSDEC 91-2       | 500                | 0.13    | 550.7 | 549.7  | 181.4  | 1.23    | 1.13     | 3.4   | 0.1    | 220.26     | 264.64       | 179490 | 185340 |

\* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994

\*\* - TOTAL SEMIVOLATILES do not include TICs

TPSEMI.WK3

| TABLE | 5-1 |  |
|-------|-----|--|
|-------|-----|--|

Soil Sampling Results (soil boring and monitoring well locations)

| 1                        | AL Metals and C | yanide (mg/kg)      |        |        |       |        |        |        |         |           |        |        |        |        |          |        |        |
|--------------------------|-----------------|---------------------|--------|--------|-------|--------|--------|--------|---------|-----------|--------|--------|--------|--------|----------|--------|--------|
|                          |                 |                     |        |        |       |        |        |        | Sa      | mple Loca | lion   |        |        |        | <u> </u> |        |        |
| ANALYTE                  |                 |                     | SB-11  | SB-    | -12   | SB-13  | SB-14  | SB-15  | SB-16   | SB-17     | SB-19  | SB-20  | MW-1   | MW-2   | MW-3     |        | MW-5   |
| Sampling Depth (in feet) | Analytical      | Eastern USA         | 42-44  | 20-22  | 66-67 | 16-17  | 11-13  | 32-34  | 20-22   | 2-4       | 23-25  | 22-24  | 8-10   | 12-13  | 26-28    | 32-34  | 24-26  |
|                          | Method          | Background (mg/kg)* |        |        |       |        |        |        |         |           |        |        |        |        |          |        |        |
| Aluminum                 | CLP-M**         | 33000               | 10800  | 3550   | 10100 | 9560   | 16900  | 7810   | 4140    | 5180      | 3270   | 2770   | 2010 J | 7330   | 7550     | 9170   | 2610   |
| Antimony                 | CLP-M**         | NA                  | ND     | ND     | ND    | ND     | ND     | 13.8   | ND      | 44.6      | ND     | 10.4J  | 8.5B   | 14.4 J | 11.9B    | 8.6B   | 18.6 J |
| Arsenic                  | CLP-M**         | 3-12                | 1.5B   | 4      | 5.5   | 40.6   | 15.3   | 10.4   | 42.8    | 16.4 J    | 19.5   | 11.5   | 3.2    | 12.7 J | 1.7B     | 2.6    | 10.4   |
| Barium                   | CLP-M**         | 15-600              | 92.3   | 19.1B  | 84.1  | 56.5   | 144    | 37.9B  | 35.0B   | 42.7B     | 25.7B  | 20.1B  | 20.2B  | 48.4   | 35.7B    | 30.2B  | 33.4B  |
| Beryllium                | CLP-M**         | 0-1.75              | ND     | ND     | ND    | ND     | 1.1    | 1.1B   | ND      | 1.6 J     | ND     | 1.5    | 1.3 J  | ND     | ND       | ND     | ND     |
| Cadmium                  | CLP-M**         | 0.1-1               | ND     | 1.2 J  | 1.2 J | 4 J    | 0.62B  | 5      | 1.2     | 22 J      | ND     | 2.2    | 21J    | _2J    | ND       | ND     | ND     |
| Calcium                  | CLP-M**         | 130-35000           | 1780   | 3680   | 19100 | 11800  | 3040   | 12300  | 5700    | 8060      | 2410   | 6670   | 6190   | 21800  | 1910     | 6890   | 1960   |
| Chromium                 | CLP-M**         | 1.5-40              | 14.3 J | 95.7 J | 16.9  | 61.3 J | 26     | 39.6   | 11.9    | 41.6 J    | 16.4   | 31.5   | 30.4   | 22.5   | 7 J      | 10.1 J | 39.8   |
| Cobalt                   | CLP-M**         | 2.5-60              | 8.4B   | 12.2   | 15.2  | 19     | 25.1   | 16.3   | 82.8    | 18.5      | 10.6B  | 15.2   | ND     | 13.9   | 6.3B     | 9.4B   | 8.0B   |
| Copper                   | CLP-M**         | 1-50                | 18.8   | 47     | 25.6  | 129    | 49.8   | 46.3   | 501     | 122       | 32.1   | ND     | 45.9   | ND     | 4.8B     | 11.1   | 14.1   |
| Iron                     | CLP-M**         | 2000-550000         | 19800  | 96700  | 25600 | 128000 | 43700J | 130000 | 116000J | 169000    | 56000J | 137000 | 56200  | 115000 | 13900    | 20400  | 56100  |
| Lead                     | CLP-M**         | 200-500             | 11.8   | 2      | 8.6   | 70.8   | 42     | 20.4   | 7.2     | 52.1      | 17.3   | 5.4    | 60.1   | 7.4    | 3.6      | 7.6    | 16     |
| Magnesium                | CLP-M**         | 100-5000            | 4810   | ND     | 8420  | 3150   | 7150   | 2390   | ND      | 1450      | 1220   | ND     | ND     | 1360   | 3420     | 3920   | ND     |
| Manganese                | CLP-M**         | 50-5000             | 294    | 7710   | 790   | 1390   | 1200J  | 4330   | 5530J   | 3100      | 2060J  | 2600J  | 1190   | 1760   | 176      | 1270   | 9630J  |
| Mercucy                  | CLP-M**         | 0.001-0.2           | ND     | ND     | ND    | 1.1    | ND     | 0.19   | ND      | 0.21      | ND     | ND     | ND     | ND     | ND       | ND     | ND     |
| Nickel                   | CLP-M**         | 0.5-25              | 21.5   | 18.8   | 28.7  | 33.2   | 45.1   | 16.2   | 19.3    | 17.5      | 11.1   | 10.4J  | ND     | 18.6   | 15       | 22.7   | 13.6J  |
| Potassium                | CLP-M**         | 8500-43000          | 1450   | ND     | 1380  | 1000B  | 1770   | 659B   | ND      | 520B      | ND     | 379B   | ND     | 760B   | 783B     | 1010B  | ND     |
| Selenium                 | CLP-M**         | 0.1-3.9             | ND     | ND     | ND    | 3.6    | ND     | ND     | ND      | ND        | ND     | ND     | ND     | ND     | ND J     | ND     | 2.8    |
| Silver                   | CLP-M**         | NA                  | ND J   | ND J   | ND    | ND J   | NDJ    | ND     | NDJ     | ND J      | ND J   | ND J   | ND     | ND J   | ND       | ND J   | ND J   |
| Sodium                   | CLP-M**         | 6000-8000           | ND     | ND     | ND    | 712B   | ND     | ND     | ND      | ND        | ND     | ND     | ND     | ND     | ND       | ND     | ND     |
| Thallium                 | CLP-M**         | NA                  | ND     | ND     | ND    | 2.9    | ND     | ND     | ND      | ND        | ND     | ND     | ND     | ND     | ND       | ND     | 92.7   |
| Vanadium                 | CLP-M**         | 1-300               | 21.6   | 131    | 23.5  | 107    | 38.2   | 125    | 48.3    | 179       | 44     | 134    | 115    | 64.5   | 13.2     | 20.9   | 9.5    |
| Zinc                     | CLPM**          | 9-50                | 61.7   | 14.4   | 98.7  | 267    | 132    | 52.2   | 67.6    | 27.7      | 32.3   | 24.9   | 12.7   | 20.7   | 48.6     | 67.2   |        |
| Total Cyanide            | CLP-M**         | NA                  | ND J   | ND J   | ND    | 1.6 J  | ND     | ND     | ND      | ND J      | ND     | ND     | ND     | NDJ    | R        | ND J   | ND     |

\* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994

\*\* - CLP ANALYTICAL METHODS FOR METALS AS PER DOCUMENT ILM03.0

SEDMET.WK3

#### TABLE 5-1 (continued)

Soil Sampling Results

(Samples Collected for MGP Indicators)

Cyanide (mg/kg)

|               |            | Eastern USA |       |       | Sa  | mp <del>le</del> Loca | tion  |       |       |       |       |       |       |       |       |       |       |
|---------------|------------|-------------|-------|-------|-----|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ANALYTE       | Analytical | Background  | SB    | -11   |     | SB-12                 |       | SB-   | -13   |       | SB    | -15   |       |       | SB-   | -16   |       |
|               | Method     | (mg/kg)*    | 12-14 | 18-20 | 6-8 | 10-12                 | 38-40 | 19-21 | 47–49 | 14-16 | 22-24 | 48-50 | 62-62 | 14-16 | 32-34 | 38-40 | 40-42 |
| Total Cyanide | CLP-M**    | NA          | ND    | ND    | ND  | ND                    | ND    | ND    | ND    | 3.1   | ND    |

|               |            | Eastern USA |       |       |     | Sampling | Location |       |       |       |       |       |       |       |       |       |
|---------------|------------|-------------|-------|-------|-----|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ANALYTE       | Analytical | Background  | SB    | -17   |     | SB-18    |          |       |       | SB-19 |       |       |       | SB    | -20   |       |
|               | Method     | (mg/kg)*    | 14-16 | 16-18 | 5-7 | 9–11     | 11-13    | 19-21 | 23-25 | 25-27 | 35-37 | 37-39 | 18-20 | 20-22 | 26-28 | 28-30 |
| Total Cyanide | CLPM**     | NA          | ND    | ND    | ND  | ND       | 3.9      | ND    |

|               |            | Eastern USA |       |       |       | Sampling | Location |       |       |       |       |       |       |       |       |       |       |
|---------------|------------|-------------|-------|-------|-------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ANALYTE       | Analytical | Background  |       | MV    | /-1   |          |          | MW-2  |       | MW    | /-3   |       | MW-4  |       |       | MW-5  |       |
|               | Method     | (mg/kg)*    | 24-26 | 46-48 | 56-57 | 97-99    | 6-8      | 14-16 | 22-24 | 32-34 | 46-48 | 26-28 | 36-38 | 38-40 | 18-20 | 22-24 | 34-35 |
| Total Cvanide | CLP-M**    | NA          | ND    | ND    | ND    | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND    | ND    | ND    | ND    |

SEDCY.WK3

\* -- NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994 \*\* -- CLP ANALYTICAL METHOD AS PER DOCUMENT ILM03.0

| TABLE 5–2                                                         |
|-------------------------------------------------------------------|
| Soil Sampling Results (soil boring and monitoring well locations) |
| Pesticides and PCBs (mg/kg)                                       |
|                                                                   |

|                          |             |                    |       |       |       | e Location |       |         |       | DUP OF  |         |       |       |         |         |       |       |       |
|--------------------------|-------------|--------------------|-------|-------|-------|------------|-------|---------|-------|---------|---------|-------|-------|---------|---------|-------|-------|-------|
| ANALYTE                  |             | Recommended        | SB-11 | SB    | -12   | SB-13      | SB-14 | SB-15   | SB-16 | SB-17   | SB-19   | SB-20 | 22-24 | MW-1    | MW-2    | MW-3  | MW-4  | MW-5  |
| Sampling Depth (in feet) | Analytical  | Soil Cleanup       | 42-44 | 20-22 | 66-67 | 16-17      | 11-13 | 32-34   | 20-22 | 2-4     | 23-25   | 22-24 | 37-39 | 8-10    | 12-13   | 26-28 | 32-34 | 24-26 |
|                          | Method      | Objective (mg/kg)* |       |       |       |            |       |         |       |         |         |       |       |         |         |       |       |       |
| alpha-BHC                | NYSDEC 91-3 | 0.11               | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| beta-BHC                 | NYSDEC 91-3 | 0.2                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| delta-BHC                | NYSDEC 91-3 | 0.3                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| gamma-BHC (Lindane)      | NYSDEC 91-3 | 0.06               | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | 0.007 |
| Heptachlor               | NYSDEC 91-3 | 0.1                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | 0.003JN | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Aldrin                   | NYSDEC 91-3 | 0.041              | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Heptachlor epoxide       | NYSDEC 91-3 | 0.1                | ND    | ND    | ND    | ND         | ND    | 0.006J  | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Endosulfan I             | NYSDEC 91-3 | 0.9                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Dieldrin                 | NYSDEC 91-3 | 0.044              | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| 4,4'-DDE                 | NYSDEC 91-3 | 2.1                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Endrin                   | NYSDEC 91-3 | 0.1                | ND    | ND    | ND    | 0.031JN    | ND    | 0.042JN | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | 0.011 |
| Endosulfan II            | NYSDEC 91-3 | 0.9                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| 4,4'-DDD                 | NYSDEC 91-3 | 2.8                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | 0.004JN | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Endosulfan sulfate       | NYSDEC 91-3 | 1.0                | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| 4,4'-DDT                 | NYSDEC 91-3 | 2.1                | ND    | ND    | ND    | ND         | ND    | 0.037JN | ND    | ND      | ND      | ND    | ND    | 0.004JN | ND      | ND    | ND    | ND    |
| Methoxychior             | NYSDEC 91-3 | NA                 | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Endrin ketone            | NYSDEC 91-3 | NA                 | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| End.in aldehyde          | NYSDEC 91-3 | NA                 | ND    | ND    | ND    | ND         | ND    | 0.012JN | ND    | 0.020JN | 0.030JN | ND    | ND    | 0.007JN | 0.006JN | ND    | ND    | ND    |
| alpha-Chlordane          | NYSDEC 91-3 | NA                 | ND    | ND    | ND    | ND         | ND    | 0.008JN | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| gamma-Chlordane          | NYSDEC 91-3 | 0.54               | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Toxaphene                | NYSDEC 91-3 | NA                 | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Aroclor-1016             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Aroclor-1221             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Aroclor-1232             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Arocior-1242             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Aroclor-1248             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Aroclor-1254             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |
| Arocior-1260             | NYSDEC 91-3 | 10 (TOTAL PCBs)    | ND    | ND    | ND    | ND         | ND    | ND      | ND    | ND      | ND      | ND    | ND    | ND      | ND      | ND    | ND    | ND    |

\* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994

SEDPEST.WK3

| TABLE | 5-3 |
|-------|-----|
|-------|-----|

| Soil Sampling | Results ( | soil boring and | monitoring well locations) |  |
|---------------|-----------|-----------------|----------------------------|--|
|               |           |                 |                            |  |

|        | LV      | 018 | tiles | (mg/kg | )       |
|--------|---------|-----|-------|--------|---------|
| 100000 | (1) (i) |     |       |        | 0000000 |

|                          |                           |                    |        |        |        | Sample | Location |        |        |        |         |
|--------------------------|---------------------------|--------------------|--------|--------|--------|--------|----------|--------|--------|--------|---------|
| A VALYTE                 |                           | Recommended        |        | SB-11  |        |        |          | SB-12  |        |        |         |
| Sampling Depth (in feet) | Analytical                | Soil Cleanup       | 12-14  | 18-20  | 42-44  | 6-8    | 10-12    | 20-22  | 38-40  | 66-67  | 66-67RE |
|                          | Method                    | Objective (mg/kg)* | (BTEX) | (BTEX) | TCL    | (BTEX) | (BTEX)   | TCL    | (BTEX) | TCL    | TCL     |
| Methylene Chloride       | NYSDEC 91-1 OR EPA 8240** | 0.1                | NT     | NT     | ND     | NT     | NT       | ND     | NT     | ND     | ND      |
| Acetone                  | NYSDEC 91-1 OR EPA 8240** | 0.2                | NT     | NT     | ND     | NT     | NT       | ND     | NT     | ND     | ND      |
| 2-Butanone               | NYSDEC 91-1 OR EPA 8240** | 0.3                | NT     | NT     | ND     | NT     | NT       | ND     | NT     | ND     | ND      |
| 2-Hexanone               | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | ND     | NT     | NT       | ND     | NT     | ND     | ND      |
| Benzene                  | NYSDEC 91-1 OR EPA 8240** | 0.06               | 0.1    | ND     | ND     | ND     | ND       | 1.4J   | ND     | ND     | ND      |
| 4-Methyl-2-Pentanone     | NYSDEC 91-1 OR EPA 8240** | 1.0                | NT     | NT     | ND     | NT     | NT       | ND     | NT     | ND     | ND      |
| Toluene                  | NYSDEC 91-1 OR EPA 8240** | 1.5                | 0.003J | ND     | 0.003J | ND     | ND       | ND     | ND     | 0.003J | ND      |
| Ethylbenzene             | NYSDEC 91-1 OR EPA 8240** | 5.5                | 0.008J | ND     | ND     | ND     | ND       | 0.260J | ND     | ND     | ND      |
| Xylene (total)           | NYSDEC 91-1 OR EPA 8240** | 1.2                | 0.015J | ND     | ND     | ND     | ND       | 0.790J | ND     | ND     | ND      |
| Styrene                  | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | ND     | NT     | NT       | ND     | NT     | ND     | ND      |
| Benzene Isomers          | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | ND     | NT     | NT       | 16.60J | NT     | ND     | ND      |
| Aromatic TICs            | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | 0.008J | NT     | NT       | 59.30J | NT     | 0.006J | ND      |
| Napthalene Isomers       | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | ND     | NT     | NT       | ND     | NT     | ND     | ND      |
| Other TICs               | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | NT     | 0.027J | NT     | NT       | ND     | NT     | ND     | ND      |
| Total BTEX               | NYSDEC 91-1 OR EPA 8240** | NA                 | 0.13   | ND     | 0.003  | ND     | ND       | 2.45   | ND     | 0.003  | ND      |
| Total Volatiles***       | NYSDEC 91-1 OR EPA 8240** | 10                 | 0.13   | ND     | 0.003  | ND     | ND       | 2.45   | ND     | 0.003  | ND      |

\* - NYSDEC TAGM HWR-94-4046, January 24, 1994

\*\* - EPA Method 8240 used for Indicator Parameters (BTEX) Analysis

\*\*\* - TOTAL VOLATILES do not include TICs

### TABLE 5-3 (continued)

Soil Sampling Results (soil boring and monitoring well locations)\* TCL Volatiles (mg/kg)

| Sample Location          |                           |                    |        |        |        |        |        |        |         |        |        |         |        |
|--------------------------|---------------------------|--------------------|--------|--------|--------|--------|--------|--------|---------|--------|--------|---------|--------|
| ANALYTE                  |                           | Recommended        |        | SB-13  |        | SB-14  |        |        |         | SB-15  |        |         | SB-16  |
| Sampling Depth (in feet) | Analytical                | Soil Cleanup       | 16-17  | 19-21  | 47–49  | 11-13  | 14-16  | 22-24  | 32-34   | 48-50  | 6264   | 62-64RE | 14-16  |
|                          | Method                    | Objective (mg/kg)* | TCL    | (BTEX) | (BTEX) | TCL    | (BTEX) | (BTEX) | TCL     | (BTEX) | (BTEX) | (BTEX)  | (BTEX) |
| Methyle ne Chloride      | NYSDEC 91-1 OR EPA 8240** | 0.1                | ND     | NT     | NT     | 0.020  | NT     | NT     | 0.400JB | NT     | NT     | NT      | NT     |
| Acetone                  | NYSDEC 91-1 OR EPA 8240** | 0.2                | ND     | NT     | NT     | 0.012B | NT     | NT     | ND      | NT     | NT     | NT      | NT     |
| 2-Butanone               | NYSDEC 91-1 OR EPA 8240** | 0.3                | ND     | NT     | NT     | ND     | NT     | NT     | ND      | NT     | NT     | NT      | NT     |
| 2-Hexanone               | NYSDEC 91-1 OR EPA 8240** | NA                 | ND     | NT     | NT     | ND     | NT     | NT     | ND      | NT     | NT     | NT      | NT     |
| Benzene                  | NYSDEC 91-1 OR EPA 8240** | 0.06               | 6.90   | ND     | 0.005J | ND     | 0.002J | ND     | 0.890J  | ND     | ND     | ND      | ND     |
| 4-Methyl-2-Pentanone     | NYSDEC 91-1 OR EPA 8240** | 1.0                | ND     | NT     | NT     | ND     | / NT   | NT     | ND      | NT     | NT     | NT      | NT     |
| Toluene                  | NYSDEC 91-1 OR EPA 8240** | 1.5                | 3.70   | ND     | ND     | ND     | ND     | ND     | 0.470J  | ND     | ND     | ND      | ND     |
| Ethylbenzene             | NYSDEC 91-1 OR EPA 8240** | 5.5                | 0.440J | ND     | ND     | ND     | 0.003J | 0.004J | 13.00   | ND     | ND     | ND      | ND     |
| Xylene (total)           | NYSDEC 91-1 OR EPA 8240** | 1.2                | 7.20   | ND     | ND     | ND     | 0.009J | 0.001J | 8.50    | ND     | ND     | ND      | ND     |
| Styrene                  | NYSDEC 91-1 OR EPA 8240** | NA                 | ND     | NT     | NT     | ND     | NT     | NT     | ND      | NT     | NT     | NT      | NT     |
| Benzene Isomers          | NYSDEC 91-1 OR EPA 8240** | NA                 | 0.840J | NT     | NT     | ND     | NT     | NT     | 32.00J  | NT     | NT     | NT      | NT     |
| Aromatic TICs            | NYSDEC 91-1 OR EPA 8240** | NA                 | 9.96J  | NT     | NT     | 0.017J | NT     | NT     | 99.60J  | NT     | NT     | NT      | NT     |
| Napthalene Isomers       | NYSDEC 91-1 OR EPA 8240** | NA                 | ND     | NT     | NT     | ND     | NT     | NT     | ND      | NT     | NT     | NT      | NT     |
| Other TICs               | NYSDEC 91-1 OR EPA 8240** | NA                 | 2.08J  | NT     | NT     | 0.186J | NT     | NT     | 9.20J   | NT     | NT     | NT      | NT     |
| Total BTEX               | NYSDEC 91-1 OR EPA 8240** | NA                 | 18.24  | ND     | 0.005  | ND     | 0.014  | 0.005  | 22.86   | ND     | ND     | ND      | ND     |
| Total Volatiles***       | NYSDEC 91-1 OR EPA 8240** | 10                 | 18.24  | ND     | 0.005  | ND     | 0.032  | 0.005  | 23.26   | ND     | ND     | ND      | ND     |

| TABLE 5-3 (continued)                                              |
|--------------------------------------------------------------------|
| Soil Sampling Results (soil boring and monitoring well locations)* |
| TCL Volatiles (mg/kg)                                              |

|                          |                           |                    |       |        | ·      |        |        |          |        |        |        | *****  |
|--------------------------|---------------------------|--------------------|-------|--------|--------|--------|--------|----------|--------|--------|--------|--------|
|                          |                           |                    |       |        |        |        | Sample | Location |        |        |        |        |
| ANALYTE                  |                           | Recommended        |       | SB-16  |        |        |        | SB-17    |        |        | SB-18  |        |
| Sampling Depth (in feet) | Analytical                | Soil Cleanup       | 20-22 | 32-34  | 38–40  | 40-42  | 2-4    | 14–16    | 16-18  | 5-7    | 9-11   | 11-13  |
|                          | Method                    | Objective (mg/kg)* | TCL   | (BTEX) | (BTEX) | (BTEX) | TCL    | (BTEX)   | (BTEX) | (BTEX) | (BTEX) | (BTEX) |
| Methylene Chloride       | NYSDEC 91-1 OR EPA 8240** | 0.1                | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| Acetone                  | NYSDEC 91-1 OR EPA 8240** | 0.2                | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| 2-Butanone               | NYSDEC 91-1 OR EPA 8240** | 0.3                | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT -   | NT     | NT     |
| 2-Hexanone               | NYSDEC 91-1 OR EPA 8240** | NA                 | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| Benzene                  | NYSDEC 91-1 OR EPA 8240** | 0.06               | ND    | ND     | ND     | 0.005J | 0.005J | ND       | 0.004J | ND     | ND     | ND     |
| 4-Methyl2-Pentanone      | NYSDEC 91-1 OR EPA 8240** | 1.0                | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| Toluene                  | NYSDEC 91-1 OR EPA 8240** | 1.5                | ND    | ND     | ND     | 0.005J | 0.007J | ND       | 0.004J | 0.050J | ND     | ND     |
| Ethylbenzene             | NYSDEC 91-1 OR EPA 8240** | 5.5                | ND    | ND     | ND     | ND     | ND     | ND       | ND     | 0.028J | 0.002J | ND     |
| Xylene (total)           | NYSDEC 91-1 OR EPA 8240** | 1.2                | ND    | ND     | ND     | ND     | ND     | ND       | 0.001J | 0.400  | ND     | ND     |
| Styrene                  | NYSDEC 91-1 OR EPA 8240** | NA                 | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| Benzene Isomers          | NYSDEC 91-1 OR EPA 8240** | NA                 | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| Aromatic TICs            | NYSDEC 91-1 OR EPA 8240** | NA                 | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| Napthalene isomers       | NYSDEC 91-1 OR EPA 8240** | NA                 | ND    | NT     | NT     | NT     | ND     | NT       | NT     | NT     | NT     | NT     |
| Other TICs               | NYSDEC 91-1 OR EPA 8240** |                    | 16J   | NT     | NT     | NT     | 0.128J | NT       | NT     | NT     | NT     | NT     |
| Total BTEX               | NYSDEC 91-1 OR EPA 8240** |                    | ND    | ND     | ND     | 0.01   | 0.012  | ND       | 0.009  | 0.48   | 0.002  | ND     |
| Total Volatiles***       | NYSDEC 91-1 OR EPA 8240** | 10                 | ND    | ND     | ND     | 0.01   | 0.012  | ND       | 0.009  | 0.48   | 0.002  | ND     |

•

|                          |                           | •                  | TCL Vola | tiles (mg/ | /kg)   |         |        |            |        |        |        |        |        |
|--------------------------|---------------------------|--------------------|----------|------------|--------|---------|--------|------------|--------|--------|--------|--------|--------|
|                          |                           |                    |          |            |        |         | Saп    | nple Locat | on     |        |        |        |        |
| ANALYTE                  |                           | Recommended        | SB-19    |            |        |         |        |            |        | SB-20  |        |        |        |
| Sampling Depth (in feet) | Analytical                | Soil Cleanup       | 19-21    | 23-25      | 25-27  | 25–27DL | 35-37  | 37-39      | 18-20  | 20-22  | 22-24  | 26-28  | 28-30  |
|                          | Method                    | Objective (mg/kg)* | (BTEX)   | TCL        | (BTEX) | (BTEX)  | (BTEX) | (BTEX)     | (BTEX) | (BTEX) | TCL    | (BTEX) | (BTEX) |
| Methylene Chloride       | NYSDEC 91-1 OR EPA 8240** | 0.1                | NT       | ND         | NT     | NT      | NT     | NT         | NT     | NT     | ND     | NT     | NT     |
| Acetone                  | NYSDEC 91-1 OR EPA 8240** | 0.2                | NT       | ND         | NT     | NT      | NT     | NT         | NT     | NT     | ND     | NT     | NT     |
| 2-Butanone               | NYSDEC 91-1 OR EPA 8240** | 0.3                | NT       | ND         | NT     | NT      | NT     | NT         | NT     | NT     | ND     | NT     | NT     |
| 2-Hexanone               | NYSDEC 91-1 OR EPA 8240** | NA                 | NT       | ND         | NT     | NŤ      | NT     | NT         | NT     | NT     | ND     | NT     | NT     |
| Benzene                  | NYSDEC 91-1 OR EPA 8240** | 0.06               | 0.025J   | 5.60       | 0.022J | 0.960JD | ND     | ND         | ND     | ND     | ND     | ND     | ND     |
| 4-Methyl-2-Pentanone     | NYSDEC 91-1 OR EPA 8240** | 1.0                | NT       | ND         | NT     | NT      | NT     | NT         | NT     | NT     | ND     | NT     | NT     |
| Toluene                  | NYSDEC 91-1 OR EPA 8240** | 1.5                | 0.029J   | 4.90       | ND     | 0.710JD | ND     | ND         | ND     | ND     | ND     | ND     | ND     |
| Ethylbenzene             | NYSDEC 91-1 OR EPA 8240** | 5.5                | 0.052J   | 6.10       | 0.200  | 1.30JD  | ND     | ND         | ND     | ND     | ND     | ND     | ND     |
| Xylene (total)           | NYSDEC 91-1 OR EPA 8240** | 1.2                | 0.260    | 18.00      | 6.50E  | 4.20D   | ND     | ND         | ND     | ND     | ND     | ND     | ND     |
| Styrene                  | NYSDEC 91-1 OR EPA 8240** | NA                 | NT       | ND         | NT     | NT      | NT     | NT         | NT     | NT     | ND     | NT     | NT     |
| Benzene Isomers          | NYSDEC 91-1 OR EPA 8240** | NA                 | NT       | 229J       | NT     | NT      | NT     | NT         | NT     | NT     | ND     | NT     | NT     |
| Aron atic TICs           | NYSDEC 91-1 OR EPA 8240** | NA                 | NT       | 118J       | NT     | NT      | NT     | NT         | NT     | NT     | 2.10J  | NT     | NT     |
| Naptha ene Isomers       | NYSDEC 91-1 OR EPA 8240** |                    | NT       | ND         | NT     | NT      | NT     | NT         | NT     | NT     | ND     | NT     | NT_    |
| Other TICs               | NYSDEC 91-1 OR EPA 8240** | NA                 | NT       | 17J        | NT     | NT      | NT     | NT         | NT     | NT     | 14.40J | NT     | NT     |
| Total BTEX               | NYSDEC 91-1 OR EPA 8240** | NA                 | 0.37     | 34.6       |        | 7.17    | ND     | ND         | ND     | ND     | ND     | ND     | ND     |
| Total Volatiles***       | NYSDEC 91-1 OR EPA 8240** | 10                 | 0.37     | 34.6       | 6.72   | 7.17    | ND     | ND         | ND     | ND     | ND     | ND     | ND     |

TABLE 5-3 (continued)

Soil Sampling Results (soil boring and monitoring well locations)\*

| TABLE 5-3 (continued)                                             |
|-------------------------------------------------------------------|
| Soil Sampling Results (soil boring and monitoring well locations) |
| TCL Volatiles (ma/ka)                                             |

•

|                          |                           |                    | 102 1010 | mos (mg) | <u></u>   |        |        |        |        |        |        |        |        |
|--------------------------|---------------------------|--------------------|----------|----------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
|                          |                           |                    | DUPOF    |          | Sample Lo | cation |        |        | DUPOF  |        |        |        |        |
| ANALYTE                  |                           | Recommended        | 22-24    |          |           |        | MW-1   |        | 24-26  |        |        | MW-2   |        |
| Sampling Depth (in feet) | Analytical                | Soil Cleanup       | 37-39    | 8–10     | 8-10RE    | 24-26  | 46-48  | 56-57  | 97-99  | 6-8    | 6-8RE  | 12-13  | 14-16  |
|                          | Method                    | Objective (mg/kg)* | TCL      | TCL      | TCL       | (BTEX) | (BTEX) | (BTEX) | (BTEX) | (BTEX) | (BTEX) | TCL    | (BTEX) |
| Methylene Chloride       | NYSDEC 91-1 OR EPA 8240** | 0.1                | ND       | ND       | 0.002JB   | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Acetone                  | NYSDEC 91-1 OR EPA 8240** | 0.2                | ND       | 0.012JB  | 0.024B    | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| 2-Butanone               | NYSDEC 91-1 OR EPA 8240** | 0.3                | ND       | 0.006JB  | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| 2-Hexanone               | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | 0.001J   | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Benzene                  | NYSDEC 91-1 OR EPA 8240** | 0.06               | ND       | ND       | ND        | ND     | ND     | ND     | ND     | 0.018  | 0.012J | 0.040  | 0.070  |
| 4-Methyl-2-Pentanone     | NYSDEC 91-1 OR EPA 8240** | 1.0                | ND       | ND       | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Toluene                  | NYSDEC 91-1 OR EPA 8240** | 1.5                | ND       | ND       | ND        | ND     | ND     | ND     | ND     | 0.011J | 0.011J | 0.015  | 0.024  |
| Ethylbenzene             | NYSDEC 91-1 OR EPA 8240** | 5.5                | ND       | ND       | ND        | 0.003J | ND     | ND     | ND     | ND     | ND     | 0.002J | 0.002J |
| Xylene (total)           | NYSDEC 91-1 OR EPA 8240** | 1.2                | ND       | ND       | ND        | 0.003J | ND     | ND     | ND     | 0.007J | 0.010J | ND     | 0.018  |
| Styrene                  | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | ND       | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Benzene Isomers          | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | ND       | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Aromatic TICs            | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | ND       | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Napthalene Isomers       | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | ND       | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Other TICs               | NYSDEC 91-1 OR EPA 8240** |                    | 17.50J   | ND       | ND        | NT     | NT     | NT     | NT     | NT     | NT     | ND     | NT     |
| Total BTEX               | NYSDEC 91-1 OR EPA 8240** |                    | ND       | ND       | ND        | 0.006  | ND     | ND     | ND     | 0.04   | 0.04   | 0.06   | 0.12   |
| Total Volatiles***       | NYSDEC 91-1 OR EPA 8240** | 10                 | ND       | 0.019    | 0.026     | 0.006  | ND     | ND     | ND     | 0.04   | 0.04   | 0.06   | 0.12   |

| TAE  | BLE | 5-3 | (continu | leq)     |   |
|------|-----|-----|----------|----------|---|
| Call | 0.  |     | - Doould | la lacil | ь |

TCL Volatiles (mg/kg)

|                          |                           |                    |        |        | Sa     | mple Loca | tion   |       |        | DUPOF  |        |         |        |
|--------------------------|---------------------------|--------------------|--------|--------|--------|-----------|--------|-------|--------|--------|--------|---------|--------|
| ANALYTE                  |                           | Recommended        | MW-2   |        | MW-3   |           |        | MW-4  |        | 36-38  |        | MW-5    |        |
| Sampling Depth (in feet) | Analytical                | Soil Cleanup       | 22-26  | 26-28  | 32-34  | 46-48     | 26-28  | 32-34 | 36-38  | 38-40  | 18–20  | 18-20RE | 22-24  |
|                          | Method                    | Objective (mg/kg)* | (BTEX) | TCL    | (BTEX) | (BTEX)    | (BTEX) | TCL   | (BTEX) | (BTEX) | (BTEX) | (BTEX)  | (BTEX) |
| Methylene Chloride       | NYSDEC 91-1 OR EPA 8240** | 0.1                | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| Acetone                  | NYSDEC 91-1 OR EPA 8240** | 0.2                | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| 2-Butanone               | NYSDEC 91-1 OR EPA 8240** | 0.3                | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| 2-Hexanone               | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| Benzene                  | NYSDEC 91-1 OR EPA 8240** | 0.06               | ND     | ND     | ND     | ND        | ND     | ND    | ND     | ND     | 0.003J | 0.004J  | ND     |
| 4-Methyl-2-Pentanone     | NYSDEC 91-1 OR EPA 8240** | 1.0                | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| Toluene                  | NYSDEC 91-1 OR EPA 8240** | 1.5                | ND     | ND     | ND     | ND        | ND     | ND    | ND     | ND     | 0.006J | 0.006J  | 0.002J |
| Ethylbenzene             | NYSDEC 91-1 OR EPA 8240** | 5.5                | ND     | ND     | ND     | ND        | ND     | ND    | ND     | ND     | 0.005J | 0.006J  | 0.004J |
| Xylene (total)           | NYSDEC 91-1 OR EPA 8240** | 1.2                | ND     | 0.001J | ND     | ND        | ND     | ND    | ND     | ND     | 0.002J | 0.005J  | ND     |
| Styrene                  | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| Benzene Isomers          | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| Aromatic TICs            | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | 0.251J | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| Napthalene Isomers       | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | ND     | NT     | NT        | NT     | ND    | NT     | NT     | NT     | NT      | NT     |
| Other TICs               | NYSDEC 91-1 OR EPA 8240** | NA                 | NT     | ND     | NT     | NT        | NT     | 3.53J | NT     | NT     | NT     | NT      | NT     |
| Total BTEX               | NYSDEC 91-1 OR EPA 8240** | NA                 | ND     | 0.001  | ND     | ND        | ND     | ND    | ND     | ND     | 0.02   |         | 0.006  |
| Total Volatiles***       | NYSDEC 91-1 OR EPA 8240** | 10                 | ND     | 0.001  | ND     | ND        | ND     | ND    | ND     | ND     | 0.02   | 0.02    | 0.006  |

Soil Sampling Results (soil boring and monitoring well locations)

|                          |                           | -                  | TCL Vola | tiles (mg |
|--------------------------|---------------------------|--------------------|----------|-----------|
|                          |                           |                    | Sample   | Location  |
| ANALYTE                  |                           | Recommended        | MW       | /-5       |
| Sampling Depth (in feet) | Analytical                | Soil Cleanup       | 24-26    | 34-35     |
|                          | Method                    | Objective (mg/kg)* | TCL      | (BTEX)    |
| Methylene Chloride       | NYSDEC 91-1 OR EPA 8240** | 0.1                | ND       | NT        |
| Acetone                  | NYSDEC 91-1 OR EPA 8240** | 0.2                | ND       | NT        |
| 2-Butanone               | NYSDEC 91-1 OR EPA 8240** | 0.3                | ND       | NT        |
| 2-Hexanone               | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | NT        |
| Benzene                  | NYSDEC 91-1 OR EPA 8240** | 0.06               | ND       | ND        |
| 4-Methyl-2-Pentanone     | NYSDEC 91-1 OR EPA 8240** | 1.0                | ND       | NT        |
| Toluene                  | NYSDEC 91-1 OR EPA 8240** | 1.5                | 0.002J   | ND        |
| Ethylbenzene             | NYSDEC 91-1 OR EPA 8240** | 5.5                | 0.004J   | ND        |
| Xylene (total)           | NYSDEC 91-1 OR EPA 8240** | 1.2                | ND       | ND        |
| Styrene                  | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | NT        |
| Benzene Isomers          | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | NT        |
| Aromatic TICs            | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | NT        |
| Napthalene Isomers       | NYSDEC 91-1 OR EPA 8240** | NA                 | ND       | NT        |
| Other TICs               | NYSDEC 91-1 OR EPA 8240** | NA                 | 1.82J    | NT        |
| Total BTEX               | NYSDEC 91-1 OR EPA 8240** |                    | 0.008    | ND        |
| Total Volatiles***       | NYSDEC 91-1 OR EPA 8240** | 10                 | 0.008    | ND        |

TABLE 5-3 (continued)

Soil Sampling Results (soil boring and monitoring well locations)

į/kg)

#### SEDVOLAT.WK3

| TABLE | 5-4 |  |
|-------|-----|--|
|-------|-----|--|

Soil Sampling Results (soil borings and monitoring well locations).

7

| TCL Semivolatiles (mg/kg)    |                           |                    |       |        |         |        |        |       |              |       |          |         |         |        |
|------------------------------|---------------------------|--------------------|-------|--------|---------|--------|--------|-------|--------------|-------|----------|---------|---------|--------|
|                              |                           |                    |       |        |         |        |        | Sam   | ple Location |       |          |         |         |        |
| ANALYTE                      |                           | Recommended        |       |        | SB-11   |        |        |       | 8B-12        |       |          |         | 8B-13   |        |
| Sampling Depth (in feet)     | Analytical                | Soil CLeanup       | 12-14 | 18-20  | 18-20RE | 42-44  | 6-8    | 10-12 | 20-22        | 38-40 | 66-67    | 16-17   | 16-17DL | 19-21  |
|                              | Method                    | Objective (mg/kg)* | PAHs  | PAHs   | PAHs    | TCL    | PAHs   | PAHs  | TCL          | PAHs  | TCL      | TCL     | TCL     | PAHs   |
| Phenol                       | NYSDEC 91-2 or EPA 8270** | 0.3                | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | 2.3J    | ND      | NT     |
| 2-Methylphenol               | NYSDEC 91-2 or EPA 8270** | 0.1                | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| 1,4-Dichlorobenzene          | NYSDEC 91-2 or EPA 8270** | 8.5                | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| N-Nitoso-di-n-propylamine    | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| 1,2,4-Trichlorobenzene       | NYSDEC 91-2 or EPA 8270** | 3.4                | NT    | NT     | NT      | ND     | NT     | NT '  | ND           | NT    | ND       | ND      | ND      | NT     |
| 4-Chloro-3-Methylphenol      | NYSDEC 91-2 or EPA 8270** | 0.24               | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| 2,4-Dinnirotoluene           | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT     | NT      | ND     | NT     | NT '  | ND           | NT    | ND       | ND      | ND      | NT     |
| Pentachiorophenol            | NYSDEC 91-2 or EPA 8270** | 1.0                | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| 4-Methylphenol               | NYSDEC 91-2 or EPA 8270** | 0.9                | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | 2.2J    | ND      | NT     |
| 2,4-Dimethlyphenol           | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| Naphthalene                  | NYSDEC 91-2 or EPA 8270** | 13                 | ND    | 0.076J | 0.068J  | ND     | ND     | ND    | 5.6          | 0.15J | 0.049J   | 800E    | 1300D   | 0.079J |
| 2-Methyinaphthalene          | NYSDEC 91-2 or EPA 8270** | 36.4               | NT    | NT     | NT      | ND     | NT     | NT    | 4.1J         | NT    | ND       | 280E    | 420D    | NT     |
| Acenaphthylene               | NYSDEC 91-2 or EPA 8270** | -41                | ND    | ND     | ND      | ND     | 0.33J  | ND    | 1.4J         | ND    | ND       | 140     | 210JD   | ND     |
| Acenaphthene                 | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND     | ND      | ND     | ND     | ND    | 12.0         | ND    | ND       | 92.0    | 140JD   | ND     |
| 4-Nitrophenol                | NYSDEC 91-2 or EPA 8270** | 0.1                | NT    | NT     | NT.     | ND     | NT     | NT    | ND           | NT    | ND       | 8,6J    | ND      | NT     |
| Dibenzofuran                 | NYSDEC 91-2 or EPA 8270** | 6.2                | NT    | NT     | NT      | ND     | NT     | NT    | 1.4J         | NT    | ND       | 280E    | 460D    | NT     |
| Fluorene                     | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND     | ND      | ND     | 0.089J | ND    | 5.8          | ND    | ND       | 440E    | 830D    | ND     |
| N – Nitrosodiphenylamine (1) | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NŤ    | ND       | ND      | ND      | NT     |
| Phonantherene                | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND     | ND      | ND     | 0.61J  | ND    | 14.0         | ND    | ND       | 1200E   | 2100D   | 0.092J |
| Anthracene                   | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND     | ND      | ND     | 0.2J   | ND    | 4.3          | ND    | ND       | 340E    | 500D    | 0.076J |
| Carbazoi                     | NYSDEC 91-2 or EPA 8270** | NA                 | NŤ    | NT     | NT      | ND     | NT     | NT    | ND ·         | NT    | ND       | 53.0    | 120JD   | NT     |
| Fluoranthene                 | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | 0.059J | 0.056J  | ND     | 1.2    | ND    | 3.QJ         | ND    | ND       | 220E    | 1300    | ND     |
| Ругепе                       | NYSDEC 91-2 or EPA 8270** | 50                 | 1.5J  | 0.27J  | 0.21J   | ND     | 1.3    | ND    | 5.5          | ND    | ND       | 260E    | 1200D   | 0.049J |
| Benzo (a) anthracene         | NYSDEC 91-2 or EPA 8270** | 0.22               | ND    | 0.073J | 0.064J  | ND     | 0.82   | ND    | 2.7J         | ND    | ND       | 360E    | 500D    | ND     |
| Chrysene                     | NYSDEC 91-2 or EPA 8270** | 0.4                | 0.52J | 0.094J | 0.080J  | ND     | 0.83   | ND    | 3.2J         | ND    | ND       | 380E    | 490D    | ND     |
| Benzo (b) fluoranthene       | NYSDEC 91-2 or EPA 8270** | 1.1                | 0.58J | 0,05J  | 0.12J   | ND     | 1.9J   | ND    | 1.5J         | ND    | ND       | 290E    | 330JD   | ND     |
| Benzo (k) fluoranthene       | NYSDEC 91-2 or EPA 8270** | 1.1                | ND    | 0.047J | 0.044   | ND     | 0.86J  | ND    | 0.97J        | ND    | ND       | 300E    | 31.0JD  | ND     |
| Benzo (a) pyrene             | NYSDEC 91-2 or EPA 8270** | 0.061              | ND    | 0.045J | ND      | ND     | 0.73J  | ND    | 2.0J         | ND    | ND       | 280E    | 410D    | ND     |
| Indeno(1,2,3-cd) pyrene      | NYSDEC 91-2 or EPA 8270** | 3.2                | ND    | ND     | ND      | ND     | 0.24J  | ND    | ND           | ND    | ND       | 170E    | 160JD   | ND     |
| Dibenz(a,h)anthracene        | NYSDEC 91-2 or EPA 8270** | 0.014              | ND    | ND     | ND      | ND     | ND     | ND    | ND           | ND    | ND       | 62.0J   | 46.0JD  | ND     |
| Benzo(g,h,i) perylene        | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND     | ND      | ND     | 0.21J  | ND    | ND           | ND    | ND       | 130J    | 120JD   | ND     |
| bis (2-ethyihexyiphthalate)  | NYSDEC 91-2 or EPA 8270** | 50                 | NT    | NT     | NT      | ND     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| Di-n-butytphthalate          | NYSDEC 91-2 or EPA 8270** | 8.1                | NT    | NT     | NT      | NT     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| Diethylphthalate             | NYSDEC 91-2 or EPA 8270** | 2.0                | NT    | NT     | NT      | NT     | NT     | NT    | ND           | NT    | ND       | ND      | ND      | NT     |
| Aromatic TICs                | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT     | NT      | ND     | NT     | NT    | 154.1J       | NT    | ND       | 3108.2J | 3432JD  | NT     |
| Other TICs                   | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT     | NT      | 1,199J | NT     | NT    | 52.8J        | NT    | 11.454JB | 27.1J   | ND      | NT     |
| Total PAHs                   | NYSDEC 91-2 or EPA 8270** | NA                 | 2.6   | 0.71   | 0.64    | ND     | 9.32   | ND    | 67.47        | 0.15  | 0.05     | 5744    | 10087   | 0.30   |
| Total Semivolatiles***       | NYSDEC 91-2 or EPA 8270** | 500                | 2.6   | 0.71   | 0.64    | ND     | 9,32   | ND    | 67.47        | 0.15  | 0.05     | 6090.1  | 10667   | 0.30   |

 2.6
 0.71
 0.64
 ND
 9.32
 ND
 67.4

 \* - NYSDEC TAGM HWR-94-4046, JANUARY 24, 1994

 \*\* - EPA METHOD 8270 USED FOR INDICATOR PARAMETERS (PAHs) ANALYSIS

 \*\*\* - TOTAL SEMIVOLATLES DO NOT INCLUDE UNKNOWN, NON-TARGET ANALYTES

TABLE 5-4 (continued)

Soil Sampling Results (soil borings and monitoring well locations) TCL Semivolatiles (mg/kg)

| TCL Semivolatiles (mg/kg)          |                           |                    |       |          |       |        |         |           |        |       |        |                                       |         |       |
|------------------------------------|---------------------------|--------------------|-------|----------|-------|--------|---------|-----------|--------|-------|--------|---------------------------------------|---------|-------|
|                                    |                           |                    | ,     | <u> </u> |       |        |         | Sample Lo | ation  |       |        |                                       |         |       |
| ANALYTE                            |                           | Recommended        | SB-13 | 88-14    |       | 8B-15  |         | 88-15     |        |       | ······ | · · · · · · · · · · · · · · · · · · · | SB-16   |       |
| Sampling Depth (in feet)           | Analytical                | Soil CLeanup       | 47-49 | 11-13    | 14-16 | 22-24  | 22-24DL | 32-34     | 48-50  | 62-64 | 14-16  | 20-22                                 | 20-22DL | 32-34 |
|                                    | Method                    | Objective (mg/kg)* | PAHs  | TCL      | PAHs  | PAHs - | PAHs    | TCL       | PAH:   | PAHs  | PAHs   | TCL                                   | TCL     | PAHs  |
| Phenol                             | NYSDEC 91-2 or EPA 8270** | 0.3                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| 2-Methylphenol                     | NYSDEC 91-2 or EPA 8270** | 0.1                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| 1,4-Dichlorobenzene                | NYSDEC 91-2 or EPA 8270** | 8.5                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| N – Nitoso – di – n – pro pylamine | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| 1,2,4-Trichlorobenzene             | NYSDEC 91-2 or EPA 8270** | 3.4                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| 4-Chloro-3-Methylphenol            | NYSDEC 91-2 or EPA 8270** | 0.24               | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| 2,4-Dinnitrotoluene                | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Pentachlorophenol                  | NYSDEC 91-2 or EPA 8270** | 1.0                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| 4-Methylphenol                     | NYSDEC 91-2 or EPA 8270** | 0.9                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| 2,4-Dimethlyphenol                 | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Naphthalene                        | NYSDEC 91-2 or EPA 8270** | 13                 | ND    | ND       | ND    | 17.QJ  | ND      | R         | 0.33J  | 0.09J | ND     | 0.6J                                  | 0.62JD  | 0.44  |
| 2-Methylasphthalene                | NYSDEC 91-2 or EPA 8270** | 36.4               | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | 2.1                                   | 2.0D    | ND    |
| Acenaphthylene                     | NYSDEC 91-2 or EPA 8270** | 41                 | ND    | ND       | 0.16J | 120    | 94.0JD  | R         | ND     | ND    | ND     | ND                                    | ND      | 0.19J |
| Acenaphthene                       | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND       | ND    | 4.7J   | ND      | R         | 0.54   | ND    | ND     | 0.26J                                 | 0.23JD  | 0.49  |
| 4-Nitrophenol                      | NYSDEC 91-2 or EPA 8270** | 0.1                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Dibenzoturan                       | NYSDEC 91-2 or EPA 8270** | 6.2                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | 0.32J                                 | 0.31JD  | ND    |
| Fluorene                           | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND       | ND    | 42.0J  | ND      | R         | 0.063J | ND    | ND     | 0.49J                                 | 0.39JD  | 0.45  |
| N-Nirosodiphenylamine (1)          | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Phenantherens                      | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND       | 0.8J  | 1500E  | 1600D   | R         | 0.27J  | 0.05J | 0.048J | 0.28J                                 | 0.28JD  | 0.92  |
| Antiracene                         | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND       | 0.17J | 220    | 230JD   | R         | 0.05J  | ND    | ND     | 0.11J                                 | ND      | 0.37J |
| Carbazol                           | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Fluoranthene                       | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND       | 1.7   | 1200E  | 1700D   | R         | 0.17J  | ND    | ND     | 0.43J                                 | 0.4JD   | 1.2   |
| Ругепе                             | NY8DEC 91-2 or EPA 8270** | 50                 | ND    | 0.088J   | 1.7   | 2100E  | 1200D   | R         | 0.15J  | ND    | NDJ    | 0.4J                                  | 0.26JD  | 1.1   |
| Benzo (a) anthracene               | NYSDEC 91-2 or EPA 8270** | 0.22               | ND    | ND       | 1.1   | 580E   | 710D    | R         | 0.068J | ND    | ND     | 0.1J                                  | ND      | 0.4J  |
| Chrysene                           | NYSDEC 91-2 or EPA 8270** | 0.4                | ND    | 0.053J   | 1.4   | 630E   | 620D    | R         | 0.062J | ND    | ND     | 0.12J                                 | ND      | 0.48  |
| Benzo (b) fluoranthene             | NYSDEC 91-2 or EPA 8270** | 1.1                | ND    | ND       | 1.0,1 | 420E   | 550D    | R         | 0.043J | ND    | ND     | ND                                    | ND      | 0.47  |
| Benzo (k) fluoranthene             | NYSDEC 91-2 or EPA 8270** | 1.1                | ND    | ND       | 0.56J | 320    | 480D    | R         | 0.046J | ND    | ND     | ND                                    | ND      | 0.27J |
| Benzo (a) pyrene                   | NYSDEC 91-2 or EPA 8270** | 0.061              | ND    | ND       | 0.54J | 380E   | 450JD   | R         | 0.047J | ND    | ND     | ND                                    | ND      | 0.36J |
| indeno(1,2,3-cd) pyrene            | NYSDEC 91-2 or EPA 8270** | 3.2                | ND    | ND       | ND    | 320    | 320JD   | R         | ND     | ND    | ND     | ND                                    | ND      | ND    |
| Dibenz(a,h)anthracene              | NYSDEC 91-2 or EPA 8270** | 0.014              | ND    | ND       | ND    | 87.0   | ND      | R         | ND     | ND    | ND     | ND                                    | ND      | ND    |
| Benzo(g,h,i) perylene              | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND       | ND    | 270    | 250JD   | R         | ND     | ND    | ND     | ND                                    | ND      | ND    |
| bis (2-ethyfnexylphthalate)        | NYSDEC 91-2 or EPA 8270** | 50                 | NT    | 3.1J     | NT    | NT     | NT      | R         | NT     | NT    | NT     | 8.3E                                  | 4.4JD   | ND    |
| Di-n-butylphthalate                | NYSDEC 91-2 or EPA 8270** | 8.1                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Diethylphthalate                   | NYSDEC 91-2 or EPA 8270** | 2.0                | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Aromatic TICs                      | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | ND       | NT    | NT     | NT      | R         | NT     | NT    | NT     | 5.2J                                  | 14.19JD | ND    |
| Other TICs                         | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | 8.1J     | NT    | NT     | NT      | R         | NT     | NT    | NT     | ND                                    | ND      | ND    |
| Total PAHs                         | NYSDEC 91-2 or EPA 8270** | NA                 | ND    | 0.14     | 9.13  | 8210.7 | 8204    | R         | 1.84   | 0.14  | 0.05   | 5.21                                  | 4.49    | 7.14  |
| Total Semivolatiles***             | NYSDEC 91-2 or EPA 8270** | 500                | ND    | 3.21     | 9.13  | 8210.7 | 8204    | R         | 1.84   | 0.14  | 0.05   | 13.51                                 | 8.89    | 7.14  |

TABLE 5-4 (continued)

Soil Sampling Results (soil borings and monitoring well locations) TCL Semivolatiles (mg/kg)

|                                |                           | TCL Semivolatiles (mg/kg) |                 |       |         |        |       |       |       |        |       |        |       |         |
|--------------------------------|---------------------------|---------------------------|-----------------|-------|---------|--------|-------|-------|-------|--------|-------|--------|-------|---------|
|                                |                           |                           | Sample Location |       |         |        |       |       |       |        |       |        |       |         |
| ANALYTE                        |                           | Recommended               | . SB-           | 16    |         | SB-17  |       |       |       | 88-18  |       |        | SB-19 |         |
| Sampling Depth (in feet)       | Analytical                | Soil CLeanup              | 38-40           | 40-42 | 2-4     | 14-16  | 16-18 | 5-7   | 9-11  | 9-11RE | 11-13 | 19-21  | 23-25 | 23-25DL |
|                                | Method                    | Objective (mg/kg)*        | PAHs            | PAHs  | TCL     | PAHs   | PAHs  | PAHs  | PAHs  | PAHs   | PAHs  | PAHs   | TCL   | TCL     |
| Phenol                         | NYSDEC 91-2 or EPA 8270** | 0.3                       | ND              | NT    | 0.38    | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| 2-Methylphenol                 | NYSDEC 91-2 or EPA 8270** | 0.1                       | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| 1,4-Dichlorobenzene            | NYSDEC 91-2 or EPA 8270** | 8.5                       | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| N-Niroso-di-n-propylamine      | NYSDEC 91-2 or EPA 8270** | NA                        | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| 1,2,4-Trichlorobenzene         | NYSDEC 91-2 or EPA 8270** | 3.4                       | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| 4-Chloro-3-Methylphenol        | NYSDEC 91-2 or EPA 8270** | 0.24                      | ND              | NŤ    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| 2,4-Dinnirotoluene             | NYSDEC 91-2 or EPA 8270** | NA                        | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| Pentachlorophenol              | NYSDEC 91-2 or EPA 8270** | 1.0                       | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | R     | ND      |
| 4-Methylphenol                 | NYSDEC 91-2 or EPA 8270** | 0.9                       | ND              | NT    | ND      | NT     | NŤ    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| 2,4-Dimethlyphenol             | NYSDEC 91-2 or EPA 8270** | NA                        | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| Naphthalene                    | NYSDEC 91-2 or EPA 8270** | 13                        | 0.19J           | 0.13J | 0.38    | ND     | 0.27J | 89.0  | 11.0  | 8.3    | 0.45  | 0.81   | 4.1E  | 6.8JD   |
| 2-Methyinaphthalene            | NYSDEC 91-2 or EPA 8270** | 36.4                      | ND              | NT    | 0.055J  | NT     | NT    | NT    | NT.   | NT     | NT    | NT     | ND    | ND      |
| Acenaphinylene                 | NYSDEC 91-2 or EPA 8270** | 41                        | 0.12J           | 0.4   | 0.064J  | ND     | 0.33J | 9.3J  | 1.2J  | 0.97J  | 0.11J | ND     | ND    | 3.4JD   |
| Acenaphthene                   | NYSDEC 91-2 or EPA 8270** | 50                        | 0.13J           | 0.21J | ND      | ND     | ND    | 19.QJ | 2.8J  | 2.8J   | 0.1J  | ND     | 1.8   | ND      |
| 4-Nitrophenol                  | NYSDEC 91-2 or EPA 8270** | 0.1                       | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| Dibenzofuran                   | NYSDEC 91-2 or EPA 8270** | 6.2                       | ND              | NT    | 0.045J  | NT     | NT    | NT    | NT    | NT     | NT    | NT     | 1.7J  | 3.2JD   |
| Fluorene                       | NYSDEC 91-2 or EPA 8270** | 50                        | 0.29J           | 0.8   | 0.067J  | ND     | ND    | 66.0  | 11.0  | 10.0   | 0.4   | ND     | 4.6E  | 7.8JD   |
| N-Nirosodiphenylamine (1)      | NYSDEC 91-2 or EPA 8270** | NA                        | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| Phonantherene                  | NYSDEC 91-2 or EPA 8270** | 50                        | 0.76            | 2.2   | 0.67    | ND     | 0.21J | 170   | 28.0  | 25.0   | 1.5   | 0.041J | 9.5E  | 11.0D   |
| Antiracene                     | NYSDEC 91-2 or EPA 8270** | 50                        | 0.25J           | 0.73  | 0.19J   | ND     | ND    | 45.0  | 7.4   | 6.8    | 0.37J | ND     | 0.26J | ND      |
| Cerbazol                       | NYSDEC 91-2 or EPA 8270** | NA                        | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | ND    | ND      |
| Fluoranthene                   | NYSDEC 91-2 or EPA 8270** | 50                        | 0.92            | 2.3   | 1.2     | 45J    | 0.24J | 130   | 18.0  | 17.0   | 1.2   | ND     | 2.0J  | 1.3JD   |
| Pyrene                         | NYSDEC 91-2 or EPA 8270** | 50                        | 0.7J            | 2.5J  | 1.7J    | ND     | 0.25J | 150   | 20.QJ | 25.0J  | 1.4   | ND     | 0.66J | 1.7JD   |
| Benzo (a) anthracene           | NYSDEC 91-2 or EPA 8270** | 0.22                      | 0.28J           | 0.85  | 0.56    | ND     | ND    | 80.0  | 12.0J | 10.0J  | 0.71  | ND     | 0.36J | ND      |
| Chrysene                       | NYSDEC 91-2 or EPA 8270** | 0.4                       | 0.32J           | 1.1   | 0.69    | ND     | 0.19J | 71.0  | 9.6J  | 9.0    | 0.72  | 0.067J | 0.51J | ND      |
| Benzo (b) fluoranthene         | NYSDEC 91-2 or EPA 8270** | 1.1                       | 0.32J           | 0.84  | 0.74    | ND     | 0.32J | 53.0  | 6.6   | 3.6J   | 0.45  | ND     | 0.26J | NDJ     |
| Benzo (k) fluoranthene         | NYSDEC 91-2 or EPA 8270** | 1.1                       | 0.16J           | 0.52J | 0.34J   | ND     | 0.39J | 23.0J | 4.1   | 7.4    | 0.45  | ND     | 0.32J | ND      |
| Benzo (a) pyrene               | NYSDEC 91-2 or EPA 8270** | 0.061                     | 0.26J           | 0.8   | 0.6     | ND     | 0.34J | 48.0  | 6.9   | 6.6    | 0.51  | ND     | 0.26J | ND      |
| Indeno(1,2,3-cd) pyrene        | NYSDEC 91-2 or EPA 8270** | 3.2                       | ND              | 0.29J | 0.45    | ND     | 0.5J  | 18.0J | 2.8J  | 3.1J   | 0.24J | ND     | 0.17J | ND      |
| Dibenz(a,h)antiracene          | NYSDEC 91-2 or EPA 8270** | 0.014                     | ND              | ND    | 0.074J  | ND     | ND    | ND    | ND    | ND     | ND    | ND     | ND    | ND      |
| Benzo (g,h,i) peryiene         | NYSDEC 91-2 or EPA 8270** | 50                        | ND              | ND    | 0.41J   | 0.055J | 0.63J | 12.QJ | 2.3J  | 2.5J   | 0.2J  | ND     | 0.14J | ND      |
| bis (2 — ethylinexylphthalate) | NYSDEC 91-2 or EPA 8270** | 50                        | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | 33.0E | 59.0D   |
| Di-n-butyiphthalate            | NYSDEC 91-2 or EPA 8270** | 8.1                       | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     |       | NT     | NT    | NT      |
| Diethylphthalate               | NYSDEC 91-2 or EPA 8270** | 2.0                       | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | NT    | NT      |
| Aromatic TICs                  | NYSDEC 91-2 or EPA 8270** | NA                        | ND              | NT    | 1.492.) | NT     | NT    | NT    | NT    | NT     | NT    | NT     | 6.06J | 263JD   |
| Other TICs                     | NYSDEC 91-2 or EPA 8270** | NA                        | ND              | NT    | ND      | NT     | NT    | NT    | NT    | NT     | NT    | NT     | DN    | ND      |
| Total PAHs                     | NYSDEC 91-2 or EPA 8270** | NA                        | 4.7             | 13.67 | 8.23    | 0.1    | 3.67  | 983.3 | 143.7 | 138.07 | 8.81  | 0.92   | 26.64 | 32.0    |
| Total Semivolatiles***         | NYSDEC 91-2 or EPA 8270** | 500                       | 4.7             | 13.67 | 8.73    | 0.1    | 3.67  | 983.3 | 143.7 | 138.07 | 8.81  | 0.92   | 59.64 | 94.2    |

| TABLE | 5-4 |
|-------|-----|
|-------|-----|

Soil Sampling Results (soil borings and monitoring well locations) TCL Semivolatiles (mg/kg)

| TCL Semivolatiles (mg/kg)     |                           |                    |       |       |       |        |        |            |       |         |       |        |          |         |
|-------------------------------|---------------------------|--------------------|-------|-------|-------|--------|--------|------------|-------|---------|-------|--------|----------|---------|
|                               |                           |                    |       |       |       |        | Sampi  | e Location |       |         |       |        | DUP      |         |
| ANALYTE                       |                           | Recommended        |       | 88-19 |       |        |        |            | 8B-20 |         |       |        | OF 22-24 |         |
| Sampling Depth (in feet)      | Analytical                | Soli CLeanup       | 25-27 | 35-37 | 37-39 | 18-20  | 20-22  | 20-22RE    | 22-24 | 22-24DL | 26-28 | 28-30  | 37-39    | 37-39DL |
|                               | Method                    | Objective (mg/kg)* | PAHs  | PAHs  | PAHs  | PAHa   | PAHs   | PAHs       | TCL   | TCL     | PAHe  | PAHs   | TCL      | TCL     |
| Phenol                        | NYSDEC 91-2 or EPA 8270** | 0.3                | NT    | NT    | NT    | NT     | NT     | NŤ         | ND    | ND      | NT    | NT     | ND       | ND      |
| 2-Methylphenol                | NYSDEC 91-2 or EPA 8270** | 0.1                | NT    | NT    | NT    | · NT   | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| 1,4-Dichlorobenzene           | NYSDEC 91-2 or EPA 8270** | 8.5                | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| N-Nitroso-di-n-propyismine    | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT    | NT    | NT     | NŤ     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| 1,2,4-Trichlorobenzene        | NYSDEC 91-2 or EPA 8270** | 3.4                | NT    | NT    | NT    | NT     | NŤ     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| 4-Chloro-3-Methylphenol       | NYSDEC 91-2 or EPA 8270** | 0.24               | NT    | NT    | NŤ    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| 2,4-Dinnitrotoluene           | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| Pentachlorophenol             | NYSDEC 91-2 or EPA 8270** | 1.0                | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| 4-Methylphenol                | NYSDEC 91-2 or EPA 8270** | 0.9                | NT    | NT    | NT    | NT     | NT     | NT -       | ND    | ND      | NT    | NT     | ND       | ND      |
| 2,4-Dimethlyphenol            | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| Naphthalene                   | NYSDEC 91-2 or EPA 8270** | 13                 | 4.5F  | ND    | ND    | 0.07J  | 0.39   | 0.34J      | ND    | ND      | 0.28J | ND     | 0.77     | 0.96JD  |
| 2-Methyinaphthalene           | NYSDEC 91-2 or EPA 8270** | 36.4               | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | 1.2      | ND      |
| Acenaphthylene                | NYSDEC 91-2 or EPA 8270** | 41                 | ND    | ND    | ND    | ND     | ND     | ND         | ND    | ND      | ND    | ND     | 1.1J     | ND      |
| Acenaphthene                  | NYSDEC 91-2 or EPA 8270** | 50                 | 1.4J  | ND    | ND    | 0.043J | 0.17J  | 0.26J      | 1.3J  | 1.8JD   | 0.21J | ND     | ND       | 1.4JD   |
| 4-Nirophenol                  | NYSDEC 91-2 or EPA 8270** | 0.1                | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| Dibenzoturan                  | NYSDEC 91-2 or EPA 8270** | 6.2                | NT    | NT    | NT    | NT     | NT     | NT         | 1.2J  | 1.6JD   | NT    | NT     | 1.1J     | 1.5JD   |
| Fillorene                     | NYSDEC 91-2 or EPA 8270** | 50                 | 3.1J  | ND    | ND    | 0.095J | 0.51J  | 0.56J      | 3.3E  | 4.5JD   | 0.78J | ND     | 2.8J     | 3.3JD   |
| N - Niroso diphenylamine (1)  | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | 1.7      | ND      |
| Phonantherene                 | NYSDEC 91-2 or EPA 8270** | 50                 | 4.0J  | ND    | ND    | 0.11J  | 0.86J  | 0.88J      | 4.5E  | 6.6JD   | 1.ડા  | 0.051J | 4.7E     | 5.7JD   |
| Antitracene                   | NYSDEC 91-2 or EPA 8270** | 50                 | ND    | ND    | ND    | ND     | ND     | ND         | ND    | ND      | 0.58' | ND     | ND       | ND      |
| Carbazol                      | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| Fluoranthene                  | NYSDEC 91-2 or EPA 8270** | 50                 | 0.8J  | ND    | ND    | 0.078J | 0.054J | 0.077J     | ND    | ND      | 0.99J | ND     | 0.37J    | ND      |
| Ругепе                        | NYSDEC 91-2 or EPA 8270** | 50                 | 0.9J  | ND    | ND    | 0.090J | .13J   | 0.14J      | 0.34J | ND      | 1.QJ  | 0.05J  | 0.36J    | ND      |
| Benzo (a) anthracene          | NYSDEC 91-2 or EPA 8270** | 0.22               | ND    | ND    | ND    | 0.056J | ND     | 0.052J     | 0.15J | ND .    | 0.78J | ND     | 0.17J    | ND      |
| Chrysene                      | NYSDEC 91-2 or EPA 8270** | 0.4                | ND    | ND    | ND    | 0.082J | 0.089J | Q.073J     | 0.27J | ND      | 0.78J | ND     | 0.29J    | ND      |
| Benzo (b) fluoranthene        | NYSDEC 91-2 or EPA 8270** | 1.1                | ND    | ND    | ND    | ND     | ND     | ND         | ND    | ND      | 0.53J | ND     | ND       | ND      |
| Benzo (k) fluoranthene        | NYSDEC 91-2 or EPA 8270** | 1.1                | NDJ   | ND    | ND    | ND     | ND     | ND         | ND    | ND      | 0.57J | ND     | ND       | ND      |
| Benzo (a) pyrene              | NYSDEC 91-2 or EPA 8270** | 0.061              | NDJ   | NDJ   | NDJ   | ND     | ND     | ND         | ND    | ND      | 0.57J | 0.21J  | ND       | ND      |
| Indeno(1,2,3-cd) pyrene       | NYSDEC 91-2 or EPA 8270** | 3.2                | NDJ   | NDJ   | NDJ   | ND     | ND     | ND         | ND    | ND      | ND    | ND     | ND       | ND      |
| Dibenz(a,h)anthracene         | NYSDEC 91-2 or EPA 8270** | 0.014              | NDJ   | NDJ   | NDJ   | ND     | ND     | ND         | ND    | ND      | ND    | ND     | ND       | ND      |
| Benzo(g,h,i) perylene         | NYSDEC 91-2 or EPA 8270** | 50                 | NDJ   | NDJ   | NDJ   | ND     | ND     | ND         | ND    | ND      | ND    | ND     | ND       | ND      |
| bis (2 - ethylhexylphthalate) | NYSDEC 91-2 or EPA 8270** | 50                 | NT    | т     | NT    | NT     | NT     | NT         | 46.0E | 48.0D   | NT    | NT     | 30.0E    | 24.0D   |
| Di-n-butyiphthalate           | NYSDEC 91-2 or EPA 8270** | 8.1                | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| Diethylphthalate              | NYSDEC 91-2 or EPA 8270** | 2.0                | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | · ND    |
| Aromatic TICs                 | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT    | NT    | NT     | NT     | NT         | 4.2.1 | 140.7JD | NT    | NT     | ND       | 156.6JD |
| Other TICs                    | NYSDEC 91-2 or EPA 8270** | NA                 | NT    | NT    | NT    | NT     | NT     | NT         | ND    | ND      | NT    | NT     | ND       | ND      |
| Total PAHa                    | NYSDEC 91-2 or EPA 8270** | NA                 | 14.7  | ND    | ND    | 0.624  | 2.2    | 2.38       | 11.06 | 14.5    | 8.37  | 0.31   | 14.56    | 11.36   |
| Total Semivolatiles***        | NYSDEC 91-2 or EPA 8270** | 500                | 14.7  | ND    | ND    | 0.624  | 2.2    | 2.38       | 57.06 | 62.5    | 8.37  | 0.31   | 44.56    | 36,86   |

TABLE 5-4 (continued)

Soil Sampling Results (soil borings and monitoring well locations)

\_

| TCL Se | mivo | iatiles | (ma/ka) |
|--------|------|---------|---------|

| TCL Semivolatiles (mg/kg)     |                           |                    |        |          |         |       |        |        |                     |       |       |       |       |       |         |
|-------------------------------|---------------------------|--------------------|--------|----------|---------|-------|--------|--------|---------------------|-------|-------|-------|-------|-------|---------|
|                               |                           |                    |        | Sample L | ocation |       | DUP OF |        |                     |       |       |       |       |       |         |
| ANALYTE                       |                           | Recommended        |        |          | MW-1    |       | 24-26  |        | MW-2                |       |       |       | MW-3  |       |         |
| Sampling Depth (in feet)      | Analytical                | Soli CLeanup       | 8-10   | 24-26    | 46-48   | 56-57 | 97-99  | 68     | 12-13               | 14-18 | 22-24 | 26-28 | 32-34 | 46-48 | 26-28   |
|                               | Method                    | Objective (ma/ka)* | TCL    | PAHs     | PAHs    | PAHa  | PAHs   | PAHs   | TCL                 | PAHs  | PAHs  | TCL   | PAHs  | PAHs  | PAHs    |
| Phenoi                        | NYSDEC 91-2 or EPA 8270** | 0.3                | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| 2-Methylphenol                | NYSDEC 91-2 or EPA 8270** | 0.1                | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | NĎ    | NT    | NT    | NT      |
| 1,4-Dichlorobenzene           | NYSDEC 91-2 or EPA 8270** | 8.5                | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| N-Niroso-di-n-propylamine     | NYSDEC 91-2 or EPA 8270** | NA                 | ND     | NT.      | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| 1,2,4-Trichlorobenzene        | NYSDEC 91-2 or EPA 8270** | 3.4                | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| 4-Chloro-3-Methylphenoi       | NYSDEC 91-2 or EPA 8270** | 0.24               | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| 2,4-Dinnitrotoluene           | NYSDEC 91-2 or EPA 8270** | NA                 | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| Pentachlorophenol             | NYSDEC 91-2 or EPA 8270** | 1.0                | ND .   | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | R     | NT    | NT    | NT      |
| 4-Methylphenol                | NYSDEC 91-2 or EPA 8270** | 0.9                | · ND   | NT       | NT      | NT    | NT     | NŤ     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| 2,4-Dimethlyphenol            | NYSDEC 91-2 or EPA 8270** | NA                 | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| Naphthalene                   | NYSDEC 91-2 or EPA 8270** | 13                 | ND     | ND       | ND      | ND    | ND     | 0.043J | 0.07J               | 12.QJ | ND    | ND    | ND    | ND    | 0.041J  |
| 2-Methyinaphthalene           | NYSDEC 91-2 or EPA 8270** | 36.4               | ND     | NT       | NT      | NT    | NT     | NT     | 0.0 <del>6</del> 7J | NT    | NT    | ND    | NT    | NT    | NT      |
| Acenaphthylene                | NYSDEC 91-2 or EPA 8270** | 41                 | ND     | ND       | ND      | ND    | ND     | 0.054J | 0.13J               | 30.0  | ND    | ND    | ND    | ND    | 0.06J   |
| Acenaphthene                  | NYSDEC 91-2 or EPA 8270** | 50                 | ND     | ND       | ND      | ND    | ND     | ND     | ND                  | 3.5J  | ND    | 0.76  | ND    | ND    | 0.059.j |
| 4-Nitrophenol                 | NYSDEC 91-2 or EPA 8270** | 0.1                | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| Dibe-Jzofuran                 | NYSDEC 91-2 or EPA 8270** | 6.2                | ND     | NT       | NT      | NT    | NT     | NT     | 0.045J              | NT    | NT    | ND    | NT    | NT    | NT      |
| Fluorene                      | NYSDEC 91-2 or EPA 8270** | 50                 | ND     | ND       | ND      | ND    | ND     | 0.07J  | 0.09J               | 51.0  | ND    | ND    | ND    | ND    | 0.17J   |
| N-Nirosodiphenylamine (1)     | NYSDEC 91-2 or EPA 8270** | NA                 | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| Phonantherene                 | NYSDEC 91-2 or EPA 8270** | 50                 | 0.054J | ND       | ND      | ND    | ND     | 0.3J   | 0.75                | 110   | ND    | ND    | ND    | ND    | 0.11J   |
| Antinacene                    | NYSDEC 91-2 or EPA 8270** | 50                 | ND     | ND       | ND      | ND    | ND     | 0.067J | 0.12J               | 45.0  | ND    | ND    | ND    | ND    | 0.054J  |
| Carbszol                      | NYSDEC 91-2 or EPA 6270** | NA                 | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| Fluoranthene                  | NYSDEC 91-2 or EPA 8270** | 50                 | ND     | ND       | ND      | ND    | ND     | 0.33J  | 1.1                 | 100   | ND    | ND    | ND    | ND    | 0.37J   |
| Ругепе                        | NYSDEC 91-2 or EPA 8270** | 50                 | ND     | ND       | ND      | ND    | ND     | 0.21J  | 0.72                | 75.0  | ND    | ND    | ND    | ND    | 0.4J    |
| Benzo (a) anthracene          | NYSDEC 91-2 or EPA 8270** | 0.22               | ND     | ND       | ND      | ND    | ND     | 0.15J  | 0.4                 | 60.0  | ND    | ND    | ND    | ND    | 0.11J   |
| Chrysene                      | NYSDEC 91-2 or EPA 8270** | 0.4                | 0.082J | ND       | ND      | ND    | ND     | 0.18J  | 0.39                | 48.0  | ND    | ND    | ND    | ND    | 0.17J   |
| Benzo (b) fluoranthene        | NYSDEC 91-2 or EPA 8270** | 1.1                | ND     | ND       | ND      | ND    | ND     | 0.14J  | 0.33J               | 54.0  | ND    | ND    | ND    | ND    | 0.14J   |
| Benzo (k) fluoranthene        | NYSDEC 91-2 or EPA 8270** | 1.1                | ND     | ND       | ND      | ND    | ND     | 0.13J  | 0.34J               | 35.0  | ND    | ND    | ND    | ND    | 0.13J   |
| Benzo (a) pyrene              | NYSDEC 91-2 or EPA 8270** | 0.061              | ND     | ND       | ND      | ND    | 0.17J  | 0.11J  | 0.24J               | 41.0  | ND    | ND    | ND    | ND    | 0.11J   |
| indeno(1,2,3-cd) pyrene       | NYSDEC 91-2 or EPA 8270** | 3.2                | ND     | ND       | ND      | ND    | ND     | 0.063J | 0.16J               | 17.0  | ND    | ND    | ND    | ND    | ND      |
| Dibenz(a,h)anthracene         | NYSDEC 91-2 or EPA 8270** | 0.014              | ND     | ND       | ND      | DN    | ND     | ND     | 0.074J              | 2.6J  | ND    | ND    | ND    | ND    | ND      |
| Benzo (g,h,i) peryiene        | NYSDEC 91-2 or EPA 8270** | 50                 | ND     | ND       | ND      | ND    | ND     | 0.052J | 0.11J               | 11.QJ | ND    | ND    | ND    | ND    | ND      |
| bis (2 - ethylhexylphthalate) | NYSDEC 91-2 or EPA 8270** | 50                 | ND     | ND       | NT      | NT    | NT     | NT     | 0.061J              | NT    | NT    | ND    | NT    | NT    | NT      |
| Di-n-butylphthalate           | NYSDEC 91-2 or EPA 8270** | 8.1                | ND     | NT       | NT      | NT    | NT     | NT     | 0.27J               | NT    | NT    | ND    | NT    | NT    | NT      |
| Diethylphthalate              | NYSDEC 91-2 or EPA 8270** | 2.0                | ND     | NT       | NT      | NT    | NT     | NT     | ND                  | NT    | NT_   | ND    | NT    | NT    | NT      |
| Aromatic TICs                 | NYSDEC 91-2 or EPA 8270** | NA                 | 0.293J | NT       | NT      | NT    | NT     | NT     | 2.003J              | NT    | NT    | 0.23J | NT    | NT    | NT      |
| Other TiCs                    | NYSDEC 91-2 or EPA 8270** | NA                 | ND     | · NT     | NT      | NT    | NT     | NT     | ND                  | NT    | NT    | ND    | NT    | NT    | NT      |
| Total PAHs                    | NYSDEC 91-2 or EPA 8270** | NA                 | 0.14   | ND       | ND      | ND    | 0,17   | 1.9    | 5.14                | 695.1 | ND    | 0.76  | ND    | ND    | 1.92    |
| Total Semivolatiles***        | NYSDEC 91-2 or EPA 8270** | 500                | 0.14   | ND       | ND      | ŇD    | 0.17   | 1.9    | 5.47                | 695.1 | ND    | 0.76  | ND    | ND    | 1.92    |

| TABLE | 5-4 |
|-------|-----|
|-------|-----|

Soli Sampling Results (soil borings and monitoring well locations) TCL Semivolatiles (mg/kg)

|                             |                           |                    | TCL Semivol | tiles (mg/kg | D      |               |        |       |         |        |
|-----------------------------|---------------------------|--------------------|-------------|--------------|--------|---------------|--------|-------|---------|--------|
|                             |                           |                    |             |              | DUP OF | Sample Locati | on     |       |         |        |
| ANALYTE                     |                           | Recommended        | MW·         | -4           | 36-38  | MW -5         |        | MW-5  |         |        |
| Sampling Depth (In feet)    | Analytical                | Soil CLeanup       | 32-34       | 36-38        | 38-40  | 18-20         | 22-24  | 24-26 | 24-26DL | 34-35  |
|                             | Method                    | Objective (mg/kg)* | TCL         | PAHs         | PAHs   | PAHs          | PAHs   | TCL   | TCL     | PAHs   |
| Phenoi                      | NYSDEC 91-2 or EPA 8270** | 0.3                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| 2-Methylphenol              | NYSDEC 91-2 or EPA 8270** | 0.1                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| 1,4-Dichlorobenzene         | NYSDEC 91-2 or EPA 8270** | 8,5                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| N-Niroso-di-n-propylamine   | NYSDEC 91-2 or EPA 8270** | NA                 | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| 1,2,4-Trichlorobenzene      | NYSDEC 91-2 or EPA 8270** | 3.4                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| 4-Chloro-3-Methylphenol     | NYSDEC 91-2 or EPA 8270** | 0.24               | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| 2,4-Dinnitrotoluene         | NYSDEC 91-2 or EPA 8270** | NA                 | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Pentachlorophenol           | NYSDEC 91-2 or EPA 8270** | 1.0                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| 4-Methylphenol              | NYSDEC 91-2 or EPA 8270** | 0.9                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| 2,4-Dimethlyphenol          | NYSDEC 91-2 or EPA 8270** | NA                 | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Naphthalene                 | NYSDEC 91-2 or EPA 8270** | 13                 | ND          | ND           | ND     | 150           | ND     | ND    | ND      | 0.4J   |
| 2-Methylnaphthalene         | NYSDEC 91-2 or EPA 8270** | 36.4               | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Acenaphthylene              | NYSDEC 91-2 or EPA 8270** | 41                 | ND          | ND           | ND     | 140           | ND     | ND    | ND      | 0.08J  |
| Acenaphthene                | NYSDEC 91-2 or EPA 8270** | 50                 | ND          | ND           | ND     | 9.0J          | ND     | ND    | ND      | 0.085J |
| 4-Nitrophenoi               | NYSDEC 91-2 or EPA 8270** | 0.1                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Dibenzofuran                | NYSDEC 91-2 or EPA 8270** | 6.2                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Fluorene                    | NYSDEC 91-2 or EPA 8270** | .50                | ND          | ND           | ND     | 150           | ND     | ND    | ND      | 0.27J  |
| N - Nirosodiphenylamine (1) | NYSDEC 91-2 or EPA 8270** | NA                 | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Phenantherene               | NYSDEC 91-2 or EPA 8270** | 50                 | ND          | ND           | ND     | 430           | 0.13J  | ND    | ND      | 0.73   |
| Antiracene                  | NYSDEC 91-2 or EPA 8270** | 50                 | ND          | ND           | ND     | 140           | ND     | ND    | ND      | 0.2J   |
| Cerbazol                    | NYSDEC 91-2 or EPA 8270** | NA                 | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Fluctanthene                | NYSDEC 91-2 or EPA 8270** | 50                 | ND          | ND           | ND     | 260           | 0.16J  | 0.36J | ND      | 0.29J  |
| Pyrene                      | NYSDEC 91-2 or EPA 8270** | 50                 | ND          | ND           | ND     | 170J          | 0.13J  | 0.89J | 1.3JD   | 0.27J  |
| Benzo (a) antiracene        | NYSDEC 91-2 or EPA 8270** | 0.22               | ND          | ND           | ND     | 110           | 0.095J | 0.27J | ND      | 0.29J  |
| Chrysene                    | NYSDEC 91-2 or EPA 8270** | 0.4                | ND          | ND           | ND     | 94.0          | 0.11J  | 0.7J  | ND      | 0.32J  |
| Benzo (b) fluoranthene      | NYSDEC 91-2 or EPA 8270** | 1.1                | ND          | ND           | ND     | 56.0J         | ND     | ND    | ND      | 0.25J  |
| Benzo (k) fluoranthene      | NYSDEC 91-2 or EPA 8270** | 1.1                | ND          | ND           | ND     | 54.0J         | ND     | ND    | ND      | 0.12J  |
| Benzo (a) pyrene            | NYSDEC 91-2 or EPA 8270** | 0.061              | ND          | ND           | ND     | 60.0J         | ND     | ND    | ND      | 0.18J  |
| Indeno(1,2,3-cd) pyrene     | NYSDEC 91-2 or EPA 8270** | 3.2                | ND          | ND           | ND     | ND            | ND     | ND    | ND      | ND     |
| Dibenz(a,h)anthracene       | NYSDEC 91-2 or EPA 8270** | 0.014              | ND          | ND           | ND     | ND            | ND     | ND    | ND      | ND     |
| Benzo(g,h,i) perviene       | NYSDEC 91-2 or EPA 8270** | 50                 | ND          | ND           | ND     | ND            | ND     | ND    | ND      | ND     |
| bis (2-ethylhexylphthalate) | NYSDEC 91-2 or EPA 8270** | 50                 | ND          | NT           | NT     | NT            | NT     | 34.0E | 43.0D   | NT     |
| Di-n-butyiphthalate         | NYSDEC 91-2 or EPA 8270** | 8.1                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Diethylphthalate            | NYSDEC 91-2 or EPA 8270** | 2.0                | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Aromatic TICs               | NYSDEC 91-2 or EPA 8270** | NA                 | 0.17J       | NT           | NT     | NT            | NT     | ND    | 44.0JD  | NT     |
| Other TICs                  | NYSDEC 91-2 or EPA 8270** | NA                 | ND          | NT           | NT     | NT            | NT     | ND    | ND      | NT     |
| Total PAHs                  | NYSDEC 91-2 or EPA 8270** | NA                 | ND          | ND           | ND     | 1823          | 0.63   | 2.22  | 1.3     | 3.49   |
| Total Semivolatiles***      | NYSDEC 91-2 or EPA 8270** | 500                | ND          | ND           | ND     | 1823          | 0.63   | 36.22 | 44.3    | 3.49   |

SOILSEMI.WK3

#### TABLE 5-5

# SUMMARY OF GC GAS/GC FUEL SOIL SAMPLING RESULTS (all results expressed in mg/kg)

|                          | Sampling Location |       |                 |       |       |  |  |  |  |  |
|--------------------------|-------------------|-------|-----------------|-------|-------|--|--|--|--|--|
| ANALYTE                  | SB-12             | SB-15 | SB-19           | SB-20 | MW-5  |  |  |  |  |  |
| Sampling Depth (in feet) | 18–20             | 24-26 | 23–25           | 24-26 | 26-28 |  |  |  |  |  |
| TPH as Gasoline          | 0.3               | 4300  | 3100 (gasoline) | 160   | 20    |  |  |  |  |  |
| #2 Fuel Oil              | ND                | 40000 | 14000           | 4700  | 2100  |  |  |  |  |  |
| #6 Fuel Oil              | ND                | ND    | ND              | ND    | ND    |  |  |  |  |  |
| Lubricating Oil          | ND                | ND    | ND              | ND    | ND    |  |  |  |  |  |
| Kerosine                 | ND                | ND    | ND              | ND    | ND    |  |  |  |  |  |

GCGAS.WK3

| Acetone                                         | ANALYTICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | (ALL RES<br>Sampling | ULTS EX     |           |          | Results ([<br> _)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )ecembei          | r, 1994)<br> |          |          |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------|----------|
| TC L Volatiles<br>Me hylene Chloride<br>Acetone |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                      | Location    |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***************** |              |          | *****    |
| TC L Volatiles<br>Me hylene Chloride<br>Acetone |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                      |             |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          |          |
| TC L Volatiles<br>Me hylene Chloride<br>Acetone |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Groundw              | ater Elevat | ion (ft)  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          |          |
| Me hylene Chloride                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NYSDEC GROUNDWATER       | MW-1                 | MW-2        | MW-3      | MW-4     | MW-4RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-5              | MW-5RE       | MW-50    | MW-60    |
| Me hylene Chloride                              | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STANDARD/GUIDANCE VALUE* | 7.12                 | 12.34       | 1.5       | -0.82    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.91              | -            |          |          |
| Me hylene Chloride                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                      |             |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              | MW-5 DU  | EQ BLANK |
| Acetone                                         | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                    | ND JB                | ND JB       | ND        | ND JB    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND JB             | NS           | ND       | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050                    | ND                   | ND          | ND        |          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |              |          | 9 J      |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                    | ND                   | ND          | ND        | 0.003 J  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           |          | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.007                    | 0.022                | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.038             | NS           | 0.036    | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0007                   | ND                   | ND          | ND        | 0.06     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                | NS           | ND       | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                    | ND                   | ND          | ND        | 0.001 J  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |              |          | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                    | ND                   | ND          | ND        | 0.003 J  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           |          | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005                    | ND                   | ND          | ND        | 0.001 J  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | NS           | ND       | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                       | ND                   | ND          | ND        | 0.024 J  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           |          | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                       | ND                   | ND          | ND        | 0.98 J   | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           |          | ND       |
|                                                 | NYSDEC 91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                       | ND                   | ND          | ND        | 0.065    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| TCL Semivolatiles                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                      |             |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          |          |
|                                                 | NYSDEC 91-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                    | ND                   | ND          | ND        | 0.002 J  | 0.002 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND           | ND       | ND       |
|                                                 | NYSDEC 91-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050                    | ND                   | 0.002 J     | ND        | ND       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | ND           | 0.001    | 0.001 J  |
|                                                 | NYSDEC 91-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                       | ND                   | ND          | 0.022 J   | 0.007 J  | 0.007J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005 J           | 0.005 J      | ND       | ND       |
|                                                 | NYSDEC 91-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                       | 0.009 J              | 0.008 J     | 0.035 J   | 0.042 J  | 0.04 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 0.002 J      | ND       | ND       |
| Pesticides/PCBs                                 | MICDEC CI E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 1                    |             |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          |          |
| Festicides/FOLDs                                | NYSDEC 91-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l                        | None de              | tected in a | nv sample | 8.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          |          |
| TAL Metals                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                        |                      |             | <b></b>   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          |          |
| Aluminum                                        | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                       | 1.13                 | 2.29        | 0.125 B   | 0.0395 B | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.048 B           | NS           | ND       | ND       |
| Antimony                                        | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.003 GV                 | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Arsenic                                         | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025                    | ND                   | ND          | 0.006 B   | 0.115 J  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Barium                                          | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                      | 0.034 B              | 0.082 B     | 0.056 B   | 0.151 B  | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.011 B           | NS           | 0.0093 B | ND       |
| Beryllium                                       | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.003                    | 0.001 B              | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Cadmium                                         | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.010                    | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | 0.0044 J |
| Calcium                                         | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                       | 51.3                 |             |           |          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.6              |              | 25.5     | ND       |
| Chromium                                        | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.050                    | ND                   | 0.0068 E    | 1         | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Cobalt                                          | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11                     | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
|                                                 | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20                     | ND                   | 0.017 B     | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | 0.0061 B |
| Copper                                          | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.30                     | 4.72                 |             | 28.9      | 26       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.339             |              | 0.08 B   | ND       |
| Lead                                            | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025                    | 0.0065               |             |           | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
|                                                 | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                       | 8.24                 |             | 13.3      | 16.3     | and the second se | 3.4 B             | NS           | 3.15 B   | ND       |
| Magnesium                                       | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3                      | 0.085                |             | 2.2       | 4.08     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.127             |              | 0.061    | ND       |
| Manganese                                       | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002                    | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Mercury                                         | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                       | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Nickel                                          | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA<br>NA                 | 3.99 B               | 4.14 B      | 6.55      | 10.2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.13 B            | NS           | 0.753 B  | ND       |
| Potassium                                       | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.010                    | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Selenium                                        | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.050                    | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Silver                                          | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                       | 17.6                 |             |           |          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | NS NS        |          | ND       |
| Sodium                                          | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.004 GV                 | ND J                 | ND J        | ND J      | ND J     | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND J              | NS           | ND J     | ND J     |
| Thallium                                        | a construction of the second se | NA                       | ND                   | ND          | ND        | ND       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                | NS           | ND       | ND       |
| Vanadium                                        | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.30                     | 0.028                |             | 0.039     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.022             |              | 0.038    |          |
| Zinc                                            | CLP-M**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 1 0.020              | 1 0.019 D   | 1 0.000   | 10.01001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          | <u>,</u> |
| Total Cyanide                                   | a na sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                      |             |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |          |          |

TABLE 6-1

TABLE 6-1 (continued) Groundwater Gauging and Sampling Results (December, 1994) (ALL RESULTS EXPRESSED IN MG/L)

|                           |            |                         | INCL DES  | ULIS EN     | LHE99EI    |       | <u>ч                                    </u> |      |        |       |       |
|---------------------------|------------|-------------------------|-----------|-------------|------------|-------|----------------------------------------------|------|--------|-------|-------|
|                           |            |                         | Sampling  | Location    |            |       |                                              |      |        |       |       |
|                           |            |                         | Groundw   | ater Eleva  | tion (ft)  |       |                                              |      |        |       |       |
| ANALYTE                   | ANALYTICAL | NYSDEC GROUNDWATER      | MW-1      | MW-2        | MW-3       | MW-4  | MW-4RE                                       | MW-5 | MW-5RE | MW-50 | MW-60 |
|                           | METHOD     | STANDARD/GUIDANCE VALUE | 7.12      | 12.34       | 1.5        | -0.82 | -                                            | 6.91 | -      |       | -     |
| Conventional Analyses:    |            |                         | Note: Res | ults expres | ased in mg | И     |                                              |      |        |       |       |
| Biochemical Oxygen Demand | 405.1      | NA                      | ND        | ND          | ND         | ND    | NS                                           | ND   | NS     | ND    | NS    |
| Chemical Oxygen Demand    | 410.1      | NA                      | 8 J       | 16          | 14         | 27 J  | NS                                           | 29 J | NS     | 31 J  | NS    |
| Chloride                  | 325        | NA                      | 28        | 26          | 53         | 84    | NS                                           | 15   | NS     | 15    | NS    |
| Hardness                  | 242.1      | NA                      | 144       | 621         | 298        | 370   | NS                                           | 75   | NS     |       | NS    |
| Nit ate, Nitrogen         | 353.2      | 10                      | 2.74      | 1.22        | 1.1        | 1.2   | NS                                           | 1.39 | NS     | 1.34  |       |
| Oil & Grease              | 413.1      | NA                      | 2 J       | 9 J         | 4          | 5 J   | NS                                           | 5 J  | NS     | 4 J   | NS    |
| Sulfate                   | 375.2      | 250                     | 75        | 210         | 128        | 59    | NS                                           | 18   | NS     | 18    | NS    |
| Sulfide                   | 376        | 0.050 GV                | ND J      | ND J        | ND         | ND J  | NS                                           |      | NS     | ND J  | NS    |
| Totul Dissolved Solids    | 160.1      | NA                      | 275       | 787         | 447        | 598   | NS                                           | 118  | NS     | 118   | NS    |

**GV - GUIDANCE VALUE** 

\* - NYSDEC, DIVISION OF WATER TECHNICAL AND OPERATIONAL GUIDANCE SERIES (1.1.1), "AMBIENT

WATER QUALITY STANDARDS AND GUIDANCE VALUES', OCTOBER 22, 1993

GROUND.WK3

\*\* - CLP ANALYTICAL METHODS FOR METALS AS PER DOCUMENT ILM03.0

|                                       |                                                                                                                 |                         | Groundwater Gauging and Sampling Results (January, 1995) |              |                   |            |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------|--------------|-------------------|------------|-----------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                 |                         | All Result                                               |              |                   |            |                                                                                                                 | /           | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | Γ                                                                                                               |                         | Sample Lo                                                |              |                   | <u></u>    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       |                                                                                                                 |                         |                                                          | ater Elevati | ion (ft)          |            |                                                                                                                 | ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANALYTE                               | ANALYTICAL                                                                                                      | NYSDEC GROUNDWATER      | MW-1                                                     | MW-2         | MW-3              | MW-4       | MW-5                                                                                                            | MW-50       | MW-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ANALITE                               | METHOD                                                                                                          | STANDARD/GUIDANCE VALUE | 7.81                                                     | 12.51        | 2.68              | 1.09       | 6.89                                                                                                            | -           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TCL Volatiles                         | METHOD                                                                                                          |                         |                                                          |              |                   |            |                                                                                                                 | WW-5 DUP E  | QBLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Methylene Chloride                    | NYSDEC 91-1                                                                                                     | 0.005                   | ND JE                                                    | ND JE        | ND JE             | ND JE      | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acetone                               | NYSDEC 91-1                                                                                                     | 0.050                   | ND                                                       | ND           | ND                | ND         | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1,1-Dichloroethane                    | NYSDEC 91-1                                                                                                     | 0.005                   | ND                                                       | 0.003 J      | ND                | ND         | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chloroform                            | NYSDEC 91-1                                                                                                     | 0.007                   | 0.019                                                    | ND           | ND                | ND         | 0.033                                                                                                           | 0.035       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Benzene                               | NYSDEC 91-1                                                                                                     | 0.0007                  | ND                                                       | ND           | ND                | 0.049      | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Toluene                               | NYSDEC 91-1                                                                                                     | 0.005                   | ND                                                       | ND           | ND                | 0.002 J    | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ethylbenzene                          | NYSDEC 91-1                                                                                                     | 0.005                   | ND                                                       | ND           | ND                | 0.007 J    | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | NYSDEC 91-1                                                                                                     | 0.005                   | ND                                                       | ND           | ND                | 0.001 J    | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Xylene (total)<br>Unknown Hydrocarbon | NYSDEC 91-1                                                                                                     | NA                      | ND                                                       | ND           | ND                | ND         | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TICs                                  | NYSDEC 91-1                                                                                                     | NA                      | ND                                                       | ND           | ND                | 0.795 J    | ND                                                                                                              |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · · · · · · · · · · · · · · · · · · · | NYSDEC 91-1                                                                                                     | NA                      | ND                                                       | ND           | ND                | 0.064      | ND                                                                                                              |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total BTEX                            | NTSDEC 91-11                                                                                                    |                         |                                                          |              |                   | 0.004      |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TCL Semivolatiles                     | NYSDEC 91-2                                                                                                     | 0.020 GV                | ND                                                       | ND           | 0.002 J           | ND         | ND                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>A cenapthene</u>                   |                                                                                                                 |                         | ND                                                       |              | 0.002 0<br>ND     | 0.023      | ND                                                                                                              |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenol                                | NYSDEC 91-2                                                                                                     | 0.001                   | ND                                                       | ND           | ND                | 0.002 J    | ND                                                                                                              |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| bis (2- Ethylhexyl) phthalate         | NYSDEC 91-2                                                                                                     |                         | ND                                                       |              | 0.023 J           | ND         | 0.007                                                                                                           | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Aromatic TICs                         | NYSDEC 91-2                                                                                                     | NA                      | ND                                                       |              | 0.023 0<br>ND     | ND         | ND                                                                                                              |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unki.own Hydrocarbons                 | NYSDEC 91-2                                                                                                     | NA                      | NR                                                       |              | NR                | NR         | NF                                                                                                              |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unknown Siloxane                      | NYSDEC 91-2<br>NYSDEC 91-2                                                                                      | NA NA                   | 0.004 J                                                  |              |                   | 0.043 J    | 0.004                                                                                                           | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other TICs                            | NTSDEC 91-2                                                                                                     |                         | 0.004 0                                                  | 0.010 4      | 0.001 q           | 0.040 9    | <u> </u>                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pesticides/PCBs                       |                                                                                                                 | NA                      | None det                                                 | astad in a   |                   | •          |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | NYSDEC 91-3                                                                                                     | NA                      | Inoue der                                                | ected in a   | ny sampe          | 5.         |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TAL Metals                            | CLP-M*                                                                                                          | NA                      | 0.748 J                                                  | 1.02 J       | 1.44 J            | 0.268 J    | NC                                                                                                              | L 66500     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Aluminum                              | the second se | 0.003 GV                | 0.748 J                                                  |              |                   | 0.200 G    |                                                                                                                 |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Antimony                              | CLP-M*<br>CLP-M*                                                                                                | 0.025                   | ND                                                       |              |                   | 0.142 J    | NC                                                                                                              |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Arsenic                               | CLP-M*                                                                                                          | 1.0                     | 0.023 B                                                  |              |                   | 0.142.0    |                                                                                                                 | 0.0159 B    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Barium                                |                                                                                                                 | 0.003                   | 0.023 B                                                  |              |                   | ND         |                                                                                                                 |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Beryllium                             | CLP-M*<br>CLP-M*                                                                                                | 0.003                   | ND                                                       |              |                   | 0.0035 B   |                                                                                                                 |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cadmium                               | CLP-M*                                                                                                          | NA                      | 45                                                       | 150          | 110               | 130        | 49.4                                                                                                            | 49.3        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Calcium                               |                                                                                                                 | 0.050                   | ND                                                       |              | 0.0058 B          |            | the second se |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chromium                              | CLP-M*                                                                                                          | 0.050                   | ND                                                       |              |                   |            |                                                                                                                 |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cobalt                                | CLP-M*                                                                                                          | 0.11                    | 0.007 B                                                  |              |                   | 0.0047 B   |                                                                                                                 |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Copper                                |                                                                                                                 | 0.30                    | 3.21                                                     | 3.28         | 41                | 29.5       | 0.485                                                                                                           | 0.666       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Iron                                  | CLP-M*<br>CLP-M*                                                                                                | 0.025                   | 0.003                                                    | 3.26<br>ND   |                   | 29.5<br>ND |                                                                                                                 |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lead                                  | CLP-M*                                                                                                          | 35                      | 7.4                                                      | 66.7         | 13.9              | 16.3       | 6.4                                                                                                             |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Magnesium                             |                                                                                                                 |                         |                                                          | 2.4          | 2.47              | 4.08       | 0.277                                                                                                           | 0.289       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Manganese                             | CLP-M*                                                                                                          | 0.3                     | 0.0698                                                   |              | 0.00059           | ·          | 0.00022                                                                                                         | 0.00024     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mercury                               | CLPM*                                                                                                           |                         |                                                          |              |                   |            |                                                                                                                 |             | and the second se |
| Nickel                                | CLP-M*                                                                                                          | NA                      | ND<br>ND                                                 |              | <u>ND</u><br>7.14 | 12.7       | NI                                                                                                              |             | 1.09 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Potassium                             | CLP-M*                                                                                                          | NA                      |                                                          |              | 7.14<br>F         |            |                                                                                                                 | - 12.9<br>F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Selenium                              | CLP-M*<br>CLP-M*                                                                                                | 0.010                   | 404                                                      | 53.4         |                   |            |                                                                                                                 |             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sodium<br>Vanadium                    |                                                                                                                 | 20                      | 18.1<br>ND                                               |              | 0.0217 E          |            |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vonedium                              |                                                                                                                 |                         |                                                          |              |                   | n NI       | a iNi                                                                                                           |             | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | CLP-M*                                                                                                          | NA<br>0.2               |                                                          |              |                   |            |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Zinc                                  | CLP-M*                                                                                                          | 0.3                     | 0.0099                                                   |              |                   | NC         |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       |                                                                                                                 |                         |                                                          | 0.0077 E     | 3 0.0208          | NC         | NI                                                                                                              | ND          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

\_\_\_\_

TABLE 6-2

#### TABLE 6-2 (continued)

Groundwater Gauging and Sampling Results (January, 1995)

|                           |            |                         | (All Resu                  | its Expres  | ssed in m  | g/l) |      |       |       |  |  |  |
|---------------------------|------------|-------------------------|----------------------------|-------------|------------|------|------|-------|-------|--|--|--|
|                           |            |                         | Sample L                   | ocation     |            |      |      |       |       |  |  |  |
|                           |            |                         | Groundwater Elevation (ft) |             |            |      |      |       |       |  |  |  |
| ANALYTE                   | ANALYTICAL | NYSDEC GROUNDWATER      | MW-1                       | MW-2        | MW-3       | MW-4 | MW-5 | MW-50 | MW-60 |  |  |  |
|                           | METHOD     | STANDARD/GUIDANCE VALUE | 7.81                       | 12.51       | 2.68       | 1.09 | 6.89 | -     |       |  |  |  |
| Conventional Analyses:    |            |                         | Note: Res                  | ults expres | ised in mg | /1   |      |       |       |  |  |  |
| Biochemical Oxygen Demand | 405.1      | NA                      | ND                         | ND          | ND         | ND   | ND   | ND    | NS    |  |  |  |
| Chemical Oxygen Demand    | 410.1      | NA                      | 11 J                       | 14 J        | 36 J       | 40 J | 51   | 49 J  | NS    |  |  |  |
| Chloride                  | 325        | NA                      | 51                         | 42          | 30         | 82   | 95   | 96    | NS    |  |  |  |
| Hardness                  | 242.1      | NA                      | 133                        | 637         | 310        | 372  | 142  | 147   | NS    |  |  |  |
| Nitrate, Nitrogen         | 353.2      | 10                      | 0.87                       | 0.6         | 0.25       | 0.2  | 0.53 | 0.59  | NS    |  |  |  |
| Oil & Grease              | 413.1      | NA                      | ND                         | ND          | 2          | ND   | 4    | 2     | NS    |  |  |  |
| Sulfate                   | 375.2      | 250                     | 61                         | 246         | 159        | 26   | 35   | 37    | N٤    |  |  |  |
| Sulfide                   | 376        | 0.050 GV                | ND                         | ND          | ND         | ND   | ND   | ND    | NS    |  |  |  |
| Total Dissolved Solids    | 160.1      | NA                      | 267                        | 906         | 575        | 550  | 289  | 285   | NS    |  |  |  |

GV - GUIDANCE VALUE

\* - CLP ANALYTICAL METHODS FOR METALS AS PER DOCUMENT ILM03.0

GROUND2.WK3

NR - NOT REPORTED

|                            | Summary of Waste Cha |                   |                            |        |          |         |         |
|----------------------------|----------------------|-------------------|----------------------------|--------|----------|---------|---------|
|                            |                      |                   | pcation/Inberval (in feet) |        |          |         |         |
| ANALYSIS/PARAMETER         | SMALL TANK SLUDGE    | SMALL TANK SLUDGE | SMALL TANK WATER           | TP-7   | TP-7     | TP-7    | TP-7    |
|                            | (STB-1/STS-1)        | STB-1 DL          | (STT-1)                    | 3      | 3 DL     | 9       | 9 DL    |
| TCLP Volatiles (mg/l)      |                      |                   |                            |        |          |         |         |
| Benzene                    | E                    | 48 J D            | 0.58                       | 1.9 E  | 0.86 J D | 3.5 E   | 1.1 J D |
| 1,2-Dichloroethane         | ND J                 | ND J              | ND J                       | ND J   | ND       | 0.05    | ND J    |
| Trichloroethylene          | ND J                 | ND J              | ND J                       | ND J   | ND       | ND J    | ND J    |
| TCLP Semi-Volatiles (mg/l) |                      |                   |                            | -      | ······   |         |         |
| Cresol                     | ND                   |                   | ND                         | E      | 31 D     | E       | 37 D    |
| Pyridine                   | ND                   | •••••             | ND J                       | 0.7    | 1.3 D    | 0.5     | 0.8 D   |
| TCLP Metals (mg/l)         |                      |                   |                            |        |          |         |         |
| Arsenic                    | ND                   | _                 | ND                         | ND     |          | ND      | -       |
| Barium                     | 389                  |                   | 0.12 B                     | 0.12 B | -        | 0.14 B  | -       |
| Cadmium                    | ND                   | _                 | ND                         | ND     | -        | ND      |         |
| Chromium                   | ND                   |                   | ND                         | 0.01   | -        | ND      |         |
| Lead                       | 160                  |                   | ND                         | ND     | -        | ND      |         |
| Mercury                    | 0.33                 |                   | ND                         | ND     |          | 0.0002  |         |
| Silver                     | ND                   |                   | ND                         | ND     |          | 0.008 B | _       |
| Corrosivity (inch/year)    |                      |                   |                            |        |          |         |         |
| Corrosivity                | ND                   |                   | ND                         | ND     |          | ND      |         |
| Reactive Cyanide (ppm)     |                      |                   |                            |        | _        |         |         |
| Reactive Cyanide           | ND                   |                   | ND                         | ND     | -        | ND      |         |
| Ignitabil'ty (f)           |                      |                   | _                          |        |          |         |         |
| Ingitability               | 212 E                |                   | <u>212 E</u>               | 212 E  |          | 212 E   | _       |
| Reactive Sulfide (ppm)     |                      |                   | -                          |        |          | -       |         |
| Reactive Sulfide           | ND                   |                   | ND                         | ND     | <u> </u> | ND      | -       |

TABLE 7–1 Summary of Waste Characteristics Analysis

.

.

WASTE.WK3

| Sample ID | Sampling Location  | Sampling Results (ug/sampling tube) |
|-----------|--------------------|-------------------------------------|
|           | BTEX by NIOSH Meth | nod 1501                            |
| TP2U-F    | TP2 upwind         | ND                                  |
| TP2D-F    | TP2 downwind       | ND                                  |
| TP5U-F    | TP5 upwind         | ND                                  |
| TP5D-F    | TP5 downwind       | ND                                  |
| TP6U-F    | TP6 upwind         | ND                                  |
| TP6D-F    | TP6 downwind       | ND                                  |
| TP2U-B    | TP2 upwind         | ND                                  |
| TP2D-B    | TP2 downwind       | ND                                  |
| TP5U-B    | TP5 upwind         | ND                                  |
| TP5D-B    | TP5 downwind       | ND                                  |
| TP6U-B    | TP6 upwind         | ND                                  |
| TP6D-B    | TP6 downwind       | ND                                  |

Table 8-1 Air Analytical Results

Key:

F = front filter

B = back tube

| Sample<br>ID | Sampling<br>Location | Sampling<br>Results<br>(ug/tube) | Flow Rate<br>(liters/min) | Time of<br>Sampling<br>(minutes) | Total Air<br>Value<br>(liters) | Concentration<br>(ug/L) |
|--------------|----------------------|----------------------------------|---------------------------|----------------------------------|--------------------------------|-------------------------|
|              | <u> </u>             | PAHs                             | by NIOSH Met              | hod 5575                         |                                |                         |
| AS1-F        | SB-28<br>(southern)  | Naphthalene<br>10 B              | 2                         | 331                              | 662                            | . 0.02                  |
| AS2-F        | SB-28<br>(eastern)   | 170 EB                           | 2                         | 331                              | 662                            | 0.26                    |
| AS2-FDL      | SB-28<br>(eastern)   | 290 BD                           | 2                         | 331                              | 662                            | 0.44                    |
| AS3-F        | SB-28<br>(western)   | 8 JB                             | 2                         | 331                              | 662                            | 0.01                    |
| AS4-F        | SB-28<br>(northern   | 6 JB                             | 2                         | 331                              | 662                            | 0.01                    |
| AS1-B        | SB-28<br>(southern)  | 3 JB                             | 2                         | 331                              | 662                            | 0.005                   |
| AS2-B        | SB-28<br>(eastern)   | 38 B                             | 2                         | 331                              | 662                            | 0.06                    |
| AS3-B        | SB-28<br>(western)   | 3 JB                             | 2                         | 331                              | 662                            | 0.005                   |
| AS4-B        | SB-28<br>(northern)  | 3 JB                             | 2                         | 331                              | 662                            | 0.005                   |

Key:

F = front filter

B = back tube

ug = microgram

B = analyte also detected in blank sample

J,E = estimated value

D = diluted sample

Note: Blank samples indicated concentration of naphthalene were present at up to 8  $\mu$ g/tube.



|           | TAL Metals and Cyanide (mg/l) |        |        |        |          |          |         |  |  |  |  |  |
|-----------|-------------------------------|--------|--------|--------|----------|----------|---------|--|--|--|--|--|
|           |                               |        |        | Sampk  | Location |          |         |  |  |  |  |  |
| ANALYTE   | ANALYTICAL                    | EQ-BLK | EQ-BLK | EQ-BLK | EQ-BLK   | EQ-BLK   | EQ-BLSS |  |  |  |  |  |
|           | METHOD                        | (GT-2) | (GT-4) | (GT-7) | (GT-15)  | (GT-15A) | (GT-2A) |  |  |  |  |  |
| Aluminum  | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Antimony  | CLP-M*                        | 0.064J | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Arsenic   | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Barium    | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Beryllium | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Cadmium   | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Calcium   | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Chromium  | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Cobalt    | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Copper    | CLP-M*                        | ND     | ND     | 0.402  | ND       | ND       | ND      |  |  |  |  |  |
| Iron      | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Lead      | CLPM*                         | ND     | 0.004  | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Magnesium | CLPM*                         | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Manganese | CLP-M*                        | ND     | ND     | ND     | 0.005B   | ND       | ND      |  |  |  |  |  |
| Mercury   | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Nickel    | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Potassium | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Selenium  | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Silver    | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Sodium    | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Thailium  | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Vanadium  | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Zinc      | CLP-M*                        | ND     | ND     | ND     | ND       | ND       | ND      |  |  |  |  |  |
| Cyanide   | CLP-M*                        | ND     | ND     | ND     | ND       | 0.00006J | ND      |  |  |  |  |  |

#### TABLE 9–1 Equipment Rinseate Sampling Results TAL Metals and Cyanide (mg/l)

\* - CLP Analytical Method for Metals as per Document ILM03.0

EQ-BLK – equipment blank

(GT-2) - Sample Delivery Group (SDG) number

EQ-BLSS - equipment blank collected during surface soil sampling

WSBMET.WK3

#### TABLE 9-2

#### Equipment Rinseate Sampling Results Pesticides and PCBs (mg/l)

|                     |             |        | S      | ample Loca | tion    |         |
|---------------------|-------------|--------|--------|------------|---------|---------|
| ANALYTE             | ANALYTICAL  | EQ-BLK | EQ-BLK | EQ-BLK     | EQ-BLK  | EQ-BLSS |
|                     | METHOD      | (GT-2) | (GT-4) | (GT-7)     | (GT-15) | (GT-2A) |
| alphaBHC            | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| beta-BHC            | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| delta-BHC           | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| gamma-BHC (Lindane) | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Heptachlor          | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Aldrin              | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Heptachlor epoxide  | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Endosulfan I        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Dieldrin            | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| 4,4'-DDE            | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Endrin              | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Endosulfan II       | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| 4,4'-DDD            | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Endosulfan sulfate  | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| 4,4'-DDT            | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Methoxychlor        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Endrin ketone       | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Endrin aldehyde     | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| alpha-Chlordane     | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| gamma-Chlordane     | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Toxaphene           | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Arocior-1016        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Aroclor-1221        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Arocior-1232        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Aroclor-1242        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Aroclor-1248        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Aroclor-1254        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |
| Aroclor-1260        | NYSDEC 91-3 | ND     | ND     | ND         | ND      | ND      |

WSBMET.WK3

EQ–BLK – equipment blank (GT–2) – Sample Delivery Group (SDG) number EQ–BLSS – eguipment blank collected during surface soil sampling

#### TABLE 9-3

#### Equipment Rinseate Sampling Results TCL Volatiles (mg/l)

|                             |             | TOL TOIAUI | <u>aa (m8n)</u> |        |              |         |        |         |
|-----------------------------|-------------|------------|-----------------|--------|--------------|---------|--------|---------|
|                             |             |            |                 | Sai    | nple Locatio | n       |        |         |
| ANALYTE                     | ANALYTICAL  | EQ-BLK     | EQ-BLKRE        | EQ-BLK | EQ-BLK       | EQ-BLK  | EQ-BLK | EQ-BLSS |
|                             | METHOD      | (GT2)      | (GT2)           | (GT4)  | (GT7)        | (GT-15) | (GT16) | (GT-2A) |
| Methylene Chloride          | NYSDEC 91-1 | 0.002B     | 0.002B          | 0.002B | ND           | ND      | NT     | 0.003B  |
| Acetone                     | NYSDEC 91-1 | ND         | ND              | ND     | ND           | ND J    | NT     | ND      |
| 2-Butanone                  | NYSDEC 91-1 | ND         | ND              | ND     | ND           | ND      | NT     | ND      |
| Benzene                     | NYSDEC 91-1 | ND         | ND              | ND     | ND           | ND      | ND     | ND      |
| Toluene                     | NYSDEC 91-1 | 0.002      | 0.002           | ND     | ND           | ND      | ND     | 0.003   |
| Ethylbenzene                | NYSDEC 91-1 | ND         | ND              | ND     | ND           | ND      | ND     | ND      |
| Xylene (total)              | NYSDEC 91-1 | 0.007      | 0.006           | ND     | ND           | ND      | ND     | ND      |
| Ethyl Methyl Benzene Isomer | NYSDEC 91-1 | ND         | ND              | ND     | ND           | ND      | NT     | ND      |
| Trimethyl Benzene Isomer    | NYSDEC 91-1 | ND         | ND              | ND     | ND           | ND      | NT     | ND      |
| Aromatic TICs               | NYSDEC 91-1 | 0.008      | 0.019           | ND     | ND           | ND      | NT     | ND      |
| Unknown Siloxane            | NYSDEC 91-1 | ND         | ND              | ND     | ND           | 0.232J  | NT     | ND      |
| Other TICs                  | NYSDEC 91-1 | 0.077      | ND              | 0.306  | 0.010        | ND      | NT     | 0.321   |

EQ-BLK -equipment blank

WSBVOLAT.WK3

(GT2) – Sample Delivery Group (SDG) number

EQ-BLSS - equipment blank collected during surface soil sampling

| TABLE | 9-4 |
|-------|-----|
|-------|-----|

Equipment Rinseate Sampling Results TCL Semivolatiles (mg/l)

|                     |             | ICL Semiv | Diaules (mg | <u> </u> |        |          |        |          |         |
|---------------------|-------------|-----------|-------------|----------|--------|----------|--------|----------|---------|
|                     |             |           |             |          | Sample | Location |        |          |         |
| ANALYTE             | ANALYTICAL  | EQ-BLK    | EQ-BLK      | EQ-BLK   | EQ-BLK | EQ-BLK   | EQ-BLK | EQBLK    | EQ-BLSS |
|                     | METHOD      | (GT 2)    | (GT 4)      | (GT-4A)  | (GT 7) | (GT-15A) | (GT16) | (GT-16A) | (GT-2A) |
| Phenol              | NYSDEC 91-2 | ND        | ND          | ND       | ND     | R        | NT     | ND J     | ND      |
| 2-Methylphenol      | NYSDEC 91-2 | 0.001J    | ND          | ND       | ND     | R        | NT     | ND J     | ND      |
| 4-Methylphenol      | NYSDEC 91-2 | 0.002J    | ND          | ND       | ND     | R        | NT     | ND J     | ND      |
| 2,4-Dimethylphenol  | NYSDEC 91-2 | ND        | ND          | ND       | ND     | R        | NT     | ND J     | ND      |
| Naphthalene         | NYSDEC 91-2 | 0.017J    | ND          | ND       | ND     | R        | ND     | ND J     | ND      |
| 2-Methylnaphthalene | NYSDEC 91-2 | 0.004J    | ND          | ND       | ND     | R        | NT     | ND J     | ND      |
| Acenaphthylene      | NYSDEC 91-2 | 0.004J    | ND          | ND       | ND     | R        | ND     | ND J     | ND      |
| Acenaphthene        | NYSDEC 91-2 | ND        | ND          | ND       | ND     | R        | ND     | ND J     | ND      |
| Dibenzofuran        | NYSDEC 91-2 | 0.005J    | ND          | ND       | ND     | R        | NT     | ND J     | ND      |
| Fluorene            | NYSDEC 91-2 | 0.007J    | ND          | ND J     | ND     | R        | ND     | ND J     | ND      |
| Phenanthrene        | NYSDEC 91-2 | 0.014     | ND          | ND       | ND     | R        | ND     | ND J     | ND      |
| Anthracene          | NYSDEC 91-2 | 0.003J    | ND          | ND       | ND     | R        | ND     | ND J     | ND      |
| Carbazole           | NYSDEC 91-2 | 0.002J    | ND          | ND J     | ND     | R        | NT     | ND J     | ND      |
| Fluoranthene        | NYSDEC 91-2 | 0.003J    | ND          | ND       | ND     | R        | ND     | ND J     | ND      |
| Pyrene              | NYSDEC 91-2 | 0.002J    | ND          | ND       | ND     | R        | ND     | ND J     | ND      |
| Aromatic TICs       | NYSDEC 91-2 | ND        | ND          | ND       | ND     | R        | NT     | ND J     | ND      |
| Other TICs          | NYSDEC 91-2 | 0.007     | 0.005       | ND       | 0.019  | R        | NT     | ND J     | 0.022   |
| Diethylphthalate    | NYSDEC 91-2 | ND        | ND          | 0.002J   | ND     | R        | ND     | ND J     | ND      |

EQ-BLK - equipment blank

(GT 2) - Sample Delivery Group (SDG) number

EQ-BLSS - equipment blank collected during surface soil sampling WSBSEMI.WK3

#### APPENDIX A

 $\left( - \right)$ 

#### DRILLING LOGS

GROUNDWATER TECHNOLOGY «

#### GROUNDWATER TECHNOLOGY

### Drilling Log

#### Monitoring Well MW-1

|                                                |                                                                                 |                                         | wher <u>Niagara Mohawk</u>                                                                                                                           | See Site Map<br>For Boring Location                                 |
|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Location <u>Water Street</u> ,                 | Iroy, New York                                                                  |                                         | Proj. No. <u>01110-0037</u>                                                                                                                          |                                                                     |
| Surface Elev.                                  | I otal Hole De                                                                  | epth <u>37.4</u>                        | ft. Diameter <u>8 in.</u>                                                                                                                            | COMMENTS:                                                           |
| Top of Casing                                  | _ Water Level In                                                                | nitial <u>301</u>                       | <i>t.</i> Static <i>21.1 ft.</i><br>Type/Size <i>PVC .010 in.</i>                                                                                    | * = Sample sent for TCL/TAL. ** =                                   |
| Screen: Dia <u>2 in</u>                        | Length 9 ft.                                                                    |                                         | Type <u>PVC</u>                                                                                                                                      | Sample sent for MGP indicators E ~<br>Sample sent for geotechnicals |
| Ell Material #0 Morie Sa                       | and                                                                             | Ri                                      | g/Core Mobile B-61/B-57                                                                                                                              |                                                                     |
| Drill Co. <u>ADT</u>                           | Method                                                                          | d HSA - L                               | priven Casing                                                                                                                                        |                                                                     |
| Driller Bowers & Harring                       | tanoa By S. Tic                                                                 | ce & J. Bis                             | hop Date <u>8/30-9/2/9</u>                                                                                                                           |                                                                     |
| Checked By                                     |                                                                                 | License N                               | 0                                                                                                                                                    |                                                                     |
| Depth<br>(ft.)<br>(ft.)<br>Completion<br>(ppm) | ple<br>Cou                                                                      | Graphic<br>Log<br>JSCS Class.           | Descripti<br>(Color, Texture, S<br>Trace < 10%, Little 10% to 20%, Some                                                                              | Structure)                                                          |
|                                                |                                                                                 |                                         | 0'-2': Cancrete                                                                                                                                      |                                                                     |
|                                                | ~ <                                                                             | ······································  | e                                                                                                                                                    |                                                                     |
| - 2 - 0                                        | 50% 50% 6                                                                       | · · · · · · · · · · · · · · · · · · ·   | 2'-4': Dry, brown FINE SAND, trace<br>sand                                                                                                           | silt, trace clay, trace coarse                                      |
| - 4 - o                                        | 2% 0<br>5-5-0-7 0                                                               | 0.00<br>0.00<br>0.00<br>0.00<br>Fit     | 4'-6': Same as above with trace fin<br>charred wood, loose                                                                                           | e gravel, trace sticks, trace                                       |
|                                                | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0 | · · · · · · · · · · · · · · · · · · ·   | 6'-8': No sample                                                                                                                                     |                                                                     |
| - 8 - 1.7                                      | 50%<br>8-10-12-13                                                               |                                         | *8'–10': Dry, gray–black, medium–co<br>fine–medium gravel sized SLAG, trac                                                                           | parse sand sized, trace<br>ce brick, trace metal (fill)             |
|                                                | 30%<br>7-8-9-7                                                                  | <                                       | 10'—12': Same as above, slightly mois                                                                                                                | it                                                                  |
| - 12 - · · · · · · · · · · · · · · · · · ·     | 5%<br>7-7-8-10                                                                  | <^                                      | 12'-14': Same as above, 3 cobble si:                                                                                                                 | zed SLAG chunks                                                     |
| - 14 0.8                                       | 0.5%                                                                            |                                         | 14'-16': Wet, trace recovery, same a                                                                                                                 | as above                                                            |
| - 16 0.6                                       | 65%<br>10-9-8-7                                                                 | < ~ < < < < < < < < < < < < < < < < < < | @16'-18': Wet, Top of sample: SLAG,<br>fine medium SAND, trace fine grave                                                                            | same as above; Bottom: Brown,<br>I, loose, acetate sample           |
| - 18 - · · · · · · · · · · · · · · · · · ·     | 10%<br>6-7-7-8                                                                  | SP                                      | @18'-20': Wet, brown, FINE-MEDIUM                                                                                                                    | I SAND, trace fine gravel, loose                                    |
| - 20 - 0                                       | 80%<br>8-10-12-22                                                               | SP                                      | 20'-22': Wet, Top of sample: Gray-<br>SAND, some fine medium coarse gra<br>sample: Orange brown FINE-MEDIU<br>sample: Moist, dark gray, SILT, little | avel, slightly compact; Middle of<br>M SAND, loose; Bottom of       |
| - 22 - 0                                       | 5%<br>10-11-13-18                                                               | LIII MH<br>SP                           | - 22'-24': Wet, gray, FINE SAND                                                                                                                      |                                                                     |
| -24 0                                          | 85%                                                                             | - ML                                    | • · · · · ·                                                                                                                                          |                                                                     |

02/07/1995 Hhloo-mar93

#### Monitoring Well MW-1

| 6 | GROUNDWATER |
|---|-------------|
|   | GROUNDWATER |
|   | TECHNOLOGY  |

| Project <u>A</u><br>Location | VIMO – Tr<br>Water St | oy<br>reet, i | Ггоу, New Yo                           | r <u>k</u> C                  | wner <u>Niagara Mohawk</u><br>Proj. No. <u>01110–0037</u>                                                                                                                                                                               |
|------------------------------|-----------------------|---------------|----------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)               | Well<br>Completion    | (mqq)<br>DIq  | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Lag<br>USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                                                           |
| - 24 -                       |                       | 0             | 85%<br>8-8-9-11                        | ML                            | **24'-26': Wet, Top quarter of sample: Medium gray-orange brown,<br>CLAY and SILT, pliable; Bottom of sample: Medium-dark, gray FINE<br>SAND, some silt, trace clay, semi-compact (NOTE: Some brown                                     |
| - 26 -                       |                       | 0             | 80%<br>10-11-11-10                     | ULLI Pt<br>I I I I SM         | <ul> <li>peat and trace clay in sample bottom 4") Field duplicate taken.</li> <li>26'-28': Moist, medium-dark gray; Top 3": FINE SAND and SILT,<br/>little clay, loose; Bottom: CLAY, little-some silt, trace organics (thin</li> </ul> |
| - 28 -                       |                       | 0.1           | 10-12-13-15                            | CL                            | 28'-30': Slightly moist, medium-dark gray (micro varved), CLAY,<br>trace silt, trace fine gravel (dropstones), little peat (like) organics                                                                                              |
| - 30 -                       |                       | 0             | 20%<br><del>→</del> 55-75              |                               | (one seed pod) stiff<br>30'-32': Top of sample: Same as above; Bottom of sample: Wet,<br>green, gray, FINE SAND, little silt, loose; Sample shoe: Black, rich in<br>organics stems, seed pods.                                          |
| - 32 -                       |                       | 0.2           | 50%                                    | Pt<br>VOOD GP                 | 32'-34': Wet, medium gray, COARSE SAND and FINE-MEDIUM<br>COARSE GRAVEL, some medium sand, little-trace clay, trace                                                                                                                     |
| - 34 -                       |                       | 0             | 5%<br>8-6-8-6                          |                               | 34'—36': Wet, gray/multicolored, loose/slightly pliable, CLAY and FINE GRAVEL, little cobbles, little fine sand, little coarse sand,                                                                                                    |
| - 36 -                       |                       | 0             | 70%<br>7-8-7-8                         | 202<br>                       | 36'–38': Wet, gray, loose, FINE SAND and SILT, same as above,<br>but little/some fine gravel, trace cobbles, trace clay little coarse                                                                                                   |
| - 38 -                       |                       | 0             | 90%<br>12-10-15-17                     |                               | 38'-40': Wet, gray, loose, FINE SAND, some coarse sand, little silt, trace clay and cobbles, trace/little fine gravel                                                                                                                   |
| - 40                         |                       |               | 8%<br>2-27-19-18                       | SP                            | 40'-42': Same as above, but trace/little clay                                                                                                                                                                                           |
| - 42 -                       |                       | 0             | 20%<br>7-19-17-19                      |                               | 42'-44': Same as above but little/some gravel                                                                                                                                                                                           |
| - 44                         |                       | 0             | 8%<br>29-10-10-12                      |                               | - 44'-46': Wet, multicolored, loose, COARSE SAND and FINE GRAVEL, trace little fine sand, trace medium sand                                                                                                                             |
| - 46 -                       |                       | 0             | 70%<br>7-8-7-9                         | ooc<br>sw                     | - **46'-48': Wet, gray, loose, COARSE SAND and FINE SAND, little fine gravel, trace silt, trace coarse gravel                                                                                                                           |
| - 48 -                       |                       | 0             | 10%<br>26-19-19-16                     |                               | - 48'-50': Wet, gray, loose to slightly pliable COARSE SAND, little clay, little/some gravel, little cobbles, little fine sand, minor shale                                                                                             |
| - 50 -                       |                       | 0             | 50%<br>17-12-10-12                     |                               | - 50'-52': Wet, gray, loose, FINE SAND, trace/little coarse sand, trace fine gravel, trace silt                                                                                                                                         |
| - 52 -                       |                       | 0             | 100%<br>6-11-14-18                     | SF                            | 52'-54': Same as above, but gray/brown, no coarse sand, no silt, trace clay in tip                                                                                                                                                      |
| - 54 -                       |                       | 0             | 45%<br>10-9-7-18                       |                               | 54'—56': Same as above, but no gravel, varve near bottom (dark<br>gray below varve)                                                                                                                                                     |
| - 56 -                       |                       | 0             | 100%                                   |                               |                                                                                                                                                                                                                                         |

# GROUNDWATER TECHNOLOGY

#### Drilling Log

| Project $\underline{\Lambda}$ | IIMO — Tr<br>Water St                          | oy<br>reet, T | Troy, Ne                 | w Yo       | rk             | _ 0         | wner <u>Niagara Mohawk</u><br>Proj. No. <u>01110-0037</u>                                                     |
|-------------------------------|------------------------------------------------|---------------|--------------------------|------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)                | Well<br>Completion                             | (mqq)         | Sample ID<br>Blow Count/ |            | Graphic<br>Log | USCS Class. | Description<br>(Color. Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |
| - 56 -                        |                                                | 0             | <br>4-52-10              | 00%<br>0/4 |                | SP          | **56'-58': Same as above, but little cobbles                                                                  |
| - 58 -                        |                                                |               |                          |            |                |             | End of boring. Refusal, casing would not advance with 375 pound hammer.                                       |
| - 60 –                        |                                                |               |                          |            |                |             |                                                                                                               |
| <br>- 62 -                    |                                                |               |                          | •          |                |             |                                                                                                               |
| <br>- 64                      |                                                |               |                          |            |                |             | ·                                                                                                             |
| - 66 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 68 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 70                          |                                                |               |                          |            |                |             |                                                                                                               |
|                               | ана<br>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |               |                          |            |                |             |                                                                                                               |
| - 72 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| -74-                          |                                                |               |                          |            |                |             |                                                                                                               |
| - 76 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 78 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 80 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 82 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 84 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 86 -                        |                                                |               |                          |            |                |             |                                                                                                               |
| - 88 -                        | -                                              |               |                          |            |                |             | -                                                                                                             |
| .L                            |                                                |               | <u> </u>                 |            | 1              |             | Page: 3 of 3                                                                                                  |

GROUNDWATER Technology

#### Monitoring Well MW-2

| Project <u>N</u> | 1<br>1 – 0MI       | <u>roy</u>   |                                        |                                       | _ 0       | wner <u>Niagara Mohawk</u>                                                   | See Site Map<br>For Boring Location                        |
|------------------|--------------------|--------------|----------------------------------------|---------------------------------------|-----------|------------------------------------------------------------------------------|------------------------------------------------------------|
| Location         | <u>Water S</u>     | treet, 1     | roy, New Yol                           | rk                                    |           | Proj. No. <u>01110-0037</u>                                                  |                                                            |
| Surface E        | lev                | <b>.</b>     | Total Hole C                           | Depth 🛓                               | 26.2      | ft. Diameter <u>8 in.</u>                                                    | COMMENTS:                                                  |
| Top of Ca        | sing               |              | Water Level                            | Initial .                             | 12.2      | ft. Static <u>16.2 ft.</u>                                                   |                                                            |
| Screen: D        | ia <u>2 in.</u>    |              | Length 15 f                            | t                                     |           | Type/Size <u>PVC .010 in.</u>                                                | * = TCL/TAL ** = MGP INDICATORS                            |
| Casing: Di       | a                  | aria Ca      | Length                                 |                                       |           | Type                                                                         |                                                            |
| Fill Materia     | al <u>#0 M</u>     | orie Sal     | <u>יים</u>                             |                                       | - HI<br>4 | g/Core <u>ATV B-57</u>                                                       | <i>6</i> .                                                 |
| Drill Co. A      | Harring            | top          | Meth                                   | oa <u>nor</u><br>Iishan               | <u> </u>  | Date <u>9/6/94</u> Permit #                                                  |                                                            |
|                  |                    |              |                                        |                                       |           | 0 Hate Termit #                                                              |                                                            |
|                  |                    | - <u>1</u> 1 |                                        |                                       | 501       | · · · · · · · · · · · · · · · · · · ·                                        | "I                                                         |
| Depth<br>(ft.)   | Well<br>completion | DId<br>OId   | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log                        | scs Clas  | Descript<br>(Color, Texture, S<br>Trace < 10%, Little 10% to 20%, Some       | Structure)                                                 |
| 2                | U                  |              | 0, 11 %                                |                                       | 2         |                                                                              |                                                            |
|                  |                    |              | -                                      |                                       |           |                                                                              |                                                            |
| - 0 -            | 0.<br>836 8        | 0            | 35%<br>2-14-12-20                      |                                       |           | 0'-2': Dry, slightly moist at bottom,<br>compact, FINE SAND, little cobbles, | light brown, loose to slightly<br>trace fine gravel (SLAG) |
| - 2              |                    | 12.3         | 40%<br>11-6-7-8                        |                                       |           | 2'-4': Same as above, but brown/re                                           | d, trace cobbles                                           |
| - 4 -            |                    | 2            | 55%<br>-27-53-80                       |                                       |           | 4'-6': Same as above, medium grave                                           | el, black at top                                           |
| - 6 -            |                    | 46.9         | 50%<br>2-12-20-15                      |                                       |           | **6'-8': Same as above, but trace                                            | clay (* MGP)                                               |
| - 8              |                    | 0            | 80%<br>2-12-20-15                      |                                       |           | 8'-10': Same as above, little clay at                                        | top                                                        |
| - 10             |                    | 0            | 40%<br>8-17-23-37                      | × × × × ×                             | Sleg/F    | 10'—12': Same as above, but trace c<br>brick in tip)                         | obbles (one slag, 3" diameter                              |
| - 12             |                    | 5.3          | 15%<br>80-50/1                         | × × × ×                               |           | *12'-14': Dry, red, loose FINE-COAI<br>(**TCL/TAL) little fine gravel (sla   | RSE SAND (SLAG),<br>g)                                     |
| - 14 -           |                    | 0            | 20%<br>7-29-20-13                      |                                       |           | ××14'−16': Same as above, but wet,                                           | red/blue, loose (* MGP)                                    |
| - 16             |                    | 0            | 15%<br>8-9-11-13                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           | 16'-18': Wet, dark gray, pliable, CLA'<br>sand, little cobbles (slag)        | Y, trace fine sand, trace coarse                           |
| - 18 -           |                    | · 0          | 95%<br>8-5-8-10                        |                                       |           | 18'—20': Same as above, but gray/t<br>silt                                   | an, no cobbles, no sand, trace                             |
| - 20 -           |                    | 0            | 90%<br>4-6-7-9                         | V V V V V                             |           | 20'-22': Same as above                                                       |                                                            |
| - 22 -           |                    | 0            | 100%<br>9-11-9-15                      |                                       | SM        | **22'-24': Same as above, but mo<br>SAND, little silt, stiff/leathery(* M    | tled tan/orange; Bottom half:<br>GP)                       |
| - 24 -           |                    | ·            | 100%                                   |                                       | ML        |                                                                              |                                                            |

02/07/1995 Ithloo-mar93

•

#### GROUNDWATER Technology

| Project <u>1</u><br>.ocation | <u>VIMO — Tr</u><br><u>Water Sti</u> | oy<br>reet, T | Ггоу, New Yoi                          | rk             | _ 0         | wner <u>Niagara Mohawk</u><br>Proj. No. <u>01110-0037</u>                                                     |
|------------------------------|--------------------------------------|---------------|----------------------------------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)               | well<br>Completion                   | PID<br>(mqq)  | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log | uscs Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |
| - 24 -<br><br>- 26           |                                      |               | 100%<br>8-12-13-35                     |                | ML          | 24'-26': Moist, tan, stiff, CLAY and SILT, little fine sand at bottom,<br>bedrock (shale) at 26'              |
| - 20 -<br>- 28 -             |                                      |               |                                        |                |             | End of baring.                                                                                                |
| - 20 -<br>- 30 -             |                                      |               |                                        |                |             |                                                                                                               |
| - 30 -<br>- 32 -             |                                      |               | -                                      |                |             |                                                                                                               |
| - 34 -                       |                                      | -             |                                        |                |             |                                                                                                               |
| - 36 -                       |                                      |               |                                        |                |             |                                                                                                               |
| - 38                         |                                      |               |                                        |                |             |                                                                                                               |
| - 40                         |                                      |               |                                        |                |             |                                                                                                               |
| <br>- 42                     |                                      |               |                                        |                |             |                                                                                                               |
| <br>- 44                     |                                      |               |                                        |                |             |                                                                                                               |
| - 46 -                       |                                      |               |                                        |                |             |                                                                                                               |
| - 48 -                       |                                      |               |                                        |                |             |                                                                                                               |
| - 50 -                       |                                      |               |                                        |                |             |                                                                                                               |
| - 52 -                       |                                      |               |                                        |                |             |                                                                                                               |
| - 54 -                       |                                      |               |                                        |                |             |                                                                                                               |
| -<br>- 56 -                  |                                      |               |                                        |                |             | Page: 2 of                                                                                                    |

Groundwater Technology

|                                                                                                                                          | 102001                                 |                              |                                                                              |                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Project <u>NIMO - Troy</u>                                                                                                               |                                        |                              |                                                                              | See Site Map<br>For Boring Location                                            |
| Location Water Street                                                                                                                    | , Troy, New Yol                        | rk                           | Proj. No. <u>01110-0037</u>                                                  | -                                                                              |
| Surface Elev.                                                                                                                            | Total Hole D                           | )epth <u>50 fi</u>           | Diameter <u>8 in.</u>                                                        | - COMMENTS:                                                                    |
| Top of Casing                                                                                                                            | Water Level                            | Initial <u>20</u>            | <u>'t</u> Static <u>23 ft.</u>                                               | -                                                                              |
| Screen: Dia <u>2 in.</u>                                                                                                                 | Length <u>20 1</u>                     | ft.                          | Type/Size <u>PVC .010 in.</u>                                                | # = Sample sent for TCL/TAL. ** =<br>Sample sent for MGP indicators. M =       |
|                                                                                                                                          |                                        |                              | Type <u><i>PVC</i></u>                                                       | <ul> <li>Sample sent for MS/MSD. Running sands<br/>filled to 39.3'.</li> </ul> |
|                                                                                                                                          |                                        |                              | ig/Core ATV B-57                                                             | -                                                                              |
| Drill Co. ADT                                                                                                                            | Meth                                   | od <u>HSA</u>                |                                                                              | -                                                                              |
| Driller <u>M. Harrington</u>                                                                                                             | Log By <u>J. B</u>                     | lishop                       | Date <u>8/23/94</u> Permit #                                                 | _                                                                              |
| Checked By                                                                                                                               |                                        | License 1                    | ło                                                                           | -                                                                              |
| Depth<br>( ft.)<br>( ft.)<br>Campletion                                                                                                  | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log<br>SCS Class. | Descrip<br>(Color, Texture,<br>Trace < 10%, Little 10% to 20%, Som           | Structure)                                                                     |
| Ů                                                                                                                                        | × ۳ ۵                                  | O SN                         |                                                                              | 12 20% to 33%, And 33% to 30%                                                  |
|                                                                                                                                          |                                        | 00<br>0<br>00<br>            | 0'—2': Dry, slightly moist, loose, FII<br>trace medium sand, trace coarse s  | NE SAND and COBBLES (fill),<br>sand                                            |
|                                                                                                                                          | 3 20%<br>16-15-11-8                    |                              | 2'-4': Same as above, but brown/r                                            | red color, slag, trace fine gravel                                             |
|                                                                                                                                          | 25%<br>5-5-5-50/3                      |                              | 4'-6': Same as above, but some c                                             | obbles, slightly moist                                                         |
|                                                                                                                                          |                                        |                              | 8'-10': Same as above, but some m                                            | nedium sand                                                                    |
| $   \begin{array}{c cccccccccccccccccccccccccccccccccc$                                                                                  | 21-29-51-44                            |                              | 10'-12': Same as above, but fine sa                                          | and, and cobbles                                                               |
| $-\frac{-\sqrt{r}}{\sqrt{r}}$ $\frac{\sqrt{r}}{\sqrt{r}}$ $\frac{\sqrt{r}}{\sqrt{r}}$ $\frac{\sqrt{r}}{\sqrt{r}}$ $\frac{6.1}{\sqrt{r}}$ |                                        |                              | 12'-12.8': Same as above                                                     |                                                                                |
| - 14 - 6.                                                                                                                                |                                        |                              | 14'-16': Same as above, but some                                             | coarse sand, little cobbles                                                    |
| - 16                                                                                                                                     | 3 60%<br>10-7-8-15                     |                              | 16'—18': Dry/slightly moist, black/re<br>COBBLES, little coarse sand, little | ed, loose, MEDIUM SAND and fine gravel, slag                                   |
|                                                                                                                                          | .8 65%<br>14-15-11-20                  |                              | 18'—20': Same as above, but trace<br>MEDIUM SAND, trace gypsum               | e/little cobbles, FINE SAND and                                                |
| - 20                                                                                                                                     | 2 5%                                   |                              | ¥ 20'-22': Same as above, but wet                                            |                                                                                |
| - 22                                                                                                                                     | 8 3%                                   |                              | 22'-24': Wet, black/red, loose, CO<br>fine sand, cobble stuck in spoon       | BBLES, trace fine gravel, trace                                                |
| -24 $-24$ $3.$                                                                                                                           | 5 80%                                  | V V V                        |                                                                              |                                                                                |
|                                                                                                                                          |                                        | - Liberton and Antonia       |                                                                              | Pade: 1 of 2                                                                   |

·

# GROUNDWATER

| _ocation        |                    | C Ê          | a ID<br>bunt/<br>very                  | 1              | lass.    | Description                                                                                                                                             |
|-----------------|--------------------|--------------|----------------------------------------|----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>( ft.) | Well<br>Campletion | PID<br>(mqq) | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log | uscs CI  | (Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to !                                                            |
| - 24 -          |                    | 3.5          | 60%<br>4-18-18-23                      | Y YYY          | Slag     | 24'—26': Wet, black, loose, FINE SAND, little/some cobbles, trac<br>coarse sand, fine sand at tip                                                       |
| - 26 -<br>      |                    | 23           | 55%<br>8-19-20-20                      |                |          | *26'-28': Wet, gray, loose, FINE SAND, trace/little fine gravel<br>(rounded), trace silt (* TCL/TAL, MS/MSD)                                            |
| - 28            |                    | 18.4         | 65%<br>7-13-11-11                      |                |          | 28'—30': Same as above, but trace cobbles                                                                                                               |
| - 30 -          |                    | 5.9          | 60%<br>10-1 <u>5</u> -16-18            |                | SP       | 30'—32': Same as above, but trace/little coarse sand, fining up<br>interval                                                                             |
| - 32 -<br>      |                    | 1.8          | 80%<br>0-18-18-25                      |                |          | **32'—34': Top: Same as above; Bottom: Wet, gray, pliable, CLA<br>and SILT, little fine sand, little organics, layered clay/organics,<br>fine sand—silt |
| - 34 -          |                    | 0.2          | 80%<br>0-10-16-27                      |                | ML<br>CL | 34'—36': Same as above (bottom)                                                                                                                         |
| - 36 -          |                    | 1.8          | 70%<br>13-14-11-12                     |                | ML       | 36'—38': Wet, gray, loose, FINE SAND and COBBLES, trace fine gravel                                                                                     |
| - 38 -          |                    | 2            | 0%<br>6-22-32-28                       | 0000           | GP       | 38'-40': No recovery                                                                                                                                    |
| - 40 -          |                    | 9.3          | 5%<br>7-27-21-28                       |                | sc       | 40'-42': Same as above, but FINE SAND and CLAY                                                                                                          |
| - 42 -          |                    | 5.6          | 50%<br>14-15-21-15                     |                |          | 42'-44': Same as 36'-38', but some cobbles, little/some coarse<br>sand                                                                                  |
| - 44 -          |                    | 7.9          | 5%<br>28-22-13-14                      | 3000°          | GP       | 44'-46': Same as above, cobble stuck in spoon                                                                                                           |
| - 46 -          |                    | 10.5         | 55%<br>13-8-7-10                       | 000            | ·<br>·   | **46'-48': Wet, gray, loose, FINE SAND, trace coarse sand, tr<br>fine gravel (* MGP)                                                                    |
| - 48 -          |                    | 9.7          | 60%<br>14-7-7-10                       |                | . sw     | 48'-50': Same as above                                                                                                                                  |
| - 50 -          |                    |              |                                        |                | •        | End of boring.                                                                                                                                          |
| - 52 -          | -                  |              |                                        |                |          |                                                                                                                                                         |
| -               | -                  |              |                                        |                |          | -                                                                                                                                                       |
| - 54 -          | -                  |              |                                        |                |          |                                                                                                                                                         |
| - 56 -          | _                  |              |                                        |                |          |                                                                                                                                                         |

#### TECHNOLOGY See Site Map For Boring Location \_\_\_\_ Owner <u>Niagara M</u>ohawk Project NIMO - Troy Location <u>Water Street, Troy, New York</u> \_\_\_ Proj. No. <u>01110-0037</u> Surface Elev. \_\_\_\_\_ Total Hole Depth <u>66 ft.</u> Diameter <u>8 in.</u> COMMENTS: Top of Casing \_\_\_\_\_ Water Level Initial 35 ft. Static 27.3 ft. \_\_\_\_\_ Type/Size <u>PVC .010 in.</u> \* - Indicates sample sent for TCL/TAL \*\* - sample sent for MGP \*\*\* - Sample for Geotechnocals indicators E - Field Screen: Dia 2 in. Length 15 ft. \_ Type <u>PVC</u> \_\_\_\_ Length <u>36 ft.</u>\_\_\_ Casing: Dia 2 in. duplicate sent \_ Rig/Core <u>B-61</u> Fill Material #0 Morie Sand \_\_\_\_\_ Method <u>HSA</u> Drill Co. <u>ADT</u> Driller D. Bowers Log By S. Tice \_\_\_\_ Date <u>8/22-23/94</u> Permit # License No. Checked By \_ Class. Well Completion Blow Count/ Recovery 2 Graphic Log Description Depth (ft.) CI d DI d Sample (Color, Texture, Structure) SCS Trace < 10%. Little 10% to 20%, Some 20% to 35%, And 35% to 50% Х -2 0'-2': Dry/moist, light brown, SLAG, little to some medium sand, 0 1% 1.2 trace organics (soil) -23-24-18 20 2'-4': No recovery, drilled through concrete fill material 2 4'-6': Dry, dark red-brown SLAG, trace brick (medium sand to 4 13.6 55% < coarse gravel sized) 17-12-8-8 6'-8': No recovery 6 0% 2-18-18-25 8'-10': Same as 4'-6' 8 9.3 5% 8-8-5-4 10'-12': Dry/moist, same as above, little cream-buff colored SLAG 10 2.4 7-8-8-7 Slac 12'-14': Same as above, some very coarse gravel sized chunks, 12 18 SLAG 5-7-7-7 14'-16': No recovery 14 50-50/0" Auger refusal at 16', moved and re-drilled 16 16'-18': Same as 12'-14', difficult to drill 36 1% ζ 50/4" 18 < 20'-22': Dry, dark brown, SLAG, moist medium-coarse sand sized 20 78 2% chunks, little coarse gravel, sized SLAG chunks -28-28-30 22'-24': Top: Same as above; Bottom: Moist, medium gray, FINE 22 5% SAND, little-trace clay, little coarse sand, trace fine gravel SC 8-10-12-12 GP 24 2% 135 GC

Drilling Log

Monitoring Well MW-4

GROUNDWATER

# GROUNDWATER

#### Monitoring Well MW-4

| Project A      | IIMO — Tr<br>Water St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oy<br>reet, 1 | Ггоу, New Yo                           | rk                                   | _ 0         | wner <u>Niagara Mohawk</u><br>Proj. No. <u>01110-0037</u>                                                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|--------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.) | well<br>Completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (mqq)<br>OId  | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log                       | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                           |
| - 24 -         | V V<br>V V<br>V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 135           | 2%<br>8-10-8/2"                        |                                      |             | 24'-26': Wet, black, GRAVEL, some sand                                                                                                                                                                  |
| - 26 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.8          | 50%                                    | 5000<br>5000<br>5000<br>5000<br>5000 | GC          | *26'-28': Wet, dark gray, FINE-MEDIUM GRAVEL, some clay (clay<br>is dark brown), trace organic (small pieces of twigs), loose<br>¥                                                                      |
| - 28 -         | 17 17 1<br>17 17 17 1<br>17 17 17 17 17 17 17 17 17 17 17 17 17 1 | 60.1          | 20%<br>10-12-15-13                     | 8. E.L.                              |             | *<br>***28'-30': Wet, FINE to MEDIUM SAND, some coarse sand and<br>fine gravel; Sampled acetate for density                                                                                             |
| - 30 -         | 2 2 2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.8          | 60%<br>10-1 <u>2-</u> 15-13            |                                      | SP          | 30'-32': Wet, medium-dark gray, MEDIUM-FINE SAND, some coarse<br>sand to fine gravel (as a layer 4") thick in mid spoon well rounded<br>various lithologies, loose                                      |
| - 32 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75            | 20%<br>8-11-10-8                       |                                      |             | **32'-34': Same as above, no apparent layering however, loose                                                                                                                                           |
| - 34 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22            | 70%<br>4-5-8-5                         | 0.00.0                               | G₩          | 34'-36': Wet, medium-dark gray, MEDIUM to FINE SAND and FINE<br>GRAVEL, grade to pure gray CLAY later 5" thick grades back to<br>above, near sample shoe, clay is stiff, with trace silt, sand is loose |
| - 36 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7           | 85%                                    |                                      |             | *36'-38': Wet, medium-dark gray, MEDIUM SAND, and fine-medium<br>GRAVEL, little clay, trace silt, loose                                                                                                 |
| - 38 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                        |                                      |             | *38'-40': No sample taken due to loss and retrieval of sampler<br>above plus 10 feet of rod (NOTE: Sent duplicate of above sample<br>36'-38' for analysis labeled as 38'-40')                           |
| - 40<br>42     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                        |                                      | GC          |                                                                                                                                                                                                         |
| - 44           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.2           | 5%<br>4-5-4-8                          |                                      |             | 43'-45': Wet, gray, MEDIUM-FINE GRAVEL, some coarse sand, trace silt, little-trace clay, loose                                                                                                          |
| - 46           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3           | 5%                                     | 0.0.0                                | GŴ          | 45'-47': Same as above                                                                                                                                                                                  |
| - 48 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.35          | 8-11-10-10                             | 0.0                                  | -<br>-<br>- | ***47'-49': Wet, gray, COARSE-MEDIUM SAND, trace fine gravel, trace silt, loose                                                                                                                         |
| - 50 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.9           | 80%<br>13-10-9-10                      |                                      |             | ***49'-51': Same as above                                                                                                                                                                               |
| - 52 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.1           | 10%                                    |                                      | :<br>: sw   | 51'-53': Wet, same as above, little to trace fine-coarse gravel                                                                                                                                         |
| - 54 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3<br>12     | 13-18-17-21                            |                                      | •           | 53'-55': Wet, gray, COARSE SAND, trace fine gravel, trace clay<br>loose<br>54'-56': Same as above                                                                                                       |
| - 56 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.8           | 23-5-23-20                             |                                      | :<br>\sc    |                                                                                                                                                                                                         |

02/07/1995 [thiog-mar93

-

GROUNDWATER TECHNOLOGY

| Project 1<br>Location | NIMO – Tr<br>Water St | oy<br>reet, i | Troy, Ne | ew Yo      | rk             | _ 0         | wner <u>Niagara Mohawk</u><br>Proj. No. <u>01110-0037</u>                                                        |
|-----------------------|-----------------------|---------------|----------|------------|----------------|-------------|------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)        | Well<br>Completion    | PID<br>(mqq)  |          | % Recovery | Graphic<br>Log | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%    |
| - 56 -                |                       | 8.8<br>33     | -37-24   |            |                |             | 56'-58': Wet, gray, COARSE SAND, little fine gravel, some clay,<br>loose- compact                                |
| - 58 -                |                       | 12.8          |          | 5%         |                | sc          | 58'-60': Same as above, but trace coarse gravel also loose                                                       |
| - 60                  |                       | 12.3          |          | 5%         |                | GC          | 60'-62': Wet, gray, COARSE SAND (little-some medium sand) some<br>fine-coarse gravel, little to some clay, loose |
| - 62 -                |                       | 15.1          | -        | 5%         |                | s₩          | 62'-64': Wet, gray, MEDIUM-COARSE SAND, trace silt, trace clay,<br>trace fine coarse gravel                      |
| -64-                  |                       |               |          |            | ·····          |             | 64'-66': SHALE chips                                                                                             |
| - 66 -                |                       |               |          |            |                |             | Auger Refusal End of boring.                                                                                     |
| - 68 -                |                       |               |          |            |                |             |                                                                                                                  |
| - 70 -                |                       |               |          |            |                |             |                                                                                                                  |
| - 72 -                |                       |               |          |            |                |             |                                                                                                                  |
| -74-                  |                       |               |          |            |                |             |                                                                                                                  |
| - 76 -                |                       |               |          |            |                |             |                                                                                                                  |
| - 78 -                |                       |               |          |            |                |             |                                                                                                                  |
| - 80                  | -                     |               |          |            |                |             |                                                                                                                  |
| - 82 -                |                       |               |          |            |                |             |                                                                                                                  |
| - 84 -                |                       |               |          |            |                |             |                                                                                                                  |
| - 86 -                |                       |               |          |            |                |             | Y                                                                                                                |
| - 88 -                | -                     |               |          |            |                |             |                                                                                                                  |
| L                     |                       | <u></u>       | Ш.,      |            | 11             | 11          | Page: 3 of 3                                                                                                     |

GROUNDWATER Technology

9

| Project <u>NIMO - Troy</u><br>Location <u>Water Street</u> | See Site Map<br>For Boring Location    |                                       |                                                                                              |                                                                           |
|------------------------------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Surface Flev                                               | Total Hole Dep                         | nth 34.51                             | ft. Diameter <u>8 in.</u>                                                                    | COMMENTS                                                                  |
| Top of Casing                                              | Water Level Ini                        | nitial 22.0                           | <u>1 ft.</u> Static <u>19.6 ft.</u>                                                          |                                                                           |
| Screen: Dia 2 in.                                          | Length <u>15 ft.</u>                   |                                       | Type/Size <u>PVC .010 in.</u>                                                                | * = Sample sent for TCL/TAL. ** -                                         |
| Casing Dia 2 in.                                           | Length 17 ft.                          |                                       | Type PVC                                                                                     | Sample sent for MGP indicators. M =<br>Sample sent for MS/MSD. T = Sample |
| Fill Material #0 Morie Sa                                  | and                                    | Ri                                    | g/Core Mobile B-57                                                                           | sent for TPH analysis                                                     |
| Drill Co. ADT                                              | Method                                 | <u>HSA</u>                            | · · · · · · · · · · · · · · · · · · ·                                                        |                                                                           |
| Driller <u>M. Harrington</u>                               | _ Log By <u>J. Bish</u>                | һор                                   | Date <u>8/19/94</u> Permit #                                                                 |                                                                           |
| Checked By                                                 |                                        |                                       |                                                                                              |                                                                           |
| Depth<br>( ft.)<br>( ft.)<br>Completion<br>(ppm)           | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log<br>ISCS Class.         | Descripti<br>(Color, Texture, S<br>Trace < 10%, Little 10% to 20%, Some                      | Structure)                                                                |
| 0                                                          |                                        | - 5                                   |                                                                                              |                                                                           |
| 2-                                                         |                                        |                                       |                                                                                              |                                                                           |
|                                                            | 5% 0<br>5-16-36-39 0<br>0              | · · · · · · · · · · · · · · · · · · · | 0'-2': Moist, gray/tan, loose, FINE S<br>fine gravel, little cobbles, fill trace o           | SAND and COARSE SAND, little<br>organics (soil)                           |
|                                                            | 0%<br>0%<br>33-11-33-29                | 0.00<br>0.00<br>0.00<br>0.00<br>Fil   | 2'-4': No recovery                                                                           |                                                                           |
| $-4 - \frac{2}{2}$                                         | 40% 6.<br>8-12-10-13 6.                | · · · · · · · · · · · · · · · · · · · | 4'-6': Dry, black, loose, FINE and M<br>trace cobbles, trace coarse sand                     | EDIUM SAND, little fine gravel,<br>(brick and slag), fill                 |
| -6 - vr + vr + 4.7                                         | 55%<br>9-13-9-0                        |                                       | 6'-8': Sàme as above, but no brick                                                           |                                                                           |
| - 8 - vr vr 2.0                                            | 50%<br>8-8-5-5                         |                                       | 8'—10': Moist, tan/gray, pliable, CLA`<br>gravel, trace cobble, fill                         | Y and COARSE SAND, little fine                                            |
|                                                            | 65%<br>5-2-4-5                         |                                       | 10'—12': Top: Same as above; Botton<br>and COARSE SAND, little fine grave<br>and trace brick | n: Dry, black, loose, FINE SAND<br>I, trace/little cobbles, slag, fill    |
|                                                            | 10%<br>8-8-5-5                         |                                       | 12'—14': Same as above (bottom)                                                              |                                                                           |
| - 14 - 22.9                                                | 40%<br>10-8-7-5                        | Sleg                                  | 14'—16': Moist, tan/brown (mottled),<br>coarse gravel, trace cobbles, fill                   | pliable, CLAY and SILT, some                                              |
| - 16 - 12.4                                                | 35% v                                  |                                       | 16'—18': Top: same as above, but so<br>black/ red, loose, FINE SAND, little<br>slag, fill    | me fine sand; Bottom: Dry,<br>fine gravel, little coarse sand,            |
| - 18                                                       | 50%<br>34-29-50/2"                     |                                       | **18'-20': Same as above, but little                                                         | e cobbles, trace fine gravel (fill)                                       |
| - 20 - 37.6                                                | 80%<br>27-28-20-20 √                   |                                       | 20'-22': Same as above, but moist,                                                           | trace clay at top                                                         |
|                                                            | 00%<br>7-11-12-12                      |                                       | ♀ ××22'-24': Same as above, but wet                                                          | , no clay                                                                 |
| -24 - 232                                                  | 2 70%                                  | ₹' ∨ ¥ '<br><                         |                                                                                              | -                                                                         |

### GROUNDWATER

#### Drilling Log

#### Monitoring Well MW-5

| Project <u>/</u><br>Location | <u>VIMO — Tr</u><br>Wəter St | oy<br>reet, 1        | Troy, New Yo                           | rk                                                                    | 0           | Owner <u>Niagara Mohawk</u><br>Proj. No. <u>01110-0037</u>                                                                             |  |  |
|------------------------------|------------------------------|----------------------|----------------------------------------|-----------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth<br>(ft.)               | well<br>Completion           | (mqq <u>)</u><br>DIq | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log                                                        | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                          |  |  |
| - 24 -                       |                              | 232                  | 70%<br>4-4-5-9                         | <<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< |             | *24'-26': Wet, black, loose, FINE and COARSE SAND, some fine to<br>little gravel, trace cobble, SLAG, fill, saturated with heating oil |  |  |
| - 26 -                       |                              | 2258                 | 30%<br>5-12-21-20                      |                                                                       |             | T*M26'-28': Same as above, but little-fine sand, COARSE SAND<br>and FINE GRAVEL, trace clay, strong odor-saturated                     |  |  |
| - 28 -                       |                              | 94.5                 | 10%<br>9-9-8-7                         |                                                                       |             | 28'–30': Same as above, cinder block gravel and SLAG                                                                                   |  |  |
| - 30 -                       |                              | 120                  | 10%<br>12-41-8-7                       |                                                                       | Slag        | 30'-32': Same as above, but some cobbles                                                                                               |  |  |
| - 32 -                       |                              | 71.4                 | 5%<br>8-9-6-7                          |                                                                       |             | 32'—34': Wet, gray; loose, COBBLES and COARSE SAND, some fine/medium sand, little fine gravel, cinder block cobbles (fill)             |  |  |
| - 34 -                       |                              |                      | 25%<br>77-100/1"                       |                                                                       | SM          | **34'-34.5': Top: Wet, gray, loose, FINE SAND and SILT; Bottom:<br>Gray, shale - bedrock                                               |  |  |
| - 36 -                       |                              |                      |                                        |                                                                       |             | End of boring.                                                                                                                         |  |  |
| - 38 -                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 40 -                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 42 -                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 44                         |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 46 –                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| <br>- 48                     |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 50 -                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 52 -                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 54 -                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |
| - 56 -                       |                              |                      |                                        |                                                                       |             |                                                                                                                                        |  |  |

02/07/1995 ithlog-mar93

Groundwater Technology

9

#### Soil Boring SB-11

| Project 1          | VIMO -            | Troy                                   |                                        |            | Owner <u>Niagara Mohawk</u>                                         | See Site Map<br>For Boring Location                           |
|--------------------|-------------------|----------------------------------------|----------------------------------------|------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| Location           | Water             | Street, Troy                           | <u>, New Y</u>                         | <u>ork</u> | Proj. No. <u>01110-0037</u>                                         |                                                               |
| Surface B          | Elev              | To <sup>.</sup>                        | th <u>62 ft.</u> Diameter <u>8 in.</u> | COMMENTS:  |                                                                     |                                                               |
| Top of Ca          | asing _           | Wa                                     | ter Lev                                | el Ini     | tial Static                                                         |                                                               |
| Screen: [          | Dia               | Ler                                    | ngth                                   |            | Type/Size                                                           | * - Sample sent for TCL/TAL. ** -                             |
| Casing: D          | ia                | 10                                     | oath                                   |            | Type                                                                | Sample sent for gentechnicals M =                             |
| Fill Mater         | ial               |                                        |                                        |            | Rig/Core Mobil B-57                                                 | Sample sent for MS/MSD. A = Sample sent for atterberg limits. |
| Drill Co. A        | ADI               |                                        | Me                                     | thod.      | НЭА                                                                 |                                                               |
| Driller <u>M</u> . | Harring           | ton Log                                | а Ву <u>Ј</u> .                        | Bish       |                                                                     |                                                               |
|                    | Ву                |                                        |                                        |            | icense No                                                           |                                                               |
|                    |                   | Sample ID<br>Blow Count/<br>% Recovery | U                                      | ass.       | Descripti                                                           | 00                                                            |
| Depth<br>(ft.)     | pID<br>(mdd)      |                                        | Graphlc<br>Log                         | ΰ          | •                                                                   |                                                               |
| e<br>O             | <u>a</u> <u>a</u> |                                        | Ľa                                     | SS         | (Color, Texture, S                                                  |                                                               |
|                    |                   | S G %                                  | С<br>О                                 | JSN        | Trace < 10%, Little 10% to 20%, Some                                | 20% to 35%, And 35% to 50%                                    |
| 2 -                |                   |                                        |                                        |            |                                                                     |                                                               |
|                    |                   | -                                      | -                                      |            |                                                                     |                                                               |
|                    |                   |                                        |                                        |            |                                                                     |                                                               |
| - 0 -              |                   | 5%                                     |                                        |            | 0'-2': Dry, dark brown, loose, FINE SAND, lit<br>sand, trace cobble | tie fine gravel, trace coarse                                 |
|                    |                   | 14-50/3"                               |                                        |            | Sand, If ace coople                                                 |                                                               |
|                    |                   |                                        |                                        |            | 2'-4': Same as above, but no cobbles                                |                                                               |
| - 2 -              | 5.9               | 20%                                    |                                        | SP         | 2 -4. Same as above, but no cobbles                                 |                                                               |
| + -                |                   | 14-9-1-3                               |                                        |            |                                                                     |                                                               |
| - 4 -              |                   |                                        |                                        |            | 4'-6': Same as above, but some cobbles(S                            | 1 4 6 )                                                       |
| - 4 -              | 9.1               | 5%<br>8-14-10                          |                                        |            |                                                                     |                                                               |
|                    |                   | 0-14-10                                | A V K                                  |            |                                                                     |                                                               |
| - 6 -              |                   |                                        | YVY                                    |            | 6'-8': Same as above                                                |                                                               |
|                    | 7.2               | 2%<br>12-10-10-18                      | 41                                     |            |                                                                     |                                                               |
|                    |                   | 12-10-10-10                            | < < <                                  |            |                                                                     |                                                               |
| - 8 -              |                   |                                        | < X <                                  |            | 8'-10': Slightly moist, black/red, loose, FINE                      | SAND, some cobbles, trace                                     |
| U                  | 18.2              | 50%<br>2-7-9-8                         | 11-3                                   |            | medium sand, trace coarse sand, slag                                |                                                               |
|                    |                   | 2130                                   | ×                                      |            |                                                                     |                                                               |
| - 10 -             |                   |                                        | A V K                                  |            | 10'-12': Same as above, but wet                                     |                                                               |
|                    | 6.2               | 8%<br>17-15-8-10                       | K MAY                                  | r          |                                                                     |                                                               |
| F                  |                   | 11 10 0 10                             | × *7×                                  | Slag       |                                                                     |                                                               |
| - 12 -             | 2.3               | 15%                                    | < ¥, <                                 |            | **12'-14': Wet, black/red, loose, MEDIUM SA                         | ND and COARSE SAND, little                                    |
|                    | 2.3               | 8-4-5-8                                | WT T                                   | ſ          | fine gravel, trace cobbles, trace fine sand,                        | slag (* MGP)                                                  |
|                    |                   |                                        | ST Y                                   | 1          |                                                                     |                                                               |
| - 14 -             | 11.6              | 5%                                     | 5 .                                    |            | 14'-16': Same as above, but little fine sand                        |                                                               |
|                    | 11.0              | 9-8-7-6                                | NYV                                    | ſ          |                                                                     |                                                               |
|                    | 1                 |                                        | LMY                                    | d          |                                                                     |                                                               |
| - 16 -             | 1                 | 10%                                    | ZV Ž                                   |            | 16'-18': Same as above, but trace/little clay                       | ,                                                             |
|                    |                   | 5-4-5-5                                | WV V                                   | n I        |                                                                     |                                                               |
|                    | -                 |                                        | AL A                                   |            |                                                                     |                                                               |
| - 18 -             | 1.8               | 159                                    | 1 x x x                                | ,          | **18'-20': Wet, dark gray, pliable, CLAY and                        | d FINE SAND, trace silt trace                                 |
|                    | 1.0               | 15%<br>3-2-1-2                         |                                        |            | cobbles, trace organics                                             |                                                               |
|                    | 1                 |                                        |                                        | CL         |                                                                     |                                                               |
| - 20 -             | 1.9               | 85%                                    | K.,.,                                  | /          | 20'–22': Wet, dark gray, slightly pliable, FIN                      | E SAND and CLAY, little fine                                  |
|                    | 1.0               | 5-10-7-5                               |                                        | 2          | rounded gravel, trace cobbles, trace organ                          | ics                                                           |
| <br>-              | 1                 |                                        | 1                                      | 1          |                                                                     |                                                               |
| - 22 -             | 1.4               | 100%                                   |                                        | sc         | 22'-24': Same as above, but clay slightly m                         | ottled, (green and brown)                                     |
|                    | 1.4               | 4-5-4-4                                | K././.                                 | 1          |                                                                     |                                                               |
|                    | 1                 |                                        | 1                                      | 1          |                                                                     |                                                               |
| - 24 -             | 1.7               | 50%                                    | <u> Z.Z.Z</u>                          |            |                                                                     |                                                               |
| 1 - '              | 1.1               | 50%                                    | 1                                      | CL         |                                                                     |                                                               |

01/07/1005 1+6100-mar93

GROUNDWATER TECHNOLOGY

#### Drilling Log

#### Soil Boring SB-11

| Project $\underline{I}$<br>Location | VIMO —<br>Water | <u>Troy</u><br>Street, Troy            | , New Y        | ork         | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u>                                                                                     |
|-------------------------------------|-----------------|----------------------------------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)                      | (mqq)<br>DIq    | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                               |
| - 24 -                              | 1.7             | 50%<br>5-8-5-4                         |                |             | 24'-26': Wet, dark gray, pliable, CLAY, trace silt, trace organics                                                                          |
| - 26 -                              | 2               | 100%<br>3-5-5-8                        |                | ĊL          | @26'-28': Wet, dark gray, slightly pliable, CLAY and FINE SAND, little silt, some fine gravel                                               |
| - 28 -                              | 2.3             | 40%<br>8-20-19-17                      |                | UL          | A28'—30': Wet, dark gray, pliable, CLAY and SILT, little fine sand, trace cobbles                                                           |
| - 30 -                              | 2.1             | 50%<br>12-13-14-15                     |                |             | @30'-32': Wet, gray, loose, FINE SAND, some clay, little fine gravel,<br>trace/little cobbles (acetate liner)                               |
| - 32 -                              | 6.8             | 100%<br>11-15-15-18                    |                | sc          | 32'—34': Wet, gray, loose, COARSE SAND and CLAY, some fine sand, trace fine gravel (rounded)                                                |
| - 34 -                              | 10.4            | 5%<br>7-10-9-12                        |                | GP          | 34'-36': Wet, gray, loose, COBBLES and FINE SAND, little fine gravel, trace coarse sand                                                     |
| - 36 -                              | 9.8<br>1        | 90%<br>4-21-27-25                      | 000            |             | 36'—38': Wet, gray, loose, FINE SAND and MEDIUM SAND, some cobbles,<br>little fine gravel (rounded), trace coarse sand                      |
| - 38 -                              | 7.4<br>27       | 3%<br>-45-27-25                        |                |             | 38'-40': Wet, gray, loose, FINE SAND and FINE GRAVEL, trace cobbles                                                                         |
| - 40 -                              | 10.2            | 40%<br>6-25-16-13                      |                | SP          | 40'-42': Wet, gray, loose, FINE SAND and FINE GRAVEL, little cobbles, trace coarse sand                                                     |
| - 42 -                              | 11.8            | 90%<br>11-10-8-11                      |                |             | *M42'-44': Wet, gray, loose, FINE SAND and MEDIUM SAND, little coarse sand, little fine gravel (* TCL/TAL, MS/MSD)                          |
| - 44                                | 2.9             | 90%<br>128-7-9                         |                |             | 44'-46': Top: Wet, gray, loose, FINE SAND, trace fine gravel, trace coarse sand; Bottom: Wet, gray, pliable, clay, trace silt               |
| - 46 -                              | 4.2             | 100%<br>4-7-12-5                       |                | CH<br>SP    | 46'-48': Top: Wet, gray, loose, FINE SAND, trace fine gravel, trace cobbles; Bottom: Moist, gray, pliable, CLAY (leathery)                  |
| - 48 -                              | -               | 0%<br>9-18-15-38                       |                | сн          | 48'-50': No recovery                                                                                                                        |
| - 50 -                              | 4.2<br>12       | 100%<br>-28-34-36                      |                | CL          | 50'—52': Moist, gray, pliable, CLAY, some fine gravel (rounded), some fine sand, trace cobbles, leathery                                    |
| - 52 -                              | 3.7             | 100%<br>60                             |                |             | 52'-54': Wet, light gray, slightly pliable, SILT, some clay, little fine sand,<br>little fine gravel (mostly angular - shale), trace cobble |
| - 54 -                              | 4.1<br>28       | 70%<br>-28-55-43                       |                | sc          | 54'—56': Top: Same as above: Bottom: Wet, gray, loose, FINE SAND and<br>SILT, trace fine gravel                                             |
| - 56 -                              |                 | 3%                                     |                | SM<br>SP    |                                                                                                                                             |

02/07/1995 lthlog-mar93

| Drilling | Log |
|----------|-----|
|----------|-----|

-

.

GROUNDWATER

Soil Boring SB-11

| Project <u>1</u><br>Location | VIMO —<br>Water  | <u>Troy</u><br>Street, T | roy, New                     | York        | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u>                                                       |
|------------------------------|------------------|--------------------------|------------------------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Depth<br>( ft.)              | , (mqq)<br>, OId | Sample ID<br>Blow Count/ | % kecovery<br>Graphic<br>Lag | uscs Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |
| - 56 -                       | 21               | 3<br>-27-27-2            | *                            |             | 56'–58': Wet, gray, loose, FINE SAND and COARSE SAND, little fine gravel, trace clay, trace silt              |
| - 58 -                       | 44               | 30<br>-80-87-5           | <b>X</b><br>0                | SP          | 58'-60': Same as above, but trace coarse gravel                                                               |
| - 60 -                       |                  | 30<br>54-50/3            |                              | ML          | 60'—62': Same as above, but very compact                                                                      |
| - 62 -                       |                  | 5                        |                              |             | End of boring, auger refusal. End of boring.                                                                  |
| - 64 -                       |                  |                          |                              |             |                                                                                                               |
| - 66 -                       |                  |                          |                              |             |                                                                                                               |
| - 68 -                       |                  |                          |                              |             |                                                                                                               |
| - 70 -                       |                  |                          |                              |             |                                                                                                               |
| - 72 -                       |                  |                          |                              |             |                                                                                                               |
| - 74                         |                  |                          |                              |             |                                                                                                               |
| - 76 -                       |                  |                          |                              |             |                                                                                                               |
| <br>- 78                     |                  |                          |                              |             |                                                                                                               |
| - 80 -                       |                  |                          |                              |             |                                                                                                               |
| - 82 -                       |                  |                          |                              |             |                                                                                                               |
| - 84                         |                  |                          |                              |             |                                                                                                               |
| - 86 -                       |                  |                          |                              |             |                                                                                                               |
| - 88                         |                  |                          |                              |             |                                                                                                               |

GROUNDWATER TECHNOLOGY

 $\odot$ 

#### Soil Boring SB-12

| Project /      | NIMO -           | Troy                                   |                         |        | Owner <u>Niagara Mohawk</u>                                                                  | See Site Map<br>For Boring Location                                                                             |
|----------------|------------------|----------------------------------------|-------------------------|--------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Lonation       | Water            | Street Trov                            | New Y                   | ork    | Proj No. 01110-0037                                                                          |                                                                                                                 |
| Surface        | Elev.            | Toi                                    | al Hole                 | Dep    | COMMENTS:                                                                                    |                                                                                                                 |
| Top of C       | asing _          | Wat                                    | ter Leve                | el Ini | th <u>66.8 ft.</u> Diameter <u>8 in.</u><br>tial <u>16 ft.</u> Static                        |                                                                                                                 |
| Screen: I      | Dia              | Ler                                    | ngth                    |        | Type/Size                                                                                    | * = Sample sent for TCL/TAL. ** =                                                                               |
| Casing: [      | lia              | ler                                    | vath                    |        | Type                                                                                         | Sample sent for MGP indicators. @ =<br>Sample sent for geotechnicals. M =<br>Sample sent for MS/MSD. A = Sample |
| Fill Mater     | rial             |                                        |                         |        | HSA/DRIVE CASING                                                                             | Sample sent for MS/MSD. A = Sample<br>sent for Atterberg limits.                                                |
| Drill Co.      | ADT              |                                        | Met                     | hod    | HSA/DRIVE CASING                                                                             |                                                                                                                 |
| Driller D.     | BOWER            | <u>IS/M. Harring</u>                   | 1,083 <u>S.</u>         | TIC    | <u>E/J. Bishop</u> Date <u>8/25-30/94</u> Permit #                                           |                                                                                                                 |
| Checked        | Ву               |                                        |                         |        |                                                                                              |                                                                                                                 |
| f=⊡            | Ê                | Sample ID<br>Blow Count/<br>% Recovery | 알고                      | lass.  | Descripti                                                                                    | on                                                                                                              |
| Depth<br>(ft.) | DI<br>DI<br>(mqd | ample<br>low Cour<br>Recove            | Græphl<br>Lag           | S CI   | (Color, Texture, S                                                                           | Structure)                                                                                                      |
|                |                  | Siov<br>Siov                           | ษ                       | SC     | Trace < 10%, Little 10% to 20%, Some                                                         | 20% to 35%, And 35% to 50%                                                                                      |
|                |                  | <u> Фл ш к</u>                         |                         | 5      |                                                                                              |                                                                                                                 |
| 2-             |                  |                                        |                         |        |                                                                                              |                                                                                                                 |
| L _            |                  |                                        |                         |        |                                                                                              |                                                                                                                 |
|                |                  |                                        |                         |        | 0'-2': Dry, Top of sample: 2" of dark brown/                                                 | black FINE SAND (arganic                                                                                        |
| - 0 -          | 1.3              | 10%<br>2-5-5-7                         |                         |        | rich soil) Bottom of sample: 2 of dark brown<br>rich soil) Bottom of sample: Medium-coarse s |                                                                                                                 |
| F              |                  | 2-0-0-1                                |                         | s₩     | sized SLAG                                                                                   | 5                                                                                                               |
| - 2 -          | 1.8              | 15%                                    |                         |        | 2'—4': Dry, black coarse sand sized to mediu                                                 | m gravel sized SLAG, loose                                                                                      |
|                | 1.0              | 3-7-7-5                                |                         |        |                                                                                              | _                                                                                                               |
| F -            |                  |                                        | M                       | •      |                                                                                              |                                                                                                                 |
| - 4 -          | 3.2              | 85%                                    | ₹ <u></u> ₹,            |        | 4'-6': Dry, Top 3/4 of sample: Same as abo                                                   | ve, Bottom 1/4: Medium brown                                                                                    |
|                |                  | 7-8-8-10                               | ₩¥.<                    |        | FINE SAND, little—some fine gravel, trace co                                                 | barse SAND                                                                                                      |
|                |                  |                                        | (a) (a)                 |        | www. Oh Druchlack anorra conditioned to me                                                   | adium aroual rizad SI AG littla                                                                                 |
| - 6 -          | 2.7              | 50%<br>0-10-12-23                      |                         |        | **6'8': Dry, black coarse sand sized to me<br>brick                                          | edium graver sized SLAG, in the                                                                                 |
|                |                  | 0-10-12-23                             | <b>ب</b>                |        | Drick                                                                                        |                                                                                                                 |
| - 8 -          |                  |                                        | Y YY                    |        | 8'-10': Same as above, SLAG cobble in samp                                                   | bler shoe (no sample)                                                                                           |
|                | 39.4             | 2%<br>8-6-7-7                          | K W Y                   |        |                                                                                              |                                                                                                                 |
| - F            |                  |                                        | ا <sup>ع</sup> ده رک    |        |                                                                                              |                                                                                                                 |
| - 10 -         | 49.2             | 100%                                   | < ¥ <                   |        | **10'-12': Black and orange brown, same as                                                   | above                                                                                                           |
|                |                  | 8-10-18-22                             | < ¥ <                   |        |                                                                                              |                                                                                                                 |
|                |                  |                                        |                         |        |                                                                                              | and the second stand                                                                                            |
| - 12 -         | 27               | . 80%                                  |                         |        | 12'-14': Dry to moist, black to orange brown<br>SLAG and fine to medium gravel sized SLAG    | little to trace medium brown                                                                                    |
| ·   -          | -                | 3-3-7-8                                | <b>• v •</b>            | Sleg   | medium-fine sand (soil), loose                                                               |                                                                                                                 |
| - 14 -         |                  |                                        | 228                     |        | 14'-16': Moist, same as above with trace slag                                                | n cobbies                                                                                                       |
| F 14 -         | 44.2             | 5%<br>5-7-8-12                         |                         |        |                                                                                              | 9                                                                                                               |
|                | -                |                                        | < 4 <                   |        |                                                                                              |                                                                                                                 |
| - 16 -         | 23.4             | 5%                                     | <u> </u>                |        | ¥ 16'-18': Wet, medium-coarse gravel sized SL                                                | AG, petroleum odor (fuel oil                                                                                    |
|                | 20.4             | 5-10-11-11                             | 12 V 2                  |        | impacted soils)                                                                              |                                                                                                                 |
| T ·            | 1                |                                        | VISVI                   |        |                                                                                              |                                                                                                                 |
| - 18 -         | 40.8             | 5%                                     |                         |        | @18'—20': Wet, same as above                                                                 |                                                                                                                 |
| L .            | 4                | 10-8-20-21                             | Z V K                   |        |                                                                                              |                                                                                                                 |
|                |                  |                                        | W V V                   |        | *20'-22': Wet, black (stained), medium-coal                                                  | rea sand sized SLAG strong                                                                                      |
| - 20 -         | 83.1             | 25%<br>10-10-5-7                       | AL A                    |        | petroleum odor                                                                               |                                                                                                                 |
| Ļ.,            | -                | 10-10-0-1                              |                         |        |                                                                                              |                                                                                                                 |
| - 22 -         |                  | 004                                    | 5 *                     |        | 22'-24': Wet, Top of sample: Black (stained                                                  | I) coarse sand sized to medium                                                                                  |
| <u> </u>       | 27.3             | 80%<br>6-6-5-7                         | V 8 V                   |        | dravel sized SLAG; Middle: Clay coated coa                                                   | rse SLAG cobble; Bottom:                                                                                        |
|                |                  |                                        | 177                     | sc     | Medium gray medium-coarse SAND, little-so                                                    | me clay, trace tine gravel, well                                                                                |
| - 24 -         | 35.0             | 80%                                    | <b>Y</b> . <u>/./</u> . | SP/    | rounded, loose, petroleum odor                                                               |                                                                                                                 |
| 1              | 1                | 1                                      | 11                      | ∕نت ∥  |                                                                                              |                                                                                                                 |

GROUNDWATER

#### Soil Boring SB-12

| Project 1<br>Location | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u> |                                        |                                           |             |                                                                                                                                    |
|-----------------------|---------------------------------------------------------|----------------------------------------|-------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>( ft.)       | (mqq)                                                   | Sample ID<br>Biow Count/<br>% Recovery | Graphic<br>Log                            | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                      |
| - 24 -                | 35.0                                                    | 80%<br>5-5-8-8                         |                                           |             | 24'—26': Wet, gray black, MEDIUM—COARSE SAND, trace silt, trace fine gravel, well rounded to slightly angular, various lithologies |
| - 26                  | 3.7                                                     | 5-8-7-8                                |                                           | SP          | 26'—28': Wet, dark gray, FINE—MEDIUM—COARSE SAND, trace—little CLAY<br>trace fine—coarse gravel, loose                             |
| - 28                  | 1.3                                                     |                                        |                                           |             | 28'—30': Acetate plastic sampled. Gray wet, CLAY, trace coarse sand                                                                |
| - 30                  | 3.1                                                     |                                        |                                           | sc          | 30'—32': Wet, green gray CLAY and SILT and FINE SAND, little—trace fine—medium gravel.                                             |
| - 32 -<br>- 34 -      |                                                         |                                        | 0.0.0.0.0<br>0.00<br>0.00<br>0.00<br>0.00 |             |                                                                                                                                    |
| - 36 -                | 0<br>32                                                 | 8%<br>-30-35-33                        | 90000000000000000000000000000000000000    | ĠS          | 36'—38': Wet, gray, loose, FINE SAND and COBBLES, trace/little silt, trace coarse sand, trace fine gravel, trace clay              |
| - 38                  | 0.2                                                     | 70%<br>7-24-19-14                      | 0.000                                     | GW          | **38'-40': Same as above but, trace/little cobbles, trace/little clay no sheen                                                     |
| - 40                  | 0.2<br>21                                               | 7%<br>-33-22-33                        |                                           |             | 40'-42': Same as above, but little clay, trace cobbles                                                                             |
| - 42 -                | 0                                                       | 40%<br>5-15-12-30                      |                                           | GC          | 42'-44': Same as above                                                                                                             |
| - 44                  | 0<br>26                                                 | 60%<br>-26-26-26                       | 0.0.0.0<br>00                             | GW          | 44'-46': Gray, wet, loose, FINE SAND, some cobbles, trace fine gravel trace silt, trace coarse sand, trace clay                    |
| - 46 -                | 0                                                       | 50%<br>13-18-11-9                      | 0.0.0                                     | SW          | 46'-48': Same as above, but trace cobbles, little fine gravel (rounded)                                                            |
| - 48                  | 0                                                       | 70%<br>8-12-9-14                       |                                           |             | 48'—50': Wet, gray, loose, FINE SAND and FINE GRAVEL, little coarse sand, trace to medium sand, trace cobbles                      |
| - 50 -                | 0                                                       | 60%<br>5-20-20-17                      | 0000                                      | GS          | 50'—52': Same as above, but little cobbles, gravel is fine to coarse                                                               |
| - 52 -                | 0                                                       | 45%<br>10-8-11-12                      | 0.0                                       |             | 52'-54': Top 1": Same as above; Bottom: Wet, gray, pliable/stiff, CLAY,<br>trace silt                                              |
| - 54 -                | 0                                                       | 80%<br>4-7-7-12                        |                                           | CL          | 54'-56': Same as above, but moist, some to little silt, trace coarse sand                                                          |
| - 56 -                | 0                                                       | 90%                                    |                                           |             |                                                                                                                                    |

GROUNDWATER

#### Soil Boring SB-12

| Project 1<br>Location | <u>VIMO -</u><br>Water | Troy<br>Street, Troy            | , New Y        | ork         | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u>                                                                            |
|-----------------------|------------------------|---------------------------------|----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>( ft.)       | (mqq)                  |                                 | Graphic<br>Log | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                      |
| -56-                  | 0                      | 90%<br>8-8-7-11                 |                | CL          | 56'-58': Same as above                                                                                                             |
| - 58<br>              |                        | 2%<br>100/5"<br>85%             |                | GP          | 58'—58.5': Wet, multicolored, loose, gravel and cobble<br>58.5'—60': Wet, gray, compact, FINE SAND, little fine gravel, trace clay |
| - 60<br>              | 75<br>1<br>4(          | -33-28-80<br>100%<br>1-44-53-81 |                |             | 60'—62': Same as above, but trace cobbles, sh chips                                                                                |
| - 62 -                | 1.4<br>40              | 100%<br>-23-37-34               |                | sw          | 62'-64': Same as above, but trace medium sand, trace coarse sand                                                                   |
| - 64 -                |                        | 100 <b>%</b><br>-30-30-72       |                |             | 64'-66': Same as above, but moist, very compact                                                                                    |
| - 66 -<br><br>- 68 -  | 1.7                    | 50%<br>67-100/3''               | ·····          |             | *66'-66.8': Same as above, shale, cobbles and gravel at tip<br>End of boring                                                       |
| - 70 -                |                        |                                 |                |             |                                                                                                                                    |
| - 72                  |                        |                                 |                |             |                                                                                                                                    |
| - 74                  |                        |                                 |                |             |                                                                                                                                    |
| <br>- 76              |                        |                                 |                |             |                                                                                                                                    |
| <br>-78-              |                        |                                 |                |             | ·                                                                                                                                  |
| 80 -                  |                        |                                 |                |             |                                                                                                                                    |
| 82                    |                        |                                 |                |             |                                                                                                                                    |
| -84-                  |                        |                                 |                |             |                                                                                                                                    |
| - 86 -                |                        |                                 |                |             |                                                                                                                                    |
| - 88 -                |                        |                                 |                |             | Page: 3 of 3                                                                                                                       |



Soil Boring SB-13

| -               |              |                                        |                 |      |                                                                                       | [                                                                                                              |
|-----------------|--------------|----------------------------------------|-----------------|------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                 |              |                                        |                 |      | Owner <u>Niagara Mohawk</u>                                                           | See Site Map<br>For Boring Location                                                                            |
|                 |              |                                        |                 |      | Proj. No. <u>01110-0037</u>                                                           |                                                                                                                |
|                 |              | To                                     | COMMENTS:       |      |                                                                                       |                                                                                                                |
|                 |              |                                        |                 |      | itial <u>25 ft.</u> Static                                                            |                                                                                                                |
|                 |              |                                        |                 |      | Type/Size                                                                             | * = Sample sent for TCL/TAL. ** =<br>Sample sent for MGP indicators. # =                                       |
| Casing: D       | )ia          | Ler                                    | ngth            |      | Type                                                                                  | Sample sent for geotechnicals. M =<br>Sample sent for MS/MSP. A = Sample                                       |
| Fill Mater      | ial          |                                        |                 |      | Rig/Core Mobil B-61/Mobile B-57<br>HSA/DRIVE CASING                                   | sent for Atterberg limits.                                                                                     |
| Drill Co. 4     |              | CAL Horring                            | Me <sup>·</sup> | thod | <u>HSA/DHIVE CASING</u><br>E/J. <u>Bishop</u> Date <u>8/24/94</u> Permit <b>#</b>     |                                                                                                                |
|                 |              |                                        |                 |      |                                                                                       |                                                                                                                |
| Checked         | ву           |                                        |                 |      | icense No                                                                             |                                                                                                                |
| 50              | -            | Sample ID<br>Blow Count/<br>% Recovery | <u>io</u>       | ass. | Descripti                                                                             | on                                                                                                             |
| Depth<br>( ft.) | DI d<br>DI d |                                        | Graphic<br>Log  | Ū    | •                                                                                     |                                                                                                                |
| ۳<br>۵          | 요면           | ы<br>Бала<br>Сала                      | E<br>E<br>E     | nscs | (Color, Texture, S)<br>Trace < 10%, Little 10% to 20%, Some                           |                                                                                                                |
|                 |              | NBX                                    |                 | S    |                                                                                       |                                                                                                                |
| 2 -             |              |                                        |                 |      |                                                                                       |                                                                                                                |
|                 |              |                                        |                 |      |                                                                                       |                                                                                                                |
|                 |              |                                        |                 |      |                                                                                       |                                                                                                                |
| - 0 -           |              |                                        | Y 3             |      |                                                                                       |                                                                                                                |
|                 | 4            | 50%                                    | A V K           |      | 1'-3': Top of sample: Dry, dark brown, MEDIU                                          | M FINE SAND, trace fine                                                                                        |
| - 2 -           |              | 5-5-7-8                                | 5 V V           |      | gravel; Bottom: red, brown fine-medium SAND                                           | ) (slag) to fine gravel (slag)                                                                                 |
|                 |              |                                        |                 |      |                                                                                       |                                                                                                                |
| F -             | 0            | 85%                                    | < 4 <           |      | 3'-5': Dry, dark, red brown fine-medium sand<br>gravel sized slag, trace brick, loose | size SLAG, some fine- medium                                                                                   |
| - 4 -           |              | 5-8-7-8                                | < 4 <           |      | gravel sized slag, trace blick, loose                                                 |                                                                                                                |
|                 |              |                                        |                 |      | 5'-7': Dry, dark brown to black, fine-coarse                                          | sand sized SLAG trace fine                                                                                     |
|                 | 10           | 10-10-12-8                             |                 |      | gravel sized slag, loose                                                              |                                                                                                                |
| - 6 -           |              |                                        |                 |      | ▶ 7'-9': Slightly moist, same as above, little fine                                   | e-coarse gravel sized SLAG                                                                                     |
|                 | 10           |                                        | ₹ <u>₹</u> ₹    |      |                                                                                       |                                                                                                                |
| - 8 -           |              | 7-15-18-18                             | \v<br>< ¥ <     |      |                                                                                       |                                                                                                                |
| Ŭ               |              |                                        |                 |      |                                                                                       |                                                                                                                |
| <b>F</b> -      | 8            | 20-17-13-15                            |                 | Siag | 9'–11': Same as above                                                                 |                                                                                                                |
| - 10 -          |              | 20-17-13-15                            | 4 J¥            | alan |                                                                                       |                                                                                                                |
|                 |              |                                        | V V K           |      | 11'—13': Very resistant, no sample taken, auge                                        | r through — hit void at 11.4' to                                                                               |
| 10              |              |                                        | V V V           |      | 16'                                                                                   |                                                                                                                |
| - 12 -          |              |                                        |                 |      |                                                                                       |                                                                                                                |
|                 |              |                                        | < < <           |      |                                                                                       |                                                                                                                |
| - 14 -          |              |                                        | ک ۲۰ ک          |      |                                                                                       |                                                                                                                |
|                 |              |                                        |                 |      |                                                                                       |                                                                                                                |
| F -             |              |                                        |                 |      |                                                                                       |                                                                                                                |
| - 16 -          | 750          | 50%                                    |                 |      | *16'-17: Dry/moist, Top of sample: Same as a                                          | above, little brick; Bottom: Stiff                                                                             |
| F -             | 2.8          | 5-5-50/2"<br>20%                       | Z V Ž           |      | TAR impacted soils, slightly, metallic appeara<br>odor (MGP impacted soils)           | ince, slight sneen, hydrocarbon                                                                                |
| - 18 -          | 2.0          | 9-9-7-6                                |                 |      | 17'-19': Top of sample: Wet, gray, coarse san                                         | d sized SLAG and SAND, trace                                                                                   |
| F 10 -          |              |                                        | W THI           |      | fine gravel sized SLAG, little brick, loose; Bot                                      | ttom: Moist, green-gray, CLAY,                                                                                 |
|                 | 0.8          | 80%                                    | 575             |      | little-trace silt, stiff                                                              |                                                                                                                |
| - 20            |              | 8-8-4-4                                |                 |      | └- ××19'-21': Moist, same as above, trace thin s                                      | hale chips, micaceous                                                                                          |
|                 |              |                                        | ///             |      | 21-22' Same as above                                                                  |                                                                                                                |
| f -             | 0.8          | 100%<br>5-4-5-4                        | ///             | CL   | 21'—23': Same as above                                                                | and a second |
| - 22 -          |              | J-4-J-4                                | ///             |      |                                                                                       |                                                                                                                |
|                 |              |                                        | ///             |      | ***23'-25': Acetate liner sample                                                      |                                                                                                                |
| 04              |              |                                        |                 |      |                                                                                       |                                                                                                                |
| - 24 -          | 1            |                                        |                 |      |                                                                                       |                                                                                                                |



Soil Boring SB-13

| Project 1<br>Location | <u>VIMO -</u><br>Water | Troy<br>Street, Troy                   | , New Y        | 'ork           | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u>                                                                                                                                          |
|-----------------------|------------------------|----------------------------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)        | PID<br>(mqq)           | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log | USCS Class.    | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                    |
| - 24 -                | 0.5                    | 100%                                   |                |                | ***25'-27': Wet, green/gray, Top: Same as above; Bottom: CLAY and SILT,                                                                                                                          |
| - 26 -<br>            | 0.8                    | 2-3-3-3<br>100%<br>3-3-3-4             |                | CL             | little—some fine sand, semi stiff—pliable<br>27'—29': Green/gray, Top of sample: CLAY and SILT, little—some fine sand,<br>loose to pliable; Middle of sample: Same as above with wood; Bottom of |
| - 28                  | 0.9                    | 100%                                   |                | SC             | sample: Moist, pliable to stiff, CLAY<br>29'—31': Dry to moist, green—gray, CLAY, some silt, trace to little fine sand,<br>stiff trace organics                                                  |
| - 30 -<br><br>- 32 -  | 1.1                    |                                        |                | CL             | 31'—33': Same as above                                                                                                                                                                           |
|                       | 2.8                    | 100%                                   |                | SW             | 33'—35': Dry to moist, green gray CLAY, little silt except for a 4" thick<br>layer of FINE SAND (wet), little silt near the sample shoe, trace organics                                          |
| -       -<br>- 36 –   | 3.2                    | 100%                                   |                | CL<br>ML<br>Pt | 35'-37': Top of sample: Wet, green gray, FINE SAND and SILT and CLAY,<br>loose; Bottom of sample: Dry, brown, PEAT and green gray SILT and CLAY,<br>trace fine sand                              |
| <br>- 38              |                        | 8%<br>-30-35-33                        |                |                | 37'-39': No recovery<br>39'-41': Wet, gray, loose, FINE SAND and COBBLES (rounded), some                                                                                                         |
| - 40 -                | 0.2<br>3<br>0.2        | 70%<br>7-24-19-14<br>7%                |                |                | coarse sand/fine gravel, trace clay, trace brick fragments<br>41'-43': Wet, gray, multicolored, loose, FINE GRAVEL, some coarse sand,                                                            |
| - 42                  | 21<br>0                | -33-22-33<br>40%                       |                |                | little fine sand, little coarse gravel<br>43'—45': Same as above                                                                                                                                 |
| - 44                  | 0                      | 5-15-12-30<br>60%<br>-28-28-28         |                |                | 45'—47': Wet, gray, loose, MEDIUM SAND and COARSE SAND, little fine gravel, little fine sand, little cobbles (some sh)                                                                           |
| - 46<br>              | 0                      | 50%<br>13-18-11-9                      |                |                | **47'-49': Same as above                                                                                                                                                                         |
| - 50                  | 0                      | 70%<br>8-12-9-14                       |                |                | 49'-49.3': Shale chips (bedrock)<br>End of boring                                                                                                                                                |
| <br>- 52              | 0                      | 60%<br>5-20-20-17                      |                |                |                                                                                                                                                                                                  |
| <br>- 54              | 0                      | 45%<br>10-8-11-12                      |                |                |                                                                                                                                                                                                  |
| - 56 -                | 0                      | 80%<br>4-7-7-12                        |                |                |                                                                                                                                                                                                  |

GROUNDWATER TECHNOLOGY

#### Soil Boring SB-14

| Project 1       | <u>VIMO -</u><br>Water | <u>Troy</u><br>Street Troy             | New Y             | <br>ork      | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u>                 | See Site Map<br>For Boring Location                                      |
|-----------------|------------------------|----------------------------------------|-------------------|--------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Surface         | Elev                   | To                                     | COMMENTS:         |              |                                                                         |                                                                          |
| Top of C        | asing _                | Wa                                     | ter Lev           | el Ini       | tial Static                                                             |                                                                          |
|                 |                        |                                        |                   |              | Type/Size                                                               | * = Sample sent for TCL/TAL. ** =<br>Sample sent for MGP indicators. B = |
| Casing: D       | ia                     | Ler                                    | ngth              |              |                                                                         | Sample sent for geotechnicals. M =<br>Sample sent for MS/MSP. A = Sample |
| Fill Mater      | ial<br>An <i>t</i>     |                                        |                   |              | Hig/Core <u>Mobil B-57</u>                                              | sent for Atterberg limits. Heavy downpour.                               |
| Drill Co. 2     | Harrin                 |                                        | ме<br>, ру "/     | tnoa<br>Rish | 00 Date <u>8/18/94</u> Permit #                                         |                                                                          |
|                 | Bv                     | <u>2.0,7</u> LU                        | 1 0 y <u>-</u>    | 1            | icense No                                                               |                                                                          |
|                 |                        |                                        |                   |              |                                                                         |                                                                          |
| Depth<br>( ft.) | UIA<br>(mqq)           | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log    | USCS Class.  | Descripti<br>(Calor, Texture, S<br>Trace < 10%, Little 10% to 20%, Some | Structure)                                                               |
| 2 -             |                        |                                        |                   |              |                                                                         |                                                                          |
| <u> </u>        |                        |                                        |                   |              |                                                                         |                                                                          |
|                 |                        |                                        |                   |              | ·                                                                       |                                                                          |
| - 0 -           |                        | 20.9                                   | 0.00              |              | 0.5'-2': Dry, gray, loose, MEDIUM GRAVEL a                              | nd COARSE GRAVEL (angular).                                              |
| -               |                        | 20%<br>8-8-14                          | 0000              |              | little fine gravel, fill (gravel)                                       |                                                                          |
| - 2 -           |                        |                                        | 68                | Fill         | 2'-4': Last spaan                                                       |                                                                          |
|                 |                        | 17-18-7-27                             | 000               |              |                                                                         |                                                                          |
|                 |                        |                                        | 000               |              |                                                                         |                                                                          |
| - 4 -           |                        |                                        | VINI              |              |                                                                         |                                                                          |
|                 | 8.6                    | 10%                                    |                   |              | 5'-7': Brown, loose, COARSE SAND and MED                                | IUM GRAVEL, slag fill                                                    |
| - 6 -           |                        | 18-20-9-9                              | ζ <b>∧</b> ₹      |              |                                                                         |                                                                          |
|                 | 3.7                    | 10%                                    | <,<,<,<,<,<,<,<,< | SLAG         | 7'-9': Same as above                                                    |                                                                          |
| - 8 -           |                        |                                        | < 4 <             |              |                                                                         |                                                                          |
| Ŭ               |                        |                                        |                   |              | Al (" Tank Come of the wet Dettem Melet a                               | AND ETHE                                                                 |
|                 | 3.3                    | 25%<br>12-18-12-17                     | <i></i>           |              | 9'-11': Top: Same as above; Bottom: Moist, g<br>SAND                    | ray, pliable, clar and fine                                              |
| - 10 -          |                        |                                        | ·/././.           |              |                                                                         |                                                                          |
|                 | 3.2                    | 80%                                    | ////              | SC           | *11'-12.5': Dark gray to tan (mottled), weath                           | ered SHALE bedrock                                                       |
| - 12 -          |                        | 14-25-64                               |                   |              |                                                                         |                                                                          |
|                 |                        |                                        | 1.1.1.            | ╢──┤         | End of boring                                                           |                                                                          |
| 1.4             |                        |                                        |                   |              | 5                                                                       |                                                                          |
| - 14 -          |                        |                                        |                   |              |                                                                         |                                                                          |
|                 |                        |                                        |                   |              |                                                                         |                                                                          |
| - 16 -          |                        |                                        |                   |              |                                                                         |                                                                          |
|                 |                        |                                        |                   |              |                                                                         |                                                                          |
| - 18            |                        |                                        |                   |              |                                                                         |                                                                          |
| - 10 -          |                        |                                        |                   |              |                                                                         |                                                                          |
|                 |                        |                                        |                   |              |                                                                         | ·                                                                        |
| - 20 -          |                        |                                        |                   |              |                                                                         |                                                                          |
|                 |                        |                                        |                   |              |                                                                         |                                                                          |
| - 22 -          |                        |                                        |                   |              | •                                                                       |                                                                          |
|                 |                        |                                        |                   |              |                                                                         |                                                                          |
| f -             |                        |                                        |                   |              |                                                                         |                                                                          |
| -24-            |                        |                                        |                   |              |                                                                         | •                                                                        |

GROUNDWATER TECHNOLOGY

#### Soil Boring SB-15

| Project NIA     | <br>MO       | Trov                                   |                          |      | Owner <u>Niagara Mohawk</u>                                                                 | See Site Map                                                                                                    |
|-----------------|--------------|----------------------------------------|--------------------------|------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                 |              |                                        |                          |      | While Proj. No. <u>01110-0037</u>                                                           | For Boring Location                                                                                             |
|                 |              |                                        |                          |      | th <u>64.5 ft.</u> Diameter <u>12 in.</u>                                                   | COMMENTS:                                                                                                       |
|                 |              |                                        |                          |      | tial <u>24 ft.</u> Static                                                                   | Somerre B.                                                                                                      |
| Screen: Dia     | I            | Le                                     | ngth                     |      | Type/Size                                                                                   | * = Sample sent for TCL/TAL. ** =                                                                               |
| Casing: Dia     |              | Le                                     | ngth                     |      | Туре                                                                                        | Sample sent for MGP indicators. E =<br>Sample sent for geotechnicals. M =<br>Sample sent for MS/MSP. A = Sample |
| Fill Material   |              |                                        |                          | ···· | HSA/Drive Casing                                                                            | sent for Atterberg limits.                                                                                      |
| Drill Co. AD    | Τ            |                                        | Met                      | hod  | HSA/Drive Casing                                                                            |                                                                                                                 |
|                 |              |                                        |                          |      | e <i>/J. Bishop</i> Date <u>8/26-29/94</u> Permit <b>#</b>                                  |                                                                                                                 |
| Checked By      | <u>۷</u>     |                                        |                          | L    | icense No                                                                                   |                                                                                                                 |
|                 | PID<br>(mqq) | Sample ID<br>Blow Count/<br>% Recovery | <u>e</u>                 | പ് 🛛 | Descript<br>(Color, Texture, S<br>Trace < 10%, Little 10% to 20%, Some                      | Structure)                                                                                                      |
| 2-<br><br>- 0 - | 1.8          | 75%<br>7-5-5-5                         |                          |      | 0'–2': Dry, Top: Grass, soil with roots; Botto<br>MEDIUM-COARSE SAND, little to some fine n | m: Medium brown FINE-<br>nedium coarse gravel, trace slag                                                       |
|                 |              |                                        |                          | SP   | near shoe                                                                                   |                                                                                                                 |
| - 2 -           | 1.3          | 50%<br>3-4-3-4                         | 0.0<br>0.0               |      | 2'-4': Same as above, with trace-little clay                                                | near middle of sampler                                                                                          |
| - 4 -           | 2.1          | 80%<br>8-8-5-8                         |                          | FILL | 4'-6': Top: Moist, brown, FINE-MEDIUM-CO)<br>gravel; Bottom: Moist, green-gray mottled, C   | ARSE SAND, little fine-coarse<br>CLAY, trace little slag (fill)                                                 |
| - 6 -           | 1.8          | 5%<br>3-4-4-3                          | 0.0<br>0.0<br>0.0<br>0.0 |      | 6'-8': Same as above                                                                        |                                                                                                                 |
| - 8 - 4         | 2.3          | 2%<br>8-5-3-4                          |                          |      | 8'–10': Moist to wet, green gray mottled CLA<br>black SLAG                                  | Y and fine-medium sand sized                                                                                    |
| - 10 - (        | 0.8          | 4-4-5-5                                |                          |      | 10'-12': Moist, green-yellow to green gray-t<br>fine gravel sized SLAG, trace clay          | ack fine-coarse sand sized to                                                                                   |
| - 12 -          | 0            | 80%<br>4-4-5-4                         | 囊                        |      | 12'—14': Moist to dry, black—gray, fine—coars                                               | e sand sized SLAG, loose                                                                                        |
| - 14 - ,        | 0.7          | 25%<br>2-3-3-2                         |                          |      | **14'-16': Same as above                                                                    |                                                                                                                 |
| - 16            | 0.5          | 40%<br>4-4-8-5                         |                          | SLAG | 16'—18': Top: Same as above; Bottom: Dry, y<br>sized SLAG, little fine brick, loose         | ellow/orange, fine-medium sand                                                                                  |
| - 18 - 2        | 28.3         | 20%<br>4-4-6-6                         |                          |      | 18'—20': Moist, gray—black, SLAG, trace—littl                                               | e clay, loose                                                                                                   |
| - 20 e          | 33.7         | 10%<br>10-11-14-28                     |                          |      | 20'–22': Moist–wet, gray–black medium–coa<br>SLAG                                           | rse sand sized fine gravel sized                                                                                |
| - 22 -          | 128          |                                        |                          |      | **22'-24': Same as above, hydrocarbon oc                                                    | lor                                                                                                             |
| -24 - 2         | 208          | 5%                                     | y y                      |      | Ţ                                                                                           | Page: 1 of 3                                                                                                    |

10/11/1995 lithlog-mar93

,

GROUNDWATER

#### Soil Boring SB-15

| ocation         | Water        | Street, Troy                           | , INEW T                        | Ork       | Offici Proj. No. 0110-0037                                                                                                                                      |
|-----------------|--------------|----------------------------------------|---------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>( ft.) | PID<br>(mqq) | Sample ID<br>Blow Count/<br>X Recovery | Graphic<br>Log                  | cs Class. | Description<br>(Color, Texture, Structure)                                                                                                                      |
|                 |              | S Bo<br>R Bo                           | 0                               | nscs      | Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                                 |
| -24             | 208          | 5%<br>4-4-7-5                          |                                 |           | E24'-26': Wet, black (stained), fine-medium-coarse sand sized SLAG, traccoarse sand, strong petroleum odor, obvious petroleum content, sheen                    |
| -               |              | 4-4-1-0                                |                                 |           | visible                                                                                                                                                         |
| - 26 -          |              |                                        |                                 |           |                                                                                                                                                                 |
| - 28            |              |                                        |                                 |           | 28'-30': No recovery                                                                                                                                            |
| · -             |              |                                        |                                 | SLAG      |                                                                                                                                                                 |
| - 30 -          |              | 40%<br>6-6-8-6                         |                                 |           | 30'-32': Acetate density sample, same as above                                                                                                                  |
|                 |              |                                        |                                 |           | x20: 24: Wat black (stained) madium-apares cand sized and fine gravel                                                                                           |
| - 32 -          | 337          | 10%<br>5-8-8-7                         |                                 |           | *32'-34': Wet, black (stained) medium-coarse sand sized and fine gravel<br>sized SLAG, Note: Fine SAND and SILT in sample tip, heavy petroleum<br>contamination |
| - 34 –          |              | 0%                                     |                                 |           | 34'-36': Wet, trace recovery, gray, CLAY, some fine-medium sand in sample                                                                                       |
| _               |              | 7-7-9-7                                |                                 |           | tip, petroleum present                                                                                                                                          |
| - 36 –          |              |                                        |                                 |           |                                                                                                                                                                 |
| - 38            | 72           | 75%                                    |                                 | CL        | 38'—40': Wet, gray, CLAY, little trace silt, layer at bottom of spoon of                                                                                        |
| _               | 12           | 8-8-7-8                                |                                 |           | CLAY, little fine gravel (well rounded), stiff, slightly to pliable                                                                                             |
| - 40            | 38           | 70%                                    | -                               |           | 40'—42': Wet, gray, FINE—MEDIUM—COARSE GRAVEL, some clay, trace<br>medium—coarse sand, trace silt, trace (one) cobble, stiff to slightly                        |
| · -             |              | 10-12-14-17                            | 600                             | GC        | compact                                                                                                                                                         |
| - 42            | 3.1<br>3     | 4%<br>7-33-31-28                       | 0000                            | GP        | 42'—44': Wet, multicolored, loose, FINE GRAVEL, some medium gravel,<br>cave—in                                                                                  |
| - 44            | 3.5          | 6%                                     | 000                             |           | 44'-46': Wet, gray, loose, FINE SAND and FINE GRAVEL, little coarse sand                                                                                        |
|                 |              | 4-33-39-21                             | 0.0.0.0<br>00                   | G₩        | little silt, trace cobbles                                                                                                                                      |
| -46-            | 0            | 15%                                    | 0.0.0                           |           | 46'-48': Wet, gray, loose, FINE SAND and COARSE SAND, little cobbles, trace fine gravel, trace silt                                                             |
| · -             |              | 20-8-17-18                             |                                 |           |                                                                                                                                                                 |
| - 48 -          | 0<br>35      | 100%<br>-55-73-38                      |                                 | SP        | **48'-50': Same as above, but little fine gravel, trace cobbles, trace clay trace medium sand                                                                   |
| - 50 -          | 0            | 90%                                    |                                 |           | 50'-52': Wet, gray, loose, MEDIUM SAND and COARSE SAND, some fine                                                                                               |
|                 |              | -48-47-83                              | 0.0.0.0<br>0.:. <sub>6</sub> 0. |           | gravel, little fine sand, trace silt                                                                                                                            |
| - 52 -          | 0            | 80%<br>0-53-52-31                      | 0.0.0.0<br>0.<br>0.0.0.0        | GW        | 52'-54': Same as above, but FINE SAND, little coarse sand, trace/ little clay                                                                                   |
| · -             | 6            | -23-22-31                              | 0.00                            |           |                                                                                                                                                                 |
| - 54 -          | 0<br>0       | 80%<br>52-100/4''                      |                                 | SP        | 54'-54.6': Wet, gray, loose (semi-pliable at bottom), FINE SAND, little<br>coarse sand, trace CLAY, trace silt, trace fine gravel                               |
| - 56 -          |              | 30%<br>100/5"                          | 000                             | GP        | 54.8'-55.3': Same as above, but trace coarse sand, trace/little clay at<br>bottom                                                                               |

## GROUNDWATER

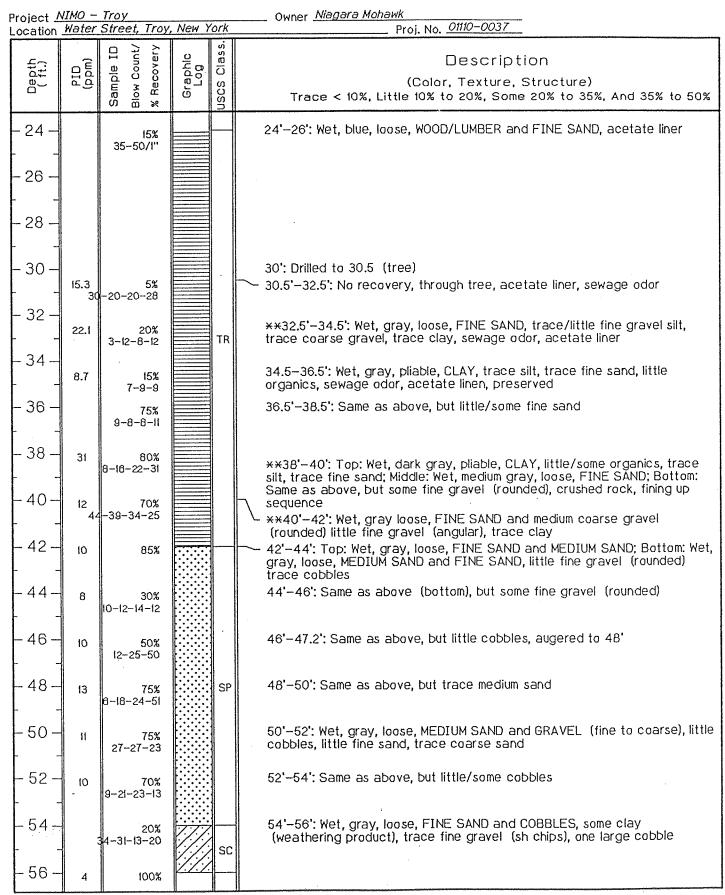
#### Drilling Log

Soil Boring SB-15

| Project 1<br>Location | NIMO -<br>Water | Troy<br>Street, Troy                   | , New )                                 | 'ork        | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u>                                                             |
|-----------------------|-----------------|----------------------------------------|-----------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------|
| Depth<br>( ft.)       | (mqq)<br>DIq    | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log                          | uscs Class. | Description<br>(Calar, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%       |
| - 56 -                |                 |                                        | 2000<br>2000                            |             |                                                                                                                     |
| - 58 -                | 0<br>5          | 3%<br>0-53-47-71                       | 000000000000000000000000000000000000000 | GP          | 58'-60': Wet, multi colored, loose, FINE GRAVEL, trace medium sand, trace<br>cobble (one)                           |
| - 60 -                | 0<br>72         | 15%<br>-66-66-70                       | 6 20                                    |             | 60'-62': Same as above, but some cobbles, no medium sand, also sh<br>cobbles                                        |
| - 62 -<br>- 62 -      | 0<br>44         | 20%<br>88-80-100                       | 0000                                    |             | **62'-64': Wet, gray, loose, FINE SAND and COARSE SAND, little fine-<br>medium gravel (sh), trace/little sh cobbles |
| - 64 -                | 0               | 10%<br>100/5''                         |                                         | SP          | 64'-64.5': Same as above, weathered sh                                                                              |
| - 66 -                |                 | 100/0                                  |                                         |             | End of boring, cement/bentonite groute to surface                                                                   |
| <br>- 68              |                 |                                        |                                         |             |                                                                                                                     |
| <br>- 70              |                 |                                        |                                         |             |                                                                                                                     |
| <br>- 72              |                 |                                        |                                         |             |                                                                                                                     |
| - 74 -                |                 |                                        |                                         |             |                                                                                                                     |
| - 76                  |                 |                                        |                                         |             |                                                                                                                     |
| - 78 -                |                 |                                        |                                         |             |                                                                                                                     |
| - 80 -                |                 |                                        |                                         |             |                                                                                                                     |
| - 82 -                | •               |                                        |                                         |             |                                                                                                                     |
| - 84                  |                 |                                        |                                         |             |                                                                                                                     |
| - 86 -                |                 |                                        |                                         |             |                                                                                                                     |
| - 88 -                |                 |                                        |                                         |             | Page: 3 of 3                                                                                                        |

Groundwater Technology

0


#### Soil Boring SB-16

| Project 1                      | VIMO -               | Troy                |                              |              | Owner <u>Niagara Mohawk</u><br>See Site Map<br>For Boring Location                                                                                                                                                                                |
|--------------------------------|----------------------|---------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location                       | Water                | <u>Street, Troy</u> | New Y                        | ork          | Proj. No. <u>0110-0037</u>                                                                                                                                                                                                                        |
| Surface Elev Total Hole        |                      |                     |                              |              | th <u>58 ft.</u> Diameter <u>8 in.</u> COMMENTS:                                                                                                                                                                                                  |
| Top of C                       | asing _              | Wa                  | ter Lev                      | el Ini       | tial <u>20 ft.</u> Static                                                                                                                                                                                                                         |
| Screen: [                      | )ia                  | Ler                 | ngth                         |              | Type/Size       * - Sample sent for TCL/TAL. ** -         Sample sent for MSP Indicators. # -       Sample sent for geotechnicals. ** -         Type       Sample sent for MSP. A - Sample sent for MS/MSP. A - Sample sent for Atterberg limits. |
| Casing: D                      | lia                  | Ler                 | ngth                         | •••          | Type Sample sent for geotechnicals. M = Sample sent for MS/MSP. A = Sample                                                                                                                                                                        |
| Fill Mater                     | ial                  |                     |                              |              | Hig/Core Mobil B-or sent for Atterberg limits.                                                                                                                                                                                                    |
| Drill Co. 2                    | <u>AUT</u><br>Harria | 7400                | Met                          | thod<br>Bish | 092 Date <u>8/19-22/94</u> Permit #                                                                                                                                                                                                               |
|                                |                      |                     |                              |              |                                                                                                                                                                                                                                                   |
| Спескеа                        | ву                   |                     |                              |              | icense No                                                                                                                                                                                                                                         |
| <b>C</b> -                     |                      |                     | $\parallel \alpha \parallel$ | 9            | Description                                                                                                                                                                                                                                       |
| Depth<br>( ft.)                | PID<br>(mqq)         |                     | 48                           | 0            |                                                                                                                                                                                                                                                   |
| D<br>B<br>C                    | م ع                  | amp<br>Rec          | Graphlo<br>Log               | SCS          | (Color, Texture, Structure)                                                                                                                                                                                                                       |
|                                |                      | so m x              |                              | Sn           | Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                                                                                                                   |
| 2                              |                      |                     |                              |              |                                                                                                                                                                                                                                                   |
| <b>–</b> <sup>2</sup> <b>–</b> |                      |                     |                              |              |                                                                                                                                                                                                                                                   |
|                                |                      |                     |                              |              |                                                                                                                                                                                                                                                   |
| -0 -                           | 1.7                  | 70%                 |                              |              | 0'-2': Top: Moist, tan, loose, FINE and MEDIUM SAND, little fine gravel;                                                                                                                                                                          |
|                                |                      | 11-5-4-19           |                              |              | Bottom: Slightly moist, black, loose, FINE and COARSE SAND, little medium                                                                                                                                                                         |
|                                |                      |                     | []                           | SP           | sand, little fine gravel, trace cobbles (concrete)                                                                                                                                                                                                |
| - 2 -                          | 0                    | 40%                 | V.J                          |              | 2'-4': Dry, tan and gray, loose, FINE and MEDIUM SAND, some fine gravel,                                                                                                                                                                          |
|                                |                      | 11-12-9-9           | A VX                         |              | trace cobbles, slag fill and concrete                                                                                                                                                                                                             |
| 4                              |                      |                     | ×~*                          |              | 4'-6': Dry/slightly moist, red/brown, loose, FINE SAND, little medium sand,                                                                                                                                                                       |
| - 4 -                          | 4                    | 40%<br>7-9-13-14    | L                            |              | little fine gravel, trace cobbles, oxidized silt                                                                                                                                                                                                  |
|                                |                      | 1-8-15-14           | < < <                        |              |                                                                                                                                                                                                                                                   |
| - 6 -                          |                      | 0%                  | < X <                        |              | 6'B': No recovery                                                                                                                                                                                                                                 |
|                                | 2                    | WH-WH-WH            | VIV                          |              |                                                                                                                                                                                                                                                   |
|                                |                      |                     |                              |              |                                                                                                                                                                                                                                                   |
| - 8 -                          | 5.8                  | 5%                  | A V K                        |              | 8'-10': Slightly moist, red and brown, loose, COBBLE (brick) and MEDIUM                                                                                                                                                                           |
|                                |                      |                     | Y Y                          |              | SAND, trace fine sand, trace fine gravel, trace coarse sand                                                                                                                                                                                       |
| 10                             |                      |                     |                              |              | 101 104 Terr Dry bull leave FINE and NEDILIN SAND little pathlog ( brick:                                                                                                                                                                         |
| - 10 -                         | 1.9                  | 50%<br>7-11-13-18   | TT TT                        |              | 10'—12': Top: Dry, buff, loose, FINE and MEDIUM SAND, little cobbles/ brick;<br>Bottom: Dry, black, loose, cobbles (slag), little fine gravel, little fine sand                                                                                   |
| ~ ~                            |                      | 7-11-13-10          |                              |              |                                                                                                                                                                                                                                                   |
| - 12 -                         | 20                   | 80%                 | 5 4                          |              | 12'-14': Top: Wet, brown, loose, FINE SAND and MEDIUM SAND, trace                                                                                                                                                                                 |
|                                | 2.6                  | 80%<br>10-12-19-19  | VVV                          |              | coarse sand, trace clay, little cobbles; Bottom: Wet, black, loose, medium                                                                                                                                                                        |
| F -                            |                      |                     | ~ r4.                        | Slag         | and coarse sand, trace fine sand, trace fine gravel                                                                                                                                                                                               |
| - 14 -                         | 77                   | 50%                 | X V V                        |              | **14'-16': Same as above (brown), but moist, gray at bottom                                                                                                                                                                                       |
|                                |                      | 9-21-27-18          | < 4 <                        |              |                                                                                                                                                                                                                                                   |
|                                |                      |                     |                              |              |                                                                                                                                                                                                                                                   |
| - 16 -                         | 67.4                 | 10%                 | Wr -                         |              | 16'-18': Same as above, but red/brown, trace/little clay                                                                                                                                                                                          |
|                                |                      | 11-50/1"            | × 14                         |              |                                                                                                                                                                                                                                                   |
| - 18                           |                      |                     | A V K                        |              | 18'-20': No recovery, septic smell                                                                                                                                                                                                                |
| - 10                           | 80                   | 0%<br>5-5-9-4       | K VY                         |              |                                                                                                                                                                                                                                                   |
|                                | -                    |                     | LAN                          |              |                                                                                                                                                                                                                                                   |
| - 20 -                         | 1478                 | 30%                 | < <u>`</u> ₹`₹.<             |              | $\Psi$ +20'-22': Wet, black, loose, FINE GRAVEL (angular) and fine sand, little                                                                                                                                                                   |
|                                |                      | 2-2-3-4             | < 4 <                        |              | coarse sand, strong heating oil odor                                                                                                                                                                                                              |
| -                              |                      |                     | N N V                        |              |                                                                                                                                                                                                                                                   |
| - 22 -                         | 1078                 | 25%                 | × 1×                         |              | 22'-24': Top: Same as above; Bottom: Wet, black, pliable, FINE SAND and                                                                                                                                                                           |
|                                |                      | 1-1-1-1             | A VK                         |              | CLAY, little/some fine gravel, organic rich (wood)                                                                                                                                                                                                |
|                                |                      |                     | VV¥                          |              |                                                                                                                                                                                                                                                   |
| - 24 -                         | 1                    | 15%                 |                              | TB/          | · ·                                                                                                                                                                                                                                               |

01/07/1005 \$HULA-mar03

GROUNDWATER

#### Soil Boring SB-16



12/07/1995 #thinn-mar 93

.

GROUNDWATER

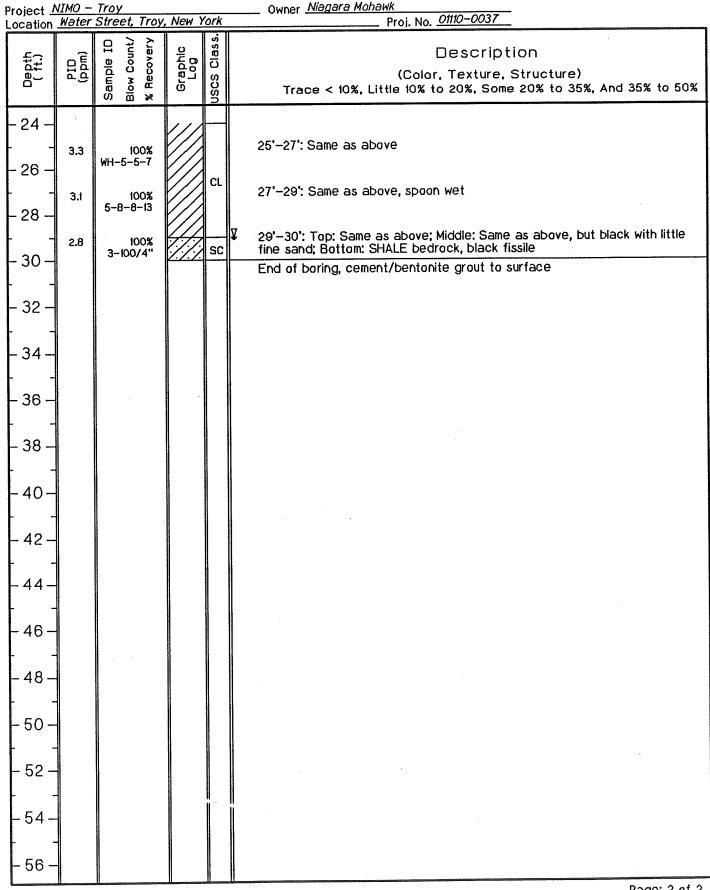
#### Soil Boring SB-16

| Project 1      | VIMO —<br>Water | Troy<br>Street, Troy                   | , New )        | 'ork        | Owner <u>Niagara Mohawk</u><br>Proj. No. <u>01110-0037</u>                                                    |
|----------------|-----------------|----------------------------------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.) | (mqq)<br>DIq    | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log | uscs Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |
| - 56 -         | 4<br>37         | 100%<br>-40-40-38                      |                | sc          | 56'—58': Weathered shale bedrock                                                                              |
| - 58 -         |                 |                                        | / <u>//</u>    |             | End of boring                                                                                                 |
| - 60 -         |                 |                                        |                |             |                                                                                                               |
| - 62 -         |                 |                                        |                |             |                                                                                                               |
| - 64           |                 |                                        |                |             |                                                                                                               |
| - 66 -         |                 |                                        |                |             |                                                                                                               |
| - 68 -         |                 |                                        |                |             |                                                                                                               |
| - 70 -         |                 |                                        |                |             |                                                                                                               |
| - 72 -         |                 |                                        |                |             |                                                                                                               |
| - 74 -         |                 |                                        |                |             |                                                                                                               |
| - 76 -         |                 |                                        |                |             |                                                                                                               |
| - 78 -         |                 |                                        |                |             |                                                                                                               |
| - 80-          |                 |                                        |                |             |                                                                                                               |
| - 82 -         |                 |                                        |                | •           |                                                                                                               |
| - 84 -         | -               |                                        |                |             |                                                                                                               |
|                |                 |                                        |                |             |                                                                                                               |
|                |                 |                                        |                |             |                                                                                                               |
| - 86 -<br>     |                 |                                        |                |             |                                                                                                               |

GROUNDWATER

#### Soil Boring SB-17

| Project 1       | <u>NIMO -</u> | Troy                                   | ( Mow )        | 10x4         | Owner <u>Niagara Mohawk</u>                                             | See Site Map<br>For Boring Location                                      |
|-----------------|---------------|----------------------------------------|----------------|--------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Location        |               | <u>Street, Iro</u> y                   | tal Uala       |              | Proj. No. <u>01110-0037</u><br>th <u>18.3 ft.</u> Diameter <u>8 in.</u> |                                                                          |
|                 |               |                                        |                |              | itial Static                                                            | COMMENTS:                                                                |
| •               |               |                                        |                |              | Type/Size                                                               | * = Sample sent for TCL/TAL. ** =                                        |
|                 |               |                                        |                |              |                                                                         | Sample sent for MGP indicators. P =                                      |
| Casing: L       | иа            | Le                                     | ngtn           |              | Type                                                                    | Sample sent for geotechnicals. M =<br>Sample sent for MS/MSP. A = Sample |
| Fill Mater      | 'ial          |                                        |                |              | Rig/Core <i>Mobil B-57</i><br>HSA                                       | sent for Atterberg limits.                                               |
| Drill Co. 4     | ALT           |                                        | ме             | thod         | $\frac{n_{DA}}{n_{DA}}$                                                 |                                                                          |
|                 |               |                                        |                |              | 00 Date <u>8/24/94</u> Permit #                                         |                                                                          |
| Checked         | Ву            |                                        |                | <u> </u>     | icense No                                                               |                                                                          |
|                 |               | Sample ID<br>Biow Count/<br>% Recovery |                | 5 <i>5</i> . |                                                                         |                                                                          |
| £3              | ے ا           | e I<br>ve                              | Graphic<br>Log | Ca           | Descripti                                                               | on                                                                       |
| Depth<br>( ft.) | DI9<br>DI9    |                                        | DD<br>DD       | s<br>S       | (Color, Texture, S                                                      | Structure)                                                               |
|                 |               |                                        | ษั             | SC:          | Trace < 10%, Little 10% to 20%, Some                                    |                                                                          |
| <b></b>         |               |                                        |                | 5            |                                                                         |                                                                          |
| 2-              |               |                                        |                |              |                                                                         |                                                                          |
| -               |               |                                        |                |              |                                                                         |                                                                          |
|                 |               |                                        |                |              |                                                                         |                                                                          |
| - 0 -           | 0.7           | . 30%                                  |                |              |                                                                         |                                                                          |
| Ŭ               |               | B-37-50/3"                             |                |              | 0.5'-2': Top: Dry, black, loose, FINE SAND a                            | nd FINE GRAVEL, asphalt:                                                 |
|                 |               |                                        |                |              | Bottom: Dry, light brown, loose, FINE SAND,                             | little coarse sand little coddles                                        |
| - 2 -           | 81            | 45%                                    |                |              | *2'-4': Dry/slightly moist, blue/red, loose, F1                         | INE SAND, little/some fine                                               |
|                 |               | 10-18-18-10                            |                |              | gravel (slag), trace tar                                                | ·                                                                        |
|                 |               |                                        |                | Sleg         |                                                                         |                                                                          |
| - 4 -           | 0             | 80%                                    |                |              | 4'-6': Moist, gray, pliable, CLAY, little organi                        | cs, trace fine sand (top),                                               |
|                 | Ŭ             | 4-7-11-14                              | 0.0            |              | mottled, organic layer                                                  |                                                                          |
|                 |               |                                        | 0.0            |              |                                                                         |                                                                          |
| - 6 -           | 0             | 70%                                    | 0.0            |              | 6'-8': Same as above, but no organics, mott                             | ied brown/gray                                                           |
|                 | Ŭ             | 8-12-12-7                              | 0.0            |              |                                                                         |                                                                          |
|                 |               |                                        | 0.0            |              |                                                                         |                                                                          |
| - 8 -           | 0             | 85%                                    | 0.0            | Fill         | 8'-10': Same as above, but trace cobbles (f                             | ill), brick fragments, slight                                            |
| -               | Ŭ             | 5-7-8-12                               | 0.0            |              | moisture (leathery)                                                     |                                                                          |
|                 |               |                                        | 0.0            |              |                                                                         |                                                                          |
| - 10 -          | 15.1          | 80%                                    | 0.0            |              | 10'-12': Same as above, but no cobbles                                  |                                                                          |
|                 | 10.1          | 4-5-8-13                               | 0.0·           |              |                                                                         |                                                                          |
|                 |               |                                        | 0.0            |              | •                                                                       |                                                                          |
| - 12 -          | 2.5           | 80%                                    | 0.0            |              | 12'-14': Same as above, but trace fine grave                            | I (slag and fill), fine sand at                                          |
|                 | 2.0           | 15-16-11-17                            | V N V          |              | bottom                                                                  |                                                                          |
| F -             |               |                                        | L'AN           |              |                                                                         |                                                                          |
| - 14            | 7.1           | 504                                    | 2 V ¥          | Sleg         | **14'-16': Top: Same as above, but clay and                             | d cobbles (brick), grav, slightly                                        |
|                 |               | 50%<br>8-13-50/7''                     | W V            | <b>.</b>     | moist, loose, fine sand; Bottom: Weathered sl                           | hale rock                                                                |
| + -             |               |                                        |                |              |                                                                         |                                                                          |
| - 16            | 98.3          | 704                                    | N.W.           |              | **16'-18': Dry, gray, loose, COBBLES, (weat                             | hered silt), little fine sand, little                                    |
|                 | 80.3<br>35    | 70%<br>-35-24-28                       | 0.0            |              | fine gravel (shale), hydrocarbon odor                                   | •                                                                        |
|                 |               |                                        | 0.0            | Fil          |                                                                         |                                                                          |
| - 18 -          | 420           | 59                                     | 0.0            |              | 18'–18.3': Crushed SHALE, hydrocarbon oder                              |                                                                          |
|                 | 438           | 5%<br>50/3"                            |                |              | End of boring, cement/bentonite grout to su                             |                                                                          |
|                 |               |                                        |                |              |                                                                         |                                                                          |
| - 20 -          | .             |                                        |                |              |                                                                         |                                                                          |
|                 |               |                                        | I              |              |                                                                         |                                                                          |
| F -             |               |                                        |                |              |                                                                         |                                                                          |
| - 22 -          |               |                                        |                |              |                                                                         | Ÿ                                                                        |
|                 |               |                                        |                |              |                                                                         |                                                                          |
|                 |               |                                        |                |              |                                                                         |                                                                          |
| - 24            |               |                                        |                |              |                                                                         |                                                                          |
|                 |               |                                        |                |              |                                                                         |                                                                          |


GROUNDWATER TECHNOLOGY

#### Soil Boring SB-18

| Project /            | NIMO -       | Trov                                   |                |             | Owner <u>Niagara Mohawk</u><br>For Boring Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|--------------|----------------------------------------|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location             | Water        | <u>Street, Troy,</u>                   | <u>New Y</u>   | <u>'ork</u> | Proj. No. <u>01110-0037</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Surface              | Elev         | Tot                                    | tal Hole       | Dep         | th <u>30 ft.</u> Diameter <u>B in.</u> COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Top of C             | asing _      | Wat                                    | ter Lev        | el Ini      | tial <u>29 ft.</u> Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Screen: [            | Jia          | Ler                                    | ngth           |             | Type/Size * = Sample sent for TCL/TAL. ** =<br>Sample sent for MGP indicators. E =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Casing: D            | lia          | Ler                                    | ngth           |             | Type     Sample sent for McP indicators. E =       Sample sent for geotechnicals. M =       Sample sent for MS/MSD. A = Sample       Rig/Core     Mobil B-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | 181<br>407   |                                        | Moi            | lhod        | HSA See a construction of the second |
| Driller $M$ .        | Harring      | ton Loc                                |                | Bish        | op Date <u>8/17/94</u> Permit # settled to a depth of 5' in borehole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Checked              |              |                                        |                |             | icense No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |              | $\circ \Rightarrow >$                  |                | ss.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| £⊋                   | PID<br>(mqq) | e I<br>vei                             | Graphic<br>Log | С<br>О<br>О | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Depth<br>( ft.)      | IId          |                                        | 60<br>60       | scs (       | (Calar, Texture, Structure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |              | Sample ID<br>Blow Count/<br>% Recovery | Ŭ              | Sn          | Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |              |                                        |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 -                  |              |                                        |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |              |                                        |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - 0 -                | 0            | 50%                                    | 0::0:::        |             | a state provide the second state and copple (brick fill) trace/little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |              | 37-22-14                               | 0.0<br>0.0     |             | 0.5'-2': Dry, red/tan, loose, FINE SAND and COBBLE (brick fill), trace/little fine gravel, trace coarse sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 2 -                |              |                                        | o. o.          |             | 2'-4': Slightly moist, black/brown, loose to semi pliable, FINE and MEDIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | 0.5          | 50%<br>8-8-8-7                         | 0.0            | Fil         | SAND, little coarse sand, trace/little fine gravel, trace clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              |                                        | 0.0            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - 4 -                |              | 10%                                    | 7.07           | Fill        | 4'-4.5': Moist, tan, pliable, CLAY and COBBLES, little fine sand, trace/little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 4.6          | -50-100/1"<br>45%                      | 926            |             | silt, one large cobble (fill)<br>Auger refusal at 5', redrill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - 6 -                | 0            | 7-9-6-7                                | 6/9            |             | **5'-7': Moist, brown, pliable, FINE SAND and CLAY, some cobbles (fill),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |              |                                        | 199            | Fit         | trace coarse sand, hydrocarbon odor (MGP impacted soils), tar strands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | 1.6          |                                        | ø p/           | F 11        | - 7'-9': Moist, brown, pliable, FINE SAND, some clay, trace/little fine gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 8 -                |              | 3-3-5-13                               | 6/9/           |             | (fill-brick) trace cobbles (fill), hydrocarbon odor (MGP impacted soils)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>↓</u> -           | 15.2         |                                        | 224            |             | **9'-11': Dry, red and tan, loose, COBBLES (fill - brick) and FINE SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 10 -               | 10.2         | -25-65-29                              |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| F 10 -               |              |                                        | <b>`</b> <     | Fill        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | 3.1          | 60%<br>6-28-12-10                      |                |             | **11'-13': Top: Dry, gray, loose, COBBLES and FINE to COARSE GRAVEL<br>(fill); Middle: Slightly moist, black/brown, loose, FINE SAND and COBBLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 12 -               |              | 0-20-12-10                             | a V K          |             | (slag), trace medium sand, trace clay; Bottom: Slightly moist, tan, pliable,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | 2.7          | 70%                                    | V V V          |             | CLAY, trace fine sand, trace silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 14 -               |              | 8-7-8-8                                | 0.6.           | 1           | - 13'-15': Moist, tan/gray, pliable, CLAY (heterogeneous fill)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>–</b> 14 <b>–</b> |              |                                        | 6/9/           |             | (1) (7) One as above but little energy and (fill sinder black)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 2.4          | 70%<br>3-9-6-6                         | 126            |             | 15'-17': Same as above, but little coarse sand (fill - cinder block)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 16 -               | -            | 3-8-0-0                                | 6/4            | Fil         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | 3.3          | 85%                                    | 199            |             | 17'-19': Same as above (fill)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - 18 -               | 0.0          | 3-5-6-6                                | 0.0.           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |              |                                        | 6/9/           |             | to all come or above but no fill abvieur appears natural undisturbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | - 1.1        | 100%<br>3-3-4 <b>-</b> 5               | 11             |             | 19'-21': Same as above, but no fill obvious, appears natural, undisturbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - 20 -               | -            | 3-3-4-5                                | V//            | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | 2.8          | 100%                                   |                | 1 .         | 21'-23': Same as above, but trace fine gravel, trace coarse sand, mottled,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 22 -               |              | 4-7-7-8                                |                | CL          | appears indegenous slump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |              |                                        |                | 1           | as' se'i Sama ar abaya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F -                  | 3            | 100%<br>3-3-5-7                        | V//            | 1           | 23'–25': Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 24 -               | -            |                                        | K12            | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                    | u            | 11                                     | 11             | 11          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Soil Boring SB-18





Groundwater Technology

### Soil Boring SB-19

| Understand       District Distribution       District Bible       Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project 1   | VIMO - | Troy<br>Street Troy       | New Y                                 |              | Owner <u>Niagara Mohawk</u> Proj. No. <u>01110-0037</u> | See Site Map<br>For Boring Location                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------------------------|---------------------------------------|--------------|---------------------------------------------------------|--------------------------------------------------------------------------|
| Top of Cosing       Water Level Initial 248.fL.       Static         Casing Dia       Length       Type (Size)       Static         Casing Dia       Length       Type (Size)       Static       Static         Trill Material       Rig/Core Mobil 8-57       Static       Static       Static         Orlier M. Horrington       Log by J. Biblod       Date B/B/94       Pernit #       Static       Static         Orlier M. Horrington       Log by J. Biblod       Date B/B/94       Pernit #       Static       Static       Static         Orlier M. Horrington       Log by J. Biblod       Date B/B/94       Pernit #       Static       Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LUCITION    |        | <i>цисс, ноу</i> ,<br>т., | tol Hala                              |              | $\frac{1}{10000000000000000000000000000000000$          |                                                                          |
| Screen Dia       Length       Type/Size       ** Server bar for XC/TL, w - Some sent for XC/TL, w - XC/TL,                                                                                                                                                                                                                             |             |        |                           |                                       | el Ini       | tion 24.8 ft Station                                    | COMMENTS:                                                                |
| Fill Material       Rig/Core Mobil 8-57       Deter 8/16/24       Permit #         Drill co. 407       Log By 4. Bishag       Date 8/16/24       Permit #         Checked By       License No.       Cloin (Color, Texture, Structure)         Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |        |                           |                                       |              |                                                         | K - Cample each for TCL (T.U                                             |
| Fill Material       Rig/Core Mobil 8-57       Deter 8/16/24       Permit #         Drill co. 407       Log By 4. Bishag       Date 8/16/24       Permit #         Checked By       License No.       Cloin (Color, Texture, Structure)         Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Screen: L   | Jia    | Ler                       | ιgτn                                  |              | Type/Size                                               | Sample sent for MSP indicators, P =                                      |
| Driler M. Harringtion       Log By J. Bishop       Date 8/8/24       Permit #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Casing: U   | la     | Ler                       | ngth                                  |              |                                                         | Sample sent for geotechnicals. M =<br>Sample sent for MS/MSP. A = Sample |
| Driler M. Harringtion       Log By J. Bishop       Date 8/8/24       Permit #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fill Mater  | ial    |                           |                                       |              | Hig/Core <u>Mobil B-57</u>                              | sent for Atterberg limits.                                               |
| License No.         Checked By       Uicense No.         Checked By       Description<br>(Color, Texture, Structure)         Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"         Colspan="2"          Colspan="2"         Colspan="2"         Colspan="2"         Colspan="2"         Colspan="2" <t< td=""><td>Drill Co. 4</td><td></td><td>,</td><td> Me<sup>.</sup></td><td>thod</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drill Co. 4 |        | ,                         | Me <sup>.</sup>                       | thod         |                                                         |                                                                          |
| Image:                                                                                                                                                                                                  |             |        |                           |                                       |              |                                                         |                                                                          |
| <ul> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-2 - 2.9</li> <li>-2 - 2.9</li> <li>-4 - 4</li> <li>-2 - 2.9</li> <li>-4 - 40%</li> <li>-5 - 12.2</li> <li>-4 - 40%</li> <li>-6 - 12.2</li> <li>-4 - 40%</li> <li>-6 - 12.2</li> <li>-4 - 40%</li> <li>-7 - 10%</li> <li>-7 - 1</li></ul>                                                                                                                                                         | Checked     | Ву     |                           |                                       | <u> </u>     | icense No.                                              |                                                                          |
| <ul> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0<td></td><td></td><td></td><td>0</td><td>S</td><td></td><td></td></li></ul>                                                                                           |             |        |                           | 0                                     | S            |                                                         |                                                                          |
| <ul> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0<td>t:</td><td></td><td></td><td></td><td>ца<br/>С</td><td>. Description</td><td>on</td></li></ul>                                                                    | t:          |        |                           |                                       | ца<br>С      | . Description                                           | on                                                                       |
| <ul> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0<td>e<br/>t</td><td>Id</td><td></td><td>ונשו</td><td>l ທ l</td><td>(Color, Texture, S</td><td>tructure)</td></li></ul>                                                | e<br>t      | Id     |                           | ונשו                                  | l ທ l        | (Color, Texture, S                                      | tructure)                                                                |
| <ul> <li>-2 - 0</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-30%</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-2 - 0</li> <li>-2 - 2.9</li> <li>-2 - 2.9</li> <li>-4 - 4</li> <li>-2 - 2.9</li> <li>-4 - 40%</li> <li>-5 - 12.2</li> <li>-4 - 40%</li> <li>-6 - 12.2</li> <li>-4 - 40%</li> <li>-6 - 12.2</li> <li>-4 - 40%</li> <li>-7 - 10%</li> <li>-7 - 1</li></ul>                                                                                                                                                         |             |        | Sar<br>alou               | Ū                                     | SC           | Trace < 10%, Little 10% to 20%, Some                    | 20% to 35%, And 35% to 50%                                               |
| 0       30         2       0       30-22-37         2       30-22-37       Fri         4       48-89-47       Stack/dark brown, loose, fine sand, little cobbles, (cobbles = FILL brick, slag)         4       48-89-47       3'-5': Dry, tan, loose, FINE SAND, some fine gravel         6       12.2       40%       5'-7': Dry, black/brown, loose, FINE SAND, little fine to coarse gravel (fill), moist at itp, moitted oxide color         7       22-26-41-45       5'-7': Dry, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, little cobbles, but colored in tip         10       16x       40%         12       40%       9'-11': Moist, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, little cobbles, largely slag and brick fill, oxidized, odor         11       12       40%       9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, some cobbles, slag fill         12       79       21-21-5-5       40%         14       -79       21-21-5-5       40%         14       -79       21-21-5-5       40%         14       -79       21-21-5-5       40%         16       -70       21-21-5-5       40%         17       -10-50       10       15'-17': Top: Moist/wet, dark grav, loose, MEDIUM and COARSE SAND, little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |        | ~ ш х                     |                                       | <del>-</del> |                                                         |                                                                          |
| 2       0       30×22-37       Fri       I'-3': Top: Dry, tan, loose, MEDIUM and COARSE SAND, little gravel (fill);<br>Bottom: Dry, black/dark brown, loose, fine sand, little cobbles, (cobbles =<br>FILL brick, slag)         4       -       2.9       48-09-47       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-          |        |                           |                                       |              |                                                         |                                                                          |
| 2       0       30×22-37       Fri       I'-3': Top: Dry, tan, loose, MEDIUM and COARSE SAND, little gravel (fill);<br>Bottom: Dry, black/dark brown, loose, fine sand, little cobbles, (cobbles =<br>FILL brick, slag)         4       -       2.9       48-09-47       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        |                           |                                       |              |                                                         |                                                                          |
| 2       0       30x       30-22-37       7         2       2.9       30-22-37       7       7         4       -       2.9       -       -       -         4       -       2.9       -       -       -         4       -       -       -       -       -       -         6       -       -       -       -       -       -       -         6       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        |                           |                                       |              |                                                         |                                                                          |
| 2       30-22-37       a       Fri       Bottom: Dry, black/dark brown, loose, fine sand, little cobbles, (cobbles = FILL brick, slag)         4       2.9       6x       48-69-47       3'-6': Dry, tan, loose, FINE SAND, some fine gravel         6       12.2       40x       5'-7': Dry, black/brown, loose, FINE SAND, little fine to coarse gravel (fill), moist at tip, mottled oxide color         7       2x-20-41-45       5'-7': Dry, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, little cobbles, buff colored in tip         10       8       40x       7'-9': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, trace cobbles, largely slag and brick fill, oxidized, odor         11       12       18       30x       11'-13': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, some cobbles, slag fill         12       79       40x       9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, little         14       50x       7'-0:50       9'         16       50x       7'-10': Moist, wet, dark gray, loose, MEDIUM and COARSE SAND, little         18       60x       10'-13': Moist, brown/black, loose, MEDIUM and COARSE SAND, little         18       60x       5'-7'-10': Moist, brown/black, loose, MEDIUM and COARSE SAND, little         18       21'-21'-16'-16       5'-7': Top: Moist, dark gray, loose, MEDIUM SAND, little coarse sand, little <t< td=""><td>+ 0 -</td><td></td><td></td><td>0. 0</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 0 -       |        |                           | 0. 0                                  |              |                                                         |                                                                          |
| 2       30-22-37       a       Bottom: Dry, black/dark brown, loose, fine sand, little cobbles, (cobbles = FILL brick, slag)         4       -       2.9       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |        | 204                       | 0.0.0                                 |              | 1'-3': Top: Dry. tan. logse. MEDIUM and COAR            | SE SAND. little gravel (fill):                                           |
| 2       2.8       48-89-47       FILL brick, slag)         3'-5': Dry, tan, loose, FINE SAND, some fine gravel       3'-5': Dry, tan, loose, FINE SAND, little fine to coarse gravel (fill), moist at tip, motified oxide color         6       12.2       400       5'-7': Dry, black/brown, loose, FINE SAND, little fine to coarse gravel (fill), moist at tip, motified oxide color         8       40.5       7'-9': Moist, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, trace cobbles, largely slag and brick fill, oxidized, odor         10       18       30x       9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, trace cobbles, slag fill         12       79       40x       10'-13': Moist, black/brown, loose, MEDIUM and COARSE SAND, little coarse sand, little         14       79       40x       13'-15': Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little coarse sand, little         16       7-10-50       10'-19': Moist, black/brown, loose, MEDIUM and COARSE SAND, little         18       60x       5-7-11-10         19       638       80x         10       10'-22': Top: Moist, dark brown, loose, MEDIUM SAND, little coarse sand, little fine/medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0      |                           | 0.00                                  | Fit          | Bottom: Dry, black/dark brown, loose, fine sa           | and, little cobbles, (cobbles =                                          |
| 4       48-89-47         12.1       40x         12.2       40x         12.1       40x         15       15         10       15         10       18         10       18         12       40x         12       18         10       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         14       21-21-15-15         21       40x         14       50x         7       21-21-15-15         50x       7-10-50         14       50x         15<-17: Top: Moist/Wet, black/brown, loose, MEDIUM and COARSE SAND, little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 2 -       |        |                           | 0.00                                  |              | FILL brick, slag)                                       |                                                                          |
| 4       48-89-47         12.1       40x         12.2       40x         12.1       40x         15       15         10       15         10       18         10       18         12       40x         12       18         10       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         12       18         14       21-21-15-15         21       40x         14       50x         7       21-21-15-15         50x       7-10-50         14       50x         15<-17: Top: Moist/Wet, black/brown, loose, MEDIUM and COARSE SAND, little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |                           | o: o:                                 |              | 3'-5': Dry tap loose, FINE SAND, some fine              | aravel                                                                   |
| <ul> <li>4 - 12.2 40x 15-40-29-30</li> <li>5'-7': Dry, black/brown, loose, FINE SAND, little fine to coarse gravel (fill), moist at tip, mottled oxide color</li> <li>5'-7': Dry, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, little cobbles, buff colored in tip</li> <li>9'-11: Moist, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, trace cobbles, largely siag and brick fill, oxidized, odor</li> <li>10 - 18 30x 10-14-16-21</li> <li>10 - 14 - 16-21</li> <li>11 - 13': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill</li> <li>13'-15': Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little - some fine gravel, cobbles, slag, fill)</li> <li>15'-17': Top: Moist, wet, dark gray, loose, MEDIUM and COARSE SAND, little - some fine gravel (slag, fill); Bottom: Black/brown, same as top half</li> <li>17'-19': Moist, brown/black, loose, MEDIUM SAND, little coarse sand, little fine/medium cobbles (slag, fill); trace cobbles (slag, fill), odor</li> <li>18 - 273 - 445 - 00X - 10-10</li> <li>18 - 273 - 25-23-24</li> <li>20 - 445 - 00X - 10-10</li> <li>21 - 25-23-24</li> <li>22 - 445 - 00X - 10-10</li> <li>23 - 25': Wet, gray/blue, loose, MEDIUM SAND, little -fine gravel, trace medium gravel (slag, brick); Bottom: Gray, same as top half, odor</li> <li>22 - 23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor</li> <li>23 - 25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag, linde: wet, brown, semi-pilable, FINE SAND, little to some fine gravel, fill, back, brown, semi-pilable, FINE SAND, little to some fine gravel, fill, slag, trace cobbles (slag, linde: wet, brown, semi-pilable, FINE SAND, little to some fine gravel, fill, slag, trace cobbles (slag, linde: wet, brown, semi-pilable, FINE SAND, little to some fine gravel</li></ul>                                                                                                                                                          |             | 2.9    |                           |                                       |              |                                                         | 5                                                                        |
| <ul> <li>6 - 15 - 28 - 28 - 28 - 41 - 45</li> <li>8 - 25 - 28 - 41 - 45</li> <li>9 - 11°: Moist, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, little cobbles, buff colored in tip</li> <li>9 - 11°: Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, trace cobbles, largely slag and brick fill, oxidized, odor</li> <li>10 - 18 - 300x</li> <li>12 - 18 - 400x</li> <li>14 - 79 - 400x</li> <li>15 - 17°: Top: Moist/Wet, black/brown, loose, MEDIUM and COARSE SAND, little - some fine gravel, cobbles (slag, fill)</li> <li>16 - 500x</li> <li>17 - 10°: Moist, black/brown, loose, MEDIUM and COARSE SAND, little - some fine gravel, cobbles (slag, fill)</li> <li>16 - 273 - 26 - 41 - 500x</li> <li>18 - 445 - 800x</li> <li>18 - 25 - 23 - 24</li> <li>21 - 23 - 25 - 24 - 25 - 24 - 25 - 24 - 25 - 24 - 25</li></ul>                                                                                                                                                          | - 4 -       |        | 10 00 11                  | A K                                   |              |                                                         |                                                                          |
| <ul> <li>6 - 15 - 40-29-30 - 15 - 15 - 15 - 15 - 22-20-41-45 - 15 - 22-20-41-45 - 10 - 16 - 22-20-41-45 - 10 - 18 - 20-20-12 - 12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 18 - 20-20-12 - 20-20-12 - 18 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-12 - 20-20-20-12 - 20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-12 - 20-20-20-20-20-20-20-20-20-20-20-20-20-2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 10.0   | 104                       | ₹v¥                                   |              | 5'-7" Dry black/brown loose, FINE SAND li               | ttle fine to coarse gravel. (fill),                                      |
| <ul> <li>7'-9': Moist, black/brown, loose, MEDIUM SAND, little coarse sand/ fine gravel, little cobbles, buff colored in tip</li> <li>9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, trace cobbles, largely slag and brick fill, oxidized, odor</li> <li>12 - 18 30x 10-14-16-21</li> <li>18 30x 10-14-16-21</li> <li>19 40x 21-21-15-15</li> <li>10 - 14 - 50x 7-10-50</li> <li>10 - 16 - 77-10-50</li> <li>11 - 13': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill</li> <li>13'-15': Moist/wet, dark gray, loose, MEDIUM and COARSE SAND, little -some fine gravel (slag, fill)</li> <li>16 - 70 - 50 - 50x 7-10-50</li> <li>17'-19': Moist, black/brown, loose, MEDIUM and COARSE SAND, little fine/medium cobbles (slag, fill)</li> <li>16'-17': Top: Moist/wet, dark gray, loose, MEDIUM and COARSE SAND, little fine/medium cobbles (slag, fill), trace cobbles (slag, fill), dor</li> <li>17'-19': Moist, brown/black, loose, MEDIUM SAND, little coarse sand, little fine/medium gravel (slag, fill), trace cobbles (slag, fill), odor</li> <li>20 - 0</li> <li>21 - 23': Same as above (gray lower half), but we', some large gravel, some cobbles, odor</li> <li>21'-23': Same as above (gray lower half), but we', some large gravel, some cobbles, odor</li> <li>21'-23': Same as above (gray lower half), but we', some large gravel, some cobbles, odor</li> <li>22'-23': Same as above (gray lower half), but we', some large gravel, some cobbles, odor</li> <li>21'-23': Same as above (gray lower half), but we', some large gravel, some cobbles, odor</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |                           | • • • • • • •                         |              | moist at tip, mottled oxide color                       |                                                                          |
| 8       25-28-41-45       gravel, little cobbles, buff colored in tip         9       40%       9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, trace cobbles, largely slag and brick fill, oxidized, odor         10       -       18       30%       9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, some cobbles, slag fill         12       -       18       30%       -       11'-13': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill         14       -       50%       -       -       13'-15': Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -       -         -       -       -       -       -       -       -       -         -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 6 -       |        | 10 20 00                  | < ¥ <                                 |              |                                                         |                                                                          |
| 8       25-28-41-45       gravel, little cobbles, buff colored in tip         9       40%       9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, trace cobbles, largely slag and brick fill, oxidized, odor         10       -       18       30%       9'-11': Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, some cobbles, slag fill         12       -       18       30%       -       11'-13': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill         14       -       50%       -       -       13'-15': Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -         -       -       -       -       -       -       -       -         -       -       -       -       -       -       -       -         -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        | 159                       | < 4 <                                 |              | 7'-9': Maist, black/brown, loose, MEDIUM SAN            | ND, little coarse sand/ fine                                             |
| <ul> <li>8</li> <li>9'-11: Moist, black/brown, loose, MEDIUM and COARSE SAND, trace fine gravel, trace cobbles, largely slag and brick fill, oxidized, odor</li> <li>12</li> <li>18</li> <li>14</li> <li>79</li> <li>40x</li> <li>14</li> <li>50x</li> <li>7-10-50</li> <li>50x</li> <li>7-10-50</li> <li>15'-17: Top: Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little</li> <li>15'-17: Top: Moist/wet, dark gray, loose, MEDIUM and COARSE SAND, little</li> <li>16</li> <li>273</li> <li>445</li> <li>60x</li> <li>445</li> <li>60x</li> <li>5-7-11-10</li> <li>60x</li> <li>20</li> <li>638</li> <li>22-2-3-24</li> <li>1659</li> <li>20-14-8-12</li> <li>24</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 2      |                           | N N                                   |              |                                                         | ····                                                                     |
| 10       18       20-20-12       12       13       12       18       30%       11'-13': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill         12       79       40%       13'-15': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill         14       79       40%       13'-15': Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little         16       50%       7-10-50       14'-12'-11'-11         18       60%       14-12-11-11       15'-17': Top: Moist/wet, dark gray, loose, MEDIUM and COARSE SAND, trace clittle fine gravel (slag, fill); Bottom: Black/brown, same as top half         18       80%       14-12-11-11       15'-17': Top: Moist, dark brown/black, loose, MEDIUM SAND, little coarse sand, little fine/medium cobbles (slag, fill); trace cobbles (slag, fill), odor         20       445       80%       35%       12'-21': Top: Moist, dark brown, loose, MEDIUM SAND, little-fine gravel, trace medium gravel (slag, brick); Bottom: Gray, same as top half, odor         21'-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor       21'-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor         22       1059       80%       22'-25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 8 -       | _      |                           | × ×                                   |              |                                                         | ·                                                                        |
| 10       18       20-20-12       12       13       12       18       30%       11'-13': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill         12       79       40%       13'-15': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill         14       79       40%       13'-15': Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little         16       50%       7-10-50       14'-12'-11'-11         18       60%       14-12-11-11       15'-17': Top: Moist/wet, dark gray, loose, MEDIUM and COARSE SAND, trace clittle fine gravel (slag, fill); Bottom: Black/brown, same as top half         18       80%       14-12-11-11       15'-17': Top: Moist, dark brown/black, loose, MEDIUM SAND, little coarse sand, little fine/medium cobbles (slag, fill); trace cobbles (slag, fill), odor         20       445       80%       35%       12'-21': Top: Moist, dark brown, loose, MEDIUM SAND, little-fine gravel, trace medium gravel (slag, brick); Bottom: Gray, same as top half, odor         21'-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor       21'-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor         22       1059       80%       22'-25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 0      | 404                       | A VX                                  |              | 9'-11': Moist, black/brown, loose, MEDIUM and           | COARSE SAND, trace fine                                                  |
| <ul> <li>10 -</li> <li>18 30%</li> <li>11 -13': Moist, black/brown, loose, MEDIUM SAND, little to some fine gravel, some cobbles, slag fill</li> <li>13'-15': Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little</li> <li>16 -</li> <li>273 80%</li> <li>20 -</li> <li>888 35%</li> <li>22 -</li> <li>1659 80%</li> <li>24 -</li> <li>24 -</li> <li>1659 80%</li> <li>20 -</li> <li>1659 80%</li> <li>24 -</li> <li>24 -</li> <li>1659 80%</li> <li>20 -</li> <li>1659 80%</li> <li>20 -</li> <li>1659 80%</li> <li>20 -</li> <li>1659 80%</li> <li>24 -</li> <li>24 -</li> <li>24 -</li> <li>24 -</li> <li>24 -</li> <li>24 -</li> <li>25 -</li> <li>25 : Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel, fill, stag, trace clay, clay layer at base (&lt;1 cm); Bottom: Wet, black, black, black</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        |                           | V V V                                 |              | gravel, trace cobbles, largely slag and brick           | fill, oxidized, odor                                                     |
| some cobbles, slag fill<br>some cobbles, slag fi | - 10 -      |        |                           | ×ده >                                 |              |                                                         |                                                                          |
| some cobbles, slag fill<br>some cobbles, slag fi |             | 10     | 204                       | ~ ¥ <                                 |              | 11-13" Maist, black/brown, loose, MEDIUM SA             | ND, little to some fine gravel.                                          |
| <ul> <li>12 - 79</li> <li>14 - 79</li> <li>14 - 79</li> <li>14 - 79</li> <li>14 - 70</li> <li>15 - 15 : Moist/wet, black/brown, loose, MEDIUM and COARSE SAND, little - some fine gravel, cobbles (slag, fill)</li> <li>15 - 17 : Top: Moist/wet, dark gray, loose, MEDIUM and COARSE SAND, little - some fine gravel (slag, fill): Bottom: Black/brown, same as top half</li> <li>17 - 19 : Moist, brown/black, loose, MEDIUM SAND, little coarse sand, little fine/medium cobbles (slag, fill), trace cobbles (slag, fill), odor</li> <li>18 - 445</li> <li>20 - 445</li> <li>60%</li> <li>20 - 445</li> <li>60%</li> <li>20 - 445</li> <li>80%</li> <li>20 - 14 - 8 - 12</li> <li>80%</li> <li>21 - 25 : Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (&lt;1 cm); Bottom: Wet, black,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |        |                           | VAL A                                 |              |                                                         | _,                                                                       |
| <ul> <li>- 14 -</li> <li>- 14 -</li> <li>- 14 -</li> <li>- 16 -</li> <li>- 273 + 00% + 14-12-11-11</li> <li>- 445 + 00% + 5-7-11-10</li> <li>- 20 -</li> <li>- 638 + 00% + 5-7-11-10</li> <li>- 222 -</li> <li>- 1659 + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% +</li></ul>                                                                                                                                                          | - 12 -      |        |                           |                                       |              |                                                         |                                                                          |
| <ul> <li>- 14 -</li> <li>- 14 -</li> <li>- 14 -</li> <li>- 16 -</li> <li>- 273 + 00% + 14-12-11-11</li> <li>- 445 + 00% + 5-7-11-10</li> <li>- 20 -</li> <li>- 638 + 00% + 5-7-11-10</li> <li>- 222 -</li> <li>- 1659 + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% + 00% +</li></ul>                                                                                                                                                          |             | 70     | 40%                       | 5                                     |              | 13'-15': Moist/wet, black/brown, loose, MEDIU           | M and COARSE SAND. little                                                |
| <ul> <li>16</li> <li>16</li> <li>17-10-50</li> <li>273</li> <li>80%</li> <li>14-12-11-11</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>20-14-8-12</li> <li>24</li> </ul> <ul> <li>15'-17': Top: Moist/wet, dark gray, loose, MEDIUM and COARSE SAND, trace/little fine gravel (slag, fill); Bottom: Black/brown, same as top half</li> <li>17'-19': Moist, brown/black, loose, MEDIUM SAND, little coarse sand, little fine/medium cobbles (slag, fill), trace cobbles (slag, fill), odor</li> <li>**19'-21': Top: Moist, dark brown, loose, MEDIUM SAND, little-fine gravel, trace medium gravel (slag, brick); Bottom: Gray, same as top half, odor</li> <li>21'-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor</li> <li>*23'-25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (&lt;1 cm); Bottom: Wet, black,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 19     |                           | VIAVI                                 | Sleg         |                                                         |                                                                          |
| <ul> <li>16 -</li> <li>273 00%</li> <li>445 00%</li> <li>20 -</li> <li>638 35%</li> <li>22 -</li> <li>1059 80%</li> <li>24 -</li> <li>24 -</li> <li>1059 80%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>21 -</li> <li>23 -</li> <li>25 -</li> <li>26 -</li> <li>26 -</li> <li>27 -</li> <li>27 -</li> <li>28 -</li> <li>29 -</li> <li>20 -</li> <li>21 -<td>- 14 -</td><td></td><td></td><td></td><td></td><td></td><td></td></li></ul>                                                                                        | - 14 -      |        |                           |                                       |              |                                                         |                                                                          |
| <ul> <li>16 -</li> <li>273 00%</li> <li>445 00%</li> <li>20 -</li> <li>638 35%</li> <li>22 -</li> <li>1059 80%</li> <li>24 -</li> <li>24 -</li> <li>1059 80%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>1059 10%</li> <li>20 -</li> <li>21 -</li> <li>23 -</li> <li>25 -</li> <li>26 -</li> <li>26 -</li> <li>27 -</li> <li>27 -</li> <li>28 -</li> <li>29 -</li> <li>20 -</li> <li>21 -<td></td><td></td><td>504</td><td>ZYE</td><td></td><td>15'–17': Top: Moist/wet: dark grav. loose. MEE</td><td>JIUM and COARSE SAND.</td></li></ul>                     |             |        | 504                       | ZYE                                   |              | 15'–17': Top: Moist/wet: dark grav. loose. MEE          | JIUM and COARSE SAND.                                                    |
| <ul> <li>10 -</li> <li>273 BOX 14-12-11-11</li> <li>1445 BOX 5-7-11-10</li> <li>445 BOX 5-7-11-10</li></ul>                                                                                                                                                              |             |        |                           | WVV!                                  |              | trace/little fine gravel (slag, fill); Bottom: Bla      | ack/brown, same as top half                                              |
| <ul> <li>18 -</li> <li>14-12-11-11</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>445</li> <li>446</li> <li>446</li></ul>                                                                                                                                                              | - 16 -      |        |                           | > > > > > > > > > > > > > > > > > > > |              |                                                         |                                                                          |
| <ul> <li>18 -</li> <li>14-12-11-11</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>5-7-11-10</li> <li>445</li> <li>80%</li> <li>445</li> <li>446</li> <li>446</li></ul>                                                                                                                                                              |             | 272    | 804                       | < ¥ <                                 |              | 17'-19': Maist. brown/black. loose. MEDIUM SA           | ND. little coarse sand. little                                           |
| <ul> <li>18 -</li> <li>445 80%</li> <li>5-7-11-10</li> <li>638 35%</li> <li>-22 -</li> <li>1059 80%</li> <li>-24 -</li> <li>1059 80%</li> <li>20-14-8-12</li> <li>-24 -</li> <li>-24 -</li> <li>-445 80%</li> <li>-24 -</li> <li>-445 80%</li> <li>-25-23-24</li> <li>-25-23-24</li> <li>-25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel. (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (&lt;1 cm); Bottom: Wet, black,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 213    |                           | VIAVI                                 |              |                                                         |                                                                          |
| -20 -       5-7-II-IO       5-7-II-IO       Trace medium gravel (slag, brick); Bottom: Gray, same as top half, odor         -20 -       -638       35%       -25-23-24       -21-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor         -22 -       -       -25-23-24       -25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 18 -      |        |                           |                                       |              |                                                         |                                                                          |
| -20 -       5-7-II-IO       5-7-II-IO       Trace medium gravel (slag, brick); Bottom: Gray, same as top half, odor         -20 -       -638       35%       -25-23-24       -21-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor         -22 -       -       -25-23-24       -25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 115    | A.047                     | W V K                                 |              | **19'-21': Top: Moist, dark brown, loose, MED           | IUM SAND. little-fine gravel,                                            |
| - 22 -<br>- 638 35% 35% 21-23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor<br>- 22 -<br>- 1659 80% 20-14-8-12 80% 20-14-8-12 -23': Same as above (gray lower half), but wet, some large gravel, some cobbles, odor<br>*23'-25': Wet, gray/blue, loose, MEDIUM SAND, little to some fine gravel (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 440    |                           | NV¥                                   |              | trace medium gravel (slag, brick); Bottom: Gr           | ay, same as top half, odor                                               |
| - 22 -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ ^{-20}$   |        |                           | 1. A.                                 |              |                                                         |                                                                          |
| - 22 -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - L         | 820    | 254                       | [₹,¥,₹                                |              | 21'-23': Same as above (grav lower half), bu            | it wet, some large gravel, some                                          |
| <ul> <li>22 -</li> <li>1059</li> <li>20-14-8-12</li> <li>20-14</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 1      |                           | A A                                   |              |                                                         |                                                                          |
| -24 - 20-14-8-12 (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE<br>SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F 22 -      |        |                           | Vr -3                                 |              |                                                         |                                                                          |
| -24 - 20-14-8-12 (fill, slag), trace cobbles (slag); Middle: Wet, brown, semi-pliable, FINE<br>SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F -         | 1850   | 004                       | \$ × *                                |              | *23'-25': Wet, gray/blue, loose, MEDIUM SAN             | ND, little to some fine gravel                                           |
| - 24 - SAND, little sit, trace clay, clay layer at base (<1 cm); Bottom: Wet, black,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |                           | V V                                   |              | (fill, slag), trace cobbles (slag); Middle: Wet,        | brown, semi-pliable, FINE                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F 24 -      |        |                           |                                       |              | SAND, little silt, trace clay, clay layer at bas        | se (<1 cm); Bottom: Wet, black,                                          |

02/07/1995 [Holog-mar93

GROUNDWATER TECHNOLOGY

#### Soil Boring SB-19

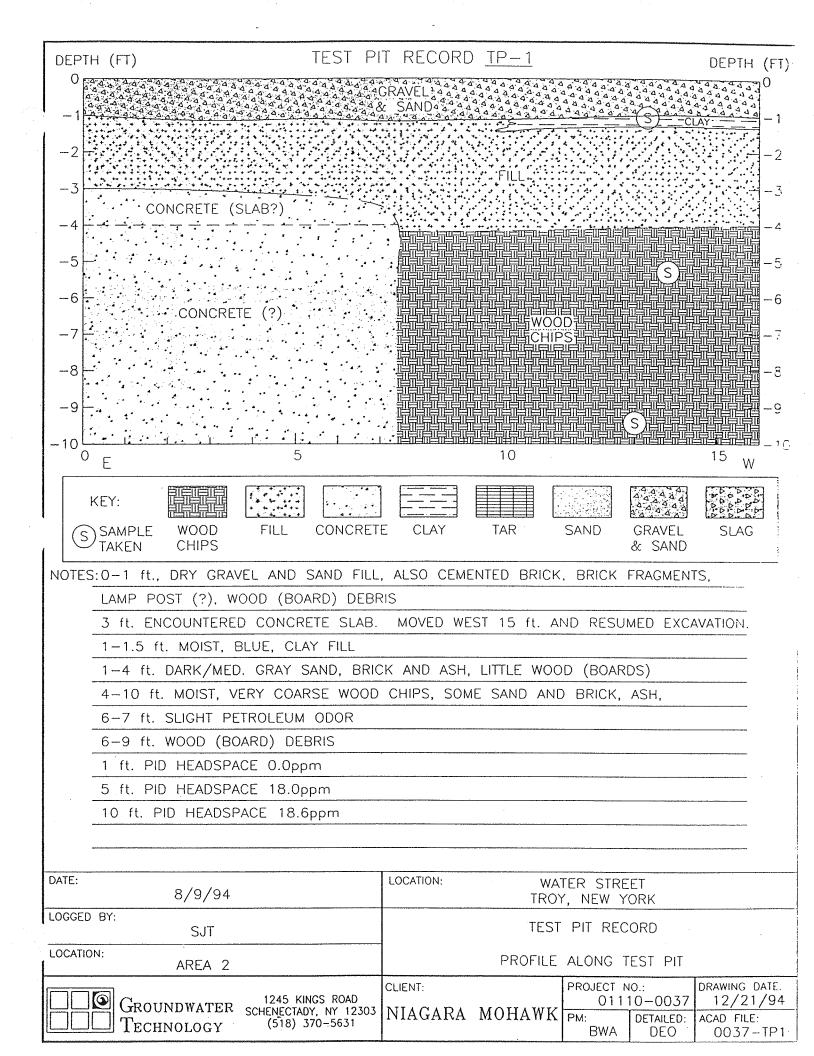
| Project <u>A</u><br>Location | VIMO —<br>Water  | <u>Troy</u><br>Street, Troy            | , New Yo             | rk          | Owner <u>Niagara Mohawk</u><br>Proj. No. <u>01110–0037</u>                                                                                                                                                                                                                                                                |
|------------------------------|------------------|----------------------------------------|----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)               | PID<br>(mqq)     | Sample ID<br>Blow Count/<br>% Recovery | phic<br>B            | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                                                                                                                                             |
| - 24 -<br><br>- 26 -         | 1617             | 40%<br>9-12-12-7<br>0%                 |                      | 5160        | **25'-27': Wet, black, loose, MEDIUM/COARSE SAND, trace fine gravel;<br>Bottom 4": Wet, gray, loose, FINE SAND, trace fine gravel (brick - fill),<br>strong odor<br>27'-29': No recovery                                                                                                                                  |
| - 28 -<br><br>- 30 -         | 303              | 14-15-11-8<br>80%<br>14-8-8-9          |                      | ·           | 29'-31': Wet, medium/dark gray, pliable, FINE SAND, some silt, trace little<br>clay, little wood (at base), organics, wood (natural)<br>31'-33': Same as above, but graded to MEDIUM SAND at base, trace                                                                                                                  |
| - 32 -                       | 55.5<br>177      | 80%<br>2-8-9-10<br>70%<br>10-9-11-8    |                      | SM          | coarse sand, trace fine gravel, trace clay (1 cm layer), trace organics (0.5<br>cm layer)<br>33'-35': Wet, medium gray, pliable, FINE SAND, some silt, little clay, trace<br>fine gravel, little cobbles, trace/little organics (wood)                                                                                    |
| - 34 -<br><br>- 36 -         | 49               | 35%<br>11-13-14-18                     | 0.0.0                | SC<br>GW    | **35'-37': Wet, gray/brown, slightly pliable, FINE SAND, and fine gravel<br>(rounded), little medium/coarse gravel, little coarse sand, trace clay                                                                                                                                                                        |
| - 38 -                       | 39               | 75%<br>0-18-13-50<br>30%<br>-57-50-32  |                      | SP          | **37'-39': Wet, medium gray, top slightly pliable, loose, FINE SAND,<br>little-medium sand, some coarse sand, trace fine gravel (rounded), trace<br>clay, sequence coarsing downward<br>39'-41': Wet, medium orange-gray, compact (till), FINE SAND, little angular<br>gravel, little silt, trace clay, trace coarse sand |
| - 40 -<br><br>- 42 -         | 572<br>7         | 60%<br>20-20-14                        | 1000<br>0000<br>0000 | GC          | 41'-43': Wet, dark gray, very compact (till-like), MEDIUM/COARSE GRAVEL<br>(rounded and angular), some fine gravel, trace fine/medium sand, little clay                                                                                                                                                                   |
| - 44                         | 2.7<br>1.<br>7.2 | 50%<br>-23-28-38<br>90%<br>100/3"      |                      | SP          | 43'-45': Wet, dark gray, slightly loose to compact, FINE SAND, trace<br>coarse sand, trace rounded cobbles, trace clay (little near top), trace fine<br>gravel<br>45'-47': Wet, dark gray, loose, FINE SAND, trace coarse sand, trace fine<br>gravel, trace clay, consolidated shale at base                              |
| - 46 -<br><br>- 48 -         |                  |                                        |                      | SW          | End of boring, cement/bentonite grout to surface                                                                                                                                                                                                                                                                          |
| - 50 -                       |                  |                                        |                      |             |                                                                                                                                                                                                                                                                                                                           |
| - 52 -<br>- 54 -             |                  |                                        |                      |             |                                                                                                                                                                                                                                                                                                                           |
| - 56 -                       | -                |                                        | -                    |             |                                                                                                                                                                                                                                                                                                                           |

02/07/1995 ithloo-mar93

Groundwater Technology

0

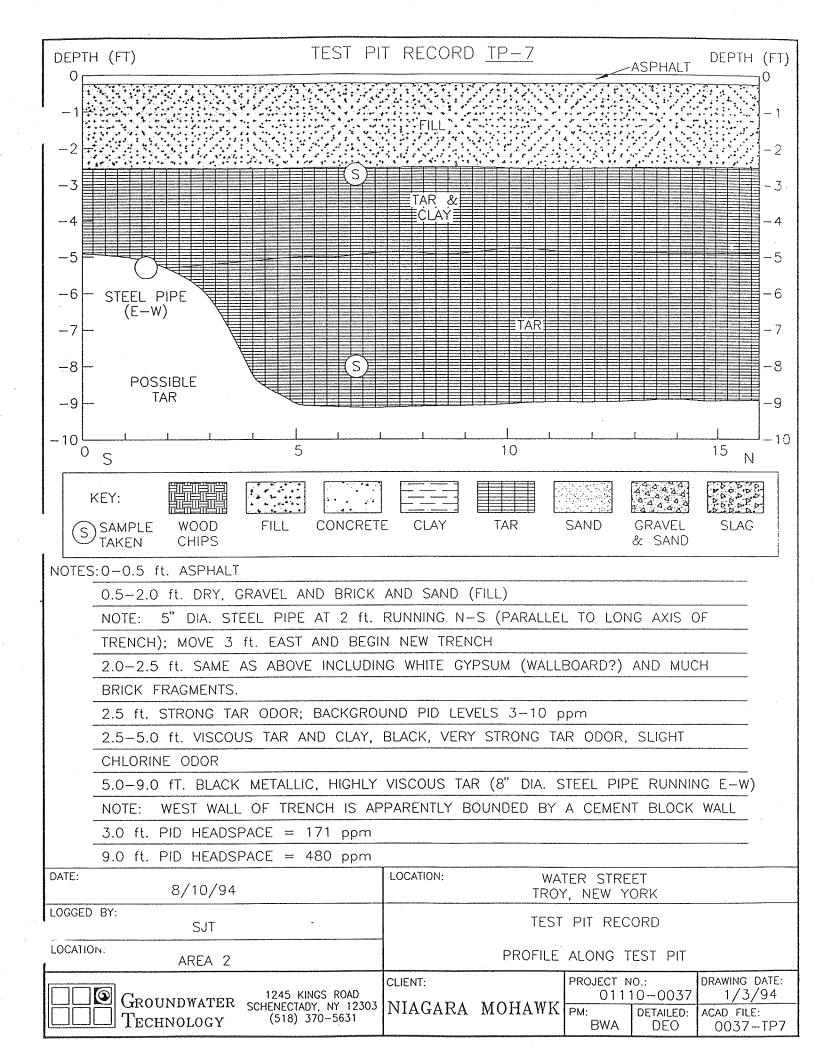
#### Soil Boring SB-20


week the second second

| Project <u>N</u>  | <u> IIMO –</u>   | Troy                                   | Nou V                                 |           | Owner <u>Niagara Mohawk</u><br>Dist. No. 00007<br>See Site Map<br>For Boring Location                                                               |
|-------------------|------------------|----------------------------------------|---------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Location .        | <u>water</u><br> | <u>Street, Troy,</u>                   | NEW TO                                |           | Proj. No. <u>01110-0037</u>                                                                                                                         |
| Surface E         | lev              | lot                                    | al Hole                               | Lep       | h <u>35 ft.</u> Diameter <u>8 in.</u> COMMENTS:                                                                                                     |
| Top of Ca         | asing _          | wat                                    | er Leve                               |           | ial <u>16 ft.</u> Static                                                                                                                            |
| Screen: D         | lia              | Len                                    | igth                                  |           | Type/Size Sample sent for MSP indicators. 2 -                                                                                                       |
| Casing: Di        | a                | Ler                                    | igth                                  |           | I ype Sample sent for geotecnicals. M = Sample sent for MS/MSD. A = Sample                                                                          |
| Fill Materi       | al               |                                        |                                       |           | Rig/Lore <u>Hobit Dot</u> sent for Atterberg limits.                                                                                                |
| Drill Co A        |                  |                                        | Meth                                  | noa       |                                                                                                                                                     |
| Driller <u>M.</u> | Harring          | <i>ton</i> Log                         | By <u>J. </u>                         | Bisht     | <i>p</i> Date <u>9/17/94</u> Permit <b>#</b>                                                                                                        |
| Checked           | Ву               |                                        |                                       | Li        | cense No:                                                                                                                                           |
| Depth<br>( ft.)   | DID<br>(mqq)     | Sample ID<br>Blow Count/<br>% Recovery | aphic<br>Log                          | SS Class. | Description<br>(Color, Texture, Structure)                                                                                                          |
|                   |                  | S Blo S                                | U I                                   | nsc:      | Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%                                                                                     |
| 2 -               |                  |                                        |                                       |           |                                                                                                                                                     |
| - 0               | 1.1              | 29-18-18                               | 0. 0. 0<br>0 0<br>0. 0<br>0. 0        |           | 0'-2': Dry/ slightly moist, brown, loose, FINE SAND and COBBLES (fill brick), little medium gravel, trace coarse sand                               |
| - 2 -             | 7.2              | 75%<br>2-18-19-22                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00  | Fil       | 2'-4': Top: Dry, blue, loose, FINE SAND, trace fine gravel; Bottom: Dry,<br>dark brown, loose, FINE SAND, some coarse sand, trace fine gravel, slag |
| - 4               | 20.4             | 75%<br>11-18-23-14                     | N N N N N N N N N N N N N N N N N N N |           | 4'-6': Dry, dark brown, loose, FINE SAND, some fine gravel, little cobbles<br>(fill, slag)                                                          |
| - 6 -             | 17.5             | 60%<br>14-18-15-15                     |                                       |           | 6'-8': Same as above, but with little coarse sand, dry/slightly moist                                                                               |
| - 8 -             | 40.1<br>23       | 60%<br>-22-20-24                       |                                       |           | 8'-10': Same as above                                                                                                                               |
| - 10 -            | 63.1             | 3-21-18-12                             |                                       | •         | 10'—12': Slightly moist, blue/brown, loose, FINE and MEDIUM SAND, some coarse sand, little cobbles, slag and fill                                   |
| - 12 -            | 40.1             | 70%<br>12-16-9-11                      |                                       |           | 12'—14': Same as above, but moist and only trace cobbles                                                                                            |
| - 14 -            | 4.6              | 50%<br>12-13-28-32                     |                                       | Sleg      | 14'-16': Same as 6'-8', but wet, little clay, big slag cobbles                                                                                      |
| - 16 -            | 4.8              | 25%<br>8-10-10-77                      |                                       |           | 16'-18': Wet, red and black, loose, COBBLES (large brick), little fine sand,<br>little coarse sand                                                  |
| - 18 -            | 66               | 35%<br>13-14-10-7                      |                                       |           | **18'-20': Wet, black, loose, (slightly pliable at top), COARSE SAND, little fine gravel, little fine sand, trace cobbles, trace clay               |
| - 20              | 238              | 60%<br>5-10-14-13                      |                                       |           | **20'-22': Wet, brown/black, loose, COARSE SAND and FINE SAND, little fine gravel, trace cobbles, petroleum odor, crushed slag fill                 |
| - 22 -            | 194              | 12-11-13-12                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           | *22'-24': Same as above, very strong odor                                                                                                           |
| - 24 -            | 182              | 60%                                    | A A                                   |           | ·                                                                                                                                                   |

# GROUNDWATER

#### Soil Boring SB-20


| Project <u>J</u><br>Location | VIMO -<br><u>Wəter</u> | Troy<br>Street, Troy                   | . New Y          | 'ork        | Owner <u>Niagara Mohawk</u><br>Proj. No. <u>01110-0037</u>                                                    |
|------------------------------|------------------------|----------------------------------------|------------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Depth<br>( ft.)              | (mqq)<br>DIq           | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log   | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |
| - 24 -                       | 182                    | 60%                                    | ×<br>×<br>×<br>× |             | 24'-26': Same as above, but some fine gravel, coated with fuel oil,                                           |
| - 26 -                       | 192                    | 70%<br>0-14-18-20                      |                  | Sieg        | **26'—28': Top: Same as above; Bottom: Moist, green/gray, loose, SILT<br>and FINE SAND, trace clay            |
| - 28 -                       | 18.1                   | 60%<br>7-10-9-13                       | · · · ·          | รพ          | **28'30': Same as above (bottom), but has 1 cm clay layer in shoe (dark<br>gray), organics common             |
| - 30 -                       | 8.7                    | 60%<br>12-12-18-17                     | · · · ·          |             | 30'—32': Same as above including 1 cm clay layer in shoe, but trace fine<br>gravel (rounded)                  |
| - 32 -                       | 37.8                   | 75%<br>8-9-11-11                       |                  |             | 32'-34': Same as above, but little fine gravel, trace cobbles, gravel concentrated at middle, no clay layer   |
| - 34 -                       |                        | 73-100/3"                              |                  | GC          | 34'–35': Gray SHALE bedrock and clay                                                                          |
| - 36 -                       |                        |                                        |                  | -           | End of boring, cement/bentonite, grout to surface                                                             |
| - 38 -                       |                        |                                        |                  |             |                                                                                                               |
| - 40-                        | -                      |                                        |                  |             |                                                                                                               |
| - 42 -                       |                        |                                        |                  |             |                                                                                                               |
| - 44 -                       |                        |                                        |                  |             |                                                                                                               |
| - 46 -                       |                        |                                        |                  |             |                                                                                                               |
| - 48 -                       |                        |                                        |                  |             |                                                                                                               |
| - 50 -                       |                        |                                        |                  |             |                                                                                                               |
| - 52 -                       |                        |                                        |                  | •           |                                                                                                               |
| - 54 -                       |                        |                                        |                  |             |                                                                                                               |
|                              | -                      |                                        |                  |             |                                                                                                               |
| - 56 -                       | 1                      |                                        | ŀ                |             |                                                                                                               |



| DEDTU (ET) TEST PI                                                                                                                                                                                                                                                                                                                                  | T RECORD <u>TP-2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH (FT) IESI PI                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEPTH (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -1 -1                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -4 + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -5 + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \bullet & \bullet \\ \bullet \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     | SLAG BORDON BORDON BORDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44464<br>44464<br>44464<br>44464<br>44464<br>44464<br>44464<br>44464<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644 44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644<br>44644 44644<br>44644<br>44644<br>44644<br>44644 44644<br>44644<br>44644<br>44644 44644<br>44644<br>44644 44644<br>44644<br>44644 44644<br>44644<br>44644 44644<br>44644<br>44644 44644<br>44644 44644<br>446444 44644<br>44644 44644<br>44644 44644<br>44644 44644<br>44644 4 |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ۲۰۰۵ می مرکز می در می در می در می مرکز می مرکز می در مرکز می در مرکز می در می در می در می در می در می در می در<br>۲۰۰۵ می در مرکز می مرکز می در می مرکز می مرکز می مرکز می در می<br>۲۰۰۵ می در مرکز می مرکز می مرکز می مرکز می مرکز می مرکز می در م |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     | >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         > |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $-10 \frac{10}{9} W = 5$                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 15 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLE WOOD FILL CONCRET                                                                                                                                                                                                                                                                                                                            | E CLAY TAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAND GRAVEL SLAG<br>& SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NOTES: SURFACE SOIL: DRY, MED. GRAY, fr<br>0.5-2.0 ft. DRY ORANGE/BROWN FUS                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SLAG, LITTLE BRICK (FRAGMENTS), LIT                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2–7 ft. DRY, DARK BROWN SLAG (SA                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LACK SLAG CHUNKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7-10 ft. SLIGHTLY MOIST, MED. GRAY                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SIZED METALLIC SLAG, tr. BRICK                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9 ft. PID HEADSPACE 2.1ppm                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ··                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DATE:                                                                                                                                                                                                                                                                                                                                               | LOCATION: WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TER STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8/11/94                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , NEW YORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LOGGED BY:<br>SJT                                                                                                                                                                                                                                                                                                                                   | TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PIT RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LOCATION:<br>AREA 2                                                                                                                                                                                                                                                                                                                                 | PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALONG TEST PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                     | CLIENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROJECT NO.: DRAWING DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GROUNDWATER 1245 KINGS ROAD<br>SCHENECTADY, NY 12303                                                                                                                                                                                                                                                                                                | NIAGARA MOHAWK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01110-0037 12/23/94<br>PM: DETAILED: ACAD FILE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [] TECHNOLOGY (518) 370-5631                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BWA DEO 0037-TP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| EPTH (FT)         | RR TIE                                                                                                          | TEST P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IT RECORD                              | <u>TP-3</u>     |                       |                  | DEPTH           |     |
|-------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-----------------------|------------------|-----------------|-----|
| 0                 |                                                                                                                 | At 17 MAR 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASPHALT                                |                 |                       |                  |                 | 0ך  |
| -1-40000          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                      |                 |                       |                  |                 | - 1 |
| 1444444<br>144444 | GRAVEL                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |                 |                       |                  |                 | -2  |
| -3 000000         | A A A A A A A A A A A A A A A A A A A                                                                           | SLAG POPOLOS SPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                 |                       |                  |                 | -3  |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
| -4                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·  |                 |                       |                  |                 | -4  |
| -5                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 | -5  |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
| -6                | tttCI                                                                                                           | _AY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                 |                       |                  | -               | -6  |
| _7                |                                                                                                                 | OME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                 |                       |                  |                 | -7  |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 | -   |
| -8                |                                                                                                                 | A second se |                                        |                 |                       |                  |                 | -8  |
| _9                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 7                                    | -               |                       |                  |                 | -9  |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | <u>)</u><br>- 1 | 1 1                   | 1 1              | I               | 10  |
| 10 W              | and a second a second secon | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | 10              |                       |                  | <sup>15</sup> E | 1(  |
| [                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 | 5 - 5                 | F.A.A. 4         | F. 5. 5.        | 6   |
| KEY:              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       | 444444           | A 0 0 0         | 44  |
| SAMPL<br>S TAKEN  | E WOOD F<br>CHIPS                                                                                               | FILL CONCRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TE CLAY                                | TAR             | SAND                  | GRAVEL<br>& SAND | SLAG            |     |
| OTES: ASPHA       | ALT (ROAD) SURF                                                                                                 | ACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | · · ·           |                       |                  |                 |     |
| 0-2.0             | ft. DRY LOOSE                                                                                                   | DARK GRAY B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LACK SAND A                            | ND GRAVE        | L AND BR              | CK PIECES        | (FILL)          |     |
| 2-2.5             | ft. RED/BROWN                                                                                                   | I DARK, SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AND BRICK FI                           | LL              |                       |                  |                 |     |
| 2.5 ft            | . RUSTY FUSED                                                                                                   | SLAG LAYER, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O CLAY (STIFI                          | F, SLIGHT       | LY PLIABLE            | . BLUE/GF        | RAY.            |     |
| SLIGH             | TLY MOIST) WITH                                                                                                 | LITTLE TO SOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ME BRICK                               |                 |                       |                  |                 |     |
| 3.5-4             | .0 ft. SAMPLE T                                                                                                 | AKEN AT SLAG,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLAY INTERFA                           | ACE             |                       |                  |                 |     |
| 10.0              | ft. SAMPLE TAKE                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 |                       |                  | ,               |     |
| 4.0 f             | . HEADSPACE PI                                                                                                  | D = 0.0 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                 |                       |                  |                 |     |
| 10.0              | ft. HEADSPACE F                                                                                                 | PID = 0.0 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                      |                 |                       |                  |                 |     |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
| ATE:              | 8/9/94                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOCATION:                              |                 | WATER STR<br>ROY, NEW |                  |                 |     |
| DGGED BY:         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                       |                  |                 |     |
|                   | SJT                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | 11              | est pit re            | CUKD             |                 |     |
| DCATION:          | AREA 2                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | PROFI           | LE ALONG              | TEST PIT         |                 |     |
|                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                      |                 |                       |                  |                 |     |
|                   | COUNDWATER SCH                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLIENT:                                |                 | PROJECT               | NO.:<br>110-0037 | DRAWING         |     |

| DEPTH (FT)                             |                                                  | TEST PIT     | RECORD    | TP-4         |                      | •                | DEPTH           | (FT)            |
|----------------------------------------|--------------------------------------------------|--------------|-----------|--------------|----------------------|------------------|-----------------|-----------------|
| 0                                      | SAND                                             |              |           | ASPI         | HALT                 |                  |                 | <sup>0</sup> ך  |
| -1                                     |                                                  |              |           |              |                      |                  |                 | -1              |
|                                        |                                                  | SANDIA adda  | SLAG      |              |                      |                  |                 | -2              |
|                                        |                                                  |              |           | ·            |                      |                  |                 |                 |
| -3                                     |                                                  |              |           |              |                      |                  |                 | -3              |
| -4                                     |                                                  |              | <br>      |              |                      |                  |                 | -4              |
| -5                                     |                                                  |              |           |              |                      |                  |                 | -5              |
|                                        |                                                  |              |           |              |                      |                  |                 |                 |
| -6                                     |                                                  |              |           |              |                      |                  |                 | -6              |
| -7                                     |                                                  |              | ·<br>     |              |                      |                  |                 | -7              |
| _8                                     |                                                  |              |           |              |                      |                  |                 | -8              |
|                                        |                                                  |              |           |              |                      |                  |                 |                 |
| -9                                     | <u></u>                                          |              |           |              |                      |                  |                 | -9              |
| 10                                     |                                                  | 5            |           | 10           | <u>I</u>             |                  | 15              | J <sub>-1</sub> |
| 0 <sub>N</sub>                         |                                                  |              |           | 10           |                      |                  | <sup>15</sup> S |                 |
| IOTES:0-0.5 ft.                        | WOOD FILL<br>CHIPS<br>ASPHALT<br>ft. MEDIUM BROW |              | CLAY      | TAR          | SAND                 | GRAVEL<br>& SAND | SLAG            |                 |
|                                        | ft. DARK GRAY, N                                 |              |           | SAND, LITTL  | E/SUME I             | C. GRA           |                 |                 |
|                                        | ft. VERY DENSE                                   |              |           | I, METALLIC, | FUSED                |                  |                 |                 |
| 2.0-10.0                               | ft. PLIABLE-STIF                                 | F BLUE/GRAY  | CLAY, SO  | ME BRICK F   | RAGMENTS             | 5                |                 |                 |
| 6.0-8.0                                | ft. PIECES (UP T                                 | O 3 ft. LONG | ) OF WOOD | (BOARDS)     |                      |                  |                 |                 |
| 10.0 ft. I                             | PID HEADSPACE                                    | = 0.0 ppm    |           |              |                      |                  |                 |                 |
| - <u></u>                              |                                                  |              |           |              |                      |                  |                 |                 |
| -                                      |                                                  |              |           |              |                      |                  | <u> </u>        |                 |
|                                        |                                                  |              |           |              |                      |                  |                 |                 |
| •••••••••••••••••••••••••••••••••••••• |                                                  |              |           |              |                      |                  |                 |                 |
|                                        |                                                  |              |           |              |                      |                  |                 |                 |
| ATE:                                   | 8/9/94                                           | L            | OCATION:  |              | TER STRE<br>Y, NEW Y |                  |                 |                 |
| DGGED BY:                              | SJT                                              |              |           |              | PIT REC              | ·····            |                 |                 |
| OCATION:                               | AREA 2                                           |              |           |              | ALONG T              |                  |                 |                 |
|                                        |                                                  |              | _IENT:    |              | PROJECT N            | -                | DRAWING D       | DATE:           |
| GROUN                                  | NDWATER 1245<br>SCHENEC<br>NOLOGY (518           | KINGS ROAD   |           |              |                      | 10-0037          | 1/3/            |                 |



## APPENDIX B

## AIR ANALYSIS LABORATORY ANALYTICAL REPORTS

•



#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX: AI   | IR TUBE | SAMPLE   | ID:   | TP2U-F  |
|---------------------|---------|----------|-------|---------|
| DESORPTION DATE: 08 | 3/19/94 | LAB      | ID:   | 2163901 |
| ANALYSIS DATE: 08   | 3/25/94 | DIL FACT | COR : | 1.00    |

| CMPD # | CAS Number        | VOLATILE COMPOUNDS | UG/TUBE |       |   |
|--------|-------------------|--------------------|---------|-------|---|
| 1      | 71-43-2           | Benzene            | 1       | 1.0 U |   |
| 2      | 100-41-4          | Ethylbenzene       | 1       | 1.0 U | 1 |
| 3      | 108-88-3          | Toluene            | 1       | 1.0 U | 1 |
| 4 [    | 95-47-6           | o-Xylene           | · 1     | 1.0 U | I |
| 5      | 108-38-3/106-47-3 | m&p-Xylene         | 1       | 1.0 U | 1 |
| 1      |                   |                    |         |       | 1 |

ľ

Ŋ

Į!

J

ł

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | AIR TUBE | SAMPLE I   | D: TP2D-F  |
|------------------|----------|------------|------------|
| DESORPTION DATE: | 08/19/94 | LAB II     | D: 2163902 |
| ANALYSIS DATE:   | 08/25/94 | DIL FACTOR | R: 1.00    |

| CMPD # | CAS Number     | VOLATILE COMPOUNDS | UG/TUBE |         |
|--------|----------------|--------------------|---------|---------|
| 1      | 71-43-2        | Benzene            |         | 1.0 U   |
| 2      | 100-41-4       | Ethylbenzene       | 1       | 1.0 U   |
| 3      | 108-88-3       | Toluene            | ł       | 1.0 U   |
| 4      | 95-47-6        | o-Xylene           | 1       | 1.0 U   |
| 5      | 108-38-3/106-4 | 7-3 m&p-Xylene     | 1       | 1.0 U / |
| 1      | •••            | 1                  | I       | 1       |

Ũ

H

ľ

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | AIR TUBE | SAMPLE   | ID:  | TP5U-F  |
|------------------|----------|----------|------|---------|
| DESORPTION DATE: | 08/19/94 | LAB      | ID:  | 2163903 |
| ANALYSIS DATE:   | 08/25/94 | DIL PACI | FOR: | 1.00    |

| CMPD # | CAS Number                            | VOLATILE COMPOUNDS | UG/TUBE |       |   |
|--------|---------------------------------------|--------------------|---------|-------|---|
| 1      | 71-43-2                               | Benzene            | 1       | 1.0 U |   |
| 2      | 100-41-4                              | Ethylbenzene       | 1       | 1.0 U | Ì |
| 3      | 108-88-3                              | Toluene            | . 1     | 1.0 U | 1 |
| 4      | 95-47-6                               | o-Xylene           | 1       | 1.0 U | 1 |
| 5      | 108-38-3/106-47-                      | 3 m&p-Xylene       | i i     | 1.0 U | 1 |
| I.     | · · · · · · · · · · · · · · · · · · · | _                  | [       |       | _ |

۰.

:.

ORGANICS ANALYSIS DATA SHEET

| TP5D-F  | SAMPLE ID:  | SAMPLE MATRIX: AIR TUBE   |
|---------|-------------|---------------------------|
| 1250-2  |             | DESORPTION DATE: 08/19/94 |
| 2163904 |             | ANALYSIS DATE: 08/25/94   |
| 1.00    | DIL FACTOR: | JEUEISIS DAIE: 08/25/94   |
|         |             |                           |

| CMPD #                      | CAS Number | VOLATILE COMPOUNDS                                               | UG/TUBE        |                                           |                |
|-----------------------------|------------|------------------------------------------------------------------|----------------|-------------------------------------------|----------------|
| 1<br>2  <br>3  <br>4  <br>5 | 95-47-6    | Benzene<br> Ethylbenzene<br> Toluene<br> o-Xylene<br> m&p-Xylene | <br> <br> <br> | 1.0 U<br>1.0 U<br>1.0 U<br>1.0 U<br>1.0 U | <br> <br> <br> |
|                             |            | ·                                                                |                |                                           | 1              |

0000010

Į.

b

Ī

100

A STATE

**SUCCE** 

and the second

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX: AIR TUBE   | SAMPLE ID:  | TP6U-F  |
|---------------------------|-------------|---------|
| DESORPTION DATE: 08/19/94 | LAB ID:     | 2163905 |
| ANALYSIS DATE: 08/25/94   | DIL PACTOR: | 1.00    |

| CMPD # | CAS Number      | VOLATILE COMPOUNDS | UG/TUBE |       |    |
|--------|-----------------|--------------------|---------|-------|----|
| 1      | 71-43-2         | Benzene            |         | 1.0 U |    |
| 2      | 100-41-4        | Ethylbenzene       | ł       | 1.0 U | 1  |
| 3      | 108-88-3        | Toluene            | 1       | 1.0 U | 1  |
| 4      | 95-47-6         | o-Xylene           | 1       | 1.0 U | 1  |
| 5      | 108-38-3/106-47 | -3 m&p-Xylene      | 1       | 1.0 U | 1  |
| 1.     |                 | 1                  | I       |       | _1 |

0000011

÷

[

4

ł

#### ORGANICS ANALYSIS DATA SHEET a. 1

| SAMPLE MATRIX: AIR TUBE   | SAMPLE ID:  | TP6D-F  |
|---------------------------|-------------|---------|
| DESORPTION DATE: 08/19/94 | LAB ID:     | 2163906 |
| ANALYSIS DATE: 08/25/94   | DIL FACTOR: | 1.00    |
|                           |             |         |

| CMPD # | CAS Number        | VOLATILE COMPOUNDS | OG/TUBE |       |    |
|--------|-------------------|--------------------|---------|-------|----|
| 1      | 71-43-2           | Benzene            | 1       | 1.0 U | -  |
| 2      | 100-41-4          | Ethylbenzene       | 1       | 1.0 U | 1  |
| 3      | 108-88-3          | Toluene            | 1       | 1.0 U | 1  |
| 4      | 95-47-6           | o-Xylene           | 1       | 1.0 U | 1  |
| 5      | 108-38-3/106-47-3 | m&p-Xylene         |         | 1.0 U | I  |
| ١.     |                   | l                  | I       |       | _1 |

## 0000012

ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | AIR TUBE | SAMPLE  | ID:  | EQ BLK-F |
|------------------|----------|---------|------|----------|
| DESORPTION DATE: | 08/19/94 | LAB     | ID:  | 2163907  |
| ANALYSIS DATE:   | 08/25/94 | DIL FAC | FOR: | 1.00     |

| CMPD # | CAS Number       | VOLATILE COMPOUNDS | UG/TUBE |       |
|--------|------------------|--------------------|---------|-------|
| 1      | 71-43-2          | Benzene            |         | 1.0 U |
| 2      | 100-41-4         | Ethylbenzene       |         | 1.0 U |
| 3      | 108-88-3         | Toluene            | 1 -     | 1.0 U |
| 4      | 95-47-6          | o-Xylene           | 1       | 1.0 0 |
| 5      | 108-38-3/106-47- | 3 m&p-Xylene       | 1       | 1.0 U |
| 1      |                  | _1                 | I       |       |

and the second

MANAN

Andrew A

A PARTY A

1

**BUILD** 

10 M 10

(News)

*:*.

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX: AIR T   | UBE SAMPLE   | ID: TP2U-B  |
|------------------------|--------------|-------------|
| DESORPTION DATE: 08/19 | /94 LAB      | ID: 2163908 |
| ANALYSIS DATE: 08/25,  | /94 DIL FACI | FOR: 1.00   |

| CMPD | #  | CAS Number        | VOLATILE COMPOUNDS | UG/TUBE |       |
|------|----|-------------------|--------------------|---------|-------|
|      | 1  | 71-43-2           | Benzene            | 1       | 1.0 U |
|      | 2  | 100-41-4_         | Ethylbenzene       | 1       | 1.0 0 |
|      | 3  | 108-88-3          | Toluene            | 1       | 1.0 U |
|      | 4  | 95-47-6           | o-Xylene           | 1       | 1.0 U |
|      | 5  | 108-38-3/106-47-3 | m&p-Xylene         | 1       | 1.0 U |
|      | 1_ |                   | I                  |         | 1     |

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX: AIR TUBE   | SAMPLE ID:  | TP2D-B  |
|---------------------------|-------------|---------|
| DESORPTION DATE: 08/19/94 | LAB ID:     | 2163909 |
| ANALYSIS DATE: 08/25/94   | DIL FACTOR: | 1.00    |

| CMPD # | CAS Number        | VOLATILE COMPOUNDS | UG/TUBE |       |   |
|--------|-------------------|--------------------|---------|-------|---|
| 1      | 71-43-2           | Benzene            | 1       | 1.0 U | - |
| 2      | 100-41-4 -        | Ethylbenzene       | 1       | 1.0 U | ł |
| 3      | 108-88-3          | Toluene            | 1       | 1.0 U | 1 |
| 4      | 95-47-6           | 0-Xylene           | 1       | 1.0 U | 1 |
| 5      | 108-38-3/106-47-3 | m&p-Xylene         |         | 1.0 U | 1 |
| 1      |                   | I                  | l       | 2.0 0 |   |

## 0000015

. . . . .

ľ

I

Ŋ

Ŋ

ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | AIR TUBE | SAMPLE   | ID:  | TP5U-B  |
|------------------|----------|----------|------|---------|
| DESORPTION DATE: | 08/19/94 | LAB      | ID:  | 2163910 |
| ANALYSIS DATE:   | 08/25/94 | DIL FACI | ror: | 1.00    |

| CMPD # | CAS Number        | VOLATILE COMPOUNDS | UG/TUBE |       |   |
|--------|-------------------|--------------------|---------|-------|---|
| 1 (    | 71-43-2           | Benzene            |         | 1.0 U |   |
| 2      | 100-41-4          | Ethylbenzene       | 1       | 1.0 U | İ |
| 3      | 108-88-3          | Toluene            | · 1     | 1.0 U | Ī |
| 4      | 95-47-6           | 0-Xylene           | ļ       | 1.0 U | i |
| 5      | 108-38-3/106-47-3 | m&p-Xylene         | 1       | 1.0 U | i |
| 1      |                   |                    |         |       |   |

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX: AIR TUBE   | SAMPLE ID:  | TP5D-B  |
|---------------------------|-------------|---------|
| DESORPTION DATE: 08/19/94 | LAB ID:     | 2163911 |
| ANALYSIS DATE: 08/25/94   | DIL FACTOR: | 1.00    |

| CMPD # | CAS Number        | VOLATILE COMPOUNDS | UG/TUBE |       |   |
|--------|-------------------|--------------------|---------|-------|---|
| 1      | 71-43-2           | Benzene            |         | 1.0 U |   |
| 2      | 100-41-4          | Ethylbenzene       | 1 -     | 1.0 U | i |
| 3      | 108-88-3          | Toluene            |         | 1.0 U | i |
| 4      | 95-47-6           | o-Xylene           | 1       | 1.0 U | i |
| 5      | 108-38-3/106-47-3 | 3 m&p-Xylene       | 1       | 1.0 U |   |
| 1.     |                   | _1                 |         | _     | 1 |

## U000017

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX: AIR TUBE   | SAMPLE ID:  | TP6U-B  |
|---------------------------|-------------|---------|
| DESORPTION DATE: 08/19/94 | LAB ID:     | 2163912 |
| ANALYSIS DATE: 08/25/94   | DIL FACTOR: | 1.00    |

#### CMPD # CAS

ALL DE LE

1

#### CAS Number VOLATILE COMPOUNDS

#### 71-43-2 1 | Benzene 1 1.0 U 2 | 100-41-4 Ethylbenzene 1.0 U 1 3 | 108-88-3 Toluene 1.0 U 1 4 95-47-6 o-Xylene 1.0 U 5 | 108-38-3/106-47-3 |m&p-Xylene 1.0 U

UG/TUBE

I

I

The second

A

£.,

ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | AIR TUBE | SAMPLE   | ID: | TP6D-B  |
|------------------|----------|----------|-----|---------|
| DESORPTION DATE: | 08/19/94 | LAB      | ID: | 2163913 |
| ANALYSIS DATE:   | 08/25/94 | DIL FACT | OR: | 1.00    |

| CMPD # | CAS Number      | VOLATILE COMPOUNDS | UG/TUBI | 2     |
|--------|-----------------|--------------------|---------|-------|
| 1      | 71-43-2         | Benzene            |         | 1.0 U |
| 2      | 100-41-4        | Ethylbenzene       | . 1     | 1.0 U |
| 3      | 108-88-3        | Toluene            | 1       | 1.0 0 |
| 4      | 95-47~6         | o-Xylene           | 1       | 1.0 U |
| 5      | 108-38-3/106-47 | -3 m&p-Xylene      | 1       | 1.0 U |
| ١.     |                 |                    | 1       |       |

## 1501 - BTEX

## NYTEST ENVIRONMENTAL INC.

#### ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | AIR TUBE | SAMPLE ID:  | EQ BLK-B |
|------------------|----------|-------------|----------|
| DESORPTION DATE: | 08/19/94 | LAB ID:     | 2163914  |
| ANALYSIS DATE:   | 08/25/94 | DIL FACTOR: | 1.00     |

| CMPD | #  | CAS Number        | VOLATILE COMPOUNDS | UG/TUBE |       |
|------|----|-------------------|--------------------|---------|-------|
|      | 1  | 71-43-2           | Benzene            |         | 1.0 U |
|      | 2  | 100-41-4          | Ethylbenzene       | 1       | 1.0 U |
|      | 3  | 108-88-3          | Toluene            | T.      | 1.0 U |
|      | 4  | 95-47-6           | o-Xylene           | 1       | 1.0 U |
|      | 5  | 108-38-3/106-47-3 | m&p-Xylene         | 1       | 1.0 U |
|      | I. |                   |                    | l       | 1     |

6000020

## NYTEST ENVIRONMENTAL INC.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | BACK TUBE | SAMPLE ID:  | A    |
|------------------|-----------|-------------|------|
| EXTRACTION DATE: |           | LAB ID:     | 2206 |
| ANALYSIS DATE:   |           | DIL FACTOR: | 1    |
|                  |           |             |      |

UG/TUBE

CMPD # CAS Number

ί.

PAH COMPOUNDS

| 1 91-20-3   | Naphthalene              | 1  | 3.0 JB |
|-------------|--------------------------|----|--------|
| 2 208-96-8  | Acenaphthylene           | 1  | 10.0 U |
| 3 83-32-9   | Acenaphthene             | I  | 10.0 U |
| 4 86-73-7   | Fluorene                 | 1  | 10.0 U |
| 5 85-01-8   | Phenanthrene             | 1  | 10.0 U |
| 6 120-12-7  | Anthracene               | l  | 10.0 U |
| 7 206-44-0  | Fluoranthene             | 1  | 10.0 U |
| 8 129-00-0  | Pyrene                   | 1  | 10.0 U |
| 9  56-55-3  | Benzo (a) Anthracene     | 1  | 10.0 U |
| 0 218-01-9  | Chrysene                 | I  | 10.0 U |
| 1  205-99-2 | Benzo (b) Fluoranthene   | Į. | 10.0 U |
| 2 207-08-9  | Benzo(k)Fluoranthene     | I  | 10.0 U |
| 3 50-32-8   | Benzo (a) Pyrene         | 1  | 10.0 U |
| 4 193-39-5  | Indeno (1,2,3-cd) Pyrene | ļ  | 10.0 U |
| 15 53-70-3  | Dibenz(a,h)Anthracene    | l  | 10.0 U |
| 191-24-2    | Benzo(g,h,i)Perylene     | 1  | 10.0 U |
| 1           |                          | 1  |        |

0.0003

#### лв ран

## NYTEST ENVIRONMENTAL INC.

No.

A STATE

Į,

÷.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE M   | ATRIX: FRO | DNT FILTER | SAN | APLE ID: | AS1-F   |
|------------|------------|------------|-----|----------|---------|
| EXTRACTION | DATE:      | 9/27/94    |     | LAB ID:  | 2206701 |
| ANALYSIS   | DATE:      | 11/5/94    | DIL | FACTOR:  | 1.00    |

| UG/I | UBE |
|------|-----|
|------|-----|

| CMPD # | CAS Number | PAH COMPCUNDS          |     |   |        |          |
|--------|------------|------------------------|-----|---|--------|----------|
| 1      | 91-20-3    | Naphthalene            |     | [ | 10.0 B |          |
| 2      | 208-96-8   | Acenaphthylene         |     | 1 | 10.0 U | 1        |
| 3      | 83-32-9    | Acenaphthene           |     | 1 | 10.0 U | 1        |
| 4      | 86-73-7    | Fluorene               |     | 1 | 10.0 U | I        |
| 5      | 85-01-8    | Phenanthrene           |     | 1 | 10.0 U | 1        |
| 6      | 120-12-7   | Anthracene             |     |   | 10.0 U | 1        |
| - 7    | 206-44-0   | Fluoranthene           |     | l | 10.0 U | I        |
| 8      | 129-00-0   | Pyrene                 |     | 1 | 10.0 U | 1        |
| 9      | 56-55-3    | Benzo(a)Anthracene     |     | 1 | 10.0 U | l        |
| 10     | 218-01-9   | Chrysene               |     | 1 | 10.0 U | 1        |
| . 11   | 205-99-2   | Benzo(b)Fluoranthene   |     | 1 | 10.0 U | 1        |
| 12     | 207-08-9   | Benzo(k)Fluoranthene   |     | l | 10.0 U | 1        |
| 13     | 50-32-8    | Benzo(a)Pyrene         |     | 1 | 10.0 U | l        |
| 14     | 193-39-5   | Indeno(1,2,3-cd)Pyrene |     |   | 10.0 U | 1        |
| 15     | 53-70-3    | Dibenz(a,h)Anthracene  | 1   | 1 | 10.0 U | l        |
| 16     | 191-24-2   | Benzo(g,h,i)Perylene   | · 1 | 1 | 10.0 U | ł        |
|        | I          |                        |     | l |        | <u> </u> |

1.

#### NYTEST ENVIRONMENTAL INC.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | BACK TUBE | SAMPLE ID:  | AS2-B   |
|------------------|-----------|-------------|---------|
| EXTRACTION DATE: | 9/27/94   | LAB ID:     | 2206707 |
| ANALYSIS DATE:   | 11/5/94   | DIL FACTOR: | 1.00    |
|                  |           |             |         |

| CMPD # CAS Number |  |
|-------------------|--|
|-------------------|--|

國

ALL A

Served.

Number of Street, Stre

÷.

PAH COMPOUNDS

UG/TUBE

| 1  91-20-3  | Naphthalene            | 1          | 38.0 B |
|-------------|------------------------|------------|--------|
| 2 208-96-8  | Acenaphthylene         | 1          | 10.0 U |
| 3 83-32-9   | Acenaphthene           | I          | 10.0 U |
| 4 86-73-7   | Fluorene               | 1          | 10.0 U |
| 5  85-01-8  | Phenanthrene           | 1          | 10.0 U |
| 6 120-12-7  | Anthracene             | 1          | 10.0 U |
| 7  206-44-0 | Fluoranthene           | 1          | 10.0 U |
| 8  129-00-0 | Pyrene                 | l          | 10.0 U |
| 9 56-55-3   | Benzo (a) Anthracene   | 1          | 10.0 U |
| 0 218-01-9  | Chrysene               | 1          | 10.0 U |
| 1 205-99-2  | Benzo (b) Fluoranthene | 1          | 10.0 U |
| 2 207-08-9  | Benzo (k) Fluoranthene | 1          | 10.0 U |
| 3  50-32-8  | Benzo(a)Pyrene         | 1          | 10.0 U |
| 4  193-39-5 | Indeno(1,2,3-cd)Pyrene | 1          | 10.0 U |
| 5  53-70-3  | Dibenz(a,h)Anthracene  | 1          | 10.0 U |
| 6  191-24-2 | Benzo(g,h,i)Perylene   | <u>, 1</u> | 10.0 U |
| 1           |                        |            |        |

#### NYTEST ENVIRONMENTAL INC.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE | MATRIX: FRONT | FILTER |  |
|--------|---------------|--------|--|
|        |               |        |  |

| EXTRACTION | DATE: | 9/27/94 |
|------------|-------|---------|
| ANALYSIS   | DATE: | 11/5/94 |

Statistics of the second

| S  | AMPLE ID: | AS-2F   |
|----|-----------|---------|
|    | LAB ID:   | 2206702 |
| DI | L FACTOR: | 1.00    |

| CMPD # | CAS  | Number | PAH COMPOUNDS            | UG/TUI | 35       |
|--------|------|--------|--------------------------|--------|----------|
|        |      |        |                          |        |          |
| 1      | 91-2 | 20-3   | Naphthalene              | 1      | 170.0 EB |
| 2      | 208- | -96-8  | Acenaphthylene           | 1      | 10.0 U   |
| 3      | 83-3 | 32-9   | Acenaphthene             | 1      | 10.0 U   |
| 4      | 86-7 | 13-7   | Fluorene                 | 1      | 10.0 U   |
| 5      | 85-0 | i-8    | Phenanthrene             | 1      | . 10.0 U |
| 6      | 120- | 12-7   | Anthracene               | l      | 10.0 U   |
| 7      | 206- | 44-0   | Fluoranthene             |        | 10.0 U   |
| 8      | 129- | 00-0   | Pyrene                   | 1      | 10.0 U   |
| 9      | 56-5 | 5-3    | Benzo (a) Anthracene     | 1      | 10.0 U   |
| 10     | 218- | 01-9   | Chrysene                 | 1      | 10.0 U   |
| 11     | 205- | 99-2   | Benzo (b) Fluoranthene   | I      | 10.0 U   |
| 12     | 207- | 08-9   | Benzo(k)Fluoranthene     | 1      | 10.0 U   |
| 13     | 50-3 | 2-8    | Benzo (a) Pyrene         | 1      | 10.0 U   |
| 14     | 193- | 39-5   | Indeno (1,2,3-cd) Pyrene | 1      | 10.0 U   |
| 15     | 53-7 | 0-3    | Dibenz (a, h) Anthracene | ١,     | 10.0 U   |
| 16     | 191- | 24-2   | Benzo(g,h,i)Perylene     | l      | 10.0 U   |
|        | 1    |        | 1                        | 1      | 1        |

1B PAH NYTEST ENVIRONMENTAL INC.

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX:FRONT FILTER EXTRACTION DATE: 9/27/94 ANALYSIS DATE: 11/8/94 SAMPLE ID: AS2-FDL LAB ID: 2206702 DIL FACTOR: 4.00 & MOISTURE:NA

000013

UG/L

CMPD # CAS Number

٤,

**URAN** 

ALC: NO

r PAH COMPOUNDS

| Dπ |          |                        |     |          |
|----|----------|------------------------|-----|----------|
| 1  | 91-20-3  | Naphthalene            | 1   | 290.0 BD |
| 2  | 208-96-8 | Acenaphthylene         | ł   | 40.0 U   |
| 3  | 83-32-9  | Acenaphthene           | ł   | 40.0 U   |
| 4  | 86-73-7  | Fluorene               | 1 . | 40.0 U   |
| 5  | 85-01-8  | Phenanthrene           | 1   | 40.0 U   |
| 6  | 120-12-7 | Anthracene             | 1   | 40.0 U   |
| 7  | 206-44-0 | Fluoranthene           | 1   | 40.0 U   |
| 8  | 129-00-0 | Pyrene                 | 1   | 40.0 U   |
| 9  | 56-55-3  | Benzo (a) Anthracene   | 1   | 40.0 U   |
| 10 | 218-01-9 | Chrysene               | I   | 40.0 U   |
| 11 | 205-99-2 | Benzo (b) Fluoranthene | I   | 40.0 U   |
| 12 | 207-08-9 | Benzo (k) Fluoranthene | 1   | 40.0 U   |
| 13 | 50-32-8  | Benzo(a)Pyrene         | l · | 40.0 U   |
| 14 | 193-39-5 | Indeno(1,2,3-cd)Pyrene | 1   | 40.0 U   |
| 15 | 53-70-3  | Dibenz(a,h)Anthracene  | : 1 | 40.0 U   |
| 16 | 191-24-2 | Benzo(g,h,i)Perylene   | 1   | 40.0 U   |
|    | [        |                        | [   |          |
|    |          |                        |     |          |

### 1B PAH NYTEST ENVIRONMENTAL INC.

18 C. 1

意思

1997 - B

- Series

「國温

:.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | BACK TUBE | SAMPLE ID:  | AS3-B   |
|------------------|-----------|-------------|---------|
| EXTRACTION DATE: | 9/27/94   | LAB ID:     | 2206708 |
| ANALYSIS DATE:   | 11/5/94   | DIL FACTOR: | 1.00    |
|                  |           | •           |         |
|                  |           | UG/TUBE     |         |

| CMPD # | CAS Number | PAH COMPOUNDS          |          |      |    |        |
|--------|------------|------------------------|----------|------|----|--------|
| 1      | 91-20-3    | Naphthalene            |          | 3.0  | JB | -<br>[ |
| 2      | 208-96-8   | Acenaphthylene         |          | 10.0 | U  | 1      |
| 3      | 83-32-9    | Acenaphthene           | <b>.</b> | 10.0 | υ  | I      |
| 4      | 86-73-7    | Fluorene               | 1        | 10.0 | U  | 1      |
| 5      | 85-01-8    | Phenanthrene           | [        | 10.0 | υ  | ł      |
| 6      | 120-12-7   | Anthracene             | · ·      | 10.0 | υ  | I      |
| _ 7    | 206-44-0   | Fluoranthene           | [        | 10.0 | υ  | I      |
| 8      | 129-00-0   | Pyrene                 |          | 10.0 | U  | I      |
| 9      | 56-55-3    | Benzo (a) Anthracene   | l        | 10.0 | U  | 1      |
| 10     | 218-01-9   | Chrysene               |          | 10.0 | υ  | ł      |
| 11     | 205-99-2   | Benzo(b)Fluoranchene   |          | 10.0 | U  | ł      |
| 12     | 207-08-9   | Benzo(k)Fluoranthene   |          | 10.0 | υ  | ۱      |
| 13     | 50-32-8    | Benzo(a)Pyrene         |          | 10.0 | U  | I      |
| 14     | 193-39-5   | Indeno(1,2,3-cd)Pyrene | I        | 10.0 | υ  | I      |
| 15     | 53-70-3    | Dibenz(a,h)Anthracene  |          | 10.0 | U  | I      |
| 16     | 191-24-2   | Benzo(g,h,i)Perylene   |          | 10.0 | υ  | ۱      |
|        | 1          |                        | <br>     |      |    | 1      |

00.0014

#### NYTEST ENVIRONMENTAL INC.

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX:FRONT FILTER EXTRACTION DATE: 9/27/94 ANALYSIS DATE: 11/5/94

| AS3-F   | ID:  | IPLE | SAN |  |
|---------|------|------|-----|--|
| 2206703 | ID:  | LAB  |     |  |
| 1.00    | ror: | FACT | DIL |  |

UG/TUBE PAH COMPOUNDS CMPD # CAS Number Naphthalene 8.0 JB | 1 91-20-3 1 10.0 U | Acenaphthylene 2 208-96-8 ł 10.0 U 3 |83-32-9 Acenaphthene 1 10.0 U 4 86-73-7 Fluorene 10.0 U 1 5 85-01-8 Phenanthrene 10.0 U 6 120-12-7 Anthracene 10.0 U 7 206-44-0 Fluoranthene 1 10.0 U 8 129-00-0 Pyrene 9 56-55-3 Benzo (a) Anthracene 10.0 U 10.0 U 10 218-01-9 Chrysene Benzo (b) Fluoranthene 10.0 U 1 11 205-99-2 10.0 U Benzo(k)Fluoranthene 12 207-08-9 1 10.0 U Benzo(a) Pyrene 13 |50-32-8 10.0 U | Indeno (1,2,3-cd) Pyrene 14 |193-39-5 10.0 0 | Dibenz(a,h)Anthracene 15 53-70-3 . |Benzo(g,h,i)Perylene 10.0 U 16 |191-24-2 

## 00.0015 ·

#### 1B PAH NYTEST ENVIRONMENTAL INC.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | BACK TUBE | SAMPLE ID:  | A    |
|------------------|-----------|-------------|------|
| EXTRACTION DATE: |           | LAB ID:     | 2206 |
| ANALYSIS DATE:   |           | DIL FACTOR: | 1    |
| ANALISIS DATE:   | 11/5/94   |             |      |

| 'D # | CAS Number | PAH COMPOUNDS            |     |        |
|------|------------|--------------------------|-----|--------|
| 1    | 91-20-3    | Naphthalene              | 1   | 3.0 JB |
| 2    | 208-96-8   | Acenaphthylene           | 1   | 10.0 U |
| 3    | 83-32-9    | Acenaphthene             | 1   | 10.0 U |
| 4    | 86-73-7    | Fluorene                 | 1   | 10.0 U |
| 5    | 85-01-8    | Phenanthrene             | I   | 10.0 U |
| 6    | 120-12-7   | Anthracene               | 1.  | 10.0 U |
| 7    | 206-44-0   | Fluoranthene             | 1   | 10.0 U |
| 8    | 129-00-0   | Pyrene                   | I   | 10.0 U |
| 9    | 56-55-3    | Benzo (a) Anthracene     | 1   | 10.0 U |
| 10   | 218-01-9   | Chrysene                 | 1   | 10.0 U |
| 11   | 205-99-2   | Benzo (b) Fluoranthene   | l   | 10.0 U |
| 12   | 207-08-9   | Benzo(k)Fluoranthene     | l   | 10.0 U |
| 13   | 50-32-8    | Benzo(a) Pyrene          | 1   | 10.0 U |
| 14   | 193-39-5   | Indeno(1,2,3-cd)Pyrene   | l   | 10.0 U |
| 15   | 53-70-3    | Dibenz (a, h) Anthracene | 1   | 10.0 U |
| 16   | 191-24-2   | Benzo(g,h,i)Perylene     | , I | 10.0 U |
|      |            |                          |     |        |
|      |            |                          |     |        |

CMPD

UG/TUBE

000016

:

## тв рун

### NYTEST ENVIRONMENTAL INC.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE MATRIX:FRONT FILTER EXTRACTION DATE: 9/27/94 ANALYSIS DATE: 11/5/94

. . . . .

No.

E

Ĩ

ľ

N.

No.

| SAMPLE ID:  | AS4-F   |
|-------------|---------|
| LAB ID:     | 2206704 |
| DIL FACTOR: | 1.00    |

CMPD # CAS Number

PAH COMPOUNDS

UG/TUBE

| - π |          |                        |   |        |
|-----|----------|------------------------|---|--------|
| 1   | 91-20-3  | Naphthalene            |   | 6.0 JB |
| 2   | 208-96-8 | Acenaphthylene         | 1 | 10.0 U |
| 3   | 83-32-9  | Acenaphthene           | 1 | 10.0 U |
| 4   | 86-73-7  | Fluorene               | I | 10.0 0 |
| 5   | 85-01-8  | Phenanthrene           | I | 10.0 U |
| 6   | 120-12-7 | Anthracene             | 1 | 10.0 U |
| 7   | 206-44-0 | Fluoranthene           | 1 | 10.0 U |
| 8   | 129-00-0 | Pyrene                 | 1 | 10.0 U |
| 9   | 56-55-3  | Benzo (a) Ant hracene  | 1 | 10.0 U |
| 10  | 218-01-9 | Chrysene               | l | 10.0 U |
| 11  | 205-99-2 | Benzo(b)Fluoranthene   | 1 | 10.0 U |
| 12  | 207-08-9 | Benzo(k)Fluoranthene   | 1 | 10.0 U |
| 13  | 50-32-8  | Benzo(a)Pyrene         | 1 | 10.0 U |
| 14  | 193-39-5 | Indeno(1,2,3-cd)Pyrene | I | 10.0 0 |
| 15  | 53-70-3  | Dibenz(a,h)Anthracene  | 1 | 10.0 U |
| 16  | 191-24-2 | Benzo(g,h,i)Perylene   | 1 | 10.0 U |
|     | l        | _                      | l | I      |

### 1B PAH NYTEST ENVIRONMENTAL INC.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                     |           |    | · · ·       |         |
|---------------------|-----------|----|-------------|---------|
| SAMPLE MATRIX:      | BACK TUBE | y. | SAMPLE ID:  | FB-B    |
|                     |           |    | LAB ID:     | 2206710 |
| EXTRACTION DATE:    | 9/27/94   |    | LAB ID:     | 2200710 |
| milidior con concer |           |    |             | 1 00    |
| ANALYSIS DATE:      | 11/5/94   |    | DIL FACTOR: | 1.00    |
| AGDIDID DHID:       |           |    |             |         |
|                     |           |    |             |         |

| UG/ | TUBE |
|-----|------|
|-----|------|

1

- 1

1

1

10.0 U

10.0 U

10.0 U

10.0 U |

1

1

1

| CMPD | #  | CAS Number | PAR COMPOUNDS          |   |        |
|------|----|------------|------------------------|---|--------|
|      | 1  | 91-20-3    | Naphthalene            | 1 | 3.0 JB |
|      | 2  | 208-96-8   | Acenaphthylene         | 1 | 10.0 U |
|      | 3  | 83-32-9    | Acenaphthene           | t | 10.0 U |
|      | 4  | 86-73-7    | Fluorene               | Ĩ | 10.0 U |
|      | 5  | 85-01-8    | Phenanthrene           | l | 10.0 U |
|      | 6  | 120-12-7   | Anthracene             | 1 | 10.0 U |
|      | 7  | 206-44-0   | Fluoranthene           | 1 | 10.0 U |
| -    | 8  | 129-00-0   | Pyrene                 | 1 | 10.0 U |
|      | 9  | 56-55-3    | Benzo(a)Anthracene     | 1 | 10.0 U |
| 1    | LO | 218-01-9   | Chrysene               | 1 | 10.0 U |
| 3    | 11 | 205-99-2   | Benzo (b) Fluoranthene | l | 10.0 U |
| :    | 12 | 207-08-9   | Benzo(k)Fluoranthene   | l | 10.0 U |
|      |    |            |                        |   |        |

|Benzo(a)Pyrene

Indeno (1,2,3-cd) Pyrene

[Dibenz(a,h)Anthracene

Benzo(g,h,i)Perylene

NT-----

13 50-32-8

14 |193-39-5

15 |53-70-3

16 |191-24-2

ź

X

Ń

Ì

ľ

函

PAH COMPOUNDS

## NYTEST ENVIRONMENTAL INC.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX: FF | ONT FILTER | SAMPLE ID  | : FB-F    |
|-------------------|------------|------------|-----------|
| EXTRACTION DATE:  | 9/27/94    | LAB ID     | : 2206705 |
| ANALYSIS DATE:    |            | DIL FACTOR | : 1.00    |

UG/TUBE

CMPD # CAS Number

PAH COMPOUNDS

| 1 91-20-3    | Naphthalene            | 1                 | 6.0 JB   |
|--------------|------------------------|-------------------|----------|
| 2 208-96-8   | Acenaphthylene         | I                 | 10.0 U   |
| 3 83-32-9    | Acenaphthene           | I                 | 10.0 U   |
| 4 86-73-7    | Fluorene               | 1                 | 10.0 U   |
| 5  85-01=8   | Phenanthrene           | 1 <sup>°</sup>    | 10.0 U   |
| 6 120-12-7   | Anthracene             | 1                 | - 10.0 U |
| 7_ 206-44-0  | Fluoranthene           | 1                 | 10.0 U   |
| 8 129-00-0   | Pyrene                 | 1                 | 10.0 U   |
| 9 56-55-3    | Benzo(a)Anthracene     | 1                 | 10.0 U   |
| 10 218-01-9  | Chrysene               |                   | 10.0 U   |
| 11 205-99-2  | Benzo(b)Fluoranthene   | 1                 | 10.0 U   |
| 12 207-08-9  | Benzo(k)Fluoranthene   | 1                 | 10.0 U   |
| 13 50-32-8   | Benzo(a)Pyrene         | I                 | 10.0 U   |
| 14  193-39-5 | Indeno(1,2,3-cd)Pyrene | 1                 | 10.0 U   |
| 15  53-70-3  | Dibenz(a,h)Anthracene  | l                 | 10.0 U   |
| 16  191-24-2 | Benzo(g,h,i)Perylene   | <i>:</i> <b>1</b> | 10.0 U   |
| 1            |                        |                   |          |

#### NYTEST ENVIRONMENTAL INC.

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:   | BACK TUBE | SAMPLE ID:  | CAL-B |
|------------------|-----------|-------------|-------|
| EXTRACTION DATE: | 9/27/94   | LAB ID:     | S1230 |
| ANALYSIS DATE:   | 11/5/94   | DIL FACTOR: | 1.00  |

UG/TUBE

CMPD # CAS Number

4.

PAH COMPOUNDS

| 1  91-20-3   | Naphthalene            | 1   | 3.0 JB   |
|--------------|------------------------|-----|----------|
| 2 208-96-8   | Acenaphthylene         | 1   | 10.0 U   |
| 3 83-32-9    | Acenaphthene           | 1   | 10.0 U   |
| 4 86-73-7    | Fluorene               | 1   | 10.0 U   |
| 5 85-01-8    | Phenanthrene           | l   | 10.0 U   |
| 6  120-12-7  | Anthracene             | l   | · 10.0 U |
| 7_206-44-0   | Fluoranthene           | 1   | 10.0 U   |
| 8 129-00-0   | Pyrene                 | 1   | 10.0 U   |
| 9 56-55-3    | Benzo (a) Anthracene   | 1 . | 10.0 U   |
| 10 218-01-9  | Chrysene               | I   | 10.0 U   |
| 11 205-99-2  | Benzo (b) Fluoranchene | l   | 10.0 U   |
| 12 207-08-9  | Benzo(k)Fluoranthene   | 1   | 10.0 U   |
| 13 50-32-8   | Benzo (a) Pyrene       | 1   | 10.0 U   |
| 14  193-39-5 | Indeno(1,2,3-cd)Pyrene | I   | 10.0 U   |
| 15   53-70-3 | Dibenz(a,h)Anthracene  | I   | 10.0 U   |
| 16  191-24-2 | Benzo(g,h,i)Perylene   | ľ   | 10.0 U   |
| 1            | 1                      | !   |          |

### NYTEST ENVIRONMENTAL INC.

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| SAMPLE MATRIX:FR | ONT FILTER | SAMPLE   | ID: CAL-F |
|------------------|------------|----------|-----------|
| EXTRACTION DATE: | 9/27/94    | LAB      | ID: S1229 |
| ANALYSIS DATE:   | 11/5/94    | DIL FACT | OR: 1.00  |

#### UG/TUBE

000021

CMPD # CAS Number

*:*.

Ĩ

.

書品

PAH COMPOUNDS

.

| 1 91-20-3    | Naphthalene              | I          | 8.0 JB |
|--------------|--------------------------|------------|--------|
| 2 208-96-8   | Acenaphthylene           | 1          | 10.0 U |
| 3 83-32-9    | Acenaphthene             | Ι          | 1J.O U |
| 4  86-73-7   | Fluorene                 | 1          | 10.0 U |
| 5 85-01-8    | Phenanthrene             | I          | 10.0 U |
| 6  120-12-7  | Anthracene               | 1          | 10.0 U |
| 7 206-44-0   | Fluoranthene             | 1          | 10.0 U |
| 8  129-00-0  | Pyrene                   | I          | 10.0 U |
| 9  56-55-3   | Benzo(a)Anthracene       | I          | 10.0 U |
| .0  218-01-9 | Chrysene                 | I          | 10.0 U |
| 1 205-99-2   | Benzo (b) Fluoranthene   | <u>_</u> ] | 10.0 U |
| 2 207-08-9   | Benzo(k)Fluoranthene     | 1          | 10.0 U |
| 3 50-32-8    | Benzo(a)Pyrene           | 1          | 10.0 U |
| 4 193-39-5   | Indeno (1,2,3-cd) Pyrene | 1          | 10.0 U |
| 5 53-70-3    | Dibenz(a,h)Anthracene    | <b>.</b> . | 10.0 U |
| 6 191-24-2   | Benzo(g,h,i)Perylene     | I          | 10.0 U |
| 1 .          |                          |            |        |

TOTAL ANALYTICAL SERVICES FOR A SAFE ENVIRONMENT TOTAL ANALYTICAL SERVICES FOR A SAFE ENVIRONMENT ON THE STORY RECORD

SHIP TO: Nytest Environmental Inc. 60 Seaview Blvd. Port Washington, NY 11050 (516) 625-5500 Attn.

|            | Page_/_of_/                  |
|------------|------------------------------|
| ACAODT TO  | Client Name GT1              |
| REPORT TO: | Address 1945 GM OS KH        |
|            | Schenertody MY 12303         |
|            | Phone 370-5631               |
|            | Attn. Bruce Abrens/F. Mredek |

| Project No.                                  | · · · · | ect Nam      | ne         | 1                  | 1 -+                      | Date Shipp           |               | Carrier<br>FCd. EX                                                                                             | ,            |
|----------------------------------------------|---------|--------------|------------|--------------------|---------------------------|----------------------|---------------|----------------------------------------------------------------------------------------------------------------|--------------|
| 01110-003<br>Sampler: (Signatur<br>Augo Xhun |         | ragre        |            | ical Protocol      | KCDh_                     | Air Bil No.          | ./            | Cooler No.                                                                                                     |              |
| Sample<br>I.D.                               | Date/   | Time<br>pted |            | mple<br>escription | No. Of<br>Con-<br>tainers |                      | ANALYSIS REQU | IESTED                                                                                                         |              |
| ASI                                          |         | 2:30         | Air        |                    | 2                         | PAH'                 | 5             |                                                                                                                |              |
| ASZ                                          |         | 2:30         | ١.         |                    | 2                         | ۳.                   |               |                                                                                                                |              |
| AS3                                          | ••      | 2:30         | , <b>\</b> |                    | 2                         | ٤٦                   |               |                                                                                                                |              |
| ASY                                          |         | 2:30         | , L,       |                    | 2                         |                      |               |                                                                                                                |              |
|                                              | <u></u> |              |            |                    |                           |                      |               |                                                                                                                |              |
|                                              |         |              |            |                    |                           |                      |               |                                                                                                                |              |
|                                              |         |              |            | <u></u>            |                           |                      |               |                                                                                                                |              |
|                                              |         |              |            | <u></u>            | · .                       |                      |               |                                                                                                                |              |
|                                              |         |              |            |                    |                           |                      |               |                                                                                                                |              |
|                                              |         |              |            |                    |                           |                      |               | and a second |              |
|                                              |         |              |            |                    |                           |                      |               |                                                                                                                |              |
| Relinguished by (Signa                       | Leri.   | rin          | ·          | Date<br>9-20-9     | I, İ                      | ec'd By (Signature)  | e             | Date /                                                                                                         | Time         |
| Reinquishedby (Signature)                    |         |              |            | Date               |                           | ec'd. by (Signature) |               | Date /                                                                                                         | Time         |
| Print Name                                   |         |              |            |                    | P                         |                      |               |                                                                                                                |              |
| Relinquished by (Signature)                  |         |              |            | Date               | / Time R                  | ecer for information | Aliants'      | 9210                                                                                                           | Turne<br>Bil |
| Print Name                                   |         |              |            | ······             | P                         | Potet                | Flethe        | · XYEN                                                                                                         | -0           |

-

Special Instructions/Comments\_

| EMPLOYEE ED<br>ne: <u>Greg Shewn</u><br>Iding: <u>Ostside</u><br>e: <u><math>9/19/94</math></u> | Social S           |                                | 092-6           | <u>6-745</u><br>1/igga          | sa<br>Mbhawk        | unt     |
|-------------------------------------------------------------------------------------------------|--------------------|--------------------------------|-----------------|---------------------------------|---------------------|---------|
| ne: Greg Shewin-                                                                                | Social S           | ecurity No.:                   | 092-6           | <u>6-745</u><br><u>Miga</u>     | so<br>Mohowk        | unte    |
| ne: Greg Sherwin-                                                                               | Social S           | ecurity No.:                   | 092-6           | <u>6 - 745</u><br><u>Miagra</u> | so<br>Mohowk        | upta    |
| ne: Greg Sherwin-                                                                               | Social S           | ecurity No.:                   | 092-6           | <u>6 - 745</u><br><u>Miagra</u> | so<br>Mohowk        | upta    |
| ne: <u>Greg Shewin</u><br>Iding: <u>Outside</u>                                                 | Social S           | ecurity No.:                   | 092-6           | <u>6-745</u><br><u>Miga</u>     | <u>(o</u><br>Mohowk | wate    |
| ne: <u>Greg Shewin</u><br>Iding: <u>Outside</u>                                                 | Social S           | ecurity No.:                   | 092-6           | <u>6-745</u><br><u>Miagra</u>   | so<br>Mohowk        | wate    |
|                                                                                                 | Samplin<br>Samples | ig Location:_<br>s Collected b | SB28            | Migra                           | Mohowk              | wate    |
|                                                                                                 | Samplin<br>Samples | s Collected b                  | <u>Gran</u>     | -1 -                            |                     |         |
| e: <u>9/19/94</u>                                                                               | Sample             | s Collected b                  |                 | < 1. A A                        | <b>.</b> .          |         |
|                                                                                                 |                    |                                | y. <u>Creas</u> | SNETWO                          |                     |         |
| be of Sample: AN                                                                                |                    |                                |                 |                                 |                     | <u></u> |
| alyze For: PAH'S                                                                                |                    |                                |                 |                                 |                     |         |
|                                                                                                 | SAMPLE D           | ATA                            |                 |                                 |                     |         |
| Sample No. AS/                                                                                  |                    |                                |                 |                                 |                     | £,      |
| Aonitor/Pump No. 641                                                                            |                    |                                |                 |                                 |                     |         |
| Time On 0900                                                                                    |                    |                                | ·               |                                 |                     |         |
| Time Off 1431                                                                                   |                    |                                | <u></u>         |                                 |                     |         |
| tal Time (min) <u>331</u>                                                                       |                    |                                |                 |                                 |                     |         |
| Flow Rate (Volume/Time) 2115 Min.                                                               |                    |                                |                 |                                 |                     |         |
| Volume (cc, L, ft3)                                                                             | L                  |                                |                 |                                 |                     |         |
| Result 0. MMC                                                                                   |                    |                                |                 |                                 |                     |         |
|                                                                                                 |                    |                                |                 |                                 |                     |         |
|                                                                                                 |                    |                                |                 |                                 |                     |         |
| · . S                                                                                           | SAMPLE LOO         | CATION                         | ·               |                                 |                     |         |
|                                                                                                 |                    |                                |                 |                                 | Height              | Type    |
| Sample # Employee Name/Number of                                                                |                    |                                |                 |                                 | 4'                  |         |
| ASI Grag Sheresi                                                                                | m./i               | reason                         | al sam          | pre                             |                     |         |

|     | 1        |
|-----|----------|
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
| • · | <u> </u> |
|     |          |

FEB-27-95 MON 05:57 PM NYTEST ENVIRONMENTAL INC 15166251274

.

| -              | Y                             |               | CALIBRATION      |                   |                                                                                                                 | on Data |  |  |  |
|----------------|-------------------------------|---------------|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------|--|--|--|
|                | Calibration                   |               | Set              | ting              | Calibration Date                                                                                                |         |  |  |  |
|                | Pre-Use                       | Post-Use      | Pre-Use          | Post-Use          | Pre                                                                                                             | Post    |  |  |  |
| 641            | 1.87                          | 1,98          |                  |                   |                                                                                                                 |         |  |  |  |
| <u>e</u>       |                               |               |                  |                   |                                                                                                                 |         |  |  |  |
|                |                               |               |                  |                   |                                                                                                                 |         |  |  |  |
|                |                               |               |                  |                   | •                                                                                                               |         |  |  |  |
|                |                               |               |                  |                   |                                                                                                                 | 1       |  |  |  |
| ( Quliber      | I Bu                          | ck            | Calibrato        | r Type            |                                                                                                                 |         |  |  |  |
| ime of Calibra | 5°                            | Press         |                  | RH                | •                                                                                                               |         |  |  |  |
|                |                               | 2             | OPERATION        | 1                 |                                                                                                                 | *       |  |  |  |
|                | in the set (Noise:            | Coal To       | ./               |                   |                                                                                                                 |         |  |  |  |
| ource of Con   | aminani/Noise                 | Drillin       | <u>ج</u>         |                   |                                                                                                                 |         |  |  |  |
|                |                               | Local Exhaust | G                | ieneral Area:     | Nor                                                                                                             | ne:     |  |  |  |
| ition:         | ······                        | PERSONAL F    | PROTECTIVE EQUIF | MENT (check if wo | orn)                                                                                                            |         |  |  |  |
|                | n en entre etit (             |               |                  |                   |                                                                                                                 |         |  |  |  |
|                | iratory Protective            | , comprise    |                  |                   |                                                                                                                 |         |  |  |  |
| •              | Protective Clothing<br>Gloves |               |                  | Туре:             |                                                                                                                 |         |  |  |  |
|                |                               |               |                  | Туре:             |                                                                                                                 |         |  |  |  |
|                | Goggles/Face Shield           |               |                  |                   |                                                                                                                 |         |  |  |  |
|                | Protection                    |               | Туре:            |                   | • •                                                                                                             | •••     |  |  |  |
| Notes or Col   | mments                        |               |                  |                   |                                                                                                                 |         |  |  |  |
|                |                               |               |                  |                   |                                                                                                                 |         |  |  |  |
|                |                               |               |                  |                   |                                                                                                                 |         |  |  |  |
|                |                               | •             |                  | ···               | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |         |  |  |  |
|                |                               |               |                  |                   |                                                                                                                 |         |  |  |  |
|                | '                             |               | •                |                   |                                                                                                                 |         |  |  |  |
|                |                               |               |                  | `                 |                                                                                                                 |         |  |  |  |
|                |                               |               |                  |                   |                                                                                                                 |         |  |  |  |

| . FEB-27-95 MON                       | 05:57 PM NYTEST      | <u>E ENV</u> IRONMENTA | L INC 15166251   | 274 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · P.0  |
|---------------------------------------|----------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                       |                      |                        | •                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                       |                      |                        |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                       |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| · · · · · · · · · · · · · · · · · · · |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                       |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                       | EMPLOYEE F           | EXPOSURE SAMPLING      | G DATA           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ame: Greg Sher                        | 1.5.00               | Social Security No     | : <u>092-66-</u> | 7456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| uilding: Outside                      | -                    | Sampling Location      | 1: SB28 No       | gra Mahaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K wate |
| ate:9/19/94                           |                      | Samples Collecter      | d by: Greg Shea  | sinn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 1 1                                   |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| pe of Sample: A:                      |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| nalyze For: <u>PAH</u>                | .'                   |                        |                  | New Provention of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annual State of the Annu |        |
|                                       |                      | SAMPLE DATA            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Sample No.                            | AZZ                  |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Monitor/Pump No.                      | 283                  |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Time On                               | 0900                 |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Time Off                              | 1431                 |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| al Time (min)                         | 331                  |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Flow Rate (Volume/Time                | e) 2110 Min          |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Volume (cc, L, ft3)                   |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Result                                |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| · · · · · · · · · · · · · · · · · · · |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                       |                      |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                       | •                    | SAMPLE LOCATION        | ·<br>·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·      |
|                                       | Employee Name/Number | or Sample Location     |                  | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Туре   |
|                                       | Grea Sherwin         | / Katattaa             | ra sample        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| A52 (                                 | Jrea Dienvin         | - CURCALLUS            | win manuful      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

| AS2 | Greg Denvin / Mathematica                 |
|-----|-------------------------------------------|
|     | Greg Sterwin / Greater Completion Eastern |
|     |                                           |
|     |                                           |
|     |                                           |
|     |                                           |
|     |                                           |
|     |                                           |
|     |                                           |
|     |                                           |
|     |                                           |

FEB-27-95 MON 05:58 PM NYTEST ENVIRONMENTAL INC 15166251274 MARK MARCHP:06

.

| tor No.      | Pre-Use                                                                                                     | Post-Use      | Set<br>Pre-Use | Rost-Use           | Calibrati<br>Pre                      | Post   |
|--------------|-------------------------------------------------------------------------------------------------------------|---------------|----------------|--------------------|---------------------------------------|--------|
| tor No.      |                                                                                                             | Post-Use      | Pre-Use        | I POST-USE         |                                       |        |
| 83           |                                                                                                             | 1             |                |                    |                                       |        |
|              | 1.53                                                                                                        | 1.96          |                |                    |                                       |        |
|              |                                                                                                             |               |                |                    |                                       |        |
|              |                                                                                                             |               |                |                    |                                       |        |
|              |                                                                                                             |               |                |                    | -                                     |        |
|              |                                                                                                             |               |                |                    |                                       |        |
|              |                                                                                                             |               |                | - Tupo             |                                       |        |
| e of Calibra | tor: Buck                                                                                                   |               | Calibrato      | r Type             |                                       |        |
| 75           | )                                                                                                           | Press         | ure:           | RH:                |                                       |        |
|              |                                                                                                             |               |                | 1                  |                                       |        |
| - ( Cant     | aminant/Noise:                                                                                              | Cool Ta       | /              |                    |                                       |        |
| Ce of Conta  | Alfinianty Contart                                                                                          | · Drillio     | <u>a</u>       | Coperal Area:      |                                       |        |
|              |                                                                                                             | Local Exhaust | · 0            | General Area:      | Non                                   | le:    |
| lon:         |                                                                                                             |               |                | PMENT (check if wo | orn)                                  |        |
|              |                                                                                                             |               |                |                    |                                       |        |
| Respir       | ratory Protective                                                                                           | Equipment     |                |                    |                                       |        |
| Prote        | ctive Clothing                                                                                              |               |                |                    |                                       |        |
| Glove        | es                                                                                                          |               | Type:          |                    |                                       |        |
|              | gles/Face Shield                                                                                            | I             | Type:          |                    |                                       |        |
|              | Protection                                                                                                  |               | Туре:          | •                  |                                       |        |
|              |                                                                                                             |               |                |                    |                                       | -      |
| otes or Con  | nments                                                                                                      |               |                |                    | · · · · · · · · · · · · · · · · · · · | ······ |
|              |                                                                                                             |               |                |                    |                                       |        |
|              |                                                                                                             |               |                |                    |                                       |        |
|              | ويسترقون والمرواب والمرواب والمرواب والمرواب والمرواب والمرواب والمرواب والمرواب والمرواب والمرواب والمرواب |               |                |                    |                                       |        |
|              |                                                                                                             |               |                |                    |                                       |        |
|              | -                                                                                                           |               |                |                    |                                       |        |

.

| ••··                                  | , •              | ·         |                |                                                                                                                 |        |          |           |
|---------------------------------------|------------------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------|--------|----------|-----------|
|                                       |                  |           |                |                                                                                                                 |        |          |           |
|                                       | ·<br>            |           |                |                                                                                                                 |        |          |           |
|                                       | EMPLOYEE         | EXPOSU    | IRE SAMPLIN    | NG DATA                                                                                                         |        |          |           |
|                                       |                  | Soc       | al Security N  | 10: 092                                                                                                         | -66-7  | 7456     |           |
| ne: Greg Shewis                       | · ·              | 000       |                | 50 0                                                                                                            |        | no Moha  | uk u      |
| ilding: Ostside                       |                  | Sar       | npling Localic | 011. <u>3150</u>                                                                                                |        | 0        |           |
| te:9/19/94                            |                  | Sar       | nples Collecte | ed by: <u>Or</u> a                                                                                              | eg Hea | gra Moha | ·······   |
| pe of Sample: A:C                     |                  |           |                | 1999 - 1994 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |        |          | . <u></u> |
| alyze For: PAH':                      | 5                |           |                |                                                                                                                 |        |          |           |
|                                       |                  | SAMP      | LE DATA        |                                                                                                                 | -      |          |           |
|                                       | AS3              |           |                |                                                                                                                 |        |          | ~         |
| Sample No.                            | 279              |           |                |                                                                                                                 |        |          |           |
| Monitor/Pump No.                      | 0900             |           |                |                                                                                                                 |        |          |           |
|                                       | 1431             | <u> </u>  |                |                                                                                                                 |        |          |           |
| Time Off                              | 331              |           |                |                                                                                                                 |        |          |           |
|                                       | 2/Homm           |           |                |                                                                                                                 |        |          |           |
| Volume (cc, L, ft3)                   | a no mu          |           |                |                                                                                                                 |        |          |           |
| Result                                |                  |           |                |                                                                                                                 |        |          |           |
| Neson                                 |                  |           |                |                                                                                                                 |        |          |           |
| · · · · · · · · · · · · · · · · · · · |                  |           |                |                                                                                                                 |        |          |           |
|                                       |                  |           | LOCATION       |                                                                                                                 |        |          |           |
| · ·                                   |                  | - SAMPLE  |                | -                                                                                                               | ·      |          |           |
| Sample # Emp                          | bloyee Name/Numb | er or Sam | ple Location   |                                                                                                                 |        | Height   | Туре      |
|                                       | rea Sheri        |           | -              | n Sam                                                                                                           | ole    | 4'       |           |

| A53                                                                                                                            | Greg Sherwing Western Douple |   |   |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|---|---|
|                                                                                                                                |                              |   |   |
| مېيىنىڭ ئەرىپ مەرەپ قىرى ئەرەك يېرىمىيەت تەرەپ مەرەپ يېرىمىيەت تەرەپ يېرىپ يېزىكى تۇرىپ مەرەپ مەرەپ مەرەپ يېرى<br>مەرەپ ئىلىرى |                              |   |   |
|                                                                                                                                |                              |   |   |
| energy                                                                                                                         |                              |   |   |
|                                                                                                                                |                              |   |   |
|                                                                                                                                |                              | L | L |
|                                                                                                                                | 1                            |   |   |

| - | P. | 08 |  |
|---|----|----|--|
|   |    |    |  |
|   |    |    |  |
|   |    |    |  |

|                                                   |                                                                               | 3<br>                                      | CALIBRATION                                             | tting              | Calibrat | ion Date |
|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|--------------------|----------|----------|
|                                                   | Calib                                                                         | ration                                     |                                                         | Post-Use           | Pre      | Post     |
| aor No.                                           | Pre-Use                                                                       | Post-Use                                   | Pre-use                                                 |                    |          |          |
| 179                                               | 1.84                                                                          | 1.98                                       |                                                         |                    |          |          |
|                                                   |                                                                               |                                            |                                                         |                    |          |          |
|                                                   |                                                                               |                                            |                                                         | _                  |          |          |
|                                                   |                                                                               |                                            |                                                         |                    | •        |          |
|                                                   |                                                                               |                                            |                                                         |                    |          |          |
|                                                   |                                                                               |                                            |                                                         |                    |          |          |
| e of Calibra                                      | ator: Buc                                                                     | K                                          | Calibrato                                               | г Туре             |          |          |
| p:7                                               | 5°.                                                                           | Pressur                                    | e:                                                      | RH:                |          |          |
|                                                   |                                                                               | 3                                          | OPERATION                                               | l                  |          |          |
| rea of Cont                                       | aminant/Noise:_                                                               | CoalTax                                    |                                                         |                    |          |          |
|                                                   |                                                                               | Delle                                      | ъ.<br>                                                  |                    |          |          |
| de - Emp                                          | Jourge (s) Perform                                                            | : Danne                                    | <u></u>                                                 |                    |          |          |
|                                                   |                                                                               |                                            |                                                         | eneral Area:       | Non      | ie:      |
|                                                   | loyee(s) Perform                                                              | Local Exhaust:                             | G                                                       | ieneral Area:      |          | 16:      |
| tion:                                             |                                                                               | Local Exhaust:<br>PERSONAL PR              | OTECTIVE EQUIF                                          | MENT (check if wo  | rn)      | le:      |
| tion:<br>Respi                                    | ratory Protective                                                             | Local Exhaust:<br>PERSONAL PR<br>Equipment | OTECTIVE EQUIF                                          | PMENT (check if wo | rn)      |          |
| tion:<br>Respi                                    |                                                                               | Local Exhaust:<br>PERSONAL PR<br>Equipment | OTECTIVE EQUIF<br>Type:<br>Type:                        | PMENT (check if wo | rn)      |          |
| tion:<br>Respi<br>Prote                           | ratory Protective                                                             | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:          | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote                           | ratory Protective<br>active Clothing                                          | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:<br>Type: | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote                           | iratory Protective<br>active Clothing<br>es<br>gles/Face Shield               | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:<br>Type: | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote<br>Glove<br>Gogg<br>Ear I | iratory Protective<br>active Clothing<br>es<br>gles/Face Shield<br>Protection | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:          | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote                           | iratory Protective<br>active Clothing<br>es<br>gles/Face Shield<br>Protection | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:          | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote<br>Glove<br>Gogg<br>Ear I | iratory Protective<br>active Clothing<br>es<br>gles/Face Shield<br>Protection | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:          | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote<br>Glove<br>Gogg<br>Ear I | iratory Protective<br>active Clothing<br>es<br>gles/Face Shield<br>Protection | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:          | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote<br>Glove<br>Gogg<br>Ear I | iratory Protective<br>active Clothing<br>es<br>gles/Face Shield<br>Protection | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:          | Seneral Area:      | rn)      |          |
| tion:<br>Respi<br>Prote<br>Glove<br>Gogg<br>Ear I | iratory Protective<br>active Clothing<br>es<br>gles/Face Shield<br>Protection | Local Exhaust:<br>PERSONAL PR<br>Equipment | G<br>OTECTIVE EQUIF<br>Type:<br>Type:<br>Type:          | Seneral Area:      | rn)      |          |

| -<br>-<br>-                           |                                                                                                                |            |                                                                                                                |                  | 16625127                               |          | Р.                              |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|----------|---------------------------------|
| •                                     | • • •                                                                                                          |            |                                                                                                                |                  |                                        |          |                                 |
|                                       | •.                                                                                                             |            |                                                                                                                |                  |                                        |          |                                 |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                |            |                                                                                                                |                  |                                        |          |                                 |
|                                       | EMPLOY                                                                                                         | EE EXPOS   | SURE SAMPLI                                                                                                    | NG DATA          | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | 4        |                                 |
| Name: Grea Shea                       |                                                                                                                |            |                                                                                                                |                  | -66-74                                 | 56       |                                 |
| Name: Greg Shen<br>Building: Octside  |                                                                                                                | - S        |                                                                                                                |                  |                                        |          | الا ب بنا                       |
| Date: 9/19/94                         | · · · · · · · · · · · · · · · · · · ·                                                                          |            | maine Collect                                                                                                  |                  | 8 Nigra                                | . ·      |                                 |
| Type of Sample:                       |                                                                                                                | _ 58       | amples Collect                                                                                                 | ea by: <u>Or</u> | eg Sher                                | un_      |                                 |
|                                       |                                                                                                                | <u></u>    |                                                                                                                |                  |                                        |          |                                 |
| Analyze For:                          | <u>S</u>                                                                                                       | <u></u>    | •                                                                                                              |                  |                                        |          |                                 |
|                                       |                                                                                                                | SAMF       |                                                                                                                | <u> </u>         | T                                      |          |                                 |
| Sample No.                            | AS4                                                                                                            |            |                                                                                                                |                  |                                        |          | ~                               |
| Monitor/Pump No.                      | 280                                                                                                            |            |                                                                                                                |                  |                                        |          | -                               |
| Time On                               | 0900                                                                                                           |            | -                                                                                                              |                  |                                        |          |                                 |
| Time Off                              | 1431                                                                                                           | ·          |                                                                                                                |                  |                                        |          | • • • • • • • • • • • • • • • • |
| Total Time (min)                      | 331                                                                                                            |            |                                                                                                                |                  |                                        |          |                                 |
| Rate (Volume/Time)                    | 2Hrsmin .                                                                                                      | · · ·      |                                                                                                                |                  |                                        |          |                                 |
| Volume (cc, L, ft3)                   |                                                                                                                |            | 1                                                                                                              |                  |                                        |          |                                 |
| Result                                |                                                                                                                |            |                                                                                                                |                  |                                        |          |                                 |
|                                       |                                                                                                                |            |                                                                                                                |                  |                                        |          |                                 |
|                                       |                                                                                                                |            |                                                                                                                |                  | <u> </u>                               | <u>_</u> |                                 |
|                                       | · ·                                                                                                            | SAMPLE     | LOCATION                                                                                                       |                  |                                        |          |                                 |
| Sample # Emp                          | loyee Name/Numb                                                                                                | er or Samp | le Location                                                                                                    |                  |                                        | Height   | Туре                            |
|                                       | eg Sherwin                                                                                                     |            |                                                                                                                | Samp             | P                                      | 4'       |                                 |
|                                       | 5                                                                                                              |            | and a second second second second second second second second second second second second second second second |                  | 1. <del></del>                         |          |                                 |
|                                       |                                                                                                                |            |                                                                                                                | <del></del>      |                                        |          |                                 |
|                                       | 99 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 |            |                                                                                                                |                  |                                        |          |                                 |
|                                       |                                                                                                                |            |                                                                                                                |                  |                                        |          |                                 |
| ,                                     |                                                                                                                |            |                                                                                                                | ****             |                                        |          |                                 |

-

÷

.

•

#### APPENDIX C

### GEOTECHNICAL LABORATORY ANALYTICAL REPORTS



### REPORT OF ANALYSIS

Log In No : 21829

We find as follows :

|                         |             |         | Sample Identif | ication |        |
|-------------------------|-------------|---------|----------------|---------|--------|
| Parameter(s)            | Lab ID :    | 2182901 | 2182902        | 2182903 | Method |
|                         | Client ID : | 1/1618  | 1/1820         | 1/2426  | Blank  |
| pH                      | t           | NR      | 5.95           | NR      | NA     |
| De <b>'ty, gm</b> /cc - |             | 1.8323  | NR             | NR      | NA     |
| 4 ture, in Percen       |             | NR      | 16.90          | NR      | 0.02 U |

b. Below method blank/method reporting limit
E : Above method limit

NA : Not available

. ·

NR : Not Required

### REPORT OF ANALYSIS

Log In No : 21818

We find as follows :

۰.

**.**..

|                                   |                  |                    | Sample Identif      | ication            |                    |
|-----------------------------------|------------------|--------------------|---------------------|--------------------|--------------------|
|                                   | b ID :<br>t ID : | 2181801<br>15/3032 | 2181802<br>15/1820  | 2181804<br>13/4749 | Method<br>Blank    |
| sity, gma/cc<br>sture, in Percent |                  | NR<br>1.3917<br>NR | 4.17<br>NR<br>18.30 | NR<br>NR<br>NR     | NA<br>NA<br>0.02 U |

U : Below method blank/method reporting limit E : Above method limit NA : Not available NR : Not Required

# REPORT OF ANALYSIS

We find as follows :

Log In No : 22077

|                                              |                         |                      | Sample Identification       |                             |                    |  |
|----------------------------------------------|-------------------------|----------------------|-----------------------------|-----------------------------|--------------------|--|
| Parameter(s)                                 | Lab ID :<br>Client ID : | 2207704<br>2S/2628MS | 2207705<br>25/2224<br>5B-28 | 2207706<br>2S/2426<br>SB-28 | Method<br>Blank    |  |
| pH<br>Density, gm/cc<br>Mristure, in Percent | :                       | NR<br>NR<br>NR       | 6.09<br>NR<br>12.7          | NR<br>1.6143<br>NR          | NA<br>NA<br>0.02 U |  |

~~ .

Below method blank/method reporting limit bove method limit L Ε

NA : Not available

NR : Not Required

, ·

•

#### REPORT OF ANALYSIS

Log In No : 21755

Sample Identification

ì

We find as follows :

:

1

11 . . . .

<u>[</u>\_\_\_\_

| ·<br>·         |                    |         |         |        |
|----------------|--------------------|---------|---------|--------|
|                | Lab ID : 2175504   | 2175505 | 2175506 | Method |
| Parameter(s)   | Client ID : 3/4648 | 4/2830  | 4/4749  | Blank  |
| Density, gm/cc | NR                 | 1.6472  | NR      | NA     |

1: Below method blank/method reporting limit
2 : Above method limit
NA : Not available
NR : Not Required

5.

### REPORT OF ANALYSIS

Log In No : 21755

000058

ł.

We find as follows :

1

1. 1. 41 1. 42

|                            | Sample Identificatio | on           |
|----------------------------|----------------------|--------------|
| Lab ID :                   | 2175507              | Method       |
| Client ID :<br>            | 4/4951               | Blank        |
| pH<br>Moisture, in Percent | 8.60<br>11.1         | NA<br>0.02 U |

U : Below method blank/method reporting limit E : Above method limit NA : Not available NR : Not Required

### REPORT OF ANALYSIS

#### Log In No : 21785

We find as follows :

•

۳.,

۲.) بن

1

j. , 4 23

Sample Identification

| Lab ID<br>Client ID<br>Parameter(s) | •      | 2178502<br>11/2628<br>SB-11 | 2178503<br>12/2224<br>SB-12 | Method<br>Blank |
|-------------------------------------|--------|-----------------------------|-----------------------------|-----------------|
| pH                                  | NR     | 7.08                        | 7.02                        | NA              |
| Density, gmm/cc                     | 2.0693 | NR                          | NR                          | NA              |
| isture, in Percent                  | NR     | 26.90                       | 13.10                       | 0.02 U          |

I : Below method blank/method reporting limit
c : Above method limit
NA : Not available
NR : Not Required

000060

L. 16 . 15

REPORT OF ANALYSIS

Log In No : 21993

We find as follows :

ja:

-

ĥ

bau. . . f

1.

.

20

Sample Identification

| Lab ID :<br>Client ID :<br>Parameter(s) | 2199304<br>26/2022 | 2199305<br>26/1820 | Method<br>Blank |
|-----------------------------------------|--------------------|--------------------|-----------------|
| pH                                      | NR                 | 3.88               | NA              |
| Density, gmm/cc                         | 1.5229             | NR                 | NA              |
| isture, in Percent                      | NR                 | 16.9               | 0.02 U          |

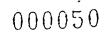
U : Below method blank/method reporting limit E : Above method limit NA : Not available NR : Not Required

REPORT OF ANALYSIS

Log In No : 21926

We find as follows :

 $\langle \gamma \rangle$ 


295

þ

Sample Identification

| • •                                        | Lab ID :    | 2192610           | 2192611            | 2192612            | Method             |
|--------------------------------------------|-------------|-------------------|--------------------|--------------------|--------------------|
| :                                          | Client ID : | 13/2628           | 11/0810            | 11/1012            | Blank              |
| Parameter(s)                               |             | NUJ-13            | N 65-11            | M15-11             |                    |
| pH<br>Ponsity, gm/cc<br>isture, in Percent |             | 9.18<br>NR<br>7.7 | NR<br>1.1165<br>NR | 3.24<br>NR<br>12.5 | NA<br>NA<br>0.02 L |

U : Below method blank/method reporting limit E : Above method limit NA : Not available NR : Not Required



#### REPORT OF ANALYSIS

Log In No : 21926

We find as follows :

Parameter(s)

ensity, gma/cc

Sample Identification 2192609 2192608 Lab ID : 2192607 Method 13/2426 Blank 13/1618 13/1214 Client ID : MATB NA NR 1.7043 NR

Below method blank/method reporting limit
E : Above method limit
NA : Not available
NR : Not Required

| NYIESI ENVIKUNMENIAL, INU | MY | TEST | ENVIRONMENTAL, | INC. |
|---------------------------|----|------|----------------|------|
|---------------------------|----|------|----------------|------|

REPORT OF ANALYSIS

Lab ID :

Client ID :

Log In No : 21903

;

: 4

4

We find as follows :

ľ

. .

рН С

Sample Identification

2190302

17.50

| Parameter(s) |  |  |
|--------------|--|--|

| 2/2224 | Method<br>Blank |
|--------|-----------------|
| M15-2  |                 |
| 7.73   | N.              |

"nisture, in Percent

NA 0.02 U

J : Below method blank/method reporting limit
E : Above method limit
NA : Not available
NR : Not Required

### LOG NUMBER : 22077

We find as follows :

Results in percent :

## Grain size distribution

| LAB ID  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) | Fine<br>Gravels<br>(4.75 mm) | Coarse<br>Sands<br>(2.00 mm) | Medium &<br>Fine sand<br>(0.425 mm) | Silt &<br>Clay<br>(<0.075 mm) |
|---------|----------|--------------|---------------------------------|------------------------------|------------------------------|-------------------------------------|-------------------------------|
| 2207706 | 25/2426  | 87.60        | 15.80                           | 19.40                        | 27.50                        | 15.60                               | 21.70                         |

#### LOG NUMBER : 21829

We find as follows :

Results in percent :

### Grain size distribution

| LAB ID  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) |       | Coarse<br>Sands<br>(2.00 mm) |       | Silt &<br>Clay<br>(<0.075 mm) |
|---------|----------|--------------|---------------------------------|-------|------------------------------|-------|-------------------------------|
| 2182901 | 1/1618   | 69.70        | 21.60                           | 28.40 | 23.40                        | 23.10 | 3.50                          |

# LOG NUMBER : 21818

We find as follows :

Results in percent :

...

. .

# Grain size distribution

| LAB ID  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) | Fine<br>Gravels<br>(4.75 mm) | Coarse<br>Sands<br>(2.00 mm) | Medium &<br>Fine sand<br>(0.425 mm) | Silt &<br>Clay<br>(<0.075 mm) |
|---------|----------|--------------|---------------------------------|------------------------------|------------------------------|-------------------------------------|-------------------------------|
| 2181801 | 15/30/32 | 79.90        | 6.30                            | 27.80                        | 32.60                        | 19.10                               | 13.60                         |

- 5.\*

Grain size distribution

LOG NUMBER : 21903

:

We find as follows :

22

{ ]

Results in percent :

| LAB ID  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) | Fine<br>Gravels<br>(4.75 mm) |      | Medium &<br>Fine sand<br>(0.425 mm) | Clay          |
|---------|----------|--------------|---------------------------------|------------------------------|------|-------------------------------------|---------------|
| 2190301 | 2/2426   | 81.30        | 0.00                            | 0.00                         | 2.20 | 35.20                               | <b>62.</b> 60 |

000044

### LOG NUMBER : 21926

÷

ł.

We find as follows :

1.5

.

Results in percent :

| Grain size distribution |          |              |                                 |                              |                               |                                     |                               |
|-------------------------|----------|--------------|---------------------------------|------------------------------|-------------------------------|-------------------------------------|-------------------------------|
| LAB ID                  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) | Fine<br>Gravels<br>(4.75 mm) | Coarse<br>Sands<br>(2.00 ଲma) | Medium &<br>Fine sand<br>(0.425 mm) | Silt &<br>Clay<br>(<0.075 mm) |
| 2192609                 | 13/2426  | 86.20        | 19.10                           | 25.30                        | 23.00                         | 16.10                               | 16.50                         |
| 2192611                 | 11/0810  | 85.70        | 0.00                            | 32.00                        | 31.40                         | 22.10                               | 14.50                         |

### LOG NUMBER : 21993

We find as follows :

: : :

1.1

. . .

.

Results in percent :

| LAB ID  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) | Fine<br>Gravels<br>(4.75 mma) | Coarse<br>Sands<br>(2.00 mma) | Medium &<br>Fine sand<br>(0.425 mm) | Silt &<br>Clay<br>(<0.075 mm) |
|---------|----------|--------------|---------------------------------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------|
| 2199304 | 26/2022  | 88.50        | 0.00                            | 30.50                         | 27.30                         | 24.10                               | 18.10                         |

Grain size distribution

LOG NUMBER : 21785

:

We find as follows :

Results in percent :

122

- A

|         |          |              | PARAMETERS                      |                              |                              |                                     |                               |  |
|---------|----------|--------------|---------------------------------|------------------------------|------------------------------|-------------------------------------|-------------------------------|--|
| LAB ID  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) | Fine<br>Gravels<br>(4.75 mm) | Coarse<br>Sands<br>(2.00 मळ) | Medium &<br>Fine sand<br>(0.425 mm) | Silt &<br>Clay<br>(<0.075 mm) |  |
| 2178502 | 11/2628  | 73.10        | 0.00                            | 0.00                         | 7.20                         | 32.90                               | 59.90                         |  |
| 2178503 | 12/2224  | 86.90        | 0.00                            | 43.30                        | 24.00                        | 9.60                                | 23.10                         |  |

LOG NUMBER : 21755

000059

We find as follows :

Ŀ

fa (

ſ

Ę - J

. .

Results in percent :

| LAB ID  | CLIENTID | Total solids | Coarse<br>Gravels<br>(>4.75 mm) |       |       | Mediuma &<br>Fine sand<br>(0.425 mma) | Silt &<br>Clay<br>(<0.075 mm) |
|---------|----------|--------------|---------------------------------|-------|-------|---------------------------------------|-------------------------------|
| 2175506 | 4/4749   | 90.10        | 42.70                           | 27.10 | 14.40 | 7.20                                  | 8.60                          |

PARAMETERS

Lab Name: Nytest Environmental Inc. Case No. 22077

Project No: 9421265

SDG: GT16

Client : Groundwater Technology, Inc.

| Sample ID                                               | Lab ID  |       | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
|---------------------------------------------------------|---------|-------|--------------------------|--------------------------------|
| 2S/2224<br>(⊅BJ <b>S</b> )                              | 2207705 |       | 87.3                     | 9989                           |
| 2 <b>S/2224D</b><br>(4B-28)                             | 2207705 | DUP   | 87.3                     | 9263                           |
| 28/22248<br>(5B-78)                                     | 2207705 | SPIKE | 87.3                     | 34950                          |
| Duplicate Relative<br>Spike Added:<br>Spike Percent Rec |         | nce:  | 7.54<br>25455<br>98.1%   |                                |
| MDL                                                     |         |       |                          | 400                            |
| Method Blank                                            |         |       |                          | <400                           |

| Lab Name: Nytest Environmental Inc. | Case No. 21829 |
|-------------------------------------|----------------|
| Project No: 9421265                 | SDG: 21829     |

Client : GWT

| Sample ID   | Lab ID        | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
|-------------|---------------|--------------------------|--------------------------------|
| 1/1820      | 2182902       | 83.1                     | 37341                          |
| 1/1820      | 2182902 DUP   | 83.1                     | 36927                          |
| -<br>1/1820 | 2182902 SPIKE | 83.1                     | 50262                          |

| Duplicate Relative Percent Difference:<br>Spike Added:<br>Spike Percent Recovery: | 1.11<br>25334<br>102.0% |      |
|-----------------------------------------------------------------------------------|-------------------------|------|
| MDL                                                                               |                         | 400  |
| Method Blank                                                                      |                         | <400 |

Lab Name: Nytest Environmental Inc.Case No. 21818Project No: 9421265SDG: 21818

Client : GWT

| Sample ID | Lab ID        | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
|-----------|---------------|--------------------------|--------------------------------|
| 15/1820   | 2181801       | 79.9                     | 153971                         |
| 15/1820   | 2181801 DUP.  | 79.9                     | 157935                         |
| 15/1820   | 2181801 SPIKE | <b>7</b> 9.9             | 323711                         |

| Duplicate Relative Percent Difference: | 2.54   |
|----------------------------------------|--------|
| Spike Added:                           | 166875 |
| Spike Percent Recovery:                | 101.7% |

3

MDL

Method Blank

400

<400

|                             | Total Organic<br>Results | Carbon<br>s                                            | , <i>\</i> fił |
|-----------------------------|--------------------------|--------------------------------------------------------|----------------|
| Lab Name: Nytest Environmer | ntal Inc.                | Carbon<br>s<br>Case No. 21933 m <sup>(untuility)</sup> |                |
| Project No: 9421265         |                          | SDG: GT11                                              |                |

:

000053

Client : Stearns & Wheeler

}

.....

.

**د** . . .

1

-....

All a start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the

L.

| Sample ID                                               | Lab ID  |       | Percent<br>Solids<br>(%) |           | Results in<br>mg/Kg<br>Dry Wt. |
|---------------------------------------------------------|---------|-------|--------------------------|-----------|--------------------------------|
| 26/1820                                                 | 2199305 |       | 83.1                     |           | 126173                         |
| 26/1820D                                                | 2199305 | DUP   | 83.1                     |           | 126774                         |
| 26/1820S                                                | 2199305 | SPIKE | 83.1                     |           | 178103                         |
| Duplicate Relative<br>Spike Added:<br>Spike Percent Red |         | nce:  | 0.47<br>48135<br>107.9%  | •         |                                |
| MDL                                                     |         |       |                          | <b></b> . | 400                            |
| Method Blank                                            |         |       |                          |           | <400                           |

| Lab Name: Nytest Environmental Inc. | Case No. 21903 |
|-------------------------------------|----------------|
| Project No: 9421265                 | SDG: GT11      |

Client : Groundwater Technology, Inc.

}: ] |: ] |27

:

<u>ر با</u>

...

| Sample ID            | Lab ID           |       | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
|----------------------|------------------|-------|--------------------------|--------------------------------|
| 2/2224               | 2190302          |       | 82.5                     | 6273                           |
| 2/2224D              | 2190302          | DUP   | 82.5                     | 6167                           |
| 2/22248              | 2190302          | SPIKE | 82.5                     | 50222                          |
|                      |                  |       |                          |                                |
| Duplicate Relative I | Percent Differen | ce:   | 1.70                     |                                |
| Spike Added:         |                  |       | 44077                    |                                |
| Spike Percent Reco   | overy:           |       | 99.7%                    |                                |
| MDL                  |                  |       |                          | 400                            |
| Method Blank         | _                |       |                          | <400                           |

000046

÷

Lab Name: Nytest Environmental Inc.Case No. 21926Project No: 9421265SDG: GT11

Client : Groundwater Technology, Inc.

3

1

.

÷

1.124

R. Shine

l L'Stern

lada. N

| Sample ID                                               | Lab ID  |         | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
|---------------------------------------------------------|---------|---------|--------------------------|--------------------------------|
| 13/2628                                                 | 2192610 | <u></u> | 92.3                     | 20742                          |
| 13/2628D                                                | 2192610 | DUP     | 92.3                     | 20949                          |
| 13/2628S                                                | 2192610 | SPIKE   | 92.3                     | 58670                          |
| 11/1012                                                 | 2192612 |         | 87.5                     | 102498                         |
|                                                         |         |         |                          |                                |
| Duplicate Relative<br>Spike Added:<br>Spike Percent Rec |         | ce:     | 0.99<br>36114<br>105.0%  | -                              |
| MDL                                                     |         |         |                          | 400                            |

Method Blank

000047

<400

:

Lab Name: Nytest Environmental Inc.

Case No. 21755

Project No: 9421265

13

- - -

1 1

ļ

f s

. م ر . فري:

SDG: GT8

Client : Baker Environmental GWT

20 1:15/44

| Sample ID | Lab ID  |       | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
|-----------|---------|-------|--------------------------|--------------------------------|
| 4/4951    | 2175507 |       | 88.9                     | 6218                           |
| 4/4951    | 2175507 | DUP   | 88.9                     | 6177                           |
| 4/4951    | 2175507 | SPIKE | 88.9                     | 22260                          |

| Duplicate Relative Percent Difference: | 0.66  |
|----------------------------------------|-------|
| Spike Added:                           | 16664 |
| Spike Percent Recovery:                | 81.4% |

| MDL          | <br>400 |
|--------------|---------|
|              |         |
| Method Blank | <400    |

Lab Name: Nytest Environmental Inc.Case No. 21770Project No: 9421265SDG: 21770

Client : GWT

ł

يا. ياد نكت

÷

|           |         |       | •                        |                                |
|-----------|---------|-------|--------------------------|--------------------------------|
| Sample ID | Lab ID  |       | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
| 13/2527   | 2177006 |       | 80.1                     | 7643                           |
| 13/2527   | 2177006 | DUP   | 80.1                     | 7764                           |
| 13/2527   | 2177006 | SPIKE | 80.1                     | 34194                          |

| Duplicate Relative Percent Difference: | 1.57   |  |
|----------------------------------------|--------|--|
| Spike Added:                           | 26283  |  |
| Spike Percent Recovery:                | 101.0% |  |
| MDL                                    |        |  |

Method Blank

000054

400

<400

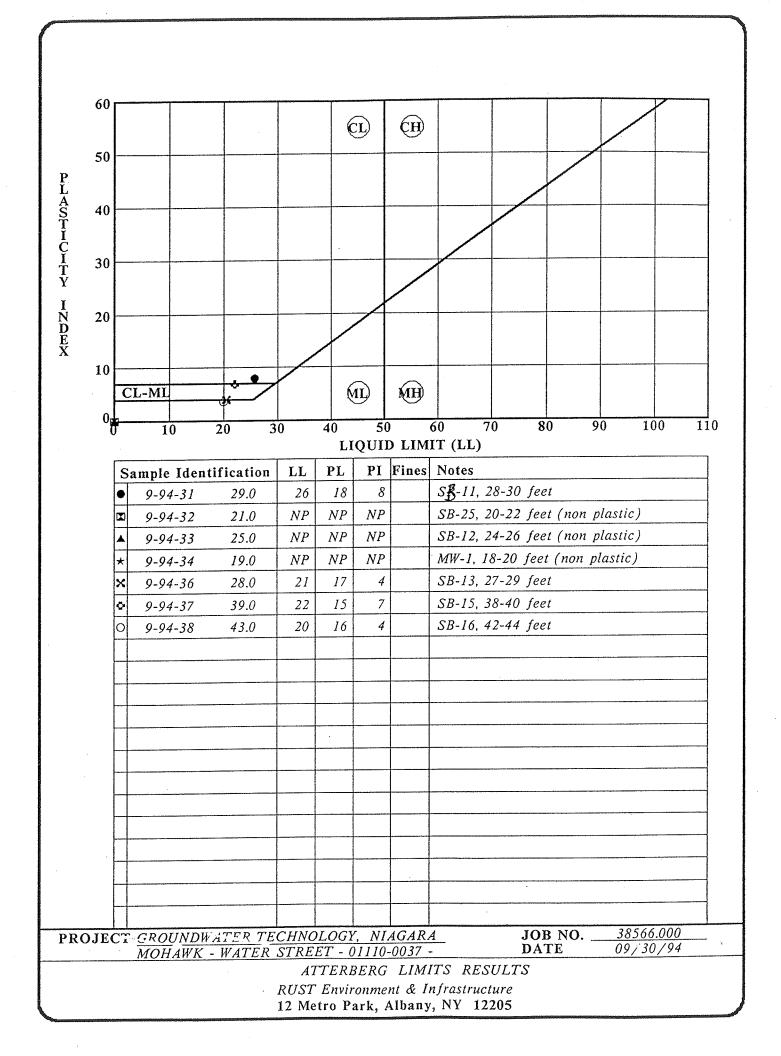
Lab Name: Nytest Environmental Inc.Case No. 21785Project No: 9421265SDG: 21785

Client : GWT

....

1.1

Ţ


i i

f h

4.14

| Sample ID | Lab ID  |       | Percent<br>Solids<br>(%) | Results in<br>mg/Kg<br>Dry Wt. |
|-----------|---------|-------|--------------------------|--------------------------------|
| 11/2628   | 2178502 |       | 73.1                     | 23705                          |
| 12/2224   | 2178503 |       | 86.9                     | 14562                          |
| 12/2224D  | 2178503 | DUP   | 86.9                     | 13993                          |
| 12/2224S  | 2178503 | SPIKE | 86.9                     | 40025                          |

| Duplicate Relative Percent Difference:<br>Spike Added:<br>Spike Percent Recovery: | 3.98<br>28769<br>88.5% |      |
|-----------------------------------------------------------------------------------|------------------------|------|
| MDL                                                                               |                        | 400  |
| Method Blank                                                                      |                        | <400 |



### APPENDIX D

### PRELIMINARY RISK EVALUATION REPORT



April 17, 1995

| TO:      | Bruce Ahrens / Teresá Misiolek                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------|
| FROM:    | Mark Wert<br>Risk Assessment Services                                                                               |
| SUBJECT: | Preliminary Risk Evaluation - Area 2<br>Niagara Mohawk Water Street MGP Site<br>Rensselaer County<br>Troy, New York |

A preliminary risk evaluation was performed for Area 2 of the former Water Street Manufactured Gas Plant (MGP) site which is currently owned and operated by King Fuels. The purpose of this evaluation was to determine whether contamination in soil in Area 2 poses an imminent hazard to human health in the short term (defined as less than 5 years). Potential exposure of daily workers and construction workers to soil was quantitatively evaluated. The results showed that the total potential cancer risks calculated are within USEPA's target risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ , and the total non-cancer hazard indices are below USEPA's threshold value of 1.0. Therefore, the site does not appear to pose an imminent hazard to human health.

Although the estimated potential risks are shown here to be acceptable, we would recommend to the client that no construction workers be allowed to excavate soils at the site without some level of monitoring, education, and PPE.

#### 5.1 Preliminary Risk Evaluation

#### 5.1.1 Data Evaluation

A brief review of analytical data for surface soil and subsurface soil was completed. Data for sediment and surface water were not evaluated because the potential for exposure to these media was judged insignificant compared with the potential for exposure to soil in the short term. Data for groundwater were not evaluated because groundwater is not used as a drinking water supply at or downgradient of the site.

The data for subsurface and surface soil was summarized in Table 1 and Table 2 respectively. Average concentrations were calculated based on detected concentrations only. This method of calculation overestimates the actual average concentrations because concentrations below the detection limits in the impacted area are eliminated. The average concentrations were also compared to NYSDEC Recommended Cleanup Objectives obtained from TAGM 4046 (NYSDEC, 1994) or to literature background values where NYSDEC values were not available.

As a screening mechanism to determine the compounds of concern for the imminent hazard evaluation, the compounds of concern were limited to those meeting the following criteria:

- detected more than twice in either surface or subsurface soil
- the average concentration was more than twice the NYSDEC cleanup objective or background level identified for the compound
- readily available toxicity values

Contaminants not meeting these criteria were eliminated from consideration.

## 5.1.2 Potential Exposure Pathways

The potential for exposure of on-site King Oil workers to surface soil was calculated for a 5 year period. The potential for exposure of hypothetical future construction/maintenance workers to subsurface soil was also calculated. The following two exposure pathways were quantitatively evaluated for both of these potential receptors:

dermal contact with soil incidental ingestion of soil

## 5.1.3 Exposure Parameters

Table 3 presents the exposure equations and parameters used in this evaluation. In general, these were selected from USEPA methods and default values (USEPA, 1991). The exposure factors selected for the construction worker were based on professional judgement. All exposures were calculated based on the average concentrations detected in soil.

## 5.1.4 Toxicity Values

Toxicity values and their sources are given in Table 4. In general these values were obtained from USEPA sources such as the Integrated *Risk Information System (IRIS)* or Health *Effects Assessment Summary Tables (HEAST)* via the *Electronic Handbook of Risk Assessment Values (EHRAV)* (1995). Surrogate toxicity values were selected for some compounds without USEPA values. Toxicity Equivalence Factors published by USEPA (1993) were used to assess carcinogenic polycyclic aromatic hydrocarbons (PAHs). Sub-chronic reference doses were used for the assessment of non-carcinogenic effects. Metals with very low toxicities were eliminated. Other compounds without toxicity values in EHRAV were not evaluated.

## 5.1.5 Risk Characterization

Potential risks were summed for all compounds for each receptor as shown in Tables 5-8. The results show that the potential cancer risks to daily workers ( $3 \times 10^{-5}$ ) and construction workers ( $8 \times 10^{-5}$ ) are within USEPA's target risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ . The potential non-cancer hazard indices for the daily workers (0.004) and construction workers(0.16) are also both below USEPA's threshold value of 1.0.

#### 5.1.6 References

- EHRAV. 1995, January. *Electronic Handbook of Risk Assessment Values*. Electronic Handbook Publishers. Bellevue, Washington.
- New York State Department of Environmental Conservation (NYSDEC). 1994. Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels (revised January 24, 1994). Division of Hazardous Waste Remediation. Albany, New York. TAGM 4046. HWR-94-4046.
- Ryan, R.A., E.T. Hawkins, B. Magee, S.L. Santos. 1987. "Assessing Risks from Dermal Exposure at Hazardous Waste Sites." Superfund '87 Proceedings of the 8th National Conference, Nov. 16-18, 1987.
- United States Environmental Protection Agency (USEPA), 1994. Integrated Risk Information System (IRIS). On-line database. Office of Emergency and Remedial Response: Washington, D.C.
- United States Environmental Protection Agency (USEPA). July, 1993. *Health Effects Assessment Summary Tables, FY-1993 Annual (HEAST)*. Office of Solid Waste and Emergency Response. Washington, D.C.
- United States Environmental Protection Agency (USEPA). 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. Office of Research and Development. Washington, D.C. EPA/600/R-93/089.
- U.S. Environmental Protection Agency (USEPA). 1992. Dermal Exposure Assessment: Principles and Applications, Interim Report, January 1992. Exposure Assessment Group, Office of Health and Environmental Assessment, Washington, D.C. EPA/600/8-91-011B.
- U.S. Environmental Protection Agency (EPA). 1991. Risk Assessment Guidance for Superfund Vol. 1: Human Health Evaluation Manual and Supplemental Guidance "Standard Exposure Factors." Office of Solid Waste and Energy Response Directive. Washington, D.C.

# TABLE 1 Summary of Subsurface Soil Analytical Data For King Oil Site

## Niagra Mohawk Power Corp. Water Street Troy, New York

| Compound                    | Samplee | Detects | Minimum     | Average   | Maximum  | NYSDEC Recommended<br>Cleanup Objective | Exceeds    |
|-----------------------------|---------|---------|-------------|-----------|----------|-----------------------------------------|------------|
| Compound                    | Samples | Delecis | AND RELEVEN | . tronago |          |                                         |            |
|                             |         | l       |             |           | µg/kç    | )                                       | 1          |
| cetone                      | 26      | 0       |             |           |          | 200                                     | no         |
| lenzene                     | 72      | 21      | 2           | 1500      | 15000    | 60                                      | YES        |
| -Butanone                   | 26      | 0       |             |           |          | 300                                     | no         |
| Carbon Disulfide            | 18      | 0       |             |           |          | 2700                                    | no         |
| Ihylbenzene                 | 72      | 21      | 1           | 1105      | 13000    | 5500                                    | no         |
| -Hexanone                   | 18      | 1       | 1           | 1         | 1        | not available                           | YES        |
| Aethylene Chloride          | 26      | 8       | 3           | 115       | 860      | 100                                     |            |
| -Methyl-2-Pentanone         | 59      | 0       |             |           |          | 1000                                    | no         |
| Styrene                     | 26      | 3       | 450         | 4883      |          | not available                           | no         |
| Toluene                     | 72      | 22      | 2           | 1013      | 12000    | 1500<br>not available                   |            |
| ,1,2-Trichloroethane        | 18      | 0       |             |           |          |                                         |            |
| Frichloroethene             | 18      | 0       |             |           | 10000    | 700                                     | no<br>YES  |
| Kylene (total)              | 72      | 23      | 11          | 2368      | 18000    | 1200                                    | 163        |
|                             |         |         | <u> </u>    |           | 000000   | not available                           |            |
| Benzene Isomers             | 26      | 6       |             | 50757     |          | not available                           |            |
| Jnknown Aromatics           | 26      | 14      | 6           | 46364     | 198000   | not available<br>not available          |            |
| Napthalene Isomers          | 18      | 0       |             |           |          |                                         |            |
| Other Unknowns              | 26      | 15      |             |           |          | not available<br>not available          |            |
| Ethyl Dimethyl Benzene Isom | 8       | 1       |             |           |          | not available<br>not available          |            |
| Tetramethyl Benzene Isomer  | . 8     | 2       | 64000       |           |          |                                         | YES        |
| TOTAL VOCs                  |         |         | <u> </u>    | 1275387   | 7        | 10000                                   | 163        |
|                             |         |         |             |           |          | 50000                                   | YES        |
| Acenaphthene                | 80      | 27      |             |           |          | . 50000                                 | YES        |
| Acenaphthylene              | 80      | 29      |             |           |          |                                         |            |
| Anthracene                  | 80      | 31      |             |           |          |                                         | YES        |
| Benzo (a) anthracene        | 80      | 42      |             |           |          |                                         | YES<br>YES |
| Benzo (b) fluoranthene      | 11      | 8       |             |           |          |                                         | YES        |
| Benzo (k) fluoranthene      | 11      | 8       |             |           |          |                                         |            |
| Benzo (g,h,i) perylene      | 11      | 1       |             |           |          |                                         | YES        |
| Benzo (a) pyrene            | 11      | 1       | 69          |           |          |                                         | YES        |
| Carbazole                   | 35      |         | 5 1800      |           |          |                                         | YES        |
| 4-Chloro-3-Methylphenol     | 24      |         | 1 240       |           |          |                                         | YES        |
| 2-Chlorophenol              | 24      |         | 1 240       |           |          |                                         | YES        |
| Chrysene                    | 56      | 3       | 7 5         | 3 33883   |          |                                         | YES        |
| Dibenz (a,h) anthracene     | 11      |         | 3 210       | 0 26136   |          |                                         | YES        |
| Dibenzoluran                | 35      |         |             | 5 87908   | 4 720000 |                                         | YES        |
| 1,4-Dichlorobenzene         | 24      |         | 1 140       | 0 140     | 0 1400   | 8500                                    | no         |
| 2,4-Dimethylphenol          | 39      |         | 1 68000     | 0 68000   | 680000   |                                         | YES        |
| 2,4- Dinitrotoluene         | 24      |         | 1 170       |           | 1700     |                                         | YES        |
| Fluoranthene                | 80      |         | 8 4         | 5 86383   | 1900000  |                                         | YES        |
| Fluorene                    | 80      |         |             | 3 52958   |          |                                         | YES        |
| Indeno (1,2,3-cd) pyrene    | 1       |         |             | 3 52109   |          |                                         | YE         |
| 2-Methylnaphthalene         | 3       |         |             | 5 136868  |          |                                         | YE         |
| 2-Methylphenol              | 3       |         | 1 100000    | 10000     |          |                                         | YE         |
| 4-Methylphenol              | 3       |         | 4 11        |           |          |                                         | YE         |
| Naphthalene                 | 8       |         |             | 1 22896   |          |                                         | YE         |
| 4-Nitrophenol               | 2       |         | 2 240       |           |          |                                         | YE         |
| n-Nitrosoiphenylamine (1)   | 2       |         | 1 170       |           | 00 170   |                                         |            |
| n-Nitrosol-I-n-propylamine  | 2       |         | 1 180       |           | 00 180   |                                         |            |
|                             |         | 4       | 1 270       |           |          |                                         | YE         |
| Penlachlorophenol           |         |         |             | 41 12288  |          |                                         | YE         |
| Phenanthrene                |         | 5       |             | 80 11529  |          |                                         | YE         |
| Phenol                      |         | 0       |             | 49 5403   |          |                                         | YE         |
| Pyrene                      |         |         | 1 14        |           | 00 110   |                                         | n          |
| 1,2,4-Trichlorobenzene      | 4       | .4      |             | 166475    |          | 250000                                  | YE         |

# TABLE 1 Summary of Subsurface Soil Analytical Data For King Oil Site

# Niagra Mohawk Power Corp. Waler Street Troy, New York

|                     |         |         |         | A.v.o.r.o.g.o | Maximum | NYSDEC Recommended<br>Cleanup Objective | Exceeds?   |
|---------------------|---------|---------|---------|---------------|---------|-----------------------------------------|------------|
| Compound            | Samples | Detects | Minimum | Average       | Maximum | Cleanop Objective                       | T Exceeds? |
|                     |         |         |         |               | µg/kg   |                                         |            |
|                     |         |         |         |               |         |                                         |            |
| Aldrin              | 25      | 0       |         |               |         | 40                                      | no         |
| alpha-BHC           | 25      | 0       |         |               |         | 110                                     | no         |
| bela-BHC            | 25      | 0       |         |               |         | 200                                     | no         |
| della-BHC           | 25      | 1       | 81      | 81            | 81      | 300                                     | no         |
| gamma-BHC (Lindane) | 25      | 1       | 6.8     | 7             | 6.8     | 60                                      | no         |
| alpha-Chlordane     | 25      | 1       | 7.8     | 8             | 7.8     | not availab                             |            |
| gamma-Chlordane     | 25      | · 0     |         |               |         | 540                                     | no         |
| 4.4'-DDD            | 25      | 1       | 4.1     | 4             | 4.1     | 2900                                    | no         |
| 4.4'-DDE            | 25      | 1       | 44      | 44            | 44      | 2100                                    | no         |
| 4,4'-DDT            | 25      | 6       | 3.9     | 125           | 220     | 2100                                    | no         |
| Dieldrin            | 25      | 4       | 3.5     | 65            | 170     | 44                                      | YES        |
| Endosulfan I        | 25      | 1       | 32      | 32            | 32      | 900                                     | no         |
| Endosulfan II       | 25      | 0       |         |               |         | 900                                     | no         |
| Endosulfan sulfate  | 25      | 0       |         |               |         | 1000                                    | no         |
| Endrin              | 25      | 6       | 11      | 232           | 720     | 100                                     | YES        |
| Endrin aldehyde     | 25      | 5       | 5.5     | 15            | 30      | not availat                             |            |
| Endrin ketone       | 25      | 2       | 4.2     | 172           | 340     | not availat                             |            |
| Heptachlor          | 25      | 1       | 3.4     | 3             | 3.4     | 100                                     | no         |
| Heptachlor epoxide  | 25      | 1       | 5.8     | 6             | 5.8     | 20                                      | no         |
| Methoxychlor        | 25      | 0       |         |               |         | ·                                       | no         |
| Toxaphene           | 25      | 0       |         |               |         | not availat                             |            |
| TOTAL PESTICIDES    |         | 1       |         | 794           |         | 10000                                   | no         |
|                     |         |         |         |               |         |                                         |            |
| Aroclor-1016        | 25      | 0       |         |               |         | 10000                                   | no         |
| Aroclor-1221        | 25      | 0       |         |               |         | 10000                                   | no         |
| Aroclor-1232        | 25      | 0       |         |               |         | 10000                                   | no         |
| Aroclor-1242        | 25      | 0       |         |               |         | 10000                                   | no         |
| Aroclor-1248        | 25      | 0       |         |               |         | 10000                                   | no         |
| Aroclor-1254        | 25      | 0       |         |               |         | 10000                                   | no         |
| Aroclor-1260        | 25      | 0       |         |               |         | 10000                                   | no         |

R:\RA\NIAGMOHA\NMRISK01.WK4

## TABLE 1 Summary of Subsurface Soil Analytical Data For King Oil Site

## Niagra Mohawk Power Corp. Water Street

Troy, New York

| Compound  | Samples       | Detects      | Minimum        | Average     | Maximum     | NYSDEC Reco<br>Cleanup O |                 | Exceeds? |
|-----------|---------------|--------------|----------------|-------------|-------------|--------------------------|-----------------|----------|
| Compound  | Joannpies     | Delecio      |                | Thorage     | - Maximum 1 | <u> </u>                 | 5)55.15         |          |
|           |               |              |                |             | mg/k        | 9                        |                 |          |
|           |               |              | )-1            |             |             |                          |                 | -        |
| ТРН       | 5             | 5            | 0.3            | 13056       | 44300       |                          |                 |          |
| -·        |               |              |                |             | ·           |                          |                 |          |
| Aluminum  | 26            | 24           | 143            | 6172        | 16900       | 33000                    | SB (1)          | no       |
| Antimony  | 26            | 5            | 10.4           | 20          | 44.6        | 0.52                     | not available ( | YES      |
| Arsenic   | 26            | 23           | 2.6            | 17          | 42.8        | 7.5                      | or SB           | YES      |
| Barium    | 26            | 8            | 48.4           | 127         | 370         | 300                      | or SB           | no       |
| Beryllium | 26            | 7            | 1.1            | 2           | 2.5         | 0.16                     | or SB           | YES      |
| Cadmium   | 26            | 12           | 1.2            | 3           | 5.1         | 1                        | or SB           | YES      |
| Calcium   | 26            | 24           | 1780           | 13362       | 86600       | 3400                     | SB (1)          | YES      |
| Chromium  | 26            | 24           | 2.4            | 27          | 95.7        | 10                       | or SB           | YES      |
| Cobalt    | 26            | 13           | 12.2           | 24          | 82.8        | 30                       | or SB           | no       |
| Copper    | 26            | 21           | 9.9            | 73          | 501         | 25                       | or SB           | YES      |
| Iron      | 26            | 24           | 3430           | 79605       | 331000      | 2000                     | or SB           | YES      |
| Lead      | 26            | 24           | 2              | 47          | 325         | 0.03                     | or SB           | YES      |
| Magnesium | 26            | 14           | 1180           | 3649        | 9200        | 2100                     | SB (1)          | YES      |
| Manganese | 26            | 24           | 28.2           | 3084        | 20900       | 0.15                     | SB              | YES      |
| Mercury   | 26            | 8            | 0.12           | 2           | 8.5         | 0.1                      |                 | YES      |
| Nickel    | 26            | 19           | 10.4           | 21          | 45.1        | 13                       | or SB           | YES      |
| Potassium | 26            | 4            | 1380           | 1760        | 2440        | 12000                    | SB (1)          | no       |
| Selenium  | 26            | 4            | 2.3            | 4           | 8.8         | 2                        | or SB           | YES      |
| Silver    | 26            | 0            |                |             |             |                          | SB              | no       |
| Sodium    | 26            | 0            |                |             |             |                          | SB              | no       |
| Thallium  | 26            | 3            | 2.9            | 42          | 92.7        | . 7.7                    | SB (1)          | YES      |
| Vanadium  | 26            | 21           | 9.5            | 81          | 298         | 150                      | or SB           | no       |
| Zinc      | 26            | 22           | 8.2            | 64          | 267         | 20                       | or SB           | YES      |
|           | 1 50          | 1            | 1.6            | 12          | 36.5        |                          | depend on fo    |          |
| Cyanide   | 52            | 4            | 1.0            | 12          |             |                          |                 | ////     |
|           | (1) Backgroun | d for the Fa | stern U.S. fro | om Shacklet | te (1994)   |                          |                 |          |
| L         | 11 Davigioun  |              |                |             |             |                          |                 |          |

# TABLE 2 Summary of Surface Soil Analytical Data for the King Oil Site

## Niagra Mohawk Power Corp Water Street Troy, New York

| Compound                           | Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detects | Minimum | Average | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cleanup Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exceeds |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [       |         |         | hâ\kć                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ì       |
| enzene                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      |
| hylbenzene                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2       | 2       | 3       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | по      |
| ethylene Chloride                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4       | 3       | 3       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
|                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ó       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no      |
|                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2       | 4       | 4       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | no      |
| ylene (total)                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | د.      |         |         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |
| tu and Argentia                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       | 8       | 8       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | not available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T       |
| nknown Aromalic                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2       | 8       | 11      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | not available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| ther Unknowns                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         | 29      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| OTAL VOCs                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3       | 780     | 1360    | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| cenaphthene                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14      | 38      | 1590    | 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| cenaphthylene                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13      | 40      | 2352    | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
| nthracene                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13      | 140     | 8073    | 31000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | YES     |
| enzo (a) anthracene                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 140     | 7357    | 27000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES     |
| enzo (b) fluoranthene              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12      |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES     |
| enzo (k) fluoranthene              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12      | 160     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| enzo (g,h,i) perylene              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12      | 48      |         | Low restored to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES     |
| enzo (a) pyrene                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13      |         |         | 22000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES     |
| hrysene                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13      |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| ibenz (a,h) anthracene             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES     |
| luoranthene                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15      |         | 10918   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no      |
| luorene                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no      |
| ndeno (1,2,3-cd) pyrene            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12      | 52      | 2772    | 16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no      |
| -Methylnaphthalene                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       | 51      | 51      | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| laphthalene                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6       | 42      | 519     | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| henantherene                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13      | 100     | 7023    | 28000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
|                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15      |         | 10288   | 42000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| Pyrene<br>OTAL SVOCs               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         | 77366   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | no      |
| Jnknown Aromatic<br>Diher Unknowns | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Aldrin                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      |
| alpha-BHC                          | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 5       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
| peta-BHC                           | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 5       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 5       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
| della-BHC                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 5       |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      |
| gamma-BHC (Lindane)                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 5       |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | not availabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3       |
| alpha-Chlordane                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
| gamma-Chlordane                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no      |
| 4,4'-DDD                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         | _       | 3 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 4,4'-DDE                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 1 2.    |         | 3 <u>2.</u><br>7 <u>6</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 4,4'-DDT                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 1 6.    | 9       | <u>/ 0.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Dieldrin                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Endosullan I                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Endosullan II                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u> |
| Endosulfan sulfate                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no      |
| Endrin                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
| Endrin aldehyde                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$      | 1 2     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 not availab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| Endrin ketone                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1       | 1 15    | 0 15    | 0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Heptachlor                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4       | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no      |
| Heptachlor epoxide                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      |
| Methoxychlor                       | the second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4       | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no      |
| Toxaphene                          | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | 4       | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | not availab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | le      |
| TOTAL PESTICIDES                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         | 18      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| Arcelor 1016                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7       | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nc      |
| Aroclor-1016                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7       | ō       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nc      |
| Aroclor-1221                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nc      |
| Aroclor-1232                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7       | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Aroclor-1242                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Aroclor-1248                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7       | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                    | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7       | 0       | 1       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no      |
| Aroclor-1254                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7       |         | 56      | 82 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | no      |

# TABLE 2 Summary of Surface Soil Analytical Data for the King Oil Site

## Niagra Mohawk Power Corp. Water Street Troy, New York

|           |               |              |                       | A           | Maximum   | NYSDEC Recommended<br>Cleanup Objective                             | Exceeds?   |
|-----------|---------------|--------------|-----------------------|-------------|-----------|---------------------------------------------------------------------|------------|
| Compound  | Samples       | Detects      | Minimum               | Average     |           | Cleanup Objective                                                   | L CCCCCO31 |
|           |               |              |                       | •           | mg/kç     | 1                                                                   | l.         |
|           |               |              | L.                    |             | ing/ite   | y<br>A data na managana data ang kang kang kang kang kang kang kang | <u></u>    |
| Aluminum  | 8             | 4            | 9560                  | 10190       | 11200     | 33000 SB (1)                                                        | no         |
| Antimony  | 8             | 0            |                       |             |           | 0.52 not available                                                  | no no      |
| Arsenic   | 8             | 4            | 5.4                   | 7           | 8.7       | 7.5 or SB                                                           | no         |
| Barium    | 8             | 4            | 58.8                  | 69          | 86.3      | 300 or SB                                                           | no         |
| Beryllium | 8             | 0            |                       |             |           | 0.16 or SB                                                          | no         |
| Cadmium   | 8             | 1            | 1.2                   | 1           | 1.2       | 1 or SB                                                             | YES        |
| Calcium   | 8             | 4            | 1670                  | 20480       | 48300     | 3400 SB (1)                                                         | YES        |
| Chromium  | 8             | 4            | 14.3                  | 21          | 35,3      | 10 or SB                                                            | YES        |
| Cobalt    | 8             | 0            |                       |             |           | 30 or SB                                                            | no         |
| Copper    | 8             | 4            | 15.3                  | 26          | 45.2      | 25 or SB                                                            | YES        |
| Iron      | 8             | 4            | 19400                 | 26525       | 40600     | 2000 or SB                                                          | YES        |
| Lead      | 8             | 4            | 50.1                  | 192         | 503       | 0.03 or SB                                                          | YES        |
| Magnesium | 8             | 4            | 3360                  | 5330        | 7120      | 2100 SB (1)                                                         | YES        |
| Manganese | 8             | 4            | 480                   | 573         | 739       | 0.15 SB                                                             | YES        |
| Mercury   | 8             | 3            | 0.11                  | 0           | 0.23      | 0.1                                                                 | YES        |
| Nickel    | 8             | 4            | 20.8                  | 23          | 25.2      | 13 or SB                                                            | YES        |
| Polassium | 8             | 3            | 1040                  | 1220        | 1320      | 12000 SB (1)                                                        | no         |
| Selenium  | 8             | 0            |                       |             |           | 2 or SB                                                             | no         |
| Silver    | 8             | 0            |                       |             |           | SB                                                                  | no         |
| Sodium    | 8             | 0            |                       |             |           | SB                                                                  | no         |
| Thallium  | 8             | 0            |                       |             |           | 7.7 SB (1)                                                          | no no      |
| Vanadium  |               | 4            | 20.7                  | 27          | 34.7      | 150 or SB                                                           | no         |
| Zinc      | 8             | 4            | 68.2                  | 90          | 105       | 20 or SB                                                            | YES        |
|           | I,            |              |                       |             |           |                                                                     |            |
| Cyanide   | 21            | 3            | 1.2                   | 18          | 49.5      | depend on f                                                         | om         |
| -4        |               | -            |                       |             |           |                                                                     |            |
|           | (1) Backgroun | d for the Ea | <u>stern U.S. fro</u> | om Shacklet | te (1994) |                                                                     |            |

R:\RA\NIAGMOHA\NMRISK01.WK4

04/17/95

#### TABLE 3 Exposure and Risk Equations

.

Niagra Mohawk Power Corp. Water Street Troy, New York

|            |   |                                                                | AND CONSTRUCTION          |                                             |                                                    |
|------------|---|----------------------------------------------------------------|---------------------------|---------------------------------------------|----------------------------------------------------|
| EQUATIONS: |   | DOSE oral =<br>BW · AT                                         |                           |                                             |                                                    |
|            |   | CS · CF · SA                                                   | · AF · AB · EF · ED       |                                             |                                                    |
|            |   | BW                                                             | ' · AT                    | :                                           |                                                    |
|            |   | CANCER RISK = DOSE · CS                                        | SF                        |                                             |                                                    |
|            |   | HAZARD INDEX = DOSE / RFU                                      | )                         |                                             |                                                    |
|            |   |                                                                | 11117                     | ,<br>                                       | DEFENSE                                            |
| SYMBOL     |   | DESCRIPTION                                                    | UNIT                      | VALUE                                       | REFERENCE                                          |
| CS<br>CF   | = | concentration in soil<br>conversion factor                     | µg/kg<br>ka/µa            | see below<br>1.0E-09                        | average                                            |
| ING        | = | ingestion rate                                                 | mg/day                    | 100 const. worker                           | prof. judgement                                    |
|            |   |                                                                |                           | 50 daily worker                             | USEPA, 1991                                        |
| SA         | H | skin surface area                                              | Cm²                       | 5300 const. worker<br>5300 daily worker     | USEPA, 1992<br>USEPA, 1992                         |
| AF         | = | adherence factor                                               | mg/cm²                    | 1                                           | USEPA, 1992                                        |
| AB         | = | absorption factor for VOCs                                     | unitless                  | 0.25 VOCs<br>0.1 SVOCs/pest.<br>0.01 metals | Ryan, 1987<br>Ryan, 1987<br>Ryan, 1987             |
| EF         | = | exposure frequency                                             | days/year                 | 20 const. worker<br>250 daily worker        | one month (prof. judgement)<br>USEPA, 1991         |
| ED         | = | exposure duration                                              | years                     | 1 const. worker<br>5 daily worker           | one event per lifetime (prof. judgen<br>short-term |
| BW         | = | body weight                                                    | kg                        | 70                                          | USEPA, 1991                                        |
| AT         | = | averaging time (carcinogens)<br>averaging time (daily workers) | days<br>days              | 25550 carcinogens<br>1825 non-cancer        | USEPA, 1991<br>USEPA, 1991                         |
|            | = | averaging time (const. workers)                                |                           | 365 non-cancer                              | USEPA, 1991                                        |
| DOSE       | = | estimated daily dose                                           | mg/kg-day                 | see below                                   | calculated                                         |
| CSF        | = | cancer slope factor                                            | (mg/kg-day) <sup>-1</sup> | see below                                   |                                                    |
| RISK       | = | incremental cancer risk                                        | unilless                  | see below                                   | calculated                                         |
| RfD        | = | reference dose                                                 | mg/kg-day                 | see below                                   |                                                    |
| HI         | = | hazard index                                                   | unitless                  | see below                                   | calculated                                         |
|            |   |                                                                |                           |                                             | •                                                  |

1\_

## TABLE 4 Toxicity Values

۱

.

# Niagra Mohawk Power Corp. Water Street Troy, New York

| Chemical Name         | CAS Number |           | C Oral RfD                            |           | SC Oral RfD                           |            |               |              | cer Slope Factor     |
|-----------------------|------------|-----------|---------------------------------------|-----------|---------------------------------------|------------|---------------|--------------|----------------------|
| Chemical Name         |            | mg/kg-day |                                       | mg/kg-day | Source                                | Class      | Source        | kg-day/m     | gSource              |
|                       |            | mg/ng duy |                                       | Q         | ·                                     |            |               |              |                      |
|                       | 83-32-9    | 0.06      | IRIS (1994)                           | 0.6       | HEAST (07/93)                         | NA         | NA            |              | INA                  |
| acenaphthene          | 208-96-8   | 0.6       | structural similarity to acenaphthene | 0.6       | structural similarity to acenaphthene | D          | IRIS (1994)   |              | INA                  |
| acenaphthylene        |            | 0.3       | IRIS (1994)                           | 3         | HEAST (07/93)                         | D          | IRIS (1994)   |              | NA                   |
| anthracene            | 120-12-7   | 0.0004    | IRIS (1994)                           | 0.0004    | HEAST (07/93)                         | NA         | NA            |              | NA                   |
| antimony              | 7440-36-0  | 0.0004    | IRIS (1994)                           | 0.0003    | HEAST (07/93)                         | A          | IRIS (1994)   | 1.75         | IRIS (1994)          |
| arsenic               | 7440-38-2  | 0.0003    | NA                                    |           | NA                                    | A          | IRIS (1994)   | 0.029        | IRIS (1994)          |
| benzene               | 71-43-2    |           | INA                                   | ·         | NA                                    | B2         | IRIS (1994)   | 0.73         | <b>IUSEPA</b> , 1993 |
| benzo(a)anthracene    | 56-55-3    |           |                                       | 1         | NA                                    | B2         | IRIS (1994)   | 7.3          | IRIS (1994)          |
| benzo(a)pyrene        | 50-32-8    | l         | NA                                    | <u> </u>  | Contact TSC                           | B2         | IRIS (1994)   | 0.73         | USEPA, 1993          |
| benzo(b)fluoranthene  |            | <u> </u>  | INA                                   | <u> </u>  | NA                                    | B2         | IRIS (1994)   | 0.073        | IUSEPA, 1993         |
| benzo(k)fluoranthene  |            |           |                                       | 0.005     | HEAST (07/93)                         | 82         | IRIS (1994)   | 4.3          | IRIS (1994)          |
| beryllium             | 7440-41-7  | 0.005     | IRIS (1994)                           | 0.005     | NA                                    | 81         | IRIS (1994)   | 1            | NA                   |
| cadmium               | 7440-43-9  | ļ         | NA                                    |           | NA                                    | 82         | HEAST (07/93) | 0.02         | HEAST (07/93         |
| carbazole             | 86-74-8    |           | NA                                    |           | HEAST (07/93)                         | A          | IRIS (1994)   |              | INA                  |
| chromium (hexavaler   | 18540-29-9 | 0.005     | IRIS (1994)                           | 0.02      |                                       | B2         | IRIS (1994)   | 0.0073       | USEPA, 1993          |
| chrysene              | 218-01-9   | 1         | HEAST (07/93)                         |           | NA                                    | D          | IRIS (1994)   |              | INA                  |
| cyanide               | 57-12-5    | 0.02      | IRIS (1994)                           | 0.02      | HEAST (07/93)                         | B2         | IRIS (1994)   | 7.3          | USEPA, 1993          |
| dibenz(a,h)anthracen  | 53-70-3    |           | INA                                   | ļ         | NA                                    |            | IRIS (1994)   | 1            | INA                  |
| dibenzofuran          | 132-64-9   |           | HEAST (07/93)                         |           | NA                                    | B2         | IRIS (1994)   | 16           | IRIS (1994)          |
| dieldrin              | 60-57-1    | 0.00005   | IRIS (1994)                           | 0.00005   | HEAST (07/93)                         | D          | IRIS (1994)   |              | NA                   |
| endrin                | 72-20-8    | 0.0003    | IRIS (1994)                           | 0.0003    | HEAST (07/93)                         |            | IRIS (1994)   | 1            | NA                   |
| ethylbenzene          | 100-41-4   | 0.1       | IRIS (1994)                           | 0.1       | Contact TSC                           | D          |               | <del> </del> | INA                  |
| fluoranthene          | 206-44-0   | 0.04      | IRIS (1994)                           | 0.4       | HEAST (07/93)                         | D          | IRIS (1994)   |              | INA                  |
| fluorene              | 86-73-7    | 0.04      | IRIS (1994)                           | 0.4       | HEAST (07/93)                         | D          | IRIS (1994)   |              | INA                  |
| hexane, n-            | 110-54-3   | 0.06      | HEAST (07/93)                         | 0.6       | HEAST (07/93)                         | NA         | NA            | 0.70         | USEPA, 1993          |
| indeno (1,2,3-cd)pyre |            | 1         | NA .                                  |           | NA                                    | B2         | IRIS (1994)   | 0.73         |                      |
| manganese (food)      | 7439-96-5  | 0.14      | IRIS (01/01/93)                       | 0.14      | HEAST (03/93)                         | D          | IRIS (1994)   |              | <u> NA</u>           |
| manganese (1000)      | 7439-97-6  | 0.0003    | HEAST (07/93)                         | 0.0003    | HEAST (07/93)                         | D          | IRIS (1994)   |              | NA                   |
| methylene chloride    | 75-09-2    | 0.06      | IRIS (1994)                           | 0.06      | HEAST (07/93)                         | B2         | IRIS (1994)   | 0.0075       | IRIS (1994)          |
| 2-methylnaphthalene   |            | 0.04      | structural similarity to naphthalene  | 0.4       | structural similarity to naphthalene  | <u> </u>   |               |              | 1                    |
|                       | 95-48-7    | 0.05      | IRIS (1994)                           | 0.5       | HEAST (07/93)                         | C C        | IRIS (1994)   |              | IRIS (1994)          |
| methylphenol, 2-      | 106-44-5   | 0.005     | HEAST (11/93)                         | 0.005     | HEAST (11/93)                         | <u> </u> C | IRIS (1994)   |              | IRIS (1994)          |
| methylphenol, 4-      | 91-20-3    | 0.04      | struct, similarity to fluoranthene    | 0.4       | struct, similarity to fluoranthene    | D          | IRIS (1994)   |              | INA                  |
| naphthalene           | 7440-02-0  | 0.04      | (IRIS (1994)                          | 0.02      | HEAST (07/93)                         | NA         | INA           | <u> </u>     | IIRIS (03/01/94      |
| nickel                | 85-01-8    | 0.02      | structural similarity to pyrene       | 0.3       | structural similarity to pyrene       | D          | IRIS (1994)   | <u> </u>     | NA                   |
| phenanthrene          | 108-95-2   | 0.05      | IRIS (1994)                           | 0.6       | HEAST (07/93)                         | D          | IRIS (1994)   | <u> </u>     | INA                  |
| phenol                | 129-00-0   | 0.03      | liRis (1994)                          | 0.3       | HEAST (07/93)                         | D          | IRIS (1994)   | <u> </u>     | INA                  |
| pyrene                |            | 0.03      | IRIS (1994)                           | 2         | HEAST (07/93)                         | D          | IRIS (1994)   | 1            | NA                   |
| toluene               | 108-88-3   |           | HEAST (07/93)                         | 2         | Contact TSC                           | NA         | NA            | 1            | NA                   |
| xylene, m-            | 108-30-3   | 2         | IRIS (1994)                           | 0.005     | HEAST (07/93)                         | D          | IRIS (1994)   |              | NA                   |
| selenium              | 7782-49-2  | 0.005     |                                       | 0.000     | NA                                    | NA         | NA            |              | INA                  |
| thallium              | 7440-28-0  | <u> </u>  |                                       | 0.3       | HEAST (07/93)                         | I D        | IRIS (1994)   | 1            | NA                   |
| zinc                  | 7440-66-6  | 0.3       | IRIS (1994)                           | 1 0.3     |                                       | †          |               | 1            | i                    |

1

04/17/95

## TABLE 5 Cancer Risk Estimates -- King Oil Subsurface Soil

# Niagra Mohawk Power Corp. Waler Streel Troy, New York

|                                                                                                        | DOSE                                                                                   | CSF                                                                                                                                                                                                                                                                        | TOTAL                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| µg/kg                                                                                                  | mg/kg-day                                                                              | (mg/kg-day) <sup>-1</sup>                                                                                                                                                                                                                                                  | RISK                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                      | 1                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                |
| 1500                                                                                                   | 2E-09                                                                                  | 0.029                                                                                                                                                                                                                                                                      | 5E-11                                                                                                                                                                                                                                                                                                                                                                                          |
| 348916                                                                                                 | 4E-07                                                                                  | 0.73                                                                                                                                                                                                                                                                       | 3E-07                                                                                                                                                                                                                                                                                                                                                                                          |
| 945321                                                                                                 | 1E-06                                                                                  | 0.73                                                                                                                                                                                                                                                                       | 8E-07                                                                                                                                                                                                                                                                                                                                                                                          |
| 1064115                                                                                                | 1E-06                                                                                  | 0.073                                                                                                                                                                                                                                                                      | 9E-08                                                                                                                                                                                                                                                                                                                                                                                          |
| 1183493                                                                                                | 1E-06                                                                                  | 7.3                                                                                                                                                                                                                                                                        | 1E-05                                                                                                                                                                                                                                                                                                                                                                                          |
| 918200                                                                                                 | 1E-06                                                                                  | 0.02                                                                                                                                                                                                                                                                       | 2E-08                                                                                                                                                                                                                                                                                                                                                                                          |
| 338834                                                                                                 | 4E-07                                                                                  | 0.0073                                                                                                                                                                                                                                                                     | 3E-09                                                                                                                                                                                                                                                                                                                                                                                          |
| 261367                                                                                                 | 3E-07                                                                                  | 7.3                                                                                                                                                                                                                                                                        | 2E-06                                                                                                                                                                                                                                                                                                                                                                                          |
| 521095                                                                                                 | 6E-07                                                                                  | 0.73                                                                                                                                                                                                                                                                       | 4E-07                                                                                                                                                                                                                                                                                                                                                                                          |
| 65                                                                                                     | 7E-11                                                                                  | 16                                                                                                                                                                                                                                                                         | 1E-09                                                                                                                                                                                                                                                                                                                                                                                          |
| 17174                                                                                                  | 2E-08                                                                                  | 1.75                                                                                                                                                                                                                                                                       | 3E-08                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                        |                                                                                        | 1 1/5 1                                                                                                                                                                                                                                                                    | 35-00                                                                                                                                                                                                                                                                                                                                                                                          |
| 1557                                                                                                   | 2E-09                                                                                  | 4.3                                                                                                                                                                                                                                                                        | 7E-09                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                |
| 1557                                                                                                   | 2E-09                                                                                  | 4.3                                                                                                                                                                                                                                                                        | 7E-09                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                |
| 1557                                                                                                   | 2E-09                                                                                  | 4.3                                                                                                                                                                                                                                                                        | 7E-09                                                                                                                                                                                                                                                                                                                                                                                          |
| 1557                                                                                                   | 2E-09                                                                                  | 0.029                                                                                                                                                                                                                                                                      | 7E-09<br>6E-10                                                                                                                                                                                                                                                                                                                                                                                 |
| 1557<br>1500<br>348916<br>945321                                                                       | 2E-09<br>2E-08<br>2E-06                                                                | 4.3<br>0.029<br>0.73                                                                                                                                                                                                                                                       | 7E-09<br>6E-10<br>2E-06                                                                                                                                                                                                                                                                                                                                                                        |
| 1557<br>1557<br>1500<br>348916                                                                         | 2E-09<br>2E-08<br>2E-06<br>6E-06                                                       | 4.3<br>0.029<br>0.73<br>0.73                                                                                                                                                                                                                                               | 7E-09<br>6E-10<br>2E-06<br>4E-06                                                                                                                                                                                                                                                                                                                                                               |
| 1557<br>1500<br>348916<br>945321<br>1064115                                                            | 2E-09<br>2E-08<br>2E-06<br>6E-06<br>6E-06                                              | 4.3<br>0.029<br>0.73<br>0.73<br>0.073                                                                                                                                                                                                                                      | 7E-09<br>6E-10<br>2E-06<br>4E-06<br>5E-07                                                                                                                                                                                                                                                                                                                                                      |
| 1557<br>1557<br>1500<br>348916<br>945321<br>1064115<br>1183493                                         | 2E-09<br>2E-08<br>2E-06<br>6E-06<br>6E-06<br>7E-06                                     | 4.3<br>0.029<br>0.73<br>0.73<br>0.73<br>0.073<br>7.3                                                                                                                                                                                                                       | 7E-09<br>6E-10<br>2E-06<br>4E-06<br>5E-07<br>5E-05                                                                                                                                                                                                                                                                                                                                             |
| 1557<br>1557<br>1500<br>348916<br>945321<br>1064115<br>1183493<br>918200                               | 2E-09<br>2E-08<br>2E-06<br>6E-06<br>6E-06<br>7E-06<br>5E-06                            | 4.3<br>0.029<br>0.73<br>0.73<br>0.73<br>0.073<br>7.3<br>0.02                                                                                                                                                                                                               | 7E-09<br>6E-10<br>2E-06<br>4E-06<br>5E-07<br>5E-05<br>1E-07                                                                                                                                                                                                                                                                                                                                    |
| 1557<br>1557<br>1500<br>348916<br>945321<br>1064115<br>1183493<br>918200<br>338834                     | 2E-09<br>2E-08<br>2E-06<br>6E-06<br>6E-06<br>7E-06<br>5E-06<br>2E-06                   | 4.3<br>0.029<br>0.73<br>0.73<br>0.73<br>0.073<br>7.3<br>0.02<br>0.0073                                                                                                                                                                                                     | 7E-09<br>6E-10<br>2E-06<br>4E-06<br>5E-07<br>5E-05<br>1E-07<br>1E-08                                                                                                                                                                                                                                                                                                                           |
| 1557<br>1500<br>348916<br>945321<br>1064115<br>1183493<br>918200<br>338834<br>261367                   | 2E-09<br>2E-08<br>2E-06<br>6E-06<br>6E-06<br>7E-06<br>5E-06<br>2E-06<br>2E-06          | 4.3<br>0.029<br>0.73<br>0.73<br>0.73<br>0.073<br>7.3<br>0.02<br>0.0073<br>7.3                                                                                                                                                                                              | 7E-09<br>6E-10<br>2E-06<br>4E-06<br>5E-07<br>5E-05<br>1E-07<br>1E-08<br>1E-05                                                                                                                                                                                                                                                                                                                  |
| 1557<br>1557<br>1500<br>348916<br>945321<br>1064115<br>1183493<br>918200<br>338834<br>261367<br>521095 | 2E-09<br>2E-08<br>2E-06<br>6E-06<br>6E-06<br>7E-06<br>5E-06<br>2E-06<br>2E-06<br>3E-06 | 4.3<br>0.029<br>0.73<br>0.73<br>0.73<br>0.073<br>7.3<br>0.02<br>0.0073<br>7.3<br>0.73<br>0.73                                                                                                                                                                              | 7E-09<br>6E-10<br>2E-06<br>4E-06<br>5E-07<br>5E-05<br>1E-07<br>1E-08<br>1E-05<br>2E-06                                                                                                                                                                                                                                                                                                         |
|                                                                                                        | 348916<br>945321<br>1064115<br>1183493<br>918200<br>338834<br>261367<br>521095<br>65   | 348916         4E-07           945321         1E-06           1064115         1E-06           1183493         1E-06           918200         1E-06           338834         4E-07           261367         3E-07           521095         6E-07           65         7E-11 | 348916         4E-07         0.73           945321         1E-06         0.73           1064115         1E-06         0.073           1183493         1E-06         7.3           918200         1E-06         0.02           338834         4E-07         0.0073           261367         3E-07         7.3           521095         6E-07         0.73           65         7E-11         16 |

## TABLE 6 Non-Cancer Risk Estimates -- King Oil Subsurface Soil

## Niagra Mohawk Power Corp. Water Street Troy, New York

| COMPOUND                                                                                                                                                                                                                                                | CS<br>µg/kg                                                                                                                                                                                           | DOSE<br>mg/kg-day                                                                                                                                                                         | RfD<br>mg/kg-day                                                                                                                                                       | HAZARD INDEX<br>WORKER                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NGESTION                                                                                                                                                                                                                                                |                                                                                                                                                                                                       | 1                                                                                                                                                                                         | •                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                         | 2368                                                                                                                                                                                                  | 2E-07                                                                                                                                                                                     | 2                                                                                                                                                                      | 9E-08                                                                                                                                                                                                                                                                                                                                                                 |
| (ylene (total)                                                                                                                                                                                                                                          | 2300                                                                                                                                                                                                  | 25-07                                                                                                                                                                                     |                                                                                                                                                                        | 92-08                                                                                                                                                                                                                                                                                                                                                                 |
| Acenaphthylene                                                                                                                                                                                                                                          | 203350                                                                                                                                                                                                | 2E-05                                                                                                                                                                                     | <sup>.</sup> 0.6                                                                                                                                                       | 3E-05                                                                                                                                                                                                                                                                                                                                                                 |
| Anthracene                                                                                                                                                                                                                                              | 460684                                                                                                                                                                                                | 4E-05                                                                                                                                                                                     | 3                                                                                                                                                                      | 1E-05                                                                                                                                                                                                                                                                                                                                                                 |
| Fluoranthene                                                                                                                                                                                                                                            | 863832                                                                                                                                                                                                | 7E-05                                                                                                                                                                                     | 0.4                                                                                                                                                                    | 2E-04                                                                                                                                                                                                                                                                                                                                                                 |
| Fluorene                                                                                                                                                                                                                                                | 529589                                                                                                                                                                                                | 4E-05                                                                                                                                                                                     | 0.4                                                                                                                                                                    | 1E-04                                                                                                                                                                                                                                                                                                                                                                 |
| 2-Methylnaphthalene                                                                                                                                                                                                                                     | 1368680                                                                                                                                                                                               | 1E-04                                                                                                                                                                                     | 0.4                                                                                                                                                                    | 3E-04                                                                                                                                                                                                                                                                                                                                                                 |
| -Methylphenol                                                                                                                                                                                                                                           | 1350578                                                                                                                                                                                               | 1E-04                                                                                                                                                                                     | 0.005                                                                                                                                                                  | 2E-02                                                                                                                                                                                                                                                                                                                                                                 |
| Vaphthalene                                                                                                                                                                                                                                             | 2289642                                                                                                                                                                                               | 2E-04                                                                                                                                                                                     | 0.4                                                                                                                                                                    | 4E-04                                                                                                                                                                                                                                                                                                                                                                 |
| Phenanthrene                                                                                                                                                                                                                                            | 1228870                                                                                                                                                                                               | 1E-04                                                                                                                                                                                     | 0.3                                                                                                                                                                    | 3E-04                                                                                                                                                                                                                                                                                                                                                                 |
| Phenol                                                                                                                                                                                                                                                  | 1152997                                                                                                                                                                                               | 9E-05                                                                                                                                                                                     | 0.6                                                                                                                                                                    | 2E-04                                                                                                                                                                                                                                                                                                                                                                 |
| Pyrene                                                                                                                                                                                                                                                  | 540392                                                                                                                                                                                                | 4E-05                                                                                                                                                                                     | 0.3                                                                                                                                                                    | 1E-04                                                                                                                                                                                                                                                                                                                                                                 |
| Dieldrin                                                                                                                                                                                                                                                | 65                                                                                                                                                                                                    | 5E-09                                                                                                                                                                                     | 0.00005                                                                                                                                                                | 1E-04                                                                                                                                                                                                                                                                                                                                                                 |
| Endrin                                                                                                                                                                                                                                                  | 232                                                                                                                                                                                                   | 2E-08                                                                                                                                                                                     | 0.0003                                                                                                                                                                 | 6E-05                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |
| Antimony                                                                                                                                                                                                                                                | 20360                                                                                                                                                                                                 | 2E-06                                                                                                                                                                                     | 0.0004                                                                                                                                                                 | 4E-03                                                                                                                                                                                                                                                                                                                                                                 |
| Arsenic                                                                                                                                                                                                                                                 | 17174                                                                                                                                                                                                 | 1E-06                                                                                                                                                                                     | 0.0003                                                                                                                                                                 | 4E-03                                                                                                                                                                                                                                                                                                                                                                 |
| Beryllium                                                                                                                                                                                                                                               | 1557                                                                                                                                                                                                  | 1E-07                                                                                                                                                                                     | 0.005                                                                                                                                                                  | 2E-05                                                                                                                                                                                                                                                                                                                                                                 |
| Manganese                                                                                                                                                                                                                                               | 3083754                                                                                                                                                                                               | 2E-04                                                                                                                                                                                     | 0.14                                                                                                                                                                   | 2E-03                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       | 11-07                                                                                                                                                                                     | 0.0003                                                                                                                                                                 | 5E-04                                                                                                                                                                                                                                                                                                                                                                 |
| Mercury                                                                                                                                                                                                                                                 | 1819                                                                                                                                                                                                  | 1E-07                                                                                                                                                                                     |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |
| Mercury<br>Selenium                                                                                                                                                                                                                                     | 1819<br>4375<br>63950                                                                                                                                                                                 | 3E-07<br>5E-06                                                                                                                                                                            | 0.005                                                                                                                                                                  | 7E-05<br>2E-05                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                         | 4375                                                                                                                                                                                                  | 3E-07                                                                                                                                                                                     | 0.005                                                                                                                                                                  | 7E-05                                                                                                                                                                                                                                                                                                                                                                 |
| Mercury<br>Selenium<br>Zinc                                                                                                                                                                                                                             | 4375                                                                                                                                                                                                  | 3E-07                                                                                                                                                                                     | 0.005                                                                                                                                                                  | 7E-05                                                                                                                                                                                                                                                                                                                                                                 |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)                                                                                                                                                                                         | 4375<br>63950<br>2368                                                                                                                                                                                 | 3E-07<br>5E-06                                                                                                                                                                            | 0.005<br>0.3                                                                                                                                                           | 7E-05<br>2E-05<br>1E-06                                                                                                                                                                                                                                                                                                                                               |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (lotal)<br>Acenaphthylene                                                                                                                                                                       | 4375<br>63950<br>2368<br>203350                                                                                                                                                                       | 3E-07<br>5E-06<br>2E-06<br>8E-05                                                                                                                                                          | 0.005<br>0.3<br>2<br>0.6                                                                                                                                               | 7E-05<br>2E-05<br>1E-06<br>1E-04                                                                                                                                                                                                                                                                                                                                      |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene                                                                                                                                                         | 4375<br>63950<br>2368<br>203350<br>460684                                                                                                                                                             | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04                                                                                                                                                 | 0.005<br>0.3<br>2<br>0.6<br>3                                                                                                                                          | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05                                                                                                                                                                                                                                                                                                                             |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene                                                                                                                                         | 4375<br>63950<br>2368<br>203350<br>460684<br>863832                                                                                                                                                   | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04                                                                                                                                        | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4                                                                                                                                   | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04                                                                                                                                                                                                                                                                                                                    |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluorene                                                                                                                             | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589                                                                                                                                         | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04                                                                                                                               | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4                                                                                                                            | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04                                                                                                                                                                                                                                                                                                           |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluorene<br>2-Methylnaphthalene                                                                                                      | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680                                                                                                                              | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04                                                                                                                      | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                              | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03                                                                                                                                                                                                                                                                                                  |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluorene<br>2-Methylnaphthalene<br>4-Methylphenol                                                                                    | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578                                                                                                                   | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04                                                                                                             | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005                                                                                                     | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01                                                                                                                                                                                                                                                                                         |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Kylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluoranthene<br>2-Methylnaphthalene<br>4-Methylphenol<br>Naphthalene                                                                 | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642                                                                                                        | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04                                                                                                    | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4                                                                                              | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03                                                                                                                                                                                                                                                                                |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>(ylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluorene<br>2-Methylnaphthalene<br>4-Methylphenol<br>Naphthalene<br>Phenanthrene                                                     | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870                                                                                             | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04                                                                                           | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.3                                                                                       | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03<br>2E-03                                                                                                                                                                                                                                                                       |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>(ylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluorene<br>2-Methylnaphthalene<br>4-Methylphenol<br>Naphthalene<br>Phenanthrene<br>Phenol                                           | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642                                                                                                        | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04                                                                                                    | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4                                                                                              | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03                                                                                                                                                                                                                                                                                |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluorene<br>2-Methylnaphthalene<br>4-Methylphenol<br>Naphthalene<br>Phenanthrene<br>Phenol<br>Pyrene                                 | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392                                                                        | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04<br>5E-04<br>2E-04                                                                         | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.005<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6<br>0.3                                                                       | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03<br>2E-03<br>2E-03<br>8E-04<br>7E-04                                                                                                                                                                                                                                            |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene                                                                                                                                                         | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997                                                                                  | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04                                                                                           | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6                                                                                       | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>1E-04<br>1E-03<br>1E-01<br>2E-03<br>2E-03<br>8E-04                                                                                                                                                                                                                                                              |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluoranthene<br>Fluoranthene<br>2-Methylnaphthalene<br>4-Methylphenol<br>Naphthalene<br>Phenanthrene<br>Phenanthrene<br>Phenol<br>Pyrene<br>Dieldrin | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392<br>65                                                                  | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04<br>5E-04<br>2E-04<br>2E-04                                                                | 0.005<br>0.3<br>2<br>0.6<br>3<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3                                                  | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-03<br>1E-03<br>2E-03<br>2E-03<br>8E-04<br>7E-04                                                                                                                                                                                                                                            |
| Mercury Selenium Zinc DERMAL CONTACT  Kylene (total) Acenaphthylene Anthracene Fluoranthene Pluorene 2-Methylnaphthalene Phenanthrene Phenanthrene Phenol Naphthalene Phenol Pyrene Dieldrin Endrin Antimony                                            | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392<br>65<br>232                                                           | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04<br>5E-04<br>2E-04<br>3E-08<br>1E-07                                                       | 0.005<br>0.3<br>0.3<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3<br>0.00005<br>0.00005                                                      | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03<br>2E-03<br>8E-04<br>7E-04<br>5E-04<br>3E-04                                                                                                                                                                                                                                   |
| Mercury Selenium Zinc DERMAL CONTACT  Kylene (total) Acenaphthylene Anthracene Fluoranthene Pluorene 2-Methylnaphthalene Phenanthrene Phenanthrene Phenol Pyrene Dieldrin Endrin Antimony Arsenic                                                       | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392<br>65<br>232                                                           | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04<br>5E-04<br>5E-04<br>2E-04<br>3E-08<br>1E-07<br>8E-07                                     | 0.005<br>0.3<br>0.3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3<br>0.00005<br>0.00005<br>0.0003                                     | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03<br>8E-04<br>7E-04<br>7E-04<br>5E-04<br>2E-03                                                                                                                                                                                                                                   |
| Mercury Selenium Zinc DERMAL CONTACT  Xylene (total) Acenaphthylene Anthracene Fluorene 2-Methylnaphthalene Phenanthrene Phenanthrene Phene Dieldrin Endrin Antimony Arsenic Beryllium                                                                  | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392<br>65<br>232                                                           | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04<br>5E-04<br>5E-04<br>2E-04<br>3E-08<br>1E-07<br>8E-07<br>7E-07                            | 0.005<br>0.3<br>0.3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3<br>0.00005<br>0.00005<br>0.0003                                     | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03<br>8E-04<br>7E-04<br>7E-04<br>5E-04<br>3E-04<br>7E-04                                                                                                                                                                                                                          |
| Mercury Selenium Zinc DERMAL CONTACT  Kylene (total) Acenaphthylene Anthracene Fluorene 2-Methylnaphthalene Phenanthrene Phenanthrene Phenanthrene Phene Dieldrin Endrin Antimony Arsenic Beryllium Manganese                                           | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392<br>65<br>232<br>65<br>232                                              | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>6E-04<br>5E-04<br>5E-04<br>5E-04<br>2E-04<br>3E-08<br>1E-07<br>8E-07<br>7E-07<br>6E-08                   | 0.005<br>0.3<br>0.3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3<br>0.00005<br>0.0003<br>0.0003<br>0.0003<br>0.0003           | 7E-05<br>2E-05<br>1E-06<br>1E-04<br>6E-05<br>9E-04<br>5E-04<br>1E-03<br>1E-01<br>2E-03<br>2E-03<br>8E-04<br>7E-04<br>3E-04<br>7E-04<br>2E-03<br>8E-04<br>2E-03<br>3E-04<br>3E-04                                                                                                                                                                                      |
| Mercury Selenium Zinc DERMAL CONTACT  Kylene (total) Acenaphthylene Anthracene Fluorene 2-Methylnaphthalene 4-Methylphenol Naphthalene Phenanthrene Phenanthrene Phenol Pyrene Dieldrin Endrin Antimony Arsenic Beryllium Manganese Mercury             | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392<br>65<br>232<br>65<br>232                                              | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>9E-04<br>5E-04<br>5E-04<br>5E-04<br>2E-04<br>3E-08<br>1E-07<br>8E-07<br>7E-07<br>6E-08<br>1E-04          | 0.005<br>0.3<br>0.3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.005<br>0.4<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3<br>0.00005<br>0.0003<br>0.0003<br>0.0003<br>0.0005<br>0.0003 | 7E-05           2E-05           1E-06           1E-04           6E-05           9E-04           5E-04           1E-03           2E-03           8E-04           7E-04           2E-03           8E-04           7E-04           2E-03           8E-04           7E-04           9E-04           9E-04                                                                 |
| Mercury<br>Selenium<br>Zinc<br>DERMAL CONTACT<br>Xylene (total)<br>Acenaphthylene<br>Anthracene<br>Fluorene<br>2-Methylnaphthalene<br>2-Methylphenol<br>Naphthalene<br>Phenanthrene<br>Phenanthrene<br>Phenanthrene<br>Dieldrin<br>Endrin<br>Endrin     | 4375<br>63950<br>2368<br>203350<br>460684<br>863832<br>529589<br>1368680<br>1350578<br>2289642<br>1228870<br>1152997<br>540392<br>65<br>232<br>65<br>232<br>20360<br>17174<br>1557<br>3083754<br>1819 | 3E-07<br>5E-06<br>2E-06<br>8E-05<br>2E-04<br>4E-04<br>2E-04<br>6E-04<br>6E-04<br>6E-04<br>5E-04<br>5E-04<br>5E-04<br>2E-04<br>3E-04<br>3E-08<br>1E-07<br>7E-07<br>6E-08<br>1E-04<br>8E-07 | 0.005<br>0.3<br>0.3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3<br>0.6<br>0.3<br>0.0005<br>0.0005<br>0.0003<br>0.0003<br>0.0005<br>0.0003    | 7E-05           2E-05           1E-06           1E-04           6E-05           9E-04           5E-04           1E-03           2E-03           8E-04           7E-04           2E-03           8E-04           7E-03           2E-03           8E-04           3E-04           9E-03           9E-04           3E-04           9E-03           9E-04           3E-04 |

## TABLE 7 Cancer Risk Estimates -- King Oil Surface Soil

# Niagra Mohawk Power Corp. Water Street Troy, New York

|                                                                                                                            | CS                           | DOSE                             | CSF                                                                                                                                                                                                                                                                                                                                    | TOTAL                            |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| COMPOUND                                                                                                                   | µg/kg                        | mg/kg-day                        | (mg/kg-day) <sup>-1</sup>                                                                                                                                                                                                                                                                                                              | RISK                             |
| INGESTION                                                                                                                  |                              |                                  |                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                            | ·····                        |                                  |                                                                                                                                                                                                                                                                                                                                        |                                  |
| Benzo (a) anthracene                                                                                                       | 8073                         | 3E-07                            | 0.73                                                                                                                                                                                                                                                                                                                                   | 2E-07                            |
| Benzo (b) Iluoranthene                                                                                                     | 7357                         | 3E-07                            | 0.73                                                                                                                                                                                                                                                                                                                                   | 2E-07                            |
| Benzo (k) Iluoranthene                                                                                                     | 6124                         | 2E-07                            | 0.073                                                                                                                                                                                                                                                                                                                                  | 2E-08                            |
| Benzo (a) pyrene                                                                                                           | 5871                         | 2E-07                            | 7.3                                                                                                                                                                                                                                                                                                                                    | 1E-06                            |
| Chrysene                                                                                                                   | 7329                         | 3E-07                            | 0.0073                                                                                                                                                                                                                                                                                                                                 | 2E-09                            |
| Dibenz (a,h) anthracene                                                                                                    | 1608                         | 6E-08                            | 7.3                                                                                                                                                                                                                                                                                                                                    | 4E-07                            |
|                                                                                                                            |                              |                                  |                                                                                                                                                                                                                                                                                                                                        |                                  |
| ,                                                                                                                          |                              |                                  |                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                            |                              |                                  | , Jay 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I |                                  |
| DERMAL CONTACT                                                                                                             |                              |                                  |                                                                                                                                                                                                                                                                                                                                        | ·····                            |
|                                                                                                                            | 8073                         | 3E-06                            | 0.73                                                                                                                                                                                                                                                                                                                                   | 2E-06                            |
| DERMAL CONTACT                                                                                                             | 8073<br>7357                 | 3E-06<br>3E-06                   | 0.73                                                                                                                                                                                                                                                                                                                                   | 2E-06<br>2E-06                   |
| DERMAL CONTACT<br>Benzo (a) anthracene                                                                                     |                              |                                  |                                                                                                                                                                                                                                                                                                                                        |                                  |
| DERMAL CONTACT<br>Benzo (a) anthracene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene                                 | 7357                         | 3E-06                            | 0.73                                                                                                                                                                                                                                                                                                                                   | 2E-06                            |
| DERMAL CONTACT<br>Benzo (a) anthracene<br>Benzo (b) fluoranthene                                                           | 7357<br>6124                 | 3E-06<br>2E-06                   | 0.73<br>0.073                                                                                                                                                                                                                                                                                                                          | 2E-06<br>2E-07                   |
| DERMAL CONTACT<br>Benzo (a) anthracene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Benzo (a) pyrene             | 7357<br>6124<br>5871         | 3E-06<br>2E-06<br>2E-06          | 0.73<br>0.073<br>7.3                                                                                                                                                                                                                                                                                                                   | 2E-06<br>2E-07<br>2E-05          |
| DERMAL CONTACT<br>Benzo (a) anthracene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Benzo (a) pyrene<br>Chrysene | 7357<br>6124<br>5871<br>7329 | 3E-06<br>2E-06<br>2E-06<br>3E-06 | 0.73<br>0.073<br>7.3<br>0.0073                                                                                                                                                                                                                                                                                                         | 2E-06<br>2E-07<br>2E-05<br>2E-08 |
| DERMAL CONTACT<br>Benzo (a) anthracene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Benzo (a) pyrene<br>Chrysene | 7357<br>6124<br>5871<br>7329 | 3E-06<br>2E-06<br>2E-06<br>3E-06 | 0.73<br>0.073<br>7.3<br>0.0073                                                                                                                                                                                                                                                                                                         | 2E-06<br>2E-07<br>2E-05<br>2E-08 |
| DERMAL CONTACT<br>Benzo (a) anthracene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Benzo (a) pyrene<br>Chrysene | 7357<br>6124<br>5871<br>7329 | 3E-06<br>2E-06<br>2E-06<br>3E-06 | 0.73<br>0.073<br>7.3<br>0.0073                                                                                                                                                                                                                                                                                                         | 2E-06<br>2E-07<br>2E-05<br>2E-08 |

#### TABLE 8 Non-Cancer Risk Estimates -- King Oil Surface Soil

Niagra Mohawk Power Corp. Water Street Troy, New York

| COMPOUND           | CS<br>µg/kg | DOSE<br>mg/kg-day | RfD<br>mg/kg-day | HAZARD INDEX<br>WORKER |
|--------------------|-------------|-------------------|------------------|------------------------|
| INGESTION          |             |                   | T                |                        |
| Manganese          | 573250      | 3E-04             | 0.14             | 2E-03                  |
| Zinc               | 90175       | 4E-05             | 0.3              | 1E-04                  |
| DERMAL CONTACT     |             |                   | 1                |                        |
| Manganese          | 573250      | 3E-04             | 0.14             | 2E-03                  |
| Zinc               | 90175       | 5E-05             | 0.3              | 2E-04                  |
| TOTAL HAZARD INDEX |             | - <b>-</b>        | 1                | 0.004                  |

# APPENDIX E

# FISH AND WILDLIFE IMPACT ANALYSIS - STEP 1 REPORT



# APPENDIX E

# FISH AND WILDLIFE IMPACT ANALYSIS

# OF THE

# WATER STREET MGP SITE

# STEP 1. SITE DESCRIPTION AREA 2 - KING FUELS PROPERTY

# CITY OF TROY

# RENSSELAER COUNTY, NEW YORK

| Prepared For: | Groundwater Technology, Inc.<br>1245 Kings Road<br>Schenectady, New York 12303                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------|
| Prepared By:  | Environmental Design and Research, P.C.<br>6007 Fair Lakes Drive, Suite 300<br>East Syracuse, New York 13057-1253 |

April 1995

# TABLE OF CONTENTS

| 1. | Introduction                               |                                                                                                                                                                           |                               |
|----|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 2. | Site Description                           |                                                                                                                                                                           | 1                             |
| 3. | Methods                                    |                                                                                                                                                                           | 2                             |
| 4. | Site Maps                                  |                                                                                                                                                                           | 3                             |
| 5. | Description of Fish and Wildlife Resources |                                                                                                                                                                           | 4                             |
|    | 5.1. Species                               |                                                                                                                                                                           | 4                             |
|    | 5.1.                                       | <ol> <li>Birds</li> <li>Mammals</li> <li>Reptiles and Amphibians</li> <li>Fish</li> </ol>                                                                                 | 4<br>5<br>5<br>6              |
|    | 5.2. Ecological Communities/Habitats       |                                                                                                                                                                           | 6                             |
|    | 5.2.<br>5.2.<br>5.2.<br>5.2.<br>5.2.       | <ol> <li>Old Field</li> <li>Shrub Upland</li> <li>Deciduous Forest</li> <li>Developed/Disturbed</li> <li>Wetland</li> <li>Midreach Stream</li> <li>Tidal River</li> </ol> | 6<br>7<br>9<br>10<br>10<br>11 |
|    | 5.3. Ob                                    | servations of Stress                                                                                                                                                      | 13                            |
| 6. | . Value of Fish and Wildlife Resources     |                                                                                                                                                                           | 13                            |
| 7. | 7. Regulatory Criteria                     |                                                                                                                                                                           |                               |
| 8. | . Citations/References                     |                                                                                                                                                                           |                               |

# LIST OF FIGURES

## Figure

D-1. Topographic Map

D-2. Cover Type Map

D-3. Drainage Map

# LIST OF APPENDICES

Appendix D-A - Vegetation and Wildlife Species Lists

Appendix D-B - Agency Correspondence

Appendix D-C - Project Personnel Vitae

#### 1. Introduction

This report was prepared by Environmental Design & Research, P.C. (EDR) in conformance with the document titled *Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites* (16). Its purpose is to identify the fish and wildlife resources in the vicinity of the part of the Water Street Manufactured Gas Plant (MGP) site identified as Area 2 (King Fuels property), which could be affected by site-related contaminants. This information will be used to identify potential pathways of contaminant migration through the environment/food chain. It will also be utilized to identify the need for additional sampling/investigation prior to the development of a site remediation plan, and for subsequent evaluation of the potential beneficial and adverse effects of proposed remediation activities.

## 2. Site Description

The central portion of the Water Street MGP site (Area 2) comprises approximately 50 acres, and includes the former manufactured gas plant. The site is located on the south side of the City of Troy, in Rensselaer County, New York. It is bordered by the Hudson River on the west, the New York Central Railroad on the east, the Chevron USA (Chevron) asphalt batch plant to the south, and extends approximately 150 feet north of the Wynants Kill to the north. Some of the former gas plant facilities, including the large gas holder structure, are located just north of the Wynants Kill. Most of the site is currently occupied by King Fuels, Inc., a heating oil and gasoline distributor. Although most of the structures are abandoned, several of the buildings and tanks from the former gas plant remain in use by King Fuels. The site is relatively level, and most of it is covered with pavement and buildings. Unpaved areas are located along the periphery of the site, and include the steep wooded slopes along the Hudson River and the Wynants Kill.

Although under the ownership of a variety of different companies, the site was used for the production of iron and steel from the mid 1850's to the late 1960's. During that time it was also used for the production of a variety of associated products, including pig iron, coke, gas, tar, pitch, creosote, sulphate of ammonia, and benzol. The gas production facilities on-site were in operation until the mid 1950's. Most of the site was sold by Republic Steel to King Fuels in the 1960's (20).

Site soils are predominantly miscellaneous fill material, consisting of slag, cinders, ash, brick, sand, and gravel. These soils are classified as urban soil by the USDA Soil Conservation Service (28), indicating that asphalt, concrete, buildings, or other impervious materials cover more than 85% of the surface (O'Brien & Gere, Inc., 1994).

#### 3. Methods

To determine the fish and wildlife resources present in the area of the project site, a variety of existing data sources were consulted. These included the following:

- 1. New York Natural Heritage Program element occurrence reports.
- 2. NYSDEC significant habitat records and fish survey reports.
- 3. NYSDEC Freshwater Wetland maps.
- 4. U.S. Fish and Wildlife Service (USFWS) records.
- 5. NYSDEC list of Critical Environmental Areas.
- 6. New York State Breeding Bird Atlas (BBA) data.
- 7. NYSDEC reports on toxic substances in fish and wildlife.
- 8. Hydro-electric project license applications.
- 9. Correspondence with NYSDEC regional fish and wildlife biologists.

It should be noted that there is no USFWS National Wetland Inventory (NWI) map for the area. Fish and wildlife species likely to occur in the area of the project site are listed in Appendix D-A. Written correspondence from the regulatory agencies is included in Appendix D-B.

Review of existing data was supplemented by a one day field review of the site and the surrounding area within a 0.5 mile radius. This survey was undertaken on December 9, 1994 by EDR staff ecologists John D. Hecklau and Barbara C. Reuter (vitae included in Appendix D-C). The purpose of the site visit was to document all plant and animal species and natural communities that occur on and within 0.5 mile of the site. Field survey involved the following activities:

- 1. Walking the entire site on foot.
- 2. Identification of plant species in the field and collection of certain specimens for followup identification (using taxonomic keys).
- 3. Identification (both visual and auditory) of wildlife species and their sign (tracks, droppings, bones, nests, etc.).
- 4. Driving and walking over the area within a 0.5 mile radius of the site (approximately 500 acres) to identify and map discrete natural communities/cover types.

In searching for small mammals, reptiles, and amphibians, rocks, logs, and man-made debris were turned over and examined. No sampling of fish or other aquatic organisms was undertaken. Classification of cover types was in general conformance with the publication titled *Ecological Communities of New York State* (22). The field survey also involved a qualitative assessment of the condition and value of all species and habitats observed.

## 4. Site Maps

Figure D-1 shows the location of the project site (Area 2) on the South Troy USGS topographic map (1" = 2,000' scale). It also identifies all significant fish and wildlife resources documented within a 2.0 mile radius of the site (based on information provided by the New York Natural Heritage Program, NYSDEC, and USFWS). As this map indicates, there are five state regulated wetlands, two significant coastal fish and wildlife habitats, and three documented rare plant locations within this 2.0 mile radius. The significant coastal fish and wildlife habitats include the Menands marsh, an important freshwater wetland, and Postenkill Creek, an area that is significant for anadromous fisheries (i.e. provides spawning

habitat for striped bass, American shad, and other species). Both of these areas are over a mile away from the project site. The documented rare plants include green rock-cress (*Arabis missouriensis*), woodland bluegrass (*Poa sylvestris*), and Virginia ground-cherry (*Physalis virginiana*). The locations of all of these plants are listed as "historic" by the Natural Heritage Program, and all are located on the west side of the Hudson River, over 1.5 miles from the project site (19).

Figure D-2 illustrates the natural communities/cover types that occur on the project site and within a 0.5 mile radius of the site. This figure was developed based on interpretation of  $1^* = 600'$  scale aerial photographs (1992) supplemented by field review/ground truthing. To the extent possible, natural communities as defined by the New York Natural Heritage Program (22) were used as the basis for the development of this map. Where appropriate, these communities were combined into similar assemblages to arrive at the final cover type map presented in Figure 2. Descriptions of the species composition, age, and structural characteristics of each cover type are described in the Ecological Communities/ Habitat section of this report.

Figure D-3 is a site drainage map that shows site topography and the direction of surface water drainage from the site following rain fall or snow melt. Because no topographic survey of the site was reviewed, this map is simply an enlargement of the USGS 7.5 minute topographic map (South Troy). As the drainage map illustrates, the site is essentially level, except along the banks of the Hudson river and the Wynants Kill. The eastern perimeter of the site is enclosed by a concrete wall, and all runoff quickly enters the adjacent water courses. Most surface runoff is conveyed to the Hudson River through an on-site storm sewer system (20).

#### 5. Description of Fish and Wildlife Resources

## 5.1. Species

A total of 69 different plant species (including trees, shrubs, and herbs), and 23 species of wildlife were observed on or surrounding the project site on December 9, 1994. These species are identified in Appendix D-A. Because of the timing of the field survey, observed species were limited to those that are on-site and active during the winter. Breeding and

migratory species of birds were not present, nor were any reptiles and amphibians, which would be hibernating (below the ground or within underwater sediments) at this time of year. However, based on existing data sources and habitat conditions, it is estimated that a total of approximately 163 different wildlife species and 77 species of fish are likely to occur within 0.5 mile of the study area (see Appendix D-A for all common and scientific names). A brief discussion of the species likely to occur in the area is presented below.

#### 5.1.1. Birds

The project site is wholly included within New York State Breeding Bird Atlas (BBA) sampling block 6072-A. This block is five (5) km<sup>2</sup> in size, and includes areas outside of the boundaries of the study area. However, BBA data are fairly representative of the breeding bird population found within a 0.5 mile radius of the site, and indicate that approximately 60 species nest in the general region (2). Field review of the site in December of 1994 documented the presence of 15 bird species on and adjacent to the site. These included common winter birds such as northern cardinal, white-breasted nuthatch, blue jay, black-capped chickadee, northern junco, and downy woodpecker.

The vast majority of the bird species documented as occurring on or adjacent to the Water Street MGP site are common seasonal or year-round residents of forested and suburban habitats in the Northeast. The abandoned structures on site provide abundant nesting and roosting areas for common urban species such as pigeon, starling and house sparrow. In addition, a significant gull, shorebird, and waterfowl component can be expected due to the presence of the adjacent Hudson River. Of the breeding birds documented in the area by the BBA, none are on the state or federal lists of endangered or threatened species. However, two species, the eastern bluebird and the common nighthawk, are listed as Special Concern by the NYSDEC. These species are discussed briefly below.

The eastern bluebird suffered a general population decline beginning in the early portion of this century. It is an open country, cavity nesting species, and its population decline can be attributed primarily to habitat loss (succession of abandoned agricultural land to forest cover) and nest site competition from introduced cavity nesters (European starling and house sparrow). However, bluebird populations are currently increasing state-wide, due in large part to the widespread provision of artificial nest boxes. This increase may lead to removal of this species from the Special Concern list (18). Bluebirds are most likely to occur in the larger areas of old field habitat within and adjacent to the study area.

The common nighthawk appears to be suffering a significant population decline within New York State. Rooftops in cities and towns and barren natural areas such as dunes and rock outcrops are preferred nesting sites. The rooftops of abandoned industrial structures on and adjacent to the project site thus represent potential habitat for this species.

Several migrant/transient species which could occur within the study area are currently considered rare in New York State. The bald eagle is listed by the NYSDEC as endangered, and the osprey is listed as threatened. These species often follow major waterways such as the Hudson River during migration, and could utilize trees along the shoreline in the area of the site for roosting. Bald eagles are also reported to use the open portions of the Hudson River (e.g. below the Troy Dam) during the winter as well. However, potential nesting habitat for these species does not occur within 2.0 miles of the project site (Heaslip, pers. comm.).

## 5.1.2. Mammals

Present populations of mammalian species in the area were documented entirely through field surveys, assessment of habitat suitability, and correspondence with regional NYSDEC personnel (10). These sources indicated the likely occurrence of at least 37 mammal species on or within 0.5 mile of the site, of which eight were observed during the 1994 field survey (see Appendix D-A). Common species include feral cat, gray squirrel, raccoon, woodchuck, and eastern chipmunk. Due to the time of year at which the survey took place, relatively common bats such as eastern pipestrelle, little brown bat, big brown bat, red bat, hoary bat, and silver-haired bat were not observed, although all are likely to occur in the area at some time. The abandoned structures on site provide potential roosting habitat for bats, while the adjacent river corridor provides excellent foraging habitat for these species. Similarly, widely distributed species of small mammal (mice, rats, voles, and shrews), along with opossum, striped skunk, and weasels, also probably occur in the area, although not documented in this survey. No rare or unusual mammal species were observed, and none are considered likely based on existing habitat conditions.

### 5.1.3. Reptiles and Amphibians

No reptiles or amphibians were observed due to the time of year at which the field survey took place. These cold blooded species hibernate (below the ground or within underwater

sediments) during the winter. However, based on the type of habitat available, there are probably at least 17 species of reptiles and amphibians that could be found in the area, including American toad, snapping turtle, painted turtle, garter snake, and bull frog (see Appendix D-A). Most of these species would be expected to occur in the less disturbed terrestrial or aquatic communities along the edge of the Hudson River and the Wynants Kill. The diversity and abundance of reptiles and amphibians is limited by the amount of development/disturbance in the area, and a lack of suitable breeding/nesting habitat (wetlands, vernal pools, undisturbed soils). No rare species of reptile and amphibian are anticipated to occur in the area based on available habitat.

### 5.1.4. Fish

The Hudson River supports a variety of warmwater and coolwater fish species, including year-round residents as well as seasonal migrants or anadromous species that enter the river as adults to spawn and return to the ocean afterwards. Notable among the latter are striped bass and American shad. Various studies indicate that approximately 77 fish species occur in the upper Hudson River estuary (5). Particularly common species include blueback herring, alewife, American eel, and white perch. This area of the Hudson River supports a high quality and popular recreational fishery for bass, pike, and other warmwater gamefish (14,15). It also provides habitat for one listed endangered fish species; the shortnose sturgeon (5,10,14).

An ecological survey of the lower portion of the Wynants Kill was prepared in 1992, as part of a hydroelectric project application (7). This report indicated that the Wynants Kill, directly upstream of the project site, supports a diverse coolwater/coldwater fish community. Twenty three different species of fish were documented in this portion of the stream, with white sucker, bluegill, fallfish, and brown trout being particularly abundant. NYSDEC personnel report that the Wynants Kill is stocked with trout several miles upstream of the project site, and receives limited use from local fishermen (14).

## 5.2. Ecological Communities/Habitat

A basic principle of ecology is that the distribution and abundance of fish and wildlife species is directly dependent upon the quality and quantity of available habitat. Habitat is defined as the sum total of environmental factors (including food, cover, and water) that a given species of animal needs to survive and reproduce in a given area (27). Seven separate terrestrial and aquatic communities were identified on or within 0.5 mile of the project site. The characteristics of these communities, including dominant plant species, fish and wildlife species observed or expected to occur, and the presence or absence of specific habitat elements, are described below.

## 5.2.1. Old Field

Old field vegetation occurs at the northern end of Area 2 of the Water Street MGP site (primarily north of the Wynants Kill), and in the northern portion of the larger study area (within a 0.5 mile radius of the site). This community type is dominated by grasses and forbs, and is similar to the successional old field community described by Reschke (22). The dominant plant species in this community include Canada goldenrod, Kentucky bluegrass, heath aster (as well as other aster species), spotted knapweed, Queen Anne's lace, and red clover. Other species present include chicory, common milkweed, foxtail, evening primrose, mullein, crown vetch, and English plantain. Several saplings of cottonwood and black locust are also present in some areas.

Unmowed fields of grass and low herbaceous vegetation are essential foraging and nesting habitat for open country bird species such as eastern meadowlark, bobolink, killdeer, horned lark, and several species of sparrow. However, these species typically require larger sized and less disturbed fields than are available within the Water Street study area. However, the open fields in this area do produce seeds and harbor abundant insect populations. They therefore represent important foraging sites for many bird species. Old fields also provide habitat for mammals such as eastern cottontail, woodchuck, and meadow vole. These species in turn provide a prey base for predators such as hawks, owls, fox, and coyote.

## 5.2.2. Shrub Upland

Shrub upland vegetation is found interspersed with deciduous forest vegetation in two locations in the eastern portion of the study area, and with old field vegetation in one location on the west side of the Hudson River. It also occurs in small patches and bands adjacent to developed sites throughout the study area. This community type is similar to the successional shrubland described in Reschke (22). Dominant plant species in these

areas consist of staghorn sumac, gray birch, and cottonwood. Other common tree and shrub species present include American elm, buckthorn, apple, multiflora rose, honeysuckle, black oak, white oak, white ash, red raspberry, white pine, pin cherry, gray dogwood, bigtooth aspen, and trembling aspen. Common herbaceous species include smooth brome, knapweed, Queen Anne's lace, heath aster, timothy, crown vetch, Kentucky bluegrass, mullein, and evening primrose. Bittersweet and grape are present in the vine layer.

Shrub-dominated communities are perhaps the most common, abundant land use in the state (18). However, this type of habitat is ephemeral (10-20 years in duration), representing an intermediate successional stage between old field and deciduous forest. Certain bird species, such as cuckoos, gray catbird, brown thrasher, eastern kingbird, yellow breasted chat, rufous-sided towhee, American goldfinch, indigo bunting, common yellowthroat and blue-winged warbler, specifically require low bushy vegetation for nesting and escape cover. Shrub and vine species such as silky dogwood, wild grape, honeysuckle, sumac, raspberry, and apple, are common in the shrub upland portions of the study area. These shrubs produce fruit that are highly palatable to mammals such as raccoon, skunk and opossum, and birds such as robin, flicker, cardinal, blue jay, cedar waxwing and ruffed grouse. Shrub uplands also provide food and cover for mammals such as whitetail deer, red fox and eastern cottontail.

## 5.2.3. Deciduous Forest

Successional deciduous forest occurs on the banks of the Hudson River and the Wynants Kill, and is similar to the successional southern hardwoods community described in Reschke (22). This community is characterized by the presence of mature and pole-sized overstory trees. Dominant species include box-elder, tree-of-heaven, cottonwood, green ash, gray birch, red maple, sugar maple, and black willow. Portions of this community (especially along its border with other communities) also include a diverse shrub understory. Common shrub species include staghorn sumac, buckthorn, pin cherry, and black raspberry. Bittersweet and grape are common vine species. The herbaceous layer contains Kentucky bluegrass and various aster species.

The forested corridors along the Hudson River and Wynants Kill extend beyond the site itself, and in the case of the latter, change somewhat in character and species composition. The Wynants Kill corridor to the east of the project site is dominated by sugar maple, with

occasional large cottonwoods and box elders. The understory in this area is dominated by maple and ash saplings, and a sparse forest herb layer including ferns and violets (7). Beyond the river/stream corridors, several additional bands of deciduous forest are found in the southern and central portions of the study area, primarily bordering roads and railroad tracks. These are also similar to the successional southern hardwoods community described in Reschke (22), and are dominated by cottonwood, sugar maple, and gray birch. Varying amounts of shrubs occur in these areas, including gray dogwood, staghorn sumac, and buckthorn.

Areas of deciduous forest located in the eastern and southern portions of the study area are similar to the beech-maple mesic forest described in Reschke (22). The dominant trees in this forest are mature sugar maples, and the understory shrub and herbaceous layers are essentially lacking (presumably due to overstory shading). The forest floor is generally covered with leaf litter. One additional area of deciduous forest occurs in the western portion of the study area in the floodplain along the western shore of the Hudson River. The dominant tree species in this area is cottonwood, with occasional box elder and American elm. The relatively open understory includes scattered shrubs and vines (sumac, brambles, wild grape, and silky dogwood) but is dominated by various old field herbs and grasses. This community type does not correspond directly to any of those described by Reschke (22).

The forested areas on and adjacent to the project site contain several habitat elements that make them attractive to a variety of wildlife species. They include tree species, such as black cherry, that are important sources of food for wildlife. However, mature oaks, hickories, and beech which produce large quantities of hard mast (nuts) are generally lacking. Rough barked trees (e.g. black cherry, black locust, and black willow) provide foraging sites for bark-probing birds (e.g. brown creeper and white-breasted nuthatch), and food storage sites for species such as tufted titmouse and black-capped chickadee.

Another important feature of the forested areas is the presence of fallen and standing deadwood. Fallen branches and logs provide foraging and nesting cover for a variety of species, including eastern cottontail, small mammals, reptiles, and amphibians. Hollow logs are used as cover and food storage sites by species such as gray squirrel, chipmunk, and raccoon. Fallen deadwood also harbors numerous insects and crustaceans which birds and mammals feed on. In addition, trees and branches that fall into the water provide cover for fish as well as basking/resting sites for frogs, turtles, and waterfowl. Standing dead

trees and limbs provide foraging sites for insectivorous birds such as woodpeckers, nuthatches, and brown creeper. In addition, some 85 species of North American birds nest and/or roost in dead or deteriorating trees (23). Mammals such as gray squirrel and raccoon also use cavities for shelter and reproduction, utilizing both live and dead trees, while migratory bats are known to roost under loose bark. The lack of really large dead trees on site does, however, limit the availability of cavities suitable for larger wildlife species (e.g. raccoon and wood duck).

Several of the forested areas also display high foliage height diversity and structural complexity, characteristics typically associated with high bird species diversity (12,13). However, as with the old field habitat, the forests on and adjacent to the site are limited in their value to wildlife due to their relatively small size and proximity to human development/disturbance. For this reason, they do not provide suitable nesting habitat for forest interior species such as scarlet tanager, rose-breasted grosbeak, wood thrush, veery, red-eyed vireo, ovenbird, Canada warbler, and black-and-white warbler. The wooded slopes along the Hudson River and the Wynants Kill do, however, provide habitat for migratory songbirds, and serve as important wildlife travel corridors in a largely urbanized area.

#### 5.2.4. Developed/Disturbed

The majority of the project site is developed and dominated by buildings, paved roads, parking areas, storage areas, and piles of debris. This area is also characterized by fairly intense human and vehicular activity. Although primarily paved or built upon, scattered old field and shrub upland vegetation occurs throughout the developed portion of the site, in areas with exposed soil and piles of rubble. A number of plant species are also growing up through cracks in the pavement and on the roofs of buildings. This community type is similar to the urban vacant lot described in Reschke (22). Common species include tree-of-heaven, spotted knapweed, panic grass, foxtail, Kentucky bluegrass, staghorn sumac, Queen Anne's lace, burdock, sweetclover, mullein, and heath aster.

Other types of developed areas occur within the larger study area, including roads, residences, commercial and industrial buildings, and parking lots. These areas are similar to several community types described in Reschke (22) including mowed lawn with/without trees, mowed roadside/pathway, and paved road/path. Some of the roads are bordered by irregularly mowed old field vegetation, while the remainder of the developed areas are typically associated with mowed lawns and maintained gardens. Typical horticultural

plantings around the office buildings on the site, as well as in the developed areas surrounding the site, include Norway spruce, Canada yew, white spruce, barberry, white cedar, various maples, various ashes, black willow, various junipers, scotch pine, white pine, privet, burning bush, red-osier dogwood, various crabapples, cottonwood, and catalpa.

These disturbed areas are distinguished from other habitats by the influence of past and ongoing human activity and the presence of built structures and associated debris. Wildlife using these areas include many of the mammals and songbirds previously mentioned. In addition, abandoned structures provide nesting, roosting, and denning sites for species such as starling, house sparrow, eastern phoebe, barn swallow, raccoon, squirrels, bats, and small mammals. The refuse found in these areas also provides potential cover for snakes, toads, and small mammals. Lawn and landscaped areas provide some wildlife habitat, especially where they border forested areas or where they include patches of trees and/or shrubs. Mowed lawn areas are used for foraging by certain birds (robin, starling, flicker) and mammals (eastern cottontail, voles, etc.) However, the habitat value of these areas is generally limited due to a lack of adequate cover and fairly intense human disturbance (from residents, pets, vehicles, etc.). These areas will typically receive irregular use by a limited number of wildlife species.

## 5.2.5. Wetland

The only wetlands that occur within the study area are well removed from the project site. Burdens pond is a impoundment/wetland on the Wynants Kill, approximately 2,400 feet upstream of the project site. The other wetland in the study area occurs across the Hudson River, on the west side of Route 787. Burdens Pond includes a significant open water component, along with a fringe of emergent herbaceous and shrub wetland vegetation, including cattail, rice cutgrass, purple loosestrife, common reed, great bulrush, bur-reed, arrowhead, alder, silky dogwood, and willow. The wetland to the west of Route 787 lacks open water, and is dominated by the same species of shrubs and herbaceous wetland vegetation found at Burdens Pond. Emergent herbaceous vegetation (e.g. cattails) around the edges of the open water areas provide cover for waterfowl, wading birds, turtles and frogs. They also support abundant populations of insects and other invertebrates, which are the basic food items of many species of fish, songbirds, wading birds and bats. Wetlands that are dominated by shrubs (e.g. red osier dogwood, and willows) provide cover, perches, and feeding sites for numerous birds, including herons, warblers, flycatchers, and redwinged blackbird.

#### 5.2.6. Midreach Stream

The Wynants Kill crosses the project site in an east-west direction and is similar to the midreach stream community described in Reschke (22). There is no submerged or emergent aquatic vegetation present in the stream, and the western portion (from the outlet to the Hudson, approximately 700 feet upstream) was relocated, straightened, and channelized within concrete walls in the 1930's. Upstream of the channelized portion, the Wynants Kill has a moderate gradient, with up to 12 inches of water flowing over a gravel/cobble substrate. The stream is characterized by a series of pools and riffles, but generally lacks cover in the form of large rocks, fallen logs, or undercut banks. The stream is well shaded, and the banks in the eastern half of the site are characterized by deciduous forest similar to the successional southern hardwoods described in Reschke (22).

Upstream of the project site, the Wynants Kill drops 138 feet over a distance of approximately 2,400 feet, for an average gradient of 5.75%. The stream in this reach includes several waterfalls and cascades over exposed shale bedrock. The gradient flattens out as it reaches Burden's Pond, approximately 2,400 feet upstream of the project site. An ecological survey report, that was prepared as part of a hydroelectric project application for this site, indicated that this portion of the Wynants Kill is characterized by a bedrock substrate with a sparse scattering of boulders and cobbles. Waterfalls and plunge pools (some up to 50 feet in diameter and 7.0 feet deep) are interspersed with low gradient riffles. A small man-made impoundment is also found in this area. Cover for fish is provided by small amounts of woody debris, boulders, turbulence, and undercut banks. Flows in this portion of the stream ranged from 8.3 to 12.2 cubic feet per second (cfs) under moderately low flow conditions, and water temperatures ranged from 82 degrees F in late June, to 46 degrees F in late October (7).

The Wynants Kill supports a diverse coolwater/coldwater fish community, dominated by white sucker, fallfish, and brown trout. These species are generally concentrated in pools, rather than riffles or runs (7), presumably because of greater water depth and better cover availability. Trout populations are maintained by the stream's cool temperature and high dissolved oxygen content, along with its generally good water quality and habitat

characteristics. Along with providing fish habitat, the Wynants Kill is also important to wildlife. Water is one of the habitat elements all wildlife species require. In addition to being used for drinking and bathing, streams also provide food and cover, as well as a travel corridor, for a variety of aquatic, semi-aquatic, and terrestrial species. Such riparian zones are used by wildlife disproportionately more than other types of habitat (3,11).

## 5.2.7. Tidal River

The Hudson River, from New York City to the Troy dam (at river mile 153), is an estuarial water body. In the vicinity of the project site, the river experiences tidal fluctuations of about 3.7 feet on a daily basis (30). With the exception of a vertical salinity gradient (which terminates well downstream), the Hudson River within the study area conforms with the description of a tidal river, as presented in Reschke (22). In the area of the project site, the Hudson is approximately 900 feet wide, and drains an area in excess of 8,000 square miles. Records from the USGS gaging station at Green Island indicate that the river has a mean annual discharge of 13,580 cfs just upstream of the Troy dam (30). Flows upstream of the dam are regulated to a certain extent (to provide flood control and low flow augmentation) by upstream impoundments, including the Sacandaga Reservoir and Indian Lake. Below the Troy dam, the net downstream flow of the Hudson River varies with the freshwater discharge to the river (generally 2,000-40,000 cfs) and the tidal influx (300,000-400,000 cfs). The river actually flows upstream during flood tides. The Hudson River between the Troy dam and the salt front has been compared to a large freshwater reservoir because of the relatively slow net downstream movement of water (30).

Water quality in the Hudson River is directly related to flow, because of the relatively fixed input of pollutants entering the river from municipal and industrial sources. At high flows, dilution of the pollutants occurs, and many pollutants can be assimilated by the river. However, during low flow periods when the dilution is not as great, the river's capacity to assimilate pollutants is approached or exceeded. Dissolved oxygen in the area of the project site is probably on the order of 4.0 mg/l. Upstream suspended solids concentration averages approximately 6.0 mg/l during the summer period (30).

Between 1947 and the early 1970's, PCB's were discharged into the Hudson River at Hudson Falls and Fort Edward. Consequently, PCB-laden sediments occur along the entire length of the river to varying degrees. With the exception of PCB's, sufficient data is not available on the relationship between the concentration of man-made pollutants and river

flow. During the late 1970's, extensive analyses were performed for 14 organic pesticides in the Hudson River at Waterford (upstream of the Troy dam), and none were detected (30).

Previous studies indicate that widespread fish species such as American eel, alewife, American shad, common carp, spottail shiner, white perch, striped bass, and pumpkinseed can be found throughout the upper Hudson River estuary. However, these studies also demonstrate that abundance and diversity of fish in the river varies substantially between habitats and seasons. Catch rates are reportedly highest in vegetated backwaters, and lowest in the vicinity of submerged rock piles (5). The river in the vicinity of the project site is characterized by an abrupt shoreline edge, and a gently sloping gravel substrate that is devoid of vegetation (at least within the zone of tidal influence). Occasional fallen trees and old pilings provide some submerged cover, but no underwater rock piles, submerged weed beds, or coves with emergent wetland vegetation were observed in the area. The river in this area includes an excavated navigation channel that is approximately 12-14 feet deep. In this type of riverine habitat, species such as banded killifish, golden shiner, emerald shiner, tesselated darter, white catfish, brown bullhead, hogchoker, shortnose sturgeon, and occasionally Atlantic tomcod, can be expected (5). The channel habitat is especially important for shortnose sturgeon and hogchoker. Shortnose sturgeon spawn in channel areas in the upper 20 miles of the estuary where substrates are mostly gravel and boulders rather than sands and clays (21). Tributary mouths also contain highly diverse fish aggregations including white sucker, smallmouth bass, redbreast sunfish, yellow perch, and largemouth bass (5). This type of fish community can be expected near the outlet of the Wynants Kill into the Hudson.

Along with providing habitat for a variety of warmwater fish species, the open water of the Hudson River (specifically the lce-free areas below the Troy Dam and at the confluence of the Hudson and Mohawk Rivers) is used by migratory and wintering waterfowl (10,15). However, there is no emergent vegetation and shallow water habitat is extremely limited in the area of the project site. Consequently, the shoreline provides little if any wetland habitat, beyond limited foraging habitat for shorebirds (e.g. great blue heron and sandpipers). Nesting habitat for waterfowl also appears to be limited due to the steep shoreline, lack of thick shoreline vegetation, and absence of suitable tree cavities (for wood duck.) The shoreline of the river, however, does harbor abundant insects, invertebrates (including fresh water mussels, as evidenced by numerous shells), frogs, and fish, all of which serve as important food sources for terrestrial species including herons, mink, and

raccoon. It also provides a source of drinking and bathing water for a variety of upland mammals and birds. Waterfowl, frogs, and turtles undoubtedly utilize the partially-submerged fallen trees along the shoreline as basking and resting sites.

## 5.3. Observations of Stress

There were no observations of physical stress that appeared related to site contamination. However, because plants were dormant at the time of field review, any abnormalities in the size or coloration of foliage (which might indicate stress) could not be documented. The site and surrounding area appear to have a wildlife community typical (in terms of both abundance and diversity) of what one would expect in an urban industrial/residential setting. Any lack of species appeared to be related to a lack of particular habitat elements or the high level of physical disturbance and human activity in the area, rather than site contamination. Existing fisheries data revealed that contamination is well documented in the Hudson River adjacent to the site, but most of the contamination concerns are related to PCB's from upstream industrial facilities (24). Other contaminants documented in Hudson River fish (e.g. TCDD, TCDF, heavy metals, Chlordane, DDT) are unlikely to be associated with the former MGP operation that took place on the project site. Contaminants that could be associated with the site (e.g. aromatic hydrocarbons), could just as easily be associated with any number of other active and abandoned industrial and commercial sources along the Hudson River.

## 6. Value of Fish and Wildlife Resources

As described in the previous sections, the habitats/cover types within 0.5 mile of the project site have the potential to support a variety of fish and wildlife species. The diversity of cover types in this area, and the unique elements each possesses provide habitat for common aquatic, forest, and early successional species. However, human development (and the associated disturbance and loss of habitat) severely limits the habitat value of terrestrial communities in this area. Sizeable populations of species that typically inhabit urban/suburban areas, such as pigeon, house sparrow, starling, gray squirrel, skunk, opossum, raccoon, and house mouse can be expected. In fact, the site, with its large abandoned structures, interspersed with wooded and aquatic corridors, provides excellent foraging, resting, nesting, and escape cover for all of these species, and large numbers of roosting pigeons were observed at the time of field review. Relatively small numbers of

other typical winter bird and mammal species were observed, but the population densities were not considered unusual given the time of year the survey was conducted, the limited availability of undeveloped natural habitat, and the high level of human disturbance. It is these habitat factors, rather than site contamination, that is limiting the size and diversity of on-site wildlife populations.

Despite being in a highly disturbed, urban setting, the aquatic habitats on and adjacent to the site appear to support a healthy and abundant fish population. Existing fish survey data for both the Hudson River and the Wynants Kill indicate a diverse assemblage of common warm water, cool water and (in the case of the Wynants Kill) cold-water fish species. Any limitations on fish abundance and diversity in these water sources is probably due to water temperature and dissolved oxygen conditions (in the Hudson), and less than ideal cover availability (e.g. the bulk-headed portions of the Wynants Kill or the lack of shoreline structure/emergent vegetation on the Hudson), rather than chemical contamination. Significant coastal fish and wildlife habitats have been identified at the Troy Dam and the Poesten Kill, due to their importance to anadromous fisheries (19). Both of these sites are over a mile upstream of the project site, and would not be affected by past or on-going activities on the site.

In terms of the value of the area's fish and wildlife resources to humans, there are some limitations in this regard as well. Because the area is highly developed/urbanized and in private ownership, hunting of game species is not a significant use of the wildlife resource. The greatest value of local wildlife species is probably their availability for observation at backyard feeding stations in the surrounding neighborhoods. There are no nature centers or nature trails within the area, but parkland along the western shore of the Hudson River does provide the public with opportunities for observation of wildlife, especially shorebirds and waterfowl on the river.

There is no significant commercial fishing in this area of the Hudson River. However, according to the NYSDEC, the river provides important spawning habitat for striped bass and American shad, and supports a high quality recreational fishery for smallmouth bass, northern pike and other warm-water species (14). Opportunities for recreational utilization of this resource is limited on the eastern shore of the Hudson River due to a steep-sloping shoreline and lack of available public access. However, the parkland and trails on the western shore of the river, along with boat launch facilities, do provide public fishing access to the river. Shoreline fishing opportunities are also provided by the Wynants Kill, which

supports a healthy population of brown trout. However, as on the eastern shore of the Hudson, the value of this resource is limited by access difficulties resulting from steep slopes and private land ownership.

The Hudson River fishery, while providing good recreational opportunities, is limited in value due to the concern over fish contamination. Potentially high levels of PCB's in fish inhabiting this portion of the Hudson River has resulted in a NYS Health Department advisory against eating most species of fish caught in this area (at best, consumption of some species is recommended not to exceed one meal per month). The presence of shortnose sturgeon in the upper Hudson River does offer the opportunity for scientific study of this endangered species.

## 7. Regulatory Criteria

New York State's stream classification system was developed to protect the highest and best use of state's water resources. This classification system does not necessarily reflect existing water quality or use, but rather its best potential use. The Hudson River within the study area (river miles 130-154), is classified as a Class C water. This indicates that its best use is "for fishing and all other purposes except as a source of water supply for drinking, culinary or food processing purposes and primary contact recreation" (6NYCRR Part 700). The Wynants Kill is also a Class C stream, indicating that its best use is as above. However, based on the data collected by Fernwood-Limne (7), the NYSDEC could recommend upgrading the classification to C(TS), indicating that it supports a self-sustaining population of trout.

Physical, chemical and biological standards have been established for each water quality classification. Water quality standards for waters with a C classification specify a minimum dissolved oxygen level of 4.0 mg/l, although a minimum of 5.0 mg/l and a minimum daily average of 6.0 mg/l is required for trout streams. Dissolved solids can not exceed 500 mg/l, and pH can not be less than 6.5, nor greater than 8.5. The standards for turbidity require no increase that will cause a substantial visible contrast to natural conditions, while standards for oil require no visible oil film or globules of grease. The standards for toxic and deleterious substances generally specify none in amounts that will be injurious to fish life or which, in any manner, shall adversely affect the flavor, color, or odor thereof, or impair the waters for any best usage as determined by their classification. In addition,

Class A, B, C, and D waters have established limits for coliform bacteria, thermal discharges, radioactivity, phosphorus and nitrogen, and various chemical substances (6NYCRR Parts 703.2 and 703.3). It should be noted that 6NYCRR Part 701.22 states that "new discharges may be permitted for waters where discharge restriction categories are assigned when such discharges result from environmental remediation projects, projects correcting environmental or public health emergencies, or when such discharges result in a reduction of pollutants for the designated waters."

Criteria for the identification of contaminated sediments have been established by the NYSDEC for 52 non-polar organic compounds or classes of compounds, and 12 metals (17). Sediments with contaminant concentrations that exceed the criteria listed in this document are considered to be contaminated, and potentially causing harmful impacts to marine and aquatic ecosystems. In the Hudson River, the primary concern in this regard is PCB contamination, which is unrelated to past or on-going activities on the project site.

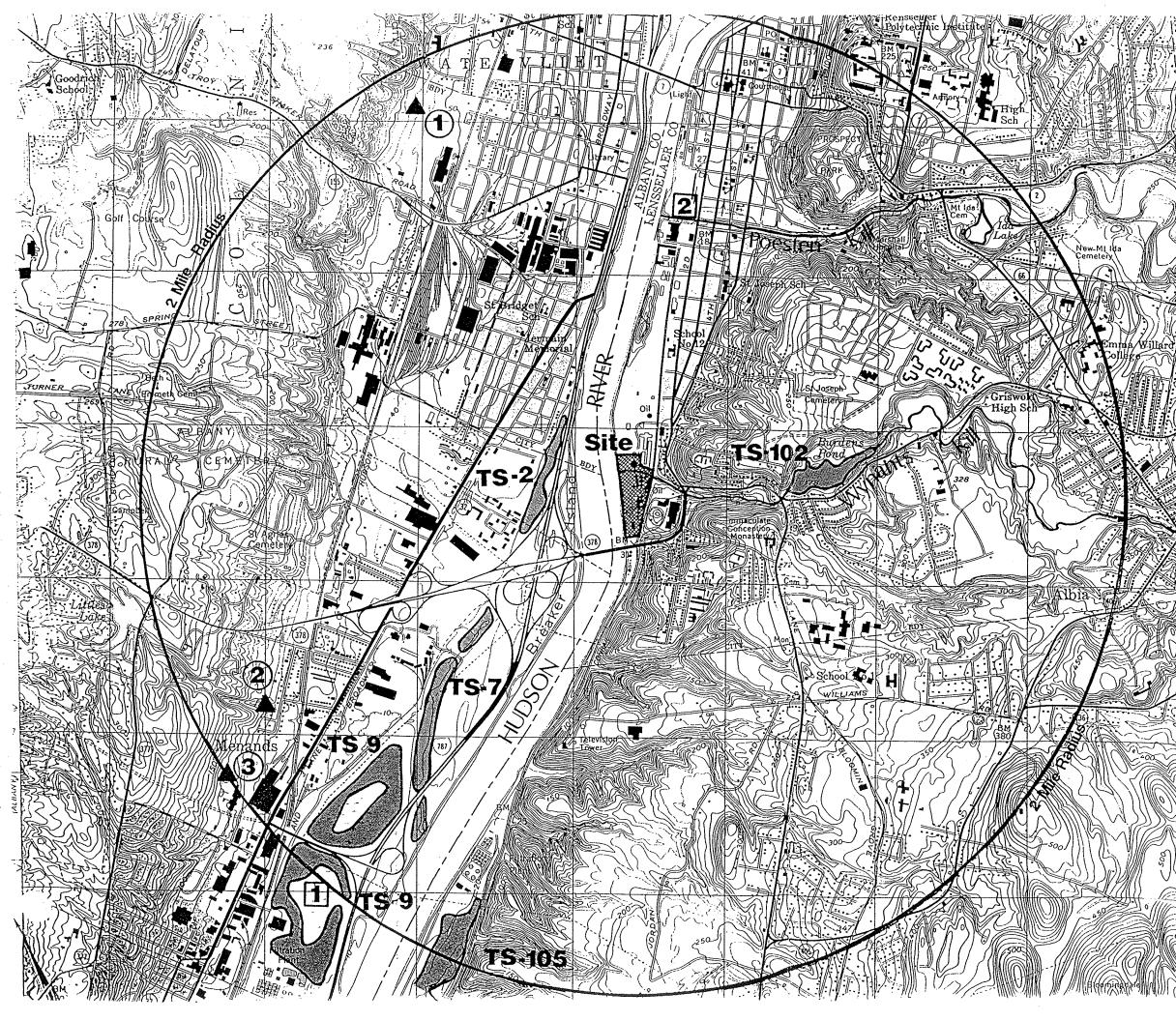
It is the public policy of New York State, as set forth in the freshwater wetlands act, to "preserve, protect and conserve freshwater wetlands and the benefits derived therefrom, to prevent the despoliation and destruction of freshwater wetlands, and to regulate use and development of such wetlands, consistent with the general welfare and beneficial economic, social and agricultural development of the state" (6NYCRR Part 663). To accomplish this goal, a permit is required from the NYSDEC for any activity which may impair the functions and benefits provided by a state regulated wetland (including provision of fish and wildlife habitat). Permit issuance is based on an individual wetland's classification (I-IV), which indicates its ability to perform wetland functions and provide wetland values. For each wetland classification, standards of compatibility and weighing must be met by any proposed activity.

Based on a review of NYSDEC Freshwater Wetland maps, there are two state regulated wetlands within the study area. These include Burdens Pond (wetland TS-102), which is located on the Wynants Kill, approximately 2,400 feet upstream of the project site, and wetland TS-2, which is across the Hudson River, west of Route 787, approximately 1,300 feet from the project site. Given their location, these wetlands would be unaffected by site-related contamination or future remediation activities. Consequently, no activities on or adjacent to the project site would be regulated under Article 24 of the Environmental Conservation Law (6NYCRR Parts 663 and 664). However, the Hudson River and the Wynants Kill, being protected streams (and in the case of the Hudson, also a navigable

water), are regulated under Article 15 of the Environmental Conservation Law (6NYCRR Part 608). Disturbance of the bed or banks of such waters cannot occur without a permit issued by the NYSDEC. The basis for the issuance of an Article 15 permit is a determination that the proposed activity is in the public interest, in that it 1) is reasonable and necessary, 2) will not endanger the health, safety and welfare of the people of the State of New York, and 3) will not cause unreasonable, uncontrolled or unnecessary damage to the natural resources of the state.

Although there is no National Wetland Inventory map for the area, field review indicated that, with the exception of Burdens Pond and state regulated wetland TS-2, there are no wetlands that would be under federal jurisdiction within the study area. However, the Hudson River and the Wynants Kill are considered "waters of the United States", and as such, are protected under Sections 401 and 404 of the Clean Water Act of 1977 (33 U.S.C. 1344). Under state laws and regulations governing streams (6NYCRR Part 608.7) the NYSDEC is responsible for issuing Section 401 water quality certification for any activities requiring a federal license or permit to discharge fill into a water of the United States. Under Section 404, a permit is required from the U.S. Army Corps of Engineers (Corps) to discharge dredged or fill material into a water of the United States. The Hudson River, being a navigable water is also protected by the Rivers and Harbors Act of 1899 (33 U.S.C. 403). Under this law, a permit is required from the Corps for any structure or work that take place in, under, or over a navigable water. The criteria for permit issuance by the Corps include 1) compliance with U.S. Environmental Protection Agency guidelines, and 2) weighing of project benefits against the negative aspects of the proposal. This public interest review includes, among other things, fish and wildlife values.

The federally listed endangered shortnose sturgeon, which resides in the Hudson River adjacent to the project site, is protected by the federal Endangered Species Act. Section 7 of this act directs federal agencies to determine if any action they authorize, fund, or conduct may affect listed species or critical habitat. Although there is no designated critical habitat for shortnose sturgeon in the Hudson River, this species, because it occurs and spawns in the area, could be affected by future remediation projects. Consultation with the National Marine Fisheries Service will be required as remediation plans for the Water Street MGP site are developed (8).


## 8. Citations/References

- 1. American Ornithologists' Union (AOU). 1983. Checklist of North American birds (sixth ed.). Allen Press, Lawrence, KS. 877 pp.
- 2. Andrle, R.F. and J. R. Carroll. 1987. The atlas of breeding birds in New York State. Cornell Univ. Press, Ithaca, NY.
- 3. Bottorff, R.L. 1974. Cottonwood habitat for birds in Colorado. Am. Birds 28 (6): 975-979.
- 4. Burt, W.H. and R.P. Grossenheider. 1976. A field guide to the mammals. Houghton Mifflin Company, Boston, MA.
- 5. Carlson, D.M. 1989. Fish and their habitats in the upper Hudson estuary. NYSDEC, Division of Fish and Wildlife, Stamford, NY.
- 6. Collins, J.T. 1990. Standard common and scientific names for North American amphibians and reptiles (third ed.). Herp. Circular 19. Soc. for the Study of Amphibians and Reptiles, Oxford, OH. 41pp.
- Field, T.C. 1992. Ecological survey report, June-October, 1992. R.M. Poulin, Ltd., Wynantskill hydroelectric project, FERC No. 10925. Fernwood-Limne, Inc. Ganesvoort, NY.
- 8. Haley, N. Protected Species Program, Habitat and Protected Resources Division, National Marine Fisheries Service, Gloucester, MA. Letter of January 27, 1995.
- 9. Hassinger, J., L. Hoffman, M.J. Puglisi, T.D. Rader and R.G. Wingard. 1979. Woodlands and wildlife. The Pennsylvania State University, State College, PA. 68 pp.
- Heaslip, N., Senior Wildlife Biologist, Region 4, New York State Department of Environmental Conservation, Schenectady, NY. Letter of February 2, 1995.
- Kelley, W., R. Hubbell, S. Loe and L. Shikany. 1975. Management of riparian habitats: Coordination guidelines for wildlife habitats. No. 9. USDA For. Serv. Calf. Reg. 9 pp.
- 12. MacArthur, R.H. and J.W. MacArthur. 1961. On bird species diversity. Ecology 42: 594-598.
- 13. MacArthur, R.H., H. Rechter and M. Cody. 1966. On the relation between habitat selection and species diversity. Amer. Natur. 100: 319-332.


- 14. McBride, N. Fisheries Biologist, Region 4, New York State Department of Environmental Conservation, Stamford, NY. Telephone call of December 16, 1994.
- 15. Miller, E.R. Associate Environmental Analyst, Division of Regulatory Affairs, New York State Department of Environmental Conservation, Albany, NY. Letter of October 7, 1985 to Jeffery O. Barnes, regarding Green Island hydro project.
- New York State Department of Environmental Conservation (NYSDEC). 1994(a). Fish and wildlife impact analysis for inactive hazardous waste sites. Division of Fish and Wildlife, Albany, NY.
- 17. NYSDEC. 1994(b). Technical guidance for screening contaminated sediments. Division of Fish and Wildlife, Division of Marine Resources, Albany, NY.
- NYSDEC. 1989. Planning the management of New York's wildlife: preliminary assessment of wildlife management needs. Draft. New York State Department of Environmental Conservation, Wildlife Bureau, Albany, NY. 75 pp.
- 19. NYSDEC. Unpublished. Element occurrence report and Significant habitat report. Information Services, New York Natural Heritage Program, Latham, NY.
- 20. O'Brien and Gere, Engineers, Inc. 1994. PSA/IRM work plan for the Troy (Water Street) former MGP site. Syracuse, NY.
- 21. Pekovitch, A.W. 1979. Distribution and some life history aspects of the shortnose sturgeon (*Acipenser brevirostrum*) in the upper Hudson River estuary. Hazelton Environ. Sci. Corp., Northbrook, IL.
- Reschke, C. 1990. Natural and cultural ecological communities of New York State. Preliminary draft. New York State Department of Environmental Conservation, Albany, NY. 75 pp.
- Scott, V.E., K.E. Evans, D.R. Patton and C.P. Stone 1977. Cavity-nesting birds of North American forests. USDA For. Serv. Agric. Handbook 511. Washington, DC. 112 pp.
- Sloan, R. 1987. Toxic substances in fish and wildlife: Analyses since May 1, 1982, Vol.6. Tech. Rpt. 87-4 (BEP). New York State Department of Environmental Conservation, Division of Fish and Wildlife, Albany, NY.
- 25. Stillwell, D.A., Acting Field Supervisor, U.S. Fish and Wildlife Service, Cortland, NY. Letter of January 11,1995.

- 26. Terres, J.K. 1982. The Audubon Society encyclopedia of North American birds. Alfred A. Knopf, New York, NY. 1109 pp.
- 27. Trefethen, J.B. 1964. Wildlife management and conservation. D.C. Heath & Co. Boston, 120 pp.
- 28. U.S. Department of Agriculture, Soil Conservation Service. 1983. Soil Survey of Rensselaer County, New York.
- 29. Vickery, P.D. 1991. A regional analysis of endangered, threatened and special concern birds in the northeastern United States. Trans. Northeast Fish and Wildl. Conf. 48: 1-10.
- 30. Village of Green Island. 1986. Application for license, Major water power project existing dam, Green Island hydroelectric project, FERC Project No. 6456, Vol. 1 of 2. Green Island, NY.

Figures



| 闷        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.       |       | 400 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ĥ        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| )]]      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q<br>X   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |       | Contras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ン<br>派   |       | in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |
| Ì        | 1     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ż        | V     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | H     | Forebring Compension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | .18   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>)</u> | E.    | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10       | r le  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Y        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ħ        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 67/A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ć        |       | eeneel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ň        | Chori | Water Street MGP Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ł        |       | Area 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |       | Figure D-1 Topographic Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |       | DOCUMENTED FISH & WILDLIFE RESOURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |       | DOCUMENTED FISH & WILDLIFE RESOURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS</li> <li>TS-2</li> <li>TS-7</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS</li> <li>TS-2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |       | DOCUMENTED FISH & WILDLIFE RESOURCES<br>• REGULATED WETALNDS<br>TS-2<br>TS-7<br>TS-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS</li> <li>TS-2</li> <li>TS-7</li> <li>TS-9</li> <li>TS-102</li> <li>TS-105</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |       | DOCUMENTED FISH & WILDLIFE RESOURCES<br>• REGULATED WETALNDS<br>TS-2<br>TS-7<br>TS-9<br>TS-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS</li> <li>TS-2<br/>TS-7<br/>TS-9<br/>TS-102<br/>TS-105</li> <li>SIGNIFICANT COASTAL FISH AND WILDLIFE<br/>HABITAT</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS         <ul> <li>TS-2</li> <li>TS-7</li> <li>TS-9</li> <li>TS-102</li> <li>TS-105</li> </ul> </li> <li>SIGNIFICANT COASTAL FISH AND WILDLIFE HABITAT</li> <li>Menands Marsh 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS</li> <li>TS-2<br/>TS-7<br/>TS-9<br/>TS-102<br/>TS-105</li> <li>SIGNIFICANT COASTAL FISH AND WILDLIFE<br/>HABITAT</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS         <ul> <li>TS-2</li> <li>TS-7</li> <li>TS-9</li> <li>TS-102</li> <li>TS-105</li> </ul> </li> <li>SIGNIFICANT COASTAL FISH AND WILDLIFE HABITAT</li> <li>Menands Marsh 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS         <ul> <li>TS-2</li> <li>TS-7</li> <li>TS-9</li> <li>TS-102</li> <li>TS-105</li> </ul> </li> <li>SIGNIFICANT COASTAL FISH AND WILDLIFE HABITAT         <ul> <li>Menands Marsh 1</li> <li>Poestenkill Creek 2</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS <ul> <li>TS-2</li> <li>TS-7</li> <li>TS-9</li> <li>TS-102</li> <li>TS-105</li> </ul> </li> <li>SIGNIFICANT COASTAL FISH AND WILDLIFE HABITAT <ul> <li>Menands Marsh 1</li> <li>Poestenkill Creek 2</li> </ul> </li> <li>RARE SPECIES</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |       | <ul> <li>DOCUMENTED FISH &amp; WILDLIFE RESOURCES</li> <li>REGULATED WETALNDS <ul> <li>TS-2</li> <li>TS-7</li> <li>TS-9</li> <li>TS-102</li> <li>TS-105</li> </ul> </li> <li>SIGNIFICANT COASTAL FISH AND WILDLIFE HABITAT <ul> <li>Menands Marsh 1</li> <li>Poestenkill Creek 2</li> </ul> </li> <li>RARE SPECIES <ul> <li>Green Rock-cress</li> <li>(1)</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Scale: 1"=700'±

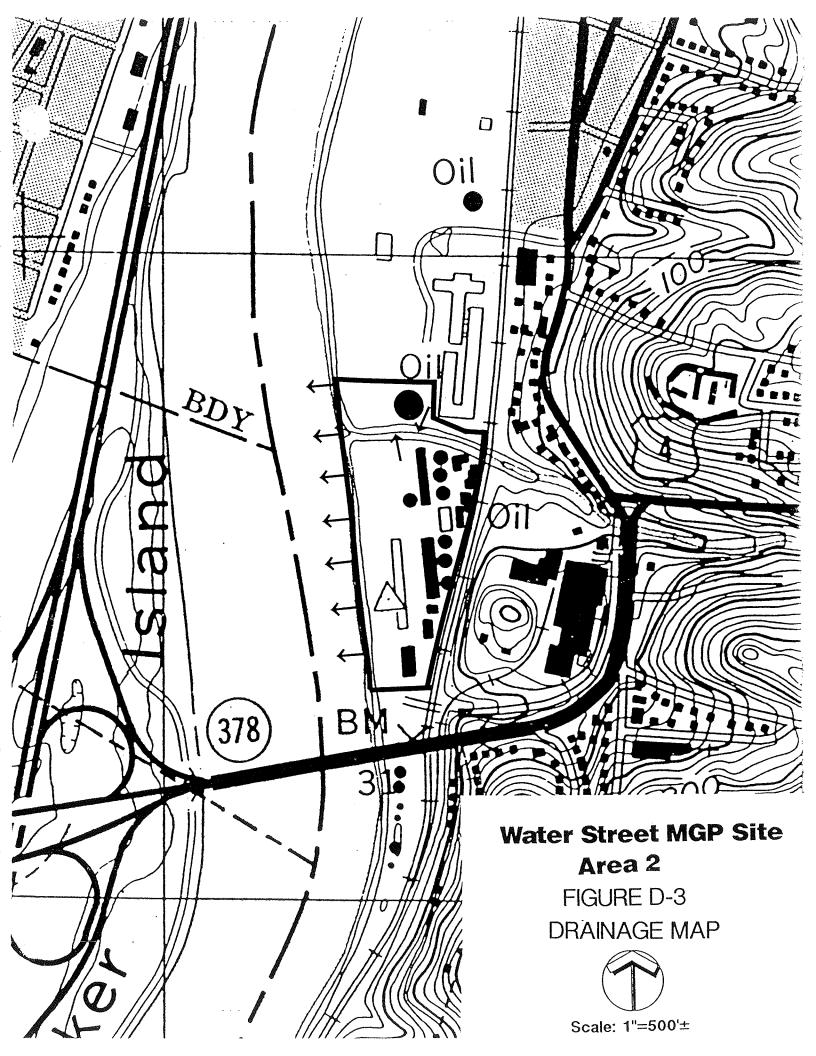
# Water Street MGP Site Area 2

# FIGURE D-2 COVER TYPE MAP

Legend



Deciduous Forest




OF Old Field





Wetland



Appendix D-A - Vegetation and Wildlife Species Lists

## TABLE 1. WATER STREET MGP SITE, AREA 2 - FISH & WILDLIFE SPECIES'

## **Bird Species**<sup>2</sup>

Herons, Bitterns

great blue heron green heron

## Waterfowl

Canada goose mallard American black duck northern pintail green-winged teal blue-winged teal redhead canvasback common goldeneye ruddy duck common merganser

## **American Vultures**

turkey vulture

#### Hawks

red-tailed hawk\* broad-winged hawk sharp-shinned hawk American kestrel

Grouse

ruffed grouse

Quail

ring-necked pheasant

Turkeys

wild turkey

Ardeidae

Ardea herodias Butorides striatus

Anatidae

Branta canadensis Anas platyrhynchos Anas rubripes Anas acuta Anas crecca Anas discors Athya americana Athya valisineria Bucephala clangula Oxyura jamaicensis Mergus merganser

Cathartidae

Cathartes aura

Accipitridae

Buteo jamaicensis Buteo platypterus Accipiter striatus Falco sparverius

Tetraonidae

Bonasa umbellus

Phasianidae

Phasianus colchicus

Meleagrididae

Meleagris gallopavo

## Plovers

killdeer

Sandpipers

solitary sandpiper spotted sandpiper American woodcock

Gulls, Terns

herring gull ring-billed gull\*

Pigeons, Doves

rock dove\* mourning dove\*

Cuckoos

yellow-billed cuckoo black-billed cuckoo

**Typical Owls** 

common screech owl great horned owl

Goatsuckers

common nighthawk

Swifts

chimney swift

Hummingbirds

ruby-throated hummingbird

Kingfishers

belted kingfisher

Charadriidae

Charadrius vociferus

Scolopacidae

<u>Tringa solitaria</u> <u>Actitus macularia</u> <u>Philohela minor</u>

Laridae

<u>Larus argentatus</u> <u>Larus delawarensis</u>

Columbidae

<u>Columba livia</u> <u>Zenaida macroura</u>

Cuculidae

<u>Coccyzus americanus</u> <u>Coccyzus erythropthalmus</u>

Strigidae

<u>Otus asio</u> <u>Bubo virginianus</u>

Caprimulgidae

Chordeiles minor

Apodidae

Chaetura pelagica

Trochilidae

Archilochus colubris

Alcedinidae

Ceryle alcyon

#### Woodpeckers

common flicker pileated woodpecker red-bellied woodpecker yellow-bellied sapsucker hairy woodpecker downy woodpecker\*

#### **Flycatchers**

eastern kingbird great crested flycatcher eastern phoebe least flycatcher eastern wood-pewee

## Swallows

tree swallow bank swallow rough-winged swallow barn swallow purple martin

## Jays, Crows

blue jay\* American crow\*

#### Titmice

black-capped chickadee\* tufted titmouse

#### Nuthatches

white-breasted nuthatch\* red-breasted nuthatch

#### Creepers

brown creeper

## Picidae

Colaptes auratus Dryocopus pileatus Melanerpes carolinus Sphyrapicus varius Picoides villosus Picoides pubescens

## Tyrannidae

Tyrannus tyrannus Myiarchus crinitus Sayornis phoebe Epidonax minimus Contopus virens

## Hirundinidae

Tachycineta bicolor Riparia riparia Stelgidopteryx serripennis Hirundo rustica Progne subis

## Corvidae

Cyanocitta cristata Corvus brachyrhynchos

## Paridae

Parus atricapillus Parus bicolor

## Sittidae

Sitta carolinensis Sitta canadensis

## Certhiidae

Certhia americana

## Wrens

winter wren house wren

## **Mimic Thrushes**

northern mockingbird gray catbird brown thrasher

## Thrushes

American robin\* wood thrush veery eastern bluebird

## Waxwings

cedar waxwing

Starlings

European starling\*

#### Vireos

yellow-throated vireo red-eyed vireo white-eyed vireo warbling vireo

## Wood Warblers

black and white warbler blue-winged warbler yellow warbler magnolia warbler yellow-rumped warbler chestnut-sided warbler prairie warbler ovenbird common yellowthroat American redstart

## Troglodytidae

Troglodytes troglodytes Troglodytes aedon

Mimidae

<u>Mimus polyglottos</u> <u>Dumetella carolinensis</u> <u>Toxostoma rufum</u>

## Turdidae

<u>Turdus migratorius</u> <u>Hylocichla mustelina</u> <u>Catharus fuscescens</u> <u>Sialia sialis</u>

Bombycillidae

Bombycilla cedrorum

Sturnidae

Sturnus vulgaris

## Vireonidae

<u>Vireo flavifrons</u> <u>Vireo olivaceus</u> <u>Vireo griseus</u> <u>Vireo gilvus</u>

## Parulidae

Mniotilta varia Vermivora pinus Dendroica petechia Dendroica magnolia Dendroica coronata Dendroica pensylvanica Dendroica discolor Seiurus aurocapillus Geothlypis trichas Setophaga ruticila

## Weaver Finches

house sparrow\*

Blackbirds

bobolink eastern meadowlark red-winged blackbird northern oriole common grackle brown-headed cowbird

## Tanagers

scarlet tanager

## Finches

northern cardinal\* rose-breasted grosbeak indigo bunting evening grosbeak purple finch house finch American goldfinch\* rufous-sided towhee savannah sparrow northern junco\* chipping sparrow field sparrow white-throated sparrow fox sparrow swamp sparrow song sparrow

## Ploceidae

Passer domesticus

## Icteridae

Dolichonyx oryzivorus Sturnella magna Agelaius phoeniceus Icterus galbula Quiscalus quiscula Molothrus ater

Thraupidae

<u>Piranga olivacea</u>

## Fringillidae

Cardinalis cardinalis Pheucticus Iudovicianus Passerina cyanea Hesperiphona vespertina Carpodacus purpureus Carpodacus mexicanus Carduelis tristis Pipilo erythrophthalmus Passerculus sandwichensis Junco hyemalis Spizella passerina Spizella pusilla Zonotrichia albicollis Passerella iliaca Melospiza georgiana Melospiza melodia

## Mammal Species

## Opossums

opossum

Shrews

masked shrew shorttail shrew

## Moles

eastern mole starnose mole

## Plainnose Bats

eastern pipistrel big brown bat hoary bat red bat little brown bat Keen myotis silver-haired bat

## Racoons

raccoon\*

#### Weasels

shorttail weasel longtail weasel mink striped skunk

## Dogs, Wolves, Foxes

coyote red fox\* gray fox Didelphiidae

Didelphis virginiana

Soricidae

Sorex cinereus Blarina brevicauda

Talpidae

Scalopus aquaticus Condylura cristata

## Vespertilionidae

Pipistrellus subflavus Eptesicus fuscus Lasiurus cinereus Lasiurus borealis Myotis lucifugus Myotis keenii Lasionycteris noctivagans

#### Procyonidae

Procyon lotor

#### Mustelidae

<u>Mustela erminea</u> <u>Mustela frenata</u> <u>Mustela vison</u> <u>Mephitis mephitis</u>

#### Canidae

Canis latrans Vulpes vulpes Urocyon cinereoargenteus

## Cats

house cat (feral)\*

## Squirrels

woodchuck\* eastern chipmunk\* eastern gray squirrel\* red squirrel southern flying squirrel

Beaver

beaver\*

Mice, Rats, Lemmings, Volves

deer mouse white-footed mouse meadow vole muskrat

## Old World Rats & Mice

Norway rat house mouse

**Jumping Mice** 

meadow jumping mouse woodland jumping mouse

Hares, Rabbits

eastern cottontail\*

Deer

whitetail deer

## Felidae

Felis catus

Sciuridae

Marmota monax Tamias striatus Sciurus carolinensis Tamiasciurus hudsonicus Glaucomys volans

Castoridae

Castor canadensis

Cricetidae

Peromyscus maniculatus Peromyscus leucopus Microtus pennsylvanicus Ondatra zibethicus

Muridae

Rattus norvegicus Mus musculus

Zapeoidae

Zapus hudsonicus Napaeozapus insignis

Leporidae

Sylvilagus floridanus

Cervidae

Odocoileus virginianus

## **Reptile and Amphibian Species**

**Box and Water Turtles** 

painted turtle

**Snapping Turtles** 

snapping turtle

Colubrids

northern water snake northern brown snake eastern garter snake eastern milk snake

## Newts

red-spotted newt

**Lungless Salamanders** 

red-backed salamander northern two-lined salamander

Toads

American toad

**Tree Frogs** 

spring peeper gray treefrog

True Frogs

wood frog pickeral frog northern leopard frog green frog bull frog Emydidae

Chrysemys picta

Chelydridae

Chelydra serpentina

Colubridae

<u>Natrix sipedon sipedon</u> <u>Storeria dekayi dekayi</u> <u>Thamnophis sirtalis sirtalis</u> <u>Lampropeltis triangulum</u>

Salamandridae

Notophthalmus viridescens viridescens

Plethodontidae

<u>Plethodon cinereus cinereus</u> <u>Eurycea bislineata bislineata</u>

Bufonidae

Bufo americanus

Hylidae

Hyla crucifer Hyla versicolor

Ranidae

Rana sylvatica Rana palustris Rana pipiens Rana clamitans melanota Rana catesbeiana

## Fish Species<sup>3</sup>

## Lampreys

silver lamprey sea lamprey

## Sturgeons

shortnose sturgeon Atlantic sturgeon

## Shads and Herrings

blueback herring alewife American shad gizzard shad

## Anchovies

bay anchovy

Smelts

rainbow smelt

#### Mudminnows

central mudminnow

Eels

American eel

Needlefishes

Atlantic needlefish

Codfishes

Atlantic tomcod

## Petromyzonidae

Ichthyomyzon unicuspis Petromyzon marinus

Acipenseridae

Acipenser brevirostrum Acipenser oxyrhynchus

## Clupeidae

Alosa aestavalis Alosa pseudoharengus Alosa sapidissima Dorosoma cepedianum

Engraulidae

Anchoa mitchilli

Osmeridae

Osmerus mordax

Umbridae

<u>Umbra limi</u>

Angullidae

Anguilla rostrata

Belonidae

Strongylura marina

Gadidae

Microgadus tomcod

## Pikes

redfin pickerel northern pike chain pickerel tiger muskellunge

#### Sunfishes

largemouth bass smallmouth bass redbreast sunfish bluegill pumpkinseed green sunfish rock bass black crappie white crappie

Basses

white perch white bass striped bass

#### Bluefish

bluefish

## **Bullhead/Catfishes**

channel catfish tadpole madtom brown bullhead white catfish yellow bullhead

## **Carps and Minnows**

goldfish common shiner golden shiner rosyface shiner bridle shiner spottail shiner

## Esocidae

Esox aamericanus Esox lucius Esox niger (northern pike x muskellunge)

## Centrarchidae

Micropterus salmoides Micropterus dolomieui Lepomis auritus Lepomis macrochirus Lepomis gibbosus Lepomis cyanellus Ambloplites rupestris Pomoxis nigromaculatus Pomoxis annularis

## Serranidae

Morone americana Morone chrysops Morone saxatilis

## Pomatomidae

Pomatomus saltatrix

#### Ictaluridae

Ictalurus punctatus Noturus gyrinus Ictalurus nebulosus Ictalurus catus Ictalurus natalis

#### Cyprinidae

Carassius auratus Notropis cornutus Notemigonus crysoleucas Notropis rubellus Notropis bifrenatus Notropis hudsonicus

## carp\*

creek chub bluntnose minnow fathead minnow stone roller cutlips minnow satinfin shiner comely shiner emerald shiner spotfin shiner silvery minnow fallfish blacknose dace longnose dace

#### Suckers

white sucker northern hog sucker shorthead redhorse

#### Sticklebacks

fourspine stickleback brook stickleback threespine stickleback

#### Killifishes

banded killifish mummichog

## Troutperches

trout perch

#### Perches

tessellated darter greenside darter fantail darter yellow perch walleye logperch Cyprinus carpio Semotilus atromaculatus Pimephales notatus Pimephales promelus Campstoma anomalum Exoglossum maxillingua Notropis analostanus Notropis amoenus Notropis atherinoides Notropis spilopterus Hybognathus regins Semotilus corporalis Rhinichthys atratulus Rhinichthys cataractae

## Catostomidae

<u>Catostomus commersoni</u> <u>Hypentelium nigricans</u> <u>Moxostoma macrolepidotum</u>

## Gasterosteidae

Apeltes quadracus Culaea inconstans Gasterosteus aculeatus

#### Cyprinodontidae

Fundulus diaphanus Fundulus heteroclitus

## Percopsidae

Percopsis omiscomaycus

## Percidae

Etheostoma olmstedi Etheostoma blennioides Etheostoma flabellare Perca flavescens Stizostedion vitreum Percina caprodes

## Trout

brown trout brook trout rainbow trout

Sculpins

sculpin

Soles

hogchoker

Flukes

summer flounder

## Salmonidae

<u>Salmo trutta</u> <u>Salvelinus fontinalis</u> <u>Salmo gairdneri</u>

Cottidae

Cottus spp.

Solidae

Trinectes maculatus

Bothidae

Paralichthys dentatus

#### Footnotes:

<sup>1</sup>Based on range and suitable habitat conditions.

<sup>2</sup>Also based NYS Breeding Bird Atlas data (Andrle and Carroll, 1987).

<sup>3</sup>Based on previous studies of the Wynants Kill and the upper Hudson River estuary (Field, 1992; Carlson, 1989).

\*Observed on-site during December 9, 1994 field survey.

## TABLE 2. WATER STREET MGP SITE - AREA 2 - PLANT SPECIES

Acer negundo Acer platanoides Acer rubrum Acer saccharum Acer saccharinum Ailanthus altissima Alliaria officinalis Amaranthus spp. Ambrosia artemisiifolia Arctium vulgare Asclepias syriaca Aster ericoides Aster spp. Betula populifolia Carpinus caroliniana Celastrus scandens Centaurea maculosa Cerastium spp. Cichorium intybus Circaea alpina Cirsium spp. Conyza canadensis Cornus sericea Dactylis glomerata Daucus carota Echinochloa muricata Epilobium ciliatum Eragrostis spp. Euonymus atropurpurea Fagus grandifolia Fraxinus americana Fraxinus pennsylvanica Glechoma hederacea Hieracium spp. Hypericum punctatum Linaria vulgaris Lythrum salicaria Malus spp. Melilotus spp. Nepeta cataria Oenothera biennis Panicum spp. Phragmites communis Pinus strobus Plantago lanceolata Plantago major Poa pratensis Populus deltoides Potentilla recta Prunus pensylvanica Rhamnus cathartica

Box-elder Norway maple Red maple Sugar maple Silver maple Tree-of-heaven Garlic mustard Pigweed Ragweed Burdock Common milkweed Heath aster Asters Gray birch Musclewood Bittersweet Spotted knapweed Chickweed Chicory Enchanter's nightshade Thistle Horseweed Red-osier dogwood Orchard grass Queen Anne's lace Barnyard grass Willow-herb Lovegrass Burning-bush American beech White ash Green ash Gill-over-the-ground Hawkweed Spotted St. John's-wort Butter-and-eggs Purple loosestrife Crabapple Sweet-clover Catnip Evening primrose Panic grass Common reed White pine English plantain Common plantain Kentucky bluegrass Cottonwood Sulfur cinquefoil Pin cherry Buckthorn

Rhus typhina Robinia pseudo-acacia Rubus idaeus Rubus occidentalis Rudbeckia hirta Rumex crispus <u>Salix nigra</u> Setaria spp. Solidago canadensis Taraxacum officinalis Taxus canadensis Thlaspi arvense Trifolium pratense <u>Ulmus americana</u> Verbascum thapsus Vitis aestivalis Vitis riparia Xanthium strumarium

Staghorn sumac Black locust Red raspberry Black raspberry Black-eyed susan Curly dock Black willow Foxtail Canada goldenrod Dandelion Canada yew Field pennycress Red clover American elm Mullein Summer grape River grape Common cocklebur

## NEW YORK STATE BREEDING BIRD ATLAS COMPLETE BLOCK LISTING

NORTH : 4730000 SOUTH : 4725000 EAST : 610000 WEST : 605000

PAGE : 1

BLOCK : 6072A

JURISDICTION (COUNTY-TOWN/CITY,PERCENT) ) Rensselaer Co. - Troy - City 35% 2) Albany Co. - Colonie 12% ) Rensselaer Co. - North Greenbush 50% NATURAL COMMON NAME SCIENTIFIC NAME BREED- YEAR NEW YORK HERITAGE

ING

LEGAL

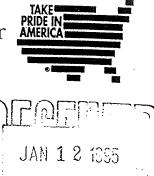
PROGRAM

|                              |                            | CODE |    | STATUS                    | STATE RANK |
|------------------------------|----------------------------|------|----|---------------------------|------------|
| fallard                      | Anas platyrhynchos         | X1   | 80 | Game Species              | s5         |
| ed-tailed Hawk               | Buteo jamaicensis          | FL   | 81 | Protected                 | \$5        |
| merican Kestrel              | Falco sparverius           | FL   | 81 | Protected                 | \$5        |
| ling-necked Pheasant         | Phasianus colchicus        | X1   | 80 | Game Species              | SE         |
| (illdeer -                   | Charadrius vociferus       | FL   | 80 | Protected                 | \$5        |
| lock Dove                    | Columba livia              | N2   | 82 | Unprotected               | SE         |
| lourning Dove                | Zenaida macroura           | FL   | 80 | Protected                 | s5         |
| lack-billed Cuckoo           | Coccyzus erythropthalmus   | X1   | 81 | Protected                 | s5         |
| astern Screech-Owl           | Otus asio                  | X1   | 80 | Protected                 | s5         |
| ommon Nighthawk              | Chordeiles minor           | X1   | 82 | Protected-Special Concern | S4         |
| himney Swift                 | Chaetura pelagica          | X1   | 80 | Protected                 | s5         |
| orthern Flicker              | Colaptes auratus           | ON   | 82 | Protected                 | S5         |
| airy Woodpecker              | Picoides villosus          | T2   | 80 | Protected                 | S5         |
| owny Woodpecker              | Picoides pubescens         | FY   | 80 | Protected                 | s5         |
| astern Kingbird              | Tyrannus tyrannus          | FY   | 81 | Protected                 | \$5        |
| astern Phoebe                | Sayornis phoebe            | X1   | 84 | Protected                 | S5         |
| ank Swallow                  | Riparia riparia            | FL   | 81 | Protected                 | S5         |
| orthern Rough-winged Swallow | Stelgidopteryx serripennis | X1   | 81 | Protected                 | <b>S</b> 5 |
| arn Swallow                  | Hirundo rustica            | X1   | 81 | Protected                 | S5         |
| urple Martin                 | Progne subis               | X1   | 81 | Protected                 | S5         |
| lue Jay                      | Cyanocitta cristata        | FL   | 80 | Protected                 | S5         |
| merican Crow                 | Corvus brachyrhynchos      | T2   | 81 | Game Species              | S5         |
| lack-capped Chickadee        | Parus atricapillus         | FY   | 80 | Protected                 | \$5        |
| ufted Titmouse               | Parus bicolor              | X1   | 81 | Protected                 | \$5        |
| hite-breasted Nuthatch       | Sitta carolinensis         | FY   | 81 | Protected                 | S5         |
| ouse Wren                    | Troglodytes aedon          | D2   | 80 | Protected                 | s5         |
| lorthern Mockingbird         | Mimus polyglottos          | FL   | 81 | Protected                 | \$5        |

PAGE : 2 BLOCK : 6072A

## NEW YORK STATE BREEDING BIRD ATLAS COMPLETE BLOCK LISTING

1


| Gray Catbird           | Dumetella carolinensis    | FY | 81 | Protected                 | \$5        |
|------------------------|---------------------------|----|----|---------------------------|------------|
| Brown Thrasher         | Toxostoma rufum           | т2 | 81 | Protected                 | S5         |
| American Robin         | Turdus migratorius        | NY | 80 | Protected                 | S5         |
| Wood Thrush            | Hylocichla mustelina      | T2 | 81 | Protected                 | S5         |
| Veery                  | Catharus fuscescens       | T2 | 81 | Protected                 | S5         |
| Eastern Bluebird       | Sialia sialis             | FY | 81 | Protected-Special Concern | \$5        |
| Cedar Waxwing          | Bombycilla cedrorum       | P2 | 80 | Protected                 | S5         |
| European Starling      | Sturnus vulgaris          | FY | 81 | Unprotected               | SE         |
| White-eyed Vireo       | Vireo griseus             | X1 | 84 | Protected                 | <b>S</b> 4 |
| Red-eyed Vireo         | Vireo olivaceus           | s2 | 81 | Protected                 | S5         |
| Blue-winged Warbler    | Vermivora pinus           | T2 | 80 | Protected                 | S5         |
| Yellow Warbler         | Dendroica petechia        | FY | 81 | Protected                 | S5         |
| Prairie Warbler        | Dendroica discolor        | S2 | 80 | Protected                 | S5         |
| Ovenbird *             | Seiurus aurocapillus      | T2 | 80 | Protected                 | S5         |
| Common Yellowthroat    | Geothlypis trichas        | D2 | 80 | Protected                 | S5         |
| House Sparrow          | Passer domesticus         | FL | 80 | Unprotected               | SE         |
| Bobolink               | Dolichonyx oryzivorus     | NE | 80 | Protected                 | \$5        |
| Eastern Meadowlark     | Sturnella magna           | FL | 80 | Protected                 | S5         |
| Red-winged Blackbird   | Agelaius phoeniceus       | NE | 80 | Protected                 | S5         |
| Northern Oriole        | Icterus galbula           | FL | 81 | Protected                 | \$5        |
| Common Grackle         | Quiscalus quiscula        | FY | 81 | Protected                 | S5         |
| Brown-headed Cowbird   | Molothrus ater            | X1 | 81 | Protected                 | S5         |
| Scarlet Tanager        | Piranga olivacea          | T2 | 81 | Protected                 | · S5       |
| Northern Cardinal      | Cardinalis cardinalis     | S2 | 80 | Protected                 | S5         |
| Rose-breasted Grosbeak | Pheucticus ludovicianus   | T2 | 81 | Protected                 | \$5        |
| Indigo Bunting         | Passerina cyanea          | P2 | 80 | Protected                 | S5         |
| House 'Finch           | Carpodacus mexicanus      | FY | 81 | Protected                 | SE         |
| American Goldfinch     | Carduelis tristis         | D2 | 81 | Protected                 | S5         |
| Rufous-sided Towhee    | Pipilo erythrophthalmus   | FL | 81 | Protected                 | S5         |
| Savannah Sparrow       | Passerculus sandwichensis | FL | 81 | Protected                 | S5         |
| Chipping Sparrow       | Spizella passerina        | FY | 80 | Protected                 | S5         |
| Field Sparrow          | Spizella pusilla          | FL | 81 | Protected                 | S5         |
| Song Sparrow           | Melospiza melodia         | FY | 84 | Protected                 | S5         |
|                        |                           |    |    |                           |            |

Appendix D-B - Agency Correspondence



## United States Department of the Interior

FISH AND WILDLIFE SERVICE 3817 Luker Road Cortland, New York 13045



January 11, 1995

Mr. John D. Hecklau Ecologist Environmental Design & Research 6007 Fair Lakes Drive East Syracuse, NY 13057-1253

Dear Mr. Hecklau:

This responds to your letter of December 16, 1994, requesting information on the presence of endangered or threatened species in the vicinity of the inactive hazardous waste site, located east of the Hudson River, north of Route 378, City of Troy, Rensselaer County, New York.

Except for occasional transient individuals, no Federally listed or proposed endangered or threatened species under our jurisdiction are known to exist in the project impact area. Therefore, no Biological Assessment or further Section 7 consultation under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) is required with the U.S. Fish and Wildlife Service (Service). Should project plans change, or if additional information on listed or proposed species becomes available, this determination may be reconsidered. An updated compilation of Federally listed and proposed endangered and threatened species in New York is enclosed for your information.

The above comments pertaining to endangered species under our jurisdiction are provided pursuant to the Endangered Species Act. This response does not preclude additional Service comments under the Fish and Wildlife Coordination Act or other legislation.

However, the Federally listed endangered shortnose sturgeon (Acipenser brevirostrum) is found in the Hudson River near the project area. This species is under the jurisdiction of the National Marine Fisheries Service. You should contact Mr. Douglas W. Beach, National Marine Fisheries Service, Habitat Conservation Branch, One Blackburn Drive, Gloucester, Massachusetts 01930-2298.

For additional information on fish and wildlife resources or State-listed species, we suggest you contact:

New York State Department of Environmental Conservation Region 4 Route 10, Jefferson Road Stamford, NY 12167 (607) 652-7364 New York State Department of Environmental Conservation Wildlife Resources Center - Information Serv. New York Natural Heritage Program 700 Troy-Schenectady Road Latham, NY 12110-2400 (518) 783-3932 The Service's National Wetlands Inventory (NWI) map is not yet available for the Troy South Quadrangle. Any wetlands which may be impacted by the project should be identified and described by the project sponsor using methods suitable for Federal regulatory purposes.

Work in certain waters and wetlands of the United States may require a permit from the U.S. Army Corps of Engineers (Corps). If a permit is required, in reviewing the application pursuant to the Fish and Wildlife Coordination Act, the Service may concur, with or without stipulations, or recommend denial of the permit depending upon the potential adverse impacts on fish and wildlife resources associated with project implementation. The need for a Corps permit may be determined by contacting Mr. Joseph Seebode, Chief, Regulatory Branch, U.S. Army Corps of Engineers, 26 Federal Plaza, New York, NY 10278 (telephone: [212] 264-3996).

If you have any questions regarding this letter, contact Tom McCartney at (607) 753-9334.

Sincerely Mark W. Clough ACTING FOR

David A. Stilwell Acting Field Supervisor

Enclosure

 cc: NYSDEC, Stamford, NY (Regulatory Affairs) NYSDEC, Latham, NY
 COE, New York, NY
 EPA, Chief, Marine & Wetlands Protection Branch, New York, NY
 NMFS, Gloucester, MA

## FEDERALLY LISTED AND PROPOSED ENDANGERED AND THREATENED SPECIES IN NEW YORK

| Common Name                                                                                          | Scientific Name                                                                                                                              | <u>Status</u>         | Distribution                                                                       |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|
| FISHES<br>Sturgeon, shortnose*                                                                       | Acipenser brevirostrum                                                                                                                       | Е                     | Hudson River & other Atlantic coastal rivers                                       |
| <u>REPTILES</u><br>Turtle, green*                                                                    | Chelonia mydas                                                                                                                               | Т                     | Oceanic summer visitor<br>coastal waters                                           |
| Turtle, hawksbill*                                                                                   | Eretmochelys imbricata                                                                                                                       | Ε                     | Oceanic summer visitor                                                             |
| Turtle, leatherback*                                                                                 | Dermochelys coriacea                                                                                                                         | Е                     | coastal waters<br>Oceanic summer resident<br>coastal waters                        |
| Turtle, loggerhead*                                                                                  | Caretta caretta                                                                                                                              | Т                     | Oceanic summer resident<br>coastal waters                                          |
| Turtle, Atlantic<br>ridley*                                                                          | Lepidochelys kempii                                                                                                                          | E                     | Oceanic summer resident<br>coastal waters                                          |
| BIRDS<br>Eagle, bald<br>Falcon, peregrine                                                            | Haliaeetus leucocephalus<br>Falco peregrinus                                                                                                 | E<br>E                | Entire state<br>Entire state - re-<br>establishment to former<br>breeding range in |
| Plover, piping                                                                                       | Charadrius melodus                                                                                                                           | E<br>T                | progress<br>Great Lakes Watershed<br>Remainder of coastal<br>New York              |
| Tern, roseate                                                                                        | Sterna dougallii dougallii                                                                                                                   | E                     | Southeastern coastal<br>portions of state                                          |
| MAMMALS                                                                                              |                                                                                                                                              |                       |                                                                                    |
| Bat, Indiana<br>Cougar, eastern                                                                      | Myotis sodalis<br>Felis concolor couguar                                                                                                     | E<br>E                | Entire state<br>Entire state - probably                                            |
| Whale, blue*<br>Whale, finback*<br>Whale, humpback*<br>Whale, right*<br>Whale, sei*<br>Whale, sperm* | Balaenoptera musculus<br>Balaenoptera physalus<br>Megaptera novaeangliae<br>Eubalaena glacialis<br>Balaenoptera borealis<br>Physeter catodon | E<br>E<br>E<br>E<br>E | extinct<br>Oceanic<br>Oceanic<br>Oceanic<br>Oceanic<br>Oceanic<br>Oceanic          |
| MOLLUSKS<br>Snail, Chittenango                                                                       | Succinea chittenangoensis                                                                                                                    | Т                     | Madison County                                                                     |
| ovate amber<br>Mussel, dwarf wedge                                                                   | Alasmidonta heterodon                                                                                                                        | E                     | Orange County - lower<br>Neversink River                                           |

\* Except for sea turtle nesting habitat, principal responsibility for these species is vested with the National Marine Fisheries Service.

-

Region 5 - 11/09/94 - 2 pp.

## FEDERALLY LISTED AND PROPOSED ENDANGERED AND THREATENED SPECIES IN NEW YORK (Cont'd)

| Common Name                              | Scientific Name                           | <u>Status</u> | Distribution                                          |
|------------------------------------------|-------------------------------------------|---------------|-------------------------------------------------------|
| BUTTERFLIES<br>Butterfly, Karner<br>blue | Lycaeides melissa samuelis                | E             | Albany, Saratoga, Warren,<br>and Schenectady Counties |
| <u>PLANTS</u>                            |                                           |               |                                                       |
| Monkshood, northern wild                 | Aconitum noveboracense                    | Т             | Ulster, Sullivan, and<br>Delaware Counties            |
| Pogonia, small whorled                   | Isotria medeoloides                       | Т             | Entire state                                          |
| Swamp pink                               | Helonias bullata                          | Т             | Staten Island - presumed<br>extirpated                |
| Gerardia, sandplain                      | Agalinis acuta                            | E             | Nassau and Suffolk Counties                           |
| Fern, American<br>hart's-tongue          | Phyllitis scolopendrium<br>var. americana | Т             | Onondaga and Madison<br>Counties                      |
| Orchid, eastern prairie fringed          | Platanthera leucophea                     | Т             | Not relocated in New York                             |
| Bulrush,<br>northeastern                 | Scirpus ancistrochaetus                   | Ε             | Not relocated in New York                             |
| Roseroot, Leedy's                        | Sedum integrifolium ssp.<br>Leedyi        | Т             | West shore of Seneca Lake                             |
| Amaranth, seabeach                       | Amaranthus pumilus                        | Т             | Atlantic coastal plain beaches                        |

E=endangered

T=threatened

P=proposed

Region 5 - 11/09/94 - 2 pp.



UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE

FED 0 2 1935

Northeast Region Habitat and Protected Resources Division One Blackburn Drive Gloucester, MA 01930-2298

January 27, 1995

John Hecklau Environmental Design and Research 6007 Fair Lakes Drive East Syracuse, NY 13057-1253

Dear Mr. Hecklau:

We reviewed your request for information regarding the presence of shortnose sturgeon (*Acipenser brevirostrum*)in the Hudson River, near Troy, Rensselaer County, New York. Endangered shortnose sturgeon may occur in the lower 243 kilometers (km) of the Hudson River, although they are found primarily between Haverstraw Bay (@ river km 55) and the Troy Lock and Dam (@ river km 243). Spawning occurs in late April/early May and the best available information indicates that the spawning site is located within the Albany/Rensselaer section of the river. The precise location of this site has yet to be determined.

Section 7 of the Endangered Species Act (§402.14) directs federal agencies to determine if any action they authorize, fund or conduct may affect listed species or critical habitat. There is no designated critical habitat for shortnose sturgeon in the Hudson River. Depending on the nature and extent of any future remediation projects at the Troy project site, shortnose sturgeon may be affected as they occur and may spawn in this region. If a remediation project is planned eventually, you should inform the federal agency responsible for either permitting, funding or carrying out the project to consult with the National Marine Fisheries Service regarding potential impacts to endangered shortnose sturgeon.

If you have further questions about shortnose sturgeon or the Endangered Species Act consultation process, please contact me at (413) 253-8616 or Doug Beach (Protected Species Program Coordinator) at (508) 281-9254.

Sincerely,

Dom Halun

Nancy Haley Protected Species Program



## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Wildlife Resources Center 700 Troy-Schenectady Road Latham, NY 12110-2400

(518) 783-3932



January 4, 1995

Langdon Marsh Commissioner

John Hecklau Environmental Design and Research 6007 Fair Lakes Drive East Syracuse, New York 13057-1253

Dear Mr. Hecklau:

We have reviewed the New York Natural Heritage Program files with respect to your recent request for biological information concerning an inactive hazardous waste site, site as indicated on your enclosed map, located in the Cities of Troy and Colonie, Rensselaer and Albany Counties.

Enclosed is a computer printout covering the area you requested to be reviewed by our staff. The information contained in this report is considered <u>sensitive</u> and may not be released to the public without permission from the New York Natural Heritage Program. Also enclosed is the Breeding Bird Atlas information for this area.

Our files are continually growing as new habitats and occurrences of rare species and communities are discovered. In most cases, site-specific or comprehensive surveys for plant and animal occurrences have not been conducted. For these reasons, we can only provide data which have been assembled from our files. We cannot provide a definitive statement on the presence or absence of species, habitats or natural communities. This information should <u>not</u> be substituted for on-site surveys that may be required for environmental assessment.

This response applies only to known occurrences of rare animals, plants and natural communities and/or significant wildlife habitats. You should contact our regional office, Division of Regulatory Affairs, at the address <u>enclosed</u> for information regarding any regulated areas or permits that may be required (e.g., <u>regulated wetlands</u>) under State Law.

If this proposed project is still active one year from now we recommend that you contact us again so that we can update this response.

> Sincerely, Information Services New York Natural Heritage Program

Encs.

cc: Reg. 4, Wildlife Mgr. Reg. 4, Fisheries Mgr.

## BIOLOGICAL AND CONSERVATION DATA SYSTEM - ELEMENT OCCURRENCE REPORT, 03 JAN 1995 Prepared by N.Y.S.D.E.C NATURAL HERITAGE PROGRAM

(This report contains sensitive information which should be treated in a sensitive manner. Refer to the users guide for explanation of codes and ranks.)

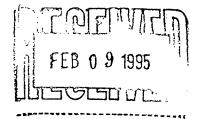
| COUNTY &<br>TOWN | USGS 7 1/2'<br>TOPOGRAPHIC MAP | LAT./<br>LONG.   | PREC-<br>ISION |      | EO<br>RANK | SCIENTIFIC NAME         | COMMON NAME               | ELEMENT<br>TYPE | NY<br>STATUS | FED.<br>STATUS | GLOBAL<br>RANK | . STATE<br>RANK | OFFICE  | USE |
|------------------|--------------------------------|------------------|----------------|------|------------|-------------------------|---------------------------|-----------------|--------------|----------------|----------------|-----------------|---------|-----|
| * ALBANY         |                                |                  |                |      |            |                         |                           |                 |              |                |                |                 |         |     |
| COLONIE          | TROY SOUTH                     | 424340<br>734314 | M              | 1960 | H          | ARABIS<br>MISSOURIENSIS | GREEN ROCK-CRESS          | VASCULAR PLANT  | R            |                | G5             | s2              | 4207366 | 2   |
| COLONIE          | TROY SOUTH                     | 424117<br>734407 | м              |      | Н          | PHYSALIS<br>VIRGINIANA  | VIRGINIA<br>GROUND-CHERRY | VASCULAR PLANT  | U            |                | G5             | SH              | 4207366 | 5   |
| COLONIE          | TROY SOUTH                     | 424132<br>734356 | M              |      | н          | POA SYLVESTRIS          | WOODLAND BLUEGRASS        | VASCULAR PLANT  | U            |                | G5             | S1              | 4207366 | 6   |

3 Records Processed

IR2 page 1

|                                                                                                                         |                                                                    | DATE: 01                           | /03/95                                |                                        |                                  |                                  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|---------------------------------------|----------------------------------------|----------------------------------|----------------------------------|
| REPORT NAME OF AREA<br>ID#                                                                                              | TYPE OF AREA                                                       | COUNTY                             | TOWN OR CITY                          | QUADRANGLE                             | LATITUDE<br>(DEG M               | LONGITUDE<br>IN SEC)             |
| <ul> <li>★ PW 01-501 Menands Marsh</li> <li>★ SW 42-500 Troy Dam Area</li> <li>★ SW 42-501 Poestenkill Creek</li> </ul> | Freshwater Wetland<br>Anadromous Fisheries<br>Anadromous Fisheries | Albany<br>Rensselaer<br>Rensselaer | Colonie<br>Troy - City<br>Troy - City | Troy South<br>Troy North<br>Troy South | 42 40 59<br>42 44 48<br>42 43 07 | 73 43 37<br>73 41 20<br>73 41 14 |

.


\* Designated "significant Coastal Fish and Wildlife Habitat" by the NYS Dept. of State.

## New York State Department of Environmental Conservation



Region 4 Headquarters 1150 North Westcott Road Schenectady, New York 12306 Phone (518) 357-2066 Fax (518) 357-2087

Langdon Marsh Commissioner



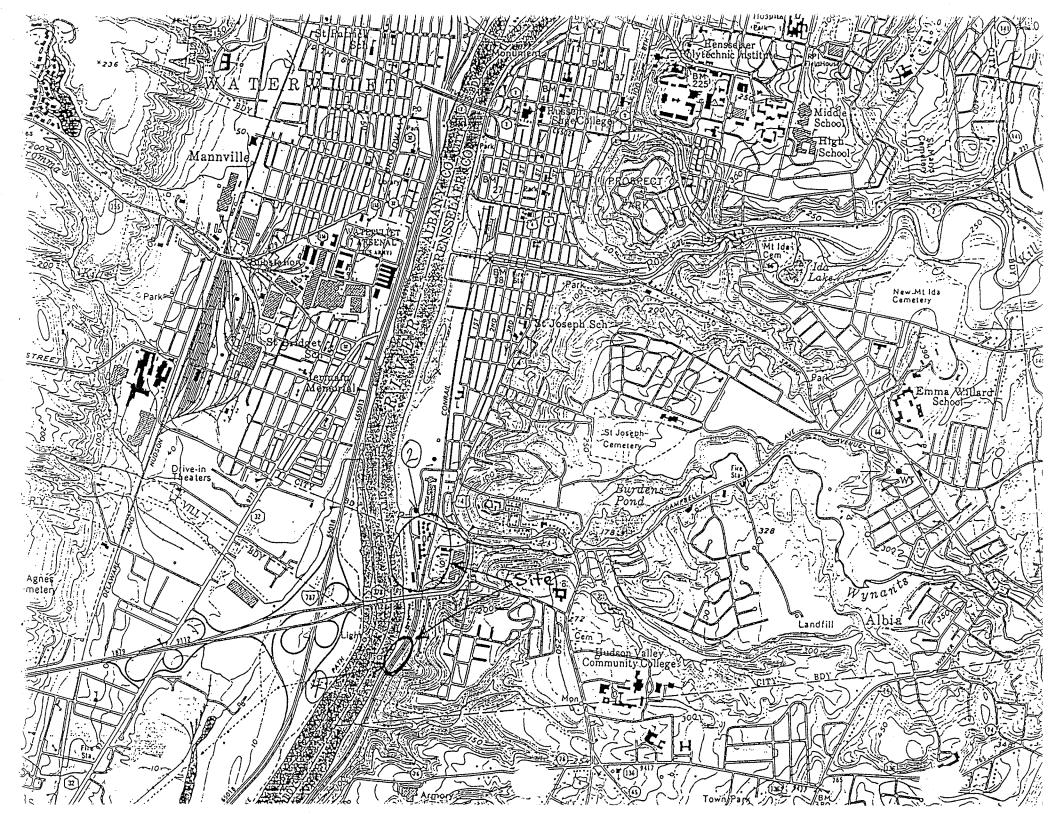
February 2, 1995

Mr. John Hecklau Environmental Design and Research 6007 Fair Lakes Drive East Syracuse, NY 12057-1253

Dear Mr. Hecklau:

I reviewed our files concerning significant fish and wildlife resources within two miles of the two inactive hazardous waste sites in the city of Troy shown on the attached map. I also consulted with Norm McBride the fisheries biologist responsible for Rensselaer County.

Basically, the fish resources of significance in the area of concern are anadromous fishes, specifically striped bass, blueback herring, American shad and alewives. The very lower reaches of the Poestenkill Creek have been identified as significant for their spawning activities. Shortnose sturgeon may also use reaches of the Hudson River as far north as the Troy Dam.


Bald eagles, an endangered species in New York is regularly seen along the Hudson River. Most observations of eagles in the vicinity of the two inactive hazardous waste sites are reported during spring and fall migration periods, but eagles use open portions of the Hudson River during the winter as well. In addition, ospreys, a threatened species, are observed along the Hudson River during migration. I have no reason to believe that there is potential nesting habitat for either of these species within two miles of the sites, however.

The only other significant wildlife resources that I am aware of in the general area are waterfowl using portions of the Hudson River that remain free of ice during the winter. What are considered significant winter waterfowl concentration areas in the vicinity of the inactive hazardous waste sites are downstream of the Troy Dam and the area around the confluence of the Hudson and Mohawk Rivers. Portions of the winter waterfowl concentration area associated with the Troy Dam are within two miles of northern most of the two inactive hazardous waste sites. The waterfowl that concentrate in these areas are primarily Canada geese, black ducks and mallard ducks. Various species of gulls also use the area. To find out more about exactly what species use particular portions of the Hudson River to what extent you should contact the Hudson-Mohawk Bird Club, 439-8080, Diane Scovill, President of the Capitol District Audubon Society, 383-4048 and Warren Broderick, 235-4041.

I apologize for taking so long to respond to your request for information. If you have additional questions concerning the wildlife resources of the area, please feel free to contact me. Question about fisheries resources should be directed to our fisheries office in Stamford at (607) 652-7364.

Sincerely Nancy Heaslip

Senior Wildlife Biologist



Appendix D-C - Project Personnel Vitae



# Environmental Design & Research

Landscape Architecture, Surveying, Engineering, P.C.

John D. Hecklau Ecologist/Wildlife Biologist

Mr. Hecklau is a wildlife biologist experienced in resource management planning, environmental impact analysis, right-of-way management, wildlife inventory and census techniques, habitat and ecosystem analysis, and recreation planning.

### EDUCATION

State University of New York, College of Environmental Science & Forestry Syracuse, New York Master of Science in Environmental and Forest Biology, 1982 Specialization: Wildlife Biology

Middlebury College, Middlebury, Vermont Bachelor of Arts in Biology, 1979

### EMPLOYMENT HISTORY

Environmental Design and Research, P.C.

Syracuse, New York *Position:* Senior Associate/Director, Environmental Services/Ecologist. *Employed:* January 1989 - present.

John D. Hecklau

Clinton, New York *Position:* Self-employed Environmental Consultant. *Employed:* February 1988 - December 1988.

### New York State Power Authority

Marcy, New York *Position:* Resource Manager - Environmental Programs Division. *Employed*: July 1984 - January 1988.

### **Connecticut Department of Environmental Protection**

Burlington, Connecticut Position: Wildlife Biologist. Employed: June 1983 - June 1984.

### Central Park Conservancy

New York, New York *Position:* Wildlife Consultant. *Employed:* August 1982 - May 1983.

6007 Fair Lakes Drive East Syracuse, NY 13057-1253 (315) 463-0808 FAX (315) 463-9587

53 West Main Street Honeoye Falls, New York 14472-1130 (716) 624-7290 FAX (716) 624-7298

### PROFESSIONAL EXPERIENCE

### Environmental Design and Research, P.C.

Director of Environmental Services section of a multi-disciplinary private consulting firm, and project manager on a variety of environmental inventory, management, and permitting projects. Significant projects have included the following:

- Preparation of a Generic Environmental Impact Statement for a proposed industrial park on a 128-acre site in the City of Watertown, Jefferson County, New York. Also conducted a Phase I Environmental Audit and state and federal wetland delineation on the project site.
  - Preparation of portions of a Generic Environmental Impact Statement (GEIS) for a proposed 305-acre office park in the Town of Greece, Monroe County, New York. Conducted a vegetation and wildlife inventory for the site and prepared the Terrestrial and Aquatic Ecology section of the GEIS, along with sections 1) Topography, Geology and Soils, 2) Visual Characteristics, 3) Land Use and Neighborhood Characteristics, 4) Historical and Archaeological Resources, and 5) Recreation and Open Space. Also conducted an on-site wetland delineation, and assisted with preparation and submittal of permit applications and mitigation plans.
    - Preparation of Environmental Impact Assessment Report for a proposed natural gas distribution system in the Village of Gouverneur and the Towns of Gouverneur, Fowler, and Edwards, St. Lawrence County, New York. Report included an inventory of environmental resources within the proposed franchise area, as well as an assessment of anticipated impacts and proposed mitigation measures within that portion of the franchise area scheduled to receive gas service within the next five years.
  - Provision of on-going assistance to Niagara Mohawk Power Corporation with the federal relicensing of various hydroelectric projects throughout New York State. Prepared a variety of plans, reports, position papers, studies, and responses to agency inquiries. Topics addressed have included land use and recreation, fisheries protection and enhancement, whitewater boating, open space conservation, aesthetic/visual impacts, and cultural resources management.
    - Development of comprehensive environmental protection and enhancement plans for the upper Hudson, Sacandaga and Raquette River corridors. These corridors include 29 hydroelectric developments, 22 of which are owned and\or operated by Niagara Mohawk Power Corporation. Reports were prepared to assist with on-going planning efforts and Federal relicensing efforts involving several of these projects.

- Evaluation of environmental impacts of a proposed clay mining operation on a 570-acre site in the Towns of East Bloomfield and West Bloomfield, Ontario County, New York. Study involved a federal wetland delineation, a vegetation and wildlife inventory (including identification of endangered species/critical habitats), and preparation of the Terrestrial and Aquatic Ecology section of the Draft Environmental Impact Statement for the project.
- Development of a comprehensive management plan for the Albany Pine Bush Preserve, a unique pine barren community just west of the City of Albany, Albany County, New York. Project involved extensive data collection, public participation, and close coordination with members of the Albany Pine Bush Preserve Commission. Plan included management recommendations, an implementation plan, and a Draft Environmental Impact Statement that addressed the potential impacts of plan implementation, including land acquisition, fire management, and increased public use.
- Evaluation of the environmental impacts of a proposed natural gas storage project in the Town of Avoca, Steuben County, New York. Study included a wetland inventory and delineation, a vegetation, fish and wildlife inventory (including identification of endangered species and critical habitats and preparation of an ecological resource report for the FERC license application for the project. Report described ecological resources within a 2,360acre study area, along with potential impacts to these resources resulting from construction and operation of the project, and proposed means of mitigating adverse impacts.
- Numerous projects involving the delineation of wetlands in accordance with the procedures outlined in the 1989 Federal Manual for Identifying and Delineating Jurisdictional Wetlands and the 1987 Corps of Engineers Wetlands Delineation Manual.
- Preparation of visual/aesthetic impact assessments of various hydro developments for Niagara Mohawk Power Corporation. Projects have involved documentation and evaluation of existing conditions, and preparation of computer-assisted visual simulations of potential mitigation measures.
  - Preparation of ecological study of Mendon Ponds Park, Monroe County, New York. The park is a designated National Natural Landmark, well known for its variety of rare species and unique natural communities, including fens, bogs, oak openings, and prairie remnants. Study involved species inventory, analysis of ecological value of various areas of the park, and management recommendations for the protection and enhancement of the park's ecological resources.

### John D. Hecklau (self-employed)

Provided environmental/ecological consulting services to landscape architecture and planning firms. Specific projects included preparation of 12 vegetation and wildlife inventories, four wetland studies, and three environmental damage assessments. Gathered ecological resource data for two regional land use plans, and wrote a Draft Environmental Impact Statement for a 28 lot residential subdivision in Dutchess County, New York.

### New York State Power Authority

Provided environmental support and supervision during the planning, licensing and construction of a major 345kV transmission line. Specific duties included 1) conducting baseline environmental surveys and inventories, 2) reviewing and revising environmental/construction specifications, 3) providing liaison with state regulatory agencies, and 4) monitoring compliance with environmental regulations and commitments during construction.

Assisted with implementation of ongoing right-of-way management program, including revision of existing vegetation management specifications and criteria, field evaluation of vegetation inventory and management techniques, and assistance with development of computerized right-of-way database. Other responsibilities included initiation of various wildlife management programs and studies. These included 1) programs to improve wildlife habitat on right-of-ways and at generating facilities, 2) studies to assess impacts of transmission line construction on wildlife, and 3) an endangered species survey for a proposed 200 mile-long transmission line.

## Connecticut Department of Environmental Protection

Prepared a comprehensive development and operation plan for a newly acquired 450-acre wildlife management area and proposed educational facility. Project included coordination of a wildlife species survey, analysis of habitat improvement needs, and conducting of a nationwide survey of existing conservation education facilities and programs.

### Central Park Conservancy

Prepared fish and wildlife section of a master plan for the restoration and management of Central Park. Project included conducting an inventory of species and significant habitat areas within the 830-acre park. Report of findings was prepared, which included analysis of habitat value and recommendations for preserving and enhancing park wildlife habitats.

### Manomet Bird Observatory

Assisted Director of Environmental Education with preparation and teaching of field and classroom courses regarding ornithology and marine biology. Also assisted research personnel with studies investigating songbird territoriality and shorebird migration.

### Minnesota Department of Natural Resources

Conducted research project involving trapping and transplanting of radio-tagged wild turkeys. Investigated mortality, dispersal, and reproduction of birds in three separate populations. Also assisted DNR biologists in wildlife research projects involving trapping and tagging of whitetail deer, and surveys of ruffed grouse and waterfowl.

### **PROFESSIONAL AFFILIATIONS**

The Wildlife Society

- Member

- Certified Wildlife Biologist (Associate)

### Town of Kirkland, New York

- Planning Board Chairman

### PUBLICATIONS

Hecklau, J.D., C. Palmero, E.T. Liverman and J. de Wall Malefyt. 1987. Reducing the environmental impacts of stream crossings on a 345kV transmission line in New York. In W.R. Byrnes and H.A. Holt, eds. Fourth Symp. on Environmental Concerns in Rights-of-Way Manage. Purdue Univ., West Lafayette, IN.

Liverman, E.T., J.D. Hecklau and C. Palmero. 1987. Minimization of soil erosion and siltation during construction of the Marcy-South 345kV transmission facilities. pp. 241-253. <u>In</u> Erosion Control: You're Gambling Without It. Proc. of Conf. XVII. International Erosion Control Assoc., Pinole, CA. 335pp.

Hecklau, J.D. 1986. A wildlife survey and management plan for New York City's Central Park. pp. 238-239. In L.W. Adams and D.L. Leedy, eds. Integrating Man and Nature in the Metropolitan Environment. Proc. Natl. Symp. on Urban Wildl. Natl. Inst. for Urban Wildl., Columbia, MD. 249 pp.

Hecklau, J.D. 1985. Wildlife in Central Park: The problems and opportunities associated with wildlife management in an urban park setting. Trans. Northeast. Fish and Wildl. Conf. 42: 126-137.

Hecklau, J.D., W.F. Porter, and W.M. Shields. 1982. Feasibility of transplanting wild turkeys into areas of restricted forest cover and high human density. Trans. Northeast. Fish and Wildl. Conf. 39: 96-104.



# Environmental Design & Research Landscape Architecture, Surveying, Engineering, P.C.

Barbara C. Reuter Botanist/Ecologist

Ms. Reuter is a botanist with a broad range of experience in wetland delineation, permitting and mitigation, environmental impact analysis, vegetation inventory and sampling techniques, and ecosystem analysis.

### EDUCATION

University of Wisconsin, Madison, Wisconsin Master of Science in Botany, 1985 Specialization: Plant Population Biology

Iowa State University, Ames, Iowa Bachelor of Science in Landscape Architecture, 1979

University of Tennessee, Knoxville, Tennessee Bachelor of Arts in Botany, 1976

### **EMPLOYMENT HISTORY**

Environmental Design & Research, P.C. Syracuse, New York *Position:* Botanist/Wetland Specialist/Ecologist. *Employed:* June 1990 - present.

Terrestrial Environmental Specialists, Inc. Phoenix, New York *Position*: Associate Environmental Scientist. *Employed*: October 1987 - June 1990.

Texas A&M University Research and Extension Center at Dallas Dallas, Texas *Position*: Research Associate. *Employed*: February 1986 - August 1987.

The Nature Conservancy Madison, Wisconsin *Position:* Science and Stewardship Intern. *Employed:* September 1982 - January 1984.

6007 Fair Lakes Drive East Syracuse, NY 13057-1253 (315) 463-0808 FAX (315) 463-9587 53 West Main Street Honeoye Falls, New York 14472-1130 (716) 624-7290 FAX (716) 624-7298 The Bruce Company Middleton, Wisconsin *Position*: Landscape Architect. *Employed*: March 1980 - September 1982.

### PROFESSIONAL EXPERIENCE

### Environmental Design and Research, P.C.

Botanist/Ecologist and Wetland Specialist in the Environmental Services Division of EDR, and project manager on a variety of environmental inventory, management, and permitting projects. Involved in the preparation and distribution of marketing materials for the Environmental Services Division. Significant projects have included the following:

- Project manager for numerous projects involving the delineation of wetlands in accordance with the procedures outlined in the 1989 Federal Manual for Identifying and Delineating Jurisdictional Wetlands and the 1987 Corps of Engineers Wetlands Delineation Manual. Along with boundary delineation and data collection in the field, these projects have generally involved preparation of a wetland delineation report in accordance with Corps' standards, and submission of Sections 404 and 401 (and when appropriate, Section 10 and Article 24) permit applications.
- Project manager for several projects involving the delineation of state regulated wetlands. EDR's role in these projects has typically been to review existing documentation to determine the possible presence of state regulated wetlands on the site, and then contact the appropriate NYSDEC Regional Office to coordinate a field visit to delineate the wetlands according to the NYSDEC's methodology. In certain instances, EDR has delineated state wetland boundaries prior to NYSDEC arrival on site and then subsequently reviewed the delineated boundary with NYSDEC staff.

Evaluation of existing ecological conditions on a 570-acre site proposed as a clay mine operation in the Towns of East Bloomfield and West Bloomfield, Ontario County, New York. The study included a vegetation and wildlife inventory (including identification of endangered species and critical habitats), and preparation of a Vegetation and Wildlife Survey report for inclusion in the Draft Environmental Impact Statement (DEIS) for the project. Potential project impacts on ecological resources were identified, and means of mitigating impacts to wetlands were recommended. Provided agency liaison to the project sponsor and, as part of the wetland permit conditions, developed a detailed mitigation plan (including construction drawings and specifications) for impacts to the onsite wetlands.

Developed a wetland design to mitigate for impacts to approximately 2.0 acres of freshwater wetland on a transmission line right-of-way along Chittenango Creek in Onondaga and Madison Counties. Performed a detailed wetland delineation according to the federal methods in the proposed mitigation area, and then prepared a conceptual wetland design and mitigation plan. Provided agency liaison to the Authority and prepared construction specifications, construction drawings, and a post-construction monitoring plan. Technical support and on-site supervision were also provided during the construction phase of the project.

Developed and implemented a comprehensive wetland/natural areas enhancement program to mitigate the impacts of a 305-acre corporate business park being constructed in the Town of Greece, New York. The program involved the creation of 32.5 acres of natural areas, including open water habitat, emergent and submergent wetland, and a complex of open field, shrub, and forested upland. Worked closely with the engineers, landscape architects, and project sponsor to develop a detailed planting plan for the wetland and upland areas along with planting specifications and an open space management plan. Performed the on-site wetland delineation, submitted permit applications and mitigation plans, and functioned as the liaison between the project sponsor and the involved agencies (the Corps, the NYSDEC, the U.S. Fish and Wildlife Service, and U.S. Environmental Protection Agency).

Assisted a large waste disposal company with the preparation and submittal of wetland permit applications to the Corps and NYSDEC in association with the proposed expansion of an existing landfill in the Town of Perinton, Monroe County, New York. Wetland issues involved in this project included impacts to a NYSDEC wetland buffer area, relocation of a gas pipeline through a NYSDEC regulated wetland, and maintenance of a NYSDEC and Corps regulated stream. Specific tasks included the review of all data pertaining to the proposed expansion, identification of all wetland issues involved, review of previous wetland investigations, on-site wetland delineation, and preparation of applications for all required wetland permits.

Conducted a wetland assessment and delineation on a 204-acre landfill site in the Town of Albion, Orleans County, New York. Conducted a thorough review of historical information to determine if numerous small depressions and blocked drainage courses containing wetland vegetation resulting from past and on-going landfill operations were under the jurisdiction of the Corps. This information revealed that the project site was characterized by upland soils, and had historically been in agricultural production. Areas appearing to meet the criteria of federally regulated wetlands were actually the product of the landfill operation and thus only temporary in nature. Therefore, the amount of wetland on site that is under federal jurisdiction was determined to be minimal.

- Delineation of wetlands on a 170-acre parcel of land proposed for a sand, gravel, and rock mining operation in the Town of Martinsburg, Lewis County, New York. Conducted a detailed wetlands investigation and delineation followed by the preparation of a report presenting the results of the wetland delineation. Prepared a wetland permit application for submittal to the Corps and NYSDEC under Sections 404 and 401, respectively, of the Clean Water Act. The wetland permit application included a discussion of the anticipated impacts to on-site wetlands as a result of the mining operation, as well as a proposed wetland mitigation plan.
- Conducted a state and federal wetland delineation on a 128-acre parcel of land in the City of Watertown, Jefferson County, New York. This project involved an initial site walkover and review of pertinent agency information to determine the presence and location of wetlands on the subject property. A detailed wetland delineation was conducted using the methodology set forth in the 1987 *Corps of Engineers Wetlands Delineation Manual* followed by an on-site meeting with the NYSDEC to determine the boundaries of the wetland based on the state's criteria. A wetland delineation report was prepared and submitted to the Corps and NYSDEC to be used for permitting purposes. Based on the proposed master plan for the industrial park, it has been determined that existing Nationwide Permits under Section 404 of the Clean Water Act will cover the anticipated impacts.
- Conducted several biological surveys to determine the presence or absence of Federal and State endangered and threatened plant and animal species. These projects involved a literature review, field investigation, and preparation of a report which included a discussion of potential impacts and mitigation.
- Conducted a vegetation inventory for the Albany Pine Bush Preserve, a unique pine barren community just west of the City of Albany, Albany County, New York. Project involved working closely with personnel from the New York Natural Heritage Program and The Nature Conservancy, and classifying the vegetation communities according to <u>Ecological Communities of New York State</u> (Reschke, 1990).
- Prepared an Environmental Baseline Study for a proposed landfill site in Onondaga County, New York. This study was incorporated into an Environmental Impact Statement which was used by the Onondaga Resource Recovery Agency to aid in siting a countywide landfill. The Environmental Baseline Study involved review of current available data, and description and analysis of specific items of concern including ecological resources and rare species occurrence at the county and town levels. Other topics addressed included water resources, air resources, land use and zoning, community services, demography, and cultural, archaeological, and historical resources.

### Terrestrial Environmental Specialists, Inc.

Conducted several vegetation inventories and assessments for rare plant species for various projects throughout the Northeast. These projects involved a literature review, field investigation, and preparation of a report which included a discussion of potential impacts and mitigation. Conducted numerous wetland delineations throughout the Northeastern U.S. and Puerto Rico using the Unified Federal Method for wetland delineation. Prepared wetland delineation reports and permit applications with supporting documentation for Section 404 and Section 401 Water Quality Certification. Performed a number of environmental audits and assisted in the preparation of Environmental Impact Statements.

### Texas A&M University Research and Extension Center at Dallas

Assisted with compilation, analysis, and summarization of plant research data. Duties included set-up and maintenance of greenhouse experiments, laboratory measurements, and computerized statistical analysis of data. Edited a book entitled "A Field Guide to Texas Trees" by B.J. Simpson (1988).

### Department of Botany, University of Wisconsin - Madison

Assisted in restructuring the curriculum for Botany 100 (an introductory course for non-science majors) to provide more small group contact and hands-on experience. Duties included designing instructional materials, constructing teaching aids, preparing equipment and handouts, and writing teaching and study guides. Also provided weekly individual and group tutoring sessions for students in Botany 130 (an introductory course for science majors). Other responsibilities were to attend tutoring workshops, develop handouts, write a sourcebook for teaching assistants, and develop study questions and practice quizzes. In addition, taught two sections of Botany 130 students consisting of two two-hour labs and one one-hour discussion. Provided additional study sessions prior to examinations, prepared quizzes, and graded exams.

### Institute for Environmental Studies, University of Wisconsin - Madison

Assisted a subcommittee of the Land Resources Program in the development of a proposed seminar series for Land Resources students and generated seminar outlines, provided bibliographies and reading lists, and suggested speakers, instructors, and teaching assistants for the selected seminar topics.

### The Nature Conservancy - Wisconsin Chapter

Compiled and organized The Nature Conservancy stewardship information into site stewardship summaries for use in management planning. Other duties were to compile and organize specific site information for use in the site registry program and to inventory properties for potential purchase.

### University of Wisconsin - Arboretum

Assisted the Arboretum Ecologist in gathering field data for several ongoing research projects including control of sweet clover and poplar in a prairie. Also gathered field data pertinent to an ongoing study of the response of certain prairie forbs to varying fire management regimes.

### The Bruce Company

Conducted site inspections and supervised ongoing landscape projects, residential design, and cost estimates.

## Environmental Design Group, Inc.

Responsibilities were to meet with clients and land developers to discuss ongoing projects and the initiation of new projects. Other responsibilities involved site inspection, and analysis and production of construction drawings and specifications for residential and commercial development.

#### PROFESSIONAL AFFILIATIONS

Society of Wetland Scientists Association of State Wetland Managers The Nature Conservancy

### PUBLICATIONS

Reuter, B.C. 1986. The habitat, reproductive ecology and host relations of *Orobanche fasciculata* Nutt. (Orobanchaceae) in Wisconsin. <u>Bull. Torrey Bot. Club</u> 113(2): 110-117.

Reuter, B.C. xx. Comparison of seed coat morphology of seven species of *Orobanche* (Orobanchaceae) using SEM. Manuscript in preparation for submittal to <u>TSEM</u>.

Reuter, B.C. xx. The reproductive ecology of *Orobanche multiflora* Nutt. (Orobanchaceae) in Fort Worth. Texas. Manuscript in preparation for submittal to the <u>The American Midland Naturalist</u>.

Reuter, B.C., B.J. Simpson, and D.D. Reuter. xx. Comparison of four species of Acer (Aceraceae) in Texas and Oklahoma using leaf characteristics. Manuscript under review.