the figroup.

IT Corporation 13 British American Boulevard Latham, NY 12110-1405

Tel. 518.783.1996 Fax. 518.783.8397

A Member of The IT Group

March 15, 2002

Mr. William Jones, P.E. Niagara Mohawk A National Grid Company 300 Erie Blvd West Syracuse, NY 13202

Subject: Troy/Water Street (Area 2) Supplemental Phase II Data

Dear Bill:

In accordance to the Supplemental Phase II Investigation work plan dated January 29, 2001, field work was conducted at the Troy/Water Street (Area 2) site from January 29 through March 13, 2001. This letter transmits the results from this investigation.

1.0 Gauging of Existing Monitoring Wells

The following wells were gauged to determine the presence/absence of NAPL:

MW-3	MW-6
MW-12	MW-21
MW-22	MW-23
MW-24	MW-25
MW-26	MW-27
MW-28	

Gauging of MW-10 was proposed in the scope of work, however, the well was obstructed at approximately four feet below grade. The remaining wells were gauged during three separate events (February 2, March 3, and March 23, 2001). The results are presented as **Attachment A**. As specified in the work plan, the wells were not purged prior to gauging. Both light and dense NAPLs were investigated.

2.0 Groundwater Area A

Three soil borings were installed in the area between King Fuel's former USTs and SB-19 and MW-12. These borings were completed as monitoring wells (MW-29, MW-30, and MW-31). The wells were installed to an average depth of 38 feet below grade. Continuous split spoon samples were collected and screened at two foot intervals from each soil boring. The drill logs are presented as **Attachment B**. Four soil samples were collected from each soil boring and sent to Severn Trent Laboratories (STL) in Buffalo for analysis of BTEX by Method 8240 (95-1) and PAHs by Method 8270 (95-2). Analytical results are presented in **Table 1** and **Table 2 (Attachment C**). Additionally, a soil sample from each soil boring (two samples from MW-31) was sent to Worldwide Geosciences, Inc.

(Worldwide) for fingerprint analysis. The results of the fingerprint analyses are presented as **Attachment D.**

The wells were developed in accordance with the GQAPP/FSP on February 8, 2001. The wells were allowed to equilibrate, and were then purged and sampled. On March 2, 2001, MW-13, MW-15, MW-29, and MW-31 were gauged, purged and sampled. Groundwater samples were sent to STL in Buffalo for analysis of BTEX by Method 8240 and PAHs by Method 8270. Analytical results are presented in **Table 3** and **Table 4** (Attachment C). Additionally, a total of three groundwater samples were sent to Worldwide for fingerprint analysis. The results of the fingerprint analysis are presented in Attachment D.

The roadbox covering MW-12 was completely filled with ice and was therefore inaccessible. Initially, MW-30 could not be located. MW-30 was subsequently located, purged and sampled on March 13, 2001.

3.0 Former Wynantskill Channel

The scope of work required the installation of two piezometers (PZ-1 and PZ-2) in the location of the former Wynantskill Channel. Both of these borings were advanced to bedrock. Continuous split spoon samples were collected and screened with a PID. Due to a lack of impacts in the location of PZ-2, the boring was not completed as a piezometer and subsequently renamed as SB-40. PZ-1 encountered tar-like material from 21 to 30 feet below grade. This boring was cased to 32 feet below grade to avoid dragging the impacts to a deeper depth. The completed drill logs for these wells are presented in **Attachment B**. Five soil samples were collected from each soil boring and sent to STL for analysis of BTEX by Method 8240 (95-1) and PAHs by Method 8270 (95-2). Analytical results are presented in **Table 1** and **Table 2**. Additionally, a soil sample from each soil boring was sent to Worldwide for fingerprint analysis. The results of the fingerprint analysis are presented in **Attachment D**.

Subsequent to its installation, PZ-1 was included in the NAPL gauging events on March 9 and 23, 2001.

Please feel free to contact me with any questions at (518) 783-1996.

Sincerely, IT Corporation

(ballin Campbell

А

Cecelia Campbell Project Geologist

Attachments:

- NAPL Gauging Form
- B Drilling Logs
- C Analytical Results
- D Worldwide Geosciences, Inc. Report
- E Site Figure

IT Corporation he for:

Bruce W. Ahrens, CHMM Sr. Project Manager

IT Corporation A Member of The IT Group

APPENDIX A

NAPL GAUGING

Attachment A

NAPL GAUGING Niagara Mohawk - Area 2 Troy, New York

Well	Dete	Depth of	Depth to	Depth to	Product	Commonto
Number	Date	Well	Water	Product	Thickness	Comments
	02/01/01	33.45	22.19	NA	NA	
MW-3	03/09/01	32.80	22.94	NA	NA	
	03/23/01	32.60	21.40	NA	NA	
	02/01/01	29.05	15.11	NA	NA	
MW-6	03/09/01	-	-	_	-	Well not accessable due to snow
	03/23/01	29.10	14.71	NA	NA	
	02/01/01	38.20	25.76	NA	NA	
MW-12	03/09/01	-	-	-		Roadbox full of ice
	03/23/01	38.25	24.37	NA	NA	
	02/01/01	29.40	19.90	NA	NA	Drops of tar-like material on IP tape; material on
MW-21	03/09/01	29.40	19.37	NA	NA	2/1 or 3/9/01
	03/23/01	29.35	19.26	29.17	0.18	Confirmed DNAPL with bailer
	02/05/01	25.40	18.43	NA	NA	Located with a metal detector
MW-22	03/09/01	25.40	18.40	NA	NA	
	03/23/01	25.40	18.28	NA	NA	
	02/01/01	28.80	22.45	NA	NA	
MW-23	03/09/01	28.79	22.17	NA	NA	
	03/23/01	28.85	21.86	NA	NA	
	02/01/01	29.50	22.39	NA	NA	
MW-24	03/09/01	29.65	22.18	NA	NA	
	03/23/01	29.75	21.70	NA	NA	
	02/01/01	30.80	22.55	NA	NA	
MW-25	03/09/01	30.60	22.42	NA	NA	
	03/23/01	30.25	21.79	NA	NA	
	02/01/01	30.25	22.50	NA	NA	
MW-26	03/09/01	30.00	22.28	NA	NA	
	03/23/01	30.15	20.88	NA	NA	
	02/01/01	31.80	17.56	NA	NA	
MW-27	03/09/01	32.80	17.32	NA	NA	
	03/23/01	32.80	16.21	NA	NA	
	02/01/01	23.35	13.93	NA	NA	
MW-28	03/09/01	-	-	-	-	Roadbox full of ice
	03/23/01	23.30	13.71	NA	NA	
P7_1	03/09/01	26.10	21.25	NA	NA	
	03/23/01	26.00	21.18	NA	NA	

Attachment A (cont.)

Well Gauging Data Niagara Mohawk - Area 2

Well Number	Date	Depth of Well	Depth to Water	Depth to Product	Product Thickness	COMMENTS
MW-12	03/02/01	-	-	-	-	Roadbox full of ice
MW-13	03/02/01	30.23	25.63	NA	NA	
MW-15	03/02/01	36.36	26.79	NA	NA	
MW-29	03/02/01	40.15	25.75	NA	NA	Odor
MW-30	03/13/01	37.24	25.53	25.51	0.02	Odor
<u>MW-31</u>	03/13/01	34.89	26.29	26.12	0.17	Strong odor/ Yellow liquid LNAPL

IT Corporation A Member of The IT Group

APPENDIX B

TABLES

Table 1 Subsurface Soils Volatiles (mg/kg) Niagara Mohawk - Area 2

		Recommend.			MW-29					MM	V-30					MW-31		
Analyte	Analytical Method	Soil Cleanup Objective (1)	13-15'	23-25'*	23-25' DL	33-35'	37-39'	7-9'	17-19'	25-27"*	25-27' DL	<u>35-</u> 37	DUP 35- 37'	<u>7-9'</u>	15-17'	23-25'*	23-25' RE	33-35'
Benzene	NYSDEC 91-2	0.06	0.011U	.48B	.39DJ	0.013U	0.011U	.011U	.031BJ	2.9Ų	5.9D	.063J	.19J	.027B	.016U	1.4U	1.4U	.012U
Toluene	NYSDEC 91-2	1.5	0.011U	0.36U	1.6U	0.013U	0.011U	0.011U	0.011U	1.4U	1.2DJ	0.011U	0.011U	0.011U	.029U	.26J	.44J	0.011U
Ethylbenzene	NYSDEC 91-2	5.5	0.011U	8.9DJ	8.9D	0.013U	.033B	0.011U	0.011U	51D	51D	.03B	.044B	.11B	0.011U	10J	12	0.011U
Xylenes (Total)	NYSDEC 91-2	1.2	0.011U	3B	9.5D	0.013U	.063B	0.011U	0.011U	37	46D	.033B	.06B	.1B	0.011U	2.3J	27	0.011U
Benzene Isomers	NYSDEC 91-2	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Methylene Chloride	NYSDEC 91-2	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Acetone	NYSDEC 91-2	0.2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	NYSDEC 91-2	0.8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Styrene	NYSDEC 91-2	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2 - Butanone	NYSDEC 91-2	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Carbon Disulfide	NYSDEC 91-2	2.7	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2 - Hexanone	NYSDEC 91-2	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total BTEX	-	NA	BDL	11.42BDJ	20,39DJ	BDL	0.096B	BDL	0.031BJ	88D	104.1DJ	0.126BJ	0.294BJ	0.237B	BDL	12.56J	39.44J	BDL
Total Volatiles (2)	•	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

		Recommend.			SB	-40					PZ	-1		
Analista	Analytical	Soil Cleanup	5 7'	44 421	22.25'	24 22	52 55"	DUP 53-	17 10'	22.25**	23 25' PE	27,20'	34 32'	52 55
Analyte	meuloo	Objective (1)		11-13	23-25	31-33	03-00	- 55	17-19	23-25	23-23 RE	21-23	31-33	33-33
Benzene	NYSDEC 91-2	0.06	0.011U	0.012U	0.012U	0.01 <u>2</u> U	0.048J	0.013J	.011U	1.5U	1.50	0.0120	015U	.002J
Toluene	NYSDEC 91-2	1.5	0.011U	0.012U	.012U	0.012U	0.011U	.011U	0.011U	1.5U	1.5U	.012U	.015U	.01U
Ethylbenzene	NYSDEC 91-2	5.5	.011U	.012U	.012U	.012U	.011U	.011U	.011U	1.5U	1.5U	0.012U	.015U	.01U
Xylenes (Total)	NYSDEC 91-2	1.2	0.011U	.012U	.012U	.012U	.011U	11U	.011U	1.5U	1.5U	0.012U	.015U	.01U
Benzene Isomers	NYSDEC 91-2	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Methylene Chloride	NYSDEC 91-2	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Acetone	NYSDEC 91-2	0.2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	NYSDEC 91-2	0.8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Styrene	NYSDEC 91-2	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2 - Butanone	NYSDEC 91-2	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NŤ	NT	NT
Carbon Disulfide	NYSDEC 91-2	2.7	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2 - Hexanone	NYSDEC 91-2	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total BTEX	-	NA	BDL	BDL	BDL	BDL	0.048J	0.013J	BDL	BDL	BDL	BDL	BDL	.002J
Total Volatiles (2)	_	NA_	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

(1) NYSDEC TAGM HWR-94-4046, January 24, 1994

(2) Total volatiles do not include TICs.

* Indicates the values used when a re-analysis of the sample was run by laboratory.

Table 2 Subsurface Soils Semivolatiles (mg/kg)

Niagara Mohawk - Area 2

							Sample	Location				
Analyte	Analytical Method	Recomm.		MW	-29				MW	-30		
		Objective								25-		DUP 35
		(1)	13-15'	23-25	33-35	37-39	7-9	17-19	25-27*	27DL	35-37	-37
Phenol	NYSDEC 91-2 or EPA 8270	0.03	NT	NI	N1	NT	NI	NI	NI	NI		NI
2-Methylphenol	NYSDEC 91-2 or EPA 8270	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4-Methylphenol	NYSDEC 91-2 or EPA 8270	0.9	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4-Dimethylphenol	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	NYSDEC 91-2 or EPA 8270	13	.35U	0.95	.43U	.032J	0.35U	0.37U	24D	24D	.4U	.39U
2-Methylnaphthalene	NYSDEC 91-2 or EPA 8270	36.4	.35U	0.89	.43U	.033J	0.35U	0.37U	31D	22D	.4U	.39U
Acenaphthylene	NYSDEC 91-2 or EPA 8270	41	.35U	.42U	.43U	.4U	.35U	.37U	.39U	7.8U	.4U	.39U
Acenaphthene	NYSDEC 91-2 or EPA 8270	50	.35U	.12J	.43U	.036J	.35U	.37U	0.97	1.2DJ	.4U	.39U
4-Nitrophenol	NYSDEC 91-2 or EPA 8270	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dibenzofuran	NYSDEC 91-2 or EPA 8270	6.2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluorene	NYSDEC 91-2 or EPA 8270	50	.35U	.19J	.43U	.062J	.35U	.37U	1.4	2.4DJ	.4U	.39U
N-Nitrosodiphenylamine	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Phenantherene	NYSDEC 91-2 or EPA 8270	50	.028J	0.7	.43U	0.4	.057J	.033J	2.4	2.8DJ	.4U	.39U
Anthracene	NYSDEC 91-2 or EPA 8270	50	.35U	.18J	.43U	.11J	.35U	.37U	0.68	1.1DJ	.4U	.39U
Carbazole	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	NYSDEC 91-2 or EPA 8270	50	.35U	0.52	.43U	.34J	.097J	.37U	0.6	.52DJ	.4U	.39U
Pyrene	NYSDEC 91-2 or EPA 8270	50	.019J	0.77	.43U	.34J	.1J	.37U	0.64	.83DJ	.4U	.39U
Benzo{a}anthracene	NYSDEC 91-2 or EPA 8270	0.22	.024J	.41J	.43U	.19J	.1J	.37U	.17J	7.8U	.4U	.39U
Chrysene	NYSDEC 91-2 or EPA 8270	0.4	.051J	.28J	.43U	.18J	.14J	0.05	.21J	7.8U	.4U	.39U
Benzo{b}fluoranthene	NYSDEC 91-2 or EPA 8270	1.1	.044J	.3J	.43U	.21J	.17J	.021J	.13J	7.8U	.4U	.39U
Benzo{k}fiuoranthene	NYSDEC 91-2 or EPA 8270	1.1	.35U	.1J	.43U	.4U	.046J	.37U	.033J	7.8U	.4U	.39U
Benzo{a}pyrene	NYSDEC 91-2 or EPA 8270	0.061	.019J	.26J	.43U	.14J	.089J	.37U	.085J	7.8U	.027J	.027J
Indeno{1,2,3-cd}pyrene	NYSDEC 91-2 or EPA 8270	3.2	.35U	.12J	.43U	.06J	.051J	.37U	.021J	7.8U	.4U	.39U
Dibenz{a,h}anthracene	NYSDEC 91-2 or EPA 8270	0.014	.35U	.038J	.43U	.4U	.35U	.37U	.39U	7.8U	.4U	.39U
Benzo{g,h,i}perylene	NYSDEC 91-2 or EPA 8270	50	.025J	.14J	.43U	.066J	.062J	.37U	.024J	7.8U	.4U	.39U
bis{2-ethylhexylphthalate)	NYSDEC 91-2 or EPA 8270	50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-butylphthalate	NYSDEC 91-2 or EPA 8270	8.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total PAHs		NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total semivolatiles (2)		500	0.21J	5.968J	BDL	2.199J	0.912J	0.104J	53.363JD	54.85DJ	.027J	.027J

(1) NYSDEC TAGM HWR-94-4046, January 24, 1994

(2) Total semivolatiles do not include TICs.

* Indicates the values used when a re-analysis of the sample was run by laboratory

Table 2 Subsurface Soils Semivolatiles (mg/kg)

Niagara Mohawk - Area 2

							Sar	nple Loca	tion				
Analyte	Analytical Method	Recomm.			MW-31					SB	-40		
		Objective				23-25							DUP 53
		(1)	7-9'	15-17	23-25**	DL'	33-35	5-7	11-13	23-25	31-33'	53-55	-55'
Phenol	NYSDEC 91-2 or EPA 8270	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2-Methylphenol	NYSDEC 91-2 or EPA 8270	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4-Methylphenol	NYSDEC 91-2 or EPA 8270	0.9	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4-Dimethylphenol	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Naphthalene	NYSDEC 91-2 or EPA 8270	13	.043J	<u>.37U</u>	2.2D	2.2D	0.4U	3.8U	.38U	1.1J	.4U	.38U	.37U
2-Methylnaphthalene	NYSDEC 91-2 or EPA 8270	36.4	.079J	.37U	22D	22D	0.4U	3.8U	.38U	3.8U	.4U	.38U	.37U
Acenaphthylene	NYSDEC 91-2 or EPA 8270	41	.35U	.37U	.38U	7.5U	.4U	3.8U	.38U	.5J	.40	.38U	.37U
Acenaphthene	NYSDEC 91-2 or EPA 8270	50	.35U	.37U	0.75	.96DJ	.4U	3.8U	.38U	.95J	.4U	.38U	.37U
4-Nitrophenol	NYSDEC 91-2 or EPA 8270	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dibenzofuran	NYSDEC 91-2 or EPA 8270	6.2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluorene	NYSDEC 91-2 or EPA 8270	50	.35U	.37U	1.3	1.6DJ	.4U	3.8U	.38U	.96J	.4U	.38U	.37U
N-Nitrosodiphenylamine	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Phenantherene	NYSDEC 91-2 or EPA 8270	50	.072J	.37U	0.9	1.6DJ	.043J	.38J	.38U	.43J	.4U	.38U	.37U
Anthracene	NYSDEC 91-2 or EPA 8270	50	.35U	.37U	0.45	.61DJ	.4U	3.8U	.38U	.51J	.4U	.38U	.37U
Carbazole	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	NYSDEC 91-2 or EPA 8270	50	.034J	.37U	.23J	7.5U	.061J	.88J	.14J	1.7J	.4U	.38U	.37U
Pyrene	NYSDEC 91-2 or EPA 8270	50	.034J	.37U	0.45	.49DJ	.11J	.66J	.14J	1.6J	.4U	.38U	.37U
Benzo{a}anthracene	NYSDEC 91-2 or EPA 8270	0.22	.026J	.37U	.16J	7.5U	.056J	.63J	.11J	.58J	.4U	.38U	.37U
Chrysene	NYSDEC 91-2 or EPA 8270	0.4	.038J	.023J	.1J	7.5U	.04J	.58J	.1J	.6J	.4U	.38U	.37U
Benzo{b}fluoranthene	NYSDEC 91-2 or EPA 8270	1.1	.039J	.37U	.099J	7.5U	.054J	1.2J	.18J	.42J	.4U	.38U	.37U
Benzo{k}fluoranthene	NYSDEC 91-2 or EPA 8270	1.1	.35U	.37U	.039J	7.5U	.40	.42J	.093J	3.8U	.4U	.38U	.37U
Benzo{a}pyrene	NYSDEC 91-2 or EPA 8270	0.061	.02J	.37U	.073J	7.5U	.036J	.9J	.14J	.45J	.1J	.38U	.37U
Indeno{1,2,3-cd}pyrene	NYSDEC 91-2 or EPA 8270	3.2	.35U	.37U	.032J	7.5U	.4U	.71J	.084J	3.8U	.4U	.38U	.37U
Dibenz{a,h}anthracene	NYSDEC 91-2 or EPA 8270	0.014	.35U	.37U	.38U	7.5U	.4U	3.8U	.38U	3.8U	.4U	.38U	.37U
Benzo{g,h,i}perylene	NYSDEC 91-2 or EPA 8270	50	.35U	.37U	.039J	7.5U	.4U	.6J	.088J	3.8U	.4U	.38U	.37U
bis{2-ethylhexylphthalate)	NYSDEC 91-2 or EPA 8270	50	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-butylphthalate	NYSDEC 91-2 or EPA 8270	8.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total PAHs		NA	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total semivolatiles (2)		500	0.385J	.023J	28.822DJ	29.46DJ	0.4J	6.96J	1.075J	9.8J	BDL	BDL	BDL

(1) NYSDEC TAGM HWR-94-4046, January 24, 1994

(2) Total semivolatiles do not include TICs.

* Indicates the values used when a re-analysis of the sample was run by laborato

Table 2 Subsurface Soils Semivolatiles (mg/kg)

Niagara Mohawk - Area 2

				Sar	nple Loca	tion	
Analyte	Analytical Method	Recomm.			PZ-1		_
		Objective	471.401	001.051	071 001	0.41.0.01	
		(1)	17-19	23-25	27-29	31-33	53-55
Phenol	NYSDEC 91-2 or EPA 8270	0.03	<u>NI</u>	NI	N1	NI	NI
2-Methylphenol	NYSDEC 91-2 or EPA 8270	0.1	NT	NT	NT	NT	NT
4-Methylphenol	NYSDEC 91-2 or EPA 8270	0.9	NT	NT	NT	NT	NT
2,4-Dimethylphenol	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT
Naphthalene	NYSDEC 91-2 or EPA 8270	13	3.7 U	<u>4 U</u>	1.8 J	0.44 U	0.36 U
2-Methylnaphthalene	NYSDEC 91-2 or EPA 8270	36.4	3.7 U	15	3.9 U	0.44 U	0.36 U
Acenaphthylene	NYSDEC 91-2 or EPA 8270	41	3.7 U	1.3 J	0.92 J	0.44 U	0.36 U
Acenaphthene	NYSDEC 91-2 or EPA 8270	50	3.7 U	5.9	4.1J	0.44 U	0.36 U
4-Nitrophenol	NYSDEC 91-2 or EPA 8270	0.1	NT	NT	NT	NT	NT
Dibenzofuran	NYSDEC 91-2 or EPA 8270	6.2	NT	NT	NT	NT	NT
Fluorene	NYSDEC 91-2 or EPA 8270	50	3.7 U	6	2.6 J	0.44 U	0.36 U
N-Nitrosodiphenylamine	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT
Phenantherene	NYSDEC 91-2 or EPA 8270	50	3.7 U	7.4	6.4	0.44 U	0.36 U
Anthracene	NYSDEC 91-2 or EPA 8270	50	3.7 U	2.9 J	2.2 J	0.44 U	0.36 U
Carbazole	NYSDEC 91-2 or EPA 8270	NA	NT	NT	NT	NT	NT
Fluoranthene	NYSDEC 91-2 or EPA 8270	50	3.7 U	6	3.6 J	0.44 U	0.36 U
Pyrene	NYSDEC 91-2 or EPA 8270	50	3.7 U	7.4	4.7J	0.44 U	0.36 U
Benzo{a}anthracene	NYSDEC 91-2 or EPA 8270	0.22	3.7 U	2.6 J	2.5 J	0.44 U	0.36 U
Chrysene	NYSDEC 91-2 or EPA 8270	0.4	3.7 U	2.3 J	2.3 J	0.44 U	0.36 U
Benzo{b}fluoranthene	NYSDEC 91-2 or EPA 8270	1.1	3.7 U	1.4 J	1.8 J	0.44 U	0.36 U
Benzo{k}fluoranthene	NYSDEC 91-2 or EPA 8270	1.1	3.7 U	0.49 J	0.91 J	0.44 U	0.36 U
Benzo{a}pyrene	NYSDEC 91-2 or EPA 8270	0.061	3.7 U	1.9 J	2.1 J	0.44 U	0.36 U
Indeno{1,2,3-cd}pyrene	NYSDEC 91-2 or EPA 8270	3.2	3.7 U	0.51 J	0.54 J	0.44 U	0.36 U
Dibenz{a,h}anthracene	NYSDEC 91-2 or EPA 8270	0.014	3.7 U	4	3.9	0.44 U	0.36 U
Benzo{g,h,i}perylene	NYSDEC 91-2 or EPA 8270	50	3.7 U	0.61 J	0.58 J	0.44 U	0.36 U
bis{2-ethylhexylphthalate)	NYSDEC 91-2 or EPA 8270	50	NT	NT	NT	NT	NT
Di-n-butylphthalate	NYSDEC 91-2 or EPA 8270	8.1	NT	NT	NT	NT	NT
Total PAHs		NA	NT	NT	NT	NT	NT
Total semivolatiles (2)		500	BDL	61.71 J	37.05 J	BDL	BDL

(1) NYSDEC TAGM HWR-94-4046, January 24, 1994

(2) Total semivolatiles do not include TICs.

* Indicates the values used when a re-analysis of the sample was run by laborato

Table 3 Groundwater Volatiles (mg/l)

Niagara Mohawk - Area 2

		NYSDEC		_	Sa	mple Locat	lion		
	Analytical	Std./Guidance		MW-12			MW	/-13	
Analyte	Method	Value (1)	June 1997	July 1997	June 2000	June 1997	July 1997	July 2000	March'01
1,1-Dichloroethane	NYSDEC 91-1	0.005	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
1,1-Dichloroethene	NYSDEC 91-1	0.005	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
1,1,1-Trichloroethane	NYSDEC 91-1	0.005	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
1,2-Dichloroethene (Total)	NYSDEC 91-1	0.005	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
2-Butanone	NYSDEC 91-1	0.05 (GV)	0.01UJ	0.01U	NT	0.01U	0.01U	NT	NT
Acetone	NYSDEC 91-1	0.05 (GV)	0.096U	0.092U	NT	0.036U	0.01U	NT	NT
Benzene	NYSDEC 91-1	0.007	0.12	0.16	0.72	0.01U	0.01U	0.005 U	0.002 U
Bromoform	NYSDEC 91-1	0.05 (GV)	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Carbon Disulfide	NYSDEC 91-1	NA	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Chloroform	NYSDEC 91-1	0.007	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Chlorobenzene	NYSDEC 91-1	0.005	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Chloromethane	NYSDEC 91-1	NA	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Ethylbenzene	NYSDEC 91-1	0.005	0.019	0.15	0.15	0.01U	0.01U	0.005 U	0.002 U
Methylene Chloride	NYSDEC 91-1	0.005	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Styrene	NYSDEC 91-1	0.005	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Toluene	NYSDEC 91-1	0.005	0.029	0.045	0.048 J	0.01U	0.01U	0.005 U	0.002 U
Trichloroethene	NYSDEC 91-1	0.005	0.01U	0.01U	NT_	0.01U	0.01U	NT	NT
Vinyl Chloride	NYSDEC 91-1	0.002	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Xylene (Total)	NYSDEC 91-1	0.005	0.3	0.8 D	1.7	0.01U	0.01U	0.005 U	0.002 U
Total BTEX	-	NA	0.468	1.155	2.618 J	BDL	BDL	BDL	BDL
Total Volatiles (2)	-	NA	0.468	1.155	NT	BDL	BDL	NT	NT

(1) NYSDEC Division of Water TOGS (1.1.1), Ambient Water

Quality Standards and Guidance Values", October 22, 1993

(2) Total volatiles do not include TICs.

GV - Guidance Value

[4] Duplicate of MW-15

Table 3 Groundwater Volatiles (mg/l) ^{Niagara Mohawk - Area 2}

		NYSDEC				Sample	Location			
	Analytical	Std./Guidance		Ŵ	-15		MW-29	MW-30	MW-31	Dup A [4]
Analyte	Method	Value (1)	June 1997	July 1997	July 2000	March'01	March'01	March'01	March'01	March'01
1,1-Dichloroethane	NYSDEC 91-1	0.005	0.005 J	0.012	NT	NT	NT	ΝΤ	NT	NT
1,1-Dichloroethene	NYSDEC 91-1	0.005	0.01U	0.01U	NT	NT	NT	T	Ł	NT
1,1,1-Trichloroethane	NYSDEC 91-1	0.005	0.01U	0.01U	NT	NT	NT	NT	T	NT
1,2-Dichloroethene (Total)	NYSDEC 91-1	0.005	0.026	0.044	NT	NT	NT	NT	T	μ
2-Butanone	NYSDEC 91-1	0.05 (GV)	0.01UJ	0.01U	NT	NT	NT	NT	NT	NT
Acetone	NYSDEC 91-1	0.05 (GV)	0.078U	0.046U	NT	NT	NT	NT	NT	NT
Benzene	NYSDEC 91-1	0.007	0.9 D	0.24 D	0.002 J	0.002	0.78	1.2	2.1	0.002
Bromoform	NYSDEC 91-1	0.05 (GV)	0.01UJ	0.01U	NT	NT	NT	NT	NT	NT
Carbon Disulfide	NYSDEC 91-1	AN	0.01U	0.01U	NT	NT	NT	NT	NT	NT
Chloroform	NYSDEC 91-1	0.007	0.01U	0.003 J	NT	NT	NT	NT	NT	NT
Chlorobenzene	NYSDEC 91-1	0.005	0.01U	0.01U	NT	NT	NT	NT	NT	NT
Chloromethane	NYSDEC 91-1	NA	0.01U	0.01U	NT	NT	NT	NT	NT	NT
Ethylbenzene	NYSDEC 91-1	0.005	0.003J	0.006 J	0.005 U	0.004	0.031 J	2.0	0.60	0.005
Methylene Chloride	NYSDEC 91-1	0.005	0.01U	0.01U	NT	NT	NT	NT	NT	NT
Styrene	NYSDEC 91-1	0.005	0.01U	0.01U	NT	NT	NT	NT	NT	NT
Toluene	NYSDEC 91-1	0.005	0.016	0.032	0.005 U	0.002 U	0.018 J	0.054 J	0.034 J	0.001 U
Trichloroethene	NYSDEC 91-1	0.005	0.01U	0.013	NT	NT	NŢ	NT	NT	NT
Vinyl Chloride	NYSDEC 91-1	0.002	0.01U	0.017	NT	NT	NT	NT	NT	NT
Xylene (Total)	NYSDEC 91-1	0.005	0.14	0.25	0.005 U	0.008	0.052	0.62	1.10	0.009
Total BTEX	-	NA	1.059	0.528	0.002 J	0.014	0.881	2.474 J	3.83 J	0.016
Total Volatiles (2)	•	NA	1.09	0.6	NT	NT	NT	NT	NT	NT

(1) NYSDEC Division of Water TOGS (1.1.1), Ambient Water

Quality Standards and Guidance Values", October 22, 1993

(2) Total volatiles do not include TICs.

GV - Guidance Value

[4] Duplicate of MW-15

Table 4 Groundwater Semivolatiles (mg/l) Niagara Mohawk - Area 2

		NYSDEC Grdwtr.			Sa	mple Locati	on		
	Analytical	Std./Guidance		MW-12			MW	-13	
Analyte	Method	Value (1)	lune 1997	.luly 1997	June 2000	June1997	.lulv1997	June 00	March'01
2-Methvinanhthalene	NYSDEC 91-2		0.008.1	0.01	0.039	0.01U	0.01U	0.01 U	0.009 U
2-Methylnaphalaiene	NYSDEC 91-2	ND	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
2 4-Dimethylphenol	NYSDEC 91-2	ND	0.005 J	0.004 J	NT	0.01U	0.01U	NT	NT
2 4-Dinitrophenol	NYSDEC 91-2	NA	0.025U	0.025U	NT	0.025UJ	0.025U	NT	NT
3.3'-Dichlorobenzidine	NYSDEC 91-2	0.005	0.01U	0.01UJ	NT	0.01U	0.01U	NT	NT
4-Methylphenol	NYSDEC 91-2	NA	0.001.1	0.002.1	NT	0.01U	0.01U	NT	NT
4-Nitrophenol	NYSDEC 91-2	NA	0.025U	0.025U	NT	0.025UJ	0.025U	NT	NT
Acenaphthene	NYSDEC 91-2	0.02 (GV)	0.01U	0.01U	0.01 U	0.01U	0.01U	0.01 U	0.009 U
Acenaphthylene	NYSDEC 91-2	ND	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
Anthracene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01U	0.01U	0.01 U	0.009 U
Benzo (a) anthracene	NYSDEC 91-2	ND	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
Benzo (a) pyrene	NYSDEC 91-2	ND	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
Benzo (b) fluoranthene	NYSDEC 91-2	0.000002 (GV)	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
Benzo (g,h,i) perylene	NYSDEC 91-2	ND	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
Benzo (k) fluoranthene	NYSDEC 91-2	0.000002 (GV)	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
bis (2-Ethylhexyl) phthalate	NYSDEC 91-2	0.05	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Carbazole	NYSDEC 91-2	ND	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Chrysene	NYSDEC 91-2	0.000002 (GV)	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
Dibenzo(a,h)anthracene	NYSDEC 91-2	ND	0.01U	0.01U	0.02 U	0.01U	0.01U	0.01 U	0.009 U
Dibenzofuran	NYSDEC 91-2	ND	0.01U	0.01U	NT	0.01U	0.01U	NT	NT
Fluoranthene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01U	0.01U	0.01 U	0.009 U
Fluorene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01U	0.01U	0.01 U	0.009 U
Hexachlorocyclopentadiene	NYSDEC 91-2	0.005	0.01UJ	0.01UJ	NT	0.01UJ	0.01UJ	NT	NT
Indeno(1,2,3-cd)pyrene	NYSDEC 91-2	0.000002	0.01UJ	0.01UJ	0.02 U	0.01UJ	0.01UJ	0.01 U	0.009 U
Naphthalene	NYSDEC 91-2	0.01 (GV)	0.025	0.034	0.12	0.01U	0.01U	0.01 U	0.009 U
Penta chlorophenol	NYSDEC 91-2	0.001	0.025U	0.025U	NT	0.025UJ	0.025U	NT	NT
Phenanthrene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01U	0.01U	0.01 U	0.009 U
Phenol	NYSDEC 91-2	0.001	0.012	0.01U	NT	0.01U	0.01U	NT	NT
Pyrene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01U	0.01U	0.01 U	0.009 U
Total PAHs	NYSDEC 91-2	-	0.051	0.034	0.159	BDL	8DL	BDL	BDL
Total Semivolatiles (2)	NYSDEC 91-2	-	0.026	0.05	NT	BDL	BDL	NT	NT

(1) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1),

"Ambient Water Quality Standards and Guidance Values", October 22, 1993

(2) Total semivolatiles do not include TICs.

GV - Guidance Value

BDL - Below Detection Limits

* Indicates the values used when a reanalysis of the sample was run by laboratory

Table 4 Groundwater Semivolatiles (mg/l) Niagara Mohawk - Area 2

		NYSDEC Grdwtr.		ļ			Sample Loca	ation				
	Analytical	Std./Guidance			MW	-15			MW-29	MW-30	MW-30 DL	MW-31
Analyte	Method	Value (1)	June1997	July 1997	June 00⁺	June 00 RE	Mar '01 : M	up A* lar'01	Mar '01	Mar '01	Mar '01*	Mar '01
2-Methylnaphthalene	NYSDEC 91-2	QN	0.01U	0.01U	0.01 U	0.01 U	0.002 J 0.0	<u>1</u>	0.002 J	0.41 E	0.48 D	0.100
2-Methylphenol	NYSDEC 91-2	QN	0.01U	0.01U	NT	NT	NT	NT	NT	NT	NT	ΔŢ
2,4-Dimethylphenol	NYSDEC 91-2	ND	0.01U	0.002 J	NT	NT	LN LN	NT	NT	NT	NT	NT
2,4-Dinitrophenol	NYSDEC 91-2	NA	0.025U	0.025U	NT	T	L L	NT	NT	NT	NT	NT
3,3'-Dichlorobenzidine	NYSDEC 91-2	0.005	0.01U	0.01U	Z	NT	ZT Z	NT	NT	NT	NT	NT
4-Methylphenol	NYSDEC 91-2	NA	0.01U	0.01U	NT	NT	NT	NT	NT	NT	NT	NT
4-Nitrophenol	NYSDEC 91-2	NA	0.025U	0.025U	NT	NŢ		NT	NT	NT	NT	NT
Acenaphthene	NYSDEC 91-2	0.02 (GV)	0.01U	0.01U	0.01 U	0.01 U	0.0 L 7000.0	10 U	0.001 J	0.66 E	.084 DJ	0.100 U
Acenaphthylene	NYSDEC 91-2	QN	0.01U	0.01U	0.01 U	0.01 U	0.009 U 0.0	10 U	0.010 U	0.01 U	0.01 U	0.100 U
Anthracene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01 U	0.0005 J 0.0	010 U	0.010 U	0.170 E	0.031 DJ	0.100 U
Benzo (a) anthracene	NYSDEC 91-2	QN	0.01U	0.01U	0.01 U	0.01 U	0.001 J 0.0	L 800	0.010 U	0.025	0.027 DJ	0.100 U
Benzo (a) pyrene	NYSDEC 91-2	QN	0.01U	0.01U	0.01 U	0.01 U	0.0 L 9000.0	10 U	0.010 U	0.015	0.015 DJ	0.100 U
Benzo (b) fluoranthene	NYSDEC 91-2	0.000002 (GV)	0.01U	0.01U	0.01 UJ	0.01 U	0.0006 J 0.0	L 400	0.010 U	0.025	0.011 DJ	0.100 U
Benzo (g,h,i) perylene	NYSDEC 91-2	QN	0.01U	0.01U	0.01 UJ	0.01 U	0.00 U 0.00	10 U	0.010 U	0.005 J	0.200 U	0.100 U
Benzo (k) fluoranthene	NYSDEC 91-2	0.000002 (GV)	0.01U	0.01U	0.01 UJ	0.01 U	0.0004 J 0.0	L E00	0.010 U	0.01 U	0.017 DJ	0.100 U
bis (2-Ethylhexyl) phthalate	NYSDEC 91-2	0.05	0.01U	0.01U	NT	NT	NT	NT	NT	NT	NT	NT
Carbazole	NYSDEC 91-2	QN	0.01U	0.01U	NT	NT	NT	NT	M	NT	NT	NT
Chrysene	NYSDEC 91-2	0.000002 (GV)	0.01U	0.01U	0.01 U	0.01 U	0.0 L 6000.0	L 900	0.010 U	0.020	0.027 DJ	0.100 U
Dibenzo(a,h)anthracene	NYSDEC 91-2	Q	0.01U	0.01U	0.01 UJ	0.01 U	0.009 U 0.0	10 U	0.010 U	0.003 J	0.200 U	0.100 U
Dibenzofuran	NYSDEC 91-2	Q	0.01U	0.01U	NT	NT	NT	NT	NT	NT	NT	T
-luoranthene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01 U	0.003 J 0.0	J02 J	L 6000.0	0.091 E	0.048 DJ	0.100 U
⁻ luorene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01 U	0.00 L 100.0	005 J	0.0007 J	0.160 E	0.120 DJ	0.100 U
-lexachlorocyclopentadien	NYSDEC 91-2	0.005	0.01UJ	0.01UJ	0.01 U	NT	NT	NT	NT	NT	NT	T
ndeno(1,2,3-cd)pyrene	NYSDEC 91-2	0.000002	0.01UJ	0.01UJ	0.01 UJ	0.01 U	0.009 U 2000	10 U	0.010 U	0.006 J	0.200 U	0.100 U
Vaphthalene	NYSDEC 91-2	0.01 (GV)	0.002J	0.003J	0.01 U	0.01 U	0.002 J 20.0	L 10	0.003 J	0.360 E	0.310 D	0.340
^D enta chlorophenol	NYSDEC 91-2	0.001	0.025U	0.025U	NT	NT	NT	μŢ	NT	NT	NT	NT
Phenanthrene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01 U	0.00 1 1 0.0	L 300	0.002 J	0.170 E	0.190 DJ	0.100 U
Phenol	NYSDEC 91-2	0.001	0.021	0.01U	NT	NT	NT	NT	NT	NT	NT	NT
^o yrene	NYSDEC 91-2	0.05 (GV)	0.01U	0.01U	0.01 U	0.01 U	0.008 J 0.0	05 J	L 6000.0	0.045	LO 990.0	0.100 U
Fotal PAHs	NYSDEC 91-2		0.023	0.003	BDL	BDL	0.020 J 0.0	12 J	0.011 J	2.165 EJ	1.459 DJ	0.440
Total Semivolatiles (2)	NYSDEC 91-2	,	0.044	0.005	NT	NT	NT	Ĭ	NT	NT	IN	NT

(1) NYSDEC Division of Water Technical and Operational Guidance Series

"Ambient Water Quality Standards and Guidance Values", October 22, 1

Dup A is a duplicate sample of MW-15 (QA/QC)

(2) Total semivolatiles do not include TICs.

GV - Guidance Vatue

BDL - Below Detection Limits

* Indicates the values used when a reanalysis of the sample was run by lab

IT Corporation A Member of The IT Group

APPENDIX C

DRILLING LOGS

IT CORPORATION A Member of the IT Group

Monitoring Well MW-29

Project 1	<u>NMPC-Tro</u> Area 2	oy			_ c	wher King Fuels Proj No. 11100422	See Site Map For Boring Location			
Location Area 2 Surface Elev. Total Hole Dept Top of Casing Water Level Init Screen: Dia 2 in. Length 20 ft. Casing: Dia 2 in. Length 20 ft. Fill Material Sand Drill Co. ADT Method 2 Method 2 Driller M. Harrington Log By C. Cang Checked By Lin						Proj. No. <u>moouzz</u> epth <u>40 ft.</u> Diameter <u>6 1/4 in.</u> Initial <u>29 ft.</u> Static Initial <u>29 ft.</u> Static Type/Size <u>PVC/20 slot in.</u> COMMENTS: t. Type/Size <u>PVC/20 slot in.</u> ft. Type <u>PVC</u> Rig/Core <u>CME B-59</u> rd <u>HSA</u> Date <u>02/02/01</u> Permit # License No.				
Depth (ft.)	Well Completion	(mqq)	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Descrip (Color, Texture, Trace < 10%, Little 10% to 20%, Som	tion Structure) e 20% to 35%, And 35% to 50%			
2 - - 0 -	×17			TIAT		Packed gravel parking lot.				
- 2						0-3': Hand dug. 3-5': Black/dark brown medium/fin	e sand (fill), 4.5' hard packed			
- 4 -		2.0 4.0	21-12-14-15 80% 8-15-17-23			5-7': Black/brown medium corase s etc, moist-piece of shale.	sand, crushed (fill), brick,slag,			
- 8 -		5.1	22-13-40- 27/40%			7–9': Black/brown medium/coarse brick crushed layer. 9–10': Black/brown medium/coarse	sands and crushed fill, 9' red sands & crushed fill.			
- 10 -		8.2	11-13-10-9 50%			10–11': Cinders & ash. 11–13': Same as above, w/crushed t	brick.			
- 12 -		9.8	14-13-21- 50/1-30%		Fil	13–15": Ash/cinders, slag, some cru brown/black.	shed brick, piece of coal, dark			
- 16 -		2.0	18-7-8-9			15—17': Same as above, piece of co	aal.			
 - 18		6.9	40% 8-3-3-9 30%			17–19': Same as above, more ash a	nd cinder.			
- 20 -		43.1	2-9-5-5 40%			19–21': Same as above, slight odor,	more coal pieces.			
- 22 -		394	4-4-8-9 40%	0000 0000 0000		21-23: Same as above, moist, odo crushed brick. 23-24': Same as above, odor, lave	er of crushed brick			
- 24 -		1808	12-14-1-2 80%							

03/28/2001 lithlog-Mar,99

Monitoring Well MW-29

IT CORPORATION A Member of the IT Group

Project <u>NMPC-Tra</u> Location <u>Area 2</u>	ру			_ 0	wner <u>King Fuels</u> Proj. No. <u>11100422</u>
Depth (ft.) (ft.) Completion	(mqq)	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
-24	1808 173 196 130 35.7 11.2 113 W 110	12-14-1-2 80% 1-1-2-3 100% 4-4-3-11 100% 3-8-8-12 80% 5-8-9-9 100% 5-2-5-7 100% R-WR-WR-3 100%		Fi)	 24-25': Sandy silt, gray/green, strong odor, moist. 25-27': Silty sand and clay, gray/green, slight odor, black mottles w/in clay. 27-29': Silty/clay and sand, gray green, organics and layering in sediments, wet. 29-31': Silty sand, gray organics, odor, layering of sediments and organic, wet. 31-33': Saturated, silty sand grading to sandy clay, layering, organics. 33-35': Medium sand, gray/brown and mixed organics, saturated. 35-37': Saturated, sand beginning to coarsen to a fine gravel. 37-40': Saturated, coarse sand, grading to medium/coarse gravel-gray.

52

54-

56

IT CORPORATION

Drilling Log

Monitoring Well MW-30

Project <u>MMPC-Troy</u> Location <u>Area 2</u> Surface Elev Top of Casing Screen: Dia <u>2 in.</u> Casing: Dia <u>2 in.</u> Fill Material <u>Sand</u> Drill Co. <u>ADT</u> Driller <u>M. Harrington</u> Checked By Checked By	Total Hole Depth <u>38 f</u> Water Level Initial <u>28</u> Length <u>20 ft</u> Length <u>18 ft</u> Log By <u>C. Campbell</u> License D License D Licens	Swner King Fuels Proj. No. 11100422 t. Diameter 6 1/4 in. ft. Static	See Site Map For Boring Location COMMENTS:
		Trace < 10%, Little 10% to 20%, Some Packed dirt (bus parking lot).	≥ 20% to 35%, And 35% to 50%
		Hand dig to 3'. 3–5': Fill, slag, brick (crushed), dar	k black/brown.
- 4	5-7-1-11 30% 0 0 0 0 0	5-7': Dark black/brown fill (slag ar	nd brick).
		7–9': Same as above, w/more crush 9–11': Same as above, w/refractory	brick layer at 13'.
- 10 - 1.5	7-7-5-12 30% 0 0 0 0 0 0 12-17-23-21 20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11–13': (fill) Coarse sand, crushed s refractory).	lay and grick (medium and
	7-15-12-18 20% 1000 1000 1000 1000 1000 1000 1000	15–17': Dark brown/black, coarse sa brick and slag, come coke.	and, ash and cinder, crushed
		17–19': Same as above w/coal and	more brick and coke.
- 20 - 8.0	80% 0 0 0 0 0 0 0 0 16-12-10-17	19–21': Same as above w/coarse pi	eces of iron works bits.
- 22 - 1.7	40% 9797 9797 12-13-9-11 097	21–23': Same as above, more slag.	
- 24 - 258	20-13-11-5 50%	23–25': Same as above, odor in tip	

03/26/2001 lithlog-Mar,99

IT CORPORATION

A Member of the IT Group

Monitoring Well MW-30

_ Owner <u>King Fuels</u> Project <u>NMPC-Troy</u> 11100422 Location Area 2 Proj. No. Class. well Completion Blow Count/ Recovery Sample ID Graphic Log Description Depth (ft.) (Color, Texture, Structure) SCS Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% * 24 20-13-11-5 50% 258 25-27': Moist, odor, sheen, coarse black/brown slag, crushed rock, brick, packets of product like material. 26 . 5-17-18-8 645 60% Fil 27-28': Wet, odor, same as above. ¥ 28 28-29': Silty sand/clay w/pieces of wood, gray/brown. 4-6-8-8 100% 530 29-31': Wet, fine/medium sand, river washed gravel (multi-colored and rounded). 30. 88.0 3-8-10-13 40% 31-33': Medium sand, saturated, gray/brown w/river type sediments and organics. 32 -35.0 3-7-7-18 100% 33-35': No recovery. GC 34 WR 35-38': Medium fine sand, river type sediment (multi-colored rounded rocks). 36 5-3-5-7 80% 38 40 42 44 46 48 50 52 54 56

IT CORPORATION A Member of the IT Group

Monitoring Well MW-31

Project <u>NMPC-Troy</u> Location <u>Area 2</u>		'	Owner <u>King Fuels</u> Proj. No. <u>11100422</u>	See Site Map For Boring Location
Surface Elev Top of Casing Screen: Dia <u>2 in.</u> Casing: Dia <u>2 in.</u> Fill Material <u>Sand</u> Drill Co. <u>ADT</u> Driller <u>M. Harrington</u> Checked By	Total Hole Dept Water Level Initi Length <u>20 ft.</u> Length <u>15 ft.</u> Method <u>F</u> Log By <u>C. Camp</u>	n <u>35 1</u> al <u>28</u> 	ft. Diameter 6 1/4 in. ft. Static Type/Size <u>PVC/20 slot in.</u> Type <u>PVC</u> Rig/Core <u>CME B-59</u> Date <u>02/02-02/0</u> 5/69/fmit # No.	COMMENTS:
Completion	(ppm) Sample ID Blow Count/ % Recovery Graphic	USCS Class.	Descript (Color, Texture, 1 Trace < 10%, Little 10% to 20%, Some	iOn Structure) 20% to 35%, And 35% to 50%
	भाव	9	Packed dirt and gravel.	
- 2 -			0-3': Hand dig. 3-5': Dark black/brown, fine/medium	n sand (fill), crushed brick and
- 4 - 2 - 6 - 16	.0 8-22-14-12 0 6 50% 0 6 .0 6-19-27-17 0 6		gravel. 5-7': Same as above, layer of crust	ned refractory brick at 6'.
- 8 - 4	40% 040 0 15-16-50/4 0 30% 00		7–9': Same as above, less refractor 9–11': Coarse sand/crushed slag, co	ry brick. oke, brick, moist, black/brown,
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C GM	odor in tip. 11–13': Coarse sand/crushed slag, co w/ ash & cinders.	oke, brick, moist, black/brown,
	40% 0.00 0 11-12-14-10 70% 0.00		13–15": Coarse sand/crushed slag, c more refractory brick pieces, silty s 15–17": Coarse sands/crushed brick	coke, brick, moist, black/brown, sand (13–14').
	05 9-11-15-26 0 0 80% 0 0 20 0 0 12 0 0 0 0 0 0 0 0 0 0	<u> </u>	17-19': Same as above minus coal,co	oke & refractory brick layers.
	0 12-18-27- 9 4 41/80% 9 9 9 9 7 18-18-21- 9 9		19–21': Same as above, more coke, r	nore slag & brick.
- 22 - 57	27/60% 0 0 0 18-19-21- 23/20% 0 0		21-23': Same as above.	
- 24 - 88	0 12-23-11-15	с он	23-25: Dark gray, wet, slag, Drick, .	sneen on spoon.

03/28/2001 lithlog-Mar,99

IT CORPORATION

A Member of the IT Group

Monitoring Well MW-31

_ Owner <u>King Fuels</u> Project <u>NMPC-Troy</u> Location Area 2 Proj. No. 11100422 Well Completion Class. Sample ID Blow Count/ Recovery Graphic Log Description Depth (ft.) PID (mqq (Color, Texture, Structure) ISCS Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% × 24 12-23-11-15 40% 890 25-27': Odor, dark black/brown, silty/clayey sand, wet w/trace brick. - 26 2-1-2-9 50% 1408 27-29': Odor, wet, same as above. V 28 3-5-5-7 40% 822 29-31': Black/brown, silty sand w/clay, pieces of wood, trace он brick. . 30 3-9-9-10 50% 180 31-32': Same as above. 32 32-33': Sandy/silt, layers w/organics. 180 12-15-18-18/100% 33-35': Same as above, fractured black shale. 34 128 3-5-12-50/3 40% 36 Refusal at 35'. 38 - 40 - 42 -44 - 46 - 48 - 50 52 54 56

Soil Boring SB-40

Project <u>M</u>	<u> 1РС-Ті</u>	roy			Owner King Fuels	See Site Map For Boring Location
Location 4	trea 2				Proj. No. <u>11100422</u>	
Surface El	ev	To	tal Hole	e Dej	oth <u>55 ft.</u> Diameter <u>6 1/4 lh.</u>	COMMENTS:
Top of Cas	sing	Wa	ter Lev	el Ir	itial <u>21 ft.</u> Static	
Screen: Dia	â	Le	ngth		Type/Size	
Casing: Dia		Le	ngth		Type	
Fill Materia	<u>ו טיטט</u> דר	<u> </u>				
Drill Co. AL	larrinn [.]		ме ару С	nou Cai	Tobell Date 01/29-01/30/02/mit #	
Chacked R	<u>uurring</u> N		y by <u>s</u>	02	License No	
	<u> </u>					
Depth (ft.)	UId (mqq)	Sample ID Blow Count, % Recover)	Graphic Log	USCS Class	Descript (Color, Texture, s Trace < 10%, Little 10% to 20%, Some	ion Structure) 20% to 35%, And 35% to 50%
					Asphalt parking lot.	
- 0 -			Man			
-			a d		0-3': Hand dug.	
			000		2. Sh O and a share to the balance area	
					3-5: Coarse sand, crushed brick, slag, dram	ige/brown to black.
- 4 -	45.6	1-10-10-13	d d			
		60%	kMal		5-7': Coarse sand, crushed brick, refractor	y brick, pieces of slag at tip.
			000			
	0.0	5-8-9-13 60%				
					7-9': Refractory brick, medium/coarse sand	, crushed, slag, red brick, moist
- 8 -	0.0	14-11-9-6	q_d			
		50%			9–11": Large Dieces of slag and coke, grang	e/brown, crushed pieces of red
			dok		brick, moist.	
- 10 -	0.0 7	-15-51-48				
		30%	a a		11–13': Gray-crushed concrete, pieces of sla	ag, medium sand and silt, dry.
- 12 -	00	22-100/1	a d	Fil		
	0.0	25%			13-15" Dark brown/gray-coarse sand crust	and slag brick (red and
					refractory), few pieces crushed, concrete.	ied sidg, blick fied and
- 14 -	5.8	2-14-15-11				
		20%	a a		15–17': Dark brown-coarse sand, crushed sl	ag and concrete, moist.
- 16 -	57	2-8-8-5	aja			
	5.7	10%			17 10's Dark brown approx conde arisehod a	log troop concrete moint
					17-19: Dark brown, coarse sands, crushed s	alag, trace concrete, moist.
- 18	0.9	18-28-50				
┠┛		/3/15%	djad		19–21': No recovery.	
	-	15-10-14- 13/0%	b d a d			
		_,			14 21-23: Water/saturated, crushed pieces, sla sized) adar light sheep	ag, rock and brick (cobble
- 22 -	1.0	3-13-24-			area, ada, igitt sheen.	
		38/35%	id ad i		23–24.5': Saturated, odor.	
24			2900		, · ·	
- 24 -	20.5	33-10-7-8 70%				

03/26/2001 lithlog-Mar,99

Soil Boring SB-40

IT	CORPORATION
AA	lember of the IT Group

Project 1	<u>MPC-1</u> Area 2	T <u>roy</u>			Owner <u>King Fuels</u> Proj. No. 11100422					
Location	<u></u>			s,						
f≘	ر ا س ا	e Il	걸머	Clas	Description					
Cep (↓	Idd		87	S S	(Color, Texture, Structure)					
		N BIO	U	nso	Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%					
24-	00 F		. I.M.							
27	20.5	70%	b do k	Fil	24.5-25': Loose, gravel, slag, brick, trace light sheen, gray medium sand					
					W/silt interdedded.					
- 26 -	7.3	3-4-4-5 70%		ĺ						
F 4					27–29': Sandy clay w/trace silt brown/gray, wet, light sheen on water,					
- 28	8.0	4-8-7-11								
		10%			29–31': Gray/brown, medium sand and silt, organic material (roots).					
- 30 -	27	5-8-84-38								
	2.1	60%			31-33' Grav/brown, silty clay uniform, 33' medium rounded sand.					
30				ŕ						
- J2 -	0.0	6-3-4-8 90%								
				ĺ	33-35". Gray clay w/sand, grading to a medium/coarse sand at 35.					
- 34 -	6.4	11-6-5-8		ł						
-		00%			35-37': Gray sand and rounded washed gravel.					
- 36 -	2.6	13-5-7-12		Ì						
		50%		-	37-39': Gray sand and rounded gravel.					
- 38 -										
00	1.0	21-21-21- 29		4	30-11': Gray sand and silt and gravel (angular)					
- 40 -	0.8	20-15-10- 15		SW						
		40%			41–43': Coarse sand/fine gravel, river sediments rounded multi colored washed sand and gravel					
- 42	1.3	WR-WR-3-5		ľ						
		90%		Ì	43–45': Medium gran sand w/rounded cobbles (river origin).					
- 44	1.1	9-24-20-								
		14/20%			45–47': Cobble in tip, medium gray sand and gravel.					
- 46 -		0004		l						
	1.4	30%			47-49" Madium arow river conde and aroval					
- 48 -	1.0	14-12-6-14 25%								
					49-51': Same as above.					
- 50 -	0.7	17-14-19-		ĺ						
		20/70%			51–53': Same as above, more clay at 53'.					
- 52 -	10	8-12-13-18		Ì						
		80%			53–55': Silty/clay, medium sand and rocks, weathered shale at 55'					
54										
	2.4	24-21-25- 22								
				(
- 56 -										

03/25/2001 lithiog-Mar,99

Monitoring Well **PZ-1**

Project <u>NMPC-Troy</u> Location <u>Area 2</u>			Owne	er <u>King Fuels</u> Proj. No. <u>11100422</u>	See Site Map For Boring Location
Surface Elev Top of Casing	Total Hole De Water Level II	epth <u>57</u> Initial <u>2</u>	<u>ft.</u> 4 ft.	Diameter <u>6 1/4 in.</u> Static	COMMENTS:
Screen: Dia <u>2 in.</u> Casing: Dia <u>2 in.</u>	. Length <u>17 ff.</u> . Length <u>15 ff.</u>			Type/Size <u>PVL/30 slot in.</u>	
Fill Material <u>Sand</u>		- 451	Ri g/ (Core CME B-59	
Driller <u>M. Harrington</u>	Log By <u>C. Ca</u>	ampbell	·	. Date <u>01/30/01</u> Permit #	
Checked By		License	e No		
Depth (ft.) (ft.) Well Campletion PID (ppm)	Sample ID Blow Count/ % Recovery	Graphic Log		Descripti (Color, Texture, S race < 10%, Little 10% to 20%, Some	ON Structure) 20% to 35%, And 35% to 50%
2				Asphalt parking lot.	
	1000			0-3': Hand dug.	
	2-1-1-1			3-5': Sand, crushed slag, pieces.	
- 6 - 1 37	4-fi-5-5			5–7': Crushed brick slag, dark black,	/brawn.
- 8 - 2.7	100% d			7–9': Dark black/brown, bits of thin	wire, silty sand and slag-brick.
- 10 - 14	20 % 3-2-2-9			9–11': Slag, coke pieces, dark black	brown.
12 - 2.3	10% d 8-4-6-9 d		11	11–13': Crushed rock and gravel, bricl refractory brick.	k, slag, dark brown/black,
	20% d			13–15': Slag in tip, dark black brown, slag.	coarse sand and crushed
- 16 - 2.5	574 5-4-14			15–17': Slag crushed brick, coarse sa	and, dark black/brown.
- 18 - 3.7	20% d			17-19": Same as above w/ash and ci	nders.
- 20 - 2.7	40% d 3-1-2-3			19–21': Ash and cinders, brown/yello	w/gray, moist.
- 22 - 1 - 22	20% d			21–23': Same as above, moist, dark,	viscous material, odor, sheen.
- 24 - 131	4-7-5-2 30%		\ <u>\</u>	23–25': Saturated, black/green/gra slag and gravel.	y sheen (heavy), odor, crushed

03/26/2001 lithlog-Mar,99

Monitoring Well PZ-1

F	Project 4	<u>NMPC-Tro</u> Area 2	<u>y</u>			_ 0	wher <u>King Fuels</u> Proj No. <i>11100422</i>
ĺ		<u> </u>		<u>ح د م</u>			
	ŧ÷	etic		le I toun	DHC DHC	Ga	Description
		Mun	Гď			မ္မ	(Color, Texture, Structure)
		ů		N		Ň	Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
	- 24		131	4-7-5-2	MIM		¥
				30%	dok d		25-27': Same as above.
	- 26		45.7	8 2 6 7	dok		
	20		45.7	10%	dok		27, 20': Madium cond/clog/brick, chaon, strong oder, booding in
			ļ		bdgy	Fill	spoon, pockets of product.
	- 28 -		78.2	13-14-18-12 90%	n d d k		
							29-30': Same as above.
	- 30		57.0	15-10-11-12	d lid		30–31": Clay, silty sand.
				00%			31-33': Medium sand and silty clay, layering throughout spoon, wood
	- 32		0.0	1-1-1-2			and organics, saturated, gray/brown.
				100%			33–35': Same as above, coarsening to a medium sand (river type
	- 34		1.1	WB-1-1-3			sediments) at 35', wood and organics.
				100%			35–37': Medium sand w/silty clay layers, wood layer, washed river
	- 36 -						type gravel at 37'.
ч.,	30		2.1	80%			27 20's Citty alow wargenies, grow/brown w/some rounded weeked
							gravel.
	- 38 -		0.4	1-1-2-5 80%			
							39-41: No recovery.
	- 40		-	4-4-3-4			
				0.0			41–43': Silty clay w/medium sand layers, gray.
	- 42		1.1	5-7-8-8			
			}	60%		он	43–45': Gravel and cobbles, rounded washed river sediments.
	- 44		0.0	50/4 20%			
							45–47': Gravel and crushed cobbles, rounded, pieces of shale.
	- 46 -		0.0	14-10-7-11			
			0.0	40%			47-49' Quartzite cobble and gravel fine cobbles
	лQ						
	- 40 -		2.2	34-15-12- 14/10%			
							49-51: Gravel and coddles rounded.
	- 50 -		0.0	8-10-14-18			
					111		51-53': Same as above, w/clay matrix.
	- 52 -		0.3	15-12-15-18			
				5%			53–55': Gravel cobbles, w/clay matrix, 54.5' bedrock, black shale.
"	- 54 -		0.4	17-25-3-18	111		
		· · · · · · · · ·		20%	<u> </u>		
	- 56 -						
	-						

Monitoring Well PZ-1

Project 1	<u>NMPC-Tro</u> Area 2	у			_ 0	wner <u>King Fuels</u> Proj No. 11100422
Location	<u> </u>					
-t-)	letic	0Ê	le I Coun	Dhic 10	Clas	Description
	Me	Бġ	O M D Rec	Grai	S	(Color, Texture, Structure)
	<u>ں</u>		ហ័ ក្ន័ »		S	Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 56 -						
- 58 -						
- 60 -						
- 62 -						
- 64 -						
- 66						
- 68 -						
_ 72 _						
,						
- 74						
- 76 -						
- 78 -						
- 80						
- 82						
- 84 -						
- 1						
- 86 -						
- 88 -						

IT Corporation A Member of The IT Group

APPENDIX D

WORLDWIDE GEOSCIENCES, INC. REPORT (DATED MARCH 2001)

WORLDWIDE GEOSCIENCES, INC.

6100 Corporate Drive Suite 320 Houston, Texas 77036 Phone: 713 / 988-9401 FAX: 713 / 988-8784 RECEIVED

March 27, 2001 Route To:_____

APR 1 9

Pro]:	
File Codo:	~~~

Mr. Bruce Ahrens IT Corp. 13 British American Blvd. Latham, NY 12110

Dear Mr. Ahrens:

Enclosed is our report on samples submitted from your Troy Area 2 site. Please refer to the report summary for a condensed statement of our findings.

If there are any questions please do not hesitate to contact me. We appreciate being of service.

Sincerely,

17 Intersen

Neil F. Petersen

WORLDWIDE GEOSCIENCES, INC. 6100 Corporate Drive Suite 320 Houston, Texas 77036 Phone: 713 / 988-9401 FAX: 713 / 988-8784

CHARACTERIZATION OF SOIL SAMPLES NMPC – TROY AREA 2 SITE

PREPARED FOR IT CORP. MARCH, 2001

CHARACTERIZATION OF SOIL SAMPLES NMPC – TROY AREA 2 SITE

SUMMARY

Six soil samples were analyzed by high resolution capillary gas chromatography to determine the type or types of parent products associated with these samples, and to provide any indications of parent product age. Two of the samples had concentration levels too low to determine the parent products associated with these samples. These were the MW 29 (23-25) and MW 31 (15-17) samples. The low amplitude peaks present in the chromatograms of these samples are not consistent with coal tar as the parent product.

The MW 30 (25-27) and MW 31 (23-25) samples have signature characteristics indicating mixtures of gasoline and diesel/fuel oil. Diesel/fuel oil is the dominant product. The characteristics of the gasoline derived hydrocarbons indicate parent gasolines most probably produced between 1975 and 1980. The diesel/fuel oils are significantly biodegraded with most probable exposure times of 16 to 20 years for the MW 30 (25-27) sample and twenty years or more for the MW 31 (23-25) sample.

The SB-40 (23-25) sample signature shows characteristics indicating a very severely biodegraded residual grade, such as #6 grade, fuel oil assemblage with a most probable exposure time of at least fifty years. The PZ-1 (27-29) sample has compositional characteristics indicating a mixture that consists predominantly of a moderately biodegraded diesel/fuel oil with a most probable exposure time of 14 to 18 years, and a subordinate coal tar contribution.

INTRODUCTION

Two soil samples from the Troy Area 2 site were received at the offices of Worldwide Geosciences, Inc. on January 31, 2001 via Federal Express overnight delivery. Each sample was contained in a single, eight ounce, glass jar which were packed in an insulated plastic cooler with ice used as a preservative. Sample identifications as per the attached chain of custody form and their assigned laboratory numbers are as follows:

Sample ID	<u>Lab No.</u>
NMPC/AREA 2/MW33(23-25)	010202007
NMPC/AREA 2/PZ-1(27-29)	010202008

Worldwide was advised after receipt of the samples that the MW33 sample should be identified as SB-40 (23-25).

Four soil samples from the Troy Area 2 site were received at the offices of Worldwide Geosciences, Inc. on February 6, 2001 via Federal Express overnight delivery. Each sample was contained in a single, eight ounce, glass jar which were packed in an insulated plastic cooler with ice used as a preservative. Sample identifications as per the attached chain of custody form and their assigned laboratory numbers are as follows:

Sample ID	<u>Lab No.</u>
NMPC/AREA 2/MW30(25-27)	010209001
NMPC/AREA 2/MW31(15-17)	010209002
NMPC/AREA 2/MW31(23-25)	010209003
NMPC/AREA 2/MW29(23-25)	010209004

Thirty grams of each soil sample were extracted with 100 milliliters of methylene chloride solvent. The extractions were carried out by sonication. After separating each solvent and soil, each solvent was reduced in volume to two milliliters to increase the concentration level of the extracted hydrocarbons in the solvent. Each solvent was spiked with androstane as an internal standard. The concentration level of the internal standard relative to the weight of soil extracted is 3.4 parts per million. Each spiked solvent containing the extracted hydrocarbons was then analyzed by high-resolution gas chromatography using a 30-meter DB1 column and a flame ionization detector. A Perkin-Elmer Autosystem was utilized. The analysis procedure can be viewed as a modification of ASTM method D-3328. The modifications allow for the analysis of hydrocarbons in solvent and improve the resolution of the lighter hydrocarbons. Two procedural methods are routinely used for product in solvent characterization. One provides better resolution of the gasoline range hydrocarbons but has a more limited carbon number range. This is Method 3 as defined in the procedural description provided in Appendix II. The second method is routinely used to characterize product in solvents heavier than gasoline. The gasoline range hydrocarbons are compressed as a result of a more rapid increase in column temperature. This is Method 4 as described in Appendix II.

The extracts obtained on the January 31, 2001 samples were diluted with methylene chloride on a ten to one basis and were analyzed under Method 4 conditions on February 6, 2001. The chromatograms indicated the extracts analyzed were over-diluted. An undiluted set of extracts were analyzed under Method 4 conditions on March 13, 2001.

The extracts obtained on the February 6, 2001 samples were analyzed under Method 4 conditions on February 13, 2001.

The only difference in operating conditions between Methods 1 and 2, which are used for actual product samples, and between Methods 3 and 4 is in the injection conditions. When products are run neat, or as received, a split injection method is used and if the hydrocarbons are in solvent phase a splitless injection system is used.

Display copies of the chromatograms, both labeled and unlabeled, are incorporated into the report as Appendix I. A full-scale display in which all the peaks have been kept onscale for accurate visualization of the relative proportions of the hydrocarbons present is provided. Also included in Appendix I is a table listing the abbreviations used to identify peaks on the chromatograms and their corresponding names.

Peak area tables derived from the chromatograms are included as Appendix III.

RESULTS

In discussing the compositional characteristics of the samples analyzed and analog signatures, the various peaks present in the chromatograms will be referred to in terms of the hydrocarbons they represent. As a general aid to visualizing the types of hydrocarbons involved, Figure 1 is provided to illustrate the structural characteristics of the main classes of hydrocarbons.

The concentration levels of hydrocarbons present in the MW 29 (23-25) and MW 31 (15-17) samples were too low to produce chromatograms which could be interpreted in detail in terms of parent product type or age. Neither chromatogram is consistent with coal tar as the product type. The complex assemblage of low amplitude peaks in the MW 29 (23-25) sample between eight and fourteen minutes elution time is consistent with a residual 10 to 15% fraction of gasoline. The chromatograms obtained on these samples are included in Appendix I.

Figure 2 compares the chromatographic signature of the MW 30 (25-27) soil sample with the signature of a gasoline. The gasoline signature shown is that of American Petroleum Institute petroleum standard 6 (API PS6). The MW30 (25-27) sample signature shows a hydrocarbon range extending from the C7 (seven carbon atoms) to the C23 (twenty three carbon atom) range. Gasoline derived hydrocarbons would extend only to NC13. The relative prominence of multibranched isoparaffins among the early eluting peaks indicates a gasoline contribution to the MW 30 hydrocarbon assemblage. These multibranched isoparaffins are collectively termed alkylates. Alkylates are derived from a specific refinery processing stream and are added to gasolines to raise the octane number of a gasoline. The structures of the alkylate hydrocarbons are shown in Figure 3. The relative prominence of the trimethylpentane (224TMP, 234TMP, and 233TMP) peaks compared to bracketing non-alkylate saturate peaks indicates a gasoline contribution to the MW30 (25-27) soil sample.

The gasoline associated with the MW30 (25-27) sample is significantly volatilized. The volatilization losses are reflected in the low proportions of the lighter hydrocarbons, which elute first or to the left on the chromatogram. The signature characteristics of the MWE-30 (25027)

FIGURE I TYPES OF HYDROCARBONS

SATURATES

CARBON ATOMS CONNECTED BY SINGLE BONDS PARAFFINS OR ALKANES NORMAL PARAFFINS OR ALKANES STRAIGHT CHAINS

NORMAL HEXANE (NC6)

ISO-PARAFFINS OR ALKANES BRANCHED CHAIN PARAFFINS

2METHYL PENTANE (2MP)

NAPTHENES OR CYCLOPARAFFINS OR CYCLOALKANES RING OR CYCLIC STRUCTURE

CYCLOPENTANE

(CCP)

CYCLOHEXANE

(CH)

METHYLCYCLOHEXANE (MCH)

FIGURE 1 (CONT.) TYPES OF HYDROCARBONS

UNSATURATES

HAVE ONE OR MORE CARBON DOUBLE BONDS

OLEFINS OR ALKENES

CAN BE STRAIGHT CHAIN, BRANCHED CHAIN, OR CYCLIC

NORMAL HEXENE

AROMATICS

BENZENE

NAPHTHALENE

27) SOIL SAMPLE AND API PS6 GASOLINE

FIGURE 3

 $C C C \\ | | \\ C - C - C - C - C - C \\ | \\ C$

225TRIMETHYLHEXANE (225TMH)
sample also indicate gasoline as the dominant parent product through the C9 aromatic range or approximately nine minutes elution time.

The gasoline derived portion of the MW 30 (25-27) sample signature also indicates the parent gasoline was an older formulation gasoline. The C8 aromatics (ethylbenzene and the xylenes) have comparable solubilities in water and comparable degradation rates (Yang et al, 1995). The proportions of the C8 aromatics compared to one another will reflect their proportions compared to one another in the parent product. The signature of the MW 30 (25-27) sample shows a predominance of ethylbenzene over both the meta-para xylene peak and the ortho-xylene peak. This is a characteristic restricted to gasolines produced prior to 1980. The proportions of the C9 aromatics compared to one another also will reflect their proportions compared to one another in the parent product. The proportions of the C9 aromatics compared to one another also are atypical of more recent gasolines, and also indicate a parent gasoline produced prior to 1980. The MW 30 (25-27) signature shows a high proportion of the normal propyl benzene (NPBZ) peak compared to the following C9 aromatic peaks (1M3EBZ, 135TMBZ, and 1M2EBZ).

The gasoline derived hydrocarbons also show proportions of low octane number hydrocarbons which are more indicative of an unleaded gasoline rather than a leaded gasoline. The low octane number hydrocarbons include the cycloparaffins, normal paraffins, and monobranched isoparaffins. Unleaded gasolines were required to be in use as of 1975. Combining this characteristic with the other age related gasoline characteristics, indicates the parent gasoline most probably was produced between 1975 and 1980.

The next higher carbon number group of petroleum derived products are referred to collectively as the middle distillates. Kerosenes, diesels, and fuel oils are the most common middle distillate products. Standard (#2) grade fuel oil and diesel are similar products. Figure 4 provides a comparison of the chromatographic signatures of a kerosene product sample and a diesel/fuel oil product sample. The normal paraffins are the most prominent individual hydrocarbon type in middle distillate products. The normal paraffins are straight chain molecules in which all the carbon atoms are attached to one another in an end to end manner. The structure of normal hexane in Figure 1 is an example of a normal paraffin. The normal paraffins are annotated on the chromatograms with a NC designation followed by the number of carbon atoms in the molecule. The overall carbon number range and normal paraffin distribution of diesels and fuel oils extends to higher carbon numbers than in kerosenes.

Diesels and fuel oils also can be differentiated from kerosene products on the basis of their isoprenoid proportions. The isoprenoids are the second most prominent individual hydrocarbon type in middle distillate products. The isoprenoids are a unique type of branched chain or isoparaffin in which a side methyl (CH3) group is attached to every fourth carbon atom of the main carbon chain. The structure of methylpentane in

ł

FIGURE 4: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF A KEROSENE SAMPLE AND A DIESEL PRODUCT SAMPLE

Figure 1 is an example of an isoparaffin with a single, side, methyl group. The isoprenoids are annotated on the chromatograms with an IP designation followed by the number of carbon atoms in the molecule. In kerosenes, the lower carbon number isoprenoids (IP13, IP14, IP15, and IP16) significantly exceed the higher carbon number isoprenoids (IP18, IP19, and IP20). In diesels and fuel oils, the higher carbon number isoprenoids are present at more comparable proportions to the lower carbon number isoprenoids, and in some instances may exceed the lower carbon number isoprenoids.

With increasing exposure time, the normal paraffin peaks are preferentially reduced compared to the isoprenoid peaks and ultimately lost as a result of biodegradation. Figure 5 illustrates the effects of biodegradation on a kerosene product sample. In Figure 5, the chromatogram of a kerosene sample is shown. The same signature is then shown artificially biodegraded by whiting out the normal paraffin peaks. Figure 6 provides a similar comparison for a diesel/fuel oil product sample signature. As the vertically prominent normal paraffin peaks are lost, the underlying baseline rise or hump becomes an increasingly prominent feature of the chromatographic signature. The baseline rise or hump represents a complex mixture of individual hydrocarbons which are not present in sufficient individual abundance to elute as discrete peaks. Biodegraded diesels and fuel oils can be distinguished from biodegraded kerosene products on the basis of the carbon number limits of the baseline rise or hump and the proportions of the isoprenoids.

Figure 7 compares the chromatographic signature of the MW 30 (25-27) soil sample with the signature of a kerosene product sample. Figure 8 provides a similar comparison with a diesel/fuel oil product sample. The baseline rise limits, isoprenoid proportions, and overall carbon number range are consistent with a diesel/fuel oil product and not a kerosene product.

The low proportions of normal paraffin peaks and prominence of isoprenoid peaks indicates the diesel/fuel oil associated with the MW 30 (25-27) sample is severely biodegraded. Figure 9 compares the chromatographic signature of the MW 30 (25-27) sample to a biodegraded diesel/fuel oil signature.

Christensen and Larsen (1993) correlated the level of biodegradation with exposure times for samples analyzed from sites with known loss dates. The ratio of NC17/IP19 (pristane) was used as a measure of the level of biodegradation. The NC17/IP19 ratio for the MW 30 (25-27) sample is 0.1. Based on the criteria of Christensen and Larsen, an exposure time of 16 to 20 years is indicated.

15% of the MW30 (25-27) sample signature is represented by the hydrocarbons eluting up to NC10, which are dominantly gasoline derived. The C10 to C13 range consists of both gasoline derived and diesel/fuel oil derived hydrocarbons. An additional 5 to 10% of the total hydrocarbons are estimated to also be gasoline derived. On this basis, the hydrocarbon

ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

FIGURE 5: CHROMATOGRAPHIC SIGNATURE OF A KEROSENE PRODUCT AS ANALYZED AND ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

FIGURE 6: CHROMATOGRAPHIC SIGNATURE OF A DIESEL PRODUCT AS ANALYZED AND ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

.

FIGURE 8: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW-30 (25-

FIGURE 9: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 30 (25-27) SOIL SAMPLE AND A BIODEGRADED DIESEL/FUEL OIL PRODUCT SAMPLE

assemblage present in the MW30 (25-27) sample represents 20 to 25% gasoline and 75 to 80% diesel or fuel oil. The gasoline portion of the sample shows compositional characteristics which would restrict the age of the parent gasoline to a gasoline produced prior to 1980, and most probably represents an unleaded gasoline produced between 1975 and 1980. The diesel/fuel oil is significantly biodegraded, with a most probable exposure time of 16 to 20 years.

Figure 10 compares the chromatographic signatures of the MW 30 (25-27) and MW 31 (23-25) soil samples. The MW 31 (23-25) soil sample signature also represents a mixture of gasoline derived and diesel/fuel oil derived hydrocarbons. The gasoline associated with the MW 31 (23-25) sample is more volatilized than the gasoline associated with the MW 30 (27-27) sample. The C8 hydrocarbons have been nearly completely lost in the MW 31 sample, and the proportions of the C9 aromatics to one another are affected by volatilization losses. Within the geographic limitations of a single site, it is likely the more weathered gasoline associated with the MW 31 (23-25) sample has had at least as long an exposure time as the gasoline associated with the MW 30 (25-27) sample. On this basis, the parent gasoline associated with the MW 30 (25-27) sample was produced prior to 1980 as well.

The diesel/fuel oil associated with the MW 31 (23-25) sample also is significantly biodegraded. The NC17/IP19 ratio for the MW 31 (23-25) sample is 0.0, with an indicated most probable exposure time of twenty years or more.

12% of the MW 31 (23-25) signature is represented by hydrocarbons eluting up to NC10, which are dominantly gasoline derived. The C10-C13 range consists of hydrocarbons which are both gasoline derived and diesel/fuel oil derived. An additional five to ten percent of the total hydrocarbons are estimated to be gasoline derived. On this basis approximately 20% of the hydrocarbons associated with the MW 31 (23-25) sample are gasoline derived, and 80% are diesel/fuel oil derived. The gasoline associated with the MW 31 (23-25) sample is considerably more severely volatilized than the gasoline associated with the MW 30 (25-27) sample. On this basis, a pre-1980 gasoline is also indicated for the MW 31 (23-25) sample. The diesel/fuel oil is significantly biodegraded, with a most probably exposure time of twenty years or more.

The signature characteristics of coal tar differ considerably from those of the MW 30 (25-27) and MW 31 (23-25) samples. Figures 11 and 12 compare the chromatographic signatures of these soil samples to the signatures of a coal tar. Coal tar signatures are dominated by prominent polynuclear aromatic peaks extending from naphthalene through benzo(g,h,I) perylene. This peak sequence is not evident in either the MW 30 (25027) or the MW 31 (23-25) samples. Coal tar signatures also do not display a prominent baseline rise or hump, which are evident in the MW 30 (25-27) and MW 31 (23-25) sample signatures.

27) AND MW 31 (23-25) SOIL SAMPLES

27) SOIL SAMPLE AND A COAL TAR

Figure 13 compares the chromatographic signatures of the SB-40 (23-25) and the MW 31 (23-25) soil samples. The SB-40 (23-25) sample signature does not show a gasoline contribution to the hydrocarbons extracted from this soil sample. This is illustrated in Figure 14, which compares the signature of the SB-40 (23-25) sample with the signature of API PS6 gasoline. The baseline rise of the SB-40 (23-25) sample also extends to higher carbon atoms than the MW 31(23-25) sample. The baseline rise of the SB-40 (23-25) sample. The baseline rise of the SB-40 (23-25) sample also extends to higher carbon atoms than the MW 31(23-25) sample. The baseline rise of the SB-40 (23-25) sample is more extensive than would be associated with a standard (#2) grade fuel oil or diesel. Figure 15 compares the chromatographic signature of the SB-40 soil sample with a biodegraded diesel/fuel oil signature.

The baseline rise characteristics of the SB-40 (23-25) sample are consistent with a residual grade or #6 fuel oil. Figure 16 compares the chromatographic signature of the SB-40 (23-25) sample with the signature of a residual grade fuel oil. The absence of normal paraffin peaks indicates the residual fuel oil associated with the SB-40 (23-25) sample is severely biodegraded. However, the absence of isoprenoid peaks as well indicates the level of biodegradation is even more severe.

Kennicutt (1988) in studies of crude oil biodegradation found the isoprenoids to be relatively unaffected by biodegradation until the normal paraffins had been lost. It took approximately double the amount of time after the normal paraffins had been lost for the isoprenoids to be significantly lost. On the basis that the SB-40 (23-25) sample signature shows neither a prominent sequence of normal paraffin peaks nor a prominent sequence of isoprenoid peaks, an exposure time of at least fifty to sixty years is most probable for the residual fuel oil product associated with the SB-40 (23-25) soil sample.

The SB-40 (23-25) sample signature shows several peaks which elute at the positions of certain polynuclear aromatic hydrocarbons (PAH's). However, a full suite of PAH peaks are not present, and the proportions are not consistent with the PAH peaks present in the coal tar impacted samples. This is illustrated in Figure 17, which compares the chromatographic signature of the SB-40 (23-25) sample with a coal tar signature. For example, the phenanthrene peak would be expected to be present at considerably higher proportions than the acenaphthalene peak, but is absent. Both the atypical proportions and absence of the majority of the PAH peaks eluting after acenaphthalene indicate these peaks more likely are associated with the residual grade fuel oil than with coal tar.

The signature characteristics of the SB-40 (23-25) soil sample are consistent with a residual grade fuel oil. The fuel oil is very severely biodegraded; both the normal paraffins and isoprenoids have been lost. An exposure time of at least fifty years is indicated for the fuel oil.

The PZ-1 (27-29) sample signature indicates the hydrocarbon assemblage present in this sample represents a mixture of diesel/fuel oil and coal tar. The diesel/fuel oil contribution predominates. Figure 18 compares the chromatographic signature of the PZ-1 (27-29) sample signature with

FIGURE 13: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 31 (23-25) AND SB-40 (23-25) SOIL SAMPLES

FIGURE 14: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND API PS6 GASOLINE

FIGURE 15: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND A BIODEGRADED DIESEL/FUEL OIL SIGNATURE

FIGURE 16: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND A RESIDUAL GRADE FUEL OIL SIGNATURE

FIGURE 17: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND A COAL TAR SIGNATURE

the signature of a coal tar. The sequence of polynuclear aromatic peaks is indicative of a coal tar contribution and would not be expected to be present in diesel or fuel oil. In addition to the coal tar contribution, the PZ-1 sample signature also shows a sequence of normal paraffin and isoprenoid peaks, as well as a large baseline rise or hump consistent with a diesel/fuel oil. The normal paraffin peaks, isoprenoid peaks, and baseline rise would not be associated with a coal tar product as illustrated in Figure 18. These characteristics are consistent with a diesel/fuel oil product.

Figure 19 compares the chromatographic signature of the PZ-1 (27-29) sample with a diesel/fuel oil product signature. The PZ-1 (27-29) signature shows reduced proportions of normal paraffin peaks compared to the isoprenoid peaks. A moderate level of biodegradation is indicated for the diesel/fuel oil contribution to the PZ-1 sample. The NC17/IP19 ratio for the PZ-1 sample signature is 0.4. Based on the criteria of Christensen and Larsen (1993), the most probable exposure time is 14 to 18 years.

<u>REFERENCES</u>

Christensen, L. B. and T. Larsen (1993) Method for determining the age of diesel spills in the environment: Ground Water Mon. & Remed., Vol. 13, No. 2, p. 142-149.

Kennicutt, M. C. II (1988) The effect of biodegradation on crude oil bulk and molecular composition: Oil & Chem. Pollution, Vol. 4, p. 89-112.

Yang, Y.J., R.D. Spencer, M.A. Morsmann, and T.A. Gates (1995) Groundwater contamination plume differentiation and source determination using BTEX concentration ratios: GroundWater, Vol.33, No.6, p. 927-935.

FIGURE 18: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF PZ-1(27-29) SOIL SAMPLE AND A COAL TAR SIGNATURE

FIGURE 19: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF PZ-1(27-29) SOIL SAMPLE AND A DIESEL/FUEL OIL SIGNATURE

Internal Use Unity	Additional Analyses / Remarks	AVC. DATE TIME TIME DATE DATE DATE TIME DATE DATE DATE DATE TIME	Courier: Bill of Lading:
111 TO: PANIE FILLIER AT Lumpany: J. J. (1010 Address: 12, 13, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10		RECEIVED BY COMPANY REGENER BY WILL COMPANY RECEIVED BY WILL COMPANY RECEIVED BY COMPANY	COMMENTS:
To: Gladie Murans E.T. C. C. C. Brish Muracia Blad 2. Calush Muracia Blad 2. Calush Muracia Blad 2. 183 - 1211Co 18 - 183 - 53 - 57 - 1 21 - 200 - 53 - 53 - 53 - 5 21 - 200 - 50 - 50 - 50 - 50 - 50 - 50 - 5	A X X A S S S S S S S S S S S S S S S S	1-31-21 1-31-21 1-31-21 1-31-21 0ATE TIME 1-31-20 1-31-20 1-31-20 1-31-20 1-31-20 1-31-20 1-31-20 1-31-20 1-31-20 1-31-20 1-31-20 1-31-30	Preservative Key 1. HCI, Cool to 4* 2. H2SO4, Cool to 4* 3. HNO3, Cool to 4* 4. NaOH, Cool to 4* 5. NaOH/Zh Acetate, Cool to 4* 6. Cool to 4* 7. None
Report 1 Contact: 1 Co	Signature: Signature: Client Date Required: Samole ID Samole ID Date Required: Signature: 1/2.1/L	COMPANY TT COMPANY COMPANY COMPANY	y Container Key 1. Plastic 2. VOA Vial 3. Sterile Plastic 3. Sterile Plastic 5. Widemouth Glass 6. Other
Committed To Your Su	Sampler Name: J. 1 I I I I I I I I I I I I I I I I I I	RELINGUISHED BY	WW = Wastewater W = Wastewater S = Sold SL = Studge MS = Miscellaneous Solic OL = Oi A = Air A = Air

ITUEL I VALVALE I VOI

IT Corporation 13 British American Boulevard Lathom, NY 12110-1405 Tel. 518.783.1996 Fax. 518.783.8397

A Member of The IT Group

March 26, 2001

Neil Peterson Worldwide GeoSciences 6100 Corporate Drive, Suite 320 Houston, TX 77036 (713) 988-9401

Subject: Sample Identification NMPC- Area 2 Troy, NY

Dear Mr. Peterson:

Please change the sample identification for sample labeled NMPC/Area2/MW-33/23-25 to NMPC/Area2/SB-40/23-25.

· ..

Sincerely,

Cecelis Carpole

Cecelia Campbell IT Corporation

CHAIN OF C	CUSIODY RECORD HELSON, TA TIESC	Englew (201) 5 Fax (26	ngo d, NJ <u>67-6</u> 868 11) 567-1	07631 333	(7 F) dison, 32)-225 ax (732	U 08837 4111 225-41	7 10				C		ECH C		JO.: (
	CLIENT INFORMATION			PROJE	CT INFOF	MATIC	DN						BI	LING	NFORM	ATION	
COMPANY: IT CUPLICEDES			PROJECT NAME: NMRC: ANOR Q BILL TO: I						<u> </u>	Сир. ро #:							
ADDRESS: 13 British American Blud		PROJECT NO.:						ADDRESS: 13 Pritish American Blud									
CITY: 1-CATING STATE: NY ZIP: 1210		PROJECT MANAGER:						CITY: / atham STATE: NY ZIP: 12110									
ATTENTION:	Pulle Ahrens	LOCATION: TYOM NY						ATTENTION: BULL HUNDS PHONE: 783-1946									
(313) PHONE 783 1-111 (- FAX: 783 031)			0.17		FA	X:									ALYSIS		
FAX: HARD COPY: EDD: TO BE APPF	DAYS · DAYS · DAYS · DAYS · DAYS · DAYS · DAYS ·	TI RESUL E I RESUL E I NJ REI E NJ CLE E EDD F	DAT TS ONI TS + Q DUCED	Y C	USEP	A CLP ASP "B ASP "A		5	T. T. R.	4	5		6	7			
CHEMTECH SAMPLE ID	PROJECT SAMPLE IDENTIFICATION	SAMPLE MATRIX	SAMPLE TYPE dwo CBAB	SAN COLLI DATE	MPLE ECTION TIME	# OF BOTTLES	·te 1	2	3	PRE: 4	SERVA	TIVES		8	9	CC Speci A – HCI C – H ₂ SC E – ICE	IV Preservatives B - HNO, D - NaOH F - Other
1.	CIMIR / ALEG 2/ PLW X. (25:21)	S	X	2/5/01	1420	1	以				·					· · · · · · · · · · · · · · · · · · ·	
2	NAMOR / Mile 2/ Mile 31 (15 (7)	S	<u>۸</u>	2/261	1330	1	×		 								
3.	1.mil/1.m.2/musil (13-25)	5	ل ان	2/2/-1	1540	1	X										
4.	MMRC/ Aren 2/ Mul 27 (.33 .25)	5	<u>x</u>	2/2/01	1035		X										
6.		·			-				 					+			
7.																	_
8.																	nan suite anna an tha an tha an tha an tha
	SAMPLE CUSTODY MUST BE DOO SAMPLER. DATE/TIME: , , , , , , , , , , , , , , , , , , ,		BELO	Conc Com	ditions of b	of	CHANG	E POS rs at re	SESSIC	L i Co	mpliant	G COU	Non-C	DELIVE Complia	nt Ti	Temp. of C	ooler
)PY FOR R	FTURN	TO CLIEN	T YEL		CHEM	TECH (PINK			COPV	,			

APPENDIX I DISPLAY CHROMATOGRAMS

-

ABBREVIATIONS USED TO IDENTIFY PEAKS

ABBREVIATION	HYDROCARBON
<u>C1</u>	METHANE
C2	ETHANE
C3	PROPANE
IC4	ISOBUTANE
NC4	NORMAL BUTANE
ETH	ETHANOL
22C3	2 2 DIMETHYL PROPANE
IC5	ISOPENTANE
NC5	NORMAL PENTANE
MeC2	METHYLENE CHLORIDE
22DMB	2 2 DIMETHYL BUTANE
23DMB	2 3 DIMETHYL BUTANE
2MP	2 METHYLPENTANE
3MP	3 METHYLPENTANE
NC6	NORMAL HEXANE
22DMP	2.2 DIMETHYLPENTANE
MCP	METHYLCYCLOPENTANE
24DMP	2.4 DIMETHYLPENTANE
BZ	BENZENE
	CYCLOHEXANE
2МН	2 METHYLHEXANE
23DMP	2.3 DIMETHYLPENTANE
ЗМН	3 METHYLHEXANE
T13DMCP	T13DIMETHYLCYCLOPENTANE
C13DMCP	C13DIMETHYLCYCLOPENTANE
224TMP	2,2,4 TRIMETHYLPENTANE (PRINCIPAL ISO-OCTANE)
NC7	NORMAL HEPTANE
234TMP	2,3,4 TRIMETHYLPENTANE (ISO-OCTANE)
233TMP	2,3,3 TRIMETHYLPENTANE (ISO-OCTANE)
МСН	METHYLCYCLOHEXANE
TOL	TOLUENE
23DMH	2,3,DIMETHYLHEXANE
2MC7	2METHYLHEPTANE
3MC7	3METHYLHEPTANE
225TMH	2,2,4 TRIMETHYLHEXANE
223TMH	2,2,3 TRIMETHYLHEXANE
NC8	NORMAL OCTANE
EBZ	ETHYL BENZENE
M+P XYL	META AND PARA XYLENES
2MC8	2METHYLOCTANE
MC8	3METHYLOCTANE
O XYL	ORTHO XYLENE
NC9	NORMAL NONANE

ABBREVIATIONS USED TO IDENTIFY PEAKS (cont.)

ABBREVIATION	HYDROCARBON
IPBZ	ISOPROPYLBENZENE
NPBZ	NORMAL PROPYL BENZENE
1M3EBZ	1METHYL3ETHYLBENZENE
135TMBZ	1,3,5 TRIMETHYLBENZENE
1M2EBZ	1METHYL2ETHYLBENZENE
124TMBZ	1,2,4 TRIMETHYLBENZENE
NC10	NORMAL DECANE
123TMBZ	1,2,3 TRIMETHYLBENZENE (TERT BUTYL BENZENE
	CO-ELUTES AT THIS POSITION)
C4BZ	TETRAMETHYLBENZENE
NAPH	NAPHTHALENE
2M. NAPH	2METHYL NAPHTHALENE
1M. NAPH	1METHYL NAPHTHALENE

NC____Normal paraffin with number of carbon atoms in molecule shownIP____Isoprenoid iso-paraffin with number of C atoms in molecule shown

APPENDIX II

OPERATING CONDITIONS

GC OPERATING CONDITIONS

Instrument:	Perkin-Elmer Autosystem
Column:	30m*0.25mm ID*0.25u Methyl Silicon, Restek Rtx-1 (Cat# 10138, Fused Silica Column; Bonded, Non-Polar, Silicone Based Polymer Liquid Phase)
Carrier Gas:	Helium Linear Velocity = 30 cm/sec Column Pressure 16.9 psig.
Injection Port	: Split/Splitless Type Temperature 300 deg C
Detector:	Flame Ionization Type Temperature 300 deg C Range 1, Attn.4

	Method 1	Method 2	Method 3	Method 4
Injection Type	Split	Split	Splitless	Splitless
Acronym	5/s	10/s	5/sl	10/sl
Split Vent	On	On	Off	Off
Split Vent Time, min			0.5	0.5
Split Rate ml/min	100	100	100	100
Initial Temp, deg C	30	30	30	30
Initial Time, min	5	1	5	1
Ramp Rate, deg C/min	5	10	5	10
Final Temp, deg C	300	300	300	300
Final Time, min	0	15	0	15
Run Time, min	40	40	40	40

WWG I - 10 SL

WWG I - 10 SL

APPENDIX III

CHROMATOGRAM PEAK AREA TABLES

oftware Version: 4.1<2F12> ample Name : J-01010-B MW-30 Time : 3/14/01 11:11 AM ample Number: 10209001 Study : WWG penator : ĸ Channel : A A/D mV Range : 1000 nstrument : WWG EXTRACTS utoSampler : BUILT-IN ack/Vial : 0/5 . . nterface Serial # : NONE Data Acquisition Time: 2/13/01 07:55 PM elay Time : 0.00 min. nd Time : 40.00 min. ampling Rate : 6.2500 pts/sec aw Data File : C:\TC4\41WW\41WW161.RAW esult File : C:\WINDOWS\TEMP\~RST002A.RST nst Method : G:\GC4\4A-SEQ\WWG1__10 from C:\WINDOWS\TEMP\~RST002A.RST roc Method : C:\TC4\WWGINT.MTH alib Method : C:\TC4\WWGINT.MTH equence File : G:\GC4\4A-SEQ\41WW.SEQ ample Volume : 1.0000
ample Amount : 1.0000 ul Area Reject : 2000.000000 Dilution Factor : 1.00

WWG-INT REPORT

eak ∦	Time [min]	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
1	2.421	3590.38	11517.91	0.00	0.00	BB	0.31	
2	2.490	3143.05	5590.10	0.00	0.00	BB	0.56	
3	3.048	11728.94	9228.86	0.01	0.01	*BV	1.27	
4	3.085	7811.91	7114.25	0.01	0.01	*VB	1.10	
5	3.212	11307.88	6 672.08	0.01	0.01	*BB	1.69	
6	3.340	881 6. 08	5958.13	0.01	0.01	*BV	1.48	
7	3.376	24900.08	15397.71	0.02	0.02	*VV	1.62	
8	3.397	15675.39	13886.87	0.01	0.01	*VV	1.13	
9	3.435	6603.08	4099.14	0.01	0.01	*VV	1.61	
10	3.475	19982.81	17332.33	0.02	0.02	*VB	1.15	
11	3.597	118706.54	36479.75	0.11	0.11	*BV	3.25	
	3.630	110678.89	87531.57	0.10	0.10	*VB	1.26	
13	3.770	30937.32	18377.48	0.03	0.03	*BB	1.68	
14	3.858	4336.17	3308.29	0.00	0.00	*BV	1.31	
15	3.902	11246.62	7001.35	0.01	0.01	*VB	1.61	
16	3.949	3837.87	3316.72	0.00	0.00	*BV	1.16	
17	4.040	58287.10	23933.97	0.05	0.05	*VB	2.44	

K

· · ·

eak #	Time [min]	Area	Height	Area	Norm. Area	BL	Area/Height
π		[µv·5]	[μν] 	[ð] 	[ð] 		[5]
	4,200	139775.52	61596 09	0 13	0 13	*RV	2 27
19	4.228	92534.38	57205.75	0.09	0.09	*VV	1 62
20	4.318	23659.47	12412.16	0.02	0.02	*VV	1 91
21	4.467	480879.36	156452.43	0 45	0.02	*\/\/	3 07
22	4.532	206520.13	133246 95	0.19	0.19	•• चि// *	1 55
23	4.578	32973.01	20336 96	0.13	0.13	* 도 V	1.55
24	4.626	173848 96	72375 64	0.05	0.05	*117	2.40
25	4.717	315990 49	100110 56	0.10	0.10	* \ V * \ 7.\ 7	2.40
26	4.838	304050 91	119043 14	0.00	0.00	* V V * \7 \7	2 55
27	4 880	85605 78	40685 84	0.20	0.29	* V V * \7 \7	2.33
28	5.002	157373 30	70045 25	0.00	0.00	* \/ \/	2.10
29	5 043	68784 34	39329 12	0.15	0.15	* \ * \7\7	2.25
30	5 083	100974 56	30664 80	0.00	0.00	* 1717	2.20
31	5 170	88379 66	31362 30	0.09	0.09	* \7\7	J.29 2.02
32	5 266	370822 93	110549 14	0.00	0.00	* 1717	2.02
32	5 373	152165 59	170/0 70	0.55	0.55	~ V V	3.35
34	5 579	50747 25	4/940./0	0.14	0.14	~ V V	3.17
24	5 5 9 9	57903 42	1/41/.54	0.05	0.05	^ V V	2.91
35	5.509	J/003.42	22010.07	0.05	0.05	^ V V	2.56
20	5.656	71300.37	17662 10	0.07	0.07	^ V V	2.24
20	5.091	192260 22	1/662.10	0.03	0.03	~ V V	1.//
30 2'	5.700	103209.32	56060.50	0.17	0.17	^ V V	2.11
		202010.42	74319.33	0.25	0.25	* V V	3.53
4.1	5.945	515/4.5/	22939.23	0.05	0.05	* V V	2.25
41	5.995	93469.30	24882.36	0.09	0.09	* V V	3.76
42	6.125	819055.16	301437.04	0.77	0.77	* V V	2.12
43	6.297	832100.28	2/2860.62	0.78	Ų.78	* V V	3.05
44	6.391	332362.83	164144.80	0.52	0.52	* V V	_ 3.3/
45	6.516	390253.90	153999.72	0.3/	0.37	* V V	2.53
40	6.5/9	121/80.91	36224.47	0.11	0.11	* V V	3.36
4 /	6.647	16/5/5./9	51622.02	0.16	0.16	* V V	3.25
48	6./5/	385083.91	102092.64	0.36	0.36	* V V	3.11
49	6.885	126258.12	33179.29	0.12	0.12	* V V	3.81
50	7.004	392931.00	135272.47	0.37	0.37	^ V V + 1717	2.90
51	7.000	IZI//I.ZJ	43003.74	0.11	0.11	~ V V + 1717	2.79
52	7.134	JULUJ.94	21303.33	0.05	0.05	^ V V + 1717	2.32
55	7.235	126142 69	/1401.42	0.17	0.17	^ V V	2.47
54 55	7.301	130142.00	4/294.30	0.13	0.13	~ V V + 1717	2.00
55	7.329	79000.24	42283.62	0.07	0.07	~ V V + 1717	1.87
50	7.380	220001 09	20312.40	0.05	0.05	~ V V	2.39
57	7.407	250994.90	17967 02	0.22	0.22	~ V V	3.95
50	7.551	100004.10	4/00/.02	0.15	0.15	~ V V + 1717	3.30
59 60	1.029 7.70	22/013.10	11021.11		0.21	~ V V ★ \7\7	J.⊥/ D D1
6U =	7.772	/9/854.24	240763.24	0.75	0.75	~ V V	3.31
	1.930	02U9/U./2 175527 01	240321.39 67705 66		0.58	~ V V *\7\7	2.52
63	1.774 0 050	103001.UL	169032 07	0.10	0.10	∾ v v ★₹7₹7	2.JJ
67	0.0J9 8 125	423990.31 527650 PA	163018 33	0.40	0.40	∨ ∨ \7\7★	3 24
65	8 172	209210 19	100010.00	0.00	0.50	* \7\7	1 71
66	8,228	373804 32	159468 57	0.35	0.35	*VV	2.34
~ ~		0.0001.02			0.00		

esult File : ~RST002A.RST, Printed On 3/14/01 11:11 AM

≥ak	Time	Area	Height	Area	Norm. Area	BL	Area/Height
ŧ	[min]	[µV·s]	[µV]	[응]	[8]		[s]
	8.297	351986.89	109803.47	0.33	0.33	*vv	3.21
58	8.357	154239.76	44401.70	0.14	0.14	*VV	3.47
59	8.551	2743688.34	719808.48	2.58	2.58	*VE	3.81
70	8.610	143089.94	45471.62	0.13	0.13	*EV	3.15
71	8.665	80374.43	35807.40	0.08	0.08	*VV	2.24
72	8.790	594235.80	160635.11	0.56	13,230.56	*VV	<u>3.70 NC10</u>
73	8.841	73161.41	32692.76	0.07	0.07	*VV	2.24
74	8.895	63966.84	25750.07	0.06	0.06	*VV	2.48
75	8.990	848384.00	336188.28	0.80	0.80	*VV	2.52
76	9.038	212734.16	75711.43	0.20	0.20	*VV	2.81
77	9.177	875316.56	276637.54	0.82	0.82	*VV	3.16
78	9.247	137130.44	68737.37	0.13	0.13	*VV	1.99
79	9.282	307754.31	77034.15	0.29	0.29	*VV	4.00
30	9.452	763731.06	223520.80	0.72	0.72	*VV	3.42
31	9.487	222234.93	115278.98	0.21	0.21	*VV	1.93
32	9.572	683878.29	244085.21	0.64	0.64	*VV	2.80
33	9.615	295731.97	166934.66	0.28	0.28	*VV	1.77
34	9.650	124662.11	76311.68	0.12	0.12	*VV	1.63
35	9.703	235768.06	84725.48	0.22	0.22	*VV	2.78
36	9.758	629448.87	165304.53	0.59	0.59	*VV	3.81
37	9.861	256190.23	114459.55	0.24	0.24	*VV	2.24
	9.959	1003088.73	274696.82	0.94	0.94	*VV	3.65
	9.987	353619.35	230539.54	0.33	0.33	*VV	1.53
90	10.030	194104.99	119794.92	0.18	0.18	*VV	1.62
91	10.093	1371886.71	488830.69	1.29	1.29	*VE	2.81
92	10.144	133119.06	70526.47	0.12	0.12	*EV	1.89
93	10.174	177879.19	86583.25	0.17	0.17	*VV	2.05
94	10.235	157412.73	65506.86	0.15	0.15	*VV	2.40
95	10.301	164709.82	70176.40	0.15	0.15	* VV	2.35
96	10.336	143528.22	80061.44	0.13	0.13	*VV	1.79
97	10.359	114077.26	81131.46	0.11	0.11	*VV	1.41
98	10.402	454780.73	141476.85	0.43	0.43	*VV	3.21
99	10.507	521545.22	145428.13	0.49	0.49	*VV	3.59
00	10.631	760655.89	230980.93	0.71	0.71	*VV	3.29
01	10.701	911114.72	351593.35	0.86	0.86	*VV	2.59
02	10.770	198730.80	83563.73	0.19	0.19	*VV	2.38
03	10.811	244089.43	84224.22	0.23	0.23	*VV	2.90
04	10.967	1278535.93	351008.03	1.20	1.20	*VV	3.64
05	11.039	184272.52	95109.05	0.17	0.17	*VV	1.94
06	11.083	381477.12	169442.77	0.36	0.36	*VV	2.25
07	11.144	802990.83	265471.71	0.75	0.75	*VV	3.02
08	11.200	579156.22	230361.42	0.54	0.54	*VV	2.51
09	11.301	409396.25	98665.30	0.38	0.38	*VV	4.15
	11.340	436996.94	152332.99	0.41	0.41	*VV	2.87
.1	11.414	435073.04	135799.63	0.41	0.41	*VV	3.20
12	11.440	195871.78	125219.09	0.18	0.18	*VV	1.56
13	11.481	195143.14	96872.16	0.18	0.18	*VV	2.01
14	11.557	502864.34	178080.06	0.47	0.47	*VV	2.82
15	11.642	680492.46	228582.51	0.64	0.64	*VV	2.98

eak #	Time [min]	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
	11.685	215079.75	105126.20	0.20	0.20	*VV	2.05	
17	11.764	850806.84	203906.27	0.80	0.80	*vv	4.17	
18	11.846	482804.22	179360.81	0.45	0.45	*vv	2.69	
19	11.922	1260678.20	282507.08	1.18	1.18	*vv	4.46	
20	12.102	602671.41	202623.97	0.57	0.57	*vv	2.97	
21	12.153	209083.96	90425.14	0.20	0.20	*VV	2.31	
22	12.190	138095.26	78534.10	0.13	0.13	*VV	1.76	
23	12.242	348356.24	102463.51	0.33	0.33	*vv	3.40	
24	12.353	826200 .6 0	263269.88	0.78	0.78	*VV	3.14	
25	12.467	710186.64	151831.04	0.67	0.67	*VV	4.68	
26	12.555	546442.23	124706.38	0.51	0.51	*VV	4.38	
27	12.650	418373.06	114864.59	0.39	0.39	*vv	3.64	
28	12.745	767815.91	202173.28	0.72	0.72	*VV	3.80	
29	12.794	214108.00	74634.66	0.20	0.20	*VV	2.87	
30	12.886	422191.98	105865.17	0.40	0.40	*VV	3.99	
31	12.952	572690.78	174371.54	0.54	0.54	*VV	3.28	
32	13.003	389360.61	107716.82	0.37	0.37	*VV	3.61	
33	13.097	844625.25	146857.63	0.79	0.79	*VV	5.75	
34	13.232	502474.79	183515.21	0.47	0.47	*VV	2.74	
35	13.270	456990.31	223912.22	0.43	0.43	*VV	2.04	
36	13.330	280286.36	109274.62	0.26	0.26	*VV	2.56	
37	13.395	1142553.31	253357.37	1.07	1.07	*VV	4.51	
	13.485	320433.61	103230.11	0.30	0.30	* V V	3.10	
39	13.547	282711.65	109691.18	0.27	0.27	* V V	2.58	
40	13.627	1022/94.62	224/23.19	0.96	0.96	* \ \ \	4.55	
41	13./31	180045.44	83057.96	0.17	0.17	^ V V + 1/17	2.1/	
42	13.795	904018.97	160350 66	0.85	0.85	~ V V + 1717	4.00	
43	13.904	20060 67	100350.00	0.40	0.40	~ V V * \/ \/	3 08	
44	14 020	246900.07	97013.45	0.37	0.37	* \7\7	2.65	
45	14.039	490017 54	11370/ 06	0.25	0.25	* \7 \7	2.05 4 31	
40	14.079	469669 73	105983 74	0.40	0.40	*vv	4.43	
48	14 263	445298.03	139586.34	0.42	0.42	*vv	3.19	
49	14.310	541760.94	140329.06	0.51	0.51	*VV	3.86	
50	14.412	417694.96	92262.93	0.39	0.39	*VV	4.53	
51	14.495	349494.23	103157.25	0.33	0.33	*VV	3.39	
52	14.572	696397.68	121460.62	0.65	0.65	*VV	5.73	
53	14.649	230216.79	90103.98	0.22	0.22	*VV	2.56	
54	14.685	140812.26	82259.86	0.13	0.13	*VV	1.71	
55	14.776	805018.60	255380.32	0.76	0.76	*VV	3.15	
56	14.817	476666.74	174547.63	0.45	0.45	*VV	2.73	
57	14.864	487553.88	134888.51	0.46	0.46	*VV	3.61	
58	14.987	599024.12	158638.16	0.56	0.56	*VV	3.78	
. .	15.026	464859.20	162027.55	0.44	0.44	*VV	2.87	
	15.083	320390.68	123071.76	0.30	0.30	*VV	2.60	
61	15.136	378311.97	144885.09	0.36	0.36	* VV	2.61	
.62	15.210	869512.89	224755.73	0.82	0.82	* VV	3.87	
.63	15.262	768512.54	100600 01	0.72	0.72	* V V + 1717	4.8/ 2.27	
.64	12.3/1	243636.03	102688.04	0.23	0.23	v v	2.31	

∋ak #	Time	Area	Height	Area	Norm. Area	BL	Area/Height	
	[IIII] 		[μν] 	[م] 	[ð] 		[5]	
K	15.445	383223.06	108840.93	0.36	0.36	*vv	3.52	
	15.534	736355.56	201270.22	0.69	0.69	*vv	3.66	
57	15.563	710942.88	230793.93	0.67	0.67	*vv	3.08	
68	15.627	260548.04	118242.07	0.24	0.24	*vv	2.20	
69	15.695	829120.11	164746.67	0.78	0.78	*vv	5.03	
70	15.780	223943.22	98286.80	0.21	0.21	*vv	2.28	
71	15.865	386336.89	94935.96	0.36	0.36	*vv	4.07	
72	15.950	1144123.69	314158.35	1.07	1.07	*vv	3.64	
73	16.050	914003.44	203199.34	0.86	0.86	*vv	4.50	
74	16.127	39 9 55 9. 97	133756.00	0.38	0.38	*vv	2.99	
75	16.183	534360.19	175478.27	0.50	0.50	*vv	3.05	
76	16.239	185043.16	98079.75	0.17	0.17	*vv	1.89	
77	16.286	505546.89	129184.13	0.47	0.47	*vv	3.91	
78	16.375	834286.23	190255.94	0.78	0.78	*vv	4.39	
79	16.427	381280.91	142995.39	0.36	0.36	*vv	2.67	
30	16.493	370206.62	130969.22	0.35	0.35	*vv	2.83	
31	16.543	286917.17	127267.50	0.27	0.27	*vv	2.25	
32	16.591	475563.75	148549.24	0.45	0.45	*VV	3.20	
33	16.667	645611.53	170766.67	0.61	0.61	*VV	3.78	
34	16.751	1017749.18	182528.07	0.96	0.96	*vv	5.58	
35	16.881	351293.75	108527.64	0.33	0.33	*VV	3.24	
36	16.939	522825.62	157156.27	0.49	0.49	*VV	3.33	
	17.002	426097.76	152051.47	0.40	0.40	*VV	2.80	
58	17.038	286340.41	114652.84	0.27	0.27	*VV	2.50	
39	17.141	766095.64	179597.26	0.72	0.72	*VV	4.27	
Э0	17.188	494586.58	159041.72	0.46	0.46	*VV	3.11	
Э1	17.278	545117.26	153557.71	0.51	0.51	*VV	3.55	
Э2	17.321	352223.39	138477.17	0.33	0.33	*VV	2.54	
93	17.365	511284.66	121502.62	0.48	0.48	*VV	4.21	
Э4	17.462	347513.77	105967.75	0.33	0.33	*VV	3.28	
Э5	17.557	539704.67	121601.10	0.51	0.51	*VV	4.44	
96	17.596	670737.98	160968.98	0.63	0.63	*VV	4.17	
97	17.666	286522.93	124545.20	0.27	0.27	*VV	2.30	
98	17.704	408441.63	125785.19	0.38	0.38	* V V	3.25	
99	17.814	602036.67	128705.20	0.57	0.57	*VV	4.68	
00	17.867	548203.25	143610.12	0.51	0.51	* V V	3.82	
)1 20	17.931	195548.66	1044/2.40	0.18	0.18	* V V	1.8/	
02	17.955	98094.43	103956.54	0.09	0.09	* V V	0.94	
73	17.994	35/936.24	10/195.93	0.34	0.34	* V V	3.34	
J4 25	18.04/	400809.64	104580.89	0.38	0.38	* V V + 1 71 7	3.83	
J5	18.11/	315865.69	97080.01	0.30	0.30	~ V V + 1 /11 /	3.20	
J6 27	18.160	303382.67	96386.90	0.28	0.28	* V V + 1 717	3.15	
J /	18.239	3/9921.31	118829.66	0.36	0.36	^ V V	3.20	
	10.320	320507 04	243203.90	0.82	0.02	~ V V *1717	3.30 3.30	
1.0	10.302	220201.04 220101 25	99JUL.UL 00100 00	0.30	0.30	~~ V V *\7\7	2.40	
11	10,417 10,500	230494.23	112687 07	0.22	0,22	۷ ۷ ۲ <i>۲</i> ۲۶ *	2.40	
12	18 614	258695 99	89368 58	0.72	0,75	*\7\7	2.89	
13	18 705	503770.26	117297 00	0.47	0.47	*vv	4.29	
~ ~					••••	• •		

pe	a y	le.	0

∋ak	Time	Area	Height	Area	Norm. Area	BL	Area/Height	
Ħ	[min]	[µV·s]	[¥4]	[8]	[%]		[s]	
·								
	18./3/	3/895/.10	108880.84	0.36	0.36	* VV	3.48	
1.	18.794	94142.90	99296.47	0.09	0.09	^ V V + 1 / 1 / 1	0.95	
10	18.826	296653.98	109578.97	0.28	0.28	^ V V	2.71	
10	18.903	62/639.38	124/58.52	0.59	0.59	* V V	5.03	
10	19.019	1329898.91	342/95.6/	1.25	1.25	* V V	3.88	
19	19.060	359660.17	114982.92	0.34	0.34	* / /	3.13	
20	19.130	614807.62	110026.26	0.58	0.58	* / / /	5.59	
21	19.233	2060/5.45	94704.76	0.19	0.19	* / /	2.18	
22	19.287	626978.34	112083.63	0.59	0.59	* V V	5.59	
23	19.418	644532.01	107520.81	0.60	0.60	*VV	5.99	
24	19.520	533012.65	120784.43	0.50	0.50	*VV	4.41	
25	19.603	422957.71	93446.00	0.40	0.40	*VV	4.53	
26	19.650	317713.82	83666.49	0.30	0.30	*VV	3.80	
27	19.775	623358.40	108614.79	0.59	0.59	*VV	5.74	
28	19.842	244880.01	82928.61	0.23	0.23	*VV	2.95	
29	19.897	266994.61	83264.30	0.25	0.25	*VV	3.21	
30	19.992	608351.59	90933.06	0.57	0.57	*VV	6.69	
31	20.076	290735.90	85476.72	0.27	0.27	*VV	3.40	
32	20.181	845124.75	228571.63	0.79	0.79	*VV	3.70	
33	20.288	492910.63	90548.25	0.46	0.46	*VV	5.44	
34	20.343	298899.10	91000.47	0.28	0.28	*VV	3.28	
35	20.439	493924.58	86490.81	0.46	0.46	*VV	5.71	
	20.502	326601.82	84423.94	0.31	0.31	*VV	3.87	
37	20.622	426658.82	81496.06	0.40	0.40	*VV	5.24	
38	20.668	229726.32	74828.77	0.22	0.22	*VV	3.07	
39	20.709	166159.45	72132.63	0.16	0.16	*VV	2.30	
40	20.755	145304.51	72528.09	0.14	0.14	*VV	2.00	
41	20.795	397260.24	75175.22	0.37	0.37	*VV	5.28	
42	20.900	518582.02	73839.97	0.49	0.49	*VV	7.02	
43	21.063	505217.27	119497.09	0.47	0.47	*VV	4.23	
44	21.131	335115.66	84879.97	0.31	0.31	*VV	3.95	
45	21.189	319631.15	72014.26	0.30	0.30	*VV	4.44	
46	21.286	261075.18	72153.04	0.25	0.25	*VV	3.62	
47	21.327	215653.93	73136.66	0.20	0.20	*VV	2.95	
48	21.397	241445.43	74574.38	0.23	0.23	*VV	3.24	
49	21.467	291692.52	63815.88	0.27	0.27	*VV	4.57	
50	21.545	428899.98	65448.33	0.40	0.40	*VV	6.55	
51	21.667	125433.18	50279.22	0.12	0.12	*VV	2.49	
52	21.723	386331.40	58946.89	0.36	0.36	*VV	6.55	
53	21.839	191111.96	51876.16	0.18	0.18	*VV	3.68	
54	21.916	232568.43	57297.27	0.22	0.22	*VV	4.06	
55	21.954	401579.21	58508.78	0.38	0.38	*VV	6.86	
56	22.129	343369.27	53188.97	0.32	0.32	*vv	6.46	
57	22.243	291346.68	53088.61	0.27	0.27	*VV	5.49	
	22.348	414774.59	60534.44	0.39	0.39	*VV	6.85	
59	22.461	126478.35	40929.18	0.12	0.12	*VV	3.09	
60	22.540	409400.64	111536.01	0.38	0.38	*VV	3.67	
61	22.609	120272.41	47517.58	0.11	0.11	*VV	2.53	
62	22.651	144713.82	41122.59	0.14	0.14	*VV	3.52	

esult File : ~RST002A.RST, Printed On 3/14/01 11:11 AM

eak †	Time [min]	Area [µV∙s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
54 55 56 57 58 59 70 71 72 73 74 75 76 77 78 79 30	22.731 22.826 22.906 23.077 23.130 23.239 23.365 23.447 23.529 23.624 23.733 23.803 23.803 23.885 24.027 24.408 24.552 25.126 26.806	239731.77 112877.28 431098.81 78668.01 144469.15 235685.52 171642.35 151159.68 143292.45 151338.15 124223.37 116407.02 167559.66 343458.09 181999.07 335031.59 604662.43 25378.56	41270.50 37133.28 49797.67 31872.39 32994.19 32140.68 33811.02 32857.63 27663.66 27844.65 28954.48 23721.33 25050.12 19895.19 17428.98 16030.70 10984.20 5038.91	0.23 0.11 0.40 0.07 0.14 0.22 0.16 0.14 0.13 0.14 0.12 0.11 0.16 0.32 0.17 0.31 0.57 0.02	0.23 0.11 0.40 0.07 0.14 0.22 0.16 0.14 0.13 0.14 0.12 0.11 0.16 0.32 0.17 0.31 0.57 0.02	* VV * VV	5.81 3.04 8.66 2.47 4.38 7.33 5.08 4.60 5.18 5.44 4.29 4.91 6.69 17.26 10.44 20.90 55.05 5.04	
		1.07e+08	3.14e+07	100.00	100.00			

.

-

page 7

~

oftware Version: 4.1<2F12> ample Name : J-01010-B MW-31 (23'-25') Time : 3/14/01 11:12 AM ample Number: 10209003 Study : WWG perator : 5 hstrument : WWG EXTRACTS Channel : A A/D mV Range : 1000 utoSampler : BUILT-IN Flat ack/Vial : 0/7 nterface Serial # : NONE Data Acquisition Time: 2/13/01 09:56 PM elay Time : 0.00 min. nd Time : 40.00 min. ampling Rate : 6.2500 pts/sec aw Data File : C:\TC4\41WW\41WW163.RAW : C:\WINDOWS\TEMP\~RST2C56.RST esult File : G:\GC4\4A-SEQ\WWG1 10 from C:\WINDOWS\TEMP\~RST2C56.RST nst Method roc Method : C:\TC4\WWGINT.MTH alib Method : C:\TC4\WWGINT.MTH equence File : G:\GC4\4A-SEQ\41WW.SEQ ample Volume: 1.0000ample Amount: 1.0000 Area Reject : 2000.000000 ul Dilution Factor : 1.00

WWG-INT REPORT

eak #	Time [min]	Area [µV•s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
1	2.496	3112.06	5542.11	0.01	0.01	BB	0.56	
2	3.051	8624.44	6064.05	0.02	0.02	*BV	1.42	
3	3.087	5056.85	4581.45	0.01	0.01	*VB	1.10	
5	4.461	13868.80	2337.09	0.03	0.03	*VV	5.93	
6	5.760	9350.27	4495.56	0.02	0.02	*VV	2.08	
7	5.871	30612.57	8146.63	0.06	0.06	*VV	3.76	
8	6.111	93348.83	36167.68	0.17	0.17	*VV	2.58	
9	6.276	198169.18	65461.26	0.37	0.37	*VV	3.03	
10	6.375	106118.99	35157.15	0.20	0.20	*VV	3.02	
11	6.498	80182.54	32205.24	0.15	0.15	*VV	2.49	
12	6.565	24372.57	8893.64	0.05	0.05	*VV	2.74	
	6.634	47998.49	16180.06	0.09	0.09	*VV	2.97	
4	6.748	130129.02	30072.49	0.24	0.24	*VV	4.33	
15	6.989	124408.09	42560.99	0.23	0.23	*VV	2.92	
16	7.077	38022.15	15295.36	0.07	0.07	*VV	2.49	
17	7.126	17207.72	7249.63	0.03	0.03	*VV	2.37	
18	7.229	57023.20	22708.91	0.11	0.11	*VV	2.51	

sult File : ~RST2C56.RST, Printed On 3/14/01 11:12 AM

зk	Time	Area	Height	Area	Norm.	Area	BL	Area/Height	
	[min]	[µV·s]	[µV]	[%]	[8]			[s]	
-									
	7.295	56621.77	21993.74	0.11		0.11	*VV	2.57	
0	7.324	58319.88	205/1.81	0.11		0.11	*VV	2.83	
Ţ	/.456	109820.81	29759.76	0.20		0.20	*VV	3.69	
2	7.537	89389.57	28090.58	0.17		0.17	*vv	3.18	
3	7.616	115545.32	42378.10	0.21		0.21	*VV	2.73	
4	7.758	368889.15	108356.70	0.68		0.68	*VV	3.40	
5	7.906	193217.25	85672.36	0.36		0.36	*VV	2.26	
6	7.938	309864.13	157885.82	0.57		0.57	*vv	1.96	
7	7.989	83264.23	41490.57	0.15		0.15	*VV	2.01	
8	8.055	527402.69	211446.43	0.98		0.98	*vv	2.49	
:9	8.121	456926.14	152249.10	0.85		0.85	*VV	3.00	
0	8.159	112538.70	90682.36	0.21		0.21	*VV	1.24	
1	8.217	91590.92	39267.45	0.17		0.17	*VV	2.33	
12	8.281	233557.98	78118.72	0.43		0.43	*VV	2.99	
13	8.348	137913.22	40186.61	0.26		0.26	*VV	3.43	
34	8.530	1920582.52	573750.99	3.56		3.56	*VE	3.35	
35	8.598	87695.46	28469.46	0.16		0.16	*EV	3.08	
36	8.656	82175.24	33953.03	0.15		0.15	*VV	2.42	
37	8.729	116373.58	38483.96	0.22		0.22	*VV	3.02	
38	8.777	291321.79	1117 <u>51.</u> 75	0.54	11.95	0.54	*VV	2.61 NC10	
30	8.827	43710.70	23570.47	0.08		0.08	*VV	1.85	
10	8.882	44723.98	17737.37	0.08		0.08	*VV	2.52	
1	8.969	547309.98	250728.55	1.02		1.02	*VV	2.18	
42	9.025	161719.80	56038.84	0.30		0.30	*VV	2.89	
43	9.158	507474.55	149860.75	0.94		0.94	*VV	3.39	
44	9.237	145194.23	68388.44	0.27		0.27	*VV	2.12	
45	9.277	180766.36	51243.17	0.34		0.34	*VV	3.53	
46	9.372	122500.22	47896.43	0.23		0.23	*VV	2.56	
47	9.439	433572.71	165335.55	0.80		0.80	*VV	2.62	
48	9.485	367671.35	171320.28	0.68		0.68	*VV	2.15	
49	9.559	453364.87	174524.60	0.84		0.84	*VV	2.60	
50	9.614	564751.00	249862.68	1.05		1.05	*VV	2.26	
51	9.688	145182.66	52895.34	0.27		0.27	*VV	2.74	
52	9.769	507719.36	140732.20	0.94		0.94	*VV	3.61	
53	9.848	234854.52	95612.00	0.44		0.44	*vv	2.46	
54	9.937	661366.43	206444.49	1.23		1.23	*VV	3.20	
55	9.972	329840.23	192410.67	0.61		0.61	*vv	1.71	
56	10.009	154149.46	102557.50	0.29		0.29	*VV	1.50	
57	10.076	847174.66	351159.81	1.57		1.57	*VE	2.41	
58	10.132	128785.34	60614.02	0.24		0.24	*EV	2.12	
59	10.157	100839.51	53989.70	0.19		0.19	*VV	1.87	
60	10.221	94558.96	36468.12	0.18		0.18	*VV	2.59	
£	10.283	91638.61	41625.84	0.17		0.17	*VV	2.20	
Ē	10.321	101685.02	59706.33	0.19		0.19	*VV	1.70	
3	10.339	107177.41	61552.66	0.20		0.20	*VV	1.74	
64	10.388	269198.80	94964.70	0.50		0.50	*VV	2.83	
65	10.483	2/95/5.01	93964.71	0.52		0.52	*VV	2.98	
66	10.609	4/0322.03	105853.62	0.87		0.87	* V V	2.84	
67	10.675	562156.04	241291.78	1.04		1.04	*VV	2.33	

sult File : ~RST2C56.RST, Printed On 3/14/01 11:12 AM

аk	Time	Area	Height	Area	Norm. Area	BL	Area/Height	
	[min]	[µV·s]	[µV]	[8]	[8]		[s]	
	10.751	112154.27	51090.69	0.21	0.21	*VV	2.20	
9	10.785	144466.39	51813.78	0.27	0.27	*VV	2.79	
0	10.883	101251.55	37315.62	0.19	0.19	*VV	2.71	
1	10.944	663144.42	228078.47	1.23	1.23	*VV	2.91	•
2	11.014	178229.23	73626.21	0.33	0.33	*VV	2.42	
3	11.061	293618.14	124723.22	0.54	0.54	*VV	2.35	
4	11.118	440656.92	181224.14	0.82	0.82	*VV	2.43	
5	11.179	389852.57	168794.49	0.72	0.72	*VV	2.31	
6	11.268	273354.10	65883.30	0.51	0.51	*VV	4.15	
7	11.321	248683.68	94989.18	0.46	0.46	*VV	2.62	
8	11.393	392269.43	94810.72	0.73	0.73	*vv	4.14	
9	11.458	155460.91	71363.53	0.29	0.29	*VV	2.18	
0	11.533	322688.54	112986.12	0.60	0.60	*VV	2.86	
1	11.620	450489.51	168418.44	0.84	0.84	*VV	2.67	
12	11.665	133628.75	63884.70	0.25	0.25	*VV	2.09	
13	11.737	445095.40	120596.97	0.83	0.83	*VV	3.69	
}4	11.821	288210.23	105334.93	0.53	0.53	*VV	2.74	
35	11.898	645150.28	140146.22	1.20	1.20	*VV	4.60	
36	12.076	299358.32	96517.54	0.56	0.56	*VV	3.10	
37	12.128	107811.66	46011.68	0.20	0.20	*VV	2.34	
38	12.167	78803.00	41917.32	0.15	0.15	*VV	1.88	
31	12.219	191670.58	54969.39	0.36	0.36	*VV	3.49	
0	12.325	488646.19	151344.45	0.91	0.91	*VV	3.23	
91	12.448	317442.19	80779.92	0.59	0.59	*VV	3.93	
Э2	12.507	141772.51	65699.58	0.26	0.26	*VV	2.16	
93	12.537	164962.46	68234.82	0.31	0.31	*VV	2.42	
94	12.623	240246.81	68468.89	0.45	0.45	*VV	3.51	
95	12.721	520375.93	118608.93	0.97	0.97	*VV	4.39	
96	12.866	229918.23	57623.92	0.43	0.43	*VV	3.99	
97	12.925	296315.10	96707.48	0.55	0.55	*VV	3.06	
98	12.985	241776.35	62098.66	0.45	0.45	*VV	3.89	
99	13.070	423200.41	84594.85	0.79	0.79	*VV	5.00	
00	13.168	82083.43	54721.05	0.15	0.15	*VV	1.50	
01	13.230	401682.37	119384.16	0.75	0.75	*VV	3.36	
02	13.297	155350.01	54624.92	0.29	0.29	*VV	2.84	
03	13.367	638928.26	165888.27	1.19	1.19	*VV	3.85	
04	13.458	163475.52	53808.65	0.30	0.30	* VV	3.04	
05	13.519	160581.39	60674.92	0.30	0.30	* VV	2.65	
06	13.595	491325.93	102293.92	0.91	0.91	* VV	4.80	
.07	13.694	84543.01	41664.94	0.16	0.16	* VV	2.03	
.08	13.769	445723.67	90042.71	0.83	0.83	*VV	4.95	
.09	13.873	249620.33	79478.12	0.46	0.46	*VV	3.14	
.1^	13.932	199714.35	50693.06	0.37	0.37	*VV	3.94	
	14.003	117627.14	46092.78	0.22	0.22	* VV	2.55	
2	14.054	168760.08	56139.44	0.31	0.31	*VV	3.01	
.13	14.121	317672.50	50904.44	0.59	0.59	*VV	6.24	
.14	14.236	209833.38	68781.83	0.39	0.39	*VV	3.05	
.15	14.278	275168.21	66687.64	0.51	0.51	* V V	4.13	
116	14.375	169955.03	48630.76	0.32	0.32	*VV	3.49	

sul	t File :	~RST2C56.RS	ST, Printe	d On 3,	/14/01 11:3	l2 AM		page
ak	Time [min]	Area [µV∙s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
		212961.75	52183.70	0.40	0.40	*VV	4.08	
8	14.545	341933.44	59182.18	0.63	0.63	*vv	5.78	
.9	14.617	111579.68	47258.83	0.21	0.21	*vv	2.36	
20	14.665	84780.74	42344.88	0.16	0.16	*vv	2.00	
21	14.732	346730.96	130812.74	0.64	0.64	*vv	2.65	
22	14.786	241038.40	82525.98	0.45	0.45	*vv	2.92	
23	14.830	241990.41	70068.69	0.45	0.45	*VV	3.45	
24	14.939	293479.95	66428.00	0.54	0.54	*VV	4.42	
25	14.993	190914.75	69883.01	0.35	0.35	*VV	2.73	
~	15 040	151510 65	C0075 47	~ ~ ~				

8 14.545 341933.44 59182.18 0.63 0.63 vvv 5.78 9 14.665 84760.74 42344.88 0.21 0.21 vvv 2.36 1 14.732 346730.96 130812.74 0.64 0.64 vvv 2.92 1 14.830 241990.41 70068.69 0.45 0.45 $v.vv$ 2.92 1 14.830 241990.41 70068.69 0.45 0.45 $v.vv$ 2.92 1 14.930 290914.75 69883.01 0.35 $v.45$ $v.44$ 2 1 14.930 190914.75 69883.01 0.35 $v.vv$ 2.49 7 15.098 121008.91 68055.29 0.39 $v.9v$ 3.12 2 15.172 312256.20 90361.71 $v.58$ $v.595$ 31 15.402 147638.30 $v.27$ $v.27$ $v.Vv$ 5.95 3 15.587 129654.50 5723.56 $v.24$ $v.247$ $v.266$ 3 15.678 199409.61 75026		14.454	212961.75	52183.70	0.40	0.40 *VV	4.08	
914.617111579.6847258.830.210.21 vvv 2.361014.66584780.7442344.880.160.16 vvv 2.001114.732346730.96130812.740.640.64 vvv 2.651214.786241038.4082525.980.450.45 $v.vv$ 2.921314.802241990.4170068.690.450.45 $v.vv$ 2.4914.939190914.7569883.010.350.35 vvv 2.491515.04315510.6560875.470.28 vvv 2.4915.10315.256.2090361.710.58 $v.vv$ 2.021515.226134985.0366974.250.25 $v.vv$ 2.021515.253388725.706520.430.72 $v.rv$ 2.8815.519697907.06113767.021.291.29 vvv 2.1315517199409.6175026.750.37 0.37 vvv 2.961515.678199409.6175026.750.37 0.37 vvv 2.9815519509.0117467.260.94 0.94 vvv 2.901616.077429351.40101615.220.80 0.60 vvv 4.234016.080180574.3660303.680.34 0.34 vvv 2.901516.454162679.8961616.050.30 0.36 vvv 2.921516.07	.8	14.545	341933.44	59182.18	0.63	0.63 *VV	5.78	
1014.66584780.7442344.880.160.16 $\cdot vv$ 2.001114.732346730.96130812.740.640.64 $\cdot vv$ 2.652114.780241990.4170068.690.450.45 $\cdot vv$ 2.922314.830241990.4170068.690.450.45 $\cdot vv$ 2.422414.931190914.7569883.010.350.54 $\cdot vv$ 2.492514.993190914.7569863.010.350.28 $\cdot vv$ 2.492615.043151510.6560875.470.280.58 $\cdot vv$ 2.492715.098212008.9168055.290.390.39 $\cdot vv$ 3.462915.226134985.0366974.250.250.25 $\cdot vv$ 2.023015.253388725.7065320.430.720.72 $\cdot vv$ 2.882115.51969790.06113767.021.291.29 $\cdot vv$ 2.863115.587129654.5057233.560.240.24 $\cdot vv$ 2.273415.658181492.5077695.450.340.34 $\cdot vv$ 2.963715.804506259.01174767.260.370.37 $\cdot vv$ 2.663615.74114767.6149481.990.270.27 $\cdot vv$ 2.903715.802204530.9547603.730.380.38 $\cdot vv$ 2.903616.0570.330.36 </td <td>.9</td> <td>14.617</td> <td>111579.68</td> <td>47258.83</td> <td>0.21</td> <td>0.21 *VV</td> <td>2.36</td> <td></td>	.9	14.617	111579.68	47258.83	0.21	0.21 *VV	2.36	
1114.732346730.96130812.740.640.64 \cdot vv2.651214.786241038.408255.980.450.45 \cdot vv3.451414.939293479.9566428.000.540.54 \cdot vv3.451414.939293479.9566428.000.540.54 \cdot vv2.421514.93919014.756983.010.350.35 \cdot vv2.731515.043151510.6560875.470.280.28 \cdot vv2.491515.261134985.0366974.250.250.25 \cdot vv2.021515.253380725.7065320.430.720.72 \cdot vv2.081515.1097907.06113767.021.291.29 \cdot vv2.681515.19697907.06113767.021.291.29 \cdot vv2.663615.741147467.6149481.990.270.27 \cdot vv2.983715.620204530.9547603.730.380.38 \cdot vv2.9916.007429351.40101615.220.800.80 \cdot vv2.9916.007429351.40101615.220.800.80 \cdot vv2.9916.007429351.40101615.220.800.80 \cdot vv2.9916.007429351.40101615.220.800.80 \cdot vv2.9916.141258378.4186061.9110.36 \cdot vv	20	14.665	84780.74	42344.88	0.16	0.16 *VV	2.00	
1214.786241038.4082255.98 0.45 0.45 0.45 vvv 2.92 1314.830241990.4170068.69 0.45 0.45 vvv 4.42 1514.993190914.7569883.01 0.35 0.54 vvv 4.42 1514.993190914.7569883.01 0.35 0.35 vvv 2.73 1615.043151510.6560875.47 0.28 0.28 vvv 2.49 1715.098212008.9168055.29 0.39 $v.vs$ 3.12 2815.172312256.2090361.71 0.58 0.25 vvv 2.02 3015.253388725.7065320.43 0.72 0.72 vvv 5.95 2115.1969790.706113767.02 1.29 vvv 6.13 2315.587129654.5057233.56 0.24 0.24 vvv 2.27 3415.67819409.6175026.75 0.37 0.37 vvv 2.96 3715.804506259.01174767.26 0.94 0.94 vvv 2.90 3815.07419409.6175026.75 0.37 0.37 vvv 2.99 3116.007429351.40101615.22 0.80 0.80 vvv 2.90 3116.0181629.2063680.38 0.60 0.60 vvv 2.99 4116.141258378.4186006.19 0.48 vvv 2.99 <tr<< td=""><td>21</td><td>14.732</td><td>346730.96</td><td>130812.74</td><td>0.64</td><td>0.64 *VV</td><td>2.65</td><td></td></tr<<>	21	14.732	346730.96	130812.74	0.64	0.64 *VV	2.65	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	14.786	241038.40	82525.98	0.45	0.45 *VV	2.92	
$\frac{14}{24}$ 14.939293479.95 66428.00 0.54 0.54 vvv 4.42 $\frac{15}{25}$ 14.993190514.756988.01 0.35 0.35 vvv 2.73 $\frac{21}{26}$ 15.04315510.6560875.47 0.28 vvv 2.49 $\frac{27}{15.098}$ 212008.9168055.29 0.39 0.39 vvv 3.12 $\frac{28}{28}$ 15.172312256.2090361.71 0.58 0.28 vvv 2.02 $\frac{30}{15.253}$ 388725.70 65320.43 0.72 0.72 vvv 2.88 $\frac{31}{15.517}$ 129654.50 57233.56 0.24 0.24 vvv 2.27 $\frac{31}{15.587}$ 129654.50 57233.56 0.34 0.34 vvv 2.34 $\frac{35}{15.678}$ 199409.6175026.75 0.37 0.37 vvv 2.96 $\frac{37}{15.820}$ 204530.9547603.73 0.38 0.38 vvv 2.90 $\frac{36}{15.741}$ 147467.6149481.99 0.27 0.27 vvv 2.96 $\frac{37}{15.904}$ 506259.01 174767.26 0.94 0.94 vvv 2.90 $\frac{16.007}{429351.40}$ 101615.22 0.80 0.80 vvv 2.99 $\frac{16.626}{16.059.20}$ 6360.38 0.60 vv 2.04 $\frac{44}{16.389}$ 193187.48 6619.11 0.36 vv 2.92 $\frac{45}{16.6057.98.96}$ 0.48 0.48 vvv 2.83 $\frac{40}{16.605}$ $1937.$	23	14.830	241990.41	70068.69	0.45	0.45 *VV	3.45	
2514.993190914.7569883.01 0.35 0.35 vVV 2.73 2615.04315510.6560875.47 0.28 vVV 2.49 715.09821208.9168055.29 0.39 0.39 vV 3.12 2815.172312256.2090361.71 0.58 0.58 vVV 3.46 2915.226134985.03 66974.25 0.25 0.25 vVV 2.02 3015.25338725.70 65320.43 0.72 0.27 vVV 2.88 3115.402147638.3051208.83 0.27 0.27 vVV 2.88 3215.519697907.06113767.02 1.29 1.29 vVV 2.27 3415.658181492.5077695.45 0.37 0.37 vVV 2.98 3715.820204530.9547603.73 0.38 0.88 vVV 2.90 4016.060180574.3660303.66 0.34 0.34 vV 2.90 4116.141258378.418606.19 0.48 0.48 vV 2.92 4516.454162679.8961616.05 0.30 0.30 vV 2.92 4516.454162679.8961616.05 0.30 0.30 vV 2.92 4516.454162679.8961616.05 0.30 0.30 vV 2.92 4516.454162679.8961616.05 0.30 0.28 vV 2.92	24	14.939	293479.95	66428.00	0.54	0.54 * VV	4.42	
2615.043151510.65 60875.47 0.28 0.28 vvv 2.49 2715.098212008.91 60055.29 0.39 0.39 vvv 3.12 2815.122 312256.20 90361.71 0.58 0.58 vvv 3.46 2915.226 134985.03 66974.25 0.25 0.25 vvv 2.02 3015.253 388725.70 65320.43 0.72 0.72 vvv 2.88 3215.519 697907.06 113767.02 1.29 1.29 vvv 2.134 3315.587 129654.50 57233.56 0.24 0.24 vvv 2.34 3515.678 199409.61 75026.75 0.37 0.37 vvv 2.66 3615.741 147467.61 49481.99 0.27 0.27 vvv 2.98 3715.802 20430.95 47603.73 0.38 0.38 vvv 4.30 3715.904 506259.01 174767.26 0.94 0.94 vvv 2.99 4116.141 258378.41 86006.19 0.48 0.48 vvv 2.99 4116.141 258378.41 86006.19 0.48 0.48 vvv 2.99 4116.141 258378.41 8606.19 0.48 0.48 vvv 2.99 4116.141 258378.41 86191.11 0.36 0.36 vvv 2.43 4416.389 193187.48	25	14.993	190914.75	69883.01	0.35	$0.35 \times VV$	2.73	
2715.098212008.9168055.290.390.39 $*VV$ 3.122815.172312256.2090361.710.580.58 $*VV$ 3.122915.22613985.0366974.250.250.25 VV 2.023015.253388725.7065320.430.720.72 $*VV$ 5.953115.402147638.3051208.830.270.27 $*VV$ 2.883115.402147638.3051208.830.270.27 $*VV$ 2.663315.587129654.5057233.560.240.24 $*VV$ 2.273415.658181492.5077695.450.340.34 $*VV$ 2.983715.820204530.9547603.730.38 VV 2.983715.820204530.9547603.730.38 VV 2.9016.007429351.40101615.220.800.80 $*VV$ 2.9016.007429351.40101615.220.800.60 $*VV$ 2.924116.34440585.5583572.280.750.75 $*VV$ 4.854116.389193187.4866191.110.360.30 $*VV$ 2.924516.454162679.8961616.050.300.30 $*VV$ 2.924516.454162679.8961616.050.300.30 $*VV$ 2.924516.454162679.8961616.050.500.50 $*VV$ 2.92 </td <td>26</td> <td>15.043</td> <td>151510.65</td> <td>60875.47</td> <td>0.28</td> <td>0.28 *VV</td> <td>2.49</td> <td></td>	26	15.043	151510.65	60875.47	0.28	0.28 * VV	2.49	
2815.172312256.2090361.710.560.58 $\cdot vv$ 3.462915.226134985.0366974.250.250.25 $\cdot vv$ 2.023015.253388725.7065320.430.720.72 $\cdot vv$ 5.953115.402147638.3051208.830.270.27 $\cdot vv$ 2.883215.519697907.06113767.021.291.29 vv 2.173115.658181492.5077695.450.340.24 vv 2.273415.658181492.5077695.450.340.34 vv 2.983715.820204530.9547603.730.380.38 vv 4.303615.904506259.01174767.260.940.94 vv 2.9016.007429351.40101615.220.800.80 vv 4.234016.080180574.3660303.680.340.34 vv 2.994116.141258378.418606.190.480.48 vv 2.994216.389193187.4866191.110.360.36 vv 2.924516.454162679.8961616.050.300.30 vv 2.434716.556251119.1967155.600.47 $v47$ vv 3.435016.750214781.3054327.730.400.40 vv 3.955116.63912794.105774.1380.25 $v29$	27	15.098	212008.91	68055.29	0.39	0.39 *VV	3.12	
2915.226134985.0366974.25 0.25 0.25 vvv 2.02 3015.253388725.7065320.43 0.72 0.72 vvv 2.98 3115.402147638.3051208.83 0.27 0.27 vvv 2.88 3215.519697907.06113767.02 1.29 1.29 vvv 6.13 3315.587129654.5057233.56 0.24 0.24 vvv 2.27 3415.678199409.6175026.75 0.37 0.37 vvv 2.98 3715.820204530.9547603.73 0.38 0.38 vvv 4.30 3615.904506259.01174767.26 0.94 0.94 vvv 2.99 16.007429351.40101615.22 0.80 0.80 vvv 2.99 16.101248378.418606.19 0.48 0.48 vvv 2.99 16.102263680.38 0.60 0.60 vv 2.92 16.248321059.2063680.38 0.60 0.60 vv 2.92 1516.454162679.8961616.05 0.30 0.30 vv 2.43 4716.55625119.1967155.60 0.47 0.47 vv 3.74 4816.626261170.5874079.83 0.48 0.48 vv 3.53 16.62621190.5874079.83 0.48 0.48 vv 3.53 16.62621170.58 </td <td>28</td> <td>15.172</td> <td>312256.20</td> <td>90361.71</td> <td>0.58</td> <td>$0.58 \times VV$</td> <td>3.46</td> <td></td>	28	15.172	312256.20	90361.71	0.58	$0.58 \times VV$	3.46	
1010101010101010111512147638.3051208.830.270.27 \cdot W2.881215.519697907.06113767.021.291.29 \cdot W6.131315.587129654.5057233.560.240.24 \cdot W2.271415.658181492.5077695.450.340.34 \cdot W2.341515.74114767.6149481.990.270.27 \cdot W2.981515.820204530.9547603.730.380.38 \cdot W4.3016007429351.40101615.220.800.80 \cdot W4.234016.080180574.3660303.680.340.34 \cdot W2.991116.141258378.4186006.190.480.48 \cdot W3.002122.6432105.92063680.380.600.60 \cdot W2.922516.54162679.9961616.050.300.30 \cdot W2.922516.54162679.8961616.050.300.30 \cdot W2.644616.497151202.3562201.330.28 \cdot W2.434716.556251119.1967155.600.47 \cdot W3.744816.626261170.5874079.830.480.48 \cdot W3.534916.750214781.3054372.730.400.40 \cdot W3.9551 </td <td>29</td> <td>15 226</td> <td>134985 03</td> <td>66974 25</td> <td>0.25</td> <td>0.25 + VV</td> <td>2 02</td> <td></td>	29	15 226	134985 03	66974 25	0.25	0.25 + VV	2 02	
115.402147638.3051208.830.270.120.12 VV 2.88215.519697907.06113767.021.291.29 VV 6.133315.587129654.5057233.560.24 $0.24 *VV$ 2.273415.658181492.5077695.450.340.34 *VV2.343515.678199409.6175026.750.370.37 *VV2.663615.741147467.6149481.990.270.27 *VV2.983715.820204530.9547603.730.380.88 *VV4.303615.904506259.01174767.260.940.94 *VV2.9016.007429351.40101615.220.800.80 *VV4.234016.080180574.3660303.680.340.34 *VV2.994116.141258378.4186006.190.480.48 *VV3.004216.248321059.2063680.380.600.60 *VV2.924516.454162679.8961616.050.300.30 *VV2.644616.497151202.3562201.330.280.28 *VV2.434716.566251119.1967155.600.470.47 *VV3.744816.626261170.5874079.830.480.48 *VV3.534916.706273012.5479687.680.510.51 *VV3.435016.750214781.3054372.730.400.40 *VV <td>30</td> <td>15,253</td> <td>388725 70</td> <td>65320 43</td> <td>0.72</td> <td>0.72 * VV</td> <td>5 95</td> <td></td>	30	15,253	388725 70	65320 43	0.72	0.72 * VV	5 95	
12121213121313151513131515131215151312151313151313151313131513131313131313131313131414141614141414161414141416141414141414141414141414141414141414161414141416 <td>31</td> <td>15 402</td> <td>147638 30</td> <td>51208 83</td> <td>0.27</td> <td>0.27 * VV</td> <td>2 88</td> <td></td>	31	15 402	147638 30	51208 83	0.27	0.27 * VV	2 88	
1315.587129654.501700.001221.221.24 vvv 2.273415.658181492.5077695.450.340.34 vvv 2.343515.678199409.6175026.750.370.37 vvv 2.983615.741147467.6149481.990.270.27 vvv 2.983715.820204530.9547603.730.380.38 vvv 4.303*15.904506259.01174767.260.940.94 vv 2.904016.007429351.40101615.220.800.80 vvv 4.234016.080180574.3660303.680.340.34 vv 2.994116.141258378.4186066.190.480.48 vv 3.004216.248321059.2063680.380.600.60 vvv 2.924516.454162679.8961616.050.300.30 vv 2.644616.454162679.8961616.050.300.30 vv 2.644716.556251119.1967155.600.470.47 vv 3.744816.626261170.5874079.830.480.48 vv 3.534916.760273012.5479687.660.51 vv 3.955116.839158786.3653084.840.290.29 vv 2.995216.898271894.4881056.760.50	32	15 519	697907 06	113767 02	1 29	1 29 * VV	6 13	
3415.6581200312012031200.120.120.120.120.120.123515.678199409.6175026.750.370.37 \times VV2.983615.741147467.6149481.990.270.27 \times VV2.983715.820204530.9547603.730.380.38 \times VV4.303615.904506259.01174767.260.940.94 \times VV2.9016.007429351.40101615.220.800.80 \times VV4.234016.080180574.3660303.680.340.48 \times VV2.994116.141258378.4186066.190.480.48 \times VV2.924216.248321059.2063680.380.600.60 \times VV4.034316.34440585.5583572.280.750.75 \times VV4.854416.389193187.4866191.110.360.36 \times VV2.924516.454162679.8961616.050.300.30 \times VV2.434716.556251119.1967155.600.470.47 \times VV3.934816.626261170.5874687.680.510.51 \times VV3.935016.750214781.3054372.730.400.40 \times VV3.955116.839158786.3653084.840.290.29 \times VV2.995216.898271894.488105	22	15 587	129654 50	57233 56	1.20	$0 24 \times VV$	2 27	
3515.678199409.617603.1650.370.37VV2.663615.741147467.6149481.990.270.27 vVV 2.983715.820204530.9547603.730.380.38 vVV 2.903615.904506259.01174767.260.94 0.94 vVV 2.904016.007429351.40101615.220.80 0.80 vVV 4.234016.080180574.3660303.680.34 0.34 vVV 2.994116.141258378.4186006.190.48 0.48 vVV 2.994216.248321059.2063680.380.60 0.60 vVV 5.044316.344405585.5583572.28 0.75 0.75 vVV 4.854416.389193187.4866191.11 0.36 0.36 vVV 2.644516.454162679.8961616.05 0.30 0.30 vVV 2.644616.497151202.3562201.33 0.28 vVV 2.43 4716.566251119.1967155.60 0.47 0.47 vVV 3.43 5016.750214781.3054372.73 0.40 0.40 vVV 3.95 5116.839158786.3653084.84 0.29 vVV 2.99 5216.898271894.4881056.76 0.50 0.50 vVV 3.35 5316.962205821.01	34	15 658	181492 50	77695 45	0.24	$0.34 \times VV$	2.27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	15 678	199409 61	75026 75	0.37	$0.37 \times VV$	2.54	
3513.711147401.01147401.01147401.01147401.01147401.013715.820204530.9547603.730.380.38 \times VV4.303615.904506259.01174767.260.940.94 \times VV2.9016.007429351.40101615.220.800.80 \times VV4.234016.080180574.3660303.680.340.34 \times V2.994116.141258378.4186006.190.480.48 \times VV2.924216.248321059.2063680.380.600.60 \times VV2.924516.454162679.8961616.050.300.30 \times VV2.924516.454162679.8961616.050.300.30 \times VV2.434716.556251119.1967155.600.470.47 \times VV3.744816.626261170.5874079.830.480.48 \times VV3.955116.839158786.3653084.840.290.29 \times V2.995216.89821894.4881056.760.500.56 \times VV2.995316.962205821.0168424.490.380.38 \times VV3.955316.962205821.0168424.490.380.38 \times VV3.955417.004393530.1586610.530.730.73 \times V2.805517.240262694.7374095.32	36	15 7/1	147467 61	19020.19	0.27	$0.27 \times VV$	2.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	15 820	204530 95	47603 73	0.27	0.27 VV	4 30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	15 904	506259 01	174767 26	0.00	0.30 VV	2 00	
10.10110.10110.1013.220.10010.10112.234016.080180574.366003.680.340.34 $*VV$ 2.994116.141258378.4186006.190.480.48 $*VV$ 3.004216.248321059.2063680.380.600.60 $*VV$ 5.044316.344405585.5583572.280.750.75 $*VV$ 4.854416.389193187.4866191.110.360.30 $*VV$ 2.924516.454162679.8961616.050.300.30 $*VV$ 2.644616.497151202.3562201.330.280.28 $*VV$ 2.434716.556251119.1967155.600.470.47 $*VV$ 3.744816.626261170.5874079.830.480.48 $*VV$ 3.435016.750214781.3054372.730.400.40 $*VV$ 3.955116.839158786.3653084.840.290.29 $*VV$ 2.995216.898271894.4881056.760.500.50 $*VV$ 3.955316.662205821.0168424.490.380.38 $*VV$ 3.01.5417.000132704.1057741.380.250.25 $*VV$ 2.80.5717.240262694.7374095.320.490.49 $*VV$ 3.5515817.278137480.2268066.880.260.26 <td></td> <td>16 007</td> <td>129351 10</td> <td>101615 22</td> <td>0.94</td> <td>0.94 VV</td> <td>2.90 A 23</td> <td></td>		16 007	129351 10	101615 22	0.94	0.94 VV	2.90 A 23	
10 <td>10</td> <td>16.007</td> <td>129551.40</td> <td>60303 68</td> <td>0.00</td> <td>0.34 *VV</td> <td>9.00</td> <td></td>	10	16.007	129551.40	60303 68	0.00	0.34 *VV	9.00	
116.14125076.4160606.19 0.40 0.40 vv 5.044216.248321059.2063680.38 0.60 0.60 vv 5.04 4316.344405585.5583572.28 0.75 0.75 vv 2.92 4516.454162679.8961616.05 0.30 0.30 vv 2.64 4616.497151202.3562201.33 0.28 vv 2.43 4716.556251119.1967155.60 0.47 0.47 vv 3.74 4816.626261170.5874079.83 0.48 0.48 vv 3.53 4916.706273012.5479687.68 0.51 0.51 vv 3.43 5016.750214781.3054372.73 0.40 0.40 vv 3.95 5116.839158786.3653084.84 0.29 0.29 vv 2.99 5216.898271894.4881056.76 0.50 0.50 vv 3.35 5316.962205821.01 68424.49 0.38 0.38 vv 3.01 5417.000132704.1057741.38 0.25 0.25 vv 2.30 5517.094393530.1586610.53 0.73 0.73 vv 4.54 5617.147207775.2174247.19 0.39 0.39 vv 2.80 5717.240262694.7374095.32 0.49 0.49 vv 3.55 <t< td=""><td>40</td><td>16 141</td><td>258378 41</td><td>86006 19</td><td>0.34</td><td>0.34 VV</td><td>3 00</td><td></td></t<>	40	16 141	258378 41	86006 19	0.34	0.34 VV	3 00	
42 16.246 321039.20 63660.36 0.60 0.60 0.60 1.04 3.04 43 16.344 405585.55 83572.28 0.75 0.75 1.04 4.85 44 16.389 193187.48 66191.11 0.36 0.36 $4VV$ 2.92 45 16.454 162679.89 61616.05 0.30 0.30 $+VV$ 2.64 46 16.497 151202.35 62201.33 0.28 0.28 $+VV$ 2.43 47 16.556 251119.19 67155.60 0.47 0.47 $+VV$ 3.74 48 16.626 261170.58 74079.83 0.48 0.48 $+VV$ 3.63 50 16.706 273012.54 79687.68 0.51 0.51 $+VV$ 3.43 50 16.750 214781.30 54372.73 0.40 0.40 $+VV$ 3.95 51 16.839 158786.36 53084.84 0.29 0.29 $+VV$ 2.99 52 16.898 271894.48 81056.76 0.50 0.50 $+VV$ 3.95 53 16.962 205821.01 68424.49 0.38 0.38 $+VV$ 3.01 54 17.000 132704.10 57741.38 0.25 0.25 $+VV$ 2.80 57 17.240 262694.73 74095.32 0.49 0.49 $+VV$ 3.55 158 17.278 137480.22 6806.88 0.26 0.26 <td>40</td> <td>16 249</td> <td>2000/0.41</td> <td>636000.19</td> <td>0.40</td> <td>0.48 WV</td> <td>5.00</td> <td></td>	40	16 249	2000/0.41	636000.19	0.40	0.48 WV	5.00	
4310.34440333.363372.28 0.73 0.73 0.73 $1.0.34$ 4.63 4416.389193187.4866191.11 0.36 0.36 $*VV$ 2.92 4516.454162679.8961616.05 0.30 0.30 $*VV$ 2.64 4616.497151202.3562201.33 0.28 0.28 $*VV$ 2.43 4716.556251119.1967155.60 0.47 0.47 $*VV$ 3.74 4816.626261170.5874079.83 0.48 0.48 $*VV$ 3.53 4916.706273012.5479687.68 0.51 0.51 $*VV$ 3.43 5016.750214781.3054372.73 0.40 0.40 $*VV$ 3.95 5116.839158786.3653084.84 0.29 0.29 $*VV$ 2.99 5216.898271894.4881056.76 0.50 0.50 $*VV$ 3.35 5316.962205821.01 68424.49 0.38 0.38 $*VV$ 3.01 5417.000132704.1057741.38 0.25 0.25 $*VV$ 2.80 5717.240262694.7374095.32 0.49 0.49 $*VV$ 3.55 15817.278137480.226866.88 0.26 0.26 $*VV$ 2.62 15917.326259105.0858063.95 0.48 0.48 $*VV$ 4.46 17.39998893.5853000.61 0.18 0.18	42	16 344	105595 55	03000.30	0.00	0.00 eVV	J.04 1 95	
4416.369193187.4666191.110.360.30 VV 2.924516.454162679.8961616.050.300.30 *VV2.644616.497151202.3562201.330.280.28 *VV2.434716.556251119.1967155.600.470.47 *VV3.744816.626261170.5874079.830.480.48 *VV3.534916.706273012.5479687.680.510.51 *VV3.435016.750214781.3054372.730.400.40 *VV3.955116.839158786.3653084.840.290.29 *VV2.995216.898271894.4881056.760.500.50 *VV3.355316.962205821.0168424.490.380.38 *VV3.015417.000132704.1057741.380.250.25 *VV2.305517.094393530.1586610.530.730.73 *VV4.545617.14720775.2174247.190.390.39 *VV2.805717.240262694.7374095.320.490.49 *VV3.5515817.278137480.2268606.880.260.26 *VV2.0015917.326259105.0858063.950.480.48 *VV4.4617.39998893.5853000.610.180.18 *VV1.8717.42690051.6252231.780.170.17 *VV1.72162<	4.5	16 390	103107 10	65572.20	0.75	0.36 *VV	2 02	
4616.497151202.356120.030.300.30 \times 2.044616.497151202.3562201.330.280.28 \times \vee 2.434716.556251119.1967155.600.470.47 \times \vee 3.744816.626261170.5874079.830.480.48 \times \vee 3.534916.706273012.5479687.680.510.51 \times 3.435016.750214781.3054372.730.400.40 \times \vee 3.955116.839158786.3653084.840.290.29 \times 2.99 5216.898271894.4881056.760.500.50 \times v 3.01 5417.000132704.1057741.380.25 0.25 \times v 3.01 5417.004393530.1586610.530.730.73 v v 4.54 5617.14720775.2174247.190.390.39 v 2.80 5717.240262694.7374095.320.490.49 v 3.55 15817.278137480.2268606.880.260.26 v 2.00 15917.326259105.0858063.950.480.48 v 4.46 17.39998893.5853000.610.180.18 v 1.87 17.42690051.6252231.780.170.17 v 1.72 162 <td< td=""><td>44</td><td>16.309</td><td>162670 90</td><td>61616 05</td><td>0.30</td><td>0.30 *VV</td><td>2.92</td><td></td></td<>	44	16.309	162670 90	61616 05	0.30	0.30 *VV	2.92	
4616.497131202.33 $0.2201.33$ 0.220 0.28 VV 2.43 4716.556 251119.19 67155.60 0.47 0.47 VV 3.74 4816.626 261170.58 74079.83 0.48 0.48 vVV 3.53 4916.706 273012.54 79687.68 0.51 0.51 $*VV$ 3.43 5016.750 214781.30 54372.73 0.40 0.40 $*VV$ 3.95 5116.839158786.36 53084.84 0.29 0.29 $*VV$ 2.99 5216.898 271894.48 81056.76 0.50 0.50 $*VV$ 3.35 5316.962 205821.01 68424.49 0.38 0.38 $*VV$ 3.01 5417.000 132704.10 57741.38 0.25 0.25 $*VV$ 2.30 5517.094 393530.15 86610.53 0.73 0.73 VV 2.80 57 17.240 262694.73 74095.32 0.49 0.49 $*VV$ 3.55 158 17.278 137480.22 68066.88 0.26 0.26 $*VV$ 2.00 159 17.326 259105.08 58063.95 0.48 0.48 $*VV$ 1.87 17.426 90051.62 52231.78 0.17 0.17 vVV 1.72 162 17.478 141428.59 53913.75 0.26 0.26 vVV 5.62 163 17.555 443909.42	45	16 407	1512079.09	62201 22	0.30	$0.30 \times VV$	2.04	
4716.536231119.1967133.60 0.47 0.47 0.47 vvv 3.74 4816.626261170.5874079.83 0.48 vvv 3.53 4916.706273012.5479687.68 0.51 0.51 vvv 3.43 5016.750214781.3054372.73 0.40 0.40 vvv 3.95 5116.839158786.3653084.84 0.29 0.29 vvv 2.99 5216.898271894.48 81056.76 0.50 0.50 vvv 3.35 5316.962205821.01 68424.49 0.38 0.38 vvv 3.01 5417.000132704.1057741.38 0.25 0.25 vvv 2.30 5517.094393530.15 86610.53 0.73 0.73 vvv 4.54 5617.147207775.2174247.19 0.39 0.39 vvv 2.80 5717.240262694.7374095.32 0.49 0.49 vvv 3.55 15817.278137480.22 68606.88 0.26 0.26 vvv 1.87 17.326259105.0858063.95 0.48 0.48 vvv 1.87 17.42690051.6252231.78 0.17 0.17 vvv 1.72 16217.478141428.5953913.75 0.26 0.26 vvv 2.62 16317.55544390.4274482.43 0.82 0.82 vvv 5	40	16.497	151202.55	67155 60	0.20	$0.28 \forall \forall$	2.45	
4816.6262611/0.36 74079.83 0.48 0.46 0.46 vv 3.33 4916.706273012.54 79687.68 0.51 0.51 vv 3.43 5016.750214781.30 54372.73 0.40 0.40 vv 3.95 5116.839158786.36 53084.84 0.29 0.29 vv 2.99 5216.898271894.48 81056.76 0.50 0.50 vv 3.35 5316.962205821.01 68424.49 0.38 0.38 vV 3.01 5417.000132704.10 57741.38 0.25 0.25 vV 2.30 5517.094393530.15 86610.53 0.73 0.73 vV 4.54 5617.147207775.21 74247.19 0.39 0.39 vV 2.80 5717.240262694.73 74095.32 0.49 0.49 vV 3.55 15817.278137480.22 68606.88 0.26 0.26 vV 2.00 15917.326259105.0858063.95 0.48 0.48 vV 4.46 17.399 98893.58 53000.61 0.18 0.18 vV 1.87 16217.478141428.5953913.75 0.26 0.26 vV 2.62 16317.555443909.4274482.43 0.82 0.82 vV 5.96 16417.634334615.51 60656.92 0.62 <td< td=""><td>4)/ 10</td><td>16.556</td><td>251119.19</td><td>74070 02</td><td>0.47</td><td>0.47×0</td><td>3 53</td><td></td></td<>	4)/ 10	16.556	251119.19	74070 02	0.47	0.47×0	3 53	
49 16.706 273012.34 79687.68 0.51 0.51 vVV 3.43 50 16.750 214781.30 54372.73 0.40 0.40 vVV 3.95 51 16.839 158786.36 53084.84 0.29 0.29 vVV 2.99 52 16.898 271894.48 81056.76 0.50 0.50 vVV 3.35 53 16.962 205821.01 68424.49 0.38 0.38 vVV 3.01 54 17.000 132704.10 57741.38 0.25 0.25 vVV 2.30 55 17.094 393530.15 86610.53 0.73 0.73 vVV 2.80 57 17.240 262694.73 74095.32 0.49 0.49 vVV 3.55 158 17.278 137480.22 68606.88 0.26 0.26 vVV 2.00 159 17.326 259105.08 58063.95 0.48 0.48 vVV 4.46 17.399 9893.58 53000.61 0.18 0.18 vV 1.87 17.426 90051.62 52231.78 0.17 0.17 vV 1.72 162 17.478 141428.59 53913.75 0.26 0.26 vV 2.62 163 17.555 443909.42 74482.43 0.82 0.82 vV 5.96 164 17.634 334615.51 60656.92 0.62 0.62 vV 5.52 16	40	16.020	201170.50	74079.03	0.40	0.48 ~VV	3.00	
15016.750 214781.30 54372.73 0.40 0.40 0.40 1.40 1.50 3.93 16.839158786.3653084.84 0.29 0.29 $*VV$ 2.99 5216.898271894.48 81056.76 0.50 0.50 $*VV$ 3.35 15316.962205821.01 68424.49 0.38 0.38 $*VV$ 3.01 15417.000132704.10 57741.38 0.25 0.25 $*VV$ 2.30 15517.094393530.15 86610.53 0.73 0.73 $*VV$ 4.54 1617.147207775.2174247.19 0.39 0.39 $*VV$ 2.80 15717.240262694.7374095.32 0.49 0.49 $*VV$ 3.55 15817.278137480.2268606.88 0.26 0.26 $*VV$ 2.00 15917.326259105.0858063.95 0.48 0.48 $*VV$ 4.46 17.39998893.5853000.61 0.18 0.18 vV 1.87 16217.478141428.5953913.75 0.26 0.26 vV 2.62 16317.555443909.4274482.43 0.82 0.82 vV 5.96 16417.634334615.51 60656.92 0.62 0.62 vV 5.52 16517.775 300972.70 62233.03 0.56 0.56 vV 4.84	49 50	16.700	2/3012.34	19001,00 51272 73	0.31	$0.01 \times VV$	3 05	
15116.839138786.3633084.84 0.29 0.29 0.29 VV 2.99 .5216.898271894.4881056.76 0.50 0.50 $*VV$ 3.35 .5316.962205821.01 68424.49 0.38 0.38 $*VV$ 3.01 .5417.000132704.1057741.38 0.25 0.25 $*VV$ 2.30 .5517.094393530.1586610.53 0.73 0.73 $*VV$ 4.54 .5617.147207775.2174247.19 0.39 0.39 $*VV$ 2.80 .5717.240262694.7374095.32 0.49 0.49 $*VV$ 3.55 15817.278137480.2268606.88 0.26 0.26 $*VV$ 2.00 15917.326259105.0858063.95 0.48 0.48 $*VV$ 4.46 17.39998893.5853000.61 0.18 0.18 vV 1.87 17.42690051.6252231.78 0.17 0.17 vV 1.72 16217.478141428.5953913.75 0.26 0.26 vV 2.62 16317.555443909.4274482.43 0.82 0.82 vV 5.96 16417.634334615.51 60656.92 0.62 0.62 vV 5.52 16517.775 300972.70 62233.03 0.56 0.56 vV 4.84	51	16 930	214701.30 159796 36	53091 91	0.40	$0.40 \times VV$	2.95	
152 10.836 271894.46 61036.76 0.36 0.36 vv 3.35 153 16.962 205821.01 68424.49 0.38 0.38 vv 3.01 54 17.000 132704.10 57741.38 0.25 0.25 vv 2.30 55 17.094 393530.15 86610.53 0.73 0.73 vv 4.54 56 17.147 207775.21 74247.19 0.39 0.39 vv 2.80 57 17.240 262694.73 74095.32 0.49 0.49 vv 3.55 158 17.278 137480.22 68606.88 0.26 0.26 vv 2.00 159 17.326 259105.08 58063.95 0.48 0.48 vv 4.46 17.399 98893.58 53000.61 0.18 0.18 vv 1.87 17.426 90051.62 52231.78 0.17 0.17 vv 1.72 162 17.478 141428.59 53913.75 0.26 0.26 vv 2.62 163 17.555 443909.42 74482.43 0.82 0.82 vv 5.96 164 17.634 334615.51 60656.92 0.62 0.62 vv 5.52 165 17.775 300972.70 62233.03 0.56 0.56 vv 4.84	52	16 999	271994 49	91056 76	0.29	$0.25 \forall \forall \\ 0.50 \forall \forall \\ 0.50 \forall \forall \\ 0.50 \forall \\ 0.50 $	2.99	
15310.902203021.01 03424.49 0.36 0.36 0.36 0.36 0.36 .5417.000132704.1057741.38 0.25 0.25 vVV 2.30 .5517.094393530.1586610.53 0.73 0.73 vVV 4.54 .5617.147207775.2174247.19 0.39 0.39 vVV 2.80 .5717.240262694.7374095.32 0.49 0.49 vVV 3.55 15817.278137480.2268606.88 0.26 0.26 vVV 2.00 15917.326259105.0858063.95 0.48 0.48 vVV 1.87 17.39998893.5853000.61 0.18 0.18 vVV 1.72 16217.478141428.5953913.75 0.26 0.26 vVV 2.62 16317.555443909.4274482.43 0.82 0.82 vVV 5.96 16417.634334615.51 60656.92 0.62 0.62 vV 5.52 16517.775 300972.70 62233.03 0.56 0.56 vV 4.84	.52	16 962	205821 01	69121 19	0.30	$0.38 \times VV$	3 01	
17.000 132704.10 37741.30 0.23 0.23 0.23 0.23 0.23 .55 17.094 393530.15 86610.53 0.73 0.73 *VV 4.54 .56 17.147 207775.21 74247.19 0.39 0.39 *VV 2.80 .57 17.240 262694.73 74095.32 0.49 0.49 *VV 3.55 158 17.278 137480.22 68606.88 0.26 0.26 *VV 2.00 159 17.326 259105.08 58063.95 0.48 0.48 *VV 4.46 17.399 98893.58 53000.61 0.18 0.18 *VV 1.87 17.426 90051.62 52231.78 0.17 0.17 *VV 1.72 162 17.478 141428.59 53913.75 0.26 0.26 *VV 2.62 163 17.555 443909.42 74482.43 0.82 0.82 *VV 5.96 164 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52	.55	17 000	132704 10	57741 38	0.50	0.30 VV 0.25 *VV	2 30	
17.094 393330.13 80010.33 0.73 0.49 0.49 VV 3.55 0.00 0.55 0.49 0.49 *VV 3.55 0.00 0.13 0.14 0.48 *VV 2.00 0.15 17.326 259105.08 58063.95 0.48 0.48 *VV 1.87 17.426 90051.62 52231.78 0.17 0.17 *VV 1.72 162 17.478 141428.59 53913.75 0.26 0.82 *VV 2.62 163 1		17.000	303530 15	96610 53	0.25	$0.23 \forall \forall \\ 0.73 \star \\ 0.73 \star \forall \\ 0.73 \star $	2.50 1.51	
17.147 207775.21 74247.19 0.39 0.39 0.39 0.49 2.86 157 17.240 262694.73 74095.32 0.49 0.49 *VV 3.55 158 17.278 137480.22 68606.88 0.26 0.26 *VV 2.00 159 17.326 259105.08 58063.95 0.48 0.48 *VV 4.46 17.399 98893.58 53000.61 0.18 0.18 *VV 1.87 17.426 90051.62 52231.78 0.17 0.17 *VV 1.72 162 17.478 141428.59 53913.75 0.26 0.26 *VV 2.62 163 17.555 443909.42 74482.43 0.82 0.82 *VV 5.96 164 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52 165 17.775 300972.70 62233.03 0.56 0.56 *VV 4.84	.55	17.094	293330.13	74247 19	0.75	0.75 VV	2 80	
17.240 202094.73 740993.32 0.49 0.48 0.48 10 0.17 1.40 1.40 0.18 0.48 1.40 1.72 1.87 1.7426 90051.62 52231.78 0.17 0.17 1.72 1.62 17.478 141428.59 53913.75 0.26 0.26 *VV 1.72 1.62 17.478 141428.59 53913.75 0.26 0.82 *VV 2.62 1.63 17.555 443909.42 74482.43 0.82 0.82 *VV 5.96 1.64 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52 1.65 17.775 300972.70 62233.03 0.56 0.56	57	17 240	267694 73	74095 32	0.39	0.39 VV	2.00	
158 17.278 137480.22 088000.88 0.26	159	17.240	137490 22	69606 99	0.49	0.49 VV	2.00	
17.320 233103.08 38003.93 0.48 0.48 0.46 47.46 17.399 98893.58 53000.61 0.18 0.18 *VV 1.87 17.426 90051.62 52231.78 0.17 0.17 *VV 1.72 162 17.478 141428.59 53913.75 0.26 0.26 *VV 2.62 163 17.555 443909.42 74482.43 0.82 0.82 *VV 5.96 164 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52 165 17.775 300972.70 62233.03 0.56 0.56 *VV 4.84	150	17 326	259105 08	58063 95	0.20	$\begin{array}{c} 0.26 & \forall \forall \\ 0.48 & \forall \forall \end{array}$	2.00	
17.339 98893.38 33000.61 0.18 0.18 0.18 0.17 17.426 90051.62 52231.78 0.17 0.17 *VV 1.72 162 17.478 141428.59 53913.75 0.26 0.26 *VV 2.62 163 17.555 443909.42 74482.43 0.82 0.82 *VV 5.96 164 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52 165 17.775 300972.70 62233.03 0.56 0.56 *VV 4.84	LJ9	17.320	239103.00	53000 61	0.40	$0.48 \pm VV$	4.40	
17.426 90031.02 92231.76 0.17 0.17 0.17 17.72 162 17.478 141428.59 53913.75 0.26 0.26 *VV 2.62 163 17.555 443909.42 74482.43 0.82 0.82 *VV 5.96 164 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52 165 17.775 300972.70 62233.03 0.56 0.56 *VV 4.84		17 426	90095.50	52231 78	0.10	$0.13 \forall \forall$	1.07	
163 17.555 443909.42 74482.43 0.82 0.82 *VV 5.96 164 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52 165 17.775 300972.70 62233.03 0.56 0.56 *VV 4.84	162	17 478	141428 50	52251.70	0.17	0.17	2 62	
163 17.635 143505.42 74432.43 0.62 0.62 0.62 0.52 164 17.634 334615.51 60656.92 0.62 0.62 *VV 5.52 165 17.775 300972.70 62233.03 0.56 0.56 *VV 4.84	163	17 555	143909 12	74482 12	0.20		5 96	
161 17.034 534015.51 60656.92 6.62 6.62 5.52 165 17.775 300972.70 62233.03 0.56 0.56 *VV 4.84	164	17 634	334615 51	60656 00	0.02	0.02 VV	5.50	
100 1////0 000//2//0 02205/05 0/00 0/00 0/00	165	17 775	300972 70	62233 03	0.02	0.02 .02	J.JZ A 84	
		1		02200.00		0.00 VV	1.01	

sult File : ~RST2C56.RST, Printed On 3/14/01 11:12 AM

ak	Time	Area	Height	Area	Norm. Area	BL	Area/Height	
	[min]	[µV∙s]	[µV]	[8]	[%]		[s]	
_								
5	17.831	267930.49	65972.96	0.50	0.50	*VV	4.06	
7	17.886	102465.01	49923.65	0.19	0.19	*VV	2.05	
58	17.929	237651.24	53522.37	0.44	0.44	*VV	4.44	
;9	18.005	196803.01	51022.58	0.37	0.37	*VV	3.86	
'0	18.078	148255.85	47885.64	0.28	0.28	*VV	3.10	
'1	18.128	137574.59	47715.46	0.26	0.26	*VV	2.88	
'2	18.198	175949.55	57927.80	0.33	0.33	*VV	3.04	
13	18.272	441189.85	125387.99	0.82	0.82	*VV	3.52	
14	18.345	278210.25	51093.29	0.52	0.52	*VV	5.45	
15	18.441	136557.69	48821.10	0.25	0.25	*VV	2.80	
16	18.485	235454.39	57197.41	0.44	0.44	*VV	4.12	
71	18.581	162825.74	44265.87	0.30	0.30	*VV	3.68	
18	18.660	403018.02	59743.95	0.75	0.75	*VV	6.75	
19	18.782	214692.00	54521.86	0.40	0.40	*VV	3.94	
30	18.840	282462.21	59515.15	0.52	0.52	*VV	4.75	
31	18.970	610512.29	180406.68	1.13	1.13	*VV	3.38	•
32	19.024	162465.95	56829.18	0.30	0.30	*VV	2.86	
33	19.084	146752.23	53722.47	0.27	0.27	*VV	2.73	
34	19.122	204457.32	53069.82	0.38	0.38	*VV	3.85	
35	19.248	399029.87	52906.26	0.74	0.74	*VV	7.54	
36	19.378	338312.14	52587.96	0.63	0.63	*vv	6.43	
35	19.475	303523.59	57107.21	0.56	0.56	*VV	5.31	
18	19.560	287917.73	46536.27	0.53	0.53	*VV	6.19	
39	19.734	437384.41	49664.70	0.81	0.81	*VV	8.81	
90	19.866	169643.98	41040.17	0.31	0.31	*VV	4.13	
91	19.958	277082.57	44224.79	0.51	0.51	*VV	6.27	
92	20.042	133577.71	42800.09	0.25	0.25	*vv	3.12	
93	20.139	407514.60	113941.41	0.76	0.76	*VV	3.58	
94	20.219	235439.00	45015.50	0.44	0.44	*vv	5.23	
95	20.307	153119.88	43980.93	0.28	0.28	*VV	3.48	
96	20.411	239196.19	43436.13	0.44	0.44	*VV	5.51	
97	20.487	200822.56	42153.21	0.37	0.37	*VV	4.76	
98	20.595	276756.97	38622.12	0.51	0.51	*VV	7.17	
99	20.670	95236.93	37186.29	0.18	0.18	*VV	2.56	
00	20.779	240417.64	36682.83	0.45	0.45	*VV	6.55	
01	20.866	299743.40	36761.43	0.56	0.56	*VV	8.15	
02	21.033	261216.98	55002.25	0.48	0.48	*VV	4.75	
03	21.108	324806.55	37175.09	0.60	0.60	*VV	8.74	
04	21.249	191114.25	35367.56	0.35	0.35	*VV	5.40	
05	21.362	150790.92	34390.16	0.28	0.28	*VV	4.38	
06	21.438	113549.63	31620.87	0.21	0.21	*VV	3.59	
07	21.538	329254.57	32630.51	0.61	0.61	*VV	10.09	
08	21.694	194179.16	28146.01	0.36	0.36	*VV	6.90	
	21.929	323434.36	28715.54	0.60	0.60	*VV	11.26	
10	22.005	37850.87	24702.80	0.07	0.07	*VV	1.53	
11	22.103	217752.60	26959.12	0.40	0.40	*VV	8.08	
12	22.206	110726.15	25839.45	0.21	0.21	*VV	4.29	
:13	22.276	40910.12	22431.79	0.08	0.08	*VV	1.82	
:14	22.325	242079.17	28283.95	0.45	0.45	*VV	8.56	

1~

)-

зk	Time [min]	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
ز 🐂	22.512	487505.62	68273.09	0.90	0.90	*VV	7.14	
6 7	22.892	269894.45 132826.91	16254.68	0.50	0.50	* V V * V V	8.17	
8	23.224	97625.71	15917.89	0.18	0.18	*VV *VV	6.13	
0	23.424	68467.17	16670.78	0.13	0.13	*VV	4.11	
1	23.505	154602.08	13657.37	0.29	0.29	*VV	11.32	
3	23.723	47732.63	15238.87 12134.81	0.20	0.20	*VV *VB	7.16 3.93	
		53893803.15	1.61e+07	100.00	100.00			
WORLD WIDE GEOSCIENCES - I

WORLDWIDE GEOSCIENCES, INC.

6100 Corporate Drive Suite 320 Houston, Texas 77036 Phone: 713 / 988-9401 FAX: 713 (988-8784

April 16, 2001

APR 1 9

Prol:

illo Code:_____

Mr. Bruce Ahrens IT Corp. 13 British American Blvd. Latham, NY 12110

Dear Mr. Ahrens:

Enclosed is our Report 2 on samples submitted from your Troy Area 2 site. Please refer to the report summary for a condensed statement of our findings.

If there are any questions please do not hesitate to contact me. We appreciate being of service.

Sincerely,

Fletersen

Neil F. Petersen

WORLDWIDE GEOSCIENCES, INC.

6100 Corporate Drive Suite 320 Houston, Texas 77036 Phone: 713 / 988-9401 FAX: 713 / 988-8784

CHARACTERIZATION OF SAMPLES NMPC - TROY AREA 2 SITE REPORT 2

PREPARED FOR IT CORP. APRIL, 2001

CHARACTERIZATION OF SAMPLES NMPC -- TROY AREA 2 SITE REPORT 2

SUMMARY

Six soil samples, two water samples, and a product sample were analyzed by high resolution capillary gas chromatography to determine the type or types of parent products associated with these samples, and to provide any indications of parent product age. Two of the samples had concentration levels too low to determine the parent product associated with these samples. These were the MW 29 (23-25) and MW 31 (15-17) samples. The low amplitude peaks present in the chromatograms of these samples are not consistent with coal tar as the parent product.

The MW 30 water sample, the MW 30 (25-27) and the MW 31 (23-25) soil samples have signature characteristics indicating mixtures of gasoline and diesel/fuel oil. Diesel/fuel oil is the dominant product. The characteristics of the gasoline derived hydrocarbons indicate parent gasolines most probably produced between 1975 and 1980. The diesel/fuel oils are significantly biodegraded with most probable exposure times of 16 to 20 years for the MW 30 (25-27) soil sample and twenty years or more for the MW 30 water sample and the MW 31 (23-25) soil sample. The MW 31 product sample also contains a mixture of gasoline range and diesel/fuel oil derived hydrocarbons. The diesel/fuel oil product contribution dominates, and is severely biodegraded with a most probable exposure time of twenty years or more. The gasoline range assemblage is not clearly indicative of gasoline as the parent product. Either the gasoline is so severely weathered that the characteristic pattern of gasoline peaks is no longer evident or the gasoline range hydrocarbons could have been derived from a mixed hydrocarbon solvent or naphtha.

The MW-29 water sample signature is dominated by a single peak at the elution position of benzene, and also contains a very low amplitude, severely biodegraded diesel/fuel oil assemblage. The SB-40 (23-25) soil sample signature shows characteristics indicating a very severely biodegraded residual grade, such as #6 grade, fuel oil assemblage with a most probable exposure time of at least fifty years. The PZ-1 (27-29) soil sample has compositional characteristics indicating a mixture that consists predominantly of a moderately biodegraded diesel/fuel oil with a most probable exposure time of 14 to 18 years, and a subordinate coal tar contribution.

INTRODUCTION

A water sample and a product sample from the Troy Area 2 site were received at the offices of Worldwide Geosciences, Inc. on March 6, 2001 via Federal Express overnight delivery. Each sample was contained in a single, liter, amber glass jar which were packed in an insulated plastic cooler with ice used as a preservative. Sample identifications as per the attached chain of custody form and their assigned laboratory numbers are as follows:

Sample ID		Lab No.
NMPC/AREA 2/MW29	Water	010309008
NMPC/AREA 2/MW31	Product	010309009

A water sample from the Troy Area 2 site was received at the offices of Worldwide Geosciences, Inc. on March 14, 2001 via Federal Express overnight delivery. The sample was contained in a single, liter, amber glass jar which was packed in an insulated plastic cooler with ice used as a preservative. Sample identification as per the attached chain of custody form and its assigned laboratory number is as follows:

<u>Sample ID</u>			
NMPC/AREA	2/MW30		

Lab No. 010315007

1,000 milliliters of each water sample were extracted with 100 milliliters of methylene chloride solvent. The extractions were carried out by agitation in a separatory funnel. After separating each solvent and soil, each solvent was reduced in volume to two milliliters to increase the concentration level of the extracted hydrocarbons in the solvent. Each solvent was spiked with androstane as an internal standard. The concentration level of the internal standard relative to the weight of water extracted is 120 parts per billion. Each spiked solvent containing the extracted hydrocarbons was then analyzed by high-resolution gas chromatography using a 30-meter DB1 column and a flame ionization detector. A Perkin-Elmer Autosystem was utilized. The analysis procedure can be viewed as a modification of ASTM method D-3328. The modifications allow for the analysis of hydrocarbons in solvent and improve the resolution of the lighter hydrocarbons. Two procedural methods are routinely used for product in solvent characterization. One provides better resolution of the gasoline range hydrocarbons but has a more limited carbon number range. This is Method 3 as defined in the procedural description provided in Appendix II. The second method is routinely used to characterize product in solvents heavier than gasoline. The gasoline range hydrocarbons are compressed as a result of a more rapid increase in column temperature. This is Method 4 as described in Appendix II.

The extracts obtained on these samples were analyzed under Method 4 conditions on March 21, 2001. There was an inadvertent reversal in computer file identifications involving the MW 30 sample on the March 21st run. The MW 30 extract was reanalyzed on March 28 to confirm the signature was correct.

The product sample was analyzed directly under Method 2 conditions on March 21, 2001.

The only difference in operating conditions between Methods 1 and 2, which are used for actual product samples, and between Methods 3 and 4 is in the injection conditions. When products are run neat, or as received, a split injection method is used and if the hydrocarbons are in solvent phase a splitless injection system is used.

Display copies of the chromatograms, both labeled and unlabeled, are incorporated into the report as Appendix I. A full-scale display in which all the peaks have been kept onscale for accurate visualization of the relative proportions of the hydrocarbons present is provided. Also included in Appendix I is a table listing the abbreviations used to identify peaks on the chromatograms and their corresponding names.

Peak area tables derived from the chromatograms are included as Appendix III.

The characteristics of these samples are discussed in the results section along with the characteristics of samples previously analyzed under this project and reported out under cover letter of March 27, 2001.

RESULTS

In discussing the compositional characteristics of the samples analyzed and analog signatures, the various peaks present in the chromatograms will be referred to in terms of the hydrocarbons they represent. As a general aid to visualizing the types of hydrocarbons involved, Figure 1 is provided to illustrate the structural characteristics of the main classes of hydrocarbons.

The concentration levels of hydrocarbons present in the MW 29 (23-25) and MW 31 (15-17) samples were too low to produce chromatograms which could be interpreted in detail in terms of parent product type or age. Neither chromatogram is consistent with coal tar as the product type. The complex assemblage of low amplitude peaks in the MW 29 (23-25) sample between eight and fourteen minutes elution time is consistent with a residual 10 to 15% fraction of gasoline.

Figure 2 compares the chromatographic signature of the MW 30 (25-27) soil sample with the signature of a gasoline. The gasoline signature shown is that of American Petroleum Institute petroleum standard 6 (API PS6). The MW30 (25-27) sample signature shows a hydrocarbon range extending from the C7 (seven carbon atoms) to the C23 (twenty three carbon atom) range. Gasoline derived hydrocarbons would extend only to NC13. The relative prominence of multibranched isoparaffins among the early eluting peaks indicates a gasoline contribution to the MW 30 hydrocarbon assemblage. These multibranched isoparaffins are collectively termed alkylates. Alkylates are derived from a specific refinery processing stream and are added to gasolines to raise the octane number of a gasoline. The structures of the alkylate hydrocarbons are shown in Figure 3. The

FIGURE I TYPES OF HYDROCARBONS

SATURATES

CARBON ATOMS CONNECTED BY SINGLE BONDS PARAFFINS OR ALKANES NORMAL PARAFFINS OR ALKANES STRAIGHT CHAINS

NORMAL HEXANE (NC6)

ISO-PARAFFINS OR ALKANES BRANCHED CHAIN PARAFFINS

2METHYL PENTANE (2MP)

NAPTHENES OR CYCLOPARAFFINS OR CYCLOALKANES RING OR CYCLIC STRUCTURE

CYCLOPENTANE

(CCP)

CYCLOHEXANE

(CH)

FIGURE 1 (CONT.) TYPES OF HYDROCARBONS

UNSATURATES

HAVE ONE OR MORE CARBON DOUBLE BONDS

OLEFINS OR ALKENES

CAN BE STRAIGHT CHAIN, BRANCHED CHAIN, OR CYCLIC

NORMAL HEXENE

AROMATICS

BENZENE

NAPHTHALENE

ALKYLATE HYDROCARBONS

225TRIMETHYLHEXANE (225TMH)

С

relative prominence of the trimethylpentane (224TMP, 234TMP, and 233TMP) peaks compared to bracketing non-alkylate saturate peaks indicates a gasoline contribution to the MW30 (25-27) soil sample.

The gasoline associated with the MW30 (25-27) sample is significantly volatilized. The volatilization losses are reflected in the low proportions of the lighter hydrocarbons, which elute first or to the left on the chromatogram. The signature characteristics of the MW-30 (25-27) sample also indicate gasoline as the dominant parent product through the C9 aromatic range or approximately nine minutes elution time.

The gasoline derived portion of the MW 30 (25-27) sample signature also indicates the parent gasoline was an older formulation gasoline. The C8 aromatics (ethylbenzene and the xylenes) have comparable solubilities in water and comparable degradation rates (Yang et al, 1995). The proportions of the C8 aromatics compared to one another will reflect their proportions compared to one another in the parent product. The signature of the MW 30 (25-27) sample shows a predominance of the ethylbenzene peak over both the meta-para xylene peak and the ortho-xylene peak. This is a characteristic restricted to gasolines produced prior to 1980. The proportions of the C9 aromatics compared to one another also will reflect their proportions compared to one another in the parent product. The proportions of the C9 aromatics compared to one another also are atypical of more recent gasolines, and also indicate a parent gasoline produced prior to 1980. The MW 30 (25-27) signature shows a high proportion of the normal propyl benzene (NPBZ) peak compared to the following C9 aromatic peaks (1M3EBZ, 135TMBZ, and 1M2EBZ).

The gasoline derived hydrocarbons also show proportions of low octane number hydrocarbons which are more indicative of an unleaded gasoline rather than a leaded gasoline. The low octane number hydrocarbons include the cycloparaffins, normal paraffins, and monobranched isoparaffins. Unleaded gasolines were required to be in use as of 1975. Combining this characteristic with the other age related gasoline characteristics indicates the parent gasoline most probably was produced between 1975 and 1980.

The next higher carbon number group of petroleum derived products are referred to collectively as the middle distillates. Kerosenes, diesels, and fuel oils are the most common middle distillate products. Standard (#2) grade fuel oil and diesel are similar products. Figure 4 provides a comparison of the chromatographic signatures of a kerosene product sample and a diesel/fuel oil product sample. The normal paraffins are the most prominent individual hydrocarbon type in middle distillate products. The normal paraffins are straight chain molecules in which all the carbon atoms are attached to one another in an end to end manner. The structure of normal hexane in Figure 1 is an example of a normal paraffin. The normal paraffins are annotated on the chromatograms with a NC designation followed by the number of carbon atoms in the molecule. The overall

ł

FIGURE 4: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF A KEROSENE SAMPLE AND A DIESEL PRODUCT SAMPLE carbon number range and normal paraffin distribution of diesels and fuel oils extends to higher carbon numbers than in kerosenes.

Diesels and fuel oils also can be differentiated from kerosene products on the basis of their isoprenoid proportions. The isoprenoids are the second most prominent individual hydrocarbon type in middle distillate products. The isoprenoids are a unique type of branched chain or isoparaffin in which a side methyl (CH3) group is attached to every fourth carbon atom of the main carbon chain. The structure of methylpentane in Figure 1 is an example of an isoparaffin with a single, side, methyl group. The isoprenoids are annotated on the chromatograms with an IP designation followed by the number of carbon atoms in the molecule. In kerosenes, the lower carbon number isoprenoids (IP13, IP14, IP15, and IP16) significantly exceed the higher carbon number isoprenoids (IP18, IP19, and IP20). In diesels and fuel oils, the higher carbon number isoprenoids are present at more comparable proportions to the lower carbon number isoprenoids, and in some instances may exceed the lower carbon number isoprenoids.

With increasing exposure time, the normal paraffin peaks are preferentially reduced compared to the isoprenoid peaks and ultimately lost as a result of biodegradation. Figure 5 illustrates the effects of biodegradation on a kerosene product sample. In Figure 5, the chromatogram of a kerosene sample is shown. The same signature is then shown artificially biodegraded by whiting out the normal paraffin peaks. Figure 6 provides a similar comparison for a diesel/fuel oil product sample signature. As the vertically prominent normal paraffin peaks are lost, the underlying baseline rise or hump becomes an increasingly prominent feature of the chromatographic signature. The baseline rise or hump represents a complex mixture of individual hydrocarbons which are not present in sufficient individual abundance to elute as discrete peaks. Biodegraded diesels and fuel oils can be distinguished from biodegraded kerosene products on the basis of the carbon number limits of the baseline rise or hump and the proportions of the isoprenoids.

Figure 7 compares the chromatographic signature of the MW 30 (25-27) soil sample with the signature of a kerosene product sample. Figure 8 provides a similar comparison with a diesel/fuel oil product sample. The baseline rise limits, isoprenoid proportions, and overall carbon number range are consistent with a diesel/fuel oil product and not a kerosene product.

The low proportions of normal paraffin peaks and prominence of isoprenoid peaks indicate the diesel/fuel oil associated with the MW 30 (25-27) sample is severely biodegraded. Figure 9 compares the chromatographic signature of the MW 30 (25-27) sample to a biodegraded diesel/fuel oil signature.

Christensen and Larsen (1993) correlated the level of biodegradation with exposure times for samples analyzed from sites with known loss dates. The ratio of NC17/IP19 (pristane) was used as a measure of the level of

ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

FIGURE 5: CHROMATOGRAPHIC SIGNATURE OF A KEROSENE PRODUCT AS ANALYZED AND ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

FIGURE 6: CHROMATOGRAPHIC SIGNATURE OF A DIESEL PRODUCT AS ANALYZED AND ARTIFICIALLY DEGRADED (NORMALS WHITED OUT)

FIGURE 8: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW-30 (25-27) AND A DIESEL/FUEL OIL PRODUCT SAMPLE

FIGURE 9: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 30 (25-27) SOIL SAMPLE AND A BIODEGRADED DIESEL/FUEL OIL PRODUCT SAMPLE

biodegradation. The NC17/IP19 ratio for the MW 30 (25-27) sample is 0.1. Based on the criteria of Christensen and Larsen, an exposure time of 16 to 20 years is indicated.

15% of the MW30 (25-27) sample signature is represented by the hydrocarbons eluting up to NC10, which are dominantly gasoline derived. The C10 to C13 range consists of both gasoline derived and diesel/fuel oil derived hydrocarbons. An additional 5 to 10% of the total hydrocarbons are estimated to also be gasoline derived. On this basis, the hydrocarbon assemblage present in the MW30 (25-27) sample represents 20 to 25% gasoline and 75 to 80% diesel or fuel oil. The gasoline portion of the sample shows compositional characteristics which would restrict the age of the parent gasoline to a gasoline produced prior to 1980, and most probably represents an unleaded gasoline produced between 1975 and 1980. The diesel/fuel oil is significantly biodegraded, with a most probable exposure time of 16 to 20 years.

Figure 10 compares the chromatographic signatures of the MW 30 (25-27) and MW 31 (23-25) soil samples. The MW 31 (23-25) soil sample signature also represents a mixture of gasoline derived and diesel/fuel oil derived hydrocarbons. The gasoline associated with the MW 31 (23-25) sample is more volatilized than the gasoline associated with the MW 30 (27-27) sample. The C8 hydrocarbons have been nearly completely lost in the MW 31 sample, and the proportions of the C9 aromatics to one another are affected by volatilization losses. Within the geographic limitations of a single site, it is likely the more weathered gasoline associated with the MW 31 (23-25) sample has had at least as long an exposure time as the gasoline associated with the MW 30 (25-27) sample. On this basis, the parent gasoline associated with the MW 30 (25-27) sample was produced prior to 1980 as well.

The diesel/fuel oil associated with the MW 31 (23-25) sample also is significantly biodegraded. The NC17/IP19 ratio for the MW 31 (23-25) sample is 0.0, with an indicated most probable exposure time of twenty years or more.

12% of the MW 31 (23-25) signature is represented by hydrocarbons eluting up to NC10, which are dominantly gasoline derived. The C10-C13 range consists of hydrocarbons which are both gasoline derived and diesel/fuel oil derived. An additional five to ten percent of the total hydrocarbons are estimated to be gasoline derived. On this basis approximately 20% of the hydrocarbons associated with the MW 31 (23-25) sample are gasoline derived, and 80% are diesel/fuel oil derived. The gasoline associated with the MW 31 (23-25) sample is considerably more severely volatilized than the gasoline associated with the MW 30 (25-27) sample. On this basis, a pre-1980 gasoline is also indicated for the MW 31 (23-25) sample. The diesel/fuel oil is significantly biodegraded, with a most probably exposure time of twenty years or more.

6

27) AND MW 31 (23-25) SOIL SAMPLES

Figures 11 and 12 compare the chromatographic signatures of the MW 30 (25-27) and MW 31 (23-25) samples with the MW 31 free product sample signature. The MW 31 free product sample also is a mixture of gasoline range hydrocarbons and diesel/fuel oil derived hydrocarbons. The absence of normal paraffin peaks in the diesel/fuel oil range again indicates a severely biodegraded diesel/fuel oil with a most probable exposure time of twenty years or more.

The gasoline range hydrocarbons present in the MW 31 free product are distinctly different than those present in either the MW 30 (25-27) or MW 31 (23-25) samples. The gasoline range hydrocarbon assemblage is not distinctly consistent with gasoline. Either the gasoline associated with the MW 31 free product is so severely weathered that the peak assemblage is no longer recognizable as gasoline or the parent product was a gasoline range, mixed hydrocarbon solvent, such as naphtha.

The gasoline range hydrocarbons up to NC10 represent 12% of the MW 31 free product. Both gasoline and diesel/fuel oil derived hydrocarbons occur in the C10 to 13 range. It is estimated that up to 20% of the MW 31 free product could contain gasoline derived hydrocarbons. The remaining 80% or more of the MW 31 free product represents a severely biodegraded diesel/fuel oil product.

The signature characteristics of coal tar differ considerably from those of the MW 30 (25-27), MW 31 (23-25), and MW 31 free product samples. Figures 13, 14, and 15 compare the chromatographic signatures of these samples to the signature of a coal tar. Coal tar signatures are dominated by prominent polynuclear aromatic peaks extending from naphthalene through benzo(g,h,I) perylene. This peak sequence is not evident in either the MW 30 (25-27) or the MW 31 (23-25) samples. Coal tar signatures also do not display a prominent baseline rise or hump, which are evident in the MW 30 (25-27) and MW 31 (23-25) sample signatures.

The MW 30 water sample signature also indicates the dissolved hydrocarbons are a mixture of gasoline derived and diesel/fuel oil derived hydrocarbons. The more water soluble single ring aromatic hydrocarbons associated with gasoline predominate. Figure 16 compares the chromatographic signatures of the MW 30 water sample and the MW 30 (25-27) soil sample. The prominence of C9 and higher aromatic hydrocarbons among the gasoline derived hydrocarbons in the MW30 water sample signature indicate the gasoline from which these hydrocarbons were derived was very significantly weathered.

The proportions of the C8 aromatic hydrocarbons compared to one another and the C9 aromatic hydrocarbons compared to one another again indicate a parent gasoline produced no later than 1980. Figure 17 compares the chromatographic signature of the MW 30 water sample with the signature of API PS6 gasoline. The very high proportion of ethylbenzene to ortho-xylene in the MW 30 sample signature is a characteristic restricted to gasolines produced prior to 1980. As discussed previously, the C8

FIGURE 11: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 30 (25-

FIGURE 12: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 31 (23-25) SOIL SAMPLE AND THE MW 31 FREE PRODUCT SAMPLE

FIGURE 16: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 30 WATER SAMPLE AND THE MW-30(25-27) SOIL SAMPLE

aromatics have comparable solubilities in water and comparable degradation rates. Their proportions compared to one another will reflect their proportions compared to one another whether present as gasoline (either sorbed on soil or as free phase) or dissolved in ground water. The MW 30 water sample also shows atypical proportions of C9 aromatics compared to one another, also indicating a 1980 or older gasoline as the parent product. Differences in the proportions of the C8 aromatics compared to one another and the C9 aromatics compared to one another sample and the MW 30 (25-27) soil sample also indicate two different 1980 or older gasolines are associated with these samples.

The diesel/fuel oil assemblage associated with the MW 30 water sample shows an absence of normal paraffin peaks and a predominance of isoprenoid peaks. A severe level of biodegradation is indicated for the diesel/fuel oil from which these hydrocarbons were derived. The absence of normal paraffins and a NC17/IP19 ratio of 0.0, indicates a most probable exposure time of twenty years or more for the diesel/fuel oil from which these hydrocarbons were derived. The proportions of the isoprenoids compared to one another are similar to the isoprenoid proportions of the MW 30 (25-27) soil sample. The signature of the MW 30 water sample shows no similarity to that of a coal tar, as illustrated in Figure 18.

Figure 19 compares the chromatographic signatures of the SB-40 (23-25) and the MW 31 (23-25) soil samples. The SB-40 (23-25) sample signature does not show a gasoline contribution to the hydrocarbons extracted from this soil sample. This is illustrated in Figure 20, which compares the signature of the SB-40 (23-25) sample with the signature of API PS6 gasoline. The baseline rise of the SB-40 (23-25) sample also extends to a higher carbon atom range than the MW 31(23-25) sample. The baseline rise of the SB-40 (23-25) sample also extends to a higher carbon atom range than the MW 31(23-25) sample. The baseline rise of the SB-40 (23-25) sample is more extensive than would be associated with a standard (#2) grade fuel oil or diesel. Figure 21 compares the chromatographic signature of the SB-40 soil sample with a biodegraded diesel/fuel oil signature.

The baseline rise characteristics of the SB-40 (23-25) sample are consistent with a residual grade or #6 fuel oil. Figure 22 compares the chromatographic signature of the SB-40 (23-25) sample with the signature of a residual grade fuel oil. The absence of normal paraffin peaks indicates the residual fuel oil associated with the SB-40 (23-25) sample is severely biodegraded. However, the absence of isoprenoid peaks as well indicates the level of biodegradation is even more severe.

Kennicutt (1988), in studies of crude oil biodegradation, found the isoprenoids to be relatively unaffected by biodegradation until the normal paraffins had been lost. It took approximately double the amount of time after the normal paraffins had been lost for the isoprenoids to be significantly lost. On the basis that the SB-40 (23-25) sample signature shows neither a prominent sequence of normal paraffin peaks nor a prominent sequence of isoprenoid peaks, an exposure time of at least fifty

FIGURE 17: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 30 WATER SAMPLE AND API PS6 GASOLINE

FIGURE 18: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 30 WATER SAMPLE AND A COAL TAR

FIGURE 19: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 31 (23-25) AND SB-40 (23-25) SOIL SAMPLES

FIGURE 20: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND API PS6 GASOLINE

FIGURE 21: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND A BIODEGRADED DIESEL/FUEL OIL SIGNATURE
to sixty years is most probable for the residual fuel oil product associated with the SB-40 (23-25) soil sample.

The SB-40 (23-25) sample signature shows several peaks which elute at the positions of certain polynuclear aromatic hydrocarbons (PAH's). However, a full suite of PAH peaks are not present, and the proportions are not consistent with the PAH peaks present in the coal tar impacted samples. This is illustrated in Figure 23, which compares the chromatographic signature of the SB-40 (23-25) sample with a coal tar signature. For example, the phenanthrene peak would be expected to be present at considerably higher proportions than the acenaphthalene peak, but is absent. Both the atypical proportions and absence of the majority of the PAH peaks eluting after acenaphthalene indicate these peaks more likely are associated with a residual grade fuel oil than with coal tar.

The signature characteristics of the SB-40 (23-25) soil sample are consistent with a residual grade fuel oil. The fuel oil is very severely biodegraded; both the normal paraffins and isoprenoids have been lost. An exposure time of at least fifty years is indicated for the fuel oil.

The PZ-1 (27-29) sample signature indicates the hydrocarbon assemblage present in this sample represents a mixture of diesel/fuel oil and coal tar. The diesel/fuel oil contribution predominates. Figure 24 compares the chromatographic signature of the PZ-1 (27-29) sample signature with the signature of a coal tar. The sequence of polynuclear aromatic peaks is indicative of a coal tar contribution and would not be expected to be present in diesel or fuel oil. In addition to the coal tar contribution, the PZ-1 sample signature also shows a sequence of normal paraffin and isoprenoid peaks, as well as a large baseline rise or hump consistent with a diesel/fuel oil. The normal paraffin peaks, isoprenoid peaks, and baseline rise would not be associated with a coal tar product as illustrated in Figure 24. These characteristics are consistent with a diesel/fuel oil product.

Figure 25 compares the chromatographic signature of the PZ-1 (27-29) sample with a diesel/fuel oil product signature. The PZ-1 (27-29) signature shows reduced proportions of normal paraffin peaks compared to the isoprenoid peaks. A moderate level of biodegradation is indicated for the diesel/fuel oil contribution to the PZ-1 sample. The NC17/IP19 ratio for the PZ-1 sample signature is 0.4. Based on the criteria of Christensen and Larsen (1993), the most probable exposure time is 14 to 18 years.

The MW 29 water sample signature is dominated by a single peak in the six carbon atom range, at the elution position of benzene. The signature characteristics of the MW 29 water ample are not consistent with coal tar, as shown by the chromatographic comparison provided in Figure 26. The benzene peak also was not evident in the MW 29 (23-25) soil sample. Figure 27 compares the chromatographic signatures of the MW 29 water sample and the MW 29 (23-25) soil sample. The MW29 (23-25) soil sample signature consisted predominantly of a complex pattern of peaks in the C9 to C13 range, which could represent a residual fraction of gasoline.

FIGURE 22: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND A RESIDUAL GRADE FUEL OIL SIGNATURE

FIGURE 23: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE SB-40 (23-25) SOIL SAMPLE AND A COAL TAR SIGNATURE

FIGURE 24: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF PZ-1(27-29) SOIL SAMPLE AND A COAL TAR SIGNATURE

FIGURE 25: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF PZ-1(27-29) SOIL SAMPLE AND A DIESEL/FUEL OIL SIGNATURE

FIGURE 26: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 29 WATER SAMPLE AND A COAL TAR

FIGURE 27: COMPARISON OF THE CHROMATOGRAPHIC SIGNATURES OF THE MW 29 WATER SAMPLE AND THE MW29(23-25) SOIL SAMPLE

The MW29 water sample signature is dominated by benzene. The most prominent of the very low amplitude peaks in the MW29 water sample is a sequence of isoprenoid peaks, indicating a severely biodegraded diesel/fuel oil contribution to the MW 29 water sample. The MW 29 (23-25) soil sample is not indicated to be the source of the hydrocarbons dissolved in the MW 29 water sample

REFERENCES

Christensen, L. B. and T. Larsen (1993) Method for determining the age of diesel spills in the environment: Ground Water Mon. & Remed., Vol. 13, No. 2, p. 142-149.

Kennicutt, M. C. II (1988) The effect of biodegradation on crude oil bulk and molecular composition: Oil & Chem. Pollution, Vol. 4, p. 89-112.

Yang, Y.J., R.D. Spencer, M.A. Morsmann, and T.A. Gates (1995) Groundwater contamination plume differentiation and source determination using BTEX concentration ratios: GroundWater, Vol.33, No.6, p. 927-935.

	24KV		Tries, Inc.
	Project Manager	Date Chain of Custody N	
Address Revelocity Merillow Alud	Telephone Number (Area Code)/Fax Number	Lab Number	
City State Zip Code	Site Contact Lab Contact M	Analysis (Attach list if nore space is needed)	5
Project Name and Location (State)			actractions/
Contract/Purchase Order/Quote No.	Matrix Containers &	Condition	s of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)			
$\underline{\mathcal{W}}\mathcal{W}\mathcal{C}/\underline{\mathcal{H}}_{\mathcal{W}\mathcal{C}} = \mathcal{U}\mathcal{W}\mathcal{U}\mathcal{O}\mathcal{O} = \frac{\mathcal{U}\mathcal{U}}{\mathcal{V}} = \frac{\mathcal{U}\mathcal{U}\mathcal{U}}{\mathcal{U}} = \frac{\mathcal{U}\mathcal{U}\mathcal{U}} = \frac{\mathcal{U}\mathcal{U}\mathcal{U}} = \frac{\mathcal{U}\mathcal{U}\mathcal{U}} = \frac{\mathcal{U}\mathcal{U}\mathcal{U}$	1330 V V V		
NMR//Mrs.2/ Muc. 31 v 3/2/01	14.30 V V V	Portentine	ly hul.
-			
Possible Hazard Identification	Sample Disposal	(A lee may be assessed if samples are	etained
🗌 Non-Hazard 🗌 Flammable 🔄 Skin Irritant 🔲 Poison B	Unknown Return To Client Disposal By Lab Archive For	Months longer than 3 months)	
Turn Around Time Required 24 Hours 4 Hours 21 Days 14 Days 21 Days	راز OC Requirements (Specify) مرد کرد کرد کرد کرد کرد کرد کرد کرد کرد ک		
1 Reinquished By	3/6/ú1 1200 1 Received By	$\left \frac{\partial AIE}{\partial \sqrt{5}}\right _{OI}$	Time 1.2 む 0
$\sum_{i=1}^{2} Relinquished By$	3/ 6/01 10:30 2. Received By.	1,0,0,0,5, [3/2, /0/	Time 10 30
3 Relinquished By	Date / Trime 3. Received By	Date	Time
Comments			

DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

.

. .

.

Custody A rand	SERV	vicas Severn Trent Laboral ES, Inc.
STL-4124 (0700)		
Chent	Project Manager	Date Chain of Custody Number *3//3/01 Chain of Custody Number
Address 13 1 15 M New Lucie 13 00	Tetephone Number (Area Code)/Fax Number (5/8) 78 3 (9 6) (5/8) 33 839 7	Lab Number Page of of
City Lei Wy 171 Code	Site Contact Lab Contact	Analysis (Attach list if more space is needed)
Project Name and Location (State)	Carrier/Waybill Number	Special Instructions/
Contract/Purchase Order/Quote No.	Matrix Containers &	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)		
1) MR (Arrie 2) Mus 20 3/13/6	11230 × X X	
Possible Hazard Identification	B Unknown Clisposal Archive For	(A lee may be assessed if samples are relained Months longer than 3 months)
Turn Around Time Required	21 Days 2 Other 2 Street OC Requirements (Specify)	
1 Reimquished By (7(* 1 * 1 * 2 * (* 2 * /) Y. 2011)	$\begin{bmatrix} Date \\ 5/1.5/1.01 \end{bmatrix} 2000 \begin{bmatrix} 1. Received By \\ Fed - EX \end{bmatrix}$	$\begin{vmatrix} Date \\ 3/3/01 \end{vmatrix}$
2 Belingwished By	3/14/01 The 2 Received By	$\left \frac{\partial^{ald}}{\partial H} \right = 0$ $\left \frac{\nabla^{ald}}{\partial B} \right = 0$
3. Relinquished By	Date Time 3. Received By	Date Date Time
Comneuts		

DISTRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report; PINK - Field Copy

APPENDIX I

DISPLAY CHROMATOGRAMS

ABBREVIATIONS USED TO IDENTIFY PEAKS

	ABBREVIATION	HYDROCARBON
	C1	METHANE
	C2	ETHANE
	C3	PROPANE
	IC4	ISOBUTANE
	NC4	NORMAL BUTANE
	ETH	ETHANOL
	22C3	2 2 DIMETHYL PROPANE
	IC5	ISOPENTANE
	NC5	NORMAL PENTANE
	MeC2	METHYLENE CHLORIDE
	22DMB	2 2 DIMETHYL BUTANE
	23DMB	2 3 DIMETHYL BUTANE
	2MP	2 METHYLPENTANE
	3MP	3 METHYLPENTANE
	NC6	NORMAL HEXANE
	22DMP	2,2 DIMETHYLPENTANE
	MCP	METHYLCYCLOPENTANE
	24DMP	2,4 DIMETHYLPENTANE
	BZ	BENZENE
	СН	CYCLOHEXANE
	_2MH	2 METHYLHEXANE
	23DMP	2,3 DIMETHYLPENTANE
	3MH	3 METHYLHEXANE
	T13DMCP	T13DIMETHYLCYCLOPENTANE
	C13DMCP	C13DIMETHYLCYCLOPENTANE
	224TMP	2,2,4 TRIMETHYLPENTANE (PRINCIPAL ISO-OCTANE)
	NC7	NORMAL HEPTANE
	234TMP	2,3,4 TRIMETHYLPENTANE (ISO-OCTANE)
	233TMP	2,3,3 TRIMETHYLPENTANE (ISO-OCTANE)
	MCH	METHYLCYCLOHEXANE
	TOL	TOLUENE
	23DMH	2,3,DIMETHYLHEXANE
	2MC7	2METHYLHEPTANE
	3MC7	3MEIHYLHEPIANE
	2251MH	2,2,4 IKIMETHYLHEXANE
	2231MH	2,2,3 IRIMETHYLHEXANE
		NURMAL UCIANE ETUVI DENZENE
		META AND DADA VVI ENES
	2MC8	ΜΕΤΗΥΙ ΟΓΤΑΝΈ
	3MC8	2METHVI OCTANE
	V XVI	ORTHO XVI ENE
1		NORMAL NONANE

ABBREVIATIONS USED TO IDENTIFY PEAKS (cont.)

	ABBREVIATION	HYDROCARBON				
	IPBZ	ISOPROPYLBENZENE				
	NPBZ	NORMAL PROPYL BENZENE 1METHYL3ETHYLBENZENE 1,3,5 TRIMETHYLBENZENE				
	1M3EBZ					
	135TMBZ					
	1M2EBZ	1METHYL2ETHYLBENZENE				
	124TMBZ	1,2,4 TRIMETHYLBENZENE				
	NC10	NORMAL DECANE				
	123TMBZ	1,2,3 TRIMETHYLBENZENE (TERT BUTYL BENZENE				
		CO-ELUTES AT THIS POSITION)				
	C4BZ	TETRAMETHYLBENZENE				
	NAPH	NAPHTHALENE				
	2M. NAPH	2METHYL NAPHTHALENE				
	1M. NAPH	1METHYL NAPHTHALENE				

NC____Normal paraffin with number of carbon atoms in molecule shownIP____Isoprenoid iso-paraffin with number of C atoms in molecule shown

APPENDIX II

OPERATING CONDITIONS

GC OPERATING CONDITIONS

Instrument:	Perkin-Elmer Autosystem
Column:	30m*0.25mm ID*0.25u Methyl Silicon, Restek Rtx-1 (Cat# 10138, Fused Silica Column; Bonded, Non-Polar, Silicone Based Polymer Liquid Phase)
Carrier Gas:	Helium Linear Velocity = 30 cm/sec Column Pressure 16.9 psig.
Injection Port:	Split/Splitless Type Temperature 300 deg C
Detector:	Flame Ionization Type Temperature 300 deg C Range 1, Attn.4

	Method 1	Method 2	Method 3	Method 4
Injection Type	Split	Split	Splitless	Splitless
Acronym	5/s	10/s	5/sl	10/sl
Split Vent	On	On	Off	Off
Split Vent Time,min			0.5	0.5
Split Rate ml/min	100	100	100	100
Initial Temp, deg C	30	30	30	30
Initial Time, min	5	1	5	1
Ramp Rate, deg C/min	5	10	5	10
Final Temp, deg C	300	300	300	300
Final Time, min	0	15	0	15
Run Time, min	40	40	40	40

APPENDIX III

CHROMATOGRAM PEAK AREA TABLES

tware Version: 4.1<2F12> ple Name : J-01010-C NMPC/MW-31/ AREA 2 Time : 4/9/01 01:32 PM ple Number: 10309009 Study : WWG rator : trament : WWG PRODUCTS Channel : A A/D mV Range : 1000 :oSampler : BUILT-IN :k/Vial : 0/3 :erface Serial # : NONE Data Acquisition Time: 3/21/01 09:43 AM .ay Time : 0.00 min. i Time : 39.99 min. upling Rate : 1.5625 pts/sec / Data File : C:\TC4\96WW\96WW088.RAW sult File : C:\WINDOWS\TEMP\~RST0862.RST st Method : G:\GC4\4A-SEQ\WWG2_10 from C:\WINDOWS\TEMP\~RST0862.RST >c Method : C:\TC4\WWGINT.MTH Lib Method : C:\TC4\WWGINT.MTH guence File : G:\GC4\4A-SEQ\96WWG.SEQ nple Volume : 1.0000 ul nple Amount : 1.0000 Area Reject : 2000.000000 Dilution Factor : 1.00

WWG-INT REPORT

ak	Time [min]	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
2	1.728	2563.96	1960.24	0.02	0.02	*VV	1.31	
3	2.007	24511.05	14430.93	0.18	0.18	*VV	1.70	
4	2.241	7485.47	3108.57	0.05	0.05	*VV	2.41	
5	2.384	36170.84	14196.08	0.26	0.26	*VV	2.55	
6	2.627	23846.56	8170.45	0.17	0.17	*VV	2.92	
7	2.748	78243.25	31681.12	0.56	0.56	*VV	2.47	
8	2.834	42494.38	27111.63	0.30	0.30	*VV	1.57	
9	2.912	7813.56	5622.46	0.06	0.06	*VV	1.39	
0	2.965	149140.94	98372.01	1.07	1.07	*VV	1.52	
1	3.107	46599.79	22268.95	0.33	0.33	*VV	2.09	
2	3.253	7594.43	3779.96	0.05	0.05	*VV	2.01	
3	3.360	25661.15	13415.90	0.18	0.18	*VV	1.91	
	3.530	62600.24	22162.50	0.45	0.45	*VV	2.82	
5	3.627	6638.77	3678.10	0.05	0.05	*VV	1.80	
6	3.747	77300.87	48030.49	0.55	0.55	*VV	1.61	
7	3.807	63116.40	38526.64	0.45	0.45	*VV	1.64	
8	3.909	33716.81	18250.73	0.24	0.24	*VV	1.85	

eak	Time	Area	Height	Area	Norm. Area	\mathtt{BL}	Area/Height	
¥	[min]	[µV·s]	[¥Y]	[8]	[%]		[s]	
19	3,994	54558.44	21833.56	0.39	0.39	 *VV	2.50	
	4.107	58281.23	26072.51	0.42	0.42	*vv	2.24	
	4.258	21801.01	14575.06	0.16	0.16	*VV	1.50	
22	4.308	18707.67	4952.76	0.13	0.13	*VV	3.78	
23	4.448	9992.41	4009.11	0.07	0.07	*vv	2.49	
24	4.512	38034.74	15733.92	0.27	0.27	*vv	2.42	
25	4 651	12819 23	5223 95	0.09	0.09	*\/\/	2.45	
26	4 769	6000 18	3463 22	0 04	0.04	*vv	1.73	
20	4 886	15656 49	4055 07	0 11	0.11	*\/\/	3 86	
28	4.000	16797 80	8206 61	0.12	0.11	*VV	2 05	
20	5 000	31405 96	11103 00	0.12	0.12	*\/\/	2.03	
30	5 361	55446 36	21189 19	0.22	0.22	*\7\7	2.62	
ט כ ז כ	5.301	0254 43	5611 14	0.40	0.40	* \7 \7	1.65	
22	5.441	9234.43	2755/ 01	0.07	0.07	• • • • • • •	2 23	
)2)2	5.500	41227 45	10601 59	0.00	0.00	* \/ \/	2.23	
22	5.574	41327.45	16520 17	0.30	0.30	* \7\7	2.11	
)4)E	5.090	42/91.40		0.01	0.51	• • • • • •	2.39	
20	5.823	12555.21	5415.15 7072 71	0.09	0.03	* 1717	2.52	
36	5.930	32257.20	1913.11	0.23	0.23	~ V V + 1717	4.05	
37	6.16/	26029.48	8/8/.25	0.19	0.19	~ V V + 1717	2.90	
38	6.252	12097.81	3693.82	0.09	0.09	^ V V	J.20 2 E4	
39	6.446	346/0.64	9/86.52	0.25	0.25	^ V V	5.54	
10	6.615	33850.12	5011.84	0.24	0.24	~ V V + 1/17	0.75	
ΙŢ	6.762	18627.52	8812.66	0.13	0.13	~ V V	2.11	
	. 6.889	20512.51	5301.95	0.15	0.15	~ V V	3.87	
13	6.937	49610.20	22/4/.84	0.35	0.35	^ V V + 1/17	2.10	
14	7.072	64146.53	19405.86	0.40	0.40		3.31	
15	7.201	85//4.45	20978.75	0.61	0.61	~ 오르	4.09	
16	7.340	12449.06	3212.75	0.09	0.09	^ E V + V V	2.07	
± /	7.389	30081.00	13841.73	0.21	0.21	~ V V + 1717	2.17	
18	7.453	14096.45	6204.69	0.10	0.10	^ V V + 1 /11 /	2.27	
19	7.510	6307.45	2545.96	0.05	0.05	^ V V	2.40	
0	7.573	9924.57	5292.21	0.07	0.07		1.00	
)1	7.622	41134.59	15806.63	0.29	12 22 0 05	* 모님	2.60	
52	7.699	6599.66	2491.21	0.05	12.72 0.05	^ E V + VVV	2.00	
) <u>)</u>	7.759	20989.98	3666.60	0.15	0.15	~ V V + 1/17	2.72	
54	7.873	21/63.83	9740.23	0.10	0.10	~ V V + 1717	2.23	
5	7.931	19980.40	52/8.5/	0.14	0.14	~ V V	2.79	
>6	8.08/	65/40.02	21384.50	0.47	0.47	^ V V + 1/1/	3.07	
57	8.279	91215.42	28064.96	0.65	0.65	~ V V + 1 / 1 /	3.25	
28	8.382	31299.66	10/2/.12	0.22	0.22	~ ~ ~ ~	2.92	
59	8.463	26947.31	8//0.04	0.19	0.19	~ V V + 1 7 7 7	3.07	
»O	8.554	47759.17	1/416.60	0.34	0.34	^ V V	2.74	
)1 	8.601	25341.42	12623.93	0.18	0.18	* V V	2.01	
52	8.662	39319.06	14959.04	0.28	0.28	* V V	2.63	
).	8.713	28815.56	14505.53	0.21	0.21	* V V	1.99	
	8.753	32367.12	14719.86	0.23	0.23	* V V	2.20	
55	8.847	44022.12	15477.21	0.31	0.31	* V V	2.84	
>6	8.894	14754.60	/669.42	0.11	0.11	* V V	1.92	
57	8.949	36108.75	11249.37	0.26	0.26	*VV	3.21	

,

١k	Time [min]	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
۰ ۳	9.059	44825.87	11238.21	0.32	0.32	*vv	3.99	
)	9.151	98133.60	37757.17	0.70	0.70	*VV	2.60	
)	9.262	31676.07	9287.64	0.23	0.23	*VV	3.41	
L	9.366	37156.80	7372.76	0.27	0.27	*VV	5.04	
2	9.476	47974.38	13152.85	0.34	0.34	*VV	3.65	
3	9.524	37520.55	11319.01	0.27	0.27	*VV	3.31	
1	9.676	71467.63	25328.94	0.51	0.51	*VV	2.82	
5	9.734	37118.67	10821.20	0.27	0.27	*VV	3.43	
5	9.827	40076.61	11783.89	0.29	0.29	*VV	3.40	
7	9.988	116587.54	23767.66	0.83	0.83	*VV	4.91	
3	10.078	45736.12	19548.27	0.33	0.33	*VV	2.34	
Э	10.133	19698.20	11720.99	0.14	0.14	*VV	1.68	
)	10.174	47074.90	19403.30	0.34	0.34	*VV	2.43	
1	10.240	43869.85	16166.12	0.31	0.31	*vv	2.71	
2	10.333	36776.05	11032.10	0.26	0.26	*VV	3.33	
3	10.398	50472.00	15890.28	0.36	0.36	*VV	3.18	
1	10.479	42456.74	15339.45	0.30	0.30	*VV	2.77	
5	10.589	58172.15	15968.53	0.42	0.42	*VV	3.64	
6	10.681	71077.46	11500.17	0.51	0.51	*VV	6.18	
7	10.803	76888.17	17466.64	0.55	0.55	*VV	4.40	
3	10.882	50602.47	15182.64	0.36	0.36	*VV	3.33	
9	10.953	84121.17	20548.20	0.60	0.60	*VV	4.09	
	11.124	85535.13	13690.28	0.61	0.61	*VV	6.25	
1	11.202	42813.03	15314.86	0.31	0.31	*VV	2.80	
2	11.271	34354.91	9843.91	0.25	0.25	*VV	3.49	
3	11.334	118800.50	38369.61	0.85	0.85	*VV	3.10	
4	11.454	49559.73	16260.81	0.35	0.35	*VV	3.05	
5	11.498	91090.66	16281.31	0.65	0.65	*VV	5.59	
6	11.680	79766.06	16922.59	0.57	0.57	*VV	4.71	
7	11.741	78152.04	19875.23	0.56	0.56	*VV	3.93	
8	11.890	65871.36	13696.68	0.47	0.47	*VV	4.81	
9	11.949	78764.28	17737.57	0.56	0.56	*VV	4.44	
0	12.042	137629.21	18191.92	0.98	0.98	*VV	7.57	
1	12.216	305659.52	46930.10	2.18	2.18	*VV	6.51	
2	12.526	88607.42	16336.61	0.63	0.63	*VV	5.42	
3	12.607	134187.62	28334.67	0.96	0.96	*VV	4.74	
4	12.757	140594.13	24066.51	1.00	1.00	*VV	5.84	
5	12.853	172474.41	23660.24	1.23	1.23	*vv	7.29	
6	13.068	104486.51	19729.44	0.75	0.75	*VV	5.30	
7	13.223	183807.23	20987.01	1.31	1.31	*VV	8.76	
8	13.417	136651.03	16882.80	0.98	0.98	*VV	8.09	
9	13.696	291238.00	50314.78	2.08	2.08	*VV	5.79	
0	13.815	122910.75	24109.76	0.88	0.88	*VV	5.10	
1	13.952	278257.83	32214.04	1.99	1.99	*VV	8.64	
	14.154	330397.12	47377.78	2.36	2.36	*VV	6.97	
3	14.432	281510.27	46162.97	2.01	2.01	*VV	6.10	
4	14.625	237460.07	31016.19	1.70	1.70	*VV	7.66	
5	14.836	230924.73	57834.41	1.65	1.65	*VV	3.99	
6	14.917	312888.16	33/34.92	2.24	2.24	*VV	9.27	

LITTICCO ON J/J/OT OT.JZ EM

ak	Time [min]	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]	
٦	15.212	130290.05	23916.21	0.93	0.93	*VV	5.45	
B	15.283	192989.28	32739.58	1.38	1.38	*VV	5.89	
9	15.420	89482.87	23681.59	0.64	0.64	*VV	3.78	
0	15.641	312019.35	32881.35	2.23	2.23	*VV	9.49	
1	15.840	264412.16	28208.89	1.89	1.89	*vv	9.37	
2	16.074	384955.28	29199.29	2.75	2.75	*vv	13.18	
3	16.272	172800.95	21766.84	1.23	1.23	*vv	7.94	
4	16.451	627119.36	27902.22	4.48	4.48	*VV	22.48	
5	16.963	153640.87	17481.61	1.10	1.10	*VV	8.79	
6	17.148	269598.62	48426.97	1.93	1.93	*VV	5.57	
7	17.377	183305.77	20242.55	1.31	1.31	*VV	9.06	
8	17.568	182538.75	20874.19	1.30	1.30	*VV	8.74	
9	17.687	80328.98	19507.43	0.57	0.57	*VV	4.12	
0	17.821	492626.21	74068.35	3.52	3.52	*VV	6.65	
1	18.110	83064.70	18610.93	0.59	0.59	*VV	4.46	
2	18.230	111749.57	17505.59	0.80	0.80	*VV	6.38	
3	18.328	221331.24	20107.52	1.58	1.58	*VV	11.01	
4	18.605	182481.21	17863.82	1.30	1.30	*VV	10.22	
5	18.808	96823.95	15413.57	0.69	0.69	*VV	6.28	
6	18.965	393214.45	40930.08	2.81	2.81	*VV	9.61	
7	19.293	83168.89	14394.56	0.59	0.59	*VV	5.78	
8	19.444	298977.17	14652.07	2.14	2.14	*VV	20.41	
3	19.837	105836.05	17333.90	0.76	0.76	*VV	6.11	
5	19.936	86386.42	15037.23	0.62	0.62	*VV	5.74	
1	20.134	188372.67	12854.29	1.35	1.35	*VV	14.65	
2	20.344	88259.66	10505.91	0.63	0.63	*VV	8.40	
3	20.521	89413.17	9683.68	0.64	0.64	*VV	9.23	
4	20.734	223672.78	11010.57	1.60	1.60	*VV	20.31	
5	21.139	77664.10	9676.37	0.55	0.55	*VV	8.03	
б	21.316	144121.48	10628.33	1.03	1.03	*VV	13.56	
7	21.662	253562.54	7491.52	1.81	1.81	*VV	33.85	
3	22.499	56400.62	5170.74	0.40	0.40	*VB	10.91	

13993707.51 2.72e+06 100.00 100.00

IT Corporation A Member of The IT Group

APPENDIX E

FIGURES

		and a second and a second a se
FIGURE 1-2 WATER STREET (AREA 2) TROY, NEW YORK	(EXISTING) 5 GAS REGULATOR BUILDING (NIAGARA MOHAWK) 7 KING FUELS OFFICE BUILDING AND GARAGE 8 COKE SCREENING STATION 9 COKE SILOS 10 LOCATION OF FORMER CREOSOTE OIL TANK 11 FORMER TANK FARM 12 "CORPORATE EXPRESS" BUILDING SCALE 5 CORPORATE EXPRESS" BUILDING 15 JOO FEET	LEGEND ● PIEZOMETER → MONITORING WELL ● SOIL BORING # TEST PIT APPROXIMATE LOCATION OF FORMER WYNANTS KILL CHANNEL RED DENOTES ACTIVIES COMPLETED DURING SUPPLEMENTAL PHASE II INVESTIGATION BUILDINGS AND STRUCTURE KEY 1 WATER GAS PLANT 3 2-MILLION fts GASHOLDER