ΑΞϹΟΜ

To:

NYSDEC, Remedial Bureau D Attn: Rakshak Iyengar 625 Broadway, 12th Floor Albany, NY 12233 (Transmitted via Email) AECOM 40 British American Boulevard Latham, NY 12110 aecom.com

Project name: Dynamic Systems, Inc.

Project ref: Site No. 442040

From: John Santacroce

Date: May 27, 2022

Memo

Subject: DSI Poestenkill, April 2022 PFAS Groundwater Sampling Results

Introduction

Dynamic Systems Inc.(DSI) has engaged AECOM, globally recognized experts in PFAS investigation and remediation, to provide services related to the New York State Department of Environmental Conservation (DEC) request for additional PFAS Sampling at the Poestenkill, NY facility (the Site). AECOM has reviewed the various workplans, reports, and correspondence related to environmental actions at the Site. The document review included the most recent letter from the DEC transmitted on 21 March 2017. DSI sent a letter to the NYSDEC Dated 30 March 2022 that recommended sampling of select monitoring wells at the Site including DSI-1, DSI-3, DSI-4, DSI-6, and MW-2N. The NYSDEC replied with a letter 15 April 2022 requesting that deep monitoring well MW-1 be included in the sampling event. DSI agreed to collect a sample from MW-1.

Groundwater Sampling

Approximately two weeks prior to the groundwater sampling event, tubing and bailers were removed from the monitoring wells. After the materials were removed the wells were purged to remove any stagnant water. The wells were purged until three well volumes were removed or the until the well was dry. The purge water was placed in a drum onsite for future disposal.

The ground water sampling event was conducted on 27 April 2022. Groundwater samples were collected from six monitoring wells including DSI-1, DSI-3, DSI-4, DSI-6, MW-2N, and MW-1. Prior to the start of groundwater sampling all wells were gauged for depth to water. The groundwater samples were collected by AECOM field staff trained in PFAS sample collection and in accordance with the DEC's PFAS sampling Guidance (rev. June 2021). The groundwater samples were collected with PFAS free sampling equipment with low flow methods utilizing peristaltic pumps and dedicated tubing. Monitoring well DSI-4 went dry and a sample was collected after the well fully recharged. The monitoring well field forms are included as **Attachment A.** Quality Control samples were collected in

accordance with NYSDEC guidance including one equipment blank, one ambient blank, one blind field duplicate, and one MS/MSD. The blank samples were collected using laboratory supplied PFAS free distilled water.

The groundwater samples were sent to the contracted laboratory (Eurofins) under chain of custody for analysis by EPA Method 537 (modified) for 21 PFAS compounds in accordance with the DEC guidance and the NYSDEC Letter dated 17 March 2022.

Groundwater Elevation

As stated above depth to groundwater measurements were taken at all site monitoring wells prior to sampling. Depth to water measurements and the corresponding groundwater elevations are included in **Attachment B** along with a groundwater flow map. The groundwater flow was found to be consistent with what has been reported for the Site historically. The groundwater at Site is moving south to southeast towards Newfoundland Creek.

As reported in the *Fall 2021 Semi-Annual Report* prepared by JMT, the southeastern-most well (DSI-4) is approximately 1,000 feet from the southern property boundary and about 2,000 feet from offsite homes (to the south). Based on an evaluation of surrounding topography, this southward component of flow does not appear to extend beyond the topographic lowland associated with Newfoundland Creek. In the vicinity of Snyders Corners Road, the topography and presumably groundwater flow, slopes northward towards the Newfoundland Creek lowland suggesting that groundwater from the DSI Site does not reach the homes in this area.

Groundwater PFAS Results

As stated previously groundwater samples were collected from six monitoring wells at the site including DSI-1, DSI-3, DSI-4, DSI-6, MW-2N, and MW-1 on 27 April 2022. The PFAS results from these samples are consistent with the PFAS results for groundwater samples collected in November 2021. The validated results are tabulated in **Attachment C**.

Perfluorooctanoic acid (PFOA) was detected at 20 ng/L in the groundwater sample from monitoring well DSI-4. This result was the only exceedance of the New York Maximum Contaminant Limit of 10 ng/L for PFOA. Previously PFOA had been detected in this well at 23.1 ng/L in the sample collected in November 2021. Low levels of PFOA were detected below the MCL in all other shallow monitoring wells at the Site and was not detected in the groundwater sample from the deep monitoring well (MW-1).

Perfluorooctanesulfonic acid (PFOS) was detected in all shallow monitoring wells at low concentrations below the NY MCL of 10 ng/L. PFOS was not detected in the groundwater sample from the deep monitoring well (MW-1).

Other unregulated PFAS compounds were detected in the groundwater samples which is consistent with the previous PFAS groundwater results for the Site. The only detection in the deep monitoring well (MW-1) was for the unregulated compound Perfluorobutanesulfonic acid (PFBS) at an estimated concentration of 1 ng/L.

No PFAS compounds were detected in the ambient blank or the equipment blank taken during this sampling event.

All of the data has been validated by an AECOM chemist and a Data Usability Summary Report (DUSR) is included as **Attachment D**. All of the data was found to be usable, and the validated qualifiers have been included in the data table.

<u>Summary</u>

The PFAS groundwater results from November 2021 and April 2022 indicate that there are low levels of PFAS in some areas of shallow groundwater at the Site. There are no PFAS impacts to deep groundwater at the Site as indicated from the results for MW-1. The highest concentrations of PFOA are in the monitoring well furthest from the DSI facility and away from the TCE source area suggesting that this detection is not related to the DSI operation or the historic spill of TCE. As stated previously there is no known historic or current use of PFAS containing material in the operations at the Site.

Attachment A

Field Sampling Forms

Monitoring Well Purging/Sampling Form									
Project Name and Number:			DSI Po	estenkill			60682557		
Monitoring Well Number:		MW-		Date:		4/27/	2022		
Samplers:				Chris Fr	ench/Fom Q	uackenbush			
Sample Number:		MW-1 0	42722			<u>n</u>	s/mso		
Purging / Sampling Method:					ristaltic/Low		<i>'</i>		
Tenstative contract1. L = Total Well Depth:2. D = Riser Diameter (1.D.):3. W = Static Depth to Water (TOC):4. C = Column of Water in Casing:5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ 6. D2 = Pump Setting Depth (ft):7. C2 = Column of water in Pump/Tubing (ft):8. Tubing Volume = C2(0.005737088)Conversion factors to determine V given C									
D (inches) 1-inch 1.5-inch 2-inch 3-inch 4 V (gal / ft) 0.041 0.092 0.163 0.37 0							6-inch 1.5		
Water Quality Readings Collect Parameter	Units		Tiol. • Qua		ech Turbidity Readings	Meter	-		
Time	24 hr	0990	0945	0750			1.9.0		
Water Level (0.33)	feet	6.74		8.49	055	1000	1005	1010	
Volume Purged	gal	-	7.70		9.11	9.79	10,73	11.29	
Flow Rate	mL/min	0	0.2	0.37	0.55	0.7	0.95	1.]	
Turbidity (+/- 10%)	NTU	120	190	140	140	140	190	140	
Dissolved Oxygen (+/- 10%)	%	and a second sec		38.6	66.1	65.1	56.1	99.9	
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)		41.5	28.2		28.2	36.7	37.2	37.3	
Eh / ORP (+/- 10)	mg/L MeV	4.68	4.24	4.26	4.25	4.10	4.11	4.13	
		148.6	127.8	119.3		112.8	110.7	109.2	
Specific Conductivity	mS/cm ^c	50434		0.396	0.395	0.394	0.394	0.393	
Conductivity (+/- 3%)	mS/cm	0.318	0,290	0.287	0.288	0.283	0.287	0.287	
pH (+/- 0.1)	pH unit	6.76	7.10	7.24	7.28	7.33	7.37	7.39	
Temp (+/- 0.5)	С	10.7	10.7	10.6	10.8	10.9	10,9	10.9	
Color Odor	Visual Olfactory	yen	clear	clear	clair	Clean none	clean (cloudy	
Comments Purge Start Time: 0 33& Sample Time: 1 235 Page 1 of 5									
* Three consecutive readings wit	hin range ind	licates stabiliz	zation of tha	t parameter.			Page of	S	

A

	Mo	nitoring W	ell Purgir	ng/Sampli	ng Form			
Project Name and Number:			DSI Poe	stenkill			60682557	
Monitoring Well Number:		MV-	1	Date:		4/27/2	2022	
Samplers:				Chris Fre	ench Tom Qu	ackenbush		
Sample Number:		MW-1 0	42722	QA/QC	Collected?	М	S/MSD	
Purging / Sampling Method:				Per	istaltic/Low	Flow		
1. L = Total Well Depth:				54.5	feet	D (inches)	D (feet)	
2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08	
3. W = Static Depth to Water (T 4. C = Column of Water in Casi					feet	1.5-inch 2-inch	0.123	
	-	$(0.6D)^2(7.4)$	22			and the second second second second	0.25	
5. $V = Volume of Water in Well6. D2 = Pump Setting Depth (ft)$		y(0.5D) (7.48	<i>)</i>	7.8	gal feet	3-inch 4-inch	0.23	
7. $C2 = Column of water in Pun$		e			feet	6-inch	0.50	
8. Tubing Volume = $C2(0.0057)$		•			gal	•		
	,		Conversion	factors to det	termine V giv	ven C		
					-			
	D (inches) V (gal / ft)	1-inch 0.041	1.5-inch 0.092	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collect Parameter	ed Using Units	<u> </u>	Prof. + Quat	ro and Geote	ch Turbidity Readings	Meter	-	
Time	24 hr	1015	1020	1025	1030	1035	1043	1045
Water Level (0.33)	feet	11.98	12.84	17.59	13.96	14.42	14.90	15.36
Volume Purged	gal	1.25	1.5	1.65	1.75	1.9	205	2.2
Flow Rate	mL/min	140	150	100	100	100	100	105
Turbidity (+/- 10%)	NTU	12.0	109	110	86.8	77.2	87.5	77.5
Dissolved Oxygen (+/- 10%)	%	37.5	37.9	38.7	37.6	27.7 9.16	37.6	37.8
Dissolved Oxygen (+/- 10%)	mg/L	4.17	4.15	4.21	4.18	104.3	4.15	9.15
Eh / ORP (+/- 10)	MeV	107.3	106.0			0.392		
Specific Conductivity	mS/cm ^c	0.393	0.391	0.391	0.392	0.287	0.397	0.391
Conductivity (+/- 3%)	mS/cm	7.41	0.287 7.43	7.44	7.46	7.47	7.47	7.48
pH (+/- 0.1)	pH unit C	11.0	1.15	10.9	10,9	11,0	11.0	10.9
Temp (+/- 0.5)	Visual	Cloudy	clandy	clundy	clardy	cloudy	cloudy	clardy
Color Odor	Olfactory		none	none	none	none	none	none
Comments Purge Start Time: 0938 Sample Time: 1235	12							
* Three consecutive readings w	thin range in	dicates stabili	ization of tha	t parameter.			Page 7 of	2

Project Name and Number:			DSI Poe	estenkill			60682557	
Monitoring Well Number:		nu-1		Date:		4/27/	2022	
Samplers:				Chris French Tom Quackenbush				
Sample Number:		MJ-1 04	2722		Collected?		s/msd	
Purging / Sampling Method:					ristaltic/Low			
r urging / Sampring Method.				re	Istanic/Low	FIUW		
1. L = Total Well Depth:				54.5	feet	D (inches)	D (feet)	1
2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08	1
3. W = Static Depth to Water (7	ГОС):			6.59	feet	1.5-inch	0.125	1
4. C = Column of Water in Cas	ing:			47.71	feet	2-inch	0.17	
5. V = Volume of Water in Wel	II = C(3.14159)	$(0.5D)^{2}(7.48)$	3)	7.8	gal	3-inch	0.25	
6. D2 = Pump Setting Depth (ft			,	52	feet	4-inch	0.33	1
7. C2 = Column of water in Pur	np/Tubing (ft)):			feet	6-inch	0.50	
8. Tubing Volume = $C2(0.0057)$	37088)				gal			
					-			
			Conversion	factors to de	termine V gi	ven C		
	D (inches)	1-inch	1.5-inch	2-inch	3-inch	4-inch	6-inch	1
Water Quality Readings Collec	V (gal / ft)	0.041	0.092	0.163 ro and Geote	0.37		1.5]
Parameter	V (gal / ft) ted Using Units	0.041 YSI	0.092 Prof. + Quat	ro and Geote	ch Turbidity Readings	Meter	-	
Parameter Time	V (gal / ft) ted Using Units 24 hr	0.041 YSI	0.092 Prof. + Quat	ro and Geote	Readings	Meter	1115	1120
Parameter Time Water Level (0.33)	V (gal / ft) ted Using Units 24 hr feet	0.041 YSI 1050 15.70	0.092 Prof. + Quat 10 5 5 15.96	ro and Geoto	Readings	Meter (110 (6,83	1115	17.16
Parameter Time Water Level (0.33) Volume Purged	V (gal / ft) ted Using Units 24 hr	0.041 YSI 1053 15.70 2.35	0.092 Prof. + Quat 10 5 5 15.9 6 2.5	ro and Geoto /100 /6.16 2.6	Readings IIOS 16.52 2.75	Meter (110 /(, , , , , , , , , , , , , , , , , , ,	1115	17.16
Parameter Time Water Level (0.33) Volume Purged Flow Rate	V (gal / ft) ted Using Units 24 hr feet gal	0.041 YSI 1050 15.70	0.092 Prof. + Quat 10 5 5 15.96 2.5 24	ro and Geoto /(0つ /(.16 2.6 の //い	Readings IIOS 16.52 2.75 IIO	Meter (110 /(, , , , , , , , , , , , , , , , , , ,	1115 17.01 2.95 30	17.16
Parameter Time Water Level (0.33) Volume Purged	V (gal / ft) ted Using Units 24 hr feet gal mL / min	0.041 YSI 1053 15.70 2.35 /10	0.092 Prof. + Quat 10 5 5 15.9 6 2.5	ro and Geote //0.5 /6.16 2.6 (1)0 57.7	Readings 1105 16.52 2.75 110 41.5	Meter /(1)0 /(, , , , , , , , , , , , , , , , , , ,	1115 17.01 2.95	17.16 7.05 70-5 1 75.
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU	0.041 YSI 1050 15.70 2.35 110 (4.1 37.4 4.10	0.092 Prof. + Quat (055 /5.96 2.5 30 72.3 37.6 4.12	ro and Geoto /(0つ /(.16 2.6 の //い	Readings IIOS 16.52 2.75 IIO	Meter (110 /(, , , , , , , , , , , , , , , , , , ,	1115 17.01 2.95 90 43.7	17.16 7.05 70-5 9 -5 9 -5 7.6
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU %	0.041 YSI 1053 15.70 2.35 110 (4.1 37.4	0.092 Prof. + Quat /0 5 5 /5.96 2. 5 72.3 37.6	ro and Geote //05 /6.16 2.6 //10 52.9 37.5	Readings 1105 16.52 2.75 110 41.5 42.6	Meter (110 /(, , , , , , , , , , , , , , , , , , ,	1115 17.01 2.95 90 93.7 92.9	17.16 7.05 7 25 1 75
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L	0.041 YSI 1053 15.70 2.35 110 (4.1 37.4 4.10 103.2 0,390	0.092 Prof. + Quat (055 /5.96 2.5 30 72.3 37.6 4.12	ro and Geote //00 /6.16 2.6 (110 52.3 37.5 9.12	Readings 1105 16.52 2.75 110 41.5 42.6 9.71	Meter (110 /(, , , , , , , , , , , , , , , , , , ,	1115 17.01 2.95 90 43.7 92.9 43.7	17.16 7.05 705 9 9 9 9 7.64 7.64 8 9 101.1
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV	0.041 YSI 1053 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286	0.092 Prof. + Quat 15.96 2.5 30 72.3 37.6 4.12 102.3 0.293 0.293	ro and Geote /(0.5 /(.16 2.6 //10 S2.9 37.5 9.12 /02.9 0.392 0.287	Readings 1105 16.52 2.75 110 41.5 42.6 9.71 101.4	Meter /(1)0 /(6. 83 2.85 100 47.3 42.7 4.71 /01.5	1115 17.01 2.95 90 93.7 93.9 93.9 9.82 101.5	17.16 7.05 705 9 9 9 9 7.6 9 9 9 9 101.1
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1)	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit	0.041 YSI 1053 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49	0.092 Prof. + Quat /0 55 /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.293 0.288 7.50	ro and Geoto /(0.5 /(.16 2.6 //10 52.7 37.5 9.12 /02.9 0.392 0.287 7.48	Readings 1105 1105 16.52 2.75 110 91.5 92.6 9.71 101.9 0.392 0.287 7.53	Meter /(1)0 /(6.), 3 2.), 8 100 47.3 47.3 47.7 4.71 /01.5 0.391	1115 17.01 2.95 90 93.7 93.9 9.82 101.8 0.391	17.16 2.05 2.05 2.65 2.55
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C	0.041 YSI 1053 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0	0.092 Prof. + Quat /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.293 0.288 7.50 11.0	ro and Geote ///0.5 //.16 2.6 // //2 37.5 9.12 /02.9 0.392 0.287 7.48 //0.9	Readings 1105 16.52 2.75 110 91.5 92.6 9.71 101.9 0.392 0.287 7.53 11.0	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0	1115 17.01 2.95 90 93.7 93.9 93.9 93.9 93.9 93.7 93.9 93.7 93.7	17.16 7.05 7.05 9.05 9.05 9.05 9.05 101.1 0,396 0,291 7.55 11,2
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C Visual	0.041 YSI 1050 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0 cludy	0.092 Prof. + Quat /055 /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.393 0.288 7.59 11.0 Clark	ro and Geote /(0.5 /(.16 2.6 //10 52.7 37.5 9.12 /02.9 0.392 0.287 7.48 (0.9 clandy	Readings 1105 16.52 2.75 110 41.5 42.6 9.71 101.4 0.392 0.287 7.53 11.0 Clear	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0 (Jeary	1115 17.01 2.95 90 93.7 93.9 93.9 9.82 101.8 0.391 0.287 7.53 11.1 clamr	17.16 7.05 7.65 9.55 101.1 0.396 0.291 7.55 11.2 Clauby
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C	0.041 YSI 1053 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0	0.092 Prof. + Quat /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.293 0.288 7.50 11.0	ro and Geote ///0.5 //.16 2.6 // //2 37.5 9.12 /02.9 0.392 0.287 7.48 //0.9	Readings 1105 16.52 2.75 110 91.5 92.6 9.71 101.9 0.392 0.287 7.53 11.0	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0	1115 17.01 2.95 90 93.7 93.9 93.9 93.9 93.9 93.7 93.9 93.7 93.7	17.16 7.05 7.65 9.55 101.1 0.396 0.291 7.55 11.2 Clauby
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C Visual	0.041 YSI 1050 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0 cludy	0.092 Prof. + Quat /055 /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.393 0.288 7.59 11.0 Clark	ro and Geote /(0.5 /(.16 2.6 //10 52.7 37.5 9.12 /02.9 0.392 0.287 7.48 (0.9 clandy	Readings 1105 16.52 2.75 110 41.5 42.6 9.71 101.4 0.392 0.287 7.53 11.0 Clear	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0 (Jeary	1115 17.01 2.95 90 93.7 93.9 93.9 9.82 101.8 0.391 0.287 7.53 11.1 clamr	17.16 2.05 2.05 2.05 2.05 2.05 101.1 0.396 0.291 7.55 11.2 Clandy
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor Comments	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C Visual	0.041 YSI 1050 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0 cludy	0.092 Prof. + Quat /055 /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.393 0.288 7.59 11.0 Clark	ro and Geote /(0.5 /(.16 2.6 //10 52.7 37.5 9.12 /02.9 0.392 0.287 7.48 (0.9 clandy	Readings 1105 16.52 2.75 110 41.5 42.6 9.71 101.4 0.392 0.287 7.53 11.0 Clear	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0 (Jeary	1115 17.01 2.95 90 93.7 93.9 93.9 9.82 101.8 0.391 0.287 7.53 11.1 clamr	17.16 7.05 7.05 7.64 101.1 0.396 0.291 7.55 11.2 Claudy
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor Comments Purge Start Time: •938	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C Visual	0.041 YSI 1050 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0 cludy	0.092 Prof. + Quat /055 /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.393 0.288 7.59 11.0 Clark	ro and Geote /(0.5 /(.16 2.6 //10 52.7 37.5 9.12 /02.9 0.392 0.287 7.48 (0.9 clandy	Readings 1105 16.52 2.75 110 41.5 42.6 9.71 101.4 0.392 0.287 7.53 11.0 Clear	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0 (Jeary	1115 17.01 2.95 90 93.7 93.9 93.9 9.82 101.8 0.391 0.287 7.53 11.1 clamr	17.16 7.05 7.05 7.64 101.1 0.396 0.291 7.55 11.2 Claudy
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor Comments	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C Visual	0.041 YSI 1050 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0 cludy	0.092 Prof. + Quat /055 /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.393 0.288 7.59 11.0 Clark	ro and Geote //05 /6.16 2.6 //10 52.7 37.5 9.12 /02.9 0.392 0.287 7.48 (0.9 clandy	Readings 1105 16.52 2.75 110 41.5 42.6 9.71 101.4 0.392 0.287 7.53 11.0 Clear	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0 (Jeary	1115 17.01 2.95 90 93.7 93.9 93.9 9.82 101.8 0.391 0.287 7.53 11.1 clamr	17.16 7.05 7.05 9.05 9.05 9.05 101.1 0.396 0.291 7.55 11.2 (Janly
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor Comments Purge Start Time: •938	V (gal / ft) tted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C Visual	0.041 YSI 1050 15.70 2.35 110 (4.1 37.4 4.10 103.2 0.390 0.286 7.49 11.0 cludy	0.092 Prof. + Quat /055 /5.96 2.5 30 72.3 37.6 4.12 /02.3 0.393 0.288 7.59 11.0 Clark	ro and Geote //05 /6.16 2.6 //10 52.7 37.5 9.12 /02.9 0.392 0.287 7.48 (0.9 clandy	Readings 1105 16.52 2.75 110 41.5 42.6 9.71 101.4 0.392 0.287 7.53 11.0 Clear	Meter //10 //.53 2.85 100 47.3 47.7 47.7 47.7 101.5 0.391 0.287 7.52 /1.0 (Jeary	1115 17.01 2.95 90 93.7 93.9 93.9 9.82 101.8 0.391 0.287 7.53 11.1 clamr	17.16 7.05 7.05 9.05 9.05 9.05 9.05 101.1 0,396 0,291 7.55 11,2

	Mo	onitoring V	Vell Purgi	ng/Sampli	ng Form				
Project Name and Number:			DSI Po	estenkill			60682557		
Monitoring Well Number:		NU.	-1	Date:		4/27/	2022		
Samplers:				Chris Fro	ench/Fom Qu	ackenbush			
Sample Number:		MW-1 0	42722	QA/QC	Collected?		ns/nsi	7	
Purging / Sampling Method:				Per	ristaltic/Low	Flow			
In the second s									
Water Quality Readings Collec	D (inches) V (gal / ft) ted Using	1-inch 0.041 YSI	1.5-inch 0.092	2-inch 0.163	termine V giv 3-inch 0.37 ch Turbidity	4-inch 0.65	6-inch 1.5]	
Parameter	Units				Readings				
Time	24 hr	1125	1130	1135	1140	1195	1150	1155	
Water Level (0.33)	feet	17.34	17.88	18.49	19.16	19.71	20.05	2039	
Volume Purged	gal	3.15	2.3	3.5	3.7	3.9	9.0	4.1	
Flow Rate	mL/min	90	140	150	150	150	90	90	
Turbidity (+/- 10%)	NTU	36.3	75.9	103	68.9	61.5	65.1	That	
Dissolved Oxygen (+/- 10%)	%	22.9	24.7	39.7	25.3	15.2	34.4	34.1	
Dissolved Oxygen (+/- 10%)	mg/L	3.59	3.76	3.78	3.83	3.80	2.71	3.74	
Eh / ORP (+/- 10)	MeV	100.9	99.9	100.0	99.7	99.0	100.3	100.3	
Specific Conductivity	mS/cm ^c	0.394	0.392	0.392	0.293	0.391	0.391	0.391	
Conductivity (+/- 3%)	mS/cm	0.292	0.293	0.294	0.293	0.294	0.293	0.291	
pH (+/- 0.1)	pH unit	7.55	7.56	7.56	7.55	7.56	2.55	7.53	
Temp (+/- 0.5)	C	11.4	1.7	11.8	11.7	11. 9	11.8	11.6	
Color	Visual	clan					cludy	Clardy	
Odor	Olfactory	more	cloudy	cland	clandy	have	none	none	
Comments Purge Start Time: 093 & Sample Time: 1235									
* Three consecutive readings w	ithin range in	licates stabili	ration of the	paramate-			Page 🌱 of	5	

* Three consecutive readings within range indicates stabilization of that parameter.

.

	Mo	nitoring W	ell Purgir	ng/Sampli	ng Form				
Project Name and Number:	-		DSI Poe	stenkill	-		60682557		
Monitoring Well Number:	-	MW-1		Date:		4/27/	2022		
Samplers:				Chris Fro	ench/Tom Qu	uackenbush			
Sample Number:	_	MU-1 04	2722	QA/QC	Collected?	MS	Inso		
Purging / Sampling Method:				Per	ristaltic/Low	Flow			
 L = Total Well Depth: D = Riser Diameter (I.D.): W = Static Depth to Water (T C = Column of Water in Casi V = Volume of Water in Wel D2 = Pump Setting Depth (ft) C2 = Column of water in Pun Tubing Volume = C2(0.0057) 	ng: I = C(3.14159): np/Tubing (ft)	:		59.5 0.17 6.59 97.91 7.8 52	feet feet feet gal feet feet gal termine V gi	D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.125 0.17 0.25 0.33 0.50		
- 					termine v gr			-	
	D (inches) V (gal / ft)	1-inch 0.041	1.5-inch 0.092	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch	-	
Parameter Time	Units 24 hr	Ros	1235	1210	Readings		125.5	1230	1235
Water Level (0.33)	feet	20.55	20.94	21.55		1220 22.10	1225	22.99	22.99
Volume Purged	gal	4.25	4.35	4.6	4.7	4.8	5.05	5.2	5.3
Flow Rate	mL/min	140	140	155	90	120	15	85	85
Turbidity (+/- 10%)	NTU	45.6	48.2	48.0	50.4	43.6	44.)	4-64.1	45.8
Dissolved Oxygen (+/- 10%)	%	24.4	1.25	37.2	37.7	25.8	33.2	33.0	35.3
Dissolved Oxygen (+/- 10%)	mg/L	2.70	7.81	3.99	29.05	2.86	3.72	3,70	3.80
Eh / ORP (+/- 10)	MeV	100.7	101.3	100.6	101.4	100.7	101.0	102.0	103.1
Specific Conductivity	mS/cm ^c	0.391	0.392	0.391	0.391	0.391	0.391	0.392	
Conductivity (+/- 3%)	mS/cm	0.294	0.293		0.293	0.37	0.391		0.392
pH (+/- 0.1)	pH unit	7.54	7.53	7.55	7.53	7.53	7.54	0.293	0.292
Temp $(+/-0.5)$	C	12.0	11,7	11.9	11.8	11.9	11.9	11.8	7.50
Color	Visual	class	cler	clar	clem	clear	clan	Clear	Clen
Odor	Olfactory	nene	none	none	nere	none	nere	nere	none
Comments Purge Start Time: 093& Sample Time: 1235								5	

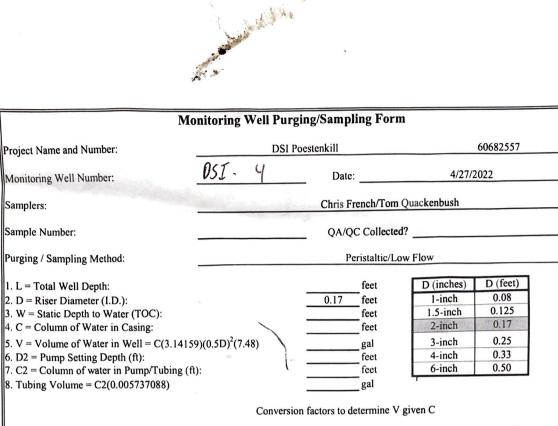
	Mo	nitoring V	Vell Purgi	ing/Sampl	ing Form				
Project Name and Number:			DSI Po	estenkill			60682557		
Monitoring Well Number:		MW-21	N	Date:		4/27	//2022		
Samplers:				Chris Fr	ench/Tom Quackenbush				
Sample Number:				QA/Q	C Collected?	yes,	DUP		
Purging / Sampling Method:				Ре	ristaltic/Low	Flow			
 L = Total Well Depth: D = Riser Diameter (1.D.): W = Static Depth to Water (T C = Column of Water in Casis V = Volume of Water in Well D2 = Pump Setting Depth (ft) C2 = Column of water in Pum Tubing Volume = C2(0.0057) 	ng: P= C(3.14159): np/Tubing (ft)	~ / /		0.17	feet feet feet gal feet feet gal	D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.125 0.17 0.25 0.33 0.50		
	D (inches)	1-inch	1.5-inch	2-inch	3-inch	4-inch	6-inch	- I	
	$\frac{D (\text{inches})}{V (\text{gal} / \text{ft})}$	0.041	0.092	0.163	0.37	0.65	1.5	-1 1	
Water Quality Readings Collect Parameter	Units			tro and Geot	Readings	6		1.470	
Time	24 hr	1050	1655	1/00	1/05	(110	1115	1120 1	
Water Level (0.33)	feet	3.99	4.37 0.2	0.4	4.51	4.51	4.49		
Volume Purged	gal	3.5	100	100	100	100	100	1.2 1.	
Flow Rate	mL/min NTU	408	107	58.4	34.9	13.3	9.62	7.00 1	
Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	%	0,7	-3,7	-4.5	-4.9	0.5	0.0	0.1 -	
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	mg/L	0,05		·· .		0.63	50,0	0.00 6	
Eh / ORP (+/- 10)	MeV	-56.4	- 85.3	-95.7	- 99.4	-81.2	-78.4	-752 -	
	mS/cm ^c	1241	241	1240	1247	1296	1302	1308 1	
Specific Conductivity Conductivity (+/- 3%)	mS/cm	5.62	0.62	0.62	0,63	0.65	0.65	0.56 6	
pH (+/- 0.1)	pH unit	6.91	6.94	5.91	6.91	6.72	6.13	6,77 6	
Temp $(+/- 0.5)$	C	18.4	18.5	18,6	18,5	186	18.5	187 1	
Color	Visual	Clardy	(loudy	:	~	Chear	Ξ	2	
Odor	Olfactory	Odes	Oder	-	:	2	23		
<u>Comments</u> Purge Start Time: /ბරහ Sample Time: 1125		Ĺ	2/6/ a	ber Presen lected	.+		•		
* Three consecutive readings wi	thin range ind	licates stabili	zation of tha	it parameter.			Page o	f	

•

u.

	Mo	nitoring W	ell Purgir	ng/Sampli	ng Form			
Project Name and Number:			DSI Poe	stenkill			60682557	
Monitoring Well Number:		PSI	- 1	Date:		4/27/	2022	
Samplers:				Chris Fre	ench/Tom Qu	ackenbush		
Sample Number:				QA/QC	Collected?		4	
Purging / Sampling Method:	,			Per	ristaltic/Low	Flow		
1. L = Total Well Depth:					6			1
2. $D = Riser Diameter (I.D.)$:			,		feet	D (inches)	D (feet)	
3. W = Static Depth to Water (T	OC)			0.17	feet	l-inch	0.08	
4. $C = Column of Water in Casi$	no [.]				feet	1.5-inch	0.125	
		×0 m 2 -			feet	2-inch	0.17	
 V = Volume of Water in Well D2 = Pump Setting Depth (ft) 	i = C(3.14159))(0.5D) ² (7.48	3)		gal	3-inch	0.25	
7. $C2 = Column of water in Pun$): 				feet	4-inch	0.33	
8. Tubing Volume = $C2(0.0057)$	np/ I ubing (ft)	:			feet	6-inch	0.50	
8. Tubing volume = $C2(0.0057)$	37088)		-		gal			-
	v		Conversion	factors to de	termine V giv	ven C		
	D (inches)	1-inch	1.5-inch	2 inch	2 in alt	4:1		1
	V (gal / ft)	0.041	0.092	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collect Parameter	ted Using Units	YSI	Prof. + Quat	ro and Geote	ch Turbidity	Meter	-	
Time	24 hr	1215	1220	1225	Readings		1211-	
Water Level (0.33)	feet	5.01	6.70	7.46	1230	1235	1247	1245
Volume Purged	gal	0.0	0.25	0,5	0.75	5.04	8.19	8.31
Flow Rate	mL/min	100	200	200	200	200	1.4	1.7
Turbidity (+/- 10%)	NTU	7.35	3.03	3.63	0.98	0,32	0.02	200
Dissolved Oxygen (+/- 10%)	%	1.3	-2.3	-3.2	-3,5	-3.7	-4.2	0.08
Dissolved Oxygen (+/- 10%)	mg/L	0.12					-1	
Eh / ORP (+/- 10)	MeV	2.2.7	36.4	37.9	+39.7	95.6	52.1	56.2
Specific Conductivity	mS/cm ^c	109.8	103.0	101,0	99.1	15.3	92.2	93.1
Conductivity (+/- 3%)	mS/cm	0.078	0.073	0.072		0.067		
pH (+/- 0.1)	pH unit	6.45	6.41		6.45	6.42	6.39	0.064
Temp (+/- 0.5)	C	10,1	10.0	6.43	9.9	9.7	9.8	5.38
Color	Visual	clear	2	13	-	-	7.0	9.7
Odor	Olfactory	a second s	2	2	-,	2	z	:
Comments Purge Start Time: / U S Sample Time: (305							- 13	•
۹								
* Three consecutive readings w	ithin range in	dicates stabil	ization of tha	t parameter.			Page of	

J.


3.

	Mo	nitoring V	Vell Purgir	ng/Sampli	ng Form		
Project Name and Number:			DSI Poe	stenkill			60682557
Monitoring Well Number:		DJI -	/	Date:		4/27/2	2022
Samplers:				Chris Fre	ench/Tom Qu	ackenbush	
Sample Number:				QA/QC	Collected?		
Purging / Sampling Method:				Per	ristaltic/Low	Flow	
 L = Total Well Depth: D = Riser Diameter (I.D.): W = Static Depth to Water (T C = Column of Water in Cas V = Volume of Water in Wel D2 = Pump Setting Depth (ft C2 = Column of water in Put Tubing Volume = C2(0.0057) 	ing: = C(3.14159 :): np/Tubing (ft)				feet feet feet feet gal feet gal termine V gi	D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch ven C	D (feet) 0.08 0.125 0.17 0.25 0.33 0.50
	D (inches)	1 in ch					Circh
	D (inches) V (gal / ft)	1-inch 0.041	1.5-inch 0.092	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Parameter	Units 24 hr	1250	1255	1300	Readings	1	
Water Level (0.33)	feet	8.39	8.42	8.45			
Volume Purged	gal	1.9	2,1	2.3			
Flow Rate	mL/min	200	200	200			
Turbidity (+/- 10%)	NTU	0.2	0.2	0.9			
Dissolved Oxygen (+/- 10%)	%	- 4.0	- 4.4	.4.5			
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	mg/L						
Eh / ORP (+/- 10)	MeV	61.7	67.3	69.2			
		92.2	92.1	92.4			
Specific Conductivity	mS/cm ^c	3.065	0.065	0.065			
Conductivity (+/- 3%)	mS/cm	6.37	6.36	6.35			
pH (+/- 0.1)	pH unit		8.7				
Temp (+/- 0.5)	C	9.8	5	9.7			
Color	Visual	Clear					
Jaor	Olfactory	none	-				
Odor Comments Purge Start Time: 1215 Sample Time: 305	Olfactory	None	2	1			

.

	Mo	nitoring W	ell Purgir	ng/Sampli	ng Form			
Project Name and Number:			DSI Poc	stenkill			60682557	
Monitoring Well Number:	-	D52-3		Date:		4/27/	2022	
Samplers:				Chris French Tom Quackenbush				
Sample Number:	-	DSI-3 (142722	QA/QC	C Collected?	EB-0427	zz k AB	-042722
Purging / Sampling Method:				Per	istaltic/Low	Flow		
1. L = Total Well Depth:				24	feet	D (inches)	D (feet)	ן ר
2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08	1
3. W = Static Depth to Water (TO	DC):			4.62	feet	1.5-inch	0.125	1
4. C = Column of Water in Casin	ig:			19.38	feet	2-inch	0.17	1
5. V = Volume of Water in Well	= C(3.14150)	$(0.5D)^{2}(7.49)^{2}$	8)	3.16	gal	3-inch	0.25	1
6. $D2 = Pump$ Setting Depth (ft):	0(5.1115)	(0.50) (7.40	,	21.5	feet	4-inch	0.23	1
7. $C2 = Column of water in Pum$				41.5	feet	6-inch	0.55	1
8. Tubing Volume = $C2(0.00573)$						0-men	0.30	ן נ
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				gal			
			Conversion	factors to de	termine V gi	ven C		
	D (inches)	1-inch	1.5-inch	2 inch	2 in ab	4 in al		, I
	V (gal / ft)	0.041	0.092	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collector	Units	131	Prof. + Quat	ro and Geote	Readings	Meter		
Time	24 hr	1230	1335	1340	1345	1350	1355	1100
Water Level (0.33)	feet	5.03	5.85	6.98	7.75	8.27	8.75	1400
Volume Purged	gal	0	0.2	0.5	0.8	1.05	1.3	9.10
Flow Rate	mL/min	140	190	155	160	160	160	160
Turbidity (+/- 10%)	NTU	49.0	52.0	98.9	54.8	\$7.6	\$7.4	45.0
Dissolved Oxygen (+/- 10%)	%	5.1	2.8	1.7	2.2	2.4	1.9	1.8
Dissolved Oxygen (+/- 10%)	mg/L	0.51	0.37	0.20	0.25	0.28	0.22	0.21
Eh / ORP (+/- 10)	MeV	106.8	69.4	35.5	24.7	18.1	11.7	26.8
Specific Conductivity	mS/cm ^c	1.07	1.05	1.02	1.01	1.00		
Conductivity (+/- 3%)	mS/cm	0.74	0.77	0.70	0.69	0.69	1.00	1.00
pH (+/- 0.1)	pH unit	6.23	6.57	6.69	6.73	6.74	0.69	0.69
Temp (+/- 0.5)	C	8.8	8.6	8.5	8.6	8.5	6.75	6.76
Color	Visual	Um	Clear	aur	Clear	cleer	8.7	8.7
Odor	Olfactory	A 444 /	in man /	4 444 /	14	1	clear	here
Comments Purge Start Time: 1327 Sample Time: 1425		E A A B	1450 1450 16ient Blo 1500	Blank omk Al	EB-04 3-0427	2727 Co	pleated be ted he	
* Three consecutive readings wi	thin range ind	licates stabili	zation of that	t parameter.			Page of	2

Project Name and Number:			DSI Po	estenkill			60682557
-						i grant	
Monitoring Well Number:		DSI-	>	_ Date:		4/27/	/2022
Samplers:					ench/Tom Q		
Sample Number:		DSE-3	042722	QA/Q	C Collected?	EB-0427	22 9 AB
Purging / Sampling Method:				Ре	eristaltic/Low	Flow	
 L = Total Well Depth: D = Riser Diameter (1.D.): W = Static Depth to Water (' 4. C = Column of Water in Cas V = Volume of Water in We D2 = Pump Setting Depth (ff C2 = Column of water in Put Tubing Volume = C2(0.0057) 	sing: ell = C(3.14159 t): mp/Tubing (ft)		8)	24 0.17 4.(2 12,28 2.16 21.5	feet feet feet gal feet feet gal	D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.125 0.17 0.25 0.33 0.50
0	1 (c) (c) (c) (c) (c)		Conversion	factors to de	-	iven C	
	D (inches)	l-inch	1.5-inch	2-inch	3-inch	4-inch	6-inch
	V (gal / ft)	0.041	0.092	0.163	0.37	0.65	1.5
Water Quality Readings Collec	eted Using	YS	l Prof. + Qua	tro and Geoto	ech Turbidity	Meter	-
Parameter	Units				Readings		-
Parameter Time	Units 24 hr	1405	1410	1415	Readings	1425	-
Parameter Time Water Level (0.33)	Units 24 hr feet	1405	1410	1415 9.45	Readings	1425 9.45	-
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	1405 9.34 1.85	1410 9.55 2.1	1415 9.45 2.3	Readings 1420 2.45 2.95	1425 9.45 2.6	-
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL / min	1405 9.34 1.85 150	1410 9.55 2. 1 120	1415 9.45 2.3 120	Readings 1420 2.45 2.95 120	1425 9.45 2.6 120	-
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL / min NTU	1405 9.34 1.85 150 24.3	1410 9.55 2.1 120 29.3	1415 9.45 2.3 123 26.8	Readings 1420 2.45 2.95 120 25,2	1475 9.45 2.6 120 24.8	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL / min NTU %	1405 7.34 1.85 150 24.3 1.8	1410 9.55 2.1 120 29.8 1.7	1415 9.45 2.3 123 26.8 1.7	Readings 1920 2.45 2.95 120 25.2 1.7	1475 9.45 2.6 120 24.8 1,8	-
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL / min NTU % mg/L	1405 9.34 1.85 150 24.3 1.8 0.19	1410 9.55 2.1 123 29.5 1.7 0.20	1415 9.45 2.3 125 26.8 1.7 0.19	Readings 1420 2.45 2.95 120 252 1.7 0.20	1475 9.45 2.6 120 24.8 1.8 0.21	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL / min NTU % mg/L MeV	1405 9.34 1.85 150 24.3 1.8 0.19 2.5	1410 9.55 2.1 123 29.5 1,7 0.20 -1.5	1415 9.45 2.3 120 26.8 1.7 0.19 -4.6	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 - 7.6	1475 9.45 2.6 120 24.8 1.8 0.21 -11.4	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c	1405 9.34 1.85 150 34.3 1.8 0.19 2.5 1.00	1410 9.55 2.1 123 29.5 1.7 0.20 -1.5 0.99	1415 9.45 2.3 120 26.8 1.7 0.19 -4.6 0.99	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 - 7.6 (0.99	1475 9.45 2.6 120 24.8 1.8 0.21 -11.4 0.99	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c mS/cm	1405 9.34 1.85 150 24.3 1.8 0.19 2.5 1.00 0.69	1410 9.55 2.1 123 29.5 1.7 0.20 -1.5 0.99 0.68	1415 9.45 2.3 120 26.8 1.7 0.19 -4.6 0.99 0.684	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 - 7.6 0.99 0.68	1475 9.45 2.6 120 24.8 1.8 0.21 -11.4 0.99 0.68	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit	1405 9.34 1.85 150 34.3 1.8 0.19 2.5 1.00 0.69 6.77	1410 9.55 2.1 123 29.5 1.7 0.20 -1.5 0.99 0.68 6.77	1415 9.45 2.3 120 26.8 1.7 0.19 -4.6 0.99 0.684	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 - 7.6 0.99 0.68	1475 9.45 2.6 120 24.8 1.8 0.21 -11.4 0.99 0.68 6.78	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C	1405 9.34 1.85 150 24.3 1.8 0.19 2.5 1.00 0.69 6.77 8.7	1410 9.55 2.1 123 29.5 1.7 0.20 -1.5 0.99 0.68 6.77 8.7	1415 9.45 2.3 120 26.8 1.7 0.19 -4.6 0.99 0.68 6.77 8.7	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 - 7.6 0.99 0.68 6,77 8.7	1475 9.45 2.6 120 24.8 1.8 0.21 -11.4 0.99 0.65 6.78 8.7	
Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c mS/cm pH unit C Visual	1405 9.34 1.85 150 34.3 1.8 0.19 2.5 1.00 0.69 6.77 8.7 (Lear	1410 9.55 2.1 123 29.5 1.7 0.20 -1.5 0.99 0.68 6.77 8.7 Clear	1415 9.45 2.3 125 26.8 1.7 0.19 -4.6 0.99 0.68 6.77 8.7 clem	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 - 7.6 0.99 0.68	1425 9.45 2.6 120 24.8 1.8 0.21 -11.4 0.99 0.68 6.78 8.7 clear	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm pH unit C	1405 9.34 1.85 150 24.3 1.8 0.19 2.5 1.00 0.69 6.77 8.7	1410 9.55 2.1 123 29.5 1.7 0.20 -1.5 0.99 0.68 6.77 8.7	1415 9.45 2.3 120 26.8 1.7 0.19 -4.6 0.99 0.68 6.77 8.7	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 -7.6 0.99 0.68 6,77 8.7 Clear	1475 9.45 2.6 120 24.8 1.8 0.21 -11.4 0.99 0.65 6.78 8.7	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color	Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c mS/cm pH unit C Visual	1405 9.34 1.85 150 24.3 1.8 0.19 2.5 1.00 0.69 6.77 8.7 (Jear Aure	1410 9.55 2.1 123 29.3 1.7 0.20 -1.5 0.99 0.68 6.77 8.7 Clear ure	1415 9.45 2.3 125 26.8 1.7 0.19 -4.6 0.99 0.684 6.77 8.7 clem none	Readings 1420 2.45 2.95 120 25.9 1.7 0.20 -7.6 0.68 6,77 8,7 6,87 6,87 6,87 6,87 6,87 6,8	1425 9.45 2.6 120 24.8 1.8 0.21 -11.4 0.99 0.68 6.78 8.7 clear) (450 (450

D (inches)	1-inch	1.5-inch	2-inch	3-inch	4-inch	6-inch
V (gal / ft)	0.041	0.092	0.163	0.37	0.65	1.5

Water Quality Readings Collected Using

YSI Prof. + Quatro and Geotech Turbidity Meter

Parameter	Units				Readings			
Time	24 hr	0940	0945	0950	0955	(000)	1005	
Water Level (0.33)	feet	1.63	3.99	5.20	6.12	6.63	8.29	
Volume Purged	gal	0.05	0,3	0.55	0.55	0.85	1.1	
Flow Rate	mL/min	250	260	250	250	250	250	
Turbidity (+/- 10%)	NTU	18.6	19.4	12.9	8.13	\$ 4.42		
Dissolved Oxygen (+/- 10%)	%	10.7	21.2	20.5	24.5	9.3	6.0	
Dissolved Oxygen (+/- 10%)	mg/L	1.09	1.67	1.69	2.42	1.08	0.81	
Eh / ORP (+/- 10)	MeV	-57,6	-37.3	-71.4	- 88.5	-95.0	-91.0	
Specific Conductivity	mS/cm ^c	698.7	711,1	1186.0	1365	1369	1320	
Conductivity (+/- 3%)	mS/cm	0.31	0.35	0.59	0,69	0.69	0.66	
pH (+/- 0.1)	pH unit	6.69	6.67	6.73	6.82	6.83	6.87	
Temp (+/- 0.5)	C	8.1	8.6	7.4	7.1	7.1	7,1	
Color	Visual	51.96+ yell	$\omega =$	~	thear	5	,1	
Odor	Olfactory	None	Ξ	5	5	=	5	

Comments

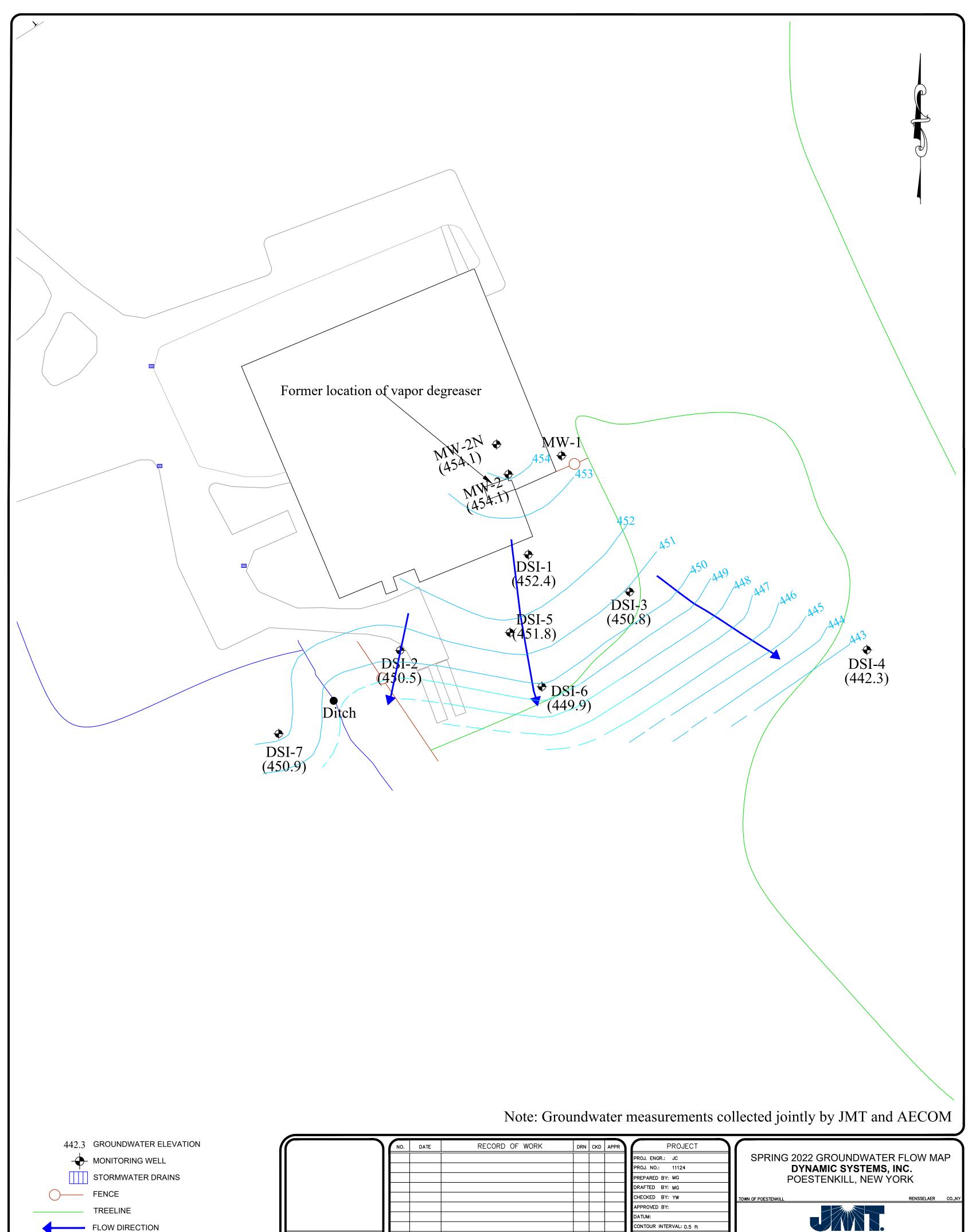
Purge Start Time: 0940 Sample Time: 1457

0950 adjust tubing 1069 well dig 1.3 gallens

Page of

* Three consecutive readings within range indicates stabilization of that parameter.

	Mo	nitoring V	Vell Purgi	ng/Sampl	ing Form]
Project Name and Number:			DSI Po	estenkill			60682557		
Monitoring Well Number:		PSI	-6	Date		4/27/	2022		
Samplers:			Chris French/Tom Quackenbush						
Sample Number:		QA/QC Collected?							
Purging / Sampling Method:			Peristaltic/Low Flow						
1. L = Total Well Depth:			feet D (inches) D (feet)						
2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08	1	
3. $W = $ Static Depth to Water (T				0.17	feet	1.5-inch	0.125	1	
4. $C = Column of Water in Casi$	0C).				feet	2-inch	0.17	8	
		2/2	2)		-	Contraction of the second second			
5. $V = Volume of Water in Well$		9)(0.5D)*(7.4	8)		-gal	3-inch 4-inch	0.25		
6. $D2 = Pump Setting Depth (ft)$					_ feet	4-inch 6-inch	0.33	- 14	
 C2 = Column of water in Pure Tubing Volume = C2(0.0057)):			_feet gal	0-men	0.50	1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Conversion	factors to de	etermine V g	iven C			
	D (inches)	1-inch	1.5-inch	2-inch	3-inch	4-inch	6-inch	1	
	V (gal / ft)	0.041	0.092	0.163	0.37	0.65	1.5		
Parameter	Units		1955		Readings		12:0	1110 -	1
Time	24 hr	1330	/335	1340	1345	1350	1355	1400	1
Water Level (0.33)	feet	-6.45	7.68	8.23	8.87	9.38	9.69	9.94	10
Volume Purged	gal	8.0	0. 2	0.4	0.6	8.0	1.0	1.2	1.
Flow Rate	mL/min	100	150	150	150	150	16.8	12.9	1.
Turbidity (+/- 10%)	NTU	# 54.9	39.7	27:5	21.2	-2,3	-2.4	-2.4	-2
Dissolved Oxygen (+/- 10%)	%	21.2	2.0	0.0					-
Dissolved Oxygen (+/- 10%)	mg/L	23.6	-12.9	-26,5	-37.8	-45.9	-51.0	-54.2	.3
Eh / ORP (+/- 10)	MeV		339.6		347.0	355.5	>58.6	363.5	36
Specific Conductivity	mS/cm ^c	334.6		340.9	0.24/	0.246	6.249	0.252	0.
Conductivity (+/- 3%)	mS/cm	0.234	0.236	0.237		a second s		6.85	6
pH (+/- 0.1)	pH unit	6.83	6.83	6.84	6.84	6.84	6.84	8.9	
Temp (+/- 0.5)	C	9.3	9.1	7.1	9.1	8.9	8.9	0.1	8
Color	Visual	Chear	3		-		2		-
Odor	Olfactory	aber		~	-	-	3	-	- Č
Comments Purge Start Time: 1330 Sample Time: 1925									
* Three consecutive readings wit							Page of		


Monitoring Well Number: $DSI - C$ Date: $4/27/2022$ Samplers:Chris French/Tom QuackenbushSample Number:QA/QC Collected?Purging / Sampling Method:Peristaltic/Low Flow1. L = Total Well Depth:feet2. D = Riser Diameter (1.D.):0.173. W = Static Depth to Water (TOC):0.174. C = Column of Water in Casing:feet5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48)gal6. D2 = Pump Setting Depth (ft):feet7. C2 = Column of water in Pump/Tubing (ft):feet8. Tubing Volume = C2(0.005737088)galConversion factors to determine V given C D (inches)1-inch D (inches)1-inch V (gal / ft)0.0920.1630.370.651.5	Monitoring Well Number: $DSI - C$ Date: $4/27/2022$ Samplers:Chris French/Tom QuackenbushSample Number:QA/QC Collected?Purging / Sampling Method:Peristaltic/Low Flow1. L = Total Well Depth:Cet2. D = Riser Diameter (I.D.):0.173. W = Static Depth to Water (TOC):0.174. C = Column of Water in Casing:feet5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48)gal6. D2 = Pump Setting Depth (ft):feet7. C2 = Column of water in Pump/Tubing (ft):feet8. Tubing Volume = C2(0.005737088)galConversion factors to determine V given C $D (inches) 1-inch 2.inch 3.inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5Water Quality Readings Collected UsingYSI Prof. + Quatro and Geotech Turbidity MeterParameter Units ReadingsTime24 hr 141/5 147/5 14725 10.51 1/2.57 1/0.64Volume Purgedgal 1.44 1.6 1.7 5/0 1/50 1/50Time24 hr 141/5 1/50 1/50 1/50 1/50 1/50Turbidity (+10%)NTU 11.3 7.96 (.79 6.11Dissolved Oxyeen (+.10%)NTU 11.3 7.96 (.79 6.11Dissolved Oxyeen (+.10%)NTU 11.3 7.96 (.79 6.11Dissolved Oxyeen (+.10%)NTU 11.4 7.3 7.96 (.79 6.11Dissolved Oxyeen (+.10%)NTU 11.4 7.3 7.96 (.79 6.11Dissolved Oxyeen (+.10%)NTU 11.4 7.3 7.96 (.79 6.11$,						
Samplers: Chris French/Tom Quackenbush Sample Number: QA/QC Collected? Purging / Sampling Method: Peristaltic/Low Flow 1. L = Total Well Depth: feet 2. D = Riser Diameter (1.D.): 0.17 3. W = Static Depth to Water (TOC): feet 4. C = Column of Water in Casing: feet 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) gal 6. D2 = Pump Setting Depth (ft): feet 7. C2 = Column of water in Pump/Tubing (ft): feet 8. Tubing Volume = C2(0.005737088) gal Conversion factors to determine V given C D (inches) 1-inch 1.5-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using	Samplers: Chris French/Tom Quackenbush Sample Number: QA/QC Collected? Purging / Sampling Method: Peristaltic/Low Flow 1. L = Total Well Depth: feet 2. D = Riser Diameter (I.D.): 0.17 3. W = Static Depth to Water (TOC): feet 4. C = Column of Water in Casing: feet 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) gal 6. D2 = Pump Setting Depth (ft): feet 7. C2 = Column of water in Pump/Tubing (ft): feet 8. Tubing Volume = C2(0.005737088) gal Conversion factors to determine V given C \overline{V} (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr 1/4/1/5 1/4/5 1/4/2/5 Volume Purged gal 1/4/1/5 1/2/5 1/2/5 Dissolved Oxygen (+/- 10%) NTU 1/4, 3 7, 9/6 7, 9/6 7, 9/6 7, 7 3, 7 3, 7 3, 7 3, 7	Monitoring Well Number:				oestenkill			60682557
Sample Number: QA/QC Collected? Purging / Sampling Method: Peristaltic/Low Flow 1. L = Total Well Depth: feet 2. D = Riser Diameter (1.D.): 0.17 feet 3. W = Static Depth to Water (TOC): feet 4. C = Column of Water in Casing: feet 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) gal 6. D2 = Pump Setting Depth (ft): feet 7. C2 = Column of water in Pump/Tubing (ft): feet 8. Tubing Volume = C2(0.005737088) gal Conversion factors to determine V given C $\boxed{\frac{D (inches)}{V (gal / ft)} 0.041 0.092}$ 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	Sample Number: $QA/QC Collected?$ Purging / Sampling Method:Peristaltic/Low Flow1. L = Total Well Depth:feet2. D = Riser Diameter (1.D.): 0.17 feet3. W = Static Depth to Water (TOC): 0.17 feet4. C = Column of Water in Casing:feet5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48)gal6. D2 = Pump Setting Depth (ft):feet7. C2 = Column of water in Pump/Tubing (ft):feet8. Tubing Volume = C2(0.005737088)galConversion factors to determine V given C D (inches)1-inch D (inches)1-inch $V = Valume S Collected UsingYSI Prof. + Quatro and Geotech Turbidity MeterParameterUnitsReadingsTime24 hr24 hr1/4/1/51/4/51/4/2/5Water Level (0.33)feet1/501/50Flow RatemL / min1/501/50Flow RatemL / min1/501/50Flow RatemL / min1/501/50Clower (1/2, 10%)NTU1/1, 37, 96C, 796, 11Dissolved Oxygen (+-10%)%\% = 2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$	9		OSI	- 6	Date		4/27/	2022
Purging / Sampling Method: Peristaltic/Low Flow 1. L = Total Well Depth: feet 2. D = Riser Diameter (1.D.): 0.17 3. W = Static Depth to Water (TOC): feet 4. C = Column of Water in Casing: feet 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ gal 6. D2 = Pump Setting Depth (ft): feet 7. C2 = Column of water in Pump/Tubing (ft): feet 8. Tubing Volume = C2(0.005737088) gal Conversion factors to determine V given C $\boxed{\frac{D (inches)}{V (gal / ft)} 0.041 0.092}$ 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using	Purging / Sampling Method:Peristaltic/Low Flow1. L = Total Well Depth: $Peristaltic/Low Flow$ 2. D = Riser Diameter (1.D.): 0.17 feet3. W = Static Depth to Water (TOC): 0.17 feet4. C = Column of Water in Casing:feet5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48)gal6. D2 = Pump Setting Depth (ft):feet7. C2 = Column of water in Pump/Tubing (ft):feet8. Tubing Volume = C2(0.005737088)galConversion factors to determine V given C $\boxed{D (inches) 1-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5}$ Water Quality Readings Collected UsingYSI Prof. + Quatro and Geotech Turbidity MeterParameterUnitsReadingsTime24 hr $1/4/15$ $V(l/5)$ $1/925$ Volume Purgedgal $I, 4' I, 6$ $I, 5' (2.5)^2$ $I' I'' I'' I'' I'' I'' I'' I'' I'' I'' $	Samplers:				Chris F	rench/Tom Q	uackenbush	
1. L = Total Well Depth: feet D (inches) D (feet 2. D = Riser Diameter (1.D.): 0.17 feet 1-inch 0.00 3. W = Static Depth to Water (TOC): feet feet 1.5-inch 0.12 4. C = Column of Water in Casing: feet feet 2-inch 0.11 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) gal 3-inch 0.22 6. D2 = Pump Setting Depth (ft): feet 4-inch 0.33 7. C2 = Column of water in Pump/Tubing (ft): feet 6-inch 0.50 8. Tubing Volume = C2(0.005737088) gal gal 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	1. L = Total Well Depth:feet2. D = Riser Diameter (1.D.): 0.17 3. W = Static Depth to Water (TOC): 0.17 4. C = Column of Water in Casing:feet5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48)gal6. D2 = Pump Setting Depth (ft):feet7. C2 = Column of water in Pump/Tubing (ft):feet8. Tubing Volume = C2(0.005737088)galConversion factors to determine V given C $D (inches) \ 1 - inch \ V (gal / ft) \ 0.041 \ 0.092 \ 0.163 \ 0.37 \ 0.65 \ 1.5 \ 0.65 \ 1.5 \ 0.5 \ 0.65 \ 1.5 \ 0.65 \ 0.55 \ 0$	Sample Number:				QA/Q	C Collected?		
2. D = Riser Diameter (1.D.):0.17feet3. W = Static Depth to Water (TOC):feet1.inch0.014. C = Column of Water in Casing:feet2.inch0.175. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ gal3-inch0.226. D2 = Pump Setting Depth (ft):feet4-inch0.327. C2 = Column of water in Pump/Tubing (ft):feet6-inch0.508. Tubing Volume = C2(0.005737088)galconversion factors to determine V given CMater Quality Readings Collected UsingYSI Prof. + Quatro and Geotech Turbidity Meter	2. D = Riser Diameter (1.D.): 3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C $\boxed{\frac{D (inches)}{V (gal / ft)}}$ Water Quality Readings Collected Using Time 2. 4 hr V(gal / ft) VI I VI	Purging / Sampling Method:			Peristaltic/Low Flow				
2. D = Riser Diameter (1.D.):0.17feet3. W = Static Depth to Water (TOC):feet1-inch0.0174. C = Column of Water in Casing:feetfeet2-inch0.125. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ gal3-inch0.226. D2 = Pump Setting Depth (ft):feetfeet4-inch0.327. C2 = Column of water in Pump/Tubing (ft):feet6-inch0.508. Tubing Volume = C2(0.005737088)galgal	2. D = Riser Diameter (1.D.): 3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C $\boxed{\frac{D (inches)}{V (gal / ft)}}$ Water Quality Readings Collected Using Time 2. 4 hr V(gal / ft) VI I VI	L = Total Well Depth					faat	D (inches)	D (feet)
3. W = Static Depth to Water (TOC): feet 1.5-inch 0.12 4. C = Column of Water in Casing: feet 2-inch 0.12 5. V = Volume of Water in Well = $C(3.14159)(0.5D)^2(7.48)$ gal 3-inch 0.22 6. D2 = Pump Setting Depth (ft): feet feet 4-inch 0.33 7. C2 = Column of water in Pump/Tubing (ft): feet 6-inch 0.50 8. Tubing Volume = C2(0.005737088) gal gal 6-inch 0.50 Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	3. W = Static Depth to Water (TOC): 4. C = Column of Water in Casing: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch 0.50 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch 0.50 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr 14/5 14/5 14/25 14/25 15 Water Level (0.33) feet 16.39 10.51 10.59 10.59 10.59 10.59 10.59 10.50 Water Level (0.33) feet 16.39 10.51 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.50 Flow Rate mL/min 15 01.5 15 Flow Rate mL/min 15 01.5 15 Dissolved Oxygen (+/- 10%) MzU 116.3 7.96 6.79 6.11 Dissolved Oxygen (+/- 10%) mg/L 5.57 7.7 3.2 3.7 10.55 10.50					0.17	-		
4. C = Column of Water in Casing: feet 2-inch 0.1' 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) gal 3-inch 0.2' 6. D2 = Pump Setting Depth (ft): feet feet 4-inch 0.3' 7. C2 = Column of water in Pump/Tubing (ft): feet 6-inch 0.5' 8. Tubing Volume = C2(0.005737088) gal gal 6-inch 0.5' Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5	4. C = Column of Water in Casing: 5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C $ \frac{D (inches)}{V (gal / ft)} \frac{1-inch}{0.041} \frac{1.5-inch}{0.092} \frac{2-inch}{0.163} \frac{3-inch}{0.37} \frac{4-inch}{0.65} \frac{6-inch}{0.50} $ Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr 14/15 14/2		TOCI			0.17	-		
5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) gal 3-inch 0.22 6. D2 = Pump Setting Depth (ft): feet feet 4-inch 0.32 7. C2 = Column of water in Pump/Tubing (ft): gal 6-inch 0.50 8. Tubing Volume = C2(0.005737088) gal 6-inch 0.50 Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5	5. V = Volume of Water in Well = C(3.14159)(0.5D) ² (7.48) 6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C $ \frac{D (inches)}{V (gal / ft)} \frac{1-inch}{0.041} \frac{1.5-inch}{0.092} \frac{2-inch}{0.163} \frac{3-inch}{0.37} \frac{4-inch}{0.65} \frac{4-inch}{0.50} $ Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr $1/4/5$ $1/425$ $1/425$ $1/425$ Water Level (0.33) feet $fo.37$ $io.57$ $jo.57$ $jo.54$ 1.5 Water Level (0.33) feet $fo.37$ $io.5$ 1.5						-	the second s	
6. D2 = Pump Setting Depth (ft): feet 4-inch 0.3: 7. C2 = Column of water in Pump/Tubing (ft): feet 6-inch 0.5: 8. Tubing Volume = C2(0.005737088) gal gal 6-inch 0.5: Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	6. D2 = Pump Setting Depth (ft): 7. C2 = Column of water in Pump/Tubing (ft): 8. Tubing Volume = C2(0.005737088) Conversion factors to determine V given C $ \frac{D (inches)}{V (gal / ft)} \frac{1-inch}{0.041} \frac{1.5-inch}{0.092} \frac{2-inch}{0.163} \frac{3-inch}{0.37} \frac{4-inch}{0.65} \frac{6-inch}{1.5} $ Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr $1/4/5$ $1/4/5$ $1/4/25$ $1/4/25$ $1/4/25$ $1/4/25$ $1/4/25$ $1/4/25$ $1/4/25$ $1/4/25$ $1/4/25$ $1/50$		-	$(0.5D)^{2}(7.5)$	10)		-		And the state of the state of the state
7. C2 = Column of water in Pump/Tubing (ft): feet 6-inch 0.50 8. Tubing Volume = C2(0.005737088) gal gal Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter YSI Prof. + Quatro and Geotech Turbidity Meter	7. C2 = Column of water in Pump/Tubing (ft): feet 6-inch 0.50 8. Tubing Volume = C2(0.005737088) gal gal Conversion factors to determine V given C D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr 1 4/15 1 4/25 0.57 0.64 0.50 Volume Purged gal 1, 4 1.6 1.5 50 1.5 Water Level (0.33) feet $f0.51$ $;0.57$ $;0.64$ 0.50 50 Volume Purged gal $i, 4$ $i.6$ $i.50$ 50 10 Flow Rate mL / min $i.50$ $i.50$ $i.50$ 10 Dissolved Oxygen (+/- 10%) % -3.5 -3.7 -3.7	$6 D^2 = Pump Setting Depth ($	n = C(3.1415)	9)(0.5D) (7.4	+0)				
8. Tubing Volume = C2(0.005737088) $ \begin{array}{c} gal \\ \hline Conversion factors to determine V given C \\ \hline D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch \\ \hline V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 \\ \hline Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter $	8. Tubing Volume = C2(0.005737088) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7. $C_2 = Column of water in Pu$	mp/Tubing (f)).			-		
D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	Conversion factors to determine V given C D (inches)1-inch1.5-inch2-inch3-inch4-inch6-inchV (gal / ft)0.0410.0920.1630.370.651.5Water Quality Readings Collected UsingYSI Prof. + Quatro and Geotech Turbidity MeterParameterReadingsTime24 hr/ 4/16/ 4/25Water Level (0.33)feet/ 6.39/ 6.51/ 50Flow RatemL / min/ 50/ 50/ 50Flow RatemL / min/ 50/ 50/ 50Dissolved Oxygen (+/- 10%)%- 7.7- 7.7- 7.7Dissolved Oxygen (+/- 10%)%- 7.7- 7.7- 7.7- 7.7- 7.7).			-	0-men	0.50
D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	D (inches) 1-inch 1.5-inch 2-inch 3-inch 4-inch 6-inch V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr 1 4/15 1 4/25 1 4/25 Water Level (0.33) feet 16.39 10.51 12.57 10.64 Volume Purged gal 1, 4 1.6 1.5 50 150 Flow Rate mL / min 150 150 150 150 150 150 Dissolved Oxygen (+/- 10%) % -3.8 -3.7 -3.7 -3.7 -3.7	5. Fabring Volume - C2(0.005	131000)				_gai		
V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	V (gal / ft) 0.041 0.092 0.163 0.37 0.65 1.5 Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter Parameter Units Readings Time 24 hr 1 4/15 1 4/25 1 4/25 Water Level (0.33) feet 16.39 10.51 12.59 10.64 Volume Purged gal 1, 4 1.6 1.5 2.6 10.50 Flow Rate mL / min 150 150 150 150 150 Flow Rate mL / min 150 150 150 150 150 Dissolved Oxygen (+/- 10%) % -3.8 -3.7 -3.2 -3.7 -3.7	Conversion factors to determine V given C							
Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	Water Quality Readings Collected UsingYSI Prof. + Quatro and Geotech Turbidity MeterParameterUnitsReadingsTime24 hr $14/15$ $14/25$ Water Level (0.33)feet $16,39$ $i0,51$ $i2,59$ Volume Purgedgal $l,44$ $r,66$ $r<2,66$ Flow RatemL / min $i50$ $r50$ $r50$ Turbidity (+/- 10%)NTU $11/2,37$ $r,96$ $6,79$ Dissolved Oxygen (+/- 10%) $\%$ $r,3,7$ $r,3,7$ $r,3,7$								
Water Quality Readings Collected Using YSI Prof. + Quatro and Geotech Turbidity Meter	Water Quality Readings Collected UsingYSI Prof. + Quatro and Geotech Turbidity MeterParameterUnitsReadingsTime24 hr $14/15$ $14/25$ Water Level (0.33)feet 16.39 $i0.51$ $i2.59$ Volume Purgedgal $i, 4$ $i.6$ $i.7$ Flow RatemL / min $i50$ $i50$ $i50$ Furbidity (+/- 10%)NTU $11/.3$ 7.96 6.79 Dissolved Oxygen (+/- 10%) $\%$ -3.8 -3.7 -3.2 Dissolved Oxygen (+/- 10%)mg/L -3.5 -3.7 -3.7		D (inches)	1-inch	1.5-inch	2-inch	3-inch	4-inch	6-inch
	Water Level (0.33) feet $f0,39$ $i0,51$ $i0,57$ $j0,64$ Volume Purged gal $l,4$ $l.6$ $l.7$ 2.6 Flow Rate mL / min $l50$ $l50$ $l50$ $l50$ Flow Rate mL / min $l50$ $l50$ $l50$ $l50$ Furbidity (+/- 10%) NTU $ll.3$ 7.96 6.79 6.11 Dissolved Oxygen (+/- 10%) $\%$ -3.8 -3.7 -3.7 -3.7	Water Quality Readings Collec	V (gal / ft)	0.041	0.092	0.163	0.37	0.65	
	Volume Purged gal l, \mathcal{L} l, \mathcal{C} <th< td=""><td>Parameter</td><td>V (gal / ft) cted Using Units</td><td>0.041 YS</td><td>0.092 I Prof. + Qua</td><td>0.163 tro and Geot</td><td>0.37 ech Turbidity Readings</td><td>0.65 Meter</td><td></td></th<>	Parameter	V (gal / ft) cted Using Units	0.041 YS	0.092 I Prof. + Qua	0.163 tro and Geot	0.37 ech Turbidity Readings	0.65 Meter	
	Flow Rate mL / min 150 150 150 150 Turbidity (+/- 10%) NTU 1/1.3 7.96 6.79 6.11 Dissolved Oxygen (+/- 10%) % -3.8 -3.7 -3.7 -3.7	Parameter Time	V (gal / ft) cted Using Units 24 hr	0.041 YS	0.092 I Prof. + Qua	0.163 tro and Geot	0.37 ech Turbidity Readings	0.65 Meter	
	Turbidity (+/- 10%) NTU I/1.3 7.96 6.79 6.11 Dissolved Oxygen (+/- 10%) % -3.8 -3.7 -3.7 -3.7 Dissolved Oxygen (+/- 10%) mg/L	Parameter Time Water Level (0.33)	V (gal / ft) cted Using Units 24 hr feet	0.041 YS	0.092 I Prof. + Qua 1975 10, 51	0.163 tro and Geot	0.37 ech Turbidity Readings	0.65 Meter	
	Dissolved Oxygen (+/- 10%) % -3. 7 -3. 7 -3. 7 -3. 7 Dissolved Oxygen (+/- 10%) mg/L	Parameter Time Water Level (0.33) Volume Purged	V (gal / ft) cted Using Units 24 hr feet gal	0.041 YS	0.092 I Prof. + Qua 1 (4/5 10.51 1.6	0.163 tro and Geot 1420 y.O. 59 J. T	0.37 ech Turbidity Readings i 4 2 5 j 0, 64 2, 6	0.65 Meter	
	Dissolved Oxygen (+/- 10%) mg/L	Parameter Time Water Level (0.33) Volume Purged Flow Rate	V (gal / ft) cted Using Units 24 hr feet gal mL / min	0.041 YS 14/5 10.39 1,4 150	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 1.5	0.163 tro and Geot 1420 10.59 1.5 150	0.37 ech Turbidity Readings i 425 j 0, 64 2, 6 i 50	0.65 Meter	
	Jissolved Uxvgen $(\pm/-10\%)$ ling/L \pm	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU	0.041 YS 14/15 10.39 1.4 150 11.3	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.6 1.50 7.96	0.163 tro and Geot 1920 10.59 1.50 6.79	0.37 ech Turbidity Readings i (25) j (0, 6) i (2, 5) j (0, 6) i (5, 5) i (5, 5) i (1)	0.65 Meter	
		Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU %	0.041 YS 1416 10.39 1.4 150 11.3 - 3.8	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.6 1.6 7.96 ~3.7	0.163 tro and Geot 1920 10.59 1.50 6.79 • 3. 2	$\begin{array}{c} 0.37 \\ \hline \\ ech Turbidity \\ \hline \\ readings \\ i 425 \\ i 425 \\ i 6.64 \\ \hline \\ 2.6 \\ i 50 \\ \hline \\ 6.11 \\ \hline \\ \hline \\ 3.7 \end{array}$	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L		Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L	0.041 YS 10/10 10/39 1,4 1/50 11,3 -3.8	0.092 1 Prof. + Qua 1 (4/5 10.51 1.6 1.50 7.96 -3.7 	0.163 tro and Geot (0.59 1.5 (50 (.79 • 3.2	0.37 ech Turbidity Readings 1425 10,64 2,6 150 6,11 -3,7 	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L		Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV	0.041 YS 14/6 10.39 1.4 150 11.3 -3.8 -60.5	0.092 1 Prof. + Qua 1 (4/5 10,51 1.6 1.6 1.6 7.96 -3.7 -62.0	0.163 tro and Geot (0.59 1.5 (50 (.79 • 3.2 •	0.37 ech Turbidity Readings 1425 10,64 2,6 150 6,11 -3,7 -64,3	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L	Specific Conductivity mS/cm ^c 371.4 374.3 376.2 377.2	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 271.4	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74, 3	0.163 tro and Geot 1920 10.59 1.5 (50 6.79 • 3. 2 • 63.9 376.2	0.37 ech Turbidity Readings i 4 2 5 i 0, 64 2, 6 i 50 6, 11 -3, 7 -64, 3 377, 2	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L <	Specific Conductivity mS/cm ^c 371.4 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.255 0.258 0.259 0.761	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV MS/cm ^c mS/cm	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 371.4 0.256	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74.3 0,258	0.163 tro and Geot 1920 10.59 1.5 (50 6.79 • 3. 2 • 63.9 376. 2 0.259	0.37 ech Turbidity Readings 1425 10,64 2,6 150 6,11 -3,7 -64,3 377,2 0,761	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L Eh / ORP (+/- 10) MeV -60.5 -62.2 -63.4 -64.3 Specific Conductivity mS/cm ^c $77/.4$ 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.258 0.257 0.761 pH (+/- 0.1) pH unit 6.55 6.755 6.755 6.755	Specific Conductivity mS/cm ^c 371.4 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.258 0.257 0.761 pH unit 6.85 6.85 6.85 6.85 6.85	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV MEV mS/cm ^c mS/cm pH unit	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 371.4 0.256 6.85	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74, 3 0,258 6,75	0.163 tro and Geot 1926 10.59 1.5 150 6.79 • 3. 2 • 63.4 376.2 0.259 6.55	0.37 ech Turbidity Readings 1425 10,64 2.6 150 6.11 -3.7 -64,3 377.2 0.761 6.85	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L Eh / ORP (+/- 10) MeV -60.5 -62.0 -53.4 -64.3 Specific Conductivity mS/cm ^c $77/.4$ 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.257 0.257 0.761 pH (+/- 0.1) pH unit 6.55 6.75 6.75 6.75 6.75 remp (+/- 0.5) C 57.5 5.7 5.7 5.7 5.7	Specific Conductivity mS/cm ^c $\Im7/.4$ $\Im74.3$ $\Im76.2$ $\Im77.2$ Conductivity (+/- 3%) mS/cm $O.256$ $O.257$	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c mS/cm pH unit C	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 371.4 0.256 6.85 8.85	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74.3 0,258 6,75 8.7	0.163 tro and Geot 1920 10.59 1.5 (50 6.79 • 3. 2 • 63.9 376. 2 0.259 6.55 8.7	0.37 ech Turbidity Readings 1425 10,64 2.6 150 6.11 -3.7 -64,3 377.2 0.761 6.85	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L		Parameter Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV	0.041 YS 14/6 10.39 1.4 150 11.3 -3.8 -60.5	0.092 1 Prof. + Qua 1 (4/5 10,51 1.6 1.6 1.6 7.96 -3.7 -62.0	0.163 tro and Geot (0.59 1.5 (50 (.79 • 3.2 •	0.37 ech Turbidity Readings 1425 10,64 2,6 150 6,11 -3,7 -64,3	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L <	Specific Conductivity mS/cm ^c 371.4 374.3 376.2 377.2	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 271.4	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74, 3	0.163 tro and Geot 1920 10.59 1.5 (50 6.79 • 3. 2 • 63.9 376.2	0.37 ech Turbidity Readings i 4 2 5 i 0, 64 2, 6 i 50 6, 11 -3, 7 -64, 3 377, 2	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L <	Specific Conductivity mS/cm ^c 371.4 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.255 0.258 0.259 0.761	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV MS/cm ^c mS/cm	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 371.4 0.256	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74.3 0,258	0.163 tro and Geot 1920 10.59 1.5 (50 6.79 • 3. 2 • 63.9 376. 2 0.259	0.37 ech Turbidity Readings 1425 10,64 2,6 150 6,11 -3,7 -64,3 377,2 0,761	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L Eh / ORP (+/- 10) MeV -60.5 -62.2 -63.4 -64.3 Specific Conductivity mS/cm ^c 77.4 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.258 0.257 0.761 pH (+/- 0.1) pH unit 6.85 6.75 6.85 6.85	Specific Conductivity mS/cm ^c 371.4 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.258 0.257 0.761 pH (+/- 0.1) pH unit 6.85 6.85 6.85 6.85	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV MS/cm ^c mS/cm	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 371.4 0.256 6.85	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74, 3 0,258 6,75	0.163 tro and Geot 1926 10.59 1.5 150 6.79 • 3. 2 • 63.4 376.2 0.259 6.55	0.37 ech Turbidity Readings 1425 10,64 2.6 150 6.11 -3.7 -64,3 377.2 0.761 6.85	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L Eh / ORP (+/- 10) MeV -60.5 -62.2 -63.4 -64.3 Specific Conductivity mS/cm ^c $77/.4$ 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.257 0.761 pH (+/- 0.1) pH unit 6.55 6.755 6.755 6.755	Specific Conductivity mS/cm ^c 371.4 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.258 0.257 0.761 pH unit 6.85 6.85 6.85 6.85 6.85	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) DH (+/- 0.1)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV MEV mS/cm ^c mS/cm pH unit	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 371.4 0.256 6.85	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74, 3 0,258 6,75	0.163 tro and Geot 1926 10.59 1.5 150 6.79 • 3. 2 • 63.4 376.2 0.259 6.55	0.37 ech Turbidity Readings 1425 10,64 2.6 150 6.11 -3.7 -64,3 377.2 0.761 6.85	0.65 Meter	
Dissolved Oxygen (+/- 10%) mg/L Eh / ORP (+/- 10) MeV -60.5 -62.2 -63.4 -64.3 Specific Conductivity mS/cm ^c $77/.4$ 374.3 376.2 377.2 Conductivity (+/- 3%) mS/cm 0.256 0.257 0.761 pH (+/- 0.1) pH unit 6.55 6.755 6.755 6.755	Specific Conductivity mS/cm ^c $\Im7/.4$ $\Im74.3$ $\Im76.2$ $\Im77.2$ Conductivity (+/- 3%) mS/cm $O.256$ $O.257$	Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity Conductivity (+/- 3%) DH (+/- 0.1) Femp (+/- 0.5)	V (gal / ft) cted Using Units 24 hr feet gal mL / min NTU % mg/L MeV mS/cm ^c mS/cm pH unit C	0.041 YS 1416 10.39 1.4 150 11.3 -3.8 -60.5 371.4 0.256 6.85 8.85	0.092 1 Prof. + Qua 1 (4/5 10, 51 1.6 1.5 7.96 -3.7 -62.0 3.74.3 0,258 6,75 8.7	0.163 tro and Geot 1920 10.59 1.5 (50 6.79 • 3. 2 • 63.9 376. 2 0.259 6.55 8.7	0.37 ech Turbidity Readings 1425 10,64 2.6 150 6.11 -3.7 -64,3 377.2 0.761 6.85	0.65 Meter	

Attachment B

Groundwater Elevation Data and Figure

Groundwater Elevations 4/27/22

WELL ID	GROUND ELEV.	STICK UP/DOWN	MEASURMENT ELEV.	4/27/2022 DTW (FT)	4/27/2022 GW ELV.
MW-2N	458.431	-0.375	458.056	3.990	454.066
MW-2	458.458	-0.333	458.125	4.010	454.115
DSI-4	444.026	-0.420	443.606	1.300	442.306
DSI-2	457.190	-0.542	456.648	6.150	450.498
DSI-5	456.497	-0.542	455.955	4.110	451.845
DSI-6	456.434	-0.250	456.184	6.300	449.884
DSI-1	457.355	-0.167	457.188	4.830	452.358
DSI-3	455.848	-0.417	455.431	4.620	450.811
DSI-7	453.012	2.708	455.720	4.800	450.920

UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING IS A VIOLATION OF SECTION 7209, SUBDIVISION 2 OF THE NEW YORK STATE EDUCATION LAW. 20 40

19 British American Blvd.,Latham, New York 12110 P: (518) 782-0882 F: (518) 782-0973 www.jmt.com DATE: 05/20/2022 SCALE: 1" = 40' DWG: 11124.03 FIGURE 1

1"=40'

Attachment C

Validated Groundwater Results Table

PFAS Groundwater Results- Validated

					estenkill					
Sample ID		MW-2N 042722	MW-1 042722	DSI-1 042722	DSI-3 042722	DSI-6 042722	DSI-4 042722	*Dup-042722	EB-042722	AB-042722
Sampling Date		4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022
Matrix		Water	Water	Water	Water	Water	Water	Water	Water	Water
Units		ng/L								
LCMS - 537	NY MCL	Result Q	Result Q	Result Q	Result Q		Result Q	Result C	Q Result C	Q Result C
Perfluorohexanoic acid (PFHxA)		8.1	ND	0.73 J	3.4	1.5 J	ND	8.5	ND	ND
Perfluoroheptanoic acid (PFHpA)		1.8 NJ	ND	0.84 J	3	0.96 NJ	6.2	2.1 N.	J ND	ND
Perfluorooctanoic acid (PFOA)	10	5.1	ND	0.93 J	8.1	2.1	20	4.7	ND	ND
Perfluorononanoic acid		ND	ND	1.0 J	ND	ND	2.2	ND	ND	ND
Perfluorodecanoic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorotridecanoic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorotetradecanoic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorobutanesulfonic acid (PFBS)		120	1.0 J	0.52 J	5.6	8.3	2	120	ND	ND
Perfluorohexanesulfonic acid		ND	ND	ND	ND	ND	0.64 NJ	ND	ND	ND
Perfluorooctanesulfonic acid (PFOS)	10	1.9	ND	2.2	4.2	1.3 J	3.1	1.8	ND	ND
NEtFOSAA		ND	ND	ND	ND	ND	ND	ND	ND	ND
NMeFOSAA		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanesulfonic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorodecanesulfonic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanesulfonamide		ND	ND	ND	1.1 J	ND	ND	ND	ND	ND
Perfluorobutanoic acid (PFBA)		6.9	ND	ND	5.3	1.9 J	12	6.8	ND	ND
Perfluoroundecanoic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorododecanoic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
6:2 Fluorotelomer sulfonic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
8:2 Fluorotelomer sulfonic acid		ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)		10	ND	1.3 J	3.2	1.5 J	4.2	11	ND	ND
Shading indicates result exceeds NY MCL									-	

Shading indicates result exceeds NY MCL

Bold indicates detected result.

ND: The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

NJ : The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

*Duplicate Sample Collected at MW-2N

Attachment D

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

2022 GROUNDWATER SAMPLING EVENT POESTENKILL, NEW YORK

Analyses Performed by:

EUROFINS TESTAMERICA LANCASTER, PENNSYLVANIA

Prepared for: DSI

Prepared by:

AECOM ONE JOHN JAMES AUDUBON PARKWAY SUITE 210 AMHERST, NEW YORK 14228

MAY 2022

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	. 1
2.0	ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES	. 1
3.0	DATA DELIVERABLE COMPLETENESS	. 2
4.0	SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES	. 2
5.0	NON-CONFORMANCES	. 2
6.0	SAMPLE RESULTS AND REPORTING	. 3
7.0	SUMMARY	. 3

ATTACHMENTS

Attachment A	Validated Form 1's

Attachment B Support Documentation

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B-Guidance for Data Deliverables and the Development of Data Usability and Summary Reports,* May 2010. Discussed in this DUSR are analytical data for six groundwater (GW) samples, one GW field duplicate (FD), one GW matrix spike/matrix spike duplicate (MS/MSD) pair, one ambient blank, and one field blank collected by AECOM personnel on April 27, 2022 from the Poestenkill, NY site.

2.0 ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES

The samples were delivered to Eurofins located in Lancaster, Pennsylvania. The samples were analyzed for the following parameter:

Parameter Method Number

Per- and Polyfluoroalkyl Substances (PFASs)

Method 537-Modified

A limited data validation was performed following the guidelines in the following NYSDEC document:

Data Review Guidelines for the analysis of PFAS in Non-Potable Water and Solids.
 Sampling, Analysis, and Assessment Of Per- and Polyfluoroalkyl Substances (PFASs) Under NYSDEC Part 375 Remedial Programs, Appendix I - January 2021.

The limited validation included: a review of completeness of all required deliverables; holding times; a review of quality control (QC) results [blanks, instrument tunings, calibration standards, field duplicate analyses, and MS/MSD/laboratory control sample (LCS) recoveries] to determine if the data are within the protocol-required limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Data qualifiers applied to the results during the validation included 'NJ' (tentatively identified, approximate concentration). Definitions of data qualifiers are presented at the end of this text. Copies of the

validated laboratory results (i.e., Form 1's) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

3.0 DATA DELIVERABLE COMPLETENESS

A full deliverable data package (i.e., NYSDEC ASP Category B, or equivalent) was provided by the laboratory, which included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

4.0 SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-ofcustody (COC). All samples were analyzed within the required holding times.

5.0 NON-CONFORMANCES

Laboratory Method Blank

Perfluorooctanesulfonic acid was detected in the laboratory method blank at a concentration below the reporting limit (RL) but greater than the method detection limit (MDL) (i.e., J value). Since the result for this compound in the associated sample was greater than the RL, the B qualifier applied by the laboratory has been removed.

Surrogate/Internal Standards

DSI-3, DSI-4, and DSI-6 showed surrogate and internal standard outliers. These samples were reextracted and re-analyzed and showed acceptable recoveries. Since the re-extraction occurred within the holding time, the results of the re-extractions have been reported and the initial analyses Form I's were crossed out.

Field Duplicate Sample

A field duplicate was collected at GW location MW-2N and exhibited good analytical precision (i.e., $\leq 30\%$ relative percent difference).

6.0 SAMPLE RESULTS AND REPORTING

All quantitation/detection limits were reported in accordance with method requirements and were adjusted for sample volume and dilution factors (if applicable). Results less than the RL were qualified 'J' by the laboratory.

The ion mass ratio for perfluoroheptanoic acid in samples MW-2N, Dup-042722 (MW-2N) and DSI-6; and perfluorohexanesulfonic acid in DSI-4 were outside of the laboratory's QC limits for identification. The laboratory has reported the results as a detection using analyst judgement and qualified the result 'I'. The 'I' qualifier was changed to 'NJ' by the validator.

7.0 **SUMMARY**

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified 'NJ' (tentatively identified, approximate concentration) are considered conditionally usable. AECOM does not recommend the recollection of any samples at this time.

Prepared By:

Ann Marie Kropovitch, Chemist

deed

Date: 5/18/22

Reviewed By:

George E. Kisluk, Senior Chemist

5/18/22 Date:

DEFINITIONS OF DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The positive value is the result of an analysis at a secondary dilution factor
- NJ- The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

ATTACHMENT A

VALIDATED FORM 1's

FORM I PFAS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: <u>410-82166-1</u>
SDG No.:	
Client Sample ID: MW-2N 042722	Lab Sample ID: <u>410-82166-1</u>
Matrix: Water	Lab File ID: 22MAY12-34.d
Analysis Method: 537 IDA	Date Collected: 04/27/2022 11:25
Extraction Method: 537 IDA	Date Extracted: 05/11/2022 10:09
Sample wt/vol: 280.6(mL)	Date Analyzed: 05/12/2022 22:28
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 6(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 254704	Units: ng/L

MDL

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.53

0.45

0.45

0.45

1.8

0.45

0.45

1.8

0.89

0.45

CAS NO. COMPOUND NAME RESULT Q RL 307-24-4 Perfluorohexanoic acid 1.8 8.1 375-85-9 Perfluoroheptanoic acid 1.8 NJ 1.8 335-67-1 Perfluorooctanoic acid 5.1 1.8 375-95-1 Perfluorononanoic acid ND 1.8 335-76-2 Perfluorodecanoic acid ND 1.8 72629-94-8 Perfluorotridecanoic acid ND 1.8 376-06-7 Perfluorotetradecanoic acid 1.8 ND 375-73-5 Perfluorobutanesulfonic acid 120 1.8 355-46-4 Perfluorohexanesulfonic acid ND 1.8 1763-23-1 Perfluorooctanesulfonic acid 1.9 1.8 2991-50-6 2.7 NEtFOSAA ND 2355-31-9 NMeFOSAA ND 1.8 375-92-8 Perfluoroheptanesulfonic acid ND 1.8 335-77-3 Perfluorodecanesulfonic acid 1.8 ND 754-91-6 Perfluorooctanesulfonamide 1.8 6.9 375-22-4 Perfluorobutanoic acid 4.5 2058-94-8 Perfluoroundecanoic acid ND 1.8 Perfluorododecanoic acid 307-55-1 1.8 ND 27619-97-2 6:2 Fluorotelomer sulfonic acid ND 4.5 39108-34-4 8:2 Fluorotelomer sulfonic acid ND 2.7 2706-90-3 10 Perfluoropentanoic acid 1.8

FORM I PFAS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: <u>410-82166-1</u>
SDG No.:	
Client Sample ID: MW-1 042722	Lab Sample ID: <u>410-82166-2</u>
Matrix: Water	Lab File ID: 22MAY12-35.d
Analysis Method: 537 IDA	Date Collected: 04/27/2022 12:35
Extraction Method: 537 IDA	Date Extracted: 05/11/2022 10:09
Sample wt/vol: 303.2(mL)	Date Analyzed: 05/12/2022 22:39
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 6(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 254704	Units: ng/L

CAS NO. COMPOUND NAME

307-24-4	Perfluorohexanoic acid	ND		1.6	0.41
375-85-9	Perfluoroheptanoic acid	ND		1.6	0.41
335-67-1	Perfluorooctanoic acid	ND		1.6	0.41
375-95-1	Perfluorononanoic acid	ND		1.6	0.41
335-76-2	Perfluorodecanoic acid	ND		1.6	0.41
72629-94-8	Perfluorotridecanoic acid	ND		1.6	0.41
376-06-7	Perfluorotetradecanoic acid	ND		1.6	0.41
375-73-5	Perfluorobutanesulfonic acid	1.0	J	1.6	0.41
355-46-4	Perfluorohexanesulfonic acid	ND		1.6	0.41
1763-23-1	Perfluorooctanesulfonic acid	ND		1.6	0.41
2991-50-6	NETFOSAA	ND		2.5	0.41
2355-31-9	NMeFOSAA	ND		1.6	0.49
375-92-8	Perfluoroheptanesulfonic acid	ND		1.6	0.41
335-77-3	Perfluorodecanesulfonic acid	ND		1.6	0.41
754-91-6	Perfluorooctanesulfonamide	ND		1.6	0.41
375-22-4	Perfluorobutanoic acid	ND		4.1	1.6
2058-94-8	Perfluoroundecanoic acid	ND		1.6	0.41
307-55-1	Perfluorododecanoic acid	ND		1.6	0.41
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		4.1	1.6
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		2.5	0.82
2706-90-3	Perfluoropentanoic acid	ND		1.6	0.41

RESULT

Q

RL

MDL

FORM I PFAS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: <u>410-82166-1</u>
SDG No.:	
Client Sample ID: DSI-1 042722	Lab Sample ID: <u>410-82166-3</u>
Matrix: Water	Lab File ID: 22MAY12-38.d
Analysis Method: 537 IDA	Date Collected: 04/27/2022 13:05
Extraction Method: 537 IDA	Date Extracted: 05/11/2022 10:09
Sample wt/vol: 265.8(mL)	Date Analyzed: 05/12/2022 23:13
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 6(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 254704	Units: ng/L

MDL

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.56

0.47

0.47

0.47

1.9

0.47

0.47

1.9

0.94

0.47

1.9

CAS NO. COMPOUND NAME RESULT Q RL 307-24-4 Perfluorohexanoic acid 0.73 J 1.9 375-85-9 Perfluoroheptanoic acid 0.84 J 1.9 335-67-1 Perfluorooctanoic acid 0.93 1.9 J 375-95-1 Perfluorononanoic acid 1.0 J 1.9 335-76-2 Perfluorodecanoic acid ND 1.9 72629-94-8 Perfluorotridecanoic acid ND 1.9 376-06-7 Perfluorotetradecanoic acid 1.9 ND 0.52 375-73-5 Perfluorobutanesulfonic acid J 1.9 355-46-4 Perfluorohexanesulfonic acid ND 1.9 1763-23-1 Perfluorooctanesulfonic acid 2.2 1.9 2991-50-6 NEtFOSAA 2.8 ND 2355-31-9 NMeFOSAA ND 1.9 375-92-8 Perfluoroheptanesulfonic acid ND 1.9 335-77-3 Perfluorodecanesulfonic acid 1.9 ND 754-91-6 Perfluorooctanesulfonamide ND 1.9 375-22-4 Perfluorobutanoic acid ND 4.7 2058-94-8 Perfluoroundecanoic acid ND 1.9 Perfluorododecanoic acid 307-55-1 1.9 ND 27619-97-2 6:2 Fluorotelomer sulfonic acid ND 4.7 39108-34-4 8:2 Fluorotelomer sulfonic acid ND 2.8

2706-90-3

Perfluoropentanoic acid

1.3 J

Use these results

FORM I PFAS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: 410-82166-1
SDG No.:	
Client Sample ID: DSI-3 042722 RE	Lab Sample ID: <u>410-82166-4 RE</u>
Matrix: Water	Lab File ID: 22MAY10-44.d
Analysis Method: 537 IDA	Date Collected: 04/27/2022 14:25
Extraction Method: 537 IDA	Date Extracted: 05/09/2022 08:14
Sample wt/vol: 315.3(mL)	Date Analyzed: 05/10/2022 16:20
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 3(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 253572	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	3.4		1.6	0.40
375-85-9	Perfluoroheptanoic acid	3.0		1.6	0.40
335-67-1	Perfluorooctanoic acid	8.1		1.6	0.40
375-95-1	Perfluorononanoic acid	ND		1.6	0.40
335-76-2	Perfluorodecanoic acid	ND		1.6	0.40
72629-94-8	Perfluorotridecanoic acid	ND		1.6	0.40
376-06-7	Perfluorotetradecanoic acid	ND		1.6	0.40
375-73-5	Perfluorobutanesulfonic acid	5.6		1.6	0.40
355-46-4	Perfluorohexanesulfonic acid	ND		1.6	0.40
1763-23-1	Perfluorooctanesulfonic acid	4.2		1.6	0.40
2991-50-6	NEtFOSAA	ND		2.4	0.40
2355-31-9	NMeFOSAA	ND		1.6	0.48
375-92-8	Perfluoroheptanesulfonic acid	ND		1.6	0.40
335-77-3	Perfluorodecanesulfonic acid	ND		1.6	0.40
754-91-6	Perfluorooctanesulfonamide	1.1	J	1.6	0.40
375-22-4	Perfluorobutanoic acid	5.3		4.0	1.6
2058-94-8	Perfluoroundecanoic acid	ND		1.6	0.40
307-55-1	Perfluorododecanoic acid	ND		1.6	0.40
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		4.0	1.6
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		2.4	0.79
2706-90-3	Perfluoropentanoic acid	3.2		1.6	0.40

Use the RE results - not this one

 \backslash

FORM I PFAS ORGANICS ANALYSIS DATA SHEET

Client Sample ID:DSI-3042722Lab Sample ID:410-82166-4Matrix:WaterLab File ID:22MAY12-39.dAnalysis Method:537 IDADate Collected:04/27/2027Extraction Method:537 IDADate Extracted:05/11/2022Sample wt/vol:316.1 (mL)Date Analyzed:05/12/2022Con.Extract Vol.:1 (mL)Dilution Factor:1Injection Volume:6 (uL)GC Column:GeminiC18 50mmID:3 (mm)	\backslash						
Client Sample ID: DSI-3 042722 Lab Sample ID: 410-82166-4 Matrix: Wate Lab File ID: 22MAY12-39.d Analysis Methol: 537 IDA Date Collected: 04/27/2022 14:25 Sample wt/vol: 3161 (mL) Date Extracted: 05/11/022 10:09 Sample wt/vol: 3161 (mL) Date Extracted: 05/12/022 23:24 Con. Extract Vol.: 1 NL) Dilution Factor: 1 Injection Volume: 6 (uL) GC Column: Gemin C18 50mm ID: 3 (mm) % Moisture: % olids: Cleanup Factor:	\		Job No.: 410-82166-1				
Matrix: <t< td=""><td>SDG No.</td><td></td><td></td><td>/</td><td>/</td></t<>	SDG No.			/	/		
Analysis Methol: 537 IDA Date Collected: 04/27/202 14:25 Extraction Methol: 537 IDA Date Extracted: 05/11/022 10:09 Sample wt/vol: 3161 (mL) Date Analyzed: 05/12/022 23:24 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 6 (uL) GC Column: Gemini C18 50mm ID: 3 (mm) % Moisture: % tolids: GPC Cleanup: (Y N) N Cleanup Factor:	Client Sample ID: DSI-3 042722 Lak		Lab Sample ID: 410-821	b Sample ID: 410-82166-4			
Extraction Methol: 537 IDADate Extracted: 05/11/022 10:09Sample wt/vol: 316 1(mL)Date Analyzed: 05/12/2022 23:24Con. Extract Vol.: 1 NL)Date Analyzed: 05/12/2022 23:24Injection Volume: 6(uL)GC Column: Gemin C18 50mm ID: 3(mm)% Moisture:% tolids:GC Column: Gemin C18 50mm ID: 3(mm)GC Calump Factor:Analysis Batch No.: 254704Units: ng/L307-24-4Perfluorohexanoic acid315-95-9Perfluorohexanoic acid375-95-9Perfluorohexanoic acid375-95-9Perfluorohexanoic acid375-95-1Perfluorononoic acid375-95-2Perfluorononoic acid375-95-3Perfluorohexanoic acid376-07-1Perfluorononoic acid375-95-3Perfluoronotic acid376-06-7Perfluoronotic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanoic acid376-06-7Perfluorotidecanesulfonic acid376-06-7Perfluorotidecanesulfonic acid376-06-7Perfluorotidecanesulfonic acid376-06-7Perfluorotidecanesulfonic acid376-06-7Perfluorotidecanesulfonic acid376-06-7Perfluorotidecanesulfonic acid376-06-8 </td <td colspan="2">Matrix: Water Lak</td> <td>Lab File ID: 22MAY12-3</td> <td colspan="4">ab File ID: 22MAY12-39.d</td>	Matrix: Water Lak		Lab File ID: 22MAY12-3	ab File ID: 22MAY12-39.d			
Sample wt/vol: 3161 (mL) Date Analyzed: 05/12/022 23:24 Con. Extract Vol.: 1 (mL) Dilution Factor: 1 Injection Volume: 6 (uL) GC Column: Gemini C18 50mm ID: 3(mm) % Moisture: % tolids: GPC Cleanup: (Y N) N Cleanup Factor:	Analysis Method: 537 IDA Dat		ate Collected: 04/27/202/ 14:25				
Con. Extract Vol.: 1 (L) Dilution Factor: 1 Injection Volume: 6 (uL) GC Column: Gemin Cl8 50mm ID: 3(mm) % Moisture: GPC Cleanup: (Y N) N Cleanup Factor: Units: ng/L Analysis Batch No.: 254704 Units: ng/L CAS NO. COMPOUND NAME PESULT Q RL MDL 307-24-4 Perfluorohexanoic acid 3.8 1.6 0.40 375-85-9 Perfluorohexanoic acid 2.4 1.6 0.40 335-67-1 Perfluorononanoic acid ND 1.6 0.40 335-76-2 Perfluorononanoic acid ND 1.6 0.40 375-994-8 Perfluorotetradecanoic acid ND 1.6 0.40 375-06-7 Perfluorotetradecanoic acid ND 1.6 0.40 375-91-8 Perfluorotetradecanoic acid ND 1.6 0.40 375-92-9 Perfluorotetradecanoic acid ND 1.6 0.40 375-93-9 Perfluorotetradecanoic acid ND 1.6 0.40 375-94 Perfluorotetradecanoic acid ND 1.6 0.40 375-92-8 <t< td=""><td colspan="2">Extraction Method: 537 IDA Dat</td><td>Date Extracted: 05/11</td><td colspan="4">ate Extracted: 05/11/2022 10:09</td></t<>	Extraction Method: 537 IDA Dat		Date Extracted: 05/11	ate Extracted: 05/11/2022 10:09			
Injection Volume:6(uL)GC Column:Gemini C18 50mm ID: 3(mm)% Moisture:* Kolids:GPC Cleanup:(YN) NCleanup Factor:Analysis Batch No.:254704Units: ng/.CAS NO.COMPOUND NAMEPESULTQRLMD1307-24-4Perfluorohexanoic acid3.81.607-24-4Perfluorohexanoic acid2.41.6335-67-1Perfluoronanoic acid8.51.6335-76-2Perfluoronanoic acidND1.6076-06-7Perfluorotridecanoic acidND1.6076-07-7Perfluorotridecanoic acidND1.6076-06-7Perfluorotridecanoic acidND1.6076-06-7Perfluorotridecanoic acidND1.6076-06-7Perfluorotridecanoic acidND1.6076-06-7Perfluorotridecanoic acidND1.6076-06-7Perfluorotridecanoic acidND1.6076-06-7Perfluorotridecanoic acidND1.6075-31-9Perfluoroctanesulfonic acidND1.6075-32-8Perfluorotridecanoic acidND1.6075-92-8Perfluorohexanesulfonic acidND1.6075-92-8Perfluorohexanesulfonic acidND1.6075-92-8Perfluorohexanesulfonic acidND1.6075-92-8Perfluorohexanesulfonic acidND1.6075-24Perfluorohexanesulfonic acidND1.6 <td colspan="2">Sample wt/vol: 316 (mL) Dat</td> <td>Date Analyzed: 05/12/2</td> <td colspan="4">ate Analyzed: 05/12/2022 23:24</td>	Sample wt/vol: 316 (mL) Dat		Date Analyzed: 05/12/2	ate Analyzed: 05/12/2022 23:24			
% Moisture: % tolids: GFC Cleanup: (Y N) N Cleanup Factor:	Con. Extract Vol.: 1(mL) Dil		Dilution Factor: 1	lution Factor: 1			
Cleanup Factor:Analysis Batch No.: 254704Units: ng/LCAS NO.COMPOUND NAMEPESULTQRLMDL307-24-4Perfluorohexanoic acid3.81.60.40375-85-9Perfluoroheptanoic acid2.41.60.40335-67-1Perfluoroctanoic acid8.51.60.40357-95-1Perfluorononancic acidND1.60.40357-62Perfluorotridecanoic acidND1.60.4072629-94-8Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotridecanoic acidND1.60.40375-92-8Perfluorotridecanoic acidND1.60.40235-71-9NMEFOSAAND1.60.40355-71-9Perfluoroheptanesulfonic acidND1.60.40355-71-8Perfluoroheptanesulfonic acidND1.60.40355-22-4Perfluoroheptanesulfonic acidND1.60.40375-92-8Perfluorobutanic acidND1.60.40355-71-9Perfluoroheptanesulfonic acidND1.60.40355-71-9Perfluoroheptanesulfonic acidND1.60.40355-71-1 <td colspan="2">Injection Volume: 6(uL) GC</td> <td colspan="4">C Column: <u>Gemini C18 50mm</u> ID: <u>3(mm)</u></td>	Injection Volume: 6(uL) GC		C Column: <u>Gemini C18 50mm</u> ID: <u>3(mm)</u>				
Analysis Batch No.: 254704Units: ng/2CAS NO.COMPOUND NAMEBESULTQRLMDL307-24-4Perfluorohexanoic acid3.81.60.40375-85-9Perfluoroheptanoic acid2.41.60.40335-67-1Perfluorononanoic acid8.51.60.40335-76-2Perfluorononanoic acidND1.60.40335-76-2Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotridecanoic acidND1.60.40375-73-5Perfluorotetradecanoic acidND1.60.40355-46-4Perfluorohexanesulfonic acid3.91.60.401763-23-1Perfluorobexanesulfonic acid3.91.60.402355-31-9NMEFOSAAND1.60.40355-31-9Perfluoroheptanesulfonic acidND1.60.40355-77-3Perfluoroheptanesulfonic acidND1.60.40355-71-9Perfluoroheptanesulfonic acidND1.60.40355-71-9Perfluoroheptanesulfonic acidND1.60.40355-72-4Perfluoroheptanesulfonic acidND1.60.40355-73-5Perfluoroheptanesulfonic acidND1.60.40355-71-9Perfluoroheptanesulfonic acidND1.60.40355-72-4Perfluoroheptanesulfonic acidND1.60.40355-73-5Perfluorohe	<pre>% Moisture: % Solids: GP</pre>		PC Cleanup:(Y_N) N				
CAS NO. COMPOUND NAME BESULT Q RL MDL 307-24-4 Perfluorohexanoic acid 3.8 1.6 0.40 375-85-9 Perfluoroheptanoic acid 2.4 1.6 0.40 375-85-9 Perfluoroheptanoic acid 2.4 1.6 0.40 375-85-9 Perfluoroctanoic acid ND 1.6 0.40 375-95-1 Perfluoronnanoic acid ND 1.6 0.40 35-76-2 Perfluorotdecanoic acid ND 1.6 0.40 72629-94-8 Perfluorotdecanoic acid ND 1.6 0.40 376-06-7 Perfluorotderadecanoic acid ND 1.6 0.40 375-73-5 Perfluorobexanesulfonic acid ND 1.6 0.40 355-46-4 Perfluorobexanesulfonic acid ND 1.6 0.40 2355-31-9 NeFOSAA ND 2.4 0.40 2355-31-9 NeFOSAA ND 1.6 0.40 355-71-8 Perfluoroheptanesulfonic acid ND	Cleanup Fact	or:					
307-24-4 Perfluorohexanoic acid 3.8 1.6 0.40 375-85-9 Perfluoroheptanoic acid 2.4 1.6 0.40 335-67-1 Perfluoroctanoic acid 8.5 1.6 0.40 375-95-1 Perfluorononanoic acid ND 1.6 0.40 355-67-2 Perfluorodecanoic acid ND 1.6 0.40 355-76-2 Perfluorodecanoic acid ND 1.6 0.40 376-95-1 Perfluorotetradecanoic acid ND 1.6 0.40 376-06-7 Perfluorotetradecanoic acid ND 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid 5.5 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid ND 1.6 0.40 1763-23-1 Perfluorobetanesulfonic acid ND 2.4 0.40 2991-50-6 NEtFOSAA ND 1.6 0.40 2355-31-9 NMeFOSAA ND 1.6 0.40 335-77-3 Perfluorobetanesulfonic acid ND	Analysis Bat	ch No.: 254704	Units: ng/L				
375-85-9 Perfluoroheptanoic acid 2.4 1.6 0.40 335-67-1 Perfluorooctanoic acid 8.5 1.6 0.40 375-95-1 Perfluoronanoic acid ND 1.6 0.40 335-76-2 Perfluorodecanoic acid ND 1.6 0.40 72629-94-8 Perfluorotridecanoic acid ND 1.6 0.40 375-76-2 Perfluorotridecanoic acid ND 1.6 0.40 375-78-5 Perfluorotetradecanoic acid ND 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid 5.5 1.6 0.40 375-73-5 Perfluorobexanesulfonic acid ND 1.6 0.40 375-73-5 Perfluorobexanesulfonic acid ND 1.6 0.40 291-50-6 NEtFOSAA ND 2.4 0.40 2355-31-9 NMeFOSAA ND 1.6 0.40 335-77-3 Perfluorobeptanesulfonic acid ND 1.6 0.40 375-92-8 Perfluoroctanesulfonic acid ND	CAS NO.	COMPOUND NAME	RESULT Q	RL	MDL		
335-67-1 Perfluorootanoic acid 8.5 1.6 0.40 375-95-1 Perfluoronnanoic acid ND 1.6 0.40 335-76-2 Perfluorodecanoic acid ND 1.6 0.40 72629-94-8 Perfluorotridecanoic acid ND 1.6 0.40 76-06-7 Perfluorotetradecanoic acid ND 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid ND 1.6 0.40 355-46-4 Perfluorobexanesulfonic acid ND 1.6 0.40 375-73-5 Perfluorobexanesulfonic acid ND 1.6 0.40 355-46-4 Perfluorobexanesulfonic acid 3.9 1.6 0.40 355-46-4 Perfluorobexanesulfonic acid 3.9 1.6 0.40 291-50-6 NEFOSAA ND 2.4 0.40 2355-31-9 NMeFOSAA ND 1.6 0.40 335-77-3 Perfluorobetanesulfonic acid ND 1.6 0.40 375-92-8 Perfluorobatangic acid ND	307-24-4	Perfluorohexanoic acid	3.8	1.6	0.40		
375-95-1 Perfluoronanoic acid ND 1.6 0.40 335-76-2 Perfluorodecanoic acid ND 1.6 0.40 72629-94-8 Perfluorotridecanoic acid ND 1.6 0.40 376-06-7 Perfluorotetradecanoic acid ND 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid 5.5 1.6 0.40 355-46-4 Perfluorobexanesulfonic acid ND 1.6 0.40 1763-23-1 Perfluorobexanesulfonic acid 3.9 1.6 0.40 2991-50-6 NEtFOSAA ND 2.4 0.40 2355-31-9 NMeFOSAA ND 1.6 0.40 335-77-3 Perfluorobeptanesulfonic acid ND 1.6 0.40 335-77-3 Perfluorobetanesulfonic acid ND 1.6 0.40 375-92-8 Perfluorobetanesulfonic acid ND 1.6 0.40 375-92-8 Perfluorobetanesulfonic acid ND 1.6 0.40 375-92-4 Perfluorobetanesifonamide ND	375-85-9	Perfluoroheptanoic acid	2.4	1.6	0.40		
335-76-2 Perfluorodecanoic acid ND 1.6 0.40 72629-94-8 Perfluorotridecanoic acid ND 1.6 0.40 376-06-7 Perfluorotetradecanoic acid ND 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid 5.5 1.6 0.40 355-46-4 Perfluorobexanesulfonic acid ND 1.6 0.40 1763-23-1 Perfluoroctanesulfonic acid 3.9 1.6 0.40 2991-50-6 NEtFOSAA ND 2.4 0.40 2355-31-9 NMeFOSAA ND 1.6 0.40 335-77-3 Perfluoroheptanesulfonic acid ND 1.6 0.40 335-77-3 Perfluoroheptanesulfonic acid ND 1.6 0.40 335-77-3 Perfluoroheptanesulfonic acid ND 1.6 0.40 375-92-8 Perfluorobutancic acid ND 1.6 0.40 375-92-4 Perfluorobutancic acid ND 1.6 0.40 375-22-4 Perfluorobutancic acid ND	335-67-1	Perfluorooctanoic acid	8.5	1.6	0.40		
72629-94-8 Perfluorotridecanoic acid ND 1.6 0.40 376-06-7 Perfluorotetradecanoic acid ND 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid S.5 1.6 0.40 355-46-4 Perfluorobexanesulfonic acid S.5 1.6 0.40 1763-23-1 Perfluorobexanesulfonic acid ND 1.6 0.40 2991-50-6 NEtFOSAA ND 2.4 0.40 2355-31-9 NMeFOSAA ND 1.6 0.40 335-77-3 Perfluorobeptanesulfonic acid ND 1.6 0.40 335-77-3 Perfluorobeptanesulfonic acid ND 1.6 0.40 335-77-3 Perfluorobeptanesulfonic acid ND 1.6 0.40 375-92-8 Perfluorobecanesulfonic acid ND 1.6 0.40 375-92-8 Perfluorobecanesulfonic acid ND 1.6 0.40 375-92-8 Perfluorobecanesulfonic acid ND 1.6 0.40 375-92-4 Perfluorobecanoic acid	375-95-1	Perfluorononanoic acid	ND	1.6	0.40		
376-06-7 Perfluorotetradecanoic acid ND 1.6 0.40 375-73-5 Perfluorobutanesulfonic acid 5.5 1.6 0.40 355-46-4 Perfluorohexanesulfonic acid ND 1.6 0.40 1763-23-1 Perfluoroctanesulfonic acid 3.9 1.6 0.40 2991-50-6 NEtFOSAA ND 2.4 0.40 2355-31-9 NMeFOSAA ND 1.6 0.40 335-77-3 Perfluoroheptanesulfonic acid ND 1.6 0.40 335-77-3 Perfluoroheptanesulfonic acid ND 1.6 0.40 375-92-8 Perfluoroheptanesulfonic acid ND 1.6 0.40 335-77-3 Perfluoroheptanesulfonic acid ND 1.6 0.40 754-91-6 Perfluorobutancic acid ND 1.6 0.40 375-22-4 Perfluorobutancic acid MD 1.6 0.40 307-55-1 Perfluorodopecanoic acid ND 1.6 0.40 307-55-1 Perfluorotelomer sulfonic acid	335-76-2	Perfluorodecanoic acid	ND	1.6	0.40		
375-73-5Perfluorobutanesulfonic acid5.51.60.40355-46-4Perfluorohexanesulfonic acidND1.60.401763-23-1Perfluoroctanesulfonic cid3.91.60.402991-50-6NEtFOSAAND2.40.402355-31-9NMeFOSAAND1.60.40335-77-3Perfluoroheptanesulfonic acidND1.60.40335-77-3Perfluoroheptanesulfonic acidND1.60.40375-22-4Perfluorobutanesulfonic acidND1.60.40375-22-4PerfluorobutanesclifonamideND1.60.40307-55-1Perfluorodoceanoic acidND1.60.40307-55-1Perfluorodoceanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79	72629-94-8	Perfluorotridecanoic acid	ND	1.6	0.40		
355-46-4Perfluorohexanesulfonic acidND1.60.401763-23-1Perfluorooctanesulfonic acid3.91.60.402991-50-6NEtFOSAAND2.40.402355-31-9NMeFOSAAND1.60.47375-92-8Perfluoroheptanesulfonic acidND1.60.40335-77-3Perfluorodecanesulfonic acidND1.60.40754-91-6Perfluorooctanesulfonic acidND1.60.40375-22-4Perfluorobutancic acidND1.60.40307-55-1Perfluorodecanoic acidND1.60.40307-55-1Perfluorodecanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79	376-06-7	Perfluorotetradecanoic acid	ND	1.6	0.40		
1763-23-1Perfluorooctanesulfonic (cid3.91.60.402991-50-6NEtFOSAAND2.40.402355-31-9NMeFOSAAND1.60.47375-92-8Perfluoroheptanesulfonic acidND1.60.40335-77-3Perfluorodecanesulfonic acidND1.60.40754-91-6PerfluorooctanesulfonamideND1.60.40375-22-4Perfluorobutancic acid4.54.01.62058-94-8Perfluorodecanoic acidND1.60.40307-55-1Perfluorodecanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79	375-73-5	Perfluorobutanesulfonic acid	5.5	1.6	0.40		
2991-50-6NEtFOSAAND2.40.402355-31-9NMeFOSAAND1.60.47375-92-8Perfluoroheptanesulfonic acidND1.60.40335-77-3Perfluorodecanesulfonic acidND1.60.40754-91-6PerfluorooctanesulfonamideND1.60.40375-22-4Perfluorobutancic acid4.54.01.62058-94-8Perfluoroundecanoic acidND1.60.40307-55-1Perfluorodecanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79	355-46-4	Perfluorohexanesulfonic acid	ND	1.6	0.40		
2355-31-9NMeFOSAAND1.60.47375-92-8Perfluoroheptanesulfonic acidND1.60.40335-77-3Perfluorodecanesulfonic acidND1.60.40754-91-6PerfluorooctanesulfonamideND1.60.40375-22-4Perfluorobutancic acid4.54.01.62058-94-8Perfluoroundecanoic acidND1.60.40307-55-1Perfluorodecanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79	1763-23-1	Perfluorooctanesulfonic acid	3.9	1.6	0.40		
375-92-8Perfluoroheptanesulfonic acidND1.60.40335-77-3Perfluorodecanesulfonic acidND1.60.40754-91-6PerfluorooctanesulfonamideNI1.60.40375-22-4Perfluorobutancic acid4.54.01.62058-94-8Perfluoroundecanoic acidND1.60.40307-55-1Perfluorodotecanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79	2991-50-6	NETFOSAA	ND	2.4	0.40		
335-77-3Perfluorodecanesultonic acidND1.60.40754-91-6PerfluorooctanesultonamideND1.60.40375-22-4Perfluorobutancic acid4.54.01.62058-94-8Perfluoroundecanoic acidND1.60.40307-55-1Perfluorodotecanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79	2355-31-9	NMEFOSAA	ND	1.6	0.47		
754-91-6PerfluorooctanesalfonamideND1.60.40375-22-4Perfluorobutancic acid4.54.01.62058-94-8Perfluoroundecanoic acidND1.60.40307-55-1Perfluorodosecanoic acidND1.60.4027619-97-26:2 Fluorotelomer sulfonic acidND4.01.639108-34-48:2 Fluorotelomer sulfonic acidND2.40.79			ND	1.6	0.40		
375-22-4 Perfluorobutancic acid 4.5 4.0 1.6 2058-94-8 Perfluoroundecanoic acid ND 1.6 0.40 307-55-1 Perfluorododecanoic acid ND 1.6 0.40 27619-97-2 6:2 Fluorotelomer sulfonic acid ND 4.0 1.6 39108-34-4 8:2 Fluorotelomer sulfonic acid ND 2.4 0.79	335-77-3	Perfluorodecanesulfonic acid	ND ND	1.6	0.40		
2058-94-8 Perfluoroundecanoic acid ND 1.6 0.40 307-55-1 Perfluorododecanoic acid ND 1.6 0.40 27619-97-2 6:2 Fluorotelomer sulfonic acid ND 4.0 1.6 39108-34-4 8:2 Fluorotelomer sulfonic acid ND 2.4 0.79	754-91-6	Perfluorooctanesalfonamide	ND	1.6	0.40		
307-55-1 Perfluorodogecanoic acid ND 1.6 0.40 27619-97-2 6:2 Fluorotelomer sulfonic acid ND 4.0 1.6 39108-34-4 8:2 Fluorotelomer sulfonic acid ND 2.4 0.79	375-22-4		4.5	4.0	1.6		
27619-97-2 6:2 Fluor telomer sulfonic acid ND 4.0 1.6 39108-34-4 8:2 Fluor otelomer sulfonic acid ND 2.4 0.79	2058-94-8	Perfluorounde canoic acid	ND ND	1.6	0.40		
39108-34-48:2 Flugrotelomer sulfonic acidND2.40.79	307-55-1	Perfluorodo ecanoic acid	ND ND	1.6	0.40		
	27619-97-2	6:2 Fluor telomer sulfonic acid	ND ND	4.0	1.6		
2706-90-3 Perflueropentanoic acid 3.4 1.6 0.40	39108-34-4	8:2 Fluorotelomer sulfonic acid	ND	2.4	0.79		
	2706-90-3	Perflueropentanoic acid	3.4	1.6	0.40		

FORM I 537 IDA

Use these results

FORM I PFAS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: <u>410-82166-1</u>		
SDG No.:			
Client Sample ID: DSI-6 042722 RE	Lab Sample ID: <u>410-82166-5 RE</u>		
Matrix: Water	Lab File ID: 22MAY10-45.d		
Analysis Method: 537 IDA	Date Collected: 04/27/2022 14:25		
Extraction Method: 537 IDA	Date Extracted: 05/09/2022 08:14		
Sample wt/vol: 271.6(mL)	Date Analyzed: 05/10/2022 16:31		
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1		
Injection Volume: <u>3(uL)</u>	GC Column: Gemini C18 50mm ID: 3(mm)		
% Moisture: % Solids:	GPC Cleanup:(Y/N) N		
Cleanup Factor:			
Analysis Batch No.: 253572	Units: ng/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	1.5	J	1.8	0.46
375-85-9	Perfluoroheptanoic acid	0.96	NJ	1.8	0.46
335-67-1	Perfluorooctanoic acid	2.1		1.8	0.46
375-95-1	Perfluorononanoic acid	ND		1.8	0.46
335-76-2	Perfluorodecanoic acid	ND		1.8	0.46
72629-94-8	Perfluorotridecanoic acid	ND		1.8	0.46
376-06-7	Perfluorotetradecanoic acid	ND		1.8	0.46
375-73-5	Perfluorobutanesulfonic acid	8.3		1.8	0.46
355-46-4	Perfluorohexanesulfonic acid	ND		1.8	0.46
1763-23-1	Perfluorooctanesulfonic acid	1.3	J	1.8	0.46
2991-50-6	NEtFOSAA	ND		2.8	0.46
2355-31-9	NMeFOSAA	ND		1.8	0.55
375-92-8	Perfluoroheptanesulfonic acid	ND		1.8	0.46
335-77-3	Perfluorodecanesulfonic acid	ND		1.8	0.46
754-91-6	Perfluorooctanesulfonamide	ND		1.8	0.46
375-22-4	Perfluorobutanoic acid	1.9	J	4.6	1.8
2058-94-8	Perfluoroundecanoic acid	ND		1.8	0.46
307-55-1	Perfluorododecanoic acid	ND		1.8	0.46
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		4.6	1.8
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		2.8	0.92
2706-90-3	Perfluoropentanoic acid	1.5	J	1.8	0.46

Use the RE results - not this one FORM I PFAS ORGANICS ANALYSIS DATA SHEET Lab Name: Eurofins Lancaster Laboratories Job No.: 410-82166-1 Environment Testing, LLC SDG No. Client Sample ID: DSI-6 042722 Lab Sample ID: 410-82166-5 Lab File ID: 22MAY12-40.d Matrix: Water 1/4:25 Analysis Method: 537 IDA Date Collected: 04/27/2022 Extraction Method: 537 IDA Date Extracted: 05/11/202 10:09 Sample wt/vol: 279 \5 (mL) Date Analyzed: 05/12/2022 23:35 Con. Extract Vol.: 1 (mL) Dilution Factor: 1 Injection Volume: 6(uL) GC Column: Gemini C1/8 50mm ID: 3(mm) % Moisture: 8 Solids: GPC Cleanup: (Y/N) /N Cleanup Factor: Units: ng/L Analysis Batch No.: 254704 COMPOUND NAME CAS NO. RESULT RL MDL Q 307-24-4 Perfluorohexanoic acid 1.5 J 1.8 0.45 375-85-9 Perfluoroheptanoic acid 0.70 1.8 0.45 J 335-67-1 Perfluorooctanoic acid 1.8 0.45 2.4 375-95-1 Perfluorononanoic acid ND 1.8 0.45 335-76-2 Perfluorodecanoic acid 0.45 ND 1.8 72629-94-8 Perfluorotridecanoic acid ND 1.8 0.45 376-06-7 Perfluorotetradecanoic acid ND 0.45 1.8 375-73-5 Perfluorobutanesulfonic acid 8.0 1.8 0.45 355-46-4 Perfluorohexanesulfonic aci ND 1.8 0.45 1763-23-1 Perfluorooctanesulfonic ac id 1.2 1.8 0.45 J NEtFOSAA 2991-50-6 ND 2.7 0.45 2355-31-9 NMeFOSAA ND 1.8 0.54 375-92-8 Perfluoroheptanesulfonic acid 0.45 ND 1.8 335-77-3 Perfluorodecanesulfonic acid 1.8 0.45 NU Perfluorooctanesu/fonamide 754-91-6 ND 1.8 0.45 375-22-4 Perfluorobutanoic acid ND 4.5 1.8 2058-94-8 Perfluorounderanoic acid ND 1.8 0.45 307-55-1 Perfluorododecanoic acid ND 0.45 1.8 27619-97-2 6:2 Fluorotelomer sulfonic acid ND 4.5 1.8 39108-34-4 8:2 Fluorotelomer sulfonic acid 2.7 ND 0.89 2706-90-3 Perfluoropentanoic acid 1.9 0.45 1.8

Use these results

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: <u>410-82166-1</u>
SDG No.:	
Client Sample ID: DSI-4 042722 RE	Lab Sample ID: <u>410-82166-6 RE</u>
Matrix: Water	Lab File ID: 22MAY10-46.d
Analysis Method: 537 IDA	Date Collected: 04/27/2022 14:57
Extraction Method: 537 IDA	Date Extracted: 05/09/2022 08:14
Sample wt/vol: 287.1(mL)	Date Analyzed: 05/10/2022 16:43
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 3(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 253572	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	ND		1.7	0.44
375-85-9	Perfluoroheptanoic acid	6.2		1.7	0.44
335-67-1	Perfluorooctanoic acid	20		1.7	0.44
375-95-1	Perfluorononanoic acid	2.2		1.7	0.44
335-76-2	Perfluorodecanoic acid	ND		1.7	0.44
72629-94-8	Perfluorotridecanoic acid	ND		1.7	0.44
376-06-7	Perfluorotetradecanoic acid	ND		1.7	0.44
375-73-5	Perfluorobutanesulfonic acid	2.0		1.7	0.44
355-46-4	Perfluorohexanesulfonic acid	0.64	NJ	1.7	0.44
1763-23-1	Perfluorooctanesulfonic acid	3.1		1.7	0.44
2991-50-6	NEtFOSAA	ND		2.6	0.44
2355-31-9	NMeFOSAA	ND		1.7	0.52
375-92-8	Perfluoroheptanesulfonic acid	ND		1.7	0.44
335-77-3	Perfluorodecanesulfonic acid	ND		1.7	0.44
754-91-6	Perfluorooctanesulfonamide	ND		1.7	0.44
375-22-4	Perfluorobutanoic acid	12		4.4	1.7
2058-94-8	Perfluoroundecanoic acid	ND		1.7	0.44
307-55-1	Perfluorododecanoic acid	ND		1.7	0.44
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		4.4	1.7
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		2.6	0.87
2706-90-3	Perfluoropentanoic acid	4.2		1.7	0.44

Use the RE results - not this one

		FORM I		
PFAS	ORGANICS	ANALYSIS	DATA	SHEET

`		Job No.: 410-821	66-1										
\sim	vironment Testing, LLC												
SDG No.:													
Client Sample	e ID: DSI-4 042722	Lab Sample ID: <u>410-82166-6</u>											
Matrix: Water		Lab File ID: 22M	IAY12-4	11.d									
Analysis Meth	nod: 537 IDA	Date Collected:	04/27/	2022 14:57									
Extraction Me	ethod: 537 IDA	Date Extracted: 05/11/2022 10:09											
Sample wt/vol	.: 282.3 (QL)	Date Analyzed: 05/12/2022 23:46											
Con. Extract	Vol.: 1(mL	Dilution Factor: 1											
Injection Vol	.ume: 6(uL)	GC Column: Gemini C18 50mm ID: 3(mm)											
<pre>% Moisture:</pre>		GPC Cleanup:(Y/N	_/										
Cleanup Facto	pr:	/	/										
_		Units: ng/L											
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL								
307-24-4	Perfluorohexanoic acid	ND		1.8	0.44								
375-85-9	Perfluoroheptanoic acid	3.6		1.8	0.44								
335-67-1	Perfluorooctanoic acid	31		1.8	0.44								
375-95-1	Perfluorononanoic acid	2.7		1.8	0.44								
335-76-2	Perfluorodecanoic acid	ND ND		1.8	0.44								
72629-94-8	Perfluorotridecanoic acid	ND		1.8	0.44								
376-06-7	Perfluorotetradecanoic acid	ND		1.8	0.44								
375-73-5	Perfluorobutanesulfonic acid	1.9 N	J	1.8	0.44								
355-46-4	Perfluorohexanesulfonic acia	0.74 J		1.8	0.44								
1763-23-1	Perfluorooctanesulfonic acid	3.0		1.8	0.44								
2991-50-6	NEtFOSAA	ND		2.7	0.44								
2355-31-9	NMeFOSAA	ND		1.8	0.53								
375-92-8	Perfluoroheptanesul onic acid	ND		1.8	0.44								
335-77-3	Perfluorodecanesu/fonic acid	ND		1.8	0.44								
754-91-6	Perfluorooctanesulfonamide	ND		1.8	0.44								
375-22-4	Perfluorobutanoic acid	18	$\overline{}$	4.4	1.8								
2058-94-8	Perfluoroundecanoic acid	ND	$\overline{}$	1.8	0.44								
307-55-1	Perfluorodo decanoic acid	ND	$ \land $	1.8	0.44								
27619-97-2	6:2 Fluor telomer sulfonic acid	ND		4.4	1.8								
39108-34-4	8:2 Fluprotelomer sulfonic acid	ND		2.7	0.89								
2706-90-3	Perflyoropentanoic acid	4.7		1.8	0.44								
	/			<u>\</u>									

FD of MW-2N

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: <u>410-82166-1</u>
SDG No.:	
Client Sample ID: Dup-042722	Lab Sample ID: <u>410-82166-7</u>
Matrix: Water	Lab File ID: 22MAY12-42.d
Analysis Method: 537 IDA	Date Collected: 04/27/2022 00:00
Extraction Method: 537 IDA	Date Extracted: 05/11/2022 10:09
Sample wt/vol: 282.7(mL)	Date Analyzed: 05/12/2022 23:57
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 6(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 254704	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	8.5		1.8	0.44
375-85-9	Perfluoroheptanoic acid	2.1	NJ	1.8	0.44
335-67-1	Perfluorooctanoic acid	4.7		1.8	0.44
375-95-1	Perfluorononanoic acid	ND		1.8	0.44
335-76-2	Perfluorodecanoic acid	ND		1.8	0.44
72629-94-8	Perfluorotridecanoic acid	ND		1.8	0.44
376-06-7	Perfluorotetradecanoic acid	ND		1.8	0.44
375-73-5	Perfluorobutanesulfonic acid	120		1.8	0.44
355-46-4	Perfluorohexanesulfonic acid	ND		1.8	0.44
1763-23-1	Perfluorooctanesulfonic acid	1.8		1.8	0.44
2991-50-6	NETFOSAA	ND		2.7	0.44
2355-31-9	NMefosaa	ND		1.8	0.53
375-92-8	Perfluoroheptanesulfonic acid	ND		1.8	0.44
335-77-3	Perfluorodecanesulfonic acid	ND		1.8	0.44
754-91-6	Perfluorooctanesulfonamide	ND		1.8	0.44
375-22-4	Perfluorobutanoic acid	6.8		4.4	1.8
2058-94-8	Perfluoroundecanoic acid	ND		1.8	0.44
307-55-1	Perfluorododecanoic acid	ND		1.8	0.44
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		4.4	1.8
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		2.7	0.88
2706-90-3	Perfluoropentanoic acid	11		1.8	0.44

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: 410-82166-1
SDG No.:	
Client Sample ID: EB-042722	Lab Sample ID: <u>410-82166-8</u>
Matrix: Water	Lab File ID: 22MAY12-43.d
Analysis Method: 537 IDA	Date Collected: 04/27/2022 14:50
Extraction Method: 537 IDA	Date Extracted: 05/11/2022 10:09
Sample wt/vol: 277.1(mL)	Date Analyzed: 05/13/2022 00:08
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 6(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 254704	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	ND		1.8	0.45
375-85-9	Perfluoroheptanoic acid	ND		1.8	0.45
335-67-1	Perfluorooctanoic acid	ND		1.8	0.45
375-95-1	Perfluorononanoic acid	ND		1.8	0.45
335-76-2	Perfluorodecanoic acid	ND		1.8	0.45
72629-94-8	Perfluorotridecanoic acid	ND		1.8	0.45
376-06-7	Perfluorotetradecanoic acid	ND		1.8	0.45
375-73-5	Perfluorobutanesulfonic acid	ND		1.8	0.45
355-46-4	Perfluorohexanesulfonic acid	ND		1.8	0.45
1763-23-1	Perfluorooctanesulfonic acid	ND		1.8	0.45
2991-50-6	NEtFOSAA	ND		2.7	0.45
2355-31-9	NMeFOSAA	ND		1.8	0.54
375-92-8	Perfluoroheptanesulfonic acid	ND		1.8	0.45
335-77-3	Perfluorodecanesulfonic acid	ND		1.8	0.45
754-91-6	Perfluorooctanesulfonamide	ND		1.8	0.45
375-22-4	Perfluorobutanoic acid	ND		4.5	1.8
2058-94-8	Perfluoroundecanoic acid	ND		1.8	0.45
307-55-1	Perfluorododecanoic acid	ND		1.8	0.45
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		4.5	1.8
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		2.7	0.90
2706-90-3	Perfluoropentanoic acid	ND		1.8	0.45

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: 410-82166-1
SDG No.:	
Client Sample ID: AB-042722	Lab Sample ID: <u>410-82166-9</u>
Matrix: Water	Lab File ID: <u>22MAY12-81.d</u>
Analysis Method: 537 IDA	Date Collected: 04/27/2022 15:00
Extraction Method: 537 IDA	Date Extracted: 05/11/2022 10:09
Sample wt/vol: 291.3(mL)	Date Analyzed: 05/13/2022 07:10
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 6(uL)	GC Column: Gemini C18 50mm ID: 3(mm)
% Moisture: % Solids:	GPC Cleanup:(Y/N) N
Cleanup Factor:	
Analysis Batch No.: 254704	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	ND		1.7	0.43
375-85-9	Perfluoroheptanoic acid	ND		1.7	0.43
335-67-1	Perfluorooctanoic acid	ND		1.7	0.43
375-95-1	Perfluorononanoic acid	ND		1.7	0.43
335-76-2	Perfluorodecanoic acid	ND		1.7	0.43
72629-94-8	Perfluorotridecanoic acid	ND		1.7	0.43
376-06-7	Perfluorotetradecanoic acid	ND		1.7	0.43
375-73-5	Perfluorobutanesulfonic acid	ND		1.7	0.43
355-46-4	Perfluorohexanesulfonic acid	ND		1.7	0.43
1763-23-1	Perfluorooctanesulfonic acid	ND		1.7	0.43
2991-50-6	NEtFOSAA	ND		2.6	0.43
2355-31-9	NMeFOSAA	ND		1.7	0.51
375-92-8	Perfluoroheptanesulfonic acid	ND		1.7	0.43
335-77-3	Perfluorodecanesulfonic acid	ND		1.7	0.43
754-91-6	Perfluorooctanesulfonamide	ND		1.7	0.43
375-22-4	Perfluorobutanoic acid	ND		4.3	1.7
2058-94-8	Perfluoroundecanoic acid	ND		1.7	0.43
307-55-1	Perfluorododecanoic acid	ND		1.7	0.43
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		4.3	1.7
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		2.6	0.86
2706-90-3	Perfluoropentanoic acid	ND		1.7	0.43

ATTACHMENT B

SUPPORT DOCUMENTATION

Chain of Custody Record

Fovoorment Testing America

0-82166 Chain of Custody	Sampler	5 Fren	da	Lab		• A	anda					Camer	r Tracking No(s) COC No. 410-55203-15564 1						
URITR CURREL	Phone	860-38		E-M	ail									State of Oppin					
Mr. Chris French Company	>10*	80.38	D S	Am	anda	Ban	hart(@et.e					Nell York Page 1 of 2					_	
AECOM	Due Date Request		<u> </u>			Analysis I						ueste	d						
Address 40 British American Blvd																	Preservation Codes	: A - Hexane	
City Latham	TAT Requested (days): Stunderd					1.9										20-	B - NaOH N	I - None) - AsNaO2	
State, Zip NY, 12110	Compliance Proje	rt. A Yes	A No		8											22	D - Nitric Acid F	- Na2O4S	
Phone:	PO #		1		-8											12	F - MeOH F	- Na2S2O3 - H2SO4	
518-951-2204(Tel) Email	Purchase Order	Requested		<u> </u>	No)											2	H - Ascorbic Acid T	- TSP Dodecahyd J - Acetone	rate
chris french@aecom.com				1	S OF	2										20	J - DI Water V	/ - MCAA V - pH 4-5	
Project Name PFAS in Water	Project #: 41010488				• (Ye													- other (specify)	
Site DST Pustenkill	SSOW#					21 PFAS									of côn	Other:			
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=wastaloid, BT=Tissue, A=Ab	Ejeld Filtered	literar Abs	PFC_IDA - NY									Total Number	Special Inst	ructions/Note:	
		\sim	Preserva	ation Code:	X	\times i	J.a. P.			alarida kal	41	1			at an	X			en Gran
MW-2N 042722	4/27/22	1125	G	W	N		×			•						$\mathcal{O}_{1}^{(1)}$			
MW-1 042722		1235				Y											Extra volume ns/ns	rd collected	ter
DSI-1 042722		1305			1/1														
DSJ-3 042722:		1425	•																
DSI-6 042722 '		1425																	
·DSI-4 042722		1457							•	-						1.4			
Dwp-042722		• -							-							en d			
EB-042722		1450				•													
AB-042722		1500	V		V		V		Ľ										
Possible Hazard Identification						Sam				fee ma	y be a	ss esse	d if sa	mples			d longer than 1 m		
Non-Hazard Flammable Skin Irritant Pois Deliverable Requested: I, II, III, IV, Other (specify)	on B 📉 Unkn	own	Radiologica	1	-	Spec			o Clier ions/Q	C Requ	ireme)isposa	i By La	b	A	\rchi\	ve For	_ Months	
Empty Kit Relinquished by		Date:			Tin						-		ethod of s	Shipmen	t	_	,		
Relinquished by:	Date/Time			Company	1		Receive	d by	1	40	1	N.	/	Date/Tir	ne	. 1		Company	
Relinouished by	Date/Time Date/Time		440	Company	1	F	Receive	d by:	hi	il f	To	N		Date/Tir		5/2		Company AEUSA Company	
Relinquished by	Date/Time		642	A E St.	110	F	posite	y d by		nde				Daler		203	12/641	E En	_
Tan Runden	4/28/	22	1700	Company	F			5	raturel) "C and C)ther R	marks		-1	2011		- 10221	EUVE	
Custody Seals Intact: Custody Seal No.: 2004	513					ľ	_			,					1.	9	. J.	Ver 01/16/2019	_

Receipt

The samples were received on 4/29/2022 10:13 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.9°C

PFAS

Method PFC_IDA: The recovery for the labeled isotope(s) in the following samples: MW-2N 042722 (410-82166-1), DSI-1 042722 (410-82166-3), Dup-042722 (410-82166-7) and EB-042722 (410-82166-8) is outside the QC acceptance limits. Since the recovery is high and the native analyte is not detected in the sample, the data is reported.

Method PFC_IDA: The recovery for the labeled isotope(s) in the following sample: DSI-3 042722 (410-82166-4) is outside the QC acceptance limits. The following action was taken: This sample was re-extracted within the required holding time and the recovery for labeled isotope(s) was within QC acceptance limits. However, target analytes were detected in the re-extracted method blank.

Method PFC_IDA: The recovery for labeled isotope: d5-NEtFOSAA is outside the QC acceptance limits in the opening and closing continuing calibration verification standards. Since the recovery for the labeled isotope is within QC limits in the following sample(s): AB-042722 (410-82166-9), the data is reported.

Method PFC_IDA: The recovery for the injection standard peak area(s) and the sample labeled isotope(s) is outside of QC acceptance limits for the following sample: DSI-4 042722 (410-82166-6). The following action was taken: This sample was re-extracted within the method holding time and the recovery for the injection standard peak area(s) was within the QC acceptance limits. However, the sample labeled isotope(s) was again outside of QC acceptance limits and target analyte(s) were detected in the re-extracted method blank.

Method PFC_IDA: The recovery for the injection standard peak area(s) and the sample labeled isotope(s) is outside of QC acceptance limits for the following sample: DSI-6 042722 (410-82166-5). The following action was taken: This sample was re-extracted within the method holding time and the recovery for the injection standard peak area(s) was within the QC acceptance limits. However, the sample labeled isotope(s) was again outside of QC acceptance limits and target analyte(s) were detected in the re-extracted method blank.

Method PFC_IDA: The recovery for labeled isotope(s) in the background sample: MW-1 042722 (410-82166-2) is within of QC acceptance limits. However, the recovery for the labeled isotope(s) in the associated matrix spike and matrix spike duplicate samples is outside of the QC acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Level: Low

Lab Name: Eurofins Lancaster Laboratories Job No.: 410-82166-1

SDG No.:

Matrix: Water

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFBA	#	PFPeA	#	C3PFB	s #	13C5PH	ia #	СЗРЕН	S #	C4PFH	A #	M262F	TS #	C8PFO	A #
MW-2N 042722	410-82166-1	114	cn	87	cn	112	cn	108	cn	163	cn	140	cn	430	*5+ cn	116	cn
MW-1 042722	410-82166-2	128	cn	139	cn	144	cn	141	cn	134	cn	139	cn	166	-	121	cn
DSI-1 042722	410-82166-3	119	cn	148	cn	167	cn	107	cn	130	cn	130	cn	249	*5+ cn	115	cn
DSI-3 042722	410-82166-4	127	cn	162	cn	232	*5+ cn		cn	153	cn	143	cn	387	-	133	cn
DSI-6 042722	410-82166-5	108	cn	124	cn	180	cn		cn	125	cn	121	cn	349	-	109	cn
DSI-4 042722	410-82166-6	78	cn	97	cn	286	*5+ cn		cn	270	*5+ cn		cn	1084	*5+ cn	132	cn
Dup-042722	410-82166-7	124	cn	96	cn	117	cn		cn	149	cn		cn	424	-	119	cn
EB-042722	410-82166-8	125	cn		5+ cn		cn	120	cn	137	cn	130	cn	153	-	121	cn
AB-042722	410-82166-9	126		134		126		119		126		121		131		117	
	MB 410-253970/1-A	118		121		115		126		117		119		137		112	
	LCS 410-253970/2-A	115		111		106		121		126		122		131		114	
MW-1 042722 MS MS	410-82166-2 MS	146		159		151		169		159		157		203	*5+	143	
MW-1 042722 MSD MSD	410-82166-2 MSD	128		151		142		151		138		154		165		125	

	QC LIMITS
PFBA = 13C4 PFBA	42-165
PFPeA = 13C5 PFPeA	38-187
C3PFBS = 13C3 PFBS	16-200
13C5PHA = 13C5 PFHxA	24-179
C3PFHS = 13C3 PFHxS	28-188
C4PFHA = 13C4 PFHpA	31-182
M262FTS = M2-6:2 FTS	17-200
C8PFOA = 13C8 PFOA	48-162

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins Lancaster Laboratories Job No.: 410-82166-1

SDG No.:

Matrix: Water

Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	C8PF0	s #	C9PFN	A #	C6PFD	A #	M282F'	ts #	PFOSA	4	d3NMF0	os #	13C7P	ja #	d5NEF(os #
MW-2N 042722	410-82166-1	119	cn	131	cn	96	cn	273	*5+ cn	17	cn	132	cn	110	cn	132	cn
MW-1 042722	410-82166-2	133	cn	141	cn	113	cn	106	cn	107	cn	161	cn	136	cn	163	cn
DSI-1 042722	410-82166-3	126	cn	141	cn	111	cn	142	cn	10	cn	143	cn	113	cn	130	cn
DSI-3 042722	410-82166-4	110	cn	155	cn	105	cn	177	cn	48	cn	109	cn	53	cn	104	cn
DSI-6 042722	410-82166-5	117	cn	128	cn	95	cn	232	*5+ cn	56	cn	127	cn	106	cn	142	cn
DSI-4 042722	410-82166-6	129	cn	126	cn	94	cn	343	*5+ cn	58	cn	123	cn	125	cn	166	cn
Dup-042722	410-82166-7	121	cn	143	cn	111	cn	263	*5+ cn	55	cn	135	cn	112	cn	150	cn
EB-042722	410-82166-8	129	cn	135	cn	113	cn	108	cn	106	cn	155	cn	117	cn	148	cn
AB-042722	410-82166-9	118		126		121		95		105		155		130		162	cn
	MB 410-253970/1-A	124		127		120		103		111		167		131		166	
	LCS 410-253970/2-A	117		131		114		97		97		151		124		146	
MW-1 042722 MS MS	410-82166-2 MS	151		165		126		116		116		182	*5+	133		162	
MW-1 042722 MSD MSD	410-82166-2 MSD	132		136		126		120		121		182	*5+	139		175	

	QC LIMITS
C8PFOS = 13C8 PFOS	51-159
C9PFNA = 13C9 PFNA	51-167
C6PFDA = 13C6 PFDA	49-163
M282FTS = M2-8:2 FTS	33-200
PFOSA = 13C8 FOSA	10-168
d3NMFOS = d3-NMeFOSAA	31-174
13C7PUA = 13C7 PFUnA	34-174
d5NEFOS = d5-NEtFOSAA	29-195

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins Lancaster Laboratories Job No.: 410-82166-1

Level: Low

SDG No.:

Matrix: Water

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFDoDA #	pftda #
MW-2N 042722	410-82166-1	118 cn	127 cn
MW-1 042722	410-82166-2	122 cn	114 cn
DSI-1 042722	410-82166-3	106 cn	100 cn
DSI-3 042722	410-82166-4	13 *5-	0.9 *5-
		cn	cn
DSI-6 042722	410-82166-5	96 cn	75 cn
DSI-4 042722	410-82166-6	108 cn	81 cn
Dup-042722	410-82166-7	116 cn	111 cn
EB-042722	410-82166-8	115 cn	120 cn
AB-042722	410-82166-9	125	132
	MB 410-253970/1-A	123	128
	LCS 410-253970/2-A	113	119
MW-1 042722 MS MS	410-82166-2 MS	126	134
MW-1 042722 MSD MSD	410-82166-2 MSD	141	135

PFDoDA = 13C2 - PFDoDAPFTDA = 13C2 PFTeDA

QC LIMITS 17-176 10-179

Lab Name: Eurofins Lancaster Laboratories Job No.: 410-82166-1

SDG No.:

Matrix: Water

Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	pfba #	PFPeA #	C3PFBS #	# 13C5PHA #	С4РҒНА #	C3PFHS :	# M262FTS #	C8PFOA #
DSI-3 042722 RE	410-82166-4 RE	94	107	116	98	97	93	137	93
DSI-6 042722 RE	410-82166-5 RE	94	106	116	106	105	105	163	99
DSI-4 042722 RE	410-82166-6 RE	67	96	155	61	75	112	230 *5+	79
	MB 410-252952/1-A	62	62	59	64	62	63	71	62
	LCS 410-252952/3-A	77	78	78	73	78	80	83	77

PFBA = $13C4$ PFBA PFPeA = $13C5$ PFPeA C3PFBS = $13C3$ PFBS $13C5PHA = 13C5$ PFH \times A C4PFHA = $13C4$ PFHpA C3PFHS = $13C3$ PFH \times S	QC LIMITS 42-165 38-187 16-200 24-179 31-182 28-188
1	
M262FTS = M2-6:2 FTS	17-200
C8PFOA = 13C8 PFOA	48-162

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins Lancaster Laboratories Job No.: 410-82166-1

SDG No.:

Matrix: Water

Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	C8PFOS #	C9PFNA #	C6PFDA ;	# M282FTS #	PFOSA :	d3nmfos #	13C7PUA #	d5nefos #
DSI-3 042722 RE	410-82166-4 RE	90	101	90	106	66	94	85	86
DSI-6 042722 RE	410-82166-5 RE	98	101	92	130	68	105	100	102
DSI-4 042722 RE	410-82166-6 RE	83	84	88	132	41	90	92	113
	MB 410-252952/1-A	65	69	62	65	46	60	61	53
	LCS 410-252952/3-A	78	84	74	84	56	79	76	71

	QC LIMITS
C8PFOS = 13C8 PFOS	51-159
C9PFNA = 13C9 PFNA	51-167
C6PFDA = 13C6 PFDA	49-163
M282FTS = M2-8:2 FTS	33-200
PFOSA = 13C8 FOSA	10-168
d3NMFOS = d3-NMeFOSAA	31-174
13C7PUA = 13C7 PFUnA	34-174
d5NEFOS = d5-NEtFOSAA	29-195

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins Lancaster Laboratories Job No.: 410-82166-1

SDG No.:

Matrix: Water

Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFDoDA #	pftda #
DSI-3 042722 RE	410-82166-4 RE	81	81
DSI-6 042722 RE	410-82166-5 RE	91	79
DSI-4 042722 RE	410-82166-6 RE	90	80
	MB 410-252952/1-A	57	64
	LCS 410-252952/3-A	72	70

PFDoDA = 13C2 - PFDoDAPFTDA = 13C2 PFTeDA

QC LIMITS 17-176 10-179

FORM VIII

PFAS INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins Lancaster Laboratories E	Job No.: 410-82166-1
SDG No.:	
Instrument ID: 27632	Calibration Start Date: 05/10/2022 13:41
GC Column: Gemini C18 50mm ID: 3(mm)	Calibration End Date: 05/10/2022 14:47
Calibration ID: 37941	

		13C3PFBA		13PF0.	A	PFOS		
		AREA #	RT #	area #	RT #	AREA #	RT #	
INITIAL CALIBRATION	MEAN AREA AND MEAN RT	1738217	3.40	1909157	4.96	781043	5.30	
UPPER LIMIT		2607326	3.80	2863736	5.36	1171565	5.70	
LOWER LIMIT		869109	3.00	954579	4.56	390522	4.90	
LAB SAMPLE ID	CLIENT SAMPLE ID							
ICB 410-253526/8		1599356	3.40	1804971	4.95	699538	5.29	
ICV 410-253526/9		1959877	3.41	2273742	4.97	863134	5.30	
CCV 410-254704/29		1631813	3.38	1648216	4.94	716477	5.28	
MB 410-253970/1-A		1681553	3.39	1897849	4.95	739315	5.29	
LCS 410-253970/2-A		1794035	3.40	1904168	4.95	760140	5.30	
410-82166-1	MW-2N 042722	1098774	3.39	1171589	4.95	628708	5.29	
410-82166-2	MW-1 042722	1607277	3.40	2099872	4.95	740791	5.29	
410-82166-2 MS	MW-1 042722 MS MS	1336720	3.40	1650900	4.95	641598	5.29	
410-82166-2 MSD	MW-1 042722 MSD MSD	1574369	3.40	1979416	4.96	745872	5.30	
410-82166-3	DSI-1 042722	1129588	3.40	2104047	4.95	772805	5.29	
410-82166-4	DSI-3 042722	714064*3	3.39	1753775	4.95	658670	5.29	
410-82166-5	DSI-6 042722	779685*3	3.39	1824685	4.95	781087	5.29	
410-82166-6	DSI-4 042722	290156*3	3.38	605766*3	4.95	598699	5.29	
410-82166-7	Dup-042722	1204428	3.39	1491067	4.94	697845	5.28	
410-82166-8	EB-042722	1182159	3.40	1954277	4.95	747204	5.29	
CCV 410-254704/44		1665685	3.39	1863539	4.95	683148	5.29	
CCV 410-254704/80		1646120	3.39	1841661	4.95	661602	5.30	
410-82166-9	AB-042722	1664470	3.40	1930159	4.95	721997	5.30	
CCV 410-254704/81		1670111	3.39	1844666	4.95	707340	5.29	

13C3PFBA = 13C3-PFBA 13PFOA = 13C2 PFOA PFOS = 13C4 PFOS Area Limit = 50%-150% of internal standard area RT Limit = ± 0.4 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII

PFAS INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	Eurofins Lancaster Laboratories E	Job No.: 410-82166-1
SDG No.:		
Instrument	ID: 30731	Calibration Start Date: 05/10/2022 10:44
GC Column	: <u>Gemini C18 50mm</u> ID: <u>3(mm)</u>	Calibration End Date: 05/10/2022 11:51
Calibratio	on ID: <u>37916</u>	

		13C3PFBA		13PFOA		PFOS	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MEAN AREA AND MEAN RT		859967	3.85	989015	5.67	1024313	5.99
UPPER LIMIT		1289951	4.25	1483523	6.07	1536470	6.39
LOWER LIMIT		429984	3.45	494508	5.27	512157	5.59
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICB 410-253329/8		911694	3.84	1148155	5.66	1086960	5.98
ICV 410-253329/9		981744	3.84	1220671	5.65	1200508	5.97
CCV 410-253572/1		896351	3.85	1033982	5.66	1038613	5.98
MB 410-252952/1-A		1183913	3.86	1430352	5.67	1378958	5.99
LCS 410-252952/3-A		996994	3.84	1272345	5.65	1214363	5.97
410-82166-4 RE	DSI-3 042722 RE	864665	3.82	1229109	5.64	1208462	5.97
410-82166-6 RE	DSI-4 042722 RE	453793	3.84	800313	5.65	1054158	5.98
CCV 410-253572/15		692660	3.84	817177	5.65	815001	5.98

13C3PFBA = 13C3-PFBA 13PFOA = 13C2 PFOA PFOS = 13C4 PFOS Area Limit = 50%-150% of internal standard area RT Limit = ± 0.4 minutes of internal standard RT # Column used to flag values outside QC limits

5 -

FORM VIII PFAS INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins Lancaster Laboratories E	Job No.: 410-82166-1
SDG No.:	
Instrument ID: <u>30731</u>	Calibration Start Date: 05/10/2022 10:44
GC Column: <u>Gemini C18 50mm</u> ID: <u>3(mm)</u>	Calibration End Date: 05/10/2022 11:51
Calibration ID: <u>37916</u>	

		PFDA					
		AREA #	RT #	#	RT #	#	RT #
INITIAL CALIBRATION M	INITIAL CALIBRATION MEAN AREA AND MEAN RT		6.31				
UPPER LIMIT		1936907	6.71				
LOWER LIMIT	LOWER LIMIT		5.91				
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICB 410-253329/8		1450982	6.31				
ICV 410-253329/9		1579854	6.30				
CCV 410-253572/1		1426764	6.30				
MB 410-252952/1-A		1891072	6.32				
LCS 410-252952/3-A		1589163	6.30				
410-82166-4 RE	DSI-3 042722 RE	1650968	6.29				
410-82166-6 RE	DSI-4 042722 RE	1349828	6.30				
CCV 410-253572/15		1089913	6.30				

PFDA = 13C2 PFDA

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.4 minutes of internal standard RT

Column used to flag values outside QC limits

FORM IV PFAS METHOD BLANK SUMMARY

Lab Name: Eurofins Lancaster Labora Environment Testing, LLC	Job No.: <u>410-82166-1</u>
SDG No.:	
Lab File ID: 22MAY10-34.d	Lab Sample ID: MB 410-252952/1-A
Matrix: Water	Date Extracted: 05/09/2022 08:14
Instrument ID: <u>30731</u>	Date Analyzed: 05/10/2022 14:30
Level:(Low/Med) Low	
THIS METHOD BLAN	K APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 410-252952/3-A	22MAY10-36. d	05/10/2022 14:52
DSI-3 042722 RE	410-82166-4 RE	22MAY10-44. d	05/10/2022 16:20
DSI-4 042722 RE	410-82166-6 RE	22MAY10-46. d	05/10/2022 16:43

Lab Name: Eurofins Lancaster Laboratories Environment Testing, LLC	Job No.: 410-82166-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: <u>MB 410-252952/1-A</u>			
Matrix: Water	Lab File ID: 22MAY10-34.d			
Analysis Method: 537 IDA	Date Collected:			
Extraction Method: 537 IDA	Date Extracted: 05/09/2022 08:14			
Sample wt/vol: 250(mL)	Date Analyzed: 05/10/2022 14:30			
Con. Extract Vol.: 1(mL)	Dilution Factor: 1			
Injection Volume: <u>3(uL)</u>	GC Column: Gemini C18 50mm ID: 3(mm)			
% Moisture: % Solids:	GPC Cleanup:(Y/N) N			
Cleanup Factor:				
Analysis Batch No.: 253572	Units: ng/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	ND		2.0	0.50
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.50
335-67-1	Perfluorooctanoic acid	ND		2.0	0.50
375-95-1	Perfluorononanoic acid	ND		2.0	0.50
335-76-2	Perfluorodecanoic acid	ND		2.0	0.50
72629-94-8	Perfluorotridecanoic acid	ND		2.0	0.50
376-06-7	Perfluorotetradecanoic acid	ND		2.0	0.50
375-73-5	Perfluorobutanesulfonic acid	ND		2.0	0.50
355-46-4	Perfluorohexanesulfonic acid	ND		2.0	0.50
1763-23-1	Perfluorooctanesulfonic acid	0.858	J	2.0	0.50
2991-50-6	NEtFOSAA	ND		3.0	0.50
2355-31-9	NMeFOSAA	ND		2.0	0.60
375-92-8	Perfluoroheptanesulfonic acid	ND		2.0	0.50
335-77-3	Perfluorodecanesulfonic acid	ND		2.0	0.50
754-91-6	Perfluorooctanesulfonamide	ND		2.0	0.50
375-22-4	Perfluorobutanoic acid	ND		5.0	2.0
2058-94-8	Perfluoroundecanoic acid	ND		2.0	0.50
307-55-1	Perfluorododecanoic acid	ND		2.0	0.50
27619-97-2	6:2 Fluorotelomer sulfonic acid	ND		5.0	2.0
39108-34-4	8:2 Fluorotelomer sulfonic acid	ND		3.0	1.0
2706-90-3	Perfluoropentanoic acid	ND		2.0	0.50